
Chapter 10
Suspension Rheology

Abstract The importance of rheology in the mining industry derives from the fact
that all materials being processed are suspensions, that is, mixtures of solid par-
ticles and fluids, usually in water. In mineral processing plants, water is mixed
with ground ore to form a pulp that constitutes the mill feed. The mill overflow is
mixed again with water to adjust the solid content for classification in hydrocy-
clones. Pulp characteristics are essential in the transport of products to their final
destination. A suspension, like all types of materials, must obey the laws of
mechanics under the application of forces. The flow patterns of suspensions in
tubes depend on their concentrations and transport velocities. In diluted suspen-
sions at low velocities particles will settle. The suspension is termed a settling
suspension and the flow regime is considered heterogeneous. At a velocity beyond
a value at which all particles are suspended gives a non-settling suspension and the
flow regime is homogeneous with Newtonian behavior. Concentrated suspensions
are usually homogenous with non-Newtonian behavior. The variables and field
equations for all types of fluids are presented and constitutive equations differ-
entiate between Newtonian and non-Newtonian behavior. Empirical models of
non-Newtonian behavior are presented, including pseudo-plastic and dilatant
behavior with Cross and Carreau and Power-law models, and yield-stress models
with Bingham and Hershel-Bulkley models. The study of the operational effect on
viscosity includes variable such as solid particle size and concentration, temper-
ature, pressure, time and pH. Rheometry provides experimental methods to
determine rheological parameters such as viscosity and yield stress.

E. C. Bingham introduced the word rheology in 1929 to describe the study of
deformation and flow of all types of materials. The axioms of mechanics and the
mass and momentum balances are valid for all macroscopic bodies and the dis-
tinction among different materials is established by constitutive equations, that is,
the response of materials to applied stresses. Strictly speaking, rheology covers the
mechanical study of all matter considered as continua, but it is usually reserved for
those with non-linear constitutive equations, therefore leaving out Hooken solids
and Newtonian fluids. Rheology can be considered a description, with constitutive
equations also called rheological equations of state, of material behavior and not of
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materials. A rheological study includes the formulation of constitutive equations
and the experimental methods to determine corresponding parameters, which is
called rheometry.

The importance of rheology in the mining industry derives from the fact that all
materials being processed are suspensions, that is, mixtures of solid particles and
fluids, usually water. In mineral processing plants these suspensions are termed
pulps. In a grinding plant, water is mixed with ground ore to form a pulp that
constitutes the mill’s feed. The mill overflow is mixed again with water to adjust
the solid content required to be classified in hydrocyclones. Pulp characteristics are
essential in the transport of products to their final destination in the flotation plant.

A suspension, like all types of materials, must obey the laws of mechanics
under the application of forces. The flow patterns of suspensions in tubes depend
on their concentrations and transport velocities. In diluted suspensions at low
velocities particles will settle. The suspension is termed a settling suspension and
the flow regime is considered heterogeneous. At a velocity beyond a value at
which all particles are suspended gives us a non-settling suspension and the flow
regime is homogeneous with Newtonian behavior. Concentrated suspensions are
usually homogenous but with non-Newtonian behavior. Generally, mineral pulps
have non-Newtonian behavior, therefore their rheological characteristics are
essential in the different unit operations in a mineral processing plant.

10.1 Introduction to Rheology

The incompressible stationary shear flow of a fluid can be described with the
following variables, (1) material density qðr; tÞ, (2) velocity vðr; tÞ and (3) the
stress tensor Tðr; tÞ, where r and t are the position vector and time respectively.
These three field variables must obey the mass and linear momentum field
equations:

r � v ¼ 0 ð10:1Þ

qrv � v ¼ r � T þ qg ð10:2Þ

where g is the gravitational constant vector.
Since there are three field variables and only two field equations, a constitutive

equation must be postulated for the stress tensor:

T ¼ �pI þ TEðrÞ ð10:3Þ

where p is the pressure and TE is the shear stress tensor or extra stress tensor.
The extra stress tensor defines the type of fluid, for example, a Newtonian fluid

is TE given by:

TE ¼ l rvþrvT
� �

ð10:4Þ
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where l is a constant called shear viscosity and rv is the shear rate tensor.
For a two-dimensional axi-symmetrical flow of a Newtonian fluid in the x2 or

z direction in case of a cylindrical tube, the shear stresses T12ðx1; x2Þ\0 or
Tr;zðr; zÞ\0 reduces to:

TE
12 ¼ l

ov2

ox1
TE

rz ¼ l
ovz

or
ð10:5Þ

The stresses are usually written in the form TE
12 � s or TE

rz � s and the velocity
gradient as ov2=ox1 ¼ _c or ovz=or ¼ _c, then Eq. (10.5) is used in the form:

s ¼ l _c ð10:6Þ

where the shear stress s is measured in Pascal (Newton per meter) (Pa = N/m2),
the shear rate _c in (s-1) and the viscosity in (Pa s).

Figure 10.1 represents the shear stress for the flow in a cylindrical tube in the
direction z, where sw is the shear rate at the wall of the tube (see Chap. 11).

