
Chapter 11
Transporting Concentrates and Tailings

Abstract Ore, water and mineral pulps are transported among the different
operational units of a mineral processing plant. Water is pumped through pipelines
to the grinding plant to be mixed with the ore to form the pulp that constitutes the
mill feed. The mill overflow is again mixed with water to adjust the solid content
and is sent through pipes to be classified in hydrocyclones. Cyclone underflow
with coarse material is sent back to the mill and the overflow goes to the flotation
plant. Transport in the flotation plant and between flotation sections and solid–
liquid separation units is through pipelines, and finally flotation tailings are
transported to tailing ponds through pipelines or channels. This chapter of the book
is related to the transport of pulps in mineral processing plants. Starting from the
continuity equation and the equation of motion for a continuous medium, the
expression for the pressure drop during fluid flow in a tube is obtained. Newtonian
fluid behavior is used to treat cases of laminar and turbulent flows. The concepts
of friction factor and Reynolds number are introduced and the distribution
of velocity, flow rate and pressure drop in a tube are obtained. The transport of
suspensions in pipelines is then treated, defining the different regimes separated by
the limiting deposit velocity. First, the flow of heterogeneous suspensions is
introduced and the form to calculate head loss is presented. Next, homogeneous
suspensions modeled by different rheological approaches are discussed. Finally
equations for the transport of suspensions in open channel are dealt with.

Ore, water and mineral pulps must be transported among the different operational
units of a mineral processing plant. In the crushing plant, where the ore is
essentially dry, it is transported efficiently by conveyor belts. Water is pumped
through pipelines to the grinding plant to be mixed with the ore to form the pulp
that constitutes the mill feed. The mill overflow is again mixed with water to adjust
the solid content and is sent through pipes to be classified in hydrocyclones.
Cyclone underflow with coarse material is send back to the mill and the overflow
goes to the flotation plant. Transport in the flotation plant and between flotation
sections and solid-liquid separation is through pipelines, and finally flotation
tailings are transported to tailing ponds through pipelines or Channels.
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Pipelines in mineral processing plants enable transporting maximum loads with
a minimum of space using conventional centrifugal pumps and pipes that in most
cases do not exceed 24 inches in diameter. Pipelines are extremely flexible and can
be used for short distance tailing disposal and long distance concentrate transpor-
tation, No matter how complex the topography; a pipeline can always be laid out.

Slurries can be classified as homogenous and heterogeneous suspensions.
Homogenous suspensions behave like fluids with increased density and particular
rheology, while in heterogeneous suspensions, also called mixed slurries; solid
particles settle and form a solid vertical concentration profile and some bed for-
mation while being transported.

A suspension at low solid concentration with particle sizes of less than 270 mesh
(50 lm) behaves heterogeneously and requires high transport velocity to prevent
particles from settling. The same suspension for high concentrations behaves
homogeneously at any transport velocity. The latter suspension behaves as a mono
phase fluid with particular rheological behavior. Knowledge about the rheological
properties of dense slurries is fundamental to design pipeline systems. The power
consumption to pump 100 (tph) of homogeneous slurry horizontally is between 0.1
and 0.2 (kW/ton-km) (Condolios and Chapus 1967). Gravity transport of homo-
geneous slurries is possible if there is a gradient of at least 1.5 (m) per 100 (m).

Slurries with particles larger than 270 mesh (50 lm) form heterogeneous or
mixed slurries that produce vertical concentration profiles and bed formations
while being transported. Particles in these suspensions are transported by saltation,
by bed movement or with concentration gradients that depend on the size of the
particles and the flow velocity. Higher velocities must be used to prevent settling.
Pulp with particle sizes under 9 mesh (2 mm) and at least 20 % of material under
270 mesh can be transported by centrifugal pumps with a power consumption of
about 3–4 kW/ton-km for a capacity of 100 tph (Condolios and Chapus 1967).
Materials with sizes over 9 mesh (2 mm) require more power, in the range of
6–12 kW/ton-km (Condolios and Chapus 1967), and subject pipes to severe wear.

11.1 Transporting Fluids in Pipelines

Incompressible stationary flow in a horizontal circular tube can be described by the
following variables, the fluid (1) density qðr; tÞ, (2) velocity vðr; tÞ and (3) stress
tensor Tðr; tÞ, where r and t are the position vector and time respectively. These
three field variables must obey the mass and linear momentum field equations:

r � v ¼ 0 ð11:1Þ

qrv � v ¼ r � T þ qg ð11:2Þ

where g is the gravitational constant.
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Since there are three field variables and only two field equations, a constitutive
equation must be postulated for the stress tensor:

T ¼ �pI þ TEðrÞ ð11:3Þ

where p is the pressure and TE is the extra stress tensor.
Cylindrical tubes have axial-symmetry and cylindrical coordinates can be used.

Thus for the horizontal tube shown in Fig. 11.1, the following equations are valid:

Continuity
ovz r; zð Þ

oz
¼ 0;) vz ¼ vzðrÞ ð11:4Þ

Since the velocity varies in the r direction only, TE
rz must be a function solely of r.

Momentum component r: 0 ¼ � op

or
þ oTE

rzðrÞ
oz

þ qgr ð11:5Þ

Momentum component h: 0 ¼ � op

oh
þ qgh ð11:6Þ

Momentum component z: 0 ¼ � op

oz
þ 1

r

o

or
rTE

rzðrÞ
� �

ð11:7Þ

Equation (11.7) can be written in the form:

op

oz
¼ 1

r

o

or
rTE

rzðrÞ
� �

¼ K ð11:8Þ

Integrating by parts and writing the pressure drop Dp ¼ p0 � pL [ 0, the left
side of (11.8) yields:

ZpL

p0

dp ¼
ZL

0

Kdz; ) pL � p0 � �Dp ¼ KL

K ¼� Dp

L

ð11:9Þ

g
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gr gθ
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Fig. 11.1 Flow in a
horizontal tube
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For the right side of (11.8), integrating by parts yields:
Z

d rTE
rzðrÞ

� �
¼
Z

Krdr

TE
rzðrÞ ¼

1
2

Kr þ C

r

Since the stress is finite at the tube axis, Trzð0Þ 6¼ 1, for r ¼ 0 C ¼ 0, then:

TE
rzðrÞ ¼

1
2

Kr

Substituting K from (11.9) yields the distribution of shear stress in a cylindrical
tube:

TE
rzðrÞ ¼ �

1
2
Dp

L
r ð11:10Þ

Designating TE
rzðrÞ � sðrÞ, Eq. (11.10) is usually written in the form (See

Fig. 11.2):

sðrÞ ¼ � 1
2
Dp

L
r with Dp ¼ p0 � pL [ 0 ð11:11Þ

If we call sw the shear stress at the wall, from Eq. (11.10) we can write:

sw ¼ �
1
2
Dp

L
R ð11:12Þ

The ratio of shear stress at r and at the wall is:

sðrÞ
sw
¼ r

R
ð11:13Þ

It is important to realize that Eqs. (11.10–11.13) are valid for all types of fluids,
since we have not invoked any type of constitutive equation for TE

rzðrÞ.

R

z

Lp0p
wτ

wτ

τ

Flow direction

Fig. 11.2 Shear stress
distribution for the flow in a
cylindrical tube
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11.2 Newtonian Fluids

11.2.1 Laminar Flows

For a Newtonian fluid, the constitutive equation for the extra stress TE
rzðrÞ is:

TE
rzðrÞ ¼ l

ovz

or
þ ovr

oz

� �
ð11:14Þ

Using the continuity Eq. (11.4) and substituting (11.10) gives:

� 1
2

Dp

L
r ¼ l

ovz

or
ð11:15Þ

Velocity distribution

Integrating (11.15) with boundary condition vzðRÞ ¼ 0 at the wall gives:

vzðrÞ ¼
1
4

DpR2

lL
1� r

R

� �2
� �

ð11:16Þ

The velocity distribution is parabolic as shown in Fig. 11.3.

Volume flow rate

The volume flow rate is given by Q ¼
R R

0 2pvzðrÞrdr, then:

Q ¼ 1
2
pDpR4

lL

Z1

0

1� r

R

� �2
� �

r

R
d

r

R

� �

Q ¼ 1
8
DppR4

lL

ð11:17Þ

Fig. 11.3 Velocity
distribution for the flow of a
Newtonian fluid in a circular
tube
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Pressure gradient

Dp

L
¼ 8lQ

pR4

� �
ð11:18Þ

Average velocity

The average velocity can be obtained from the volume flow rate by �vz ¼ Q=A,
where A ¼ pR2 is the cross sectional area of the tube:

�vz ¼
1
8
DpR2

lL
ð11:19Þ

Shear rate at the wall

Defining the shear rate _cw ¼ ovz=orjr¼R at the wall as sw ¼ l _cw, from Eq.
(11.12) for sw, we get:

_cw ¼
1
2

DpR

lL
ð11:20Þ

and using (11.19) we can write:

_cw ¼
8�vz

D
ð11:21Þ

where D ¼ 2R is the tube diameter.

Maximum velocity

The maximum velocity is obtained from (11.16) for r ¼ 0:

vm ¼
1
4
DpR2

lL
ð11:22Þ

Problem 11.1 Calculate the velocity distribution of three fluids with different
viscosities, l ¼ 0:001; 0:002 and 0:008 ½Pa-s] in a tube 1 inch in diameter and
50 m in length, subjected to a pressure drop of 172 (Pa). As well, calculate the
flow rate, average and maximum velocity, wall shear stress and shear rate and the
Reynolds flow number.
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Data are: R ¼ 0:0127 m, L ¼ 50 m, Dp = 172 Pa, l ¼ 0:001; 0:002; 0:008 Pa-s
As an example, calculate with l ¼ 0:001 Pa-s (see Fig. 11.4).

vzðrÞ ¼
1
4

DpR2

lL
1� r

R

� �2
� �

¼ 172� 0:01272

4� 0:001� 50
1� r

R

� �2
� �

vzðrÞ ¼ 0:14 1� r

R

� �2
� �

m/s

Maximum velocity:

vm ¼ 0:14 m/s

Volume flow rate:

Q ¼ 1
8
DppR4

lL
¼ 172� p� 0:1274

8� 0:001� 50
¼ 3:52� 10�5 m3=s

Average velocity:

�vz ¼
Q

pR2
¼ 3:52� 10�5

3:14� 0:01272
¼ 0:035 m/s
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Fig. 11.4 Velocity distribution for the flow of three fluids; with viscosities 1, 2 and 8 cp, in a
cylindrical tube 1 inch in diameter and 500 m in length
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Shear rate and shear stress at the wall

_cw ¼
8�vz

D
¼ 8� 0:035

0:0127� 2
¼ 21:9 s�1

sw ¼ l _cw ¼ 0:001� 21:9 ¼ 0:022 Pa

Reynolds number Re ¼ qD�v

l
¼ 1000� 2� 0:0127� 0:035

0:001
¼ 1:77� 103

Summary:

