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Aims and Scope of the Series

The purpose of this series is to focus on subjects in which fluid mechanics plays a
fundamental role.

As well as the more traditional applications of aeronautics, hydraulics, heat and
mass transfer etc., books will be published dealing with topics which are currently
in a state of rapid development, such as turbulence, suspensions and multiphase
fluids, super and hypersonic flows and numerical modeling techniques.

It is a widely held view that it is the interdisciplinary subjects that will receive
intense scientific attention, bringing them to the forefront of technological
advancement. Fluids have the ability to transport matter and its properties as well
as to transmit force, therefore fluid mechanics is a subject that is particularly open
to cross fertilization with other sciences and disciplines of engineering. The sub-
ject of fluid mechanics will be highly relevant in domains such as chemical,
metallurgical, biological and ecological engineering. This series is particularly
open to such new multidisciplinary domains.

The median level of presentation is the first year graduate student. Some texts
are monographs defining the current state of a field; others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.
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Preface

This book seeks to fill a gap in the bibliography of the mineral processing
industry. Subjects such as comminution and flotation have received much
attention by researchers in the field of Mineral Processing, while thickening and
filtration have not.

It seems that the economic importance of size reduction, obviously the most
costly stage in Mineral Processing, and the strategic position of flotation as the main
concentration process, have relegated the last stages of mineral beneficiation, solid-
liquid separation, to a lower level of importance. It is true that when a mineral
processing plant is operating normally operators tend to regard thickening and
filtration as auxiliary rather than fundamental processes in the plant. But the situ-
ation changes when problems appear in sedimentation of tailings or filtration of
concentrates and it is not possible to recover all the water necessary for the process,
or when it is not possible to obtain the required level of moisture in the final
product. In those cases, solid–fluid separation acquires a fundamental importance.

Process engineers find themselves ill-prepared to face problems such as those
described above. Possibly they ask themselves why their university gave less
attention to these areas. The truth is that this academic ‘‘carelessness’’ has deeper
roots related to the low level that mechanics and fluid mechanics has been given in
mining, mineral, and metallurgical engineering programs. As a result very little
research has been done in the areas of thickening, filtration, and pulp transport and
therefore instructors lack knowledge and experience to share with their students.

Currently, there are research groups worldwide working on solid–liquid sepa-
ration, especially in the field of Chemical Engineering, where the works of authors
such as Tarleton and Wakeman (1999, 2005) are available. There has been less
work in the field of Mineral Processing. It is necessary to change this situation by
providing an adequate framework to solid–liquid separation in the mineral
industry. I hope that this book will help in this respect.

This book is divided into 11 chapters. Chapter 1 introduces the field of Mineral
Processing and the importance of water in processing minerals. The consumption
of water in the various stages of concentration and the need to recover most of that
water by recycling are discussed.
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Chapter 2 lays the conceptual basis for the study of processes of solid–liquid
separation. A rigorous but limited account of the Theory of Mixtures of continuum
mechanics is given. It was considered unnecessary to deal with thermodynamic
aspects. An introduction discusses the conditions that a multi-component body
must fulfill to be considered a continuum. The concepts of body, component and
mixture are then introduced and the concepts of deformation and rate of defor-
mation are discussed. Mass and momentum balance equations are formulated for
each component of the mixture and the need to establish constitutive equations to
complete a dynamic process is discussed.

Mixtures of finely divided solid particles in water are the subject of Chap. 3.
Here the equations derived in Chap. 2 are applied to particulate systems.

Chapter 4 deals with sedimentation of particulate systems considered as dis-
crete media. Starting from the sedimentation of a sphere in an unbound fluid, a
complete analysis is made of the settling of individual particles and suspensions,
establishing their settling and fluidization velocities.

Sedimentation of suspensions, treated as continuous media, is studied in
Chap. 5. The concept of an ideal suspension and ideal thickeners is established.
Kynch’s theory and its extension to a continuous process are presented. The
solution to Kynch’s problem is deduced through the theory of characteristics. Also
the concept of Modes of Sedimentation is introduced.

Flow through porous media is dealt with in Chap. 6. Equations for particulate
systems are reduced for the case of the flow of a fluid through a rigid porous
material. Darcy’s and Forchheimer’s equations are used as constitutive equations
for the relative solid–fluid force. Permeability and its geometric concept are
studied. For the case of two-phase flow through a rigid porous medium, the
concepts of relative permeability, saturation, and capillary pressure are introduced.

Chapter 7 considers particle aggregation. When agglomerated particles in a
suspension increase in size they acquire greater sedimentation velocity essential to
obtain a good separation by sedimentation. The agglomerates also form more
permeable cakes, which accelerates the filtration process. Different methods to
increase the size of solid particles are studied in this chapter, these being coag-
ulation, by reduction of the interparticle electrostatic repulsion and flocculation by
bridging particles with polymeric agents.

Chapter 8 history of thickening is laid out from the Stone Age to the present,
emphasizing people and institutions that have been important actors. The chapter
then reviews the thickeners used in the mining-mineral industry. The theory of
sedimentation–consolidation is deduced from the equations for a particulate sys-
tem and constitutive equations for the solid–fluid interaction force and sediment
compressibility are postulated. Batch and continuous sedimentation are analyzed
and simulations are compared to data from the literature. Experimental determi-
nation of thickening parameters and instruments for their determination are pre-
sented. Old and new methods for thickening design are reviewed and software for
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the design and simulation of batch and continuous thickening are presented.
Finally, strategies for the operation and control of industrial thickening are
discussed.

Chapter 9 deals with filtration. Following the same scheme as in the previous
chapter, equipment, the theory of filtration, constitutive equations, and parameter
determination are discussed and the operations of vacuum and pressure filters are
simulated.

Chapter 10 discusses Rheology. The fluid mechanics of Newtonian and non-
Newtonian materials are briefly presented and the different constitutive equations
for shear stress are discussed. The measurement of viscosity and yield stress in the
laboratory is described and models for the relationship of these parameters with
concentration are deduced.

The last chapter of the book is related to the transport of pulps in mineral
processing plants. Starting from the continuity equation and the equation of motion
for a continuous medium, the expression for the pressure drop during fluid flow in
a tube is obtained. Newtonian fluids are then treated for cases of laminar and
turbulent flows. The concepts of friction factor and Reynolds number are intro-
duced and the distribution of velocity, flow rate, and pressure drop in a tube is
obtained. The transport of suspensions in pipelines is then treated, defining the
different regimes separated by the limiting deposit velocity. First, the flow of
heterogeneous suspensions is introduced and the form to calculate head loss is
presented. Next, homogeneous suspensions modeled by different rheological
approaches are discussed. Finally, equations for the transport of suspensions in
open channel are dealt with.

All the chapters present problems with solutions to aid the reader in under-
standing the subjects.

A substantial part of this book, especially the chapters on sedimentation and
thickening, are the results of research by the author and his research group at the
Department of Metallurgical Engineering and the work of Prof. M. C. Bustos and
R. Bürger at the Department of Mathematical Engineering at the University of
Concepción, Chile. We had the important collaboration of Profs. Wolfgang
Wendland at the University of Stuttgart, Germany, Kenneth Karlsen at the Uni-
versity of Bergen, Norway, and Elmer Tory at the University of Mount Allison in
Canada. Special thanks to all of them.

The collaboration of Graduate and Engineering students at the universities of
Concepción in Chile, Stuttgart in Germany, and COPPE/UFRJ in Brazil was
especially important. Many thanks to P. Garrido, F. Betancourt, M. Kunik, O. Ba-
scur, A. Barrientos, R. Becker, A. Quiero, R. Valenzuela, A. Christiansen, A. Rojas,
F. Melo, H. Droguett, V. Soto, R. Ruiz, R. Burgos, R. Pradenas, P. Leonelli, and E.
Almendra.

Many thanks to George Montgomery for correcting my English and to engi-
neering students P. Silva and D. Vidal for checking the problems.
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Abstract

This book shows the need for research and more emphasis on dewatering pro-
cesses in the preparation of metallurgical, mining, and chemical engineers. Most of
the research in mineral processing in recent decades has been directed at com-
minution and flotation, with very little emphasis on thickening, filtration, and
suspension transport. This, of course, results from comminution being vital to
mineral liberation and because it consumes about 80 % of the energy in mineral
processing. Flotation research has always been vital to mineral processing because
flotation is the backbone of separating desired minerals from waste material, as
well as because of its costliness in terms of reagents and energy. These two
operations each cost many dollars per ton of ore treated, whereas the cost per ton
associated with dewatering is low (except for polymer flocculants). Thus, dewa-
tering has not received a great deal of attention by most mineral processing
researchers. With water shortages becoming a major problem globally, dewatering
in mineral processing is becoming more important.
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Chapter 1
Introduction

Abstract This chapter introduces the field of Mineral Processing. A mineral
processing plant can be divided into four distinct operational units: comminution,
concentration, dewatering and pulp transport. Comminution is the process of
reducing the particle size of an ore until the free particles of minerals can be
separated by available methods. Froth flotation is the most important mineral
processing technique to recover sulphide minerals, such as copper, zinc and lead. It
uses the differences in physicochemical surface properties of particles of different
minerals and gangue to recover a concentrate and leave the gangue as tailing that
is discarded. Dewatering is a process of solid–liquid separation achieved by
thickening and filtration. Thickening uses the force of gravity to separate the
particles from the water by sedimentation in large cylindrical tanks called thick-
eners, while filtration uses pressure forces to pass the slurry through a cloth and
separate it into a filter cake on the cloth and clean water called filtrate. Safe and
environmentally friendly deposition of mining waste is a major concern in the
mining industry worldwide. Almost all the treated minerals in sulphide concen-
tration plants are deposited as tailings since the recovered product represents a
very small percentage of the total tonnage. Water has become a major concern in
processing raw materials, in terms of water conservation and reuse. The chapter
discusses water consumption in the various stages of concentration and the need to
recover most of that water by recycling.

In the introduction to his book ‘‘Mineral Processing Technology’’, Barry Wills
(1997) gives an excellent and concise account of the process to recover minerals
from ores and the technical steps necessary to produce metals or industrial min-
erals. I will borrow some of his ideas to introduce the subject of solid–liquid
separation in the minerals industry.

The extraction of valuable minerals from unwanted rock (gangue) is possible
only if the mineral grains, which are to be separated, exist as liberated discrete
particles. As the grade of mineral deposits decreases, the valuable minerals often
appear in the form of finely disseminated grains in a solid rock (ore). Liberation is
achieved by crushing and grinding them down to small sizes, that is, by size
reduction.

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_1,
� Springer International Publishing Switzerland 2014
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Separation of mineral and gangue is strongly dependent on the size of the
treated ore particles and there is an optimum size range for mineral recovery in all
separation processes. Recoveries of both too fine and too coarse particles, that are
outside this optimum size range, are low. For a satisfactory overall recovery, the
size of the processed particles must therefore be carefully controlled. Because of
the reduction in particle size that is required to achieve proper liberation, some
over grinding is unavoidable.

A mineral processing plant, usually called the concentrator or mill, may be
broadly subdivided into four distinct unit operations: comminution, concentration,
dewatering and pulp transport. Comminution is the process of reducing the par-
ticle size of an ore until the free particles of minerals can be separated by available
methods. Separation of the constituents depends strongly on the degree of liber-
ation of the ore. Since the run-of-mine ore may have sizes in the range of fractions
of meters and liberation may be in the range of microns, no unique operation of
comminution is possible and several stages of size reductions are necessary.

Explosives are used in mining to remove ores from ore bodies and blasting can
be considered as the first stage in comminution. See Fig. 1.1. Figure 1.2 shows the
flowsheet of a Mineral Processing Plant. In this figure, the blue ellipse represents
comminution, the green ellipse shows concentrations and the red ellipse represents
dewatering processes. The separation of unit operations is not completely possible
in a plant since, during the concentration process, some comminution and some
dewatering are necessary.

Fig. 1.1 Blasting in an open
pit mine as the first stage in
comminution
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1.1 Comminution

In a concentrator, comminution takes place as a sequence of crushing and grinding
circuits. A circuit consists of a size reduction stage followed by a particle clas-
sification stage, a necessary scheme to avoid crushing or grinding to a smaller size
than necessary. Within a circuit, particles smaller than a target size leave the
circuit and particles larger than that size return to the size reduction stage.
Crushing reduces the rock sizes from the run-of-mine ore to such a level, that
grinding can be carried out until the mineral and gangue is substantially separated.

Reduction ratio of a comminution stage is the ratio of the maximum particle
size in the feed to the maximum size in the product. Crushing is usually a dry
process and is performed in several stages, with small reduction ratios, ranging
from three to six in each stage. Figures 1.3 and 1.4 show equipment for crushing
stages.

Product from crushing enters the tumbling mill section of the concentrator. A
tumbling mill is a rotary drum with rods or balls, called grinding media, that
reduce the size of the ore particle by impact and by attrition between the grinding
media and the ore. Grinding is usually performed wet to provide a feed to the
concentration process as slurry. Since the middle of last century, a new type of
comminution equipment, the Semi Autogenous Mill or SAG mill, is being used in

Fig. 1.2 Simplified flowsheet of the concentrator in Chuquicamata
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the mineral industry. This mill, see Fig. 1.5, which is much larger than a con-
ventional ball mill, Fig. 1.6, can replace part of the crushing circuit, the secondary
and tertiary crushing, and the primary grinding, with great success.

Fig. 1.3 Primary crushing
stage: gyratory crusher

Fig. 1.4 Secondary or
tertiary crushing: cone
crusher

Fig. 1.5 SAG mill in the
foreground, with a secondary
ball mill at the side
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1.2 Concentration

Froth flotation is the most important mineral processing technique to recover
sulphide minerals, such as copper, zinc and led. It utilizes the difference in
physico-chemical surface properties of particles of different minerals and gangue.
After treatment with reagents, these differences in surface properties makes air
bubbles attach to valuable minerals and lift them to the pulp surface, where they
are recovered and leave the gangue as slurry, called tailing, which is discarded.
Figure 1.7 shows a flotation machine for copper flotation.

Fig. 1.6 Secondary grinding
circuit with a battery of
hydrocyclones

Fig. 1.7 Flotation cell in a
copper concentrator
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In most sulfide minerals concentration plants, the general feed to flotation
comes from a secondary grinding circuit, which consists of a grinding mill
working in closed circuit with a certain number of hydrocyclones. Hydrocyclones
are classification devices that separate small from coarse particles by the effect of
hydrodynamic forces in a vortex motion. Besides producing this size separation,
hydrocyclones act as a solid liquid separator by concentrating the underflow and
diluting the overflow. See Fig. 1.6.

Flotation processes are partially insensitive to slurry concentration, as long as
the pulp is below 33–35 % solid. This would indicate that a denser hydrocylone
overflow would contribute to produce a denser tailing. The last cells of a flotation
circuit produce middlings with a low percentage solid. A middling is a piece of ore
larger than the liberation size that will not float efficiently. Since this product is
diluted, if returned to the regrinding circuit, it will further liberate the particles and
will recover additional water.

The grinding-classification-concentration processes, we have been describing,
involves the use of a substantial quantity of water. The final concentrate of a
flotation plant usually has more water than is allowed in the next process to
recover the metal or in concentrate to be sold as such. On the other hand, tailings to
be discarded contain a prohibitive amount of water. In both cases, dewatering of
the solids must be done to produce a dryer concentrate in the first case, and to
recover the most part of the water in the second.

1.3 Dewatering

Dewatering is a process of solid–liquid separation achieved by thickening and
filtration. Thickening uses the force of gravity to separate the particles from the
water by sedimentation in large cylindrical tanks called thickeners, while filtration
uses pressure forces to pass the slurry through a cloth and separate it into a filter
cake on the cloth and clean water called filtrate. Often dewatering is difficult,
especially when the treated particles are very fine as required for concentration. In

Fig. 1.8 View of a
conventional thickener for
copper tailings
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such cases, size enlargement may be beneficial. This is accomplished by coagu-
lation and flocculation, both of which use the bonding of particles in larger
agglomerates by electrical or other bonding forces.

Figures 1.8 and 1.9 show two methods of solid–liquid separation, thickening
and filtration respectively.

1.4 Tailings Disposal

Safe and environmentally friendly deposition of mining waste is a major concern
in the mining industry world-wide. In sulphide concentration plants, almost the
total tonnage of treated mineral is deposited as tailings since the recovered product
represents a very small percentage of the total tonnage. In the copper industry, for
example, 98 % of the treated ore will be disposed as waste, together with a
significant amount of water. To compensate for the increasing production costs
associated with decreasing mineral content of the ores, successful mining activities
today relay on the treatment of high daily tonnage of ores, for example
200,000 tons per day in the copper industry. The transport, deposition and storage
of mine tailings must move large volumes of low density slurries, from which a
large amount of the water will be lost by evaporation.

Figures 1.10 and 1.11 show the transport, discharge and deposition of copper
tailings in a copper concentrator.

For waste minimization in the minerals industry, it is essential to learn how to
dewater and handle suspensions at very high concentrations. Such materials are
non-Newtonian fluids affected by shear and compression. Figure 1.12 shows the
discharge of a material at very high concentration which behaves as a Non-
Newtonian fluid (Fig. 1.13).

Fig. 1.9 Band filter for
tailing filtration
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Fig. 1.11 Discharge of
tailings into a tailing dam

Fig. 1.10 Tailing channel in
a Chilean copper mine

Fig. 1.12 Material behaving
as a non-Newtonian tailing
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1.5 Water Management

Chile is a predominantly a mining and agricultural country. In the desert north, the
mining, agriculture and fresh water industries compete for water resources. The
consumption of water, as an average for the country in 1999, was 1,350 m3/s with
the following distribution by economic activity (Renner 2005):

• Agriculture 84.6 %
• Other industries 6.5 %
• Mining 4.5 %
• Potable water 4.4 %

In the mining industry, consumption of water depends on the metal recovery
process used. Froth flotation uses around 0.72 m3/ton of ore and hydrometallurgy
0.30 m3/ton of ore. In the end, the part of the water in concentrators is lost at the
tailing dam, where only around 60–70 % of the water can be recovered. Losses are
related to retention of water as moisture by the deposited solid and evaporation
from the clear water pond. The total water consumption by the mining industry in
Chile in the year 2010 was 300 million m3/year and a projection for 2026 is
631 million m3/year. The scarcity of water made the Chilean mining industry to
install, in 2010, its first big copper concentrator Esperanza operated totally with
sea water.

Fig. 1.13 Copper
concentrate transport to the
world market in one of
Chile’s copper mines
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The cost of water in the mining industry depends on local conditions. For
example, in desert areas the price of fresh water in 2010 was (Concha 2001):

• Fresh water 0.50 US$/m3

• Recovered process water 0.18 US$/m3

• Sea water 1.20 US$/m3

• Desalinized sea water 2.20 US$/m3

In non-desert areas the cost of fresh water can be as low as 0.2 US$/m3.

1.6 Conclusions

Faced with the need to produce concentrates with adequate moisture for a safe
transportation to the world market, and the necessity to recover water from the
tailings to lower operating costs by diminishing fresh water requirements, to avoid
pollution and reduce liability associated with contamination of land and water
sources, the mining industry needs technical knowledge and scientific research in
the areas of Solid–liquid Separation, especially in Thickening, Filtration, Rheol-
ogy and Suspension Transport.

The purpose of this textbook is to give the basic knowledge necessary to
comprehend the problems of solid–liquid separation in the mineral industry.
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Chapter 2
Theory of Mixtures

Abstract This chapter lays out the conceptual basis for the study of processes of
solid–liquid separation. For the study of flows in rigid and deformable porous
media and of suspension sedimentation and transport, we must consider bodies
formed of different materials. The appropriate tool to do this is the Theory of
Mixtures. A rigorous but limited account of the Theory of Mixtures of continuum
mechanics is given that postulates that each point in space of a body is simulta-
neously occupied by a finite number of particles, one for each component of the
mixture. In this way, the mixture can be represented as a superposition of con-
tinuous media, each following its own movement with the restriction imposed by
the interaction between components. An introduction discusses the conditions that
a multi-component body must fulfill to be considered a continuum. The concepts
of body, component, mixture, deformation and rate of deformation are introduced
and discussed. Mass and momentum balance equations are formulated for each
component of the mixture and the need to establish constitutive equations to
complete a dynamic process is discussed.

To study the flow in rigid and deformable porous media and for the study of
sedimentation and transport of suspensions, it is convenient to consider a body
formed of different materials. The appropriate tool to do this is the Theory of
Mixtures. There is not one but several Theories of Mixtures, and here we will
follow the developments of Truesdell and Toupin (1960), Truesdell (1965, 1984).

The Theory of Mixtures postulates that each point in space is simultaneously
occupied by a finite number of particles, one for each component of the mixture. In
this way, the mixture may be represented as a superposition of continuous media,
each following its own movement with the restriction imposed by the interaction
between components. This means that each component will obey the laws of
conservation of mass and momentum, incorporating terms to account for the
interchange of mass and momentum between components. To obtain a rational
theory, we must require that the properties of the mixture follow the same laws as a
body of a single component, that is, that the mixture behaves as a single com-
ponent body. Concha and Barrientos (1993), Concha (2001).

F. Concha A, Solid–Liquid Separation in the Mining Industry,
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Treatment similar or alternative to this treatment may be found in many articles
and books, such as Bowen (1976), Atkin and Crain (1976), Bedford and
Drumheller (1983), Drew (1983), Truesdell (1984), Ungarish (1993), Rajagopal
and Tao (1995), Drew and Passman (1998).

2.1 Kinematics

2.1.1 Body, Configuration and Type of Mixture

The term mixture denote a body B formed by n components Ba � B; a ¼ 1; 2; . . .; n:
The elements of Ba are called particles and are denoted by pa: Each body occupies a
determined region of the Euclidian three-dimensional space E3 called configuration
of the body. The elements of the configurations are points Xa 2 E3; whose positions
are given by the position vector r. Thus, the position of a particle pa 2 Ba is given by:

r ¼ va pað Þ; a ¼ 1; 2; . . .; n ð2:1Þ

To investigate the properties of va see Bowen (1976). The configuration v Bð Þ of
the mixture is:

v Bð Þ ¼
[

a
va Bað Þ ð2:2Þ

The volume of v Bð Þ is called the material volume and is denoted by Vm :¼
V vðBÞð Þ: To every body Ba we can assign a positive, continuous and additive
function ma that measures the amount of matter it contains, such that:

m Bð Þ ¼
Xn

a¼1

ma Bað Þ ð2:3Þ

where ma and m Bð Þ are the masses of the a component and of the mixture
respectively. Due to the continuous nature of mass, we can define a mass density
�qaðr; tÞ at point r and time t in the form:

�qaðr; tÞ ¼ lim
k!1

ma Pkð Þ
Vm Pkð Þ

; a ¼ 1; 2; . . .; n ð2:4Þ

where Pkþ1 � Pk are part of the mixture having the position r in common at time t.
Due to the hypothesis that mass for a continuum is an absolutely continuous
function of volume, the function �qa exists almost everywhere in B, see Drew and
Passman (1999). This mass density is called the apparent density of Ba: The total
mass of Ba can be written in terms of �qa by:

ma ¼
Z

VmðtÞ

�qaðr; tÞdV ð2:5Þ
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For each body Ba we select a reference configuration vaj; such that in that
configuration it is the only component of the mixture (pure state). Let qaj be the
mass density of the a component in the reference configuration and call it material
density. Then we can write:

ma ¼
Z

VmðtÞ
�qaðr; tÞdV ¼

Z

Vj

qajðRÞdV ð2:6Þ

The material density of Ba in the actual configuration is denoted by qaðr; tÞ and
defines by the function uaðr; tÞ:

uaðr; tÞ ¼
�qaðr; tÞ
qaðr; tÞ

; a ¼ 1; 2; . . .; n ð2:7Þ

Substituting into Eq. (2.5) yields:

ma ¼
Z

VmðtÞ
�qadV ¼

Z

VmðtÞ
qauadV ð2:8Þ

The new element of volume dVa :¼ uadV is defined such that:

ma ¼
Z

VmðtÞ
�qadV ¼

Z

Va

qadVa ð2:9Þ

The volume Va tð Þ is called the partial volume of a and the function uaðr; tÞ the
volume fraction of Ba in the present configuration. Since the sum of the partial
volumes give the total volume, ua should obey the restriction:

Xn

a¼1

uaðr; tÞ ¼ 1 ð2:10Þ

We can distinguish two types of mixtures: homogeneous and heterogeneous.
Homogeneous mixtures fulfil completely the condition of continuity for the
material because the mixing between components occurs at the molecular level.
Those mixtures are frequently called solutions. For homogeneous mixtures, �qa is
the concentration of the component Ba: In heterogeneous mixtures, the mixing of
the components is at the macroscopic level, and for them to be considered as a
continuum, the size of the integration volume Vm in the previous equations must be
greater than that of the mixing level. These mixtures are also called multiphase
mixtures because each component can be identified as a different phase. In these
types of mixtures, uaðr; tÞ is a measure of the local structure of the mixture, and �qa

is called the bulk density.
It is sometimes convenient to define another reference configuration for Ba;

such as vac, with material volume Vc, that may or may not correspond to a certain
instant in the motion of the mixture. The mass density of Ba in this new reference
configuration is denoted by �qac, which is related to �qaj in the following way:
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ma ¼
Z

Vc

�qacdV ¼
Z

Vj

qajdVa ð2:11Þ

2.1.2 Deformation and Motion

The position of the particle in space is denoted by the material point pa in the
reference configuration vaj:

Ra ¼ vajðpaÞ ð2:12Þ

We assume that (2.12) has an inverse such that

pa ¼ v�1
aj ðRaÞ ð2:13Þ

The motion of pa 2 Ba is a continuous sequence of configurations over time:

r ¼ va pa; tð Þ; a ¼ 1; 2; . . .; n ð2:14Þ

Substituting (2.13) into (2.14) yields:

r ¼ f a Ra; tð Þ ð2:15Þ

where f a is the deformation function of the a component:

f a ¼ va � v�1
ka ð2:16Þ

We require f a to be twice differentiable and to have an inverse, such that:

Ra ¼ f�1
a r; tð Þ ð2:17Þ

For a given particle pa 2 Ba, that is, for a constant Ra and a variable t, the
deformation function, Eq. (2.15), represents the trajectory of the particle in time,
and for a constant time, the same equation represents the deformation of the body
Ba from the reference configuration vaj to the current configuration vat.