10.2 Constitutive Equations

Materials with a constant viscosity behave as Newtonian fluids. Common fluids
like water and air have Newtonian behavior. For these types of fluids, the shear
stress is a liner function of the shear rate.

10.2.1 Suspensions with Newtonian Behavior

Diluted non-settling suspensions have Newtonian behavior, that is, the viscosity is
constant and the relationship between shear stress and the shear rate is represented
by a straight line called a rheogram, see Fig. 10.2 for a suspension with 0.01 volume
fraction of solids. Einstein’s constitutive equation applies; g ¼ gs � 1þ 2:5uð Þ,
where gs is the viscosity of the continuous phase.
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Fig. 10.1 Shear stress distribution for the flow in a cylindrical tube for p0 [ pL
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10.2.2 Non-Newtonian Behavior

Figure 10.3 shows a general viscosity curve for suspensions with non-Newtonian
behavior. At a low shear rate, the shear stress shows a constant viscosity region
followed by a drastic fall, then a new constant viscosity region and finally, in some
cases, an increase in viscosity at very high shear rates.

If we consider Newtonian behavior as a reference, see the red line in Fig. 10.4,
non-Newtonian behavior present two additional rheograms: pseudo-plastic, also
known as shear thinning behavior, typical of mineral suspensions and polymer
solutions (see the blue line in Fig. 10.4), and dilatant, also known as shear
thickening behavior, where viscosity increases with shear rate, see the magenta
line.

A copper flotation tailing has non-Newtonian behavior, that is, the constitutive
equation of the stress is a non-linear function of the shear rate. These types of
constitutive equations are written the same as Newtonian equations. However, in
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this case, viscosity is not constant but rather is a function of the shear rate.
Figure 10.5 shows an example.

s ¼ gð _cÞ _c ð10:7Þ

where g is the shear viscosity.

(a) Pseudo Plastic and Dilatant Behavior

In general, materials with pseudo-plastic behavior present two Newtonian
plateaus (constant viscosities; see Fig. 10.7), a first Newtonian plateau, with
constant viscosity g0 at low shear rates and a second Newtonian plateau, with
viscosity g1 at high shear rates. Sometimes the first Newtonian plateau is so high
that it cannot be measured, in which case, the low shear rate behavior is described
as an apparent yield stress sy. Sometimes, the second Newtonian plateau is short
and viscosity increases as the shear rate increases, which is termed dilatant
behavior.

In mineral processing, we find discrete or agglomerate particle suspensions with
different concentrations. At low concentrations, discrete particle suspensions have
Newtonian behavior, as shown in Fig. 10.2, but with higher concentrations their

-

100

200

300

400

500

0 100 200 300 400 500

Shear rate (1/s)

S
he

ar
 s

tr
es

s 
(P

a)
Pseudo plastic
Dilatant
Newtonian

-

0.5

1.0

1.5

2.0

0 100 200 300 400 500

Shear rate (1/s)

V
is

co
si

ty
 [m

P
a-

s]

Pseudoplastic
Dilatant
Newtonian

(a) (b)
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Fig. 10.5 Rheogram for flotation tailings. a Flow curve. b Viscosity curve
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behavior is viscoplastic, see Fig. 10.5. In general, mineral particles at rest present a
negative surface charge when suspended in water (see Chap. 7) and consequently
become hydrated. In slow motion particles stay hydrated and present a certain
resistance to flow but with an increase in shear rate, the hydration layer is striped
away and particles become oriented in the direction of the flow, causing decreases
in flow resistance and viscosity, approaching an optimum constant orientation.

Dilatant flow behavior is found in highly concentrated suspensions and depends
on the solid concentration, the particle size distribution and the continuous phase
viscosity. The region of shear thickening generally follows that of shear thinning.

Densely packed particles have enough fluid inside to fill the void between
particles. At rest or at low shear rates, water lubricates particle surfaces, allowing
an easy positional change of particles when forces are applied and the suspension
behaves as a shear thinning liquid. At critical shear rates, packed particles lose
water, which causes an increase in interior concentration. Particle–particle inter-
action increases drag, causing dilatant behavior as shown in Fig. 10.6.

10.2.3 Empirical Rheological Models

Empirical constitutive equations are quantified with different mathematical mod-
els. We will describe Cross and Carreau models; Ostwal-de Waele, commonly
known as the power law model, the Herschel-Bulkley model and Bingham model.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450

Shear rate (1/s)

S
he

ar
 s

tr
es

s 
(P

a)

Serie1

Fig. 10.6 Rheological behavior of a rougher flotation tailing with 56 % solids and pH 9.2
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(a) Cross and Carreau Models

Cross and Carreau models are represented by Eqs. (10.8) and (10.9), respectively.
Given that _c ¼ s=g, the relationship between viscosity and shear rate is:

g� g1
g0 � g1

¼ 1
1þ ðk _cÞm s ¼ g

k
� g0 � g1

g� g1
� 1

� �1=m

ð10:8Þ

Carreau
g� g1
g0 � g1

¼ 1

1þ ðb _cÞ2
� �ð1�nÞ=2

s ¼ g
b
� g0 � g1

g� g1

� � 2
1�n

�1

" #0:5

ð10:9Þ

where g0 and g1 are the viscosities at low and high shear rates plateaus, and
k; b; m and n are experimental constants. Figure 10.7 represents the two models
in terms of g ¼ f _cð Þ , where k and b are curve fitting parameters with the
dimension of time and n as a constant.

