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Preface

This volume is a collection of referred papers selected from the more than one hun-
dred and twenty presented at the International MAF Conference 2012 – Mathemat-
ical and Statistical Methods for Actuarial Sciences and Finance.

The conference was held in Venice (Italy), from April 10 to 12, 2012, at the
prestigious Cavalli Franchetti palace of the Istituto Veneto di Scienze, Lettere ed
Arti, on the Grand Canal, very near to the Rialto bridge. It was organized by the
Department of Economics of the University Ca’ Foscari of Venice (Italy), with the
collaboration of the Department of Economics and Statistics of the University of
Salerno (Italy).

This conference was the fifth in an international biennial series, which began
in 2004. It was born out of a brilliant idea by colleagues – and friends – of the
Department of Economics and Statistics of the University of Salerno: the idea was
that a cooperation between mathematicians and statisticians working in actuarial
sciences, in insurance and in finance could improve the research on these topics.

The proof of the merits of this idea is the wide participation in all the conferences.
In particular, with reference to the 2012 event, there were:

• about 180 attendants, including academics, professionals, researchers and stu-
dents;

• more than 120 accepted communications, organized in 40 parallel sessions;
• attendants and authors from more than 20 countries: Australia, Austria, Belgium,

Canada, Denmark, Egypt, France, Germany, Great Britain, Greece, Israel, Italy,
Japan, Mexico, New Zealand, Portugal, Republic of Djibouti, Sierra Leone, Spain,
Switzerland and the USA;

• 4 prestigious plenary keynote lectures delivered by:
– Professor Giuseppe Cavaliere of the University of Bologna (Italy): “Unit roots

in bounded financial time series”;
– Professor Paul Embrechts of the ETH Zurich (Switzerland): “Extreme-quantile

tracking for financial time series”;
– Professor Dominique Guégan of the University Paris1, Panthéon, Sorbonne

(France): “A quantitative finance and actuarial framework for risk manage-
ment”;

– Professor Wolfgang Runggaldier of the University of Padua (Italy): “On sto-
chastic filtering applications in finance”;
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• an instructive plenary lesson, mainly addressed to Ph.D. students and young re-
searchers, delivered by Professor Chris Adcock of the University of Shefield
(Great Britain): “Doing research and getting it published”.

Generally, the papers published in this volume present theoretical and methodolog-
ical contributions and their applications in real contexts.

With respect to the theoretical and methodological contributions, some of the
considered areas of investigation include: actuarial models; alternative testing ap-
proaches; behavioral finance; clustering techniques; coherent and no-coherent risk
measures; credit-scoring approaches; data envelopment analysis; dynamic stochas-
tic programming; financial contagion models; financial ratios; intelligent financial
trading systems; mixture normality approaches; Monte Carlo-based methodologies;
multi-criteria methods; nonlinear parameter estimation techniques; nonlinear thresh-
old models; particle swarm optimization; performance measures; portfolio optimiza-
tion; pricing methods for structured and non-structured derivatives; risk manage-
ment; skewed distribution analysis; solvency analysis; stochastic actuarial valuation
methods; variable selection models; time series analysis tools.

As regards the applications, they are related to real problems associated, among
the others, to: banks; collateralized fund obligations; credit portfolios; defined-benefit
pension plans; double-indexed pension annuities; efficient-market hypothesis; ex-
change markets; financial time series; firms; hedge funds; non-life insurance compa-
nies; returns distributions; socially responsible mutual funds; unit-linked contracts.

Of course, success of this conference would not have been possible without the
valuable help of our sponsors (in alphabetical order):

• AMASES: Associazione per la Matematica Applicata alle Scienze Economiche
e Sociali;

• Centro Interdipartimentale su Cultura e Economia della Globalizzazione;
• Department of Economics of the University Ca’ Foscari of Venice;
• Department of Economics and Statistics of the University of Salerno;
• DIAMAN SIM S.p.A.;
• Istituto Veneto di Scienze Lettere e Arti;
• Nethun S.p.A;
• Regione del Veneto;
• VENIS S.p.A.

Further, we would also like to express our deep gratitude to the members of the
Scientific and Organizing Committees, to the Center of Quantitative Economics of
the Ca’ Foscari University of Venice, to the Webmaster, and to all the people whose
collaboration contributed to the success of the conference MAF 2012.

Finally, we are pleased to inform you that the organizing machine of the next
edition is already working: the conference MAF 2014 will be held in Vietri sul Mare
(Italy), on the enchanting Amalfi Coast, from April 22 to 24, 2014 (for more details
visit the website http://www.maf2014.unisa.it/).

We look forward to seeing you.

Venice, August 2013 Marco Corazza
Claudio Pizzi
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Weak Form Efficiency of Selected European
Stock Markets: Alternative Testing Approaches

Giuseppina Albano, Michele La Rocca and Cira Perna

Abstract Modelling and forecasting financial data is an important problem which
has received a lot of attention especially for the intrinsic difficulty in practical ap-
plications. The present paper investigates the weak form efficiency of some selected
European markets: AEX, CAC40, DAX, FTSE100, FTSEMIB, IBEX35. In order
to keep into account nonlinear structures usually found in returns time series data,
a non parametric test based on neural network models has been employed. The test
procedure has been structured as a multiple testing scheme in order to avoid any
data snooping problem and to keep under control the familywise error rate. For sake
of comparison we also discuss the results obtained by applying some classical and
well known tests based on the Random Walk Hypotheses. The data analysis results
clearly show that ignoring the multiple testing structure of these latter test might lead
to spurious results.

1 Introduction

The efficient market hypothesis (EMH), in its weak form, states that all available in-
formation is fully and instantaneously reflected in price, so it will be not possible for
investors, using past prices, to discover undervalued stocks and develop strategies
to systematically earn abnormal returns. Clearly, this is a fundamental issue in fi-
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nance since volatility, predictability, speculation and anomalies in financial markets
are also related to the efficiency and are all interdependent.

The most common used implication of EMH is the Random Walk Hypothesis
(RWH), which indicates that successive price changes are random and serially inde-
pendent or, in a less restrictive formulation, incorrelated. Among methodologies able
to test RWH, variance-ratio tests are considered powerful. Lo e Mackinlay [13] first
proposed the conventional variance-ratio test. Later, Chow and Denning [4] modified
Lo-Mackinlay’s test to form a simple multiple variance-ratio test and Wright [18]
proposed a non parametric ranks and signs based variance-ratio tests to overcome
the potential limitation of Lo-Mackinlay’s conventional variance-ratio test. Recently
Kim [7] has proposed an automatic variance-ratio test in which the holding period
is automatically chosen by means of a procedure depending on the structure of the
data.

Anyway, evidence against the RWH for stock returns in the capital markets is
often shown (see, for example, [6,12,13] and references therein). Failure of models
based on linear time series techniques to deliver superior forecasts to the simple
random walk model has forced researchers to use various nonlinear techniques, such
as Engle test, Tsay test, Hinich bispectrum test, Lyapunov exponent test. Also in such
a literature the market efficiency confirms to be a challenging issue in finance (see,
for example, [1]).

Moreover, it has been widely accepted that nonlinearity exists in the financial
markets and that nonlinear models, both parametric and nonparametric, can be ef-
fectively used to uncover this pattern. Our contribution follows this research path
and aims to investigate the relative merits of a neural network approach for charac-
terizing the prices of selected European markets (AEX, CAC40, DAX, FTSE100,
FTSE MIB, IBEX35). The neural model framework is used to directly testing if
past lags contain useful information which can be exploited for better prediction of
future values. The procedure is structured as a multiple testing scheme in order to
avoid any data snooping problem and to keep under control the familywise error rate.
We compare the results of our test with those obtained by using some well known
variance-ratio tests.

The paper is organized as follows. In Sect. 2, we discuss the test scheme based
on feedforward neural while, in Sect. 3 we briefly review the most popular vari-
ance-ratio tests. In Sect. 4, we describe the data and the data analysis results. Some
remarks close the paper.

2 Neural Network Test for Market Efficiency

Let Pt , t = 1, . . . ,n, be the price associated to a given asset or the price index of
a given market at time t. Following a standard practice, we construct returns time
series (Yt =∇ logPt ) avoiding potential problems associated with estimation of non-
stationary regression functions. In the case of inefficient market (in the sense of weak
efficiency) past lags contain useful information which can be exploited for better pre-
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diction of future values. To check if Yt depends on some past lags, we can introduce
the following model:

Yt = g(Yt−1,Yt−2, . . . ,Yt−d)+ εt (1)

where g(·) generally is a nonlinear function and εt is zero-mean error term with finite
variance.

The unknown function g(·) can be estimated by using a feedforward neural net-
work f (see, for example, [10, 11]) defined as

f (y,w) = w00 +
m

∑
j=1

w0 jψ
(
ỹT w1 j

)
(2)

where w ≡ (
w00,w01, . . .w0r,wT

11, . . . ,w
T
1r

)T
is a m(d + 2) + 1 vector of network

weights, w ∈ W with W being a compact subset of Rm(d+2)+1, and ỹ ≡ (
1,yT

)T

is the input vector augmented by a bias component 1. The network (2) has d in-
put neurons, m neurons in the hidden layer and the identity function for the output
layer. The (fixed) hidden unit activation function ψ is chosen in such a way that
f (y, ·) : W → R is continuous for each y in the support of the explanatory variables
and f (·,w) : Rd → R is measurable for each w in W.

In this framework, the hypothesis that the market is efficient (that is, the given
set of lags has no effect on Y ) can be formulated in a multiple testing framework as

Hj : θ j = 0 vs H ′
j : θ j > 0, j = 1,2, . . . ,d (3)

where θ j = E
[

f 2
j (Yt−1,Yt−2, . . . ,Yt−d ,w0)

]
and f j is the partial derivative of f with

respect Yt− j. since f is known and w0 can be closely approximated. Each null Hj

can be tested by using the statistic Tn, j = nθ̂n, j where

θ̂n, j = n−1
n

∑
t=1

f 2
j (Yt−1,Yt−2, . . . ,Yt−d ; ŵn) (4)

and the vector ŵn is a consistent estimator of the vector of the network weigths.
Clearly, large values of the test statistics indicate evidence against the hypothesis
Hj [9, 10].

In order to control the familywise error rate (FWE), we use the algorithm pro-
posed in Romano and Wolf [15, 16], suitable for joint comparison of multiple (pos-
sibly misspecified) models. The multiple testing scheme is described in Algorithm 1
(see [11] for details).

The neural network model structure and the complexity of the test procedures
distinguish the asymptotic distribution of the test statistics involved from the fa-
miliar tabulated distributions. The problem can be overcome by using resampling
techniques as simulation tools to approximate the unknown sampling distributions
of the statistical quantities involved in the testing procedure. Here, to obtain valid
asymptotic critical values for the test, we refer to the stationary bootstrap approach
proposed by Politis and Romano [14].



4 G. Albano et al.

Algorithm 1 Multiple testing algorithm for weak form efficiency

1: Relabel the hypothesis from Hr1 to Hrd in redescending order of the value of the test
statistics Tn, j, that is Tn,r1 ≥ Tn,r2 ≥ . . . ≥ Tn,rd .

2: Set L = 1 and R0 = 0.
3: for j = RL−1 +1 to d do
4: if 0 /∈ [

Tn,r j − ĉL (1−α) ,∞
)

then
5: reject Hrj

6: end if
7: end for
8: if no (further) null hypothesis are rejected then
9: Stop

10: else
11: RL = number of rejected hypothesis
12: L = L+1
13: Go to step 3
14: end if

It is worthwhile to stress that more complex model structures could be easily ac-
commodated in the described framework, by adding (and testing) other explanatory
variables known to have some impact on market returns. The relevance of each new
explanatory (possibly) lagged variable could be determined along the same lines as
those described in the paper. In any case this analysis would be beyond the scope of
this paper.

3 Variance-Ratio Tests in a Nutshell

In the following, we briefly review some classical and well known tests based on the
RWH that will be used for comparison with our proposed methodology. For a more
exhaustive review see, for example, [2, 18]. Here we consider the Lo-MacKinlay
test and its multiple testing version proposed by Chow and Denning, non-parametric
variance-ratio tests using ranks and signs and the automatic variance-ratio test pro-
posed by Choi.

The Lo-MacKinlay test exploits the property that the variance of the increments
in a random walk is linear in the sampling interval. The variance-ratio with hold-
ing period q is defined as V R(q) = σ2(q)

σ2(1) , where σ2(k) is 1/k times the variance of

(Yt −Yt−k), k = 1,q and t = 1, . . . ,n. Under the RWH, it is V R(q) = 1. Asymptotic
standard normal test statistic for variance-ratio V R(q) can be derived. Moreover, an
heteroscedasticity-consistent standard normal test statistic can be derived (see [13]).

Chow and Denning extend Lo-Mackinlay’s variance-ratio test and provide a sim-
ple multiple variance-ratio test in order to control the test size and reduce the Type I
errors in the conventional variance-ratio test. The idea is to consider as test statistic
the maximum of L test statistic of Lo-Mackinlay test for L different holding period.
In this case, the test statistic follows the studentized maximum modulus distribu-
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tion (SMM) with L and n (the sample size) degrees of freedom. When n is large,
the SMM critical values at L = 4 and α equal to 5% level of significance is 2.49
(see [4]).

Wright proposes an alternative non-parametric variance-ratio tests using ranks
and signs of returns and demonstrates that they may have better power properties
than other variance-ratio tests [18]. The rank-based version runs as follows: Let r(Yt)

be the rank of Yt among Y1,Y2, . . . ,Yn. Define r1t =
(

r(Yt)− n+1
2

)√
(n−1)(n+1)

12

, r2t = Φ−1 r(Yt)
n+1 ,

where Φ−1 is the inverse of the standard normal cumulative distribution function.
Essentially, Wright substitutes r1t and r2t in place of the return (Yt −Yt−q) in the def-
inition of Lo-MacKinlay’s variance-ratio test statistics. The exact sampling distribu-
tion of the test statistic can be approximated by using bootstrap resampling schemes.
The Sign-Based runs as follows. Let u(Yt) = I(Yt > 0)−0.5, where I is the indicator
function. Let st = 2u(Yt). If the series Yt follows a random walk, each st is equal to
1 with probability 1

2 and is equal to −1 otherwise. As in the rank-based variance-
ratio test, the test statistic is obtained from the Lo-Mackinlay statistic substiting st in
place of the return (Yt −Yt−q) and the exact sampling distribution of the test statistic
is approximated with a bootstrap method (see [18]).

Finally, Choi [3] proposes a fully data-dependent method of estimating the opti-
mal choice q̂ for q, essentially based on the wild bootstrapping. Note that the small
sample properties of this automatic variance-ratio test under heteroschedasticity are
unknown and have not been investigated properly.

4 Empirical Results

The time series considered in this data analysis application are daily closing values of
the following stock market indices: AEX, CAC40, DAX, FTSE100 and FTSEMIB.
The data set spans the period from 03/06/2002 to 01/06/2012. The market returns
are depicted in Fig. 1 while some descriptive statistics are reported in Table 1. The
distribution of all the series is almost symmetric and, as expected, the time series
show strong kurtosis and as a consequence the Jarque Bera test clearly rejects the
hypothesis of normally distributed returns.

The results of the weak form efficiency test based on feedforward neural networks
which is able to take into account the multiple testing structure of the problem are
reported in Tables 2 and 3. The tests are based on a nonlinear autoregressive model
Yt = g(Yt−1, . . . ,Yt−5)+ εt where the lag structures has been limited to a maximum
of five lags, following [5] whom findings were unaffected by using different lag
structures.

The function g is estimated by using neural networks with different hidden layer
sizes and different values for the weight decay. The “optimal” neural network model
is estimated by using nonlinear least squares and it is chosen as the one which mini-
mize the the Schwartz Information Criterion (SIC) (see Fig. 2). The values reported
in Table 2 show that the hypothesis of market efficiency cannot be rejected for all
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(a) AEX (b) CAC (c) DAX

(d) FTSE100 (e) FTSEMIB (f) IBEX35

Fig. 1 Plot of the returns for the selected indexes from 03/06/2002 to 01/06/2012

the indexes and for all the neural models. Moreover, the results appear to be sta-
ble by changing the hidden layer sizes in a neighborhood of the optimal ones. The
conclusions do not change by considering a moderate weight decay to make neural
network estimates more stable (see Table 3).

For sake of comparison we also reported the results of the variance-ratio tests dis-
cussed in the previous section. In Table 4 we report the test statistics for the classical
variance-ratio test, choosing for the holding period q the values 2,4,8,16, generally
employed in such a literature. If we perform the variance-ratio test without taking

Table 1 Descriptive statistics for the selected daily returns from 03/06/2002 to 01/06/2012.
p-values are in parenthesis

Min. 1st Qu. Median Mean 3rd Qu. Max. Skew. Kurt. Jarque Bera Test

AEX −0.096 −0.007 0.000 0.000 0.007 0.100 -0.012 5.810 3525 (< 2.2e-16)
CAC40 −0.095 −0.006 0.000 0.000 0.007 0.106 0.053 6.909 4656 (< 2.2e-16)
DAX −0.099 −0.007 0.000 0.000 0.008 0.108 -0.096 4.593 4821 (< 2.2e-16)
FTSE100 −0.093 −0.005 0.000 0.000 0.006 0.094 -0.148 8.327 6669 (< 2.2e-16)
FTSEMIB −0.086 −0.006 0.000 0.000 0.006 0.109 -0.082 6.492 4118 (< 2.2e-16)
IBEX35 −0.096 −0.006 0.000 0.000 0.006 0.100 0.121 7.818 5912 (< 2.2e-16)
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Table 2 Neural Network tests for different hidden layer sizes. Weight decay equal to zero.
Neural models which minimize the SIC are labelled with a star. The nulls are rejected, at the
level 0.05, if Tn,r1 > c(0.95)

Index m Optim 1 2 3 4 5 Tn,r1 c(0.95)

AEX 2 35.04 57.31 90.28 16.93 33.84 90.28 715.09
3 * 33.05 28.37 40.20 87.84 377.22 377.22 1024.19
4 383.71 197.16 644.86 85.86 63.62 644.86 6217.37

CAC40 1 2.52 9.35 9.32 0.32 10.52 10.52 120.26
2 * 23.51 34.27 17.67 12.37 6.70 34.27 336.83
3 32.22 90.98 23.27 36.98 33.80 90.98 3198.82

DAX 0 * 0.00 2.13 10.86 8.74 4.92 10.86 19.94
1 6.00 9.34 19.57 0.01 7.23 19.57 85.24
2 58.65 12.55 35.29 78.28 10.07 78.28 129.81

FTSE100 1 0.60 51.62 67.94 3.80 19.57 67.94 120.64
2 * 16.13 143.45 125.87 31.18 32.91 143.45 235.38
3 19.60 91.15 96.20 26.36 35.64 96.20 448.96

FTSEMIB 0 0.11 2.68 6.84 3.08 8.69 8.69 32.78
1 * 1.76 40.13 29.08 2.15 19.96 40.13 110.47
2 23.33 85.53 63.88 24.41 9.55 85.53 391.87

IBEX35 1 3.02 8.14 9.00 0.04 15.97 15.97 38.42
2 * 15.53 49.45 36.95 12.13 16.37 49.45 870.59
3 37.65 165.02 59.72 12.81 33.21 165.02 4133.87

Table 3 Neural network tests for different hidden layer sizes. Weight decay equal to 5e−5.
Neural models which minimize the SIC are labelled with a star. The nulls are rejected, at the
level 0.05, if Tn,r1 > c(0.95)

Index m Optim 1 2 3 4 5 Tn,r1 c(0.95)

AEX 0 * 0.04 0.00 19.50 5.53 12.95 19.50 21.04
1 0.04 0.00 19.81 5.47 12.83 19.81 21.32
2 4.21 0.74 21.14 12.97 19.35 21.14 31.80

CAC40 0 * 5.48 6.33 11.42 3.42 8.41 11.49 24.16
1 6.87 6.72 11.59 3.25 8.89 11.59 23.02
2 10.77 6.46 9.97 3.31 6.11 10.77 22.07

DAX 0 * 0.00 2.13 10.86 8.74 4.92 10.86 20.26
1 0.00 2.10 10.77 8.73 4.89 10.77 20.26
2 7.14 2.27 15.55 11.18 4.18 15.55 26.06

FTSE100 0 * 5.72 6.81 11.06 10.68 7.82 11.06 32.44
1 6.54 6.94 11.35 10.27 8.12 11.35 29.79
2 6.68 6.04 11.09 11.60 4.86 11.60 29.77

FTSEMIB 0 * 0.11 2.68 6.83 3.08 8.69 8.69 33.80
1 0.10 2.66 6.91 3.01 8.67 8.67 34.39
2 12.78 6.64 9.02 1.77 11.24 12.78 44.99

IBEX35 0 * 0.19 6.67 5.07 0.60 6.04 6.67 22.63
1 0.17 6.61 5.04 0.57 6.06 6.61 22.52
2 9.02 6.25 6.23 0.47 10.43 10.43 32.20
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(a) AEX (b) CAC

(c) DAX (d) FTSE100

(e) FTSEMIB (f) IBEX

Fig. 2 Plot of SIC information criterion for different hidden layer sizes and different weight
decay values (�= 0, ◦ = 5E −6, �= 5E −5, • = 5E −4)

into account the heteroscedasticity of the data and the multiple testing structure, the
RWH is rejected for CAC40 and FTSE100 for all the holding periods q, and for AEX
( when q = 8), DAX (q = 8) and IBEX35 (q = 8,16). However, by allowing for het-
eroscedasticity, the variance-ratio test rejects the null hypothesis only for CAC40
(for q = 4,8) and FTSE100 (for q = 4).
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Table 4 Variance-ratio test in the presence of homoscedasticity and of heteroscedasticity of
the data. Statistically significant tests at the level 5% are indicated in bold (q denotes the
holding period)

Index homoscedasticity heteroscedasticity
q 2 4 8 16 2 4 8 16

AEX –0.677 –1.519 –2.238 –1.311 –0.411 –0.882 –1.264 –0.736
CAC40 –2.384 –3.889 –3.707 –3.266 –1.439 –2.279 –2.122 –0.736
DAX –0.144 –1.751 –2.118 –1.742 –0.099 –0.882 –1.264 –1.889
FTSE100 –2.555 –4.098 –3.644 –2.995 –1.374 –2.140 –1.846 –1.534
FTSEMIB 0.187 –1.371 –1.763 –1.148 0.115 –0.822 –1.023 –0.669
IBEX35 –0.410 –1.658 –2.462 –2.167 0.243 –0.984 –1.435 –1.277

Table 5 Automatic variance-ratio test. Statistically significant tests at the level 5% are indi-
cated in bold

Index homoschedasticity CI (Normal) CI (Mammen) CI (Rademacher)

AEX −0.325 (−2.302;2.702) (−2.534;2.597) (−2.273;2.558)
CAC40 −2.402 (−2.232;2.736) (−2.233;2.616) (−2.583;2.554)
DAX −0.039 (−2.100;2.264) (−2.214;2.203) (−2.139;2.528)
FTSE100 −2.778 (−2.642;2.958) (−2.932;2.898) (−2.799;3.204)
FTSEMIB 0.121 (−2.383;2.220) (−2.536;2.501) (−2.502,2.712)
IBEX35 0.260 (-2.341;2.726) (−2.445;2.215) (−2.534;2.574)

The previous results appear to be sensitive to the choice of the holding period.
So automatic variance-ratio tests have been performed and the results are shown
in Table 5. The asymptotic normal approximation, which does not take into ac-
count the heteroscedasticity, allows to reject the RWH in the case of CAC40 and
FTSE100. In order to take into account the heteroscedasticity, the wild bootstrap
(both in the Mammen and in the Rademacher version) has been employed. Intervals
of acceptance (CI) are identified using 1000 bootstrap replications. Also in these
cases, CAC40 and FTSE100 appear to be inefficient.

By applying the non parametric-ratio test the RWH is rejected again for the in-
dexes CAC40 and FTSE100 (see the 95% confidence intervals reported in Table 6 in
the columns Rank-based test (homoschedasticity and heteroschedasticity) and iden-
tified using 1000 and 10000 replications in each case,) and possibly FTSEMIB (as
reported in column Sign-based test).

Of great interest are the results of the Chow-Denning test, which takes into ac-
count the multiple testing structure of the testing scheme. By assuming homoschedas-
ticity, again, the CAC40 and the FTSE100 appear to be inefficient. However, by al-
lowing simultaneously heteroscedasticity and multiple testing structure (see Table 7)
the efficiency hypothesis is confirmed for all the selected markets. These latter re-
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Table 6 Non-parametric variance-ratio tests: ranks (homoschedasticity and heteroschedas-
ticity) and signs (last column). Statistically significant tests at the level 5% are indicated in
bold. In parentheses the confidence intervals used for the test decision

Index q
Rank-based test

Sign-based test
homoschedasticity heteroschedasticity

AEX 2 0.112 (–1.970, 1.915) –0.333 (–1.965,1.919) 0.000 (–1.920,1.960)

4 –0.574 (–1.984,1.937) –1.031 (–2.001,1.930) –0.524 (–1.935,1.999)

8 –1.065 (–1.983,1.935) –1.564 (–1.979,1.905) –0.699 (–1.937,1.987)

16 –0.495 (–1.981,1.881) –0.854 (–1.979,1.856) 0.184 (–1.897,2.005)

CAC 40 2 –1.968 (–1.999, 1.930) –1.908 (–2.011,1.935) –2.876 (–2.007,1.966)

4 –2.788 (–1.990,1.876) –3.031 (–2.027,1.921) –2.821 (–1.947,2.002)

8 –2.954 (–1.948,1.924) –3.159 (–1.990,1.965) –2.312 (–1.941,1.980)

16 –2.804 (–1.926,1.929) –3.017 (–1.949,1.991) –1.965 (–1.910,1.971)

DAX 2 –0.309 (–1.986, 1.974) –0.171 (–2.014,1.954) –0.554 (–1.961,1.961)

4 –1.347 (–1.989,1.948) –1.504 (–1.995,1.959) –1.236 (–1.980,1.966)

8 –1.847 (–1.966,1.961) –2.031 (–1.964,1.943) –1.179 (–1.966,1.939)

16 –1.714 (–1.988,1.952) –1.813 (–1.982,1.967) –0.529 (–1.912,1.961)

FTSE100 2 –2.666 (–2.002, 1.963) –2.559 (–1.985,1.975) –2.377 (–2.002,1.960)

4 –2.863 (–1.954,1.949) –3.196 (–1.945,1.947) –2.664 (–1.950,1.995)

8 –2.670 (–1.995,1.939) –2.969 (–1.997,1.936) –1.614 (–1.910,1.952)

16 –2.721 (–1.980,1.893) –2.833 (–1.973,1.907) –1.247 (–1.889,2.002)

FTSEMIB 2 –0.473 (–2.021, 1.913) 0.069 (–2.047,1.926) –2.109 (–1.944,1.985)

4 –0.889 (–2.001,1.958) –0.794 (–2.013,1.975) –2.111 (–1.901,2.000)

8 –1.327 (–1.996,1.900) –1.250 (–2.021,1.910) –1.818 (–1.895,1.989)

16 –0.777 (–2.005,1.895) –0.678 (–2.015,1.868) –0.799 (–1.892,2.002)

IBEX35 2 0.446 (–1.995, 1.912) 0.908 (–2.026,1.909) –0.831 (–1.954,1.954)

4 –0.592 (–2.011,1.953) –0.754 (–2.024,1.945) –0.756 (–1.922,1.967)

8 –1.105 (–2.005,1.942) –1.459 (–2.005,1.910) –0.179 (–1.904,1.964)

16 –0.724 (–1.948,1.882) –1.226 (–1.944,1.892) 0.674 (–1.894,1.975)

sults appear to be consistent with those obtained by using our neural network testing
scheme.

The data analysis application clearly shows that when using variance-ratio tests,
neglecting their multiple testing structure and/or neglecting peculiar aspects of the
data (such as heteroschedasticity) might lead to spurious results with ambiguous
conclusion on market efficiency. On the other hand, the usage of multiple testing
schemes based on neural network modeling, which are able to correctly incorporate
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Table 7 Chow-Denning test in the presence of homoscedasticity and of heteroscedasticity of
the data. Statistically significant tests at the level 5% are indicated in bold

Index homoscedasticity heteroscedasticity

AEX 2.238 1.263
CAC40 3.889 2.278
DAX 2.118 1.355
FTSE100 4.098 2.140
FTSEMIB 1.763 1.023
IBEX35 2.462 1.435

peculiar characteristics of the data sets (heterogeneity, nonlinearity) appear to lead
to more stable and trustable results.

5 Concluding Remarks

In this paper we analyzed the weak form efficiency of some European stock mar-
kets by using a nonparametric testing procedure based on neural networks. The test
procedure has been structured as a multiple test and its advantages with respect to
variance-ratio tests is the stability and robustness of the results. However some is-
sues still remain open. It is well known that variance-ratio tests are not robust to
structural breaks (see [8]) and some modification of the standard test procedure is
needed to deal with it. Is the neural network based test able to accommodate struc-
tural breaks as well nonlinearities? There is a wide collection of variance-ratio tests
with their advantages and drawbacks. What are their relative merits in terms of size
accuracy and power properties in small samples? These aspects however are out of
the scope of this paper and they will be part of further research studies.
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An Empirical Comparison of Variable Selection
Methods in Competing Risks Model

Alessandra Amendola, Marialuisa Restaino and Luca Sensini

Abstract The variable selection is a challenging task in statistical analysis. In many
real situations, a large number of potential predictors are available and a selection
among them is recommended. For dealing with this problem, the automated proce-
dures are the most commonly used methods, without taking into account their draw-
backs and disadvantages. To overcome them, the shrinkage methods are a good alter-
native. Our aim is to investigate the performance of some variable selection methods,
focusing on a statistical procedure suitable for the competing risks model. In this the-
oretical setting, the same variables might have different degrees of influence on the
risks due to multiple causes and this has to be taken into account in the choice of the
“best” subset. The proposed procedure, based on shrinkage techniques, is evaluated
by means of empirical analysis on a data-set of financial indicators computed from
a sample of industrial firms annual reports.

1 Introduction

The evolution of a firm is a complex process with many interconnected elements.
The firm’s coming out of the market could be considered as the final step of the
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process. The companies may exit the market for several reasons (e.g. bankruptcy,
liquidation, merger and acquisition), and each exit may be influenced by different
factors, having distinct effects for the market structure [34].

In the literature on corporate distress prediction, the main contributions have in-
vestigated the determinants of the general exit decision, without considering possible
distinctions among different status.

Starting from the seminal paper of [3], the empirical works have either treated
all exits as homogeneous events or focused on only one form of exit (mainly bank-
ruptcy), neglecting others (see for example [10,36]). Only recently the attention has
been focused on the consequences of different types of financial distress [31,32]. In
order to take into account the effects related to each exit form, the most used methods
are the advanced version of logistic regression (i.e. the mixed logit, multinomial error
component logit and nested logit model) [14, 29] and the competing risks models
[12, 16].

In this paper we refer to a competing risks approach because, unlike the traditional
logistic framework, it enables to incorporate the time to event as dependent variable
in determining the probability of a firm being in a distressed status. In addition, this
model allows taking into account whether and when the exit occurs, monitoring the
evolution of the risk of an exit type over time.

Since each exit status may be caused by different reasons, a relevant task is related
to the identification of a subset of factors that are significantly correlated with a
given exit and have to be included in the competing risks model. In other words, it
is important to identify those financial indicators that may influence each reason of
leaving the market at a specified time in order to accurately predict the exit of a new
firm, thus allowing a better risk assessment and model interpretation.

Variable selection has been largely investigated in statistical literature, and dif-
ferent methods have been proposed throughout the years. The traditional approach,
mainly based on automatic selection procedure, suffers from a number of drawbacks
that lead to biased and unstable results [11]. Besides, they face significant challenges
when dealing with high dimensionality [21].

The instability of these variable selection methods justifies the need of consid-
ering other approaches, based on the maximization of different forms of penalized
likelihood. Methods of penalization include traditional approaches such as AIC [1]
and BIC [35] as well as more recent developments including bridge regression [23],
LASSO [38], SCAD [19], LARS [17], elastic net [40] and MM algorithms [26].
Most of them have been widely developed within the regression setting, and only
recently some of them have been extended to the context of survival data analysis
and, in particular, for Cox’s proportional hazards (PH) model [6,7,20,39]. However,
since now there are no references about their application in competing risks model.

The aim of this paper is to investigate the determinants of the probability of dif-
ferent types of firms’ market exit by the competing risks hazard model, focusing on
the variable selection problem. The competing risks model is estimated by maxi-
mizing the marginal likelihood subject to a shrinkage-type penalty that encourages
sparse solutions and hence facilitates the process of variable selection. The proposed
approach is compared over traditional stepwise procedure and their performance is
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evaluated through the empirical analysis on a data-set of financial indicators drawn
from a sample of industrial firms annual reports. The sample includes three mutually
exclusive exit status, namely firms going bankrupt, being liquidated and becoming
inactive. Numerical results seem to be in favour of the proposed method, indicating
that the lasso technique produces accurate and interpretable models and it tends to
provide better results in terms of predictive accuracy.

The rest of the paper is structured as follows. In the next section, the statistical
method is briefly presented. The empirical results are discussed in Sect. 3, while
Sect. 4 concludes.

2 Model Specification and Variable Selection

2.1 Competing Risks Model

In this section the methodology employed in the paper is described. The competing
risks model is an extension of the mortality model for survival data and is based on
one transient state (alive state) and a certain number of absorbing states, correspond-
ing to death from different causes. Thus, all transitions are from the state alive (for
details, see [8, 9, 25]).

Let T be the observed failure time and let D be the cause of failure (event-causing
failure). Since the different risks are assumed to be independent [2], one and only
one cause can be assigned to every failure.

In this framework the central quantity is the probability of failing due to a given
cause k, after having reached the time point t, called cause-specific hazard function,
given by:

λk(t) = lim
Δ t→0

P[T ≤ t +Δ t,D = k|T ≥ t]
Δ t

, k = 1, . . . ,K. (1)

It may be influenced by covariates’ vector Zik:

λik(t|Zik) = λk,0(t)exp{βββT
k Zik(t)}, (2)

where λk,0(t) is the baseline cause-specific hazard of cause k which does not need
to be explicitly specified, Zik(t) is a vector of covariates for firm i specific to k-type
hazard at time t, and the vector βββ k represents the covariate effects on cause k to
be estimated. Since the same variables could have different effects on the distinct
risks, it is reasonable to assume that, for each k, βββ k is independent of each other.
Consequently, the baseline cause-specific hazard λk,0(t) for the cause k is not re-
quired to be proportional to the baseline cause-specific hazard for another cause k′
(k 	= k′;k = 1, . . . ,K).

By using the univariate Cox Proportional Hazard approach [13], the estimate of
the coefficients’ vector is obtained through the partial likelihood function for each
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specific hazard k:

Lk(βββ k) =
nk

∏
i=1

exp{βββT
k Zik(tik)}

∑l∈R(tik) exp{βββT
k Zlk(tlk)}

, (3)

where nk is the number of units in specific hazard k, and R(tik) is the set of units at
risk at time tik.

If one is interested in the overall hazard function, the sum of all cause specific
hazard functions may be computed as:

λ (t) =
K

∑
k=1

λk(t), (4)

and consequently the overall partial likelihood function is given by:

L(βββ 1, . . . ,βββK) =
K

∏
k=1

nk

∏
i=1

exp{βββT
k Zik(tik)}

∑l∈R(tik) exp{βββT
k Zlk(tlk)}

. (5)

2.2 Lasso in Competing Risks Model

Since not all the covariates may contribute to the prediction of survival outcomes,
the problem of interest is to select a subset of variables significantly associated with
a specific failure type. Some of the variable selection techniques proposed for lin-
ear regression models have been extended to the context of survival models. They
include best-subset selection, stepwise selection, asymptotic procedures based on
score tests, bootstrap procedures [33] and Bayesian variable selection [22,27]. How-
ever, the theoretical properties of these methods are generally unknown and they can
be computationally too expensive in case of high dimensionality [20, 21]. Later, a
family of penalized partial likelihood methods, such as the lasso [39], has been de-
veloped for Cox’s proportional hazards model in survival analysis setting.

In the competing risks framework, the stability of the variable selection method
is a major concern due to the presence of different types of risk. Our aim is to extend
the lasso technique to the case of competing risks model.

Following [39], the lasso for the failure k is given by:

β̂ββ k = argmax
βββ k

log(Lk(βββ k))

= argmax
βββ k

nk

∑
i=1

[
βββT

k Zik(tik)− log ∑
l∈R(tik)

exp{βββT
k Zlk(tlk)}

]
, (6)

subject to
||βββ k||1 ≤ sk,

where ||βββ k||1 = |β 1
k |+ |β 2

k |+ · · ·+ |β p
k | is the L1 norm of the coefficients vector βββ k

for the failure cause k, sk is the tuning parameter that quantifies the magnitude of the
constraints on the L1 norm and determines the number of coefficients estimated as
zero in the model, and p is the number of covariates.
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As this is an optimization problem with constraint, the Lagrange multipliers meth-
od is applied. Thus, the Eq. (6) is equivalent to:

β̂ββ k = argmin
βββ k

[− log(Lk(βββ k))+λk||βββ k||1] , (7)

where λk is the tuning parameter1 determining the magnitude of penalty on the log
partial likelihood.

Considering all independent failure causes K, the lasso estimator is given by:

(β̂ββ 1, . . . , β̂ββK) = argmax
βββ k

l(βββ 1, . . . ,βββK)

= argmax
βββ k

K

∑
k=1

nk

∑
i

[
βββT

k Zik(tik)− log ∑
l∈R(tik)

exp{βββT
k Zlk(tlk)}

]
, (8)

subject to

||βββ 1||1 ≤ s1

||βββ 2||1 ≤ s2

. . .

||βββK ||1 ≤ sK .

This is equivalent to:

(β̂ββ 1, . . . , β̂ββK) = argmin
βββ k

[
−l(βββ 1, . . . ,βββK)+

K

∑
k=1

λk||βββ k||1
]

. (9)

In this case, a different tuning parameter for each vector of coefficients and for
each type of failure has been considered, because the influence of the same variables
on different failure types could be different, and we are interested in studying the
effect of variables on the single survival state and not on the overall survival function.

3 Empirical Results

3.1 The Data

The proposed procedure is validated on a financial data set drawn from Amadeus
database of Bureau van Dijk. The reference population consists of building Italian
firms and the period considered here is from 2004 to 2009. The main interest is to
investigate the determinants of firms that end up in financial distress for different
causes. Namely, our attention is focused on three mutually exclusive states of exit
from the market [34]: firms that have gone bankrupt, firms that have been liquidated,
and firms being inactive. The bankrupt status includes those firms that have been

1 In order to estimate the tuning parameter λ , the leave-one-out cross-validation is used [24, 37].
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legally declared unable to pay its creditors and are under a Court supervision. The
second status includes those companies that no longer exist because they have ceased
their activities and are in the process of liquidation. The last state includes those firms
that exit the database for other unknown reason. The reference group is given by
active firms. From the population of active and non-active firms, a cluster random
sample of n = 1462 firms based on the geographical distribution of the industrial
firms across the regions is extracted. The final sample consists of 221 companies that
went bankrupt, 129 that had entered voluntary liquidation, 228 that were inactive and
finally 884 companies being in the active state.

Starting from the financial statements of each firm included in the sample, nv = 20
potential predictors, chosen among the most relevant in financial distress literature
[4, 5, 15], are computed.

The original data set suffers from the presence of some accounting data observa-
tions that are severe outliers. In order to reduce the effects of anomalous observa-
tions, a pre-processing procedure is performed and those firms showing values of the
financial predictors outside the 3th and 97th percentiles are excluded from the analy-
sis. In order to achieve stability, a modified logarithmic transformation, defined for
non-positive argument [30] is also applied.

Finally, the sample is divided into two parts: in-sample set, in order to determine
how accurately a model classifies businesses, and out-of-sample, in order to deter-
mine how accurately a model classifies new businesses.

3.2 The Variables Selected

The goal of the analysis is to investigate the determinants of multiple causes of fi-
nancial distress in competing risks model (in which the three exits are considered
as competing exit routes) and compare the results with single-risk model (where the
three exits are pooled). Moreover, once implemented the proposed variable selection
procedure based on the lasso, the effects of the more significant variables on each
exit type are investigated, and the gain of using an innovative selection method is
evaluated over the traditional stepwise procedure.

The results for the estimated models are shown in Tables 1–3. They display the
total number of variables selected in the single-risk and competing risks models ac-
cording to the variable selection methods used (Table 1), the sign of the coefficients’
estimates (Table 2) and the hazard ratios obtained by computing the exponential of
coefficients βββ (Table 3).

From the results of Table 1, it can be observed that the lasso procedure leads to
a smaller number of selected variables for both the single-risk and the competing
risks approaches. Moreover, in the second case there is a relevant saving in terms of
number of covariates. Actually, for classifying the bankrupted firms, only 8 variables
are needed if the lasso approach is used, while 12 variables are selected as relevant
by using the stepwise procedure. Again, for the inactive state, 11 and 2 variables
are chosen by stepwise and lasso, respectively. Finally, for classifying the liquidated
firms the stepwise approach selects 7 variables as the most significant, while the lasso
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Table 1 Total number of variables selected by stepwise and lasso in the competing risks and
the single risk models

Stepwise

Bankruptcy Inactive Liquidation Single-Risk

12 11 7 12

Lasso

Bankruptcy Inactive Liquidation Single-Risk

8 2 3 10

chooses only 3 variables. Therefore, it seems that there is an advantage in using a
shrinkage method over the classical one, in terms of model parsimony.

In order to further analyse the role of the selected variables, the sign of the coef-
ficients’ estimates (Table 2) for the competing risks (columns 3-5) and the pooled
models (column 6) is analyzed. It is important to underline the meaning of signs
within this context. A positive (negative) sign of coefficients means higher (lower)
likelihood of becoming distressed and consequently lower (higher) probability of
surviving in the market.

The sign of variables selected by stepwise accords with the one chosen by lasso,
except for the return on capital employed. However, this discrepancy comes true
only for two different states and therefore it may be neglected. Comparing the com-
peting risks and the pooled models in terms of sign of coefficients, some differences
can be noticed. In fact, the ROA, which provides a measure of how efficient the
management is in using assets to generate earnings, being an indicator of a company
profitability relative to total assets, has a negative coefficient for the pooled model,
the bankrupted and liquidated states, while it is positive for the inactive state. Fur-
thermore, there are other two ratios having different sign between bankruptcy and
inactivity. The first is the current ratio, measuring whether or not a firm has enough
resources to pay its short-term debts. The second is the gearing, a measure of finan-
cial leverage indicating the degree to which a firm’s activities are funded by owner’s
funds versus creditor’s funds. These differences may be related to the characteris-
tics of the ratios and the states. As mentioned in Sect. 3.1, since the inactive state
includes those firms that exit the market for any unknown reason, there could be
some firms that have decided to stop their activity, even though they have an effi-
cient management, leading to different values of the ratios.

The hazard ratio, reported in Table 3, evaluates the effect of the covariates on
the hazard. A hazard ratio equal to one means that the variable has no effect on
survival, whereas a hazard ratio greater (less) than one indicates that the effect of the
covariate is to increase (decrease) the hazard rate. Looking at the results, it seems that
the variables selected by lasso have a similar effect on the probability of becoming
distressed according to the financial area of the ratios, even though the magnitude of
impact is slightly different.



20 A. Amendola et al.

Ta
bl

e
2

Si
gn

of
co

ef
fic

ie
nt

s’
es

tim
at

es
fo

r
th

e
co

m
pe

tin
g

ri
sk

s
an

d
th

e
si

ng
le

ri
sk

m
od

el
s

Va
ri

ab
le

s
A

re
aa

B
an

kr
up

tc
y

In
ac

ti
ve

L
iq

ui
da

ti
on

Si
ng

le
-R

is
k

St
ep

w
is

e
L

as
so

St
ep

w
is

e
L

as
so

te
pw

is
e

L
as

so
St

ep
w

is
e

L
as

so

R
et

ur
n

on
sh

ar
eh

ol
de

r
fu

nd
s

1
N

eg
at

iv
e

R
et

ur
n

on
ca

pi
ta

le
m

pl
oy

ed
1

Po
si

tiv
e

N
eg

at
iv

e

R
et

ur
n

on
to

ta
la

ss
et

s
1

Po
si

tiv
e

Pr
ofi

tm
ar

gi
n

1
N

eg
at

iv
e

E
B

IT
D

A
1

E
B

IT
1

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

C
as

h
flo

w
/O

pe
ra

tin
g

re
ve

nu
e

1
Po

si
tiv

e
Po

si
tiv

e

R
O

E
1

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e

R
O

A
1

N
eg

at
iv

e
Po

si
tiv

e
N

eg
at

iv
e

N
eg

at
iv

e

R
O

C
E

1
Po

si
tiv

e
Po

si
tiv

e
Po

si
tiv

e
Po

si
tiv

e

N
et

as
se

ts
tu

rn
ov

er
2

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

In
te

re
st

co
ve

r
2

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

St
oc

k
tu

rn
ov

er
2

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e

C
ol

le
ct

io
n

pe
ri

od
2

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e

C
re

di
tp

er
io

d
2

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

C
ur

re
nt

ra
tio

3
N

eg
at

iv
e

N
eg

at
iv

e
Po

si
tiv

e

L
iq

ui
di

ty
ra

tio
3

Po
si

tiv
e

Po
si

tiv
e

Po
si

tiv
e

Sh
ar

eh
ol

de
rs

liq
ui

di
ty

ra
tio

3

So
lv

en
cy

ra
tio

3
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

G
ea

ri
ng

3
Po

si
tiv

e
Po

si
tiv

e
N

eg
at

iv
e

a
Fo

llo
w

in
g

th
e

A
m

ad
eu

s
cl

as
si

fic
at

io
n,

th
e

nu
m

be
rs

fr
om

1
to

3
re

fe
r

to
th

e
pr

ofi
ta

bi
lit

y,
op

er
at

io
na

la
nd

st
ru

ct
ur

e
ar

ea
,r

es
pe

ct
iv

el
y.



Variable Selection Methods in Competing Risks Model 21

Ta
bl

e
3

H
az

ar
d

ra
tio

s
fo

r
th

e
co

m
pe

tin
g

ri
sk

s
an

d
th

e
si

ng
le

ri
sk

m
od

el
s

Va
ri

ab
le

s
A

re
aa

B
an

kr
up

tc
y

In
ac

ti
ve

L
iq

ui
da

ti
on

Si
ng

le
-R

is
k

St
ep

w
is

e
L

as
so

St
ep

w
is

e
L

as
so

St
ep

w
is

e
L

as
so

St
ep

w
is

e
L

as
so

R
et

ur
n

on
sh

ar
eh

ol
de

r
fu

nd
s

1
0.

96
24

R
et

ur
n

on
ca

pi
ta

le
m

pl
oy

ed
1

1.
00

58
0.

92
48

R
et

ur
n

on
to

ta
la

ss
et

s
1

1.
47

17

Pr
ofi

tm
ar

gi
n

1
0.

92
04

E
B

IT
D

A
1

E
B

IT
1

1.
14

08
1.

11
29

1.
08

06
1.

02
67

C
as

h
flo

w
/O

pe
ra

tin
g

re
ve

nu
e

1
1.

16
13

1.
08

24

R
O

E
1

0.
97

54
0.

97
70

0.
98

63

R
O

A
1

0.
73

74
1.

07
85

0.
91

34
0.

94
84

R
O

C
E

1
1.

25
79

1.
08

14
1.

06
32

1.
03

11

N
et

as
se

ts
tu

rn
ov

er
2

1.
06

60
1.

08
65

1.
07

54
1.

21
08

1.
02

90
1.

13
40

1.
09

01

In
te

re
st

co
ve

r
2

0.
74

39
0.

89
58

0.
93

99
0.

96
65

St
oc

k
tu

rn
ov

er
2

0.
94

86
0.

97
25

0.
99

67

C
ol

le
ct

io
n

pe
ri

od
2

0.
79

21
0.

81
41

0.
91

42
0.

88
42

0.
89

95

C
re

di
tp

er
io

d
2

0.
75

24
0.

82
86

0.
89

31
0.

96
60

0.
80

45
0.

87
00

0.
81

22
0.

82
57

C
ur

re
nt

ra
tio

3
0.

68
89

0.
98

82
1.

22
83

L
iq

ui
di

ty
ra

tio
3

1.
39

49
1.

22
51

1.
00

73

Sh
ar

eh
ol

de
rs

liq
ui

di
ty

ra
tio

3

So
lv

en
cy

ra
tio

3
0.

83
46

0.
82

70
0.

84
66

0.
72

13
0.

84
95

0.
78

79
0.

81
24

G
ea

ri
ng

3
1.

12
60

1.
00

46
0.

91
93

a
Fo

llo
w

in
g

th
e

A
m

ad
eu

s
cl

as
si

fic
at

io
n,

th
e

nu
m

be
rs

fr
om

1
to

3
re

fe
r

to
th

e
pr

ofi
ta

bi
lit

y,
op

er
at

io
na

la
nd

st
ru

ct
ur

e
ar

ea
,r

es
pe

ct
iv

el
y.



22 A. Amendola et al.

3.3 The Accuracy Measures

In this section, the performance of the two variable selection methods here con-
sidered, in both competing risks and single-risk models, is evaluated by computing
some accuracy measures: the proportion of firms classified correctly (accuracy), the
false-positive rate (FP), that is the proportion of distressed firms misclassified as a
non-distressed firm, the false-negative rate (FN), i.e. the proportion of non-distressed
firms wrongly assigned to the distressed group, and the AUC, that is equal to the
probability that a firm will rank a randomly chosen non-distressed firm higher than
a randomly chosen distressed one [6, 18].

Table 4 shows these measures for both variables selection methods in competing
risks and single-risk frameworks. Looking at the ratios computed for the in-sample
set, used for assessing the classification ability, it is discovered that the lasso has
better performance than the stepwise in terms of accuracy, while it has lower per-

Table 4 The accuracy measures for in-sample and out-of-sample sets

In-Sample

Stepwise method
Bankruptcy Inactive Liquidation Single-Risk

Accuracy 0.76225 0.78819 0.78153 0.74881
FP rate 0.40310 0.58025 0.47647 0.61441
FN rate 0.22188 0.17134 0.19222 0.11071
AUC 0.76051 0.68797 0.73364 0.73459

Lasso method
Bankruptcy Inactive Liquidation Single-Risk

Accuracy 0.78384 0.79022 0.79606 0.75234
FP rate 0.51938 0.58848 0.52500 0.72103
FN rate 0.18705 0.16817 0.17128 0.06458
AUC 0.74209 0.65524 0.72540 0.72669

Out-of-Sample

Stepwise method
Bankruptcy Inactive Liquidation Single-Risk

Accuracy 0.83158 0.85263 0.84662 0.87218
FP rate 0.66667 0.56250 0.44068 0.52564
FN rate 0.16616 0.13713 0.12541 0.07496
AUC 0.52971 0.68957 0.77809 0.72044

Lasso method
Bankruptcy Inactive Liquidation Single-Risk

Accuracy 0.84211 0.86165 0.86466 0.88421
FP rate 0.66667 0.56250 0.45763 0.67949
FN rate 0.15559 0.12789 0.10396 0.04089
AUC 0.79809 0.67604 0.78254 0.72985
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formance in terms of both FP rate and AUC. However, by analyzing the results for
the out-of-sample set, used for evaluating the prediction ability of the techniques, it
can be noted that the lasso has a higher accuracy rate in all settings; it has a higher
AUC for bankruptcy and inactivity states; it is a lower FN rate for all states, while
it has equal FP rate in two cases, i.e. for the bankruptcy and the inactivity states.
Therefore, the lasso seems to be a good alternative to the stepwise not only in terms
of number of variables selected, but also in terms of accuracy, producing a relatively
higher performance in predicting the firms’ distress.

4 Conclusions

The literature on firms’ distress has mainly investigated the exit from the market as
a bivariate event analyzing each form of exit in unified framework. Moreover, most
of the studies have not paid much attention to how selecting the variables that in-
fluence the exit from the market. This paper provides an innovative contribution in
explaining the role of variable selection methods in competing risks setting for eval-
uating the decision to leave the market. A competing risks model is developed for
examining the probability of going bankrupt, being inactive and liquidated on some
financial characteristics of firms. The use of the lasso technique has been proposed as
an alternative variables selection method, extending the available references to the
competing risks model and comparing its performance over the widely used stepwise
procedure.

The reached results have shown that using the lasso in selecting the most sig-
nificant predictors for each type of exit can lead an advantage not only in terms of
number of selected covariates but also in terms of predictability of the risk.

In fact, the shrinkage method allows classifying the distressed firms according to
the different risks of coming out from the market by means of a considerably lower
number of variables. Moreover, the role and the sign of the ratios selected by lasso
are coherent with those selected by stepwise in terms of their interpretability.

Finally, the classification ability and the predictive accuracy of the methods, eval-
uated by means of correct classification, FP rate, FN rate and AUC, further confirm
the benefit of using the shrinkage method.
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A Comparison Between Different Numerical
Schemes for the Valuation of Unit-Linked
Contracts Embedding a Surrender Option

Anna Rita Bacinello, Pietro Millossovich and Alvaro Montealegre

Abstract In this paper we describe and compare different numerical schemes for
the valuation of unit-linked contracts with and without surrender option. We im-
plement two different algorithms based on the Least Squares Monte Carlo method
(LSMC), an algorithm based on the Partial Differential Equation Approach (PDE)
and another based on Binomial Trees. We introduce a unifying way to define and
solve the valuation problem in order to include the case of contracts with premiums
paid continuously over time, along with that of single premium contracts, usually
considered in the literature. Finally, we analyse the impact on the fair premiums of
the main parameters of the model.

1 Introduction

Life insurance contracts are often very complex products that embed several types
of options, more or less implicitly defined. The most popular implicit options are
undoubtedly those implied by the presence of minimum guarantees in unit-linked
life insurance. These options do not require any assumption on the policyholder be-
haviour unless early exercise features are also involved. Hence, their exercise is pref-
erence-free and their valuation resemble that of European-style Exotic options. The
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surrender option, the possibility for the policyholder to early terminate the contract
and receive a cash amount (the surrender value), is instead deeply affected by the pol-
icyholder behaviour. This option has become a major concern for insurers, especially
in recent years, as policyholders are becoming increasingly attentive to alternative
investment opportunities available in the market.

The surrender option is a typical American-style contingent-claim that does not
admit a closed-form valuation formula, so that a numerical approach is called for.
The valuation approaches proposed in the literature are based on binomial trees (see
e.g. [2]), partial differential equations with free boundaries (PDE, e.g. [14]), or least
squares Monte Carlo simulation (LSMC, [3,4]). The aim of this study is to compare
the prices of unit-linked policies obtained by means of these different approaches.
In particular this allows us to test the goodness of the LSMC approach, that provides
in absolute terms the most general and flexible method and is unaffected by the
dimensionality of the problem. We take as benchmarks the other approaches, relying
on well established convergence results but requiring customization to the specific
model. We introduce and treat, in a unified way, both the case of single premium
contracts, usually considered in the literature, and that of periodic premiums paid
continuously over time.

The paper is structured as follows. In Sect. 2 we present our valuation framework
defining, in particular, the valuation problem, that is an optimal stopping problem. In
Sect. 3 we tackle this problem with the LSMC approach, by providing two alternative
algorithms for solving it, as proposed by [4] for quite general contracts. In Sect. 4
we use the PDE approach to formulate the problem, which is then solved by finite
differences. For the binomial approach we directly refer the reader to [2], while in
Sect. 5 we present some numerical results.

2 Valuation Framework

We analyse an endowment life insurance contract issued to a policyholder aged x
at time 0. The contract provides a benefit Bs

T at the maturity T upon survival, or a
benefit Bd

t in case of death at time t, with 0 < t ≤ T . Both benefits depend on the
current value of a reference asset whose price at t is denoted by St . Hence

Bs
T = f s(ST ), Bd

t = f d(t,St). (1)

We consider both the case of single premium and that of periodic premiums paid
upon survival. For the sake of simplicity, we assume that periodic premiums are paid
continuously over the entire contract life at a rate π , so that in the interval [t, t +Δ ]
the amount of premiums paid is equal to πΔ . Besides death and survival benefits,
the policyholder is allowed to exit the contract before maturity, provided the policy
has been in force for at least tw years, with 0 ≤ tw ≤ T . In this case he receives a
benefit

Bw
t = f w(t,St) (2)
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if surrender takes place at t ≥ tw. Indeed, it is common practice for periodic premium
contracts to require that the policyholder remains in the contract at least a few years
(e.g. 2 or 3) in order to recover the initial expenses.

The model is specified under a probability Q, which is assumed to be an equiva-
lent martingale measure. Hence, underQ, the price of any traded security is given by
its expected discounted cash-flows (see [8]). Discounting is performed at the risk-
free rate r, assumed here to be constant.

We use a geometric Brownian motion to model the Q-dynamics of the reference
asset price, defined as

dSt

St
= r dt +σ dWt ,

with (Wt) a Wiener process, σ > 0 the volatility parameter and S0 > 0 given.
We denote by τ the time of death of the policyholder and by m(t) its determinis-

tic force of mortality. More precisely, m(t)dt denotes the instantaneous conditional
probability of death at age x+ t. UnderQ, it is assumed that τ and (Wt) are indepen-
dent.

Let θ ≥ tw be the time at which the policyholder decides to terminate the contract.
Early termination can clearly occur only if the individual is still alive and the policy
is still in force. Hence, surrender happens only if θ < τ∧T . The time θ is in general
a stopping time with respect to the filtration G= (Gt) jointly generated by (Wt) and
τ , and we call it an exercise policy.

For a given exercise policy θ ≥ tw and a fixed time t ≤ T such that the contract
is still in force (that is t < τ ∧θ ), the stochastic discounted benefit is given by

Gt(θ) =Bs
T e−r(T−t) 1τ>T,θ≥T +Bd

τ e−r(τ−t)1τ≤T∧θ
+Bw

θ e−r(θ−t)1θ<T∧τ −π
∫ T

t e−r(u−t) 1u<τ∧θ du,
(3)

where 1A is the indicator of the set A and π = 0 in the single premium case. Note that
in the periodic premium case the amount Gt(θ) is net of future premiums payable
by the policyholder.

The time t value of the contract (net in the case of periodic premium) is given by
the usual risk neutral formula:

Vt(θ) = EQ [Gt(θ)|Gt ] , t ≤ T. (4)

The independence of τ and (Wt) implies an alternative expression for the contract
value (see [4] for a more general framework):

Vt(θ) = 1τ>tE
Q
[
Ĝt(θ)|Ft

]
, t ≤ T, (5)

where F= (Ft) is the filtration generated by (Wt) and, for θ > t,

Ĝt(θ) =Bs
T T−tE

r
x+t 1θ≥T +

∫ T
t Bd

u m(u)u−tEr
x+t 1θ≥udu

+Bw
θ θ−tE

r
x+t 1θ<T −π ∫ T

t u−tEr
x+t 1u<θ du

(6)
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with qE j
y = e− j q

q py = e− j q−∫ q
0 m(y−x+u)du being the expected present value of a pure

endowment with term q and interest rate j, interpretable as a mortality risk adjusted
discount factor, and q py is the q-years survival probability for a life aged y.

Finally, the contract value at time 0, V ∗
0 , is obtained by solving the optimal stop-

ping problem
V ∗

0 = supθ V0(θ), (7)

where the supremum is taken over allG-stopping times θ ≥ tw. As shown by [4], and
with (5) in mind, the supremum can alternatively be taken over the corresponding
set of F-stopping times.

In the single premium case we define a fair contract when the premium, say U∗,
coincides with its initial value, that is U∗ = V ∗

0 . Since in the periodic premium case
V ∗

0 is a net value, we say that the contract is fair if instead

V ∗
0 = 0. (8)

Equation (8) implicitly defines a fair premium rate π∗ that has to be found numeri-
cally through an iterative procedure.

In order to single out the fair premium for the surrender option, it is convenient to
compute the fair premium for the corresponding European version of the contract,
namely without the surrender option. To this end, we denote by V E

0 the time 0 value
of the European contract, given by V E

0 = V0(∞) (see (4) and (5)). Then, the fair
premium in the single premium case, say U∗E, coincides with the initial value of
the contract V E

0 . In the periodic premium case, instead, the fair premium π∗E solves
the equation V E

0 = 0. Finally, the fair premiums of the surrender option are given by
U∗S = U∗ −U∗E, π∗S = π∗ −π∗E respectively.

3 Least-squares Monte Carlo Approach

The LSMC method, proposed by [11] for the valuation of American-style contin-
gent claims, is based on the joint use of Monte Carlo simulation and Least Squares
regression. We divide the interval [0,T ] in n subintervals of equal length Δ = T/n,
and let T = {t0, t1, . . . , tn} with ti = iΔ , i = 0,1, . . . ,n. The contract can be surren-
dered at ti ∈ T, ti ≥ tw. Problem (7) is then replaced by its discretized version with
the supremum computed over all stopping times θ ≥ tw taking values in T.

The LSMC approach relies on the dynamic programming principle and on esti-
mating continuation values by regressing them against a set of suitable basis func-
tions of the relevant state variables. In our setting we consider as state variables
the reference asset price S (and related functions, see Sect. 5), and denote by e =
(e1, . . . ,eH) the set of basis functions. As in [4], we describe in what follows two
alternative LSMC algorithms for solving (7). More in detail, Algorithm 1 is based
on definitions (3)–(4), and the supremum in (7) is taken over G-stopping times. As
shown in [4], this results in the backward procedure starting at each simulated time
of death (or maturity, whichever comes first). Algorithm 2 is instead based on def-
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initions (5)–(6) and the supremum in (7) is taken over F-stopping times. In the de-
scription of the algorithms, we will add the superscript h to all simulated variables
to denote their value in the h-th simulation.

Algorithm 1

• Step 0 (Simulation). Simulate M paths of S over the time gridT. Simulate further
M times of death valued in T∪{∞}, where conventionally we set τh = ∞ if the
policyholder is alive at maturity.

• Step 1 (Initialization). For h = 1, . . . ,M, set Ch
T = Bs,h

T if τh > T and Ch
τh = Bd,h

τh

if τh ≤ T .
• Step 2 (Backward iteration). For j = n−1,n−2, . . . ,0,

I (Continuation values). Set I j = {1 ≤ h ≤ M : τh > t j} and, for h ∈ I j, set
Ch

t j
= Ch

t j+1
e−rΔ −π (1− e−rΔ )r−1.

II If t j ≥ tw:
(Regression and comparison). Regress the continuation values (Ch

t j
)h∈I j

against (e(Sh
t j
)h∈I j), to obtain C̃h

t j
= β ∗

j · e(Sh
t j
) for h ∈ I j, where

β ∗
j = argminβ j∈RH ∑h∈I j

(
Ch

t j
−β j · e(Sh

t j
)
)2

;

if Bw,h
t j

> C̃h
t j

then set Ch
t j

= Bw,h
t j

.

• Step 3 (Initial value). Compute the time 0 value of the contract:

V ∗
0 = M−1 ∑M

h=1Ch
0 .

In the following we need the expected present value of a continuous life annuity
with term q and interest rate j, defined by qā j

y =
∫ q

0 uE j
y du.

Algorithm 2

• Step 0 (Simulation). Simulate M paths of S over the time grid T.
• Step 1 (Initialization). Set Ch

T = Bs,h
T for h = 1, . . . ,M.

• Step 2 (Backward iteration). For j = n−1,n−2, . . . ,0,

I (Continuation values). For h = 1, . . . ,M let

Ch
t j

= ΔEr
x+t j

Ch
t j+1

+
∫ t j+1

t j
Bd,h

u m(u)u−t j E
r
x+t j

du−π Δ ār
x+t j

.

II If t j ≥ tw:
(Regression and comparison). Regress the continuation values (Ch

t j
)h=1,...,M

against (e(Sh
t j
))h=1,...,M to obtain C̃h

t j
= β ∗

j · e(Sh
t j
) for h = 1, . . . ,M, where

β ∗
j = argminβ j∈RH ∑M

h=1

(
Ch

t j
−β j · e(Sh

t j
)
)2

;

if Bw,h
t j

> C̃h
t j

set Ch
t j

= Bw,h
t j

.
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• Step 3 (Initial value). The time 0 value of the contract is:

V ∗
0 = M−1∑M

h=1Ch
0 .

Algorithms 1 and 2 can be used to compute the value V E
0 of the European version

of the contract by ordinary Monte Carlo. To this end, one has to skip the regression
step 2II in the above algorithms, or set tw = T .

4 Partial Differential Equation Approach

In this section we outline the partial differential equation (PDE) associated with the
contract value, by using definitions (5) and (6) for it.

For (t,S)∈ [0,T ]×(0,∞) denote by v∗(t,S) the value at t ≤ T of a contract still in
force, when St = S, so that V ∗(0) = v∗(0,S0). By arbitrage free principles, it can be
proved that v∗ solves the following linear complementary problem (See [9,14,17]):⎧⎪⎪⎪⎨⎪⎪⎪⎩

(L v∗ + f d m−π)(v∗ − f w) = 0

L v∗ + f d m−π ≤ 0

v∗ ≥ f w

v∗(T,S) = f s(S)

, (9)

where the operator L is given by

L v = −(r +m)v+
∂v
∂ t

+
∂v
∂S

Sr +
1
2
∂ 2v
∂S2 S2σ2

and f d and f s are the death and survival benefits defined in (1). In (9), f w is defined
by (2) for t ≥ tw while we set f w(t,S) =−∞ for 0≤ t < tw. Note that this convention
forces v∗ to satisfy the PDE L v∗ + f d m−π = 0 for 0 ≤ t < tw. Together with the
conditions in (9), one may need to add boundary conditions v∗(t,0) = g0(t) and
v∗(t,+∞) = g+∞(t) for 0 ≤ t < T . The functions g0, g+∞ depend on f d, f s, f w and
whether the premium is single or periodic.

To simplify (9), we first transform the (t,S) plane into the (u,y) plane setting

ṽ∗(u,y) = v∗(t,S)(T−tE
r
x+t)

−1 , y = logS+(T − t)r−u, u = (T − t)
σ2

2
. (10)

The original linear complementary problem (9) can then be rewritten as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
L̃ ṽ∗ − f̃ d

)(
ṽ∗ − f̃ w

)
= 0

L̃ ṽ∗ − f̃ d ≥ 0

ṽ∗ ≥ f̃ w

ṽ∗(0,y) = f̃ s(0,y)

, (11)
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for y ∈ R and 0 < u ≤ T σ2

2 , together with the boundary conditions ṽ∗(u,−∞) =
g̃−∞(u) and ṽ∗(u,+∞) = g̃+∞(u) for 0 < u ≤ T σ2

2 , where

L̃ =
∂
∂u

− ∂ 2

∂y2 , f̃ d(u,y) = (m(t) f d(t,S)−π)
2
σ2 (T−tE

r
x+t)

−1, f̃ s(u,y) = f s(S),

f̃ w(u,y) = f w(t,S)(T−tE
r
x+t)

−1, g̃−∞(u) = g0(t), g̃+∞(u) = g+∞(t)

with (t,S) on the right hand side of these equalities expressed through (u,y) ac-
cording to the transformation defined in (10). Note that the price v∗E of the con-
tract without surrender option can be similarly found by solving the ordinary PDE
L vE + f dm = π . Problem (11) can now be solved using a standard finite difference
algorithm (see, e.g., [8]).

5 Numerical Examples

In this Sect. we present some numerical results for the fair (single and periodic) pre-
mium of a contract embedding a surrender option. We consider an insured aged x =
40 at time 0 and assume for m a Weibull force of mortality, that is m(t) = c−c2

1 c2(x+
t)c2−1, with parameters c1 = 83.6904 and c2 = 8.2966 as in [4]. We apply both al-
gorithms described in Sect. 3 to compute contract values by LSMC, and take as
benchmark the values obtained by solving (9).

In the LSMC scheme we consider a vector of basis functions of the form
(St)n1(Bw

t )n2 with n1 +n2 ≤ 2. It is well known that the choice of the type and number
of basis functions adopted in the regression step plays a relevant role. An extensive
analysis of its implications on robustness and convergence and its interaction with
the number of simulations can be found in [1, 13, 15, 16]. A further investigation in
the context of the present work to assess the impact of the choice made above would
be required, and we leave it to future research.

In the LSMC method the time grid consists of 2 intervals per year and we run
800 000 simulations (20 groups of 40 000 simulations each) using antithetic vari-
ables to reduce the variance (see [10]). In the finite difference scheme we adopt a
grid with 200 steps in the time dimension and 400 in the reference asset dimension.
In the binomial model we fix 250 steps per year (see [2]). In the numerical exper-
iments we choose the following set of basic parameters: the maturity T = 20, the
risk-free rate r = 4%, the initial value of the reference asset S0 = 100 and its volatil-
ity σ = 20%.

Single Premium We assume here that tw = 0 and that the contract provides guar-
antees given by

Bs
T = f s(ST ) = F0 max

{
ST

S0
,ers T

}
, Bi

t = f i(t,St) = F0 max

{
St

S0
,eri t

}
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for i=d,w, where F0 is the principal of the contract. The European value of the con-
tract admits a closed form expression (see [6, 7]) given by

V E
0 = U∗E =

F0

S0

(
S0 +

∫ T
0 put(t,S0erd t) t px m(t)dt +put(T,S0ers T )T px

)
,

where z py = e−
∫ z

0 m(y−x+u)du = e−c
−c2
1 ((y+z)c2−yc2 ) and put(t,K) is the time 0 value of

the European put with maturity t, strike K, underlying S in the Black-Scholes model
(see [5]). In all the numerical examples we set rs = rd = rw = 2% and F0 = S0. To
solve problem (9), the appropriate boundary conditions are: for 0 ≤ t < T

g0(t) =F0 max
{

supt∨tw≤u<T

(
erd t

u−t Ā
r−rd

x+t + erw t
u−tE

r−rw

x+t

)
,

erd t
T−t Ā

r−rd

x+t + ers t
T−tE

r−rs

x+t

}
, g+∞(t) = F0

St

S0
,

where qĀ j
y =

∫ q
0 sE

j
y m(y−x+ s)ds is the expected present value of a term life assur-

ance payable at the time of death for a policyholder aged y, with term q years and
interest rate j.

In the case considered in the numerical examples (rs = rd = rw .= rg ≤ r and
tw = 0) it is easy to see that

g0(t) = F0 erg t maxt≤u≤T Ār−rg

x+t:u−t = F0 erg t ,

where Ā j
y:q = qĀ j

y + qE j
y is the expected present value of an endowment.

Periodic Premium Here we take tw = 3 years. The contract provides guarantees
given by

Bs
T = f s(ST ) = F0 max

{
ST

S0
,ers T

}
, Bi

t = f i(t,St) =
t
T

F0 max

{
St

S0
,eri t

}

for i=d,w, where now Bw is relevant only for t ≥ tw. Hence benefits in case of death
or surrender follow a pro-rata rule. The fair premium rate for the European con-
tract admits the following closed form expression, that can be obtained through an
argument similar to the one used in the single premium case:

π∗E =
F0

[(
S0 +put(T,S0ers T )

)
T px +

∫ T
0

t
T

(
S0 +put(t,S0erd t)

)
t px m(t)dt

]
S0 T ār

x
.
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Again, we set rs = rd = rw .= rg = 2% and F0 = S0. To solve problem (9), the ap-
propriate boundary conditions are now: for 0 ≤ t < T

g0(t) = max

{
F0

T

(
erd t

(
t T−t Ā

r−rd

x+t + T−t(ĪĀ)r−rd

x+t

)
+ ers T T T−tE

r−rs

x+t

)
−π T−t ā

r
x+t ,

sup
t∨tw≤u<T

(F0

T

[
erd t

(
t u−t Ā

r−rd

x+t + u−t(ĪĀ)r−rd

x+t

)
+ erw t u u−tE

r−rw

x+t

]
−π u−t ā

r
x+t

)}
,

g+∞(t) = maxt∨tw≤u≤T

(
F0
T

St
S0

(
t + (ĪĀ)0

x+t:u−t

)
−π u−t ār

x+t

)
,

where q(ĪĀ) j
y =

∫ q
0 sE

j
y m(y−x+s)sds and (ĪĀ) j

y:q = q(ĪĀ) j
y +q qE j

y are the expected
present values of an increasing term assurance payable at the time of death and an in-
creasing endowment, for a policyholder aged y, term q years and with instantaneous
interest rate j.