Spatial and material coordinates

The Cartesian components xi of r and Xa
i of Ra are the spatial and material

coordinates of pa:

r ¼ xiei and Ra ¼ Xa
i ei ð2:18Þ

Any property Ga of the body Ba can be described in terms of material or spatial
coordinates. For Ga pa; tð Þ we can write either:

Ga ¼ Ga v�1
aj Ra; tð Þ

� �
� ga1 Ra; tð Þ ; or ð2:19Þ

Ga ¼ Ga v�1
a r; tð Þ

� �
� ga2 r; tð Þ ð2:20Þ
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Of course the properties ga1 Ra; tð Þ and ga2 r; tð Þ are equivalent. We refer to the first
notation as the material property and to the second as the spatial property G of the
body Ba:

Since the property Ga is the function of two variables Ra; tð Þ or r; tð Þ, it is
possible to obtain the partial derivatives of G with respect to each of these vari-
ables Ra or r. The gradient of Ga is the partial derivative of Ga with respect to the
space variable. Since there are two such variables, there will be two gradients:

Material gradient
oGa

oRa
¼ o ga1 Ra; tð Þð Þ

oRa
¼ oga1

oXa
i

ei � gradGa ð2:21Þ

Spatial gradient
oGa

or
¼ o ga2 r; tð Þð Þ

or
¼ oga2

oxi
ei � gradGa � rGa ð2:22Þ

In the same way, we can define material and spatial time derivatives of Ga:

Material derivative
oGa

ot

����
Ra

¼ o ga1 Ra; tð Þð Þ
ot

¼ oga2ðr; tÞ
ot

����
Ra

� DGa

Dt
� _Ga ð2:23Þ

Spatial derivative
oGa

ot
¼ oga2ðr; tÞ

ot
¼ oga1 Ra; tð Þ

ot

����
r

ð2:24Þ

The material derivative represents the derivative of Ga with respect to time holding
the material point Ra fixed, while the spatial derivative is the derivative of Ga with
respect to time holding the place r fixed.

The relationship between the material and the spatial derivatives is obtained by
applying the chain rule of differentiation to Eq. (2.23):

_Ga ¼
oga2ðr; tÞ

ot

����
Ra

¼ oga2ðr; tÞ
ot

þ oga2ðr; tÞ
or

� or

ot

����
Ra

¼ oga2

ot
þrga2 � _r

¼ oga2

ot
þrGa � _r

ð2:25Þ

where r (with a point above) is the material derivative of the deformation function
r ¼ f a Ra; tð Þ.

Gradient of deformation tensor

Consider two particles pa; qa 2 Ba having the positions Ra and Ra þ dRa in the
reference configuration; see Fig. 2.1. At time t, their positions are:

r ¼ f a Ra; tð Þ and rþ dr ¼ f a Ra þ dRa; tð Þ ð2:26Þ

The position of qa at time t can be approximated in the vicinity of r by a linear
function of dRa:
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f a Ra þ dRa; tð Þ � f a Ra; tð Þ þ of a

oRa
� dRa ð2:27Þ

Then, from (2.26) and (2.27) we see that:

dr ¼ of a

oRa
� dRa ð2:28Þ

The tensor of a=oRa, that approximates the deformation function of f a in the
neighbourhood of r is called the gradient of the deformation tensor of the a
component, and is denoted by:

Fa Ra; tð Þ ¼ of a Ra; tð Þ
oRa

¼ grad r ð2:29Þ

To ensure the existence of an inverse, det Fa 6¼ 0: In Cartesian and matrix notation
the deformation tensor can be written in the form:

Fa Ra; tð Þ ¼ or

oRa
¼ BT

ox1

oX1

ox1

oX2

ox1

oX3
ox2

oX1

ox2

oX2

ox2

oX3
ox3

oX1

ox3

oX2

ox3

oX3

2

666664

3

777775
B ð2:30Þ

where B is the basis of orthogonal unit vectors.
Equation (2.28) represents the transformation of a line element dRa from the

reference configuration to the present configuration dr:

dr ¼ Fa Ra; tð Þ � dRa ð2:31Þ

A deformation is called homogeneous if Fa is independent of Ra.

p
q

Bκ dR

dr

p

q

Bt

R

R+dR

r+dr

r

F(R,t)

O
{B,t}

Fig. 2.1 Deformation of a
body from the reference
configuration Baj to the
present configuration Bat
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Change of reference configuration

The deformation quantified by Fa Ra; tð Þ depends on the reference configuration
chosen. Since this reference configuration is arbitrary, it is convenient to know
how a change of reference configuration affects Fa:

Consider two reference configurations Baj and Bac, and the actual configu-
ration Bat of the body Ba. Call Faj; Fac and Pa the gradient of deformation
tensors to go from Baj to Bat; from Bac to Bat and Baj to Bac respectively; see
Fig. 2.2. We can write:

dr ¼ Faj � dRaj ¼ Fac � dRac and dRac ¼ Pa � dRaj

Then dr ¼ Faj � dRaj ¼ F � Pa � dRajð Þ;
and therefore Faj ¼ Fac � Pa

ð2:32Þ

Dilatation

Consider an element of material volume dVaj in the form of a parallelepiped in the
reference configuration; see Fig. 2.3, then:

dVaj ¼ dRa1 � dRa2 � dRa3 � dRa1; dRa2; dRa3½ 	

After the deformation, the volume becomes:

dVm ¼ dr1 � dr2 � dr3 � dr1; dr2; dr3½ 	

Using (2.31):

dVm ¼ Fa1 � dRa1;Fa2 � dRa2;Fa3 � dRa3½ 	
¼ det Fa dRa1; dRa2; dRa3½ 	
¼ det FadVaj

ð2:33Þ

p

q

B
1

dR1

dr
p

q

Bt

R
R+dR

r+drr

O
{B,t}

p

q

dR2

B
2

R+dRR

P

F
1 F

2

Fig. 2.2 Change of reference
configuration
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The quotient between the elements of volume before and after the deformation is
called the dilatation of the body and is denoted by Ja; then:

Ja ¼ det Fa ð2:34Þ

The physical meaning of dilatation, expressed by (2.33), shows that det Fa [ 0.

Rigid deformation

A special type of deformation is the rigid deformation defined as a deformation in
which the distances between the particles in a body do not change. Consider two
particles pa; qa 2 Ba which, during the deformation, maintain their distance. Call
dRa ¼ dsajej and dr ¼ dse, refer to Fig. 2.1 and write:

d2
as � ds2

aj ¼ 0

dr � dr� dRa � dRa ¼ 0

Fa � dRað Þ Fa � dRað Þ � dRa � I � dRa ¼ 0

dRa � FT
a � Fa � I

� �
� dRa ¼ 0

Therefore, a rigid deformation should obey:

FT
a � Fa ¼ I ð2:35Þ

There are two cases for which (2.35) is valid: if Fa ¼ I, which represents a
translation, and Fa ¼ Qa, which is a rotation.

Stretching

Since for the deformation function f a Ra; tð Þ ; det Fa [ 0, the polar decomposition
(Gurtin 1981) may be applied to f a :

Fa ¼ Qa � Ua ¼ Va � Qa ð2:36Þ

O
{B,t}

Bκ

B
t

R

F(R,t)

r

Fig. 2.3 Dilatation
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Then,

U2
a ¼ FT

a � Fa ¼ Ca and V2
a ¼ Fa � F2

a ¼ Ba ð2:37Þ

Since Ua and Va are symmetric and positive definite tensors and Qa is an
orthogonal tensor, it can be shown that the characteristic values of Ua and Va are
the same:

Ua ¼
Xn

a¼1

kkukuk and Va ¼
Xn

a¼1

kkvkvk ð2:38Þ

and that the characteristic vectors are related by de rotation:

vk ¼ Qa � uk ð2:39Þ

Velocity and acceleration

The velocity and acceleration of a particle pa 2 Ba are the first and second material
derivatives of the deformation function r ¼ f a Ra; tð Þ:

va ¼
Df a Ra; tð Þ

Dt
¼ Dar

Dt
¼ _r Ra; tð Þ ð2:40Þ

aa ¼ _va ¼
Dava

Dt
¼ D2

ar

Dt2
ð2:41Þ

If the flow field is expressed in spatial coordinates, the acceleration is:

aa ¼
Dava

Dt
¼ ova Ra; tð Þ

ot

����
r

þ ova Ra; tð Þ
or

� or Ra; tð Þ
ot

¼ ova

ot
þrva � va ð2:42Þ

Velocity gradient: rate of dilatation, stretching and spin

Consider two particles pa; qa 2 Ba. If pa has a velocity of va r; tð Þ, the velocity
va rþ dr; tð Þ of qa; can be approximated by:

va rþ dr; tð Þ ¼ vaðr; tÞ þ
ovaðr; tÞ

or
� dr ð2:43Þ

Since va rþ dr; tð Þ ¼ vaðr; tÞ þ dva, in analogy to 2.26–2.28,

dva ¼
ovaðr; tÞ

or
� dr � La r; tð Þ � dr ð2:44Þ

The linear function La :¼ ova=or is called the velocity gradient tensor. In Carte-
sian tensor and matrix notations La can be written in the form:
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La ¼ rva ¼
ovai

oxj
eiej ¼ BT

ova1

ox1

ova1

ox2

ova1

ox3
ova2

ox1

ova2

ox2

ova2

ox3
ova3

ox1

ova3

ox2

ova3

ox3

2
666664

3
777775

B ð2:45Þ

The relationship between La and Fa can be obtained by calculating _va ¼ d _r from
Eq. (2.31):

d _v ¼ d _r ¼ D

Dt
Fa � dRað Þ

¼ _Fa � dRa ¼ _Fa � F�1
a dr

¼ La � dr

Therefore:

La ¼ _FaF�1
a ð2:46Þ

The velocity gradient can be separated into three irreducible parts, which are
mutually orthogonal:

La ¼
1
3

tr Lað ÞI
Rateofexpansion

orrateofdilatation
tensor:

þ 1
2

La þ LT
a

� �
� 1

3
tr Lað ÞI

� �

Rateofsheartensororstrechingtensor:

þ 1
2

La � LT
a

� �

Rateofrotationtensor
orspintensor:

ð2:47Þ

To show that tr La represents the rate of dilatation, calculate the following:

tr La ¼ trrva ¼
ovai

oxi

¼ r � va

On the other hand, take de derivative of the dilatation J r; tð Þ:

_Ja ¼
D

Dt
det Fað Þ

¼ det Fatr _FaF�1
a

� �

¼ det Fatr La

ð2:48Þ

From (2.48) we can write:

tr La ¼ r � va ¼
_J

J
ð2:49Þ
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Equation (2.49) shows that tr Laandr � va have the meaning of rate of dilatation
per unit of dilatation.

Defining the following terms:

Rate of expansion tensor: LaE ¼
1
3

tr Lað ÞI ð2:50Þ

Rate of shear stretching:ð Þ Da ¼
1
2

La þ LT
a

� �
� 1

3
tr Lað ÞI

� �
ð2:51Þ

Rate of rotation spin:ð Þ Wa ¼
1
2

La � LT
a

� �

Equation (2.47) may be written in the form:

La
Velocitygradient

tensor

¼ LaE
Rateofexpansion

orrateofdilatation
tensor:

þ Da
Rateofshear tensor
orstretchingtensor:

þ Wa
Rateofrotationtensor

orspintensor:

ð2:52Þ

2.1.3 Mass Balance

Let the rate of mass transfer, per unit volume, from all other components to Ba be
denoted by �gaðr; tÞ. This term �gaðr; tÞ receives the name of mass growth rate of the
a component. The following balance must be obeyed:

d

dt

Z

Vm

�qadV

Mass rate of change of
the a component in Vm

¼
Z

Vm

�gadV

Net rate of generation of
the a componente in Vm

ð2:53Þ

where dV is an element of material volume Vm of Ba: Taking the left side of (2.53)
to reference configuration yields:
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d

dt

Z

Vm

�qadV ¼
Z

Vj

D

Dt
�qaJað ÞdV

¼
Z

Vj

_�qaJa þ �qa
_Ja

� �
dV

¼
Z

Vj

_�qa þ �qar � va
� �

JadV

¼
Z

Vm

o�qa

ot
þr � �qava

ffi �
dV

¼
Z

Vm

o�qa

ot
dV þ

Z

Vm

r � �qavadV

¼
Z

Vm

o�qa

ot
dV þ

I

Sm

�qava � ndV

ð2:54Þ

Substituting in (2.53) gives a new form of the mass balance of Ba:
Z

Vm

o�qa

ot
dV þ

I

Sm

�qa va � nð ÞdV ¼
Z

Vm

�gadV ð2:55Þ

On the other hand, both volume integrals in (2.53) maybe taken to the reference
configuration to obtain:

Z

Vj

D

Dt
�qaJað Þ � �gaJa

ffi �
dV ¼ 0 ð2:56Þ

Performing the material derivative:
Z

Vj

_�qaJa þ �qa
_Ja � �gaJa

� �
dV ¼ 0

Z

Vj

_�qaJa þ �qar � vaJa � �gaJa
� �

dV ¼ 0

Z

Vj

_�qa þ �qar � va � �ga
� �

JadV ¼ 0

Z

Vm

_�qa þ �qar � va � �ga
� �

dV ¼ 0

Using the localization theorem (Gurtin 1981) yields:

_�qa þ �qar � va ¼ �ga ð2:57Þ

Writing the material derivative in terms of the spatial derivative and combining the
result with the second term of Eq. (2.57) gives:

o�qa

ot
þr � �qava ¼ �ga ð2:58Þ
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Equations (2.57) or (2.58) receive the name of continuity equation. The last one
has a conservation form.

Going back to Eq. (2.56), the localization theorem is used directly on this
equation to give:

D

Dt
�qaJað Þ ¼ �gaJa ð2:59Þ

This expression divided by �qaJa represent the rate by unit mass of growth of the

mass of the a component, and is denoted by g
_

a ¼ �ga=�qa. Integrate with boundary
condition �qa Rað Þ ¼ �qaj to give:

�qaJa ¼ �qaj exp

Z t

tj

g
_

aðsÞds

ffi �
ð2:60Þ

In those cases in which there is no mass transfer between components, g
_

a ¼ 0;
Eq. (2.60) reduces to:

�qaJa ¼ �qaj ð2:61Þ

Equation (2.61) is the local mass balance for a body Ba that deforms from the
reference to the actual configuration.

Taking the material derivative of (2.59) we can obtain the continuity equation:

_�qaJa þ �qa
_Ja ¼ Ja�ga

_�qaJa þ �qar � vaJa ¼ Ja�ga

_�qa þ �qar � va ¼ �ga

ð2:62Þ

Check this equation with (2.57).

Mass balance in a discontinuity

For bodies having discontinuities, the local mass balance equations are not valid.
In these cases, it is necessary to analyze the macroscopic mass balance further.
Consider a body Ba 2 B having a surface of discontinuity SI that separates the
body into two parts Bþa and B�a in the actual configuration; see Fig. 2.4. The fol-
lowing conditions hold:

Vm ¼ Vþ þ V�; Sm ¼ Sþ þ S�; SI ¼ Bþa \ B�a ð2:63Þ

Applying the macroscopic balance (2.55) to each side of the body, and noting that
the surface of discontinuity is not a material surface, yields:
Z

Vþ

o�qa

ot
dV þ

Z

V�

o�qa

ot
dV þ

Z

Sþ
�qa va � nð ÞdSþ

Z

SI

�qþa vþa � vI

� �
� ð�eIÞdS

þ
Z

S�
�qa va � nð ÞdSþ

Z

SI

�q�a v�a � vI

� �
� eIdS ¼

Z

Vþ
�gadV þ

Z

V�
�gadV
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Adding the volume and surface integrals and using (2.63), we have:
Z

Vm

o�qa

ot
dVþ

Z

Sm

�qa va � nð ÞdS�
Z

SI

�qþa vþa � vI

� �
� �q�a v�a � vI

� �� �
� eIdS

¼
Z

Vþ
�gadV þ

Z

V�
�gadV

Using Eq. (2.55), the previous equation reduces to:
Z

SI

�qþa vþa � vI

� �
� �q�a v�a � vI

� �� �
� eIdS ¼ 0

Z

SI

�qa va � vI

� �
� eI

	 

dS ¼ 0

where the jump of a property G is defined as [G] = G+ - G-. This equation is
called the macroscopic mass jump balance at a discontinuity. Using the locali-
zation theorem in the previous equation, we obtain the local mass jump balance at
a discontinuity:

�qa va � vI

� �
� eI

	 

¼ 0 ð2:64Þ

This equation can also be written in the following form called the Rankin-
Hugoniot jump condition (Bustos et al. 1999):

r ¼ �qava � eI½ 	
�qa½ 	

ð2:65Þ

where r ¼ vI � eI is the displacement velocity of the discontinuity.

Average properties of the mixture

Adding the continuity Eq. (2.58) and the mass jump balance (2.65) for all com-
ponents, those properties for the mixture may be obtained:

O

{B,t}

S
I

P
t
+

P
t
-

P
t
-

P
t
+

e

v

Fig. 2.4 Body Ba with a
surface of discontinuity
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o

ot

Xn

a¼1

�qa

 !
þr �

Xn

a¼1

�qava ¼
Xn

a¼1

�ga ð2:66Þ

r ¼

Pn

a¼1
�qava � eI

� �

Pn

a¼1
�qa

� � ð2:67Þ

According to the initial postulates, the mixture should follow the laws of a pure
material; therefore, the continuity equation and the mass jump condition for the
mixture should be:

oq
ot
þr � qv ¼ 0 ð2:68Þ

r ¼ qv � eI½ 	
q½ 	 ð2:69Þ

where q and v are the mass density and mass average or convective velocity of the
mixture. Comparing Eqs. (2.66) and (2.67) with (2.68) and (2.69) respectively, we
deduce the following definitions for the mixture properties:

Mass density q ¼
Xn

a¼
�qa ð2:70Þ

Mass average velocity v ¼

Pn

a¼1
�qava

Pn

a¼1
�qa

¼

Pn

a¼1
�qava

q
ð2:71Þ

Mass growth rate
Xn

a¼1

�ga ¼ 0 ð2:72Þ

This last equation indicates that no net production of mass occurs.

Convective diffusion equation

Sometimes it is convenient to express the continuity equation of each component
in terms of the convective mass flux density jaC ¼ �qav of that component. Adding
and subtracting the convective flux per unit volume r � �qav, yields:

o�qa

ot
þr � �qav ¼ �r � �qa va � vð Þ þ �ga

Defining the diffusive flux density by jaD :¼ �qa va � vð Þ ¼ �qaua, where ua ¼
va � v is the diffusion velocity, we can write:
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o�qa

ot
þr � �qav ¼ �r � �qa va � uað Þ þ �ga ð2:73Þ

Summing this equation over a yields.

o

ot

Xn

a¼1

�qa

 !
þ r �

Xn

a¼1

�qav

 !
¼ �r � �qauað Þ þ

Xn

a¼1

�ga

Using the definitions (2.70)–(2.72), gives:

Xn

a¼1

jaD ¼
Xn

a¼1

�qaua ¼ 0 ð2:74Þ

Mass balance for incompressible mixtures

Incompressible mixtures are those having incompressible components, realizing
that the mixture itself can be compressible, because the volume fraction of the
components may be changing.

Using the concept of volume fraction given in (2.7), the continuity equation can
be written in the form:

o

ot
�qauað Þ þ r � �qauavað Þ ¼ �ga ð2:75Þ

r ¼ �qauava � eI½ 	
�qaua½ 	 ð2:76Þ

Since, for an incompressible component qa is constant, dividing by qa the mass
balances become volume balances:

oua

ot
þr � uavað Þ ¼ g

_

aua; r ¼ uava � eI½ 	
ua½ 	

ð2:77Þ

Summing all components yields:

o

ot

Xn

a¼1

ua

 !
þr �

Xn

a¼1

uava

 !
¼
Xn

a¼1

g
_

aua r ¼

Pn

a¼1
uava � eI

� �

Pn

a¼1
ua

� � ð2:78Þ

Using the restriction
Pn

a¼1 ua ¼ 1; and defining the volume average velocity q by :

q ¼
Xn

a¼1

uava; ð2:79Þ

the mass balance equation and the mass jump condition for the mixture become:
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r � q ¼
Xn

a¼1

g
_

aua q � eI½ 	 ¼ 0 ð2:80Þ

The last equation shows that the volume average velocity suffers no jump across a
surface of discontinuity.

2.2 Dynamical Processes

2.2.1 Linear Momentum Balance

Applying the axiom of linear momentum and the Cauchy stress principle to each
body Ba; we arrive to the macroscopic balance of linear momentum:

d

dt

Z

Vm

�qavadV

Rateofchangeoflinear
momentumofBa:

¼
Z

Sm

Ta � ndS

Diffusivefluxof
linermomentuminBa:

þ
Z

Vm

ba þma þ �gavað ÞdV

Sourceoflinearmomentumduetobody
forces;interactionforces and massgeneration:

ð2:81Þ

where Ta is the stress tensor field, called partial stress and ba is the body force on
Ba; ma is the interaction force between components, that is, the force by unit
volume exerted on Ba by all other components and �ga is the rate of mass growth, as
defined earlier.

Using the Green-Gauss-Ostrogradsky (GGO) theorem on the surface integral
yields:

d

dt

Z

Vm

�qavadV ¼
Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

Making a change of reference configuration on the left-hand side and taking the
material derivative:

Z

Vaj

Ja
D

Dt
�qavað Þ þ �qava

DJa

Dt

ffi �
dV¼

Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

Z

Vaj

D

Dt
�qavað Þ þ �qavar � va

ffi �
JadV¼

Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

Z

Vm

D

Dt
�qavað Þ þ �qavar � va

ffi �
dV¼

Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

ð2:82Þ

Changing the material to spatial derivative yields:
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Z

Vm

o

ot
�qavað Þ þ �qava � rva þ �qavar � va

ffi �
dV ¼

Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

Z

Vm

o

ot
�qavað Þ þ r � �qavavað Þ

ffi �
dV ¼

Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

Z

Vm

o

ot
�qavað Þ þ r � �qavavað Þ � r � Ta � ba �ma � �gava

ffi �
dV ¼ 0

ð2:83Þ

Using the localization theorem (Gurtin 1981) leads to the linear momentum bal-
ance in the conservation form:

o

ot
�qavað Þ þ r � �qavavað Þ ¼ r � Ta þ ba þma þ �gava ð2:84Þ

If instead we take the derivative of (2.82) in the following form:
Z

Vm

D

Dt
�qavað Þ þ �qavar � va

ffi �
dV ¼

Z

Vm

r � Ta þ ba þma þ �gavað ÞdV

Z

Vm

_�qava þ �qa_va þ �qavar � va �r � Ta � ba �ma � �gava

� �
dV ¼ 0

Z

Vm

_�qa þ �qar � va � �ga
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

by continuity equation¼ 0

va þ �qa_va þ�r � Ta � ba �ma

0
B@

1
CAdV ¼ 0

Z

Vm

�qa_va þ�r � Ta � ba �mað ÞdV ¼ 0 ;

and using the localization theorem:

�qa _va ¼ r � Ta þ ba þma ð2:85Þ

Linear momentum jump balance

In regions having discontinuities, Eqs. (2.84) and (2.85) are still valid on each side
of the discontinuity, but they are not valid at the discontinuity. Following a pro-
cedure similar to that used previously for the mass jump balance, we write the last
equation of (2.83) in the form:
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Z

Vm

o

ot
�qavað Þ � ba �ma � �gava

ffi �
dV ¼ �

Z

Vm

r � �qavavað Þ � r � Tað ÞdV

Z

Vm

o

ot
�qavað Þ � ba �ma � �gava

ffi �
dV ¼ �

I

Sm

�qava va � nð ÞdS�
I

Sm

Ta � ndS

Applying this equation to each side of the discontinuity yields:
Z

Vþ

o

ot
�qavað Þ � ba �ma � �gava

ffi �
dV þ

Z

V�

o
�qavað Þ � ba �ma � �gava

ffi �
dV

�x ¼�
I

Sþ

�qava va � nð ÞdS�
Z

SI

�qþa vþa vþa � vI

� �
� �eIð ÞdS�

I

S�

�qava va � nð ÞdS

�
I

SI

�q�a v�a v�a � vI

� �
� eIdS�

I

Sþ

Ta � ndS�
Z

SI

Tþa � ð�eIÞdS�
I

S�

Ta � ndS

�
Z

SI

T�a � eIdS

Adding integrals with (+) and (–) and defining the jump of a property G by
[G] = G+ - G-, yields:
Z

Vm

o

ot
�qavað Þ � ba �ma � �gava

ffi �
dV �

I

Sm

�qava va � nð ÞdS�
I

Sm

Ta � ndS

¼ �
Z

SI

�qava va � vIð Þ � eI½ 	dS�
Z

SI

Ta � eI½ 	dS
ð2:86Þ

The left hand-side of (2.86) is zero by the macroscopic linear momentum balance,
so that:
Z

SI

�qava va � vIð Þ � eI½ 	dSþ
Z

SI

Ta � eI½ 	dS ¼
Z

SI

�qava va � vIð Þ � eI½ 	 þ Ta � eI½ 	ð ÞdS

¼ 0

Applying the localization theorem (Gurtin 1981) yields the linear momentum jump
balance for the a component:

�qava va � vIð Þ � eI½ 	 � Ta � eI½ 	 ¼ 0; or r �qava½ 	 ¼ �qava vI � eIð Þ½ 	 � Ta � eI½ 	 ð2:87Þ

where r ¼ vI � eI½ 	 is the displacement velocity of the discontinuity.
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Linear momentum balance for a mixture
Summing Eq. (2.84) for all component results in:

o

ot

Xn

a¼1

�qavað Þ þ r �
Xn

a¼1

�qavavað Þ ¼ r �
Xn

a¼1

Ta þ
Xn

a¼1

ba þma þ �gavað Þ

Substituting the component velocity by the diffusion velocity by means of equation
ua ¼ va � v in the second term of the left-hands side yields:

o

ot

Xn

a¼1

�qavað Þþr �
Xn

a¼1

�qa ua þ vð Þ ua þ vð Þð Þ ¼ r �
Xn

a¼1

Ta þ
Xn

a¼1

ba þma þ �gavað Þ

o

ot

Xn

a¼1

�qavað Þþr �
Xn

a¼1

�qauavð Þ þ r �
Xn

a¼1

�qavuað Þ þ r �
Xn

a¼1

�qavvð Þ

¼ r �
Xn

a¼1

Ta�r �
Xn

a¼1

�qauauað Þ þ
Xn

a¼1

ba þma þ �gavað Þ

Using the definitions (2.70)–(2.72) we get:

oq
ot
þr � qvvð Þ ¼ r �

Xn

a¼1

Ta �
Xn

a¼1

�qauauað Þ
 !