(b) Power Law Model (Ostwal-de Waele)

Power law models represent pseudo-plastic and dilatant behavior with great
accuracy. Equation (10.10) represents the viscosity and shear stress for material
obeying the power law model:

g ¼ m _cn�1 and s ¼ m _cn ð10:10Þ
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where m is the consistency index, with units in Pa� s2 and n is the power index.
Values of the power index n\1 represent pseudo-plastic behavior and values of
n [ 1 dilatant behavior.

Problem 10.1 Determine the rheogram of the thickener underflow of a copper
flotation tailing from the experimental data in Table 10.1, obtained with a rota-
tional viscometer. Plot the rheogram and determine the parameters of the power
law model.

Results are shown in Eq. (10.11) and Figs. 10.8, 10.9, 10.10, where the points
are the experimental values and the lines represent the simulation with the power
law model.

g ¼ 1:723 _c0:727 ½Pas� s ¼ 1:723 _c0:2468 ½Pa� ð10:11Þ

(c) Models with Yield Stress

In concentrated flocculated suspensions, particles aggregate as flocs, which
interact with each other forming a network maintained by surface interaction
forces extending throughout the entire volume of the suspension. The application
of stresses to this structure deforms it elastically until the structure breaks down.
This break down is related to the yield stress of the material and can be considered
as the minimum shear stress at which the solid structure becomes liquid.
Knowledge about yield stress is essential in transporting suspensions, especially in
resuspending particles when they have settled in a pipeline or channel. See Chap.
11 for details.

There are two methods to measure the yield stress: (1) extrapolating the flow
curve to a zero shear rate and (2) directly measuring shear stress when the flow
begins. The first method depends on the rheological model in use, for example
Bingham or Hershel-Bulkley models, which provide different values that are in
both cases different from the yield stress determined by measuring with the vane
method. We conclude that shear rate should be determined by the method that
gives the best value for the application required.

1. Extrapolation from flow curves

Bingham Model

mineral pulps in tubes and channels the range of shear rates is usually high, on the
order of hundreds of seconds to minus one. At these ranges, viscosity is constant
and equal to the slope of the line of the shear values. In this case, the extrapolation
of this line to a zero shear rate gives an appropriate yield stress that, together with
the constant viscosity, provides the required rheological parameters. Bingham
proposed this method in 1922 with the constitutive equation:

s ¼ sy þ K _c ð10:12Þ
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Table 10.1 Rheological
experiment

c s g

0.01 0.490 49021
0.02 0.592 29616
0.03 0.662 22055
0.04 0.716 17893
0.05 0.761 15213
0.06 0.799 13325
0.07 0.834 11912
0.08 0.865 10810
0.09 0.893 9923
0.1 0.919 9191
0.2 1.111 5553
0.3 1.241 4135
0.4 1.342 3355
0.5 1.426 2853
0.6 1.499 2498
0.7 1.563 2234
0.8 1.622 2027
0.9 1.675 1861
1 1.723 1723
2 2.082 1041
3 2.326 775
4 2.516 629
5 2.674 535
6 2.811 468
7 2.932 419
8 3.040 380
9 3.140 349
10 3.231 323
20 3.904 195
30 4.361 145
40 4.718 118
50 5.014 100
60 5.270 88
70 5.497 79
80 5.701 71
90 5.887 65
100 6.059 61
200 7.321 37
300 8.178 27
400 8.846 22
500 9.402 19
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where sy is the yield stress and K is the constant plastic viscosity. Equation (10.12)
shows that Bingham’s model is the combination of a yield stress sy with a
Newtonian viscosity K. This model has the advantage of giving the result of the
modeling in one plot.
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Problem 10.2 Determine the parameters of Bingham’s model for the experi-
mental data in Table 10.2. For high shear stress values, a tangent drawn to the
shear stress-shear rate curve gives s as the intercept of the tangent with the vertical
axis and the viscosity as its slope. See Fig. 10.10.

sy ¼ 12:5 Pa and K ¼ 0:0196 Pa s ð10:13Þ

Herschel-Bulkley Model

For processes at low shear rates, the stress-shear function is curved and Bingham’s
model is inadequate since viscosity is not constant. In this case, the Herschel-
Bulkley model can be used with the constitutive equation:

s ¼ sy þ k _cz ð10:14Þ

where sy is the yield stress, k is the consistency index, similar to the power law
model, and n is the power index.

Problem 10.3 For the experimental data in Table 10.2, determine the rheological
parameters of the Herschel-Bulkley model.

The following values were obtained by non-linear curve fitting for the Her-
schel-Bulkley rheological parameters: sy ¼ 1:25; k ¼ 2:37; z ¼ 0:343, see
Figs. 10.11 and 10.12.
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For the same experimental data, the power-law model better describes the shear
stress in the whole range of shear rates. The drawback is that this model requires
knowledge of the variable viscosity obtained from the viscosity plot versus shear
rate, while Bingham’s model requires only the shear stress plot. We conclude that
the power-law model is better for processes requiring low shear rate (lower than
150 s-1 in Fig. 10.11). Engineers designing and operating pipelines in the mining
industry prefer Bingham’s model because it gives them a constant viscosity and a
yield stress value, which are important in transporting mineral pulps.