In the case considered in the numerical examples it can be shown that

g0(t) = max
t∨tw≤u≤T

b0
t (u), g+∞(t) = max

{
b+∞

t (t ∨ tw), b+∞
t (T )

}
where

b0
t (u) =

F0

T
erg t

(
t Ār−rg

x+t:u−t +(ĪĀ)r−rg

x+t:u−t

)
−π u−t ā

r
x+t ,

b+∞
t (u) =

F0

T
St

S0

(
t + (ĪĀ)0

x+t:u−t

)−π u−t ā
r
x+t .

Results In Table 1 we report the results for the fair single premium U∗ and the fair
periodic premium rate π∗ obtained by applying the LSMC Algorithm 1 (A1 column),
Algorithm 2 (A2), the PDE approach (PDE) and the binomial model (B), as well as
the fair premium for the European version of the contract U∗E and π∗E respectively
(E), for different levels of the risk-free rate r. We notice that, as expected, the fair
single premiums U∗ and U∗E decrease with r. Recall, in fact, that these premiums are
simply the initial value of the liabilities of the insurance company (with and without
surrender option). As for the fair periodic premiums, we notice instead an increasing
trend, apart from the case of the European contract when r is very close (or equal) to
the guaranteed rate rg. This pattern has a less intuitive explanation. The fair periodic
premium π∗ (π∗E respectively) is the (unique) zero of a decreasing function of π
(πE), that represents the initial American (European) contract net value. For a given
level of π (πE), this function is the difference between the fair values of the insur-
ance company liabilities and the policyholder liabilities, both decreasing with r. The
first component can be further split into the fund value and the value of the guaran-
tee (American or, respectively, European, ‘Titanic’ put option, see [12]). While the
fund value is independent of r, the value of the guarantee decreases with it. Under
realistic assumptions for the contract parameters, in particular when the guaranteed
rate rg is (sufficiently) below r, the value of the guarantee is relatively small with
respect to the fund value, that represents the predominant component of the insurer’s
liability. In this case the premium component prevails on the guarantee component,
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Table 1 Fair premiums (standard errors in round brackets) for different risk-free rates

Single premium Periodic premium

r% A1 A2 PDE B E A1 A2 PDE B E

2.0 134.117 134.340 134.207 134.179 134.179 8.958 8.967 8.967 8.956 8.136
(0.221) (0.223) (0.001) (0.001)

2.5 129.306 129.508 129.442 129.422 128.083 9.074 9.070 9.101 9.088 8.128
(0.238) (0.238) (0.002) (0.002)

3.0 125.681 125.827 125.821 125.801 122.916 9.212 9.213 9.252 9.237 8.157
(0.227) (0.217) (0.002) (0.002)

3.5 122.681 122.848 122.898 122.879 118.569 9.353 9.353 9.423 9.403 8.222
(0.230) (0.222) (0.002) (0.002)

4.0 120.297 120.471 120.483 120.466 114.937 9.513 9.509 9.610 9.584 8.321
(0.235) (0.244) (0.001) (0.001)

4.5 118.278 118.494 118.463 118.443 111.927 9.704 9.700 9.808 9.780 8.455
(0.228) (0.241) (0.001) (0.001)

5.0 116.573 116.743 116.748 116.729 109.450 9.913 9.911 10.021 9.989 8.619
(0.220) (0.228) (0.001) (0.001)

5.5 115.106 115.269 115.288 115.263 107.430 10.142 10.139 10.248 10.212 8.814
(0.228) (0.226) (0.001) (0.001)

6.0 113.809 114.037 114.026 114.001 105.796 10.389 10.388 10.488 10.446 9.035
(0.207) (0.221) (0.001) (0.001)

unless the periodic premium is unreasonably low, making thus the contract value
increasing with r. To compensate this, the fair periodic premium increases as well.
For unrealistic contract parameters (in which the guaranteed rate is very close to,
or even above, r), instead, the guarantee component can be important and prevail
on the premium component not only for small levels of π (πE). This can produce a
contract value decreasing with r, hence a fair periodic premium decreasing as well.
In Table 1 this happens only for European contracts, but in other experiments (not
reported here) where we have kept r ≤ rg this happens also for American contracts.
Moreover, from Table 1 we observe that the sensitivity of all premiums with respect
to r is rather strong, as expected, that the value of the surrender option is almost never
negligible (apart from the single premium case when r = 2%), and that the American
premiums obtained with the different numerical approaches are very close to each
other.

In Table 2 we show similar results as before (for single and periodic fair premi-
ums), when the contract maturity changes. In the single premium case, of course, the
initial value of the American contract (U∗) increases with its maturity. Recall in fact
that the guarantee component is an American Titanic put, while the fund component
is independent of T . This is not true, instead, for European contracts (in particular for
the European Titanic put): in this case U∗E initially increases, reaches a maximum for
T = 15 years and after decreases. The influence of T on the fair single premium is not
so strong, while it becomes very important in the periodic premium case, in which
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Table 2 Fair premiums (standard errors in round brackets) for different maturities

Single premium Periodic premium

T A1 A2 PDE B E A1 A2 PDE B E

10.0 116.919 116.937 117.176 117.172 114.559 15.045 15.046 15.009 15.004 13.896

(0.108) (0.110) (0.001) (0.001)

12.5 118.142 118.154 118.297 118.293 114.937 12.859 12.862 12.867 12.853 11.678

(0.146) (0.135) (0.001) (0.001)

15.0 119.027 119.080 119.181 119.175 115.080 11.374 11.374 11.428 11.408 10.191

(0.179) (0.162) (0.001) (0.001)

17.5 119.782 119.825 119.898 119.886 115.064 10.335 10.336 10.387 10.369 9.125

(0.187) (0.186) (0.001) (0.001)

20.0 120.297 120.471 120.483 120.466 114.937 9.513 9.509 9.607 9.584 8.321

(0.235) (0.244) (0.001) (0.001)

22.5 120.685 120.936 120.967 120.942 114.734 8.889 8.881 8.987 8.967 7.693

(0.126) (0.154) (0.002) (0.001)

25.0 121.279 121.578 121.372 121.333 114.480 8.376 8.373 8.494 8.466 7.187

(0.258) (0.274) (0.002) (0.001)

27.5 121.515 121.810 121.708 121.656 114.197 7.948 7.943 8.075 8.046 6.767

(0.351) (0.414) (0.001) (0.001)

30.0 121.532 121.999 121.985 121.919 113.901 7.581 7.571 7.718 7.684 6.410

(0.260) (0.324) (0.001) (0.001)

the premium is halved when the maturity increases from 10 to 30 years. The peri-
odic premium is decreasing, because the longer is the contract duration, the longer is
the period in which the payment for the insurance company liabilities is split. Also,
in this table, we can see that the different numerical approaches for computing the
American contract value do not lead to significant differences in the results. Recall,
in particular, that when computing the fair periodic premium two approximations
are involved: the first concerns the contract value, the second the zero search, and
numerical errors could propagate.

In Table 3 we report the results for different levels of the reference fund volatility
parameter σ . In this case, as expected, both single and periodic premiums strongly
react to changes in the volatility parameter, increasing with it. The other results (com-
parison between different numerical approaches, value of the surrender option) are
similar to those of the previous tables.

Finally, in Table 4 we report the mean relative errors of the LSMC results with
respect to the benchmark, that is the value obtained with the PDE approach.
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Table 3 Fair premiums (standard errors in round brackets) for different fund volatilities

Single premium Periodic premium

σ% A1 A2 PDE B E A1 A2 PDE B E

10.0 107.355 107.544 107.495 107.477 103.685 7.986 7.985 7.995 7.973 7.505
(0.083) (0.092) (0.000) (0.000)

12.5 110.442 110.657 110.602 110.586 106.248 8.341 8.344 8.360 8.339 7.691
(0.112) (0.111) (0.001) (0.001)

15.0 113.714 113.928 113.847 113.829 109.050 8.711 8.714 8.755 8.733 7.894
(0.142) (0.144) (0.001) (0.001)

17.5 117.031 117.214 117.157 117.137 111.970 9.102 9.106 9.172 9.149 8.106
(0.191) (0.192) (0.001) (0.001)

20.0 120.297 120.471 120.483 120.466 114.937 9.513 9.509 9.609 9.584 8.321
(0.235) (0.244) (0.001) (0.001)

22.5 123.600 123.760 123.804 123.782 117.906 9.931 9.921 10.061 10.036 8.537
(0.293) (0.278) (0.002) (0.002)

25.0 126.762 126.862 127.092 127.066 120.844 10.351 10.348 10.528 10.503 8.750
(0.321) (0.301) (0.002) (0.002)

27.5 129.546 129.752 130.328 130.298 123.730 10.804 10.791 11.010 10.984 8.960
(0.463) (0.453) (0.002) (0.002)

30.0 132.521 132.550 133.500 133.464 126.547 11.267 11.237 11.504 11.477 9.164
(0.553) (0.433) (0.002) (0.002)

Table 4 Relative root mean squared errors (in percentage)

Single Periodic

A1 A2 A1 A2

interest rate 0.141 0.013 0.743 0.752

maturity 0.174 0.027 0.846 0.881

volatility 0.268 0.129 1.058 1.107
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Dynamic Tracking Error with Shortfall Control
Using Stochastic Programming

Diana Barro and Elio Canestrelli

Abstract In this contribution we tackle the issue of portfolio management combining
benchmarking and risk control. We propose a dynamic tracking error problem and
we consider the problem of monitoring at discrete points the shortfalls of the port-
folio below a set of given reference levels of wealth. We formulate and solve the
resulting dynamic optimization problem using stochastic programming. The pro-
posed model allows for a great flexibility in the combination of the tracking goal
and the downside risk protection. We provide the results of out-of-sample simula-
tion experiments, on real data, for different portfolio configurations and different
market conditions.

1 Introduction

Measuring risk is a crucial issue in financial modeling and it is relevant both for
pricing purposes and for asset allocation problems. In particular, investors are con-
cerned with the measurement and the management of risk in such a way that they
can obtain a portfolio which is compliant with their risk attitude.

The majority of investors are more concerned with downside risk rather than up-
side risk, and there is experimental evidence that they treat differently losses from
gains. This introduces the need for asymmetric risk measures and can account for
the growing interest of investors in mean return-downside risk portfolio models. The
key idea of these approaches is to separate the downside deviations from the upside
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potential and control only the first part of risk. For a classification of different risk
measure in portfolio selection see, for example, [7].

Risk measurement is strictly connected with the definition of a term of compari-
son with respect to which we can contrast and compare the risk/return profile of our
portfolio. Moreover, it is common practice to monitor the performance of a portfolio,
or a fund manager, with reference to an explicitly declared, or implicitly assumed,
benchmark. This allows for a more objective assessment of the risk profile and the
performance evaluation of the investment, linking it with current market conditions.

The tracking error and tracking error volatility are widely used measures of how
closely the investments behave with respect to the reference portfolio. However, they
are symmetric measures of distance and dispersion and cannot account for investor
aversion for downside rather than upside deviations.

In this contribution we aim at jointly considering the presence of a benchmark
and the issue of controlling downside risk. We introduce a set of barriers which
accounts for loss/gain preferences of the investor, i.e. the shortfall can be computed
with respect to a given level of acceptable losses or with respect to a given desired
level of minimum return for the portfolio.

The risk is thus measured by two different components, the first reflects the risk
profile of the benchmark; nevertheless, we consider that investors are more con-
cerned with the downside risk and, in particular, with negative deviations from cer-
tain reference levels. The resulting portfolio accounts for these two aspect of risk. An
indirect measure of risk through the choice of a benchmark and a more direct control
on the values of the portfolio through the reference levels. The approach is flexible
and allows to easily accounting for different investor preferences. To express risk
aversion in portfolio management problems other approaches are possible, mainly
based on the definition of a proper utility function and of risk aversion coefficients.
They are particularly interesting from a theoretical point of view and have been ex-
plored in the literature.

However, in this contribution, we are interested in investigating the connection
between the tracking error goal and the control of downside risk both from the point
of view of an investor and of a fund manager. To this aim, the use of reference points
and the management of risk through shortfalls from the set of specified threshold
levels of wealth represent, in our opinion, an easily understandable way of measuring
and communicating risk.

The structure of the paper is as follows. In Sect. 2, we briefly present the contribu-
tions in the literature which deal with benchmarking and shortfall control. In Sect. 3,
we present and discuss our model for multiperiod tracking error with shortfall. In
Sect. 4, we present an application of the proposed model and, in order to account for
different market conditions, we consider out-of-sample simulation experiments for
different periods. Section 5 concludes.
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2 Literature Review

Different contributions in the literature tackled the issue of benchmarking and track-
ing error. In a static portfolio selection framework, see, for example, [3,11,24]. For
a discussion on the reliability of tracking error as a measure of risk see [26]. While
for the use of asymmetric tracking error see [16, 20, 24].

Among the contributions on dynamic tracking error problems, in continuous or
discrete time setting, we refer to [2, 8, 12, 17].

The concern of investors for downside risk has led to the development of a huge
stream of financial literature on the use of asymmetric and tail risk measures in port-
folio selection problems. There are many contributions which propose the use of
alternative risk measures, among them, see for example, [1, 7, 9, 10, 15, 18, 19, 25].

We are interested in considering a multiperiod tracking error problem and a dis-
crete time monitoring of the shortfalls below given threshold levels of wealth, we
consider both symmetric and asymmetric tracking error measures. To this aim we
formulate and solve a multistage stochastic programming problem which provides
us with enough flexibility in the formulation of the objective function and of the
constraints. To deal with uncertainty in optimization problems other approaches are
possible and, in particular, we mention Robust Optimization and its application also
to financial optimization problems (see, for example, [4, 6, 23]).

Dempster et al., in [13,14], tackled the problem of dynamic portfolio management
for a pension fund in presence of minimum guarantees. They propose to consider, as
objective function, for their multistage stochastic programming problem, the mini-
mization of expected average shortfall and of expected maximum shortfall.

Different contributions in the literature consider the introduction of a shortfall
constraint in portfolio management; in particular, for a discussion on the use of short-
fall as a risk measure in asset allocation and in static tracking error problem, we re-
fer to [5]. In our problem we consider a discrete monitoring of the portfolio level
through the measurement of the shortfalls with respect to a set of reference levels
of wealth. This goal is then combined with a tracking error objective and our model
can be specified in different ways to account for symmetric and asymmetric distance
measures both with respect to the risky benchmark and with respect to the wealth
barriers. Moreover, we can allow for a trade-off between the two terms according to
the investor’s preferences.

3 Model Formulation

We consider a dynamic tracking error problem and we assume that the investor is
interested in tracking the performance of a risky benchmark over time, where the
benchmark itself is treated as a stochastic component.

We consider the arborescent formulation of the problem and a scenario tree from
t = 0 (current state) to T ; we denote with kt a generic node in the event tree at time t
and with πkt the associated probability. We denote with ykt the value of the managed
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portfolio in each node and with xkt the value of the stochastic benchmark. To control
the value of the portfolio we introduce a set of reference levels of wealth, z j t with
j = 1, . . . ,J, which act as thresholds with respect to which we monitor the behavior
of the portfolio. In particular, we are interested in monitoring the shortfalls of the
portfolio value below each threshold level. The threshold levels are not stochastic
but can be time dependent.

The investor can choose among a set of risky assets and a liquidity component.
We denote with qikt , i = 1, . . . ,n, and lkt the holdings in each asset, while, we use
aikt and vikt to denote the amounts of risky asset purchased and sold in each node,
respectively. The liquidity component absorbs the turnover in the portfolio and ac-
counts also for proportional transaction costs (tc). Moreover, for each node kt , we
denote with rkt = (r1kt , . . . ,rnkt ,rl kt ) the vector of returns of the risky assets and for
the liquidity component for period [t −1; t].

We want our model to account both for symmetric and asymmetric distance mea-
sures from the risky benchmark and from the reference levels. To this aim we choose
to use a mean absolute deviation model (MAD). The mean absolute deviation mea-
sure presents many advantages: it leads to a linear optimization problem (see, for
example, [21, 22, 24]), and can be easily separated into positive and negative devia-
tions, allowing for the required flexibility.

In more detail, we define the distance measure of the managed portfolio from the
risky benchmark, in node kt , as follows

|ykt − xkt | = max[ykt − xkt ;0]+max[−ykt + xkt ;0] = θ+
kt

+θ−kt
. (1)

With respect to the threshold levels of wealth z j t , with j = 1, . . . ,J, we are inter-
ested in considering only negative deviations from the reference levels and thus we
propose to use the following asymmetric distance measure

[ykt − z j t ]− = max[−ykt + z j t ;0] = γ−j kt
. (2)

For a discussion on how the MAD model can be transformed into a linear optimiza-
tion problem see, for example, [22, 24, 27].

The resulting multiperiod stochastic programming problem is

min
T

∑
t=0

[
Kt

∑
kt=Kt−1+1

πkt

(
c+ θ+

kt
+ c− θ−kt

)
+

Kt

∑
kt=Kt−1+1

πkt

J

∑
j=1

d−
j γ

−
j kt

]
(3)

θ+
kt
−θ−kt

= ykt − xkt (4)

γ−j kt
≥−ykt + z j t j = 1, . . . ,J (5)

ykt = lkt +
n

∑
i=1

qikt (6)

qikt = (1+ rikt )
[
qi f (kt ) + ai f (kt ) − vi f (kt )

]
(7)

lkt = (1+ rl kt )

[
l f (kt ) −

n

∑
i=1

(1+ tc)ai f (kt ) +
n

∑
i=1

(1− tc)vi f (kt )

]
(8)
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aikt ≥ 0 vikt ≥ 0 (9)

qikt ≥ 0 lkt ≥ 0 (10)

θ+
kt
≥ 0 θ−kt

≥ 0 (11)

γ−kt
≥ 0 (12)

qi0 = q̄i l0 = l̄ (13)

i = 1, . . . ,n kt = Kt−1 +1, . . . ,Kt t = 1, . . . ,T

where c+,c− and d−
j are positive weights, which may account for a progressive pe-

nalization of the deviations or for goal preferences with respect to different threshold
levels.

Equation (6) represents the portfolio composition in each node, while Eqs. (7)–(8)
describe the dynamics of the assets in the portfolio moving from an ancestor node
f (kt) to a descendent node kt . Finally, Eq. (10) provide the non-negativity conditions
on the portfolio composition, ruling out the possibility for short-selling and borrow-
ing, and (13) give the initial portfolio endowments. The objective function of our
problem accounts for two different terms. The first is a tracking goal with respect
to the risky benchmark while the second term accounts for the shortfalls below the
reference levels. The investor is interested in minimizing the distance from the risky
benchmark while at the same time limiting the downside risk measured through the
shortfalls.

The risk profile of the resulting optimal portfolios takes into account both the
connection with the benchmark and the risk aversion for gain or losses lower than a
set of specified barriers which are settled by the investors according to their invest-
ment goals. The control through reference levels is flexible and presents different
advantages in the formulation of the problem. First, barriers are allowed to be time
dependent and the risk control can be tailored along the investment horizon. For
example, it can be made tighter towards the end of the planning period to account
for wealth conservation objectives. Second, the control is introduced in the objec-
tive function, rather than in the constraints, in this way we allow for a trade-off with
the benchmarking goal and we are able to account for different risk profiles in the
investment.

4 Computational Experiments

In the following we provide an application of the proposed model to real data through
an out-of-sample exercise of portfolio management. We assume that our investor is
interested in tracking the MSCI Europe Index using a subset of MSCI Style Indexes.
To test our model we use a weekly dataset from June 6, 2007 to May 16, 2012.
Summary statistics on the Indexes are provided in Table 1.

We apply our model simulating the management of the portfolio over a 10-week
period using a rolling-horizon procedure. In our experiments we consider two pe-
riods to account for different market conditions. The first simulation period ranges
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Table 1 Summary statistics MSCI Europe Index and MSCI Europe Style Indexes, weekly
data from June 6, 2007 to May 16, 2012

Mean Variance Skewness Kurtosis

MSCI EUROPE −0.0014 0.0009 −0.5579 1.4773
MSCI EUROPE LG −0.0004 0.0007 −0.6569 1.9806
MSCI EUROPE LV −0.0021 0.0012 −0.4599 1.2498
MSCI EUROPE MG −0.0010 0.0011 −0.5418 1.6296
MSCI EUROPE MV −0.0024 0.0013 −0.1217 0.8914
MSCI EUROPE SMG −0.0008 0.0011 −0.5507 1.7773
MSCI EUROPE SMV −0.0019 0.0013 −0.1505 0.8251
MSCI EUROPE SG −0.0005 0.0012 −0.5613 1.9879
MSCI EUROPE SV −0.0013 0.0013 −0.1420 0.7773

from December 14, 2011 to February 22, 2012, during this period the benchmark
has a significant positive trend, as can be seen from Fig. 1. The second simulation
period is from February 8, 2012 to April 18, 2012 and the market experiences both
huge drops and raises, see Fig. 2.

For each simulation period, we test different configurations of the objective func-
tion in order to analyze the behavior of the optimized tracking portfolio with respect
to the benchmark and the threshold levels. In more detail we consider the following
settings (in Table 2 we summarize the coefficients of the objective function for the
portfolio configurations considered in the experiments):

• Portfolio 1a – pure benchmark tracking;
• Portfolio 1b – benchmark tracking plus a shortfall control;
• Portfolio 2a – asymmetric benchmark tracking plus shortfall control;
• Portfolio 2b – asymmetric benchmark tracking plus enhanced shortfall control;
• Portfolio 2c – asymmetric benchmark tracking plus enhanced shortfall control;
• Portfolio 3a – pure shortfall control – one threshold – (no benchmark tracking);
• Portfolio 3b – pure shortfall control – two thresholds – (no benchmark tracking).

Table 2 Parameters settings for the different portfolio configurations considered in the com-
putational experiments

c+ c− d−
1 d−

2

portfolio 1a 1 1 0 0
portfolio 1b 1 1 1 1
portfolio 2a 0 1 1 1
portfolio 2b 0 1 1 10
portfolio 2c 0 1 1 100
portfolio 3a 0 0 1 0
portfolio 3b 0 0 1 1
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Fig. 1 Comparison between optimized tracking portfolios and benchmark, rolling simulation
over 10-week period – December 14, 2011 to February 22, 2012 – two threshold levels z1 =
1020 and z2 = 1010
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Fig. 2 Comparison between optimized tracking portfolios, rolling simulation over 10-week
period - February 8, 2012 to April 18, 2012- two threshold levels z1 = 990 and z2 = 970
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The threshold levels used in the simulation periods (J = 2) are as follows. For
the first period we set z1,t = 1010 and z2,t = 1020 constant for all t = 0, . . . ,T ; while
we choose z1,t = 970 and z2,t = 990, for all t = 0, . . . ,T , for the second simulation
period.

In more detail, the management experiments are carried out as follows. At each
step of the simulation we generate a 2-stage scenario tree; we solve the optimization
problem (3)–(13) and take the first period optimal decision. The portfolio composi-
tion is then evaluated using the true realized returns in the market and the resulting
value represents the new endowment for the following period. Clearly, the results
of the management experiments depend on the reliability of the generated scenario
trees. Many different models can be used to estimate future expected returns and
generate the event trees. In this contribution we do not tackle the issue of comparing
different models; we propose to generate the scenarios using historical simulation,
which assumes only that past returns are good predictors for future behavior without
further hypothesis on the return distributions.

In a first analysis we compare a pure tracking error model (portfolio 1a), with port-
folio 1b in which we add the controls on the downside deviations from the threshold
levels.

A second set of experiments consider only asymmetric distance measures from
the risky benchmark and the thresholds levels of wealth. We analyze three different
configuration of the objective function where we progressively increase the penalty
on the lower barrier, we refer to portfolio 2a, 2b and 2c in Table 2 for the choices of
the parameters.

Finally, we consider an experiment in which we drop the tracking goal with re-
spect to the benchmark and consider only the downside penalization of negative
deviations from the barriers (see, portfolio 3a and 3b, in Table 2).

In Fig. 1 we present the results for the portfolio management experiments for the
first period.

We consider, as tracking assets, the following MSCI Style Indexes: LG, LV, SG,
SV. From the top graph we can see that the four Style Indexes guarantee a good
tracking performance of the index (portfolio 1a), while, when we introduce a short-
fall control for the threshold levels (portfolio 1b) we sacrifice a potential upside
capture. In the middle graph we can observe the portfolio behavior when we con-
sider asymmetric tracking for the risky benchmark and we introduce a progressively
higher penalization for the shortfalls (portfolios 2a, 2b and 2c). Finally, the bottom
graph displays the behavior of the portfolios which account only for shortfall penal-
ization without any tracking component in the objective function.

The same set of experiments has been carried out for the second simulation period.
This case is more interesting from the point of view of a downside protection since
the index experiences a sharp drop even below the lower threshold.

The same considerations as in the previous set of experiments apply. In particular,
the introduction of a shortfall control is effective but is done at the cost of a reduction
in the gains when the market rises. Moreover, if we compare portfolios 2a and 1b, it is
interesting to observe that when we allow for a higher tracking error we can improve
the downside protection. From the bottom graph, which displays the behavior of non-
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tracking portfolios, we can observe that there is an improvement in the downside
protection but at a higher cost in terms of upside capture.

The four Style Indexes, we used as tracking assets, allowed us to obtain a good
tracking performance in the out-of-sample experiments as it can be seen if we com-
pare portfolios 1a with the Index for both simulation periods. However, in order
to analyze the possible improvement in the tracking performances we carried out a
further experiment using all the eight Style Indexes.

We computed the Tracking Error (TE) and Tracking Error Volatility (TEV) for
both simulation periods for tracking portfolios using as tracking assets the eight Style
Indexes. The results, in the two periods, are comparable, and we decide to present
only the statistics for the second period, which is more interesting from the point of
view of the behavior of the benchmark.

In Tables 3 and 4 we report the percentage Tracking Error and percentage Track-
ing Error Volatility for the analyzed portfolios using four Style Indexes (LG, LV,
SG, SV), while Tables 5 and 6 presents the same statistics using all the eight Style
Indexes (LG, LV, MG, MV, SMG, SMV, SG, SV). Including all the Style Indexes
improves the performance but, in our opinion, the tracking results with four Indexes
are already satisfying.

The proposed model allows for a great flexibility in the formulation of the objec-
tive function and can thus accommodate for different combinations of the tracking

Table 3 Percentage Tracking Error with respect to the benchmark, over 10-week period from
February 8, 2012 to April 18, 2012, using 4 Style Indexes (LG,LV,SG,SV)

1 2 3 4 5 6 7 8 9 10

portf 1a 0.010 0.022 −0.063 0.026 −0.043 −0.063 0.016 0.066 −0.027 0.155
portf 1b −0.040 0.024 0.055 0.325 −1.425 0.032 0.572 0.634 0.715 −0.363
portf 2a −0.084 0.016 0.161 0.668 −2.392 0.188 1.013 1.188 1.175 −0.730
portf 2b −0.113 0.014 0.170 0.747 −2.473 0.212 1.076 1.277 1.237 −0.852
portf 2c −0.113 0.014 0.170 0.748 −2.472 0.213 1.076 1.277 1.237 -0.854
portf 3a −0.394 −0.035 0.117 1.480 −3.476 0.544 1.594 1.799 1.555 −1.111
portf 3b −0.395 −0.035 0.118 1.479 −3.477 0.544 1.595 1.805 1.554 −1.114

Table 4 Percentage Tracking Error Volatility with respect to the benchmark, over 10-week
period from February 8, 2012 to April 18, 2012, using 4 Style Indexes (LG,LV,SG,SV)

1 2 3 4 5 6 7 8 9 10

portf 1a 0.037 0.021 0.033 0.032 0.019 0.006 0.049 0.098 0.033 0.083
portf 1b 0.235 0.064 0.154 0.245 0.713 0.129 0.438 0.522 0.396 0.621
portf 2a 0.323 0.100 0.178 0.415 0.800 0.207 0.535 0.636 0.380 0.529
portf 2b 0.302 0.098 0.167 0.361 0.717 0.189 0.504 0.529 0.309 0.358
portf 2c 0.302 0.098 0.167 0.361 0.717 0.189 0.503 0.529 0.309 0.357
portf 3a 0.044 0.022 0.033 0.048 0.081 0.025 0.072 0.085 0.047 0.080
portf 3b 0.044 0.022 0.034 0.050 0.079 0.025 0.071 0.085 0.048 0.078
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Table 5 Percentage Tracking Error with respect to the benchmark, over 10-week period from
February 8, 2012 to April 18, 2012, using 8 Style Indexes (LG, LV, MG, MV, SMG, SMG,
SG, SV)

1 2 3 4 5 6 7 8 9 10

portf 1a 0.008 0.002 −0.002 0.014 0.004 −0.006 0.001 0.002 −0.001 −0.010
portf 1b −0.078 0.028 0.075 0.300 −1.359 0.087 0.589 0.644 0.737 −0.536
portf 2a −0.088 0.028 0.209 0.650 −2.439 0.260 1.019 1.268 1.185 −0.821
portf 2b −0.098 0.024 0.203 0.706 −2.576 0.280 1.103 1.348 1.259 −0.893
portf 2c −0.099 0.024 0.203 0.706 −2.576 0.280 1.103 1.348 1.261 −0.894
portf 3a −0.399 −0.038 0.126 1.477 −3.458 0.545 1.598 1.780 1.558 −1.172
portf 3b −0.405 −0.037 0.126 1.477 −3.462 0.546 1.603 1.774 1.559 −1.171

Table 6 Percentage Tracking Error Volatility with respect to the benchmark, over 10-week
period from February 8, 2012 to April 18, 2012, using 8 Style Indexes (LG, LV, MG, MV,
SMG, SMG, SG, SV)

1 2 3 4 5 6 7 8 9 10

portf 1a 0.017 0.005 0.013 0.011 0.027 0.013 0.022 0.054 0.023 0.078
portf 1b 0.219 0.070 0.148 0.261 0.655 0.138 0.462 0.502 0.353 0.560
portf 2a 0.332 0.103 0.204 0.459 0.872 0.201 0.543 0.559 0.352 0.394
portf 2b 0.321 0.102 0.187 0.424 0.712 0.191 0.493 0.471 0.288 0.319
portf 2c 0.321 0.101 0.187 0.423 0.713 0.190 0.492 0.472 0.287 0.320
portf 3a 0.069 0.015 0.031 0.042 0.105 0.022 0.060 0.110 0.046 0.063
portf 3b 0.066 0.014 0.032 0.040 0.113 0.021 0.061 0.114 0.045 0.071

and protection goals. Different risk attitude of the investor can be considered in the
form of combining a tracking goal with respect to a risky benchmark and introducing
a set of desired barriers to control the behavior of the portfolio.

5 Concluding Remarks

In this contribution we propose a multiperiod tracking error problem which can ac-
count for shortfall control using a sequence of references levels for wealth. The use
of thresholds to define the goals for the portfolio management problem is intuitive
for the investor and avoids the choice of a proper utility function and the definition of
risk attitude/tolerance parameters. The proposed model allows to consider asymmet-
ric tracking measures and in particular to penalize only downside deviations from the
reference wealth levels. The computational experiments discussed show the trade-
off between the possibility of upside capture and the control on downside risk. The
role of the number of thresholds and the choice of a progressive penalization could
be further investigated.
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Firm’s Volatility Risk Under Microstructure
Noise

Flavia Barsotti∗ and Simona Sanfelici

Abstract Equity returns and firm’s default probability are strictly interrelated finan-
cial measures capturing the credit risk profile of a firm. Following the idea proposed
in [20] we use high-frequency equity prices in order to estimate the volatility risk
component of a firm within a structural credit risk modeling approach. Differently
from [20] we consider a more general framework by introducing market microstruc-
ture noise as a direct effect of using noisy high-frequency data and propose the use of
non-parametric estimation techniques in order to estimate equity volatility. We con-
duct a simulation analysis to compare the performance of different non-parametric
volatility estimators in their capability of i) filtering out the market microstructure
noise, ii) extracting the (unobservable) true underlying asset volatility level, iii) pre-
dicting default probabilities deriving from calibrating Merton [17] structural model.

1 Introduction

Structural credit risk models, firstly formalized by [17], consider a firm’s equity and
debt as contingent claims partitioning the asset value of the firm. Empirical tests of
structural credit risk models show poor predictions of default probabilities and credit
spreads, especially for short maturities. Methods of strict estimation or calibration
provide evidence that predicted credit spreads are far below observed ones [14], the
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structural variables explain little of the credit spread variation [12], pricing error is
large for corporate bonds [18].

A critical issue about the implementation of these models is that firm’s asset value
and volatility are not directly observable. The idea is then to use the information con-
tent of equity prices and then back out the firm’s asset volatility. Nevertheless, the
market microstructure literature strongly suggests that trading noises can affect eq-
uity prices so that the estimation of equity volatility and other related quantities may
become a difficult task. For instance, as well documented, observed equity prices
can diverge from their equilibrium value due to illiquidity, asymmetric information,
price discreteness and other measurement errors. The effects of trading noise on how
frequently one should sample equity price are analyzed in [2,4]. In the specific con-
text of structural credit risk models, the relationship between the unobservable asset
volatility and the observed equity value predicted by the pricing model is masked
by trading noise; ignoring microstructure effects could non-trivially inflate estimates
for the "true" asset volatility, and this would produce misleading estimates for de-
fault probabilities and credit spreads. This issue has been analyzed in [9], where
the authors extend [8] to explicitly account for trading noise contamination of eq-
uity prices: they devise a particle filter-based maximum likelihood method based
solely on the time series of observed equity values, which is robust to market mi-
crostructure effects. The importance of using high frequency data to back out pa-
rameters involved in firm’s value dynamics has been highlighted by [20], which
propose a novel approach to identify the volatility and jump risks component of in-
dividual firms from high-frequency equity prices. Their analysis suggests that high-
frequency-based volatility measures can help to better explain credit spreads, above
and beyond what is already captured by the true leverage ratio. However, the highest
frequency considered in this paper is the 5-minute conservative sampling frequency
which allows to eliminate microstructure effects.

In this paper we propose a particular econometric approach to structural model
calibration based on non-parametric estimation of equity volatility from high-fre-
quency intra-day equity prices. Several non-parametric estimators of daily stock vol-
atility have been proposed in the econometric literature allowing to exploit the in-
formation contained in intra-day high-frequency data neglecting microstructure ef-
fects [1, 2, 4, 11, 13, 15, 19]. We propose a Monte Carlo simulation study based on
Merton [17] structural model, trying to compare the performance of different non-
parametric volatility estimators in their capability of i) filtering out the market mi-
crostructure noise, ii) extracting the true underlying asset (unobservable) volatility
level, iii) predicting default probabilities. We show that the choice of the volatility
estimator can largely affect calibrated default probabilities and hence risk evaluation.
In particular, the commonly used Realized Volatility estimator is unable to provide
reliable estimates for the volatility risk leading to a significant underestimation of
default probabilities.
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2 Structural Model Under Market Microstructure Effects

We follow Merton [17] structural model by assuming a firm’s value process de-
scribed by a geometric Brownian motion, which evolves according to

dAt = (μ−δ )Atdt +σAtdWt (1)

where At is asset value at time t, μ the instantaneous asset return, δ the asset payout
ratio and σ the asset volatility. The firm has two classes of outstanding claims: equity
and a zero-coupon debt with promised payment B at maturity T . To price corporate
debt as in [17] we assume that: (i) default occurs only at maturity with debt face value
as default boundary; (ii) when default occurs, the absolute priority rule prevails. The
payoffs to debt holders and equity holders at time T become, respectively

DT = min(AT ,B), ST = max(AT −B,0).

From now on, we focus our attention on equity value and default probabilities in
order to develop our computational econometric analysis. Equity claim can be priced
at each time t < T through the standard Black-Scholes option pricing model as the
price of a European call option given by

St = S(At ;σ ,B,r,δ ,T ) = Atφ(dt)−Be−r(T−t)φ(dt −σ
√

T − t), (2)

where

dt :=
log(At

B )+(r−δ +σ2/2)(T − t)
σ
√

T − t
, (3)

and φ(·) is the standard normal distribution function. Therefore, by applying Itô’s
lemma, the instantaneous volatility Σ s

t of the log equity price can be written as

Σ s
t :=

At

St

∂St

∂At
σ . (4)

Notice that the equity volatility is driven by the time-varying factor At , whereas the
asset volatility σ is constant. The firm’s probability of default at maturity T is the
probability of AT being below the constant barrier represented by the face value of
debt B. Under the physical probability measure P we have

P(AT < B|At) = φ(σ
√

T − t −dPt ), (5)

with dPt given by Eq. (3) where we only replace the interest rate r with μ .
For a given firm, one can obtain a time series of equity prices {S j, j = 0, . . . ,N},

with a given sampling frequency h = t j − t j−1 assumed to be constant, for ease of
exposition. If one could observe the "true" equity price, than equity volatility could
be easily estimated by the well known Realized Volatility estimator [7] at any desired
accuracy level using high frequency data. However, as noted for instance by [9], the
relationship between the unobserved asset and the observed equity value predicted
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by the pricing formula (2) may be masked by trading noise. We assume an additive
error structure for the trading noise on the logarithmic equity value as follows

log S̃(t j) = logS(t j)+η(t j), (6)

where the random shocks η(t j), for 0 ≤ j ≤ N are i.i.d. random variables with mean
zero and bounded fourth moment and independent of the efficient log-return process.
The assumption of independence can be relaxed by considering a particular form
of dependent noise, given by [11], with market microstructure noise that is time-
dependent in tick time and correlated with efficient returns

η̃ j := α [logS(t j)− logS(t j−1)]+η j, (7)

where α is a real constant and η̃ j and η j are the shorten notation for η̃(t j) and η(t j).
The case α = 0 corresponds to the case of independent noise assumption.

3 Equity Volatility Estimation

The basic idea of our paper is that, using suitable volatility estimators, we can infer
the true volatility process Σ s

t of equity returns from noisy high-frequency data. Then,
the equity volatility estimate can be used to back out the asset volatility σ such as
to fit exactly, say, the 5-years probability of default by solving Equation (5) with
respect to σ , as explained in details in the following.

For the reader’s convenience, we now give some details about the implementa-
tion of the volatility measures employed in our analysis. We set p̃t := log S̃t , the
noisy equity log-price. Time is measured in daily units. We build daily measure of
volatility by considering daily windows of n intra-day equity data p̃t, j, j = 0,1, . . . ,n.
Besides the well known Realized Volatility estimator ΣRV

t := ∑n
j=1 δ j(p̃)2, where

δ j(p̃) := p̃t, j − p̃t, j−1 is the j-th within-day equity log-return on day t, we consider
the following estimators of the volatility process Σ s

t : the bias corrected estimator by
Hansen and Lunde [11]

ΣHL
t := ΣRV

t +2
n

n−1

n−1

∑
j=1
δ j(p̃)δ j+1(p̃)

the flat-top realized kernels by [4, 6]

ΣK
t :=

H

∑
h=−H

k

(
h

H +1

) n

∑
j=|h|+1

δ j(p̃)δ j−|h|(p̃)

with kernels of T H2 type k(x) = sin2 (π
2 (1− x)2

)
. The realized kernels may be con-

sidered as unbiased corrections of the Realized Volatility by means of the first H
autocovariances of the returns. In particular, when H is selected to be zero the real-
ized kernels become the Realized Volatility. Our analysis includes also the two-scale
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estimator by [19]

ΣT S
t :=

S
S−1

(
1
S

S

∑
s=1

ΣG(s)

t − 1
S
ΣRV

t

)
.

The two-scale (subsampling) estimator is a bias-adjusted average of lower frequency
realized volatilities computed on S non-overlapping observation subgrids G(s) con-
taining nS observations. Recently, [13] proposed a pre-averaging technique as an
alternative to subsampling in order to reduce the microstructure effects. The idea
is that if one averages a number of observed log-prices, one is closer to the latent
process p(t). This approach, when well implemented, gives rise to rate optimal es-
timators of power variations. In particular, a consistent estimator of the integrated
volatility can be constructed as

ΣPA
t =

√
Δ

θψ2

n−kn+1

∑
s=0

δ̄s(p̃)2 − ψ1Δ
2θ 2ψ2

n

∑
s=1
δs(p̃)2,

where the pre-averaged return process is given by

δ̄s(p̃) :=
kn

∑
r=1

g

(
r
kn

)
δs+r(p̃) =

1
kn

(
kn−1

∑
j=kn/2

p̃t,s+ j −
kn/2−1

∑
j=0

p̃t,s+ j

)
,

θ = kn
√
Δ ,ψ1 = 1 andψ2 = 1/12, corresponding to the “hat” weight function g(x) =

x∧ (1− x). The Fourier estimator [15] is given by

ΣF
t =

(2π)2

2N +1

N

∑
s=−N

cs(d p̃n)c−s(d p̃n),

where ck(d p̃n)= 1
2π ∑

n
i=1 exp(−ikti−1)δi(p̃). Finite sample MSE-based optimal rules

for choosing the parameters employed by these estimators are discussed in [3,5,16,
19]. Here, we proceed according to the following rules: a simple approximation of
the optimal sampling frequency for the Realized Volatility estimator is to choose the
number of observations approximately equal to n∗ = (Q/4E[η2]2)1/3, where Q is the
integrated quarticity estimated by means of low frequency returns. The optimal num-
ber of subgrids S is given by c∗n2/3, where c∗ = (Q/48E[η2]2)−1/3. For the Kernel
estimator, we apply the optimal mean square error bandwidth selection suggested
by [5] and get H = c∗ξ 4/5n3/5, where c∗ = (144/0.269)1/5, ξ 2 = E[η2]/

√
Q. In

the case of the Pre-averaging estimator, inspired by [5], we choose kn = c∗ξ 4/5n3/5.
Finally, for the Fourier estimator, the optimal cutting frequency N can be easily ob-
tained by direct minimization of the estimated MSE given by Theorem 3 in [16].

4 Volatility and Default Probability Computation

In this section we provide numerical results of our simulation study showing and
quantifying the impact of different volatility measures on default probability esti-
mation, based on high-frequency equity data affected by trading noise. We analyze
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the performance of the volatility estimators with respect to their ability of i) filtering
the microstructure noise and correctly extract equity volatility, ii) backing out asset
volatility and iii) predicting default probabilities.

We perform Monte Carlo simulations by generating the underlying asset dynamic
according to model (1) for rating classes A, BBB, BB. Then, high-frequency equity
prices are simulated through Equation (2). The sample contains 500 days and equis-
paced intra-day data are generated at a frequency h = 4 sec (i.e. n = 21600). Based on
the calibration results by [20], we consider as model parameters r = 0.05, δ = 0.02;
rate A: σ = 0.2128, μ = 0.0643, B = 43.13; rate BBB: σ = 0.2296, μ = 0.0655,
B = 48.02; rate BB: σ = 0.2371, μ = 0.057, B = 58.63. Market microstructure noise
is considered, alternatively, for both cases described by Eqs. (6)-(7). The random
shocks η j are i.i.d Gaussian random variables with zero mean and standard devia-
tion equal to 2 times the log-equity return standard deviation. We set α = 0.5 in the
dependent noise case (7). Once we have noisy equity prices, we compare the perfor-
mance of different volatility estimators in their ability of extracting the ”true” equity
volatility Σ s

t and other related quantities for the underlying process describing firm’s
assets value dynamics.

Table 1 presents numerical evidence for each equity volatility estimator intro-
duced in Sect. 3 and used in our comparison when (a) trading noise is independent of
intra-day equity log-returns and (b) trading noise is correlated with intra-day equity
log-returns, respectively. The table lists the average relative error (ARE), the mean
squared error (MSE) and bias achieved by the different equity volatility estimators.
ΣRV

t represents the Realized Volatility estimator using all tick-by-tick equity data,
while ΣRV SS

t refers to the Realized Volatility estimator based on sparse sampling,
where the sampling frequency is optimized in order to filter the microstructure ef-
fects, as explained in Sect. 3. Our results strongly confirm well known stylized facts
documented by the econometric literature and highlighted by [16]: ΣRV

t estimates
are completely swamped by noise and sparse sampling can only moderately provide
efficient estimates. The first order correction of ΣHL

t , as an alternative to sparse sam-
pling, can reduce the bias due to the spurious first order autocorrelation in equity

Table 1 Equity Volatility Estimators. The table shows average relative error (ARE), mean
squared error (MSE) and BIAS for different equity volatility estimators for A-rated firms.
Results are based on 500 daily Monte Carlo simulations. Panel (a) refers to the trading noise
given in Equation (6), panel (b) to Equation (7), with α = 0.5

ΣRV
t ΣRV SS

t ΣT S
t ΣHL

t ΣK
t ΣPA

t ΣF
t

(a) ARE 2.00e+0 3.28e-2 5.37e-4 9.89e-4 5.10e-4 –1.19e-3 1.33e-2
MSE 4.49e-1 4.13e-4 2.55e-5 2.21e-4 5.62e-5 6.59e-5 8.01e-5
BIAS 6.69e-1 1.10e-2 1.97e-4 3.73e-4 1.83e-4 –3.87e-4 4.46e-3

(b) ARE 2.24e+0 3.61e-2 6.31e-4 1.07e-3 6.29e-4 –1.43e-3 1.38e-2
MSE 5.65e-1 4.90e-4 2.79e-5 3.25e-4 5.78e-5 6.79e-5 8.58e-5
BIAS 7.50e-1 1.21e-2 1.96e-4 3.46e-4 2.03e-4 –4.81e-4 4.60e-3
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returns introduced by the trading noise. The best results are provided by ΣF
t and by

the other estimators specifically designed to handle microstructure effects ΣT S
t , ΣK

t
and ΣPA

t . However, the rank of estimators is different when we consider absolute er-
ror measures such as MSE and bias versus percentage error measures such as ARE.
In fact, in the latter case ΣHL

t performs better than ΣPA
t and ΣF

t . This means that ΣHL
t

performs better under low volatility regimes. Finally, we notice that ΣPA
t tends to

underestimate volatility, differently from all the other estimators.
In order to study the influence of different equity volatility estimators on the de-

fault probability predicted by Merton [17] model, we proceed by developing the
following calibration exercise. For each equity volatility estimator, generically de-
noted by E, and each day t in our sample, we find the corresponding asset volatility
estimate σ̂E by matching the 5-years default probability coming from our equity
volatility estimate ΣE

t with the one evaluated through the model using the given pa-
rameters values. In so doing, we act as if we did not know the asset values to mimic
the real-life estimation situation and we conduct inference only based on observable
quantities such as measurable equity volatility and the 5-years default probabilities.
Default probabilities are computed, for any maturity, according to Eq. (5). In order
to avoid arbitrage opportunities, following [20], we consider as key assumption that
all securities written on the underlying firm value At must have the same Sharpe
ratio, see [17], Equation (6). This consideration enables us to express the instanta-
neous asset return μ as a function of the unknown asset volatility, given each equity
volatility estimate ΣE

t , and then to solve Eq. (5) for the 5-years default probability
with respect to the asset volatility, to obtain the corresponding asset volatility esti-
mate σ̂E . Once asset volatility is known, we can compute default probabilities for
any other maturity according to Eq. (5).

Before analyzing the impact of the different volatility estimators on the calibra-
tion procedure for default probabilities, we analyze their influence on the calibration
of asset volatility σ . A visual insight on the variability of asset volatility estimates
obtained with the procedures based on the different equity volatility estimators can
be achieved from Fig. 1, plotting the ratio σ̂E/σ in the case of independent noise for
an A-rated firm. It is evident how the high-frequency Realized Volatility procedure
(black line in the bottom) largely underestimate asset volatility. Similar results are
obtained for the dependent noise case.

Table 2 shows descriptive statistics of calibrated asset volatility. We report re-
sults obtained by matching 5-years default probabilities for each equity volatility
estimator E. Panel (a) of the table refers to a trading noise of the form (6); panel (b)
refers to results obtained for a trading noise of the form (7). It is evident from the
table that the Kernel and Two-scale estimators provide the most accurate estimation
of the true value σ = 0.2128, with the smallest standard deviation. On the contrary,
σ̂RV is strongly biased due to microstructure effects, while the optimized σ̂RV SS is
less biased, at the price of a slightly larger variance. These results are confirmed by
statistics for the ratio σ̂E/σ as well.

The average (over all the ’daily’ Monte Carlo replications) default probabilities
for different maturities and calibration procedures are plotted in Fig. 2. For each day
in the sample and for each volatility estimator E we use the calibrated asset volatility
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Table 2 Calibrated Asset Volatility. The table shows descriptive statistics of calibrated asset
volatility for different equity volatility estimators. Results are based on 500 daily Monte Carlo
simulations for an A-rated firm. Panel (a) refers to the trading noise given in Eq. (6), panel (b)
to Eq. (7), with α = 0.5

Mean Median 10 perc. 90 perc. Min Max Std Dev.

(a) σ̂RV 0.192652 0.192648 0.192569 0.192743 0.192419 0.192894 0.000069
σ̂RV SS 0.211811 0.211775 0.209762 0.213980 0.207321 0.217353 0.001575
σ̂T S 0.212759 0.212750 0.212129 0.213361 0.211354 0.214601 0.000503
σ̂HL 0.212812 0.212618 0.211089 0.214912 0.209575 0.219557 0.001515
σ̂K 0.212770 0.212734 0.211934 0.213688 0.210808 0.215141 0.000742
σ̂PA 0.212830 0.212790 0.211896 0.213878 0.210616 0.215468 0.000807
σ̂F 0.212355 0.212313 0.211390 0.213298 0.210435 0.214927 0.000749

σ̂RV /σ 0.905318 0.905299 0.904928 0.905745 0.904225 0.906457 0.000326
σ̂RV SS/σ 0.995352 0.995186 0.985726 1.005543 0.974253 1.021393 0.007401
σ̂T S/σ 0.999808 0.999767 0.996846 1.002634 0.993207 1.008465 0.002363
σ̂HL/σ 1.000056 0.999143 0.991960 1.009924 0.984843 1.031753 0.007120
σ̂K/σ 0.999860 0.999689 0.995929 1.004173 0.990637 1.011002 0.003488
σ̂PA/σ 1.000139 0.999951 0.995753 1.005067 0.989735 1.012535 0.003792
σ̂F/σ 0.997911 0.997711 0.993376 1.002341 0.988885 1.009996 0.003519

(b) σ̂RV 0.191966 0.191965 0.191886 0.192049 0.191798 0.192136 0.000062
σ̂RV SS 0.211722 0.211546 0.209694 0.213990 0.207310 0.218999 0.001698
σ̂T S 0.212756 0.212734 0.212077 0.213403 0.211356 0.214588 0.000524
σ̂HL 0.212841 0.212708 0.210635 0.215044 0.208440 0.220014 0.001801
σ̂K 0.212766 0.212746 0.211857 0.213716 0.210610 0.215369 0.000755
σ̂PA 0.212838 0.212813 0.211817 0.213845 0.210465 0.215823 0.000823
σ̂F 0.212340 0.212320 0.211347 0.213360 0.210210 0.214626 0.000774

σ̂RV /σ 0.902097 0.902090 0.901721 0.902485 0.901305 0.902894 0.000293
σ̂RV SS/σ 0.994936 0.994109 0.985405 1.005592 0.974203 1.029129 0.007982
σ̂T S/σ 0.999792 0.999689 0.996601 1.002834 0.993215 1.008401 0.002462
σ̂HL/σ 1.000193 0.999566 0.989825 1.010547 0.979512 1.033899 0.008463
σ̂K/σ 0.999840 0.999748 0.995566 1.004304 0.989710 1.012071 0.003550
σ̂PA/σ 1.000177 1.000061 0.995382 1.004913 0.989029 1.014208 0.003869
σ̂F/σ 0.997840 0.997745 0.993174 1.002631 0.987827 1.008582 0.003638

σ̂E in order to compute the default probabilities for any maturity (from 1 to 5 years)
by Eq. (5). From the figure, it appears evident how the Realized Volatility approach
based on high frequency noisy data drastically underestimates default probabilities,
so that sparse sampling becomes mandatory when equity data are affected by mi-
crostructure effects. On the whole, all the other procedures seem to provide sensible
results and only a deeper analysis reveals differences among different calibration
procedures.

The analysis of the effects of using alternative equity volatility estimators on de-
fault probabilities is conducted for different maturities (from 1 to 5 years) through
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Fig. 1 Calibrated Asset Volatility. The plot shows the ratio between calibrated asset volatility
σ̂E and the true asset volatility σ for 500 daily Monte Carlo simulations. The plot refers to the
trading noise given in Equation (6). Panel (a) of Table 2 gives descriptive statistics of these
values
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Fig. 2 Default Probability. The plot shows default probabilities given by (5). By matching 5-
years default probability coming from our equity volatility estimate with the one provided by
the model, we obtain the corresponding calibrated asset asset volatility and use it to compute
default probabilities for all maturities

the comparison of the mean relative error between the estimated default probability
and the theoretical one. For each maturity, we consider the following measure

DPE
Err :=E

[
DP(ΣE

t )−DP(Σ s
t )

DP(Σ s
t )

]
·100, (8)
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Fig. 3 Default Probability Relative Error. The plot shows default probability mean relative
error given in Eq. (8) for maturities from 1 to 5 years. Results are based on 500 Monte Carlo
simulations and refer to an A-rated firm with trading noise (7) and α = 5

where DP(ΣE
t ) is the default probability calibrated from Merton [17] structural model

when equity and asset volatility are estimated through estimator E; DP(Σ s
t ) is the

corresponding theoretical default probability when equity and asset volatility are Σ s
t

and σ , respectively. Figure 3 shows the mean relative error on different calibration
procedures for an A-rated firm with noise setting (7). Similar plots are obtained for
the noise case (6) and for other credit qualities. The results for the Realized Volatility
estimator using tick-by-tick data have been omitted, since the relative error in this
case reaches 78% for the earliest maturities. When data are optimally sampled, the
Realized Volatility calibration procedure is still affected by an error up to 6% for the
shortest maturities. A negative (positive) error reveals that the calibration procedure
underestimates (overestimates) default probabilities. Therefore, the classical Real-
ized Volatility approach can severely underestimate risk. Except Fourier approach,
all the other approaches slightly overestimate default probabilities, with ΣT S

t and ΣK
t

providing the best estimation of risk.
Table 3 shows the corresponding numerical results for all the rating classes A,

BBB, BB, suggesting that the choice of the volatility estimator largely affects the
default probabilities estimation. The performance of each estimators in terms of de-
fault probability estimation is more strongly affected by the equity risk premium,
i.e. ultimately by μ , than by the latent asset volatility σ . Therefore, generally, DPE

Err
does not worsen from A to BBB and BB classes as long as low-rated firms are asso-
ciated with small values of μ , like the ones calibrated by [20]. Rather, the ranking
among different estimators remains the same regardless of the firm credit rating. In
particular, ΣT S

t , ΣHL
t , ΣK

t and ΣPA
t are the estimators providing the best risk evalua-

tion in all the considered scenarios, immediately followed by ΣF
t .
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Table 3 Default Probability Relative Error. The table shows default probability mean relative
error given in Eq. (8) for maturities from 1 to 4.5 years. Results are based on 500 daily Monte
Carlo simulations using different equity volatility estimators. Relative errors are in percentage
(%). Panel (a) refers to the trading noise given in Equation (6), panel (b) to Eq. (7)

DPRV
Err DPRVSS

Err DPT S
Err DPHL

Err DPK
Err DPPA

Err DPF
Err

(a) 1y –77.552877 –5.653780 –0.016775 0.678380 0.105648 0.508828 –2.556536
3y –24.702511 –1.200495 –0.011160 0.057574 0.003154 0.077979 –0.518461

A 4.5y –4.989094 –0.222674 –0.002300 0.008090 -0.000003 0.013540 –0.095374

1y –67.894485 –4.390339 –0.022799 0.416401 0.062076 0.363117 –1.955870
3y –19.816429 –0.933682 –0.009053 0.040953 0.002465 0.060442 –0.402094

BBB 4.5y –3.944256 –0.174305 –0.001823 0.006151 0.000119 0.010747 –0.074603

1y –42.822431 –2.256778 –0.018665 0.136200 0.017413 0.163326 –0.983264
3y –10.750682 –0.483424 –0.004959 0.018367 0.001253 0.031100 –0.207333

BB 4.5y –2.086650 –0.091030 –0.000966 0.003098 0.000153 0.005726 –0.038929

(b) 1y –78.826465 –6.124004 –0.027360 1.037514 0.088215 0.572542 -2.640228
3y –25.516271 –1.309917 –0.014032 0.096727 –0.000922 0.089373 –0.536280

A 4.5y –5.172970 –0.243269 –0.002852 0.014222 –0.000769 0.015589 –0.098680

1y –69.288313 -4.455845 0.101603 0.757382 0.313784 0.707459 -1.786171
3y –20.489877 –0.954666 0.014432 0.097111 0.050003 0.125589 –0.370176

BBB 4.5y –4.089964 –0.178447 0.002465 0.016110 0.008800 0.022649 –0.068780

1y –44.056077 –2.416005 0.131715 0.721002 0.154349 0.328242 -0.891365
3y –11.137906 –0.518127 0.026070 0.135473 0.029731 0.065342 –0.188054

BB 4.5y –2.164760 –0.097586 0.004837 0.024876 0.005486 0.012137 –0.035312

5 Conclusions

In this paper we consider Merton [17] structural model and use high-frequency eq-
uity prices in order to back out the unobservable asset volatility and calibrate default
probabilities. We perform a Monte Carlo simulation study based on equispaced sim-
ulated equity prices and propose alternative equity volatility estimators, assuming
data being contaminated by trading noise: the aim is to exploit the information con-
tent of high frequency intra-day data neglecting microstructure effects. While [9]
propose a particle filter-based maximum likelihood method, we propose a different
econometric approach. We consider alternative non-parametric (equity) volatility
estimators and compare their performance in: i) filtering out the market microstruc-
ture noise, ii) extracting the (unobservable) true underlying asset volatility level, iii)
predicting default probabilities. We consider, alternatively, trading noise being a) in-
dependent log-Gaussian distributed, b) correlated with intra-day equity log-returns.
Non-observability of a firm’s asset value does not actually impede the implementa-
tion of a structural credit risk model; nevertheless, the volatility estimator can largely
affect calibrated default probabilities, thus risk evaluation as it happens for A, BBB
and BB rating classes analyzed. The commonly used Realized Volatility estimator is
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unable to provide reliable estimates for the asset volatility under market microstruc-
ture, leading to a significant underestimation of asset volatility and default probabili-
ties. Next step will be to develop the current analysis by extending the focus on credit
spreads estimation and considering more sophisticated underlying asset dynamics,
i.e. stochastic volatility and/or jump-diffusion models.

References

1. Aït-Sahalia, Y., Mykland, P., Zhang, L.: How often to sample a continuous-time process
in the presence of market microstructure noise. Review of Financial Studies 18, 351–416
(2005)

2. Bandi, F.M., Russel, J.R.: Separating market microstructure noise from volatility. Journal
of Financial Economics. 79, 655–692 (2006)

3. Bandi, F.M., Russell, J.R.: Market microstructure noise, integrated variance estimators,
and the accuracy of asymptotic approximations. Working paper, Univ. of Chicago (2006).
http://faculty.chicagogsb.edu/federicobandi

4. Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Designing realised ker-
nels to measure the ex-post variation of equity prices in the presence of noise. Economet-
rica 76(6), 1481–1536 (2008)

5. Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Multivariate realised
kernels: consistent positive semi-definite estimators of the covariation of equity prices
with noise and non-synchronous trading. Working paper (2008)

6. Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N.: Subsampling realised
kernels. Journal of Econometrics (2010)

7. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and
its use in estimating stochastic volatility models. J. R. Statist. Soc., Ser. B 64, 253–280
(2002)

8. Duan, J.C.: Maximum likelihood estimation using price data of the derivative contract.
Mathematical Finance 4, 155–167 (1994)

9. Duan, J.C., Fulop, A.: Estimating the structural credit risk model when equity prices are
contaminated by trading noises. Journal of Econometrics 150, 288–296 (2009)

10. Ericsson, J., Reneby, J.: Estimating Structural Bond Pricing Models. Journal of Business
78(2) 707–735 (2005)

11. Hansen, P.R., Lunde, A.: Realized variance and market microstructure noise (with dis-
cussions). Journal of Business and Economic Statistics 24, 127–218 (2006)

12. Huang, J., Huang, M.: How much of the corporate-treasury yield spread is due to credit
risk? Working Paper, Penn State University (2003)

13. Jacod, J., Li, Y., Mykland, P.A., Podolskij, M., Vetter, M.: Microstructure noise in the
continuous case: the pre-averaging approach. Stochastic Processes and their Applications
119, 2249–2276 (2009)

14. Jones, P.E., Scott, P.M., Rosenfeld, E.: Contingent claims analysis of corporate capital
structures: an empirical investigation. Journal of Finance 39, 611–625 (1984)

15. Malliavin, P., Mancino, M.E.: Fourier series method for measurement of multivariate
volatilities. Finance and Stochastics 6(1), 49–61. Springer (2009)

16. Mancino, M.E., Sanfelici, S.: Robustness of Fourier estimator of integrated volatility in
the presence of microstructure noise. Computational Statistics & Data analysis 52, 2966–
2989. Elsevier (2008)



Firm’s Volatility Risk Under Microstructure Noise 67

17. Merton, R.C.: On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.
The Journal of Finance 29, 449–470 (1974)

18. Eom, Y.H., Helwege, J., Huang, J.: Structural models of corporate bond pricing: an em-
pirical analysis. Review of Financial Studies 17, 499–544 (2008)

19. Zhang, L., Mykland, P. , Aït-Sahalia, Y.: A tale of two time scales: determining integrated
volatility with noisy high frequency data. Journal of the American Statistical Association
100, 1394–1411 (2005)

20. Zhang, B.Y., Zhou, H., Zhu, H.: Explaining Credit Default Swap Spreads with the Equity
Volatility and Jump Risks of Individual Firms. Review of Financial Studies 22(12), 5099–
5131 (2009)



Socially Responsible Mutual Funds:
An Efficiency Comparison Among the European
Countries

Antonella Basso and Stefania Funari

Abstract The first objective of this contribution is to evaluate the performance of
socially responsible investment (SRI) equity mutual funds in the main European
countries with three different data envelopment analysis (DEA) models. Secondly,
with a series of statistical tests we compare the performance of SRI and non SRI
mutual funds in the various countries, to determine if SRI mutual funds have to
sacrifice something in terms of financial performance; the results suggests that it is
possible to invest in a socially responsible manner without giving up the financial
reward. Thirdly, we compare the performance obtained by SRI mutual funds among
different European countries.

1 Introduction

Socially responsible investment (SRI) funds have seen an increasing interest among
investors.

Given the ethical considerations which drive socially responsible investments in
mutual funds, investors might be willing to accept for SRI mutual funds lower fi-
nancial returns. Actually, the literature on ethical investing has long investigated the
issue of the eventual penalisation incurred by investments in SRI mutual funds, in
search for an answer to the question whether it is possible “to do well while do-
ing good”; see for example [9, 11] for a brief review. The answer which comes out
from many empirical investigations are somewhat surprising, since most of the re-
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sults suggest that it is not necessary to sacrifice returns in order to pursue the ethical
objectives.

The main aims of this contribution are threefold. The first objective is to evaluate
the performance of SRI equity mutual funds in the main European countries in which
the socially responsible mutual funds play an important role. To this aim we apply
three models designed in a DEA (data envelopment analysis) framework. DEA is
an operational research technique widely used to assess the performance of a set of
decision making units in many different fields (see for example [7]). In the field of
socially responsible investing, the DEA methodology is especially useful because it
enables to take into account both the financial objective to get an optimal reward–
to–risk result and the ethical aim (see [5, 6]).

Secondly, we compare the performance indicators for SRI and non SRI mutual
funds in the various countries, carrying out a series of statistical tests with the aim of
determining if the socially responsible mutual funds really entail a sacrifice in terms
of financial performance. It is interesting to note that the results of the statistical
tests carried out on the DEA scores, applied for the first time to SRI funds, are in
agreement with the conclusions of most of the empirical studies on the performance
of SRI funds, suggesting that it is possible to invest in a socially responsible manner
without giving up the financial reward.

A third original contribution is the comparison of the performance results ob-
tained by SRI mutual funds in the different European countries.

The paper is organized as follows. Section 2 presents the main features of SRI
mutual funds in Europe. Section 3 discusses the empirical results of the analysis
carried out to evaluate the performance of SRI funds in the main European countries,
while Sect. 4 presents the outcomes of the comparisons of the inefficiency scores
carried out with a series of statistical tests.

2 SRI Mutual Funds in Europe

On 30/06/2006, at the beginning of the triennium considered in our analysis, the
number of European SRI funds was equal to 388, spread over 15 countries (Aus-
tria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Norway, Poland,
Spain, Sweden, Switzerland, Netherlands, United Kingdom; see [13]). Three years
later, on 30/06/2009, this number has increased to 683 (+76%). In the same pe-
riod the total asset under management increased from 34009 to 53276 million euros,
with a growth of +57%, showing the importance reached in Europe by the socially
responsible investments.

For a more detailed presentation of the main features of socially responsible in-
vesting in Europe we refer to the Eurosif report [8] which analyses its presence in
each European country. The analysis presented in this contribution considers the
European socially responsible equity funds which use ethical, social and/or environ-
mental screening to select the assets in their portfolios.

In the analysis carried out we have included all the SRI European equity funds
for which the data in the ‘SRI Funds Service’ database were available for the period
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Table 1 Average features of European SRI mutual funds and their non SRI counterparts by
country

No. of Ethical % Mean % St. % Excess % Initial % Exit
Country funds level return Dev. return charges charges

SRI funds
AT Austria 10 2.69 −9.74 22.00 −13.23 4.45 0.00
BE Belgium 10 2.95 −8.72 21.08 −12.19 3.20 0.00
CH Switzerland 5 2.92 −4.06 19.98 −5.86 3.40 0.01
DE Germany 4 1.76 −7.89 18.96 −11.40 3.63 0.00
ES Spain 2 1.15 −11.40 18.47 −14.89 0.00 3.00
FR France 36 1.29 −6.96 20.36 −10.50 2.64 0.15
IR Irland 3 2.06 −8.09 20.54 −11.61 2.67 0.00
IT Italy 3 1.62 −10.68 19.05 −14.15 1.00 0.00
LU Luxembourg 38 2.10 −6.46 20.46 −10.05 4.34 0.24
NE The Netherlands 7 2.17 −6.33 20.09 −9.83 0.33 0.26
NO Norway 1 3.81 −12.00 22.13 −16.60 0.20 0.30
SE Sweden 32 1.27 −1.36 21.41 −4.77 0.31 0.36
UK United Kingdom 39 2.26 −3.58 19.64 −8.19 4.22 0.00

Europe 190 1.92 −5.53 20.45 −9.23 2.93 0.18

Non SRI funds
AT Austria 6 0.00 −11.66 20.63 −15.16 3.33 0.00
BE Belgium 4 0.00 −9.27 18.64 −12.72 3.25 0.00
CH Switzerland 3 0.00 −5.60 18.11 −7.44 4.33 0.33
DE Germany 2 0.00 −5.82 17.09 −9.29 4.00 0.00
ES Spain 2 0.00 −13.56 18.39 −16.97 0.00 1.00
FR France 21 0.00 −7.38 19.77 −10.88 3.05 0.05
IT Italy 3 0.00 −8.32 18.86 −11.82 2.33 0.00
LU Luxembourg 16 0.00 −7.13 19.43 −10.69 3.45 0.00
NE The Netherlands 4 0.00 −4.41 18.18 −7.93 0.35 0.35
SE Sweden 10 0.00 −1.87 21.51 −5.29 0.10 0.00
UK United Kingdom 20 0.00 −1.48 20.36 −6.10 4.15 0.00

Europe 91 0.00 −5.74 19.79 −9.43 2.92 0.06

30/06/2006 to 30/06/2009. The overall number of SRI equity funds is equal to 190;
their distribution in the various European countries is reported in Table 1, where
they are grouped by country of domicile. As we can see, in the period considered the
SRI funds are mainly concentrated in few countries, namely France, Luxembourg,
Sweden and United Kingdom, and the analysis presented in this paper is focused on
these countries.

In order to compare the performance of SRI mutual funds with that of traditional
non SRI funds, besides the overall population of SRI funds, we have also analysed
a set of non socially responsible funds. More precisely, we have included some non
SRI equity funds with features analogous to those of the European SRI funds: for
each SRI fund considered, a non SRI fund with similar features and a similar in-
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vestment style was selected among those offered by the same fund company, when-
ever one such fund was available in the Morningstar Europe database (notice that
one such fund do not always exists). For instance, the French SRI fund AXA Euro
Valeurs Responsables (C) has features analogous to the non SRI fund AXA Valeurs
Euro A Acc: they share the same country of domicile, the same management com-
pany (Axa Investment Managers Paris), the same category and investment style (Eu-
rozone Large-Cap Equity); so the latter fund is included in the comparison data set.

The main features of the mutual funds considered are summarised in Table 1,
which exhibits the average values by country. The return data taken into account
are the monthly returns achieved by the mutual funds in the triennium 30/06/2006–
30/06/2009 (source: Morningstar Europe), and the mean return of each mutual fund
is the mean rate of return computed with the compound interest regime, measured
on an annual basis (computed as the geometric mean of the capitalization factors mi-
nus 1). The average values of the various features shown in Table 1 are the arithmetic
means of the values observed for the mutual funds domiciled in each country.

We may observe that the average values for the SRI and non SRI funds are fairly
close, although the SRI funds exhibit a slightly higher mean return as well as a slightly
higher standard deviation. The Welch’s t test for equality of the means, however, in-
dicate that the differences in the mean returns between SRI and non SRI mutual
funds are not statistically significant (the p-value of the test, carried out on the entire
data set considered in the analysis, is 0.7567), thus confirming the conclusions of
most empirical studies that SRI funds do not give a lower financial return than non
SRI funds; for a review of the empirical results on the comparison of the returns
between SRI and non SRI mutual funds see e.g. [11].

With regard to the returns obtained by the mutual funds in the period considered,
they are negative for most funds, due to the financial crisis, as are the excess returns.
Of course, their average value differs among the various countries; in particular, the
mutual funds of Sweden and UK seem to have better faced the crisis in this slump
period.

The fourth column of Table 1 reports the mean ethical level of SRI mutual funds
by country; the ethical level of all funds 1≤ j ≤ n has been computed with the ethical
measure e j proposed in [6], which takes into account both the positive and negative
screening features and the eventual presence of an ethical committee and takes values
in the interval [0,5]. As it can be seen, the mean ethical level varies substantially
among the countries, meaning that in some countries the social responsibility of SRI
mutual funds tends to be higher than in others.

Table 2 exhibits the frequency distribution for France, Luxembourg, Sweden and
UK, the four countries with the highest numbers of SRI equity funds. We may ob-
serve that the rating distributions of France and Sweden are concentrated in the clas-
ses with lower values, while those of Luxembourg and UK show a somewhat more
symmetric behaviour.
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Table 2 Frequency distribution of the ethical level e j of SRI funds of France, Luxembourg,
Sweden and UK; the last column reports the comparison with Europe

Ethical rating class FR LU SE UK Europe

0 < e j ≤ 1 18.2% 9.4% 24.5% 2.9% 21.6%
1 < e j ≤ 2 57.6% 20.8% 64.2% 25.0% 37.4%
2 < e j ≤ 3 18.2% 31.3% 11.3% 49.0% 24.7%
3 < e j ≤ 4 6.1% 33.3% 0.0% 23.1% 15.3%
4 < e j ≤ 5 0.0% 5.2% 0.0% 0.0% 1.1%

3 Empirical Results: Analysis of the Performance of SRI Funds
of the Main European Countries

In this section we present the results of the empirical analysis carried out to assess the
performance of SRI equity mutual funds in France, Luxembourg, Sweden and UK,
i.e. the four European countries with the highest number of domiciled SRI mutual
funds.

In this empirical analysis we have evaluated the performance of SRI and non SRI
mutual funds by using three DEA models with constant returns to scale which can be
applied even in slump periods and have been proposed in [6]; for the sake of brevity,
we refer to [6] for the details of these models.

Adopting the same terminology and notation used in [6], we denote by IDEA−S the
efficiency score obtained with the DEA model for slump periods DEA-S by solving
the relative optimisation problem; this model has non negative values of all the vari-
ables even when the mean returns are negative and does not take the ethical level
into consideration. Its inputs are the initial capital invested (assumed equal to 1), the
standard deviation of the returns of the mutual funds and the initial and exit charges,
while the only output is the mean annual capitalization factor, i.e. 1 plus the mean
return (see Table 1 for the average values for each country).

Analogously, we denote by IDEA−SE the efficiency score computed with the DEA-
SE model which inserts also the ethical level among the outputs. Finally, we indicate
with IDEA−SEe f the efficiency score computed with the DEA-SEef model, which as-
sumes that the ethical level is exogenously fixed.

