
Chapter 5
Kynch Theory of Sedimentation

Abstract This chapter studies sedimentation of suspensions treated as continuous
media. Sedimentation processes are studied from two perspectives; a discrete
approach and a continuum approach, in which dynamic processes are established.
This chapter uses the continuum approach and presents the concept of an ideal
suspension and an ideal thickener. Suspensions described by solid concentration,
solid component velocity and fluid component velocity constitute the sedimenta-
tion process provided they obey the mass conservation equations. Sedimentation
can be performed in batches or continuously. Batch sedimentation is studied first
and the Modes of batch sedimentation are established. These observations are
extended to continuous processes. Finally the capacity of an ideal continuous
thickener is derived. Kynch sedimentation theory, besides correctly describing the
behavior of incompressible suspensions, forms part of the more general theory of
compressible materials. The exercise of constructing solutions to Kynch sedi-
mentation processes allows for a better understanding of the sedimentation of
compressible pulps. Anyone wanting to understand the phenomenological theory
of sedimentation must first master Kynch sedimentation processes.

To have the ability to predict the different modes particle will settle from a sus-
pension under the effect of gravity, sedimentation processes must be studied from
a fundamental point of view. We have seen in previous chapters that particulate
systems can be viewed from two different approaches. Chapter 4 analyzes sedi-
mentation with a discrete approach, in which the laws of mechanics are applied to
individual particles in the system. Discrete sedimentation has been successful to
establish constitutive equations for the sedimentation properties of a certain par-
ticulate material in a given fluid. Nevertheless, to analyze a sedimentation process
and to obtain behavioral pattern permitting the prediction of capacities and
equipment design procedures, the continuum approach must be used. The theory
we present in this chapter uses this approach and is based on the works of Kynch
(1952) and those of Concha and Bustos (1991) and Bustos et al. (1999).
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5.1 Concepts of an Ideal Suspension and an Ideal
Thickener

Consider a mixture of solid particles in a fluid contained in a vessel, and assume
that the suspension satisfies all the requirements to be considered a super-imposed
continuous media. The assumptions are:

1. All solid particles are of the same size, form and density and are small with
respect to the vessel in which they are contained.

2. The solid and the fluid are incompressible.
3. There is no mass transport between solid and the fluid.
4. The solid–fluid relative velocity in the mixture is a function of the solid con-

centration only.
5. The solid concentration is the same in all cross-sections of the vessel.

Assumption 1, together with assumption 3, allows establishing a unique settling
velocity to all particles; Assumption 2 establishes constant material densities for
the suspension components; Assumption 4, key to Kynch’s theory, is a constitutive
assumption for the settling velocity that makes unnecessary the use of the
momentum balances.

Mixtures fulfilling assumptions 1–4, receive the name of ideal suspension
(Shannon and Tory 1966; Bustos and Concha 1988; Concha and Bustos 1992) and
may be considered a superposition of two continuous medium. The ideal sus-
pension is a model of great utility. It has, in mechanics, a similar connotation that
the ideal gas has in thermodynamics. The ideal suspension does not exist really,
but many materials behave as ideal suspensions in certain special cases. The
Theory of Mixtures predicts the behavior of an ideal suspension that describes,
with good approximation, the settling of a suspension of small glass beads
(Shannon and Tory 1966; Davies et al. 1991), the sedimentation of un-flocculated
copper concentrates and diluted un-flocculated flotation tailings of many metallic
and non-metallic ores (Concha 2001).

In general, the solid concentration of a suspension is function of the three
dimensions of space, but assumption 4 allows describing the suspension with one
space dimension only, that is, the concentration depends on one space dimension
and on time. This assumption defines the concept of and ideal thickener as a vessel
with no wall effect (Shannon and Tory 1966; Bustos et al. 1990a; Concha and
Bustos 1992), where the feed, the underflow and the overflow are represented as
surface sources or surface sinks.