Table 10.2 Data of a rheogram for a copper flotation tailing

c (1/s) s (Pa) g (m Pa s) c (1/s) s (Pa) g (m Pa s)

0.0000 3.3 0.0000 186.5000 8.7 46.5300
0.4660 3.8 8109.0000 193.0000 8.7 45.0100
2.6380 4.5 1690.0000 199.4000 8.7 43.7300
5.5050 5.1 927.8000 205.8000 8.7 42.4100
8.9820 5.7 632.1000 212.3000 8.7 41.1800
12.9600 6.2 478.7000 218.7000 8.8 40.0700
17.3500 6.6 380.9000 225.2000 8.8 39.0100
22.1100 6.9 313.6000 231.5000 8.8 38.0400
27.1500 7.2 266.6000 238.0000 8.8 37.0300
32.4400 7.5 230.1000 244.4000 8.9 36.2200
37.8900 7.7 202.1000 250.8000 8.9 35.4400
47.6700 7.7 162.0000 257.3000 8.9 34.7500
53.4800 8.1 150.8000 263.7000 8.9 33.9300
59.5000 8.2 137.0000 270.2000 9.0 33.3700
65.5900 8.2 125.4000 276.6000 9.1 32.9500
71.8300 8.3 115.5000 283.1000 9.2 32.4500
77.9900 8.3 106.8000 289.5000 9.3 32.2100
84.2300 8.4 99.2600 295.9000 9.5 32.2300
90.5400 8.4 93.1500 302.4000 9.8 32.5300
96.8500 8.5 87.5300 308.8000 10.2 32.8800
103.2000 8.5 82.5300 315.3000 10.4 33.1200
109.5000 8.5 77.8900 321.7000 10.8 33.6200
115.9000 8.5 73.7100 328.2000 11.2 34.1300
122.4000 8.6 69.9300 334.6000 11.6 34.7200
128.7000 8.6 66.6400 341.1000 11.9 34.8800
135.1000 8.6 63.6700 357.0000 12.1 33.9600
141.5000 8.6 60.8100 362.2000 12.6 34.7700
148.0000 8.6 58.1600 369.1000 12.8 34.7800
154.4000 8.6 55.9700 375.8000 13.0 34.6500
160.9000 8.7 53.8000 382.4000 13.3 34.8500
167.3000 8.7 51.8400 389.1000 13.5 34.7300
173.6000 8.7 49.9900 395.7000 13.9 35.0800
180.1000 8.7 48.3700 402.3000 14.1 35.1100
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(d) Pseudo-Plastic-Dilatant behavior

Under some conditions, copper flotation tailings present pseudo-plastic-dilatant
behavior similar to that of Fig. 10.6. There are no models for this type of behavior,
but a polynomial of degree three or four can describe the entire rheogram in the
full range of shear rates.

τ  = 0.0196γ  + 12.521
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Problem 10.4 Determine the parameters for a rougher flotation tailing with data
given in Table 10.3 and represented in Fig. 10.13. The result with a four-power
polynomial is:

s ¼ �2:000� 10�9 _c4 þ 2:000� 10�6 _c3 � 6:000� 10�4 _c2 þ 7:940� 10�2 _c
þ 5:212

ð10:15Þ

10.2.4 Operational Effects on Viscosity

(a) The effect of concentration

Solid concentration has the most important effect on suspensions. In general,
properties such as yield stress and viscosity increase with solid concentration. The
viscosity of suspensions at low concentration can be modeled by a polynomial
extension of Einstein’s equation.

g ¼ g0 1þ k1uþ k2u
2 þ k3u

3 þ � � �
� �

ð10:16Þ

where g0 is viscosity at zero concentration, u is the volume fraction of solids,
k1 ¼ 2:5 is Einstein’s parameter and k2; k3; . . .kn are fitting parameters. For con-
centrations of less than 0:01 the suspension behaves Newtonian. See Fig. 10.14.

Krieger-Daugherty

At higher concentrations, suspensions have non-Newtonian behavior. Several
equations describe this behavior; one of the most commonly used is the Krieger-
Daugherty equation (Krieger 1972), in which viscosity depends on maximum
particle packing umax. See Eq. (10.17) and Fig. 10.14.

g ¼ g0 1þ u
um

� �a�um

ð10:17Þ

Table 10.3 Dimension of the sensors

Sensor system MV

Internal cylinder (Rotor) 18.4
Length L1 (mm) 60.0
Radius R1 (mm)

External cylinder 21.0
Length LC mm) 85.0
Radius R2 (mm)

Gap (mm) 2.60
Temperature range �C -30 �C a 100
Sample volume cm3 46
Viscosity range mPa s 20 a 4 9 105
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Exponential function

When using the power-law model for the rheogram, an exponential function
sometimes gives a good fit for the effect of solid concentrations. Figures 10.15 and
10.16 give an example of a copper flotation tailing at a shear rate of 200 s-1.

g ¼ 0:838� exp 0:142 %ð Þ _c�0:670 ð10:18Þ
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Fig. 10.13 Rheogram of a rougher flotation tailings of a copper ore at pH = 9.2 and 4 % solids
modeled by a four power polynomial
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Shaheen (1972) presented an alternative model to describe the concentration
effect:

g ¼ g0a� exp
bu

1� u=umð Þ

� �
ð10:19Þ

where a, b sand um are constant.