It can be proved that the values of the three performance indexes computed co-
incide for the non SRI funds, while for the socially responsible funds we have

IDEA−SE ≥ IDEA−SEe f ≥ IDEA−S. (1)

Hence, the funds which are efficient with the DEA-S model (that have IDEA−S = 1)
remain efficient also with the other two models. Moreover, let us observe that the
fact that the two DEA models devised for the socially responsible behaviour raise
the value of the performance index of the SRI funds, while keeping it constant for
the non SRI funds, does change the overall ranking, even for the non SRI funds.
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In accordance with the fundamental idea of the DEA technique, it can be seen that
a fund which excels with respect to one of the input or output variables is generally
efficient: therefore it is efficient the fund with the highest mean return, but also the
fund with the lowest standard deviation and the fund with the highest ethical level.

We may also notice that, for all the countries, the value of the IDEA−SE and
IDEA−SEe f indexes and the relative ranking of the SRI funds are often very closed,
while they differ more notably with respect to the value of IDEA−S. This seems to
indicate that considering the ethical level as fixed a priori does not affect the per-
formance results significantly, while the inclusion of the ethical level in the analysis
does raise the results of the SRI funds considerably.

On the other hand, when the ethical level is considered, the number of efficient
funds among the SRI mutual funds roughly double. This can be seen from Table 3,
which reports some statistics on the results of the analysis carried out on the single
countries, useful to compare the performance results of the socially responsible and
non socially responsible mutual funds computed with the three DEA models con-
sidered. From this table we may also observe that the rate of SRI funds above the
median of the performance score of a country increases markedly for the two DEA
models which takes the ethical level into consideration. Both effects show that the
premium given to the socially responsible behaviour by the two DEA models that
take the ethical level into account (DEA-SE and DEA-SEef ) is sensible.

As for the differences among the various countries, we may observe that the SRI
mutual funds on average exhibit a slightly better performance than the non SRI funds
in France and Sweden, even considering the results of IDEA−S which do not take the
ethical level into account, while the opposite occurs in Luxembourg and UK. It re-
mains to be seen if these differences are statistically significant, and this issue will
be considered in next section. On the other hand, the results obtained using IDEA−SE

and IDEA−SEe f , which explicitly consider the socially responsible behaviour, consid-
erably improve the performance of SRI funds for all the countries. In next section
we will also test whether the results among the different countries are statistically
significant.

4 Empirical Results: Efficiency Comparisons

As we have outlined in the introduction, the literature is not in complete accord on
the connection between social responsibility and the financial performance of SRI
mutual funds; for a discussion on this issue see for example [9, 11]. It is therefore
interesting to see which indications come out from the results of our analysis con-
cerning the European funds in the period 30/06/2006–30/06/2009.

We have seen in the previous section that the average value of the mean returns of
SRI mutual funds is not statistically different from that of non SRI funds. Now let us
compare the performance results of SRI and non SRI mutual funds and test whether
their differences are statistically significant. To this aim we apply some statistical
tests, specially designed for the DEA performance scores and presented in [3], to
the performance indexes IDEA−S and IDEA−SE .
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Table 3 Summary statistics of the empirical results of the analysis of the performance in the
single countries (France, Luxembourg, Sweden and UK) considered; the results are compared
for the three DEA model applied

FR LU SE UK

DEA-S
Percentage of efficient funds 7.0% 13.0% 9.5% 10.2%
Percentage of SRI efficient funds 5.6% 10.5% 9.4% 7.7%
Percentage of non SRI efficient funds 9.5% 18.8% 10.0% 15.0%
Average performance 0.955 0.933 0.957 0.872
Average performance of SRI funds 0.957 0.930 0.957 0.864
Average performance of non SRI funds 0.951 0.940 0.955 0.887
Median of the performance score 0.952 0.923 0.959 0.865
Percentage of SRI funds above the median 52.8% 47.4% 50.0% 48.7%
Percentage of non SRI funds above the median 47.6% 56.3% 50.0% 55.0%

DEA-SE
Percentage of efficient funds 10.5% 25.9% 19.0% 15.3%
Percentage of SRI efficient funds 11.1% 28.9% 21.9% 15.4%
Percentage of non SRI efficient funds 9.5% 18.8% 10.0% 15.0%
Average performance 0.962 0.952 0.968 0.904
Average performance of SRI funds 0.968 0.957 0.972 0.913
Average performance of non SRI funds 0.951 0.940 0.955 0.887
Median of the performance score 0.963 0.956 0.975 0.898
Percentage of SRI funds above the median 61.1% 55.3% 59.4% 64.1%
Percentage of non SRI funds above the median 33.3% 37.5% 20.0% 25.0%

DEA-SEef
Percentage of efficient funds 10.5% 25.9% 19.0% 15.3%
Percentage of SRI efficient funds 11.1% 28.9% 21.9% 15.4%
Percentage of non SRI efficient funds 9.5% 18.8% 10.0% 15.0%
Average performance 0.962 0.951 0.968 0.898
Average performance of SRI funds 0.968 0.955 0.972 0.903
Average performance of non SRI funds 0.951 0.940 0.955 0.887
Median of the performance score 0.962 0.955 0.974 0.886
Percentage of SRI funds above the median 58.3% 52.6% 59.4% 56.4%
Percentage of non SRI funds above the median 38.1% 43.8% 20.0% 40.0%

Indeed, an advantage of the DEA methodology is that it gives the possibility to
test the (eventual) presence of differences in the performance score between two
groups of decision making units. The statistical tests proposed in the literature to
verify the presence of these differences come from two different approaches which
date back to Banker [1] and Simar and Wilson [12], respectively, and are based on the
characterisation of the DEA efficiency scores as stochastic variables, with different
hypothesis on the underlying data-generating process. There is discussion on which
approach is to be preferred, and we can find empirical applications of both; in this
paper we apply several tests reported in [3], which are based on different assump-
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tions on the distribution of the “true” inefficiency measure, where the inefficiency is
defined as the reciprocal of the DEA performance score.

More precisely, we have computed the three tests which assume that the devia-
tions of the actual output from the production frontier arise only from a stochastic
inefficiency term and exploit the asymptotic properties of the DEA inefficiency es-
timator studied by Banker in [1] (see also [3, Par. 11.2.2], and [2]):

A1. a test based on the assumption that the logarithm of the true inefficiency is expo-
nentially distributed; in this case, under the null hypothesis H0 the test statistics
is asymptotically distributed as an F distribution;

A2. a test based on the assumption that the logarithm of the true inefficiency is dis-
tributed as half-normal; under H0 the test statistics is again asymptotically dis-
tributed as an F distribution;

A3. a test with no assumptions on the distribution of the true inefficiency: the Kolmo-
gorov-Smirnov’s test statistics for the equality of the distributions of the loga-
rithm of the true inefficiency between the two groups.

In addition, we have computed five tests suitable when the data generating process
involves both an inefficiency term and a noise term independent of the inefficiency
(see [2] and [3, Par. 11.4.1]):

B1. a test based on the statistical significance of the slope parameter of a regression
of the DEA inefficiency scores on a dummy variable;

B2. a test designed to evaluate the null hypothesis that there is no difference in the
mean inefficiency between the two groups, under the assumption that the inef-
ficiency score is lognormally distributed;

B3. a test designed to evaluate the equality of the median of the inefficiencies be-
tween the two groups;

B4. the Mann-Whitney test to compare the DEA efficiency scores of the two groups;
B5. a Kolmogorov-Smirnov’s test to compare the distributions of the DEA ineffi-

ciencies between the two groups.

Let us observe that tests A1, A2 and B2 make specific assumptions on the proba-
bility distribution of the inefficiency scores, while the other tests do not; on the other
hand, in our opinion the tests denoted by the B letter are more suitable to deal with
mutual fund performance measures, since it would be unrealistic to think that the
mutual fund inefficiencies do not suffer from a noise term (suffice it to remember
that the fund returns are heavily affected by the prices of the stocks included in the
fund portfolio).

We have checked the assumptions made on the probability distribution of the
inefficiency scores by tests A1, A2 and B2; the assumptions can be rejected for
all countries, and also for the overall set of European mutual funds, with the only
exception of France, where we can accept the assumption that the inefficiency scores
are lognormally distributed. Hence, we will present in detail the results of tests A3,
B3, B4 and B5 (test B1 turned out to have very little power for the mutual fund
inefficiency scores).
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For each country (France, Luxembourg, Sweden, UK) we have first computed the
inefficiency scores and then have applied the tests to compare the DEA performance
of the SRI and non SRI mutual funds (these tests have been carried out separately,
since they refer to disjoint computations of the DEA scores for the different coun-
tries). As for the DEA model used in these comparisons, we were specially interested
in testing the differences for the DEA-S model that does not give any reward to the
SRI funds. In agreement with most of the empirical results reported in the litera-
ture, with a 0.05 significance level all the tests carried out lead to accept the null
hypothesis of no differences.

We have also replicated the tests with the DEA-SE model, and we expected re-
sults more favourable to the SRI funds. This actually happens; in particular, with
the two Kolmogorov-Smirnov’s tests (A3 and B5), which seem to reject the null hy-
pothesis more frequently, for France, Sweden and UK we can accept the alternative
hypothesis H1 of different distributions of the DEA inefficiencies.

Moreover, we have carried out a second series of tests with the aim to compare
the DEA efficiency of the SRI mutual funds across the countries. In order to do
so, first we have computed the DEA efficiency scores for all the European funds
considered all together and then we have tested the differences between pairs of
countries; the tests have been carried out both with the DEA-S model that considers
only the financial inputs and outputs and the DEA-SE model that takes into account
also the ethical level; the null hypothesis tested is the equality of the inefficiency
scores.

For all tests, we have used a significance level α = 0.05 and we have applied the
Holm-Bonferroni method [10] to take into account the problem of multiple compar-
isons. So the test results have been considered in ascending order of p-values, and
the p-values (say p1, p2, . . . , pm, where m is the number of comparisons carried out
and p1 ≤ p2 ≤ . . . ≤ pm) have been compared with the values

α
m

,
α

m−1
, . . . ,

α
1

, (2)

respectively. For k = 1,2, . . . ,m, the null hypothesis H0 is rejected at level α if pk ≤
α

m−k+1 , until the minimal index such that pk̄ > α
m−k̄+1

, while it is accepted for all

k ≥ k̄.
First of all, test B1 seems to have very little power, since in our investigation it

never leads to reject the null hypothesis. Secondly, tests A3, B4 and B5 lead to the
same acceptance/rejection decisions, while test B3 seems to have a slightly more
limited power, since it leads to accept the null hypothesis in one additional case.

The main results obtained with tests A3, B4 and B5 are summarized in Table 4,
which shows which hypothesis, H0 or H1, is accepted using a 0.05 significance level
with the Holm-Bonferroni method; for the sake of completeness we also report the
p-values of one of these tests (B5). As for the SRI mutual funds, the results of the
tests suggest that the inefficiency scores of Swedish mutual funds are different from
those of the other countries (the differences in the performance scores are statistically
significant for all the comparisons involving Sweden). On the contrary, using the
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Table 4 Hypothesis accepted (using the Holm-Bonferroni correction for multiplicity) with
tests A3, B4 and B5 carried out to compare the DEA inefficiency scores of the mutual funds
across the countries (significance level 0.05); the p-values of the tests are also reported

FR-LU FR-SE FR-UK LU-SE LU-UK SE-UK

DEA-S
SRI mutual funds H0 H1 H0 H1 H0 H1

p-value 0.024 0.000 0.017 0.000 0.025 0.000
All mutual funds H0 H1 H1 H1 H1 H1

p-value 0.071 0.000 0.000 0.000 0.003 0.000

DEA-SE
SRI mutual funds H0 H1 H1 H1 H0 H1

p-value 0.098 0.000 0.001 0.000 0.096 0.000
All mutual funds H0 H1 H1 H1 H0 H1

p-value 0.047 0.000 0.000 0.000 0.106 0.000

Table 5 Winners of the pairwise comparisons of the DEA efficiency scores carried out with
tests A3, B4 and B5. “Country 1 � country 2” means that the winner (with the highest values
of the scores) is country 1, while “country 1 ≺ country 2” denotes the pairs in which the
winner is country 2 (significance level 0.05); the p-value of the tests are also reported

FR-LU FR-SE FR-UK LU-SE LU-UK SE-UK

DEA-S
SRI funds – FR ≺ SE – LU ≺ SE – SE �UK

p-value 0 0 0
All funds – FR ≺ SE FR ≺UK LU ≺ SE LU ≺UK SE �UK

p-value 0 0.001 0 0.002 0

DEA-SE
SRI funds – FR ≺ SE FR ≺UK LU ≺ SE – SE �UK

p-value 0 0 0 0
All funds – FR ≺ SE FR ≺UK LU ≺ SE – SE �UK

p-value 0 0 0 0

DEA-S model the differences in the DEA scores are not statistically significant for
the other countries, while if we take the ethical level into consideration, using the
DEA-SE model, we reject the null hypothesis of equality of the inefficiency scores
also for the pair FR-UK.

We have also tested if the differences remain valid also for the non SRI funds,
by considering all the funds (both SRI and non SRI ones) of the pair of countries
compared; from Table 4 we may see that using the DEA-S model the differences
in the DEA scores are statistically significant for all comparisons but FR-LU, while
using the DEA-SE model we accept the null hypothesis of equality of the inefficiency
scores also for the pair LU-UK.
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Table 5 shows the winner of each pairwise comparison, when the differences
in the performance scores are statistically significant. We denote by “country 1 �
country 2” the pairs in which the “winner” (the country with the highest values of the
performance scores) is country 1, and by “country 1 ≺ country 2” the pairs in which
the winner is country 2. We may observe that the winner among all the countries
considered is undoubtedly Sweden, followed by UK.
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Fitting Financial Returns Distributions:
A Mixture Normality Approach

Riccardo Bramante and Diego Zappa

Abstract An important research field in finance is the identification of probability
distribution model that fits at the best the empirical distribution of time series returns.
In this paper we propose the use of mixtures of truncated normal distributions in
modelling returns. An optimization algorithm has been developed to obtain the best
fit by using the minimum distance approach. Empirical results show evidence of the
capability of the method to fit return distributions at a satisfactory level, completely
maintaining local normality properties in the model. Moreover, the model provides
a good tail fit thus improving the accuracy of Value at Risk estimates.

1 Introduction

In applied financial literature a relevant issue is the modelling of the empirical dis-
tribution of returns since many decision-making and asset pricing models depend on
the assumptions related to the stochastic model generating the data (see e.g. [13]).
Nevertheless many questions are still open:

1. Are the models supported by financial markets data?
2. How are the parameters in these models estimated?
3. Can the models be simplified?

Quoting the very famous fact by George Box “All the models are wrong but any
are useful”, it can generally be agreed that complex models may be closer to reality
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but often either involve many parameters or are not easy to be interpreted; on the
other hand, too simple models may not capture important features of the data and
can lead to serious bias.

Starting from these preliminaries, we made some considerations on how and
whether the normal distribution might be still exploited in financial modelling [7].

It is obvious to say that the normal distribution is too simple in fitting returns
distribution, but it is far to be excluded in practice. In fact, many practitioners still
make extensive use of the normal distribution for returns even if different approaches
are described in a very rich literature ([11, 13] for an extensive review).

Extending encouraging results obtained in the univariate approach, in this paper
we propose a bivariate optimization algorithm for fitting returns of an investment
conditional to a benchmark by using the minimum distance approach. This frame-
work permits to decompose the global beta coefficient into local estimates, shading
light to a different interpretation of dependence among returns.

2 Methodology

2.1 Fitting Distributions: Notation and Preliminary Exploratory
Results

Let us fix some preliminary ideas and notation. Let ZZZ = (X ,Y ) be a bivariate ran-
dom variable and let F̂n (zzz), FZ (zzz;θθθ) be the empirical and the cumulative distribution
function (ECDF and CDF) of (X,Y). Let {zzz1,zzz2, . . . ,zzzn} be a sample drawn from ZZZ.
If FZ (zzz;θθθ) describes the random nature of ZZZ, we expect that the bivariate QQ-plot
of

{
zzzi,F

−1
Z

(
F̂n(zzzi);θθθ

)}
, for i = 1,2, . . . ,n, or equivalently the norm∥∥zzzi −F−1

Z

(
F̂n(zzzi);θθθ

)∥∥
p for i = 1,2, . . . ,n (1)

for some p > 0 is closed to zero. If {zzz1,zzz2, . . . ,zzzn} comes from a distribution WWW dif-
ferent from the one we have chosen we expect that the locus of points is locally dif-
ferent from zero. In an analogous manner, the analysis of the PP-plot over the domain
[0,1]2 may be considered, i.e. the plot of

{
F̂n (zzzi) ,FZ (zzzi;θθθ)

}
, for i = 1,2, . . . ,n.

Parameter estimation is typically based on standard maximum likelihood (ML) or
by robust estimation procedures, such as the median and the median absolute devia-
tion from median (MAD) [13]. Differently from ML, in order to let the fitting process
as flexible and maximally data dependent as possible, the MDA approach (see [3])
is becoming popular in applications because of both its theoretical implications and
the avilability of computational tools. It consists in solving the general unconstrained
problem

min
θ

d
(

F̂n (zzz) , FZ (zzz;θθθ)
)

ZZZ ∈ R2 (2)

where d (·) is an appropriate measure of discrepancy (i.e. loss function) and it can
be interpreted as a transformation of the quantities used in the PP-plot. If FZ (zzz;θθθ) is
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the “true” CDF then the unconstrained estimator θ̂θθ minimizing (2) has been shown
to be consistent.

Depending on which d (·) is used, further properties, e.g. robustness to extreme
influence values, may be defined in addition. Let A(zzz) and Bθ (zzz) be continuous func-
tions. Examples of d (·) are

d (A(zzz) ,Bθ (zzz)) :=

⎧⎪⎨⎪⎩
KS : sup |A(zzz)−Bθ (zzz)|
MH : E [|A(zzz)−Bθ (zzz)|]
MQ : E

[
(A(zzz)−Bθ (zzz))2

] (3)

i.e. the Kolgomorov, Manhattan, Euclidean (Cramer–von Mises) distances, respec-
tively. A generalization of (2) is

min
θ ∑i

d
([

F̂n (zzzi)
]q

, [FZ (zzzi;θθθ)]q
)1/q ‖zzzi‖p ZZZ ∈ R2 (4)

where zzzi = [xi yi]
′, ‖zzzi‖p = (∑i |zi|p)1/p with q > 0, p > 0.

That means we may solve (4) by searching also for that parameters (q, p) that at
the best guarantee a good fit between the two. In this paper, for the sake of simplicity
and without loss of generality, we will use q = 1 and p = 2 to reconcile notation to
the definitions in (3) and the norm of the weighs to the standard Euclidean distance
of the vector zzzi from the origin.

2.2 Fitting Bivariate Truncated Normal Distributions

Suppose to subdivide the domain of ZZZ into a partition; assume that FZ (zzzi;θθθ) is rep-
resented by a sequence of truncated distributions, also called spliced distribution.
Within each subset of the partition, we may interpret the distribution to be truncated.
If by applying (4) the local solution does not improve with respect to the one obtained
by using the whole domain, this should be an evidence that locally the process is not
different from the unconditional one. By contrast if, constraining (4) over R2

c ⊆R2,
we obtain a solution better than the unconstrained one, there is an evidence that the
underlying process may be considered as a mixture of distributions (see also [9]).
A solution can be found by applying (4) in a two stage process: in the first step we
estimate the parameters of the bivariate distribution ZZZ and then, by keeping fixed
these estimates, we look for a partition, if it exists, such that the optimum obtained
in the first step has improved.

Let ZZZ ∼ N2(μμμ,ΣΣΣ) be a bivariate normal random variable and indicate with
FZ (zzzi;μμμ;ΣΣΣ) its cumulative distribution function, where μμμ , ΣΣΣ are the mean vector
and the variance-covariance matrix, respectively. Let μ̂μμ and Σ̂ΣΣ be the estimates of μμμ ,
ΣΣΣ obtained by solving (4). Let Xtr j be a generic threshold for the marginal X such
that, for any Xtr j−1 < Xtr j and for j = 1,2, . . . ,k⋃k

j=1

(
Xtr j−1� Xtr j

)
= R2

(
Xtr j−1� Xtr j

)⋂
( Xtrh−1� Xtrh) = /0 f or h 	= j h, j = 1, . . . ,k

(5)
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with Xtr0 = −∞ and Xtrk = +∞. Let

T fZZZ

(
zzz; μ̂μμ; Σ̂ΣΣ; Xtr j−1; Xtr j

)
=

⎧⎪⎪⎨⎪⎪⎩
exp

(
− 1

2 (zzz−μ̂μμ)′Σ̂ΣΣ(zzz−μ̂μμ)
)

∫ (∫ X tr j
X tr j−1

exp
(
− 1

2 (zzz−μ̂μμ)′Σ̂ΣΣ(zzz−μ̂μμ)
)

dx
)

dy
for

(
x ∈X tr j−1� Xtr j

)
and(y ∈ R)

0 otherwise

(6)

be the truncated normal pdf and let the CDF in zzz be

T FZ

(
zzz; μ̂μμ; Σ̂ΣΣ

)
=∑i

j=1

(∫ ∫ z
−∞ T fZ

(
zzz; μ̂μμ; Σ̂ΣΣ;X tr j−1;X tr j

)
dzzz
)

w j

with w j > 0 ∀ j ∑k−1
j=1 w j = 1−wk.

(7)

From (7), T FZ

(
zzz; μ̂μμ ; Σ̂ΣΣ

)
is a weighted sum of disjoint truncated distributions. The

estimate of the weights and thresholds in (7) is obtained by solving

Find w1, . . . ,wk−1 and tr1, . . . , trk−1 :

∑
i

d
(

F̂n (zzzi) , FZ

(
zzzi; μ̂μμ; Σ̂ΣΣ

))
‖zzzi‖2 −

min
w,k
∑

i
d
(

F̂n (zzzi) , T FZ

(
zzzi; μ̂μμ ; Σ̂ΣΣ

))
‖zzzi‖2 ≥ ε

(8)

with ε > 0. It is the same problem stated in (4) but where the unknowns are not the
parameters of the bivariate Gaussian distribution but the weights and the thresholds.
Observe that we look for the smallest partition such that (8) is fulfilled, since for
k → ∞ the truncated distribution degenerates on the single observation.

3 Empirical Results

To exemplify of the aspects captured by the proposed model, we show results by
using the returns of 300 Morgan Stanley Capital International (MSCI) indices, pro-
vided in the country and sector sub set, along with the World Index which is assumed
to be the market benchmark . All the indices are denominated in US dollars and cover
the period from January 1996 to March 2012. The sample period was divided into
pre specified consecutive intervals with a fixed length of 500 observations1 using

1 In general, the choice of the window length involves balancing two opposite factors: on the one
hand a larger window could embrace changing data generating processes, whereas on the other hand
a shorter period implies a smaller data set available for estimation. In our opinion, the selection of
the window size depends on the specific application. For the purposes of the empirical investigation
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Fig. 1 World index marginal truncated normal distribution

a 20 trading session rolling window procedure: totally, approximately 20,000 data
periods were tested.

In the univariate case, the optimization tool was initially used to estimate the
location and variance of the distribution (with no thresholds). Results, in terms of
degree of fit, were encouraging since a significant increment (76% on average) was
provided with no relevant differences due to the index type. In the second step, a
solution to (8) was found, obtaining the estimates of the unknowns and the distance
from the solution found in (4) (see Fig. 1 for an example regarding the World Index).

The relative gain in the discrepancy measure by using the MQ distance with re-
spect to the ML estimators for both the normal and the Skew-t distribution was sat-
isfactory. The introduction of a mixture of truncated normal distributions has sig-
nificantly increased the accuracy, capturing at an adequate degree the most relevant
aspects of daily returns empirical distribution, by regulating both kurtosis and fat
tails: starting from the case with 3 thresholds (i.e. in the 92.42% of the simulations)
the average gain is higher than 80% with respect to both the normal and Skew-t
distributions [7].

For the bivariate case, the optimization tool was used in a similar way to estimate,
in the first step, the vector of the unknown parameters where the criterion function
measures the weighted squared distance between the empirical and the bivariate nor-
mal distribution and to select, in the second step, the optimal truncation thresholds
conditional to the benchmark (see Fig. 2 for an example regarding the MSCI Italy

proposed in this paper, the choice of equal sized sections of 500 data points seems to be a good
compromise between the two factors.
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Table 1 Optimization results (bivariate case)

% Gain in degree of fit

Type of Index First Opt. Step Second Opt. Step

Developed Markets Index 68.64 10.03
Emerging Markets Index 66.46 18.52
Emerging Sector Index 71.93 22.46

Europe Sector Index 76.93 17.55
World Sector Index 81.88 15.01

Fig. 2 MSCI Italy index bivariate truncated normal

Index). In Table 1 results regarding the relative gain in the discrepancy measure, for
the two steps, are reported.

If compared to univariate outcomes, fitting results are less impressive. Neverthe-
less, the analysis of where thresholds are placed has provided useful information
about the behavior of each index with respect to the benchmark. The partitioning
algorithm returned roughly 90% of the cases with less than 3 cut off points (Ta-
ble 2); moreover, if we focus on the first threshold location, analyzing separately the
downside and the upside returns partition, a breakdown in the negative domain has
been predominant (58% of cases): these results give evidence of clusters correlation
occurring mainly in the negative domain, where index and benchmark series tend to
be comonotone in their extreme low returns values.

Another interesting result was the inversion from positive to negative in the sign
of the bivariate normal location parameters observed in the first optimization step
(Table 3). Above all, reverse in sign in the correlation coefficient (12% on average)
was obtained: generally this has occurred when extreme values were present or when
the market model was not statistically significant.
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Table 2 Threshold distribution (bivariate case)

Type of First Threshold

Number of Threshold % of Cases % Positive % Negative

No threshold 5.49

1 69.34 51,77 48.23

2 15.22 24.80 75.20

3 8.17 3.86 96.14

4 1.55 0.62 99.38

5 0,22 0.00 100.00

6 0.00 0.00 100.00

Table 3 Bivariate Normal parameters

% Parameter Sign Inversion

Number of Threshold Means Correlation Coefficient

1 50.83 7.16

2 30.43 22.38

3 48.54 12.95

4 39.25 12.50

5 13.04 -

Analogously to relative risk analysis – typically measured by the classical beta
coefficient – the domain partitioning provides a set of disjoint conditional regions
where the local relationship between the index and the benchmark can be slightly
different with respect to the one on the domain as a whole. In particular, it is in-
teresting to analyze reverse in sign in the index – benchmark relationship (from a
global positive beta to at least one negative local beta and the inverse case) which
occurs, on average, in 46% of the total cases (see Table 4 where results referred to a
partitions with more than 4 thresholds are omitted): this provides strong evidences
that relative risk varies conditionally to the benchmark returns regions coherently
with the well known clustering effect of returns.
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Table 4 Beta parameters sign inversion

% Sign Inversion Local Beta

Number of Threshold % negative % positive

1 58.33 22.17
2 77.72 42.22
3 89.02 28.62
4 90.00 61.34
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Single-Name Concentration Risk Measurements
in Credit Portfolios

Raffaella Calabrese and Francesco Porro

Abstract For assessing the effect of undiversified idiosyncratic risk, Basel II has
established that banks should measure and control their credit concentration risk.
Concentration risk in credit portfolios comes into being through an uneven distribu-
tion of bank loans to individual borrowers (single-name concentration) or through
an unbalanced allocation of loans in productive sectors and geographical regions
(sectoral concentration). In this paper six properties that ensure a coherent measure
of single-name concentration are identified. To evaluate single-name concentration
risk in the literature, Herfindahl–Hirschman index has been used. This index repre-
sents a particular case of Hannah–Kay index proposed in monopoly theory. In this
work the proof that Hannah–Kay index satisfies all the six properties is given. Fi-
nally, the impact of the elasticity parameter in Hannah-Kay index on the single-name
concentration measure is analysed by numerical applications.

1 Introduction

The Asymptotic Single-Risk Factor (ASRF) model [7] that underpins the Internal
Rating Based (IRB) approach in the Basel II Accord (Basel Committee on Banking
Supervision, BCBS 2004) assumes that idiosyncratic risk has been diversified away
fully in the portfolio, so that economic capital depends only on systematic risk con-
tributions. Systematic risk represents the effect of unexpected changes in macroe-
conomic and financial market conditions on the performance of borrowers. On the
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other hand, idiosyncratic risk represents the effects of risks that are particular to in-
dividual borrowers. In order to include idiosyncratic risk in economic capital, Basel
II (BCBS, 2004) requires that banks estimate concentration risk. Concentration risks
in credit portfolios arise from an unequal distribution of loans to single borrowers
(single-name concentration) or industrial or regional sectors (sector concentration).
This paper is focused only on the single-name concentration, in particular in the
context of loan portfolios.

Since single-name concentration risk is relatively unexplored in the literature,
the first aim of this paper is to identify the properties that a coherent measurement of
single-name concentration risk should satisfy. In particular, six properties are iden-
tified: some of them were suggested for inequality measures (e.g. transfer principle,
Lorenz-criterion, uniform distribution principle, superadditivity) and for monopoly
theory (e.g. independence of loan quantity). The first theoretical result of this paper
is the analysis of the relationship among the six properties.

A widely used index of single-name concentration risk is the Herfindahl–Hirsch-
man index, proposed in monopoly theory [11–13]. Such an index represents a par-
ticular case of the Hannah–Kay index, proposed also in monopoly theory [10]. A sec-
ond theoretical result of this work is that the Hannah–Kay index satisfies all the six
properties for measurements of single-name concentration risk. This result justifies
the wide use of the Herfindahl-Hirschman index in credit concentration risk analy-
sis. The Herfindahl-Hirschman index is obtained as the Hannah-Kay index with an
elasticity parameter equal to 2.

The last important result of this paper is the analysis of the impact of the elasticity
parameter on the single-name concentration measure. The elasticity parameter de-
termines the weight attached to the upper and the lower portions of the distribution.
High elasticity parameter gives greater weight to the highest credit amounts and low
elasticity emphasizes the small exposure. In order to highlight this characteristic, six
portfolios with different levels of single-name concentration risk are analysed. The
portfolio with the highest concentration risk is considered compliant to the regula-
tion of the Bank of Italy [1].

The paper is organized as follows. Section 2 defines the six properties of a single-
name concentration index and the relationships among them. Section 3 analyses the
Hannah–Kay index and proves that it satisfies all the mentioned six properties. The
Herfindahl–Hirschman index and the granularity adjustment are also examined. In
the last section a numerical application on portfolios with different concentration
risk is described.

2 Properties of a Single-Name Concentration Index

Consider a portfolio of n loans. The exposure of the loan i is represented by xi ≥ 0
and the total exposure of the portfolio is ∑n

i=1 xi = T . In the following, a portfolio is
denoted by the vector of the shares of the amounts of the loans s = (s1,s2, . . . ,sn): the
share si ≥ 0 of i-th loan is defined as si = xi/T . It follows that∑n

i=1 si = 1. Whenever
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the shares of the portfolio s need to be ordered, the corresponding portfolio obtained
by the increasing ranking of the shares will be denoted by s(.) = (s(1), . . . ,s(n)). It
is clear that any reasonable concentration measure C must satisfy C(s) = C(s(.)).
Whenever it is necessary, in order to remark the number n of the loans in the port-
folio, the single-name concentration measure will be denoted with Cn.

The following six properties are the desirable ones that a single-name concentra-
tion measure C should satisfy. Indeed they were born in a different framework, nev-
ertheless their translation to credit analysis can be considered successful (cf. [4,7]).

1. Transfer principle The reduction of a loan exposure and an equal increase of
a bigger loan that preserves the order must not decrease the concentration mea-
sure.
Let s = (s1,s2, . . . ,sn) and s∗ = (s∗1,s

∗
2, . . . ,s

∗
n) be two portfolios such that

s∗(k) =

⎧⎨⎩
s( j) −h k = j
s( j+1) +h k = j +1
s(k) otherwise,

(1)

where

s j < s j+1, 0 < h < s( j+1) − s( j), h < s( j+2) − s( j+1).

Then C(s) ≤C(s∗).
2. Uniform distribution principle The measure of concentration attains its mini-

mum value, when all loans are of equal size.
Let s = (s1,s2, · · · ,sn) be a portfolio of n loans. Then C(s) ≥ C(se), where se is
the portfolio with equal-size loans, that is se = (1/n, . . . ,1/n).

3. Lorenz-criterion If two portfolios, which are composed of the same number of
loans, satisfy that the aggregate size of the k biggest loans of the first portfolio
is greater or equal to the size of the k biggest loans in the second portfolio for
1 ≤ k ≤ n, then the same inequality must hold between the measures of concen-
tration in the two portfolios.
Let s = (s1,s2, . . . ,sn) and s∗ = (s∗1,s

∗
2, . . . ,s

∗
n) be two portfolios with n loans. If

n

∑
i=k

s∗(i) ≥
n

∑
i=k

s(i) for all k = 1, . . . ,n, then C(s) ≤C(s∗).

4. Superadditivity If two (or more) loans are merged, the measure of concentration
must not decrease.
Let s = (s1, . . . ,si, . . . ,s j, . . . ,sn) be a portfolio of n loans, and
s∗ = (s1, . . . ,si−1,si+1, . . . ,s j−1,sm,s j+1, . . . ,sn) a portfolio of n− 1 loans such
that sm = si + s j. Then Cn(s) ≤Cn−1(s∗).

5. Independence of loan quantity Consider a portfolio consisting of loans of equal
size. The measure of concentration must not increase with an increase in the
number of loans.
Let se,n = (1/n, . . . ,1/n) and se,m = (1/m, . . . ,1/m) be two portfolios with equal-
size loans and n ≥ m, then Cn(se,n) ≤Cm(se,m).
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6. Irrelevance of small exposures Granting an additional loan of a relatively low
amount must not increase the concentration measure. More formally, if s′ de-
notes a share of a loan and a new loan with a share s̃ ≤ s′ is granted, then the
concentration measure must not increase.
Let s = (s1,s2 . . . ,sn) be a portfolio of n loans with total exposure T . Then, there
exists a share s′ such that for all s̃ = x̃/(T + x̃) ≤ s′ the portfolio of n + 1 loans
s∗ = (s∗1,s

∗
2, . . . ,s

∗
n+1) with shares

s∗i =
{

xi/(T + x̃) i = 1,2, . . . ,n
x̃/(T + x̃) i = n+1

is considered. It holds that C(s) ≥C(s∗).
A few remarks on the aforementioned properties can be useful. The first three

properties have been proposed for the concentration of income distribution. In the
first three properties the number n of loans of the portfolio is fixed, while in the others
n changes. This means that the properties 4, 5 and 6 point out the influence of the
number of the loans on the concentration measure. The principle of transfers and the
Lorenz-criterion have been proposed at the beginning of the last century: the former
has been introduced by Pigou [16] and Dalton [5], the latter is related to the Lorenz
curve proposed by Lorenz (see [14]). The property 4 can be applied more than one
time by setting up the merge of three or more loans. Finally, the properties 4 and 5
have been suggested in the field of the industrial concentration where the issue of
monopoly is very important.

Theorem 1 (Link among the properties) If a concentration measure satisfies the
properties 1 and 6, then it satisfies all the aforementioned six properties.

Proof The outline of the proof is the following. It can be proved that a concentration
index satisfying property 1 fulfills also properties 2 and 3. Further, if a concentra-
tion measure satisfies the properties 1 and 6, then it meets the property 4. Finally,
properties 2 and 4 imply the property 5.

1. Property 1 ⇒ property 3 and property 2
A detailed proof can be found in [8].

2. Properties 1 and 6 ⇒ property 4
Let s = (s1, . . . ,si, . . . ,s j, . . . ,sn) be a portfolio of n loans, and
s∗ =(s1, . . . ,si−1,si+1, . . . ,s j−1,sm,s j+1, . . . ,sn) a portfolio obtained by the merge
sm = si + s j. Let s1 = (s1, . . . ,si−1,0,si+1, . . . ,s j−1,sm,s j+1, . . . ,sn) be the port-
folio obtained from s∗ by the adding of a null share. Since the property 6 holds,
then Cn(s1)≤Cn−1(s∗). Now, if the property 1 is satisfied then also property 3 is
satisfied (see the previous point 1.). From the comparison of s with s1, through the
property 3 it results that Cn(s)≤Cn(s1). The conclusion is that Cn(s)≤Cn(s1)≤
Cn−1(s∗), and therefore the property 4 is true.

3. Properties 2 and 4 ⇒ property 5
Since the property 2 is satisfied, Cn+1(1/n, . . . ,1/n,0) ≥Cn+1(1/(n+1), . . . ,1/
(n+1)). After a merge, by property 4, it follows that
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Cn(1/n, . . . ,1/n) ≥Cn+1(1/n, . . . ,1/n,0), and therefore
Cn(1/n, . . . ,1/n) ≥ Cn+1(1/(n + 1), . . . ,1/(n + 1)). This means that Cn(se,n) ≥
Cn+1(se,n+1). By iteration, the property 5 holds true.

3 Hannah–Kay Index

For industrial concentration Hannah and Kay [10] have proposed the following index
(HK)

HK =

(
n

∑
i=1

sαi

) 1
1−α

with α > 0 and α 	= 1.

The HK index is inversely proportional to the level of concentration: if the concentra-
tion increases, the HK index decreases. For this reason in this paper, the Reciprocal
of Hannah-Kay (RHK) index is considered:

RHK =

(
n

∑
i=1

sαi

) 1
α−1

α > 0 and α 	= 1, (2)

so that the RHK index is proportional to the level of concentration. From a statistical
point of view, the RHK index can be considered as a powered weighted mean

RHK =

(
n

∑
i=1

sα−1
i si

) 1
α−1

α > 0 and α 	= 1

with exponent α−1 and weights si.
For a portfolio with equal-size loans the RHK index is

RHK =

[
n

∑
i=1

(
1
n

)α] 1
α−1

=
1
n
.

If the portfolio consists of only one non-null share, the RHK index is equal to 1.
The role of the elasticity parameter α is to decide how much weight to attach to the
upper portion of the distribution relative to the lower. High α gives greater weight
to the role of the highest credit exposures in the distribution and low α emphasizes
the presence or the absence of the small exposures.

Theorem 2 The RHK index satisfies all the six properties considered in Sect. 2.

Proof From Theorem 1 if the properties 1 and 6 are satisfied, all the six properties
of a concentration measure are satisfied.
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Property 1
Let s and s∗ be two portfolios that satisfy the condition (1). The following difference
is computed:

f (h) = RHK(s∗)−RHK(s) =

(
∑

k 	=i, j

sαk +(s j +h)α +(s j −h)α
) 1

α−1

−(
∑sαk

) 1
α−1 .

The function f is continuous for h > 0 and lim
h→0

f (h) = 0. The derivative of f (h) is

∂ f (h)
∂h

=
α

α−1

(
∑

k 	=i, j

sαk +(s j +h)α +(s j −h)α
) 2−α

α−1 [
(s j +h)α−1 − (si −h)α−1] .

(3)
In order to determine the sign of this derivative, two cases are considered:

1. 0 < α < 1
In Eq. (3) the first and the third factors of the product are negative and the second
factor is positive, hence the derivative is positive.

2. α ≥ 1
In Eq. (3) all the factors are positive, hence the derivative is positive.

It follows that the function f is increasing, hence RHK(s∗) > RHK(s).
Property 6
Let s and s∗ be two portfolios that satisfy the conditions given in the property 6. The
following difference is computed:

g(x̃) = RHK(s∗)−RHK(s) =

[
n

∑
i=1

(
xi

T + x̃

)α
+
(

x̃
T + x̃

)α] 1
α−1

−
[

n

∑
i=1

sαi

] 1
α−1

.

The function g(x̃) is continuous for x̃ > 0 and lim
x̃→0

g(x̃) = 0, so the entry of a new loan

with insignificant exposure x̃ in the portfolio has insignificant impact on the RHK
index.

The derivative of g(x̃) is computed by obtaining

∂g(x̃)
∂ x̃

=
α

α−1

[
n

∑
i=1

(
xi

T + x̃

)α
+

x̃
T + x̃

α
] 2−α
α−1 x̃α−1

Tα−1 − ∑xαi
Tα

(T + x̃)α+1 . (4)

Set Eq. (4) equal to zero, the value s̃ that does not change the concentration level
coincides with the superior limit s′ described in property 6:

s′ =

[
n

∑
i=1

sαi

] 1
α−1

= RHK.
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In order to determine the sign of the derivative (4) for s̃ < s′, the three factors in Eq.
(4) are analysed. The second factor is positive and the signs of the remaining factors
depend on the value of α :

1. 0 < α < 1
In the Eq. (4) the first factor of the product is negative and the third factor is
positive, hence the derivative is negative.

2. α > 1
In the Eq. (4) the first factor is positive and the third factor is negative, hence the
derivative is negative.

This means that by introducing a new loan with share s̃ lower than the RHK index,
the RHK slightly decreases. On the contrary, if a new loan has a share s̃ higher than
the RHK index, the effect of the new loan in reducing the share of the existing large
exposures is offset to some extent by the fact that its exposure is large.

The next index represents a particular case of the RHK index for a given value of
the elasticity parameter α .

3.1 Herfindahl–Hirschman Index

By considering α = 2, the RHK index (2) becomes

HH =
n

∑
i=1

s2
i

the Herfindahl–Hirschman index (HH) proposed by Herfindahl [11] as an industrial
concentration index, whose root has been proposed by Hirschman [12, 13]. For this
reason, this index is known as Herfindahl–Hirschman index. It is defined as the sum
of squared portfolio shares of all borrowers.

By considering the square of the portfolio share si in the HH index, small expo-
sures affect the level of concentration less than a proportional relationship.
The main advantage of the HH index is that it satisfies all the six properties of an
index of credit concentration, because it is a particular case of the RHK index. The
HH index can be misleading as a risk measure because it does not consider the bor-
rower’s credit quality. An exposure to a Aaa-rated borrower, for example, is treated
in the same way as an exposure to a B-rated borrower. This limitation is addressed
by the granularity adjustment.

3.2 Granularity Adjustment

A granularity adjustment that incorporates name concentration in the Internal Rat-
ing model was already included in the Second Consultative Paper of Basel II [2]
and was later significantly refined by the work of Gordy and Lutkebohmert [7]. It
arises basically because the credit risk model of Basel II International Rating-Based
(IRB) approach assumes that the bank’s portfolios are perfectly fine-grained, mean-
ing that each loan accounts only for a very small share of the total exposure. Real
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bank portfolios are, of course, not perfectly fine-grained, therefore an adjustment to
the economical capital is needed.

Gordy and Lutkebohmert developed the following simplified formula for an add-
on to the capital for unexpected loss in a single-factor model [7]

GAn =
1

2K∗
n

n

∑
i=1

s2
i LGDi[δ (Ki +LGDiPDi)−Ki] (5)

where Ki denotes the unexpected loss for the i-th exposure and it is defined as the
difference between the Value-at-Risk (VaR) and the expected loss, LGDi the ex-
pected Loss Given Default, PDi the probability of default, K∗

n = ∑n
i=1 siKi and δ is

a constant parameter 1.
From Eq. (5) it follows immediately that the granularity adjustment is linear in

the HH index if the portfolio is homogeneous in terms of PD and LGD. In such case
the granularity adjustment (5) measures only the single-name concentration risk, and
it becomes a function of the HH index. For this reason, in the following section the
granularity adjustment is taken into account through the analysis of the HH index.

4 Numerical Applications

In this section six portfolios of loans are considered and some RHK indices with
different α are calculated on them.

For the construction of the most concentrated portfolio, the large exposure limits
of the Bank of Italy [1] is considered. In this analysis the total exposure T of this
portfolio is 1,000 euros. Therefore, the minimum regulatory capital charge of 8%
is 80 euros and this is considered the capital requirement of the bank. The Bank of
Italy establishes that an exposure is defined as large if it amounts to 10% or more
of the bank’s regulatory capital, in this case an exposure is large if it is greater than
or equal to 8 euros. According to the Bank of Italy’s regulation, a large exposure
must not exceed 25% of the regulatory capital, in this case 20 euros. The sum of all
large exposures is limited to eight times the regulatory capital, which corresponds to
640 euros in this case. By considering this regulation, the portfolio with the highest
concentration risk P1 consists of 32 exposures equal to 20 euros, 51 equal to 7 euros
and one equal to 3 euros. Hence, the total exposure of the portfolio P1 is 1,000 euros
and its number of loans is 84.

In order to obtain the portfolio P2, each exposure of 20 euros in the portfolio P2
is divided into two exposures of 10 euros. It follows that the total exposure of the
portfolio P2 remains constant (T = 1,000) and the number of the loans of the port-
folio increases (n = 116). Moreover, the portfolio P3 is obtained from the portfolio
P2 by merging two exposures of 10 euros in one of 20 euros. From the portfolio P3,
by neglecting the exposure of 20 euros the portfolio P4 is defined. Finally, the last

1 The constant δ depends on the VaR confidence level and also on the variance of the systematic
factor. Gordy and Lutkebohmert (2007) suggest a value of 5 as a meaningful and parsimonious
number.
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two portfolios are obtained by introducing in P4 a medium exposure of 7 euros for
the portfolio P5 and a low exposure of 3 euros for the portfolio P6. It is important
to highlight that both the total exposure T and the number of loans n can change in
these six portfolios.

The portfolios therefore are:
P1: 20 . . .20︸ ︷︷ ︸

32

7 . . .7︸ ︷︷ ︸
51

3 T = 1,000 n = 84

P2: 10 . . .10︸ ︷︷ ︸
64

7 . . .7︸ ︷︷ ︸
51

3 T = 1,000 n = 116

P3: 20 10 . . .10︸ ︷︷ ︸
62

7 . . .7︸ ︷︷ ︸
51

3 T = 1,000 n = 115

P4: 10 . . .10︸ ︷︷ ︸
62

7 . . .7︸ ︷︷ ︸
51

3 T = 980 n = 114

P5: 10 . . .10︸ ︷︷ ︸
62

7 . . .7︸ ︷︷ ︸
52

3 T = 987 n = 115

P6: 10 . . .10︸ ︷︷ ︸
62

7 . . .7︸ ︷︷ ︸
51

3 3 T = 983 n = 115

Table 1 summarizes the values of nine RHK indices for the six portfolios. Each
RHK index corresponds to a given parameter α , ranging from 0.1 to 10. The value
α = 2 denotes the HH index.

We highlight that it is not easy to give a direct interpretation of the values of the
RHK index in Table 1. Instead, banking managers or central bank supervisors can
use this index for ranking portfolios on the basis of their single-name concentration
risk.

Under this consideration, the first result is that, as aspected, all the indices take
the highest value in P1, which is the portfolio as concentrated as possible. The com-
parisons between the portfolios P1 and P2 and the portfolios P2 and P3 fall in the
subadditivity property 4. Since the portfolio P5 is obtained by adding a medium ex-
posure to the portfolio P4, all the indices point out a reduction of the single-name
concentration: this means that the effect of increasing the number of loans dominates
the effect of introducing a medium exposure. The same outcome derives from the
comparison of the portfolios P4 and P6, which is obtained from P4 by adding a small
exposure. Furthermore, in this case it is worth to note that the difference between the
concentration levels decreases as α increases.

Table 1 The values of the concentration indices are computed for the six portfolios and mul-
tiplied by 1000

α = 0.1 α = 0.5 α = 0.99 α = 1.01 α = 2 α = 3 α = 4 α = 5 α = 10

P1 12.07 12.77 13.65 13.84 15.31 16.54 17.18 17.93 19.07
P2 8.64 8.69 8.78 8.79 8.91 9.03 9.14 9.23 9.54
P3 8.72 8.79 8.89 8.92 9.11 9.35 9.67 10.07 13.04
P4 8.79 8.85 8.93 8.94 9.07 9.19 9.31 9.4 9.72
P5 8.71 8.77 8.85 8.87 8.99 9.11 9.25 9.32 9.65
P6 8.71 8.78 8.87 8.89 9.02 9.15 9.27 9.36 9.69
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All the indices agree that the concentration risk decreases from P4 to P2. It follows
that the impact of the increase of the number of loans in the portfolio is higher than
the impact of larger loans. So far, the orderings of the indices for all the considered
values of α are basically equivalent. An important difference arises by considering
the portfolios P3 and P4. The former can be obtained by adding a loan with a large
amount to the latter. The indices with α greater or equal to 2 show an increase of the
single-name concentration, the others a decrease. This result can be explained since
high values of α give greater weight to large exposures, while low values of α give
more importance to the small ones.

As final remark, the numerical application shows that a suitable elasticity pa-
rameter α for RHK index is a value slightly higher than 2, in order to stress the
impact of large loans.
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Abstract In modern option pricing theory many attempts have been accomplished
in order to release some of the traditional assumptions of the Black and Scholes [5]
model. Distinguished in this field are models allowing for stochastic interest rates,
as suggested for the first time by Merton [20]. Afterwards, many stochastic interest
rate models to evaluate the price of hybrid securities have been proposed in litera-
ture. Most of these are equilibrium pricing models whose parameters are estimated
by means of statistical procedure, requiring a considerable computational burden.
The recent financial crisis and the resulting instability of relevant time series may
sensibly reduce the reliability of estimated parameters necessary to such models and,
consequently, the calibration of the models. In this paper we discuss an original nu-
merical procedure that can efficiently be adopted to the aim of pricing and the ques-
tion of the correlation contribution in pricing framework. The procedure accounts
for two sources of risk (the stock price and the spot interest rate) and, by means of
an empirical evaluation tries to asses the relative contribution of the correlation com-
ponent. The final target is to evaluate the “optimal” computation burden in pricing
framework, given scarce dataset We show that the procedure proposed is a valu-
able compromise between computational burden and calibration efficiency, mainly
because it overcomes difficulties and arbitrary choices in the estimation of the pa-
rameters.
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1 Introduction

In recent option pricing theory, many attempts have been carried out in order to re-
lease the assumption, typical of the Black and Scholes [5] model, of constant interest
rate and, more specifically, to develop a pricing framework allowing for stochastic
interest rates dynamics. Starting from the seminal paper by Merton [20], where the
Gaussian process was adopted to describe the continuous-time short rate dynamics,
several models for stock option pricing under stochastic interest rates have been pro-
posed. Within this field, distinguished contributions are due to Ho and Lee [16], Ra-
binovitch [23], Miltersen and Schwartz [21], where the Gaussian process is adopted
to describe the continuous-time short rate dynamics. Moreover, Amin and Jarrow
[1], generalize the pricing framework proposed by Heat, Jarrow and Morton [15],
by adding an arbitrary number of additional risky asset to their stochastic interest
rate economy. Finally, Scott [24] and Kim and Kunimoto [18] proposed option pric-
ing models where the short interest rate dynamics is described according to the Cox,
Ingersoll and Ross (CIR) [10] model.

The success of the Gaussian specification of the term structure dynamics relies on
the mathematical tractability and thus on the possibility of obtaining closed formu-
las and solutions for the price of stock and bond options, while the main drawbacks
are related to the possibility for the interest rate trajectories to assume negative val-
ues. Moreover, if on the one hand the square root mean reverting process of the CIR
model allows contemporaneously to prevent from negative interest rates and to pre-
serve the mathematical tractability, on the other it is in general not able to ensure an
acceptable fitting of the model prices to the observed market prices.

In an attempt to mitigate the above mentioned calibration drawbacks, an inno-
vative two-factors numerical procedure is proposed to the aim of pricing different
kind of financial contracts, such as stock option [7], participating policies [9] and
convertible bonds [8]. In particular, this pricing framework assumes that the stock
price dynamics is described according to the Cox, Ross and Rubinstein [11] bino-
mial model (CRR) under a stochastic risk free rate, whose dynamics evolves over
time accordingly to the Black, Derman and Toy [4] one-factor model (BDT). The
BDT model avoids some drawbacks that typically affect equilibrium models of the
term structure and offers, at the same time, an efficient calibration of the risk factor
trajectories to the observed market prices.

In this article we discuss some issues related to the implementation and calibration
of such a two factors numerical procedure. In particular, we discuss how it can be
possible to calibrate the dynamics of each risk factor to the observed market prices.
We also offer different possible ways for calibrating the correlation parameters. The
main idea is that, as for the volatility of each risk factor, also the correlation can be
such that the model can efficiently reproduce the observed market prices of the se-
curities adopted as benchmark for the calibration. We then discuss how it is possible
to determine an implied correlation coefficient from the observed market prices of
stock options, showing whether and to what extent, such correlation measure can
predict the future realized correlation.
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The paper is organized as follows. Section 2 sketches the mechanics two-factor
numerical procedure and how to apply it for pricing a stock option. Section 3 pro-
poses some ways to calibrate the model, discussing in particular the opportunity
of choosing a value for the correlation such that the observed option prices can
efficiently be reproduced. Section 4 reports data and methodology adopted to test
whether and to what extent the implied correlation can help to predict the future
values of the realized correlation. Section 5 summarizes main results and Sect. 6
concludes the paper with final remarks.

2 The Two-Factors Numerical Procedure

In this section, we explain how to determine the arbitrage free price of an American
stock option by means of a numerical procedure that accounts for two sources of risk:
the stock price and the interest rate. In doing this, an important aspect to take into ac-
count is that the risk free rate dynamics influences the price of an equity derivative in
two ways. First, the path followed by the interest rate can influence the discount fac-
tor adopted to determine the present value of the payoff of the derivative. Secondly,
under the risk neutral probability measure, the expected stock (and derivative) price
depends on the risk free rate level. Therefore, as the interest rate changes, both the fi-
nal payoff and the discount factor change too while, on the contrary, we assume that
the stock price dynamics do not influence the interest rate values. For this reason, the
stock price dynamics cannot be specified until the interest rate is known. We assume
that the interest rate considered as risk factor is the spot interbank offered rate, such
as the m-month Libor or Euribor rate, and that its dynamics is described according to
the BDT binomial model. More specifically, we assume that the m-month Libor rate
at time t j in the state of the world j = u,d,L(ti, ti+1) j - with δ = ti+1 − ti represent-
ing the tenor of the Libor rate expressed as fraction of year according to the market
conventions - the successive time step can go up to L(ti+1, ti+2) ju = L(ti, ti+1) juL

or down L(ti+1, ti+2) jd = L(ti, ti+1) jdL with equal risk neutral marginal probability,
where uL = exp(σL,δ ), dL = exp(−σL,δ ) and σL is the yearly volatility of the Libor
rate that, for simplicity, is set constant over time. This means that the interest rate is
piecewise constant over time so that, once the Libor rate is known, it can be adopted
as risk free rate to determine the probability of the up movement of the stock price at
the successive time step and the corresponding discount factor. Notice also that, at
time t0 the Libor rate L(t0, t1) is not a random variable and is equal to the observed
fixing. The second risk factor is the stock price and we assume that it evolves over
time according to the CRR model. Assuming for simplicity that the time interval
between two observations of the stock price (and of the interest rate) is equal to the
tenor of the Libor rate δ , the risk neutral marginal probability of an up movement
of the stock price between time ti and time ti+1, given the Libor rate at time ti, p j

t is
equal to

p j
t =

Bt −ds

us −ds
(1)
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where Bt = 1+L(ti, ti+1) jδ ,uS = exp(σS,δ ), dS = exp(−σS,δ ) and σS is the yearly
stock price volatility and, for simplicity, it is assumed to be constant over time. This
implies that, at each time step, the up probability changes according to the changes
of the Libor rate. However, to compute the probability associated to each couple of
possible levels of stock price and interest rate, we need to specify the joint probabil-
ity distribution function of the two risk factors. A naïve way to do this, very common
especially in the practice of pricing convertible bonds (see for instance [17]), is by
assuming that stock return and interest rate are independent, so that the joint prob-
ability is equal to the product of the marginal probabilities. However, considering
the significant evidence of a negative correlation between the return on stocks and
bonds (see among others [14]), the assumption of zero correlation cannot in general
be satisfactory. Such a restrictive assumption can be released by redistributing in a
different way the joint probabilities calculated in the case of independence among
the possible states of the world. For instance, if we want to set a perfectly negative
correlation, it is sufficient to equally distribute the probabilities, calculated in the
case of independence, of contemporaneous up and down movements of both stock
price and interest rate to the other two states of the world, according to Fig. 1.

In general, at each time t, to set a correlation equal to ρt , with ρt < 0, it will be
sufficient to equally redistribute to the other two states of the world a percentage ρt

of the probabilities of contemporaneous up and down movements of interest rate and
stock price. On the contrary, to set a correlation equal to ρt , with ρt > 0, it will be
necessary to equally redistribute to the other two states of the world a percentage ρt

of the probability of opposite up and down movements (i.e. rate goes up/stock goes
down and vice versa), of the two risk factors. Figure 2 shows an example of the tree
representing the joint dynamics of the Libor rate and of the stock price.

To the aim of pricing of a stock option, it is necessary to calculate the terminal
payoff of the option and then roll back the tree till time t0. The terminal nodes are
intuitive. Take node E, I and J as an example. The value of the stock option at node E,

Fig. 1 Perfectly negative correlation between stock price S and Libor rate L(t,T )
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Fig. 2 Example of the joint dynamics of the stock price S and Libor rate L(t,T )

ξE , is therefore the present value1, calculated at the rate L(t2, t3)uu, of the weighted
average of the payoff of the call at nodes I and J using as weights the probabilities
puu

t+2 and 1− puu
t+2 respectively. It is worth noting that at nodes I and K the stock price

is the same, being equal to Su3
S, and thus, the payoff of the call option is (Su3

S −X)+,
where X is the strike price. The difference between the two cases is in the discount
rate that, at node I is equal to L(t2, t3)uu while at node K is equal to L(t2, t3)ud . Once
the payoffs of the call at node E, F, G and H are calculated, we can use the joint
probability function to determine the price of the call at node A, ξA. Such value is
therefore equal to

ξA =
ξE0.5(p∗t +0.5ρt)

1+L(t1, t2)uδ
+
ξF 0.5p∗t (1−ρt)
1+L(t1, t2)dδ

+
ξG(1− p∗t )0.5(1−ρt)

1+L(t1, t2)uδ

+
ξH0.5(1− p∗t +0.5ρt)

1+L(t1, t2)dδ
.

Similarly, it is possible to determine the time t0 value of the stock option by rolling
back the tree.

1 Notice that computing the present value of the average is possible only at the terminal nodes. In
all the other cases, it is necessary to compute the average only after the present value is calculated.
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3 Calibrating the Model

The adoption of the BDT and of the CRR models respectively for interest rate and
stock price modeling facilitates the calibration of the tree, being most of the re-
quired input data directly observable on the financial markets. The only parameter
that needs to be estimated is the correlation between Libor rate and stock price. To
this aim, four different measures of correlation are concerned: i) historical correla-
tion; ii) exponentially-weighted moving average (EWMA) correlation; iii) correla-
tion forecasted by means of a bivariate GARCH(1,1) and iv) implied correlation. The
first measure of correlation is the most simple and intuitive. The n-days correlation
between Libor rate and stock return at time t, ρhist

t,n , can be easily calculated, using
the past observations of the interbank offered rate and of the stock price. Notice that
this measure of correlation attributes an equal weight to each observation from t −n
to t. On the contrary the EWMA correlation, whose diffusion amongst practitioners
is mainly due to its application by RiskMetricsŹ, gives more weight to recent data
with respect to older data and, for this reason, it reacts faster to sudden changes of
the risk factors. The n-days EWMA correlation between Libor rate and stock return
at time t id denoted as ρEMWA

t,n with a decay factor set equal to .94. Following Lopez
and Walter [19], the third measure of correlation considered here is the forecast ob-
tained by means of a bivariate GARCH(1,1), in the diagonal VECH specification
proposed by Bollerslev et al. [6]. This means that the forecasts of the daily vari-
ance/covariance are obtained by means of the GARCH parameters estimated using
256 observations prior of the day t. Finally, the n-days correlation forecast at time t
is denoted as ρGARCH

t,n . The major drawbacks related to the measures of correlation
proposed above are that: i) they are "exogenous" to the model, meaning that the cor-
relation is estimated regardless the mechanics of the model itself and thus, their use
do not assure that the model can reproduce the observed prices of financial securities
(e.g. of the options); ii) the correlation is always estimated using past data that, if the
markets are efficient enough (see [13]), cannot significantly improve the informa-
tion set contained in the current prices. For this reason, we propose a different way
to calibrate the correlation, based only on the current market prices and volatilities of
the risk factors. As a matter of fact, the BDT model can be efficiently calibrated by
using the implied volatilities from caps, floors and swap options market obtained by
means of the Black [3] formula (see [12]). At the same time, the CRR model can ef-
ficiently be calibrated by means of the implied volatility from stock option markets,
calculated by mean of the Black and Sholes formula. Therefore, the price at time t
of a stock option (e.g. an American call), calculated using the numerical procedure
explained in Sect. 2, can be represented as a function of the current values of the
stock price, of the Libor rate, of the corresponding volatilities and of the correlation
parameter. Assuming for simplicity that the correlation and the volatility of both the
interest rate and the stock price are constant over time, we can set the market price
of a call option at time t, ξM

t , equal to the price ξNP
t of the same call calculated by

means of the numerical procedure depicted in Sect. 2:

ξM
t = ξNP

t (St ,L(t,Tk),σBLS
S,t,n,σ

BLK
δL,t,n,ρ

I
t,n |X ,n,yt) (2)
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Fig. 3 Differences between NP and BAW price in percentage of the BAW price

where n = Tk−t is the time to maturity of the option;σBLS
S,t,n andσBLK

δL,t,n are respectively
the yearly volatilities of the stock price and Libor rate at time t, calculated by means
of the Black and Scholes and of the Black formulas with reference to options having
a time to maturity equal to n; yt is the dividend yield of the stock at time t and
rhoI

t,n is the n-days implied correlation measure that can be computed by using an
appropriate algorithm of calculus. We therefore define as implied correlation that
value of rhoI

t,n that equals (at least approximately) the observed market price of a
stock option (i.e. an American call) to its theoretical price as represented by the
right-hand side of Eq. 2. Figure 3 reports the absolute value of differences, over the
period 03/01/2011 - 30/12/2011, between the daily price of a 1 year constant maturity
ATM call option calculated by means of the numerical procedure (NP price) using
each of the above mentioned correlation measures, and the price of the same option
calculated by using the the Barone Adesi and Whaley (1987) formula (BAW price).
The difference is expressed as percentage of the BAW price that is one of the most
used formulas for pricing American Options. As underlying, we select a security
listed on the Italian stock market (Intesa San Paolo) while as risk free rate we use
the 12 month Euribor rate. The time series of prices, rates and their volatilities are
provided by BloombergTM.

We notice that the best performance is due to the implied correlation, since only
occasionally the price difference is higher than 0.05%. Moreover, we notice that also
the other correlation measures allow for an appreciable fitting of the NP price to the
BAW price and thus to the observed market prices, being the difference between
them never higher than 7.7%. If we consider that the price of the option ranges from
0.2 to 0.3 Euros, it means that the maximum absolute difference between NP price
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and BAW price ranges from 1.54 cents to 2.31 cents. There are two main drawbacks
related to the estimation of the proposed measure of implied correlation: i) the ab-
sence of a closed formula imply the necessity to state an algorithm of calculus to
find the value of rhoI

t,n allowing equation 2 to hold. The higher the precision of the
calculus algorithm the higher the computational burden of computing the correla-
tion parameter; ii) as for the volatility of the interest rate, it should be necessary to
specify a term structure also for the implied correlation. To simplify the calibration
procedure, we set the hypothesis that the correlation is constant over time even if it
can be remarked that this is not exactly the case. As a matter of fact, the longer the
observation period, the less variable is the correlation and it cannot be excluded that
the sign of the correlation may differ as the observation period changes. Moreover,
the issue that we are interesting to address is whether and to what extent, the implied
correlation estimated by using equation 2 can help to predict the future values of the
correlation between interest rate and risk.

4 Testing the Predictive Accuracy

We compute the 60-days correlation between the stock price of an Italian listed bank
and the 3-month Euribor rate using the four measures of correlation depicted in the
previous section (historical, EWMA with a decay factor set equal to 0.94, GARCH
based correlation and implied correlation) from 01/01/2011 to 31/12/2011, for a total
of 257 observations. All data are provided by Bloomberg TM database. The implied
correlation is estimated with reference to a hypothetical constant maturity ATM 3
month call option, written on a security listed on the Italian stock market, calculated
by means of the Black and Scholes (1973) formula. To this aim, we use the 3 month
implied volatility provided by BloombergTM and, as risk free rate, the 3 month
Euribor rate.

Figure 4 shows the comparison of each correlation forecast with the realized cor-
relation. The evidence of positive correlation, for most of the observation period, be-
tween the 3 month Euribor and the stock price is consistent with the findings of Flan-
nery and James (1984), given the inverse relation between bond prices and interest
rates. Moreover, we notice that, the implied correlation is much more volatile with
respect to the other measures, meaning that such correlation reacts faster to sudden
changes of the quotations. However, if we look at the predictive accuracy, the most
affordable measure seems to be the one estimated via multivariate GARCH(1,1).
To test the predictive accuracy of the four types of correlation, we follow [19] and
use three different methods: i) analysis of the forecast error; ii) partial optimality
regression; iii) encompassing regression. The first method consists in analysing the
correlation error (η j

t,n), defined as the difference between the particular measure of

n-days correlation forecast ρ j
t,n , and the realized n-days correlation rhoREAL

t,n that is

η j
t,n = rho j

t,n − rhoREAL
t,n . After η j

t,n is calculated, we regress it on a constant. If the
estimated constant is significantly different from zero, the correlation j is said to
be a biased forecast of the realized correlation. The second method, partial optimal-
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Fig. 4 Comparison between four measures of correlation and the realized correlation

ity regression consists in estimating, for each measure of correlation, the regression
rhoREAL

t,n = a0 + a1ρ j
t,n + et . If the coefficients a0 and a1 are not significantly dif-

ferent from 0 and 1 respectively, the correlation measure j is said to be a partial
optimal forecast of the realized correlation. Finally, the third method, encompass-
ing regression, consists in estimating, for each measure of correlation, the equation
rhoREAL

t,n = b0 +∑m
j=1 b jρ j

t,n + et . Take m = 2 as an example. If b0, b1 and b2 are
not significantly different from 0, 1 and 0 respectively, than the correlation mea-
sure j = 2 encompasses the correlation measure j = 1, meaning that the information
set included in the estimation of the former encompasses that included in the esti-
mation of the latter.The table shows the regression coefficients, estimated by using
the Newey and West (1987) standard errors, from the analysis of the forecast error
(Method 1), the partial optimality regression (Method 2) and the encompass regres-
sion (Method 3). Standard deviation are in parentheses.

5 Results

The following able reports the regression coefficients for the tree type of tests. In per-
forming the regressions, we use the Newey and West [22] standard errors to account
for potential heteroskedasticity and autocorrelation.

The results seem to confirm the intuition behind the analysis of Fig. 4. If we look at
the first column of table (Method 1), we notice that none of the correlation measures
is said to be a biased forecast, even if only the EWMA and the GARCH correlation
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Table 1 Regression Results

Method1 Method2 Method3

Intercept — 0.0087 0.0041 –0.0012 –0.2163∗ 0.0001
(0.0126) (0.0048) (0.0008) (0.549) (0.0001)

IMPLIED –0.0022 0.5336∗∗ –0.0006
(0.0227) (0.0519) (0.0006)

EWMA 0.0043 0.9490∗∗∗ –0.1910
(0.0040) (0.0162) (0.0022)

GARCH 0.0007 1.0033∗∗∗ 1.1903∗∗
(0.0006) (0.0030) (0.0023)

HIST 0.0263 0.2016∗∗ 0.0015
(0.0209) (0.0175) (0.0004)

∗ the intercept is significantly different from zero at the 1% level.
∗∗ a0 is significantly different from 1 at the 1% level.
∗∗∗ the Wald test for the joint hypotheses that b0 = 0 and b1 = 1 cannot be rejected at the 1%.

are partially optimal. In fact, the coefficients a0 and a1 associated to both these mea-
sures of correlation are not significantly different from 0 and 1 respectively, while
the coefficient a1 associated to the implied and to the historical volatility measures
is significantly different from 1 at 1% level. Moreover, the Wald test for the joint
hypotheses that the coefficients a0 and a1 are equal to 0 and 1 respectively, can be
rejected at the 1% level only for the GARCH and for the EWMA correlations. Fi-
nally, from the last column of table we notice that the coefficients associated to the
correlation measures are not significantly different from 0, except for that associ-
ated to the GARCH correlation that is greater than 1. This evidence suggests that the
GARCH measure of correlation encompasses all the other measures.

6 Conclusions

In this article we discuss an original numerical procedure that can efficiently be
adopted to the aim of pricing hybrid securities. The procedure accounts for two
sources of risk (the stock price and the spot interest rate) and, by means of an em-
pirical evaluation we try to assess the relative contribution of the correlation com-
ponent. To this aim, four correlation measures are concerned, namely, historical,
exponentially weighted moving average correlation, a bivariate GARCH forecasted
correlation and implied correlation obtained from the stock option prices. We show
that the best pricing performances are associated to the implied correlation measure,
even if also the adoption of the other correlation measures allows to obtain prices
that are reasonably close to the observed market prices. However, the main draw-
back in computing the implied correlation from the bi-factorial procedure is related
to its low predictive accuracy. Compared to other correlation measures (especially
GARCH correlation), implied correlation cannot be considered an affordable fore-
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cast of the future realized correlation. However, the appreciable pricing performance
and the lack evidence supporting the idea that implied correlation is a biased forecast
of the realized correlation suggest that the numerical procedure we propose offers
a reasonable compromise between computational burden and calibration efficiency.
This is the case also because the necessary parameters are directly observable from
the financial markets.
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Dynamic Strategies for Defined Benefit Pension
Plans Risk Management

Ilaria Colivicchi, Gabriella Piscopo and Emanuele Vannucci

Abstract In the context of the decumulation phase of a defined benefit pension
scheme, the aim of this paper is to describe the management of a pension provider
which has to minimize a default probability and to maximize the expected surplus.
Its management strategy is based on the possibility of change the risk level (i.e. the
volatility of random returns) of the investment at an optimum time.

1 Introduction

This paper focuses on the risk assessment concerning the payment of a fixed rate life
retirement annuity, coming from a pension scheme decumulation phase, in which
the pension provider invests the residual amount after the payments of each annu-
ity rate. The risk suffered by pension provider comes out from the uncertainty of
both stochastic financial returns of the investment of the residual amount (financial
risk) and of the pensioners’ future lifetimes (longevity risk). There are many papers
which have dealt with the financial and longevity risks in the decumulation phase of
defined contribution pension schemes (see Albrecht and Mauer [1], Blake et al. [4],
Gerrard et al. [8], Gerrard et al. [9], Milevsky and Young [12]), while with this paper
we would underline the kind of risk suffered by those who have an obligation to pay
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a fixed rate annuity. There are two opposing requirements in setting the constant rate
of the life retirement annuity: on one hand the interest of the pensioner to have the
highest possible rate given the initial invested amount; on the other hand the interest
of the pension provider, which has to manage the risk of having to use its own capital
in order to ensure the payment of the annuity. If the death of the pensioner occurs
when the residual amount is still positive, there is a “gain” for the pension provider;
conversely, if the residual amount hits zero-level while the pensioner is still alive,
the pension provider has to release other own reserves to the payment of the pension
benefits. The pension provider has to manage the investment of the amount paid by
the pensioners to buy their pension plans, in order to minimize a “default probability”
and to maximize a “discounted expected surplus”. Its management strategy is based
on the possibility of change the risk level (i.e. the volatility of random returns) of the
investment at a certain time, that should be the optimum switching time. A previous
work of the same authors (see for instance [6]) has already matched the problem
of calculating the maximum constant rate of a retirement annuity, which allows the
pension provider to achieve a given “default probability”. This problem has been
studied both for a single pensioner and for groups of same aged and different aged
pensioners. From a practical point of view, we face this problem drawing inspira-
tion from the actuarial literature on Variable Annuities (VA) (see Bauer at al. [3],
Milevsky and Salisbury [11]). In particular, our original contribution lies in exploit
valuation models developed for Guaranteed Lifelong Withdrawal Benefit Option
embedded in VA’s (Bacinello et al. [2], Piscopo [13], Haberman and Piscopo [10])
and to adapt them to pension schemes. We develop the model in a stochastic demo-
graphic framework and we refer to Black-Scholes financial scenario. We will present
results inherent to the case of a single pensioner and for groups of same-aged pen-
sioners. Numerical results will be proposed via Monte Carlo simulations. The paper
is structured as follows. In Sect. 2 the demographic and financial scenario in which
the model operates is described and the valuation problem is defined. In Sect. 3 we
define the management strategy and an efficient way to compare different strategy at
a certain optimum time. In Sect. 4, we propose some numerical examples to give a
description of some sensitive analysis. The last section is devoted to some conclud-
ing remarks and to suggest possible future developments of the issue addressed.