þ
Xn

a¼1

ba þma þ �gavað Þ

For the mixture the linear momentum of a single component should be valid, then:

oq
ot
þr � qvv ¼ r � T þ b

Comparing the last two equations we conclude that it is necessary that:

T ¼ TI �
Xn

a¼1

�qauaua; b ¼
Xn

a¼1

ba;
Xn

a¼1

ma þ �gavð Þ ¼ 0 ð2:88Þ

with TI ¼
Xn

a¼1

Ta ð2:89Þ

The term TI receives the name of the internal part of the stress tensor (Truesdell
1984). The last term in (2.88) indicates that no net production of linear momentum
exists, and that the growth in one component is done at the expense of the linear
momentum of the other components.

2.2.2 Angular Momentum Balance

The application of Euler’s second law for the angular momentum and Cauchy’s
stress principle to the a component of the body gives the macroscopic angular
momentum balance:
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d

dt

Z

Vm

r� rq

� �
� �qava

� �
dV ¼

Z

Sm

r� rq

� �
� Ta � n

� �
dS

þ
Z

Vm

r� rq

� �
� ba þma þ �gavað Þ

� �
dSþ

Z

Vm

aaqdV

ð2:90Þ

where rq is the position of a fixed point Q with respect to which the torques and
angular momentum are calculated.

When the field variables are smooth and continuous, a procedure similar to that
used in the previous section leads to the local angular momentum balance:

Ta � TT
a ¼ Aaq ð2:91Þ

where Aaq is the skew tensor corresponding to the axial vector �aaq. If we assume
that there is no interchange of angular momentum between components, �aaq ¼ 0
and the stress tensors for the components are symmetric:

Ta ¼ TT
a : ð2:92Þ

2.2.3 Dynamic Process

Consider a mixture B formed by component Ba � B; with a ¼ 1; 2; . . .; n: We
say that the following field variables r ¼ f a Ra; tð Þ, �qa ¼ �qa r; tð Þ, Ta ¼ Ta r; tð Þ,
ba ¼ ba r; tð Þ, �ga ¼ �ga r; tð Þ and ma ¼ ma r; tð Þ, constitute a dynamic process if they
obey the following field equations in regions where they are smooth and
continuous:

o�qa

ot
þr �qavað Þ ¼ �ga ð2:93Þ

o

ot
�qavað Þ þ r � �qavavað Þ ¼ r � Ta þma þ �qava ð2:94Þ

and the following jump balance at discontinuities:

r �qa½ 	 ¼ �qava � eI½ 	; r �qava � eI½ 	 ¼ �qavava � eI½ 	 � Ta � eI½ 	 ð2:95Þ

For this dynamic process to be complete, constitutive equations relating the
kinematical with the dynamical variables must be postulated: Ta; rð Þ, ba; rð Þ,
ma; rð Þ and �ga; rð Þ. A dynamic process for these six field variables

r; �qa; Ta; ba and �ga is admissible when the six equations are satisfied.
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Chapter 3
Particulate Systems

Abstract Mixtures of finely divided solid particles in water are the subject of this
chapter. Here the equations derived in Chap. 2 are applied to particulate systems.
First, the requisite for considering a particulate system as a continuum is laid out. In
such a system the motion of the components of the mixture can be described
through local mass and linear momentum balances in all regions where the field
variables are continuous. At discontinuities the field equations must be replaced by
the corresponding jump conditions. Next, the result is applied to a two-component
solid–fluid system. For fluids, constitutive equations are proposed for the stresses,
defining pressure and viscous stress. The properties of the solid components in
particulate systems depend strongly on their concentration. At concentrations of
less than those where particles are in permanent contact with each other, the
mixture is called a suspension and all interaction forces are transmitted from par-
ticle to particle through the fluid, defining the pore pressure. At greater concen-
trations the mixture is called a porous medium, a porous bed or sediment, where the
stresses are transmitted through the fluid and from particle to particle by direct
contact through the effective solid stress. A dynamic process for a solid–liquid
system is defined when the set of field variables in regions where the variables are
continuous obey the field equations and at discontinuities obey the jump conditions.

3.1 Dynamic Process for a Particulate System

Consider a set of solid particles thoroughly mixed with a fluid forming a sus-
pension under the following conditions:

1. All particles are small, with respect to the container, and of the same size form
and density.

2. The individual particles and the fluid are incompressible.
3. There is no mass transfer between the solid and the fluid.
4. The only body force is gravity.

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_3,
� Springer International Publishing Switzerland 2014
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In a system such as that described, the motion of each of the components of the
mixture may be described through the local mass and linear momentum balances
in all regions where the field variables are continuous:

Mass balance of the component
o

ot
qauað Þ þ r � qauavað Þ ¼ ga ð3:1Þ

Mass balance of the mixture r � q ¼
X2

a¼1

�ga

qa
ð3:2Þ

Momentum balance of the component qa _va ¼ r � Ta þ ba þma ð3:3Þ

Restriction
X2

a¼1

ma þ �gamað Þ ¼ 0 ð3:4Þ

In these expressions the field variables q ¼
P

a uava is the volume average
velocity, ua r; tð Þ; va r; tð Þ and Ta r; tð Þ represent the volume fraction, the velocity
and the stresses of the a component, ba r; tð Þ and ma r; tð Þ are the body force and the
interaction force between components respectively and �ga r; tð Þ measures the rate at
which the other components deliver mass per unit volume to the component a. The
operator r � ð�Þ represents the divergence of the function �ð Þ.

At discontinuities, Eqs. (3.1)–(3.3) must be replaced by the corresponding jump
conditions:

r ua½ � ¼ uava � eI½ � ð3:5Þ

r uava½ � ¼ uava va � eIð Þ½ � � Ta � eI½ � ð3:6Þ

where r ¼ va � eI is the displacement velocity of the discontinuity.
For a two-component system of small solid particles and a fluid, designate the

solid component by a ¼ 1 ¼ s and by a ¼ 2 ¼ f the fluid component. Since, due
to assumptions 1 and 2 the material density of each component is constant, all
terms may be divided by the corresponding density. On the other hand, there is no
mass transfer between components, assumption 3 and the only body force is
gravity. Then Eqs. (3.1)–(3.3) reduce to:

Volume balance for the solid
ou
ot
þr � uvsð Þ ¼ 0 ð3:7Þ

Volume balance for the mixture r � q ¼ 0 ; with q ¼ uvs þ 1� uð Þvf ð3:8Þ

Momentum balance for the solid : qsu _vs ¼ r � Ts þ qsugþm ð3:9Þ

Momentum balance for the fluid : qf 1� uð Þ _vf ¼ r � Tf þ qf 1� uð Þg�m

ð3:10Þ

where us r; tð Þ ¼ u r; tð Þ and uf r; tð Þ ¼ 1� u r; tð Þ are the volume fraction of
solids and fluid at the position r and time t and vs r; tð Þ; vf r; tð Þ;Ts r; tð Þ;
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Tf r; tð Þ;m r; tð Þ and g are the solid and fluid velocities, the solid and fluid partial
stress tensors, the solid–fluid interaction force and the gravitational constant.

In most cases of practical interest, the acceleration terms are negligible (see
Bustos et al. 1999) and can be disregarded in Eqs. (3.9) and (3.10). The interaction
force m may be separated into a static force mE and a dynamic force mD that
depends on the motion. With these definitions, Eqs. (3.9) and (3.10) become:

Momentum balance for the solid: 0 ¼ r � Ts þ qsugþmE þmD ð3:11Þ

Momentum balance for the fluid: 0 ¼ r � Tf þ qf ð1� uÞg�mE �mD ð3:12Þ

3.1.1 Fluid Component

For all types of fluids, the stresses may be divided into en equilibrium isotropic
stress pf I and an extra stress TE

f depending on the motion:

Tf ¼ �pf I þ TE
f ð3:13Þ

where pf is the fluid partial pressure, or simply the pressure and TE
f is the viscous

stress, or extra stress, of the fluid. Replacing Eq. (3.13) into the momentum bal-
ance of the fluid, we obtain:

rpf ¼ r � Tf þ qf 1� uð Þg�mE �mD ð3:14Þ

In flows of solid–fluid mixtures, there are two variables related to friction. One
is the viscous stress tensor TE

f representing the friction within the fluid and the
other is the interaction force mD corresponding to the friction between the solid
and the fluid. Experience has shown (Marle 1967; Whitaker 1986) that the friction
within the fluid is much smaller than the friction between solids and fluids, and
therefore may be neglected in Eq. (3.14) leading to:

rpf ¼ qf 1� uð Þg�mE �mD ð3:15Þ

Neglecting the viscous term in Eq. (3.13) is equivalent to consider the fluid as
an elastic fluid.

3.1.2 Pore Pressure

The fluid partial pressure pf is a variable defined over the entire surface of the
mixture (remember the solids and fluids are superimposed continuous media), and
therefore it is not experimentally measurable. The experimental pressure associate
with the flow in a porous media is the pore pressure.
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It has been shown in fluid mechanics that for a solid–fluid mixture the fluid
pressure is continuous across semi-permeable surfaces, that is, surfaces that let the
fluid pass but retain the solids. For this reason, the pore pressure p z; tð Þ may be
measured with a manometer as p z; tð Þ ¼ qf g h� z tð Þð Þ. See Fig. 3.1.

Dynamic processes involving particulate systems generally depend on the
pressure in excess to the hydrostatic pressure, since at the hydrostatic pressure they
come to end. Therefore, the concept of excess pore pressure pe z; tð Þ is introduced:

pe z; tð Þ ¼ p z; tð Þ � qf gz L� z tð Þð Þ: ð3:16Þ

3.1.3 Solid Component

The properties of the solid component in particulate systems depend strongly on its
concentration. In diluted systems particles have greater liberty of movement as
opposed to more concentrated suspensions, where the motion of one particle is
hindered by the presence of other particles. The characteristic concentration at
which this change occurs is known as critical concentration uc, defined as that
concentration at which the particles become in contact with another, forming a
network capable of transmitting compression forces. At concentration less than the
critical, the mixture is called suspension and all interaction forces are transmitted
from particle to particle through the fluid. At concentration greater than the crit-
ical, the mixture is called a porous medium, a porous bed or a sediment and the
stresses are transmitted through the fluid and from particle to particle by directly
contact.

Fig. 3.1 Measurement of pore pressure
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For sake of simplicity we will assume that the solid component also behaves as
an elastic fluids, so that the tress tensor Ts is given by:

Ts ¼
�bI for u�uc

� bþ ps u;ucð Þð ÞI for u [ uc

�
ð3:17Þ

where uc is the critical concentration, b is a constant and I is the second order unit
tensor. For concentrations less then the critical the solid stress is constant and it is a
function of the concentration and of the critical concentration for values above the
critical. This result (but not the basic principle) coincides with more elaborate
constitutive equation of the solid stress tensor, for example for isotropic elastic
solids (Bustos et al. 1999, p. 43) or a plastic solid (Buscall and White 1987; Green
et al. 1996).

Introducing the constitutive Eq. (3.17) into the local momentum balance (3.15)
yields:

rps ¼ qf ugþmE þmD ð3:18Þ

3.1.4 Solid Effective Stress

Similarly to the case of the fluid component, the ‘‘solid pressure ps’’ is not an
experimentally measurable variable. When a compressive force is applied to a
porous medium, the fluid filling the pores between the particles immediately
supports the total force exerted, increasing its pore pressure. The excess pore
pressure initiates the fluid flow out of the pores, which is accompanied by a
reduction of the pore pressure and a progressive transfer of the stress to the solid
structure. The rate at which the porous medium deforms depends on the consti-
tutive equation of the solid stress and on the solid–fluid interaction force opposing
the fluid flow.

The transient process of stress transfer from the fluid filling the pores to the
solid skeleton is called consolidation. Fig. 3.2 shows a mechanical analog to
consolidation. In the figure, the length of a given spring is shown when it is
subjected to different weights, 5, 10, 15, and 20 kg. In the bottom figure, the same
spring is submerged in water contained in a frictionless column with a piston and a
valve.

• Figure 1: Initially the system is in equilibrium with the valve open and without
any weight.

• Figure 2: The valve is closed and a 20 kg weight is put on the piston. Since
water is incompressible, it supports the whole weight increasing its ‘‘pore
pressure’’. The spring conserves its total length.

• Figure 3: Represents the instant when the valve is open and before the water
starts to flow out.
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• Figure 4: With the valve open, the water under pressure starts to flow out
through the valve. The rate of outflow is controlled by the amount of excess pore
pressure and by the friction through the valve (permeability). As water leaves,
the piston diminishes its level inside the column, the spring compresses until it
supports 5 kg. At this moment, the water supports the difference of 15 kg.

• Figure 5: More water flows out and the piston continue dropping. When the
spring has compressed to the size shown in the figure, the spring and the water
support 10 kg each.

• Figure 6: The water continues flowing out and the spring supports 15 kg while
the water supports 5 kg.

• Figure 7: Finally, the spring supports the 20 kg and the water has hydrostatic
pressure (zero excess pore pressure).The complete process consists in trans-
ferring the 20 kg load from the water (pore pressure) to the spring (solid
effective stress).

3.1.5 Total Pressure

In a particulate system, the measurable total pressure pt is the sum of the pore
pressure p and the effective solid stress re. Then, the relationship between the
theoretical and the experimental variables are:

pt ¼ pf þ ps � pþ re ð3:19Þ

Fig. 3.2 Mechanical analog of consolidation
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The force exerted by the fluid on a surface S is:
Z

S

pf dS ¼
Z

Sf

pdSf ¼
Z

S

p ef dS
� �

ð3:20Þ

where S is the cross section of the mixture, Sf is the cross section in the fluid of the
porous medium and ef is the surface porosity (fraction of the total surface occupied
by the fluid). If the surface porosity ef is assumed to be equal to the volume
porosity e (fraction of the total volume of the porous medium occupied by the
fluid), ef � e ¼ 1� u, Eq. (3.20) may be written in the form:

Z

S

pf dS ¼
Z

S

p 1� uð ÞdS ð3:21Þ

from which:

pf ¼ 1� uð Þp ð3:22Þ

Using Eq. (3.19) the following is obtained for the solid pressure:

ps ¼ upþ re ð3:23Þ

Substituting the theoretical pressures pf and ps by its experimental equivalents
p and re from Eqs. (3.22) and (3.23) into the local balances of momentum (3.18)
and (3.15), results in:

r upð Þ þ rre ¼ qf ugþmE þmD ð3:24Þ

r 1� uð Þpð Þ ¼ qf 1� uð Þg�mE �mD: ð3:25Þ

3.1.6 Interaction Force at Equilibrium

Consider the local momentum balance of the fluid, Eq. (3.25), at equilibrium,
where the dynamic interaction force mD ¼ 0 and the hydrostatic pore pressure is
given by p zð Þ ¼ qf g L� zð Þ, where L is the height of the water level. Substituting
into (3.25) yields:

1� uð Þqf g� prujequilibrium¼ qf 1� uð Þg�mE

mE ¼ prujequilibrium ð3:26Þ

Assuming that the functional form of Eq. (3.26) is always valid, we can write
for the static interaction force:

mE r; tð Þ ¼ pru ð3:27Þ
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Substituting into the local momentum balances (3.25) and (3.24) results in:

rp ¼ qf g�
mD

1� u
ð3:28Þ

rre ¼ Dqugþ mD

1� u
ð3:29Þ

In terms of the excess pore pressure pe, the local momentum balance for the
fluid is:

rpe ¼ �
mD

1� u
ð3:30Þ

Combining (3.29) and (3.30) we can substitute (3.29) by:

rpe þrre ¼ Dqug: ð3:31Þ

3.1.7 Discontinuities

It is well known that suspensions develop discontinuities. Therefore, the local field
equations must be substituted at discontinuities by jump conditions.

r u½ � ¼ uvs � eI½ � ð3:32Þ

r uvs½ � ¼ uvsðvs � eIÞ½ � � u pe þ qf gðL� zÞ
� �

þ re

� �
eI

ffi �
: ð3:33Þ

3.2 Dynamical Process

Collecting the previous results, we can say that the flow of a particulate systems
may be represented by the following field variables: the volume fraction of solids
u r; tð Þ, the solid and fluid velocities vs r; tð Þ and vf r; tð Þ, the excess pore pressure
pe r; tð Þ, the solid effective stress re r; tð Þ and the solid–fluid dynamic interaction
force mD r; tð Þ. These variables constitute a dynamical process if,

1. For regions where the variables are continuous, the obey the field equations:

ou
ot
þr � uvsð Þ ¼ 0 ð3:34Þ

r � q ¼ 0 ; con q ¼ uvs þ 1� uð Þvf ð3:35Þ

rre ¼ Dqugþ md

1� u
ð3:36Þ
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rpe ¼ �
md

1� u
ð3:37Þ

2. At discontinuities they obey the jump conditions:

r u½ � ¼ uvs � eI½ � ð3:38Þ

r uvs½ � ¼ uvs vs � eIð Þ½ � � u pe þ qf gðL� zÞ
� �

þ re

� �
eI

ffi �
ð3:39Þ

3. The constitutive equations for the solid–fluid interaction force and for solid
effective stress:

md ¼ md u; vs ; qð Þ ð3:40Þ

re ¼ re u; vs ; qð Þ: ð3:41Þ
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Chapter 4
Sedimentation of Particulate Systems

Abstract This chapter deals with sedimentation of particulate systems considered
as discrete media. Sedimentation is the settling of a particle or suspension of
particles in a fluid due to the effect of an external force such as gravity, centrifugal
force or any other body force. Discrete sedimentation has been successful in
establishing constitutive equations for continuous sedimentation processes. The
foundation of the motion of particles in fluids is discussed in different flow
regimes, Euler’s flow, Stokes flow and flows with a boundary layer. Starting from
the sedimentation of a sphere in an unbounded fluid, a complete analysis is made
of the settling of individual spherical particles and suspensions. The results are
extended to isometric particles and to arbitrarily shaped particles. Sphericity as a
shape factor is used to describe the form of isometric particles. A hydrodynamic
sphericity must be defined for particles with arbitrary shapes by performing sed-
imentation or fluidization experiments, calculating the drag coefficient for the
particles using the volume equivalent diameter and obtaining a sphericity defined
for isometric particles that fits experimental values. A modified drag coefficient
and sedimentation velocities permits grouping all sedimentation results in one
single equation for particles of any shape.

Sedimentation is the settling of a particle, or suspension of particles, in a fluid due
to the effect of an external force such as gravity, centrifugal force or any other
body force. For many years, workers in the field of Particle Technology have been
looking for a simple equation relating the settling velocity of particles to their size,
shape and concentration. Such a simple objective has required a formidable effort
and it has been solved, only in part, through the work of Newton (1687) and Stokes
(1844) on flow around a particle, and the more recent research of Lapple (1940),
Heywood (1962), Batchelor (1967), Zenz (1966), Barnea and Mitzrahi (1973) and
many others, to those Turton and Levenspiel (1986) and Haider and Levenspiel
(1998). Concha and collaborators established in 1979 an heuristic theory of sed-
imentation, that is, a theory based on the fundamental principles of mechanics, but
to a greater or lesser degree to intuition and empirism. These works, (Concha and
Almendra 1979a, b; Concha and Barrientos 1982, 1986; Concha and Christiansen
1986), first solve the settling of one particle in a fluid, then, they introduce

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_4,
� Springer International Publishing Switzerland 2014
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corrections for the interaction between particles, through which the settling
velocity of a suspension is drastically reduced. Finally, the settling of isometric
and non-spherical particles was treated. This approach, which uses principles of
particle mechanics, receives the name of the discrete approach to sedimentation,
or discrete sedimentation.

Discrete sedimentation has been successful in establishing constitutive equa-
tions in processes using sedimentation in order to analyze the sedimentation
properties of a certain particulate material in a given fluid. Nevertheless, to analyze
a sedimentation process and to obtain behavioral pattern permitting the prediction
of capacities and equipment design procedures, another approach is required, the
so-called continuum approach. In the present chapter the discrete approach will be
analyzed, leaving the continuum approach for later chapters.

4.1 Discrete Sedimentation

The physics underlying sedimentation, that is, the settling of a particle in a fluid has
long been known. Stokes showed the equation describing the sedimentation of a
sphere in 1851 and that can be considered as the starting point of all discussions of
the sedimentation process. Stokes showed that the settling velocity of a sphere in a
fluid is directly proportional to the square of the particle radius, to the gravitational
force and to the density difference between solid and fluid, and inversely propor-
tional to fluid viscosity. This equation is based on a force balance around the sphere.
Nevertheless, the proposed equation is valid only for slow motions, so that in other
cases expressions that are more elaborate should be used. The problem is related to
the hydrodynamic force between the particle and the fluid.

Consider the incompressible flow of a fluid around a solid sphere. The equa-
tions describing the phenomena are the continuity equation and Navier–Stokes
equation:

r � v ¼ 0

q
ov

ot
þ rv � v

Convective force

� �
¼ �rpþ lr2v

Diffusive force

þqg
ð4:1Þ

where v and p are the fluid velocity and pressure field, q and l are the fluid
density and viscosity and g is the gravity force vector.

Unfortunately, Navier–Stokes equation are non-linear and it is impossible to be
solved explicitly in a general form. Therefore, methods have been used to solve it
in special cases. It is known that the Reynolds number Re ¼ qf du

�
l, where

qf ; d and u are the fluid density and the particle diameter and velocity respectively,
is an important parameter that characterizes the flow. It is a dimensionless number
representing the ratio of convective to diffusive forces in Navier–Stokes equation.
In dimensionless form, Navier–Stokes equation becomes:
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1
St

ov�

ot�
þ r�v� � v� ¼ � 1

Ru
r�p� þ 1

Re
r�2v� � 1

Fr
ek ð4:2Þ

where the starred terms represent dimensionless variables defined by: v� ¼ v=u0;
p� ¼ p=p0; t� ¼ t=t0; r� ¼ Lr and u0; p0; t0 and L are characteristic velocity,
pressure and time and length in the problem, and St; Ru; Re and Fr are the
Struhal, Ruark, Reynolds and Froud numbers and ek is the vertical unit vector:

Strouhal St ¼ t0u0

L
ð4:3Þ

Ruark Ru ¼ qu2
0

p0
ð4:4Þ

Reynolds Re ¼ qu0L

l
ð4:5Þ

Froude Fr ¼ u2
0

Lg
ð4:6Þ

When the Reynolds number is small (Re ? 0), for example Re \ 10-3, con-
vective forces may be neglected in Navier–Stokes equation, obtaining the so called
Stokes Flow. In dimensional form Stokes Flow is represented by:

r � v ¼ 0

q
ov

ot
¼ �rpþ lr2vþ qg

ð4:7Þ

4.1.1 Hydrodynamic Force on a Sphere in Stokes Flow

Due to the linearity of the differential equation in Stokes Flow, the velocity, the
pressure and the hydrodynamic force in a steady flow are linear functions of the
relative solid–fluid velocity. For the hydrodynamic force, the linear function,
depends on the size and shape of the particle (6pR for the sphere) and on fluid
viscosity (l). Solving the boundary value problem, and neglecting the Basset term
of added mass, yields (Happel and Brenner 1965) for a sphere:

FD ¼ �6plRu ð4:8Þ

It is common to write the hydrodynamic force in its dimensionless form known
as drag coefficient CD:

CD ¼
FD

1=2qf u2
� �

pR2ð Þ
ð4:9Þ

4.1 Discrete Sedimentation 45



where qf is the fluid density. Substituting (4.9) into (4.8), the drag coefficient on a
sphere in Stokes flow is:

CD ¼
24
Re

ð4:10Þ

4.1.2 Macroscopic Balance on a Sphere in Stokes Flow

Consider a small solid sphere submerged in a viscous fluid and suspended with a
string. If the sphere, with density greater than that of the fluid, is in equilibrium,
the balance of forces around it is zero. The forces acting on the particles are:
(1) gravity Fg, that pulls the sphere down, (2) buoyancy Fb, that is, the pressure
forces of the fluid acting on the particle that pushes the sphere upwards and (3) the
string resistance Fstring, that supports the particle from falling, see Fig. 4.1. The
force balance gives:

0 ¼ Fstring þ Fg|{z}
�qpVpg

þ Fb|{z}
þqf Vpg

ð4:11Þ

0 ¼ Fstring � qpVpgþ qf Vpg ð4:12Þ

Fstring ¼ qp � qf

� �
|ffiffiffiffiffiffi{zffiffiffiffiffiffi}

Dq

Vpg � DqVpg ð4:13Þ

If the string is cut, forces become unbalanced and, according to Newton’s
second Law, the particle will accelerate. The initial acceleration can be obtained
from the new force balance, where the string resistance is absent. Figure 4.2 shows
this new force balance before the motion begins.