Newtonian fluid

l (Pa-s) 0.001 0.002 0.008
L (m) 50 50 50
R (m) 0.0127 0.0127 0.0127
Dp (Pa) 172 172 172
Q (m3/s) 3.52E-05 1.76E-05 4.40E-06
v av (m) 0.070 0.035 0.009
vm (m) 0.14 0.07 0.02
cw (s-1) 21.9 10.9 2.7
sw (Pa) 0.022 0.022 0.022

q (kg/m3) 1.00E+03 1.00E+03 1.00E+03
Re 1.77E+03 4.41E+02 2.76E+01

Friction factor for Newtonian fluids

The dimensionless solid-fluid resistance coefficient, called the Fanning friction
factor, is defined as the ratio of friction at the wall to the dynamic pressure:

f ¼ �sw

1=2q�v2
z

ð11:23Þ

From Eq. (11.12) sw ¼ � 1
2

Dp
L R, substituting (11.23) yields:

f ¼ Dp

L

D

2q�v2
z

ð11:24Þ

Equation (11.24) shows that the Fanning friction factor can also be interpreted
as the ratio of the pressure gradient to halve the dynamic pressure. Substituting the
value of Dp=L from (11.19) with (11.24) results in:

f ¼ 16
qD�vz=l

Using the definition of the Reynolds number Re ¼ qD�vz=l, the Fanning friction
factor for the laminar flow of a Newtonian fluid is:

f ¼ 16
Re

ð11:25Þ
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Another definition of the friction factor is the ratio of head loss to velocity head:

k ¼ hL=
�v2

z

2 g

� �
L
D

� �
½m], and since hL ¼ Dp

qg, k ¼ Dp
L

D
1=2ð Þq�v2, then k ¼ 4f . This version

is called the Darcy-Weisbach friction factor. In terms of k, the friction factor for
Newtonian fluids is:

k ¼ 64
Re

ð11:26Þ

11.2.2 Turbulent Flows

The transport of suspensions occurs in laminar or turbulent regimes. The param-
eters defining the transition between laminar and turbulent flows are the Fanning
friction factor f and the Reynolds number Re.

Due to the overriding effect of viscosity forces in the laminar flow of Newto-
nian fluids, even flows over asperous surfaces appear smooth. Therefore, the
roughness of the walls, unless it is very significant, does not affect flow resistance.
Under these flow conditions the friction coefficient is always a function of the
Reynolds number alone.

As the Reynolds number increases, inertia forces, which are proportional to
velocity squared, begin to dominate. The turbulent motion is characterized by the
development of transverse component of the velocity, giving rise to agitation of
the fluid throughout the stream and to momentum exchange between randomly
moving masses of fluid. All this causes a significant increase in the resistance to
the motion in turbulent flow compared to laminar flow.

When the surface of the wall is rough, separation occurs in the flow past the
rough section and the resistance coefficient becomes a function of the Reynolds
number and the relative roughness e�, defined as the ratio of the roughness height
and the tube diameter:

e� ¼ e
D

ð11:27Þ

where e is the average height of the asperities and D is the tube diameter. While for
low velocity flows in smooth tubes the friction factor decreases with higher
Reynolds numbers, in rough tubes the friction factor increases with the Reynolds
number and constant relative roughness. This is because at low flows the viscous
sublayer d is greater than the roughness protuberances d [ e and the fluid moves
smoothly past irregularities, while at higher velocities the sublayer becomes
thinner than the roughness protuberances, d \ e, which enhances the formation of
vortices and increases the friction factor and pressure drop. Tubes are considered

Fig. 11.5 Flow past rough tube walls for different ratios of viscous sublayer to roughness asperity
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smooth as long as the height of the asperity is less than the thickness of the laminar
sublayer. See the following Fig. 11.5.

Nikuradse (1933) made flow experiments with tubes covered with different
sizes of sand to simulate uniform roughness. His results are given in Fig. 11.6,
which can be interpreted as consisting of three regimes (Tamburrino 2000): (1)
laminar flow, (2) transition to turbulence and (3) rough walls regime.

First regime. In the first regime, with Reynolds numbers lower than 2,100, f is
independent of the roughness of the tube and is given by:

k ¼ 64
Re

ð11:28Þ

Second regime. With Re [ 2; 100 and Re2\ 5 the friction factor is given by
the Blasius equation for all roughness (see Fig. 11.6):

1
ffiffiffi
k
p ¼ �2 log

2:51

Re
ffiffiffi
k
p

� �
ð11:29Þ

For Re [ 2; 100 and 5 \ Re2\ 70 the friction factor increases with the
Reynolds number diverging to different lines for different degrees of constant
relative roughness:

1
ffiffiffi
k
p ¼ � 2 log 2:5

Re
ffiffi
k
p þ e�

3:7

� �
for Re [ 2;100 and 5 \ Re2\ 70 ð11:30Þ

where the Reynolds roughness number is Re2 ¼ e�
ffiffiffiffiffiffiffi
f=2

p
Re.

Fig. 11.6 Friction factor k versus Reynolds number Re for tubes with uniform roughness, with
�D ¼ e�, according to Nikuradse (1933), Idelchik et al. (1986)
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Third regime. In the third regime the friction factor becomes a different con-
stant for each relative degree of roughness, independent of the Reynolds number:

1
ffiffiffi
k
p ¼ �2 log e�

0:854

� �
for Re [ 2;100 and Re2[ 70 ð11:31Þ

Moody diagram for commercial pipes is a version of Eq. (11.30). See Fig. 11.7.

Problem 11.2 If D and �vz are known, calculate the pressure gradient due to friction
when water flows through a 4-inch diameter pipe at 1.5 m/s for pipe roughness
e ¼ 0 ðsmoothÞ; 0:1; 0:5 and 1 mm: Applying Eqs. (11.29–11.31) yields:

e (mm) 0 0.1 0.5 1
D (inch) 4 4 4 4
q (kg/m3) 1,000 1,000 1,000 1,000
l (Pa-s) 0.001 0.001 0.001 0.001
vav (m/s) 1.5 1.5 1.5 1.5
D (m) 0.1016 0.1016 0.1016 0.1016
E 0 0.00098425 0.00492126 0.00984252
Re 152,400 152,400 152,400 152,400
f 0.00413 0.00534 0.00771 0.51021
1/f0.5 - 1/f0.5 (0.00) (0.00) (0.00) (0.00)
ReE – 8 47 758

183 237 342 22,598

Fig. 11.7 Moody diagram
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Explicit equations for the friction factor

When the value of the average velocity or of the volume flow rate is not known, the
Reynolds number and the friction factor cannot be calculated directly. To avoid using
iterative calculations, Concha (2008) observed that Re

ffiffiffi
f
p

is a dimensionless number
independent of average velocity. From Eq. (11.24) f ¼ D=2q�v2

z

� �
� Dp=L, so that

Re2f ¼
qD�vz

l

� �2 D

2q�v2
z

� �
Dp

L

� �
¼ q

2l2

Dp

L

� �
� D3 ð11:32Þ

Since the left-hand side of this equation is dimensionless, the right-hand side
should also be dimensionless and a parameter N, with dimensions of size, which
can be defined as:

N3 ¼ 2l2L

qDp

� �
ð11:33Þ

so that (11.32) can be written in the form:

Re2f ¼ D

N

� �3

¼ D�3; and Re
ffiffiffi
f

p
¼ D

N

� �2=3

¼ D�2=3 ð11:34Þ

Similarly, Re=f is a dimensionless number independent of the pipe diameter.
Consider the function:

Re
f
¼ qD�vz

l

2q�v2
z

D

Dp

L

� ��1

¼ 2q2

l
Dp

L

� ��1

�v3
z ð11:35Þ

Defining the parameter F, with the dimension of velocity by:

Z3 ¼ l
2q2

Dp

L

� �
ð11:36Þ

then Eq. (11.35) can be written in the following form:

Re
f
¼ �vz

Z

� �3

¼ �v�3z ; and
1
ffiffiffi
f
p ¼

�v�3=2
z

Re1=2
ð11:37Þ

Multiplying (11.32) and (11.37) yields:

Re ¼ D��v�z ð11:38Þ

From (11.34) f ¼ D�

�v�2z

and from (11.29) to (11.31) we get:

�v�z
D�1=2

¼ �4 log
1; 26

D�3=2
þ 2

3:7

� �
; ð11:39Þ
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Since for Re \ 2,100 f ¼ 16
Re and Re

f ¼ �v�3z , we finally obtain:and

for Re2; 100 �v�z ¼
1

16
D�2

for Re2; 100 �v�z ¼ �4 log
A

D�3=2
þ Be�

� �
D�1=2

where Re25 : A ¼ 1:25; B ¼ 0

5�Re2 � 70 : A ¼ 1:25; B ¼ 0:270

Re270 : A ¼ 0; B ¼ 0:171

ð11:40Þ

Re2 ¼ e�
ffiffiffiffiffiffiffi
f=2

p
Re.

Problem 11.3 If D and Dp=L are knownð Þ Calculate the flow rate that will be
achieved when water is forced through a pipe 8 inches in diameter under a pressure
gradient of 200 Pa/m, if the pipe roughness is e ¼ 0:25 mm.

e (mm) 0.25 0.25 0.25 0.25
D (inch) 8 8 8 8
q (kg/m3) 1,000 1,000 1,000 1,000
l (Pa-s) 0.001 0.001 0.001 0.001

200 200 200 200
D (m) 0.2032 0.2032 0.2032 0.2032
e� ¼ Z 0.0000508 0.00123031 0.00123031 0.001230315
N 0.00021544 0.00021544 0.00021544 0.000215443
Z 0.00464159 0.00464159 0.00464159 0.00464159
D* 943.17 943.17 943.17 943.17
v*av 7.6778 11.4969 420.7164 349.0550
vav 0.036 0.053 1.953 1.620
Re 7,241 10,844 396,807 329,219
f 16.00000 7.13560 0.00533 0.00774
ReE 1 25 25 25
Q (m3/s) 0.00115568 0.00173055 0.06332765 0.052540943

The 4th column with Re2 ¼ 25 gives the correct result.

