
Chapter 4
Sedimentation of Particulate Systems

Abstract This chapter deals with sedimentation of particulate systems considered
as discrete media. Sedimentation is the settling of a particle or suspension of
particles in a fluid due to the effect of an external force such as gravity, centrifugal
force or any other body force. Discrete sedimentation has been successful in
establishing constitutive equations for continuous sedimentation processes. The
foundation of the motion of particles in fluids is discussed in different flow
regimes, Euler’s flow, Stokes flow and flows with a boundary layer. Starting from
the sedimentation of a sphere in an unbounded fluid, a complete analysis is made
of the settling of individual spherical particles and suspensions. The results are
extended to isometric particles and to arbitrarily shaped particles. Sphericity as a
shape factor is used to describe the form of isometric particles. A hydrodynamic
sphericity must be defined for particles with arbitrary shapes by performing sed-
imentation or fluidization experiments, calculating the drag coefficient for the
particles using the volume equivalent diameter and obtaining a sphericity defined
for isometric particles that fits experimental values. A modified drag coefficient
and sedimentation velocities permits grouping all sedimentation results in one
single equation for particles of any shape.

Sedimentation is the settling of a particle, or suspension of particles, in a fluid due
to the effect of an external force such as gravity, centrifugal force or any other
body force. For many years, workers in the field of Particle Technology have been
looking for a simple equation relating the settling velocity of particles to their size,
shape and concentration. Such a simple objective has required a formidable effort
and it has been solved, only in part, through the work of Newton (1687) and Stokes
(1844) on flow around a particle, and the more recent research of Lapple (1940),
Heywood (1962), Batchelor (1967), Zenz (1966), Barnea and Mitzrahi (1973) and
many others, to those Turton and Levenspiel (1986) and Haider and Levenspiel
(1998). Concha and collaborators established in 1979 an heuristic theory of sed-
imentation, that is, a theory based on the fundamental principles of mechanics, but
to a greater or lesser degree to intuition and empirism. These works, (Concha and
Almendra 1979a, b; Concha and Barrientos 1982, 1986; Concha and Christiansen
1986), first solve the settling of one particle in a fluid, then, they introduce
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corrections for the interaction between particles, through which the settling
velocity of a suspension is drastically reduced. Finally, the settling of isometric
and non-spherical particles was treated. This approach, which uses principles of
particle mechanics, receives the name of the discrete approach to sedimentation,
or discrete sedimentation.

Discrete sedimentation has been successful in establishing constitutive equa-
tions in processes using sedimentation in order to analyze the sedimentation
properties of a certain particulate material in a given fluid. Nevertheless, to analyze
a sedimentation process and to obtain behavioral pattern permitting the prediction
of capacities and equipment design procedures, another approach is required, the
so-called continuum approach. In the present chapter the discrete approach will be
analyzed, leaving the continuum approach for later chapters.

4.1 Discrete Sedimentation

The physics underlying sedimentation, that is, the settling of a particle in a fluid has
long been known. Stokes showed the equation describing the sedimentation of a
sphere in 1851 and that can be considered as the starting point of all discussions of
the sedimentation process. Stokes showed that the settling velocity of a sphere in a
fluid is directly proportional to the square of the particle radius, to the gravitational
force and to the density difference between solid and fluid, and inversely propor-
tional to fluid viscosity. This equation is based on a force balance around the sphere.
Nevertheless, the proposed equation is valid only for slow motions, so that in other
cases expressions that are more elaborate should be used. The problem is related to
the hydrodynamic force between the particle and the fluid.

Consider the incompressible flow of a fluid around a solid sphere. The equa-
tions describing the phenomena are the continuity equation and Navier–Stokes
equation:

r � v ¼ 0

q
ov

ot
þ rv � v

Convective force

� �
¼ �rpþ lr2v

Diffusive force

þqg
ð4:1Þ

where v and p are the fluid velocity and pressure field, q and l are the fluid
density and viscosity and g is the gravity force vector.

Unfortunately, Navier–Stokes equation are non-linear and it is impossible to be
solved explicitly in a general form. Therefore, methods have been used to solve it
in special cases. It is known that the Reynolds number Re ¼ qf du

�
l, where

qf ; d and u are the fluid density and the particle diameter and velocity respectively,
is an important parameter that characterizes the flow. It is a dimensionless number
representing the ratio of convective to diffusive forces in Navier–Stokes equation.
In dimensionless form, Navier–Stokes equation becomes:
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1
St

ov�

ot�
þ r�v� � v� ¼ � 1

Ru
r�p� þ 1

Re
r�2v� � 1

Fr
ek ð4:2Þ

where the starred terms represent dimensionless variables defined by: v� ¼ v=u0;
p� ¼ p=p0; t� ¼ t=t0; r� ¼ Lr and u0; p0; t0 and L are characteristic velocity,
pressure and time and length in the problem, and St; Ru; Re and Fr are the
Struhal, Ruark, Reynolds and Froud numbers and ek is the vertical unit vector:

Strouhal St ¼ t0u0

L
ð4:3Þ

Ruark Ru ¼ qu2
0

p0
ð4:4Þ

Reynolds Re ¼ qu0L

l
ð4:5Þ

Froude Fr ¼ u2
0

Lg
ð4:6Þ

When the Reynolds number is small (Re ? 0), for example Re \ 10-3, con-
vective forces may be neglected in Navier–Stokes equation, obtaining the so called
Stokes Flow. In dimensional form Stokes Flow is represented by:

r � v ¼ 0

q
ov

ot
¼ �rpþ lr2vþ qg

ð4:7Þ

4.1.1 Hydrodynamic Force on a Sphere in Stokes Flow

Due to the linearity of the differential equation in Stokes Flow, the velocity, the
pressure and the hydrodynamic force in a steady flow are linear functions of the
relative solid–fluid velocity. For the hydrodynamic force, the linear function,
depends on the size and shape of the particle (6pR for the sphere) and on fluid
viscosity (l). Solving the boundary value problem, and neglecting the Basset term
of added mass, yields (Happel and Brenner 1965) for a sphere:

FD ¼ �6plRu ð4:8Þ

It is common to write the hydrodynamic force in its dimensionless form known
as drag coefficient CD:

CD ¼
FD

1=2qf u2
� �

pR2ð Þ
ð4:9Þ
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where qf is the fluid density. Substituting (4.9) into (4.8), the drag coefficient on a
sphere in Stokes flow is:

CD ¼
24
Re

ð4:10Þ

4.1.2 Macroscopic Balance on a Sphere in Stokes Flow

Consider a small solid sphere submerged in a viscous fluid and suspended with a
string. If the sphere, with density greater than that of the fluid, is in equilibrium,
the balance of forces around it is zero. The forces acting on the particles are:
(1) gravity Fg, that pulls the sphere down, (2) buoyancy Fb, that is, the pressure
forces of the fluid acting on the particle that pushes the sphere upwards and (3) the
string resistance Fstring, that supports the particle from falling, see Fig. 4.1. The
force balance gives:

0 ¼ Fstring þ Fg|{z}
�qpVpg

þ Fb|{z}
þqf Vpg

ð4:11Þ

0 ¼ Fstring � qpVpgþ qf Vpg ð4:12Þ

Fstring ¼ qp � qf

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Dq

Vpg � DqVpg ð4:13Þ

If the string is cut, forces become unbalanced and, according to Newton’s
second Law, the particle will accelerate. The initial acceleration can be obtained
from the new force balance, where the string resistance is absent. Figure 4.2 shows
this new force balance before the motion begins.

The initial acceleration is:

qpVpaðt = 0) ¼ DqVpg

aðt = 0) ¼ Dq
qp

g
ð4:14Þ

Fgravity

Fstring

Fbuoyancy

Fig. 4.1 Equilibrium of a
sphere submerged in a
viscous fluid
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Once the particle is in motion, a new force, the drag, appears representing the
resistance opposed by the fluid to the particle motion. This force FD is proportional
to the relative solid–fluid velocity and to the relative particle acceleration. Since
the fluid is at rest, it corresponds to the sphere velocity and acceleration. Once the
motion starts, the drag force is added and the balance of forces becomes, Fig. 4.3:

qpVpaðtÞ ¼ DqVpg|fflfflffl{zfflfflffl}
Netweight

� 6plRuðtÞ � ð1=2ÞqpVpaðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dragforce

ð4:15Þ

3
2

qpVpaðtÞ ¼ DqgVp � 6plRuðtÞ ð4:16Þ

The term 1=2ð ÞqpVp that was added to the mass qpVp in the first term of
Eq. (4.16) is called added mass induced by the acceleration.

Due to the increase in the velocity u(t) with time, the sum of the first and last
term of Eq. (4.16) diminishes, becoming zero at a given time. At that time, the
velocity becomes a constant called terminal velocity u ¼ u1, which is a charac-
teristic of the solid–fluid system. From (4.16) with aðt) ¼ 0,

u1 ¼
2
9
DqR2g

l
¼ 1

18
Dqd2g

l
ð4:17Þ

This expression receives the name of Stokes Equation and is valid for small
Reynolds numbers.

Problem 4.1 Calculate the terminal sedimentation velocity of a quartz sphere
with a diameter of 10 l m and 2.65 g/cm3 in density in water at 20 �C.

Fgravity

Fbuoyancy

Fig. 4.2 State before the
motion initiates

Fgravity

Fbuoyancy

Fdrag

Fig. 4.3 State after the
motion starts
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The water viscosity at 20 �C is 0.01 g/cm s, then, applying Eq. (4.17) results in:

u1 ¼
1

18
2;650� 1;000ð Þ � 10=1;000;000ð Þ2�9:81

0:001
¼ 5:00� 10�6 m/s:

Sedimentation dynamics

Equation (4.16) is the differential equation for the settling velocity of a sphere in a
gravity field. It can be written in the form:

_uðt)þ 2
3

l
18qpd2

uðt)� 2Dq
3qp

g ¼ 0 ð4:18Þ

Its solution is: uðt) ¼ 1
18

Dqd2g

l
1� exp � 2

3
l

18qpd2
t

 ! !
ð4:19Þ

The term inside the exponential term multiplying the time t is called the Stokes
Number and the term outside the parenthesis is the terminal velocity, as we already
saw in (4.17).