The initial acceleration is:

qpVpaðt = 0) ¼ DqVpg

aðt = 0) ¼ Dq
qp

g
ð4:14Þ

Fgravity

Fstring

Fbuoyancy

Fig. 4.1 Equilibrium of a
sphere submerged in a
viscous fluid
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Once the particle is in motion, a new force, the drag, appears representing the
resistance opposed by the fluid to the particle motion. This force FD is proportional
to the relative solid–fluid velocity and to the relative particle acceleration. Since
the fluid is at rest, it corresponds to the sphere velocity and acceleration. Once the
motion starts, the drag force is added and the balance of forces becomes, Fig. 4.3:

qpVpaðtÞ ¼ DqVpg|ffiffiffi{zffiffiffi}
Netweight

� 6plRuðtÞ � ð1=2ÞqpVpaðtÞ
|ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi{zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi}

Dragforce

ð4:15Þ

3
2

qpVpaðtÞ ¼ DqgVp � 6plRuðtÞ ð4:16Þ

The term 1=2ð ÞqpVp that was added to the mass qpVp in the first term of
Eq. (4.16) is called added mass induced by the acceleration.

Due to the increase in the velocity u(t) with time, the sum of the first and last
term of Eq. (4.16) diminishes, becoming zero at a given time. At that time, the
velocity becomes a constant called terminal velocity u ¼ u1, which is a charac-
teristic of the solid–fluid system. From (4.16) with aðt) ¼ 0,

u1 ¼
2
9
DqR2g

l
¼ 1

18
Dqd2g

l
ð4:17Þ

This expression receives the name of Stokes Equation and is valid for small
Reynolds numbers.

Problem 4.1 Calculate the terminal sedimentation velocity of a quartz sphere
with a diameter of 10 l m and 2.65 g/cm3 in density in water at 20 �C.

Fgravity

Fbuoyancy

Fig. 4.2 State before the
motion initiates

Fgravity

Fbuoyancy

Fdrag

Fig. 4.3 State after the
motion starts
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The water viscosity at 20 �C is 0.01 g/cm s, then, applying Eq. (4.17) results in:

u1 ¼
1
18

2;650� 1;000ð Þ � 10=1;000;000ð Þ2�9:81
0:001

¼ 5:00� 10�6 m/s:

Sedimentation dynamics

Equation (4.16) is the differential equation for the settling velocity of a sphere in a
gravity field. It can be written in the form:

_uðt)þ 2
3

l
18qpd2

uðt)� 2Dq
3qp

g ¼ 0 ð4:18Þ

Its solution is: uðt) ¼ 1
18

Dqd2g

l
1� exp � 2

3
l

18qpd2
t

 ! !
ð4:19Þ

The term inside the exponential term multiplying the time t is called the Stokes
Number and the term outside the parenthesis is the terminal velocity, as we already
saw in (4.17).

Problem 4.2 Calculate the terminal settling velocity and the time to reach it for
quartz particles, 10, 50 and 100 lm in size and 2.65 g/cm3 in density, in water at
20 �C.

Applying Eqs. (4.19) and (4.17), the values of terminal velocities of 0.899,
0.225 and 0.00899 cm/s and times of 0.03140, 0.00740 and 0.00030 are obtained
for particles with diameters of d = 100, 50 and 10 lm respectively. Figure 4.4
shows the evolution of the particle velocities.

4.1.3 Hydrodynamic Force on a Sphere in Euler’s Flow

When the Reynolds number tends to infinity (Re ? ?), viscous forces disappear
and Navier–Stokes equation becomes Euler’s Equation for Inviscid Flow.

r � v ¼ 0

q
ov

ot
rv � v ¼ �rpþ qg

ð4:20Þ

In this case, the tangential component of the velocity at the particle surface is
also a linear function of the relative solid–fluid velocity, but the radial component
is equal to zero:
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uhðhÞ ¼
3
2

senh

� �
u and ur ¼ 0 ð4:21Þ

Now, the pressure is given by a non-linear function called the Bernoulli
equation (Batchelor 1967):

pðhÞ þ 1=2qf u
2
h ¼ pþ 1=2qf u

2 ¼ constant

pðhÞ � p ¼ 1
2

qf u
2 1� uh

u

� 	2
� � ð4:22Þ

Substituting (4.21) into (4.22), the dimensionless pressure, called pressure
coefficient, defined by Cp ¼ pðhÞ � pð Þ

�
ð1=2Þqf u

2, may be expressed in Euler’s
flow by:

Cp ¼ 1� 9
2

sen2h ð4:23Þ

Figure 4.5 shows Eq. (4.23) in graphic form, where p(h) and uh are respectively
the pressure and tangential velocity at an angle h on the surface of the sphere, and
p and u are the values of the same variables at the bulk of the flow.

For an inviscid stationary flow, the hydrodynamic force is zero. This result is
due to the fact that the friction drag is zero in the absence of viscosity and that the
form drag depends on the pressure distribution over the surface of the sphere and
this distribution is symmetric, leading to a zero net force.
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Fig. 4.4 Settling velocity versus time for Problem 4.2
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4.1.4 Hydrodynamic Force on a Sphere in Prandtl’s Flow

For intermediate values of the Reynolds Number, inertial and viscous forces in the
fluid are of the same order of magnitude. In this case, the flow may be divided into
two parts, an external inviscid flow far from the particle and an internal flow near
the particle, where viscosity plays an important role. This picture forms the basis
of the Boundary-Layer Theory (Meksyn 1961; Rosenhead 1963; Golstein 1965;
Schlichting 1968).

In the external inviscid flow, Euler’s equations are applicable and the velocity
and pressure distribution may be obtained from Eqs. (4.21) and (4.23). The region
of viscous flow near the particle is known as the boundary layer and it is there
where a steep velocity gradient permits the non-slip condition at the solid surface
to be satisfied. The energy dissipation produced by the viscous flow within the
boundary layer retards the flow and, at a certain point, aided by the adverse
pressure gradient, the flow reverses its direction. These phenomena force the fluid
particles outwards and away from the solid producing the phenomena called
boundary layer separation, which occurs at an angle of separation given by Lee
and Barrow (1968):

hs ¼ 214 Re�0:1 for 24\Re\10;000 ð4:24Þ

For Re = 24 the value of the angle of separation is hs = 155.7 diminishing to
hs = 85.2 for Re = 10,000. For Reynolds numbers exceeding 10,000, the angle of
separation diminishes slowly from hs = 85.2� to 84� and then maintains this value
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Fig. 4.5 Pressure coefficient in terms of the distance over the sphere in an inviscid flow
(Schlichting 1968, p. 21)
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up to Re & 150,000 (Tomotika 1936; Fage 1937; Amai 1938; Cabtree et al.
1963). Due to the separation of the boundary layer, the region of closed stream-
lines behind the sphere contains a standing ring-vortex, which first appears at
Reynolds number of Re � 24. See Fig. 4.6.

Taneda (1956) determined that beyond Re � 130 the ring-vortex began to
oscillate and that at higher Reynolds numbers the fluid in the region of closed
streamlines broke away and was carried downstream forming a wake. Figure 4.7
shows a similar case for the flow around a cylinder.

The thickness ‘‘d’’ of the boundary layer, defined as the distance from the solid
surface to the region where the tangential velocity vh reaches 99 % of the value of
the external inviscid flow, is proportional to Re-0.5 and, at the point of separation,
may be written in the form:

d
R
¼ d0

Re1=2
ð4:25Þ

McDonald (1954) gives a value of d0 ¼ 9:06.
The separation of the boundary layer prevents the recovery of the pressure at

the rear of the sphere, resulting in an asymmetrical pressure distribution with a
higher pressure at the front of the sphere. Figure 4.8 shows the pressure coefficient
of a sphere in terms of the distance from the front stagnation point over the surface
of the sphere in an inviscid flow and in boundary layer flow. The figure shows that
the pressure has an approximate constant value behind the separation point at
Reynolds numbers around Re & 150,000. This dimensionless pressure is called

Re

Fig. 4.6 Length of the region of closed streamlines behind a sphere (from Taneda 1956;
Batchelor 1967, p. 262)
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base pressure and has a value of p�b � �0:4 (Fage 1937; Lighthill 1963, p. 108;
Goldstein 1965, pp. 15 and 497; Schlichting 1968, p. 21).

The asymmetry of the pressure distribution explains the origin of the form-drag,
the magnitude of which is closely related to the position of the point of separation.
The farther the separation points from the front stagnation point, the smaller the
form-drag. For a sphere at high Reynolds numbers, from Re ¼ 10;000 up to
Re ¼ 150;000, the position of the separation point does not change very much,
except with the change of flow from laminar to turbulent. Therefore, the form-drag
will remain approximately constant. At the same time, the friction-drag, also
called skin friction, falls proportionally to Re�1=2. From these observations, we can
conclude that, for Reynolds numbers of about Re ¼ 1;000, the viscous interaction
force has diminished sufficiently for its contribution to the total interaction force to
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Fig. 4.8 Pressure coefficient
as a function of the distance
from the front stagnation
point over the surface of a
sphere in an inviscid and a
boundary layer flow

Fig. 4.7 Flow around a cylinder for several values of the Reynolds number
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be negligible. Therefore, between Re � 10;000 to Re � 150;000, the drag coeffi-
cient is approximately constant at CD � 0:44.

For Reynolds numbers greater than Re � 150;000, the flow changes in char-
acter and the boundary layer becomes turbulent. The increase in kinetic energy of
the external region permits the flow in the boundary layer to reach further to the
back of the sphere, shifting the separation point to values close to hs � 110� and
permitting also the base pressure to rise. The effect of these changes on the drag
coefficient is a sudden drop and after that, a sharp increase with the Reynolds
number. Figure 4.9 shows a plot of standard experimental values of the drag
coefficient versus the Reynolds number (Lapple and Shepherd 1940), where this
effect is shown.

4.1.5 Drag Coefficient for a Sphere in the Range
0 < Re < 150,000

Figure 4.9 shows the variation of the drag coefficient of a sphere for different
values of the Reynolds number, and confirms that for Re! 0, CD / Re�1=2 and
that for Re [ 1;000;CD ! 0:43. To obtain a general equation relating de drag
coefficient to the Reynolds number, we will use the concept of the boundary layer
and the knowledge that, for a given position at the surface of the sphere, the
pressure inside the boundary layer is equal to the pressure in the inviscid region
just outside the boundary layer before the separation point, and is a constant
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Fig. 4.9 Drag coefficient CD versus Reynolds number, according to standard data from Lapple
and Shepherd (1940). See also Perry (1963, p. 561)
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beyond it. We should also remember that the point of separation and the base
pressure are constant for Reynolds numbers greater than Re � 1;000.

Consider a solid sphere of radius R with an attached boundary layer of thickness
d submerged in a flow at high Reynolds number (Abraham 1970). Assume that the
system of sphere and boundary layer has a spherical shape with a radius equal to a,
which can be approximated by a ¼ Rþ d, as shown in Fig. 4.10 (Abraham 1970;
Concha and Almendra 1979a, b).

Outside the spherical shell of radius a, and up to the point of separation h ¼ hs,
the flow is inviscid and therefore the fluid velocity and the pressure distributions
are given by:

uh hð Þ ¼ 3
2

u sin h; for 0	 h	 hs ð4:26Þ

pðhÞ ¼ 1
2

qfu2 1� uh

u

� 	2
� �

; for 0	 h	 hs ð4:27Þ

Beyond the separation point, a region exists where the pressure is constant and
equal to the base pressure pb:

p hð Þ ¼ pb; for hs	 h	 p ð4:28Þ

Since the effect of viscosity is confined to the interior of the sphere of radius a,
the total drag exerted by the fluid on a, consists of a form drag only, Then:

FD ¼
I

Sa

p hð Þ cos h dS ð4:29Þ

The element of surface of the sphere of radius a is:

dS ¼ a2sen hdhd/ ð4:30Þ

Fig. 4.10 Physical model for
the flow in the boundary layer
around a sphere (Concha and
Almendra 1979a, b)
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where / is the azimuthally coordinate. Replacing (4.30) into (4.29) results in:

FD ¼
Z2p

0

Zp

0

p hð Þsen h cos hdhd/ ¼ 2pa2
Zp

0

p hð Þsen h cos hdh

Since the values of p hð Þ are different before and after the separation point, the
integrals are separated into two parts, from 0 to hs and from hs to p:

FD ¼ 2pa2
Zhs

0

p hð Þsen h d sen hð Þ þ
Zp

hs

p hð Þsen h d sen hð Þ

0

B@

1

CA

Substituting the values of p hð Þ from (4.27) and (4.28), and integrating the
previous equation we obtain:

FD ¼ pa2qf u
2 1

2
sen2 hs �

9
16

sen4 hs �
1
2

p�bsen2 hs

� �
ð4:31Þ

Substituting a ¼ Rþ d and defining the function f hs; p�b
� �

in the form:

f hs; p
�
b

� �
¼ 1

2
sen2 hs �

9
16

sen4 hs �
1
2

p�bsen2 hs ð4:32Þ

we can into (4.31) we can write:

FD ¼ qf u
2pR2 1þ d

R

� �2

f hs; p
�
b

� �
ð4:33Þ

In terms of the drag coefficient we have:

CD ¼ 2f hs; p
�
b

� �
1þ d

R

� �2

ð4:34Þ

and defining the new parameter C0 in the form:

C0 ¼ 2f hs; p
�
b

� �
ð4:35Þ

Using Eq. (4.32) we obtain:

CD ¼ C0 hs; p
�
b

� �
1þ d0

Re1=2

� �2

ð4:36Þ

Calculating the value of f hs; p�b
� �

for hs ¼ 84� and p�b � �0:4, we obtain
f 84;�0:4ð Þ ¼ 0:142 and from (4.35) C0 ¼ 0:284. Using the value of d0 ¼ 9:06,
we finally obtain:

CD ¼ 0:284 1þ 9:06
Re1=2

� �2

ð4:37Þ
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Expression (4.37) represents the drag coefficient for a sphere in boundary layer
flow (Concha and Almendra 1979a, b). A comparison with experimental data from
Lapple and Shepherd (1940) is shown in Fig. 4.11.

Several alternative empirical equations have been proposed for the drag coef-
ficient of spherical particles. See earlier articles reviewed by Concha and Al-
mendra (1979a, b), Zigrang and Sylvester (1981), Turton and Levenspiel (1986),
Turton and Clark (1987), Haider and Levenspiel (1998), and the more recent work
of Ganguly (1990), Thomson and Clark (1991), Ganser (1993), Flemmer et al.
(1993), Darby (1996), Nguyen et al. (1997), Chabra et al. (1999) and Tsakalakis
and Stamboltzis (2001).

It is worthwhile to mention the work of Brauer and Sucker (1976):

CD ¼ 0:49þ 24
Re
þ 3:73

Re1=2
� 4:83� 10�3Re1=2

1þ 3:0� 10�6Re3=2
ð4:38Þ

and that of Haider and Levenspiel (1998):

CD ¼
24
Re

1þ 0:1806Re0:6459
� �

þ 0:4251
1þ 6;880:95=Re

ð4:39Þ

who presented an alternative empirical equation for the drag coefficient of
spherical particles in the range of Reynolds numbers less than 260,000. Both Eqs.
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Fig. 4.11 Drag coefficient versus Reynolds number for a sphere. The continuous line is a
simulation of Eq. (4.37). Circles are standard data from Lapple and Shepherd (1940) see
Table 4.1
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(4.38) and (4.39) give better approximations than Concha and Almendra’s equa-
tion (4.37) for Reynolds numbers in the range of 5� 103\Re\5� 105.

Table 4.1 gives the standard drag coefficient of Lappel and Shepherd (1940),
L&Sh in table and results of Concha and Almendra (1979a, b), Heider and
Levenspiel (1998), H&L in Table 4.1 and Brauer and Sucker (1976), B&Z in
Table 4.1 (Fig. 4.12).

4.1.6 Sedimentation Velocity of a Sphere

We have seen that when a particle settles at terminal velocity u1, a balance is
established between drag force, gravity and buoyancy:

Fdrag þ Fgravity þ Fbuoyancy ¼ 0

Fdrag ¼ � Fgravity þ Fbuoancy

� �
� net weight of the particle

FD ¼ � qpVpð�gÞ þ qf Vpg
� �

� DqVpg

ð4:40Þ

In (4.40) Dq ¼ qs � qf is the solid–fluid density difference. This equation
shows that the drag force for a particle in sedimentation is known beforehand once
the volume of particle and its density difference to the fluid are known. For a
spherical particle, Vp ¼ 4=3pR3, so that:

FD ¼
4
3

pR3Dqg ð4:41Þ

and the drag coefficient:

CD ¼
FD

1=2qf u2
1pR2

� 4
3
Dqdg

qf u2
1

ð4:42Þ

where the sphere diameter is d ¼ 2R and u1 is the terminal settling velocity of a
sphere in an infinite fluid.

Since the Reynolds number for the motion of one particle in an infinite fluid is
defined by:

Re1 ¼
du1qf

lf
; ð4:43Þ

combining it with the drag coefficient yields two dimensionless numbers
(Heywood 1962):

CDRe2
1 ¼

4
3

Dqqf g

l2
f

 !
d3 Re1

CD
¼ 3

4

q2
f

Dqlf g

 !
u3
1 ð4:44Þ
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Concha and Almendra (1979a) defined the characteristic parameters P and Q of
the solid–liquid system:

P ¼ 3
4

l2
f

Dqqf g

 !1=3

Q ¼ 4
3

Dqlf g

q2
f

 !1=3

ð4:45Þ

so that Eq. (4.44) may be written in the form:

CDRe2
1 ¼

d

P

� �3

¼ d�
3 Re1

CD
¼ u1

Q

� �3

� u�31 ð4:46Þ

Expressions (4.46) define a dimensionless size d� and a dimensionless velocity
u�, which are characteristics of a solid–liquid system:

d� ¼ d

P

� �
u�1 ¼

u1
Q

� �
ð4:47Þ

Since there is a direct relationship between the Drag Coefficient and the Rey-
nolds Number, see for example Eqs. (4.37)–(4.39), there must be a relationship
between the dimensionless groups CDRe2 and Re=CD. Table 4.1 gives that
relationship.
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Fig. 4.12 Comparison of the drag coefficient for a sphere, simulated by Brauer and Zucker
(1976) and by Haider and Levenspiel (1998), and standard experimental points from Laple and
Shepherd (1940)
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Multiplying the two terms in Eq. (4.47), we can observe that the Reynolds
number may be written in terms of the dimensionless size and dimensionless
velocity:

Re1 ¼ d�u�1 ð4:48Þ

Replacing (4.37) and (4.48) into (4.46) we obtain:

d�3 ¼ C0 1þ d0

u�1d�ð Þ1=2

� �2

u�1d�
� �2

u�1d� þ d0 u�1d�
� �1=2� d�3=2

C1=2
0

¼ 0

Solving these algebraic equations, explicit expressions are obtained for the
dimensionless settling velocity u�1 of a sphere of dimensionless size d� and for the
dimensionless sphere of diameter d� settling a dimensionless velocity u�1 (Concha
and Almendra 1979a):

u�1 ¼
1
4

d2
0

d�
1þ 4

C1=2
0 d2

0

d�3=2

 !1=2

�1

0
@

1
A

2

ð4:49Þ

d� ¼ 1
4

C0u�21 1þ 1þ 4d0

C1=2
0

u��3=2
1

 !1=2
0
@

1
A

2

ð4:50Þ

Equations (4.49) and (4.50) are known as Concha and Almendra’s equations for
a sphere. These two equations are general for spheres settling in a fluid at any
Reynolds number. Introducing the values of C0 ¼ 0:284 and d0 ¼ 9:06, the fol-
lowing final equations are obtained [In Concha and Amendra’s paper (1979a),
C0 ¼ 0:28 was used].

u� ¼ 20:52
d�

1þ 0:0914d�3=2
� �1=2�1
� 	2

ð4:51Þ

d� ¼ 0:071u�2 1þ 1þ 68:0u��3=2
� �1=2

� 	2
ð4:52Þ

Problem 4.3 To calculate sedimentation velocities, it is necessary to know the
sedimentation parameters P and Q that depend on the solid and fluid properties.
Construct a table for these parameters as functions of the solid density. Assume
that the fluid density is 1 g/cm3 and its viscosity 0.01 g/cm s. Using the definition
of P and Q from Eq. (4.45), Table 4.2 is obtained.
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Problem 4.4 Calculate the settling velocity of quartz spheres with density of
2.65 g/cm3 of the following diameters: 1, 10, 50, 100 and 500 lm, and 0.1, 0.5 and
1.0 cm in water at 20 �C. Use Eq. (4.51):

u�1 ¼
20:52

d�
1þ 0:0914d�3=2
� �1=2�1
� 	2

; with d� ¼ d=P y u1 ¼ Q� u�1

Problem 4.5 Compare the simulated dimensionless velocity versus dimensionless
diameter predicted by Concha and Almendra’s equation with experimental data
from Table 4.1.

Using Eq. (4.51), the values of column d�sim and u�sim are obtained. The plot
of these data is shown in Fig. 4.13.

Effect of temperatures on the settling velocity

To calculate the settling velocity of spheres at different temperatures, it is
necessary to know the density and viscosity of the fluid involved at these tem-
peratures. In the case of water and air, the following correlations can be used for
the density and viscosity. Figures 4.14 and 4.15 show the correlations of densities
and viscosities for air and water.

Data

qs (g/cm3)= 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65

qf (g/cm3)= 1 1 1 1 1 1 1 1
l (poises)= 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dp (cm)= 0.0001 0.001 0.005 0.01 0.05 0.1 0.5 1

P (cm)= 0.00359 0.00359 0.00359 0.00359 0.00359 0.00359 0.00359 0.00359
Q (cm/s)= 2.78320 2.78320 2.78320 2.78320 2.78320 2.78320 2.78320 2.78320
Results

d* = 2.78E-

02
2.78E-

01
1.39E+00 2.78E+00 1.39E+01 2.78E+01 1.39E+02 2.78E+02

u* = 3.32E-

05
3.30E-

03
7.73E-

02
2.76E-

01
2.88E+00 5.77E+00 1.88E+01 2.84E+01

uoo (cm/s) = 9.24E-

05
9.18E-

03
2.15E-

01
7.68E-

01
8.01E+00 1.61E+01 5.23E+01 7.90E+01

Re = 9.24E-

07
9.18E-

04
1.08E-

01
7.68E-

01
4.00E+01 1.61E+02 2.62E+03 7.90E+03
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Fig. 4.13 Dimensionless velocity versus dimensionless diameter for the sedimentation of
spheres according to Eq. (4.51) of Concha and Almendra. Circles are standard data from Lapple
and Shepherd (1940) in Table 4.1
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Fig. 4.14 Water and air densities at several temperatures
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Density:

qwater ¼ �4:0� 10�6T2 � 6:0� 10�5T þ 1:0004 g/cm3 ð4:53Þ

qair ¼ �3:0� 10�6T þ 1:3� 10�3 g/cm3 ð4:54Þ

Viscosity:

lwater ¼ 9:0� 10�7T2 � 2:0� 10�4T þ 1:56� 10�2 g/cm s ð4:55Þ

lair ¼ 5:0� 10�7T þ 2:0� 10�4 g/cm s ð4:56Þ

Problem 4.6 Calculate the settling velocity of a quartz sphere of 300 lm with
density 2.65 g/cm3 in water at 60 �C. From the correlations (4.55), (4.53) and from
Eqs. (4.45) we obtain:

μ air = 5E-07T + 0.0002

R2 = 0.9996

μ water  = 9E-07T2 - 0.0002T + 0.0156

R2 = 0.9983
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Fig. 4.15 Water and air viscosities at several temperatures
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qwater ¼ �4:0� 10�6 � 202 � 6:0� 10�5 � 20þ 1:0004 ¼ 0:9976 g/cm3

lwater ¼ 9� 10�7 � 202 � 2� 10�4 � 20þ 0:0156 ¼ 0:01196

P ¼ 3
4

l2
f

Dqqf g

 !1=3

¼ 2:550� 10�3 cm

Q ¼ 4
3

Dqlf g

q2
f

 !1=3

¼ 2:0534 cm/s

d� ¼ 300
10;000� 2:5502� 10�3

¼ 11:764

u� ¼ 20:52
d�

1þ 0:0921d�3=2
� �1=2�1
� 	2

¼ 1:5017

u1 ¼ u� � Q ¼ 1:5017� 2:0534 ¼ 3:0826 m/s

4.1.7 Sedimentation of a Suspension of Spheres

In a suspension, the spheres, surrounding a given sphere, hinder its motion as it
settles. This hindrance is due to several effects. In the first place, when the particle
changes its position, it can find the new site occupied by another particle, and will
collide with it, thus changing its trajectory. The more concentrated the suspension
is, the greater the chance of collision. The result is that hindrance is a function of
concentration. On the other hand, the settling of each particle of the suspension
produces a back flow of the fluid. This back flow will increase the drag on a given
particle, retarding its sedimentation. Again, an increase in concentration will
increase the hindrance. It is clear that in both cases, the hindrance depends on the
fraction of volume occupied by the particles and not on their weight and therefore
the appropriate parameter to measure hindrance is the volumetric concentration
rather than the percentage by weight.