Problem 11.4 If D and Dp=L are knownð Þ Calculate the flow rate that will be
achieved when water is forced through a 4-inch diameter pipe under a pressure
gradient of 180 Pa/m, if the pipe roughness is e ¼ 0 ðsmoothÞ; 0:1; 0:5 and 1 mm:
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11.3 Mechanical Energy Balance

In an open flow the mechanical energy balance reads:

p1 þ
1
2

qv2
1 þ qgz1 ¼ p2 þ

1
2
qv2

2 þ qgz2

Table 11.1 Friction head
losses

Fitting X

45� elbow 0.3
90� elbow 0.7
90� square elbow 1.2
Exit from leg of T-piece 1.2
Entry into leg of T-piece 1.8
Unions and couplings Small
Globe valve fully open 1.2–6.0
Gate valve fully open 0.15
Gate valve 3/4 open 1.0
Globe valve 1/2 open 4.0
Globe valve 1/4 open 16
Sudden expansion

1� D1=D2ð Þ2
� �2

Discharge into a large tank 1
Sudden contraction X ¼ 0:7867 D2=D1ð Þ6�1:3322 D2=D1ð Þ4

þ 0:1816 D2=D1ð Þ2þ 0:363

Outlet of a large tank 0.5

e (mm) 0 0.1 0.5 1
D (inch) 4 4 4 4
q (kg/m3) 1,000 1,000 1,000 1,000
lð Pa� sÞ 0.001 0.001 0.001 0.001
Dp=Lð Pa/mÞ 180 180 180 180

D (m) 0.1016 0.1016 0.1016 0.1016
e� ¼ Z 0 0.00098425 0.00492126 0.00984252
N 0.000223144 0.00022314 0.00022314 0.00022314
Z 0.00448140 0.00448140 0.00448140 0.00448140

D* 455.31 455.31 455.31 455.31
v*av 331.7712 290.4213 242.0344 218.0251
vav 1.5 1.3 1.1 1.0
Re 151,059 132,232 110,201 99,269
f 0.00414 0.00540 0.00777 0.00958
ReE – 6.76166 33.80828 67.61657
Q (m3/s) 0.012053971 0.01055164 0.00879364 0.00792133
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that is:

Dp

qg
¼ 1

2 g
�v2

z2 � �v2
z1

� �
þ z2 � z1ð Þ ð11:41Þ

where the first term is the pressure head with Dp ¼ p2 � p1 [ 0, the second term
is the velocity head and the third term is the head.

The basis to calculate flow in conduits is the mechanical energy balance in open
flows to which two additional terms are added, one for the positive head HT

imposed by the pump and one for the loss
P

hL due to the friction within the fluid,
on the pipe walls and on the fittings.

p1þ
1
2
qv2

1 þ qgz1 þ HT �
X

hL ¼ p2 þ
1
2
qv2

2 þ qgz2

HT ¼
Dp

qg
þ 1

2 g
�v2

z2 � �v2
z1

� �
þ z2 � z1ð Þ þ

X
hL

ð11:42Þ

friction Lh h=

=

Σ

elevation 2 1h z z

pressure
ph
g

Δ
ρ

HT [m]

Fig. 11.8 Total head versus
flow demand

Fig. 11.9 Figure for problem 11.5
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In Eq. (11.42) HT ¼ Po
qgQf

and
P

hL ¼
_Ev

qgQ , where Po and Qf are the power and

the flow rate delivered by the pump and _Ev is the speed of energy dissipation by
friction and

P
hL is the sum of the head loss in the pipe line hpipe ¼ L�v2

z=gD
� �

� f

and pipe line fittings given as the numbers X of velocity heads, X � �v2
z=2 g.

Table 11.1 gives the head loss for different fittings.
Figure 11.8 is a graphic description of the total head that a pump must deliver

to a given flow rate of a Newtonian fluid.

Problem 11.5 Water flows under gravity from reservoir A to reservoir B, both of
which are of large diameters. Estimate the flow rate through a 6-inch diameter
pipe, with a roughness e ¼ 0:4 mm, and 75 m length. See Fig. 11.9.

Apply Eq. (11.42):

0 ¼ 0þ 0þ z2 � z1ð Þ þ
X

hL
X

hL ¼ z1 � z2 ¼ 40� 5 ¼ 35½m�

Head loss:

X
hL ¼ hfrictionðpipeÞ þ hfittingð1gate valveÞ þ hfittingð1globe valveÞ

þ hfittingð2elbowsÞ þ hentrance þ houtlet

1
ffiffiffi
k
p ¼ �2 log e�

0:458

� �
forRe [ 2;100 and Re2[ 70

k ¼ �2 log e�=0:854ð Þð Þ�2

hfriction ¼k
�v2

z

2 g

� �
L
D

Re2 ¼ e�
ffiffiffiffiffiffiffiffi
k=8

p
Re

Data Xoutlet 0.5

D (in] 6 Xinlet 1
L (m) 75 Xelbow 0.7
e (mm) 0.4 Xglobe valve 6
z1 (m) 40 Xgate valve 0.15
Z2 (m) 5 k 0.039606674
Pf (kg/m3) 1.000 assume v [m/s] 5.11
l (Pa-s) 0.001 hfriction 25.94999706
Results hfittings 9.05
D (m] 0.1524 hL [m]* 34.99999706
e (m) 0.0004 hL–hL*0 2.94393E-06
e* [-] 0.002624672 Re* 778,898
hL = Z1 - Z2 35 Ree[70 143.85
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Fig. 11.10 Particle behavior for the flow of a suspension through a tube according to Chien
(1994)
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11.4 Transporting Suspensions in Pipelines

The flow patterns of suspensions in tubes depend on the transport velocity. See
Fig. 11.10. At low velocities, the particles form a bed at the bottom of the tube and
are not transported by the fluid. As the velocity increases, particles at the surface of
the bed start moving. At higher velocities, the sediment moves as a cloud in sal-
tatory motion, and some particles are suspended and carried away with the fluid. If
the velocity increases, most particles are suspended but some settle. Under this
condition the suspension is termed a settling suspension and the flow regime is
heterogeneous. Increasing the velocity further, all particles are suspended and
particles and fluid behave as a homogeneous mixture, the suspension is non-settling
and the flow regime is homogeneous. Each of these behaviors corresponds to a
pressure drop and the type of motion can be controlled by the pressure gradient.

The flow pattern for transporting suspensions in a tube is closely related to the
suspension concentration. When particles begin to move above a stationary bed, the
fractions of the feed concentration uF in suspension is in the fraction range of
0.7–12.0. Motions of the bed yield fractions of the feed concentration between
0:2\u=uF\0:7. Partial suspension gives fractions of feed concentration of 0:7
\u=uF\1 and a complete suspension of particles gives u=uF ¼ 1 (Table 11.2).

Settling velocity

Since particles will settle from a flowing suspension, it is important to be able to
calculate the settling velocity of the particles at several concentrations. This can be
obtained from laboratory experiments or by calculations from sedimentation
models. A useful model was proposed by Concha and Almendra (1979a), which
was discussed in Sect. 4.1.6.

For a suspension of spherical particles, Concha and Almendra (1979b) proposed
using the same equation as for single particles, but with the P and Q parameters
depending on the particle concentration. See Sect. 4.1.7.

11.4.1 Flow of Heterogeneous Suspensions

The flow of a suspension is heterogeneous if some particles segregate and settle.
This happens when the average flow velocity is not fast enough to maintain the

Table 11.2 Relationship between flow patterns and solid concentrations

Mixture velocity vMi Flow pattern Fraction of
concentration u=uF

vM1 Homogeneous suspension 1.0
vM2 Asymmetric suspension 0.7–1.0
vM3 Living bed with asymmetric suspension 0.2–0.7
vM4 Stationary bed with some particles in suspension 0–0.2
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largest particles in suspension. In a heterogeneous regime, particles will form a
concentration gradient without sediment at the bottom of the tube.

Figure 11.11 shows the pressure drop for the flow of a suspension as a function
of the average flow velocity, with concentration as a parameter. For each sus-
pension concentration there is a minimum flow velocity for which the pressure
drop has a minimum. This is the lowest velocity that avoids sediment formation in
the tube. Joining the minimum points for each concentration, a curve representing
the limiting settling velocity is obtained.

Limiting deposit velocities

As discussed in the previous section, between the initiation of particle motion
and the complete suspension at several concentrations, there is a small range of
velocities at which the pressure drop is minimal. This range of velocities vLðuÞ is
termed limiting deposit velocities. The limiting deposit velocity is the lowest
velocity at which no particles are deposited. The optimal transport velocity for a
suspension produces the lowest pressures drop without depositing particles, that is,
slightly to the right of the limiting deposit velocity in a pressure drop versus flow
velocity graph.

In practice, the most common regime is with heterogeneous suspensions where
the largest particles in the suspension settle, but this does not change the rheological
characteristics of the pulp, although a concentration gradient is present in the pipe.

Fig. 11.11 Head loss versus average transport velocity for 0.44 mm fine sand at several
concentrations (Condolios and Chapus 1963)
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Correlations for the limiting deposit velocities

The simplest way that particles do not settle in a heterogeneous regime is to
ensure that the regime is turbulent and that the Reynolds number for the largest
particles is in Newton’s regime (Faddick 1986):

Re ¼ D�vz

m
[ 4; 000 and Rep ¼

du

m
[ 1; 000 ð11:43Þ

where D and �vz are the diameter of the pipe and the average velocity of the flow, d
and u are the diameter of the largest particle in the suspension and its settling
velocity and m is the kinematic viscosity of the fluid.

Problem 11.6 Design a pipe for the flow of 600 tph of magnetite mineral slurry
that behaves as a Newtonian fluid with density 1,667 kg/m3 and viscosity 5 mPa-s.
The magnetite density is 5,000 kg/m3 and its maximum particle size is 5 mm. Make
sure that the flow regime is heterogeneous with an average velocity of 2.00 m/s.

Pulp volume flow is Q ¼ F
q ¼ 600

1;667=1;000 ¼ 0:100 m3=s

Particle size: d ¼ 0:005 m
Magnetite density

qs ¼ 5; 000 kg /m3

Water density

qf ¼ 1;000 kg/m3

% of solids:

w ¼
100� qs � ðq� qf Þ

q� ðqs � qf Þ
¼ 100� 5; 000� ð1; 667� 1;000Þ

1;667� ð5;000� 1;000Þ
¼ 50 % solid by weight

Volume fraction:

u ¼
qf � w

qs � ð100� wÞ þ qf w
¼ 1; 000� 50

5; 000� ð100� 50Þ þ 1; 000� 50
¼ 0:167

From Eq. (4.45):

P ¼ 3
4

l2
f

Dq� qf � g

 !1=3
3
4

0:0012

ð5; 000� 1; 000Þ � 1; 000� 9:81

� �1=3

¼ 2:674� 10�5 m1=3

Q ¼ 4
3

Dq� lf � g

q2
f

 !1=3

¼ 4
3
ð5; 000� 1; 000Þ � 0:001� 9:81

1; 0002

� � 1=3ð Þ
¼ 0:0374 m=sð Þ1=3

d� ¼ d

P
¼ 0:005

2:674� 10�5
¼ 187:01

392 11 Transporting Concentrates and Tailings

http://dx.doi.org/10.1007/978-3-319-02484-4_4


From Eq. (4.51):

u� ¼ 20:52
d�

1þ 0:0921� d�3=2
� �1=2

�1

� �2

¼ 20:52
187

1þ 0:0921� 187�3=2
� �1=2

�1

� �2

¼ 22:698

u ¼ u� � Q ¼ 22:689� 0:03740 ¼ 0:849 m/s:

Rep
qf ud

l
¼ 4243:0 [ 1; 000

Select the average transport velocity: �vz ¼ 2:0 m/s

D ¼ 4Q

p�vz

� �1=2

¼ 4� 0:100
3:14� 0:304

� �
¼ 0:2524 m = 10:0 in

Re ¼
qf �vzD

l
¼ 1; 667� 2:00� 0:2524

0:005
¼ 1:6827� 105 [ 4; 000

Reynolds number fulfills the conditions for a heterogeneous flow. Summary:

F (tph) 600 P 2.673688E-05
d (m) 0.005 Q 3.740152E-02
ps (kg/m3) 5,000 d* 1.870076E+02
pf (kg/m3) 1,000 u* 22.689
P (kg/m3) 1,667 u (m/s) 0.849
gf (Pa-s) 0.005 Rep 4243.0
lf (Pa-s) 0.001 vz (m/s) 2.00
QF (m3/s) 0.09998 D (m) 0.2524
w (% by weight) 50.0 D (inch) 9.94
/ 0.167 Re 1.6827E+05

It has not been possible to establish the limiting deposition velocity from
fundamentals, but many correlations have been proposed in the range of particle
sizes from 50 (ml])to 5 (mm) and pipes from 50 mm (2 in) to 300 mm (12 in).