(b) Effect of particle size

Particle size distribution affects viscosity in three ways: (1) through the max-
imum particle packing um; (2) the presence of very small particles; and (3) particle
size distribution. Fine particles can fit in a packed bed between larger particles,
increasing the density and affecting the relative concentration u=um. Another
effect of small particles is to transform the continuous phase, usually water, into a
viscous suspension that directly affects overall viscosity. Finally, particle size
distribution contributes to shear thickening of mineral pulps, as shown in
Figs. 10.6 and 10.13.

Unfortunately, there is no theoretical information on how these variables
influence suspension viscosity. Consequently, the maximum packing density um is
usually obtained by curve fitting.

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450

Shear rate (1/s)

V
is

co
si

ty
 (

m
P

a-
s)

53 % solid

56 % sólid

60 % solid

65 % solid

Fig. 10.15 Shear viscosity versus shear rate for a copper flotation tailing with % solid by weight
as a parameter. Symbols are experimental values and the lines are simulations with Eq. (10.18)

356 10 Suspension Rheology



(c) The effect of temperature

An exponential function (Tanner 1988) fits the effect of temperature on New-
tonian liquids.

g ¼ A exp B=ðT � T0Þð Þ ð10:20Þ

where T is the absolute temperature and A; B and T0 are characteristic constants.
In the absence of information on the effects of temperature on suspensions, the
equation for Newtonian fluids is used.

In Barrientos et al. (1994) performed numerous rheological experiments with
quartz samples of different sizes and concentrations. They proposed a general
equation based on the Shaheen model (1972) for the suspension viscosity in terms
of four dimensionless variables x=x0, u, Re and �C, where x and x0 are the
average and a reference particle size, u is the solid volume fraction, Re ¼ qf _cx2=g
is the flow Reynolds number, q0 and g0 are the fluid density and viscosity,
respectively, _c is the shear rate and �C is the temperature in Celsius. They sepa-
rated the functional form of this equation into three terms, one for the effect of
temperature, a second for the effect of concentration and a third for the interaction
between these variables.

g=g0 = p1 exp
3:462� 103

T
þ

� �
� exp

p2u
1� u=p3ð Þp4

� �

� 1þ p5 exp �p6up7ð Þ � x=x0ð Þp8

Re1=p9

� �p9
ð10:21Þ
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Fig. 10.16 Plot of viscosity versus particle concentration for data from Fig. 10.13
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Concha et al. (1999) performed 70 experiments with underflow material from
the feed, overflow and underflow of a copper ore grinding-classification circuit and
with ground underflow for several time ranges, temperatures from 5 to 25 �C and
concentrations from 15 to 40 % solid by weight. After obtaining nine parameters
of the four dimensional groups by non-linear curve fitting, they concluded by
simulation that particle size has a significant effect on rheograms solely for shear
rate values below _c � 200 s�1.

(d) Effect of pressure

In general, the effect of pressure on viscosity is small, except for materials such
as oil subjected to very high pressures, where an exponential equation can be used
(Tanner 1988).

g ¼ gð0Þexp p=bð Þ

where p is the applied pressure, gð0Þ is the viscosity at zero pressure and b is a
constant.

(e) pH Effect

It is well know that plant operators add lime to thickener underflow of copper
flotation tailings when it is too viscous for hydraulic transport. This does not
always solve the problem because pH affects the slurry in a complicated way.
Figure 10.17 show the viscosity of a copper flotation tailing for several particle
concentrations at a shear rate of 200 s-1.

Two minimum viscosities were present for this material at all concentrations,
one at pH 7.5 and the second at pH 9.0, with more pronounced values at high
concentrations. Several copper tailings present this behavior. To establish if this
behavior is due to the silica content of the tailings, experiments were made with
silica in distilled water. Figures 10.17 and 10.18 give the results. The two mini-
mums are also shown but with somewhat higher pH values.
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(f) The effect of time

Time is important in materials that suffer structural changes during measure-
ment. For example, some flocculated suspensions change structure while sheared,
which produces a change in viscosity. This behavior may be thixotropic or
rheopectic depending if the viscosity diminishes or increases with time. A sche-
matic drawing of these behaviors is shown in Fig. 10.19.

Fig. 10.18 Effect of pH on the viscosity of a suspension of silica of 2 % solids in distilled water
at a shear rate of 200 (s-1)
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10.3 Rheometry

Rheometry is that part of Rheology which provides experimental methods to
determine rheological parameters such as viscosity and yield stress, that is, it
establishes the methods to determine the constitutive equation of a fluid material.
Simple shear flows permit obtaining exact solutions of the Navier–Stokes equa-
tions, which in turn provides the rheological parameters.