Several theoretical works have been devoted to study the interaction of particles
in a suspension during sedimentation. These types of studies were discussed in
Tory (1996). In a recent approach, Quispe et al. used the tools of lattice-gas and
cellular automata to study the sedimentation of particles and the fluid flow through
an ensemble of settling particles. They were able to obtain some important mac-
roscopic properties of the suspensions. Unfortunately, none of these works has
yielded a sufficiently general and simple relationship between the variables of the
suspension and its settling velocity to be used for practical purposes.

Concha and Almendra (1979b) assumed that the same equations used for the
drag coefficient and for the settling velocity of individual spherical particles are
valid for a suspension of particles if parameters P and Q are replaced by
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P uð Þ and Q uð Þ depending on the volume fraction of solids. Write Eqs. (4.36) and
(4.49) in the form:

CDðuÞ ¼ C0ðuÞ 1þ d0ðuÞ
Re1=2

� �2

ð4:57Þ

U�ðuÞ ¼ d2
0

D�ðuÞ 1þ 1

C1=2
0 d2

0

D�3=2ðuÞ
 !1=2

�1

0

@

1

A
2

ð4:58Þ

where

D� ¼ d

P uð Þ and U� ¼ u

Q uð Þ ð4:59Þ

It is convenient to express the properties of a suspension, such as viscosity, as
the product of the same property of the fluid with a function of concentration.
Assume that P uð Þ and Q uð Þ can be related with P and Q in that form, then:

P uð Þ ¼ Pfp uð Þ and Q uð Þ ¼ Qfq uð Þ ð4:60Þ

Replacing (4.60) into (4.59), and using the definition (4.47) of d� and u�, results
in:

D� ¼ d�

fp uð Þ and U�ðuÞ ¼ u�ðuÞ
fq uð Þ ð4:61Þ

With these definitions, Eq. (4.58) may be written in the form:

u�ðuÞ ¼ d2
0

d�
fp uð Þfq uð Þ 1þ 1

C1=2
0 d2

0

f�3=2
p d�3=2

 !1=2

�1

0

@

1

A
2

ð4:62Þ

Substituting the values of d0 ¼ 9:06 and C0 ¼ 0:284, yields:

u�ðuÞ ¼ 20:52
d�

fpðuÞfqðuÞ 1þ 0:0914f�3=2
p ðuÞd�3=21=2 � 1

� 	2
ð4:63Þ

This expression, known as Concha and Almendra’s equation for a suspension
of spheres, permits the calculation of the settling velocity of a sphere of any size
and density when it forms part of a suspension with volume fraction u. To perform
the calculations, it is necessary to know the parameters fp uð Þ and fq uð Þ:

Asymptotic expressions for the sedimentation velocity.

For small values of the Reynolds number, Re! 0, the following expressions
may be derived from (4.51) and (4.63), which reduce the settling equation to the
expression indicated:

68 4 Sedimentation of Particulate Systems



0:0921d�3=2f�3=2
p 
 1) u�ðuÞ ¼ 20:52

0:0914
2

� �2

d�2f�2
p uð Þfq uð Þ

0:0921d�3=2 
 1) u�1 ¼ 20:52
0:0914

2

� �2

d�2

In these expressions, the symbols u�1 and u�ðuÞ indicate the settling velocity of
a particle in an infinite medium and the velocity of the same particle in a sus-
pension. The quotient between these two terms is:

For Re1 ! 0
u�ðuÞ

u�1
¼ f�2

p uð Þ fq uð Þ ð4:64Þ

With a similar deduction, we can write for high Reynolds numbers, Eq. (4.49)
equation reference goes here (4.51) and (4.62) in the form:

0:0921d�3=2f�3=2
p � 1) u�ðuÞ ¼ 20:52� 0:0914 � d�1=2f�1=2

p uð Þ fq uð Þ
0:0921d�3=2 � 1) u�1 ¼ 20:52� 0:0914 � d�1=2

The quotient between these two equations is:

for Re1 ! 1
u�ðuÞ

u�1
¼ f�1=2

p uð Þ fq uð Þ ð4:65Þ

To find functional forms for the functions fp uð Þ and fq uð Þ experimental values
for the settling velocities u1 and u uð Þ are needed.

Functional form for fp uð Þ and fq uð Þ

Several authors have presented expressions for the velocity ratio u=u1. See
Concha and Almendra (1979b). Richardson and Zaki (1954), made the most
comprehensive and most cited work on the relative particle–fluid flow under
gravity. We will use their data in this book.

Richardson and Zaki (1954) performed careful sedimentation and liquid flu-
idization tests with mono-sized spherical particles in a wide range of particles
sizes, fluid densities and viscosities. The authors expressed their result in the form:

uðuÞ=u1 ¼ 1� uð Þn for Re! 0 and uðuÞ=u1 ¼ 1� uð Þm for Re!1
ð4:66Þ

The characteristics of these particles and fluid are given in Table 4.3. Table 4.4
shows values for uðuÞ=u1 obtained from their experimental results.

Instead of using the values of n presented by Richardson and Zaki (1954), we
will optimize the values using all experimental data. From (4.64), (4.65) and
(4.66), we can write
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Table 4.3 Experimental data of Richardson and Zaki (1954)

N� d (cm) qs (g/cm3) lfx102 (g/
cms)

qf (g/cm3) vst (cm/s) Reoo n ? 1 n

P 0.0181 1.058 20.800 1.034 0.00206 0.000185 4.90 3.90
Q 0.0181 1.058 20.800 1.034 0.00206 0.000185 4.79 3.79
K 0.0096 2.923 62.000 1.208 0.01390 0.000216 4.75 3.75
L 0.0096 2.923 62.000 1.208 0.01390 0.000216 4.65 3.65
F 0.0358 1.058 20.800 1.034 0.00807 0.001430 4.92 3.92
G 0.0358 1.058 20.800 1.034 0.00807 0.001430 4.89 3.89
H 0.0096 2.923 20.800 1.034 0.04550 0.002180 4.76 3.76
I 0.0096 2.923 20.800 1.034 0.04550 0.002180 4.72 3.72
J 0.0096 2.923 20.800 1.034 0.04550 0.002180 4.69 3.69
R 0.0230 2.623 62.000 1.208 0.06590 0.002950 4.85 3.85
S 0.0230 2.623 62.000 1.208 0.06590 0.002950 4.80 3.80
T 0.0128 2.960 1.890 2.890 0.03307 0.064700 4.84 3.84
M 0.0128 2.960 1.890 2.890 0.03307 0.064700 4.72 3.72
C 0.0181 1.058 1.530 1.001 0.06400 0.078900 4.76 3.76
A 0.0181 1.058 1.530 1.001 0.06640 0.078900 4.90 3.90
B 0.0181 1.058 1.530 1.001 0.06640 0.078900 4.79 3.79
X 0.1029 2.976 112.900 1.221 0.89100 0.099500 5.30 4.30
Y 0.1029 2.976 112.900 1.221 0.89100 0.099500 5.20 4.20
D 0.0253 1.058 2.910 0.935 0.14750 0.120000 4.94 3.94
E 0.0253 1.058 2.910 0.935 0.14750 0.120000 4.90 3.90
N 0.0096 2.923 1.612 2.170 0.23400 0.030200 4.74 3.74
O 0.0096 2.923 1.612 2.170 0.23400 0.030200 4.65 3.65
2 0.0253 2.78 6.075 1.135 0.82700 0.391000 4.65 3.65
5 0.0253 1.06 1.000 1.000 0.19400 0.490000 4.53 3.53
8 0.0230 2.623 1.890 2.890 0.34900 1.227000 4.450 3.450
9 0.0230 2.623 1.890 2.890 0.34900 1.227000 4.520 3.520
12 0.0230 2.623 1.890 2.890 0.34900 1.227000 4.140 3.140
10 0.0230 2.623 1.612 2.170 0.65250 2.021000 4.300 3.300
11 0.0230 2.623 1.612 2.170 0.65250 2.021000 4.350 3.350
13 0.0230 2.623 1.612 2.170 0.65250 2.021000 4.240 3.240
6 0.0510 2.745 6.075 1.135 2.89000 2.745000 4.22 3.22
14 0.1029 2.976 10.960 1.153 6.03000 6.530000 4.300 3.300
15 0.1029 2.976 10.960 1.153 6.03000 6.530000 4.070 3.070
16 0.1029 2.976 10.960 1.153 6.03000 6.530000 4.000 3.000
4 0.0253 2.78 1.000 1.000 3.55000 8.971000 3.59 2.59
3 0.1029 10.6 15.010 0.875 19.60000 11.750000 3.72 2.72
1 0.1029 2.976 1.890 2.890 1.16000 18.180000 3.800 2.800

0.1029 2.976 1.890 2.890 1.16000 18.180000 3.640 2.640
0.1029 2.976 1.890 2.890 1.16000 18.180000 3.860 2.860
0.1029 2.976 1.839 2.745 2.48000 38.260000 3.340 2.340
0.1029 2.976 1.839 2.745 2.48000 38.260000 3.560 2.560

(continued)
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f�2
p uð Þfq uð Þ ¼ 1� uð Þn

f�1=2
p uð Þfq uð Þ ¼ 1� uð Þm

ð4:67Þ

and, by solving this algebraic set, we obtain:

fp ¼ 1� uð Þð2=3Þ m�nð Þ and fq ¼ 1� uð Þð1=3Þ 4m�nð Þ ð4:68Þ

Using Eq. (4.62) and the calculated values in Table 4.5 and Fig. 4.16. The best
values for m and n, were n ¼ 3:90 and m ¼ 0:85:

Then,

fp uð Þ ¼ 1� uð Þ�2:033; fq uð Þ ¼ 1� uð Þ�0:167 ð4:69Þ

A plot of Eq. (4.69) is given in Fig. 4.16.
Table 4.4 gives the data and Fig. 4.17 shows a plot of the dimensionless settling

velocity versus Reynolds number for spheres, according to the experimental data
of Richardson and Zaki (1954) and the simulation of Concha and Almendra
(1979a, b) with Eqs. (4.62) and (4.69).

If all data of Table 4.4 are plotted in the form U� versus D� with the definitions
(4.61), Fig. 4.18 is obtained.

On the other hand, Fig. 4.19 shows the settling velocity u� versus d� for sus-
pensions of spheres in water at 20 �C for different values of the concentration u.
This figure can be used to visualize the state of flow of particulate systems.

In Chap. 5 of this textbook, Eq. (5.6), we will see that the volume average
velocity, also known as spatial velocity or percolation velocity, is given by:

q ¼ vs � 1� uð Þvr ð4:70Þ

Table 4.3 (continued)

N� d (cm) qs (g/cm3) lfx102 (g/
cms)

qf (g/cm3) vst (cm/s) Reoo n ? 1 n

0.1029 2.976 1.839 2.745 2.48000 38.260000 3.500 2.500
0.0510 2.745 1.000 1.000 8.10000 41.720000 3.11 2.11
0.1029 2.745 1.000 1.0 7.35000 14.450000 3.78 2.78
0.1029 2.745 1.000 1.000 7.35000 14.450000 3.78 2.78
0.4200 2.89 15.010 0.875 31.90000 78.250000 3.34 2.34
0.1029 10.6 3.810 0.818 36.15000 79.800000 3.08 2.08
0.2466 11.25 15.010 0.875 58.10000 80.350000 3.39 2.39
0.3175 7.73 15.010 0.875 54.70000 101.200000 3.17 2.17
0.4200 2.89 6.075 1.135 34.05000 267.000000 2.58 1.58
0.1029 10.6 1.000 1.000 47.50000 488.700000 2.43 1.43
0.4200 2.89 1.000 1.000 48.60000 2,041.000000 2.33 1.33
0.3175 7.73 1.000 1.000 79.70000 2,530.000000 2.36 1.36
0.6350 7.74 1.000 1.000 112.70000 7,150.000000 2.38 1.38
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where q; vs and vr are the spatial velocity, the solid component velocity and the
relative solid–fluid velocity. Figure 4.17 divides the u� � d� plane into three
regions: a porous bed, between the d� axis and the line of constant concentration
u ¼ 0:585 [Barnea and Mednick (1975) demonstrated that this concentration
corresponds to the minimum fluidization velocity], a second region of a fluidized
bed between 0:585	u	 0 and a third region of hydraulic or pneumatic transport,
for values of velocities above concentration u ¼ 0.

Drag Coefficient for a suspension of spheres

From Eqs. (4.49) and (4.62) we deduce that:

~d2
0 ¼ d2

0fpðuÞfqðuÞ
~C1=2

0
~d2

0 ¼ C1=2
0 d2

0f 3=2
p ðuÞ

therefore, the parameters of the Drag Coefficient are:

~C0 ¼ C0 fpðuÞf�2
q ðuÞ ð4:71Þ

~d0 ¼ d0f 1=2
p ðuÞf 1=2

q ðuÞ ð4:72Þ

and the Drag Coefficient of the sphere can be written in the form:

CD ¼ C0fpðuÞf�2
q ðuÞ 1þ

d0f 1=2
p ðuÞf 1=2

q ðuÞ
Re1=2

 !2

ð4:73Þ

Using the values for fpðuÞ and fqðuÞ from (4.69), we obtain finally:

CD ¼ 0:284 1� uð Þ�2:01 1þ 9:08 1� uð Þ�1:83

Re1=2

 !2

ð4:74Þ

Problem 4.7 Consider a porous bed formed by spherical particles of dimen-
sionless diameter d� ¼ 10. A fluid percolates through the bed at a dimensionless
velocity u� ¼ 0:001. If the velocity is increased, establish the range of velocities at
which the three regimes are present.

Drawing a vertical line in the plot of dimensionless velocity versus dimen-
sionless size, Fig. 4.20, for d� ¼ 10, see lines in red in the next figure, we find that
the system of particles forms a porous bed until the dimensionless velocity
u� � 0:130, which is the dimensionless minimum fluidization velocity. Fluidiza-
tion exists for the range of dimensionless velocities 0:13	 u� 	 2:00. For greater
velocities, particles are transported.
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Problem 4.8 Determine the sedimentation velocity of a sphere, 150 lm in
diameter and 2.65 g/cm3 in density at 15 �C, forming a suspension of 40 % of
solid by weight.

The volume fraction of solids is:

u ¼ 0:9989 � 40
2:65 � ð100 � 40Þ þ 0:9989 � 40

¼ 0:201

Parameters for the solid–fluid system:

qwater ¼ 0:9986; lwater ¼ 0:01280; P ¼ 2:66� 10�3; Q ¼ 2:099

fpð0:201Þ ¼ 1:5761; fqð0:201Þ ¼ 1:0381

d� ¼ 5:622

u� ¼ 20:52
d�

fp uð Þfq uð Þ 1þ 0:0921f�3=2
p d�3=2

� 	1=2
�1

� �2

¼ 1:863

u ¼ 1:863� 2:0987 ¼ 3:910 cm=s u ¼ �3:91 k cm=sð Þ

Problem 4.9 Determine the fluidization velocity of a 40 % by weight suspension
of mono-sized quartz spherical particles, 150 lm in diameter and 2.65 g/cm3 in
density at 15 �C. Calculate at which volume average velocity these particles begin
to be transported.
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From the previous problem, we know that the sedimentation velocity for the
same suspension is u ¼ �3:91 cm=s. The volume average velocity is given by
q ¼ vs � 1� uð Þu, and since for fluidization vs ¼ 0, q ¼ � 1� uð Þu

q ¼ 1� 0:201ð Þ � 3:91 ¼ 3:13 cm=s.

The dimensionless particle size is d� ¼ 5:62. A straight line for this value in
blue in Fig. 4.21 gives a transport velocity of u� ¼ 10, which corresponds to a
velocity u ¼ �10� 3:91 ¼ �39:1 cm=s: Then:

u ¼ �39:1 cm=s; q ¼ � 1� 0ð Þ � �39:1 ¼ 39:1 cm=s:

4.1.8 Sedimentation of Isometric Particles

The behavior of non-spherical particles is different than that of spherical particles
during sedimentation. While spherical particles fall in a vertical trajectory, non-
spherical particles rotate, vibrate and follow spiral trajectories. Several authors have
studied the sedimentation of isometric particles, which have a high degree of
symmetry with three equal mutually perpendicular symmetry axes, such as the
tetrahedron, octahedron and dodecahedron. Wadell (1932, 1934), Pettyjohn and
Christiansen (1948) and Christiansen and Barker (1965) show that isometric par-
ticles follow vertical trajectories at low Reynolds numbers, but rotate and vibrate
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Fig. 4.21 Plot of the drag coefficient versus the Reynolds number for the settling of isometric
particles according to Pettyjohn and Christiansen (1948) and Barker (1951)
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and show helicoidally trajectories for Reynolds numbers between 300 and 150,000.
Figure 4.18 shows the drag coefficient versus Reynolds number for these particles.

Pettyjohn and Christiansen (1948) demonstrate that velocities in Stokes flow for
isometric particles may be described with the following expression:

up

ue
¼ 0:843log

w
0:065

� �
with ue ¼

Dqd2
e g

18lf
ð4:75Þ

where de is the volume equivalent diameter, that is, the diameter of a sphere with
the same volume as the particle, and ue is its settling velocity.

In the range of 2;000	Re	 17;000, the same authors derived the following
equation for the settling velocity:

ue ¼
4
3

Dqdeg

qf CD
; ð4:76Þ

with the drag coefficient CD given by: CD ¼ ð5:31� 4:88wÞ=ð1:433� 0:43Þ. The
value of 1.433 in the denominator of this equation is a factor that takes the
theoretical value of CD ¼ 0:3 (see Fig. 4.11) to the average experimental value
CD ¼ 0:43 (see Fig. 4.19).

As we have already said, for Re [ 300, the particles begin to rotate and
oscillate, which depends on the particle density. To take into account these
behavior, Barker (1951) introduced the particle to fluid density ratio as a new
variable in the form:

CD w; kð Þ ¼ k1=18 5:31� 4:88wð Þ
0:62

; ð4:77Þ

where k is the quotient between the solid and fluid densities k ¼ qp

�
qf .

Data from Pettyjohn and Christiansen (1948) and from Barker (1951) are plotted
in Fig. 4.21. Figure 4.22 gives details of the higher end of the Reynolds range.

Drag coefficient and sedimentation velocity

Results obtained for spherical particles (Concha and Almendra 1979a, b), may
be used to develop functions for the drag coefficient and sedimentation velocity of
isometric particles.

Assume that Eqs. (4.73) and (4.62) valid for isometric particles, with values of
C0 and d0 as functions of the sphericity w and of the density quotient k (Concha
and Barrientos 1986):

CD w; kð Þ ¼ ~C0 w; kð Þ 1þ d0 w; kð Þ
Re1=2

� �2

ð4:78Þ

u�p ¼
1
4

~d2
0 w; kð Þ

d�
1þ 4

~C1=2
0 w; kð Þ~d2

0 w; kð Þ
d�3=2

 !1=2

�1

0
@

1
A

2

ð4:79Þ
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where the Reynolds number is defined using the volume equivalent diameter.
Assume also that:

~C0 w; kð Þ ¼ C0fA wð ÞfC kð Þ ð4:80Þ

~d0 w; kð Þ ¼ d0fB wð ÞfD kð Þ ð4:81Þ

where C0 and d0 are the same parameters of a sphere.
We have already demonstrated that for a sphere (volume equivalent sphere in

this case) at a low Reynolds number, Re! 0, the dimensionless velocity can be
approximated by Eq. (4.64).

Assume that we can approximate the velocity of isometric particles at low
Reynolds numbers, Re! 0, in the same way as for spherical particles. Then:

u�e ¼
d�2e

C0d
2
0

and u�p ¼
d�2e

~C0 w; kð Þd2
0 w; kð Þ

ð4:82Þ

Taking the quotient of these terms and substituting (4.80) and (4.81), results in:

Re! 0;
u�e
u�p
� ue

up
¼ fA wð Þf 2

B wð ÞfC kð Þf 2
D kð Þ ð4:83Þ

On the other hand, for Re!1:

CD w; kð Þ
CD

¼
~C0 w; kð Þ

C0
and

CD w; kð Þ
CD

¼ fA wð ÞfC kð Þ ð4:84Þ
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To determine the functions fA; fB; fC and fD we will use the correlations pre-
sented by Pettyjohn and Christiansen (4.75) and (4.77), and by Barker (1951).
From (4.83) and (4.75) we can write:

fA wð Þf 2
B wð ÞfC kð Þf 2

D kð Þ ¼ 0:843 log
w

0:065


 ��1

ð4:85Þ

fA wð ÞfC kð Þ ¼ k1=18 5:31� 4:88w
0:62

ð4:86Þ

From (4.77) and (4.86) we deduce that:

fA wð Þ ¼ 5:31� 4:88w
0:62

fC kð Þ ¼ k1=18: ð4:87Þ

Since in the Stokes regime the density does not influence the flow, Eq. (4.85)
implies that (Fig. 4.23):

fC kð Þf 2
D kð Þ ¼ 1) fD kð Þ ¼ k�1=36 ð4:88Þ

Therefore:

fB wð Þ ¼ 5:31� 4:88w
0:62

� 0:843 log
w

0:065


 ��1=2

ð4:89Þ

Problem 4.10 Using Concha and Barrientos (1986) model for isometric particles,
determine the values of the dimensionless velocity versus the dimensionless size
for particles with sphericities 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 for values of d�

from 0.01 to 100.000.

The result is shown in Fig. 4.24.
Haider and Levenspiel (1998) give an alternative equation for the Drag Coef-

ficient and the settling velocity of isometric particles based on their equation for
spherical particles:

CD wð Þ ¼ 24
Re

1þ ð8:1716� expð�4:0655wÞð ÞReð0:0964þ0:5565wÞÞ

þ 73:69Re� exp �5:0740wð Þ
Reþ 5:378� expð6:2122wÞ ð4:90Þ

u� ¼ 18
d�2
þ 3:1131� 2:3252w

d�0:5

� ��1

; for 0:5	w	 1 ð4:91Þ
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Fig. 4.23 Simulation with Concha and Barrientos’ equation (4.78) and experimental values for
isometric particles from Pettyjohn and Christiansen (1948) and Barker (1951) for cube
octahedrons (a), for octahedrons (b), for cubes (c), for tetrahedrons (d)
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CD ¼
1

K1

24
Re

1þ 0:1118 K1K2Reð Þ0:6567
� 	

þ 0:4305K1K2
2 Re

3305þ K1K2Re
ð4:92Þ

where

K1 ¼
1
3
þ 2

3
w�1=2

� ��1

; K2 ¼ 101:8148 � log wð Þ0:5743

ð4:93Þ

Modified drag coefficient and sedimentation velocity

Introducing the values for fA; fB; fC and fD into Eq. (4.78) results in:

CD w; kð Þ
fA wð ÞfC kð Þ ¼ C0 1þ d0

Re= f 2
B ðwÞf 2

D kð Þð Þð Þ0:5

 !2

ð4:94Þ

Defining the modified Drag Coefficient CDM and the modified Reynolds number
ReM by:

CDM ¼
CD w; kð Þ

fA wð ÞfC kð Þ ReM ¼
Re

f 2
B wð Þf 2

D kð Þ

� �
ð4:95Þ

we can write the drag coefficient in the form of Eq. (4.78). Plotting CDM versus
ReM , Fig. 4.25 is obtained.
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A similar result may be obtained for the sedimentation velocity. Defining
modified dimensionless diameter d�eM and velocity u�M:

d�eM ¼
d�e w; kð Þ

f 1=2
A wð Þf 2

B wð Þf 1=2
C f 2

D kð Þ
� 	2=3

and u�eM ¼
u�p w; kð Þ

fB wð ÞfD kð Þ : ð4:96Þ

The unified u�eM versus d�eM curve is given in Fig. 4.26, for Pettyjohn and
Christiansen (1948) and Christiansen and Barker (1965) data.

u�eM ¼
20:52
d�eM

1þ 0:0921d�3=2
eM

� 	1=2
�1

� �2

ð4:97Þ

The experimental data used in the previous correlations are 655 points
including spheres, cubes-octahedrons, maximum sphericity cylinders, octahedrons
and tetrahedrons in the following ranges:

0.1 cm \ de \ 5 cm
1.7 g/cm3 \qs \ 11.2 g/cm3

0.67 \w \ 1
0.87 g/cm3 \qf \ 1.43 g/cm3

9 9 10-3 g/cm s \ l\ 900 g/cm s
5 9 10-3 \ Re \ 2 9 104
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Fig. 4.25 Experimental data of Pettyjohn and Christiansen (1948), and Barker (1951), plotted as
CDM versus ReM for isometric particles
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with the following values for the particles sphericity (Happel and Brenner 1965;
Barker 1951) and the parameters of Concha and Barrientos (1986)

W fA (w) fB (w)

Sphere 1.000 1.0000 1.0000
Cube octahec 0.906 1.4334 0.8826
Octahedron 0.846 1.9057 1.2904
Cube 0.806 2.2205 1.5468
Tetrahedron 0.670 3.2910 2.3108
Max sph cylin 0.875 1.6774 1.0966

Problem 4.11 Determine the sphericity and the settling velocity of a quartz cube
of 1 mm in size and a density of 2.65 g/cm3 in water at 25 �C. Use the methods of
Concha and Barrientos and that of Haider and Levenspiel.