Chien (1994) reviewed the work of many researchers, among them Durand
(1953), Durand (1953), Spells (1955), Newitt et al. (1955), Cairns et al. (1960),
Govier and Aziz (1961), Schulz (1962), Sinclair (1962), Condolios and Chapus
(1963), Yufin and Lopasin (1966), Zandi and Govatos (1967), Babcock (1968),
Shook (1969), Bain and Bonnington (1970), Charles (1970), Wilson (1979),
Thomas (1979), Oroskar and Turian (1980) and Gillies and Shook (1991).

Unfortunately these equations are valid for different particle sizes, densities and
pipe diameters, and therefore give different values of limiting velocities that range
from 0.5 to 7. Figure 11.12 shows the application of these equations to suspensions
of particles 150 microns in size and 2,650 kg/m3 in density, in an 8-inch pipe and
volume fractions from 0 to 0.30.
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In what follows, we use Durand’s equation (1953) with parameters by McEl-
vian and Rayo (1993):

vL cm/sð Þ ¼ FLðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 gDDq=qf

q
; for u\0:20 ð11:44Þ

FLðuÞ ¼
1:1 Dq=qf

� �1=5
FLMðuÞ for small d50 and small D

1:25 2 gDDq=qf

� ��1=4
FLMðuÞ for small d50 and big D

d80=d50ð Þ1=10FLMðuÞ for big d50 and extended distribution and small D

8
>><

>>:

ð11:45Þ

FLM ¼ 0:1248uþ 0:165ð Þ ln d50ð Þ
þ 0:6458uþ 1:224ð Þ for 0:005\d50ðmmÞ\0:5 ð11:46Þ

In these equations u is the volume fraction of solids in the suspension, FLM is
given by, with the particle diameter in mm and FLðuÞ by Rayo (1993), where the
units of the variables are vL m/s, D m, d m; q kg/m3 and g = 9.81 m/s2. Rayo’s
equation is based on numerous years of experience designing pipelines for the
copper mining plants in Chile.

Problem 11.7 Determine the limiting sedimentation velocity of quartz suspen-
sions flowing in pipes 200 m long and 2 and 8 inches in diameter. The particle
diameters are d50 ¼ 50 ml, d80 ¼ 374:5 ml and d50 = 1.5 mm and concentration
20 % solid by weight. The solid density is qs = 2,650 kg/m3; water density
qf = 1,000 kg/m3and suspension viscosity l = 5 cp. Use Durand’s equation
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Fig. 11.12 Several correlations for the limiting velocities versus suspension concentration
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(1953), with parameters by Rayo (1993). For the same data draw a figure of the
limiting velocity versus concentration.

Utilizing Eqs. (11.44–11.46) and Fig. 11.13 yields:

Durand and Rayo dsmall;Dbig dsmall; Dsmall dbig; Dsmall

qs(kg/m3) 2,650 2,650 2,650
qf (kg/m3) 1,000 1,000 1,000
L (m) 200 200 200
D (m) 0.2032 0.0508 0.0508
d50 (m) 1.500E-04 1.500E-04 1.500E-03
d50 (mm) 1.500E-01 1.500E-01 1.500E+00
d80 (m) 3.7450E-04 3.7450E-04 3.7450E-04
g (m/s2) 9.81 9.81 9.81
X (%sol) 20 20 20
l (Pa-s) 5.000E-03 5.000E-03 5.000E-03
u 0.2284 0.2284 0.2284
P 1.050E-04 1.050E-04 1.050E-04
Q 4.761E-02 4.761E-02 4.761E-02
d* 1.428E+00 1.428E+00 1.428E+01
u* 0.082 0.082 2.994
u 3.923E-03 3.923E-03 1.426E-01
Dq/qf 1.650 1.650 1.650
q (kg/m3) 1377 1377 1377
vL (m/s) 1.161 1.340 1.706
Rep 1.177E-01 1.177E-01 4.277E+01
Re 4.717E+04 1.362E+04 1.733E+04
CD 2.112E+02 2.112E+02 1.597E+00

Pressure drop in a heterogeneous regime

In a heterogeneous regime the head loss Jm has two contributions: JL to maintain
the turbulent fluid flow in a Newtonian fluid, and, JS to maintain the particles in
suspension in the fluid. Both values are measured in columns of water per meter of
pipe length J ¼ h=L ¼ Dp=qgLð Þ, evaluated at the average mixture velocity:

Jm ¼ JL þ JS ð11:47Þ

There is no generally accepted equation for the head loss for the flow of
suspensions. In a form similar to the limiting velocity, there are several empirical
equations that give results with great scatter. We will use the Durand and Con-
dolios equation (1953).

Jm ¼ JL 1þ 81uA�3=2
� �

; where A ¼
�v2

z

ffiffiffiffiffiffi
CD
p

gD Dq=qf
ð11:48Þ

If particle size is widely distributed, (Wasp et al. 1977) recommended calcu-
lating total head loss by weighing the individual head loss by its volume fraction;
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Jm ¼
X

i

Jiui ð11:49Þ

where Ji and ui are the head loss associated with particle size xi in a suspension
with particle size distribution.

Problem 11.8 Calculate the pressure gradient due to friction when slurry, com-
posed of 1 mm silica particles with a density of 2,700 kg/m3, is pumped through a
5 cm diameter and 75 m pipeline at velocities of 3.5 m/s. The slurry contains
30 % silica by volume and the water has a density and viscosity of 1,000 kg/m3

and 0.001 Pa-s.

X
hL ¼ 23:96

�v2
z

2 g

� �
JL ¼ 23:96=75

�v2
z

2 g

� �
¼ 0:3195

�v2
z

2 g

� �

Jm ¼ JL 1þ 81 uA
�3=2

� �
; where A ¼

�v2
z

ffiffiffiffiffiffi
CD
p

gDDq=qf

u ¼
qf w

qsð100� wÞ þ qf w
¼ 1;000� 30

2;650 100� 30ð Þ þ 1;000� 30
¼ 0:139

P ¼ 3
4

l2
f

Dqqf g

 !1=3

¼ 3:59� 10�5 and Q ¼ 4
3

Dqlf g

q2
f

 !1=3

¼ 2:7842� 10�2
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Fig. 11.13 Limiting sedimentation velocity for quartz particles of two different sizes and three
different diameters, according to Durand’s equation with Rayo’s parameters
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d50 ¼ 1� 10�4 md� ¼ d50=P ¼ 2:78fp uð Þ ¼ 1� uð Þ�2:033¼ 1:3563 ; fq uð Þ
¼ 1� uð Þ�0:167¼ 1:0254u�

¼ 20:52
d�

fp uð Þfq uð Þ 1þ 0:0921f�3=2
p d�3=2

� �1=2
�1

� �2

¼ 0:7521u ¼ u� � Q

¼ 2:094� 10�2 ðm/s)Rep ¼
d50qf u

l
¼ 2:094CD

¼ 0:28 1� uð Þ�2:01 1þ 9:08 1� uð Þ�1:83

Re1=2

 !2

¼ 32 A ¼
�v2

z

ffiffiffiffiffiffi
CD
p

gD Dq=qf
A= �v2

z=2 g
� �

¼ 2
ffiffiffiffiffiffi
CD
p

D Dq=qf
¼ 2:31 ; A ¼ 2:31�v2

z Jm ¼ JL 1þ 81uA�3=2
� �

¼ 0:3195
�v2

z

2 g

� �
1þ 81� 0:138� 10v2

z

� ��3=2
� �

Assuming that vz ¼ 4:41 m/s ; with Jm ¼ 35=35 ¼ 1

1� 0:9183
�v2

z

2g

� �
ð1þ 81� 0:138 � ð10v2

z Þ
�3=2Þ ¼ 0:0858

Using the solver results in:

1�0:9183
�v2

z

2g

� �
1þ 81� 0:138� 10v2

z

� ��3=2
� �

¼ 0:0858

vz ¼ 4:61 m/s ; Q ¼ pD2=4
� �

vz ¼ 0:0842 m3=s:

11.4.2 Flow of Homogeneous Suspensions

A homogeneous flow regime is such that suspensions are non-settling. According
to Faddick (1985), if particles are small enough to be in a Stokes regime, their
settling velocity will be low in relation to their transport velocity, and the sus-
pension can be considered homogeneous.

Depending on the constitutive equation of the extra stress tensor, homogeneous
suspensions can behave as Newtonian or no-Newtonian. If a suspension behaves
Newtonian, the discussion and design criteria of Sect. 11.2 are valid. For non-
Newtonian suspensions, we will consider flows of Bingham, power law and
Herschel-Bulckley fluids in a tube.

(a) Bingham Fluids

Bingham fluids have the following constitutive equation for the shear stress in
cylindrical coordinates:
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TE
rzðrÞ ¼ sy þ K

ovz

or
ð11:50Þ

where K is a constant called plastic viscosity. From (11.10), TE
rzðrÞ is given by:

TE
rzðrÞ ¼ �

1
2
Dp

L
r ð11:51Þ

Calling Ry the radius for which the stress is TE
rz ¼ sy, we have:

TE
rzðRyÞ ¼ sy ¼ �

1
2
Dp

L
Ry; ð11:52Þ

Since the stress at the wall is given by (11.12), sw ¼ � 1
2

Dp
L R, the relationship

between the yield stress sy and the wall shear stress sw is:

sy

sw
¼ Ry

R
ð11:53Þ

Velocity distribution

Substituting (11.50) with (11.51) yields:

ovz

or
¼ � 1

2
Dp

KL
r þ sy

K

� �

Using (11.53) for sy results in: For

TE
rzðrÞ[ sy

ovz

or
¼ 1

2
Dp

KL
Ry � r
� �

ð11:54Þ

Integrating this expression yields:

vz ¼
1
2

Dp

KL
Ryr � 1

2
r2

� �
þ C

For r ¼ R; vzðRÞ ¼ 0, therefore:

C ¼ � 1
2

Dp

KL
RyR� 1

2
R2

� �

and

vz ¼
1
2

Dp

KL
Ryr � 1

2
r2

� �
� 1

2
Dp

KL
RyR� 1

2
R2

� �
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For

TE
rzðrÞ[ sy vzðrÞ ¼ �

1
2

DpR2

KL

Ry

R
1� r

R

� �
� 1

2
1� r

R

� �2
� �� �

ð11:55Þ

For

TE
rzðrÞ� sy vzðrÞ ¼ �

1
2
DpR2

KL

Ry

R
1� Ry

R

� �
� 1

2
1� Ry

R

� �2
 ! !