All models related to sedimentation use the concept of ideal thickener, irre-
spectively if they use ideal or real suspensions. The reason for this is that the
modeling of thickeners feed and discharge mechanism, including the rakes, are to
complicated and, that in spite of that, measurements (Becker 1982) have shown
that concentration distribution in an industrial thickener is approximately one-
dimensional. See Fig. 5.1.
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5.2 Field Equations

Sedimentation of an ideal suspension may be described by the following field
variables: (1) the solid concentration, as volume fraction of solids, uðz; tÞ, (2) the
solid component velocity vsðuÞ and (3) the fluid component velocity vf ðuÞ. These
field variables must obey the mass conservation equations (3.34) and (3.35) :

ou
ot
þr � uvsð Þ ¼ 0 ð5:1Þ

r � q ¼ 0; with q ¼ uvs þ 1� uð Þvf ð5:2Þ

where qðu; tÞ is the volume average velocity.
Solutions to these conservation equations are generally discontinuous. This

means that discontinuities may appear in the suspension and that Eqs. (5.1) and
(5.2) are valid only in those regions where the variables are continuous. At dis-
continuities they must be replaced by the mass jump conditions [Eq. (3.38)]:

r u½ � ¼ uvs � eI½ � and q½ � ¼ 0 ð5:3Þ

where r is the rate of propagation of the discontinuity in the direction normal to
the discontinuity surface and �½ � is the difference of value of the variable at each
side of the discontinuity.

If the sedimentation vessel is an ideal thickener, all equations reduce to one
space dimension, then:

Fig. 5.1 Concentration distribution in an industrial thickener treating copper tailings (Becker
1982)
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ou
ot
þ o uvsð Þ

oz
¼ 0

oq

oz
¼ 0 with q ¼ uvs þ ð1� uÞvf ¼ vs � ð1� uÞu

r ¼ uvs½ �
u½ �

where u ¼ vs � vf is the relative solid fluid velocity.
Define the new variable solid flux density by the product of the velocity vs and

concentration u, that is, f ðuÞ ¼ uvsðuÞ. In terms of the solid flux density the field
equations, for regions where the variables are continuous are:

ou
ot
þ of ðuÞ

oz
¼ 0;

oq

oz
¼ 0 ð5:4Þ

and at discontinuities:

r ¼ f ðuÞ½ �
u½ � q½ � ¼ 0 ð5:5Þ

where f ¼ quþ uð1� uÞu:
Since discontinuities imply non-uniqueness in the solution, a certain criterion

should be used to select the admissible solutions. One of these criteria is Lax
entropy condition (Bustos and Concha 1988):

fbk uþð Þ� r uþ;u�ð Þ� fbk u�ð Þ; with u� �u�uþ ð5:6Þ

5.2.1 Batch and Continuous Sedimentation

Sedimentation can be performed in a batch or continuous manner. Batch sedi-
mentation is usually used in the laboratory. The suspension is introduced in a
graduate cylinder with closed bottom, see Fig. 5.2a. The suspension is allowed to
settle under the effect of gravity and the water-suspension interface is recorded as a
function of time. The ideal thickener, for the batch case, is called settling column
and is depicted in Fig. 5.2b.

If a pulp of solid volume fraction u0 is introduced in a column of volume
V ¼ A� L, where A is the column cross-section and L the suspension height, the
total solid mass M and solid volume per unit area W in the column are:

M ¼ qsALu0 and W ¼ V=Að Þu0 ¼ Lu0 ð5:7Þ
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Continuous sedimentation is performed in a cylindrical vessel called continuous
thickener, with a feedwell at the top and rakes at the bottom of the tank. Figure 5.3
represents a schematic view of the original Dorr thickener.

A volume feed rate QFðtÞ with concentration uFðtÞ enters through the feedwell
and an underflow rate QDðtÞ with concentration uDðtÞ leaves the thickener at the
bottom and center of the tank. At the top and periphery of the tank clear water
leaves through the overflow launder at volume flowrate of QOðtÞ.