Problem 4.2 Calculate the terminal settling velocity and the time to reach it for
quartz particles, 10, 50 and 100 lm in size and 2.65 g/cm3 in density, in water at
20 �C.

Applying Eqs. (4.19) and (4.17), the values of terminal velocities of 0.899,
0.225 and 0.00899 cm/s and times of 0.03140, 0.00740 and 0.00030 are obtained
for particles with diameters of d = 100, 50 and 10 lm respectively. Figure 4.4
shows the evolution of the particle velocities.

4.1.3 Hydrodynamic Force on a Sphere in Euler’s Flow

When the Reynolds number tends to infinity (Re ? ?), viscous forces disappear
and Navier–Stokes equation becomes Euler’s Equation for Inviscid Flow.

r � v ¼ 0

q
ov

ot
rv � v ¼ �rpþ qg

ð4:20Þ

In this case, the tangential component of the velocity at the particle surface is
also a linear function of the relative solid–fluid velocity, but the radial component
is equal to zero:
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uhðhÞ ¼
3
2

senh

� �
u and ur ¼ 0 ð4:21Þ

Now, the pressure is given by a non-linear function called the Bernoulli
equation (Batchelor 1967):

pðhÞ þ 1=2qf u
2
h ¼ pþ 1=2qf u

2 ¼ constant

pðhÞ � p ¼ 1
2
qf u

2 1� uh

u

� 	2
� � ð4:22Þ

Substituting (4.21) into (4.22), the dimensionless pressure, called pressure
coefficient, defined by Cp ¼ pðhÞ � pð Þ

�
ð1=2Þqf u

2, may be expressed in Euler’s
flow by:

Cp ¼ 1� 9
2

sen2h ð4:23Þ

Figure 4.5 shows Eq. (4.23) in graphic form, where p(h) and uh are respectively
the pressure and tangential velocity at an angle h on the surface of the sphere, and
p and u are the values of the same variables at the bulk of the flow.

For an inviscid stationary flow, the hydrodynamic force is zero. This result is
due to the fact that the friction drag is zero in the absence of viscosity and that the
form drag depends on the pressure distribution over the surface of the sphere and
this distribution is symmetric, leading to a zero net force.
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Fig. 4.4 Settling velocity versus time for Problem 4.2
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4.1.4 Hydrodynamic Force on a Sphere in Prandtl’s Flow

For intermediate values of the Reynolds Number, inertial and viscous forces in the
fluid are of the same order of magnitude. In this case, the flow may be divided into
two parts, an external inviscid flow far from the particle and an internal flow near
the particle, where viscosity plays an important role. This picture forms the basis
of the Boundary-Layer Theory (Meksyn 1961; Rosenhead 1963; Golstein 1965;
Schlichting 1968).

In the external inviscid flow, Euler’s equations are applicable and the velocity
and pressure distribution may be obtained from Eqs. (4.21) and (4.23). The region
of viscous flow near the particle is known as the boundary layer and it is there
where a steep velocity gradient permits the non-slip condition at the solid surface
to be satisfied. The energy dissipation produced by the viscous flow within the
boundary layer retards the flow and, at a certain point, aided by the adverse
pressure gradient, the flow reverses its direction. These phenomena force the fluid
particles outwards and away from the solid producing the phenomena called
boundary layer separation, which occurs at an angle of separation given by Lee
and Barrow (1968):

hs ¼ 214 Re�0:1 for 24\Re\10;000 ð4:24Þ

For Re = 24 the value of the angle of separation is hs = 155.7 diminishing to
hs = 85.2 for Re = 10,000. For Reynolds numbers exceeding 10,000, the angle of
separation diminishes slowly from hs = 85.2� to 84� and then maintains this value
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Fig. 4.5 Pressure coefficient in terms of the distance over the sphere in an inviscid flow
(Schlichting 1968, p. 21)
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up to Re & 150,000 (Tomotika 1936; Fage 1937; Amai 1938; Cabtree et al.
1963). Due to the separation of the boundary layer, the region of closed stream-
lines behind the sphere contains a standing ring-vortex, which first appears at
Reynolds number of Re � 24. See Fig. 4.6.

Taneda (1956) determined that beyond Re � 130 the ring-vortex began to
oscillate and that at higher Reynolds numbers the fluid in the region of closed
streamlines broke away and was carried downstream forming a wake. Figure 4.7
shows a similar case for the flow around a cylinder.

The thickness ‘‘d’’ of the boundary layer, defined as the distance from the solid
surface to the region where the tangential velocity vh reaches 99 % of the value of
the external inviscid flow, is proportional to Re-0.5 and, at the point of separation,
may be written in the form:

d
R
¼ d0

Re1=2
ð4:25Þ

McDonald (1954) gives a value of d0 ¼ 9:06.
The separation of the boundary layer prevents the recovery of the pressure at

the rear of the sphere, resulting in an asymmetrical pressure distribution with a
higher pressure at the front of the sphere. Figure 4.8 shows the pressure coefficient
of a sphere in terms of the distance from the front stagnation point over the surface
of the sphere in an inviscid flow and in boundary layer flow. The figure shows that
the pressure has an approximate constant value behind the separation point at
Reynolds numbers around Re & 150,000. This dimensionless pressure is called

Re

Fig. 4.6 Length of the region of closed streamlines behind a sphere (from Taneda 1956;
Batchelor 1967, p. 262)
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base pressure and has a value of p�b � �0:4 (Fage 1937; Lighthill 1963, p. 108;
Goldstein 1965, pp. 15 and 497; Schlichting 1968, p. 21).

The asymmetry of the pressure distribution explains the origin of the form-drag,
the magnitude of which is closely related to the position of the point of separation.
The farther the separation points from the front stagnation point, the smaller the
form-drag. For a sphere at high Reynolds numbers, from Re ¼ 10;000 up to
Re ¼ 150;000, the position of the separation point does not change very much,
except with the change of flow from laminar to turbulent. Therefore, the form-drag
will remain approximately constant. At the same time, the friction-drag, also
called skin friction, falls proportionally to Re�1=2. From these observations, we can
conclude that, for Reynolds numbers of about Re ¼ 1;000, the viscous interaction
force has diminished sufficiently for its contribution to the total interaction force to
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Fig. 4.8 Pressure coefficient
as a function of the distance
from the front stagnation
point over the surface of a
sphere in an inviscid and a
boundary layer flow

Fig. 4.7 Flow around a cylinder for several values of the Reynolds number
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be negligible. Therefore, between Re � 10;000 to Re � 150;000, the drag coeffi-
cient is approximately constant at CD � 0:44.

For Reynolds numbers greater than Re � 150;000, the flow changes in char-
acter and the boundary layer becomes turbulent. The increase in kinetic energy of
the external region permits the flow in the boundary layer to reach further to the
back of the sphere, shifting the separation point to values close to hs � 110� and
permitting also the base pressure to rise. The effect of these changes on the drag
coefficient is a sudden drop and after that, a sharp increase with the Reynolds
number. Figure 4.9 shows a plot of standard experimental values of the drag
coefficient versus the Reynolds number (Lapple and Shepherd 1940), where this
effect is shown.

4.1.5 Drag Coefficient for a Sphere in the Range
0 < Re < 150,000

Figure 4.9 shows the variation of the drag coefficient of a sphere for different
values of the Reynolds number, and confirms that for Re! 0, CD / Re�1=2 and
that for Re [ 1;000;CD ! 0:43. To obtain a general equation relating de drag
coefficient to the Reynolds number, we will use the concept of the boundary layer
and the knowledge that, for a given position at the surface of the sphere, the
pressure inside the boundary layer is equal to the pressure in the inviscid region
just outside the boundary layer before the separation point, and is a constant
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Fig. 4.9 Drag coefficient CD versus Reynolds number, according to standard data from Lapple
and Shepherd (1940). See also Perry (1963, p. 561)
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beyond it. We should also remember that the point of separation and the base
pressure are constant for Reynolds numbers greater than Re � 1;000.

Consider a solid sphere of radius R with an attached boundary layer of thickness
d submerged in a flow at high Reynolds number (Abraham 1970). Assume that the
system of sphere and boundary layer has a spherical shape with a radius equal to a,
which can be approximated by a ¼ Rþ d, as shown in Fig. 4.10 (Abraham 1970;
Concha and Almendra 1979a, b).

Outside the spherical shell of radius a, and up to the point of separation h ¼ hs,
the flow is inviscid and therefore the fluid velocity and the pressure distributions
are given by:

uh hð Þ ¼ 3
2

u sin h; for 0	 h	 hs ð4:26Þ

pðhÞ ¼ 1
2
qfu2 1� uh

u

� 	2
� �

; for 0	 h	 hs ð4:27Þ

Beyond the separation point, a region exists where the pressure is constant and
equal to the base pressure pb:

p hð Þ ¼ pb; for hs	 h	 p ð4:28Þ

Since the effect of viscosity is confined to the interior of the sphere of radius a,
the total drag exerted by the fluid on a, consists of a form drag only, Then:

FD ¼
I
Sa

p hð Þ cos h dS ð4:29Þ

The element of surface of the sphere of radius a is:

dS ¼ a2sen hdhd/ ð4:30Þ

Fig. 4.10 Physical model for
the flow in the boundary layer
around a sphere (Concha and
Almendra 1979a, b)
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where / is the azimuthally coordinate. Replacing (4.30) into (4.29) results in:

FD ¼
Z2p

0

Zp

0

p hð Þsen h cos hdhd/ ¼ 2pa2
Zp

0

p hð Þsen h cos hdh

Since the values of p hð Þ are different before and after the separation point, the
integrals are separated into two parts, from 0 to hs and from hs to p:

FD ¼ 2pa2
Zhs

0

p hð Þsen h d sen hð Þ þ
Zp

hs

p hð Þsen h d sen hð Þ

0
B@

1
CA

Substituting the values of p hð Þ from (4.27) and (4.28), and integrating the
previous equation we obtain:

FD ¼ pa2qf u
2 1

2
sen2 hs �

9
16

sen4 hs �
1
2

p�bsen2 hs

� �
ð4:31Þ

Substituting a ¼ Rþ d and defining the function f hs; p�b
� �

in the form:

f hs; p
�
b

� �
¼ 1

2
sen2 hs �

9
16

sen4 hs �
1
2

p�bsen2 hs ð4:32Þ

we can into (4.31) we can write:

FD ¼ qf u
2pR2 1þ d

R

� �2

f hs; p
�
b

� �
ð4:33Þ

In terms of the drag coefficient we have:

CD ¼ 2f hs; p
�
b

� �
1þ d

R

� �2

ð4:34Þ

and defining the new parameter C0 in the form:

C0 ¼ 2f hs; p
�
b

� �
ð4:35Þ

Using Eq. (4.32) we obtain:

CD ¼ C0 hs; p
�
b

� �
1þ d0

Re1=2

� �2

ð4:36Þ

Calculating the value of f hs; p�b
� �

for hs ¼ 84� and p�b � �0:4, we obtain
f 84;�0:4ð Þ ¼ 0:142 and from (4.35) C0 ¼ 0:284. Using the value of d0 ¼ 9:06,
we finally obtain:

CD ¼ 0:284 1þ 9:06
Re1=2

� �2

ð4:37Þ
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Expression (4.37) represents the drag coefficient for a sphere in boundary layer
flow (Concha and Almendra 1979a, b). A comparison with experimental data from
Lapple and Shepherd (1940) is shown in Fig. 4.11.