10.3.1 Simple Shear Stationary Flows

Simple shear are flows produced by a unidirectional shear rate, an example of
which are the flows in a circular tube, rotational flows in the annular gap of
concentric cylinders, torsion flow between two flat plates and flow between a cone
and a plate, among other. These flows are of interest to mineral processing because
they provide the tools to calculate pipes and pumps (see Chap. 11) and experi-
mental methods to determine rheological properties; shear stress versus shear rate
plots; yield stress and viscosity versus shear rate.

(a) Flow in concentric cylinders

Consider the stationary rotational flow of a suspension of non-settling particles
in two concentric cylinders of radius R1 and R2 produced by the rotation of the
cylinders with angular velocities X1 and X2 respectively. Assume the cylinders
are open to the atmosphere at one end. Figure 10.20 shows the cylinder.

Considering a constant fluid density, variables for this problem are the viscosity
of the suspension and the tangential velocity of the fluid. The field equation in
cylindrical coordinates in laminar flow is:

g
o

or

1
r

o

or
rvhð Þ

� �
¼ 0 ð10:22Þ

R1

R2

R1R1
111

Ω

Ω

R2

2
Fig. 10.20 Rotational flow
between two concentric
cylinders
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with boundary conditions:

vh R1ð Þ ¼ X1R1 ; vh R2ð Þ ¼ X2R2 ; vr ¼ vz ¼ 0

where vh; vr and vz are the components of the velocity vector and X1 and X2 are
the angular velocities of the cylinders with radius R1 and R2.

Tangential velocity

Integrating Eq. (10.22) twice results in:

vh ¼
C1

2
r þ C2

r
ð10:23Þ

Applying boundary conditions, the constant C1 and C2 are:

C1 ¼
2 R2

2X2 � R2
1X1

� �

R2
2 � R2

1

� � C2 ¼
R1R2

2 X1 � X2ð Þ
R2

2 � R2
1

� � ð10:24Þ

and

vh rð Þ ¼ 1

R2
2 � R2

1

� � R2
2X2 � R2

1X1
� �

r þ R1R2
2 X1 � X2ð Þ

r

� �
ð10:25Þ

Shear Rate

Integrating Eq. (10.22) once yields:

ovh

or
¼ C1 �

vh

r
ð10:26Þ

Substituting C1 gives:

ovh

or
¼ R2

2X2 � R2
1X1

R2
2 � R2

1

� � � vh

r
ð10:27Þ

To obtain the average shear rate calculate the average of (10.27) for radius R1

and R2:

�_c ¼ 1
2

ovh

or

����
r¼R1

þ ovh

or

����
r¼R2

 !

ð10:28Þ

10.3 Rheometry 361



Applying boundary conditions:

ovh

or

����
r¼R1

¼ R2
2X2 � R2

1X1

R2
2 � R2

1

� � � X1

ovh

or

����
r¼R2

¼ R2
2X2 � R2

1X1

R2
2 � R2

1

� � � X2

�_c ¼ R2
2X2 � R2

1X1

R2
2 � R2

1

� � � X2 þ X1ð Þ; s�1

ð10:29Þ

(b) Flow in a capillary

Consider the stationary laminar axial flow of a fluid in a cylindrical tube, see
Fig. 10.21. From Chap. 11 the flow rate and the shear stress at the wall of the tube
are given by:

Since the shear rate is linear in r, the average value of �_c is given by:

�_c ¼ 4� �vz

D
; �_c ¼ 5:1� Q

D3
ð10:30Þ

10.3.2 Types of Viscometers

There are two types of viscometers used in mineral processing, rotational and
capillary. Searle-type rotational viscometers are used for mineral pulps while
capillary viscometers are used for polymers.

(a) Rotary viscometers

The relative rotation of two concentric cylinders of a viscometer induces shear
rate in the fluid. Usually one cylinder rotates while the other is fixed. In a Searle
viscometer, the inner cylinder rotates while the outer cylinder is fixed. The system
is called Couette. See Figs. 10.22 and 10.23.

r

Flow direction
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L
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0
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w

w

(a) (b)

τ

τ

Fig. 10.21 Axial flow in cylindrical tube. a Velocity distribution. b Shear stress distribution
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During measurement, the fluid to be tested is allowed into the gap between the
two cylinders. The relative motion of the cylinder induces a simple shear to the
fluid, which produces a torque in the other cylinder that is measured by a suitable
device. If the gap between the cylinders is small, the viscosity in the gap is
constant as shown in Fig. 10.22.

The Searle system is the most commonly used for mineral pulps.
For a Searle system from Eq. (10.29), the shear rate is given by:

_c ¼ X1R2
2

R2
2 � R2

1

� � ð10:31Þ

To determine a rheogram, a given shear rate _c is established in the equipment
by imposing a rotational speed N1 given in terms of _c by Eq. (10.32)

N1 ¼
60
2p

1� R1

R2

� �2
 !

_c rpm½ � ð10:32Þ

Fig. 10.22 Systems types
used in rotary viscometers

Fig. 10.23 Searle type of
measuring system. Shear rate
is measured on the rotor axis
and the outer cylinder is fixed
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where N1 is the rotational speed in rpm of the inner cylinder with a radius of
R1 and R2 is the radius outer cylinder.