The solid volume flux in and out of the thickener are given by
F ¼ QFuF and D ¼ QDuD. The ratio of the solid volume flux to the thickener
cross section S is the solid volume flux density, or just solid flux density, so that the
solid feed and underflow flux densities are:

fF ¼
QFuF

S
and fD ¼

QDuD

S
ð5:8Þ

Fig. 5.2 Vessels for batch
sedimentation. a Laboratory
glass graduate cylinder.
b Settling column
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The volume average velocity q of the pulp is:

q ¼ QD=S ð5:9Þ

A macroscopic balance in the thickener at steady state gives:

Solid mass: F ¼ D ð5:10Þ

Pulp volume: QF ¼ QD þ QO ð5:11Þ

Solid volume: QFuF ¼ QDuD ð5:12Þ

Solid flux density: fF ¼ quD ð5:13Þ

5.3 Batch Kynch Sedimentation Process

When an ideal suspension settles under the effect of gravity in a settling column,
the following steps can be distinguished:

(a) Before settling begins, the suspension is homogenized by agitation obtaining a
suspension of constant concentration.

Fig. 5.3 Dorr thickener (1905) vessels for continuous sedimentation
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(b) When sedimentation starts, all particles settle at the same velocity forming a
water-suspension interface that moves at the velocity of the solid particles.
This step is called hindered settling because the presence of other particles
hinders the settling of an individual particle. See Fig. 5.4. There are special
cases, noted by Bürger and Tory (2000), where during a short time not all
particles settle at the same velocity.

(c) Particles that reach the bottom of the column very rapidly cover the whole
column cross sectional area. This material, with concentration u1, is called
sediment. The particles in the sediment start piling up moving the interface
between the sediment and the suspension at a constant characteristic upward
velocity. See Fig. 5.4.

(d) At a given time t ¼ tc, called critical time, the interface water-suspension
meets with the interface sediment-suspension at a critical height z ¼ zc. These
coordinate zc; tcð Þ define the critical point were sedimentation ends.

Based on the description of batch sedimentation, we can add the following
assumptions to the 5 general assumptions given at the beginning:

1. There is no inflow or outflow of suspension from the settling column, therefore
the volume average velocity q = 0.

2. The suspension has an initial constant concentration u0.

Fig. 5.4 Settling curve showing the water-suspension and the sediment-suspension interfaces for
the settling of a suspension with initial concentration u0 ¼ 0:10 and sediment concentration
u1 ¼ 0:23
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3. The final sediment concentration is u1.

Under these addition assumptions, Eqs. (5.4) and (5.5) may be written, for
regions where the variables are continuous, in the form:

ou
ot
þ ofbkðuÞ

oz
¼ 0 ð5:14Þ

fbkðuÞ ¼ uð1� uÞu ð5:15Þ

where fbk is called Kynch batch flux density function and is a constitutive equation
to be determined experimentally.

At discontinuities Eq. (5.14) is not satisfied and is replaced by the Rankin-
Hugoniot condition (Bustos and Concha 1988; Concha and Bustos 1991):

r ¼ fbkðuÞ½ �
u½ � ; 0� z� L ð5:16Þ

However, discontinuous solutions, satisfying (5.14) at points of continuity and
(5.16) at discontinuities, are in general not unique, therefore an additional crite-
rion, or entropy principle, is necessary to select the physically relevant discon-
tinuous solution. This solution is called entropy weak solution.

One of these entropy criteria is the Oleinik jump entropy condition, requiring
that:

fbk uð Þ � fbk u�ð Þ
uþ � u�

� r uþ;u�ð Þ� fbk uð Þ � fbk uþð Þ
u� � uþ

; for all u� �u�uþ

ð5:17Þ

An interpretation of this entropy condition indicates that (5.17) is satisfied if,
and only if, in a fbkðuÞ versus u plot, the chord joining the point uþ; fbkðuþÞð Þ and
u�; fbkðu�Þð Þ remains above the curve fbkðuÞ for uþ\u� and below the curve

fbkðuÞ for uþ[ u�. See Fig. 5.5.
Discontinuities satisfying (5.16) and (5.17) are called shocks. If, in addition,

f 0bkðu�Þ ¼ rðuþ;u�Þ or f 0bkðuþÞ ¼ rðuþ;u�Þ ð5:18Þ

are satisfied, the discontinuity is called contact discontinuity.
Initial and boundary conditions for the conservation law expressed by Eqs.