Several alternative empirical equations have been proposed for the drag coef-
ficient of spherical particles. See earlier articles reviewed by Concha and Al-
mendra (1979a, b), Zigrang and Sylvester (1981), Turton and Levenspiel (1986),
Turton and Clark (1987), Haider and Levenspiel (1998), and the more recent work
of Ganguly (1990), Thomson and Clark (1991), Ganser (1993), Flemmer et al.
(1993), Darby (1996), Nguyen et al. (1997), Chabra et al. (1999) and Tsakalakis
and Stamboltzis (2001).

It is worthwhile to mention the work of Brauer and Sucker (1976):

CD ¼ 0:49þ 24
Re
þ 3:73

Re1=2
� 4:83� 10�3Re1=2

1þ 3:0� 10�6Re3=2
ð4:38Þ

and that of Haider and Levenspiel (1998):

CD ¼
24
Re

1þ 0:1806Re0:6459
� �

þ 0:4251
1þ 6;880:95=Re

ð4:39Þ

who presented an alternative empirical equation for the drag coefficient of
spherical particles in the range of Reynolds numbers less than 260,000. Both Eqs.
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Fig. 4.11 Drag coefficient versus Reynolds number for a sphere. The continuous line is a
simulation of Eq. (4.37). Circles are standard data from Lapple and Shepherd (1940) see
Table 4.1
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(4.38) and (4.39) give better approximations than Concha and Almendra’s equa-
tion (4.37) for Reynolds numbers in the range of 5� 103\Re\5� 105.

Table 4.1 gives the standard drag coefficient of Lappel and Shepherd (1940),
L&Sh in table and results of Concha and Almendra (1979a, b), Heider and
Levenspiel (1998), H&L in Table 4.1 and Brauer and Sucker (1976), B&Z in
Table 4.1 (Fig. 4.12).

4.1.6 Sedimentation Velocity of a Sphere

We have seen that when a particle settles at terminal velocity u1, a balance is
established between drag force, gravity and buoyancy:

Fdrag þ Fgravity þ Fbuoyancy ¼ 0

Fdrag ¼ � Fgravity þ Fbuoancy

� �
� net weight of the particle

FD ¼ � qpVpð�gÞ þ qf Vpg
� �

� DqVpg

ð4:40Þ

In (4.40) Dq ¼ qs � qf is the solid–fluid density difference. This equation
shows that the drag force for a particle in sedimentation is known beforehand once
the volume of particle and its density difference to the fluid are known. For a
spherical particle, Vp ¼ 4=3pR3, so that:

FD ¼
4
3
pR3Dqg ð4:41Þ

and the drag coefficient:

CD ¼
FD

1=2qf u2
1pR2

� 4
3
Dqdg

qf u2
1

ð4:42Þ

where the sphere diameter is d ¼ 2R and u1 is the terminal settling velocity of a
sphere in an infinite fluid.

Since the Reynolds number for the motion of one particle in an infinite fluid is
defined by:

Re1 ¼
du1qf

lf
; ð4:43Þ

combining it with the drag coefficient yields two dimensionless numbers
(Heywood 1962):

CDRe2
1 ¼

4
3

Dqqf g

l2
f

 !
d3 Re1

CD
¼ 3

4

q2
f

Dqlf g

 !
u3
1 ð4:44Þ

4.1 Discrete Sedimentation 57



T
ab

le
4.

1
D

ra
g

co
ef

fi
ci

en
t

ve
rs

us
R

ey
no

ld
s

nu
m

be
r

an
d

di
m

en
si

on
le

ss
ve

lo
ci

ty
ve

rs
us

di
m

en
si

on
le

ss
di

am
et

er

L
&

S
h

C
on

ch
a

an
d

A
lm

en
dr

a
H

&
L

B
&

Z

R
e

C
D

C
D

R
e2

R
e/

C
D

d*
=

(C
D

R
e2

)1
/3

u*
=

(R
e/

C
D

)1
/3

C
D

si
m

d*
si

m
u*

si
m

C
D

si
m

C
D

si
m

1.
00

0E
-

01
2.

40
0E

+
02

2.
40

0E
+

00
4.

16
7E

-
04

1.
33

9E
+

00
7.

46
9E

-
02

2.
46

2E
+

02
1.

00
0E

-
01

4.
34

5E
-

04
2.

49
8E

+
02

2.
52

3E
+

02
2.

00
0E

-
01

1.
20

0E
+

02
4.

80
0E

+
00

1.
66

7E
-

03
1.

68
7E

+
00

1.
18

6E
-

01
1.

26
5E

+
02

2.
00

0E
-

01
1.

73
3E

-
03

1.
27

7E
+

02
1.

28
8E

+
02

3.
00

0E
-

01
8.

00
0E

+
01

7.
20

0E
+

00
3.

75
0E

-
03

1.
93

1E
+

00
1.

55
4E

-
01

8.
61

5E
+

01
3.

00
0E

-
01

3.
88

7E
-

03
8.

66
4E

+
01

8.
73

0E
+

01
5.

00
0E

-
01

4.
95

0E
+

01
1.

23
8E

+
01

1.
01

0E
-

02
2.

31
3E

+
00

2.
16

2E
-

01
5.

34
2E

+
01

4.
00

0E
-

01
6.

88
2E

-
03

5.
35

4E
+

01
5.

37
6E

+
01

7.
00

0E
-

01
3.

65
0E

+
01

1.
78

9E
+

01
1.

91
8E

-
02

2.
61

5E
+

00
2.

67
7E

-
01

3.
91

8E
+

01
5.

00
0E

-
01

1.
07

1E
-

02
3.

92
0E

+
01

3.
92

3E
+

01
1.

00
0E

+
00

2.
65

0E
+

01
2.

65
0E

+
01

3.
77

4E
-

02
2.

98
1E

+
00

3.
35

4E
-

01
2.

83
4E

+
01

6.
00

0E
-

01
1.

53
4E

-
02

2.
83

3E
+

01
2.

82
2E

+
01

2.
00

0E
+

00
1.

46
0E

+
01

5.
84

0E
+

01
1.

37
0E

-
01

3.
88

0E
+

00
5.

15
5E

-
01

1.
53

6E
+

01
7.

00
0E

-
01

2.
07

7E
-

02
1.

53
9E

+
01

1.
51

2E
+

01
3.

00
0E

+
00

1.
04

0E
+

01
9.

36
0E

+
01

2.
88

5E
-

01
4.

54
0E

+
00

6.
60

7E
-

01
1.

08
7E

+
01

8.
00

0E
-

01
2.

69
7E

-
02

1.
09

4E
+

01
1.

06
4E

+
01

5.
00

0E
+

00
6.

90
0E

+
00

1.
72

5E
+

02
7.

24
6E

-
01

5.
56

7E
+

00
8.

98
2E

-
01

7.
14

6E
+

00
9.

00
0E

-
01

3.
39

3E
-

02
7.

25
2E

+
00

6.
94

7E
+

00
7.

00
0E

+
00

5.
30

0E
+

00
2.

59
7E

+
02

1.
32

1E
+

00
6.

38
0E

+
00

1.
09

7E
+

00
5.

48
1E

+
00

1.
00

0E
+

00
4.

16
2E

-
02

5.
60

5E
+

00
5.

31
6E

+
00

1.
00

0E
+

01
4.

10
0E

+
00

4.
10

0E
+

02
2.

43
9E

+
00

7.
42

9E
+

00
1.

34
6E

+
00

4.
18

3E
+

00
1.

10
0E

+
00

5.
00

3E
-

02
4.

31
9E

+
00

4.
05

4E
+

00
2.

00
0E

+
01

2.
55

0E
+

00
1.

02
0E

+
03

7.
84

3E
+

00
1.

00
7E

+
01

1.
98

7E
+

00
2.

56
4E

+
00

1.
20

0E
+

00
5.

91
3E

-
02

2.
70

2E
+

00
2.

50
2E

+
00

3.
00

0E
+

01
2.

00
0E

+
00

1.
80

0E
+

03
1.

50
0E

+
01

1.
21

6E
+

01
2.

46
6E

+
00

1.
97

2E
+

00
1.

30
0E

+
00

6.
89

1E
-

02
2.

10
2E

+
00

1.
94

5E
+

00
5.

00
0E

+
01

1.
50

0E
+

00
3.

75
0E

+
03

3.
33

3E
+

01
1.

55
4E

+
01

3.
21

8E
+

00
1.

45
7E

+
00

1.
40

0E
+

00
7.

93
4E

-
02

1.
56

8E
+

00
1.

46
3E

+
00

7.
00

0E
+

01
1.

27
0E

+
00

6.
22

3E
+

03
5.

51
2E

+
01

1.
83

9E
+

01
3.

80
6E

+
00

1.
21

5E
+

00
1.

50
0E

+
00

9.
04

1E
-

02
1.

31
0E

+
00

1.
23

8E
+

00
1.

00
0E

+
02

1.
07

0E
+

00
1.

07
0E

+
04

9.
34

6E
+

01
2.

20
4E

+
01

4.
53

8E
+

00
1.