2 The Model

Let N0 ≡ n0 be the deterministic number of x-aged pensioners at time 0 and Ni, for
i = 1,2, . . ., the random number of pensioners living at time i. Assuming H0 := h0 be
the sum that each pensioner pays to buy the life retirement annuity which provides a
guaranteed rate g and an annual defined benefit equal to G = gh0, withdrawing from
the fund. Let S0 := s0 = n0h0 the total amount initially invested by pension provider
and Si, for i = 1,2, . . ., be the random residual invested amount at time i. Let Ri ≡ R,
for i = 1,2, . . ., the random return in the interval (i−1, i]. So, considering G(i) =
gN(i) the amount withdrawed by the fund at date i, the evolution of the residual
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invested amount is defined by the following iterative equation, for i = 1,2, . . .

Si = Si−1(1+R)−Gi. (1)

The mechanism is like that of Guaranteed Lifelong Withdrawal Benefit Option
(GLWB) offered in Variable Annuity (VA) product. Our original contribution lies in
exploit valuation models developed for GLWB’s (Bacinello et al. [2], Piscopo [13],
Haberman and Piscopo [10]) and adapt them to pension schemes.

Following the recent contributions on VA valuation, the random return R is de-
scribed by a standard Brownian motion.

2.1 Default Probability and Surplus

Let observe that if the fund value resets to zero, the we have a sort of “default”
and the pension provider has to intervene with own reserves. Formally the event of
“default” occurs at time i if it holds

min i : Si ≤ 0 i.e.min i : Si−1 (1+R) < gNi. (2)

This default event implies that the residual invested amount is not sufficient to pay
the fixed life annuities rates to the living pensioners. We remark that in our previous
work (2011), the problem matched is the maximization of the guaranteed rate g,
given S0 and a fixed maximum level α for the probabylity of default P(d).

If the “default event” does not occur, then we have a positive discounted surplus,
U > 0, for the pension provider (which could consider to share it with the others).
If the “default event” occurs, then we have a negative discounted surplus, U < 0, by
the pension provider (which is to be covered with some kind of own reserves).

3 Management Strategy

The management strategy of the pension provider is based on the opportunity to
change the risk level of the investment, i.e. the volatility of random returns, at a
certain time.

Let define R the random return (characterized by the parameters μ and σ ) before
the potential switching time, and with Rm (μm and σm) and Rl (μl and σl) respec-
tively, the more and the less risky returns.

3.1 Management Strategy: Definition

We consider a switching strategy based on the theoretical values which may be ob-
tained both by random returns and by the demographic aspect from the starting point
to check date. In particular we consider to divide the results in 3 levels both for the
random returns and for the demographic aspect. For random return we consider 2 lev-
els for a generic date i = 0,1,2, . . ., R1,i and R2,i, such that for the random return from
date 0 to date i, Ri, we have
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1/3 = Prob.(Ri <= R1,i)
1/3 = Prob.(R1,i < Ri <= R2,i)
1/3 = Prob.(Ri > R2,i).

Let define

Ri <= R1,i event F3

R1,i < Ri <= R2,i event F2

Ri >= R2,i event F1.

For the demographic aspect we consider 2 levels for the number of survivors at a
generic date i = 0,1,2, . . ., N1,i and N2,i, such that we have

1/3 = Prob.(Ni <= N1,i)
1/3 = Prob.(N1,i < Ni <= N2,i)
1/3 = Prob.(Ni > N2,i).

Let define

Ni <= N1,i event D3

N1,i < Ni <= N2,i event D2

Ni >= N2,i event D1.

In other words, in a first step we have analysed separately the financial and demo-
graphic components, dividing both financial return distribution and the distribution
of the number of survivors in three bands, where in each band the 1/3 of the proba-
bility mass is collected.

Let consider that in order to obtain a positive surplus, it is better to have less
survivors, event D3, and higher return, event F1, and in the opposite case the worst
case is given by events D1 and F3. In the light of this consideration, we define a naive
management strategy based on the couple of events Di, Fj for i, j = 0,1,2,3 in the
following way:

• switch towards Rm if i+ j <= 3;
• keep R if i+ j = 4;
• switch towards Rl if i+ j > 4.

The idea is to check at a given checking date the financial and demographic structure
of the portfolio and switch towards a more risky strategy if the whole management
has produced good results, switch towards a more prudent strategy in the opposite
case, or finally do not switch in the middle case.
Let t be the checking time, the evolution of the fund will be:

Si = Si−1(1+R)−Gi f or i < t
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and for i ≥ t

Si = Si−1(1+Rm)−Gi if i+ j <= 3;
Si = Si−1(1+R)−Gi if i+ j = 4;
Si = Si−1(1+Rl)−Gi otherwise.

3.2 Management Strategy: Aim

We assume that the aim of the management strategy, i.e. the choice of optimum
check date, should be efficient in terms of a combination of default probability and
expected surplus.

We define that a potential switching time ti dominates another potential switching
time t j if it holds:

E[Ut1 ] ≥ E[Ut2 ]
P(d)t1 ≤ P(d)t2

and at least one inequality holds in a strict sense.

4 The Simulation Algorithm

We consider a simulation algorithm in which the further lifetime of each pensioner
is random and it is the starting point of the process.

To simulate the further lifetime we start considering death probabilities of each
age after the retirement age e1: let assume that such probabilities are indicated with

q1,q2, . . . ,qω

where the generic q j is obtained from the data of the survival at each age x, lx, of a
generic demographic table with last age ω , in the following way

q j =
le1+ j−1 − le1+ j

le1

.

For j that goes from 1 to ω− e1 we have ∑ω−e1
j=1 q j = 1.

It is sufficient to simulate a random number in the interval [0,1] to construct a
simulation of further lifetime coherent with death probabilities: the further lifetime
expressed in years is k if the random number r ∈ [0,1] belong to the interval

k

∑
j=1

q j ≤ r <
k+1

∑
j=1

q j.

Afterwards, assuming the independence between the demographic and the finan-
cial factors we go on with the simulation of the ongoing amount of the fund Si.
For each run of the simulation algorithm we record if the event of default has oc-
curred and we estimate the probability of default with the proportion of the number
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of default on the total runs. We analyze the case of the management of a portfolio
composed by more pensioners with the same risk characteristics. In this scenario we
deal with a global fund for the payments of all pensions and we have a default only
in the case that the global fund is null and there is at least one pension annuity which
has to be paid, without considering any reversibility.

5 Numerical Examples

We assume the independence between the demographic and the financial factors,
hence the simulation algorithm is divided in 2 parts:

• the vector Ni, from 1 to ω− x, where ω is the last age of the demographic table
for italian males called IPS 55, and x is the retirement age of the pensioners;

• the random return of the investment according to a B.S. financial scenario, with
the values of the parameter μ ,σ depending on the “riskiness” we have to consider
at each time.
We consider a given scenario characterized by

N0 = 100, x = 64, h0 = 100;
μ = 0.05, σ = 0.15, r = 0.03 (risk free discount factor);
g = 3.14 that is the maximum g under P(d) < 0.003, without management strat-
egy [6].

For each scenario we have made 100,000 runs.
According to a CAPM approach, fixing a different value for μ , we have the

corresponding value of σ . So the risk levels available for the pension provider
management strategy can be given in terms of Δσ and we have σm = σ +Δσ and
σl = σ −Δσ .

We consider 3 different value of Δσ (0.02,0.035,0.05) and hence we have 7 dif-
ferent risk levels (A,B,C,D,E,F,G). In order to underline the effects of the risk
level of the random return on the combination of default probability and expected
surplus, we propose the results obtained without applying any management strategy
to a portfolio of just one pensioner for sake of example, using the couples μ ,σ in
Table 1.

Table 1 Default Probability and Surplus under different scenarios

μ σ P(d) U

A 0.0388 0.1 0.0108 70.62
B 0.0417 0.115 0.0159 75.59
C 0.0452 0.13 0.0215 81.71
D 0.05 0.15 0.0302 92.05
E 0.0556 0.17 0.0399 105.61
F 0.0604 0.185 0.0453 118.50
G 0.0655 0.2 0.0528 134.40
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Fig. 1 Surplus and Probability of Default without management strategy

As it is clear from Fig. 1, without implementing a management strategy no one
risk level dominates another.

At this time we start running the model with N0 = 100 and x = 64 and we divide
the results in 3 bands both for the random return and for the demographic risk.

Then we apply the management strategy described above and we obtain P(d) and
U for each time t from t = 0, . . . ,10. To synthetize the results, we propose just the
case with Δσ = 0.035 as follows.

Scenario with Δσ = 0.035 and N0 = 100.

Table 2 Probability of Default and time

t P(d) U

0 0.0101 14236.82
1 0.0072 16199.34
2 0.0060 16486.34
3 0.0061 16515.85
4 0.0060 16702.95
5 0.0064 16801.81
6 0.0065 16767.19
7 0.0071 16767.34
8 0.0074 16766.78

With this management strategy we find an efficient potential switching time for
this scenario in t = 5. It also seems better for the pension provider to have the pos-
sibility of larger changes of the risk level: the results with Δσ = 0.035 are generally
better than the case with smaller Δσ .
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6 Final Remarks

In this paper we have dealt with the problem of managing the investment strategy for
a defined benefit pension plan. The choice of pensioner provider to switch towards
more risky or prudent strategy has to take into account both the financial and the
demographic factors and their interactive influence on the value of the accumulated
surplus.

Further works are going to apper to improve the management strategy of the pen-
sion plan considering the introduction of the possibility of more than one switching
time, the introduction of the life annuity reversibility aspect and the management of
longevity risk.

References

1. Albrecht, P., Maurer, R.: Self-Annuitization, Consumption Shortfall in Retirement and
Asset Allocation The Annuity Benchmark. Journal of Pension Economics and Finance 1,
269–288 (2002)

2. Bacinello, A.R., Millossovich, P., Olivieri, A., Pitacco, E.: Variable Annuities Risk Iden-
tification and Risk Assessment. CAREFIN Research Paper 14 (2010)

3. Bauer, D., Kling, A.,Russ, J.:A Universal Pricing Framework for Guaranteed Minimum
Benefits in Variable Annuities. ASTIN Bulletin 38, 621–651 (2008)

4. Blake, D.,Timmermann, A.: International Asset Allocation with Time-Varying Invest-
ment Opportunities. The Journal of Business University of Chicago Press 78, 71–98
(2005)

5. Colivicchi, I., Mulinacci, S., Vannucci, E.: A dynamic control strategy for pension plans
in a stochastic framework. Giornale dell’Istituto Italiano degli Attuari LXXII (2009)

6. Colivicchi, I., Piscopo, G., Vannucci, E.: An equilibriumİ model for defined benefit pen-
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Particle Swarm Optimization for Preference
Disaggregation in Multicriteria Credit Scoring
Problems

Marco Corazza, Stefania Funari and Riccardo Gusso

Abstract In this paper we deal with the problem of preference disaggregation in
credit scoring problems developed by using multicriteria analysis. In order to deter-
mine the values of the parameters that characterize the preference model of the deci-
sion maker, we adopt Particle Swarm Optimization, which is a biologically-inspired
heuristics based on swarm intelligence. We test the ability of PSO to find the optimal
values of the parameters on a real data set provided by an Italian bank.

1 Introduction

In this paper we deal with the problem of preference disaggregation in a credit scor-
ing problem developed by using MURAME (MUlticriteria RAnking MEthod) [9],
a particular multicriteria outranking method.

In the outranking methods, the preference model of the decision maker is usually
characterized by several parameters (weights of criteria, preference, indifference and
veto thresholds).

Such parameters could be obtained by using a direct procedure that requires that
the decision maker explicitly determines the values of the parameters that express
its preference structure. However, the explicit direct determination of these param-
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eters cannot be considered realistic for several applications, so the use of preference
disaggregation methods [10] is often more desirable.

In this latter case, the parameters of the model are determined from a given refer-
ence set of decisions. More precisely, the problem consists in finding the parameters
that minimize the inconsistency between the model obtained with those parameters
and the reference set of decisions revealed by the decision maker.

Because of the size and the complexity of the involved mathematical program-
ming problem, some evolutionary algorithms (such as the variable neighborhood
search or the differential evolution algorithm) have been used in the literature in or-
der to handle the preference disaggregation problem in specific outranking methods
(see for example [1, 7]).

The novelty of this contribution consists first in adopting an evolutionary algo-
rithm based on swarm intelligence, that is the Particle Swarm Optimization (PSO)
method [2], in order to deal with preference disaggregation problems in outrank-
ing models. Moreover, another distinguishing feature of this contribution is that it
focuses on credit scoring problems developed by using MURAME, a particular out-
ranking method [9]. We may note that the same approach could be applied also
to credit scoring problems developed by using other multicriteria outranking tech-
niques.

The paper is structured as follows. Section 2 presents the optimization problem
involved in the preference disaggregation approach in a MURAME framework. Sec-
tion 3 briefly summarizes the Particle Swarm Optimization (PSO) algorithm and il-
lustrates its implementation in solving the preference disaggregation problem. Sec-
tion 4 analyzes the ability of PSO to determine the optimal values of the parameters
in a MURAME credit scoring problem. Section 5 presents some conclusions.

2 The Optimization Problem Involved in MURAME Preference
Disaggregation

2.1 A Brief Description of MURAME

MURAME is a multicriteria method that allows to obtain a complete ranking
of a set of alternatives A = {a1, . . . ,ai, . . . ,am}, on the basis of a set of crite-
ria {crit1, . . . ,crit j, . . . ,critn}. In credit scoring problems, as the one considered in
Sect. 4, the alternatives are the firms applicants for a loan and the criteria are the
various aspects according to which the credit risk may be evaluated.

MURAME is based on a quite realistic preference structure of the decision maker,
modeled by considering the following double threshold structure, which allows to
consider the situation in which the decision maker (DM) prefers a given alternative,
the case in which the DM is indifferent between two alternatives, but also the case
of hesitation, in which the DM is not completely sure to prefer a given alternative
(weak preference):
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ai P ak iff gi j > gk j + p j

ai I ak iff |gi j −gk j| ≤ q j

ai Q ak iff gk j +q j ≤ gi j ≤ gk j + p j

(1)

where ai,ak ∈A, gi j denotes the score of the alternative ai in relation to criterion crit j,
p j denotes the preference threshold associated to crit j and q j (with 0 ≤ q j ≤ p j) the
indifference threshold. P, Q and I denote the preference, the weak preference and
the indifference relation, respectively.

The methodology can be implemented in two phases which take inspiration from
two well known multicriteria methods, the ELECTRE III and PROMETHEE II (see
[9] for a detailed explanation of MURAME).

Let us define the local concordance Cj(ai,ak) and discordance D j(ai,ak) indexes:

Cj(ai,ak) =

⎧⎪⎨⎪⎩
1 if gk j ≤ gi j +q j

0 if gk j ≥ gi j + p j
gi j−gk j+p j

p j−q j
otherwise

(2)

D j(ai,ak) =

⎧⎪⎨⎪⎩
0 if gk j ≤ gi j + p j

1 if gk j ≥ gi j + v j
gk j−gi j−p j

v j−p j
otherwise

(3)

where v j ≥ p j is the veto threshold (see [9]); and let C(ai,ak) be the global concor-
dance index, which delineates the dominance of ai over ak, obtained by aggregating
the local concordance indexes

C(ai,ak) =
n

∑
j=1

w jCj(ai,ak) (4)

where w j represents the normalized weight associated to criterion crit j( j = 1, . . . ,n).
In the first phase the method aims at defining an outranking relation by building

for each ai,ak ∈ A an outranking (or credibility) index O(ai,ak) defined as follows:

O(ai,ak) =

{
C(ai,ak) if D j(ai,ak) ≤C(ai,ak) ∀ j

C(ai,ak)∏ j∈T
1−D j(ai,ak)
1−C(ai,ak)

otherwise.
(5)

In formula (5) T ⊆{1, . . . ,n} denotes the subset of criteria for which D j(ai,ak) >
C(ai,ak). We can see that the credibility index is equal to the global concordance
C(ai,ak), unless the performance of an alternative with respect to a single criterion
is so bad that it poses a veto to the global outranking relation so that the outranking
index decreases. If there is maximum discordance even only for a single criterion
(D j(ai,ak) = 1), the credibility index (5) will be zero.

In the second phase, the method computes for each alternative ai ∈ A the follow-
ing final score (so-called net flow) ϕ(ai) that allows to produce a total preorder of
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the alternatives:
ϕ(ai) =∑

k 	=i

O(ai,ak)−∑
k 	=i

O(ak,ai) (6)

where O(ai,ak) is the outranking index computed as in (5).

2.2 Preference Disaggregation and the Optimization Problem

As we have seen in Sect. 2.1, in order to apply the described MURAME-based model
and to rank the alternatives, we have to determine the following parameters:

• the vector of the weights: w = (w1, . . . ,wn); w j ≥ 0, j = 1, . . . ,n and ∑ j w j = 1;
• the vector of indifference thresholds: q = (q1, . . . ,qn); q j ≥ 0, j = 1, . . . ,n;
• the vector of preference thresholds: p = (p1, . . . , pn); p j ≥ q j, j = 1, . . . ,n;
• the vector of veto thresholds: v = (v1, . . . ,vn); v j ≥ p j, j = 1, . . . ,n.

Let us suppose to have a reference set of decisions provided by the decision
maker, that is a set of past decisions regarding the alternatives, or regarding a subset
A′ ⊆ A of the whole set of the alternatives.

Given the ordering of the alternatives in the reference set made by the decision
maker, the preference disaggregation approach regards the problem of determining
the set of parameters that minimizes a measure of inconsistency f (w,q,p,v) between
the ordering produced by the model with that set of parameters and the given one.
In order to infer the values of the parameters starting from a given reference set of
decisions, the following mathematical programming problem has to be solved:

min
w,q,p,v

f (w,q,p,v)

s.t. w ≥ 0
n

∑
j=1

w j = 1

q ≥ 0
p ≥ q
v ≥ p .

(7)

We can note that problem (7) can be reformulated in a simpler way by introducing
the auxiliary variables t = p−q and s = v−p, so that it becomes:

min
w,q,t,s

f (w,q, t,s)

s.t. w,q, t,s ≥ 0
n

∑
j=1

w j = 1 .

(8)

This apparently simple mathematical programming problems hides its complex-
ity in the objective function f (w,q, t,s): indeed every choice of f requires that it
produces an order of the alternatives and then that a measure of the consistency of
the model is calculated. It is then hard to write an exact analytical expression for f in
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term of its variables w,q, t,s, so that the use of gradient methods for the optimization
task is discouraged, and an evolutionary approach seems more appropriate.

In this study we consider two kinds of fitness function, in order to exploit all the
information contained in the input data provided by the decision maker1: the first
function allows to deal with the ordinal rank of the alternatives in the reference set,
whereas the second one allows to handle the cardinal values.

The first fitness function is the S function defined as follows:

S(w,q, t,s) =
6∑m′

i=1(r̄i − ri(w,q, t,s))2

m′3 −m′ (9)

where r̄i is the rank of alternative ai in the reference set assigned by the decision
maker and ri(w,q, t,s) the one determined by the MURAME-based model, with
m′ ≤ m being the total number of alternatives in the reference set. This fitness func-
tion is an application of the Spearman Rank Correlation Coefficient (see [12]) to
measure the strength of correlation between the two orderings. Its values are in the
interval [0,2], and S(w,q, t,s) = 0 clearly means that there is an exact correspon-
dence between the ranking of the decision maker and that obtained by the model.

The second fitness function is represented by the following D function:

D(w,q, t,s) = ∑m′
i=1(λ (ϕ(ai;w,q, t,s))− s(ai))2

m′ (10)

where s(ai) is the (cardinal) score assigned by the decision maker to the alternative
ai and λ is a linear transformation that maps the net flow ϕ(ai;w,q, t,s) computed
as in Eq. (6) to the support of decision maker scores.

3 Particle Swarm Optimization for Preference Disaggregation

3.1 A Brief Description of PSO

Particle Swarm Optimization (PSO) is a bio-inspired iterative heuristics for the so-
lution of nonlinear global optimization problems (see [2,11]). The basic idea of PSO
is to model the so called “swarm intelligence” [3] that drives groups of individuals
belonging to the same species when they move all together looking for food. On this
purpose every member of the swarm explores the search area keeping memory of its
best position reached so far, and it exchanges this information with the neighbors in
the swarm. Thus, the whole swarm is supposed to converge eventually to the best
global position reached by the swarm members.

From a mathematical point of view every member of the swarm (namely a par-
ticle) represents a possible solution of an optimization problem, and it is initially
positioned randomly in the feasible set of the problem. To every particle is also ini-
tially assigned a random velocity, which is used to determine its initial direction of
movement.
1 For more details about the nature of input data, we refer to Sect. 4.
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Let us consider the following global optimization problem:

min
x∈Rd

f (x)

where f :Rd �→R is the objective function in the minimization problem. In applying
PSO for its solution, we consider M particles; at the k-th step of the PSO algorithm,
three vectors are associated to each particle l ∈ {1, . . . ,M}:

• xk
l ∈ Rd , the position at step k of particle l;

• vk
l ∈ Rd , the velocity at step k of particle l;

• pl ∈ Rd , the best position visited so far by particle l;
• pg(l) ∈ Rd the best position in a neighborhood of the l-th particle.

Moreover, pbestl = f (pl) denotes the value of the objective function in the position
pl of the l-th particle.

The PSO algorithm, in the version with inertia weight [15], works as follows:

1. Set k = 1 and evaluate f (xk
l ) for l = 1, . . . ,M. Set pbestl = +∞ for l = 1, . . . ,M.

2. If f (xk
l ) < pbestl then set pl = xk

l and pbestl = f (xk
l ).

3. Update position and velocity of the l-th particle, with l = 1, . . . ,M, according to
the following equations:

vk+1
l = wk+1vk

l +Uφ1 ⊗ (pl −xk
l )+Uφ2 ⊗ (pg(l)−xk

l ) (11)

xk+1
l = xk

l +vk+1
l (12)

where Uφ1 ,Uφ2 ∈Rd and their components are uniformly randomly distributed in
[0,φ1] and [0,φ2] respectively; parameters φ1 and φ2 are often called acceleration
coefficients; the symbol ⊗ denotes component-wise product. The parameter wk

(the inertia weight) is generally linearly decreasing with the number of steps, i.e.:

wk = wmax +
wmin −wmax

K
k

where K is the maximum number of steps allowed.
4. If a convergence test is not satisfied then set k = k +1 and go to 2.

For more details about PSO methodology, the specification of its parameters and
of the neighborhood topology, we refer the reader to [2].

3.2 PSO Implementation

We propose to use PSO in order to solve the optimization problem which originates
from the preference disaggregation process. In implementing the PSO algorithm de-
scribed in Sect. 3.1, we have considered the so called gbest topology, that is g(l) = g
for every l = 1, . . . ,M, and g is the index of the best particle in the whole swarm,
that is g = arg minl=1,...,M f (pl). This choice implies that the whole swarm is used
as the neighborhood of each particle.



Particle Swarm Optimization 125

Moreover, as stopping criterion, we decided that the algorithm terminated when
the objective function did not have a decrease of at least 10−4 in a prefixed number
of steps.

Since PSO was conceived for unconstrained problems, the algorithm above can-
not prevent from generating infeasible particles’ positions when constraints are con-
sidered. To avoid this problem, different strategies have been proposed in the liter-
ature, and most of them involve the repositioning of the particles [18] or the intro-
duction of some external criteria to rearrange the components of the particles [6,16].
In this paper we follow the same approach adopted in [5], which consists in keeping
PSO as in its original formulation and reformulating the optimization problem into
an unconstrained one:

min
w,q,t,s

P(w,q, t,s;ε) (13)

where the objective function P(w,q, t,s;ε) is defined as follows:

P(w,q, t,s;ε) = f (w,q, t,s)+
1
ε

[∣∣∣∣∣ n

∑
j=1

w j −1

∣∣∣∣∣+ n

∑
j=1

max{0,−w j}

+
n

∑
j=1

max{0,−q j}+
n

∑
j=1

max{0,−t j}

+
n

∑
j=1

max{0,−s j}
] (14)

with ε being the penalty parameter. For more details about this method and about
the relationships between the solutions of the constrained problem (8) and those
of the unconstrained problem (13), see [5, 8, 14, 17]. We only remark here that the
penalty function P(w,q, t,s;ε) is clearly nondifferentiable because of the �1-norm
in (14). This also motivates the choice of using PSO for its minimization, since PSO
evidently does not require the derivatives of P(w,q, t,s;ε).

Since PSO is a heuristics, the minimization of the penalty function P(w,q, t,s;ε)
does not theoretically ensure that a global minimum of problem (8) is detected. Nev-
ertheless, PSO often provides a suitable compromise between the performance of the
approach (i.e. a satisfactory estimate of the global minimum solution for problem
(8)) and its computational cost.

With regard to the initialization procedure, we can observe that, since we deal
with an unconstrained problem, we could in principle generate initial values for the
population in an arbitrary random way. However, like any metaheuristic, the perfor-
mance of the algorithm could be improved by a careful choice of the initial popula-
tion such that the feasible region is adequately explored by the particles at the initial
step.

In this contribution, in order to obtain the initial weights, we generated d1 < · · ·<
dn−1 random numbers uniformly distributed in [0,1], and then we set:

w0
1 = d1,w

0
2 = d2 −d1, . . . ,w

0
n = 1−dn−1.
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To obtain the initial values of the variables q j, t j,s j ( j = 1, . . . ,n), we generated three
random numbers u1

j < u2
j < u3

j uniformly distributed in [0,2], and then we set:

q0
j = (g j −g

j
)

u1
j

10
; t0

j = (g j −g
j
)

u2
j

10
; s0

j = (g j −g
j
)

u3
j

10

where g j = max1≤i≤m gi j and g
j
= min1≤i≤m gi j.

Moreover, for every particle x0
l = (w0

l ,q
0
l , t

0
l ,s

0
l ), the components of the initial

velocity v0
l are generated as random numbers uniformly distributed in [−x0

h,x
0
h] for

every h = 1, . . . ,4n.

4 Application to a Credit Scoring Problem

In this section we analyze the performance of the proposed approach by considering
a credit scoring problem. We adopt the MURAME method in order to evaluate the
creditworthiness of a set of firms, as proposed in [4], and use a real world data set
provided by a major bank of north-eastern Italy, the Banca Popolare di Vicenza.

The database consists of around 12000 firms applicants for a loan, which rep-
resent the alternatives of the creditworthiness evaluation problem. The firms are
divided into three groups, small, medium and large, with respect to their business
turnover and the three groups are approximately of the same size. The evaluation
criteria are represented by seven indicators {I1, . . . , I7} which have been computed
by the bank starting from the balance sheets; their values are provided for both years
2008 and 2009.

In order to verify the ability of PSO to find the optimal values of the parameters
of MURAME model, we employ a bootstrap analysis carried out on a subset of
randomly selected 4000 firms.

Using data of year 2008, the firms have been first ordered using the MURAME
methodology and the values of the parameters have been fixed according to the fol-
lowing specific rules, as proposed in [4]:

w1 = · · · = wn =
1
n
, q j = (g j −g

j
)

1
6
, p j = 4q j, v j = 5q j j = 1, . . . ,n.

Table 1 reports the values of the parameters so obtained.

Table 1 Actual parameters of MURAME

I1 I2 I3 I4 I5 I6 I7

w 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
q 10.2283 0.0500 0.0700 0.2600 0.1383 0.0183 0.3532
p 40.9133 0.1999 0.2800 1.0400 0.5533 0.0730 1.4129
v 51.1417 0.2499 0.3500 1.3000 0.6917 0.0913 1.7662
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Table 2 PSO parameters

φ1 φ2 K ε wmin wmax

1.75 1.75 200 0.0001 0.4 0.9

A first set of bootstrap experiments has been conducted in order to determine the
best values for the acceleration coefficients φ1,φ2, the maximum number of steps
K and the value of the penalty parameter ε , while for the initial and final value of
the inertia weight we used the ones most used in the literature. In these experiments
we have considered only the training step (see beyond) and we have used as fitness
function S+D

2 . In order to determine the value of a given PSO parameter, first we
have tested different values of that parameter while keeping fixed the remaining
ones; for instance, in case of ε , we have considered ε = 1,ε = 0.1,ε = 0.01, etc.
and for each of these values we have performed 10 runs of the algorithm; then we
have chosen the value of the PSO parameter (ε = 0.0001 in the above mentioned
case) which allowed to obtain on average the best results for the objective function.
The same procedure has been adopted in determining the values of K, φ1 and φ2.
Table 2 reports the values of the PSO parameters so obtained.

The bootstrap procedure that we have adopted is structured in the following steps.

(i) A sample of H = 100 firms is randomly selected without replacement from the
4000 ones.

(ii) To the sample of firms selected as in step (i) we have applied the MURAME
methodology with the actual parameters determined as in Table 1; an ordering
of the H firms is obtained according to the net flow (6) associated to each firm.

(iii) To the sample of firms selected as in step (i) we have applied the PSO-based
methodology, using the PSO parameters determined as in Table 2 and adopting
both objective functions (9), (10). The optimal values of MURAME parameters
are therefore determined through PSO, in order to minimize the discrepancy–as
measured by the fitness function– between the score (ranking) obtained by the
MURAME in step (ii) and that one computed by PSO (the so-called training
step).

(iv) (Out-the-bootstrap). Another sample of firms of the same size H = 100 is ran-
domly selected from the 4000 ones, excluding those belonging to the sample
used for the training step. This sample is ordered with the MURAME method,
by using both the actual MURAME parameters and those determined by PSO;
the value of the fitness function is then computed in order to evaluate the dis-
tance between the two orderings.

The procedure is then repeated N = 1000 times in order to compute the necessary
statistics of the values of the MURAME parameters and the performance measures.
Table 3 reports the average (and the standard deviation) of the fitness function values
obtained at each iteration of the procedure. The results are shown for both the fitness
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Table 3 Results for in-the-bootstrap data

M = 100 M = 200

S D S D

Mean 0.0022 0.0025 0.0002 0.0003
Standard deviation 0.0011 0.0017 0.0001 0.0002

Table 4 Results for out-the-bootstrap data

M = 100 M = 200

S D S D

Mean 0.1234 0.1725 0.012 0.016
Standard deviation 0.0450 0.0612 0.032 0.035

functions S and D and for a population size of M = 100 and M = 200 number of
particles. Table 4 presents the results obtained for the out-the-bootstrap phase.

It can be noted that while M = 100 particles are enough to obtain full consistency
(an average value of the fitness function nearly zero), with both the performance
measures considered, between the model produced by PSO and the actual ordering
of the alternatives in the bootstrap data, the performance of the so obtained models
on the out of the bootstrap data is not as good, and a higher number of particles
(M = 200) is required to improve it.

Table 5 illustrates the average values of the parameters (and the standard devia-
tions) determined by PSO in the bootstrap procedure.

It is interesting to remark that the discrepancies between the values of the param-
eters obtained with M = 100 and M = 200 are not very high and they concern mainly
the values of the thresholds, while the weights are determined in a consistent way
even with the smaller number of particles.

As for the relation between the actual parameters of Table 1 and the average val-
ues of parameters obtained in Table 5, it can be noticed that there are significant
differences, similarly to what observed in [7] with regard to the use of the differen-
tial evolution algorithm. However, since the ordering performance of the model is
high, this seems to suggest that there is a certain flexibility in the specification of
the parameters of the model consistent with the ordering of the alternatives in the
reference set.

5 Conclusions

The results obtained in this contribution showed a high consistency between the
model obtained by MURAME with the actual parameters and the model produced
by PSO.
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Table 5 Average values (and standard deviation) of MURAME parameters, determined by
bootstrap procedure

I1 I2 I3 I4 I5 I6 I7

M = 100
w 0.1980 0.1284 0.0273 0.3405 0.2254 0.0035 0.0768

0.0920 0.1230 0.1540 0.1420 0.0980 0.1640 0.1330
q 6.1076 0.0094 0.0149 0.2127 0.3249 0.1244 0.2521

0.1170 0.0950 0.1620 0.0830 0.1390 0.1140 0.0930
p 274.3694 0.0410 0.0209 0.5882 0.5647 0.1997 0.6648

0.1260 0.0840 0.1310 0.1340 0.1690 0.0920 0.1210
v 4324.4420 12.7064 3.2699 1.6909 5.3118 0.5246 6.0462

0.1740 0.1420 0.1280 0.0980 0.1560 0.1650 0.1430

M = 200
w 0.1394 0.1454 0.0457 0.3256 0.2465 0.0013 0.0961

0.0540 0.0620 0.0430 0.0650 0.0390 0.0240 0.0310
q 2.6672 0.0135 0.1090 0.0198 0.0125 0.2745 0.0166

0.0790 0.0420 0.0570 0.0670 0.0280 0.0340 0.0860
p 3.8324 0.0179 0.1755 0.2692 0.2274 0.3468 0.5485

0.0620 0.0840 0.0530 0.0650 0.0310 0.0440 0.0220
v 109.6670 3.4567 0.2023 0.9412 4.5347 0.6543 1.4986

0.0640 0.0720 0.0760 0.0830 0.0660 0.0750 0.0830

The differences encountered between the actual and the optimal values of param-
eters underline a certain flexibility degree in the specification of the parameters of
the multicriteria credit scoring model consistent with the ordering of the alternatives
in the reference set.

As future research we intend to analyze whether PSO is able to find, using a real-
istic computational time, the values of the parameters of the MURAME model that
make them consistent with the actual classification of the firms provided by the bank,
which acts as decision maker. In this case, additional information on the reference
decisions is necessary, concerning the final scores that the bank has actually assigned
to the firms in order to establish their ranking in terms of their credit quality.

Possible differences among the results obtained in the various groups of firms
(small, medium and large) will be also investigated.
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Time Series Clustering on Lower Tail
Dependence for Portfolio Selection

Giovanni De Luca and Paola Zuccolotto

Abstract In this paper we analyse a case study based on the procedure introduced by
De Luca and Zuccolotto [8], whose aim is to cluster time series of financial returns in
groups being homogeneous in the sense that their joint bivariate distributions exhibit
high association in the lower tail. The dissimilarity measure used for such clustering
is based on tail dependence coefficients estimated using copula functions. We carry
out the clustering using an algorithm requiring a preliminary transformation of the
dissimilarity index into a distance metric by means of a geometric representation of
the time series, obtained with Multidimensional Scaling. We show that the results
of the clustering can be used for a portfolio selection purpose, when the goal is to
protect investments from the effects of a financial crisis.

1 Introduction

Several approaches to time series clustering are present in the literature. After the
first studies, where dissimilarities between time series were merely derived by the
comparison between observations or some simple statistics computed on the data
(see for example [3]), more complex solutions have been proposed. An interesting
review can be found in [29]. Piccolo [23] and Corduas and Piccolo [7] proposed a dis-
tance measure for time series generated by ARIMA processes, based on the compari-
son between the parameters of the corresponding Wold decomposition. Otranto [20]
extended this approach to GARCH models, Galeano and Peña [12] considered the
generalized distance between the autocorrelation functions of two time series while
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Caiado [4] introduced a metric based on the normalized periodogram. Alternative
methods, employing parametric and non-parametric density forecasts, was discussed
in [1] and in [28], respectively. To give an idea of the great variety of approaches
in this framework, it is finally worth recalling the frequency domain approach of
Kakizawa [15] and Taniguchi and Kakizawa [27], the use of two-dimensional sin-
gular value decomposition by Weng and Shen [30], the procedure using a robust
evolutionary algorithm of Pattarin et al. [21]. A comparison of sevaral parametric
and non-parametric approaches can be found in [22]. But the list of citations could
be even longer. In this paper we show a case study based on the use of the proce-
dure proposed by De Luca and Zuccolotto [8] to cluster time series of returns of
financial assets according to their association in the lower tail. Then, we show how
this approach can be employed for portfolio selection, especially in a financial cri-
sis perspective. With respect to the seminal paper of De Luca and Zuccolotto [8],
here we propose, firstly, two indexes for evaluating the quality of the clusterization
from the point of view of tail dependence, and, secondly, a more specific criterion
for portfolio selection, based on the Omega index proposed by Keating and Shad-
wick [16]. The paper is organized as follows: in Sect. 2 the clustering procedure is
briefly recalled, while the main results of the case study are summarized in Sect. 3.
Concluding remarks follow in Sect. 4.

2 Tail Dependence-Based Clustering Procedure

The interest of researchers in modelling the occurring of extreme events has several
empirical motivations, especially in contexts where it can be directly associated to
risk measurement, such as, for example, financial markets. Recently, a great deal
of attention has been devoted also to the study of association between extreme val-
ues of two or more variables. From a methodological point of view, the problem of
quantifying this association has been addressed in different ways. One of the pro-
posed approaches consists in analyzing the probability that one variable assumes
an extreme value, given that an extreme value has occurred to the other variables
(see [6]). This probability is known as lower or upper tail dependence and we will
restrict its analysis to the bivariate case. Let Y1 and Y2 be two random variables and
let U1 = F1(Y1) and U2 = F2(Y2) be their distribution functions. The lower and upper
tail dependence coefficients are defined respectively as

λL = lim
v→0+

P [U1 ≤ v|U2 ≤ v] and λU = lim
v→1−

P [U1 > v|U2 > v] .

In practice, the tail dependence coefficients are estimated from observed data after
assuming a probabilistic framework. The copula functions are commonly used for
financial data with the advantage that the tail dependence estimation is both simple
and flexible. A two-dimensional copula function for two random variables Y1 and Y2

is defined as a function C : [0,1]2 → [0,1] such that

F(y1,y2;θ) = C(F1(y1;ϑ1),F2(y2;ϑ2);τ),
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for all y1,y2, where F(y1,y2;θ) is the joint distribution function of Y1 and Y2 (see
[19]) and θ = (ϑ1,ϑ2,τ). It is straightforward to show that the tail dependence coef-
ficients can be expressed in terms of the copula function. In particular, the lower tail
dependence coefficient, which will be hereafter the focus of the paper, is given by

λL = lim
v→0+

C(v,v)
v

.

In the analysis of the relationship between financial returns, the lower tail depen-
dence coefficient gives an idea of the risk of investing on assets for which extremely
negative returns could occur simultaneously. So, the lower tail dependence is strictly
linked to the diversification of investments, especially in financial crisis periods. For
this reason, De Luca and Zuccolotto [8] proposed to cluster time series of financial
returns according to a dissimilarity measure defined as

δ ({yit},{y jt}) = − log(λ̂L),

where {yit}t=1,...,T and {y jt}t=1,...,T denote the time series of returns of two assets
i and j, and λ̂L is their estimated tail dependence coefficient. In this way we ob-
tain clusters of assets characterized by high tail dependence in the lower tail. From a
portfolio selection perspective, it should then be avoided portfolios containing assets
belonging to the same cluster. Given p assets, the clustering procedure proposed by
De Luca and Zuccolotto [8] is composed by two steps. In the first step, starting from
the dissimilarity matrix Δ = (δi j)i, j=1,...,p, an optimal representation of the p time
series {y1t}, . . . ,{ypt} as p points y1, . . . ,yp inRq is found by means of Multidimen-
sional Scaling (MDS). The above mentioned term optimal means that, with MDS,
the Euclidean distance matrix D = (di j)i, j=1,...,p, with di j = ‖yi −y j‖, of the points
y1, . . . ,yp inRq has to fit as closely as possible the dissimilarity matrix Δ . The extent
to which the interpoint distances di j “match” the dissimilarities δi j is measured by
an index called stress, which should be as low as possible. MDS works for a given
value of the dimension q, which has to be given in input. So, it is proposed to start
with the dimension q = 2 and then to repeat the analysis by increasing q until the
minimum stress of the corresponding optimal configuration is lower than a given
threshold s̄. In the second step, the k-means clustering algorithm is performed us-
ing the obtained geometric representation of the p time series. Among the several
hierarchical and non-hierarchical clustering techniques which we may resort to, the
k-means algorithm performed on the MDS geometrical representation has revealed,
through simulation studies, a good performance in this context [8].

3 Case Study

In this case study we analyse the time series of the daily prices of the 24 stocks which
have been included in FTSE MIB index during the whole period from January 3,
2006 to October 31, 2011.
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3.1 Clustering

After transforming prices into log-returns, we preliminary removed autocorrelation
and heteroskedasticity by means of univariate Student-t AR-GARCH models. For
each couple of stocks we estimated a bivariate Joe-Clayton copula function [14],

C(u1,u2) = 1−{1− [(1− (1−u1)κ)−θ +(1− (1−u2)κ)−θ −1]−1/θ}1/κ

using the estimated distribution functions of the standardized residuals. After es-
timating the 276 lower tail dependence coefficients, which in the case of the Joe–
Clayton copula are given by λ̂L = 2−1/θ̂ , we carried out MDS using the dissimilarity
matrix Δ = (δi j)i, j=1,...,24. We set s̄ = 0.005. The minimum dimension allowing a
final configuration with minimum stress lower than s̄ resulted q = 14. In the second
step, we performed a k-means clustering algorithm using the MDS point configu-
ration in R14, y1, . . .y24. The graph displayed in the left panel of Fig. 1 shows the
pattern of the ratio of deviance between clusters over total deviance, as a function
of the number of clusters k and its increments when considering the solution with k
clusters, with respect to k− 1 clusters. This graph helps the researcher in deciding
the optimal number of clusters. In this case we observe that moving from k = 3 to
k = 4 allows an improvement of 32.7% in the quality of the clusterization, while
from k = 5 onward, the increments are appreciably lower and more stable. For this
reason, we feel that a good choice could be k = 4. In addition we have computed
the following indexes proposed in the literature for determining the optimal num-
ber of clusters (see [9] for an exhaustive review): CH [5], H [13], RL [24], SS [25],
M [17], BB [2], TraceCovW [18], TraceW [10,11], TraceW−1B and |T |= |W | [11].
All the indexes except CH suggest to choose the solution with k = 4 clusters. So, we
judge this choice the most reliably founded as it combines subjective remarks and
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Fig. 1 Left: Deviance between clusters over total deviance. Right: Efficient frontiers of the
640 selections based on clustering (black, thin), efficient frontiers of 1000 selections built
with 4 randomly selected stocks (gray) and efficient frontier of the stocks belonging to cluster
4 (black, bold)
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Table 1 Cluster composition by stocks

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Atlantia Autogrill Fiat SNAM Banca MPS Fondiaria
ENEL Finmeccanica Lottomatica Terna Generali Intesa SP
ENI Luxottica Pirelli Mediobanca Mediolanum
Saipem Stmicroelectronics Telecom Mediaset Banca PM

UBI Unicredit

Table 2 Cluster composition by sectors (with cluster labels)

Cluster 1 Cluster 2
Power, energy and mobility Living goods

Oil and natural gas (2) Travels and free time (2)
Industrial services and products (1) Cars and components (2)

Public services (1) Tecnology and Communications (2)
House, personal utilities, fashion (1)
Industrial services and products (1)

Cluster 3 Cluster 4
Public services Banks and insurance

Public services (2) Banks (6)
Insurance (3)

Media (1)

objective criteria. The cluster composition by stocks and by economic activity sec-
tors are displayed in Table 1 and Table 2, respectively. We observe that there are
some affinities in the sectors of stocks belonging to the same cluster, so we propose
to label the clusters as shown in Table 2.

In order to measure the extent to which the clusterization has been able to group
stocks with high tail dependence, separating them from the others, we propose to
compute two indexes, which we call average tail dependence coefficient within and
between clusters, respectively. On the one hand, the average tail dependence coeffi-
cient within cluster c is given by

λ̄W
c =

2
nc(nc −1)

nc

∑
ic=1

nc

∑
jc=ic+1

λ̂ ic jc
L ,

where nc is the number of stocks belonging to cluster c, ic and jc are the ith and
the jth stocks of cluster c and λ̂ ic jc

L is their estimated tail dependence coefficient.
The index λ̄W

c measures the extent to which the clusters are internally homogeneous
from the point of view of tail dependence and should be as high as possible. On the
other hand, the average tail dependence coefficient between cluster c and the others



136 G. De Luca and P. Zuccolotto

Table 3 Average tail dependence within and between clusters

Cluster (c) 1 2 3 4

λ̄W
c 0.2770 0.2719 0.2975 0.4249
λ̄B

c 0.2224 0.2425 0.1211 0.2475

is given by

λ̄B
c =

1
ncnc̄

nc

∑
ic=1

nc̄

∑
ic̄=1

λ̂ icic̄
L ,

where nc̄ is the number of stocks not belonging to cluster c, ic̄ is the ith stock outside
cluster c and λ̂ icic̄

L is the estimated tail dependence coefficient if stocks ic and ic̄. This
index measures the extent to which the clusters are externally separated from the
point of view of tail dependence and should be as low as possible. In general, a good
clusterization should have λ̄W

c > λ̄B
c for all c = 1, · · · ,k. Results for this case study

are displayed in Table 3.

3.2 Portfolio Selection

We used the obtained clustering to construct portfolios composed by as many stocks
as the number k of clusters. The stocks are selected by imposing the restriction that
each stock belongs to a different cluster [8]; with the k = 4 above mentioned clus-
ters, 640 different selections can be made according to this criterion. This strategy
should protect the investments from parallel extreme losses during crisis periods,
because the clustering solution is characterized by a moderate lower tail dependence
between clusters. Using the popular Markowitz portfolio selection procedure, in the
right panel of Fig. 1, we plotted the efficient frontiers of all the possible 640 selec-
tions (black, thin), compared to those of 1000 portfolios (gray) built with 4 randomly
selected stocks and to the efficient frontier of the portfolio built using all the stocks
belonging to cluster 4 (black, bold), the cluster with the highest average tail depen-
dence within cluster λ̄W

c . The efficient frontiers of the 640 selections dominate the
main part of the others. After selecting the minimum variance portfolio of each fron-
tier, we evaluated the performance of the 640 resulting portfolios in the following
36 days, thus with an out-of-sample perspective. Fig. 2 displays the returns of the
640 portfolios (black) in the period November 1–December 20, with respect to the
price of October, 31. These returns are compared to (i) the returns of the minimum
variance portfolios built using 4 randomly selected stocks (left panel, gray), (ii) the
returns of the minimum variance portfolio built using all the stocks (right panel, bold
gray, dashed line) and to (iii) the returns of the minimum variance portfolio built us-
ing all the stocks belonging to cluster 4 (right panel, bold gray). We observe a good
performance of the 640 portfolios with respect to the selected competitors. At this
step, a criterion should be given in order to select one of these 640 portfolios. To
this purpose, we propose to resort to a proper index, such as for example the Sharpe
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Fig. 2 Left: Returns of the 640 minimum variance portfolios based on clustering (black),
returns of the minimum variance portfolios built using 4 randomly selected stocks (gray).
Right: Returns of the 640 minimum variance portfolios based on clustering (black), returns of
the minimum variance portfolios built using all the stocks (gray, dashed line) and using the
stocks of cluster 4 (bold gray)
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Markowitz minimum variance Portfolio (all the stocks)

Fig. 3 Returns of the selected portfolios
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Ratio [26] or the Omega index [16]. In order to take into account the whole returns
distribution, we decide to use the Omega index, given by

Ω(L) =

∫ b

L
(1−F(r))dr∫ L

a
F(r)dr

,

where F(r) denotes the cumulative probability distributions of the portfolio returns,
(a,b) ∈ R their domain, L a reference return, often set equal to 0. As a first ap-
proach, we select, among the 640 minimum variance portfolios, the one with the
highest value of Ω . Alternatively, instead of restricting the choice to the minimum
variance portfolios, we may explore all the portfolios lying on the 640 efficient fron-
tiers plotted in the right panel of Fig. 1.

Figure 3 displays the returns of the two portfolios corresponding to these two
approaches, compared to the competitors described above. The composition of the
portfolios in Fig. 3 is given in Table 4. Both the portfolios tend to outperform the
others, the one exploring the whole efficient frontier being the best one in the long
period. The results obtained with the Sharpe Ratio are similar.

Table 4 Composition of the portfolios in Fig. 3

Selected (Maximum Ω ) Markowitz minimum variance Portfolio (clustering based)

Saipem Fiat Terna Intesa
0.0390 0.0290 0.9062 0.0258

Maximum Ω Portfolio (clustering based)

Saipem Fiat Terna UBI
0.5384 0 0 0.4616

Markowitz minimum variance Portfolio (stocks belonging to cluster 4)

Banca Mps Fondiaria Generali Intesa Mediobanca
0 0 0.3222 0 0.2663
Mediolanum Mediaset Banca PM UBI Unicredit
0 0.3246 0 0.0869 0

Markowitz minimum variance Portfolio (all the stocks)

Atlantia Autogrill Banca Mps ENEL ENI Fiat
0.0438 0.0399 0 0 0 0
Finmeccanica Fondiaria Generali Intesa Lottomatica Luxottica
0.0400 0 0 0 0.0374 0.0113
Mediobanca Mediolanum Mediaset Pirelli Banca PM Saipem
0.0765 0 0 0 0 0
SNAM Stm Telecom Terna UBI Unicredit
0.4456 0 0 0.3055 0 0
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4 Concluding Remarks

In this chapter, we have clustered 24 stocks included in FTSE MIB index accord-
ing to the association among extremely low returns. For each couple of stocks we
have estimated a bivariate copula function and computed the lower tail dependence
coefficient. Then, following a two-step clustering procedure integrating the use of
Multi Dimensional Scaling and the k-means clustering algorithm, we have formed
four groups of stocks. The obtained clustering has been used to build portfolios ac-
cording to the criterion of selecting one stock from each cluster. We have shown
that in an out-of-sample period characterized by financial crisis, the returns of some
of these portfolios are less unfavourable with respect to the return of the minimum
variance portfolio built using all the stocks or to the returns of portfolios built with
randomly selected stocks. Moreover, portfolios composed of stocks belonging to the
same cluster can exhibit a very bad performance. Finally, we have proposed a cri-
terion for selecting one portfolio out of the hundreds of possible choices deriving
from the rule of taking one stock from each cluster. The procedure has revealed ef-
fective on the data of the described case study. Future research could be developed in
several directions. For example, the clustering procedure could be adapted to a time
varying perspective, with the result of a dynamic clustering and portfolio selection.
In addition, some effort should be devoted to refine the portfolio selection procedure
in order to more specifically focus on the tails of the returns distribution, coherently
with the proposed tail dependence clustering.
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Solvency Analysis of Defined Benefit Pension
Schemes

Pierre Devolder and Gabriella Piscopo

Abstract Defined Benefit Pension Schemes (DB) are affected by a lot of different
risks able to put in danger the viability of the system. A solvency analysis seems
therefore to be essential as in insurance but it must take into account the specificities
of pension liabilities. In particular, pension funds are characterized by a long term
aspect and a limited need of liquidity. In this perspective, the purpose of this paper is
to combine the three major risks affecting a DB plan (market, inflation and longevity
risks) and to look at their effect on the solvency of the pension fund.

1 Introduction

In Solvency II, solvency requirements for insurance companies are based on the idea
that risk can be handled if a sort of buffer capital is available to deaden the impact
of financial and demographic instability [6, 13]. The purpose of this paper is to pro-
pose a similar but adapted risk based approach for a defined benefit pension scheme
(DB plan). Following the IAS norms, we use as funding technique the so called
projected unit credit cost method (see for instance [2]) in order to compute contri-
butions and actuarial liabilities. Two main risks are then considered in a stochastic
environment: investment risk and inflation risk. In a first part of the paper, longevity
risk is not considered. Afterwards, mortality before retirement is introduced in a de-
terministic way and a complete risk model is proposed. We do not consider in this
paper longevity risk after retirement because we only valuate pension schemes pay-
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ing lump sum at retirement age. We are aware that this lump sum analysis is but
a first step and we will to extend the results presented here, later for annuities. Let
us remark nevertheless that many papers on pension only deals with the accumula-
tions phase because often the decumulation phase is managed independently from
the accumulation step, which justifies a specific solvency analysis for this first step
as discussed here. Moreover, some countries allow paying to retires lump sums (for
instance quite common and general in Belgium) and for this kind of scheme the anal-
ysis presented here seems relevant. The long term aspect of pension liability is taken
systematically into account by analyzing the risks not only on a one year horizon,as
in Solvency 2, but until maturity (retirement age). An ALM approach for the assets
and liabilities of the scheme is proposed and various classical risk measures are ap-
plied to the surplus of the pension fund (probability of default, value at risk). The
effect of the duration of the liability is clearly illustrated and is surely one of the key
factors if we want to consider solvency measures for pension plans. This result is
line with classical considerations about the time effect on risky investments (see for
instance [3–5, 8, 11, 12].

The paper is organized as follows. In Sect. 2 we describe the general framework
of the model in terms of asset and liability structure of the DB scheme. Section 3 is
based on a static risk measurement and analyzes the influence of the time horizon
on the probability of default at maturity. In Sect. 4, we compute a solvency level
using a classical value at risk approach. In Sect. 5, we introduce the longevity risk
using a deterministic approach based on the difference between the real mortality and
the a priori mortality. Numerical examples are presented in Sect. 6. Finally, some
conclusions are traced.

2 Model for a DB Pension Scheme

We consider a Defined Benefit pension scheme based on final salary. At time t = 0
an affiliate aged x is entering the scheme with an initial salary S(0).
At retirement age, at time t = T , a lump sum will be paid, expressed as a multiple of
its last wage, for instance:

B = NbS (1)

where:
N is the years of service credited by the scheme;
S is the final salary;
B is benefit to pay (lump sum);
b is the coefficient (for instance 1%).

In order to compute the contributions to the pension fund, we will use the IAS norms
and in particular the projected unit credit cost method as funding technique.

We need then the following assumptions:

1. a fixed discount rate: the risk free rate r;
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2. a salary scale: the salary at time t denoted by S(t) will follow a stochastic evolu-
tion given by:

dS(t) = μS(t)dt +ηS(t)dz(t), (2)

where
μ is the avarage salary increase;
η is the volatility on salary evolution;
z is standard Brownian motion.

Using a best estimate approach, the contribution for the first year of service (or the
normal cost) is then given by:

NC0 = bS(0)e(μ−r)T (3)

(present value at the risk free rate of the average projected benefit at retirement age).
At time t (t = 1,2, . . . ,T −1), the normal cost will have the same form:

NCt = bS(t)e(μ−r)(T−t). (4)

We can also introduce a loading factor β on the contribution; the normal cost be-
comes then:

NCt = bS(t)(1+β )e(μ−r)(T−t). (5)

The actuarial liability, corresponding to the present value at time t(t = 0,1, ,T −1)
of the future liabilities derived from past services, is given by:

ALt = (t +1)bS(t)(1+β )e(μ−r)(T−t). (6)

This value is equal to the capitalized sum of the past normal costs, when reality
follows the actuarial assumptions. On the asset side we assume each contribution is
invested in a Geometric Brownian motion (see for instance [9]) whose evolution is
solution of:

dA(s) = δA(s)ds+σA(s)dw(s), (7)

where
δ is mean return of the investment fund;
σ is volatility of the return;
w is standard Brownian motion.

The two sources of risk (inflation and market risks) are off course correlated:

corr(w(t),z(t)) = ρt.

By actuarial fairness, the first actuarial liability must correspond to the first normal
cost ( liability linked to the first year of service):

A(0) = NC0.



144 P. Devolder and G. Piscopo

Then the corresponding final asset is given by (projection between t = 0 and t = T ):

A0(T ) = NC0eδ−
σ2
2 T+σw(t) = bS(0)(1+β )eμ+δ−r− σ2

2 T+σw(t). (8)

More generally we could consider the risk between time t and time T by computing
the future evolution till maturity of the investment of the actuarial liability AL exist-
ing at time t in the reference asset A (investment risk between time t and time T ):

At(T ) = ALte
δ− σ2

2 (T−t)+σw(T )−w(t) = bS(t)(1+β )eμ+δ−r− σ2
2 (T−t)+σw(T )−w(t) (9)

with initial condition At(t) = ALt . In an ALM approach, these asset values must be
compared to their respective liability counterparts.
We obtain successively:

• for the final liability corresponding to the first year contribution:

L0(T ) = bS(0)eμ−
η2
2 T+ηz(T ); (10)

• for the final liability corresponding to the actuarial liability until time t:

Lt(T ) = bS(t)eμ−
η2
2 (T−t)+η(z(T)−z(t)). (11)

In the next sections, we will compare the final assets given by Eq. (9) with the final
liabilities given by Eq. (11).

3 Probability of Default

A first interesting question is to look at the probability of default at maturity without
any extra resource (i.e. the risk to have not enough assets at maturity to pay the
required pension benefit). In particular we can consider this probability as a function
of the residual time T − t. This probability computed at time t (t = 0,1, ..,T −1) is
given by:

ϕ(t,T ) = P(At(T ) < Lt(T )) = P(Y (t,T ) < M) (12)

where

Y (t,T ) = σ(w(T )−w(t))−η(z(T )− z(t)) = N(0, σ̄2(T − t))

σ̄2 = σ2 +η2 −2ρση

M = (r−δ +
σ2

2
− η2

2
)(T − t)− ln(1+β ).

(13)
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So finally the probability of default at maturity depends on the residual time and is
given by:

ϕ(t,T ) =Φ(a(T − t))

a(s) =
(r−δ + σ2

2 − η2

2 )
√

s− ln(1−β )√
s

σ̄

(14)

with Φ = distribution function N(0,1).
Let us remark that other rational choices could be used for this multi period re-

quired safety level.

4 Value at Risk Approach

In order to control this probability of default, we could as in Solvency 2 introduce a
solvency level based on a value at risk approach [1, 7, 10].

We will use the following notations:

SC is the solvency capital using a value at risk methodology;
VaR is the Value a Risk;
α(N) is a chosen safety level for a horizon of N years (for instance 99.5% on one
year in Solvency 2).

For this safety level we can choice the following value based on yearly independent
default probabilities (probabilities of default of (1−α) independently each year):

αN = αN . (15)

We will assume that the solvency capital is invested in the reference investment
fund; so we can define this solvency capital SC(t,T ) at time t (t = 0,1, ..,T −1) for
the investment and inflation risks between time t and time T as solution of:

P{At(T )+SC(t,T )
At(T )
At(t)

< Lt(T )} = 1−αT−t . (16)

Using (9) and (11), this condition becomes:

P{tbS(t)(1+β )+SC(t,T )eδ−
σ2
2 (T−t)+σw(T )−w(t) < tbS(t)eμ−

η2
2 (T−t)+η(z(T )−z(t))}

= 1−αT−t .

After direct computation, we obtain the following value for the solvency capital:

SC(t,T ) = tbS(t){e(μ−δ )(T−t)+zα(T−t)σ
√

T−t+ (σ2−η2)(T−t)
2 − e(μ−r)(T−t)(1+β )}

(17)
where zβ = β is the quantile of the normal distribution on such that Φ(zβ ) = β . We
can express the solvency capital as a percentage of the actuarial liability AL given
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by Eq. (6) (solvency level in percent):

SC%(t,T ) =
SC(t,T )

ALt
=

1
1+β

e−(δ−r)(T−t)+zα(T−t)σ̄
√

T−t+ (σ2−η2)(T−t)
2 −1. (18)

We can observe that this relative level does not depend on the average salary in-
crease.
In particular if we look at a one year risk (as in Solvency 2), we get:

SC%(0,1) =
SC(0,1)

AL0
=

1
1+β

e−(δ−r)+zα σ̄+ (σ2−η2)
2 −1.

5 Introduction of the Longevity Risk

Until now, two risk factors have been considered: investment and inflation. How-
ever, another risk source has to be introduced to outline a more complete risk model
for pension plans: longevity. In this paper, since we are dealing with the case of pay-
ment of a lump sum at retirement and not a pension annuity, the pension provider
has to evaluate just the probability that the affiliate dies before retirement, ignoring
his remaining lifetime afterwards. In order to take into account this case, the formu-
lae developed in the previous sections have to be modified as follows. First of all,
normal cost and actuarial liabilities becomes:

NCt = bS(t)(1+β )e(μ−r)(T−t)
T−t px+t (19)

ALt = (t +1)bS(t)(1+β )e(μ−r)(T−t)
T−t px+t (20)

where T−t px+t is the probability at age x to survive until T , calculated according to an
a priori valuation mortality table, used by pension provider to estimate the actuarial
liabilities. Longevity risk arises when the real ex-post survival probabilities differs
from the a priori ones.

Let T−t p̃x+t be the real survival probability; the liability at maturity seen from
time t becomes:

Lt(T ) = tbS(t)eμ−
η2
2 (T−t)+η(z(T)−z(t))

T−t p̃x+t . (21)

Therefore, the probability of default computed at time t (t = 0,1, ..,T −1) is given
by:

ϕ(t,T ) = P(At(T ) < Lt(T )) = P(Y (t,T ) < M)
M = (r−δ + σ2

2 − η2

2 )(T − t)− ln(1+β )+ ln( T−t p̃x+t

T−t px+t
)

(22)

and Y/t,T ) is computed according to Eq. (13).
So finally as in the previous section the probability of default at maturity depends

mainly on the residual time and is given by:

ϕ(t,T ) =Φ(
(r−δ + σ2

2 − η2

2 )(T − t)− ln(1+β )+ ln( T−t p̃x+t

T−t px+t
)

σ̄
√

T − t
). (23)
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After direct computation, we obtain the following value for the solvency capital:

SC%(0,1) =
SC(0,1)

AL0
=

1
1+β

e−(δ−r)+zα σ̄+ (σ2−η2)
2

T−t p̃x+t

T−t px+t
−1. (24)

The general framework traced can be specified through the introduction of a given
mortality model, as in the case of the well known Gompertz life table, which is based
on the assumption of exponential mortality intensity. For sake of example, valuation
and real life table can be derived as two different Gompertz tables:

T−t px+t = exp(−
T∫

t

μx+sds) = exp(−μx+s
eγ(T−t) −1

γ
)

T−t p̃x+t = exp(−
T∫

t

μ̃x+sds) = exp(−μ̃x+s
eκ(T−t) −1

κ
).

Under this assumption, equations (23) and (24) are transformed into (25) and (26):

ϕ(t,T ) = Φ(
(r−δ + σ2

2 − η2

2 )(T − t)− ln(1+β )+μx+s
eγ(T−t)−1

γ − μ̃x+s
eκ(T−t)−1

κ

σ̄
√

T − t
)

(25)
SC%(0,1) = SC(0,1)

AL0
=

1
1+β e−(δ−r)(T−t)+zα σ̄

√
T−t+ (σ2−η2)(T−t)

2 eμx+s
eγ(T−t)−1

γ −μ̃x+s
eκ(T−t)−1

κ −1.
(26)

6 Numerical Example

In this section, we carry out an applicative analysis, in which we compute the de-
scribed quantities under given scenarios, in order to highlight how the solvency posi-
tion of a DB changes during the time. To this aim, we have set the following financial
parameters:

risk free rate r = 2%

mean return of the fund δ = 6%
volatility of the fund σ = 10%
average increase of salary μ = 5%
volatility of the salary η = 5%
correlation ρ = 50%
no safety loading is considered β = 0

With respect to the demographic assumptions, we have assumed that the affiliate
subscribes the pension plan at 35 years and the retirement age is 65. The valua-
tion table used is the Italian male mortality table of the year 2006 downloaded from
the Human Mortality Database, from which the values are derived. We have imple-
mented the model without considering mortality and then with the introduction of
mortality risk through two different ex post mortality tables. In the first case (a), we
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have considered that the force of mortality in the real table is smaller than the a pri-
ori mortality to take into account the effects of survival improvements. In the second
case (b) we have considered the opposite situation. Under the scenario a) and b) the
mortality tables are derived modifying the a priori mortality intensity according to
the following assumptions:

a) μ̃ ′
x+t = μx+t(1−Δ t);

b) μ̃ ′′
x+t = μx+t(1+Δ t) with Δ = 2%.

Both the valuation table and the real tables are fitted to the Gompertz law, producing
the following parameters:

γ = 0.004768 for the valuation table;
κ ′ = 0.003038 for the real table under the assumption a);
κ ′′ = 0.005512 for the real table under the assumption b).

Figure 1 shows the probability of default as a function of the residual time T −t under
three different hypothesis: no mortality (Eqs. (12)–(14)), survival improvements (a)
and survival decreasing (b) (Eq. (23)):

We can see clearly a time effect: for short residual time to maturity this probability
is quite high but it decreases rapidly for long residual time. Moreover, the longevity
risk overdraws the time effect: in the case of survival improvements the probability
of default is higher than that calculated ignoring the mortality and decreases more
rapidly during the time. On the contrary, in the case of survival decreasing the prob-
ability of default is lower than that calculated ignoring the mortality and decreases
less rapidly during the time.

In a second step of our application, we have computed the solvency capital under
the same assumptions drawn so far. In addition, we have set:

Fig. 1 Probability of default
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Fig. 2 Solvency capital

safety level on one year: α = 99.5%;
safety level on N years: αN = αN .

Figure 2 shows then the evolution of the solvency level in percent as a function
of the residual time T − t. Negative values for the SCR correspond to cases where
no additional solvency is needed.

We can also observe as in Fig. 1 a time effect. As expected, in face of an increase
of the probability of default in the case of survival improvements the solvency cap-
ital increases too; on the contrary, in the case of survival decreasing the actuarial
liabilities decreases and a lower solvency capital is needed.

7 Final Remarks

The solvency analysis is an important issue in the risk valuation of a pension plan..
A similar approach as in Solvency 2 turns out to be necessary also for pension funds,
but must take into account a long term aspect and a limited need for liquidity.

In this paper we have highlighted the importance to extend solvency evaluation
to pension funds through an integrated analysis of the risks that have influence on
pension assets and liabilities. In this context, the determination of the solvency cap-
ital has been influenced by the way to measure the underlying risks and to inte-
grate time in the process; this time aspect is particularly important for long term
liabilities.

Further works are planned to extend the framework outlined in this paper to more
general cases, as the generalization to stochastic longevity models, the introduction
of pension annuity rather than a lump sum paid at retirement and the extension of
longevity risk to the decumulation phase.
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Stochastic Actuarial Valuations
in Double-Indexed Pension Annuity Assessment

Emilia Di Lorenzo, Albina Orlando and Marilena Sibillo

Abstract The paper deals with the performance analysis of a portfolio of partici-
pating survival-indexed annuities within a riskiness context, set out by the adverse
deviations of the demographic and financial bases. The Authors deepen the inter-
actions between the risk due the random fluctuations of the dynamic of the capital
returns and the risk due to the systematic random fluctuations of the lifetime evolu-
tionary trend.

1 Introduction

Solvency and financial health are two basic aims an insurance company should pur-
sue within Solvency II regulatory framework. The guidelines continuously proposed
by the involved Institutions in refined and clarifier versions stabilize the relevance
of the capital amount to be allocated for achieving safe financial positions. Prod-
uct choices, in particular, together with investment decisions, can be considered a
good flywheel to harness, in a context in which several stochastic variables impact
on the financial values. Our interest in this paper concerns the life annuity section in
the particular case of participating life annuity contracts, i.e. contracts with interest
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rate guarantee with a contextual right of participation to the firm profit. Nowdays in-
surance/pension sector is called to face significant strategic challenges, within com-
petitive scenarios of increasing complexity by virtue of the current socio-economic
context. Regulatory structures, criticalities of welfare systems, growing demand of
products aimed to safeguard for those who ask for investment instruments and pos-
sibilities fitting an elderly age, complexity of the new macroeconomic and demo-
graphic scenarios, constitute the most relevant risk drivers, but, at the same time, a
prospective driving force for the economic growth. With regard to annuity products,
we will focus on the impact of financial variables (return on investment of premi-
ums/contributions and reserves) and the systematic component of demographic risk
arising from overall betterment of the survival trend. Aiming to a reasonable bal-
ancing between insurer’s profitability goals and marketing viewpoint, we focus on
products that, on the one hand, allow the insurer to transfer risk and, on the other
hand, provide attractive features for policyholders. Several authors payd attention
on annuity products variously “survival indexed”, this allowing longevity risk shar-
ing (see [6,14,15]); in particular we focus on the proposal put forward in [6] and later
extended in [7]), where the contract involves a profit sharing system for annuitants.
With reference to the afore mentioned policies, we will consider a life annuity con-
tract in which benefits are linked to the financial and demographic dynamics. The
paper investigates, in particular, the portfolio performance by analyzing the trend
of balance sheet indexes, which capture the interactions between the financial risk
drivers – resulting from the random fluctuations of the return on the investments
made by the insurer – and the demographic risk drivers- originated, from a “micro”
point of view, with mortality accidental fluctuations and, from a “macro” point of
view, with the systematic impact of longevity risk.

2 An Actuarial Approach in a Variable Annuity Profit Analysis

In the life annuity field, the high volatility of the financial markets, together with the
bettering in the human expected lifetime, produces the need of offering new flexible
products able to match the “pure” financial ones, contextually guaranteeing a correct
covering action to not perverting the very basic characteristic of an insurance prod-
uct. The new contractual architectures have to avoid the loss of competitive factors,
safeguarding the company solvability and saving its profit aims. For solving this
elaborate mosaic and inspecting the product foreseeable evolution in time, a good
tool can be the income profitability analysis. Our paper is aimed to the inspection
inside the actuarial income trend for addressing management choices, in particular
in the specific architecture of complex products as the one we are deepening here.
This study needs a careful reflection on the risk drivers’ assumptions in light of their
stochastic nature. A life annuity indexed on both the main risk drivers, fundamental
in the forward perspective, proposes some peculiar parameter assumptions strongly
affecting the income trend. Among the others, we recall the participation quota, the
contract cap and floor for the indexes, the threshold for the period financial result
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depending on the administrative expenses assigned to each contract, under which
the insurer will distribute the bonus. The stochastic hypotheses are particularly cru-
cial in this assessment, considering moreover the very long contract durations char-
acterizing these kinds of life contracts. Nowadays the significance of participating
life annuities is growing, often being inserted in a voluntary life annuity demand
as supplementary pension or pension fund: the demand and the supply are increas-
ing especially in economic scenarios like in many western countries, affected by
the financial crisis and for this reason engaged in social security system restrictions.
Among the varied different profitability measures, in the paper we will consider the
Actuarial Return on Equity (AROE). As the ROE, it is referred to one year time in-
terval, often coinciding with the balance sheet dates. The AROE has the form of a
ratio of profit to equity as in the following formula (3), this last being referred not
to the Company surplus but to that specific part of it supporting the product or the
line of products under consideration. Using AROE in its meaning of risk measure,
basic is how the equity at the denominator is valued (cf. [8]). As well as profits at
the numerator, the choice of the quantity at the denominator implies different inter-
pretations and meanings of the ratio. We will put at the denominator of the AROE
ratio the sum built up by means of the premiums collected in the considered business
line, in this specific case the capital arising from the premiums paid by the insureds
and invested by the insurer, less the benefit paid in the period; the AROE value at
time t will have at the denominator this sum valued at the beginning of the t-th year
in a forward perspective, in the sense that the insurer information flow is available
at time 0. The profits at the numerator and the actuarial “equity” at the denominator
are both results of stochastic valuations. Inside them we can recognize prospective
and retrospective financial operations, stochastic for the financial assumptions on
them. These valuations concern amounts that are stochastic also in the number of
payments, being random the insured’s survival at the payment times.

3 A Class of Variable Annuities

Our interest concerns the life annuity section in the particular case of participating
life annuity contracts, i.e. contracts with interest rate guarantee with a contextual
right of participation to the firm profit. The usual architecture of these contracts is es-
tablished on the basis of the financial risk control, being the financial context in very
long time periods the pre-eminent risk driver the insurer wants to focus. Neverthe-
less we have to notice that the long term risks connected to this kind of obligations
are not completely drained with the financial risk control, being very working the
systematic demographic betterment in mortality. Now we explore the construction
of life annuity with profit participation appropriately survival-indexed, obtaining a
product double indexed on both the financial and demographic risk driver.
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The survival-linking procedure is fulfilled (cf. [6]) multiplying each installment
bt by the scale factor

SFx,t = t ppro j
x

t pobs
x

, (1)

where t ppro j
x is the survival probability for an insured aged x to reach the age x + t,

inferable from an opportune projected survival table and used as the technical base,
whilst t pobs

x is the analogous survival probability the insurer observes year by year.
Always following ( [6]), minimum and maximum thresholds for the SFx,t’s can

be set in order to control too much marked projection degrees, hence:

b̃t = btmax{min{SFx,t ,SFmax},SFmin} (2)

where bt is the basic installment, SFmax and SFmin are properly determined evaluating
cap and floor within a suitable marketing viewpoint. On the other side the profit
sharing process, involving the differences between income, capital gains and losses
(cf. [3, 7]), is achieved by means of an embedded option (cf. [4]) such that, if the
period financial result Rt+1 at the end of the interval [t, t +1], net of the administrative
expenses (γ) is positive, an additional bonus equal to a percentage α of (Rt+1 − γ)
is immediately paid to the annuitants or added to the future installments.