A good example of a robust rotational viscometer for mineral pulps is the Haake
RV-20 viscometer under ISO standard 3219. Figure 10.24 shows this instrument.

Figure 10.25 shows typical sensors for suspensions. The grooves on the outside
of the inner cylinder and on the inside of the outer cylinder avoid slippage of
particles along the walls.

Fig. 10.24 Haake RV-20 rotational viscometer

Fig. 10.25 Grooved sensors type MV
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10.3.3 Standard Rheological Measurement (Rheogram ISO
3219)

1. Select the correct measuring system.
2. Fill the cup with a representative sample of slurry to the designated point.
3. Place the cup on the laboratory jack centered below the viscometer bob.
4. Slowly raise the jack so that the bob completely penetrates the slurry sample.
5. Fix the cup to the viscometer using the designated mounting screw.
6. Use the software from the rotational rheometer to produce a rheogram of the

slurry sample.
7. Present a rheogram of shear stress versus shear rate between 0 and 450 s-1.
8. Repeat for different concentrations.

Problem 10.5 The measurement of copper flotation tailings with a rotational
viscometer at 65 % solids gave the data in Table 10.4. Obtain the complete rhe-
ogram and determine the rheological parameters with Bingham, Power-law and
Herschel-Bulkley model.

Bingham Model

The Bingham model is characterized by a yield stress sy and a constant plastic
viscosity K. Results are given in Fig. 10.26.

sy ¼ 40 Pa and K = 0:197 Pa s

Power law model

The power law model is described by the constitutive equation: s ¼ m _cn

m ¼ 6:958 Pa and n ¼ 0:457

The result is shown in Fig. 10.27.

Herschel-Bulkley Model

Herschel-Bulkley model combines a yield stress with a power-law model. Here
Fig. 10.28:

sy ¼ 1:25 Pa; k ¼ 2:37 Pa sz ; z ¼ 0:343

Determination of the yield stress with vanes

Given the importance of yield stress in transporting mineral pulps, it needs to be
determined accurately. The best way determine yield stress for values above 10 Pa
is direct measurement at shear rate tending to zero. Measuring yield stress of
mineral pulps at very low shear rates with rotary viscometers presents the problem
of particle slip at the rotating cylinder. To avoid this problem, the vane method is
used. This method consists of using a rotating vane, as shown in Fig. 10.29, to
measure the yield stress under static conditions. The vane is submerged in the pulp,
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Table 10.4 Experimental data of a copper mineral at 65 % solids

c (1/s) s (Pa) g (m Pa s) c (1/s) s (Pa) g (m Pa s) c (1/s) s (Pa) g (m Pa s)

0.00 7.45 0.00 90.54 54.72 604.40 226.10 83.63 369.90
0.09 7.56 81140.00 93.33 55.39 593.50 229.20 84.24 367.50
0.44 8.54 19200.00 96.27 56.31 584.90 232.40 84.79 364.90
0.90 9.65 10680.00 99.14 57.05 575.40 235.70 85.22 361.60
1.51 10.85 7174.00 102.20 57.78 565.60 238.90 85.77 359.10
2.26 12.05 5334.00 104.90 58.52 557.60 241.90 86.26 356.60
3.15 13.29 4223.00 108.00 59.31 549.40 245.20 86.76 353.80
4.07 14.53 3569.00 111.00 60.11 541.70 248.40 87.25 351.20
5.10 15.86 3111.00 113.80 60.90 535.00 251.50 87.80 349.00
6.24 17.09 2740.00 116.80 61.58 527.30 254.70 88.23 346.40
7.49 18.32 2446.00 119.80 62.31 520.20 257.90 88.72 344.00
8.82 19.53 2213.00 122.80 63.05 513.40 261.10 89.14 341.40
10.21 20.75 2033.00 125.80 63.66 506.00 264.30 89.70 339.40
11.72 21.96 1874.00 128.80 64.40 499.90 267.50 90.19 337.10
13.32 23.18 1741.00 131.80 65.13 494.10 270.80 90.55 334.40
14.96 24.41 1631.00 135.60 65.99 486.80 273.90 91.04 332.40
18.57 26.60 1433.00 138.60 66.66 481.10 277.10 91.53 330.30
20.61 28.01 1359.00 141.70 67.34 475.10 280.40 91.90 327.80
22.58 29.11 1289.00 144.70 68.01 469.90 283.50 92.33 325.70
24.54 30.15 1228.00 147.70 68.75 465.30 286.70 92.76 323.60
26.62 31.26 1174.00 150.80 69.36 460.10 290.00 93.19 321.40
28.75 32.36 1126.00 154.00 70.09 455.20 293.10 93.62 319.40
30.88 33.40 1082.00 157.00 70.64 450.00 296.30 94.04 317.30
33.09 34.50 1043.00 160.10 71.32 445.30 299.50 94.41 315.20
35.33 35.48 1004.00 163.20 71.99 441.10 302.80 94.78 313.00
37.61 36.58 972.90 166.50 72.60 436.20 306.00 95.21 311.10
39.92 37.57 941.00 169.50 73.22 432.10 309.10 95.58 309.20
44.73 39.46 882.20 172.60 73.83 427.70 312.40 95.94 307.10
47.38 40.69 858.70 175.70 74.50 424.00 315.60 96.37 305.40
49.96 41.61 832.80 178.90 75.12 419.80 318.70 96.74 303.50
52.47 42.59 811.60 181.90 75.73 416.20 321.90 97.11 301.60
54.98 43.57 792.40 185.20 76.34 412.30 325.20 97.54 300.00
57.56 44.55 773.90 188.20 76.95 408.80 328.40 97.78 297.80
60.22 45.34 753.00 191.40 77.51 404.90 331.50 98.27 296.40
62.87 46.26 735.90 194.50 78.12 401.70 334.70 98.52 294.30
65.59 47.12 718.40 197.60 78.67 398.10 338.00 98.88 292.60
68.24 48.04 704.00 200.90 79.28 394.70 341.20 99.25 290.90
70.97 48.96 689.90 204.00 79.83 391.30 344.40 99.62 289.30
73.69 49.88 676.80 207.20 80.45 388.30 347.60 99.80 287.10
76.34 50.61 663.00 210.30 81.00 385.20 350.80 100.30 285.90
79.14 51.53 651.10 213.50 81.49 381.70 354.00 100.70 284.40
82.01 52.27 637.30 216.60 82.10 379.10 357.20 100.90 282.50
84.87 53.12 625.90 219.80 82.59 375.80 360.40 101.30 281.00
87.67 53.92 615.00 222.90 83.14 372.90 363.70 101.60 279.30