01
7E

+
00

1.
60

0E
+

00
1.

02
1E

-
01

1.
09

5E
+

00
1.

05
5E

+
00

2.
00

0E
+

02
7.

70
0E

-
01

3.
08

0E
+

04
2.

59
7E

+
02

3.
13

5E
+

01
6.

38
0E

+
00

7.
53

7E
-

01
1.

70
0E

+
00

1.
14

4E
-

01
7.

96
0E

-
01

8.
06

0E
-

01
3.

00
0E

+
02

6.
50

0E
-

01
5.

85
0E

+
04

4.
61

5E
+

02
3.

88
2E

+
01

7.
72

8E
+

00
6.

49
5E

-
01

1.
80

0E
+

00
1.

27
2E

-
01

6.
72

9E
-

01
7.

03
0E

-
01

5.
00

0E
+

02
5.

50
0E

-
01

1.
37

5E
+

05
9.

09
1

E
+

02
5.

16
1E

+
01

9.
68

7E
+

00
5.

52
9E

-
01

1.
90

0E
+

00
1.

40
6E

-
01

5.
56

8E
-

01
6.

00
3E

-
01

7.
00

0E
+

02
5.

00
0E

-
01

2.
45

0E
+

05
1.

40
0E

+
03

6.
25

7E
+

01
1.

11
9E

+
01

5.
04

6E
-

01
2.

00
0E

+
00

1.
54

5E
-

01
4.

99
6E

-
01

5.
44

2E
-

01
1.

00
0E

+
03

4.
60

0E
-

01
4.

60
0E

+
05

2.
17

4E
+

03
7.

71
9E

+
01

1.
29

5E
+

01
4.

63
4E

-
01

2.
10

0E
+

00
1.

69
0E

-
01

4.
53

5E
-

01
4.

92
4E

-
01

2.
00

0E
+

03
4.

20
0E

-
01

1.
68

0E
+

06
4.

76
2E

+
03

1.
18

9E
+

02
1.

68
2E

+
01

4.
04

9E
-

01
2.

20
0E

+
00

1.
83

9E
-

01
4.

01
5E

-
01

4.
15

1E
-

01
3.

00
0E

+
03

4.
00

0E
-

01
3.

60
0E

+
06

7.
50

0E
+

03
1.

53
3E

+
02

1.
95

7E
+

01
3.

80
3E

-
01

2.
30

0E
+

00
1.

99
3E

-
01

3.
91

6E
-

01
3.

88
9E

-
01

5.
00

0E
+

03
3.

85
0E

-
01

9.
62

5E
+

06
1.

29
9E

+
04

2.
12

7E
+

02
2.

35
1E

+
01

3.
56

3E
-

01
2.

40
0E

+
00

2.
15

2E
-

01
3.

96
1E

-
01

3.
81

8E
-

01
7.

00
0E

+
03

3.
90

0E
-

01
1.

91
1E

+
07

1.
79

5E
+

04
2.

67
4E

+
02

2.
61

8E
+

01
3.

43
9E

-
01

2.
50

0E
+

00
2.

31
5E

-
01

4.
06

3E
-

01
3.

91
4E

-
01

(c
on

ti
nu

ed
)

58 4 Sedimentation of Particulate Systems



T
ab

le
4.

1
(c

on
ti

nu
ed

)

L
&

S
h

C
on

ch
a

an
d

A
lm

en
dr

a
H

&
L

B
&

Z

R
e

C
D

C
D

R
e2

R
e/

C
D

d*
=

(C
D

R
e2

)1
/3

u*
=

(R
e/

C
D

)1
/3

C
D

si
m

d*
si

m
u*

si
m

C
D

si
m

C
D

si
m

1.
00

0E
+

04
4.

05
0E

-
01

4.
05

0E
+

07
2.

46
9E

+
04

3.
43

4E
+

02
2.

91
2E

+
01

3.
33

0E
-

01
2.

60
0E

+
00

2.
48

2E
-

01
4.

20
4E

-
01

4.
09

0E
-

01
2.

00
0E

+
04

4.
50

0E
-

01
1.

80
0E

+
08

4.
44

4E
+

04
5.

64
6E

+
02

3.
54

2E
+

01
3.

17
0E

-
01

2.
70

0E
+

00
2.

65
3E

-
01

4.
47

5E
-

01
4.

45
6E

-
01

3.
00

0E
+

04
4.

70
0E

-
01

4.
23

0E
+

08
6.

38
3E

+
04

7.
50

7E
+

02
3.

99
6E

+
01

3.
10

1E
-

01
2.

80
0E

+
00

2.
82

9E
-

01
4.

59
2E

-
01

4.
61

9E
-

01
5.

00
0E

+
04

4.
90

0E
-

01
1.

22
5E

+
09

1.
02

0E
+

05
1.

07
0E

+
03

4.
67

3E
+

01
3.

03
1E

-
01

2.
90

0E
+

00
3.

00
8E

-
01

4.
68

1
E

–0
1

4.
75

9E
-

01
7.

00
0E

+
04

5.
00

0E
-

01
2.

45
0E

+
09

1.
40

0E
+

05
1.

34
8E

+
03

5.
19

2E
+

01
2.

99
5E

-
01

3.
00

0E
+

00
3.

19
0E

-
01

4.
70

8E
-

01
4.

81
8E

-
01

1.
00

0E
+

05
4.

80
0E

-
01

4.
80

0E
+

09
2.

08
3E

+
05

1.
68

7E
+

03
5.

92
8E

+
01

2.
96

3E
-

01
3.

10
0E

+
00

3.
37

6E
-

01
4.

71
5E

-
01

4.
86

1E
–0

1
2.

00
0E

+
05

4.
20

0E
-

01
1.

68
0E

+
10

4.
76

2E
+

05
2.

56
1

E
+

03
7.

80
9E

+
01

2.
91

5E
-

01
3.

20
0E

+
00

3.
56

6E
-

01
4.

68
6E

-
01

4.
90

4E
-

01
3.

00
0E

+
05

2.
00

0E
-

01
1.

80
0E

+
10

1.
50

0E
+

06
2.

62
1

E
+

03
1.

14
5E

+
02

2.
89

3E
-

01
3.

30
0E

+
00

3.
75

8E
-

01
4.

65
5E

-
01

4.
91

5E
-

01
5.

00
0E

+
05

8.
40

0E
-

02
2.

10
0E

+
10

5.
95

2E
+

06
2.

75
9E

+
03

1.
81

2E
+

02
2.

87
2E

-
01

3.
40

0E
+

00
3.

95
4E

-
01

4.
61

0E
-

01
4.

92
1E

–0
1

7.
00

0E
+

05
1.

00
0E

-
01

4.
90

0E
+

10
7.

00
0E

+
06

3.
65

9E
+

03
1.

91
3E

+
02

2.
86

1E
-

01
3.

50
0E

+
00

4.
15

2E
-

01
4.

57
9E

-
01

4.
92

2E
-

01
1.

00
0E

+
06

1.
30

0E
-

01
1.

30
0E

+
11

7.
69

2E
+

06
5.

06
6E

+
03

1.
97

4E
+

02
2.

85
1E

-
01

3.
60

0E
+

00
4.

35
3E

-
01

4.
54

8E
-

01
4.

92
1E

-
01

3.
00

0E
+

06
2.

00
0E

-
01

1.
80

0E
+

12
1.

50
0E

+
07

1.
21

6E
+

04
2.

46
6E

+
02

2.
82

9E
-

01
3.

70
0E

+
00

4.
55

7E
-

01
4.

46
2E

-
01

4.
91

6E
-

01

4.1 Discrete Sedimentation 59



Concha and Almendra (1979a) defined the characteristic parameters P and Q of
the solid–liquid system:

P ¼ 3
4

l2
f

Dqqf g

 !1=3

Q ¼ 4
3

Dqlf g

q2
f

 !1=3

ð4:45Þ

so that Eq. (4.44) may be written in the form:

CDRe2
1 ¼

d

P

� �3

¼ d�
3 Re1

CD
¼ u1

Q

� �3

� u�31 ð4:46Þ

Expressions (4.46) define a dimensionless size d� and a dimensionless velocity
u�, which are characteristics of a solid–liquid system:

d� ¼ d

P

� �
u�1 ¼

u1
Q

� �
ð4:47Þ

Since there is a direct relationship between the Drag Coefficient and the Rey-
nolds Number, see for example Eqs. (4.37)–(4.39), there must be a relationship
between the dimensionless groups CDRe2 and Re=CD. Table 4.1 gives that
relationship.
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Fig. 4.12 Comparison of the drag coefficient for a sphere, simulated by Brauer and Zucker
(1976) and by Haider and Levenspiel (1998), and standard experimental points from Laple and
Shepherd (1940)
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Multiplying the two terms in Eq. (4.47), we can observe that the Reynolds
number may be written in terms of the dimensionless size and dimensionless
velocity:

Re1 ¼ d�u�1 ð4:48Þ

Replacing (4.37) and (4.48) into (4.46) we obtain:

d�3 ¼ C0 1þ d0

u�1d�ð Þ1=2

� �2

u�1d�
� �2

u�1d� þ d0 u�1d�
� �1=2� d�3=2

C1=2
0

¼ 0

Solving these algebraic equations, explicit expressions are obtained for the
dimensionless settling velocity u�1 of a sphere of dimensionless size d� and for the
dimensionless sphere of diameter d� settling a dimensionless velocity u�1 (Concha
and Almendra 1979a):

u�1 ¼
1
4

d2
0

d�
1þ 4

C1=2
0 d2

0

d�3=2

 !1=2

�1

0
@

1
A

2

ð4:49Þ

d� ¼ 1
4

C0u�21 1þ 1þ 4d0

C1=2
0

u��3=2
1

 !1=2
0
@

1
A

2

ð4:50Þ

Equations (4.49) and (4.50) are known as Concha and Almendra’s equations for
a sphere. These two equations are general for spheres settling in a fluid at any
Reynolds number. Introducing the values of C0 ¼ 0:284 and d0 ¼ 9:06, the fol-
lowing final equations are obtained [In Concha and Amendra’s paper (1979a),
C0 ¼ 0:28 was used].

u� ¼ 20:52
d�

1þ 0:0914d�3=2
� �1=2�1
� 	2

ð4:51Þ

d� ¼ 0:071u�2 1þ 1þ 68:0u��3=2
� �1=2

� 	2
ð4:52Þ

Problem 4.3 To calculate sedimentation velocities, it is necessary to know the
sedimentation parameters P and Q that depend on the solid and fluid properties.
Construct a table for these parameters as functions of the solid density. Assume
that the fluid density is 1 g/cm3 and its viscosity 0.01 g/cm s. Using the definition
of P and Q from Eq. (4.45), Table 4.2 is obtained.
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Problem 4.4 Calculate the settling velocity of quartz spheres with density of
2.65 g/cm3 of the following diameters: 1, 10, 50, 100 and 500 lm, and 0.1, 0.5 and
1.0 cm in water at 20 �C. Use Eq. (4.51):

u�1 ¼
20:52

d�
1þ 0:0914d�3=2
� �1=2�1
� 	2

; with d� ¼ d=P y u1 ¼ Q� u�1

Problem 4.5 Compare the simulated dimensionless velocity versus dimensionless
diameter predicted by Concha and Almendra’s equation with experimental data
from Table 4.1.