In the following we develop the performance analysis of a portfolio of partici-
pating survival-indexed annuities within a riskiness context set out by the adverse
deviations of the demographic and financial bases, deepening the interactions be-
tween the risk due the random fluctuations of the dynamic of the capital returns and
the risk due to the systematic random fluctuations of the lifetime evolutionary trend.
In particular we focus on deferred life annuities (say T the deferment period), pre-
mium payment until the time τ , annual installments at the beginning of each year,
prospective additional bonus immediately paid.

We consider the ratio (say Actuarial Return on Equity, AROE therein after) of
profit to the surplus the business provides, that is:

AROE =
Rt+1 −α(Rt+1 − γ)+
∑∞j=0 Xjvsign( j−t)(t, j)

(3)

with
Xj = (Pj+11( j≤Kx<T ) − b̃ j)sign(t − j) (4)

and
Rt+1 = (Vt +Pt+11(t+1<τ))v

−1(t, t +1)− (b̃t+1 +Vt+1)1(K(x)>t+1) (5)

in which Vt and Pt are respectively the mathematical reserve and the premium at
time t, 1h is the indicator function assuming value 1 if the event h happens, 0 other-
wise, v(t,s) is the present value in t of 1 due in s. Within a strategic decision context,
knowing the evolution of the AROE stochastic process suggests, for instance, how to
address investment policies, how to choose the participating level, how to set bound-
aries to the indexing system. In the next section we show the explanatory potential of
the AROE process by means of a quantile analysis within a managerial perspective.
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4 Numerical Illustrations

In this section we will present our assumptions for implementing the AROE stochas-
tic simulation procedure applied to the double indexed life annuity we present in the
paper. From the financial point of view, as we pointed out previously, in the val-
uation process two different directions, prospective and retrospective, are kept on
and this circumstance brings towards precise choices of two different financial pro-
cesses. The distinct description of the two interest rate dynamics comes from the
different perception of the randomness if thinking in a prospective or in a retrospec-
tive point of view. It is coherent to assume the uncertainty markedly linked to the
market volatility in the retrospective operations, partially less controllable by the
insurer than in the accumulation process involved in the prospective operations, in
which the prudential character of the insurer’s investments is much more intensive.
For these reasons we will describe the evolution in time of the interest rate structure
in the discounting valuations by means of the Hull and White process (HW from here
on), arbitrage free and made consistently with the current financial market structure
within a fair valuation perspective.

It is governed by the following stochastic differential equation:

dr = (θ(t)−αr)dt +σdz, (6)

where θ(t) is chosen to match the current term structure of interest rates and z is
a Wiener process (for more details cf. [5]). We have implemented the HW model
using the efficient methods proposed in [10] approximating the term structure by a
tree-building simulation procedure [11,12], more suitable of the closed forms, even
if available, in cases of complex payoffs (cf. [5]). On the other hand the accumulation
process can well be described by the Vasicek mean reversion model. As known, the
basic assumption is that the instantaneous spot rate follows the process with constant
coefficients under the statistical measure used for historical estimation described by
the SDE:

dr = α(μ− r)dt +σdWt (7)

with α , μ and σ positive constants and Wt a standard Wiener process.
Under the risk neutral measure used for valuation and pricing we assume the

Vasicek process parametrized using one more parameter in the drift modeling, the
market price of risk (cf. [2]). To calibrate the Vasicek and the HW models we refer
to the monthly yield over the period January 2002–January 2012, on a basket of
Treasury Italian bonds listed on the electronic bond and government market and
having a residual greater than one year.

The demographic survival system is designed inside the contractual structure by
means of two different assumptions, one for the projected probabilities t ppro j

x at the
numerator of the index SFx,t in (1), and the other for the observed survival probabil-
ities t pobs

x at the denominator. In the following numerical application, the projected
survival probabilities are got as in [5] in the case of a male population while the
observed ones are those in the survival table SIM2006.
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Being the AROE a stochastic variable, we resort to a simulation procedure obtain-
ing the empirical distribution of AROE values for each t. The simulation procedure
was implemented obtaining 10000 AROE values for each t: then the expected val-
ues and the quantiles q(0.99) and q(0.95) were obtained. Figure 1 shows, in the
first subplot, the maximum and minimum values obtained for each t by the simula-
tion procedure and the expected value calculated as a mean of the 10000 simulated
values. In the second subplot of Fig. 1, the quantile values for each t and for each
confidence level considered are shown together with the expected values. The results
refere to a participation quota (see formula (3)) α = 20%.

We observe a general decreasing behavior of the AROE index with time, more
marked in the first half of the policy duration, by which the contract performance
can be measured. Moreover a considerable lowering of the AROE values happens
when the participating quota moves from 20% to 80% (see Tables 1 and 2).

In particular, within a managerial perspective, (cf. also [4]) the quantile analy-
sis allow to assess a sort of break-even scenario (depending on the investment pol-
icy, the choice of the participating level and in general all the strategic variables)
which presents the “worst” AROE acceptable in compliance with insurer’s opinion
expressed by means of a certain confidence level.

Fig. 1 Simulation procedure results: α = 20%
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Table 1 Expected AROE and quantiles α = 0.2

t E[AROE]% q(.95) q(0.99)

1 2.1526 1.9265 1.8029
5 1.8141 1.6448 1.5336

10 1.5852 1.4530 1.3737
20 1.3984 1.3008 1.2466
30 1.3362 1.2564 1.2082
40 1.3206 1.2389 1.1957
45 1.3138 1.2332 1.1931

Table 2 Expected AROE and quantiles α = 0.8

t E[AROE] q(.95) q(0.99)

1 0.6242 0.5979 0.5119
5 0.5066 0.4853 0.4246
10 0.4277 0.4112 0.3672
20 0.3623 0.3515 0.3188
30 0.3394 0.3312 0.3039
40 0.3324 0.3246 0.2991
45 0.3299 0.3224 0.2973
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Testing for Normality When the Sampled
Distribution Is Extended Skew-Normal

Cinzia Franceschini and Nicola Loperfido

Abstract The extended skew-normal (ESN) distribution includes the normal one
as a special case. Unfortunately, its information matrix is singular under normal-
ity, thus preventing application of standard likelihood-based methods for testing the
null hypothesis of normality. The paper shows that for univariate ESN distributions
the sample skewness provides the locally most powerful test for normality among
the location and scale invariant ones. The generalization to multivariate ESN distri-
butions considers projections of the data onto the direction corresponding to maxi-
mal skewness. Related computational problems simplifies for the multivariate ESN
distribution, where the direction maximizing skewness is shown to have a simple
parametric interpretation.

1 Introduction

The multivariate extended skew-normal distribution (ESN, hereafter) was intro-
duced by [12] and later independently rediscovered by [4, 7, 10]. Its pdf is

f (z;ξ ,Ω ,η ,τ) =
φp (z;ξ ,Ω)
Φ (τ)

·Φ
{
τ
√

1+ηTΩ−1η+ηT (z−ξ )
}

, (1)

where z,ξ ,η ∈ℜd ,τ ∈ℜ Ω ∈ℜd ×ℜd , Ω > O, Φ (·) is the cdf of a standard nor-
mal distribution and φp (z;ξ ,Ω) is the pdf of a d-dimensional normal distribution
with mean ξ and variance Ω . The distribution of z is said to be ESN with location
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parameter ξ , scale parameter Ω , nonnormality parameter η and truncation parame-
ter τ , that is z ∼ ESN (ξ ,Ω ,η ,τ) . This parameterization, with minor modifications,
was used in [13] for inferential purposes and this paper gives further motivations for
its use. Other parameterizations appear in [1, 2, 7, 10, 19]. The multivariate normal
and multivariate skew-normal [11] distributions are ESN with τ = 0 and η = 0d ,
respectively. [8, 9] review theoretical properties of the ESN.

The ESN appears in several areas of statistical theory: Bayesian statistics [27],
regression analysis [14] and graphical models [13]. It also appears in several areas
of applied statistics: environmetrics, medical statistics, econometrics and finance.
Environmental applications of the ESN include modelling data from monitoring sta-
tions aimed at finding large values of pollutants [19] and uncertainty analysis related
to the economics of climate change control [30]. In medical statistics, the ESN has
been used as a predictive distribution for cardiopulmonar functionality [15] and for
visual acuity [20]. Financial applications mainly deal with portfolio selection [2, 4]
and the market model, which relates asset returns to the return on the market port-
folio [1]. In econometrics, the ESN is known for its connection with bias modelling
in the Heckman’s model [16] and with stochastic frontier analysis [22].

Unfortunately, the information matrix of the ESN is singular when η = 0d , i.e.
when it is a normal distribution. This prevents straightforward application of stan-
dard likelihood-based methods to test the null hypothesis of normality. The problem
is well-known for the skew-normal case and has been successfully dealt with via the
centred parametrization, which could be useful in the ESN case, too, but satisfactory
theoretical results for this distribution appear to be difficult to obtain [6]. Problems
with the information matrix of the ESN are made worse by the truncation parameter
τ , which indexes the distribution only when it is not normal. As a direct consequence
of the above arguments the rank of the information matrix is at least two less than
the full, thus preventing application of results in [28].

An alternative approach could be based on the sample skewness, since it pro-
vides the locally most powerful test for normality among the location and scale in-
variant ones, when the underlying distribution is assumed to be univariate skew-
normal [29]. [23] proposed a multivariate generalization based on data projections
onto directions maximizing skewness. The test has been criticized for involving pro-
hibitive computational work [5] and because calculation of the corresponding pop-
ulation values seemed impossible [25]. Both problems vanish in the SN case [21].
In the first place, the direction maximizing skewness has a simple parametric inter-
pretation, and hence can be estimated either by maximum likelihood or method of
moments. In the second place, the population values of skewness indices proposed
by [23, 24] coincide and have a simple analytical form.

The paper generalizes results in [21,29] to univariate and multivariate ESN distri-
butions, respectively. It is structured as follows. Section 2 shows that sample skew-
ness provides the locally most powerful test for normality among the location and
scale invariant ones, under the assumption of extended skew-normality. Section 3
shows that the nonnormality parameter η identifies the linear functions of ESN ran-
dom vector with maximal skewness, and discusses the related inferential implica-
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tions. Sections 4 and 5 contain a numerical example and some concluding remarks,
respectively.

2 The Univariate Case

Let X1,. . . , Xn be a random sample from an univariate extended skew-normal distri-
bution with nonnegative skewness:

f (z;ξ ,ω ,η ,τ) =
1
ω
φ
(

z−ξ
ω

)
·
Φ
{
τ
√

1+η2/ω2 +η (z−ξ )
}

Φ (τ)
, (2)

where z,ξ ,τ ∈ℜ, ω > 0, η ≥ 0 and φ denotes the pdf of a standard normal distri-
bution. Moreover, let X , S2 and G1 be the sample mean, the sample variance and the
sample skewness, respectively:

X =
1
n∑

N
i=1Xi, S2 =

1
n−1∑

N
i=1

(
Xi −X

)2
, G1 =

1
n

N

∑
i=1

(
Xi −X

S

)3

. (3)

Interest lies in the most powerful test of given size for H0 : η = 0 against H0 : 0 <
η < ε , where ε is a small enough positive constant, based on statistics which do not
depend on location and scale changes, that is functions of

X1 −X
S

, . . . ,
Xn −X

S
. (4)

The following theorem shows that such tests are characterized by rejection re-
gions of the form R = {(X1, . . . ,Xn) : G1 > c} , where c is a suitably chosen constant.

Theorem 1 Let X1,. . . , Xn be a random sample from an univariate extended skew-
normal distribution with nonnegative skewness. Then the locally most powerful lo-
cation and scale invariant test for normality rejects the null hypothesis when the
sample skewness exceeds a given threshold value.

Proof Without loss of generality it can be assumed that the location and scale param-
eters of the sampled distribution are zero and one, respectively. Let ξi (x) and m(x)
denote the i-th derivative of logΦ (x) and the inverted Mill’s ratio, respectively:

ξi (x) =
∂ i logΦ (x)

∂ ix
; m(x) =

φ (x)
Φ (x)

. (5)

Let also denote by U standard normal truncated from below at −τ : U = Y |Y > −τ ,
where Y is standard normal. Straightforward calculus techniques lead to the follow-
ing equations:

μ = E (U) = ξ1 (τ) , E
{

(U −μ)2
}

= 1−ξ2 (τ) , E
{

(U −μ)3
}

= ξ3 (τ) . (6)
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Let first prove that ξ3 (x) is a strictly positive function. The function ξ1 (x) =
m(x) is strictly decreasing, since it is well-known that its first derivative ξ2 (x) =
−m(x){x+m(x)} is strictly negative. Equivalently, −m(x) is strictly increas-
ing. The function x + m(x) is strictly increasing, too, since its first derivative
1−m(x){x+m(x)} is the variance of U . The product of two increasing functions
is also increasing, so that the function ξ2 (x) =−m(x){x+m(x)} is strictly increas-
ing. Equivalently, its first derivative ξ3 (x) is a strictly positive function, and this
completes the first part of the proof.

In order to complete the proof, recall the following representation theorem:

X =
Z√

1+η2
+

ηU√
1+η2

∼ ESN1 (0,1,η ,τ) , (7)

where Z is standard normal and independent of independent of U [17] or, equiva-
lently [27],

X |U = u ∼ N

(
ηu√
1+η2

,
1

1+η2

)
. (8)

Hence X ∼ ESN1 (0,1,η ,τ) can be represented as a location mixture of normal dis-
tributions, with a truncated normal as mixing distribution. The third cumulant of a
standard normal distribution truncated from below at −τ is always positive, being
equal to ξ3 (τ). [31] show that these are sufficient conditions for the sample skew-
ness to give the locally most powerful location and scale invariant test for normality
against one-sided alternatives.

The above result generalizes the one in [29], who proved local optimality of the
test only for τ = 0, i.e. for the skew-normal distribution. Surprisingly enough, the
optimality property of the test statistic is unaffected by the parameter τ , even if its
sampling distribution under the alternative hypothesis does.

3 The Multivariate Case

We shall now consider the problem of testing multivariate normality when the sam-
pled distribution is assumed to be ESN. One possible way for doing it is evaluating
skewness of all linear combinations of the variables, and reject the normality hy-
pothesis if at least one of them is too high in absolute value. This argument, based
on the union-intersection approach, inspired [23] to introduce the test statistic

max
c∈ℜd

0

{
1
n∑

n
i=1

(
cT xi − cT x√

cT Sc

)3
}2

(9)

where ℜd
0 is the set of all real, nonnull, d-dimensional vectors, while x, S and X

denote the sample mean, the sample variance and the data matrix X whose rows
are the vectors xT

1 , . . . ,xT
n . Closure properties of the ESN distribution under linear
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transformations and optimality properties of sample skewness for the univariate ESN
encourage the use of the above statistic for testing multivariate normality within the
ESN class.

Its analogue for a random vector z with expectation μ , nonsingular variance Σ ,
and finite third-order moments is:

max
c∈ℜd

0

E2
[{

cT (x−μ)
}3
]

(cTΣc)3 . (10)

[25] argued that difficulties in evaluating the above measure for well-known
parametric families of multivariate distributions posed a severe limitation to its use.
To the best of the author’s knowledge, the skew-normal distribution, i.e. ESN with
null truncation parameter, is the only known example of statistical model for which
Malkovich and Afifi’s skewness has a straightforward parametric interpretation: the
direction maximizing skewness is proportional to the nonnormality parameter [21].
Theorem 2 in this section generalizes the result to all multivariate ESN distributions,
regardless of the truncation parameter’s value.

Another criticism to Malkovich and Afifi’s skewness came from [5], who pointed
out the involved computational difficulties. Indeed, the method proposed by [23] for
computing their statistic appear to be based more heuristics rather than on a formal
theory. Theorem 2 also suggests an approach based on standard maximum likelihood
estimation rather than maximization of a d−variate cubic form subject to quadratic
constraints. The maximum likelihood estimate for the shape parameter converges
to the shape parameter itself, by well-known asymptotic arguments. Moreover, the
direction maximizing sample skewness converges to the direction maximizing pop-
ulation’s skewness, when it is unique [21], as it happens in the ESN case. Hence
the direction maximizing sample skewness and the direction of the maximum likeli-
hood estimate for the shape parameter will converge to each other. From the practical
point of view, when the sample size is large enough, the former direction can be sat-
isfactorily approximated by the latter one. Technical aspects of maximum likelihood
estimation for the multivariate ESN are dealt with in [13].

Theorem 2 The vector c ∈ ℜd, d > 1, maximizing the skewness of cT x, where
x ∼ ESN (ξ ,Ω ,η ,τ) and η 	= 0d, is proportional to the nonnormality parameter η .

Proof First recall some results regarding cumulants of an extended skew-normal
random vector x ∼ ESN (ξ ,Ω ,η ,τ) [2]:

μ = ξ +δζ1 (τ) , Σ =Ω +ζ2 (τ)δδT , κ3 (x) = ζ3 (τ)δ ⊗δ ⊗δT , (11)

where ζi (τ) = ∂ i logΦ (τ)/∂ iτ , δ =Ωη/
√

1+ηTΩη and μ , Σ , κ3 (x) denote the
mean, the variance and the third cumulant of x, respectively. The extended skew-
normal class is closed under affine transformations, so that the distribution of the
standardized random vector z = Σ−1/2 (x−μ) is extended skew-normal, too: z ∼
ESN (ξz,Ωz,ηz,τ), with δz =Ωzηz/

√
1+ηT

z Ωzηz = Σ−1/2δ .
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Let λ and λz be unit length vectors maximizing the skewness of a linear combi-
nation of components of x and z, respectively:

λ = argmaxc∈C β1
(
cT x

)
; λz = argmaxc∈C β1

(
cT z

)
, (12)

where C is the set of d-dimensional random vectors of unit length and β1 (Z) is the
squared skewness of the random variable Z. It follows that λ ∝ Σ−1/2λz. Definitions
of C and z imply that

β1
(
cT z

)
= E2

{(
cT z

)3
}

c ∈ C . (13)

Apply now linear properties of cumulants [26, p. 32] to obtain

E2
{(

cT z
)3
}

=
{

(c⊗ c)T κ3 (z)c
}2

, (14)

where κ3 (z) = ζ3 (τ)δ ⊗δ ⊗δT is the third cumulant of z. Then

E2
{(

cT z
)3
}

= ζ 2
3 (τ)

(
cTδ

)6
(15)

by ordinary properties of the Kronecker product. Hence λz is proportional to δz or,
equivalently, λ is proportional to Σ−1δ . Basic formulae for matrix inversion lead to

λ ∝ Σ−1δ =

{
Ω−1 − Ω−1δδTΩ−1

ζ−1
3 (τ)+δTΩ−1δ

}
and to (16)

δ =Ω−1δ

{
1− δTΩ−1δ

ζ−1
3 (τ)+δTΩ−1δ

}
. (17)

Since η =Ω−1δ/
√

1−δTΩδ , the vector maximizing the skewness of x is propor-
tional to the parameter η , and this completes the proof.

4 A Numerical Example

In this section we shall use projections which maximize skewness to highlight in-
teresting data features. The approach is exploratory in nature, and differs from the
inferential apprach of the previous sections. Skewness maximization provides a valid
criterion for projection pursuit [18], which has never been applied to financial data,
to the best of our knowledge.

Each observation is the closing price of an European financial market, as recorded
by MSCI Inc., a leading provider of investment decision support tools. The included
countries are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Eng-
land, Ireland, Italy, Norway, Holland, Portugal, Spain, Sweden, Switzerland. The
first and last closing prices were recorderd during June 24, 2004 and June 23, 2008,
respectively. Data are arranged in a matrix where each row corresponds to a day and
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each column to a country. Hence the size of the data matrix is 1305×16, which is
quite large.

Table 1 reports the skewnesses and the kurtoses for each country. All prices are
mildly skewed: their third standardized moments are never greater than 0.688 and
exceed 0.4 in Finland, Germany and Holland only. Also, all prices are platykurtic:
their fourth standardized moments are never greater than 2.33 and exceed 2.00 in
Finland and England only. Both features are illustrated in the box plots of Fig. 1:
despite obvious differences in location and spread, all box plots suggest mild skew-

Table 1 Skewness, kurtosis and weight in the linear combination of each country

Country Skewness Kurtosis Weight

Austria −0.1905 1.7816 0.0500
Belgium −0.1336 1.9531 −0.1210
Denmark 0.3671 1.7606 0.0536
Finland 0.6879 2.2944 −0.3675
France 0.1224 1.7403 0.0161
Germany 0.4500 1.8817 0.1291
Greece 0.0992 1.8210 −0.4474
England 0.2091 2.3252 −0.3091
Ireland −0.1451 1.9206 0.5079
Italy 0.3539 1.7341 −0.0107
Norway 0.2455 1.8896 0.0622
Holland 0.4072 1.9636 0.2464
Portugal 0.3465 1.8087 0.3298
Spain 0.1910 1.9257 −0.0367
Sweden 0.0106 1.5700 0.0321
Switzerland 0.0458 1.9069 −0.3137

Austria Belgium Denmark Finland France Germany Greece England Ireland Italy Norway Holland Portugal Spain Sweden Switzerland
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Fig. 1 Boxplot of stock prices in European countries



166 C. Franceschini and N. Loperfido

300 350 400 450 500 550 600 650 700
0

50

100

150

200

250

Fig. 2 Histogram of Italian Prices

500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250
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ness and absence of ouliers. Histograms of closing prices for different countries are
multimodal and light tailed. We were unable to report all histograms due to space
constraints. However, they are well exemplified by the histograms of Austria (Fig. 3)
and Italy (Fig. 2). Austrian and Italian stock prices are linearly related, as shown in
the scatter plot of Fig. 4. Again, the graph does not suggest the presence of outliers.
Data exhibit a completely different structure when projected onto the direction which
maximizes their skewness. The histogram of the projected data (Fig. 5) is definitely
unimodal, markedly skewed and very heavy tailed. From the economic viewpoint, it
is interesting to notice that the fifty greatest projected value correspond to the latest
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Fig. 5 Histogram of Transformed data

fifty days of the time period under consideration, when Europe began to suffer from
the financial crisis.

5 Concluding Remarks

We have proposed two approaches for testing normality when the sampled distri-
bution is assumed to be ESN. The first approach, recommended in the univariate
case, is motivated by local optimality. The second approach, recommended in the
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multivariate case, is motivated by union-intersection arguments. Both approaches
use some measure of skewness to overcome problems posed by likelihood-based
methods.

Alternatively, multivariate normality can be tested via Mardia’s measure of skew-
ness [24], which presents some advantages over Malkovich and Afifi’s one in the
general case [5, 25]. However, these advantages vanish in the ESN case, as shown
in Sect. 3. Moreover, Malkovich and Afifi’s index has a straightforward application
in terms of projection pursuit, since univariate skewness is a well-known projection
pursuit index [18].

A natural question to ask is whether results in the paper hold for more general
classes of distributions, as the ones discussed in [3]. Simulation studies (not shown
here) suggest that the answer is in the positive, but the problem deserves further
investigation and constitutes a direction for future research.

Acknowledgements The author would like to thank Marc Hallin, Christophe Ley and Davy
Pandevene for their insightful comments on a previous version of the paper.

References

1. Adcock, C.J.: Capital asset pricing for UK stocks under the multivariate skew-normal dis-
tribution. In: Genton, M. G. (ed.) Skew-Elliptical Distributions and Their Applications: A
Journey Beyond Normality, pp. 191–204. Chapman and Hall / CRC, Boca Raton (2004)

2. Adcock, C.J.: Extensions of Stein’s Lemma for the Skew-Normal Distribution. Commu-
nications in Statistics – Theory and Methods 36, 1661–1671 (2007)

3. Adcock, C.J.: Asset pricing and portfolio selection based on the multivariate extended
skew-student-I distribution. Annals of operations research 176, 221–234 (2010)

4. Adcock, C.J., Shutes, K.: Portfolio selection based on the multivariate skew normal dis-
tribution. In: Skulimowski, A. (ed.) Financial modelling (2001)

5. Andrews, D.F., Gnanadesikan, R., Warner, J.L.: Methods for assessing multivariate nor-
mality. In: Krishnaiah, P.R. (ed.) Proc. International Symposisum Multivariate Analy-
sis 3, pp. 95–116. Academic Press, New York (1973)

6. Arellano-Valle, R.B., Azzalini, A.: The centred parametrization for the multivariate
skew-normal distribution. Journal of Multivariate Analysis 99, 1362–1382 (2008)

7. Arnold, B.C., Beaver, R.J.: Hidden truncation models. Sankhya, series A62, 22–35 (2000)
8. Arnold, B.C., Beaver, R.J.: Skewed multivariate models related to hidden truncation

and/or selective reporting (with discussion). Test 11, 7–54 (2002)
9. Arnold, B.C., Beaver, R.J.: Elliptical models subject to hidden truncation or selective

sampling. In: Genton, M.G. (ed.) Skew-Elliptical Distributions and Their Applications:
A Journey Beyond Normality, pp. 101–112. Chapman and Hall / CRC, Boca Raton, FL
(2004)

10. Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew-normal dis-
tributions. Journal of the Royal Statistical Society B 61, 579–602 (1999)

11. Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83,
715–726 (1996)

12. Birnbaum, Z.W.: Effect of linear truncation on a multinormal population. Annals of
Mathematical Statistics 21, 272–279 (1950)



Testing for Normality When the Sampled Distribution Is Extended Skew-Normal 169

13. Capitanio, A., Azzalini, A., Stanghellini, E.: Graphical models for skew-normal variates.
Scandinavian Journal of Statistics 30, 129–144 (2003)

14. Copas, J.B., Li, H.G.: Inference for non-random samples (with discussion). Journal of
the Royal Statistical Society B 59, 55–95 (1997)

15. Crocetta, C., Loperfido, N.: Maximum Likelihood Estimation of Correlation between
Maximal Oxygen Consumption and the Six-Minute Walk Test in Patients with Chronic
Heart Failure. Journal of Applied Statistics 36, 1101–1108 (2009)

16. Heckman, J.J.: Sample selection bias as a specification error. Econometrica 47, 153–161
(1979)

17. Henze, N.: A Probabilistic Representation of the "Skew-Normal" Distribution. Scandi-
navian Journal of Statistics 13, 271–275 (1986)

18. Huber, P.J.: Projection pursuit (with discussion). Annals of Statistics 13, 435–475 (1985)
19. Loperfido, N., Guttorp, P.: Network bias in air quality monitoring design. Environmetrics

19, 661–671 (2008)
20. Loperfido, N.: Modeling Maxima of Longitudinal Contralateral Observations. TEST 17,

370–380 (2008)
21. Loperfido, N.: Canonical Transformations of Skew-Normal Variates. TEST 19, 146–165

(2010)
22. Kumbhakar, S.C., Ghosh, S., McGuckin, J.T.: A generalized production frontier approach

for estimating determinants of inefficiency in US dairy farms. Journal of Business and
Economice Statistics 9, 279–286 (1991)

23. Malkovich, J.F., Afifi, A.A.: On tests for multivariate normality. Journal of the American
Statistical Association 68, 176–179 (1973)

24. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications.
Biometrika 57, 519–530 (1970)

25. Mardia, K.V.: Assessment of Multinormality and the Robustness of Hotelling’s T 2 Test.
Applied Statistics 24, 163–171 (1975)

26. McCullagh, P.: Tensor Methods in Statistics. Chapman and Hall, London UK (1987)
27. O’Hagan, A., Leonard, T.: Bayes estimation subject to uncertainty about parameter con-

straints. Biometrika 63, 201–202 (1976)
28. Rotnitzky, A., Cox, D.R., Bottai, M., Robins, J.: Likelihood-based inference with singular

information matrix. Bernoulli 6, 243–284 (2000)
29. Salvan, A.: Test localmente più potenti tra gli invarianti per la verifica dell’ipotesi di

normalità. In: Atti della XXXIII Riunione Scientifica della Società Italiana di Statistica,
volume II, pp. 173–179, Bari. Società Italiana di Statistica, Cacucci (1986)

30. Sharples, J.J., Pezzey, J.C.V.: Expectations of linear functions with respect to truncated
multinormal distributions-With applications for uncertainty analysis in environmental
modelling. Environmental Modelling and Software 22, 915–923 (2007)

31. Takemura, A., Matsui, M., Kuriki, S.: Skewness and kurtosis as locally best invariant tests
of normality. Technical Report METR 06-47 (2006). Available at http://www.stat.t.u-
tokyo.ac.jp/~takemura/papers/metr200647.pdf



On the RODEO Method for Variable Selection

Francesco Giordano and Maria Lucia Parrella

Abstract In this work, we work around an iterative estimation procedure which
has been proposed recently by Lafferty and Wasserman. The procedure is called
RODEO and can be used to select the relevant covariates of a sparse regression
model. A drawback of the RODEO is that it fails to isolate some relevant covariates,
in particular those which have linear effects on the model, and for such reason it
is suggested to use the RODEO on the residuals of a LASSO. Here we propose a
test which can be integrated to the RODEO procedure in order to fill this gap and
complete the final step of the variable selection procedure. A two-stage procedure is
therefore proposed. The results of a simulation study show a good performance of
the new procedure.

1 Introduction

Estimating a high-dimensional regression function is notoriously difficult, due to the
curse of dimensionality. The local polynomial estimator is particularly affected by
this problem, since it becomes unfeasible when the number of covariates is high.
However, for some applications a sparse condition can be formulated, which as-
sumes that the true regression function only depends on a small number of the total
covariates. In such cases, an estimation procedure which is capable of isolating the
relevant variables can reach rates of convergence which are satisfactory. The aim of
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this work is to propose a two-stage procedure, based on local polynomials, which
can be used to select the relevant covariates of a sparse regression model, avoid-
ing the curse of dimensionality problem. The first stage of the procedure uses the
RODEO method of [1]. This is a greedy regression algorithm which is based on the
innovative idea of using bandwidth selection to make variable selection. A draw-
back of the RODEO procedure is that it fails to isolate some relevant covariates,
in particular those which have a linear effect on the dependent variable. For such
reason, Lafferty and Wasserman suggest to use the RODEO on the residuals of a
LASSO. Anyway, the use of the LASSO can introduce some spurious correlation in
the residuals which can compromise the results of the final variable selection step.
Moreover, the LASSO is crucially dependent on the correct selection of the regular-
ization parameters, which are generally difficult to set, and this is in contrast with
the simplicity of the RODEO method. This is the reason why we append a second
stage to the RODEO procedure, with a relevance test for the identification of the
linearities, which represents the contribution of this work. We present a simulation
study which gives evidence of the empirical performance of our proposal.

This paper is organized as follows. In the following section we introduce the
framework and the basic concepts of the multivariate local polynomial regression. In
the third section, we describe our proposal: the relevance test based on the asymptotic
theory of the local linear estimators. In the last section, we present the results of a
simulation study, showing the oracle properties of the procedure.

2 Description of the Nonparametric Framework

Let (X1,Y1), . . . ,(Xn,Yn) be a set ofRd+1-valued random vectors, where the Yi repre-
sent the dependent variables and the Xi are theRd-valued covariates of the following
nonparametric regression model

Yi = m(Xi)+ εi, i = 1,2, . . . (1)

The function m(Xi) = E(Y |Xi) : Rd → R is the multivariate conditional mean func-
tion. The errors εi are supposed to be normally distributed, with mean equal to zero
and variance equal toσ2. Moreover, they are mutually independent, and independent
from Xi.

Our goal is to estimate the function m(x) = E(Y |X = x). We suppose that the point
of estimation x is not a boundary point. We also assume that the number of covariates
d is high but that only some covariates are relevant. The analysis of this setup raises
the problem of the curse of dimensionality, which usually concerns nonparametric
estimators, but also the problem of variable selection, which is necessary to pursue
dimension reduction. The RODEO method has been recently proposed by [1] to deal
with such kind of setup.

The Local Linear Estimator (LLE) is an appealing nonparametric tool whose
properties have been studied deeply. It corresponds to perform a locally weighted
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least squares fit of a linear function, equal to

m̂(x;H) ≡ α̂(x) = argmin
α,β

n

∑
i=1

{
Yi −α(x)−βT (x)(Xi − x)

}2
KH(Xi − x), (2)

where the function KH(u) = |H|−1K(H−1u) gives the local weights and K(u) is the
Kernel function, a d-variate probability density function. The d×d matrix H repre-
sents the smoothing parameter, called the bandwidth matrix. It controls the variance
of the Kernel function and regulates the amount of local averaging on each dimen-
sion, that is the local smoothness of the regression function. Here and in the follow-
ing, we denote with e j a unit vector, with all zeroes and a one in the j-th position.
Using the matrix notation, the solution of the minimization problem in the (2) can
be written in closed form:

m̂(x;H) = eT
1 (XT WX)−1XT WY, (3)

where

X =

⎛⎜⎜⎝
1 (X1 − x)T

...
...

1 (Xn − x)T

⎞⎟⎟⎠ , W =

⎛⎜⎜⎝
KH(X1 − x) . . . 0

...
. . .

...
0 . . . KH(Xn − x)

⎞⎟⎟⎠ .

The practical implementation of the LLE is not trivial in the multivariate case, since
its good properties are subject to the correct identification of the bandwidth matrix
H. An asymptotically optimal bandwidth usually exists and can be obtained taking
account of a bias-variance trade-off. In order to simplify the analysis, often H is
taken to be of simpler form, such as H = hId or H = diag(h1, . . . ,hd), where Id is the
identity matrix, but even in such cases the estimation of the optimal H is difficult,
because it is computationally cumbersome and because it involves the estimation of
some unknown functionals of the process.

In general, throughout this paper we use the same notation and consider the same
assumptions as in [1]. In particular, we assume that:

• the kernel KH is a product kernel, based on a univariate non-negative bounded
kernel function K, with compact support and zero odd moments; moreover

∫
uuT K(u)du = μ2Id ,

where μ2 	= 0 and Id is the identity matrix of dimension d;
• the sampling density of the covariate Xi is uniform on the unit cube;
• the partial derivatives of the function m(x) satisfy the assumptions (A2) and

(A3) of [1].
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3 The Two-Stage Variable Selection Procedure

The variable selection procedure is based on two stages. In the first stage, the
RODEO method of [1] is used in order to estimate the multivariate bandwidth ma-
trix H∗. The estimated bandwidth matrix has the properties of isolating the irrelevant
variables in a very peculiar way: the bandwidths associated to the irrelevant variables
are set to a high value, so that all the data observed along those directions are used for
the regression and a local constant fit is made. [1] show that the estimated bandwidth
H∗ is of the optimal order, and that the the final nonparametric regression estimator
is rate n−4/(4+r)+ε , which is closed to the optimal one, where r << d is the num-
ber of relevant variables. Unfortunately, also the linearities are classified among the
irrelevant covariates, and for this reason we propose here to add a second stage to
the RODEO procedure, which points to identify such relevant covariates (we denote
these as linear covariates, to distinguish them from the nonlinear covariates, which
are those covariates which have a nonlinear effect on the dependent variable).

3.1 First Stage – Multivariate Bandwidth Estimation

The first stage of the procedure is based on the hard threshold version of the RODEO
method, proposed by [1]. It runs as follows.

1. Select a constant 0 < β < 1 and the initial bandwidth (the constant c0 determines
the width of the grid)

h0 =
c0

log logn
.

2. Initialize the bandwidth matrix, and activate all covariates:

– Ĥ = diag(ĥ1, . . . , ĥd), where ĥ j = h0, j = 1,2, . . . ,d;
– A = {1,2, . . . ,d}.

3. While A is not empty, do for each j ∈ A :

– Compute the statistic Z j (estimated derivative expectation) and its estimated
variance s2

j

Z j =
∂ m̂(x; Ĥ)
∂h j

=
n

∑
i=1

G j(Xi,x, Ĥ)Yi, s2
j = σ̂2

n

∑
i=1

G2
j(Xi,x, Ĥ),

where σ̂2 is any consistent estimator of the variance σ2 (see [1] for the defi-
nition of G j(Xi,x, Ĥ)).

– Compute the threshold λ j = s j
√

2logn.
– If |Z j| > λ j, then set ĥ j ← β ĥ j; otherwise remove j from A .

4. Output the multivariate bandwidth matrix H∗ = diag(ĥ1, . . . , ĥd).
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3.2 Second Stage – Relevance Test Through LP Asymptotics

Let C be the set of variables for which the RODEO method gives a final estimated
bandwidth ĥ j ≡ h0,∀ j ∈C . It can be shown that this set C includes, at the beginning,
the linear covariates and the irrelevant variables. So the set B = C includes the non-
linear covariates. Denote with m′

j(x) the first partial derivative of the function m(x)
with respect to the variable j, that is m′

j(x) = ∂m(x)/∂x j. We use the asymptotic
normality of the local linear partial derivative estimator, shown in [2], in order to
test the hypotheses

H0 : m′
j(x) = 0 vs H1 : m′

j(x) 	= 0

for j ∈ C . The second stage of the variable selection procedure runs as follows:

1. Using the estimated bandwidth matrix H∗, compute

B = (XT WX)−1XT W, V = σ̂2BB−1.

2. Set B = C . Do for each j ∈ C :

– Compute the statistic Nj and its estimated variance v2
j

Nj = eT
j+1m̂(x; Ĥ), v2

j = eT
j+1Ve j+1.

– If |Nj| < v jz1−α/2 then remove j from C , where zα is the α-quantile of the
standard normal density.

3. Output the sets B∪C , including the relevant covariates (nonlinear and linear).

4 Simulation Study

We applied the procedure described in Sect. 3 to several models observing similar
results. Here we present the results concerning the following two models:

Model A: Yi = 5X2
i (8)X2

i (9)+2Xi(10)Xi(1)+Xi(2)Xi(3)Xi(4)+ εi

Model B: Yi = 5X2
i (8)X2

i (9)+2X2
i (10)Xi(1)+ εi

All the models have been derived as variations of the models used in example 1
of [1]. As a consequence, the choice of the parameters is generally oriented on the
choice made in their paper. Here, specifically, we want to highlight the capacity
of our two-stage procedure to identify all the covariates, including those which are
overlooked by the RODEO method, so we insert some linearities in the simulated
models (i.e., covariates 1,2,3,4 and 10 of model A and covariate 1 of model B).

To be consistent with the RODEO setup, for all the models we generate the co-
variates from the uniform density. We consider normal errors with variance equal to
σ2 = 0.5; 200 Monte Carlo replications are generated for each model. We consider
different lengths n = (250,500,750,1000,1250) and dimension d = (10,15,20,25)
of the datasets. The point of estimation is x = (1/2, . . . ,1/2). Figures 1 and 2 show
graphically the results for models A and B respectively, using n = 750 and d = 10,
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Table 1 Mean square error (×100) of the estimator m̂(x;H∗), for different values of n and d

Model A Model B
d = 10 d = 15 d = 20 d = 25 d = 10 d = 15 d = 20 d = 25

n = 250 2.31 2.52 2.60 2.73 4.92 4.95 5.02 5.30
n = 500 1.33 1.44 1.36 1.39 3.08 3.40 3.44 3.30
n = 750 0.86 0.97 0.86 1.05 2.19 2.46 2.15 2.59
n = 1000 0.68 0.75 0.64 0.75 1.84 1.92 1.75 2.04
n = 1250 0.58 0.63 0.61 0.64 1.53 1.71 1.58 1.80

while Table 1 summarizes numerically the performance of the method for increasing
values of n and d.

Model A considers two nonlinear covariates and 5 linear covariates, for a total
of 7 relevant variables among the d regressors. The positions of the relevant covari-
ates have been chosen randomly. Here there are two kinds of linear relationships:
multiplicative (i.e. covariate X(1) is multiplied to X(10)) and additive (i.e. the term
2Xi(10)Xi(1) is added to the others). The two plots on the top of Fig. 1 present the
results of the two stages of the procedure. On the left, the box-plots summarizes
the bandwidths estimated by the RODEO method for each covariate. Note the pe-
culiar behavior of such box-plots, which present almost no variability for n = 750.
The RODEO method correctly identifies the two nonlinear covariates (i.e. X(8) and
X(9)), for which the optimal bandwidth assume a small value, but it does not make
any distinction among the other variables. This is to be expected, since the optimal
bandwidths for such covariates, under the assumptions considered here, is infinitely
large. On the other hand, the plot on the right shows the percentages of rejection of
the null hypothesis,H0 : X( j) is irrelevant. Note that such percentages represent the
size of the test (= 0.05) for the irrelevant variables (i.e., from X(5) to X(7)) and the
power of the test for the relevant variables.

The two plots on the bottom of Fig. 1 summarize the results of the final nonpara-
metric estimations of the function (i.e., the first box-plot on the left in each plot)
and its gradient (i.e., the others 10 box-plots in each plot). Note that the true values
of the partial derivatives are highlighted through dotted horizontal lines, while the
true value of the function m(x) is shown through a solid horizontal line. The only
difference between the plot on the left and the plot on the right is that in the first the
LLE is made using all the regressors, while in the second it is made after removing
all the non-relevant variables. As we can note, there are non substantial difference
among the two situations. This confirm the oracle property of the function estimator
shown by [1].

Figure 2 shows the results for model B. The performance of the method is similar
to that shown in Fig. 1 for model A.

Three main comments can be formulated, valid in general for all the models. The
first comment is that the power of the relevance tests shown in the plot on the top-
right of each figure are influenced, as expected, by the distance between the true
value of the partial derivatives and the value hypothesized under H0. In fact, note
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Fig. 1 Results of the variable selection procedure applied to model A, for n = 750 and d = 10,
over 200 Monte Carlo replications. Top-left: final bandwidths estimated with RODEO (first
stage). Top-right: percentage of rejection of the relevance test (second stage). Bottom: box-
plots of the final estimates of the function m(x) and its partial derivatives, obtained using all
the regressors (left), or using only the relevant variables (right)

from the box-plots on the bottom of each figure that, the more the distance of such
coefficients from zero (≡ H0), the higher the power of the test.

Secondly, if one is interested in the function estimation itself instead of the vari-
able selection, we can conclude that it is not necessary to remove the irrelevant vari-
ables from the final nonparametric regression (note the equivalence of the two plots
on the bottom of each figure), because the high bandwidth associated to such non-
relevant variables automatically neutralize their effects on the nonparametric regres-
sion, as confirmed by the theoretical results shown by [1]; as a result, we can also
neglect the problem of multiple testing for the determination of the effective size of
the test, since the relevance tests can be interpreted as individual tests.

Finally, the third general comment is that we observe in all the cases a remarkable
bias in the estimations of m(x), compared to its variance. This is an unacceptable
situation, if one has the objective of testing the value of m(x). The reason for this
situation is that the bandwidth estimated by the RODEO method is of the correct
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Fig. 2 The same results as in Fig. 1, but for model B

order (i.e., asymptotically consistent), but it is not the optimal one. Therefore, this
suggests a further development of the method to be analyzed in the next future.
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Portfolio Allocation Using Omega Function:
An Empirical Analysis

Asmerilda Hitaj, Francesco Martinelli and Giovanni Zambruno

Abstract It is widely recognized that expected returns and covariances are not suffi-
cient to characterize the statistical properties of securities in the context of portfolio
selection. Therefore different models have been proposed. On one side the Marko-
witz model has been extended to higher moments and on the other side, starting from
Sharpe ratio, a great attention has been addressed to the correct choice of the risk (or
joint risk-performance) indicator. One such indicator has been proposed recently in
the financial literature: the so-called Omega Function, that considers all the moments
of the return distribution and whose properties are being investigated thoroughly.
The main purpose of this paper is to investigate empirically, in an out-of-sample per-
spective, the portfolios obtained using higher moments and the Omega ratio. More-
over we analyze the impact of the target threshold (when the Omega Ratio is used)
and the impact of different preferences for moments and comoments (when a higher-
moments approach is used) on portfolio allocation. Our empirical analysis is based
on a portfolio composed of 12 Hedge fund indexes.

1 Introduction

One of the key problems in modern Quantitative Finance is the determination of
portfolios which prove optimal with respect to some risk measure, possibly jointly
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with some other criteria. This paper addresses this problem, in particular in our em-
pirical analysis we use the Omega function as a risk-adjusted performance measure
and implement a procedure that incorporates a joint optimization based on the first
four moments of the portfolio return distribution.

Reference to higher-order moments can be traced back in Kendall and Hill [13].
In recent years many authors have proposed different methods to incorporate higher
moments in portfolio allocation, see e.g. [1,7,9,14] and the references therein. Such
models require knowledge of the investor’s utility function which is needed for the
truncated Taylor expansion.

It is well known that each investor has his own utility function and determining
it is not an easy job. For this reason Davies et al. in [3] consider a different way
to introduce higher moments into portfolio allocation: actually they implement a
multiple-criteria decision approach. We will present this approach in more details in
Sect. 2. The advantage of this approach is that it does not assume a particular utility
function for the investor.

Another way to introduce higher moments in portfolio allocation is to consider
a risk-adjusted performance measure that takes into account the preferences of the
investors for skewness and kurtosis. In this work we will consider the Omega ratio
proposed by Shadwick and Keating in [12]. This measure is an evolution of the
Sharpe ratio [16]. One way to define it is the ratio of the expected returns conditional
on exceeding a given threshold, over the same conditional on not exceeding it. The
numerator is thus meant to be a measure of "good" returns, while the denominator
represents the "bad" ones. Varying the threshold one obtains the Omega function.
The main advantage of the Omega measure is that it involves all moments of the
return distribution, including skewness and kurtosis and even higher moments as
well. Recently the Omega ratio has been generalized by Farinelli and Tibiletti in [18]
and in [5] they show the superiority of this measure with respect to the Sharpe ratio in
forecasting performances. In literature different risk adjusted performance measures
have been proposed in the attempt to overcome the drawbacks of the Sharpe ratio,
see e. g. [2, 4, 8, 11, 15, 17, 19] etc.

In the empirical part we combine the model proposed in [3] and the Omega ra-
tio proposed in [12] in order to account for investor preferences to higher moments.
The aim of this work is to analyse, in an out-of-sample perspective, which model
performs better. According to our knowledge this is the first empirical analysis that
compares these two procedures for portfolio allocation. Then we analyse the sensi-
tivity of the optimal portfolio with respect to the threshold and the different prefer-
ences for higher moments. In the empirical analysis we use a rolling window strat-
egy of 48 months in-sample and 3 months out-of-sample1 for the portfolio selection
and calculate the in-sample optimal weights using in turn the Omega ratio and the
multi objective approach. We perform an analysis of the optimal weights obtained in-
sample with each method; subsequently we discuss the results of the out-of-sample

1 We chose the rolling window strategy 48-3 as this is commonly used in real hedge fund world
where the data are scarce.
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portfolio returns. Our analysis has been carried on using a portfolio of 12 hedge fund
indexes.

The paper is organized as follows: in Sect. 2 we briefly explain how the portfolio
selection with four moments is operated. In Sect. 3 we report the definition of the
Omega function. Section 4 describes the empirical analysis, where we analyze the
characteristics of our portfolios and discuss the results obtained; Sect. 5 draws some
conclusions. In the Appendix we report selected numerical results.

2 Higher Moments Portfolio Allocation Using a Multi-Objective
Approach

Different methodologies exist that incorporate higher moments in the portfolio de-
cision process. In this section we will review briefly the Polynomial2 Goal Program-
ming (PGP henceforth) approach, applied in Finance by Davies et al. in [3]. We
consider an investor who selects his portfolio from n risky assets, under no transac-
tion costs and no short sales allowed. Using the PGP approach the investor should
maximize the odd moments (mean and skewness) and minimize the even moments
(variance and kurtosis).

Denote with R = (R1, R2, . . . ,Rn) the return vector, where Ri is the return of asset
i, and by w = (w1,w2, . . . ,wn) the vector of weights, where wi is the fraction of the
initial endowment invested in the i-th asset. Under the assumption that the first four
moments (Ri, σ2

i , Si and Ki) exist for all risky assets we can calculate the first four
moments of the portfolio, that are:

E [RP] = w′ R; σ2
P = w′ M2 w; SP = w′ M3 (w⊗w); KP = w′ M4 (w⊗w⊗w)

where M2, M3 and M4 are the tensor matrices of co-variance, co-skewness and co-
kurtosis resp., and ⊗ denotes the Kronecker product.

Define the set of feasible portfolios as S = {w|∑n
i=1 wi = 1, 0 ≤ wi}. The port-

folio selection over the first four moments can be formulated as follows:⎧⎨⎩max E [RP] = w′ R min σ2
P = w′ M2 w

max SP = w′ M3 (w⊗w) min KP = w′ M4 (w⊗w⊗w).
s.t. w ∈ S

(1)

A general way to solve the multiobjective problem is a two-step procedure:
In the first step we solve separately each single-optimization problem, that is max-

imize the mean and skewness and minimize the variance and kurtosis:

μ∗
P = max

{
w′ R|w ∈ S

}
;

(
σ2

P

)∗ = min{w′M2 w|w ∈ S } ;
S∗P = max{w′ M3 (w⊗w)|w ∈ S } ; K∗

P = min{w′ M4 (w⊗w⊗w)|w ∈ S } .

2 Actually, the term ‘polynomial’ refers to the formulation whereby the aspiration levels are deter-
mined, not to the objective function of the main program.
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Solving separately these four problems we determine the aspiration levels of the
investor for the portfolio mean, variance, skewness and kurtosis (μ∗

P,
(
σ2

P

)∗
,S∗P,K∗

P).
In the second step we build the PGP, where the portfolio allocation decision is

given by the solution of the PGP which minimizes the generalized Minkowski dis-
tance from the aspiration levels, namely:⎧⎪⎨⎪⎩ min

wi, d j
Z =

∣∣∣∣ d1

μ∗
P

∣∣∣∣γ1 +

∣∣∣∣∣ d2(
σ2

P

)∗
∣∣∣∣∣
γ2

+
∣∣∣∣ d3

S∗P

∣∣∣∣γ3 +
∣∣∣∣ d4

K∗
P

∣∣∣∣γ4
w ∈ S

(2)

where d1 = μ∗
P − w′ R, d2 = w′ M2 w − (

σ2
P

)∗
, d3 = S∗P − w′ M3(w ⊗ w), d4 =

w′ M4(w⊗w⊗w)−K∗
P and γ1, γ2, γ3 and γ4 represent the investor’s subjective pa-

rameters: the greater the γi, the more important the corresponding moment appears
to the investor. Note that in this case we do not assume a particular utility function
for the investor, apart from the preferences for all moments discussed before.

3 Omega Performance Measure

Omega is a performance measure recently introduced by Keating and Shadwick in
[12] which accounts for all the distributional characteristics of a returns series while
requiring no parametric assumption on the distribution. Precisely, it considers the
returns below and above a specific threshold and consists of the ratio of total proba-
bility-weighted gains to losses in a way that fully describes the risk-reward properties
of the distribution. It can therefore be interpreted as a performance measure. The
mathematical definition is as follows:

ΩFX (τ) =
∫ b
τ (1−FX (x))dx∫ τ

a FX (x)dx

where FX (x) = Pr(X ≤ x) is the cumulative distribution function of the portfolio re-
turns defined on the interval [a,b] and τ is the loss threshold selected by the investor.
For any investor, returns below his specific loss threshold are considered as losses
and returns above it as gains. A higher value of Omega is always preferred to a lower
value.

In the empirical analysis, in order to find the portfolio allocation optimal accord-
ing to Omega as a performance measure, we solve the following problem:{

max
wi

ΩFX (τ)

s.t. ∑N
i=1 wi = 1, 0 ≤ wi .

(3)

It is well known that the objective function in Omega-optimal portfolio is a non-
convex problem and different algorithms have been used to solve this problem (see
e.g. [6,10], etc). In the empirical analysis we use the MATLAB Global Optimization
Toolbox to solve this problem.
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4 Empirical Analysis and Results

In this empirical analysis we have considered a portfolio composed of 12 Hedge
fund Indexes3. The observations are monthly and span the period January 1994 to
December 2011. In total for each Hedge fund Index we got 217 monthly observa-
tions. In Table 1 we have reported general statistics and the Jarque-Bera test for each
hedge fund index. As we can observe almost all the Hedge funds under consideration
display negative skewness and kurtosis higher than 3, while looking at the results ob-
tained for the Jarque-Bera test we can say that the hypothesis of normality is rejected
for each time series of returns except ’Managed Future Hedge Fund Index’ on the
whole period under consideration. Therefore we can conclude that the Hedge Funds
on which our portfolios are built display returns not normally distributed. For this
reason, and for purposes of comparison, we will start our portfolio allocation deci-
sion with a model that considers only the first two moments and than extend it to the
third and finally to the fourth moment. The model used in this analysis is the PGP
explained before, where we consider different weights for moments and comoments:
for i = 1, . . . ,4 we set in turn γi = k where k = 1, . . . ,5. Also we have computed the
portfolio allocation resulting from the maximization of the Omega function. As ex-
plained before, this performance measure has the advantage of taking into account
the whole distribution of assets returns and has the drawback of being dependent on
the reference point. For this reason, in the portfolio allocation decision we have used
the Omega performance measure using different reference returns, moving from 1%
to 15%, on annual basis, with a step of 0.5.

For the portfolio allocation we have used a rolling-window strategy of 48 months
as the in-sample period and 3 months as the out-of-sample period. Using the different
approaches for portfolio allocation, we find the optimal weights in each in-sample
period and keep these constant until a new rebalance takes place.

We have performed an in-sample and out-of-sample analysis, determining the
impact of assigning different weights to moments (comoments), and considering
different reference points for the Omega ratio.

4.1 In-Sample Analysis

In total we have 55 in-sample-periods: for each we have computed: Optimal weights
using the PGP with 2, 3 and 4 moments, labeled respectively Mean Var allocation,
Mean Var Skew allocation and Mean Var Skew Kurt allocation, in Sect. 5. For these
portfolios we have considered different cases, where γi = 1, . . . ,5 for i = 1, . . . ,4.
Finally we have computed the optimal weights using the Omega ratio where different
values for the annual target threshold have been considered: τ = 1% to τ = 15% with
a step of 0.5.

Table 4 reports selected4 results obtained in the in-sample analysis. We report
the results: for the mean-variance PGP in case [(γ1 = 1, γ2 = 1), (γ1 = 1, γ2 = 3)

3 The data have been collected through the Dow Jones Credit Suisse Hedge Fund Index.
4 The complete results are available upon request.
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and (γ1 = 3, γ2 = 1)]; for the mean-variance-skewness in case [(γ1 = 1, γ2 = 1, γ3 =
1), (γ1 = 1, γ2 = 3, γ3 = 1) and (γ1 = 3, γ2 = 1, γ3 = 3)]; for the mean-variance-
skewness-kurtosis in case [(γ1 = 1, γ2 = 1, γ3 = 1, γ4 = 1), (γ1 = 1, γ2 = 3, γ3 = 1,
γ4 = 3) and (γ1 = 3, γ2 = 1, γ3 = 3, γ4 = 1)]; for the Omega-optimal portfolio in case
τ = 1%,3%,7%,8%,10% and 15% on annual basis.

Once the in-sample optimal weights are obtained we calculate general statistics
(mean, standard deviation, quartiles (Q1, Q2, Q3), minimum and maximum value)
for each portfolio component across time. Looking at these results it clearly appears
that in the case the Omega ratio is used for portfolio allocation, the higher the refer-
ence value the less diversified is the portfolio (looking for example at Q3, the higher
the reference point the lower the number of assets whose Q3 is significantly different
from zero). Further, looking at the results obtained with reference to a portfolio al-
location using PGP and varying the exponents γi, or when we move from a portfolio
allocation with 2 moments to the ones with 3 or 4 moments no substantial difference
occurs between these statistics.

Concluding the in-sample analysis, we can observe that a fair degree of diversifi-
cation occurs only when operating according to the PGP or through the Omega ratio
with low threshold values.

4.2 Out-of-Sample Analysis

Once we have calculated the optimal weights in the in-sample period, we keep them
constant in the next out-of-sample period and for each portfolio we compute the
out-of-sample returns, of which we present general statistics. In Table 2 we report
these results for the selected cases considered in Sect. 4.1. As is well known, any
investor will prefer a portfolio with higher mean and skewness and lower variance
and kurtosis. As we can observe in this table, it is not clear, according to the mean-
variance-skewness-kurtosis criterion, which portfolio performs best: actually there
is no portfolio with higher mean and skewness and lower variance and kurtosis at
the same time.

From the out-of-sample returns we computed the out-of-sample performances for
each portfolio. In Fig. 1 we have plotted the out-of-sample performances obtained
using the PGP with two, three and four moments and using the Omega ratio with
different reference values. From these figures it appears that the higher the weights
of the even moments in the PGP, the greater the difference in the out-of-sample per-
formances. In addition, looking at the out-of-sample performances using the Omega
ratio, we can say the higher the reference point the less stable the out-of-sample
performance. In Fig. 2 we compare the out-of-sample performances obtained with
Omega ratio and PGP with 2, 3 and 4 moments resp.5. It appears that the out-of-
sample performances obtained with Omega and PGP are closer to each other when
we consider a low reference value for the Omega ratio and the PGP with more than

5 For the Omega ratio we have reported only the out-of-sample performances for τ = 3%,7%,8%
on annual basis.
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of-sample performance in observation 128, which belong to July 2008 (period of the Hedge
fund crisis starting with the default of Madoff Hedge Fund)
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two moments. Looking at these graphs we cannot argue which method is the best
for portfolio allocation.

In order to give an advice on which procedure to use for portfolio allocation
we rank, in Table 3, selected out-of-sample portfolios using Sharpe6, Sortino7 and
Omega considering as reference values 1%,3%,7% and 8%. From Table 3 we ob-
serve that independently from the performance measure used for the ranking of the
portfolios, when the reference point is very low (in this case 1%), no approach clearly
dominates the others. This fact seems consistent with what we have seen in Fig. 2
where the performance of the out-of-sample portfolios obtained with Omega was
very close to that obtained using the PGP approach.

When the reference point is high, independently from the performance measure
used for the ranking, we observe that the rank of the Omega portfolios is higher than
the one of the PGP.

Concluding we can say that if one has to choose between the PGP and the Omega
portfolio, the latter is better as it displays higher ranks most of the time. Comparing
the PGP approaches, we can observe that almost always the PGP with 3 or 4 moments
have a higher rank than the PGP with two moments. If only the PGP with 3 and the
PGP with 4 moments are compared the rank is not univocal and may appear coun-
terintuitive since one would expect that using a wider set of information (including
kurtosis) results in a better specification. This is possibly due to the fact that in the
estimation of moments and comoments we are using the sample approach, which is
characterized by high estimation error. To overcome this drawback one should use
robust estimators for moments and comoments (see [14] and the references there
in). In terms of computation costs we can say that when higher moments are used
for portfolio allocation the number of parameters to estimate is high (see [14]), which
requires a much larger dataset and an increase of computer time; in case of Omega-
portfolio the only thing needed is a good optimization algorithm.

5 Conclusions

In this paper we have performed an empirical analysis based on a Hedge fund port-
folio: its aim was to analyse the impact, in-sample and out-of-sample, of choos-
ing an approach based on moments and comoments (we consider PGP approach)
as compared to the one based on the Omega ratio. We considered the PGP with
2, 3 and 4 moments (each case featuring different shapes of weights in order to as-
sess their relative importance) and the Omega ratio (using different reference values:
1%,1.5%,2%, . . . ,15% on annual basis).

In the in-sample analysis we reached the conclusion that choosing a high refer-
ence value, when Omega ratio is used for portfolio allocation, does not make sense
since in almost all periods the portfolio will be concentrated in one asset. Instead,
when using a Omega ratio with a low reference value, or the PGP approach with 2,
3 or 4 moments the optimal portfolio is well diversified.

6 Sharpe = μP−τ
σP

.
7 Sortino = μP−τ√

LPM2(τ)
.
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In out-of-sample perspective, in terms of mean-variance-skewness-kurtosis, there
is no portfolio offering at the same time the highest mean and skewness and the
lowest variance and kurtosis. While comparing the out-of-sample performances (see
Fig. 2) we conclude that the lower the reference value (for the Omega ratio) or the
higher the number of moments considered (in the PGP approach), the closer the out-
of-sample performances of the portfolios obtained under the Omega ratio and the
PGP approach.

We have then ranked the different portfolios, obtained in the out-of-sample pe-
riod, using different performance measures (Sharpe ratio, Sortino ratio and Omega
ratio) (see Table 3). We conclude that for a low reference value the portfolio ranking
changes with the performance measure (see the case when the reference value is 1%
annual). As long as the reference value increases the portfolio ranking becomes more
stable and it appears that in this case the choice of the performance measure used
for optimization does not matter that much. In this case the best ranked portfolios
are the Omega-portfolios followed by those obtained with the PGP 3 or 4 moments
and finally the PGP with 2 moments. In the case of the PGP approach the results are
counterintuitive, because we would have expected a higher rank for the PGP with
4 moments, then the PGP with 3 moments and the lowest rank for the PGP with 2
moments. This unexpected result is probably due to the estimation error of moments
and comoments. The superiority of the Omega-portfolio with respect to the PGP ap-
proach is also supported by lower computational costs since there are no parameters
to estimate.

These conclusions are valid for the considered dataset, but: how do these results
modify if we change the dataset, or the length of the in-sample or out-of-sample
period? How do these results change if we consider robust estimators for moments
and comoments? How can we choose the best weights for moments and comoments
when the PGP approach is used? Future research will address these questions.
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Appendix

Table 1 General statistics for each Hedge Fund index

General statistics for each time series of returns

Dow Jones Credit Suisse Annual Annual Skewness Kurtosis JB test
Hedge Fund Index mean STD

‘Hedge Fund Index’ 0.087 0.076 −0.327 5.437 57.295
‘Convertible Arbitrage’ 0.075 0.072 −2.997 21.048 3254.979
‘Dedicated Short Bias’ -0.034 0.168 0.449 3.745 12.252

‘Emerging Markets’ 0.073 0.152 −1.201 9.714 457.581
‘Event Driven’ 0.092 0.065 −2.451 15.221 1560.520

‘Event Driven Distressed’ 0.102 0.068 −2.388 15.579 1629.257
‘Event Driven Multi-Strategy’ 0.087 0.070 −1.944 11.603 802.213
‘Event Driven Risk Arbitrage ’ 0.067 0.042 −1.097 8.028 270.850

‘Fixed Income Arbitrage’ 0.052 0.060 −4.700 36.613 10963.463
‘Global Macro’ 0.121 0.097 −0.246 6.888 138.245

‘Long/Short Equity’ 0.092 0.099 −0.218 6.205 94.174
‘Managed Futures’ 0.060 0.117 −0.079 2.979 0.227
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Investment Rankings via an Objective Measure
of Riskiness: A Case Study

Maria Erminia Marina and Marina Resta

Abstract We introduce a measure for riskiness which is able, at the same time, to
let the investor accepting/rejecting gambles in a way as objective as possible (i.e.
depending only on the probabilistic features of the gamble), and to take his own risk
posture into account, that is by considering the risk attitude expressed by his utility
function. We will briefly recall and discuss some theoretical properties, and we will
give proof of our results by ranking 30 largest-growth mutual funds; finally, we will
compare the results with those of other indexes.

1 Background

Since the publication of Markowitz [18,19] and Tobin [29] seminal papers, ranking
investments via a risk/reward approach has become an appealing and promising in-
strument to both researcher and practitioners. However, whereas there is a general
agreement to assess the reward of a financial position by using its average value,
there is still an intense debate concerning how to measure related risk.

As a consequence, it is not surprising that the literature on risk measures is so
voluminous: contributions span from dispersion [28] to deviations measures [22];
the Expected Utility approach [1, 21] has been exploited, too; indeed behavioral
measures [12] as well as measures that incorporate investor’s psycological moti-
vation [13,14] have been extensively discussed; VaR [11], CVaR [20] and coherent
measures of risk [2] undoubtely dominated the scene over the last fifteen years.
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Recently a new promising research stream has been opened by Aumann and Ser-
rano [3] who introduced an objective measure of riskiness: provided the relevance
for our work, what remains of this section will be devoted to give some further in-
sights on it.

Let us imagine an individual is asked to judge whether accept or not an invest-
ment proposal (gamble) g. From a conceptual point of view, the investor will take
his decision depending on two basic factors: (i) how risky the gamble is, and (ii)
how averse the individual is to risk. From a formal point of view, the first factor
depends only on the probabilistic features of the gamble, while the second factor is
related to the investor’s risk posture, and hence to his utility function u. Aumann and
Serrano [3] say that an agent with utility function u accepts a gamble g at wealth w if:
E[u(w+g)] > u(w). Besides, the agent i is uniformly no less risk–averse than agent
j if whenever i accepts a gamble at some wealth, j accepts that gamble at any wealth.
In order to compare gambles [3] define an index Q to be a mapping that assigns a
positive real number to each gamble g: given an index Q, [3] says that the gamble g
is riskier than h if: Q(g) > Q(h). Moreover [3] proposed two axioms that an index
should satisfy. The first is duality: given two gambles g and h and two agents i and
j, such that i is uniformly no less risk averse than j, if i accepts a gamble g at wealth
w and Q(g) > Q(h), then j accepts the gamble h at wealth w. The second is homo-
geneity: for any positive real number t: Q(t g) = t Q(g); [3] demonstrate that there is
an index RAS that satisfies both duality and homogeneity; for every gamble g, RAS(g)
is the unique positive solution of the equation: E[e−g/RAS(g)] = 1. Besides, RAS has
a number of very appealing features, for example, it is monotonic with respect to
first order stochastic dominance. Under such profile RAS is a very inspiring index,
like testified by the number of both theoretical and practical contributions that began
to bloom on the topic. Moving towards a theoretical direction, [24] provided some
general characterizations for the class of risk measures which respect comparative
risk aversion. A second research vein concerns the practical application of RAS: [9]
analyzed the problem with an eye to actuarial applications, while [10] focused on
the evaluation of funds performance, and introduced an index that incorporates RAS.
Besides, a comparison between CVaR and RAS in the performance evaluation of Tel
Aviv market quoted funds is discussed in [25]. Finally, [7, 8] suggested an opera-
tional measure of risk that can be used to monitor the critical wealth of the investor.

Our contribution intends to make a bridge among those streams of research. In
particular, we are aimed to extend the original index of Aumann and Serrano: [3] de-
fine the RAS index over the set of gambles with positive expected value (equivalently:
with expected value of losses lower than the one of gains.) In practical applications,
however, the investor could be more demanding, asking to consider for a fixed level
θ ∈ (0,1) the gambles in the subset Aθ such that the ratio between the expected
value of losses and the expected value of gains is lower than such threshold value θ .
On following we are going to show that for every θ ∈ (0,1] it is possible to build up
an index of riskiness Iθ over the set Aθ , with I1 = RAS, satisfying both homogene-
ity and duality properties. We provide an empirical illustration using mutual funds
investments, and we compare the rankings induced by our index Iθ and by other
indexes.
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The remainder of the paper is as follows. In Sect. 2 we will introduce the value
V which lets the investor to accept/reject gambles taking his own risk posture into
account ; next we will derive the index of riskiness Iθ . In Sect. 3 we will present
some computational results, ranking 30 largest-growth mutual funds. Section 4 will
conclude.will describe it and determine proper conditions under which the index can
aid the investor to skim among a number of alternatives.

2 An Objective Measure of Riskiness and Its Main Features

We consider a probability space (Ω ,M,P), where P is a probability measure on M
(the field of measurable subsets of Ω ); we assume a gamble g is a random variable
defined on Ω , bounded from below, and following [3] with positive expected value
and positive probability of negative values, i.e.:

E[g] > 0; P[g < 0] > 0. (1)

We focus on risk averse agents, i.e. those investors whose utility function u :R→
R is strictly increasing and concave. We denote by U the set of all those functions
u. For every gamble g we set g+(x) = max{g(x),0}, and we give the following
definition.

Definition 1 For every gamble g and every utility function u it is:

V (u,g,w) =
E[u(w+g)]−u(w)

E{[u(w+g+)]}−u(w)
(2)

where w is the investor’s wealth.

In practice, we consider a gamble g that is acceptable at the wealth w in the Au-
mann and Serrano’s sense:

E[u(w+g)]−u(w) > 0, (3)

and in addition V examines the relation existing between the increment in the ex-
pected utility value computed over all the possible outcomes of g, and the increment
in the expected utility due to all positive values of g, respectively.

Besides, we have discovered [16,17] that V has some interesting features that we
are now going to enumerate. First of all we have:

V (u,g,w) <
E[g]

E[g+]
< 1. (4)

Moreover:

Theorem 1 Let us assume that g,h are two gambles. If g first order stochastically
dominates h, then:

V (u,g,w) > V (u,h,w), (5)

for all wealth levels w, and for all u.
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Another interesting feature concerns the behaviour of V under concave transfor-
mations of the investor’s utility function.

Theorem 2 Let u1, u2 being two utility functions. Moreover, assume u1 = φ ◦ u2,
where φ is a (strictly) concave function. Then:

V (u1,g,w)(<) ≤V (u2,g,w) (6)

for all w ≥ 0, and all the gambles g.

From Theorem 2 it is possible to draw down a notable result under the expected
utility framework. To this aim, it aids to remember that for every utility function
u twice continuous differentiable, ρu(x) = − u′′(x)

u′(x) is the Arrow–Pratt [1, 21] coeffi-
cient of absolute risk aversion. Given two utility functions u1,u2, corresponding to
investors i1 and i2 respectively, by the Arrow–Pratt theorem we get: ρu1(x)(>) ≥
ρu2(x) iff u1 is a (strictly) concave transformation of u2.

Now we are moving to provide an extension of Aumann–Serrano’s results. How-
ever, whereas in the former case the acceptability of gamble g is stated by (3), here
we are strenghtening such concept, since we additionally require that the value V
exceeds a fixed threshold. In this spirit, we introduce the following definition.

Definition 2 Consider an agent with utility function u and wealth w ≥ 0. The agent
accepts the gamble g at the threshold value θ ∈ (0,1] if:

V (u,g,w) > 1−θ .

Now we assume an agent with utility function uγ(x) =−e−γx, γ > 0, i.e. a CARA
agent who has constant absolute risk adversion ρu(x) = γ . For every gamble g let:

fg(γ) =
E[1− e−γ g]

E[1− e−γ g+]
. (7)

It is possible to prove [17] that for every gamble g the continuous function fg is
strictly decreasing in (0,+∞). Moreover we can show that:

lim
γ→0+

fg(γ) =
E[g]

E[g+],
and:

lim
γ→+∞

fg(γ) = −∞.

We observe that for every gamble g and for every w ≥ 0 it is:

fg(γ) = V (uγ ,g,w)

and hence for every θ ∈ (0,1], the equation:

fg(1/α) = 1−θ , (8)
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will admit a unique positive solution if:

1−θ <
E[g]

E[g+]
. (9)

Now, let θ ∈ (0,1]. We define the set:

Aθ =
{

g :
E[g]

E[g+]
> 1−θ

}
. (10)

Then, for all g ∈ Aθ we denote by Iθ (g) the unique solution of (8).
As the function fg is strictly decreasing, it follows that a CARA agent with con-

stant absolute risk aversion γ < 1
Iθ (g) accepts the gamble g at the threshold value θ ;

moreover, if h is another gamble such that Iθ (g) > Iθ (h), he also accepts the gamble
h at the same threshold value θ , so that Iθ would deem g more “risky”than h.

Note that the index Iθ provides an objective way (that is: independent on the
specific agent) to measure the risk at threshold value θ , and from Theorem 2 is
monotonic with respect to first order stochastic dominance (i.e.: increasing the gains
and decreasing the losses lowers the riskiness). Moreover, by its definition (see (8))
it comes that Iθ has homogeneity properties, i.e. for any positive real number t:
Iθ (t g) = t Iθ (g). Finally, one can note that for θ = 1 we have I1 = RAS. To con-
clude, the following theorem holds.

Theorem 3 Given two utility functions u and v such that:

ρu(x) ≥ ρ̄ ≥ ρv(x), ∀x, (11)

if g,h ∈ Aθ are two gambles with Iθ (g) > Iθ (h), and if V (u,g,w) > 1−θ , then:

V (v,h,w) > 1−θ .

We observe that the index Iθ posits a duality between riskiness (at the fixed thresh-
old θ ) and risk aversion. In fact, if u and v are the utility functions of two agents i
and j, the condition stated in (11) is equivalent to say that the agent i is uniformly
no less risk averse than j (see our introduction as well as [3]).