ð11:56Þ

Using (11.53) we obtain the alternative expressions:

vzðrÞ ¼ �
1
2
DpR2

KL

sy

sw
1� r

R

� �
� 1

2
1� r

R

� �2
� �� �

; for s [ sy

vzðrÞ ¼ �
1
2
DpR2

KL

sy

sw
1� sy

sw

� �
� 1

2
1� sy

sw

� �2
 ! !

; for s � sy

ð11:57Þ

Volume flow rate

The volume flow rate is given by Q ¼
R R

0 2pvzðrÞrdr, then:

Q ¼
ZR

Ry

2pvzðrÞrdr þ
ZRy

0

2pvzðrÞrdr

Q ¼
ZR

Ry

2p � 1
2
DpR2

KL

sy

sw
1� r

R

� �
� 1

2
1� r

R

� �2
� �� �� �

rdr

þ
ZRy

0

2p � 1
2
DpR2

KL

sy

sw
1� sy

sw

� �
� 1

2
1� sy

sw

� �2
 ! ! !

rdr

Q ¼� pDpR4

KL

Z1

Ry=R

sy

sw
1� nð Þ � 1

2
1� nð Þ2
� �� �

ndn

0

B@

þ
ZRy=R

0

sy

sw
1� sy

sw

� �
� 1

2
1� sy

sw

� �2
 ! !1

CAndn

Integrating this expression we obtain:

Q ¼ pDpR4

8KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

ð11:58Þ
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Average velocity

The average velocity is given by �vz ¼ Q=pR2, then:

�vz ¼
DpR2

8KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

ð11:59Þ

Shear rate at the wall

Using a similar procedure as in the case of Newtonian fluids, we have:

_cw ¼
8�vz

D
¼ 1

4
DpD

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

ð11:60Þ

Maximum velocity

From (11.57) the maximum velocity is that for 0 � r � Ry ðs\ syÞ

vm ¼
1
4
DpR2

KL
1� sy

sw

� �2

ð11:61Þ

Friction factor

Defining the Reynolds numbers ReB ¼ q�vzD=K and Re2 ¼2 =
ffiffiffi
f
p

ReB, the
friction factor according to Eq. (11.24) can be written as f ¼ DpD=2qL�v2

z :

f ¼ 16
ReB

1� 4
3

sy

sw

� �
þ 1

3
sy

sw

� �4
 !

for ReB\2; 100 ð11:62Þ

fsmooth ¼ 4:53 log ReB

ffiffiffi
f

p� �
� 2:3þ 4:5 log 1� sy=sw

� �� ��2
for ReB [ 4; 000 ; Re2\ 5

ð11:63Þ

frough ¼ fmooth �
fwater; rough

fwater; smooth

� �
for ReB [ 4; 000 ; 5 \ Re2\ 70 ð11:64Þ

f ¼ 4:07 log
D

2 2

� �
þ 3:36

� ��2

for ReB [ 4; 000 Re2[ 70 ð11:65Þ

Problem 11.9 For three suspensions of clay with density q ¼ 1; 275 kg/m3 that
can be represented by the Bingham model in the range 10 \ _c\ 500 ½s�1� with
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sy ¼ 5; 10 y 15Pa respectively and a plastic viscosity of K ¼ 150 mPa-s, flowing
in a cylindrical tube 1 inch in diameter and 200 m in length. See Fig. 11.14.
Calculate the pressure drop, the shear stress at the wall and the velocity distri-
bution necessary to transport 100 l of suspension per minute.

Pressure drop:

Q1 ¼ 100 ‘=min = 100/ð60 � 1; 000Þ ¼ 1:6667� 10�3 m3=s

Q2 ¼
p
8

DpR4

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

; �vz ¼
Qf

pR2
¼ 0:923 m=sð Þ; sw ¼

1
2

DpR

L

Q2 ¼
p
8

Dp� R4

K � L
1� 4

3
sy

0:5� Dp� R=L

� �
þ 1

3
sy

0:5� Dp� R=L

� �4
 !

Using solver to minimize the error DQ ¼ Q1 � Q2, by changing Dp leads to:

DQ ¼ 1:6667� 10�3 � p
8

Dp� R4

K � L
� 1� 4

3
5

0:5� Dp� R=L

� �
þ 1

3
5

0:5� Dp� R=L

� �4
 !

¼ 6:517� 10�9
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Fig. 11.14 Shear stress versus shear rate for a Bingham model of a material with plastic
viscosity of 150 (mPa-s) and yield stresses of 5, 10 y 15 (Pa)
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DQ ¼ 1:6667� 10�3 � p
8

Dp� R4

K � L
� 1� 4

3
5

0:5� Dp=L

� �
þ 1

3
5

0:5� Dp� R=L

� �4
 !

¼ 6:517� 10�9

Dp ¼ 4:10� 105 Pa

Dp ¼ 4:10� 105 � 1:45� 10�4 ¼ 60 psi

sw ¼
1
2
Dp� R

L
¼ 26:09 Pa ; Ry ¼ R� sy

sw
¼ 0:00487 m ; Re =

q� R� �vz

g
¼ 1:40� 104

The velocity distribution:

vzðrÞ ¼ �
1
2
DpR2

gL

sy

sw
1� r

R

� �
� 1

2
1� r

R

� �2
� �� �

For the three cases, calculations are in this excel sheet. See Fig. 11.15:

sy (Pa) 5 10 15
K (Pa-s) 0.150 0.150 0.150
Q (l/min) 100 100 100
R (inch) 1 1 1
L (m) 200 200 200
q (kg/m3) 1,275 1,275 1,275
Q (m3/s) 1.667E-03 1.667E-03 1.667E-03
R (m) 0.0254 0.0254 0.0254
sw (Pa) 26.09 32.76 39.42

sy=sw 0.19 0.31 0.38
cw (s-1) 173.94 218.39 262.83
VZav (m/S) 0.823 0.823 0.823
Dp (Pa) 4.109E+05 5.159E+05 6.209E+05
Dp (psi) 59.58 74.80 90.02
Ry (m) 0.00487 0.00775 0.00966
Ry (inch) 0.1916 0.3053 0.3805
Re 1.40E+04 1.40E+04 1.40E+04
DQ (m3/s) 6.517E-09 9.775E-09 9.492E-09
vm (m/s) 1.44 1.34 1.28

Problem 11.10 For three suspensions of materials with densities q ¼ 1; 275 kg/m3

that can be represented by the Bingham model in the range 10\ _c\500 s�1 with
sy ¼ 15 Pa respectively and a plastic viscosity of K ¼ 150; 300 and 500 mPa-s, see
Fig. 11.16, flowing in a cylindrical tube 1-inch in diameter and 200 m in length,
Calculate the pressure drop and velocity distribution necessary to transport 100 l of
the suspension per minute.
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Q ¼ 100½‘=m] = 100/ð60� 1;000Þ ¼ 1:6667� 10�3 m3=s

Q ¼ p
8

DpR4

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !
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Fig. 11.16 Shear stress versus shear rate for a Bingham model of a material with plastic
viscosity of 150, 300 and 500 (mPa-s) and yield stress of 15 (Pa)
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Fig. 11.15 Velocity distributions for a Bingham model of clays
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sw ¼
1
2
DpR

L
¼ Dp� 0:2

2� 200
¼ 5� 10�4Dp

Q ¼ p
8

Dp� 0:24

0:2� 200
1� 4

3
15

5� 10�4Dp

� �
þ 1

3
15

5� 10�4Dp

� �4
 !

Error ¼ 1:6667� 10�3 � p
8

Dp� 0:24

0:2� 200
1� 4

3
15

5� 10�4Dp

� �
þ 1

3
15

5� 10�4Dp

� �4
 !

¼ 1:000� 10�3

Using solver minimizing the Error by changing Dp leads to:

Dp ¼ 1:462� 106 Pa

sw ¼ 5� 10�4Dp ¼ 5� 10�4 � 1:462� 106

¼ 73:11 Pa

The velocity distribution is given by:

vzðrÞ ¼ �
1
2
DpR2

KL

sy

sw
1� r

R

� �
� 1

2
1� r

R

� �2
� �� �

¼ 1
2

0:22

0:15� 200
15

73:11
1� r

0:2

� �
� 1

2
1� r

0:2

� �2
� �� �

For the three cases, see Fig. 11.17.

sy (Pa) 15 15 15
K (Pa-s) 0.150 0.300 0.500
Q (l/min) 100 100 100
R (inch) 1 1 1
L (m) 200 200 200
q (kg/m3) 1,275 1,275 1,275
Q (m3/s) 1.667E-03 1.667E-03 1.667E-03
R (m) 0.0254 0.0254 0.0254
sw (Pa) 39.14 58.87 84.79
sy/ sw 0.38 0.25 0.18

cw (s-1) 260.95 196.24 169.57
vzav (m/s) 0.823 0.823 0.823
Dp (Pa) 6.210E+05 9.271E+05 1.335E+06
Dp (psi) 90.05 134.43 193.61
Ry (m) 0.00973 0.00647 0.00449
Ry (inch) 0.3832 0.2548 0.1769
Re 1.40E+04 6.99E+03 4.20E+03
DQ (m3/s) 9.995E-07 1.000E-06 1.000E-06
vm (m/s) 1.27 1.38 1.46
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(b) Power-Law Fluids

The constitutive equation for the shear stress of power law fluids flowing in a
circular tube is:

TE
rzðrÞ ¼ m

ovz

or

� �n

ð11:66Þ

where m is the consistency index and n is the power index.

Velocity distribution

Replacing (11.66) with (11.51) we have:

m
ovz

or

� �n

¼ � 1
2
Dp

L
r

Integrating yields

ovz

or
¼ �Dp

2 mL
r

� �1=n

ð11:67Þ
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Fig. 11.17 Velocity distributions for a Bingham model of a material with plastic viscosity of 20,
50 and 100 mPa-s and yield stresses of 15 Pa
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vzðrÞ ¼
Dp

2 mL

� �1=nZ
�rð Þ1=ndr þ C

¼ Dp

2 mL

� �1=n n

nþ 1
�rnþ1=n
� �

þ C

Using boundary condition vzðRÞ ¼ 0, results in:

vzðrÞ ¼
nR

nþ 1
DpR

2 mL

� �1=n

1� r

R

� �ðnþ1Þ=n
� �

ð11:68Þ

Figure 11.18 of Problem 11.11 shows the velocity distribution for the flow of a
power law fluid in a tube for different values of the power index.

Volume flow rate

The volume flow rate is given by Qf ¼
R R

0 2pvzrdr, then substituting (11.68)
and integrating:

Qf ¼
ZR

0

2p
nR

nþ 1
DpR

2 mL

� �1=n

1� r

R

� �ðnþ1Þ=n
� �

rdr

Q ¼ 2p
nR3

nþ 1
DpR

2 mL

� �1=n Z1

0

r

R
d

r

R

� �
�
Z1

0

r

R

� � 2nþ1=nð Þ
d

r

R

� �
0

@

1
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Fig. 11.18 Velocity distribution of power law fluids with consistency index m ¼ 3Pa - sn and
power law indices 0.20; 0.33; 0.50; 1 and 3
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Qf ¼ 2pR3 n

nþ 1
DpR

2 mL

� �1=n 1
2

r

R

� �2
				

1

0

� 1
2nþ 1ð Þ=nð Þ þ 1

� �
r

R

� � 2nþ1=nþ1ð Þð Þ
 !