By definition, sphericity is the ratio of the surface of a volume-equivalent
sphere and the surface of the particle. For a cube of 1 mm in size, the surface is
6 mm2 and its volume is 1 mm3. The volume equivalent sphere has a diameter of:

de ¼ 6V=pð Þ1=3¼ 6=pð Þ1=3¼ 6=pð Þ1=3
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Fig. 4.26 Unified u�M versus d�eM curve for data of Pettyjohn and Christiansen (1948) and Barker
(1951)
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The sphericity is:

w ¼ p 6=pð Þ2=3

6
¼ p

6

� 	1=3
¼ 0:806

Then, from Concha and Barrientos:

fA wð Þ ¼ 5:31� 4:88w
0:62

¼ 5:31� 4:88� 0:806
0:62

¼ 2:2205

fB wð Þ ¼ 5:31� 4:88� 0:806
0:62

� 0:843 log
0:806
0:065

� ��1=2

¼ 0:699

qwater ¼ �4:0� 10�6 � 252 � 6:0� 10�5 � 25þ 1:0004 ¼ 0:9964 g/cm3
� �

fC wð Þ ¼ k�1=18 ¼ 2:65
0:9964

� ��1=18

¼ 0:9471

fD wð Þ ¼ k1=36 ¼ 2:65
0:9964

� �1=36

¼ 1:0275

~d0 w; kð Þ ¼ 9:08� fBðwÞfDðkÞ ¼ 9:08� 0:699� 1:0275 ¼ 6:5215

~C0 w; kð Þ ¼ 0:28� fAðwÞfCðkÞ ¼ 0:28� 2:2205� 0:9471 ¼ 0:5889

lwater ¼ 9:0� 10�7 � 252 � 2:0� 10�4 � 25þ 1:56� 10�2 ¼ 0:0112 g/cm� sð Þ

P ¼ 3
4

l2
f

Dqqf g

 !1=3

¼ 3� 0:01122

4ð2:65� 0:9964Þ � 0:9964� 980:1

� �1=3

¼ 0:00387

Q ¼ 4
3

Dqlf g

q2
f

 !1=3

¼ 4� ð2:65� 0:9964Þ � 0:0112 � 980:1
3� 0:99642

� �1=3

¼ 2:896

d� ¼ de

P
¼ 0:1

0:00387
¼ 25:85

d�eM ¼
d�

f 0:5
A wð Þf 2

B kð Þf 0:5
C wð Þf 2

D kð Þ
¼ 25:85

2:22050:5 � 0:6992 � 0:94710:5 � 1:02752

¼ 34:56

u�eM ¼
20:52
d�eM

1þ 0:0921d�3=2
eM

� 	1=2
�1

� �2

¼ 20:52
40:67

1þ 0:0921� 40:673=2
� �1=2�1
� 	2

¼ 7:025

u� ¼ u�eMfB wð ÞfD kð Þ ¼ 8:028� 0:699� 1:0275 ¼ 5:046

up ¼ Q� u� ¼ 2:896� 5:046 ¼ 14:61 cm/s

Using the method of Haider and Levenspiel, Eq. (4.91), we get:

u�p ¼
18

25:852
þ 3:1131� 2:3252� 0:809

25:850:5

� ��1

¼ 3:6954

up ¼ Q� u�p ¼ 2:89631� 3:694 ¼ 10:703 cm/s
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4.1.9 Sedimentation of Particles of Arbitrary Shape

Concha and Christiansen (1986) extended the validity of Eqs. (4.78) and (4.79) to
suspensions of particles of arbitrary shape.

CD w; k;uð Þ ¼ ~C0 w; k;uð Þ 1þ d0 w; k;uð Þ
Re1=2

� �2

ð4:98Þ

u�p w; k;uð Þ ¼ 1
4

~d2
0 w; k;uð Þ

d�
1þ 4

~C1=2
0 w; k;uð Þ~d2

0 w; k;uð Þ
d�3=2

 !1=2

�1

0

@

1

A
2

ð4:99Þ

where w; k and u are the sphericity of the particles, the density ratio of solid and
fluid and the volume fraction of solid in the suspension.

Similarly as in the case of isometric particles, they assumed that the functions
~C0 and ~d0 may be written in the form:

~C0 w; k;uð Þ ¼ C0fA wð ÞfC kð Þfp uð Þf�2
q uð Þ ð4:100Þ

~d0 w; k;uð Þ ¼ d0fB wð ÞfD kð ÞfF uð Þf 1=2
p ðuÞf 1=2

q ðuÞ ð4:101Þ

with

fA wð Þ ¼ 5:31� 4:88w
0:62

fB wð Þ ¼ 5:31� 4:48w
0:62

� 0:843 log
w

0:065


 ��1=2

fC kð Þ ¼ k1=18; fD kð Þ ¼ k�1=36

fp uð Þ ¼ 1� uð Þ�2:033; fq uð Þ ¼ 1� uð Þ�0:167

Hydrodynamic shape factor

Concha and Christiansen (1986) found it necessary to define a hydrodynamic
shape factor to be used with the above equations, since the usual methods to
measure sphericity did not gave good results. They defined the effective hydro-
dynamic sphericity of a particle as the sphericity of an isometric particle having
the same drag (volume) and the same settling velocity as the particle.

The hydrodynamic sphericity may be obtained by performing sedimentation or
fluidization experiments, calculating the drag coefficient for the particles using the
volume equivalent diameter and obtaining the sphericity (defined for isometric
particles) that fit the experimental value. Figure 4.27 give simulated Drag Coef-
ficients curves for several sphericities.
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Problem 4.12 Estimate the sphericity of crushed quartz particle of 7.2 mm, with
2.65 g/cm3 in density, which gives an average settling velocity of 16.3 cm/s in
water at 20 �C.

de ¼ 0:5 cm , qs ¼ 2:65 g
�

cm3; qf ¼ 1:00 g
�

cm3; l ¼ 0:01 g=cm s

P ¼ 0:00359; Q ¼ 2:7921

Results:

d�e ¼
de

P
¼ 0:72

0:00359
¼ 2;001; u�p ¼

up

Q
¼ 16:3

2:7921
¼ 5:84

With these values for the equivalent dimensionless diameter and the dimen-
sionless settling velocity of the particle d�e and u�p, from a plot of u� versus d�, see
Fig. 4.27 we obtain a sphericity of w ¼ 0:5 for the quartz.

Modified drag coefficient and sedimentation velocity

A unified correlation can also be obtained for the drag coefficient and the
sedimentation velocity of irregular particles forming a suspension. Defining
CDM; ReM ; deM and upM in the following form:
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Fig. 4.27 Simulated dimensionless velocity versus dimensionless size for isometric particles and
several sphericities
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CDM ¼
CD w; kð Þ

fA wð ÞfC kð Þfp uð Þ ReM ¼
Re

f 2
B wð Þf 2

D kð Þf 2
p uð Þ

 !
ð4:102Þ

d�eM ¼
d�e w; kð Þ

fpðuÞ � fA wð Þ1=2�f 2
B wð Þ � fC kð Þ1=2�f 2

D kð Þ
� 	2=3

ð4:103Þ

u�pM ¼
u�p w; kð Þ

fB wð ÞfD kð Þfq uð Þ ð4:104Þ

Figures 4.28 and 4.29 show the unified correlations for the data from Concha
and Christiansen (1986).

Problem 4.13 Determine the minimum fluidization velocity of quartz particles
with 250 microns in size, density qs ¼ 2:65 g

�
cm3 and sphericity w ¼ 0:55, in

water and 20 �C.

The minimum fluidization velocity occurs at u ¼ 0:585, therefore, we have the
following results:
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Fig. 4.28 Unified drag coefficient versus Reynolds number for quartz, limestone and sand
particles [the same data as in Fig. 4.22 (Concha and Christiansen 1986)]
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u� ¼ 20:52
d�

fp � fq � f 2
B � f 2

D � 1þ
0:0921� d��3=2f�3=2

p

f 0:5
A � f 0:5

C � f 2
B � f 2

D

 !0:5

�1

0
@

1
A

2

q ¼ 1� uð Þ � up

qs ¼ 2:65 g
�

cm3

qf ¼ 1:0:9976 g
�

cm3; lf ¼ 0:01196 g=cm - s

P ¼ 0:00405; Q ¼ 2:96151

fAðwÞ ¼ 4:2355 ; fBðwÞ ¼ 0:5495; fCðkÞ ¼ 1:0558; fDðkÞ ¼ 0:9732

u ¼ 0:585; fpðuÞ ¼ 5:97734; fqðuÞ ¼ 1:1582:

d� ¼ d=P ¼ 6:1737 ; u� ¼ 0:03898 ; up ¼ u� � Q ¼ 0:1154

q ¼ ð1� uÞ � up ¼ 0:04791 cm=s:

Ganser (1993) proposed an empirical equation for the drag coefficient of non-
spherical non-isometric particles, including irregular particles, similar to that given
earlier for spherical particles (4.92), but with different values for the parameters K1.

CD ¼
1

K1

24
Re

1þ 0:1118 K1K2Reð Þ0:6567
� 	

þ 0:4305K1K2
2 Re

3305þ K1K2Re
ð4:105Þ
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Fig. 4.29 Unified sedimentation velocity versus size for limestone, quartz and sand particles [the
same data as in Fig. 4.22 (Concha and Christiansen 1986)]
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K1 ¼
1
3

dp

de
þ 2

3
w�1=2

� ��1

; K2 ¼ 101:8148 � log wð Þ0:5743

ð4:106Þ

In the equation for K1, de and dp are the volume equivalent and the projected
area equivalent diameters of the irregular particle respectively.

Finally, it is interesting to mention the work of Yin et al. who analyzed the
settling of cylindrical particles analytically and obtained, by linear and angular
momentum balances, the forces and torques applied to the particle during their fall.
Using Ganser’s equation for the drag coefficient, they solved the differential
equations of motion numerically obtaining results close to those measured
experimentally by them.
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Chapter 5
Kynch Theory of Sedimentation

Abstract This chapter studies sedimentation of suspensions treated as continuous
media. Sedimentation processes are studied from two perspectives; a discrete
approach and a continuum approach, in which dynamic processes are established.
This chapter uses the continuum approach and presents the concept of an ideal
suspension and an ideal thickener. Suspensions described by solid concentration,
solid component velocity and fluid component velocity constitute the sedimenta-
tion process provided they obey the mass conservation equations. Sedimentation
can be performed in batches or continuously. Batch sedimentation is studied first
and the Modes of batch sedimentation are established. These observations are
extended to continuous processes. Finally the capacity of an ideal continuous
thickener is derived. Kynch sedimentation theory, besides correctly describing the
behavior of incompressible suspensions, forms part of the more general theory of
compressible materials. The exercise of constructing solutions to Kynch sedi-
mentation processes allows for a better understanding of the sedimentation of
compressible pulps. Anyone wanting to understand the phenomenological theory
of sedimentation must first master Kynch sedimentation processes.

To have the ability to predict the different modes particle will settle from a sus-
pension under the effect of gravity, sedimentation processes must be studied from
a fundamental point of view. We have seen in previous chapters that particulate
systems can be viewed from two different approaches. Chapter 4 analyzes sedi-
mentation with a discrete approach, in which the laws of mechanics are applied to
individual particles in the system. Discrete sedimentation has been successful to
establish constitutive equations for the sedimentation properties of a certain par-
ticulate material in a given fluid. Nevertheless, to analyze a sedimentation process
and to obtain behavioral pattern permitting the prediction of capacities and
equipment design procedures, the continuum approach must be used. The theory
we present in this chapter uses this approach and is based on the works of Kynch
(1952) and those of Concha and Bustos (1991) and Bustos et al. (1999).

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_5,
� Springer International Publishing Switzerland 2014
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5.1 Concepts of an Ideal Suspension and an Ideal
Thickener

Consider a mixture of solid particles in a fluid contained in a vessel, and assume
that the suspension satisfies all the requirements to be considered a super-imposed
continuous media. The assumptions are:

1. All solid particles are of the same size, form and density and are small with
respect to the vessel in which they are contained.

2. The solid and the fluid are incompressible.
3. There is no mass transport between solid and the fluid.
4. The solid–fluid relative velocity in the mixture is a function of the solid con-

centration only.
5. The solid concentration is the same in all cross-sections of the vessel.

Assumption 1, together with assumption 3, allows establishing a unique settling
velocity to all particles; Assumption 2 establishes constant material densities for
the suspension components; Assumption 4, key to Kynch’s theory, is a constitutive
assumption for the settling velocity that makes unnecessary the use of the
momentum balances.

Mixtures fulfilling assumptions 1–4, receive the name of ideal suspension
(Shannon and Tory 1966; Bustos and Concha 1988; Concha and Bustos 1992) and
may be considered a superposition of two continuous medium. The ideal sus-
pension is a model of great utility. It has, in mechanics, a similar connotation that
the ideal gas has in thermodynamics. The ideal suspension does not exist really,
but many materials behave as ideal suspensions in certain special cases. The
Theory of Mixtures predicts the behavior of an ideal suspension that describes,
with good approximation, the settling of a suspension of small glass beads
(Shannon and Tory 1966; Davies et al. 1991), the sedimentation of un-flocculated
copper concentrates and diluted un-flocculated flotation tailings of many metallic
and non-metallic ores (Concha 2001).

In general, the solid concentration of a suspension is function of the three
dimensions of space, but assumption 4 allows describing the suspension with one
space dimension only, that is, the concentration depends on one space dimension
and on time. This assumption defines the concept of and ideal thickener as a vessel
with no wall effect (Shannon and Tory 1966; Bustos et al. 1990a; Concha and
Bustos 1992), where the feed, the underflow and the overflow are represented as
surface sources or surface sinks.

All models related to sedimentation use the concept of ideal thickener, irre-
spectively if they use ideal or real suspensions. The reason for this is that the
modeling of thickeners feed and discharge mechanism, including the rakes, are to
complicated and, that in spite of that, measurements (Becker 1982) have shown
that concentration distribution in an industrial thickener is approximately one-
dimensional. See Fig. 5.1.

98 5 Kynch Theory of Sedimentation



5.2 Field Equations

Sedimentation of an ideal suspension may be described by the following field
variables: (1) the solid concentration, as volume fraction of solids, uðz; tÞ, (2) the
solid component velocity vsðuÞ and (3) the fluid component velocity vf ðuÞ. These
field variables must obey the mass conservation equations (3.34) and (3.35) :

ou
ot
þr � uvsð Þ ¼ 0 ð5:1Þ

r � q ¼ 0; with q ¼ uvs þ 1� uð Þvf ð5:2Þ

where qðu; tÞ is the volume average velocity.
Solutions to these conservation equations are generally discontinuous. This

means that discontinuities may appear in the suspension and that Eqs. (5.1) and
(5.2) are valid only in those regions where the variables are continuous. At dis-
continuities they must be replaced by the mass jump conditions [Eq. (3.38)]:

r u½ � ¼ uvs � eI½ � and q½ � ¼ 0 ð5:3Þ

where r is the rate of propagation of the discontinuity in the direction normal to
the discontinuity surface and �½ � is the difference of value of the variable at each
side of the discontinuity.

If the sedimentation vessel is an ideal thickener, all equations reduce to one
space dimension, then:

Fig. 5.1 Concentration distribution in an industrial thickener treating copper tailings (Becker
1982)
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ou
ot
þ o uvsð Þ

oz
¼ 0

oq

oz
¼ 0 with q ¼ uvs þ ð1� uÞvf ¼ vs � ð1� uÞu

r ¼ uvs½ �
u½ �

where u ¼ vs � vf is the relative solid fluid velocity.
Define the new variable solid flux density by the product of the velocity vs and

concentration u, that is, f ðuÞ ¼ uvsðuÞ. In terms of the solid flux density the field
equations, for regions where the variables are continuous are:

ou
ot
þ of ðuÞ

oz
¼ 0;

oq

oz
¼ 0 ð5:4Þ

and at discontinuities:

r ¼ f ðuÞ½ �
u½ � q½ � ¼ 0 ð5:5Þ

where f ¼ quþ uð1� uÞu:
Since discontinuities imply non-uniqueness in the solution, a certain criterion

should be used to select the admissible solutions. One of these criteria is Lax
entropy condition (Bustos and Concha 1988):

fbk uþð Þ� r uþ;u�ð Þ� fbk u�ð Þ; with u� �u�uþ ð5:6Þ

5.2.1 Batch and Continuous Sedimentation

Sedimentation can be performed in a batch or continuous manner. Batch sedi-
mentation is usually used in the laboratory. The suspension is introduced in a
graduate cylinder with closed bottom, see Fig. 5.2a. The suspension is allowed to
settle under the effect of gravity and the water-suspension interface is recorded as a
function of time. The ideal thickener, for the batch case, is called settling column
and is depicted in Fig. 5.2b.

If a pulp of solid volume fraction u0 is introduced in a column of volume
V ¼ A� L, where A is the column cross-section and L the suspension height, the
total solid mass M and solid volume per unit area W in the column are:

M ¼ qsALu0 and W ¼ V=Að Þu0 ¼ Lu0 ð5:7Þ
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Continuous sedimentation is performed in a cylindrical vessel called continuous
thickener, with a feedwell at the top and rakes at the bottom of the tank. Figure 5.3
represents a schematic view of the original Dorr thickener.

A volume feed rate QFðtÞ with concentration uFðtÞ enters through the feedwell
and an underflow rate QDðtÞ with concentration uDðtÞ leaves the thickener at the
bottom and center of the tank. At the top and periphery of the tank clear water
leaves through the overflow launder at volume flowrate of QOðtÞ.

The solid volume flux in and out of the thickener are given by
F ¼ QFuF and D ¼ QDuD. The ratio of the solid volume flux to the thickener
cross section S is the solid volume flux density, or just solid flux density, so that the
solid feed and underflow flux densities are:

fF ¼
QFuF

S
and fD ¼

QDuD

S
ð5:8Þ

Fig. 5.2 Vessels for batch
sedimentation. a Laboratory
glass graduate cylinder.
b Settling column
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The volume average velocity q of the pulp is:

q ¼ QD=S ð5:9Þ

A macroscopic balance in the thickener at steady state gives:

Solid mass: F ¼ D ð5:10Þ

Pulp volume: QF ¼ QD þ QO ð5:11Þ

Solid volume: QFuF ¼ QDuD ð5:12Þ

Solid flux density: fF ¼ quD ð5:13Þ

5.3 Batch Kynch Sedimentation Process

When an ideal suspension settles under the effect of gravity in a settling column,
the following steps can be distinguished:

(a) Before settling begins, the suspension is homogenized by agitation obtaining a
suspension of constant concentration.

Fig. 5.3 Dorr thickener (1905) vessels for continuous sedimentation
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(b) When sedimentation starts, all particles settle at the same velocity forming a
water-suspension interface that moves at the velocity of the solid particles.
This step is called hindered settling because the presence of other particles
hinders the settling of an individual particle. See Fig. 5.4. There are special
cases, noted by Bürger and Tory (2000), where during a short time not all
particles settle at the same velocity.

(c) Particles that reach the bottom of the column very rapidly cover the whole
column cross sectional area. This material, with concentration u1, is called
sediment. The particles in the sediment start piling up moving the interface
between the sediment and the suspension at a constant characteristic upward
velocity. See Fig. 5.4.

(d) At a given time t ¼ tc, called critical time, the interface water-suspension
meets with the interface sediment-suspension at a critical height z ¼ zc. These
coordinate zc; tcð Þ define the critical point were sedimentation ends.

Based on the description of batch sedimentation, we can add the following
assumptions to the 5 general assumptions given at the beginning:

1. There is no inflow or outflow of suspension from the settling column, therefore
the volume average velocity q = 0.

2. The suspension has an initial constant concentration u0.

Fig. 5.4 Settling curve showing the water-suspension and the sediment-suspension interfaces for
the settling of a suspension with initial concentration u0 ¼ 0:10 and sediment concentration
u1 ¼ 0:23
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3. The final sediment concentration is u1.

Under these addition assumptions, Eqs. (5.4) and (5.5) may be written, for
regions where the variables are continuous, in the form:

ou
ot
þ ofbkðuÞ

oz
¼ 0 ð5:14Þ

fbkðuÞ ¼ uð1� uÞu ð5:15Þ

where fbk is called Kynch batch flux density function and is a constitutive equation
to be determined experimentally.

At discontinuities Eq. (5.14) is not satisfied and is replaced by the Rankin-
Hugoniot condition (Bustos and Concha 1988; Concha and Bustos 1991):

r ¼ fbkðuÞ½ �
u½ � ; 0� z� L ð5:16Þ

However, discontinuous solutions, satisfying (5.14) at points of continuity and
(5.16) at discontinuities, are in general not unique, therefore an additional crite-
rion, or entropy principle, is necessary to select the physically relevant discon-
tinuous solution. This solution is called entropy weak solution.

One of these entropy criteria is the Oleinik jump entropy condition, requiring
that:

fbk uð Þ � fbk u�ð Þ
uþ � u�

� r uþ;u�ð Þ� fbk uð Þ � fbk uþð Þ
u� � uþ

; for all u� �u�uþ

ð5:17Þ

An interpretation of this entropy condition indicates that (5.17) is satisfied if,
and only if, in a fbkðuÞ versus u plot, the chord joining the point uþ; fbkðuþÞð Þ and
u�; fbkðu�Þð Þ remains above the curve fbkðuÞ for uþ\u� and below the curve

fbkðuÞ for uþ[ u�. See Fig. 5.5.
Discontinuities satisfying (5.16) and (5.17) are called shocks. If, in addition,

f 0bkðu�Þ ¼ rðuþ;u�Þ or f 0bkðuþÞ ¼ rðuþ;u�Þ ð5:18Þ

are satisfied, the discontinuity is called contact discontinuity.
Initial and boundary conditions for the conservation law expressed by Eqs.

(5.14) to (5.17) are:

u z; 0ð Þ ¼u0 for 0� z� L

u L; tð Þ ¼uL for t [ 0
ð5:19Þ

u 0; tð Þ ¼ u1 for t [ 0 ð5:20Þ

where concentrations uL; u0 y u1 are all constant. Kynch batch flux-density
functions should obey the following conditions:
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fbkðuÞ\0 for 0�u�u1; fbkð0Þ ¼ fbkðu1Þ ¼ 0

f 0bkð0Þ\0 and f 0bkðu1Þ[ 0
ð5:21Þ

Equations (5.14)–(5.21) form an initial-boundary value problem called Batch
Kynch Sedimentation Process (BKSP) (Bustos and Concha 1988).

5.3.1 Solution to the Batch Kynch Sedimentation Process

Equation (5.14) may be written in the form:

ou
ot
þ f 0bk uð Þ ou

oz
¼ 0; with f 0bk uð Þ ¼ dfbk=du ð5:22Þ

Since fbkð0Þ ¼ fbkðu1Þ ¼ 0, initial and boundary conditions (5.19) and (5.20)
may be written as initial conditions only:

u z; 0ð Þ ¼
0 for L\z
u0 for 0� z� L
u1 for z\0

8
<

: ð5:23Þ

Summarizing, we can state that sedimentation of ideal suspensions may be
represented by the volume fraction of solids uðz; tÞ and the Kynch batch flux
density function fbkðuÞ. These two functions constitute a BKSP if, in the region of
space 0� z� L and time t [ 0, they obey Eq. (5.22) where variables are continuos
and Eqs. (5.16) and (5.17) at discontinuities. Additionally they must satisfy the
initial conditions (5.23).

Fig. 5.5 Geometrical
interpretation of Oleinik’s
criterion
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(a) Solution by the method of characteristics

Written in this form, a BKSP can be treated as an initial value problem and may
be solved by the method of characteristics for constant initial values. According to
Courant and Hilbert (1963), straight lines, called characteristics can be drawn in
the z; tð Þ plane, where Eq. (5.22) is valid. These lines obey the following
conditions:

dzðu; tÞ
dt

¼ f 0bk u zðtÞ; tð Þð Þ; for t [ 0; zð0Þ ¼ 0 ð5:24Þ

Here dzðu; tÞ=dt represents the propagation velocity of concentration waves of
constant value u in the (z,t) domain. Since u is constant along these lines, f 0bkðuÞ is
also constant and the characteristics are straight lines.

As an example, take the case with initial concentration u0\u		1, where u		1 is
the point where a tangent drawn from point u1; fbkðu1Þð Þ cuts Kynch flux density
curve. See Fig. 5.6. Since the initial values for z\0, 0� z� L and z [ L are
constant, characteristic starting from the ordinate axis are parallel straight lines
with slope given by f 0bkð0Þ; f 0bkðu0Þ and f 0bkðu1Þ respectively. On the other hand,
we can see that f 0bkð0Þ; f 0bkðu0Þ and f 0bkðu1Þ are lines tangent to Kynch flux
density curve at u ¼ 0; u ¼ u0 and u ¼ u1. Where these lines intersect, the
solution is no longer unique and discontinuities, with slope r 0;u0ð Þ and r 0;u1ð Þ,
are formed in the form of cords drawn from 0; fbkð0Þð Þ to u0; fbkðu0Þð Þ and
u0; fbkðu0Þð Þ to u1; fbkðu1Þð Þ respectively. See Fig. 5.6.

Fig. 5.6 Solution of a BKSP by the method of characteristics. a Kynch flux density function.
b Settling plot
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Modes of Sedimentation

In his work Kynch (1952) mentioned modes of sedimentation as manners in which
a suspension may settle, but without giving a specific meaning to them. Precise
description of this concept was given by Bustos and Concha (1988) and Concha
and Bustos (1991) who defined Modes of Batch Sedimentation (MBS) as the
different possible BKSP, that is, as the possible entropy weak solutions to the batch
sedimentation problem that can be constructed for a given initial data and Kynch
flux density function. There are 7 MBS for Kynch flux density functions with at
most two inflection points (Bustos et al. 1999).