3 An Application

We consider a modified version of the datasets employed in the works of [4] and [10]:
we examine monthly excess returns (computed from monthly fund returns) of 30
mutual funds investments:

R(i) = ri − r f , (i = 1, . . . ,30), (12)

where ri is the monthly return of the i-th investment, and r f is the one-month US
Treasury bill rate. The time horizon under observation spans from January 1990
to January 2011, resulting in 252 overall observations. The data were employed to
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compute the values of our index Iθ and rank the funds accordingly. We compare our
results to those of the reciprocal of the Sharpe Ratio (SR) [26, 27]:

SR(Ri) =
E[R(i)]
σ(R(i))

, (i = 1, . . . ,30), (13)

where σ is the standard deviation. In addition, we examine the results obtained by
using the reciprocal of the Economic Performance Measure (EPM) discussed in [10],
being:

EPM(R(i)) =
E[R(i)]

RAS(R(i))
, (i = 1, . . . ,30), (14)

where RAS is the index of Aumann and Serrano. Both SR and EPM are performance
measures, so moving to their reciprocal, they may straightforwardly considered two
indexes of riskiness. Note that, in contrast to SR, both Iθ and EPM are monotonic
with respect to first order stochastic dominance. Besides, likewise the RAS index,
we can refer to Iθ as an economic index of riskiness. The most important feature of
RAS, in fact, relates to the duality axiom which essentially requires that if a gamble
is accepted by an investor, less risk averse investors accept less risky gambles. In
this light, this is an economically motivated axiom, and therefore rightly Aumann
and Serrano claim RAS index to be an economic index of riskiness. Finally, it sticks
out immediately that wheres both RAS and EPM are defined over the set A1, on the
other hand, if θ ∈ (0,1), Iθ leaves out the funds that do not belong to the set Aθ ,
thus resulting in an additional reduction in the overall number of funds the investor
should discard by default.

Moving to the results, Table 1 reports values for the aforementioned indexes, with
the rankings they generated given in brackets. The complete list of the funds under
examination is provided in Appendix. Here, for sake of readability we adopted the
labels: F1, F2, . . . , F30, to denote the funds, and we put them in Column 1. Columns
2–4, on the other hand, report the results obtained by RAS and the reciprocal of SR and
EPM, respectively. For a better understanding of the discussion, we have reported
in Column 5 the values E[R(i)]/E[R(i)+] for every fund i = 1, . . . ,30. For what is
concerning the index Iθ , by (9), the ranking of all 30 funds is possible only if θ >
1−min{E[R(i)]/E[R(i)+], i = 1, . . . ,30}= 1−0.332316 = 0.667684. Note that the
value 0.332316 corresponds to the fund F29 (Vanguard U.S. Growth in Appendix).
Finally, Columns 6-8 show the values and rankings obtained for θ = 0.6677, θ =
0.9870, and θ = 0.4000.

Besides, we analyzed the way the results provided by our index are related to
those of the other indexes. This was done by way of the Kendall’s τ [15] statistics: it
is well known that the Kendall’s τ equals one, if two rankings perfectly agree, zero
if they are independent, and −1 if they perfectly disagree. Results are provided in
Table 2.

Note that the rankings induced by RAS, SR, EPM and Iθ , for θ = 0.6677 and
θ = 0.987 involve all thirty funds under observation. However, when the investor
is more demanding, asking to consider the value θ = 0.40 at which some funds
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Table 1 Results obtained from different risk/performance measures. SR is the acronym for
Sharpe Ratio, RAS is the index of Aumann and Serrano, and EPM is the Economic Performance
Measure. E[R(i)]/E[R(i)+ is the ratio opposing the expected value of the funds returns to the
expected value of positive returns. Finally Iθ is the abbreviation for our index. Note that
RAS = I1

RAS 1/SR 1/EPM E[R(i)]/
E[R(i)+

Iθ=0.6677 Iθ=0.987 Iθ=0.4

F01 2.836 (10) 38.185 (22) 526.316 (19) 0.43554 3.6161 (10) 2.8599 (10) 3.8309 (8)
F02 3.533 (24) 56.167 (24) 1063.83 (25) 0.34134 4.4777 (23) 3.5622 (24) −
F03 3.358 (21) 34.235 (20) 1000 (23) 0.48082 4.3504 (21) 3.3883 (21) 4.629 (17)
F04 3.046 (18) 27.576 (15) 384.615 (16) 0.38425 3.789 (14) 3.0693 (18) −
F05 3.556 (25) 34.732 (21) 526.316 (20) 0.38612 4.5583 (24) 3.5869 (25) −
F06 2.691 (5) 19.945 (5) 140.845 (3) 0.43888 3.3651 (5) 2.712 (5) 3.5463 (4)
F07 2.875 (12) 26.957 (13) 416.667 (17) 0.50545 3.7231 (12) 2.9007 (12) 3.9613 (11)
F08 2.564 (3) 18.882 (2) 75.188 (2) 0.56638 3.2661 (3) 2.5859 (3) 3.4591 (2)
F09 2.857 (11) 29.245 (17) 303.03 (12) 0.42639 3.6266 (11) 2.8813 (11) 3.8371 (9)
F10 2.597 (4) 22.477 (7) 178.571 (5) 0.48731 3.3193 (4) 2.6197 (4) 3.5185 (3)
F11 2.725 (6) 19.435 (4) 270.27 (10) 0.42979 3.4733 (6) 2.7483 (6) 3.679 (5)
F12 2.907 (13) 26.089 (12) 256.41 (9) 0.45311 3.7383 (13) 2.9328 (13) 3.9694 (12)
F13 2.765 (8) 23.419 (8) 303.03 (13) 0.40167 3.5882 (8) 2.7902 (8) 3.8198 (7)
F14 2.755 (7) 18.245 (1) 175.439 (4) 0.44219 3.5707 (7) 2.7802 (7) 3.7998 (6)
F15 3.489 (22) 24.351 (11) 181.818 (6) 0.38274 4.4598 (22) 3.5188 (22) −
F16 3.813 (28) 22.171 (6) 222.222 (7) 0.48905 4.8579 (27) 3.8455 (28) 5.1451 (20)
F17 2.996 (15) 76.719 (28) 1408.451 (26) 0.34831 3.863 (18) 3.0227 (15) −
F18 3.012 (17) 60.041 (25) 1538.462 (28) 0.44243 3.842 (16) 3.0379 (17) 4.0705 (14)
F19 2.774 (9) 43.82 (23) 769.231 (22) 0.43682 3.6142 (9) 2.7995 (9) 3.8518 (10)
F20 2.412 (1) 23.578 (9) 344.828 (15) 0.44980 3.1833 (2) 2.4352 (1) 3.4051 (1)
F21 3.124 (19) 33 (19) 588 (21) 0.43306 4.1588 (19) 3.1544 (19) 4.4599 (16)
F22 4.033 (30) 1835.451 (30) 100000 (30) 0.43304 5.2226 (30) 4.0693 (30) 5.5565 (22)
F23 2.967 (14) 65.081 (27) 1428.571 (27) 0.43138 3.8481 (17) 2.9939 (14) 4.0959 (15)
F24 3.785 (27) 77.17 (29) 1666.667 (29) 0.42324 4.8597 (28) 3.8178 (27) 5.1582 (21)
F25 2.432 (2) 19.189 (3) 238.095 (8) 0.33761 2.9413 (1) 2.4486 (2) −
F26 3.677 (26) 26.968 (14) 285.714 (11) 0.42663 4.6633 (26) 3.7081 (26) 4.9328 (19)
F27 3.518 (23) 30.587 (18) 416.667 (18) 0.44355 4.5637 (25) 3.5497 (23) 4.8579 (18)
F28 3.861 (29) 28.431 (16) 322.581 (14) 0.38134 5.0211 (29) 3.8959 (29) −
F29 3.263 (20) 61.818 (26) 1000 (24) 0.33232 4.1973 (20) 3.2917 (20) −
F30 2.998 (16) 24.342 (10) 24.342 (1) 0.46603 3.8166 (15) 3.0233 (16) 4.0414 (13)

Table 2 Kendall’s τ for the rank correlation among the rankings based on RAS, 1/SR, 1/EPM
and, Iθ , for θ = 0.6677, θ = 0.987, and θ = 0.4

RAS 1/SR 1/EPM Iθ=0.6677 Iθ=0.987 Iθ=0.4

RAS 1 0.3885 0.2650 0.9436 1 0.9567
1/SR 0.3885 1 0.6060 0.4143 0.3885 0.4545
1/EPM 0.2650 0.6060 1 0.2814 0.2650 0.3957
Iθ=0.6677 0.9436 0.4143 0.2814 1 0.9436 0.9827
Iθ=0.987 1 0.3885 0.2650 0.9436 1 0.9567
Iθ=0.4 0.9567 0.4545 0.3957 0.9827 0.9567 1
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(gambles) do not satisfy the requirements stated by (10), Iθ cannot be computed
for all thirty funds, but only for twenty-two of them. Obviously, in this latter case
Kendall’s τ compares the twenty-two funds ranked by I0.40.

A closer look to Table 2 shows that all indexes are positively correlated. More-
over, in the case of θ = 0.987 the rankings induced by Iθ and RAS are identical, but
varying the threshold level θ could modify the order of riskiness. This is, for in-
stance, what happens if instead of θ = 0.987 we consider θ = 0.6677. Finally, as
observed in [3], SR and EPM rank normal gambles in the same way, but matters are
different for non–normal gambles, as in our discussion case.

4 Conclusions

We introduced and discussed a new index of riskiness Iθ which is able, at the same
time, to let the investor accepting/rejecting gambles in way as objective as possible
(i.e. depending only on the probabilistic features of the gamble), and to take his own
risk posture into account; in particular, given two investors, if the one more risk
averse accepts at threshold value θ the riskier of two gambles, then the other less
adverse investor accepts the less risky gamble at the same threshold value θ (duality
property). Our index is inspired by Aumann and Serrano’s RAS, and when θ = 1 it
results: I1 = RAS. Moreover, our index also verifies properties such as homogeneity,
monotonicity, and consistency with respect to first order stochastic dominance. We
tested the effectiveness of our index in a practical application. We ranked 30 largest-
growth mutual funds; the time horizon under observation spans from January 1990
to January 2011, resulting in 252 overall observations. We computed Iθ for different
values of the threshold θ (θ = 0.4, θ = 0.6677, θ = 0.987 and θ = 1).

We then compared the results with those provided by the reciprocals of the Sharpe
Ratio (SR), and of the Economic Performance Measure (EPM) recently discussed
by Homm and Pigorsch.

By comparison of the rankings we found out that our index is undoubtedly more
demanding than the others under examination, as in our example in the case θ =
0.4000 the investor has to discard some funds from the ranking. In practice, we tried
to offer a tool assuring the investor a greater safety: more precisely, once fixed a
level θ , our index takes under consideration a gamble (an investment) g only if the
ratio between the expected value of its losses and the expected value of its gains is
less then such threshold value θ .

Appendix

Table 3 reports the complete name of the funds we examined, coupled to the labels
we employed throughout the paper to denote them.
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Table 3 Funds employed in our study: the complete list. The first column reports the labels
used to indicate each fund throughout the paper, the second column shows the fund name

ID Fund name

F01 AIM Value A
F02 AIM Weingarten A
F03 Amcap
F04 American Cent-20thC Growth
F05 American Cent-20thC Select
F06 Brandywine
F07 Davis NY Venture A
F08 Fidelity Contrafund
F09 Fidelity Destiny I
F10 Fidelity Destiny II
F11 Fidelity Growth Company
F12 Fidelity Magellan
F13 Fidelity OTC
F14 Fidelity Retirement Growth
F15 Fidelity Trend
F16 Fidelity Value
F17 IDS Growth A
F18 IDS New Dimensions A
F19 Janus
F20 Janus Twenty
F21 Legg Mason Value Prim
F22 Neuberger&Berman Part
F23 New Economy
F24 Nicholas
F25 PBHG Growth PBHG
F26 Prudential Equity B
F27 T. Rowe Price Growth Stock
F28 Van Kampen Am Cap Pace A
F29 Vanguard U.S. Growth
F30 Vanguard/Primecap
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A Squared Rank Assessment of the Difference
Between US and European Firm Valuation
Ratios

Marco Marozzi

Abstract Financial ratios are useful in determining the financial strengths and weak-
nesses of firms. The most commonly used methods for comparing firms through
financial ratios are multivariate analysis of variance and multiple discriminant anal-
ysis. These methods have been very often used for inferential purposes when the
underlying assumptions (e.g. random sampling, normality, homogeneity of vari-
ances . . . ) are not met. A method for comparing firm financial ratios is proposed,
it is based on squared ranks and does not require any particular assumptions. The
proposed method is devised to explicitly consider the possible difference in vari-
ances and to take also into account the dependence among the financial ratios. It is
robust against skewness and heavy tailness. This aspect is very important because
usually financial ratios, even after removing outliers, are highly skewed and heavy
tailed. An application for studying the difference between US and European firms is
discussed.

1 Introduction

In the financial literature, comparison of financial characteristics of groups of firms
through financial ratios is a popular research. Financial ratios are useful in deter-
mining financial strengths and weaknesses of firms. Liquidity, profitability, lever-
age, solvency and activity ratios are generally considered. In the literature, opinions
on the order of their importance differ widely [11]. For a very simple method to se-
lect financial ratios according to their importance in ranking firms see [22] and [23].
The most commonly used methods for comparing firms through financial ratios are
multivariate analysis of variance (MANOVA) and multiple discriminant analysis
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(MDA). These methods, as discussed in the next section, have been very often used
for inferential purposes when the underlying assumptions (e.g. random sampling,
normality, homogeneity of variances . . . ) are not met. It is very important to note
that when the underlying assumptions of MANOVA and MDA are not met the con-
clusions can be only merely descriptive rather than inferential as (wrongly) claimed
in many papers. In this paper we address the comparison of financial ratios from the
descriptive point of view by proposing a method based on squared ranks that can
be applied to financial data even when the assumptions required by the traditional
methods are not met.

In Sect. 2 we discuss the shortcomings of traditional methods for comparing firms
through financial ratios. Our method is presented in Sect. 3 and it is applied in Sect. 4
for studying the difference between US and European firms. Section 5 summarizes
the findings and conclusions of the study.

2 Traditional Methods for Comparing the Financial
Characteristics of Firms

The most commonly used methods for comparing firms through financial ratios are
MANOVA and MDA. They are very often used for inferential purposes. In this case,
the methods require stringent assumptions. The assumptions needed for MANOVA
are [8]:

• units (firms) are randomly sampled from the populations of interest;
• observations are independent of one another;
• the dependent variables (financial ratios) have a multivariate normal distribution

within each group (in our case US and European firm groups);
• the K groups (in our case K = 2) have a common within-group population vari-

ance/covariance matrix. This assumption is twofold: the homogeneity of variance
assumption should be met for each financial ratio; the correlation between any two
financial ratios must be the same in the two groups.

It is important to note that in practice it is unlikely that all assumptions are met.
MANOVA is relatively robust against violations of assumptions in many situations.
MANOVA is not robust to violations of one or both of the first two assumptions.
In the absence of outliers, MANOVA is quite robust to violations of the normal
assumption. MANOVA is not robust to violations of the variance/covariance ho-
mogeneity assumption in particular when the sample sizes are unequal. It is impor-
tant to limit the number of financial ratios because the power of MANOVA tests
tends to decrease as the number of variables increases (unless the sample sizes in-
crease as well). [27] used MANOVA for comparing the financial characteristics of
US and Japanese electric and electrical equipment manufacturing firms. They used
MANOVA for inferential purposes even thought the data are not random samples,
the financial ratios have non normal distribution and the homogeneity of variances
has not been checked. Very similar comments apply also to [25].
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The major assumptions of MDA are [19]:

• the group of firms are random samples;
• each financial ratio is normally distributed;
• US and European group sizes should not be grossly different and should be at

least five times the number of financial ratios;
• the variance/covariance matrices for the US and European groups should be

approximately equal.

The very well known paper of [1] uses MDA to analyze a set of financial ratios for
the purposes of bankruptcy prediction. Inferential conclusions are drawn from the
data even thought data are not random samples, both normal distribution assumption
and homogeneity of variance/covariance assumption have not been checked. For
these reasons, conclusions should be considered descriptive rather than inferential
(as wrongly done by the author). The majority of financial papers on MDA draw
inferences from the data (for example computing p-values) even though one, some
or all of the assumptions are not fulfilled in the data, among other see [5, 12, 15, 26,
32, 34, 36, 37].

In finance, the analysis of data that do not fulfill the requirements of MANOVA
nor MDA is not an issue we should wave aside. The typical data analyzed in finance
are taken from a database of publicly traded firms. Data are not random samples be-
cause all the firms that have no missing data are considered. Moreover, many finan-
cial ratios are highly skewed and heavy tailed. Most of financial ratios are restricted
from taking on values below zero but can be very large positive values [11], as a
consequence they are not normally distributed. Non normality due to skewness and
heavy tails was noted by many early empirical studies, see [3,6,7,13,17,24,29,33].
Data transformations using square root or logarithm and procedures for removing
outliers may help to ease the problem of non normality [13]. If it is not possible to
use random samples of firms, a solution is to work within the permutation/resampling
framework. The permutation framework is justified because we may assume that un-
der the null hypothesis of no difference due to grouping, the observed datum may be
indifferently assigned to either group 1 or group 2 (i.e. the exchangeability assump-
tion under the null hypothesis is met) and therefore conditional (on the observed
data) inference can be drawn [31]. Rarely in practice you have random sampling
and therefore unconditional inferences associated with parametric tests, being based
on random sampling, often cannot be drawn in practice. Financial literature show
a lack of attention on the formal assumptions required by statistical methods like
MANOVA and MDA especially to draw inferential conclusions from the data.

3 A New Method for Assessing the Differences Between
Financial Ratios

Financial ratios are commonly used for comparing performance, financial status, sol-
vency position and borrowing power of firms. They provide shareholders, managers,
creditors, potential investors and bankers valuable information in assessing the liq-
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uidity, profitability and debt position of a firm. In this section we propose a method
to compare firm financial ratios which does not require any particular assumptions
because we follow a descriptive point of view. Contrary to MANOVA and MDA
our method does not require random sampling nor normality nor homogeneity of
variance/covariance. It is devised to explicitly consider the possible difference in
variances as well as the dependence among the financial ratios.

Let {lXi j; i = 1,2; j = 1, . . . ,ni; l = 1, . . . ,L} be the data set, where lXi j denotes
the value of financial ratio l for firm j of group i, n = n1 + n2. We say that the two
groups are not different so far as lX is concerned if both means M(lXi) and variances
VAR(lXi) of lX in the two groups are equal. To grade the difference between groups
when M(lX1) 	= M(lX2) and/or VAR(lX1) 	= VAR(lX2) we compute the following
statistic

lC = C(lX1, lX2) = C(lU, lV ) = lU
2 + lV

2 −2ρlUlV , (1)

where lX i is the lX i-th sample,

lU = U(lR1) =
6∑n1

i=1 lR2
1i −n1(n+1)(2n+1)√

n1n2(n+1)(2n+1)(8n+11)/5
,

lV = V (lR1) =
6∑n1

i=1 (n+1− lR1i)2 −n1(n+1)(2n+1)√
n1n2(n+1)(2n+1)(8n+11)/5

,

lR1 = (lR11, . . . , lR1n1), lR1i denotes the rank of lX1i in the pooled sample

lX = (lX1, lX2) = (lX11, . . . , lX1n1 , lX21, . . . , lX2n2) = (lX1, . . . , lXn1 , lXn1+1, . . . , lXn)

and

ρ = corr(lU, lV ) =
2(n2 −4)

(2n+1)(8n+11)
−1.

The lU and lV statistics are respectively the standardized sum of squared ranks and
squared contrary ranks of the first group. Note that the lC statistic is a combina-
tion of lU and lV taking into account their negative correlation ρ . When there is
no difference between the groups so far as lX is concerned M(lU) = M(lV ) = 0,
VAR(lU) = VAR(lV ) = 1 and (lU, lV ) is centered on (0,0), whereas it is not when
the two groups are different in means and/or variances of lX , see [10,21]. Therefore
lC increases as the difference between groups increases.

For the purpose of comparing the grade of difference of various financial ratios,
the lC statistic should be normalized to lay between 0 and 1. The steps of the nor-
malization procedure are:

1. randomly permute lX obtaining 1
l X∗ = (1

l X∗
1,

1
l X∗

2) = (lXu∗1 , . . . , lXu∗n) =
(lX∗

1 , . . . , lX∗
n ) where (u∗1, . . . ,u

∗
n) is a random permutation of (1, . . . ,n);

2. compute

1
l C∗ = C(1

l X∗
1,

1
l X∗

2) = C(1
l U∗,1

l V ∗) = (1
l U∗)2 +(1

l V ∗)2 −2ρ1
l U∗1

l V ∗
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where 1
l U∗ = U(1

l R∗
1),

1
l V ∗ = V (1

l R∗
1) and 1

l R∗
1 contains the ranks of the 1

l X∗
1 ele-

ments;
3. repeat step 1 and step 2 for B−1 times, where B = n!

n1!n2! in order to consider all
the possible random permutations of (1, . . . ,n). Note that B is not n! because the
C statistic does not depend on the order of the firms within the groups;

4. compute

lC̃ =
B−∑B

b=1 I(b
l C∗ ≥ 0

l C)
B

where 0
l C = C(lX1, lX2);

5. repeat steps 1 to 4 for every l = 1, . . . ,L. Note that the B permutations of (1, . . . ,n)
must be considered in the same order for every lX .

Note that when there is no difference in lX between the groups of firms lC̃ is
0, whereas when the difference is the largest one among all the possible resam-
pling/permutation values of the lC statistic lC̃ is 1, in general it is 0 ≤ lC̃ ≤ 1. There-
fore you can compare 1C̃, . . . ,LC̃ to grade the difference in each financial ratio and
find out which are the most (or least) different financial ratios. lC̃ can be estimated
by considering a random sample of the permutations when it is computationally im-
practical to consider all the possible B permutations. It is important to emphasize that
lC̃ may be seen as the complement to 1 of the permutation p-value of the test for the
location-scale problem based on the lC statistic. Therefore it is a normalized mea-
sure of how far the groups of firms are from the situation of no difference in means
and variances of lX . The lC statistic is a monotone function of a statistic proposed
by [10] for jointly testing for location and scale differences. The corresponding test
has been further studied in [21] by computing for the very first time the table of
exact critical values; by showing that the test maintains its size very close to the
nominal significance level and is more powerful than the most familiar test for the
location-scale problem due to Lepage. Moreover it has been shown that the Cucconi
test is very robust against highly skewness and heavy tailness and that should be
preferred to tests like the Kolmogorov-Smirnov and Cramer-Von Mises when the
distributions under comparison may be different in shape other than location and/or
scale. These characteristics of the test make the lC statistic particularly suitable for
analyzing financial data.

Univariate analysis of financial ratios may be misleading, for example a fictitious
firm with a poor profitability ratio might be regarded as potential distress if one does
not look to its good liquidity ratio. Therefore several financial ratios should be com-
bined for a complete picture of the firm. The need for a combination of the various
financial ratio measures of difference naturally arises. The steps of the combination
procedure of lC, l = 1, . . . ,L are:

1. compute
0MC =

L

∑
l=1

ln

(
1

1− 0
l C̃

)

where 0
l C̃ = lC̃;
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2. compute
1MC∗ =

L

∑
l=1

ln

(
1

1− 1
l C̃∗

)

where 1
l C̃∗ = B−∑B

b=1 I(b
l C∗≥1

l C∗)
B ;

3. repeat step 2 for b = 2, . . . ,B where the permutations of (1, . . . ,n) are considered
in the same order as in the normalization procedure;

4. compute M̃C = B−∑B
b=1 I(bMC∗≥0MC)

B .

The procedure is an adaptation of the nonparametric combination of dependent
tests [31] which is a flexible and very useful procedure of combination because it
assesses nonparametrically the dependence structure among the partial aspects to be
combined without any parametric assumption on it. Note that since permutation of
individual firm data have been considered then all the underlying dependence re-
lations between the financial ratios are preserved. M̃C is the normalized measure
of difference between the groups of firms which simultaneously considers all the
financial ratios. Note that when there is no difference in lX , l = 1, . . . ,L, between
the groups of firms M̃C is 0, when the difference is the largest one among all the
possible resampling/permutation values of the MC statistic M̃C is 1, in general it is
0 ≤ M̃C ≤ 1. M̃C can be used also to measure how different are the various industry
sectors if one classifies the firms of the two groups according to the industry sector
they belong to and compute M̃C for every sector of interest. Note that the algorithm
of the combined procedure uses the Fisher omnibus combining function.

4 Studying the Difference Between US and European Firms

In this section, we use the method presented in the previous one to assess the dif-
ference between US and European firm financial ratios. In general, ratios measuring
profitability, liquidity, solvency, leverage and activity are considered in financial
ratio analysis to assess the financial strength (or weakness) of a firm. [9] and [18]
reviewed the literature finding 41 and 48 ratios, respectively, to be used in practice.
Unfortunately, there is no clear indications on which are the most important finan-
cial ratios. Here, we are interested in listed firm valuation and then following the
suggestions of [11] we consider the following ratios, very popular in valuation:

• 1X = P/E = price to earnings ratio = market capitalization
net income ;

• 2X = P/B = price to book equity ratio = market capitalization
current book value of equity ;

• 3X = P/S = price to sales ratio = market capitalization
revenues ;

• 4X = EV/EBITDA = enterprise value to EBITDA ratio = enterprise value
EBITDA , where the

enterprise value is the market value of debt and equity of a firm net of cash and
EBITDA stands for earnings before interest, taxes, depreciation and amortization;

• 5X = EV/C = enterprise value to capital ratio = enterprise value
current invested capital ;
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• 6X = EV/S = enterprise value to sales ratio = enterprise value
revenues .

P/E, P/B and P/S represent the market capitalization of a firm as a multiple of its
net income, book value of equity and revenues respectively. EV/EBITDA, EV/C and
EV/S represent the enterprise value of a firm as a multiple of its EBITDA, invested
capital and revenues respectively. It is well known that these financial ratios can vary
substantially across industry sectors and therefore we compare US and European
firms belonging to the same industry.

Financial ratio data about US and European firms have been downloaded from
Damodaran Online website at pages.stern.nyu.edu/~adamodar. The data are
updated on January 1, 2011 and refer to 5928 publicly traded US firms and to 4816
publicly traded European firms. Since financial ratios may be extreme, usually due
to very small denominators, and many firms have missing or negative values, the
initial data have been selected. General practice (see e.g. [4, 16, 20]) suggests to
exclude: any firm with missing or negative financial data necessary to compute the
financial ratios of interest; with a capitalization less than 100 millions USD; with
data necessary to compute the financial ratios of interest not lying within the 1st
and 99th percentile of data distribution. The firms that survived this selection are
1784 US and 1465 European firms. The aim of the selection is to obtain a data set of
"regular" firms in the sense that the firms are suitable to be analyzed with valuation
ratios.

We consider the ten most numerous industry sectors, see Table 1. Industry sectors
have been classified according to the SIC (Standard Industrial Classification) code,
a four digit code used by the United States Security and Exchange Commission for
classify industries.

It is important to note that the usual inferential statistical techniques cannot be
used because the groups of firms are not random samples since the firms have not
been randomly selected from the population of US and European firms under issue.
The groups are made up of the firms that survived the initial selection. Moreover,
as shown in Table 2, the data are highly skewed, heavy tailed and there is no homo-

Table 1 The industry sectors of interest

Industry sector SIC code US firms Eur. firms

Computer Software Services 3579 71 77
Machinery 3500 61 66
Retail (Special Lines) 5600 57 35
Food Processing 2000 48 61
Oilfield Services Equipment 3533 47 33
Electronics 3670 42 35
Chemical (Specialty) 2820 36 26
Electrical Equipment 3600 34 29
Telecom Services 4890 28 25
Apparel 2300 22 31
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Table 2 Financial ratio summary statistics for US and European firms

US firms European firms

SIC code statistic P/E P/B P/S EV/EBITDA EV/C EV/S P/E P/B P/S EV/EBITDA EV/C EV/S

3579 mean 41.5 3.8 3.4 12.1 5.4 3.2 25.3 2.9 1.8 10.6 9.1 1.8
st. dev. 37.7 2.5 2.2 6.8 4.6 2.2 18.5 1.8 1.9 5.5 19.5 1.8
kurtosis 5.3 2.8 0.0 2.9 2.7 0.1 12.5 1.7 5.6 4.5 54.6 5.4
skewness 2.4 1.7 0.8 1.5 1.8 0.9 3.0 1.4 2.2 1.8 7.0 2.2

3500 mean 44.0 3.4 1.7 10.2 3.3 1.7 54.0 3.5 1.6 12.4 5.4 1.7
st. dev. 52.0 2.2 1.1 4.2 2.8 1.1 98.7 3.1 1.2 5.3 10.4 1.2
kurtosis 13.0 2.7 6.7 4.0 19.4 4.2 31.0 22.2 1.5 0.1 46.9 1.7
skewness 3.5 1.7 2.1 1.3 3.8 1.7 5.1 4.0 1.4 0.7 6.5 1.4

5600 mean 27.3 3.5 1.2 7.2 4.9 1.2 18.7 3.5 1.3 9.4 4.7 1.3
st. dev. 18.9 2.3 0.9 3.3 4.7 0.9 16.2 2.5 1.5 5.8 4.4 1.4
kurtosis 3.4 3.1 5.0 0.8 4.7 5.6 14.7 0.8 7.9 7.8 2.0 8.3
skewness 1.9 1.8 2.1 1.1 2.2 2.2 3.4 1.2 2.6 2.3 1.5 2.6

2000 mean 25.7 3.7 1.4 9.2 2.9 1.6 19.4 2.0 0.8 8.0 2.6 1.0
st. dev. 38.3 2.8 1.3 5.5 2.0 1.5 22.5 1.1 0.7 3.2 2.6 0.7
kurtosis 40.3 1.7 20.4 8.9 5.4 26.4 28.9 0.5 4.2 1.3 11.2 3.2
skewness 6.1 1.5 3.9 2.7 2.2 4.5 5.0 1.0 1.9 0.9 3.2 1.7

3533 mean 32.6 2.5 2.7 8.5 2.5 3.0 27.6 2.9 1.8 14.5 4.4 2.6
st. dev. 33.7 1.6 1.9 4.4 1.8 2.2 37.9 3.4 1.3 18.2 7.6 1.8
kurtosis 16.2 5.6 1.9 1.7 4.9 3.4 15.0 10.3 1.0 27.9 8.2 0.5
skewness 3.6 2.0 1.5 1.1 2.1 1.9 3.6 3.2 1.0 5.1 3.0 0.8

3670 mean 40.2 2.8 2.2 9.9 4.0 1.9 36.6 3.4 2.0 13.5 4.9 2.1
st. dev. 48.5 1.9 2.2 6.2 3.7 1.9 35.2 1.6 1.2 6.9 2.9 1.2
kurtosis 15.2 15.9 3.5 3.6 5.6 6.7 9.2 3.1 1.3 0.1 1.1 0.9
skewness 3.6 3.4 1.9 1.9 2.2 2.4 2.9 1.6 1.3 0.9 1.2 1.2

2820 mean 30.3 3.6 1.8 8.5 3.2 1.8 38.9 4.1 2.0 13.7 4.4 2.1
st. dev. 20.4 2.6 1.7 3.5 2.7 1.6 31.8 4.1 1.7 5.7 4.0 1.6
kurtosis 3.2 6.9 6.8 2.1 15.0 7.2 0.9 11.2 1.2 2.4 6.4 0.5
skewness 1.9 2.4 2.3 1.2 3.5 2.4 1.4 3.2 1.4 1.4 2.4 1.2

3600 mean 42.1 3.0 2.2 10.3 3.5 2.1 30.5 2.7 1.2 12.0 4.0 1.3
st. dev. 45.8 1.2 1.3 3.9 2.1 1.2 36.5 2.4 0.6 7.8 4.3 0.6
kurtosis 4.2 1.9 0.5 2.8 5.6 0.7 15.1 14.2 -1.2 3.7 11.9 -1.1
skewness 2.2 1.1 1.1 1.4 2.1 1.1 3.7 3.5 0.1 1.9 3.1 -0.1

4890 mean 27.8 2.7 1.9 5.5 2.7 2.1 87.7 3.7 1.4 6.5 3.2 1.8
st. dev. 40.5 1.7 1.1 3.7 2.2 1.0 343.3 3.7 0.9 3.2 2.2 1.2
kurtosis 13.9 2.3 3.0 13.7 5.8 0.6 24.9 14.0 6.6 5.4 9.5 5.4
skewness 3.6 1.7 1.4 3.3 2.3 0.7 5.0 3.4 2.2 2.0 2.7 2.1

2300 mean 22.7 3.3 1.7 8.6 3.9 1.8 34.0 4.4 2.5 14.3 5.3 2.6
st. dev. 10.7 2.0 1.5 3.1 3.6 1.8 31.8 4.2 2.5 11.8 6.0 2.5
kurtosis 5.0 1.8 2.8 3.7 6.9 7.8 15.8 4.5 4.8 15.1 13.8 6.3
skewness 1.9 1.4 1.7 1.6 2.5 2.6 3.5 2.1 2.1 3.5 3.4 2.4

geneity of variances between groups. Similarly to our method, neural networks (NN)
do not require restrictive assumptions on the data set, see [28]. In finance they are
used to separate a set a firms in different groups, generally the healthy firm group
and the unhealthy firm group, see [2]. Thus NN are an alternative to MDA rather
than to our method. Note that according to [35] in the literature there is no evidence
that NN are superior to MDA and that [2] concluded that NN are not dominant com-
pared to MDA. NN are widely used in finance also for prediction, see [14, 30]. Our
aim is different: to measure the difference between US and European firms as far as
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several financial ratios are considered and therefore NN are not suitable to pursue
our aim. Among the methods traditionally used in finance, a method that in principle
is similar to the method proposed in the paper is a descriptive (not inferential since
the groups are not random sample) MANOVA. Unfortunately, MANOVA cannot be
applied to our data because as shown in Table 2 the data are highly skewed, heavy
tailed and there is no homogeneity of variances between groups, see [8]. On the
contrary, the method proposed in Sect. 3 is particularly suitable in this situation. It
is a descriptive method and then does not require random sampling. It is based on
a statistic that is robust against skewness and heavy tailness in the data and takes
explicitly into account the difference in variability as well as in central tendency be-
tween groups. The method considers also the dependence relations among financial
ratios that are strong and then should be taken into account. The dependence among
the financial ratios can be assessed also when the correlations are different in the two
groups, note that this is very difficult to be assessed within the MANOVA setting
(traditional MANOVA cannot assess it).

The industry sectors of Table 1 have been compared using the normalized mea-
sure of difference proposed in the previous section. Table 3 displays the results ob-
tained using a random sample of 20,000 permutations in the algorithms for normal-
izing C and MC. By computing lC̃ l = 1, . . . ,L the comparison between US and
European firms is addressed by the univariate point of view and we can grade the
difference in each financial ratio and find out which are the most (or least) differ-
ent financial ratios for what concerns central tendency and variability. Table 4 shows
that the overall most different financial ratios are the P/S ratio and the EV/EBITDA
ratio. In particular, the P/S ratio is the most different financial ratio for computer,
retail, electrical equipment and telecom services industry sector. The EV/EBITDA
ratio is the most different financial ratio for machinery, oilfield services/equipment,
chemical and apparel industry sector. On the other side, the overall least different
financial ratio is the P/B ratio. In particular, the P/B ratio is the least different fi-
nancial ratio for machinery, retail, chemical and telecom services industry sector.

By computing M̃C we compare the US and European firms by simultaneously
considering the six financial ratios and then we address the problem from the multi-
variate point of view and we get a complete picture of valuation difference between
US and European firms. A very important feature of M̃C is in fact the consideration
of the dependence relations among the financial ratios. A second, but not less impor-
tant, utilization of M̃C is to find out what are the most (or least) different industry
sectors as far as the six ratios are simultaneously considered. Table 3 shows that
the industry sectors ranked in decreasing order of difference at the basis of all the
financial ratios are the computer, food processing, electronics, electrical equipment,
oilfield services/equipment, retail (special lines), chemical (specialty), apparel, tele-
com services and machinery. Since the least different industry sector has a difference
of .815 we conclude that US and European firms are very different as far as valuation
ratios are considered.

Even if the data sets have been cleaned by excluding firms with extreme ratios,
several financial ratios are still highly skewed and heavy tailed. Therefore we log
transform the data to reduce skewness and kurtosis. By computing the lC̃ and M̃C
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Table 3 Normalized difference between US and European firms

SIC code
Ratio 3579 3500 5600 2000 3533

P/E 0.999 0.889 0.989 0.985 0.914
P/B 0.983 0.019 0.557 0.999 0.817
P/S 1.000 0.398 0.992 0.999 0.900
EV/EBITDA 0.759 0.975 0.884 0.243 0.990
EV/C 0.860 0.826 0.702 0.921 0.962
EV/S 1.000 0.386 0.859 0.995 0.755
Combined 1.000 0.815 0.975 0.998 0.985

SIC code
Ratio 3670 2820 3600 4890 2300

P/E 0.130 0.611 0.674 0.786 0.959
P/B 0.957 0.051 0.964 0.575 0.652
P/S 0.989 0.089 0.995 0.923 0.371
EV/EBITDA 0.982 1.000 0.953 0.887 0.992
EV/C 0.999 0.652 0.950 0.589 0.639
EV/S 0.983 0.313 0.976 0.777 0.610
Combined 0.997 0.944 0.994 0.880 0.903

measures we obtain practically the same results as with non transformed data and
we find evidence that our difference measure is robust against skewness and heavy
tailness. This result confirms the findings of [21] found in the inferential context.
Note that the method is robust because the C statistic is based on ranks.

This application has two limitations. The first limitation is common to all the
studies that compared US and European firms and refers to the differences in the
accounting practices of the countries that may partly distort the comparability of
US and European financial statement data. Unfortunately we have at our disposal
financial ratios computed for a single year. This is the second limitation because it
is preferable to consider several year average financial ratios because single year fi-
nancial ratios may be influenced by some temporary or extraordinary circumstances.

5 Conclusions

A method for comparing firms through financial ratios has been proposed. The
method is based on squared ranks and does not require any particular assumptions
because it is a descriptive method. This aspect is very important because very often
financial data sets do not meet the assumptions (e.g. random sampling, normality,
homogeneity of variances . . . ) required by traditional methods like MANOVA and
MDA. The proposed method is devised to explicitly consider the possible difference
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in variances. It is a sort of measure of difference between groups of firms which takes
also into account the dependence among the financial ratios. It is robust against skew-
ness and heavy tailness. This second aspect is also very important because usually
financial ratios, even after removing outliers, are highly skewed and heavy tailed.
From the univariate point of view, the method can be used to grade the difference in
each financial ratio and find out which are the most (or least) different financial ra-
tios for what concerns central tendency and variability. From the multivariate point
of view, you assess the comparison by simultaneously considering all the financial
ratios and get a complete picture of the difference between the groups of firms. If
the firms have been classified according to industry sectors, you can find out what
are the most (or least) different industry sectors.

An application for studying the difference between US and European firms has
been discussed. Six valuation ratios and ten industry sectors have been considered.
We used our method because the usual inferential statistical techniques cannot be
used because the samples are not random samples, the data are not symmetric and
are generally heavy-tailed (even after removing the outliers), there is no homogene-
ity of variances between groups. We found that the overall most different financial
ratios are the P/S ratio and the EV/EBITDA ratio, while the overall least different
one is the P/B ratio. The most different industry sectors are computer, food pro-
cessing and electronics while the lest different one is the machinery. We suggest
managers, auditors, shareholders, lenders and potential investors to use our method
for comparing firm financial ratios because it does not require any particular assump-
tions, it is devised to explicitly consider the possible difference in variances, it takes
into account the dependence relations among the financial ratios and it is very robust
against skewness and heavy tailness.
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A Behavioural Approach to the Pricing
of European Options

Martina Nardon and Paolo Pianca

Abstract Empirical studies on quoted options highlight deviations from the theoret-
ical model of Black and Scholes; this is due to different causes, such as assumptions
regarding the price dynamics, markets frictions and investors’ attitude toward risk.
In this contribution, we focus on this latter issue and study how to value options
within the continuous cumulative prospect theory. According to prospect theory,
individuals do not always take their decisions consistently with the maximization
of expected utility. Decision makers have biased probability estimates; they tend
to underweight high probabilities and overweight low probabilities. Risk attitude,
loss aversion and subjective probabilities are described by two functions: a value
function and a weighting function, respectively. As in Versluis et al. [15], we eval-
uate European options; we consider the pricing problem both from the writer’s and
holder’s perspective, and extend the model to the put option. We also use alternative
probability weighting functions.

1 Introduction

Black and Scholes [3] model is considered as a milestone in the option pricing litera-
ture, it is widely applied in financial markets, and has been developed in many direc-
tions. Nevertheless, empirical studies on quoted options highlight deviations from
the theoretical model; this is due to different causes, such as assumptions regarding
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the price dynamics, and volatility in particular, the presence of markets frictions, in-
formation imperfections, and investors’ attitude toward risk. With reference to this
latter issue, we study how to value options within the cumulative prospect theory
developed by Kahneman and Tversky [7, 14].

According to the prospect theory, individuals do not always take their decisions
consistently with the maximization of expected utility. Decision makers evaluate
their choices based on potential gains and losses relative to a reference point, rather
than in terms of final wealth. They are risk-averse when considering gains and risk-
seeking with respect to losses. Individuals are loss averse: they are much more sen-
sitive to losses than they are to gains of comparable magnitude. Risk attitude and
loss aversion are described by a value function, which is typically concave (risk-
aversion) for gains and convex (risk-seeking) for losses, and steeper for losses.

A value function is not able to capture the full complexity of observed behaviours:
the degree of risk aversion or risk seeking appears to be dependent not only on the
value of the outcomes but also the probability and ranking of outcomes. Empirical
studies suggest that individuals have also biased probability perceptions, modeled by
a weighting function: small probabilities are overweighted, whereas individuals tend
to underestimate large probabilities1. This turns out in a typical inverse-S shaped
weighting function: the function is initially concave (probabilistic risk seeking or
optimism) and then convex (probabilistic risk aversion or pessimism)2. An inverse-
S shaped form for the weighting function combines the increased sensitivity with
concavity for small probabilities and convexity for medium and large probabilities.
In particular, such a function captures the fact that individuals are extremely sensitive
to changes in (cumulative) probabilities which approach to 0 and 1.

The literature on behavioural finance (see e.g. [5] for a survey) and prospect the-
ory is huge, whereas a few studies in this field focus on financial options. A first
contribution which applies prospect theory to options valuation is the work of She-
frin and Statman [10], who consider covered call options in a one period binomial
model. A list of papers on this topic includes: Poteshman and Serbin [8], Abbink
and Rockenbach [1], Breuer and Perst [4], and more recently Versluis et al. [15].
As in [15], we evaluate European plain vanilla options. In particular, we use alter-
native probability weighting functions (see Prelec [9]). We extend the model to the
European put option. We perform some numerical examples.

The rest of the paper is organized as follows. Section 2 synthesizes the main fea-
tures of prospect theory and introduces the value and the weighting functions; Sect.
3 focuses on the application of continuous cumulative prospect theory to European
option pricing; in Sect. 5 numerical results are provided and discussed. Finally we
present some conclusions.

1 Kahneman and Tversky [7] provide empirical evidence of such behaviours.
2 Abdellaoui et al. [2] discuss how optimism and pessimism are possible sources of increased prob-
ability sensitivity.
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2 Prospect Theory

Prospect theory (PT), in its formulation proposed by Kahneman and Tversky [7], is
based on the subjective evaluation of prospects. With a finite set3 of potential future
states of nature S = {s1,s2, . . . ,sn}, a prospect

((Δ x1, p1), (Δ x2, p2), . . . , (Δ xn, pn))

is a collection of pairs (Δ xi, pi) ∈R× [0,1], for i = 1,2, . . . ,n, where Δ xi is an out-
come and pi its probability. Outcome Δxi is defined relative to a certain reference
point x∗; being xi the absolute outcome, we have Δxi = xi − x∗. Assume Δ xi ≤ Δ x j

for i < j, i, j = 1,2, . . . ,n; prospects assign to any possible ordered outcome a prob-
ability pi.

2.1 Cumulative Prospect Theory

According to PT, subjective values v(Δxi) are not multiplied by probabilities pi, but
using decision weights πi = w(pi). It is relevant to separate gains from losses as in
PT negative and positive outcomes may be evaluated differently: the function v is
typically convex and steeper in the range of losses and concave in the range of gains,
and subjective probabilities may be evaluated through a weighting function w− for
losses and w+ for gains, respectively. In order to emphasize this fact, let us denote
with Δxi, for −m ≤ i < 0 (strictly) negative outcomes and with Δxi, for 0 < i ≤ n
(strictly) positive outcomes, withΔxi ≤Δ j for i < j. Subjective value of the prospect
is displayed as follows:

V =
n

∑
i=−m

πi · v(Δxi) , (1)

with decision weights πi and values v(Δxi). In the case of expected utility, the
weights are πi = pi and the utility function in not based on relative outcomes.

Cumulative prospect theory (CPT) developed by Tversky and Kahneman [14]
overcomes some drawbacks (such as violation of stochastic dominance) of the orig-
inal prospect theory. In the CPT, decision weights πi are differences in transformed
cumulative probabilities (of gains or losses):

πi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w−(p−m) i = −m

w− (∑i
j=−m p j

)−w−
(
∑i−1

j=−m p j

)
i = −m+1, . . . ,−1

w+ (
∑n

j=i p j
)−w+

(
∑n

j=i+1 p j

)
i = 0, . . . ,n−1

w+(pn) i = n.

(2)

It is worth noting that the subjective probabilities not necessarily sum up to one, due
to the fact that different weighting functions w+ and w− can be used.

The shape of the value function and the weighting function becomes significant
in describing actual choice patterns. Both functions will be discussed later.

3 Infinitely many outcomes may also be considered.
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2.2 Framing and Mental Accounting

PT postulates that decision makers evaluate outcomes with respect to deviations
from a reference point rather than with respect to net final wealth. The definition
of such a reference point is crucial due to the fact that individuals evaluate results
through a value function which gives more weight to losses than to gains of com-
parative magnitude. Individual’s framing of decisions around a reference point is of
great importance in PT.

People tend to segregate outcomes into separate mental accounts, these are then
evaluated separately for gains and losses. Thaler [12] argues that, when combining
such accounts to obtain overall result, typically individuals do not simply sum up
all monetary outcomes, but use hedonic frame, such that the combination of the
outcomes appears best possible.

Consider a combination of two sure (positive) outcomes Δx and Δy, the hedonic
frame can be described as follows (see [13]):

V = max{v(Δx+Δy), v(Δx)+ v(Δy)} . (3)

Outcomes Δx and Δy are aggregated, and in such a case we have v(Δx +Δy), or
segregated v(Δx)+ v(Δy), depending on what yields the highest prospect value.

An extension of the hedonic frame rule is (see also [4]):

V =
n

∑
i=1
πi ·max{v(Δxi +Δy), v(Δxi)+ v(Δy)}+

+

(
1−

n

∑
i=1
πi

)
·max{v(0+Δy), v(0)+ v(Δy)},

(4)

where Δxi are possible results (for i = 1, . . . ,n) with subjective probabilities πi and
Δy is a sure result.

Regarding the valuation of financial options, different aggregation or segregation
of the results are possible. One can consider a single option position (narrow fram-
ing) or a portfolio, a naked or a covered position. It is also possible to segregate
results across time: e.g. one can evaluate separately the premium paid for the option
and its final payoff.

2.3 Continuous Cumulative Prospect Theory

In order to apply CPT to option valuation, one has to deal with continuous results.
Davis and Satchell [6] provide the continuous cumulative prospect value V :

V =
∫ 0

−∞
Ψ−[F(x)] f (x)v−(x)dx+

∫ +∞

0
Ψ+[1−F(x)] f (x)v+(x)dx, (5)

whereΨ = dw(p)
d p is the derivative of the weighting function w with respect to the

probability variable, F is the cumulative distribution function and f is the probability



A Behavioural Approach to the Pricing of European Options 223

density function of the outcomes x; v− and v+ denote the value function for losses
and gains, respectively.

Specific parametric forms have been suggested in the literature for the value func-
tion. The value function v is continuous, strictly increasing, it displays concavity in
the domain of gains and convexity in the domain of losses (it is not required to be
differentiable, which is not generally the case in correspondence of the reference
point), and is steeper for losses. A function which is used in many empirical studies
is the following value function

v(x) =
{−λ (−x)b x < 0

xa x ≥ 0,
(6)

with positive parameters which control risk attitude 0 < a < 1 and 0 < b < 1, and loss
aversion, λ > 1. Of course, in the limit case a = b = 1 and λ = 1 one recovers the
risk neutral value function. Function (6) has zero as reference point and it satisfies
the above mentioned properties. As in equation (5), we will denote with v+ and v−
in order to emphasize the value function calculated for gains and losses. Figure 1
shows an example of the value function defined by (6).

Prosect theory involves also a probability weighting function which models prob-
abilistic risk behaviour. A weighting function w is uniquely determined and maps
the probability interval [0,1] into [0,1]. The function w is strictly increasing, with
w(0) = 0 and w(1) = 1. In this work we will assume continuity of w on [0,1], even
thought in the literature discontinuous weighting functions are also considered.

As weighting function one can consider the function suggested by Tversky and
Kahneman [14]:

w(p) =
pγ

(pγ +(1− p)γ)1/γ , (7)

Fig. 1 Value function (6) with parameters λ = 2.25 and a = b = 0.88
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where γ is a positive constant (with some constraint in order to have an increasing
function). Note that (7) satisfies w(0) = 0 and w(1) = 1.

The parameter γ captures the the degree of sensitivity to changes in probabili-
ties from impossibility (zero probability) to certainty; the lower the parameter, the
higher is the curvature of the function. When γ < 1, one obtains the typical inverse-
S shaped form, where low probabilities are overweighted (which results in heavier
tails of the distribution) and medium and high probabilities are underweighted. In
the applications, we consider two distinct functions w+ and w−, with parameters γ+

and γ− respectively, for probabilities associated to gains and losses.
As an alternative, Prelec [9] suggests a two parameters function of the form

w(p) = e−δ (− ln p)γ p ∈ (0,1), (8)

with w(0) = 0 and w(1) = 1. The parameter δ (with 0 < δ < 1) governs elevation of
the weighting function relative to the 45o line, while γ (with γ > 0) governs curva-
ture and the degree of sensitivity to extreme results relative to medium probability
outcomes. When γ < 1, one obtains the inverse-S shaped function.

In the applications, we consider Prelec’s weighting function with a single param-
eter

w(p) = e−(− ln p)γ p ∈ (0,1). (9)

Note that in this case, the unique solution of equation w(p) = p for p ∈ (0,1) is
p = 1/e � 0.367879 and does not depend on the parameter γ .

The weighting function w may be one of the main causes of the options’ mispric-
ing through its effect to the prospect value (see [11]). Figures 2 and 3 show some
examples of weighting functions defined by (7) and (9) for different values of the
parameters. As the parameters tend to the value 1, the weight tends to the objective
probability and the function w tends to the identity function.

3 European Options Valuation

Let St be the price at time t (with t ∈ [0,T ]) of the underlying asset of a European
option with maturity T ; in a Black-Scholes setting, the underlying price dynamics is
driven by a geometric Brownian motion. As a result, the probability density function
(pdf) of the underlying price at maturity ST is

f (x) = 1
xσ

√
2πT

exp

(
−[ln(x/S0)−(μ−σ2/2)T ]2

2σ2T

)
, (10)

where μ and σ > 0 are constants, and the cumulative distribution function (cdf) is

F(x) =Φ
(

ln(x/S0)−(μ−σ2/2)T
σ
√

T

)
, (11)

where Φ(·) is the cdf of a standard Gaussian random variable.



A Behavioural Approach to the Pricing of European Options 225

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 2 Weighting function (7) for different values of the parameter γ . As γ approaches the
value 1, the w tends to the identity function
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Fig. 3 Prelec’s weighting function (9) for different values of the parameter γ . As γ approaches
the value 1, the w tends to the identity function

Versluis et al. [15] provide the prospect value of writing L call options. Without
loss of generality, we will consider L = 1. Let c be the option premium with strike
price X . At time t = 0, the option’s writer receives c and can invest the premium
at the risk-free rate r until maturity, obtaining cerT , when he has to pay the amount
ST −X if the option expires in-the-money.
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Considering zero as a reference point (status quo), the prospect value of the writ-
er’s position in the time segregated case is

Vs = v+ (
cerT )+

∫ +∞

X
Ψ− (1−F(x)) f (x)v− (X − x) dx , (12)

with f and F being the pdf and the cdf defined in (10) and (11) of the future under-
lying price ST , and v is defined as in (6).

In equilibrium, we equate Vs at zero and solve for the price c:

c = e−rT
(
λ
∫ +∞

X
Ψ− (1−F(x)) f (x)(x−X)b dx

)1/a

, (13)

which requires numerical approximation of the integral.
When considering the time aggregated prospect value, one obtains

Va = w+ (F(X))v+ (
cerT )+

+
∫ X+c exp(rT )

X
Ψ+ (F(x)) f (x)v+ (c exp(rT )− (x−X)) dx+

+
∫ +∞

X+c exp(rT )
Ψ− (1−F(x)) f (x)v− (c exp(rT )− (x−X)) dx.

(14)

In this latter case, the option price in equilibrium has to be determined numerically.
In the case of a put option, one can not use put-call parity arguments. The prospect

value of the writer’s position in the time segregated case is

Vs = v+ (
perT )+

∫ X

0
Ψ− (F(x)) f (x)v− (x−X) dx , (15)

and one obtains

p = e−rT
(
λ
∫ X

0
Ψ− (F(x)) f (x)(X − x)b dx

)1/a

. (16)

In the time aggregated case the put option value is defined by the following ex-
pression

Va =
∫ X−perT

0
Ψ− [F(x)] f (x)v−

[
perT − (X − x)

]
dx+

+
∫ X

X−perT
Ψ+ [1−F(x)] f (x)v+ [

perT − (X − x)
]

dx+

+w+ [1−F(X)] v+ [
perT ] .

(17)

Equation Va = 0 has to be solved numerically for p.

3.1 Option Valuation from Holder’s Perspective

When one considers the problem from the holder’s viewpoint, the prospect values
both in the time segregated and aggregated cases change. Holding zero as a reference
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point, the prospect value of the holder’s position in the time segregated case is

V h
s = v−

(−cerT )+
∫ +∞

X
Ψ+ (1−F(x)) f (x)v+ (x−X) dx . (18)

We equate V h
s at zero and solve for the price c, obtaining

ch = e−rT
(

1
λ

∫ +∞

X
Ψ+ (1−F(x)) f (x)(x−X)a dx

)1/b

. (19)

In the time aggregated case, the prospect value has the following integral repre-
sentation

V h
a = w− (F(X))v−

(−cerT )+

+
∫ X+c exp(rT )

X
Ψ− (F(x)) f (x)v− ((x−X)− c exp(rT )) dx+

+
∫ +∞

X+c exp(rT )
Ψ+ (1−F(x)) f (x)v+ ((x−X)− c exp(rT )) dx.

(20)

In order to obtain the call option price in equilibrium, one has to solve numerically
the problem.

In an analogous way one can derive the holder’s prospect values for the put option.

4 Numerical Results

We have calculated the options prices both in the time segregated and aggregated
case. Tables 1 and 2 report the results for the European calls and puts, respectively,

Table 1 Call option prices in the Black-Scholes model and in the segregated and aggregated
prospects, from the writer’s viewpoint. The parameters are: S0 = 100, μ = 0.05, r = 0.05,
σ = 0.2, T = 1, and L = 1. In the BS model: a = b = 1, λ = 1, and γ = 1. The Tversky-
Kahneman parameters are: a = b = 0.88, λ = 2.25, γ+ = 0.61, and γ− = 0.69. The moderate
sentiment parameters are: a = b = 0.988, λ = 1.125, γ+ = 0.961, and γ− = 0.969. The last
two columns report the results when Prelec’s weighting function is used

TK sentiment Moderate sentiment Moderate sentiment
Prelec’s w function

X cBS cs ca cs ca cs ca

70 33.5401 79.7250 45.6392 37.8210 34.5707 37.7386 34.6245
80 24.5888 59.1367 37.0964 27.7655 25.6391 27.6832 25.7038
90 16.6994 42.2814 29.3001 18.9376 17.7360 18.8640 17.7956

100 10.4506 29.2077 22.3341 11.9501 11.3814 11.9028 11.4247
110 6.0401 19.4366 16.2796 6.9907 6.7702 6.9824 6.8049
120 3.2475 12.3977 11.2361 3.8140 3.7446 3.8394 3.7830
130 1.6395 7.5530 7.2823 1.9564 1.9387 1.9982 1.9819
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Table 2 Put option prices in the Black-Scholes model and in the segregated and aggregated
prospects, from the writer’s viewpoint. The parameters are: S0 = 100, μ = 0.05, r = 0.05,
σ = 0.2, T = 1, and L = 1. In the BS model: a = b = 1, λ = 1, and γ = 1. The Tversky-
Kahneman parameters are: a = b = 0.88, λ = 2.25, γ+ = 0.61, and γ− = 0.69. The moderate
sentiment parameters are: a = b = 0.988, λ = 1.125, γ+ = 0.961, and γ− = 0.969. The last
two columns report the results when Prelec’s weighting function is used

TK sentiment Moderate sentiment Moderate sentiment
Prelec’s w function

X pBS ps pa ps pa ps pa

70 0.1262 0.8496 0.8747 0.1555 0.1553 0.1670 0.1666
80 0.6872 3.1572 3.0876 0.8204 0.8145 0.8379 0.8321
90 2.3101 7.9546 7.0728 2.6922 2.6362 2.6932 2.6485

100 5.5735 15.6905 12.5269 6.3848 6.1385 6.3488 6.1483
110 10.6753 26.4833 19.0565 12.0983 11.4250 12.0262 11.4463
120 17.3950 40.2732 26.3766 19.5999 18.2390 19.5062 18.2748
130 25.2994 56.8373 34.2999 28.4329 26.1692 28.3307 26.2097

from the writer’s viewpoint, for different strikes and values of the parameters. When
we set μ = r, a = b = 1, λ = 1, and γ = 1, we obtain the same results as in the
Black-Scholes model (BS prices are reported in the second column). We compare
BS premia with prices obtained considering the parameters used in [14] by Tversky
and Kahneman. We then used the moderate sentiment parameters as in [15] and
compare the prices obtained considering different weighting functions: in particular,
we applied (7) and Prelec’s function (9); results are reported in the last columns of
the tables.

Table 3 reports the results for the call option evaluated by the holder. The prices
are below the writer’s results. What we obtain is an interval for the option in which
BS value lies.

It is worth noting that hypothesis on the segregation of the results are also im-
portant: in particular, results obtained in the time aggregated case with moderate
sentiment do not deviate too far from BS prices. The segregated prospect model,
combined with TK sentiment, provide too high writer’s option prices and to low
holder’s option prices to be used in practice. This is also true, but somehow miti-
gated in the aggregated model with TK sentiment.

5 Concluding Remarks and Future Research

Prospect theory has recently begun to attract attention in the literature on financial
options valuation; when applied to option pricing in its continuous cumulative ver-
sion, it seems a promising alternative to other models proposed in the literature, for
its potential to explain option mispricing with respect to Black and Scholes model.
In particular, the weighting function may be one of the main causes of the mispric-
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Table 3 Call option prices in the Black-Scholes model and in the segregated and aggregated
prospects from the holder’s viewpoint. The parameters are: S0 = 100, μ = 0.05, r = 0.05,
σ = 0.2, T = 1, and L = 1. In the BS model: a = b = 1, λ = 1, and γ = 1. The Tversky-
Kahneman parameters are: a = b = 0.88, λ = 2.25, γ+ = 0.61, and γ− = 0.69. The moderate
sentiment parameters are: a = b = 0.988, λ = 1.125, γ+ = 0.961, and γ− = 0.969. The last
two columns report the results when Prelec’s weighting function is used

TK sentiment Moderate sentiment Moderate sentiment
Prelec’s w function

X cBS cs ca cs ca cs ca

70 33.5401 12.1241 26.6775 29.8193 32.7509 29.7427 32.7826
80 24.5888 9.0924 18.9273 21.9088 23.8714 21.8318 23.9137
90 16.6994 6.6805 12.7900 14.9708 16.1214 14.9014 16.1617

100 10.4506 4.8156 8.3010 9.4774 10.0519 9.4332 10.0828
110 6.0401 3.3871 5.2167 5.5693 5.8103 5.5628 5.8402
120 3.2475 2.3074 3.1864 3.0552 3.1403 3.0816 3.1787
130 1.6395 1.5131 1.8997 1.5767 1.6024 1.6193 1.6473

ing; in this work we compared the results obtained with two alternative weighting
functions.

We evaluated options from both the writer’s and holder’s perspective, obtaining
an interval for the option price. Such an interval may be affected by the functional
form of the weighting function and the values of its parameters. It will be interesting
to use other weighting functions among those proposed in the literature.

We also obtained prices for the call and the put options. As we cannot use put-call
parity arguments, another problem which will be interesting to study more in depth
is if there exist relations between put and call options prices.

Finally, option prices are sensitive to the choice of the values of the parameters.
Calibrating model parameters to market data in order to obtain an estimate of the
market sentiment is an important issue which requires further investigation.
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Threshold Structures in Economic and Financial
Time Series

Marcella Niglio and Cosimo Damiano Vitale

Abstract In this paper we present some nonlinear autoregressive moving aver-
age (NARMA) models proposed in the literature focusing then the attention on the
Threshold ARMA (TARMA) model with exogenous threshold variable. The main
features of this stochastic structure are shortly discussed and the forecasts generation
is presented.
It is widely known that in presence of most economic time series the nonlinearity of
the data generating process can be well caught by the threshold model under analysis
even if, at the same time, the forecast accuracy is not always equally encouraging.
Starting from this statement we evaluate how the forecast accuracy of the US Con-
sumer Price Index can be improved when a TARMA model with exogenous thresh-
old variable is fitted to the data. We give empirical evidence that predictors based on
a squared loss function can be more accurate when the spread between US Treasury
Bonds and US Treasury Bills is selected as threshold variable.

1 Introduction

The asymmetry of most economic and financial time series has been widely inves-
tigated in the literature. The abrupt declines that often characterize short periods of
time and the smooth increases, usually longer than the pervious phases, are ascribed
as the main causes of largely recognized asymmetric effects.
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To catch these features of data, a significant number of models has been proposed
in the literature and some of them can be considered as direct generalization of the
linear autoregressive moving average (ARMA) model, widely presented in [5].

In fact, after evaluating the inability of ARMA models to take into account the
mentioned asymmetry, a number of variants has been given to this stochastic struc-
tures. Among them, [24] proposes the so called Self Exciting Threshold ARMA
model (SETARMA) given as:

Xt =
�

∑
k=1

[
φ (k)

0 +
pk

∑
i=1
φ (k)

i Xt−i + et −
qk

∑
j=1
θ (k)

j et− j

]
I(Xt−d ∈ Rk), (1)

where d is the threshold delay, Rk = (rk−1,rk] with −∞= r0 < r1 < .. . < r�−1 < r� =
∞ and {et} is a sequence of independent and identically distributed (iid) random vari-
ables with E(et) = 0 and E(e2

t ) = σ2 <∞, whereas pk and qk are the autoregressive
and moving average order of regime k respectively. New results have been recently
given in [13] and [14] for model (1) that, among the others, has a number of theo-
retical and empirical interesting features: for example it allows to take advantage of
some results (properly revised) given in the linear ARMA context; its structure can
lead to easy interpretations when applied in empirical domains where the observed
phenomena are characterized by regimes changes; it catches asymmetric effects in
the data that, in presence of economic time series, are often due to business cycles.

[18] proposes a variant of model (1) where Xt is given by:

Xt = μI(t) +
p

∑
j=1
φ (i)

j

(
Xt− j −μI(t− j)

)
+ et −

q

∑
k=1

θ (i)
k et−k, ri−1 ≤ Yt < ri, (2)

for i = 1,2, . . . �, where I(t) = i if ri−1 ≤ Yt < ri, μI(t− j) is the mean value of Xt− j,
μI(t) changes according to the switching among regimes induced by the threshold
variable Yt and the error sequence is defined as:

et = σiηt , if ri−1 ≤ Yt < ri,

with ηt a sequence of Gaussian white noises.
The main differences that can be appreciated from the comparison of the mod-

els (1) and (2) are that in the autoregressive part of the latter model the difference
(Xt− j −μI(t− j)) is obtained subtracting to Xt− j the mean value of the regime that has
generated Xt− j itself (in model (2) each regime has its own mean) and further the
threshold variable in model (2) is exogenous without threshold delay d.

Following the spirit that has inspired the two previous models, [6] propose the
Autoregressive Asymmetric Moving Average (ARasMA) model defined as:

Xt = φ1Xt−1 + . . .+φpXt−p + et +β+
1 e+

t−1 + . . .+β+
q e+

t−q +β−
1 e−t−1 + . . .+β−

q e−t−q

(3)
where et is a Gaussian white noise sequence with mean zero and finite variance
σ2, e+

t−i = max{et−i,0} and e−t−i = min{et−i,0}, for i = 1,2, . . . ,q. In practice the
moving average component of model (3) has two separate moving average filters
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that characterize the asymmetry of Xt whereas the autoregressive component is left
unchanged for t = 1,2, . . . ,T .

[10] propose another variant of regime switching ARMA model:

Xt = m0(st)+
p

∑
i=1

a0i(st) [Xt−i −m0(st−i)] = et +
q

∑
i=1

b0i(st)et−i (4)

where {et} is an independent sequence of centered random variables whose variance
can be time dependent when et = σ0(st)ηt (with {ηt} a sequence of iid random vari-
ables), and st is the realization of the stochastic process St defined on {1,2, . . . ,d}.
Note that when d = � model (4) generalizes model (2). In fact this last model can
be seen as particular case of model (4) when St degenerates to a deterministic pro-
cess defined over {0,1} where the switching between the two states depends from
an exogenous variable Yt .

More recently another example of model obtained introducing a threshold effect
in the corresponding ARMA model has been given in [12]. In is mainly motivated
from the fact that long memory effects and structural changes of data can be easily
confused in empirical analysis. So they propose a threshold ARFIMA model having
form: (

X−
t −φ−1 X−

t−1 . . .−φ−p X−
t−p

)
(1−B)d−

+
(
X+

t −φ+
1 X+

t−1 . . .−φ+
p X+

t−p

)
(1−B)d+

=Θ(B)et (5)

with {et} a sequence of iid errors with mean zero and finite variance σ2 > 0,Θ(B) =
1+θ1B+θ2B2 + . . .+θqBq, X−

t = (Xt −μ−)I(Zt−1 ≤ r), X+
t = (Xt −μ+)I(Zt−1 >

r), μ− and μ+ are the mean values of the first and the second regime respectively,
the threshold variable Zt−1 = f (et−1, . . . ,et−p) with f (·) known, and where the pa-
rameter of fractional integration becomes d− if Zt−1 ≤ r and d+ if Zt−1 > r.

Starting from model (5), [12] propose two further models: the short mem-
ory threshold ARFIMA obtained when d− = d+ and the long memory threshold
ARFIMA where the autoregressive parameters of model (5) become φ+

i = φ−i = φi,
for i = 1,2, . . . , p. They further note that in the short memory case the threshold vari-
able Zt−1 can be substituted by Xt−1 itself (or even an exogenous variable). In this
last case we further remark that if μ− = μ+ and d = 0 the model degenerates to a
particular threshold ARMA model whose properties have been examined in [7].

In this wide class of models that generalize the ARMA stochastic structure, the
attention will be given to a variant of model (1). More precisely in Sect. 2 we discuss
some feature of the proposed model specification and we focus the attention on the
forecasts generation whereas in Sect. 3 we apply this variant to evaluate its forecast
accuracy to predict the US Consumer Price Index. Some concluding remarks are
given at the end.
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2 TARMA Model with Exogenous Threshold Variable

The dynamic structure of model (1) is characterized by a threshold variable given by
Xs, with s = t −d. The feedback of Xs on Xt , with s < t, heavy impacts the statistical
properties (such as stationarity and ergodicity) of the SETARMA process leading to
very narrow stationarity region over the parametric space (see [2, 15, 16]).

A variant of model (1) has been recently discussed in [19] where a TARMA
model with exogenous threshold variable has been proposed and the conditions
for its strong and weak stationarity are provided. In more detail, let Xt be a
TARMA(�; p1, . . . , p�;q1, . . . ,q�), its form is given by:

Xt =
�

∑
k=1

[
φ (k)

0 +
pk

∑
i=1
φ (k)

i Xt−i + et −
qk

∑
j=1
θ (k)

j et− j

]
I(Yt−d ∈ Rk), (6)

with {et} a sequence of iid(0,σ2) random variables and Yt a strictly stationary pro-
cess independent from et . The exogenous threshold variable Yt−d heavy impacts the
dynamic structure of Xt in model (6) whose switching among regimes is not due to
the process Xt itself as in model (1).

The main advantages obtained from model (6) with respect to the models shortly
presented in Sect. 1 are various: the presence of an exogenous threshold variable
allows to define a switching structure for Xt that is related to a delayed variable Yt−d

which influences its stochastic dynamic. This property of model (6) has interesting
implications in empirical domain (for example in economic domain where a change
of state is due to other phenomena observed in the past) and makes the use of the
TARMA model more flexible with respect to model (1) and (2). A further difference
of model (6) when compared to model (3) and (5), is that the threshold dynamic
involves both the autoregressive and the moving average components. It increases
the ability of the model to catch asymmetric effects and business cycles in the data.
Finally the main advantage of model (6) with respect to model (4) is related to its
more easy interpretation which is greatly appreciated from practitioners (and not
only from them).

In the following, to simplify the notation, we assume that p1 = p2 = . . . = p� = p
and q1 = q2 = . . . = q� = q (for this purpose null parameters can be included in the
model) such that we can shortly say that Xt ∼ TARMA(�; p,q).

The estimation of the model parametersΨ = (Φ(1), . . . ,Φ(�),Θ (1), . . . ,Θ (�),σ2),
with Φ(i) = (φ (i)

0 ,φ (i)
1 , . . . ,φ (i)

p ) andΘ (i) = (θ (i)
1 , . . . ,θ (i)

q ), can be based of the itera-
tive procedure given in Tong (1983) and discussed for the SETARMA model in [19].
The algorithm, that for the sake of simplicity is presented for � = 2, is based on the
following steps:

1. select a set of non negative integer values for the p and q orders, define a set
D ∈ N∗ of possible threshold delays d (with N∗ the set of positive integers) and
a subset [RL ,RU ] of α-quantiles of Yt that represent the candidate values of the
threshold parameter r; for all combinations of (p,q,d,r) define a grid;



Threshold Structures in Economic and Financial Time Series 235

2. select the cells of the grid defined in step 1. such that each regime has an adequate
number of data;

3. estimate the φ (k)
i and θ (k)

j parameters of model (6) such that

β̂ = argmin
β̂∈B

T

∑
i=s

e2
i (β ),

with β =
(
Φ(1),Φ(2),Θ (1),Θ (2)

)
, s = max(p,q,d)+1, ei(β ) = Xi−E[Xi|Fi−1]

and Fi−1 a σ−field generated by (X1, . . . ,Xi−1,Y1, . . . ,Yi−1−d);
4. use the residuals êt = Xt − X̂t , for t = s, . . . ,T , obtained from step 3., and estimate

the variance σ̂2 = (T − s)−1∑T
t=s ê2

t .

The estimation of the model parameters is the preliminary step for the forecasts
generation which represents one of the major aims of the time series analysis. Here
we focus the attention on point forecasts whose accuracy is evaluated in detail.

2.1 Forecast Generation

The generation of forecasts from nonlinear time series models has been differently
discussed (for recent reviews see [11] and [23, Chap. 14]). In the present paper we
focus the attention on one-steps ahead forecasts (denoted fT,1) generated from model
(6). As well known the generation of fT,1 requires an information set (FT ) that con-
tains all available informations on Xt and on the threshold variable Yt , up to time T .