Using Eq. (4.51), the values of column d�sim and u�sim are obtained. The plot
of these data is shown in Fig. 4.13.

Effect of temperatures on the settling velocity

To calculate the settling velocity of spheres at different temperatures, it is
necessary to know the density and viscosity of the fluid involved at these tem-
peratures. In the case of water and air, the following correlations can be used for
the density and viscosity. Figures 4.14 and 4.15 show the correlations of densities
and viscosities for air and water.

Data

qs (g/cm3)= 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65

qf (g/cm3)= 1 1 1 1 1 1 1 1
l (poises)= 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dp (cm)= 0.0001 0.001 0.005 0.01 0.05 0.1 0.5 1

P (cm)= 0.00359 0.00359 0.00359 0.00359 0.00359 0.00359 0.00359 0.00359
Q (cm/s)= 2.78320 2.78320 2.78320 2.78320 2.78320 2.78320 2.78320 2.78320
Results

d* = 2.78E-

02
2.78E-

01
1.39E+00 2.78E+00 1.39E+01 2.78E+01 1.39E+02 2.78E+02

u* = 3.32E-

05
3.30E-

03
7.73E-

02
2.76E-

01
2.88E+00 5.77E+00 1.88E+01 2.84E+01

uoo (cm/s) = 9.24E-

05
9.18E-

03
2.15E-

01
7.68E-

01
8.01E+00 1.61E+01 5.23E+01 7.90E+01

Re = 9.24E-

07
9.18E-

04
1.08E-

01
7.68E-

01
4.00E+01 1.61E+02 2.62E+03 7.90E+03
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Fig. 4.13 Dimensionless velocity versus dimensionless diameter for the sedimentation of
spheres according to Eq. (4.51) of Concha and Almendra. Circles are standard data from Lapple
and Shepherd (1940) in Table 4.1
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Fig. 4.14 Water and air densities at several temperatures
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Density:

qwater ¼ �4:0� 10�6T2 � 6:0� 10�5T þ 1:0004 g/cm3 ð4:53Þ

qair ¼ �3:0� 10�6T þ 1:3� 10�3 g/cm3 ð4:54Þ

Viscosity:

lwater ¼ 9:0� 10�7T2 � 2:0� 10�4T þ 1:56� 10�2 g/cm s ð4:55Þ

lair ¼ 5:0� 10�7T þ 2:0� 10�4 g/cm s ð4:56Þ

Problem 4.6 Calculate the settling velocity of a quartz sphere of 300 lm with
density 2.65 g/cm3 in water at 60 �C. From the correlations (4.55), (4.53) and from
Eqs. (4.45) we obtain:

μ air = 5E-07T + 0.0002

R2 = 0.9996

μ water  = 9E-07T2 - 0.0002T + 0.0156

R2 = 0.9983
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Fig. 4.15 Water and air viscosities at several temperatures
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qwater ¼ �4:0� 10�6 � 202 � 6:0� 10�5 � 20þ 1:0004 ¼ 0:9976 g/cm3

lwater ¼ 9� 10�7 � 202 � 2� 10�4 � 20þ 0:0156 ¼ 0:01196

P ¼ 3
4

l2
f

Dqqf g

 !1=3

¼ 2:550� 10�3 cm

Q ¼ 4
3

Dqlf g

q2
f

 !1=3

¼ 2:0534 cm/s

d� ¼ 300
10;000� 2:5502� 10�3

¼ 11:764

u� ¼ 20:52
d�

1þ 0:0921d�3=2
� �1=2�1
� 	2

¼ 1:5017

u1 ¼ u� � Q ¼ 1:5017� 2:0534 ¼ 3:0826 m/s

4.1.7 Sedimentation of a Suspension of Spheres

In a suspension, the spheres, surrounding a given sphere, hinder its motion as it
settles. This hindrance is due to several effects. In the first place, when the particle
changes its position, it can find the new site occupied by another particle, and will
collide with it, thus changing its trajectory. The more concentrated the suspension
is, the greater the chance of collision. The result is that hindrance is a function of
concentration. On the other hand, the settling of each particle of the suspension
produces a back flow of the fluid. This back flow will increase the drag on a given
particle, retarding its sedimentation. Again, an increase in concentration will
increase the hindrance. It is clear that in both cases, the hindrance depends on the
fraction of volume occupied by the particles and not on their weight and therefore
the appropriate parameter to measure hindrance is the volumetric concentration
rather than the percentage by weight.

Several theoretical works have been devoted to study the interaction of particles
in a suspension during sedimentation. These types of studies were discussed in
Tory (1996). In a recent approach, Quispe et al. used the tools of lattice-gas and
cellular automata to study the sedimentation of particles and the fluid flow through
an ensemble of settling particles. They were able to obtain some important mac-
roscopic properties of the suspensions. Unfortunately, none of these works has
yielded a sufficiently general and simple relationship between the variables of the
suspension and its settling velocity to be used for practical purposes.

Concha and Almendra (1979b) assumed that the same equations used for the
drag coefficient and for the settling velocity of individual spherical particles are
valid for a suspension of particles if parameters P and Q are replaced by
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P uð Þ and Q uð Þ depending on the volume fraction of solids. Write Eqs. (4.36) and
(4.49) in the form:

CDðuÞ ¼ C0ðuÞ 1þ d0ðuÞ
Re1=2

� �2

ð4:57Þ

U�ðuÞ ¼ d2
0

D�ðuÞ 1þ 1

C1=2
0 d2

0

D�3=2ðuÞ
 !1=2

�1

0
@

1
A

2

ð4:58Þ

where

D� ¼ d

P uð Þ and U� ¼ u

Q uð Þ ð4:59Þ

It is convenient to express the properties of a suspension, such as viscosity, as
the product of the same property of the fluid with a function of concentration.
Assume that P uð Þ and Q uð Þ can be related with P and Q in that form, then:

P uð Þ ¼ Pfp uð Þ and Q uð Þ ¼ Qfq uð Þ ð4:60Þ

Replacing (4.60) into (4.59), and using the definition (4.47) of d� and u�, results
in:

D� ¼ d�

fp uð Þ and U�ðuÞ ¼ u�ðuÞ
fq uð Þ ð4:61Þ

With these definitions, Eq. (4.58) may be written in the form:

u�ðuÞ ¼ d2
0

d�
fp uð Þfq uð Þ 1þ 1

C1=2
0 d2

0

f�3=2
p d�3=2

 !1=2

�1

0
@

1
A

2

ð4:62Þ

Substituting the values of d0 ¼ 9:06 and C0 ¼ 0:284, yields:

u�ðuÞ ¼ 20:52
d�

fpðuÞfqðuÞ 1þ 0:0914f�3=2
p ðuÞd�3=21=2 � 1

� 	2
ð4:63Þ

This expression, known as Concha and Almendra’s equation for a suspension
of spheres, permits the calculation of the settling velocity of a sphere of any size
and density when it forms part of a suspension with volume fraction u. To perform
the calculations, it is necessary to know the parameters fp uð Þ and fq uð Þ:

Asymptotic expressions for the sedimentation velocity.

For small values of the Reynolds number, Re! 0, the following expressions
may be derived from (4.51) and (4.63), which reduce the settling equation to the
expression indicated:
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0:0921d�3=2f�3=2
p 
 1) u�ðuÞ ¼ 20:52

0:0914
2

� �2

d�2f�2
p uð Þfq uð Þ

0:0921d�3=2 
 1) u�1 ¼ 20:52
0:0914

2

� �2

d�2

In these expressions, the symbols u�1 and u�ðuÞ indicate the settling velocity of
a particle in an infinite medium and the velocity of the same particle in a sus-
pension. The quotient between these two terms is:

For Re1 ! 0
u�ðuÞ

u�1
¼ f�2

p uð Þ fq uð Þ ð4:64Þ

With a similar deduction, we can write for high Reynolds numbers, Eq. (4.49)
equation reference goes here (4.51) and (4.62) in the form:

0:0921d�3=2f�3=2
p � 1) u�ðuÞ ¼ 20:52� 0:0914� d�1=2f�1=2

p uð Þ fq uð Þ
0:0921d�3=2 � 1) u�1 ¼ 20:52� 0:0914� d�1=2

The quotient between these two equations is:

for Re1 ! 1
u�ðuÞ

u�1
¼ f�1=2

p uð Þ fq uð Þ ð4:65Þ

To find functional forms for the functions fp uð Þ and fq uð Þ experimental values
for the settling velocities u1 and u uð Þ are needed.

Functional form for fp uð Þ and fq uð Þ

Several authors have presented expressions for the velocity ratio u=u1. See
Concha and Almendra (1979b). Richardson and Zaki (1954), made the most
comprehensive and most cited work on the relative particle–fluid flow under
gravity. We will use their data in this book.

Richardson and Zaki (1954) performed careful sedimentation and liquid flu-
idization tests with mono-sized spherical particles in a wide range of particles
sizes, fluid densities and viscosities. The authors expressed their result in the form:

uðuÞ=u1 ¼ 1� uð Þn for Re! 0 and uðuÞ=u1 ¼ 1� uð Þm for Re!1
ð4:66Þ

The characteristics of these particles and fluid are given in Table 4.3. Table 4.4
shows values for uðuÞ=u1 obtained from their experimental results.