Qf ¼ pR2 n
3nþ1ð Þ

DpRnþ1

2 mL

� �1=n

Average velocity

The average velocity is given by �vz ¼ Qf =pR2, then:

�vz ¼
n

3nþ 1ð Þ
DpRnþ1

2 mL

� �1=n

ð11:70Þ

and
8�vz

D
¼ 4n

3nþ 1ð Þ
DpR

2 mL

� �1=n

ð11:71Þ

Shear stress and shear rate at the wall and maximum velocity

Since the shear rate and shear stress at the wall are given by:

_cw ¼
ovz

or

				
r¼R

¼ � DpR

2 mL

� �1=n

sw ¼ m _cn
w

from (11.71) we finally have:

_cw ¼
3nþ 1ð Þ

4n

8�vz

D
sw ¼ m

3nþ 1ð Þ
4n

8�vz

D

� �n

ð11:72Þ

The maximum velocity is obtained from (11.68) for r ¼ 0, then:

vm ¼
nR

nþ 1
DpR

2 mL

� �1=n

ð11:73Þ

vzðrÞ ¼ vm 1� r

R

� �ðnþ1Þ=n
� �

ð11:74Þ

Pressure drop

From (11.69)

Dp ¼ 2 mL
Rnþ1

3nþ1ð Þ
n

Q
pR2

� �n
ð11:75Þ

Problem 11.11 For a mass flow of F ¼ 1;000 kg=h of a non-Newtonian fluid of
the potential type with a density of q ¼ 1;074 kg/m3, consistency index of m ¼ 3
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and power law indices of n ¼ 1=5; 1=3; 1=2 and 1; 3, calculate the pressure drop
Dp and draw a figure for the velocity distribution. See Fig. 11.18.

Wall shear stress and Reynolds number

Defining the friction coefficient in the same way as for Newtonian fluids in
laminar flow, f ¼ 16=Re, we can define a Reynolds number ReM for a power law
fluid as the ratio of the wall shear stress sw to the dynamic pressure Metzner and
Reed (1959). Then we have:

f ¼ �sw

1
2 q�v2

z

¼ 16
Re

ð11:76Þ

From (11.72) sw ¼ m 3nþ1ð Þ
4n

8�vz

D

� �n

So that ReM is:

ReM ¼ q�v2�n
z Dn

8n�1m 3nþ1
4nð Þn ð11:77Þ

Transition to a turbulent regime

As in the case of fluids with Newtonian behavior, the friction factor gives the
transition from a laminar to turbulent flow.

With the Reynolds number defined by (11.77), the roughness Reynolds number

by Re2 ¼2
ffiffiffiffiffiffiffi
1=f

p
Re and the friction factor f ¼ �DpD=2qL�v2

z , we have:

f ¼ 16
Re

for Re\2; 100 ð11:78Þ

frough ¼
fwater�rough

fwater�smooth

16
Re

for Re\2; 100 ; 5 \ Re2\70 ð11:79Þ

n 0.20 0.33333333 0.50 1.00
q (kg/m3) 1,074 1,074 1,074 1,074
m (Pa-sn) 3 3 3 3
d (inch) 1.00 1.00 1.00 1.00
L (m) 10 10 10 10
F (kg/h) 1,000 1000 1,000 1,000
Q (m3/s) 9.311E-04 9.311E-04 9.311E-04 9.311E-04
R (m) 0.0127 0.0127 0.0127 0.0127
vzav (m/s) 1.838 1.838 1.838 1.838
vm (m/s) 0.49 0.92 1.53 3.68
Dp (Pa) 1.40E+04 3.12E+04 8.99E+04 2.73E+06

408 11 Transporting Concentrates and Tailings



f ¼ 4:53
n

log Re
ffiffiffiffiffiffiffiffiffi
f 2�n

p� �
þ 2:69

n
� 2:95þ 0:68

5n� 8
n

� ��2

; for

Re [ 4; 000 ; Re2\ 5
ð11:80Þ

frough ¼ 4:07 log
1

2 2

� �
þ 6� 2:65

n

� ��2

for Re [ 4; 000 ; Re2[ 70

ð11:81Þ

Figure 11.19 shows the friction factor as a function of Metzner’s Reynolds
number for different values of the power function n for smooth walls according to
Chhabra and Richardson (1999).

Problem 11.12 A polyacrilamide solution of q ¼ 1; 074 kg=m3 in density is to be
pumped through a tube one inch in diameter and 10 m in length at a rate of
2:500 kg=h. Measurement in the laboratory showed that the fluid can be repre-
sented by the power law model with m ¼ 3Pa-sn and n ¼ 0:5. Calculate the nec-
essary pressure to maintain the flow and calculate the velocity distribution, average
and maximum velocity.

Volume flow

Q ¼ F

q� 3; 600
¼ 6:466� 10�4 m3=s

Fig. 11.19 Friction factor as a function of Metzner’s Reynolds number for different values of the
power function n (Chhabra and Richardson 1999)
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Pressure drop:

Dp ¼ 2 mL

Rnþ1

3nþ 1
n

Q

pR2

� �n

¼ 1:059� 105 Pa

Average velocity

�vz ¼
Q

pR2
¼ 1:128 m/s

Velocity distribution:

vzðrÞ ¼
nR

nþ 1
DpR

RmL

� �1=n

1� r

R

� �ðnþ1Þ=n
� �

¼ 2:128� 1� r

R

� �ðnþ1Þ=n
� �

Maximum velocity:

vzðrÞ ¼
nR

nþ 1
DpR

RmL

� �1=n

¼ 2:128

Velocity distribution vz ¼ 2:128� 1� r

R

� �ðnþ1Þ=n
� �

Problem 11.13 A non-Newtonian fluid with density equal to that of water flows
in a tube 300 mm in diameter and 50 m long at a rate of 300 kg/s. Rheological
measurements yield the following power law parameters:
m ¼ 2:74 Pa-s0:3 and n ¼ 0:30. Determine the necessary power of a pump and the
wall shear stress. See Fig. 11.20.

q (kg/m3) 1,074
m (Pa-sn) 3
n 0.5
D (inch) 1
L (m) 10
F (kg/h) 2,500
Q (m3/s) 6.466E-04
R (m) 1.270E-02
vzav (m/s) 1.277
D (Pa) 1.059E+05
vm (m/s) 2.12787
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Average velocity : �vz ¼
Qf

pR2
¼ 300=1; 000

3:14� ð0:15Þ2
¼ 4:24 m=sð Þ

The transitional or critical Reynolds number is Rec 	 2; 100.

ReMRc ¼
qv2�n

c Dn

8n�1m 3nþ1
4n

� �n ¼ 2; 100

then the critical velocity, that is, the velocity at which the flow changes from
laminar to turbulent, is:

vc ¼
8n�1m 3nþ1

4n

� �n
2; 100

qDn

 !n�2

¼ 2:91 m/sð Þ

Since the average velocity 4.24 (m/s) is greater than the critical velocity 2.91
(m/s), the regime is turbulent. The actual Reynolds number is:

ReMR ¼
q�v2�n

z Dn

8n�1m 3nþ1
4n

� �n ¼ 11090

With ReMR ¼ 11; 090 and n ¼ 0:3, from Fig. 11.16, we get a friction factor
f ¼ 0:0033.
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Fig. 11.20 Velocity distribution for a polyacrilamide solution with a power law model:
m ¼ 3½Pa-s0:5� y n ¼ 0:5
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The value of the pressure drop necessary to produce the flow is obtained from

the friction factor definition: f ¼ �sw=1=2q�v2
z ; sw ¼ � 1

2
Dp
L R ! f ¼ Dp

L
R

q�v2
z

therefore:

Dp ¼ 2q�v2
z L

D
f ¼ 1:9814� 104 ðPa)

and, the pump power Po is:

Po ¼ Qf � DP ¼ 6:0 kW

The wall shear stress is

sw ¼ �
1
2
Dp

L
R ¼ 29:7 Pa

D (m) 0.3
L (m) 50
q (kg/m3) 1,000
F (kg/s) 300
m (Pa-s0.3) 2.74
n 0.3
ReMRc 2,100
R (m) 0.15
Q (m3/s) 0.300
vzav (m/s) 4.24
vc (m/s) 2.921
ReMR 11,090
f (11090; 0.30) 0.0033
Dp (Pa) 19,814
Po (W) 5,944
sw (Pa) 29.7

(c) Herschel-Bulkley Fluid

The constitutive equation for the stress tensor for Herschel-Bulkley fluids in a
pipe has the form:

TE
rzðrÞ

\sy;
ovz

or ¼ 0


 sy; TE
rzðrÞ ¼ sy þ m ovz

or

� �n

(

ð11:82Þ

Since for any fluid TE
rzðrÞ ¼ � 1

2
Dp
L r, for Herschel-Bulkley fluids we have:

TE
rzðRyÞ ¼ sy ¼ �

1
2
Dp

L
Ry
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Then:

TE
rzðrÞ � sy ¼ �

1
2
Dp

L
r � Ry

� �

Velocity distribution

For TE
rzðrÞ
 sy ; Ry � r � R :

ovz

or
¼ TE

rzðrÞ � sy

m

� �1=n

¼ �
Dp r � Ry

� �

2 mL

� �1=n

ð11:83Þ

Integrating with boundary condition vzðRÞ ¼ 0

vzðrÞ ¼ � Dp

2 mL

� �1=nZ
r � Ry

� �1=n
dr

vzðrÞ ¼ � Dp

2 mL

� �1=n

� n

nþ 1
r � Ry

� �ðnþ1Þ=nþC1

vzðRÞ ¼ � Dp

2 mL

� �1=n

� n

nþ 1
R� Ry

� �ðnþ1Þ=nþC1 ¼ 0

C1 ¼� � Dp

2 mL

� �1=n

� n

nþ 1
R� Ry

� �ðnþ1Þ=n

vzðrÞ ¼ � DpR

2 mL

� �1=n

� nR

nþ 1
r

R
� Ry

R

� �ðnþ1Þ=n

� 1� Ry

R

� �ðnþ1Þ=n
 !

ð11:84Þ

Using Eqs. (11.12) and (11.53) for the shear stress at the wall and the yield
stress, Eq. (11.84) can be written in the form:

vzðrÞ ¼ sw
m

� �1=n� nR
nþ1

r
R�

sy

sw

� �ðnþ1Þ=n
� 1� sy

sw

� �ðnþ1Þ=n
� �

; for Ry� r�R

ð11:85Þ

For TE
rzðrÞ\sy ; 0\r\ Ry where sy ¼ TE

rz Ry

� �
:

ovz

or
¼ 0 ! vzðrÞ ¼ vz Ry

� �
ð11:86Þ

From (11.84),

vzðrÞ ¼ � � DpR

2 mL

� �1=n

� nR

nþ 1
1� Ry

R

� �ðnþ1Þ=n

for 0� r�Ry ð11:87Þ
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vzðrÞ ¼ � sw
m

� �1=n� nR
nþ1 1� sy

sw

� �ðnþ1Þ=n
for 0� r�Ry ð11:88Þ

Volume flow rate

The volume flow rate is given by Qf ¼
R R

0 2pvzrdr, then substituting (11.84)
and (11.87) into this equation and integrating yields:

Qf ¼ 2p
sw

m

� �1=n nR

nþ 1

ZRy

0

� 1� sy

sw

� �ðnþ1Þ=n

rdr

þ
ZR

Ry

r

R
� sy

sw

� �ðnþ1Þ=n

� 1� sy

sw

� �ðnþ1Þ=n

rdr

 !