After choosing a cost function C(eT,1) with eT,1 = XT+1 − fT,1, the predictor fT,1

is obtained from the minimization of C(eT,1). The selection of the function C(·) can
be differently chosen (see among the others [20]). In the following a quadratic cost
function is selected for C(·) such that fT,1 is obtained from:

arg inf
fT,1

E
[
(XT+1 − fT,1)2] , (7)

where fT,1 is unbiased and with serially uncorrelated prediction errors eT,1.
Taking advantage of the assumptions on model (6) and after the minimization of

(7), the predictor fT,1 = E[XT+1|FT ] is defined as:

fT,1 = E

[
�

∑
k=1

(
φ (k)

0 +
p

∑
i=1
φ (k)

i Xt+1−i + et+1 −
q

∑
j=1
θ (k)

j et+1− j

)
I(Yt+1−d ∈ Rk)|FT

]

=
�

∑
k=1

[
φ (k)

0 +
p

∑
i=1
φ (k)

i Xt+1−i −
q

∑
j=1
θ (k)

j et+1− j

]
I(Yt+1−d ∈ Rk), (8)

with d ≥ 1 and all parameters are estimated following the four-steps procedure il-
lustrated in Sect. 2.

The predictor (8), even called analytical in [11], completely changes when h-
steps ahead forecasts are generated. In more detail when h > d the threshold variable
Yt+h−d has to be predicted making use of its conditional expectation. It requires the
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knowledge of the dynamic structure of the threshold variable that needs to be inves-
tigated. This problem, faced in the SETARMA domain in [1], is beyond the aims of
the present paper and is left for future research.

3 U.S. Monthly Consumer Price Index

The behavior of the US Consumer Price Index (CPI) is a central concern in eco-
nomics and in the last years the attention is further grown on it. A question largely
discussed in the literature is why the CPI can be hard to forecast and how the in-
troduction of proper variables can be of help in this difficult task (see among the
others [8, 22]). In this context the use of TARMA models with exogenous thresh-
old variable can give some advantage for different reasons: they are able to catch the
asymmetry of the CPI; the estimated model has interesting empirical interpretations;
the exogenous threshold variable allows to include informations in the model that
can improve the forecast accuracy.

Following [8], we have generated for the monthly US CPI one-step ahead fore-
casts from model (6) using as exogenous threshold variable the Spread (based on
monthly data) between the US treasury notes (10-years US treasury rates) and the
US treasury bills (3-months US treasury rates). The results in terms of forecast ac-
curacy are described below.

The monthly US CPI and the Spread have been examined over the period
1985:01-2008:07 for a total of 284 observations. The original Consumer Price In-
dex data and lCPI = log(CPIt/CPIt−1) are presented in Fig. 1 whereas the time plot
and the autocorrelation function (ACF) of lSpread = (Spreadt − Spreadt−1), with
Spread = log(T Notest/T Billst), is shown in Fig. 2. From the comparison of the
two figures, it can be noted an increasing variability first observed in lSpread and
then in lCPI. The marked changes in the lSpread variability, that start just before
the terroristic attacks to the twin towers in US, have heavy consequences over all
the next 5 years.

To start the presentation of data under analysis, some summary statistics are pre-
sented in Table 1 where, as expected, it can be noted the higher variability, skewness
and kurtosis of lSpread with respect to lCPI.

Table 1 Summary statistics of lCPI and lSpread data (mean, variance, median, skewness,
kurtosis, minimum, maximum)

Serie μ σ2 Me γ1 γ2 min max

lCPI 0.0026 4.86e(−06) 0.0025 0.2437 3.6490 −0.0055 0.014
lSpread −0.0024 0.0050 −0.0039 0.7455 5.1055 −0.3094 0.3452
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CPI: 1985:01 - 2008:07
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Fig. 1 Top: Time plot of the monthly US CPI over the period 1985:01-2008:07; Bottom:
Time plot of lCPI = log(CPIt/CPIt−1)
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Fig. 2 Time plot and ACF plot of the spread between the US treasury notes (10 years US
treasury rates) and the US treasury bills (3 months US treasury rates), where lSpread =
(Spreadt −Spreadt−1) with Spread = log(T Notest/T Billst)



238 M. Niglio and C.D. Vitale

The dynamic structure of the US CPI has been largely studied and the nonlinearity
of the underlying data generating process mainly due to asymmetric effects is widely
accepted (see among the others [4]). The nonlinearity recognized in the US CPI has
lead to fit switching structures to the observed data that in most cases belong to the
wide class of nonlinear autoregressive (NLAR) processes (see [3, 4, 17]).

In our analysis we have selected for the lCPI the nonlinear autoregressive mov-
ing average model (6) where the moving average component allows to select a more
parsimonious model with respect to NLAR structures used in [17]. After the iden-
tification and estimation of the model based on the four steps procedure presented
in Sect. 2, we have generated one-step ahead forecasts over the period 2006:08-
2008:07. In more detail let T = 284 the total sample size, using the predictor (8)
we have generated from T − h + 1 to T , h = 24 one-step ahead forecasts using an
expanding window algorithm based on the following steps:

1. define a forecast horizon h;
2. for i = 0, . . . ,h−1:

(a) select the sample X1, . . . ,XT−h+i over which to estimate the model parame-
ters;

(b) generate the one-step ahead forecast fT−h+i+1 for XT−h+i+1, given the thresh-
old variable YT−h+i.

This algorithm allows to increase the estimation window as i grows producing, at
each iteration of step 2., an out of sample one-step ahead forecast.

The sequence of forecasts fT = ( fT−h+1, . . . , fT ) is then compared to the observed
data XT = (XT−h+1, . . . ,XT ) using a square loss function:

E[L2(XT , fT )] =
1
h

h−1

∑
i=0

(XT−h+i+1 − fT−h+i+1)2, [MSFE]

to evaluate their accuracy.
As discussed in the previous pages, the introduction of an exogenous threshold

variable and the use of nonlinear models can improve the accuracy of the forecasts
generated for the US CPI. To further remark this point we have generated forecasts
for lCPI using the following models:

1. TARMA model (6) with lSpread as threshold variable;

2. SETARMA model (1);

3. SETAR model, obtained from (1) with θ (k)
j = 0, for j = 1, . . . ,qk and k = 1, . . . , �;

4. ARMA model, given by (1) with � = 1;

5. Random Walk (RW).

For models 1. to 4. the identification has been based on the Akaike Information
Criterion whereas the parameters are estimated at each iteration of step 2. Further,
for all five models, the predictors obtained from (7) are considered and their MSFE’s
are compared.
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Table 2 Evaluation, in terms of MSFE, of the SETARMA model (1) with three competitor
models

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

MSFE(SETARMA)
MSFE(SETAR)

1.0256 0.9504 0.9887 1.0096 0.9956 0.9899

MSFE(SETARMA)
MSFE(ARMA)

1.0134 1.0329 1.0444 1.1295 1.0559 1.0311

MSFE(SETARMA)
MSFE(RW )

0.6783 0.6913 0.6990 0.7560 0.7067 0.6901

Table 3 Evaluation, in terms of MSFE, of the TARMA model (6) with three competitor mod-
els

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

MSFE(TARMA)
MSFE(SETAR)

0.9932 0.9181 0.9884 0.9176 0.9597 0.9426

MSFE(TARMA)
MSFE(ARMA)

0.9814 0.9977 1.0441 1.0266 1.0179 0.9817

MSFE(TARMA)
MSFE(RW )

0.6568 0.6678 0.6988 0.6871 0.6812 0.6571

In Table 2 the MSFE of the SETARMA model is compared with the MSFE’s of
the SETAR, ARMA and RW models whereas in Table 3 the MSFE of the TARMA
model is compared with the MSFE’s of the same three competitor models.

We have generated for the TARMA (and to make easier the comparison even for
the SETARMA) model, forecasts for different values of d (d = 1, . . . ,6) to evaluate
if the Spread impacts the CPI prediction in presence of long horizons, as stated in [8].

From Table 2 it can be noted that for d = 1 to 6 the SETARMA model does not
outperforms the linear ARMA model whereas in four cases some gain, in term of
forecast accuracy, is obtained with respect to the SETAR forecasts.

The poor performance of the forecasts generated from nonlinear models with re-
spect to those obtained from linear structures is not new in presence of economic
time series (in this very wide literature see [9, 21]). The complexity of the generat-
ing process and the number of variables that impacts this kind of phenomena suggest
the use of models that are able to catch, at the same time, the nonlinearity of data
and the relation with other economic time series.

Following this advice, in Table 3 it can be noted that the introduction of lSpread
as threshold variable allows to generate more accurate forecasts from the TARMA
model when compared with the predictions obtained from the SETAR, ARMA and
RW models. When the MSFE’s of the TARMA and SETAR model are compared,
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the better forecast accuracy of the former model with respect to the latter structure
can be appreciated for d = 1, . . . ,6. From the comparison TARMA-ARMA forecasts
the better performance of the TARMA model is reached for d = 1 (which is the
threshold delay selected at the identification stage), d = 2 and d = 6 (this last case
confirms what stated in [8] where the author discusses how the Spread can be of
help to predict inflation, particularly with long horizons). As expected, in all cases
the Random Walk model is characterized by the worst forecast accuracy in both
Table 2 and Table 3.

4 Conclusions

In this paper nonlinear autoregressive moving average models often used to analyze
economic and financial time series are presented and shortly compared. Among them
the attention has been mainly focused on the class of threshold ARMA models and on
their forecasts generation and forecasts accuracy. These models have been applied
to analyze the monthly US CPI and to investigate if the relation between the US CPI
and the Spread (computed in terms of difference between US Treasury Notes and
US Treasury Bills rates) can impact the forecast accuracy of the inflation in US. The
empirical results show that the introduction of the Spread as threshold variable in
(6) impacts the accuracy of the forecasts generated from the model and further that
these forecasts always outperform the predictions obtained from model (1) where
the threshold variable is endogenous.
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cedures. The second system attempts to improve the performances of fuzzy system
through Neural Networks. The target is to obtain good profits, avoiding drawdown
situations, in applications to the DMAC rule for trading the euro-dollar in the for-
eign exchange market. The results show that the fuzzy system gives good profits over
trading periods close to training period length, but the neuro-fuzzy system achieves
the best profits in the majority of cases. Both systems show an optimal robustness
to drawdown and a remarkable profit performance. In principle, the algorithms, de-
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1 Introduction

The trading performance of Technical Analysis (TA) can, in general, be improved
using intelligent data mining techniques. Among the main procedures, intelli-
gent methods such as Fuzzy Logic and Genetic Algorithms (GA) have frequently
achieved good results. In many cases, the combination of these techniques produces
relevant findings. Allen and Karjalainen [1] used a genetic algorithm to learn techni-
cal trading rules for the S&P 500 index using daily prices. They concluded that the
GA application finds little evidence of substantial improvements in economically
significant technical trading rules. This happens, most likely, because their pioneer-
ing experiment aims at discovering randomly, through GA methods, technical rules
not necessarily ever used by a human trader. However, good results are found in [4]
where the behaviour of traders tends to adapt the chosen algorithm to market condi-
tions, by dropping trading rules as soon as they become loss-making or when more
profitable rules are found. A Genetic Algorithm is applied here to a number of in-
dicators calculated on a set of US Dollar/British Pound exchange rates, selecting
rules based on combinations of different indicators at different frequencies and lags.
Moreover, strong evidence of economically significant out-of-sample excess returns
to technical trading rules are found using genetic programming techniques by [6].

A relatively new approach to genetic procedures application to TA is introduced
in [9]. The authors use Genetic Algorithms (GA) to obtain optimal (and constrained
optimal) parameters for high profit in a very popular trading rule, the Dual Moving
Average Crossover (DMAC). This is a mathematically well-defined rule and GA is
able to hit at least a good local optimum there.

In this paper, we design a Neuro-Fuzzy system for trading in the Euro-Dollar
foreign exchange market, using a DMAC trading rule (described in Sect. 2). The
Fuzzy Logic, together with genetic optimization, is good for computing and re-com-
puting optimal and near-optimal trading parameters of the DMAC, whereas the Neu-
ral Networks (NN), being able to learn from the data in repeated experiments, âĂŞ
is devoted to give optimal weights to the parameters found by the Fuzzy Logic Con-
troller(FLC). The idea is using the constrained algorithms of [9] to define the Mem-
bership Functions (MF) and the fuzzy rules of the trading system (Sect. 3). After that,
in order to achieve the best performance of the overall fuzzy logic-GA-enhanced
DMAC, the weights of fuzzy rules are computed by a suitable Neural Network, as
done by applications in a different field [10–12] (Sect. 4). The target is to achieve
optimal profits with DMAC in the euro-dollar exchange rate market, avoiding draw-
down situations [9]. The intelligent model is programmed in Matlab with Fuzzy
Logic and Neural Network tools. We use an hourly time series (1999–2012) of the
Euro-Dollar exchange rate supplied by the US data provider CQG (with an extensive
work to filter out errors).

A last thought on the innovative strength of the algorithmic procedures here pro-
posed. Genetic Algorithms, Fuzzy Logic Controllers and the use of Neural Networks
are more frequently used separately in finance. Their joint use is new in this field.
Moreover, this novelty can have huge implications for the optimal design of unat-
tended trading machines. They can signal trading opportunities or execute trades
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automatically, within the limits of boundary values supplied by the users of these
instruments. In principle, the internal architecture of these machines coul be pro-
grammed on microcircuits.

2 The DMAC Rule

Technical Analysis is a forecasting method of price movements for trading. It aims
at forecasting future price movements from chart patterns of past values (see [13]),
which can be expressed in parametric mathematical form. Parameters can therefore
be optimized in a trading environment, where you have a period to evaluate and
optimize your trading rule (called the Training Set, TNS) and an unknown future
where you plunge your optimized tool for trading and earn money (called Trading
Set, TDS).

A technical trading system consists of a set of trading rules which depend on
technical parameters. The rule generates trading signals according to its parameter
values. The most well-known types of technical trading systems are moving av-
erages, channels and momentum oscillators [8]. Among such technical rules, the
DMAC rule is here considered. The Dual Moving Average Method is one of the few
technical trading procedures that is mathematically well defined. The DMAC sys-
tem generates trading signals by identifying when the short-term trend rises above
or below the long-term trend.

Let pt be the hourly foreign exchange rate at time t. We define the Fast Moving
Average (FMA) A f , over n hours, and the Slow Moving Average (SMA) As, over m
hours: A f (t) = ∑n

i=1
pt−1−i

n and As(t) = ∑m
i=1

pt−1−i
m , with t ≥ m > n.

The trading rules are:

• if A f (t) > As(t) than go long (i.e. buy the asset) at pt+1;
• if A f (t) < As(t) than go short (i.e. sell the asset) at pt+1.

The FMA computes a moving average over a smaller number of hours than in
the SMA. The FMA thus picks up the short-term movements of the rate, whereas
the SMA draws the longer term trend of it. Trading signals are obtained by their
contemporaneous movements. A trade is opened if one of two trading rules holds.
In other words, if the Fast Moving Average curve crosses the Slow Moving Average
curve than a trade (long or short) is opened. Such trade is closed when a suitable
threshold is reached. For both longs and shorts we have two thresholds: a Take Profit
(TP), if the exchange rate went in the direction established by your DMAC, a Stop
Loss (SL), if the direction was the opposite.

In the DMAC rule, the technical parameters to be optimized are the Fast Moving
Average, the Slow Moving Average, the Take Profit and the Stop Loss. Practition-
ers choose the values of these parameters according to experience, market trends,
volatility and their personal trading styles. They also frequently prefer to base deci-
sions on a mix of technical indicators. The techniques we proposed in [9] and propose
here can offer further information to professional and non-professional traders.
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3 Design of the Decision Protocol

In order to obtain good profits from the application of DMAC rule, a suitable choice
of the technical parameters - FMA, SMA, TP and SL - is necessary. Our methodol-
ogy starts with the definition and actual indication of two features (among the many
possible ones) of the euro-dollar exchange rate behaviour overtime. The first one is
the slope of trend (as representing the longer term direction of the exchange rate),
whereas the second one is the number of crossings of the exchange rate curve around
its time trend (as representing the volatility of the rate). As standard in the evalua-
tion of trading rules (in order to avoid data snooping), the profitability of our trading
protocol is analyzed by dividing the available sample into a Training Set (TNS) and
a Trading Set (TRS).

A Fuzzy Logic Controller (FLC) characterizes the slope values and the crossings
number. In fact, with the help of this technique it is possible to define suitable scal-
ing parameters of the inputs. The proposed FLC has two fuzzy inputs (slope and
crossings number) and four fuzzy outputs (TP, SL, FMA and SMA). To define the
Membership Functions (MF) number and the relative scaling factors, we consider
the results obtained in a Master thesis, written at Teramo by one of our brightest
students, Pierluigi Ippoliti.

The first fuzzy input (trend) reflects five states of the forex market. It is therefore
represented by five MF: Fast Decreasing (FD), Slow Decreasing (SD), Lateral Trend
(LT), Slow Increasing (SI), Fast Increasing (FI). The crossings number and the fuzzy
outputs have three MF: Low (L), Medium (M), High (H). To establish the MF scaling
factors, the methods, defined in [9] and in the above-mentioned thesis, are used. A
constrained algorithm is applied to the DMAC rule, avoiding losses greater than
four per cent in one month. This constraint avoids draw-down situations during the
trading and reduces losses.

As customary in the literature, the choice of training and trading sets length is a
delicate issue [1, 7]. We analyze the profitability of our technical rule considering a
TNS length of four months (various ones) between 1999 and 2007. Once the training
periods are chosen, slope and crossings number are computed. Over such periods,
the DMAC rule is applied. Through genetic procedures, the best values of TP, SL,
FMA and SMA are found [9]. This means that the GA searches the parameters which
give optimal profits.

Using trial and error procedures, we establish the ranges of FD, SD, LT, SI, FI
Membership Functions (see Fig. 1, upper panel) normalized between [−1,1]. Be-
sides, according to the literature, we choose the triangular/trapezoidal shape for our
MF. The Membership Functions scaling parameters of fuzzy input crossings number
(see Fig. 1, lower panel) and fuzzy outputs are defined according with the genetic
procedures results. The MF of output parameters are shown in Fig. 2, where the unit
of measurement of TP and SL are the basis points of the Euro-$ exchange rate, the
so-called pips in the tradersâĂŹ jargon. Note that the Take Profit scale is greater than
Stop Loss scale by ten factor. This choice comes from the genetic procedures results
and – as a matter of fact – it is frequent (on a much smaller scale) among traders.
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Fig. 1 Fuzzy inputs

Fig. 2 Fuzzy outputs

The next step to define the fuzzy model is the fuzzy rules definition. Because we
have one input with 5 MF and the second one with 3 MF, then 5×3 = 15 optimality
criteria (rules in other terms) can be used. An example of fuzzy rule is: If slope is FD
and crossings number is L, then T P is H and SL is L and FMA is L and SMA is M. By
exploiting the information of the constrained algorithms, suitably adjusted for our
trading aims, the rules base is defined. In other words, the knowledge introduced in
the fuzzy system comes from genetic-constrained investigations. Denoting the slope
input with S and the crossings number with Nc, the fuzzy rules are shown in Table 1.
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Table 1 Fuzzy rules base

S \ Nc L M H

FD H;L;L;M H;M;L;H M;L;H;L

SD M;M;H;H H;L;L;M H;M;M;L

LT H;H;L;M H;M;M;L L;H;M;M

SI L;H;L;M M;H;L;H H;L;L;M

FI H;L;L;L M;L;L;L H;L;L;H

Notice, at this point, that all the fuzzy rules are defined to have the same weights
values in the choice of the parameters of DMAC. To improve the trading decision
model, the most profitable rules must be spotted. This means that the fuzzy rules
which give good profits must have higher weights values in determining the best
DMAC parameters. To solve this problem, we design a suitable Neural Network.

4 Neuro-Fuzzy Algorithm

Once defined the fuzzy sets and the rules base, the next step is the optimization of
rules weights. To do this, a Neuro-Fuzzy algorithm is proposed. First of all, we define
a training set for the Neural Network. The patterns are characterized by 2 inputs and
15 outputs. The two inputs are the slope S and the crossings number Nc, whereas
the outputs are the optimal parameters of the DMAC, as discovered by the FLC, as
reported in Table 1. Such training set for NN is drawn by the following steps.

Step 1. Select m = 100 training period of four months length. For each period, com-
pute the slope S and the crossings number Nc.
Step 2. For each (S,Nc) pair, generate n = 15 random values between 0 and 1 which
correspond to fuzzy rules weights wi (i = 1,2, . . . ,15), with wiε [0,1].
Step 3. Compute T P, SL, FMA and SMA according fuzzy inputs S, Nc and weights
wi.
Step 4. Calculate the DMAC profits p j, j = 1,2, . . . ,n and compute the max profit.
Step 5. Select the weights wi, i = 1,2, . . . ,15 associated with max profit.

In this way, a training set of 100 patterns to train the NN is designed. The patterns are
composed by the inputs S and Nc and the weights w j as outputs. A blocks diagram
of training set selection is shown in Fig. 3. The FLC receives the fuzzy inputs S and
Nc and the weights wi from NN. The parameters S and Nc are also inputs of NN. The
Fuzzy Logic Controllers gives the outputs T P, SL, FMA and SMA which serve as
inputs to the DMAC rule.

The architecture of a Neural Network very much depends on the kind of applica-
tion under investigation. Because we have two fuzzy inputs, the input layer of NN is
composed by 2 neurons, whereas the output layer has 15 neurons, as the number of
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Fig. 3 Blocks diagram of Neuro-fuzzy system

Fig. 4 Neural Network architecture

fuzzy weights. Because there are no fix rules to establish the hidden layer neurons
number, trial and error procedures are used. This number sometimes depends on spe-
cific application. For instance, some indications can be found in [14]: they propose an
algorithm able to obtain the number of necessary hidden neurons of single-hidden-
layer feed forward networks for different pattern recognition application tasks. The
hidden layer of our NN is made up by 3 neurons (see Fig. 4).

In order to design the NN architecture, the Matlab Neural Network tool is used.
Establishing an epochs number of 250 and a goal of 0.02, the net achieves a perfor-
mance index of 0.00266812.

Once trained the NN, the intelligent system is ready for trading the euro-dollar
exchange rate in the foreign exchange market.

5 Experimental Results

Our intelligent algorithm works on hourly foreign exchange rate. The TNSs go from
1999 to 2007, whereas the TDSs go from 2008 to 2012. We consider four-month
TNSs length and test the algorithm on monthly, two-months, three-months, four-
months, six-month and annual TDSs lengths. Matlab was used for computations.

In all the experiments, the same drawdowns are roughly obtained with the fuzzy
controller only and its neuro-fuzzy extension (see, for instance, all the charts in the
paper and Table 2, column 3, where only one number is reported). The smaller the
relative frequency of draw-down number (Ndd , is small), the better is the intelli-
gent system performance. The neuro-fuzzy system, though, improves the cumulative
profit in four experimental typologies out of six (compare Pf and Pn f in the following
table and look at the last column).
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Table 2 Draw-down number and cumulative profits for fuzzy and neuro-fuzzy systems.

Period N∗
p N∗

dd R∗ P∗
f P∗

n f Δ = Pn f −Pf

Monthly 55 2 0.0364 0.5590 0.7367 0.1777
Two-month 27 2 0.0741 0.6477 0.7529 0.1052
Three-month 18 1 0.0556 0.2702 0.3415 0.0713
Four-month 13 1 0.0769 0.8013 0.6401 −0.1613
Six-month 9 0 0 0.3498 0.2421 −0.1077
Annual 4 0 0 0.3342 0.4032 0.0689

∗Np is the number of TNSs. Ndd is the draw-down number. R = Ndd
Np

is the relative frequency of
draw-down number. Pf is the fuzzy cumulative profit. Pn f is the neuro-fuzzy cumulative profit.
They are both expressed in basis points of the Eurodollar exchange rate.

Table 2 shows the cumulative profits achieved with fuzzy and neuro-fuzzy mod-
els. It can be noticed that the fuzzy procedures seem to fare better than neuro-fuzzy
ones for medium period lengths with respect to TNS length. In fact, fuzzy cumulative
profit Pf is greater than neuro-fuzzy cumulative profit Pn f over the four-month and
six-month periods. Viceversa, the neuro-fuzzy algorithms give better results than
fuzzy methods over period lenghts smaller and relatively bigger than TNS length.
Remind that the chosen Training Set length is four-month.

We decided - for space limitations - to show only six charts (monthly, bi-monthly
and six-month experiments for fuzzy and neuro-fuzzy trades), which give informa-
tion on the performance overtime of our techniques. All the charts have the same
structure and show the profit performance for the period (left axis), the cumulative
performance (right axis)and the drawdown horizontal line (referred to the left axis).
The time profiles of profit results (single period and cumulative) are not dramatically
different for monthly and bi-monthly fuzzy and neuro-fuzzy experiments. More dif-
ference is observed in the six-month case for fuzzy and neuro-fuzzy. The cumulative
performance line remains always above zero and shows a more subdued profile in
the first part of the sample (roughly corresponding to the sub-prime crisis in 2008-
09) than in the second. Our algorithms seem to be disturbed more by the subprime
crisis (2008-09) than by the European sovereign debt crisis (2010–2012).

Fig. 5 Monthly profits and cumulative profits
of fuzzy system

Fig. 6 Monthly profits and cumulative profits
of neuro-fuzzy system
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Fig. 7 Bi-monthly profits and cumulative
profits of fuzzy system

Fig. 8 Bi-monthly profits and cumulative
profits of neuro-fuzzy system

Fig. 9 Semestral profits and cumulative prof-
its of fuzzy system

Fig. 10 Semestral profits and cumulative
profits of neuro-fuzzy system

6 Conclusions

The profitability of standard Technical Analysis techniques is a very open issue in
foreign exchange market [5, 8]. Technical rules are still “the obstinate passion” for
traders in the foreign exchange market [5]. Among these rules, the DMAC is the most
popular technical indicator. To simulate the behaviour of market agents, artificial
intelligence techniques can be applied. This paper proposes two intelligent systems
based on fuzzy and neuro-fuzzy features. The first one is designed with the help of
genetic constrained algorithms, whereas the second one is based on a suitable Neural
Network architecture. The results show that the fuzzy system is more profitable over
trading period lengths close to the four-month training period length. Viceversa, the
neuro-fuzzy model improves upon the fuzzy system over periods with length lower
or much greater than the training period length. Moreover, both fuzzy system and
neuro-fuzzy system give small drawdown numbers. The aggregate profit rates over
more than four years (2008–2012), in Table 2 columns 4 and 5, give good numbers
with respect to profit rates on a yearly basis.

Going into future planned research on the work in this paper, probably the most
useful line of activity for traders is replicating our results with higher frequency data:
tick or one-minute. This would indicate how to manage TNS and TDS with a timing
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much closer to the actual functioning of todayâĂŹs forex market. Another useful
step will be the definition of intelligent systems also for others technical rules, such
as momentum, oscillators and channel rules. The main future challenge will be the
design of neural networks able to reduce to a minimum the drawdown number.
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Risk Management and Capital Allocation
for Non-Life Insurance Companies
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Abstract This paper deals with some key issues related to risk and capital allocation
in non life insurance. There is an increasing concern about quantifying the capital
requirements for financial entities. Actually, the major part of the insurance regu-
lation aims to provide a clear guideline for insurers to manage with this issue. For
example, the new European insurance regulatory system Solvency II focuses in this
direction. In this risk based capital system, the required capital is based on two build-
ing blocks: the minimum capital requirement and the solvency capital requirement
very close to the theoretical concept of economic capital. How much capital should
an insurance firm hold? And what rate of return must the firm achieve on this capital?
How should the required capital be allocated to different lines of business and prod-
ucts sold? While these questions are of critical importance to the firm, external forces
in the operating environment often dictate the answers. For example, regulators and
rating agencies greatly influence the amount of capital the firm must hold; in addi-
tion, investors influence both the amount of capital the firm holds and the required
rate of return on this capital. Therefore, the issues of the amount of capital and the re-
quired rate of return on capital are often ultimate beyond the decision-making power
of the company; rather, they are demands that the operating environment imposes
upon the firm.
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1 Introduction

The identification and quantification of the risks that most companies face are rel-
atively straight forward. This is in part due to the recent supervisory developments
such as the Swiss Solvency Test (SST), the Individual Capital Assessment Stan-
dards (ICAS) used in the UK, the C3 Phase II standards in use in the US, and the
harmonised Solvency II currently under development for the EU. The issues associ-
ated with the aggregation of risks and capital allocation are the next area of focus in
the economic capital modelling practices of insurance companies. The current focus
is on calculating economic capital. However, business decisions need to be made
based on risk budget and risk/return optimization. Economic capital plays a central
role in prudential supervision, product pricing, risk assessment, risk management
and hedging, capital allocation . Available capital is defined as financial resources
available as risk-bearing funds to absorb adverse experience. This capital is held as
a buffer to meet policyholder claims during adverse climates. It is given by the diff-
ence between assets and technical reserves, that is to say (AC = Assets−Liabilities)
where the liabilities can be represented approximately by the expected value of X ,
being X the random variable risk beared by the insurance firm according to the un-
derwritten contracts. (Required) economic capital is calculated based on a risk mea-
sure, from which there are many to choose, that is to say that economic capital =
f(X), being f an opportune functional or risk measure (i.e. VaR, Tail Var, etc.) of
the random variable X . Different risk measures satisfy different purposes of cap-
ital determination. Economic capital is aggregated across products, lines of busi-
ness, business units, geographic and regulatory areas in order to calculate capital
requirements at different levels of the organisation. Aggregation generally allows
for some diversification benefits between the risks being aggregated, thus result-
ing in the aggregated capital being less than the sum of the parts. Capital require-
ments are calculated at the lowest level first (for example, per line of business).
Then the aim is to aggregate the capital requirements up to higher levels (for ex-
ample, at business unit level) to arrive at capital requirements and risk measure-
ment that take into account the interactions between the risks being aggregated (for
example, the interaction between two lines of business, say annuities and mortal-
ity products). Ultimately, all the capital requirements are aggregated to arrive at
holding-level total capital requirements. Total capital requirements (for example,
at group level) are therefore smaller than the sum of the capital requirements (for
example, at product level). For a range of purposes (for example, pricing or per-
formance measurement), the total capital needs to be allocated back to the lower
levels. That is, the diversification benefit achieved by aggregating the risks need to
be allocated back to the individual risks. Again, there are a range approaches for
doing this, depending upon the intended purpose. The allocation of capital is es-
sential for pricing insurance products and is an important part of the planning and
control cycle (risk budgeting and return measurement). This paper examines dif-
ferent techniques for aggregation and allocation of capital; the focus of the paper
is on non-life insurance. Section 2 describes the reserve risk and the approach fol-
lowed to assess it, Sections 3 and 4 explain possible capital aggregation techniques
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and go through different methods and applications of capital allocation. Section 5
discusses some operational implementation issues given an economic capital frame-
work.

2 Reserve Risk

Loss reserving is a classic actuarial reserving problem encountered extensively in
property and casualty as well as health insurance. Typically, losses are arranged in
a triangular fashion as they develop over time and as different obligations are in-
curred from year to year. This triangular format emphasizes the longitudinal and
censored nature of the data. The primary goal of loss reserving is to set an adequate
reserve to fund losses that have been incurred but not yet developed. For a single
line of business written by an insurance company, there is an extensive actuarial
literature describing alternative approaches for determining loss reserves. See, for
example, [10, 26]. However, almost every major insurer has more than one line of
business. One can view losses from a line of business as a financial risk; it is in-
tuitively appealing to think about these risks as being related to one another. It is
well-known that if risks are associated, then the distribution of their sum depends
on the association. For example, if two risks are positively correlated, then the vari-
ability of the sum of risks exceeds the sum of variabilities from each risk. Should
an insurer use the loss reserve from the sum of two lines of business or the sum of
loss reserves, each determined from a line of business? This problem of additivity
was put forth by Ajne, [2], who notes that the most common approach in actuarial
practice is the silo method. Here, an insurer divides its portfolio into several sub-
portfolios (silos). A subportfolio can be a single line of business or can consist of
several lines with homogeneous development pattern. The claim reserve and risk
capital are then calculated for each silo and added up for the portfolio. The most
important critique of this method is that the simple aggregation ignores the depen-
dencies among the subportfolios. In loss reserving the evolution of losses over time
complicates the determination of dependencies among lines of business. As empha-
sized in [13] and [23], correlations may appear among losses as they develop over
time (within an incurral year) or among losses in different incurral years (within a
single development period). Other authors have focussed on correlations over cal-
endar years, thinking of inflationary trends as a common unknown factor inducing
correlation. Much of the work on multivariate stochastic reserving methods to date
has involved extending the distribution-free method explained in [15]. [3] proposed
to estimate the prediction error for a portfolio of correlated loss triangles based on a
multivariate chain-ladder method. Similarly, [17] considered the prediction error of
another version of the multivariate chain-ladder model proposed in [23], where the
dependence structure was incorporated into parameter estimates. Within the theory
of linear models, [12] and [16] provided the optimal predictor and the prediction
error for the multivariate additive loss reserving method, respectively. Motivated
by the fact that not all subportfolios satisfy the same homogeneity assumption, [17]
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combined chain-ladder and additive loss reserving methods into one single frame-
work. [27] proposed a general multivariate chain-ladder model that introduces cor-
relations among triangles using the seemingly unrelated regression technique. These
procedures have desirable properties, focusing on the mean square error of predic-
tions. In this paper, we focus instead on tails of the distribution. Because of this,
and the small sample size typically encountered in loss reserving problems, we look
more to parametric methods based on distributional families. For example, in a mul-
tivariate context, [4] employed a lognormal model for the unpaid losses of each line
and a normal copula for the generation of the joint distribution. generalized linear
model framework, and demonstrated the calculations of loss reserves and their pre-
diction errors. [6] employed factor analytic techniques to handle several sources of
time dependencies (by incurral year, development year, calendar year) as well as
correlations among lines of business in a flexible manner. An alternative parametric
approach involving Bayesian methods has found applications when studying loss re-
serves for single lines of business. Some recent work include [5, 18]. The Bayesian
methods for multivariate loss reserving problems have rarely been found in the liter-
ature. [17] is one example, where the authors considered a bivariate Bayesian model
for combining data from the paid and incurred triangles to achieve better prediction.
A copula method is employed to associate the claims from multiple run-off triangles.
Despite the application of copulas in [4] and [6], both are focused on correlations
in a model based on normal distributions. In this paper the reserve risk is evaluated
through the Bayesian Fisher Lange method described in [11] and [22]: the reserve
risk is valued separetely for each line of business and then aggregated using the
approaches described in the next section.

3 Aggregation Techniques

Having chosen a risk measure and calculated the risks, the next step is to aggre-
gate risks across different products, lines, geographic areas, etc. It is generally be-
lieved that the aggregated capital should be less than the sum of capital required
for each risk being aggregated. However, the recent financial crisis has highlighted
the fact that significant interactions can exist between risks. These interactions can
have a compounding effect. In such cases aggregating these risks by assuming some
diversification effect between them can significantly underestimate the total risk.
Bottom-up approaches - that is, calculating capital requirements separately for each
risk and then aggregating - can underestimate the total capital required, while a top-
down approach - calculating the capital requirements for each contract taking risks
into account together - could be a more appropriate way of determining capital re-
quirements. Two bottom-up approaches for aggregating capital are considered in
this section: correlations and copulas.

Correlation is a measure of the strength and direction of a linear relationship be-
tween random variables. It is is a scale invariant statistic that ranges from −1 to +1
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and statistically it is determined as follows:

Corr(X ,Y ) =
E((X −E[X ])(Y −E[Y ]))

σXσY
. (1)

Risks are aggregated using the following formula:

TotalRisk = (∑
i
∑

j

ρi jXiXj)1/2 i, j = 1, . . . ,n, (2)

where n is the number of risks being aggregated, ρi j is the correlation between risks
i and j and Xi is the risk measure output (for example, the VaR) of risk i. A corre-
lation matrix is specified for the correlations between risks, and it is used to calcu-
late new totals using (2). In this paper we refer to the correlation matrices proposed
by the EIOPA, [9]. The correlation approach assumes that the risks are normally
distributed and that the dependence structure can be specified via the margins of a
Gaussian distribution. The combined risk distribution is therefore multivariate nor-
mal. This assumption may well introduce unacceptable distortion where the risks
are not normally distributed. Correlations tend to behave differently in extreme situ-
ations. Note, capital is often calculated to provide protection during extreme events:
it is this part of the loss distribution that is of greatest interest. It is under stress
conditions when the correlation approach of aggregating risks tends to fail.

The idea of the copula comes from Sklar’s theorem that can be summarized as
follows (for a detailed description of the theory of copulas see [19]). Suppose M1(x)
and M2(y) are the two marginal distributions of the bivariate distribution B(x,y).
Then there exists a function, C, such that

B(x,y) = C(M1(x),M2(y)). (3)

This function, C, is called a copula. All continuous multivariate functions contain
a unique copula. When applied to economic capital, M1 and M2 can be seen as (a
function of) two risk distributions. Under the correlation approach, a risk measure
(for example, VaR) would be applied to each of these distributions. The resulting
risk measure amounts, say M∗

1 and M∗
2 would be aggregated using a correlation as-

sumption between risks M1 and M2 (for example, a correlation coefficient value of
a) in order to calculate the total capital requirement. This is where the correlation
approach fails: it assumes the correlation between M1 and M2 is constant for all re-
alizations M1(x) and M2(y). For example, if M1 is equity risk and M2 is lapse risk,
there may be a value ρa of correlation in normal times. However, if a realization
of M1(x) gave an extremely negative return, the correlation may well be somewhat
higher than ρa. For economic capital purposes, one is more interested in these more
extreme realizations and the corresponding correlations. Copulas solve this problem.
The function, C, is a plane (in this case in three dimensions, but can be extended to an
n-dimensional plane if additional risks are added) and can be specified such that the
interaction between M1 and M2 differs at different parts of each of the distributions of
M1 and M2. Each risk is transformed to a uniform distribution on the interval [0,1].
One way of doing this is to use the cumulative distribution function of each risk.
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Simulating from the marginal and aggregate risk distributions becomes a relatively
easy task after the copula structure is specified.

4 Capital Allocation

Company level capital and risk are allocated down to lower levels such as business
units, lines and products for a number of purposes. The initial reason for calculat-
ing total capital is often for regulatory reporting; however, insurers are becoming
increasingly risk aware and are allocating the capital and risk more actively in order
to improve areas such as pricing and performance measurement. This section con-
siders the application of capital allocation. One aim of allocating capital to business
units, lines and products is to correctly allow for the cost of the capital in pricing
exercises. The cost of capital is usually calculated as a product of the amount of
capital allocated to a product and the return-on-capital requirement. Thus, the target
price is generally greater where the risk is more concentrated (or less diversified),
as more capital is allocated to such a risk. Similarly, risks that are well-diversified
are allocated less capital, and hence, they have a lower capital charge in the pricing
exercise. A drawback to this is that there is no unique way to allocate capital. Con-
sequently, a line written by two different insurers attracting the same amount of risk
may well be allocated different amounts of capital by each insurer. This would result
in different premiums being charged by the two insurers for underwriting the same
risk. We have to allocate capital to individual lines. The law requires this to some
extent, since any insurance company and its subsidiaries will be required to have
its own capital. However, a good allocation of capital to individual business lines
can be useful for many reasons. It helps evaluate performance, it will allow better
pricing of new business, it encourages an individual and quantitative assessment of
the lines of business, thus telling central management how each line of business is
performing. Also, allocating capital “ex ante” (beforehand) can help avoid moral
hazard/agency problems among managers. After aggregating risks in order to take
into account the effect of diversification, companies want to allocate the capital back
to the lower levels for a range of purposes. In other words, the diversification benefit
achieved by aggregating the risks needs to be allocated back to the individual risks.
The allocation of capital is an important measure for profitability in relation to risk
and is essential for pricing insurance products as well as for the planning and control
cycle (risk budgeting and return measurement). There are a range of approaches for
allocating capital with different ones being appropriate for different purposes. For a
detailed description of the possible approaches see [7, 8, 21, 24]. This paper focuses
on the following approaches.

Consider a portfolio of n individual losses X1, X2, . . . , Xn materialising at a fixed
future date T . Assume that (X1, X2, . . . , Xn) is a random vector on the probability
space (Ω ,F ,P). Throughout the paper, it is always assumed that any loss Xi has
a finite mean. The distribution function P[Xi≤x] of Xi is denoted by FXi(x). The
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aggregate loss is defined by the sum

AL =
n

∑
i=1

Xi, (4)

and it can be interpreted as the total loss of an insurance company with the individual
losses corresponding to the losses of the respective business units. We assume that
the company has already determined the aggregate level of capital and denote this
total risk capital by T RC. The company wishes to allocate this exogenously given
total risk capital T RC across its various business units, that is, to determine non-
negative real numbers RC1, RC2, . . . , RCn satisfying the full allocation requirement:

n

∑
i=1

RCi = T RC. (5)

This allocation is in some sense a notional exercise; it does not mean that capital
is physically shifted across the various units, as the company’s assets and liabilities
continue to be pooled. The allocation exercise could be made in order to rank the
business units according to levels of profitability. This task is performed by deter-
mining at time T , the respective returns on the respective allocated capital RCi−Xi

RCi
−1,

i = 1, . . . ,n. For a given probability level p∈(0,1), we denote the Value-at-Risk
(VaR) or quantile of the loss random variable X by F−1

X (p). As usual, it is defined
by

F−1
X (p) = in f {x ∈ R|FX (x) ≥ p} , p ∈ [0,1] . (6)

The Haircut Allocation Principle A straightforward allocation method consists
of allocating the capital RCi = αF−1

Xi
(p), i = 1, . . . ,n, to business unit i, where the

factor α is chosen such that the full allocation requirement (5) is satisfied. This gives
rise to the haircut allocation principle:

RCi =
T RC

∑n
j=1 F−1

Xj
(p)

F−1
Xi

(p), i = 1, . . . ,n. (7)

For an exogenously given value for TRC, this principle leads to an allocation that
is not influenced by the dependence structure between the losses Xi of the different
business units. In this sense, one can say that the allocation method is independent
of the portfolio context within which the individual losses Xi are embedded. It is a
common industry practice, driven by banking and insurance regulations to measure
stand-alone losses by a VaR, for a given probability level p. Therefore, let us as-
sume that T RC = F−1

AL (p). In addition, we assume that in case business unit i was
a stand-alone unit, then its loss would be measured by F−1

Xi
(p). It is well-known

that the quantile risk measure is not always subadditive. Consequently, using the p-
quantile as stand-alone risk measure will not necessarily imply that the subportfolios
will benefit from a pooling effect. This means that it may happen that the allocated
capitals RCi exceed the respective stand-alone capitals F−1

Xi
(p).
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The Covariance Allocation Principle The covariance allocation principle pro-
posed in [20] is given by the following expression:

RCi =
T RC

Var[AL]
Cov[Xi,AL], i = 1, . . . ,n (8)

where Cov[Xi,AL] is the covariance between the individual loss Xi and the aggregate
loss AL and Var[AL] is the variance of the aggregate loss AL. Because clearly the
sum of these individual covariances is equal to the variance of the aggregate loss,
the full allocation requirement is automatically satisfied in this case. The covariance
allocation rule, unlike the haircut and the quantile allocation principles, explicitly
takes into account the dependence structure of the random losses (X1, X2, . . . , Xn).
Business units with a loss that is more correlated with the aggregate portfolio loss AL
are penalised by requiring them to hold a larger amount of capital than those which
are less correlated.

The CTE Allocation Principle For a given probability level p ∈ (0,1), the Condi-
tional Tail Expectation (CTE) of the aggregate loss AL is defined as follows:

CTEp[AL] = E[AL|AL > F−1
AL (p)]. (9)

At a fixed level p, it gives the average of the top (1..p)% losses. In general, the CTE
as a risk measure does not necessarily satisfy the subadditivity property. However, it
is known to be a coherent risk measure in case we restrict to random variables with
continuous distribution function (see [1,7]). The CTE allocation principle, for some
fixed probability level p ∈ (0,1), has the form:

RCi =
T RC

CTEp[AL]
E[Xi|AL > F−1

AL (p)], i = 1, . . . ,n. (10)

The CTE allocation rule explicitly takes into account the dependence structure of
the random losses (X1, X2, . . . , Xn). Interpreting the event (AL > F−1

AL (p)) as (the
aggregate portfolio loss AL is large), we see from (the formula above) that business
units with larger conditional expected loss, given that the aggregate loss AL is large,
will be penalised with a larger amount of capital required than those with lesser
conditional expected loss.

The Market Driven Allocation Principle Let ηM be a random variable such that
market-consistent values of the aggregate portfolio loss AL and the business unit
losses Xi are given by the following expressions:

π[AL] = E[ηMAL], (11)

and
π[Xi] = E[ηMXi], i = 1, . . . ,n (12)

respectively. Further suppose that at the aggregate portfolio level, a provision π[AL]
is set aside to cover future liabilities AL. Apart from the aggregate provision π[AL],
the aggregate portfolio has an available solvency capital equal to (T RC − π[AL]).
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The solvency ratio of the aggregate portolio is then given by

T RC−π[AL]
π[AL]

. (13)

This solvency ratio is different from the one defined by the EIOPA in [9]. In order to
determine an optimal capital allocation over the different business units, we let in ηi

= ηM , i = 1, . . . ,n, thus allowing the market to determine which states-of-the-world
are to be regarded adverse. This yields to the following expression:

RCi = π[Xi]+νi(T RC−π[AL]). (14)

If we now use the market-consistent prices as volume measures, after substituting

νi =
π[Xi]
π[AL]

, i = 1, . . . ,n, (15)

in (14), we find

RCi =
TRC
π[AL]

π[Xi], i = 1, . . . ,n. (16)

Rearranging these expressions leads to

RCi −π[Xi]
π[Xi]

=
T RC−π[AL]

π[AL]
, i = 1, . . . ,n. (17)

The quantities π[Xi] and (RCi − π[Xi]) can be interpreted as the market-consistent

provision and the solvency capital attached to business unit i, while RCi−π[Xi]
π[Xi]

is its
corresponding solvency ratio.

5 Case Study

The framework described in previous sections can be evaluated through a sample
case study in which the initial data set is represented by the run-off triangles of an
insurance company operating in the LoBs Motor, General Insurance and Property.
The aim is the analysis of the effects of the dependencies between the LoBs on the
Solvency Capital Requirement and its allocation to lower levels. First of all the value
of the technical provisions is determined through the Bayesian Fisher Lange method
described in [11] and [22] separetely for each line of business and then aggregated
using the approaches described in Sect. 3. Table 1 shows the results obtained (Best
Estimate (BE), Risk Margin (RM), Technical Provision (TP), Solvency Capital Re-
quirement (SCR)). The Solvency Capital requirement is determined using an internal
model based on Value-at-Risk techniques (see [22] for a detailed description of the
model); the results are compared to the ones that come out using the standard for-
mula proposed by the EIOPA in [9] and a proxy proposed in the same document.
Table 2 shows how the Capital is allocated to each LoB through the principles de-
scribed in Sect. 4, using formulas (7), (8), (10), (16). The results of the case study
presented seem to lead to the following conclusions.
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Table 1 Technical provisions (Euros)

LoB Method BE RM TP SCR

Motor Internal Model 2,959,231 56,761 3,015,992 355,074
Standard Formula (Proxy) 2,959,231 131,975 3,091,206 790,115

Standard Formula 2,959,231 125,434 3,084,664 746,132
General Insurance Internal Model 1,210,733 23,223 1,233,957 155,551

Standard Formula (Proxy) 1,210,733 53,996 1,264,730 399,542
Standard Formula 1,210,733 51,320 1,262,053 385,589

Property Internal Model 135,461 2,598 138,059 34,869
Standard Formula (Proxy) 135,461 6,041 141,502 41,451

Standard Formula 135,461 5,742 141,203 39,675
Aggregate Internal Model 4,305,425 82,582 4,388,007 456,374

Standard Formula (Proxy) 4,305,425 192,013 4,497,438 1,061,119
Standard Formula 4,305,425 182,495 4,487,920 1,008,522

Table 2 Solvency capital requirement allocation (Euros)

Allocation General
Principle Method Motor Insurance Property Aggregate

Haircut Internal Model 297,064 130,138 29,172 456,374
Standard Formula (Proxy) 681,017 344,374 35,728 1,061,119

Standard Formula 642,388 331,975 34,159 1,008,522
Covariance Internal Model 332,924 112,361 11,089 456,374

Standard Formula (Proxy) 774,084 261,252 25,784 1,061,119
Standard Formula 735,715 248,302 24,506 1,008,522

CTE Internal Model 316,102 126,334 13,938 456,374
Standard Formula (Proxy) 734,972 293,739 32,407 1,061,119

Standard Formula 698,542 279,179 30,801 1,008,522
Market Driven Internal Model 313,678 128,337 14,359 456,374

Standard Formula (Proxy) 729,335 298,398 33,386 1,061,119
Standard Formula 693,184 283,608 31,731 1,008,522

Table 3 SCR internal model allocation

Allocation General
Principle Motor Insurance Property Aggregate

Haircut 65.09% 28.52% 6.39% 100.00%
Covariance 72.95% 24.62% 2.43% 100.00%
CTE 69.26% 27.68% 3.05% 100.00%
Market Driven 68.73% 28.12% 3.15% 100.00%
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• The SCR calculated with the standard formula is significantly higher compared
to the one obtained with the internal model, both on single lobs and on aggre-
gated level.

• The capital allocation using the haircut principle is straightforward but does
not consider dependencies; furthermore, as said before, it is well-known that
the quantile risk measure is not always subadditive. Consequently, using the
p-quantile as stand-alone risk measure will not necessarily imply that the sub-
portfolios will benefit from a pooling effect: this means that it may happen that
the allocated capitals RCi exceed the respective stand-alone capitals F−1

Xi
(p); the

covariance allocation principle, unlike the haircut principle, considers the de-
pendencies: business units with a loss that is more correlated with the aggregate
portfolio loss are penalised by requiring them to hold a larger amount of capi-
tal than those which are less correlated; the CTE allocation rule explicitly takes
into account the dependence structure of the random losses capturing, unlike
the covariance principle, the effects on the tails of the distributions (a crucial
aspect for solvency requirements): business units with larger conditional ex-
pected loss, given that the aggregate loss is large, will be penalised with a larger
amount of capital required than those with lesser conditional expected loss; the
market driven allocation principle considers the market value of the provisions
and implicitly takes into account the dependencies between the LoBs.

• The results of the RC allocation on each LoB show that, except from the haircut
priciple that gives a higher weight to General Insurance and a lower weight
to Property, the proportion RCi/RCAggregate is similar both with the internal
model and with the standard formula.

• The allocation of the exogenously given aggregate capital T RC to n parts, RC1,
RC2, . . . , RCn, corresponding to the different subportfolios or business units,
can be carried out in an infinite number of ways, some of which were illustrated
in this paper. It is clear that different capital allocations must in some sense
correspond to different questions that can be asked within the context of risk
management: the preference of one method over another has a great relevance
as the impact on the final results, as shown in Table 3, can be significant.

The results presented and the conclusions exposed depend significantly on the
dataset considered and on the insurance company analyzed; the intention is to apply
the methodologies to other insurers and verify the possibility to extend the conclu-
sions to other case studies.
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Modelling Asymmetric Behaviour in Time
Series: Identification Through PSO

Claudio Pizzi and Francesca Parpinel

Abstract In this work we propose an estimation procedure of a specific TAR model
in which the actual regime changes depending on both the past value and the specific
past regime of the series. In particular we consider a system that switches between
two regimes, each of which is a linear autoregressive of order p. The switching rule,
which drives the process from one regime to another one, depends on the value as-
sumed by a delayed variable compared with only one threshold, with the peculiarity
that even the thresholds change according to the regime in which the system lies at
time t − d. This allows the model to take into account the possible asymmetric be-
haviour typical of some financial time series. The identification procedure is based
on the Particle Swarm Optimization technique.

1 Introduction

In time series analysis the problem of identification and estimation of a model, as
best approximating the real data generating process (in short DGP), is often con-
ducted by iterative procedures. In the classic “Box-Jenkins” framework, the choice
of the best model is obtained by a three phases procedure based on the iterations of
identification, estimation and validation steps. Let’s recall that at each iteration the
order of the model are fixed and the parameters are estimated. The use of an Akaike-
like criterion enables us to stop the iterative procedure and to select the appropriate
model. When we relax the linearity hypotheses, this scheme is difficult to implement,
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because the complexity increases remarkably in reason of making the selection of
the order to be preceded by the choice between linear or nonlinear models and, in
this case, we should also select the kind of nonlinear model.

In the last decades, several nonlinear models have been proposed in the literature,
each of which is able to catch a certain kind of nonlinearity. Among these, an inter-
esting class of model is the Threshold AutoRegressive one (Tong e Lim [13]) that
performs a local linearization of the DGP by means of a piecewise linear structure.
More precisely this class of models is characterized by regimes in which a particular
linear model works. So their specification requires at first to estimate the number of
regimes and of the thresholds that define the regimes; moreover for each regimes we
have to identify the orders and to estimate the parameters of the linear autoregres-
sive models. Let note that the regimes define a partition of the real space IR. The
whole procedure is complex and different iterative procedures have been proposed,
with the main drawback that it is the difficult to identify the number of regimes as
they depend on both thresholds and delayed variables. In a recent work Battaglia
and Protopapas [1] introduce a new approach in the identification and estimation of
a TAR model, using the evolutive paradigm in the simultaneous estimation of all
the parameters of the model. More precisely they use the genetic algorithm showing
that their procedure enables us to overcome the previously mentioned drawbacks.

In this paper we propose a technique to identify and estimate a threshold model
on which the non-overlapping structure of the regimes are relaxed. Thus the result-
ing DGP is characterized by asymmetric behaviour with respect of the switching
rule from one regimes to another one. In other word, if we consider two contiguous
regimes the transition from the first regime to the second one depends on a thresh-
old different from that defining the transition from the second regimes to the first
one. In order to identify and estimate the asymmetric TAR we propose to use the
Particle Swarm Optimization algorithm (PSO), following the idea by Battaglia and
Protopapas. The application of PSO algorithms in time series analysis is present
in some recent works, for example Wang and Zhao [15], that introduce the use of
PSO in ARIMA models, showing its excellent forecast ability. The PSO, born in the
eighties, replicates the behaviour of natural flocks and swarm of animals having one
specific objective and its main feature is the simplicity of the algorithm, in fact there
is no need of computing the gradient of the objective function, starting from random
positions of swarm particles and moving the particles in the space of m dimension
according to some speed rule. Among all the variants of the procedure proposed in
the literature, in particular we use the PSO in the “Inertia weight” variant to improve
the velocity rule.

The aim of this work is to evaluate the capability of an evolutive algorithm to
improve some classical estimation procedures that we can use even in this context,
namely we wish to estimate simultaneously all the parameters of the model. The
remainder of this paper is organized as follows. Section 2 presents the asymmetric
threshold model and describes the PSO algorithm that we use in our applications.
Section 3 presents the methodology and discusses the empirical findings, finally Sect.
4 concludes.
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2 The Asymmetric SETAR Model

It is well-known that the different nonlinear behaviour of the DGP may be hardly de-
scribed by a model featured by unique linear structure. To overcome this limit Tong
and Lim [13] proposed, in the eighties, a piecewise linear model that may be viewed
as a generalization of the linear model and able to capture nonlinear behaviours
such as jump resonance, amplitude–frequency dependency, limit cycle, subharmon-
ics and higher harmonics. This class of model, characterized by the presence of one
or more thresholds that define the regimes and that involve the time series itself, is
denoted as Self-Exciting Threshold AutoRegressive model (SETAR). The seminal
paper by Tong and Lim captured the attention of the scientific community; on one
hand many articles tackle the problem to test the threshold hypothesis, as Petruccelli
and Davies [8], Tsay [14] and Chang and Tong [2]. On the other hand, several au-
thors face the parameters estimation problem both looking for new procedures and
applying the procedures to real data. For example, Battaglia and Protopapas [1], Wu
and Chang [16] use genetic algorithms, and Gonzalo and Wolf [4] propose to use
some subsampling techniques. The idea of the threshold mechanism has been also
extended to the study of financial time series, in particular in modeling volatility.
Zakoian [17] introduced the TGARCH model to capture the asymmetry in the con-
ditional standard deviation and variance of a process. In finance for example, the
stock market is intrinsically asymmetric. Time series referred to an asset often show
asymmetry both on level and variance and this seems due to the behaviour of the
market with respect to a threshold that discriminates the bull market from the bear
market. In particular the threshold at which the bull market switches to the bear mar-
ket is different from that needed for the contrary movement, that is from bear to bull
market. Li and Lam [6] showed that for Hong Kong data the return series could have
a conditional mean structure which depends on the rise and fall of the market on a
previous day. This asymmetric behaviour of the time series of stock prices during
bear and bull markets has been efficiently modelled by a threshold-like model with
conditional heteroscedasticity.

More recently Pizzi [9] proposed the Asymmetric–SETAR (AsyTAR) model in
order to capture more stringently these asymmetric behaviours. The main difference
of the AsyTAR models with respect to the SETAR ones is the partitioning of the
thresholds domain, namely the AsyTAR model allowed to regimes to be overlapped.
More precisely, whereas in the SETAR model each threshold may be viewed as the
boundary point that separates two contiguous regions in each of which a different
linear model may locally approximate the unknown DGP, in the AsyTAR model the
boundary point between two regions may change in reason of the state of the pro-
cess. In SETAR model the space IR is partioned in l intervals (−∞,r1), [r1,r2), . . . ,
[rl−1,∞) by a set of thresholds {ri}, i = 1, . . . , l −1 in such a way that the unknown
data generating process is locally, that is in each interval, approximated by a different
linear model, from which follows the definition of piecewise linear model. Partition-
ing space IR implies that the generating process crosses from the first regime to the
second one when the delayed value of the time series increases until the threshold is
exceeded whereas the passage from the second regime to the first one occurs when



268 C. Pizzi and F. Parpinel

the delayed value decreases until it becomes less than the threshold. In some sense,
there is a symmetric transition behaviour with respect to the threshold. Conversely
we are interested on a different threshold model that allows us to consider an asym-
metric transition mechanism. The simplest AsyTAR model has two regimes with
AR(1) structure for each regimes.

More generally following Pizzi [9], let {yt}t=1,...,T , be a times series and let r1 >
r2 be two thresholds such that (−∞,r1),(r2,∞) are two overlapping intervals. So we
can define an Asymmetric Self-Exciting Threshold Autoregressive model, in short
AsyTAR(p,d), with two regimes each of order p with delay d = (d1,d2), as follows

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ (1)
0 +

p
∑

i=1
φ (1)

i yt−i + ε
(1)
t if yt−d1 ≤ r1 and Jt−d1 = 1

φ (2)
0 +

p
∑

i=1
φ (2)

i yt−i + ε
(2)
t if yt−d1 > r1 and Jt−d1 = 1

φ (2)
0 +

p
∑

i=1
φ (2)

i yt−i + ε
(2)
t if yt−d2 > r2 and Jt−d2 = 2

φ (1)
0 +

p
∑

i=1
φ (1)

i yt−i + ε
(1)
t if yt−d2 ≤ r2 and Jt−d2 = 2

(1)

where Jt−di is an unobservable variable denoting the regime in which the system op-
erates at time t − di, d1,d2 are the delay at which the system reacts and changes
regime, φ (1)

0 ,φ (2)
0 and φ (1)

j ,φ (2)
j with j = 1, . . . , p are the model parameters. The

exponent between brackets of the parameters φi denotes the regimes in which the
system operates. This means that when the system work in regime 1 the activating
threshold is different with respect to the one working in regime 2. Figure 1 represents
the behaviour of a SETAR in a) against an AsyTAR in b).

Another difference in the behaviour of the SETAR and AsyTAR models can be
revealed applying, in both cases, the classical estimation procedures for the SETAR.

Fig. 1 Theorical behaviour a) SETAR(2;1,1) with d = 2, r = 0, φ (1)
1 = −0.8, φ (2)

1 = 0.8, b)

AsyTAR(1,2) with r1 = 1,r2 = −1, d = 2, φ (1)
1 = −.8 and φ (2)

1 = .8
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Fig. 2 Simulated data behaviour: on the left side SETAR(2;1,1) with d = 1, r = 1, φ (1)
1 =

−0.8, φ (2)
1 = 0.8, on the right side AsyTAR(1,2) with r1 = 1,r2 = −1, d = 1, φ (1)

1 = −0.8

and φ (2)
1 = 0.8

In fact, in order to get the estimates, the classical techniques suggest to use the Stan-
dardized Forecast Error (in short SFE) as proposed by Petruccelli and Davies [8],
employed also by Tong and Yeung [12] and Hansen [3], and described in Pizzi and
Parpinel [10].

2.1 Simultaneous Parameter Estimation

Following some recent works that try to overcome the problem of simultaneous pa-
rameter estimation, we suggest to use an evolutive approach, i.e. the Particle Swarm
Optimization, born in the eighties and theorized by Kennedy and Eberhart [5] and
Shi and Eberhart [11], that replicates the behaviour of natural flocks and swarms of
animals having one specific objective.

This general optimization procedure may be applied in very different problems
and is based on the creation of a population of agents, called particles, which are
uniformly distributed over some space X . In our context each particle represents a
model. More precisely a particle is a vector formed by the values of the parameters
involved in the time series model, in such a way that the dimension of space X
is equal to number of unknown DGP parameters. In other words the parameters
determine the position of each particle in the space X .

Then it is performed an updating process on the positions of the particles until
some stopping criterion is satisfied. Tipically each particle’s position is evaluated
according to an objective function and it must be updated only if a particle’s current
position is better, following the rule

xτ+1
i = xτi +vτ+1

i . (2)

The PSO variant that we use is based on the velocity-update rule proposed by Shi
and Eberhart [11], who defined the Inertia weight variant adding in the velocity rule
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a parameter w called inertia weight as indicated below

vτ+1
i = wvτi +ϕ1Uτ

1(pbτi −xτi )+ϕ2Uτ
2(lb

τ
i −xτi ) (3)

where vτi is the velocity of particle i at iteration τ , w is an inertia weight, Uτ
j are

values from uniform random variables, ϕ j are weights on the attraction towards the
particle’s own best known position, pbτi , and the swarm’s best known position, lbτ .

In details, in the procedure applied for this work, we create a population of P par-
ticles with dimension equal to the number of parameters involved in the proposed
model (xτi , i = 1, . . . ,P) and uniformly distributed over the parametric vectorial space
and we choose to evaluate each particle’s position according to the following objec-
tive function

MSE(τ)
i =

1
T

T

∑
t=1

(yt − ŷ(i,τ)
t )2 (4)

where {yt}t=1,...,T is the observed time series and {ŷ(i,τ)
t }t=1,...,T is the series com-

puted by the model defined by a specific particle. So at each step we have P values
of MSE(τ)

i .
If a particle’s current position is better than its previous best position (pbi), it

is updated. Then we determine the best particle (lbi), according to the particle’s
previous best position and we update particles’ velocities according to rule (3). Then
the particles are moved to their new positions according to (2).

The stopping rule we adopted ends the algorithm when there are no improvements
in fitness function, that is if at least one particle has improved its fitness function or
until N iteration are reached (typically we fixed N = 100).

This PSO technique has many advantages if compared to other optimization pro-
cedures, first for its simpleness, furthermore it does not require the gradient of the
objective functions. On the other hand, the performance of the procedure is strongly
influenced by the tuning of its behavioural parameters (ω , ϕ1, ϕ2), and to overcome
such a problem Pedersen [7] studies and proposes some optimal combinations for
them, depending on the particle dimension, that in our case the number of the esti-
mating parameters, and on the replication of the procedure. In order to arrange an
estimate for one series we consider the mean vector of the particles each getting the
best fitness.

3 Some Results

In the following we show the results obtained in the estimation procedure, based
both on simulated and real data.

3.1 Simulation Results

In our applications we consider different data generating processes, some in the class
of the autoregressive linear model, the other ones in a non linear class, considering
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different AsyTAR models class. To obtain some Monte Carlo comparisons, we sim-
ulate B = 100 series each of T = 500 observations.

The fitness function is computed with respect to different structure, in order to
evaluate a sort of bias.

For problems in which the simulated series were autoregressive we consider the
dimension of each particle equal to 10, and we see that, applying the PSO procedure,
the values of the estimates were not influenced by the tuning of procedure param-
eters. The number of parameters is set equal to 10 because we suppose that, in the
PSO procedure, ŷ(iτ)

t of formula (4) is computed by a model of type (1) with two
regimes and autoregressive structure, each of order p = 3, there are two thresholds,
r1 and r2, and the lags of delay, d1 and d2.

Table 1 reports the mean values and the standard deviations (in brackets) of the
one hundred estimates of each statistical parameter in the case with simple linear
DGP, simulated with AR of order 1 and 2. Here we see that the first three parameters,
corresponding to the first regime, are typically estimated closed to the second three,
that are those of the second regime, and this means that the two regimes are just the
same. In reason of the absence of difference between the two regimes the thresholds

Table 1 Linear Models: estimates means over 100 replications (standard deviation)

Models and parameters values

Mean on 100 AR(1), φ = AR(2) (φ1,φ2) =
simulations −0.95 −0.05 0.95 (0.6,0.3) (1,−0.3) (0.7,−0.3)

φ̂ (1)
1 −0.95 −0.03 0.95 0.61 0.99 0.70

(sd) (0.08) (0.15) (0.09) (0.10) (0.13) (0.18)

φ̂ (1)
2 −0.01 0.01 -0.02 0.28 −0.29 −0.31

(sd) (0.13) (0.24) (0.13) (0.09) (0.18) (0.26)

φ̂ (1)
3 −0.00 −0.01 0.01 -0.01 −0.02 −0.02

(sd) (0.09) (0.26) (0.11) (0.11) (0.13) (0.28)

φ̂ (2)
1 −0.94 −0.07 0.93 0.58 0.99 0.71

(sd) (0.08) (0.12) (0.09) (0.08) (0.08) (0.09)

φ̂ (2)
2 0.02 −0.01 0.01 0.30 −0.31 −0.30

(sd) (0.11) (0.11) (0.13) (0.09) (0.11) (0.10)

φ̂ (2)
3 0.02 −0.01 -0.01 -0.00 0.01 −0.00

(sd) (0.08) (0.20) (0.09) (0.09) (0.09) (0.10)

r̂1 −0.07 −0.11 -0.04 -0.05 0.02 0.04
(sd) (0.69) (0.72) (0.72) (0.77) (0.78) (0.68)

r̂2 0.24 −0.19 0.06 0.09 −0.23 −0.25
(sd) (0.86) (0.82) (0.77) (0.83) (1.06) (0.97)

d̂1 1.13 1.17 1.22 1.21 1.17 1.19
(sd) (0.33) (0.38) (0.43) (0.40) (0.36) (0.39)

d̂2 1.15 1.13 1.13 1.10 1.20 1.17
(sd) (0.35) (0.30) (0.36) (0.32) (0.37) (0.37)
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are negligible although they appeare both approximately equal to zero. In all the case
for each estimate of dimension 10, the distributions can be easily depicted by the 100
simulated trajectories and we have seen that the Gaussian hypothesis of estimates are
typically accepted according D’Agostino normality test.

So we see that even if we estimate an overparametrized model, the real linear
structure is well captured. Some considerations must be done at this regard; in fact,
following a sort of parsimony criterion, between two models with the same perfor-
mance, we prefer the one requiring fewer parameters, so when we find that some
model parameters are statistically equal to zero, we can re-identify a more parsimo-
niously model by dropping the non-significant delayed variables.

The results shown in Tables 2 and 3, for simulations from the AsyTAR models
proposed in Sect. 2 respectively with p = 1 and p = 2, are based on the Parsimony
criterion. This means that if the estimated model has some parameter statistically
non-significant, that is if we use an autoregressive order, say p+m, greater than the
needed one, p, we may reduce the number of delayed variables taken into account by
the model. We remind, in fact, that the estimation may be affected by the presence
of unnecessary parameters.

Furthermore, in order to control the attainment of the global minimum of the fit-
ness function by the PSO procedure, we performed an estimate for some trajectories

Table 2 AsyTAR(1,1) above with φ (1) = −0.5, φ (2) = 0.8, r1 = 1.5, r2 = 0, d1 = d2 = 1,
below with φ (1) = −0.8, φ (2) = 0.8, r1 = 2, r2 = 0, d1 = d2 = 1

Param. min Q1 Q2 Q3 max mean sd
min 1st Q median 3rd Q max mean sd

φ̂ (1) −0.65 −0.56 −0.49 −0.45 −0.07 −0.48 0.11

φ̂ (2) 0.21 0.74 0.77 0.81 0.85 0.76 0.09

r̂1 −0.05 0.72 1.46 1.50 1.62 1.15 0.46
r̂2 −0.54 −0.27 −0.19 0.00 0.41 −0.13 0.20

d̂1 1.00 1.00 1.00 1.00 1.30 1.01 0.04
d̂2 1.00 1.00 1.00 1.00 1.95 1.06 0.16
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φ̂ (2) 0.39 0.74 0.78 0.80 0.84 0.77 0.07

r̂1 −0.07 0.70 1.48 1.50 1.58 1.15 0.49
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Table 3 AsyTAR(2,1) above with φ (1) = (0.6,0.3), φ (2) = (−0.6,−0.3), r1 = 0, r2 = −1.5,
d1 = d2 = 1, below with φ (1) = (0.3,0.6), φ (2) = (−0.3,−0.6), r1 = 0, r2 =−1.5, d1 = d2 = 1

Param. min Q1 Q2 Q3 max mean sd

φ̂ (1)
1 –0.09 0.48 0.54 0.57 0.66 0.50 0.14

φ̂ (1)
2 –0.04 0.30 0.32 0.36 0.47 0.32 0.07

φ̂ (2)
1 –0.77 –0.65 –0.56 –0.45 0.19 –0.50 0.21

φ̂ (2)
2 –0.53 –0.35 –0.28 –0.18 0.15 –0.26 0.14

r̂1 –0.49 0.00 0.13 0.32 0.72 0.14 0.23
r̂2 –1.56 –1.26 –0.54 –0.26 0.37 –0.69 0.54

d̂1 1.00 1.00 1.00 1.05 1.65 1.05 0.11
d̂2 1.00 1.00 1.00 1.05 1.70 1.06 0.12
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Param. min Q1 Q2 Q3 max mean sd

φ̂ (1)
1 0.05 0.30 0.35 0.39 0.60 0.35 0.08

φ̂ (1)
2 –0.19 0.45 0.51 0.56 0.73 0.49 0.12

φ̂ (2)
1 –0.51 –0.35 –0.29 –0.23 0.15 –0.27 0.11

φ̂ (2)
2 –0.77 –0.64 –0.59 –0.52 0.10 –0.56 0.13

r̂1 –0.30 –0.03 0.01 0.14 1.16 0.08 0.20
r̂2 –1.61 –1.46 –0.90 –0.58 0.07 –0.93 0.46

d̂1 1.00 1.00 1.00 1.00 1.65 1.03 0.12
d̂2 1.00 1.00 1.00 1.00 1.85 1.04 0.14
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Table 4 AsyTAR(1,1) with φ (1) =−0.8, φ (2) = 0.8, r1 = 2, r2 = 0, d1 = 1, d2 = 1, one time
series on 5000 PSO-replications

Param. min Q1 Q2 Q3 max mean sd

φ̂ (1) –1.07 –0.86 –0.83 –0.71 0.33 –0.73 0.23

φ̂ (2) –0.13 0.73 0.79 0.81 0.92 0.73 0.16

r̂1 –0.24 1.75 1.97 1.99 2.13 1.63 0.63
r̂2 –0.95 –0.25 –0.18 –0.00 0.69 –0.14 0.21

d̂1 1.00 1.00 1.00 1.00 1.60 1.04 0.08
d̂2 1.00 1.00 1.00 1.10 2.80 1.07 0.14
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(φ̂1)1 (φ̂1)2 r̂1 r̂2 d̂1 d̂2

1
0

1
2

simulated by AsyTAR process with φ (1)
1 = −0.8, φ (2)

1 = 0.8, r1 = 2, r2 = 0, d1 = 1,
d2 = 1 using 5000 replications, that means 5000 different starting points (parame-
ters). The results of the estimation procedure are summarized in Table 4. As concern
the comparison with the procedure with lesser iterations, we can underline that the
differences among the estimates are negligible.
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Nov 29    Apr 30       Oct 31        May 01       Nov 02      May 03      Nov 01        May 02      Oct 31        May 01      Oct 31       May 01     Oct 30

Nov 04    Jan 02     Feb 28       May 01      Jun 30       Aug 31     Oct 31       Jan 01     Feb 29      May 01      Jul 01       Sep 02      Oct 31

Fig. 3 FTSE MIB: above the price series (from November 2006 to October 2012), in the
bottom the squared log-returns series (from November 2010 to October 2012)

3.2 Example in Stock Market Data

In order to apply the proposed procedure to real dataset, we consider the FTSE MIB
index (Fig. 3) from 5th November 2010 to 9th November 2012. The analysis of the
log-return of the index, as expected, doesn’t reveal any particular structure. So we
pay attention to the volatility of the time series and considered the squared log-return
as its proxy. The AsyTAR(2,1) model is estimated using the PSO algorithm with 60
particles and stopping criterion fixed to 10−6 and the procedure parameters are set as
following:ω = 0.6571, ϕ1 = 1.6319 and ϕ2 = 0.6239. As our parameters are subject
to some constrains in order to obtain a model for positive time series, we consider a
version of the PSO procedure in which the velocity is null if the particle goes out of
the eligibility region.
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Table 5 summarizes the results of the estimation procedure and we can see that
the procedure reveals the presence of two overlapped regimes; in fact, the threshold
r1 is greater than r2. Furthermore both the regimes are estimated with autoregressive
model of order two, for the first regime with φ̂ (1)

1 = 0.369 and φ̂ (1)
2 = 0.324 and for

the second one with φ̂ (2)
1 = 0.175 and φ̂ (2)

2 = 0.038, the two thresholds are estimated
r̂1 = 0.350 and r̂2 = 0.167. This result highlights the ability of the AsyTAR model
to capture the asymmetric structure of the DGP. In the case of the FTSE MIB the
behaviour of the two regimes is quite different. This fact reveals that the efficiency
of the market sometimes fails showing the presence of a structure in squared loga-
rithmic returns. Moreover in our model the sequences of each regimes are relative
short and the two regimes switch at relatively high frequency.