Instead of using the values of n presented by Richardson and Zaki (1954), we
will optimize the values using all experimental data. From (4.64), (4.65) and
(4.66), we can write

4.1 Discrete Sedimentation 69



Table 4.3 Experimental data of Richardson and Zaki (1954)

N� d (cm) qs (g/cm3) lfx102 (g/
cms)

qf (g/cm3) vst (cm/s) Reoo n ? 1 n

P 0.0181 1.058 20.800 1.034 0.00206 0.000185 4.90 3.90
Q 0.0181 1.058 20.800 1.034 0.00206 0.000185 4.79 3.79
K 0.0096 2.923 62.000 1.208 0.01390 0.000216 4.75 3.75
L 0.0096 2.923 62.000 1.208 0.01390 0.000216 4.65 3.65
F 0.0358 1.058 20.800 1.034 0.00807 0.001430 4.92 3.92
G 0.0358 1.058 20.800 1.034 0.00807 0.001430 4.89 3.89
H 0.0096 2.923 20.800 1.034 0.04550 0.002180 4.76 3.76
I 0.0096 2.923 20.800 1.034 0.04550 0.002180 4.72 3.72
J 0.0096 2.923 20.800 1.034 0.04550 0.002180 4.69 3.69
R 0.0230 2.623 62.000 1.208 0.06590 0.002950 4.85 3.85
S 0.0230 2.623 62.000 1.208 0.06590 0.002950 4.80 3.80
T 0.0128 2.960 1.890 2.890 0.03307 0.064700 4.84 3.84
M 0.0128 2.960 1.890 2.890 0.03307 0.064700 4.72 3.72
C 0.0181 1.058 1.530 1.001 0.06400 0.078900 4.76 3.76
A 0.0181 1.058 1.530 1.001 0.06640 0.078900 4.90 3.90
B 0.0181 1.058 1.530 1.001 0.06640 0.078900 4.79 3.79
X 0.1029 2.976 112.900 1.221 0.89100 0.099500 5.30 4.30
Y 0.1029 2.976 112.900 1.221 0.89100 0.099500 5.20 4.20
D 0.0253 1.058 2.910 0.935 0.14750 0.120000 4.94 3.94
E 0.0253 1.058 2.910 0.935 0.14750 0.120000 4.90 3.90
N 0.0096 2.923 1.612 2.170 0.23400 0.030200 4.74 3.74
O 0.0096 2.923 1.612 2.170 0.23400 0.030200 4.65 3.65
2 0.0253 2.78 6.075 1.135 0.82700 0.391000 4.65 3.65
5 0.0253 1.06 1.000 1.000 0.19400 0.490000 4.53 3.53
8 0.0230 2.623 1.890 2.890 0.34900 1.227000 4.450 3.450
9 0.0230 2.623 1.890 2.890 0.34900 1.227000 4.520 3.520
12 0.0230 2.623 1.890 2.890 0.34900 1.227000 4.140 3.140
10 0.0230 2.623 1.612 2.170 0.65250 2.021000 4.300 3.300
11 0.0230 2.623 1.612 2.170 0.65250 2.021000 4.350 3.350
13 0.0230 2.623 1.612 2.170 0.65250 2.021000 4.240 3.240
6 0.0510 2.745 6.075 1.135 2.89000 2.745000 4.22 3.22
14 0.1029 2.976 10.960 1.153 6.03000 6.530000 4.300 3.300
15 0.1029 2.976 10.960 1.153 6.03000 6.530000 4.070 3.070
16 0.1029 2.976 10.960 1.153 6.03000 6.530000 4.000 3.000
4 0.0253 2.78 1.000 1.000 3.55000 8.971000 3.59 2.59
3 0.1029 10.6 15.010 0.875 19.60000 11.750000 3.72 2.72
1 0.1029 2.976 1.890 2.890 1.16000 18.180000 3.800 2.800

0.1029 2.976 1.890 2.890 1.16000 18.180000 3.640 2.640
0.1029 2.976 1.890 2.890 1.16000 18.180000 3.860 2.860
0.1029 2.976 1.839 2.745 2.48000 38.260000 3.340 2.340
0.1029 2.976 1.839 2.745 2.48000 38.260000 3.560 2.560

(continued)
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f�2
p uð Þfq uð Þ ¼ 1� uð Þn

f�1=2
p uð Þfq uð Þ ¼ 1� uð Þm

ð4:67Þ

and, by solving this algebraic set, we obtain:

fp ¼ 1� uð Þð2=3Þ m�nð Þ and fq ¼ 1� uð Þð1=3Þ 4m�nð Þ ð4:68Þ

Using Eq. (4.62) and the calculated values in Table 4.5 and Fig. 4.16. The best
values for m and n, were n ¼ 3:90 and m ¼ 0:85:

Then,

fp uð Þ ¼ 1� uð Þ�2:033; fq uð Þ ¼ 1� uð Þ�0:167 ð4:69Þ

A plot of Eq. (4.69) is given in Fig. 4.16.
Table 4.4 gives the data and Fig. 4.17 shows a plot of the dimensionless settling

velocity versus Reynolds number for spheres, according to the experimental data
of Richardson and Zaki (1954) and the simulation of Concha and Almendra
(1979a, b) with Eqs. (4.62) and (4.69).

If all data of Table 4.4 are plotted in the form U� versus D� with the definitions
(4.61), Fig. 4.18 is obtained.

On the other hand, Fig. 4.19 shows the settling velocity u� versus d� for sus-
pensions of spheres in water at 20 �C for different values of the concentration u.
This figure can be used to visualize the state of flow of particulate systems.

In Chap. 5 of this textbook, Eq. (5.6), we will see that the volume average
velocity, also known as spatial velocity or percolation velocity, is given by:

q ¼ vs � 1� uð Þvr ð4:70Þ

Table 4.3 (continued)

N� d (cm) qs (g/cm3) lfx102 (g/
cms)

qf (g/cm3) vst (cm/s) Reoo n ? 1 n

0.1029 2.976 1.839 2.745 2.48000 38.260000 3.500 2.500
0.0510 2.745 1.000 1.000 8.10000 41.720000 3.11 2.11
0.1029 2.745 1.000 1.0 7.35000 14.450000 3.78 2.78
0.1029 2.745 1.000 1.000 7.35000 14.450000 3.78 2.78
0.4200 2.89 15.010 0.875 31.90000 78.250000 3.34 2.34
0.1029 10.6 3.810 0.818 36.15000 79.800000 3.08 2.08
0.2466 11.25 15.010 0.875 58.10000 80.350000 3.39 2.39
0.3175 7.73 15.010 0.875 54.70000 101.200000 3.17 2.17
0.4200 2.89 6.075 1.135 34.05000 267.000000 2.58 1.58
0.1029 10.6 1.000 1.000 47.50000 488.700000 2.43 1.43
0.4200 2.89 1.000 1.000 48.60000 2,041.000000 2.33 1.33
0.3175 7.73 1.000 1.000 79.70000 2,530.000000 2.36 1.36
0.6350 7.74 1.000 1.000 112.70000 7,150.000000 2.38 1.38
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where q; vs and vr are the spatial velocity, the solid component velocity and the
relative solid–fluid velocity. Figure 4.17 divides the u� � d� plane into three
regions: a porous bed, between the d� axis and the line of constant concentration
u ¼ 0:585 [Barnea and Mednick (1975) demonstrated that this concentration
corresponds to the minimum fluidization velocity], a second region of a fluidized
bed between 0:585	u	 0 and a third region of hydraulic or pneumatic transport,
for values of velocities above concentration u ¼ 0.

Drag Coefficient for a suspension of spheres

From Eqs. (4.49) and (4.62) we deduce that:

~d2
0 ¼ d2

0fpðuÞfqðuÞ
~C1=2

0
~d2

0 ¼ C1=2
0 d2

0f 3=2
p ðuÞ

therefore, the parameters of the Drag Coefficient are:

~C0 ¼ C0 fpðuÞf�2
q ðuÞ ð4:71Þ

~d0 ¼ d0f 1=2
p ðuÞf 1=2

q ðuÞ ð4:72Þ

and the Drag Coefficient of the sphere can be written in the form:

CD ¼ C0fpðuÞf�2
q ðuÞ 1þ

d0f 1=2
p ðuÞf 1=2

q ðuÞ
Re1=2

 !2

ð4:73Þ

Using the values for fpðuÞ and fqðuÞ from (4.69), we obtain finally:

CD ¼ 0:284 1� uð Þ�2:01 1þ 9:08 1� uð Þ�1:83

Re1=2

 !2

ð4:74Þ

Problem 4.7 Consider a porous bed formed by spherical particles of dimen-
sionless diameter d� ¼ 10. A fluid percolates through the bed at a dimensionless
velocity u� ¼ 0:001. If the velocity is increased, establish the range of velocities at
which the three regimes are present.

Drawing a vertical line in the plot of dimensionless velocity versus dimen-
sionless size, Fig. 4.20, for d� ¼ 10, see lines in red in the next figure, we find that
the system of particles forms a porous bed until the dimensionless velocity
u� � 0:130, which is the dimensionless minimum fluidization velocity. Fluidiza-
tion exists for the range of dimensionless velocities 0:13	 u� 	 2:00. For greater
velocities, particles are transported.
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Problem 4.8 Determine the sedimentation velocity of a sphere, 150 lm in
diameter and 2.65 g/cm3 in density at 15 �C, forming a suspension of 40 % of
solid by weight.

The volume fraction of solids is:

u ¼ 0:9989 � 40
2:65 � ð100 � 40Þ þ 0:9989 � 40

¼ 0:201

Parameters for the solid–fluid system:

qwater ¼ 0:9986; lwater ¼ 0:01280; P ¼ 2:66� 10�3; Q ¼ 2:099

fpð0:201Þ ¼ 1:5761; fqð0:201Þ ¼ 1:0381

d� ¼ 5:622

u� ¼ 20:52
d�

fp uð Þfq uð Þ 1þ 0:0921f�3=2
p d�3=2

� 	1=2
�1

� �2

¼ 1:863

u ¼ 1:863� 2:0987 ¼ 3:910 cm=s u ¼ �3:91 k cm=sð Þ

Problem 4.9 Determine the fluidization velocity of a 40 % by weight suspension
of mono-sized quartz spherical particles, 150 lm in diameter and 2.65 g/cm3 in
density at 15 �C. Calculate at which volume average velocity these particles begin
to be transported.
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From the previous problem, we know that the sedimentation velocity for the
same suspension is u ¼ �3:91 cm=s. The volume average velocity is given by
q ¼ vs � 1� uð Þu, and since for fluidization vs ¼ 0, q ¼ � 1� uð Þu

q ¼ 1� 0:201ð Þ � 3:91 ¼ 3:13 cm=s.