0

BBBBBBBB@

1

CCCCCCCCA

¼ 2p
sw

m

� �1=n nR3

nþ 1

ZRy=R

0

� 1� sy

sw

� �ðnþ1Þ=n

ndn

þ
Z1

Ry=R

n n� sy

sw

� �ðnþ1Þ=n

� 1� sy

sw

� �ðnþ1Þ=n

n

 !

dn

0

BBBBBBBB@

1

CCCCCCCCA

Integrating yields (Bird et al. 1987):

Qf ¼ pnR3 sw

m

� �1=n 1
3nþ 1

1� sy

sw

� �2

þ 2
2nþ 1

sy

sw
1� sy

sw

� �
þ 1

nþ 1
sy

sw

� �2
 !

ð11:89Þ

Average velocity

The average velocity is given by �vz ¼ Q=pR2, then:

�vz ¼ nR
sw

m

� �1=n 1
3nþ 1

1� sy

sw

� �ðnþ1Þ=n

þ 2
2nþ 1

sy

sw
1� sy

sw

� �
þ 1

nþ 1
sy

sw

� �2
 !

ð11:90Þ
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Maximum velocity

The maximum velocity is obtained from (11.88), then:

vm ¼ �
sy

sw

� �1=n

� nR

nþ 1
1� sy

sw

� �ðnþ1Þ=n

ð11:91Þ

Problem 11.14 Figure 11.21 shows the velocity distribution for Herschel-Bulkley
fluids with yield stress sy ¼ 5; 10 and15Paconsistency index m = 3 Pa-sn and
power law indices of 0.50. See Fig. 11.21.
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Fig. 11.21 Velocity distribution of Herschel-Bulkley fluids with yield stresses sy=5; 10 and 15;
Pa, consistency index m = 3 Pa-sn and power law index of 0.50

sy (Pa) 15 10 5
n 0.5 0.5 0.5
m (Pa-sn) 3 3 3
q (kg/m3) 1,074 1,074 1,074
d (cm) 2.5 2.5 2.5
L (m) 10 10 10
F (kg/h) 2,500 2,500 2,500
Q (m3/s) 6.466E-04 6.466E-04 6.466E-04
R (m) 1.250E-02 1.250E-02 1.250E-02
vm (m/s) 1.318E+00 1.318E+00 1.318E+00
Dp (Pa) 1.125E+05 1.125E+05 1.125E+05
Ry 2.667E-03 1.778E-03 8.890E-04
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Transition to turbulent regime

As in the case of Newtonian fluids, the friction factor gives the transition from
laminar to turbulent flow. The Reynolds number is the same as that of pseudo
plastic fluids. See Eq. (11.77):

ReHB ¼
q�v2�n

z Dn

8n�1m 3nþ1
4n

� �n ; Re2 ¼2
ffiffiffiffiffiffiffi
1=f

p
ReHB ð11:92Þ

Now the friction factor f ¼ �DpD=2qL�v2
z is given by:

fsmooth ¼
1

22n�4

pR3

Q

� �
m

sw

� �1=n

� 1
ReHB

; for ReHB\2; 100 ð11:93Þ

frough ¼
fwater�rough

fwater�smooth

1
22n�4

pR3

Q

� �
m

sw

� �1=n

� 1
ReHB

; for

RePL \ 2; 100 ; 5 \ Re2\ 70
ð11:94Þ

fsmooth ¼
4:53

n
log RePL

ffiffiffiffiffiffiffiffiffi
f 2�n

p� �
þ 2:69

n
� 2:95þ 0:68

5n� 8
n

� ��2

; for

ReHB [ 4; 000 ; Re2\ 5

ð11:95Þ

frough ¼ 4:07 log
1

2 2

� �
þ 6� 2:65

n

� ��2

for RePL [ 4; 000; Re2[ 70

ð11:96Þ

Problem 11.15 The rheology of copper tailings is described by the values in the
following table:

% ty (Pa) g (mPa-s)

10 100 150 200

55 0.678 166 32 25 21
60 1.035 230 44 34 29
65 1.579 318 61 46 39
70 2.409 441 83 63 53

Calculate the pressure drop necessary to transport 5,000 l per minute of a
copper tailing with a density of 2,650 kg/m3, at 55, 60, 65 and 70 % of solid by
weight in a pipe 4 inches in diameter and 200 m long, if the rheological parameters
of the pulp are those given in the table. Model the rheology of the tailing and draw
the Rheological curves.
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Pressure drop:

Qf ¼ 5; 000 ‘=m = 5; 000=ð60� 1; 000Þ ¼ 8:333� 10�2 m3=s

Qf ¼
p
8

DpR4

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

_cw ¼
8�vz

D
¼ 32Q

pD3
¼ 32� 1:6667� 10�3

3:14� 0:023
¼ 26:5 1=s

sw ¼
1
2

DpR

L
¼ Dp� 0:1016

2� 200
¼ 2:54� 10�4Dp

sy ¼ 0:678 Pa

Qf ¼
p
8

Dp� 0:10164

0:818� 200
1� 4

3
0:678

2:54� 10�4Dp

� �
þ 1

3
0:678

2:54� 10�4Dp

� �4
 !

Error ¼ 8:333� 10�2 � p
8

Dp� 0:10164

0:818� 200
1� 4

3
0:678

2:54� 10�4Dp

� �
þ 1

3
0:678

2:54� 10�4Dp

� �4
 !

¼ 6:998� 10�7Dp ¼

The following excel sheet permits the calculation of all solid percentages:

% solid sy Pa m n - 1 n
55 0.678 818.26 -0.6963 0.3037
60 1.035 1141.8 -0.6996 0.3004
65 1.579 1611.7 -0.7072 0.2928
70 2.409 2266.1 -0.7134 0.2866
Average -0.70 0.30

% solids 55 60 65 70
qs (kg/m3) 2,650 2,650 2,650 2,650
qf (kg/m3) 1,000 1,000 1,000 1,000
sy (Pa) 0.678 1.035 1.579 2.409
g (Pa-s) 0.818 1.142 1.612 2.266
Q (l/min) 5000.00 5000.00 5000.00 5000.00
R (inchs) 4.00 4.00 4.00 4.00
L (m) 200 200 200 200
q (kg/m3) 1520.80 1596.39 1679.87 1772.58
Q (m3/s) 8.333E-02 8.333E-02 8.333E-02 8.333E-02
R (m) 0.1016 0.1016 0.1016 0.1016
sw (Pa) 83.66 116.92 165.19 232.46
sy/ sw 0.01 0.01 0.01 0.01
cw (s-1) 102.28 102.38 102.48 102.59
vzav (m/s) 2.571 2.571 2.571 2.571
Dp (Pa) 3.294E+05 4.603E+05 6.504E+05 9.152E+05
Dp (psi) 47.76 66.74 94.30 132.71
Ry (m) 0.00082 0.00090 0.00097 0.00105
Ry (inch) 0.0324 0.0354 0.0382 0.0415
Re 3.82E+04 2.88E+04 2.14E+04 1.61E+04
DQ (m3/s) 9.998E-07 9.999E-07 1.000E-06 1.000E-06
vm (m/s) 5.11 5.11 5.11 5.10
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Fig. 11.22 Yield stress versus % solid by weight for a copper tailing
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g mPa-sð Þ ¼ 19:3673 exp 0:067 %ð Þ _c�0:7

sy Pað Þ ¼ 0:0035 exp 0:0845 %ð Þ
s Pað Þ ¼ 0:0035 exp 0:0845 %ð Þ þ 19:3673 exp 0:067%ð Þ _c0:3

Figures 11.22, 11.23, 11.24, and 11.25 show the results graphically.

m= 19.373exp(0.068%)
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11.5 Transporting Suspensions in Open Channels

Due to the natural slopes of the land around mines, it is often convenient to use
Channels instead of pipelines to transport tailings. From a fundamental point of
view, the problem of Channel flow is more complex than tube flow because the
flow area is not known in advance and it can change while the flow is developing.
The case is simpler if the flow is uniform.

Although several Channel geometries are used in open Channel flows, the most
commonly used in slurry transport are the rectangular section, semicircular, and a
composed semicircular-rectangular section. The relevant geometrical parameters
are the cross-section flow area, A, and the wetted perimeter, P, as given in
Table 11.3.

Steady open Channel flow is classified as uniform or non-uniform. A uniform
flow is one for which the fluid depth h above the Channel bed is constant. Non-
uniform flows are further classified into gradually varied flows, where the cur-
vature of the free surface is small compared to the depth of the fluid, and rapidly
varied flows, where the curvature is comparable to the fluid depth. Analysis of
gradually varied flow is simpler because a hydrostatic pressure distribution can be
assumed. Curvature in rapidly varied flows adds a radial acceleration to the fluid
particles that must be added to the gravity effect to compute the pressure.

In studying steady state gradually varied flows in open Channels we want to
determine the flow depth h as a function of the distance x for a given flow rate Qf.

Table 11.3 Geometrical parameters of typical channels used for slurry conveyance

Geometry Area Wetted perimeter

b

h

A ¼ bh P ¼ bþ 2 h

h
a

β A ¼ a2

8 b� sen bð Þð Þ P ¼ a
2 b

a
h

A ¼ 2a h� að Þ þ p
2 a2 P ¼ paþ 2 h� að Þ
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In this case the flow depth depends on the Channel characteristics (geometry,
slope, wall roughness), and fluid properties (density and viscosity). See Fig. 11.26.

Flow of copper tailings in Channels has more favorable conditions than flow in
pipelines. For example, the concentration of the pulp in Channels has no influence
on the speed of the flow and whether or not the flow is turbulent, (velocities above
0.8 m/s will yield turbulent flow). The viscosity has no influence on the transport
velocity but influences in limiting deposit velocity. On the other hand, the head
loss can be calculated using the methods for water with similar wall conditions.
These simplifications are not valid for pipe flow.

The slope of the Channel is important. As a rule of thumb, slight slopes, such as
0.3 %, need transport velocities greater than 1.2 m/s to avoid embankment.
Velocities of 1.5 m/s are recommended for copper tailings (Kleiman 1960). If
water is added to a developed flow with high solid content, such as 45 % by weight
in a Channel with a slight slope and slow transport velocity, particles will settle.
This is because the water dilutes the pulp and larger particles can segregate. Once
a bed forms under this condition, it cannot be eliminated by washing with water. A
flow with high concentration at velocities higher than 1.0 (m/s) will eventually
removes the bed. Channels with slopes greater than 0.6 % and flows with high
solid concentration will not segregate particles if water is added, and Channels
with slopes greater than 0.9 % will not embank even with low flows.