(5.14) to (5.17) are:

u z; 0ð Þ ¼u0 for 0� z� L

u L; tð Þ ¼uL for t [ 0
ð5:19Þ

u 0; tð Þ ¼ u1 for t [ 0 ð5:20Þ

where concentrations uL; u0 y u1 are all constant. Kynch batch flux-density
functions should obey the following conditions:
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fbkðuÞ\0 for 0�u�u1; fbkð0Þ ¼ fbkðu1Þ ¼ 0

f 0bkð0Þ\0 and f 0bkðu1Þ[ 0
ð5:21Þ

Equations (5.14)–(5.21) form an initial-boundary value problem called Batch
Kynch Sedimentation Process (BKSP) (Bustos and Concha 1988).

5.3.1 Solution to the Batch Kynch Sedimentation Process

Equation (5.14) may be written in the form:

ou
ot
þ f 0bk uð Þ ou

oz
¼ 0; with f 0bk uð Þ ¼ dfbk=du ð5:22Þ

Since fbkð0Þ ¼ fbkðu1Þ ¼ 0, initial and boundary conditions (5.19) and (5.20)
may be written as initial conditions only:

u z; 0ð Þ ¼
0 for L\z
u0 for 0� z� L
u1 for z\0

8
<

:
ð5:23Þ

Summarizing, we can state that sedimentation of ideal suspensions may be
represented by the volume fraction of solids uðz; tÞ and the Kynch batch flux
density function fbkðuÞ. These two functions constitute a BKSP if, in the region of
space 0� z� L and time t [ 0, they obey Eq. (5.22) where variables are continuos
and Eqs. (5.16) and (5.17) at discontinuities. Additionally they must satisfy the
initial conditions (5.23).

Fig. 5.5 Geometrical
interpretation of Oleinik’s
criterion
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(a) Solution by the method of characteristics

Written in this form, a BKSP can be treated as an initial value problem and may
be solved by the method of characteristics for constant initial values. According to
Courant and Hilbert (1963), straight lines, called characteristics can be drawn in
the z; tð Þ plane, where Eq. (5.22) is valid. These lines obey the following
conditions:

dzðu; tÞ
dt

¼ f 0bk u zðtÞ; tð Þð Þ; for t [ 0; zð0Þ ¼ 0 ð5:24Þ

Here dzðu; tÞ=dt represents the propagation velocity of concentration waves of
constant value u in the (z,t) domain. Since u is constant along these lines, f 0bkðuÞ is
also constant and the characteristics are straight lines.

As an example, take the case with initial concentration u0\u		1, where u		1 is
the point where a tangent drawn from point u1; fbkðu1Þð Þ cuts Kynch flux density
curve. See Fig. 5.6. Since the initial values for z\0, 0� z� L and z [ L are
constant, characteristic starting from the ordinate axis are parallel straight lines
with slope given by f 0bkð0Þ; f 0bkðu0Þ and f 0bkðu1Þ respectively. On the other hand,
we can see that f 0bkð0Þ; f 0bkðu0Þ and f 0bkðu1Þ are lines tangent to Kynch flux
density curve at u ¼ 0; u ¼ u0 and u ¼ u1. Where these lines intersect, the
solution is no longer unique and discontinuities, with slope r 0;u0ð Þ and r 0;u1ð Þ,
are formed in the form of cords drawn from 0; fbkð0Þð Þ to u0; fbkðu0Þð Þ and
u0; fbkðu0Þð Þ to u1; fbkðu1Þð Þ respectively. See Fig. 5.6.

Fig. 5.6 Solution of a BKSP by the method of characteristics. a Kynch flux density function.
b Settling plot
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Modes of Sedimentation

In his work Kynch (1952) mentioned modes of sedimentation as manners in which
a suspension may settle, but without giving a specific meaning to them. Precise
description of this concept was given by Bustos and Concha (1988) and Concha
and Bustos (1991) who defined Modes of Batch Sedimentation (MBS) as the
different possible BKSP, that is, as the possible entropy weak solutions to the batch
sedimentation problem that can be constructed for a given initial data and Kynch
flux density function. There are 7 MBS for Kynch flux density functions with at
most two inflection points (Bustos et al. 1999).