The dimensionless particle size is d� ¼ 5:62. A straight line for this value in
blue in Fig. 4.21 gives a transport velocity of u� ¼ 10, which corresponds to a
velocity u ¼ �10� 3:91 ¼ �39:1 cm=s: Then:

u ¼ �39:1 cm=s; q ¼ � 1� 0ð Þ � �39:1 ¼ 39:1 cm=s:

4.1.8 Sedimentation of Isometric Particles

The behavior of non-spherical particles is different than that of spherical particles
during sedimentation. While spherical particles fall in a vertical trajectory, non-
spherical particles rotate, vibrate and follow spiral trajectories. Several authors have
studied the sedimentation of isometric particles, which have a high degree of
symmetry with three equal mutually perpendicular symmetry axes, such as the
tetrahedron, octahedron and dodecahedron. Wadell (1932, 1934), Pettyjohn and
Christiansen (1948) and Christiansen and Barker (1965) show that isometric par-
ticles follow vertical trajectories at low Reynolds numbers, but rotate and vibrate
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Fig. 4.21 Plot of the drag coefficient versus the Reynolds number for the settling of isometric
particles according to Pettyjohn and Christiansen (1948) and Barker (1951)
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and show helicoidally trajectories for Reynolds numbers between 300 and 150,000.
Figure 4.18 shows the drag coefficient versus Reynolds number for these particles.

Pettyjohn and Christiansen (1948) demonstrate that velocities in Stokes flow for
isometric particles may be described with the following expression:

up

ue
¼ 0:843log

w
0:065

� �
with ue ¼

Dqd2
e g

18lf
ð4:75Þ

where de is the volume equivalent diameter, that is, the diameter of a sphere with
the same volume as the particle, and ue is its settling velocity.

In the range of 2;000	Re	 17;000, the same authors derived the following
equation for the settling velocity:

ue ¼
4
3

Dqdeg

qf CD
; ð4:76Þ

with the drag coefficient CD given by: CD ¼ ð5:31� 4:88wÞ=ð1:433� 0:43Þ. The
value of 1.433 in the denominator of this equation is a factor that takes the
theoretical value of CD ¼ 0:3 (see Fig. 4.11) to the average experimental value
CD ¼ 0:43 (see Fig. 4.19).

As we have already said, for Re [ 300, the particles begin to rotate and
oscillate, which depends on the particle density. To take into account these
behavior, Barker (1951) introduced the particle to fluid density ratio as a new
variable in the form:

CD w; kð Þ ¼ k1=18 5:31� 4:88wð Þ
0:62

; ð4:77Þ

where k is the quotient between the solid and fluid densities k ¼ qp

�
qf .

Data from Pettyjohn and Christiansen (1948) and from Barker (1951) are plotted
in Fig. 4.21. Figure 4.22 gives details of the higher end of the Reynolds range.

Drag coefficient and sedimentation velocity

Results obtained for spherical particles (Concha and Almendra 1979a, b), may
be used to develop functions for the drag coefficient and sedimentation velocity of
isometric particles.

Assume that Eqs. (4.73) and (4.62) valid for isometric particles, with values of
C0 and d0 as functions of the sphericity w and of the density quotient k (Concha
and Barrientos 1986):

CD w; kð Þ ¼ ~C0 w; kð Þ 1þ d0 w; kð Þ
Re1=2

� �2

ð4:78Þ

u�p ¼
1
4

~d2
0 w; kð Þ

d�
1þ 4

~C1=2
0 w; kð Þ~d2

0 w; kð Þ
d�3=2

 !1=2

�1

0
@

1
A

2

ð4:79Þ
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where the Reynolds number is defined using the volume equivalent diameter.
Assume also that:

~C0 w; kð Þ ¼ C0fA wð ÞfC kð Þ ð4:80Þ

~d0 w; kð Þ ¼ d0fB wð ÞfD kð Þ ð4:81Þ

where C0 and d0 are the same parameters of a sphere.
We have already demonstrated that for a sphere (volume equivalent sphere in

this case) at a low Reynolds number, Re! 0, the dimensionless velocity can be
approximated by Eq. (4.64).

Assume that we can approximate the velocity of isometric particles at low
Reynolds numbers, Re! 0, in the same way as for spherical particles. Then:

u�e ¼
d�2e

C0d
2
0

and u�p ¼
d�2e

~C0 w; kð Þd2
0 w; kð Þ

ð4:82Þ

Taking the quotient of these terms and substituting (4.80) and (4.81), results in:

Re! 0;
u�e
u�p
� ue

up
¼ fA wð Þf 2

B wð ÞfC kð Þf 2
D kð Þ ð4:83Þ

On the other hand, for Re!1:

CD w; kð Þ
CD

¼
~C0 w; kð Þ

C0
and

CD w; kð Þ
CD

¼ fA wð ÞfC kð Þ ð4:84Þ
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To determine the functions fA; fB; fC and fD we will use the correlations pre-
sented by Pettyjohn and Christiansen (4.75) and (4.77), and by Barker (1951).
From (4.83) and (4.75) we can write:

fA wð Þf 2
B wð ÞfC kð Þf 2

D kð Þ ¼ 0:843 log
w

0:065


 ��1

ð4:85Þ

fA wð ÞfC kð Þ ¼ k1=18 5:31� 4:88w
0:62

ð4:86Þ

From (4.77) and (4.86) we deduce that:

fA wð Þ ¼ 5:31� 4:88w
0:62

fC kð Þ ¼ k1=18: ð4:87Þ

Since in the Stokes regime the density does not influence the flow, Eq. (4.85)
implies that (Fig. 4.23):

fC kð Þf 2
D kð Þ ¼ 1) fD kð Þ ¼ k�1=36 ð4:88Þ

Therefore:

fB wð Þ ¼ 5:31� 4:88w
0:62

� 0:843 log
w

0:065


 ��1=2

ð4:89Þ

Problem 4.10 Using Concha and Barrientos (1986) model for isometric particles,
determine the values of the dimensionless velocity versus the dimensionless size
for particles with sphericities 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 for values of d�

from 0.01 to 100.000.

The result is shown in Fig. 4.24.
Haider and Levenspiel (1998) give an alternative equation for the Drag Coef-

ficient and the settling velocity of isometric particles based on their equation for
spherical particles:

CD wð Þ ¼ 24
Re

1þ ð8:1716� expð�4:0655wÞð ÞReð0:0964þ0:5565wÞÞ

þ 73:69Re� exp �5:0740wð Þ
Reþ 5:378� expð6:2122wÞ ð4:90Þ

u� ¼ 18
d�2
þ 3:1131� 2:3252w

d�0:5

� ��1

; for 0:5	w	 1 ð4:91Þ
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Fig. 4.23 Simulation with Concha and Barrientos’ equation (4.78) and experimental values for
isometric particles from Pettyjohn and Christiansen (1948) and Barker (1951) for cube
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CD ¼
1

K1

24
Re

1þ 0:1118 K1K2Reð Þ0:6567
� 	

þ 0:4305K1K2
2 Re

3305þ K1K2Re
ð4:92Þ

where

K1 ¼
1
3
þ 2

3
w�1=2

� ��1

; K2 ¼ 101:8148 � log wð Þ0:5743

ð4:93Þ

Modified drag coefficient and sedimentation velocity

Introducing the values for fA; fB; fC and fD into Eq. (4.78) results in:

CD w; kð Þ
fA wð ÞfC kð Þ ¼ C0 1þ d0

Re= f 2
B ðwÞf 2

D kð Þð Þð Þ0:5

 !2

ð4:94Þ

Defining the modified Drag Coefficient CDM and the modified Reynolds number
ReM by:

CDM ¼
CD w; kð Þ

fA wð ÞfC kð Þ ReM ¼
Re

f 2
B wð Þf 2

D kð Þ

� �
ð4:95Þ

we can write the drag coefficient in the form of Eq. (4.78). Plotting CDM versus
ReM , Fig. 4.25 is obtained.
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A similar result may be obtained for the sedimentation velocity. Defining
modified dimensionless diameter d�eM and velocity u�M:

d�eM ¼
d�e w; kð Þ

f 1=2
A wð Þf 2

B wð Þf 1=2
C f 2

D kð Þ
� 	2=3

and u�eM ¼
u�p w; kð Þ

fB wð ÞfD kð Þ : ð4:96Þ

The unified u�eM versus d�eM curve is given in Fig. 4.26, for Pettyjohn and
Christiansen (1948) and Christiansen and Barker (1965) data.

u�eM ¼
20:52
d�eM

1þ 0:0921d�3=2
eM

� 	1=2
�1

� �2

ð4:97Þ

The experimental data used in the previous correlations are 655 points
including spheres, cubes-octahedrons, maximum sphericity cylinders, octahedrons
and tetrahedrons in the following ranges:

0.1 cm \ de \ 5 cm
1.7 g/cm3 \qs \ 11.2 g/cm3

0.67 \w \ 1
0.87 g/cm3 \qf \ 1.43 g/cm3

9 9 10-3 g/cm s \ l\ 900 g/cm s
5 9 10-3 \ Re \ 2 9 104
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Fig. 4.25 Experimental data of Pettyjohn and Christiansen (1948), and Barker (1951), plotted as
CDM versus ReM for isometric particles
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with the following values for the particles sphericity (Happel and Brenner 1965;
Barker 1951) and the parameters of Concha and Barrientos (1986)

W fA (w) fB (w)

Sphere 1.000 1.0000 1.0000
Cube octahec 0.906 1.4334 0.8826
Octahedron 0.846 1.9057 1.2904
Cube 0.806 2.2205 1.5468
Tetrahedron 0.670 3.2910 2.3108
Max sph cylin 0.875 1.6774 1.0966

Problem 4.11 Determine the sphericity and the settling velocity of a quartz cube
of 1 mm in size and a density of 2.65 g/cm3 in water at 25 �C. Use the methods of
Concha and Barrientos and that of Haider and Levenspiel.