366.90 101.90 277.70
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rotated at a speed of less than 10 [rpm] and torque is slowly increased. After a
linear elastic deformation of the shear surface formed, a maximum torque TM is
reached as shown in Fig. 10.30. Appropriate operating conditions are DT [ 3d and
N\10 ½rpm�. Three (kg) are needed for each test.
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Fig. 10.26 Bingham parameters for data from Table 10.4 by extrapolation of the rheological curve
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With vane measurements an approximate value of the yield stress is obtained
from Eq. (10.33) with values 20–30 % lower than the real value. This is because the
shear distribution is not uniform, the sides of the shear surface having different
values from each other. In the absence of theoretical knowledge, Nguyen and Boger
(1985) assumed a potential distribution with power m, and obtained the equation:

Tm ¼
pd3

2
‘

d
þ 1

3

� �
sy ð10:33Þ

Due to the presence of two unknowns, sy and m, in equation, it is necessary to
perform more than one test, usually three, with vanes of different shapes ‘=d to
obtain the values of these unknowns simultaneously.
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Writing Eq. (10.33) in the form:

2Tm

pd3
¼ ‘

d
sy þ

sy

mþ 3
ð10:34Þ

a plot of 2TM=pd3 vs: ‘=d gives a straight line. The slope of the line is sy and the
intercept with the vertical axis is sy=ðmþ 3Þ, which gives the value of m. See
Fig. 10.31. In the case of Fig. 10.31:

sy

mþ 3
¼ 2:8551 ! sy ¼ 32:444 ! m¼ 8:36 ð10:35Þ

(b) Capillary viscometers

A capillary viscometer is a straight cylindrical tube with diameter D and length
L, through which the sample to be tested flows with constant velocity v. The time
t for a given volume Q to flow between levels of the tube at a constant pressure
gradient is measured. If the material has a Newtonian behavior, the Hagen-
Poiseuille equation relates these variables. See Eq. (10.36).

Q ¼ 1
8
pR4

g
Dp

L
m3=s
	 


ð10:36Þ

Since Q ¼ �vz=t, where �vz is the average velocity. The flow is gravity driven
with Dp=L ¼ qg, and the kinematical viscosity is m ¼ g=q, we have:

m ¼ p
32

gD2

�vz
t cm2=s
	 


ð10:37Þ
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Fig. 10.30 Torque curve versus time showing the maximum torque reached
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For a determined capillary and constant velocity, Eq. (10.37) is written in the
form:

m ¼ K � t cm2=s; where K ¼ p
32

gD2

�vz
ð10:38Þ

Manufacturers have automated and standardized capillary viscometers and give
the constant K for each capillary to facilitate its use. An example is the Cannon–
Fenske capillary viscometer with Lauda control. See Fig. 10.32.
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Fig. 10.31 Yield stress determination with the vane method

Fig. 10.32 Cannon-Fenske Capillary Viscometer with Lauda Control
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Selection of capillary diameters

It is important that the material to be tested behave as a Newtonian fluid, because
of which the above equation was developed. To ensure this requirement, the flow
in the capillary must give a shear rate _c within the Newtonian range. In Chap. 11
we establish the following equation for the average shear rate in the flow in a tube:

�_c ¼ 6:8
Q

D3
ð10:39Þ

For example, the flow of 15 mm/s in a capillary of 1.01 mm gives a shear rate
of �_c ¼ 99 s�1, which is in the Newtonian range (see Chap. 11) and corresponds to a
Cannon–Fenske capillary N� 200.
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