The type of MBS depends on how the zones of constant concentration
u0 and u1 are separated after sedimentation is complete. Figures 5.7 and 5.8
show the 7 Modes of Batch Sedimentation, including the flux density function,
settling plot and concentration profile.

Fig. 5.7 Modes of batch sedimentation processes, MBS-1–MBS-3, for batch Kynch flux density
function with one and two inflection points. In these figures the shocks are described by di and the
contact discontinuity by C
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• MBS-1 A shock. The supernatant-suspension and the suspension sediment are
both shocks meeting at the critical time tc. See Fig. 5.7a.

• MBS-2 The rising shock is replaced, from bottom to top, by a contact discon-
tinuity followed by a rarefaction wave. This MBS can occur only with a Kynch
Batch flux density function with one inflection point. See Fig. 5.7b.

Fig. 5.8 Modes of batch sedimentation processes, MBS-4–MBS-7, for batch Kynch flux density
function with two inflection points. In these figures the shocks are described by di and the contact
discontinuity by C
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• MBS-3 A rarefaction wave. In this case no cord can be drawn from u0; f 0bkðu0Þ
� �

to u	0; f 0bkðu	0Þ
� �

and the contact discontinuity becomes a line of continuity. This
MBS can occur only with a Kynch Batch flux density function with one inflection
point. See Fig. 5.7c.

• MBS-4 Two contact discontinuities separated by a rarefaction wave. See
Fig. 5.8a.

• MBS-5 One rarefaction wave followed by a contact discontinuity. See Fig. 5.8b.
• MBS-6 One rarefaction wave followed by a convex shock. This mode occurs if

the inflection points a and b are on the left of the minimum in Kynch flux
density curve and the tangency point ut; fbkðutÞð Þ of a line drawn from
0; fbkð0Þð Þ to the Kynch flux density curve is in the range a\ut\b, and the

initial concentration is in the interval ut\u0\b. See Fig. 5.8c.
• MBS-7 One shock followed by a contact discontinuity and a curved shock. This

mode occurs if the inflection points a and b are on the left of the minimum in
Kynch flux density curve and the tangency point ut; fbkðutÞð Þ of a line drawn
from 0; fbkð0Þð Þ to the Kynch flux density curve is in the range a\ut\b, and
the initial concentration is u0 [ b. See Fig. 5.8d.

In all cases independently of the type of MSB, the final state is a sediment of
concentration u1. The height of the sediment is given by a mass balance as:

z1 ¼ Lu0=u1 ð5:25Þ

5.4 Continuous Kynch Sedimentation Process

Figure 5.9 shows a continuous thickener showing the feedwell and rakes.
It has been established that four zones exists in a continuous thickener.

Zone I. Zone I correspond to clear water, which is located in the region above
and outside the feed well

Zone II. Below the clear water zone a region of constant concentration forms.
This zone is called hindered settling zone and has a concentration called
conjugate concentration.

Zone III. Under the hindered settling zone, a transition zone takes the conjugate
concentration to the sediment concentration. This can happen through a
shock wave, a rarefaction wave or a combination of them.

Zone IV. Finally, we have the sediment zone, a zone of constant and final con-
centration (Fig. 5.10).
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5.4.1 Solution to the Continuous Kynch Sedimentation
Process

Based on the description of continuous sedimentation, we can add the following
assumptions to the 5 general assumptions given at the beginning:

1. The outflow velocity of suspension from the ideal thickener is qðtÞ ¼ QDðtÞ=S.
2. The suspension has an initialconcentration distribution uI zð Þ.
3. Solids never enter zone I, that is, the domain of the solution is 0� z� L, where

L is the base of the feedwell.

Under these additional assumptions, Eqs. (5.4) and (5.5) may be written, for
regions where the variables are continuous, in the form:

ou
ot
þ f 0kðuÞ

ou
oz
¼ 0 where f 0kðuÞ ¼ df 0k=dz ð5:26Þ

oq

oz
¼ 0; with fk ¼ quþ fbkðuÞ ð5:27Þ

OQ

FQ

DQ

Zone I

Zone II

Zone III

Zone IV

Fig. 5.10 Ideal Continuous
Thickener (ICT)

Fig. 5.9 Continuous thickener
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and (5.5) for discontinuities:

r ¼ fkðuÞ½ �
u½ � q½ � ¼ 0 ð5:28Þ

The jump condition must satisfy Oleinik jump entropy condition:

fk uð Þ � fk u�ð Þ
uþ � u�

� r uþ;u�ð Þ� fk uð Þ � fk uþð Þ
u� � uþ

; for all u� �u�uþ ð5:29Þ

Summarizing, we can state that the continuous sedimentation of ideal suspen-
sions in an ideal thickener may be represented by the volume fraction of solids
uðz; tÞ, the volume average velocity qðz; tÞ and the continuous Kynch flux density
function fkðuÞ. These functions constitute a Continuous Kynch Sedimentation
Process (CKSP) if, in the region of space 0� z� L and time t [ 0 where the
variables are continuous, the obey Eqs. (5.26) and (5.27), and at discontinuities
they obey Eqs. (5.28) and (5.29).

Solution by the Method of Characteristics

In the majority of cases, Kynch batch flux density functions are functions with
one infection point only at ua. If u1 is the concentration at the end of the
sedimentation process, the Kynch flux density function must obey the following
properties. See Fig. 5.11.

fk u; tð Þ ¼ q tð Þuþ fbk uð Þ� 0; 0�u�u1
fk 0; tð Þ ¼ 0

ð5:30Þ

f 0k u; tð Þ\0; 0�u�ua ð5:31Þ

f 0k u; tð Þ[ 0; ua�u�u1 ð5:32Þ

f 00k u; tð Þ\0; ua�u�u1 ð5:33Þ

Equation (5.27) shows that q ¼ qðtÞ is independent of the z coordinate. In the
rest of this work we will assume that q is a constant independent of time (steady
state).

Solutions to the CKSP are straight lines, called characteristics, drawn in the
z; tð Þ plane, where Eq. (5.26) is valid. These lines obey the following conditions:

dzðu; tÞ
dt

¼ f 0k u zðtÞ; tð Þð Þ; for t [ 0 ð5:34Þ

Here dzðu; tÞ=dt ¼ f 0k uð Þ represents the propagation velocity of concentration
waves of constant value u.
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Modes of continuous sedimentation

Mode of Continuous Sedimentation (MCS) are the different possible CKSP, that is,
the possible entropy weak solutions to the continuous sedimentation problem that
can be constructed for a given initial data and Kynch flux density function (Bustos
et al. 1999). Since these MSC depend entirely on the Kynch flux density function
and on the initial conditions, it is necessary to choose these material properties and
conditions.

We will consider the following initial conditions:

uI zð Þ ¼ uL for A� z�L
u1 for 0� z \A

�
ð5:35Þ

From Eq. (5.27), the value of uL is obtained by solving the implicit equation:

fF ¼ quL þ fb uL tð Þð Þ ð5:36Þ

where fF is the feed solid flux density function. In case Eq. (5.36) admits more than
one solution uL, the relevant one is selected by the physical argument that the feed
suspension is always diluted on entering the thickener, as shown by Comings et al.
(1954).
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Fig. 5.11 Continuous Kynch flux density function for two values of the volume average velocity
q1 = 5 9 10-5; q2 = 6 9 10-6 and the Batch Kynch flux density function with one inflection
point, fbk = 6.05 9 10-4 9 u(1 - u)12.59
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For a Kynch flux density function with one inflection point, the important
parameters are shown in Figs. 5.12 and 5.13 for two values of the volume average
velocity q.
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Fig. 5.12 Continuous Kynch flux density functions with one inflection point; f 0kðu1Þ[ 0
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Fig. 5.13 Continuous Kynch flux density functions with one inflection point; f 0kðu1Þ\0
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The type of MCS depends on how the zones of constant concentration
u0 and u1 are separated after sedimentation is complete. Three MCS exist for a
flux density function with one infection point (Concha and Bustos 1992).

• MCS-1 A shock separating two zones of continuous sedimentation
uL and u1. See Fig. 5.14a.

• MCS-2 A contact discontinuity separating two zones of continuous sedimen-
tation uL and u1. See Fig. 5.14b.

• MCS-3 A rarefaction wave separating two zones of continuous sedimentation
uL and u1. See Fig. 5.14c.

The fact that the exact location and propagation speed of the sediment-sus-
pension interface level is always known, permits to formulate a simple control

Fig. 5.14 Modes of continuous sedimentation processes. a MCS-1. b MCS-2. c MCS-3
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model for the transient continuous sedimentation. It can be shown (Bustos et al.
1990b) that the steady state corresponding to an MCS-1 can always be recovered
after a perturbation of the feed flux density by solving two initial-boundary value
problems at known times and with parameters q and uL that can be calculate a
priori. See Fig. 5.15.

5.4.2 Steady State of an Ideal Continuous Thickener

In MCS-1 and MCS-2 the thickener overflows, empty or attain a steady state,
while in MCS-3 no steady state can be attained:

(a) A MCS-1 can reach a steady state if f 0k 1ð Þ[ 0 and uL ¼ us, where us is
defined in Fig. 5.12. See Fig. 5.16.

(b) A MCS-2 can reach a steady state if f 0k u1ð Þ\0 and uL ¼ u		M , so that
r uL;u

	
L

� �
¼ f 0k uMð Þ ¼ 0 and a contact horizontal discontinuity forms. uM

corresponds to the concentrations of the maximum point in the flux density
curve and u		M to its conjugate concentration. See Fig. 5.17.

Fig. 5.15 Control of continuous sedimentation after Bustos et al. (1990b)

Fig. 5.16 Global weak solution for a MSC-1 leading to a steady state
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Capacity of an Ideal Continuos Thickener

At steady state, from Eq. (5.26):

dfk uð Þ
dz

¼ 0; for 0� z� L ð5:37Þ

with boundary conditions z ¼ 0; fkðuð0ÞÞ ¼ quD; z ¼ L; fkðuðLÞÞ ¼ fF , where fF

is the feed flux density function. Then,

fk uðLÞð Þ ¼ quL þ fbk uLð Þ ¼ fF ð5:38Þ

fkðuð0ÞÞ ¼ fkðuð0ÞÞ ¼ quD ¼ fF ð5:39Þ

Substituting (5.39) into (5.40) yields:

fF ¼
fF

uD
uL þ fbk uLð Þ

fF
1
uL
� 1

uD

� �
¼ fbk uLð Þ

uL

1
fF
¼ uL

fbk uLð Þ
1
uL
� 1

uD

� �
ð5:40Þ

Since the mass flow to the thickener is F ¼ qsQFuF and the solid flux density is
defined by fF ¼ �QFuF=S, we can write:

fF ¼ �
F

qsS
ð5:41Þ

Fig. 5.17 Global weak solution for a MSC-2 leading to a steady state
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Defining the Unit Area UA ¼ S=F, where S is the thickener cross sectional
area:

UA ¼ � 1
qs fF

ð5:42Þ

Replacing this expression into Eq. (5.40) yields an equation for the Unit Area.

UA ¼ uL

qsfbk uLð Þ
1

uD
� 1

uL

� �

UA ¼ 1
qsfbk uLð Þ

uL

uD
� 1

� � ð5:43Þ

We have seen that for a MCS-1 at steady state, uL ¼ us and uD ¼ u1, then
from (5.43):

UA ¼ 1
qsfbk usð Þ

us

u1
� 1

� �
ð5:44Þ

and for a MCS-2, uL ¼ u		M and uD ¼ uM , then from (5.43):

UA ¼ 1
qsfbk u		Mð Þ

u		M
uM
� 1

� �
ð5:45Þ

Kynch sedimentation theory, besides describing correctly the behavior of
incompressible suspensions, forms part of the more general theory of compressible
materials. The exercise of constructing global weak solutions to Kynch Sedi-
mentation Processes in graphical form, allows a better understanding of the sed-
imentation of compressible pulps. Every person willing to understand the
phenomenological theory of sedimentation must first master Kynch Sedimentation
Processes.
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Chapter 6
Flow Through Rigid Porous Media

Abstract The best way to analyze the flow through a porous medium is to divide
it into two phenomena, depending on whether the porous matrix is compressible or
incompressible. In both cases, the result is useful for the process industry. Rigid
porous media form the basis for a simplified filtration theory and compressible
porous media form part of thickening theory. In this chapter the fundamental
equations for the flow through rigid porous media based on the Theory of Mixtures
is developed. Consider the flow of a incompressible viscous fluid through a bed of
small solid incompressible particles with no mass transfer between the solid and
the fluid. Such a mixture of particles is called an incompressible porous medium
and can be described with the equations for particulate systems presented in Chap.
3. It is convenient in this case to use porosity as a variable instead of the solid
volume fraction. Local balances are laid down for mass and momentum and
Darcy’s and Forchheimer’s equations are used as constitutive equations. For a
mono-phase flow, permeability is defined and for the case of a two-phase flow, the
concepts of relative permeability, saturation and capillary pressure are introduced.

In 1856 Darcy proposed the first experimental correlation for viscous flow through
an incompressible porous medium formed by consolidated particles. Darcy
established a linear relationship between the volume flow per unit area and the
pressure drop through the bed. Massarani (1984) observed that Darcy’s correlation
was not universally valid, but was restricted to slow flows, and proposed an
extension for faster flows. Since then, slow flows through porous media are called
Darcy flows and those at higher velocities are called Forcheimer flows. In addition
to these pioneering works, Kozeny (1927) and Carman (1937) contributed with
classical papers.

The best way to analyze the flow through a porous medium is to divide it into
two phenomena, depending whether the porous matrix is compressible or
incompressible. In both cases, the result is useful for the process industry. Rigid
porous media form the basis for a simplified filtration theory and compressible
porous media forms part of the thickening theory. In this chapter we will develop
the fundamental equations for the flow through rigid porous media based on the
Theory of Mixtures.

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_6,
� Springer International Publishing Switzerland 2014
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6.1 Dynamic Process of a Single Phase Flow in a Rigid
Porous Media

Consider the flow of a viscous fluid through a bed of solid particles, where the
following assumptions are valid:

1. The particles are small with respect to the containing vessel and have the same
size and form.

2. The particles and the bed are incompressible.
3. There is no mass transfer between the solid and the fluid.
4. The particles are contained in a vessel with impervious frictionless walls.

Such a mixture of particles is called an incompressible porous medium and can
be described with the equations for particulate systems described in Chap. 3. Since
in this case the only active component is the fluid, due to their incompressibility
the solid velocity is zero, it is convenient to use porosity e ¼ 1� u as variable
instead of the solid volume fraction u: vs ¼ 0:

6.1.1 Local Balances

The flow through a rigid porous bed can be described by the mass and linear
momentum balances. From Chap. 5 and the previous assumptions we can write:

Volume balance for the fluid:

oe
ot
þr � evf

� �
¼ 0 ð6:1Þ

Volume balance for the mixture:

r � q ¼ 0; with q ¼ evf and vs ¼ 0 ð6:2Þ

Linear momentum balance for the fluid:

rpe ¼ �
md

e
ð6:3Þ

where r is the position vector, eðr; tÞ ¼ 1� uðr; tÞð Þ is the porosity of the bed,
vf ðr; tÞ is the fluid velocity, qðr; tÞ is the volume average velocity, also called
spatial fluid velocity or percolation velocity, peðr; tÞ is the excess pore pressure and
mdðr; tÞ is the solid–fluid interaction force.
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6.1.2 Constitutive Equation for the Solid–Fluid Interaction
Force

It is reasonable to assume that the solid–liquid interaction force, originating from
the fluid flow through the porous bed, is a function of the bed porosity e r; tð Þ and
the solid–fluid relative velocity vr r; tð Þ:

md ¼ md e; vrð Þ ð6:4Þ

The most general isotropic function for the hydrodynamic force md:

md ¼ �a e; vrj jð Þvr ð6:5Þ

The coefficient of resistance a e; vrj jð Þ can be expanded in a Taylor series:

a e; vrj jð Þ ¼ a0 eð Þ þ a1 e vrj jð Þ þ a2 eð Þ vrj j2þ � � � ð6:6Þ

6.1.3 Darcy’s Law

If the relative solid–fluid velocity is low, it is possible to conserve only the first
term in the series (6.6), so that:

md ¼ �a0 eð Þvr ð6:7Þ

Expression (6.7) is called Darcy’s law, and corresponds to a linear relationship for
the hydrodynamic force. Substituting Darcy’s law with the linear momentum
equation, we obtain:

rpe ¼
a eð Þ
e

vr ð6:8Þ

6.1.4 Forcheimer’s Law

If the relative solid–fluid velocity is high, it is necessary to use another term for the
series (6.6):

md ¼ � a0ðeÞ þ a1ðeÞ vrj jð Þvr ð6:9Þ

Equation (6.9) is called Forcheimer’s law. Substituting it with the balance of linear
momentum, the following result is obtained:

rpe ¼
a0 eð Þ

e
þ a1 eð Þ

e
vrj j

� �
vr ð6:10Þ
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This equation represents a force balance in a porous medium for greater fluid
velocities.

Geometrical parameters in a rigid porous bed

To obtain the relationship between the ai parameters of the geometry of the
porous bed, Eq. (6.10) is applied to the well-known case of the flow of a viscous
fluid through a horizontal rigid porous bed with constant porosity e. See Fig. 6.1,
where vf ¼ vf k; q ¼ qk and pe ¼ p, so that rpe ¼ op=ozð Þk.

For the case of Fig. 6.1, the field equations become:

oe
ot
þ o

oz
evf

� �
¼ 0 and

oq

oz
¼ 0; with q ¼ evf ð6:11Þ

ope

oz
¼ a0 eð Þ

e
þ a1 eð Þ

e
vrj j

� �
vr ð6:12Þ

Since the porosity e is constant, and vs ¼ 0, from (6.11) we see that q ¼ evf ¼
constant and since vr ¼ �vf , q ¼ �evr:

The linear momentum equation becomes:

ope

oz
¼ � a0ðeÞ

e2
þ a1ðeÞ

e3
qj j

� �
q ð6:13Þ

Integrating this equation with the following boundary conditions, pe z ¼ 0ð Þ ¼ p0

and pe z ¼ Lð Þ ¼ pL, where Dp ¼ p0 � pL, we obtain:

Z pL

p0

dpe ¼ �
a0 eð Þ
e2
þ a1 eð Þ

e3
qj j

� �
q

Z L

0
dz

pL � p0 ¼ �Dpe ¼ �
a0 eð Þ
e2
þ a1 eð Þ

e3
qj j

� �
qL ð6:14Þ

Since q [ 0, we can eliminate the absolute value in Eq. (6.14) and write:

Fig. 6.1 Measurement of
parameters in a horizontal
rigid porous bed
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1
q

Dpe

L
¼ a0 eð Þ

e2
þ a1 eð Þ

e3
q ð6:15Þ

Plotting Eq. (6.15) with q as the abscissa and Dpe=qL as ordinate, we get a straight
line. See Fig. 6.2.

The extrapolation of the straight line to q ¼ 0 and the slope of the straight line
are:

a eð Þ ¼ 1
q

Dp

L

����
q!0

¼ a0ðeÞ
e2

: b eð Þ ¼ a1 eð Þ
e3

ð6:16Þ

It is common practice to define the following parameters (Massarani 1984):

aðeÞ ¼ a0 eð Þ
e2
� l

k eð Þ and bðeÞ ¼ a1 eð Þ
e3
�

qf c eð Þ
ffiffiffiffiffiffiffiffi
k eð Þ

p ð6:17Þ

where k eð Þ is the permeability of the porous medium, measured in Darcy’s (1
Darcy = 10-3 cm2), and c eð Þ is a dimensionless parameter. See Fig. 6.2.

With definitions (6.17), Eqs. (6.13) and (6.15) become:

ope

oz
¼ � l

kðeÞ þ
qf cðeÞffiffiffiffiffiffiffiffi

kðeÞ
p qj j

 !
q ð6:18Þ

1
q

Dpe

L
¼ l

kðeÞ þ
qf cðeÞffiffiffiffiffiffiffiffi

kðeÞ
p q ð6:19Þ

p /qL  = 1388q  + 666.67
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Δ
p/

qL

a=666.67   b=1388

Fig. 6.2 Measurements of the geometrical parameters of a rigid porous bed

6.1 Dynamic Process of a Single Phase Flow in a Rigid Porous Media 123



Problem 6.1 Determine the parameters of the straight line in Fig. 6.2.
The parameters are a ¼ 666:67 and b ¼ 1;388. With these values the perme-

ability ‘‘k’’ and the parameter ‘‘c’’ are:

k ¼ l
a
¼ 0:001

666:67
¼ 1:5� 10�6 cm2

c ¼ b� k0:5

qf
¼ 1,388� ð1:5� 10�6Þ0:5

1
¼ 1:7

Problem 6.2 (Massarani 1984) The length and cross-sectional area of a porous
media, formed by consolidated sand of 14/20 mesh and sphericity w ¼ 0:6, with a
porosity of e = 0.37, are L ¼ 2:1 cm and 16.8 cm2 respectively. Determine k(e)
and c(e). Experiments for the flow of water, with 1.00 g/cm3 in density and
0.0118 (g/cm-s) in viscosity through the porous media give the results shown in
the table below:

q (cm/s) 6.33 7.47 10.2 12.7 15.2 17.7 20.3 23.9
Dpe (cm Hg) 4.69 6.24 10.4 15.2 21.2 28.0 35.9 48.9

The units for the pressure drop must be changed:

pe ¼ qHg gh ¼ 13:595� 980:7� h ðg=cm s2Þ

where h is measured in cm of Hg. The following table gives the data for the
Fig. 6.3.

From the plot:
Dpe

qL
¼ 1,709:8þ 469:6q

from which, the parameters can be calculated:

k eð Þ ¼ l
Dp=qLð Þq¼0

¼ 0:0118
1,697:8

¼ 6:90� 10�6 cm2

c eð Þ ¼
ffiffiffiffiffiffiffiffi
kðeÞ

p
� Dp=q2L

q

� �
¼ 6:90� 10�6 � 469:69

1:00
¼ 1:23

Massarani (1989) gives an order of magnitude of the parameters of diverse
porous media in Table 6.1.

Several equations have been proposed to define the dependence of the per-
meability and the c parameter on the porosity. The most commonly used are those
of Kozeny (1927), Carman (1937), Ergun (1952) and Massarani (1997) (see fol-
lowing section).
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6.1.5 Forcheimer’s and Darcy’s Equations

Substituting the values of a0 eð Þ and a1 eð Þ from (6.17) with (6.9) and (6.10) we
get:

md ¼
le

kðeÞ 1þ
qf

ffiffiffiffiffiffiffiffi
kðeÞ

p
cðeÞ qj j

l

 !
q ð6:20Þ

rpe ¼ �
l

kðeÞ 1þ
qf cðeÞ

ffiffiffiffiffiffiffiffi
kðeÞ

p
qj j

l

 !
q ð6:21Þ

This last expression is called Forcheimer’s equation.
The second term in the parenthesis of (6.20) and (6.21) has the form of a

Reynolds Number. Defining the Percolation Reynolds Number Re� by:

p /qL  = 469.6q  + 1709.8

R2 = 0.9998

0.0E+00

5.0E+03

1.0E+04

1.5E+04

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Percolation velocity q  (cm/s)

Δ
p

/q
L

Fig. 6.3 Measurements of the geometrical parameters of a rigid porous bed formed by 14/20
Tyler mesh particles with sphericity w ¼ 0:6

Table 6.1 Order of magnitude of kðeÞ and cðeÞ (Massarani 1984)

Medium e k (e) (cm2) c(e) (–)

Petroleum sand 0.03 1.0 9 10-12 3 9 105

Porous metallic plate 0.26 1.0 9 10-7 15
Copper concentrate 0.43 5.0 9 10-9

28/35 mesh quartz sand 0.42 1.5 9 10-6 1.7
6 mm glass beads 0.40 4.0 9 10-4 0.49

6.1 Dynamic Process of a Single Phase Flow in a Rigid Porous Media 125



Re� ¼
qf cðeÞ

ffiffiffiffiffiffiffiffi
kðeÞ

p
qj j

l
ð6:22Þ

we can write Eqs. (6.20) and (6.21) in the form:

md ¼
le

kðeÞ 1þ Re�ð Þq ð6:23Þ

rpe ¼ �
l

kðeÞ 1þ Re�ð Þq ð6:24Þ

The Percolation Reynolds Number measures the deviation of the solid–liquid
interaction force in Darcy’s law. In effect, if Re* � 1, Eq. (6.24) becomes Darcy’s
equation:

rpe ¼ �
l

kðeÞ q ð6:25Þ

Problem 6.3 From the results of Problem 6.1, decide if it corresponds to a
Darcy’s or Forcheimer’s regime. Calculating the Percolation Reynolds Numbers
with Eq. (6.22), we obtain the results of Fig. 6.4.