The type of MBS depends on how the zones of constant concentration
u0 and u1 are separated after sedimentation is complete. Figures 5.7 and 5.8
show the 7 Modes of Batch Sedimentation, including the flux density function,
settling plot and concentration profile.

Fig. 5.7 Modes of batch sedimentation processes, MBS-1–MBS-3, for batch Kynch flux density
function with one and two inflection points. In these figures the shocks are described by di and the
contact discontinuity by C
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• MBS-1 A shock. The supernatant-suspension and the suspension sediment are
both shocks meeting at the critical time tc. See Fig. 5.7a.

• MBS-2 The rising shock is replaced, from bottom to top, by a contact discon-
tinuity followed by a rarefaction wave. This MBS can occur only with a Kynch
Batch flux density function with one inflection point. See Fig. 5.7b.

Fig. 5.8 Modes of batch sedimentation processes, MBS-4–MBS-7, for batch Kynch flux density
function with two inflection points. In these figures the shocks are described by di and the contact
discontinuity by C
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• MBS-3 A rarefaction wave. In this case no cord can be drawn from u0; f 0bkðu0Þ
� �

to u	0; f 0bkðu	0Þ
� �

and the contact discontinuity becomes a line of continuity. This
MBS can occur only with a Kynch Batch flux density function with one inflection
point. See Fig. 5.7c.

• MBS-4 Two contact discontinuities separated by a rarefaction wave. See
Fig. 5.8a.

• MBS-5 One rarefaction wave followed by a contact discontinuity. See Fig. 5.8b.
• MBS-6 One rarefaction wave followed by a convex shock. This mode occurs if

the inflection points a and b are on the left of the minimum in Kynch flux
density curve and the tangency point ut; fbkðutÞð Þ of a line drawn from
0; fbkð0Þð Þ to the Kynch flux density curve is in the range a\ut\b, and the

initial concentration is in the interval ut\u0\b. See Fig. 5.8c.
• MBS-7 One shock followed by a contact discontinuity and a curved shock. This

mode occurs if the inflection points a and b are on the left of the minimum in
Kynch flux density curve and the tangency point ut; fbkðutÞð Þ of a line drawn
from 0; fbkð0Þð Þ to the Kynch flux density curve is in the range a\ut\b, and
the initial concentration is u0 [ b. See Fig. 5.8d.

In all cases independently of the type of MSB, the final state is a sediment of
concentration u1. The height of the sediment is given by a mass balance as:

z1 ¼ Lu0=u1 ð5:25Þ

5.4 Continuous Kynch Sedimentation Process

Figure 5.9 shows a continuous thickener showing the feedwell and rakes.
It has been established that four zones exists in a continuous thickener.

Zone I. Zone I correspond to clear water, which is located in the region above
and outside the feed well

Zone II. Below the clear water zone a region of constant concentration forms.
This zone is called hindered settling zone and has a concentration called
conjugate concentration.

Zone III. Under the hindered settling zone, a transition zone takes the conjugate
concentration to the sediment concentration. This can happen through a
shock wave, a rarefaction wave or a combination of them.

Zone IV. Finally, we have the sediment zone, a zone of constant and final con-
centration (Fig. 5.10).
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5.4.1 Solution to the Continuous Kynch Sedimentation
Process

Based on the description of continuous sedimentation, we can add the following
assumptions to the 5 general assumptions given at the beginning:

1. The outflow velocity of suspension from the ideal thickener is qðtÞ ¼ QDðtÞ=S.
2. The suspension has an initialconcentration distribution uI zð Þ.
3. Solids never enter zone I, that is, the domain of the solution is 0� z� L, where

L is the base of the feedwell.