11.5.1 Sub-Critical and Super-Critical Flow

Open Channel flows can be classified (Tamburrino 2000) in several ways,
depending on the aspects we are interested in. We already distinguished between
gradual and rapid flow, depending on the flow curvature. Other aspects we can
consider are also found in pipe flows, such as the flow variation over time (steady
or unsteady flow), and the importance of viscous effects with respect to inertia
(viscous or turbulent regime). For non-homogeneous suspensions, a turbulent flow
is required to avoid particle settling.

Another important classification arises from comparing mean flow velocity �vx

to the speed of the small surface wave c. Assuming low wave amplitude and

Fig. 11.26 Uniform and
non-uniform flow in a
channel
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negligible surface tension effects, the speed of a surface wave is given from
potential flow theory by:

c2

gh
¼ k

2ph
tgh

2ph

k

� �
ð11:97Þ

where k is the wave length and g is acceleration due to gravity. When k � h,
tgh 2ph=kð Þ 	 2ph=k, and the speed of a small perturbation on the free surface of a
flow having a finite depth is given by:

c ¼
ffiffiffiffiffi
gh

p
ð11:98Þ

A further classification arises when �vx is compared to c, it being customary to
work with the ratio �vx=c ¼ �vx=

ffiffiffiffiffi
gh
p

� Fr, which is termed the Froude number.
Thus, the following classification arises in open Channel flows:

Fr \ 1, the flow is called sub-critical (or tranquil flow).
Fr = 1, the flow is called critical.
Fr [ 1, the flow is called supercritical (or rapid flow).

When flow conditions are such that the Froude number moves in the range
0.8–1.2, the flow is called trans-critical. Design of open Channels usually avoids
trans-critical flows due to the presence of water surface oscillations and flow depth
variations. A supercritical regime is recommended for slurry transport in Channels.

The speed given in (0.91) is valid for two-dimensional flows. A general defi-
nition, valid for a Channel with any shape is as follows:

c ¼
ffiffiffiffiffiffiffiffi

g
A

bs

r

ð11:99Þ

where A is the flow cross sectional area and bs is the free surface width.

11.5.2 Steady Uniform Flow

In steady uniform flow there is equilibrium between the force generating the
motion (gravity) and the resistance force opposing the flow. Theoretically, a
gradually varied sub-critical flow will became uniform at an infinite distance
upstream, and a super-critical flow reaches the condition of uniform flow at an
infinite downstream. In practice however, as shown in Fig. 11.26, we can consider
a finite distance for the uniform flow to develop.

In the figure, the sluice gate provides a control section that imposes a boundary
condition for the flow downstream the gate. The flow that develops close to the
gate is non-uniform, with h as a function of x. After a certain distance, variations of
h with x are very small and of the order of the natural water surface fluctuations.
Here we can consider that the flow has reached the uniform condition. The uniform
flow is also called normal flow and its depth normal depth.
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Mass balance

The macroscopic mass balance indicates that the volume flow rate Q is con-
stant, then:

Q2 ¼Q1

A2�v2 ¼A1�v1
ð11:100Þ

where A is the wetted area and �vi is the average velocity. Since A2 ¼ A1, we have:

�v2 ¼ �v1 ð11:101Þ

Momentum balance

The macroscopic momentum balance at steady state applied to the control
volume defined between sections (1) and (2) in Fig. 11.26 results in:

I

S
qvv � ndA ¼

Z

V

qgdV þ
I

S
T � ndA ð11:102Þ

The wall shear stress sw is defined by:

sw ¼ �
1
S

Z

S
TE � ndA
� �

� i

where q is the pulp density and i is the unit vector in the direction of the flow.
Since the velocity and the areas are constant, the first term of Eq. (11.102) vanishes
and the other two terms become:

0 ¼ q ðg � iÞAL� swS ð11:103Þ

ðg � iÞ ¼ gsinh is the slope of the Channel, S ¼ LP is the wetted surface, that is, the
Channel surface in which the shear stress is acting. Then,

sw ¼ qgsinh
A

P
ð11:104Þ

Thus, Eq. (11.97) provides an expression for the average wall shear stress in terms
of the Channel characteristics (A, P and h), the density of the substance being
conveyed and the acceleration of gravity. Note that the equilibrium does not
discriminate between liquid and mixture, so that Eq. (11.104) is as valid for water
as for slurries.

The ratio between the cross sectional flow area and the wetted perimeter is
called hydraulic radius Rh, which is an important geometric parameter of the flow
representing the ratio between the slurry (or liquid) volume, where gravity is
acting, and the Channel surface where there is shear stress between the liquid (or
slurry) and the wall.
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Rh ¼
A

P
¼ bh

P

cross sectional areaih
wetted perimeterih

Note that Eq. (11.104) is valid for steady uniform flow in any geometry. The
only restriction is that the Channel must be prismatic, that is, its shape must not
change with distance in the flow direction:

sw ¼ qgsinhRh ð11:105Þ

For a rectangular Channel A ¼ bh and P ¼ bþ 2 h

sw ¼ qgsinh
bh

bþ 2 h
ð11:106Þ

Flow velocity

In terms of the dimensionless wall shear stress, known as Fannig friction factor,
defined by f ¼ 4sw=ð1=2Þ�v2

x , we have:

f ¼ 8qgsinh
bh

bþ 2 h

1
�v2

x

ð11:107Þ

The most popular expression for the Fanning friction f factor is:

f ¼ 116
v2

R1=3
h

ð11:108Þ

so that the average flow velocity is:

�vx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8qgsinh
116v2

bh

bþ 2 h

� �4=3
s

ð11:109Þ

where v is the roughness coefficient. Table 11.4 shows friction factors f for several
Channels of uniform cross sections.

Volume flow rate

From Eq. (11.109), the flow rate for rectangular Channels is:

Qf ¼ bh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8qgsinh
116v2

bh

bþ 2 h

� �4=3
s

ð11:110Þ
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Fluid depth

Calculating h from (11.110) yields:

h ¼ 1
b

116ðbþ 2 hÞ4=3v2Q2
f

8 gsenh

 !3=10

ð11:111Þ

The height h is calculated from the implicit Eq. (11.111) by iteration.
Another version of this equation is:

h ¼ 1
b
ðbþ 2 hÞ 116v2Q2

8 gsenh

� �3
4

 !2
5

ð11:112Þ

Limiting velocity

Domínguez and Harambour (1989) proposed the following limiting deposit
velocity to ensure that particles do not settle:

vL ¼ 0:6505 8g
qs

q
� 1

� �
d85

� �0:5 d85

4Rh

� �0:342 d99

d85

� �0:386

ð11:113Þ

where qs and q are the solid particle and pulp densities, di are the sizes where i %
of the material passes and Rh is the hydraulic radius.

Mechanical energy balance

The mechanical energy balance is:
I

S
1=2q�v2

xv � n
� �

dA ¼
I

S
v � T � ndA�

I

S
q/v � ndA� _Ev

I

S
1=2ð Þq�v2

xv � ndA ¼ �
I

S
pv � ndA�

I

S
q/v � ndA� _Ev

Table 11.4 Friction factors for channels

Type of channel of uniform cross section v; ft1=6 v;m1=6

Sides and bottom lined with wood 0.009 0.0074
Neat cement plaster; smoothest pipes 0.010 0.0082
Cement plaster; smooth iron pipes 0.011 0.0090
Unplanned timber evenly laid; ordinary iron pipes 0.012 0.098
Best brick work; well-laid sewer pipes 0.013 0.0170
Average brick work; foul iron pipes 0.015 0.0123
Good rubble masonry; concrete laid in rough form 0.017 0.0139
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Since

/ ¼ g gðxÞ þ z cos hð Þ
p ¼ qg h� zð Þ cos h½ �

1=2ð Þq�v2
2A2 � 1=2ð Þq�v2

1A1 ¼ �qg g2 þ h cos hð Þ�v2
2A2 � g1 þ h cos hð Þ�v2

1A1
� �

� _Ev

but �v2A2 ¼ �v1A1;�v2
2A2 ¼ �v2

1A1; p2�v2A2 ¼ p1�v1A1; z2�v2A2 ¼ z1�v1A1, so that this
equation reduces to:

g1 � g2 ¼ � _Ev=qgQ
� �

Since:

g1 � g2 ¼ Lsen h and hf ¼ _Ev=qgQ
� �

hf ¼ Lsen h ð11:114Þ

Thus, the viscous dissipation, or head loss, is just equal to the decrease in
potential energy for uniform flow.

Problem 11.16 A uniform flow of copper flotation tailings takes place in a
rectangular Channel constructed of concrete. If the angle between the Channel and
the horizontal is 1.0� and the Channel is 0.9 m wide and water is 0.50 m deep,
calculate the velocity and the volume flow rate.

v ¼ 0:0139 m1=6

Qf ¼ bh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 gsen hðbhÞ4=3

116v2ðbþ 2 hÞ4=3

vuut ¼ 0:9� 0:5

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 9:8� senð1� p=180Þ � ð0:9� 0:5Þ4=3

116� 0:01392ð0:9þ 2� 0:5Þ4=3

vuut ¼ 1:347 m3=s

�v ¼ Q

b� h
¼ 1:346

0:9� 0:5
¼ 2:99 m/s

b (m) 1.00
h (�) 1
Q (m3/s) 1.346
assume h* (m) 0.45
h*-h = 0 9.18E-06
g (m/s2) 9.81
v (m1/6) 0.0139
v ((m/s) 146683.42
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Problem 11.17 A Channel 0.9 m wide and 1 m high with a slope of 1.0� carries
1.347 m3/s of copper flotation tailings. Calculate the height of the water in the
Channel.

Using solver from Excel by assuming h = 1 m in Eq. (11.112) results in:

Problem 11.18 Design a Channel of rectangular cross section to transport a
volume flow rate of 0.3 (m3/s) of copper tailings. The Channel should have a slope
of tan h ¼ 0:0157 and a height to width ratio of h=d ¼ 0:5.

Assume h = 1 (m) in Eq. (11.112) and search for objective, with the result

tanh (�) 0.0157
Q (m3/s) 0.300
h/b 0.5
h (�) 0.01569871
assume h* (m) 0.27
b (m) 0.54
h*-h = 0 2.83E-04
g (m/s2) 9.81
v (m1/6) 0.0139
v (m/s) 2.05

Problem 11.19 For a smooth concrete Channel 2 m wide with a slope of 0.001
has a volume flow rate of 1.0 m3/s, determine the wall shear stress per unit length.

Using the solver of Excel and assuming h� ¼ 1 in Eq. (11.112) and calculating
sw from (11.106) gives:

q (kg/m3) 1,000
tanh (�) 0.001
Q (m3/s) 1.000
b (m) 2.00
g (m/s2) 9.81
h (�) 0.001
senh 0.001
assume h* (m) 0.21
h*-h = 0 2.62E-06
v (m 1/6) 0.0139
v (m/s) 2.41
sw (Pa/m) 1.68
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