4 Conclusions

The contribution seems of relevant interests as it provides new perspectives along
three different patterns. Firstly, the proposed technique seems to obtain interesting
results in the parameters estimation. In particular the use of the PSO algorithm makes
it possible to identify the best model. Moreover, an appropriate definition of the
fitness function enables us to select the most suitable model.

Secondly, the preliminary results show robustness with respect to model miss-
specification. Thirdly, in the cases of threshold model the technique allows to esti-
mate simultaneously thresholds, delay and autoregressive parameters.

In particular, it seems that an appropriate dimension of the particles let us apply
the same procedure to time series generated by different kind of processes, although
this requires the definition of a fitness function that should cope with different DGPs.
In fact, as the algorithm estimates the redundant parameters equal to zero, we im-
prove the identification of the underlying process.

Eventually, we think that this model might be a useful tool to analyze real time
series such as finance data that likely show asymmetric features.

Table 5 Estimation FTSMIB with AsyTAR structure with two regressors and 100 replications

Param. min Q1 Q2 Q3 max mean sd

φ̂ (1)
1 –0.316 0.365 0.396 0.490 0.593 0.396 0.140

φ̂ (1)
2 0.111 0.269 0.329 0.374 0.447 0.324 0.070

φ̂ (2)
1 –0.396 0.157 0.210 0.261 0.676 0.175 0.175

φ̂ (2)
2 –0.781 –0.041 0.123 0.142 0.642 0.038 0.228

r̂1 0.045 0.108 0.238 0.282 1.581 0.350 0.375
r̂2 0.048 0.084 0.110 0.219 0.620 0.167 0.131

d̂1 1.000 1.000 1.000 1.017 1.517 1.025 0.085
d̂2 1.000 1.000 1.000 1.017 2.033 1.073 0.227

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

(φ̂1)1 (φ̂2)1 (φ̂1)2 (φ̂2)2 r̂1 r̂2 d̂1 d̂2

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0



276 C. Pizzi and F. Parpinel

References

1. Battaglia, F., Protopapas, M.K.: Multi-regime models for nonlinear nonstationary time
series. Computational Statistics 47, 277–295 (2011)

2. Chan, K.S., Tong, H.: On Likelihood Ratio Tests for Threshold Autoregression. Journal
of the Royal Statistical Society B(52) (Methodological), 469–476 (1990)

3. Hansen, B.E.: Sample Splitting and Threshold Estimation. Econometrica 68, 575–603
(2000)

4. Gonzalo, J., Wolf, M.: Subsampling inference in threshold autoregressive models. Jour-
nal of Econometrics 127, 201–224 (2005)

5. Kennedy, J., Eberhart, R.C.: Subsampling inference in threshold autoregressive models.
In: In Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948
(1995)

6. Li, W.K., Lam, K.: Modelling Asymmetry in Stock Returns by a Threshold Autoregres-
sive Conditional Heteroscedastic Model. The Statistician 44, 333–341 (1995)

7. Pedersen, M.E.H.: Good Parameters for Particle Swarm Optimization. Hvass Laborato-
ries. Technical Report HL1001 (2010)

8. Petruccelli, J.D., Davies, N.: A Portmanteau Test for Self-Exciting Threshold
Autoregressive-Type Nonlinearity in Time Series. Biometrika 73, 687–694 (1986)

9. Pizzi, C.: The asymmetric threshold model AsyTAR(2;1,1). In: Sco2007 (2007)
10. Pizzi, C.; Parpinel, F.: Evolutionary computational approach in TAR model estimation.

In: University of Venice “Ca’ Foscari” (edc.) Working Papers, vol. 26/2011. Department
of Economics, Venezia (2011)

11. Shi, Y., Eberthart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE
International Conference on Evolutionary Computation, pp. 69–73 (1998)

12. Tong, H., Yeung, I.: Threshold Autoregressive Modelling in Continuous Time. Statistica
Sinica 1, 411–430 (1991)

13. Tong, H., Lim, K.S.: Threshold Autoregression, Limit Cycles and Cyclical Data. Journal
of the Royal Statistical Society B 42 (Methodological), 245–292 (1980)

14. Tsay, R.S.: Testing and Modeling Multivariate Threshold Models, Journal of the Amer-
ican Statistical Association 93, 1188–1202 (1998)

15. Wang, H., Zhao, W.: ARIMA Model Estimated by Particle Swarm Optimization Algo-
rithm for Consumer Price Index Forecasting. In: Deng, H., Wang, L., Wang, F.H., Lei, J.
(eds.) Artificial Intelligence and Computational Intelligence. Lecture Notes in Computer
Science 5855, pp. 48–58. Springer (2009)

16. Wu, B., Chang, C.L.: Using genetic algorithm to parameters (d,r) estimation for threshold
autoregressive models. Comput. Stat. Data Anal. 17, 241–264 (2002)

17. Zakoian, J.M.: Threshold Heteroskedastic Models. Journal of Economic Dynamics and
Control 18, 931–955 (1994)



Valuation of Collateralized Funds of Hedge
Fund Obligations: A Basket Option Pricing
Approach

Gian Luca Tassinari and Corrado Corradi

Abstract The purpose of the present contribution is to provide an extension to a
model developed by Tassinari and Corradi [7] to price equity and debt tranches of
collateralized funds of hedge fund obligations (CFOs). The key idea is to price each
CFO liability as an option on the underlying basket of hedge funds. The proposed
model is able to reproduce the empirical characteristics observed in the distribution
of hedge funds’ returns: skewness, excess kurtosis and dependence in the tails. Addi-
tionally, it can be easily calibrated to the empirical correlation matrix and it requires
only historical information to be estimated and implemented. The result is a scheme
that can be useful in structuring a CFO. In particular, we believe that the approach
described in this work can be helpful to rating agencies and to deal structures to
evaluate various capital structures, test levels, liquidity profiles, coupons and equity
distribution rules.

1 Introduction

CFOs are structured finance products created by using a standard securitization ap-
proach. A special purpose vehicle issues multiple tranches of senior and subordi-
nated notes that pay interest at fixed or floating rates and an equity tranche, and
invests the proceeds in a portfolio of hedge funds. CFOs typically have a stated term
of three to seven years at the end of which the collateral portfolio is sold and all of
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the securities must be redeemed. Redemptions before maturity are only possible if
some predetermined events happen. The CFO manager periodically checks the net
asset value (NAV) of the collateral portfolio. If this value falls below an established
threshold, the CFO structure goes into bankruptcy and debts are repaid in sequential
order according to their degree of subordination with the liquidation proceeds of the
collateral portfolio. Following the approach developed in [7], in this contribution
we consider each CFO liability as an option written on the underlying pool of hedge
funds and we compute its fair price as its risk neutral expected payoff, discounted at
the risk free rate. Since the value of every liability is linked to the dynamics of the
collateral portfolio’s NAV during the life of the contract, it is necessary to model the
joint risk neutral evolution of the underlying hedge funds and at the same time any
CFO’s structural features like coupon payments, over collateralization test, liquidity
profile, equity distribution rules, management fees have to be taken into account. Due
to use of derivatives, leverage and short selling, hedge funds’ log-returns distribution
usually exhibits negative skewness and heavier tails than the normal distribution.
Furthermore, hedge funds log-returns presents a higher degree of dependence dur-
ing high volatility periods and severe market crashes (see [7] and references therein).
Since multivariate Brownian model is not able to describe these empirical phenom-
ena, a more general Lévy process is needed. In [7] dependence among hedge fund
log-returns is introduced through a gamma stochastic time-change of a multivariate
Brownian motion, with uncorrelated components. The idea is that the economy is
driven by only one common factor, whose dynamics is described by a gamma sub-
ordinator, and there are no other sources of dependence (see [5] and [7]). In this con-
tribution we get a more flexible hedge funds’ log-returns model by time-changing
a multivariate arithmetic Brownian motion with correlated components. Since we
assume dependent Brownian motions, jump sizes are correlated (see [1] and [4]).
This model allows to get a richer dependence structure than the one in [7] and it can
be calibrated to the empirical correlation matrix. The market model presented in this
work is not complete, because the risk due to jumps cannot be hedged. Therefore, the
equivalent martingale measure is not unique. Additionally, we cannot change proba-
bility measure by using the so called mean correcting martingale technique, because
the log-returns process we propose has no diffusion component (see [1]). Among the
possible candidates we select the Esscher equivalent martingale measure (EEMM)
(see [3]) and we find explicit relations among physical and risk neutral processes
and distributions at both marginal and joint levels. These results are very important
in the pricing procedure because only historical data are available. Furthermore, this
approach can be very useful to price derivatives on equity baskets when no traded
options on the underlying assets are available for calibration purpose. The work is
organized as follows. In Sect. 2 we present the model applied to describe the physical
evolution of hedge funds’ log-returns. In Sect. 3 we discuss the change of measure.
In Sect. 4 equity and debt tranches of a theoretical CFO are priced. Section 5 con-
cludes.



Valuation of Collateralized Funds of Hedge Fund Obligations 279

2 Hedge Funds’ Log-Returns P-Dynamics

In this section we model the dynamics of hedge funds’ log-returns under the phys-
ical probability measure P as a multivariate variance gamma (MVG) process with
a linear drift. The pure jump part of the process is got by time changing an arith-
metic multivariate Brownian motion with an independent one-dimensional gamma
process. We refer to this last process as a subordinator or a stochastic clock. Let
G = {Gt , t ≥ 0} be a gamma process, i.e., a process which starts at zero and has
stationary and independent increments which follows a gamma distribution. G is a
Lévy process in which the defining law of G1 is a gamma distribution with param-
eters α > 0 and β > 0. For normalization reasons, we work with a gamma process
such that E(Gt) = t, which in terms of the parameters implies that α = β = 1/ν .
The density function of the random variable G1 is

f (g;1/ν ,1/ν) =
ν−1/ν

Γ (1/ν)
g1/ν−1 exp(−g/ν), g > 0, (1)

where
Γ (1/ν) =

∫ ∞

0
g1/ν−1 exp(−g/ν)dg, (2)

and its characteristic function is

ΨG1(ω) = (1− iων)−1/ν . (3)

We also assume that the components of the multivariate Brownian motion are cor-
related, i.e, W j = {W j

t , t ≥ 0} and W k = {W k
t , t ≥ 0} are Wiener processes with

correlation coefficient ρ jk, for j = 1, . . . ,n and k = 1, . . . ,n. Under this assumptions,
the log-return of hedge fund j over the interval [0, t] can be written as

Y j
t = μ jt +θ jGt +σ jW

j
Gt

= μ jt +X j
t , (4)

where W j
G = {W j

Gt
, t ≥ 0} is the j-th Wiener process subordinated by the common

gamma process, X j = {X j
t , t ≥ 0} is pure jump process component of Y j = {Y j

t , t ≥
0}. μ j, θ j, and σ j > 0 are constants. Modelling dependence in this way allows to in-
troduce two sources of co-movement among different hedge funds. In particular, the
use of a common subordinator generates a new business time in which all the market
operates (see [2]). This means all prices jump simultaneously (see [5, 7]). Since we
assume dependent Brownian motions, jump sizes are correlated (see [1,4]). Further-
more, Brownian motion subordination allows to produce margins able to describe the
skewness and excess kurtosis1 that characterize the empirical distribution of hedge
funds’ log-returns.

By composition of the Laplace exponent of the gamma subordinator

ΦG1 (ω) = − ln(1−ων)
ν

(5)

1 See [1] or [6].
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with the characteristic exponent of the multivariate Brownian motion

Λ (u) =
n

∑
j=1

iu jθ j − 1
2

n

∑
j=1

n

∑
k=1

u jukσ jσkρ jk, u ∈ Rn, (6)

we get the characteristic exponent of the pure jump process (see [1]):

ΛX1 (u) = − 1
ν

[
1−ν

(
n

∑
j=1

iu jθ j − 1
2

n

∑
j=1

n

∑
k=1

u jukσ jσkρ jk

)]
. (7)

Now, it is easy to find the characteristic function of Y1:

ΨY1 (u) = exp

(
i

n

∑
j=1

u jμ j

)[
1−ν

(
n

∑
j=1

iu jθ j − 1
2

n

∑
j=1

n

∑
k=1

u jukσ jσkρ jk

)]−1/ν

. (8)

From (8) it is possible to compute marginal and joint moments of hedge funds’ log-
returns for t = 1:

E
(

Y j
1

)
= μ j +θ j, (9)

Var
(

Y j
1

)
= σ2

j +νθ 2
j , (10)

Skew
(

Y j
1

)
= θ jν

(
3σ2

j +2νθ 2
j

)
/
(
σ2

j +νθ 2
j

)3/2
, (11)

Kurt
(

Y j
1

)
= 3

(
1+2ν−νσ4

j

(
σ2

j +νθ 2
j

)−2
)

, (12)

Corr
(

Y j
1 ;Y k

1

)
=

θ jθkν+σ jσkρ jk√
σ2

j +νθ 2
j

√
σ2

k +νθ 2
k

, (13)

for j = 1, . . . ,n and k = 1, . . . ,n. From (13) and (11) it follows that pairs of hedge
funds with skewness of the same sign could be negatively correlated and hedge funds
with skewness of opposite sign could be positively correlated. Furthermore, pairs of
assets have null correlation if and only if at least one of them has a symmetric distri-
bution and their underlying Brownian motions are uncorrelated. Thus, due to jumps
size correlation, this process is more flexible in modelling dependence compared to
the one presented in [7]. Finally, note that due to the common stochastic clock null
correlation doesn’t imply independence.

3 Change of Measure and Hedge Funds’ Log-Returns
Qh-Dynamics

Assuming the existence of a bank account which provides a continuously compound-
ed risk free rate r, this market model is arbitrage free, since the price process of every
asset has both positive and negative jumps (see [1]). This ensures the existence of an
equivalent martingale measure. However, the model is not complete, because the risk
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due to jumps cannot be hedged. Therefore, the equivalent martingale measure is not
unique. Among the possible risk neutral probability measures we choose the EEMM,
which we denote by Qh (see [3]). The Qh measure associated with the multivariate
log-returns process Y is defined by the following Radon-Nikodym derivative:

dQh

dP
|ℑt =

exp(∑n
j=1 h jY

j
t )

E
[
exp(∑n

j=1 h jY
j

t )
] , (14)

where ℑt is the filtration originated by the log-returns process. To get the Esscher
risk neutral dynamics of Y :

1. find a vector h such that the discounted NAV process of every hedge fund is a
martingale under the new probability measure Qh solving the system

E

[
exp(

n

∑
j=1

h jY
j

t +Y 1
t )

]
/E

[
exp(

n

∑
j=1

h jY
j

t )

]
= exp(rt)

.

.

.

E

[
exp(

n

∑
j=1

h jY
j

t +Y n
t )

]
/E

[
exp(

n

∑
j=1

h jY
j

t )

]
= exp(rt); (15)

2. find the characteristic function of the process Y under the measure Qh as

ΨQh
Yt

(u) =
E
[
exp∑n

j=1(h j + iu j)Y
j

t

]
E
[
exp∑n

j=1 h jY
j

t

] =
ΨYt (u− ih)
ΨYt (−ih)

. (16)

Taking into account (8), the system (15) may be written as:

1
ν

ln

⎡⎣1− ν(θ1 +0.5σ2
1 +∑n

j=1 h jσ1σ jρ1 j)

1−ν
(
∑n

j=1 h jθ j + 1
2 ∑

n
j=1∑

n
k=1 h jhkσ jσkρ jk

)
⎤⎦ = μ1 − r

.

.

.

1
ν

ln

⎡⎣1− ν(θn +0.5σ2
n +∑n

j=1 h jσnσ jρn j)

1−ν
(
∑n

j=1 h jθ j + 1
2 ∑

n
j=1∑

n
k=1 h jhkσ jσkρ jk

)
⎤⎦ = μn − r (17)

with the following constraints[
1−ν

(
n

∑
j=1

h jθ j +
1
2

n

∑
j=1

n

∑
k=1

h jhkσ jσkρ jk

)]
> 0 (18)
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and

1 − ν(
n

∑
j 	=q

h jθ j +(hq +1)θq +
1
2

n

∑
j 	=q

n

∑
k 	=q

h jhkσ jσkρ jk)

− 1
2
ν(

n

∑
j 	=q

h j(hq +1)σ jσqρ jq +(hq +1)2σ2
q ) > 0, q = 1, . . . ,n. (19)

It can be shown that this system has at most two solutions.2 Furthermore, in all our
experiments we found that system (17) possesses a unique solution and therefore
a unique vector h exists satisfying the constraints (18) and (19). This ensures the
existence and the uniqueness of the EEMM. From (16) and taking into account (8),
we get the risk neutral characteristic function of the process for t = 1, i.e.,

ΨQh
Y1

(u) = exp

(
n

∑
j=1

iu jμ j

)
×

⎡⎣ 1− ν(∑n
j=1 u j(θ j +∑n

k=1 h jσ jσkρ jk)− 1
2 ∑

n
j=1∑

n
k=1 u jukσ jσkρ jk)

1−ν
(
∑n

j=1 h jθ j + 1
2 ∑

n
j=1∑

n
k=1 h jhkσ jσkρ jk

)
⎤⎦−1/ν

. (20)

Comparing (20) with (8), we note that the Esscher change of probability measure
does not modify the nature of the log-returns process. In particular, we find the fol-
lowing relations among risk neutral and statistical parameters:

μQh
j = μ j, (21)

νQh = ν , (22)

θQh
j =

θ j +∑n
k=1 hkσ jσkρ jk

1−ν
(
∑n

j=1 h jθ j + 1
2 ∑

n
j=1∑

n
k=1 h jhkσ jσkρ jk

) , (23)

(σQh
j )2 =

σ2
j

1−ν
(
∑n

j=1 h jθ j + 1
2 ∑

n
j=1∑

n
k=1 h jhkσ jσkρ jk

) , (24)

σQh
jk =

σ jk

1−ν
(
∑n

j=1 h jθ j + 1
2 ∑

n
j=1∑

n
k=1 h jhkσ jσkρ jk

) , (25)

ρQh
jk = ρ jk, (26)

for j = 1, . . . ,n and k = 1, . . . ,n. Under the Qh measure the log-returns process can
be obtained by time-changing a multivariate Brownian motion with correlated com-
ponents, with an independent Gamma process. We emphasize that the underlying
dependence structure is not affected by the change of measure. Precisely, the Brow-
nian motions have the same correlation matrix and the gamma process has the same
parameters. However, joint and marginal moments change.

2 To be more precise, this is true under a certain hypothesis. See the Appendix for the proof.
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4 Pricing CFOs Tranches

In this section we price debt and equity securities of a theoretical CFO as options
written on a portfolio of hedge funds. The fair price of each tranche is computed as its
expected discounted payoff under the EEMM. The payoff of every tranche depends
on CFO structural features as over-collateralization tests, priority of payment water-
fall and liquidity profile, and it is linked to the risk-neutral evolution of the portfolio
NAV, which depends on the temporal behaviour of all its underlying hedge funds.
This section is organized as follows. In Subsect. 4.1 we describe the data. In Sect. 4.2
we illustrate how to estimate the parameters of the model described in Sects. 2 and 3.
In Sect. 4.3 we explain how to simulate a simple path of the collateral portfolio NAV.
In Sect. 4.4 we discuss the pricing application and the results.

4.1 Data and Summary Statistics

We get NAV monthly data from the Credit Suisse/Tremont Hedge Index for the fol-
lowing hedge fund indices: convertible arbitrage (CA), dedicated short bias (DSB),
emerging markets (EM), equity market neutral (EMN), event driven (ED), distressed
(DST), multi-strategy (MS), risk arbitrage (RA). The sample covers the period from
January 1994 through May 2008. Table 1 reports some descriptive statistics. A brief
examination of the last two columns of this table indicates that hedge fund returns
are clearly not Gaussian. Six hedge fund indices over eight exhibit a negative skew-
ness. All indices display excess kurtosis. However, the degree of asymmetry and fat
tails is quite different among hedge funds.

Table 1 Summary statistics of monthly log-returns for CS/Tremont indices, period January
1994–May 2008

Index Mean Median Max Min Std.Dev. Skew. Kurt.
% % % % %

CA 0,58 0,86 3,45 –5,80 1,38 –1,64 7,64
DSB –0,21 –0,36 20,2 –9,36 4,75 0,56 4,11
EM 0,70 1,38 15,3 –26,2 4,50 –1,18 10,4
EMN 0,71 0,67 3,19 –1,27 0,76 0,36 3,90
ED 0,83 1,02 3,84 –12,6 1,61 –3,58 30,1
DST 0,93 1,11 4,08 –13,4 1,78 –3,15 26,1
MS 0,78 0,86 4,29 –12,3 1,74 –2,65 20,9
RA 0,55 0,55 3,58 –6,48 1,16 –1,29 10,4
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4.2 Physical and Risk Neutral Parameters Estimation

Physical parameters are estimated using a two steps procedure. We estimate
marginal parameters imposing the equality among the first three empirical moments
of log-returns and their theoretical variance gamma counterparts and requiring a fit-
ted mean kurtosis equal to the sample one. Then, we compute the correlation between
j-th and k-th underlying Brownian motions as

ρ jk =

√
σ2

j +νθ 2
j

√
σ2

k +νθ 2
k ρy jyk −θ jθkν

σ jσk
, (27)

where ρy jyk is the sample correlation between hedge fund j and k. Then, we compute
the vector h by solving the system (17). Finally, from the relations among risk neutral
and statistical parameters of Sect. 3, we get the risk neutral ones.

4.3 Simulation

To simulate the paths of n dependent hedge fund NAVs under the EEMM we can
proceed as follows.
Let NAV j

t0 the NAV of hedge fund j at time 0 for j = 1, . . . , n.
Divide the time-interval [0, T ] into N equally spaced intervals Δ t = T/N and set
tk = kΔ t, for k = 0, ...,N.
For every hedge fund repeat the following steps for k from 1 to N:

1. sample a random number gk out of the Gamma(Δ t/ν , 1/ν) distribution;
2. sample n independent standard normal random numbers w j

tk ;

3. convert these random numbers w j
tk into correlated random numbers v j

tk by using
the Cholesky decomposition of the implied correlation matrix of the underlying
Brownian motions;

4. compute
NAV j

tk = NAV j
tk−1

exp
[
μ jΔ t +θQh

j gk +σQh
j
√

gkv j
tk

]
. (28)

To simulate a simple trajectory of the collateral portfolio NAV it is sufficient to
compute

NAVtk =
n

∑
j=1

NAV j
tk , k = 1, . . . ,N. (29)

In the next subsection we will also explain how to adapt this procedure to take into
account CFO structural features such as coupon payments, equity distribution rules,
over-collateralization tests, liquidity profile and management fees.
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4.4 Applications and Results

In this section we price debt and equity securities of a theoretical CFO.3 Consider a
CFO structure with a scheduled maturity T = 5 years. The collateral portfolio has a
current value of 1000 currency units allocated to the funds of hedge funds as follows:
CA 175, DSB 50, EM 50, EMN 250, ED 100, DST 50, MS 100 and RA 225. The
liabilities are structured in the following way: a debt tranche A with a nominal value
of 570 and annual coupon rate of 4%, a debt tranche B with a nominal value of 150
and annual coupon rate of 4.05%, a debt tranche C with a nominal value of 100 and
annual coupon rate of 4.5%, and a paying dividend equity tranche with a nominal
value of 180. If the NAV of the collateral at the end of a year is greater than 1000
after the payment of coupons to bondholders, the 50% of annual profits is distributed
to equityholders. We assume the CFO has enough liquidity to pay coupons and divi-
dends. In particular, a part of each hedge fund, proportional to its NAV, is sold at the
payment date. The CFO manager is assumed to make the over collateralization test
every three months. In the simulation procedure we consider a barrier equal to 1,05
times the total nominal value of the debt tranches. If the NAV of the fund of hedge
funds falls below this level, when its value is checked by the CFO manager, then
the collateral portfolio will be sold in order to redeem the rated notes. In the default
event, tranche A is redeemed first. In particular, we assume that both capital and cur-
rent coupon have to be paid. Then, tranche B has to be repaid in the same way and so
on. In the event of default, we model the sale of the assets by assuming this simple
liquidity profile: 30% after three months, 30% after six months, all the residual col-
lateral portfolio value after nine months. For simplicity, we assume that hedge funds
are liquidated proportionally to their NAV. Additionally, we assume the existence of
an initial lock out period of two years. This means that redemptions before two years
are not admitted. The annual management fee is assumed to be equal to 0.5% of the
total nominal amount of CFO tranches. Finally, we assume the existence of a risk
free asset with a constant annual log-return r = 4%. Table 2 shows the price of each
CFO tranche computed by using three different models to describe the evolution of
hedge funds log-returns: multivariate Brownian motion (MBM), multivariate vari-
ance gamma process with independent underlying Brownian motions (MVG IND),
multivariate variance gamma process with dependent underlying Brownian motions
(MVG DEP). This table shows that the choice of the model has a significant impact
on the pricing of debt tranches. This effect is greater the smaller is the degree of pro-
tection offered by the CFO structure. On the contrary, the price of the equity tranche
seems not particularly sensitive with respect to this choice. The prices of all bonds
decrease from the MBM to the MVG DEP model. This is reasonable because the nor-
mal distribution is symmetric and is not able to capture the kurtosis present in hedge
funds’ returns. Also, the tail events of a normal distribution are asymptotically inde-
pendent. Consequently, the Gaussian model underestimates the risk of default, and
thus it overestimates prices. The degree of dependence generated by the MVG DEP
model is greater because the underlying Brownian motions are almost all positively

3 This CFO has the same structure of the third CFO considered in [7].
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Table 2 Asset side 1000: funds of hedge funds. Liability side 1000: one equity security and
three coupon bonds (CB). CFO tranche prices with barrier (105%) and management fees
(0,5%)

MODEL EQUITY CB A CB B CB C
TRANCHE TRANCHE TRANCHE TRANCHE

MBM
Prices with fees 154,977 569,912 149,994 101,439

(Prices with no fees) (177,282) (569,974) (150,226) (102,014)

MVG IND
Prices with fees 154,894 567,517 146,788 92,873

(Prices with no fees) (176,443) (568,073) (147,725) (95,291)

MVG DEP
Prices with fees 154,837 566,788 145,762 90,356

(Prices with no fees) (176,199) (567,475) (146,921) (93,294)

correlated.4 A comparison between the prices MVG IND and MVG DEP allows to
evaluate the effect on prices due only to the different dependence structures since
the physical margins are the same. More intense the link between the margins is,
greater the risk of failure is and lower the prices are. From these prices it is possible
to infer the importance of a correct modeling of the dependence structure for pricing
purpose.

5 Conclusions

In this contribution, we provided an extension to a model developed by Tassinari
and Corradi [7] to price equity and debt tranches of a CFO. The model presented
here is able to reproduce the empirical characteristics observed in the distribution of
hedge funds’ returns: skewness, excess kurtosis and dependence in the tails. Addi-
tionally, it can be easily calibrated to the empirical correlation matrix and it requires
only historical information to be estimated and implemented, thanks to the existence
of explicit relations among physical and risk neutral processes and distributions at
both marginal and joint levels. The result is a scheme that can be useful in struc-
turing a CFO. In particular, we believe that the approach described can be helpful
to rating agencies and to deal structures to evaluate various capital structures, test
levels, liquidity profiles, coupons and equity distribution rules.

4 These correlations are not reported in this contribution, but they can be provided on request.
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Appendix

In this appendix we discusse the existence and uniqueness of the solution of system
(17). From (17) we easily get:

(a1 +
n

∑
j=1

h jb1 j)/A1 = 1−
n

∑
j=1

c jh j − 1
2

n

∑
j=1

n

∑
k=1

h jhkb jk

.

.

.

(an +
n

∑
j=1

h jbn j)/An = 1−
n

∑
j=1

c jh j − 1
2

n

∑
j=1

n

∑
k=1

h jhkb jk (30)

where a j = ν(θ j + 0.5σ2
j ), b jk = νσ jk, c j = νθ j, A j = 1 − exp [ν(μ j − r)], j =

1, . . . ,n and k = 1, . . . ,n. Bringing the first member of the first equation to the second
member in the subsequent equations of system (30), the last n−1 equations can be
written as follows:

n

∑
j=2

h jF2 j = h1D2 +E2

.

.

.
n

∑
j=2

h jFn j = h1Dn +En (31)

where D j = A1b j1 − A jb11, E j = A1a j − A ja1, and Fk j = Akb1 j − A1bk j for j =
2,3, . . . ,n and k = 2,3, . . . ,n. Under the assumption that the matrix of the coeffi-
cients Fk j is not singular, we can express the solution of (31) as a linear function of
h1, using Cramer’s method:

h2 =
detF1(D)

detF
h1 +

detF1(E)
detF

.

.

.

hn =
detFn−1(D)

detF
h1 +

detFn−1(E)
detF

(32)

where F is the coefficients matrix Fk j, Fk(D) is the matrix obtained substituting its
k-th column with vector D, Fk(E) is the matrix obtained substituting its k-th column
with vector E. Substituting (32) in the first equation of the system (30), after simple
calculations we get a quadratic equation in only one unknown h1:

dh2
1 + eh1 + f = 0, (33)
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where

d =
A1

2

n

∑
k=1

n

∑
j=1

IkI jbk j, (34)

e = A1

[
n

∑
j=1

I jc j +
n

∑
j=1

n

∑
k=2

I jLkb jk

]
+

n

∑
j=1

I jb1 j, (35)

f = A1

[
n

∑
j=2

L jc j +
1
2

n

∑
j=2

n

∑
k=2

L jLkb jk −1

]
+a1 +

n

∑
j=2

L jb1 j, (36)

and with I1 = 1, Ik = detFk−1(D)
detF , Lk = detFk−1(E)

detF , k = 2,3, . . .n.
The analysis of the existence of solutions of Eq. (33), although simple in principle, is
a very hard task in practice. However, in all our experiments we found that Eq. (33)
possesses a unique solution and therefore a unique vector

h = [h1;D2h1 +E2; . . . ;Dnh1 +En] (37)

exists satisfying the constraints (18) and (19), where

h1 =
−e−

√
e2 −4d f

2d
. (38)
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Valuation of R&D Investment Opportunities
Using the Least-Squares Monte Carlo Method

Giovanni Villani

Abstract In this paper we show the applicability of the Least Squares Monte Carlo
(LSM) in valuing R&D investment opportunities. As it is well known, R&D projects
are made in a phased manner, with the commencement of subsequent phase being
dependent on the successful completion of the preceding phase. This is known as a
sequential investment and therefore R&D projects can be considered as compound
options. Moreover, R&D investments often involve considerable cost uncertainty so
that they can be viewed as an exchange option, i.e. a swap of an uncertain invest-
ment cost for an uncertain gross project value. In this context, the LSM method is
a powerful and flexible tool for capital budgeting decisions and for valuing R&D
investments. In fact, this method provides an efficient technique to value complex
real investments involving a set of interacting American-type options.

1 Introduction

Real options analysis has become a well-know R&D project valuation technique that
values managerial flexibility to adjust decisions under uncertainty. For instance, a
project that is started now may be abandoned or expanded in the future, making the
project conditional. As the investment decision is conditional, it can be regarded as
an “option” that is acquired by making the prior investment. The fundamental dif-
ference between real options and traditional net present value (NPV) is the flexibility
to adapt when circumstances change. Whereas NPV assumes that investments are
fixed, an option will be exercised if future opportunities are fovourable, otherwise
the option will expire without any further cost.
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Among the option pricing methods, the [4] model is mostly influential. Using
financial theory, [12] was the first to described real options as the opportunities to
purchase real assets on possibility favorable terms. In the R&D real option litera-
ture, [13] shows empiracally that flexibility under uncertainty allows firms to con-
tinuously adapt to change and improve products; [8] find that real options theory is
used as an auxiliary valuation tool in pharmaceutical investment valuation and so on.

As it is well known, R&D projects are by their nature sequential and the start
of a phase depends on the success of the preceding phase. Each phase represents
an option on a new phase of process. In this context, [9] view the R&D process
and subsequent discoveries as compound exchange options; [2] consider N-phased
investment opportunities where the time evolution of project value follows a jump-
diffusion process; [6] provide an analytical model for valuing the phased develop-
ment of a pharmaceutical R&D project; [7] describe a methodology for evaluating
R&D investment projects using Monte Carlo method.

However, most real investments opportunities are American-type options, to cap-
ture the manager flexibility to realize an investment before the maturity time. So
Monte Carlo simulation, as pointed out in [7], is an attractive tool to solve com-
plex real option models. One of the most new approaches in this environment is
the Least-Squares Monte Carlo (LSM) proposed by [10], as it is witnessed by [11]
and [3].

Aim of this paper is to value an R&D project through a Compound American Ex-
change option (CAEO). In particular way we assume that, during the commercial-
ization phase, the firm can realize the respective investment cost before the maturity
T benefiting of underlying project value. Moreover, R&D investments often involve
considerable cost uncertainty so that they can be viewed as an exchange option, i.e.
a swap of an uncertain investment cost for an uncertain gross project value.

We value the CAEO applying the LSM method. This approach presents several
advantages with respect to the basic Monte Carlo, as analysed in our previous pa-
per (see [7]). In fact, the major drawbacks of simulations are the high computation
requirements and also the low speed.

The paper is organized as follows. Section 2 analyses the structure of an R&D
investment and the valuation of a CAEO using the LSM method. In Sect. 3 we value
four R&D projects using the CAEO and we presents also a sensitivity analysis. Fi-
nally, Sect. 4 concludes.

2 The Basic Model

In this model, we assume a two-stage R&D investment with the following structure:

• R is the Research investment spent at initial time t0 = 0;
• IT is the Investment Technology to develop innovation payed at time t1. We fur-

ther suppose that IT = qD is a proportion q of asset D, so it follows the same
stochastic process of D;
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Fig. 1 R&D structure

• D is the production and the commmercialization investment in order to receive the
R&D project’s value. We assume that D can be realized between t1 and T ;

• V is the R&D project value.

In particular way, investing R at time t0, the firm obtains a first investment op-
portunity that can be value as a Compound American Exchange Option (CAEO)
denoted by C(Sk, IT, t1). This option allows to realize the Investment Techology IT
at time t1 and to obtain, as underlying asset, the option to realize the market launch;
let denote by Sk(V,D,T − t1) this option value at time t1, with maturity date T − t1
and exercisable k times. In detail, during the market launch, the firm has got another
investment opportunity to invest D between t1 and T and to receive the R&D project
value V . Specifically, using the LSM model, the firm must decide at any discrete
time τk = t1 + kΔ t, for k = 1,2, · · ·h with Δ t = T−t1

h and h is the number of dis-
cretizations, whether to invest D or to wait, and so to delay the decision at next time.
In this way we capture the managerial flexibility to invest D before the maturity T
and so to realize the R&D cash flows. Figure 1 shows the R&D investment structure.

2.1 Assumptions and General Computations

We assume that V and D follow a geometric Brownian motion:

dV
V

= (μv −δv)dt +σvdZv
t (1)

dD
D

= (μd −δd)dt +σddZd
t (2)

cov

(
dV
V

,
dD
D

)
= ρvdσvσd dt (3)

where μv and μd are the expected rates of return, δv and δd are the corresponding
dividend yields, σ2

v and σ2
d are the respective variance rates, ρvd is the correlation

between changes in V and D, (Zv
t )t∈[0,T ] and (Zd

t )t∈[0,T ] are two Brownian processes
defined on a filtered probability space (Ω ,A ,{Ft}t≥0,P), where Ω is the space
of all possible outcomes, A is a sigma-algebra, P is the probability measure and
{Ft}t≥0 is a filtration with respect to Ω space.
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Assuming that the firm keeps a portafolio of activities which allows it to value
activities in a risk-neutral way, the dynamics of the assets V and D under the risk-
neutral martingale measure Q are given by:

dV
V

= (r−δv)dt +σvdZ∗
v (4)

dD
D

= (r−δd)dt +σddZ∗
d (5)

Cov(dZ∗
v ,dZ∗

d) = ρvd dt (6)

where r is the risk-free interest rate, Z∗
v and Z∗

d are two Brownian standard motions
under the probability Q with correlation coefficient ρvd . After some manipulation,
we get the equations for the price ratio P = V

D and DT under the probability Q:

dP
P

= (−δ +σ2
d −σvσdρvd)dt +σvdZ∗

v −σddZ∗
d (7)

DT = D0 exp{(r−δd)T} · exp

(
−σ

2
d

2
T +σdZ∗

d(T )
)

(8)

where D0 is the value of asset D at initial time.

We can observe that U ≡ (−σ2
d

2 T + σdZ∗
d(T )) ∼ N(−σ2

d
2 T,σd

√
T ) and therefore

exp(U) is log-normal distributed whose expection value EQ[exp(U)] = 1. By Gir-
sanov’s theorem, we define a new probability measure Q̃ equivalent to Q whose
Radon-Nikodym derivative is:

dQ̃
dQ

= exp

(
−σ

2
d

2
T +σdZ∗

d(T )
)

. (9)

Hence, substituing in (8) we can write:

DT = D0 e(r−δd)T · dQ̃
dQ

. (10)

By the Girsanov’s theorem, the processes:

dẐd = dZ∗
d −σddt (11)

dẐv = ρvddẐd +
√

1−ρ2
vd dZ′ (12)

are two Brownian motions under the risk-neutral probability space (Ω ,A ,F ,Q̃)
and Z′ is a Brownian motion under Q̃ independent of Ẑd .

By using equations (11) and (12), we can now obtain the risk-neutral price sim-
ulation P:

P(t) = P0 exp

{(
δd −δv − σ2

2

)
t +σZp(t)

}
(13)

where σ =
√
σ2

v +σ2
d −2σvσdρvd and Zp is a Brownian motion under Q̃.
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2.2 Valuation of Compound American Exchange Option Using
LSM Method

The value of CAEO can be determined as the expectation value of discounted cash-
flows under the risk-neutral probability Q:

C(Sk, IT, t1) = e−rt1 EQ[max(Sk(Vt1 ,Dt1 ,T − t1)− IT,0)]. (14)

Assuming the asset D as numeraire and using Eq. (10) we obtain:

C(Sk, IT, t1) = D0e−δdt1 E
Q̃
[max(Sk(Pt1 ,1,T − t1)−q,0)] (15)

where IT = qDt1 .
The market launch phase Sk(Pt1 ,1,T −t1) can be analyzed using the LSM method.

Like in any American option valuation, the optimal execise decision at any point in
time is obtained as the maximun between immediate exercise value and expected
continuation value.

The LSM method allows us to estimate the conditional expection function for
each exercise date and so to have a complete specification of the optimal exercise
strategic along each path. The method starts by simulating n price paths of asset Pt1
defined by Eq. (13) using Matlab code:

Pt1=P0*exp(norminv(rand,-d*t1-sig^2*t1/2,sig*sqrt(t1)));

with δ = δv−δd . Let P̂i
t1 , i = 1 · · ·n the simulated prices. Starting from each ith simu-

lated-path, we begin by simulating a discretization of Eq. (13) for k = 1 · · ·h:

Pt(:,k)=Pt(:,k-1).*exp((-d-0.5*sig^2)*dt+sig*dBt(:,k));

where dBt is a random variable with a standard normal distribution. The process
is repeated m times over a time horizont T . Starting with the last jth price P̂i, j

T , for
j = 1 · · ·m, the option value in T can be computed as S0(P̂

i, j
T ,1,0) = max(P̂i, j

T −1,0):

S(:,h)=max(PPit(:,h)-1,0);

Working backward, at time τh−1, the process is repeated for each jth path. In this
case, the expected continuation value may be computed using the analytic espres-
sion for an European option S1(P̂

i, j
τh−1

,1,Δ t). Moving backwards, at time τh−1, the
management must decide whether to invest or not. The value of the option is maxi-
mized if the immediate exercise exceeds the continuation value, i.e.:

P̂i, j
τh−1

−1 ≥ S1(P̂
i, j
τh−1

,1,Δ t). (16)

We can find the critical ratio P∗
τh−1

that solve the inequality (16):

P∗
τh−1

−1 = S1(P∗
τh−1

,1,Δ t)
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and so the condition (16) is satisfied if P̂i, j
τh−1

≥ P∗
τh−1

. But it is very heavy to compute
the expected continuation value for all previous time and so to determine the critical
price P∗

τk
, k = 1 · · ·h−2, as it is shown in [5].

The main contribution of the LSM method is to determine the expected contin-
uation values by regressing the subsequent discounted cash flows on a set of basis
functions of current state variables. As described in [1], a common choice of basis
functions are the weighted Power, Laguerre, Hermite, Legendre, Chebyshev, Gegen-
bauer and Jabobi polynomials. In our paper we consider as basis function a three
weighted Power polynomial. Let be Lw the basis of functional forms of the state
varibable P̂i, j

τk
that we use as regressors. We assume that w = 1,2,3. At time τh−1,

the least square regression is equivalent to solve the following problem:

min
a

m

∑
j=1

[
S0(P̂

i, j
T ,1,0)e−rΔ t −

3

∑
w=1

awLw(P̂i, j
τh−1

)

]2

. (17)

The optimal â = (â1, â2, â3) is then used to extimate the expected continuation value
along each path P̂i, j

τh−1
, j = 1 · · ·m:

Ŝi
1(P̂

i, j
τh−1

,1,Δ t) =
3

∑
w=1

âwLw(P̂i, j
τh−1

).

After that, the optimal decision for each price path is to choose the maximum be-
tween the immediate exercise and the expected continuation value.

Proceding recursively until time t1, we have a final vector of continuation values
for each price-path P̂i, j

τk
that allows us to build a stopping rule matrix in Matlab that

maximises the value of american option:

%Find when the option is exercised:
IStop=find(PPit(:,j-1)-1>=max(XX2*BB,0));
%Find when the option is not exercised:
ICon=setdiff([1:m],IStop);
%Replace the payoff function with the value of the option
%(zeros when not exercised and values when exercised):
S(IStop,j-1)=PPit(IStop,j-1)-1;
S(IStop,j:h)=zeros(length(IStop),h-j+1);
S(ICon,j-1)=zeros(length(ICon),1);

As consequence, the ith option value approssimation Ŝi
k(P̂

i
t1 ,1,T − t1) can be deter-

mined by averaging all discounted cash flows generated by option at each date over
all paths j = 1 · · ·m.

Finally, it is possible to implement Monte Carlo simulation to approssimate the
CAEO:

C(Sk, IT, t1) ≈ D0e−δdt1

(
n

∑
i=1

max(Ŝi
k(P̂

i
t1 ,1,T − t1)−q,0)

n

)
. (18)
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The Appendix illustrates the complete Matlab algorithm to value CAEO. We con-
clude that, applying real option methodology, the R&D project will be realized at
time t0 if C(Sk, IT, t1)−R is positive, otherwise the investment will be rejected.

3 Numerical R&D Applications

Table 1 summarizes the input parameters about four ipotetical R&D investments.
The R&D project value V0 is the current value of the underlying project cash flows
appropriately discounted. We assume that V0 ranges from 210000 to 750000.

For simplicity, we consider a two-staged R&D investment. The projects start
with the research phase that is expected to end at time t1 with the discovery of a
new good. We consider that t1 = 1 for projects I and II, t1 = 2 for III and t1 = 3
for IV. On evarage, the research phase is about one year for software-technological
investments, two years for motor-telecommunication industries and three years for
pharmaceutical one.

At time t1, the firm realizes a second investment in technologies to develop inno-
vation. Its current value is IT0 and we assume that IT is a proportion q of asset D.
the indentical stochastic process of D, except that it occurs at time t1 = 1.

After that, we have the production and the commercialization phase in which
the new product is ready for the market launch. We assume that this phase starts in
t1 and ends at time T . After time T each business opportunity disappears. During
the commercialization phase, the firm realizes the investment cost D and receives
the project value V . The investment D can be realize at any time between t1 and T
and its current value is D0. In this way we value the decision flexibilities to capture
the R&D cash flows before the maturity T . The length of commercialization phase
depends on typology of R&D investment: this is shorter for software-technological

Table 1 Input values for R&D valuation

Project I (Software) II (Tech.) III (Motor) IV (Pharma.)

R&D Project Value V0 250000 210000 750000 410000
Development Cost D0 140000 200000 950000 310000
Investment Technology IT0 70000 120000 171000 46500
Research Investment R 50000 40000 35000 100000
Exchange Comp. ratio q 0.50 0.60 0.18 0.15
Dividend-Yield of V δv 0.20 0.15 0.15 0.15
Dividend-Yield of D δd 0.05 0.05 0 0
Time to Maturity t1 1 year 1 year 2 year 3 year
Time to Maturity T 2 year 3 year 5 year 7 year
Correlation ρvd 0.38 0.26 0.08 0.12
Volatility of V σv 0.83 0.64 0.54 0.88
Volatility of D σd 0.32 0.41 0.15 0.31
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R&D than motor-pharmaceutical one. So we assume that T = 2,3,5,7 for projects
I,II,III and IV, respectively.

Appropriately, in order to value the volatility of asset V and D, we take into
account the quoted shares and traded options of similar companies. Moreover, as
an R&D investment presents a high uncertainty about its result, we assume that σv

ranges from 0.54 to 0.88 and σd from 0.15 to 0.41.
According to financial options, δ denotes the dividends paid on the stock that

are foregone by option holder. In real option theory, δv is the opportunity cost of
deferring the project and δd is the “dividend yield” on asset D.

To compute the value of CAEO we assume that m = 20000, n = 10000 with x =
20 steps for year. Moreover, the Standard Error εn = σ̂√

n is a measure of simulation
accurancy and it is estimated as the realised standard deviation of simulations divided
by the square root of simulations.

Table 2 contains the Monte Carlo numerical results. In particular way, we have
computed four simulated values for each R&D project and then we have considered
the average among them to determine the CAEO. For each simulated value we have
also computed the standard error (SE). We can observe that this value increases
when the variances σv and σd go up. The last two culumns of Table 2 show the
comparison between the NPV and the Real option methodology. The NPV is given
by the difference between the receipts and expenses in t0, namely NPV=V0−(D0 +
IT0 +R) while the real option value (RO) is the CAEO minus the investment R. As
we can observe, the NPV of each project is always negative and so, according to
the NPV, the firm should reject all projects. On the other hand, considering the real
option approach, the investment opportunities I, III, and IV are remuneratives since
we take into account both the sequential frame of an R&D, i.e. the possibility that
the project may be abandoned in the future, and the managerial flexibility to realize
the investment D before the maturity T and so to benefit of R&D cash flows.

In real options valuation, many times the binomial method can be unusable owing
for instance to the dimensionality of problem, or when we take into account discrete
dividends or with the valuation of compound options. In this context, Monte Carlo

Table 2 Simulated Values of CAEO

1st Sim 2nd Sim 3rd Sim 4th Sim CAEO NPV RO

Project I (Soft.) 64 444 64 516 64 803 64 592 64 589 –10 000 14 589
SE I 0.0111 0.0111 0.0114 0.0113

Project II (Tech.) 19 775 19 923 20 020 20 261 19 995 –150 000 –20 005
SE II 0.0038 0.0038 0.0039 0.0040

Project III (Motor) 66 908 65 326 67 973 66 207 66 603 –406 000 31 603
SE III 0.0030 0.0030 0.0030 0.0032

Project IV (Pharm.) 150 910 152 120 147 410 148 353 149 698 –46 500 49 698
SE IV 0.0329 0.0230 0.0169 0.0240
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Table 3 Comparison between basic MC and LSM approach

1st Sim 2nd Sim 3rd Sim 4th Sim

Least-Square Monte Carlo 64 444 64 516 64 803 64 592

Standard Error LSM 0.0111 0.0111 0.0114 0.0113

Basic Monte Carlo 65 821 63 380 64 215 65 152

Standar Error MC 0.0423 0.0420 0.0422 0.0423

simulation provides an easy way of valuing options but its disadvantage is that it is
computationally intensive and inefficient. To relieve this problem, it is possible to
reduce the standard error and to improve the accuracy of simulation estimates by
increasing the number of simulated paths or by using variance reduction techniques.
About the simple and compound exchange options, this analysis has been illustrated
in [14]. Comparing the basic Monte Carlo (MC) approach used in our previous paper
(see [7]) and in particular way the Second Matlab Algorithm for the Pseudo Com-
pound American Exchange option with the LSM methodology, we improve both the
computation time and the accurancy of simulations. Specifically, using a 2 GHz In-
tel Core 2 Due processor and assuming that m = 20000,n = 10000 and x = 20, we
obtain for the project I the results listed in Table 3 .

To give an idea of CPU computation time, it takes about two hours for LSM and
three hours for basic MC. So the LSM is a little faster than basic MC. Moreover,
the standard errors for simulated values are lower for LSM, ranging between 0.0111
and 0.0114, than basic MC, ranging between 0.0420 and 0.0423. The variance of
four simulations is 18040 for LSM and 861754 for basic MC and so we can state
that LSM methodogy improves the simulation accuracy.

Finally we examine the sensitivity of our results with respect to the parameters
V , σv and the maturity time τ = T − t1.

As it is shown in Fig. 2a, it is obvious that the R&D real option values increase
when the asset V goes up. In particular way, project I can be placed first and it
is remunerative when V > 240000, after that we have project II that it is positive
starting from V > 270000. Projects IV and III are remuneratives from V > 340000
and V > 560000, respectively.

Figure 2b displays the effects of volatility σv on the real option selection. We
can observe that the R&D real option values increase when the volatility σv grows.
In this case, under the same volatility value, project III is the best. After that the
investors will pick out in order of remuneration projects IV, I and II, respectively.

Finally, Table 4 summarises the sensibility of R&D real option values when the
maturity time τ changes. In this case we can observe that project IV is the top con-
sidering the same maturity time. Successively we have projects III, I and II, respec-
tively.
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Table 4 Comparison among projects when the maturity τ changes

τ 1 2 3 4

Project I (Soft.) 14 589 18 901 21 831 12 944
Project II (Tech.) –20 541 –20 005 –18 169 –22 038
Project III (Motor) 32 309 36 282 31 603 18 572
Project IV (Pharm.) 83 270 61 160 54 840 49 698

4 Conclusions

In this paper we have shown how the Least Squares Monte Carlo can be used to
evaluate R&D projects. In particular way, an R&D opportunity is a sequential in-
vestment and therefore can be considered as a compound option. We have assumed
the managerial flexibility to realize the investment D before the maturity T in or-
der to benefit of R&D cash flows. So an R&D project can be view as a Compound
American Exchange option, that allows us to couple both the sequential frame and
the managerial flexibility of an R&D investment.

Moreover, using the asset D as numeraire, we have reduced the bidimensionality
problem of valuing the CAEO to one variable P. As we have analyzed, the main
contribution of the LSM method is to determine the expected continuation value by
regressing the discounted cash flows on the simple powers of variable P, and so to
overcome the effort to compute the critical prices P∗

τk
,k = 1 · · ·h−2. In this way we

have improved both the computation time and the accurancy of simulations with re-
spect to our previous paper (see [7].) Nevertheless, the accurancy of LSM method
can be improved testing and comparing different basis functions on real option val-
ues. Finally, we have studied four R&D projects. We have observed that the NPV
of each project is always negative while, according to real option approach, the in-
vestment opportunities I,III and IV are remuneratives. Moreover, we have examined
how the R&D real option value changes according to parameters V,σv and τ of the
model.

Appendix

In this appendix we present the Matlab algorithm of LSM method.

function LMSCAEO= LMSCAEO(V,D,q,sigv,sigd,rho,...
dV,dD,t1,T,x,m,n);
sig=sqrt(sigv^2+sigd^2-2*sigv*sigd*rho);
P0=V/D;
d=dV-dD;
dt =1/x; %Lenght of the interval of time
t=T-t1;
h=(t/dt); %Number of periods to simulate the price



300 G. Villani

for i=1:n
Pt1=P0*exp(norminv(rand,-d*t1-sig^2*t1/2,sig*sqrt(t1)));
dBt=sqrt(dt)*randn(m,h); %Brownian motion
Pt=zeros(m,h); %Initialize matrix
Pt(:,1)=Pt1*ones(m,1); %Vector of initial stock price
for k=2:h;
Pt(:,k)=Pt(:,k-1).*exp((-d-0.5*sig^2)*dt+sig*dBt(:,k));
end
PPit=Pt; %Change the name
%Work Backwards; Initialize CashFlow Matrix
S=NaN*ones(m,h);
S(:,h)=max(PPit(:,h)-1,0);
for j=h:-1:3;
% Step 1: Select the path in the money at time j-1
I=find(PPit(:,j-1)-1>0);
ISize=length(I);
% Step 2: Project CashFlow at time j onto basis...
% function at time j-1
if j==h;
YY=(ones(ISize,1)*exp(-dD*[1:h-j+1]*dt)).*S(I,j:h);
else
YY=sum(((ones(ISize,1)*exp(-dD*[1:h-j+1]*dt)).*S(I,j:h))’)’;
end
PPb=PPit(I,j-1);
XX=[ones(ISize,1),PPb,PPb.^2,PPb.^3];
BB=pinv(XX’*XX)*XX’*YY;
PPb2=PPit(:,j-1);
XX2=[ones(m,1),PPb2,PPb2.^2,PPb2.^3];
%Find when the option is exercised:
IStop=find(PPit(:,j-1)-1>=max(XX2*BB,0));
%Find when the option is not exercised:
ICon=setdiff([1:m],IStop);
%Replace the payoff function with the option value:
S(IStop,j-1)=PPit(IStop,j-1)-1;
S(IStop,j:h)=zeros(length(IStop),h-j+1);
S(ICon,j-1)=zeros(length(ICon),1);
end
YY=sum(((ones(m,1)*exp(-dD*[1:h-1]*dt)).*S(:,2:h))’)’;
AEOSim(i)=mean(YY);
PAYOFF(i)=max(AEOSim(i)-q,0);
end
CAEO=D*exp(-dD*t1)*mean(PAYOFF)
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Interconnectedness in banking systems can be modelled trough the interbank mar-
ket structure. As only data on interbank credits and debts aggregated at bank level
are publicly available, one common hypothesis is to assume that banks maximise
the dispersion of their interbank credits and debts, so that the interbank matrix is
approximated by its maximum entropy realisation.
The aim of this paper is to test the influence of this approximation on simulations,
and verifying if variations in the structure of the interbank matrix systematically
change the magnitude of contagion.
Numerical experiments on samples of banks from four European countries, showed
that different interbank matrices produce small changes in the point estimation. Nev-
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1 Introduction

Interbank markets are important for the proper functioning of modern financial sys-
tems. They therefore need to be considered in any banking model aiming at esti-
mating the probability of a systemic banking crisis. One of the effects of interbank
connections is that one initial bank failure could have domino effects on the whole
system: interbank markets can be a major carrier of contagion among banks, as prob-
lems affecting one bank may spread to others.

Contagion results from two risks: first, the risk that at least one component of
the system could default (probability of a bank defaulting) and, second, the risk that
this shock could propagate through the system (potential impact of the default). As
the former can stem from a variety of unexpected situations, and is driven mainly
by assets’ riskiness and solvency, this research focuses on the latter. In particular,
the goal of this paper is to assess how a hypothesis on the structure of the interbank
market (i.e. the matrix of credit and debts among banks) affects the magnitude of a
systemic banking crisis.

One common problem in dealing with interbank market structures is that only
partial data are available, as balance sheets report only aggregated interbank assets
and liabilities. Maximum entropy approximation offers a way to proxy interbank
bilateral exposures, assuming that banks maximise the dispersion of their interbank
credits and debts. But what is the cost of such an approximation?

This paper assesses the influence of the maximum entropy hypothesis by ver-
ifying if variations in the matrix structure lead to significantly different results in
systemic excess losses, i.e. losses that exceed capital requirements. The model gen-
erates losses in the banking systems of four countries (Belgium, Ireland, Italy and
Portugal) via Monte Carlo simulations, as performed in the model recently devel-
oped by De Lisa et al. [4].

Interbank exposures are initially modelled using a matrix that maximises the dis-
persion of banks’ bilateral exposures. Contagion results obtained from this scenario
are then compared with those achieved with a more concentrated interbank matrix,
in order to evaluate if contagion is influenced by hypotheses on interbank exposures.

This paper is structured as follows. Section 2 gives an overview of the literature
on interbank market contagion. Section 3 explains the maximum entropy matrix ap-
proximation, the algorithm to adjust the interbank exposures matrix and the scenario
generation procedure. Section 4 presents data used to perform the numerical analy-
sis. Section 5 shows results. Conclusions are drawn in Sect. 6.

2 Literature Review

It is well-known that if a failing bank does not repay its obligations in the inter-
bank market, this could compromise the solvency of its creditor banks and lead to
a domino effect in the banking system. Hence, contagion occurs when the financial
distress of a single bank affects one bank’s ability to pay debts to other financial in-
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stitutions. Therefore, interlinkages between banks could eventually have an impact
on the whole financial system and, beyond that, on the state of the entire economy.

Moreover, the pattern of the interbank linkages could affect the way a crisis prop-
agates through the system.

Theoretical studies like Allen and Gale [1] and Freixas et al. [7] often apply net-
work theory to the banking system and, in particular, focus on the completeness and
connectedness of the interbank matrix. Looking at empirical approaches, Upper [10]
provides a summary of the numerous papers that have focused on the role played by
the interbank market in spreading financial contagion. Among them, only few contri-
butions have detailed information about the interbank matrix (see for example Upper
and Worms [11], van Lelyveld and Liedorp [12] and Mistrulli [9]). When data about
single exposures are not available, it’s necessary to make some assumptions about
the structure of the matrix: the most common one is maximum entropy, used for
example in Wells [13], van Lelyveld and Liedorp [9, 12].

It’s also possible to have only partial data referred, in the majority of the cases, to
large interbank exposures (see Degryse and Nguyen [3]). In these cases the analysis
uses a mixed approach that refers both to real data and to simplifying assumption
when necessary.

About the scenarios generating method, there are two methodologies currently
used to model defaults: the fictitious default algorithm provided by Eisenberg and
Noe [5] and the sequential default algorithm provided by Furfine [8]. Both methods
start from the artificial failure of a bank and then count losses of sequential failures.
The main difference among them is that the first method takes into account the si-
multaneity problem (defaults occurring after the trigger may increase losses at the
banks that have failed previously), whereas the second one does not.

3 Methodology

3.1 Interbank Matrix Structure

Available data at single bank level only cover total credits and debts to other banks,
and information on bilateral exposures between banks is not publicly available. For
this reason, the interbank matrix must be inferred by making assumptions on how
interbank debts and credits are spread over the system. This analysis aims to assess
the uncertainty of simulated bank losses due to the approximation of the interbank
matrix.

Following Upper and Worms [11], the first step is to approximate the interbank
matrix with the maximum entropy one, i.e. to assume that banks maximise the dis-
persion of their interbank credits and debts. Individual interbank exposures in the
sample are assumed to display maximum dispersion, so that each bank lends to each
of the others in proportion to its share of the total interbank credit. In this way the
largest lender will be the largest creditor for all other banks, and banks with no debts
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will result in a column of zeros. The maximum entropy matrix is obtained numeri-
cally via the ENTROP algorithm (see Blien and Graef [2]).

In order to test the robustness of the maximum entropy assumption, variations
were introduced in the interbank matrix to evaluate if these changes induce a sig-
nificant variation in results. At each step, the process introduces one zero more in
a random cell, but preserving the totals per rows and per columns (for a complete
description of the methodology see Zedda et al. [14]). Starting from the maximum
entropy matrix, we produce more concentrated interbank matrices with 20%, 35%,
50%, 65% and 80% more elements set to zero other than the diagonal elements or
elements already set at zero. We implement this mechanism for banking systems in
four different countries (Belgium, Ireland, Italy and Portugal).

3.2 Generating Scenarios

To verify the effectiveness of contagion, we have considered as fundamental to gen-
erate scenarios as close as possible to the real banking system situation. To do this, a
Monte Carlo simulation coherent with a Basel II framework and based on balance-
sheet data was performed, with banks’ correlated assets. The correlation between
banks’ assets is a key point: in this way we do not have only cases with just one
primary default, but also cases with few or more contemporaneous primary defaults,
typically rounded by some other cases of near-to-default banks that are more likely
to start financial contagion. These values are recorded for reference before applying
the contagion mechanism, as NO CONTAGION scenario.

Contagion is then looped up until the cycle where no more banks default, and
net losses are recorded when at least one bank defaults. Simulations were performed
in order to have 10,000 cases with at least one default for each considered country
and for each differently concentrated interbank matrix. To reach this goal it was
necessary to run a total number of simulations ranging from 220,501 (for Italy) to
6,273,040 (for Belgium). This is far larger from the number of simulated scenarios
performed in the recent literature employing Monte Carlo methods (see for example
Elsinger et al. [6]).

To perform a ceteris paribus analysis, in each simulation the variation in the
interbank matrix is set randomly, whereas the internal losses suffered by each bank
are always the same. In this way different results related to the same country can
only be due to variations in the interbank matrix.

4 Data

Our analysis has been conducted on four banking systems showing different features:
Belgium (BE), Italy (IT), Ireland (IE) and Portugal (PT). This makes it possible to
evaluate if changes on interbank matrix have an impact on simulations depending
on the countrys specific characteristics.
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Table 1 Key features of the sample used for simulations

BE IE IT PT

Number of banks 23 24 473 14
Sample (% population) 82.26% 101.91% ∗ 81.81% 66.49%
Capital (m euro) 48,401 65,392 270,876 26,341
Total assets (m euro) 878,336 1,221,181 2,827,051 323,762
Interbank debts (m euro) 97,493 276,738 188,375 43,561
Interbank credits (m euro) 84,727 148,729 195,958 34,504
Capitalization 5.50% 5.40% 9.60% 8.10%
Interbank debts/total assets 11.10% 22.70% 6.70% 13.50%
Interbank credits/total assets 9.6% 12.2% 6.9% 10.7%
Herfindhal index (on total assets) 29.3% 15.4% 5.4% 25.9%
Herfindhal index (on IB debts) 30.0% 17.7% 9.2% 22.8%
Herfindhal index (on IB credits) 25.6% 21.4% 11.7% 34.5%

∗ The imperfect coherence between the two sources used to construct the sample for Ireland
(ECB and Irish Central Bank) generates a percentage of sample rescaled to population that is
above 100%.

Data are based on the Bankscope dataset, as of December 2009, integrated with
European Central Bank (ECB) and Central Banks’ single countries data.

Table 1 shows the data used in our analysis aggregated at country level.
The sample to population percentage is the ratio of total assets for all banks in the

sample to the total in each country reported by ECB. Capitalisation levels, measured
by the capital to total assets ratio, roughly approximate how much banks are resilient
to defaults of their own assets. This capacity also depends on the riskiness of the
assets, which is taken into account in the scenario-generating process anyway. We
report rows containing interbank credits and debts (in Euro and as percentage of
total assets). In addition, the Herfindal index on total assets and interbank volumes
has been calculated to give an idea of the concentration in each considered banking
system.

Data in Table 1 lead to some considerations on the key features of the consid-
ered sample. Belgium has a small number of banks and, according to its Herfindhal
index, a highly concentrated banking system in terms of total assets and interbank
exposures. The Irish banking system is not so highly concentrated but is made up of
a small number of banks highly exposed in the interbank market. Italy has the largest
number of banks, high capitalisation, low interbank exposures and low Herfindhal
indices. Portugal has the smallest number of banks, a high capitalisation level and,
as for Belgium, the highest level of concentration in terms of both total assets and
interbank exposures.
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5 Results

The interbank matrix evidently plays a central role in default contagion risks. What
is not evident a priori is how and how much results differ changing the matrix struc-
ture. On one hand, the maximum entropy assumption could lead to underestimation
of contagion risk, as the consequences of a default are actually spread across all
the other banks, limiting the effects on each single entity. On the other hand, this as-
sumption reflects the connectedness between all banks, even where no real interbank
links exist, thus possibly creating fictitious ways of propagating contagion. For this
reason, the influence of variations in the interbank matrix is verified for the whole
probability distribution of estimated losses.

It must be reminded that simulations are run in order to have 10,000 scenarios
with at least one default in each country. For each scenario 20 different interbank
matrices were considered for each concentration level, so that contagion in each
country can be monitored by five matrices (one for each concentration level) with
dimensions 10,000 × 20, for both losses and defaults.

Table of results report estimates both in case of NO CONTAGION and CON-
TAGION. Maximum entropy assumption (our base scenario) and modified inter-
bank matrices are proposed within the CONTAGION framework. NO CONTA-
GION refers to a case where no interbank linkages are considered, meaning that
only primary defaults are taken into account.

The average results (point estimation of the mean excess loss in each country)
clearly indicate that higher concentration in the interbank matrix do not significantly
influence the expected value of excess losses with respect to what results in the maxi-
mum entropy case. In fact, the estimates tends to slightly increase the average values
with the concentration level and contagion dimension, the only relevant difference
being for IRELAND +80%, where the amount of losses is significantly higher when
the extreme concentration level is reached.

To comment on these results, a reference to network analysis can be relevant,
assessing that the completeness of the matrix does not affect point estimates. On the
contrary, important effects are evident on the variability of estimates.

Considering variability in each banking system, quantified by the interquartile
range and 10% to 90% range calculated for each row of the five matrices, interesting
results are found.

As expected, concentration in the interbank matrix does affect variability and con-
fidence intervals. In particular, the higher the concentration in interbank connections
(number of zeros in the interbank matrix), the higher is the variability in results.

This is due to the fact that the maximum entropy hypothesis leads to only one
possible realisation of the estimated interbank matrix, while more concentrated in-
terbank matrices offer multiple possible solutions, and the higher is the number of
zeros introduced in the matrices, the higher can be the gap between two different
matrices with the same concentration (and completeness).

The general trend is an increase in variability as the simulation moves up from a
situation with 20% of zeros added in the interbank matrices to 80% more. This trend
is confirmed in all four considered countries, but different countries result in deeply
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different results in the magnitude of variability (see, for example, the comparison
between Ireland and Italy).

On one side, Italy has almost no variability in results (even considering the
most concentrated interbank matrices), while Ireland’s estimates are rather unsta-
ble: interquartile ranges reveal high variability even with low levels of concentration
(+20% of zeros). It can also be noticed that higher interbank values (Ireland) result
in higher variability, while a higher number of banks (Italy) possibly induces more
stability.

These differences are evidently related with contagion dimension. In fact, com-
paring NO CONTAGION estimates so the values obtained before applying the con-
tagion mechanism, with BASE SCENARIO, obtained applying contagion on the
base of the maximum entropy hypothesis, we can have a proxy of the contagion di-
mension. Ireland is more affected by contagion (in terms of average losses) than the
other countries.

When considering contagion we have a mean value of losses ten times higher
than the same value obtained without contagion (16,998,231 vs. 1,707,946). Italy
is in the opposite situation, results are almost not affected by contagion (167,925
average losses without contagion vs. 171,048 in the base scenario).

Table 2 reports the number of primary defaults before contagion in each of the
considered country.

Table 2 Number of primary defaults (before contagion)

BE IE IT PT

1 8,663 8,931 6,696 8,855
2 959 806 1,493 840
3 252 183 696 197
4 73 51 330 69
5 29 16 185 21
>5 24 13 600 18
Total 10,000 10,000 10,000 10,000

Table 3 Average losses distribution by scenario – Belgium (th euro)

BE Mean 1st–3rd Quartile range 10th–90th Quantile range

No contagion 1,536,509
Base 2,696,176
+20% zeros 2,693,177 0.1% 1.2%
+35% zeros 2,693,778 0.6% 1.8%
+50% zeros 2,699,382 1.5% 5.8%
+65% zeros 2,710,214 3.5% 11.2%
+80% zeros 2,761,571 12.1% 23.4%
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Table 4 Average losses distribution by scenario – Ireland (th euro)

IE Mean 1st–3rd Quartile range 10th–90th Quantile range

No contagion 1,707,946
Base 16,998,231
+20% zeros 17,049,103 2.6% 11.7%
+35% zeros 16,968,441 10.1% 32.9%
+50% zeros 17,206,620 26.2% 53.1%
+65% zeros 17,321,954 41.6% 78.3%
+80% zeros 19,941,129 71.2% 116.5%

Table 5 Average losses distribution by scenario – Italy (th euro)

IT Mean 1st–3rd Quartile range 10th–90th Quantile range

No contagion 167,925
Base 171,048
+20% zeros 171,046 0.0% 0.0%
+35% zeros 171,045 0.0% 0.1%
+50% zeros 171,052 0.0% 0.1%
+65% zeros 171,047 0.1% 0.2%
+80% zeros 171,042 0.2% 0.5%

Table 6 Average losses distribution by scenario Ñ Portugal (th euro)

PT Mean 1st–3rd Quartile range 10th–90th Quantile range

No contagion 549,885
Base 881,506
+20% zeros 881,520 1.9% 6.2%
+35% zeros 878,946 4.0% 12.9%
+50% zeros 884,939 6.2% 13.0%
+65% zeros 887,535 11.1% 20.9%
+80% zeros 898,572 17.2% 29.1%

Column 2 in Tables 3–6 show the average magnitude of systemic excess losses,
whereas columns 3 and 4 contain the reference ranges of variability in results for the
matrices with 20%, 35%, 50%, 65% or 80% more interbank elements set to zero.
Figures 1– 4 show, for each country, the distribution of losses in the 10,000 simulated
scenarios.
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Fig. 1 Average losses distribution by scenario – Belgium
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Fig. 2 Average losses distribution by scenario – Ireland

6 Conclusions

This paper compares the effects on contagion obtained assuming that interbank mar-
ket patterns are maximally diffused with those coming up from more concentrated
interbank matrices. To realise this, an algorithm was developed that allows obtaining
interbank matrices with higher degrees of concentration in bilateral exposures, but
respecting totals constraints on rows and columns. A Monte Carlo method was then
applied to generate banking crises scenarios that were used to test contagion effects.
We implemented this mechanism for banking systems in Belgium, Ireland, Italy and
Portugal.
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Fig. 3 Average losses distribution by scenario – Italy

Portugal
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Fig. 4 Average losses distribution by scenario – Portugal

Results show that the expected value of losses is rather stable even in case of
maximum concentration (with 80% more zeros in the matrix with respect to the
maximum entropy one). Conversely, when considering the variability in estimates,
the higher the concentration the higher the variability in results and in confidence
intervals.

More specifically, variability seems to be deeply affected by the specific features
of the banking system: high levels of capitalisation, low interbank exposure and
large samples seem to produce more stable results, whereas low capitalisation, high
interbank exposure and a small number of banks in the system seems to lead to higher
variability in results.

Summing up, results suggest that structural values (capitalisation, interbank vol-
umes, concentration and dimension) are possibly more important in determining the
point estimation of contagion risk than variations in the interbank matrix concentra-
tion.
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The results presented in this paper represents a preliminary part of a sensitivity
analysis aiming to assess the role on contagion of some important variables, such
as interbank exposures levels, capitalisation levels, correlation among banks results,
concentration, granularity, etc.

Different methods for estimating the interbank matrix will be developed, also
considering cross borders relations, central bank role and banking groups’ structure.
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