Under these additional assumptions, Eqs. (5.4) and (5.5) may be written, for
regions where the variables are continuous, in the form:

ou
ot
þ f 0kðuÞ

ou
oz
¼ 0 where f 0kðuÞ ¼ df 0k=dz ð5:26Þ

oq

oz
¼ 0; with fk ¼ quþ fbkðuÞ ð5:27Þ

OQ

FQ

DQ

Zone I

Zone II

Zone III

Zone IV

Fig. 5.10 Ideal Continuous
Thickener (ICT)

Fig. 5.9 Continuous thickener
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and (5.5) for discontinuities:

r ¼ fkðuÞ½ �
u½ � q½ � ¼ 0 ð5:28Þ

The jump condition must satisfy Oleinik jump entropy condition:

fk uð Þ � fk u�ð Þ
uþ � u�

� r uþ;u�ð Þ� fk uð Þ � fk uþð Þ
u� � uþ

; for all u� �u�uþ ð5:29Þ

Summarizing, we can state that the continuous sedimentation of ideal suspen-
sions in an ideal thickener may be represented by the volume fraction of solids
uðz; tÞ, the volume average velocity qðz; tÞ and the continuous Kynch flux density
function fkðuÞ. These functions constitute a Continuous Kynch Sedimentation
Process (CKSP) if, in the region of space 0� z� L and time t [ 0 where the
variables are continuous, the obey Eqs. (5.26) and (5.27), and at discontinuities
they obey Eqs. (5.28) and (5.29).

Solution by the Method of Characteristics

In the majority of cases, Kynch batch flux density functions are functions with
one infection point only at ua. If u1 is the concentration at the end of the
sedimentation process, the Kynch flux density function must obey the following
properties. See Fig. 5.11.

fk u; tð Þ ¼ q tð Þuþ fbk uð Þ� 0; 0�u�u1
fk 0; tð Þ ¼ 0

ð5:30Þ

f 0k u; tð Þ\0; 0�u�ua ð5:31Þ

f 0k u; tð Þ[ 0; ua�u�u1 ð5:32Þ

f 00k u; tð Þ\0; ua�u�u1 ð5:33Þ

Equation (5.27) shows that q ¼ qðtÞ is independent of the z coordinate. In the
rest of this work we will assume that q is a constant independent of time (steady
state).

Solutions to the CKSP are straight lines, called characteristics, drawn in the
z; tð Þ plane, where Eq. (5.26) is valid. These lines obey the following conditions:

dzðu; tÞ
dt

¼ f 0k u zðtÞ; tð Þð Þ; for t [ 0 ð5:34Þ

Here dzðu; tÞ=dt ¼ f 0k uð Þ represents the propagation velocity of concentration
waves of constant value u.
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Modes of continuous sedimentation

Mode of Continuous Sedimentation (MCS) are the different possible CKSP, that is,
the possible entropy weak solutions to the continuous sedimentation problem that
can be constructed for a given initial data and Kynch flux density function (Bustos
et al. 1999). Since these MSC depend entirely on the Kynch flux density function
and on the initial conditions, it is necessary to choose these material properties and
conditions.

We will consider the following initial conditions:

uI zð Þ ¼ uL for A� z�L
u1 for 0� z \A

�

ð5:35Þ

From Eq. (5.27), the value of uL is obtained by solving the implicit equation:

fF ¼ quL þ fb uL tð Þð Þ ð5:36Þ

where fF is the feed solid flux density function. In case Eq. (5.36) admits more than
one solution uL, the relevant one is selected by the physical argument that the feed
suspension is always diluted on entering the thickener, as shown by Comings et al.
(1954).
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Fig. 5.11 Continuous Kynch flux density function for two values of the volume average velocity
q1 = 5 9 10-5; q2 = 6 9 10-6 and the Batch Kynch flux density function with one inflection
point, fbk = 6.05 9 10-4 9 u(1 - u)12.59
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For a Kynch flux density function with one inflection point, the important
parameters are shown in Figs. 5.12 and 5.13 for two values of the volume average
velocity q.
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Fig. 5.12 Continuous Kynch flux density functions with one inflection point; f 0kðu1Þ[ 0
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Fig. 5.13 Continuous Kynch flux density functions with one inflection point; f 0kðu1Þ\0
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The type of MCS depends on how the zones of constant concentration
u0 and u1 are separated after sedimentation is complete. Three MCS exist for a
flux density function with one infection point (Concha and Bustos 1992).

• MCS-1 A shock separating two zones of continuous sedimentation
uL and u1. See Fig. 5.14a.