By definition, sphericity is the ratio of the surface of a volume-equivalent
sphere and the surface of the particle. For a cube of 1 mm in size, the surface is
6 mm2 and its volume is 1 mm3. The volume equivalent sphere has a diameter of:

de ¼ 6V=pð Þ1=3¼ 6=pð Þ1=3¼ 6=pð Þ1=3
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Fig. 4.26 Unified u�M versus d�eM curve for data of Pettyjohn and Christiansen (1948) and Barker
(1951)
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The sphericity is:

w ¼ p 6=pð Þ2=3

6
¼ p

6

� 	1=3
¼ 0:806

Then, from Concha and Barrientos:

fA wð Þ ¼ 5:31� 4:88w
0:62

¼ 5:31� 4:88� 0:806
0:62

¼ 2:2205

fB wð Þ ¼ 5:31� 4:88� 0:806
0:62

� 0:843 log
0:806
0:065

� ��1=2

¼ 0:699

qwater ¼ �4:0� 10�6 � 252 � 6:0� 10�5 � 25þ 1:0004 ¼ 0:9964 g/cm3
� �

fC wð Þ ¼ k�1=18 ¼ 2:65
0:9964

� ��1=18

¼ 0:9471

fD wð Þ ¼ k1=36 ¼ 2:65
0:9964

� �1=36

¼ 1:0275

~d0 w; kð Þ ¼ 9:08� fBðwÞfDðkÞ ¼ 9:08� 0:699� 1:0275 ¼ 6:5215

~C0 w; kð Þ ¼ 0:28� fAðwÞfCðkÞ ¼ 0:28� 2:2205� 0:9471 ¼ 0:5889

lwater ¼ 9:0� 10�7 � 252 � 2:0� 10�4 � 25þ 1:56� 10�2 ¼ 0:0112 g/cm� sð Þ

P ¼ 3
4

l2
f

Dqqf g

 !1=3

¼ 3� 0:01122

4ð2:65� 0:9964Þ � 0:9964� 980:1

� �1=3

¼ 0:00387

Q ¼ 4
3

Dqlf g

q2
f

 !1=3

¼ 4� ð2:65� 0:9964Þ � 0:0112 � 980:1
3� 0:99642

� �1=3

¼ 2:896

d� ¼ de

P
¼ 0:1

0:00387
¼ 25:85

d�eM ¼
d�

f 0:5
A wð Þf 2

B kð Þf 0:5
C wð Þf 2

D kð Þ
¼ 25:85

2:22050:5 � 0:6992 � 0:94710:5 � 1:02752

¼ 34:56

u�eM ¼
20:52
d�eM

1þ 0:0921d�3=2
eM

� 	1=2
�1

� �2

¼ 20:52
40:67

1þ 0:0921� 40:673=2
� �1=2�1
� 	2

¼ 7:025

u� ¼ u�eMfB wð ÞfD kð Þ ¼ 8:028� 0:699� 1:0275 ¼ 5:046

up ¼ Q� u� ¼ 2:896� 5:046 ¼ 14:61 cm/s

Using the method of Haider and Levenspiel, Eq. (4.91), we get:

u�p ¼
18

25:852
þ 3:1131� 2:3252� 0:809

25:850:5

� ��1

¼ 3:6954

up ¼ Q� u�p ¼ 2:89631� 3:694 ¼ 10:703 cm/s
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4.1.9 Sedimentation of Particles of Arbitrary Shape

Concha and Christiansen (1986) extended the validity of Eqs. (4.78) and (4.79) to
suspensions of particles of arbitrary shape.

CD w; k;uð Þ ¼ ~C0 w; k;uð Þ 1þ d0 w; k;uð Þ
Re1=2

� �2

ð4:98Þ

u�p w; k;uð Þ ¼ 1
4

~d2
0 w; k;uð Þ

d�
1þ 4

~C1=2
0 w; k;uð Þ~d2

0 w; k;uð Þ
d�3=2

 !1=2

�1

0
@

1
A

2

ð4:99Þ

where w; k and u are the sphericity of the particles, the density ratio of solid and
fluid and the volume fraction of solid in the suspension.

Similarly as in the case of isometric particles, they assumed that the functions
~C0 and ~d0 may be written in the form:

~C0 w; k;uð Þ ¼ C0fA wð ÞfC kð Þfp uð Þf�2
q uð Þ ð4:100Þ

~d0 w; k;uð Þ ¼ d0fB wð ÞfD kð ÞfF uð Þf 1=2
p ðuÞf 1=2

q ðuÞ ð4:101Þ

with

fA wð Þ ¼ 5:31� 4:88w
0:62

fB wð Þ ¼ 5:31� 4:48w
0:62

� 0:843 log
w

0:065


 ��1=2

fC kð Þ ¼ k1=18; fD kð Þ ¼ k�1=36

fp uð Þ ¼ 1� uð Þ�2:033; fq uð Þ ¼ 1� uð Þ�0:167

Hydrodynamic shape factor

Concha and Christiansen (1986) found it necessary to define a hydrodynamic
shape factor to be used with the above equations, since the usual methods to
measure sphericity did not gave good results. They defined the effective hydro-
dynamic sphericity of a particle as the sphericity of an isometric particle having
the same drag (volume) and the same settling velocity as the particle.

The hydrodynamic sphericity may be obtained by performing sedimentation or
fluidization experiments, calculating the drag coefficient for the particles using the
volume equivalent diameter and obtaining the sphericity (defined for isometric
particles) that fit the experimental value. Figure 4.27 give simulated Drag Coef-
ficients curves for several sphericities.
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Problem 4.12 Estimate the sphericity of crushed quartz particle of 7.2 mm, with
2.65 g/cm3 in density, which gives an average settling velocity of 16.3 cm/s in
water at 20 �C.

de ¼ 0:5 cm , qs ¼ 2:65 g
�

cm3; qf ¼ 1:00 g
�

cm3; l ¼ 0:01 g=cm s

P ¼ 0:00359; Q ¼ 2:7921

Results:

d�e ¼
de

P
¼ 0:72

0:00359
¼ 2;001; u�p ¼

up

Q
¼ 16:3

2:7921
¼ 5:84

With these values for the equivalent dimensionless diameter and the dimen-
sionless settling velocity of the particle d�e and u�p, from a plot of u� versus d�, see
Fig. 4.27 we obtain a sphericity of w ¼ 0:5 for the quartz.

Modified drag coefficient and sedimentation velocity

A unified correlation can also be obtained for the drag coefficient and the
sedimentation velocity of irregular particles forming a suspension. Defining
CDM; ReM ; deM and upM in the following form:
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Fig. 4.27 Simulated dimensionless velocity versus dimensionless size for isometric particles and
several sphericities
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CDM ¼
CD w; kð Þ

fA wð ÞfC kð Þfp uð Þ ReM ¼
Re

f 2
B wð Þf 2

D kð Þf 2
p uð Þ

 !
ð4:102Þ

d�eM ¼
d�e w; kð Þ

fpðuÞ � fA wð Þ1=2�f 2
B wð Þ � fC kð Þ1=2�f 2

D kð Þ
� 	2=3

ð4:103Þ

u�pM ¼
u�p w; kð Þ

fB wð ÞfD kð Þfq uð Þ ð4:104Þ

Figures 4.28 and 4.29 show the unified correlations for the data from Concha
and Christiansen (1986).

Problem 4.13 Determine the minimum fluidization velocity of quartz particles
with 250 microns in size, density qs ¼ 2:65 g

�
cm3 and sphericity w ¼ 0:55, in

water and 20 �C.

The minimum fluidization velocity occurs at u ¼ 0:585, therefore, we have the
following results:
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Fig. 4.28 Unified drag coefficient versus Reynolds number for quartz, limestone and sand
particles [the same data as in Fig. 4.22 (Concha and Christiansen 1986)]
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u� ¼ 20:52
d�

fp � fq � f 2
B � f 2

D � 1þ
0:0921� d��3=2f�3=2

p

f 0:5
A � f 0:5

C � f 2
B � f 2

D

 !0:5

�1

0
@

1
A

2

q ¼ 1� uð Þ � up

qs ¼ 2:65 g
�

cm3

qf ¼ 1:0:9976 g
�

cm3; lf ¼ 0:01196 g=cm - s

P ¼ 0:00405; Q ¼ 2:96151

fAðwÞ ¼ 4:2355 ; fBðwÞ ¼ 0:5495; fCðkÞ ¼ 1:0558; fDðkÞ ¼ 0:9732

u ¼ 0:585; fpðuÞ ¼ 5:97734; fqðuÞ ¼ 1:1582:

d� ¼ d=P ¼ 6:1737 ; u� ¼ 0:03898 ; up ¼ u� � Q ¼ 0:1154

q ¼ ð1� uÞ � up ¼ 0:04791 cm=s:

Ganser (1993) proposed an empirical equation for the drag coefficient of non-
spherical non-isometric particles, including irregular particles, similar to that given
earlier for spherical particles (4.92), but with different values for the parameters K1.

CD ¼
1

K1

24
Re

1þ 0:1118 K1K2Reð Þ0:6567
� 	

þ 0:4305K1K2
2 Re

3305þ K1K2Re
ð4:105Þ

where
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Fig. 4.29 Unified sedimentation velocity versus size for limestone, quartz and sand particles [the
same data as in Fig. 4.22 (Concha and Christiansen 1986)]

92 4 Sedimentation of Particulate Systems



K1 ¼
1
3

dp

de
þ 2

3
w�1=2

� ��1

; K2 ¼ 101:8148 � log wð Þ0:5743

ð4:106Þ

In the equation for K1, de and dp are the volume equivalent and the projected
area equivalent diameters of the irregular particle respectively.

Finally, it is interesting to mention the work of Yin et al. who analyzed the
settling of cylindrical particles analytically and obtained, by linear and angular
momentum balances, the forces and torques applied to the particle during their fall.
Using Ganser’s equation for the drag coefficient, they solved the differential
equations of motion numerically obtaining results close to those measured
experimentally by them.
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