• MCS-2 A contact discontinuity separating two zones of continuous sedimen-
tation uL and u1. See Fig. 5.14b.

• MCS-3 A rarefaction wave separating two zones of continuous sedimentation
uL and u1. See Fig. 5.14c.

The fact that the exact location and propagation speed of the sediment-sus-
pension interface level is always known, permits to formulate a simple control

Fig. 5.14 Modes of continuous sedimentation processes. a MCS-1. b MCS-2. c MCS-3
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model for the transient continuous sedimentation. It can be shown (Bustos et al.
1990b) that the steady state corresponding to an MCS-1 can always be recovered
after a perturbation of the feed flux density by solving two initial-boundary value
problems at known times and with parameters q and uL that can be calculate a
priori. See Fig. 5.15.

5.4.2 Steady State of an Ideal Continuous Thickener

In MCS-1 and MCS-2 the thickener overflows, empty or attain a steady state,
while in MCS-3 no steady state can be attained:

(a) A MCS-1 can reach a steady state if f 0k 1ð Þ[ 0 and uL ¼ us, where us is
defined in Fig. 5.12. See Fig. 5.16.

(b) A MCS-2 can reach a steady state if f 0k u1ð Þ\0 and uL ¼ u		M , so that
r uL;u

	
L

� �
¼ f 0k uMð Þ ¼ 0 and a contact horizontal discontinuity forms. uM

corresponds to the concentrations of the maximum point in the flux density
curve and u		M to its conjugate concentration. See Fig. 5.17.

Fig. 5.15 Control of continuous sedimentation after Bustos et al. (1990b)

Fig. 5.16 Global weak solution for a MSC-1 leading to a steady state
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Capacity of an Ideal Continuos Thickener

At steady state, from Eq. (5.26):

dfk uð Þ
dz

¼ 0; for 0� z� L ð5:37Þ

with boundary conditions z ¼ 0; fkðuð0ÞÞ ¼ quD; z ¼ L; fkðuðLÞÞ ¼ fF , where fF

is the feed flux density function. Then,

fk uðLÞð Þ ¼ quL þ fbk uLð Þ ¼ fF ð5:38Þ

fkðuð0ÞÞ ¼ fkðuð0ÞÞ ¼ quD ¼ fF ð5:39Þ

Substituting (5.39) into (5.40) yields:

fF ¼
fF

uD
uL þ fbk uLð Þ

fF
1
uL
� 1

uD

� �

¼ fbk uLð Þ
uL

1
fF
¼ uL

fbk uLð Þ
1
uL
� 1

uD

� �

ð5:40Þ

Since the mass flow to the thickener is F ¼ qsQFuF and the solid flux density is
defined by fF ¼ �QFuF=S, we can write:

fF ¼ �
F

qsS
ð5:41Þ

Fig. 5.17 Global weak solution for a MSC-2 leading to a steady state
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Defining the Unit Area UA ¼ S=F, where S is the thickener cross sectional
area:

UA ¼ � 1
qs fF

ð5:42Þ

Replacing this expression into Eq. (5.40) yields an equation for the Unit Area.

UA ¼ uL

qsfbk uLð Þ
1

uD
� 1

uL

� �

UA ¼ 1
qsfbk uLð Þ

uL

uD
� 1

� � ð5:43Þ

We have seen that for a MCS-1 at steady state, uL ¼ us and uD ¼ u1, then
from (5.43):

UA ¼ 1
qsfbk usð Þ

us

u1
� 1

� �

ð5:44Þ

and for a MCS-2, uL ¼ u		M and uD ¼ uM , then from (5.43):

UA ¼ 1
qsfbk u		Mð Þ

u		M
uM
� 1

� �

ð5:45Þ

Kynch sedimentation theory, besides describing correctly the behavior of
incompressible suspensions, forms part of the more general theory of compressible
materials. The exercise of constructing global weak solutions to Kynch Sedi-
mentation Processes in graphical form, allows a better understanding of the sed-
imentation of compressible pulps. Every person willing to understand the
phenomenological theory of sedimentation must first master Kynch Sedimentation
Processes.
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