6.1.6 Darcy’s and Forcheimer’s Equations in Terms
of the Piezometric Height

It is sometimes convenient to write Darcy’s and Forcheimer’s equations in terms
of the piezometric height and hydraulic conductivity instead of the excess pore
pressure and the percolation velocity. Since pe ¼ qf g h� h0ð Þ, where qf gh0 is the
hydrostatic pressure and h0 is the hydrostatic head, from (6.24) we have:

rh ¼ � l
qf gkðeÞ 1þ Re�ð Þq

Defining the hydraulic conductivity i eð Þ, measured in (cm/s), by:

iðeÞ ¼
qf gkðeÞ

l
ð6:26Þ

Darcy’s and Forcheimer’s equations become:

rh ¼ � 1
iðeÞ 1þ Re�ð Þq; with Re� ¼

qf cðeÞ
ffiffiffiffiffiffiffiffi
kðeÞ

p
qj j

l
ð6:27Þ

rh ¼ � 1
iðeÞ q ð6:28Þ
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6.1.7 Capillary Model of a Rigid Porous Bed

The capillary model for a porous bed, also known as the Kozeny–Carman model, is
based on the assumption that the capillaries consist of a bundle of tubes of arbi-
trary cross-section. Through these capillaries, a fluid flows following Poiseuille’s
equation:

rpe ¼ �
lb

R2
h

�v

where Rh is the hydraulic radius, defined as the ratio of the wetted cross-sectional
area to the wetted perimeter of the tubes, b is a parameter called tortuosity, which
is related to the length of the capillaries per unit length of the porous media and �v
is the average velocity in the tubes. This velocity corresponds to the interstitial
velocity in de porous medium. In terms of the percolation velocity, q ¼ e�v, we
have:

rpe ¼ �
lb

eR2
h

q ð6:29Þ

The hydraulic radius can be written in the form:
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Fig. 6.4 Percolation Reynolds Numbers Re* versus percolation velocity q for Problem 6.3,
showing that Darcy’s regime is valid up to around percolation velocity q ¼ 0:05 cm/s
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Rh ¼
wetted cross� sectional area

wetted perimeter
� L

L
� V

V
¼ wetted cross� sectional area� Lð Þ=V

wetted perimeter � Lð Þ=V

¼ pore volume=bed volume

particle surface=bed volume

¼ e
Sp=V

¼ e
Spð1� eÞ=Vð1� eÞ ¼

e
ð1� eÞSp=Vp

¼ e

ð1� eÞ�S

where �S is the specific surface per unit volume. Substituting this expression with
Eq. (6.29) yields:

rpe ¼ �
lð1� eÞ2b�S2

e3
q

Comparing this equation to (6.25) gives the following functional form for the
permeability:

kðeÞ ¼ e3

ð1� eÞ2b�S2
ð6:30Þ

If the particles forming the bed are spherical, the specific surface is �S ¼ 6=d and
the permeability is:

kðeÞ ¼
e3d2

p

36ð1� eÞ2b
ð6:31Þ

where d is the diameter of the sphere.
If the bed is formed with non-spherical particles, the sphericity can be used to

characterize the particle shape (see Chap. 4). Sphericity is the ratio of the surface
of a sphere to the surface of the particle, both having the same volume Ve � Vp.
The diameter of this sphere de is the volume-equivalent diameter:

w ¼ Se

Sp
¼ Se=Ve

Sp=Vp
¼ 6=de

�S
; ð6:32Þ

therefore

�S ¼ 6
wde

and the permeability can now be written as:

kðeÞ ¼ e3d2
ew

2

36ð1� eÞ2b
ð6:33Þ

When the particles forming the bed have a size distribution, it is possible to use
the average surface-volume diameter �x12 to characterize the size of the particles.
According to the definition, the specific surface �S of the particulate system is:
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�S ¼ aS

aV

R
x2f ðxÞdxR
x3f ðxÞdx

¼ aS

aV

R
1=xð Þf ðxÞdxR

f ðxÞdx
¼ aS

aV

Z
f ðxÞ

x
dx ¼ aS

aV

1
�x12

ð6:34Þ

�x12 is also called permeability-size. The parameters aS and aV are the particles
volume and surface shape factors. For this case, permeability is:

kðeÞ ¼ e3�x2
12

bð1� eÞ2ðaS=aVÞ2
ð6:35Þ

Other models for the permeability and the c parameter are (Table 6.2):

Kozeny–Carman’s model (1952) for 0.35 \ e 0.45:

k eð Þ ¼ e3ðdewÞ2

170ð1� eÞ2
ð6:36Þ

Ergun’s model (1952) for 0.35 \ e 0.45:

for 0:35\e\0:45 : c eð Þ ¼ 0:143

e3=2
ð6:37Þ

Massarani’s model (1997):

c eð Þ ¼ 1

e3=2
0:13

k0

k

� �0:37

þ0:10
k0

k

� �0:01
( )0:98

; k0 ¼ 10�6 cm2
� �

ð6:38Þ

Problem 6.4 For the data of Problem 6.2, calculate the permeability and the c
parameter with the equations of Kozeny–Carman, Ergun and Massarani.

The volume-equivalent diameter for particles of �xm mesh, is de ¼ 0:986 �xm. For
the 14/20 Tyler mesh range, the average size is �xm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
850� 1,180
p

¼ 1,002 lm,
therefore, de ¼ 0:986� 1,002 ¼ 987:5 lm

Kozeny–Carman:

k eð Þ ¼ e3d2
ew

2

36ð1� eÞ2b
¼ ð0:37Þ3 � ð987:5� 10�4Þ2 � ð0:6Þ2

36� ð1� 0:37Þ2 � 5
¼ 2:5� 10�6 cm2

Table 6.2 Values for the b parameter

Type of conduct b Reference

Circular 2 Becker (1963)
Elliptical 2.00–2.46 Becker (1963)
Triangular 1.67 Becker (1963)
Bed of particles with porosities in the range

of 0:3� e0� 0:5
5 Coulson and Richardson (1968)
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Ergun:

k eð Þ ¼ e3 dewð Þ2

150 1� eð Þ2
¼ ð0:37Þ3 � ð987:5� 10�4Þ2

150� ð1� 0:37Þ2
¼ 8:3� 10�6 cm2

c eð Þ ¼ 0:143

e3=2
¼ 0:143

ð0:37Þ3=2
¼ 0:635

Massarani:

c eð Þ ¼ 1

ð0:37Þ3=2
0:13

10�6

8:3� 10�6

� �0:37

þ 0:10
10�6

8:3� 10�6

� �0:01
( )0:98

¼ 2:27

6.1.8 Dynamic Process for a Rigid Porous Bed

The stationary flow of a Newtonian fluid through a rigid porous bed is represented
by the following field variables: porosity e r; tð Þ, percolation velocity q r; tð Þ and
excess pore pressure pe r; tð Þ. These variables constitute a dynamic process if the
following field equations are satisfied:

eðr; tÞ ¼ e0 and qðr; tÞ ¼ q0 ð6:39Þ

rpe ¼ �
l

kðe0Þ
1þ Re�ð Þq0 ð6:40Þ

where Re� ¼ qf cðe0Þ
ffiffiffiffiffiffiffiffiffiffi
kðe0Þ

p
q0j j=l is the Percolation Reynolds Number and

k eð Þ and c eð Þ are the porous bed characteristic parameters: permeability and
resistance parameter, while qf and l are the fluid density and viscosity respectively.

If the flow is slow, Eq. (6.40) reduces to:

rpe ¼ �
l

kðe0Þ
q0: ð6:41Þ

6.2 Dynamic Process of a Two-Phase Flow Through
a Rigid Porous Bed

The joint flow of a liquid and a gas through a porous bed is of great importance in
several industrial processes such as filtration, heap leaching and water seepage
through soils. In this section, we will analyze the flow of water and air through a
rigid porous bed, such as during the dehumidification step in filtration.
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Consider a mixture of water and air flowing through a rigid immobile porous
bed. The four assumptions of Sect. 6.1 are valid. Call e the constant porosity of the
bed and s the saturation, that is, the fraction of pore volume filled with water.
Then, the fraction containing air in a pore volume is 1� sð Þ. The apparent den-
sities of the solid, water and air are respectively: qsð1� eÞ, qwes and qaeð1� sÞ,
where qs; qw and qa are the solid, water and air material densities. Then, the local
mass balances are given by:

For water:

o

ot
qwesð Þ þ r � qwesvxð Þ ¼ 0 ð6:42Þ

For air:

o

ot
qaeð1� sÞð Þ þ r � qaeð1� sÞvað Þ ¼ 0 ð6:43Þ

Since the porous bed is incompressible, vs ¼ 0. Adding Eqs. (6.42) and (6.43)
the continuity equation of the fluid mixture is obtained:

oq
ot
þr � qvð Þ ¼ 0

where the fluid mixture density q and mass average velocity are given by

q ¼ qwesþ qaeð1� sÞ ð6:44Þ

qv ¼ qwqw þ qaqa ð6:45Þ

where

qw ¼ esvw and qa ¼ eð1� sÞva ð6:46Þ

The local momentum balances for the water and air component are:

For the water:

qwes _vw ¼ r � Tw þ qwesg�mw ð6:47Þ

For the air:

qaeð1� sÞ _va ¼ r � Ta þ qaeð1� sÞg�ma ð6:48Þ

where _va;Ta and ba are the rate of change of linear momentum, the stress tensor,
and the body forces, respectively, and where mw and ma are the interaction forces
between components.
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Consider slow flows at a steady state, so that the convective terms are negli-
gible. We will also consider that the friction within the fluid is much less than the
friction between the fluids and the solid skeleton. With these assumptions, Eqs.
(6.47) and (6.48) reduce to:

rpw ¼ qwesg�mw ð6:49Þ

rpa ¼ qaeð1� sÞg�ma ð6:50Þ

Adding these to expressions, the linear momentum of the fluid is obtained:

rpt ¼ qg�m ð6:51Þ

where q ¼ qwesþ qaeð1� sÞ is the fluid mixture density, m ¼ mw þmað Þ is the
interaction force that the mixture of fluid exerts on the solid skeleton and pf ¼
pa þ pw is the total pressure.

6.2.1 Constitutive Equations for the Pressures

The pressures pw and pa are variables associated with the respective components
if considered as occupying the whole volume of the mixture of fluids. Conse-
quently, they are not measurable variables. Calling p the pore pressure of the liquid
and pA the measurable air pressure, the following relationship should be valid:

pW ¼ esp y pa ¼ eð1� sÞpA ð6:52Þ

pf ¼ epA � es pA � pð Þ ð6:53Þ

When three phases meet in a capillary tube, such as a liquid, that wets the solid
and a gas that does not, generates a force called the capillary force in the interface
among the three phases, which force depends on the interfacial tensions of the
components.

The pressure difference between the gaseous and liquid phases is called cap-
illary pressure, which depends on the liquid surface tension and the radius of
curvature of the meniscus. The capillary pressure is given by the Young–Laplace
equation (Dullien 1992):
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pc ¼ pA � p ¼ c‘g cos h
1
r1
þ 1

r2

� �
ð6:54Þ

where c‘g is the surface tension of the liquid and r1 and r2 are the radius of cur-
vature of the meniscus.

As an example, place the bottom of four capillary tubes of different inside
diameter in a pool of liquid that wets the solid surface. The liquid will climb
through the tubes at different heights, as shown in Fig. 6.5a.

For a capillary, the radius of curvature is d=2 and Eq. (6.54) reduces to:

pc ¼ c‘gð4=dÞ cos h ð6:55Þ

where h is the contact angle. The magnitude of the capillary force is:

fc ¼ pd2=4
� �

� pc ¼ pdc‘g cos h ð6:56Þ

The height at which the liquid rises in the tube depends on the force balance
between the capillary and the gravitational force:

q‘
pd2

4
h ¼ pdc‘g cos h

h ¼
4c‘g cos h

q‘d

ð6:57Þ

Therefore, the liquid rises higher in the finer capillaries. See Fig. 6.5a.
If the submerged capillary tubes are taken out of the liquid pool and placed

horizontally on an air stream under an air pressure gradient Dp=L, see Fig. 6.5a, b
force pd2=4ð Þ Dp=Lð Þ will start displacing the water in the tubes. If the air force is
greater than the capillary force:

pd2=4
� �

� Dp=Lð Þ[ pdc‘g cos h

Dp	
4Lc‘g cos h

d

ð6:58Þ

(a) (b)

Fig. 6.5 Capillary rise in tubes: a Vertical tubes; b Horizontal tubes
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a volume flow rate of water Q will flow out of the tubes according to Poiseuille’s
law. As long as the inequality holds, the air will be displaced the water from the
tubes. This will happen first in the tubes with greater diameter. In tubes where
inequality (6.58) becomes an equality, that is where the diameter is
d ¼ 4Lc‘g cos h=Dp, there will be no liquid motion and the tube will remain sat-
urated. If the air pressure is further increased, the diameter of the tubes that remain
saturated will decrease.

Going back to a porous medium, consider the capillary model in which the
medium is formed by a bundle of randomly distributed capillaries with different
diameters. If the porous medium is saturated with water and is subjected to an air
pressure gradient, the water will flow out of the capillaries, depending on their
diameter and on the liquid properties, according to inequality (6.58). The air will
displace the water from the larger capillaries, but the smaller ones will remain
saturated. See Fig. 6.6.

For a given air pressure drop, there will be a determined amount of water
retained in the medium. Only an increase in air pressure will removed part of it.
For the very small capillaries, there is no pressure gradient sufficient to evacuate
the water, so that will always be residual saturation in a porous medium. The
residual saturation is denoted by s1.

For a porous medium, the capillary force is a function of saturation, in addition
to the variables already mentioned. Figure 6.7 shows such functional dependency.

6.2.2 Constitutive Equations for the Resistance Force

It is well known that the interaction force between a solid and a fluid is much
greater than that among particles of the same fluid, which suggests that the con-
stitutive equations for the solid–fluid interaction force are only functions of
porosity, saturation and the relative solid–fluids velocities. Since the solid is sta-
tionary, the relative solid-fluid velocity is the velocity of the fluid. Thus:

m‘ q‘j j; e; sð Þ ¼ a0ðe; sÞ
e2

þ a1ðe; sÞ
e3

q‘j j
� �

q‘ ð6:59Þ

ma qaj j; e; sð Þ ¼ b0ðe; sÞ
e2

þ b1ðe; sÞ
e3

qaj j
� �

qa ð6:60Þ

Fig. 6.6 Water displaced
from a rigid porous medium
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Substituting the expressions (6.52), (6.59) and (6.60) with Eqs. (6.49) and
(6.50) results in the water and air pressure gradients:

r espð Þ ¼ q‘esg� a0ðe; sÞ
e2

þ a1ðe; sÞ
e3

q‘j j
� �

q‘ ð6:61Þ

r eð1� sÞpað Þ ¼ qaeð1� sÞg� b0ðe; sÞ
e2

þ b1ðe; sÞ
e3

qaj j
� �

qa ð6:62Þ

6.2.3 Percolation in a Non-saturated Porous Medium

Percolation in a porous medium is governed by gravity and is a slow process.
Therefore the gradient of the porous pressure and the quadratic terms in q can be
neglected in Eq. (6.61):

eprs ¼ q‘esg� a0ðe; sÞ
e2

q‘ ð6:63Þ

The liquid volume velocity is then:

q‘ ¼ �
1

a0ðe; sÞ
e3prs� q‘e

3sg
� �

ð6:64Þ
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Fig. 6.7 Capillary pressure versus saturation for a copper concentrate
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Defining the hydraulic conductivity C(e, s) and the hydraulic diffusivity
D(e, s) in the form:

Cðe; sÞ ¼ q‘e
3sg

a0ðe; sÞ
y Dðe; sÞ ¼ e3p

a0ðe; sÞ
ð6:65Þ

and writing g ¼ �gk; the percolation velocity becomes:

q‘ ¼ Cðe; sÞk� Dðe; sÞrs ð6:66Þ

This equation is known in the scientific literature as the Darcy–Buckingham
equation (Massarani 1997).

6.2.4 Pressure Flow Through a Non-saturated Porous
Medium

When the pressure gradient is more important than the gradient of saturation,
op=oz
 os=oz and opa=oz
 os=oz, we can neglect the latter from the momen-
tum Eqs. (6.61) and (6.62). The result is:

rp ¼ q‘g�
a0ðe; sÞ

se3
þ a1ðe; sÞ

se4
q‘j j

� �
q‘ ð6:67Þ

rpa ¼ qag� b0ðe; sÞ
e3ð1� sÞ þ

b1ðe; sÞ
e4ð1� sÞ qaj j

� �
qa ð6:68Þ

Defining the relative permeabilities k‘ðe; sÞ y kaðe; sÞ and the dimensionless
parameters cr‘ðe; sÞ y craðe; sÞ, in each component:

kl e; sð Þ ¼ ll=kðeÞ
a0 e; sð Þ=e3s

and ka e; sð Þ ¼ ll=kðeÞ
b0 e; sð Þ=e3 1� sð Þ ð6:69Þ

cl e; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðeÞ=ql

p

b0 e; sð Þ=e4s
and ca e; sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðeÞ=qa

p

b1 e; sð Þ=e4 1� sð Þ ð6:70Þ

where kðeÞ is the permeability of the porous medium, which depends exclusively
on the structure of the porous matrix and is independent of the fluid and the flow
regime. With these definitions and considering that the air pressure is much greater
than the weight of the air in the porous medium, we can write:

rp ¼ q‘g�
l‘

kðeÞk‘ðesÞ
þ c‘ðe; sÞq‘ffiffiffiffiffiffiffiffi

kðeÞ
p q‘j j

 !
q‘ ð6:71Þ
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rpa ¼
la

kðeÞkaðesÞ
� caðe; sÞqaffiffiffiffiffiffiffiffi

kðeÞ
p qaj j

 !
qa ð6:72Þ

If the flow is slow, qici e; sð Þ
ffiffiffiffiffiffiffiffi
k eð Þ

p
qj j=li � 1, Eqs. (6.71) and (6.72) become:

rp ¼ q‘g�
l‘

kðeÞk‘ðe; sÞ
q‘ rpa ¼ �

l‘
kðeÞkaðe; sÞ

qa ð6:73Þ

According to their definition, relative permeability can be determined by
measuring the respective fluid flow in non-saturated and saturated media. Mas-
sarani (1997) measured the permeabilities of water in different types of soils, and
found that the relative permeabilities were independent of the soil properties and
could be written for all cases in terms of just saturation:

k‘ sð Þ ¼ 1:36� 10�6 � exp 13:6 sð Þ ð6:74Þ

Problem 6.5 Laboratory experiments of water flow through an incompressible
porous medium, with an area of 6:55 cm2 and 3:8 cm in thickness, gave a porosity
of e ¼ 0:52 and a permeability of k eð Þ ¼ 2:906� 10�10cm2. Air with a viscosity
of 2:1� 10�2 mPas-s was blown at 6 (bars) for 121 (s) to displace water with a
density of 1.00 g/cm3 and 1.2 mPas-s viscosity. Volumes of water and air are
given in Table 6.3.

Integrating Eqs. (6.71) and (6.72) for a given time leads to:

Dp

L
¼ � lw

kðeÞkwðtÞ
qwðtÞ ¼ �

la

kðeÞkaðtÞ
qaðtÞ ð6:75Þ

and from these equations:

kwðtÞ ¼
L

Dp

l‘
kðeÞS QwðtÞ kaðtÞ ¼

L

Dp

l‘
kðeÞS QaðtÞ ð6:76Þ

Using the data from Table 6.3, values of the relative permeabilities were cal-
culated and are plotted in Fig. 6.8.

6.2.5 Reduced and Residual Saturation

The reduced saturation sr is defined by:

sr ¼
s� s1
1� s1

ð6:77Þ

The reduced saturation is correlated to the capillary pressure in the form:
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Table 6.3 Data of two-phase flows in a porous medium and relative permeabilities

t s Vf(t) Qw = dVf /dt
(cm)3/s

Qa (cm)3/s kw ka

0.00 1.000 0.001 0.0000 0.000 1.000 0.000
2.03 0.943 0.523 0.1035 8.168 0.321 0.493
4.06 0.923 0.666 0.0514 10.530 0.159 0.635
6.09 0.913 0.754 0. 0376 11.980 0.117 0.722
8.13 0.895 0.824 0.0313 12.986 0.097 0.783
10.16 0.878 0.883 0.0272 13.715 0.084 0.827
12.19 0.870 0.935 0.0243 14.263 0.075 0.860
14.22 0.863 0.982 0.0220 14.684 0.068 0.886
16.26 0.853 1.025 0.0202 15.013 0.063 0.905
18.29 0.848 1.065 0.0187 15.269 0.058 0.921
20.32 0.841 1.101 0.0175 15.472 0.054 0.933
22.35 0.834 1.136 0.0164 15.633 0.051 0.943
24.38 0.826 1.168 0.0155 15.761 0.048 0.950
26.42 0.827 1.199 0.0147 15.864 0.045 0.957
28.45 0.820 1.228 0.0139 15.947 0.043 0.962
30.48 0.819 1.255 0.0133 16.014 0.041 0.966
32.51 0.819 1.282 0.0127 16.070 0.039 0.969
34.55 0.819 1.307 0.0122 16.117 0.038 0.972
36.58 0.812 1.331 0.0117 16.156 0.036 0.974
38.61 0.812 1.355 0.0113 16.191 0.035 0.976
40.64 0.812 1.377 0.0109 16.223 0.034 0.978
42.67 0.806 1.399 0.0105 16.252 0.033 0.980
44.71 0.806 1.420 0.0102 16.280 0.031 0.982
46.74 0.806 1.440 0.0098 16.308 0.031 0.983
48.77 0.801 1.460 0.0095 16.336 0.030 0.985
50.80 0.795 1.479 0.0093 16.365 0.029 0.987
52.84 0.794 1.498 0.0090 16.395 0.028 0.989
54.87 0.788 1.516 0.0088 16.426 0.027 0.991
56.90 0.788 1.533 0.0086 16.459 0.027 0.993
58.93 0.783 1.551 0.0084 16.493 0.026 0.995
60.96 0.781 1.567 0.0082 16.529 0.025 0.997
63.00 0.783 1.584 0.0080 16.567 0.025 0.999
65.03 0.783 1.600 0.0078 16.606 0.024 1.000
67.06 0.776 1.615 0.0076 16.646 0.024 1.000
69.09 0.776 1.631 0.0075 16.688 0.023 1.000
71.13 0.776 1.646 0.0073 16.731 0.023 1.000
73.16 0.769 1.661 0.0072 16.774 0.022 1.000
75.19 0.769 1.675 0.0071 16.819 0.022 1.000
77.22 0.763 1.689 0.0069 16.863 0.022 1.000
79.26 0.765 1.703 0.0068 16.908 0.021 1.000
81.29 0.758 1.717 0.0067 16.952 0.021 1.000
83.32 0.758 1.730 0.0066 16.995 0.020 1.000

(continued)

138 6 Flow Through Rigid Porous Media



sr ¼ 1� 1þ pc

p50

� �d
( )�1

; k\0 ð6:78Þ

where p50 is the value of the capillary pressure for sr ¼ 0:50 and in terms of p50

the saturation is written in the form:

s ¼ s1 þ ð1� s1Þ � sr � s1 þ ð1� s1Þ � 1� 1þ pc

p50

� �d
( )�1

0
@

1
A ð6:79Þ

where d = ln(0.25/0.75)/ln(p25/p50).

Problem 6.6 Increasing pressure was incrementally applied to a saturated porous
medium containing 34.3 cm3 of water while the percolated water was collected.
The results are shown in Table 6.4 and in Fig. 6.9.

From the Fig. 6.9, s1 ¼ 0:466, and from the Table 6.4, p25 ¼ 0:965 and
p50 = 0.740 d = ln(0.25/0.75)/ln(0.965/0.740) = -4.148.

sr ¼ 1� 1þ pc

0:74

� 	�4:138
� �

ð6:80Þ

Table 6.3 (continued)

t s Vf(t) Qw = dVf /dt
(cm)3/s

Qa (cm)3/s kw ka

85.35 0.752 1.744 0.0065 17.037 0.020 1.000
87.38 0.752 1.757 0.0064 17.079 0.020 1.000
89.42 0.752 1.770 0.0063 17.118 0.020 1.000
91.45 0.752 1.783 0.0062 17.155 0.019 1.000
93.48 0.747 1.795 0.0061 17.190 0.019 1.000
95.51 0.748 1.807 0.0061 17.222 0.019 1.000
97.55 0.748 1.820 0.0060 17.251 0.019 1.000
99.58 0.748 1.832 0.0059 17.276 0.018 1.000
101.61 0.748 1.844 0.0058 17.297 0.018 1.000
103.64 0.748 1.856 0.0058 17.313 0.018 1.000
105.67 0.743 1.867 0.0057 17.324 0.018 1.000
107.71 0.741 1.879 0.0057 17.330 0.018 1.000
109.74 0.743 1.890 0.0056 17.330 0.017 1.000
111.77 0.743 1.902 0.0055 17.324 0.017 1.000
113.80 0.737 1.913 0.0055 17.312 0.017 1.000
115.84 0.737 1.924 0.0054 17.292 0.017 1.000
117.87 0.737 1.935 0.0054 17.264 0.017 1.000
119.90 0.737 1.946 0.0054 17.229 0.017 1.000
120.56 0.732 1.949 0.0053 17.216 0.017 1.000
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s ¼ 0:466þ 0:534� 1� 1þ pc

0:74

� 	�4:148
� �
 �

ð6:81Þ

Figure 6.10 shows a plot of Eq. (6.81).

Table 6.4 Percolation in a porous medium

pc (bars) Vwpercolated (cm3) Vw (cm3) s sr = (s - soo)/(1 - Soo)

0.0 0.00 34.30 1.000 1.00000
0.2 0.50 33.80 0.985 0.97272
0.3 0.29 33.51 0.977 0.95690
0.4 0.30 33.21 0.968 0.94053
0.5 3.67 29.54 0.861 0.74032
0.6 0.32 29.22 0.852 0.72286
1.0 6.86 22.36 0.652 0.34861
2.0 5.70 16.66 0.486 0.03764
4.0 0.69 15.97 0.466 0.00000
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Fig. 6.8 Relative permeabilities of water and air
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Fig. 6.9 Capillary pressure versus saturation. Experimental points from Table 6.4 and the
simulation from Eq. (6.77)
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Fig. 6.10 Capillary pressure versus reduced saturation. Experimental point from Table 6.4 and
simulation from Eq. (6.78).
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Chapter 7
Particle Aggregation by Coagulation
and Flocculation

Abstract This chapter considers particle aggregation. When agglomerated parti-
cles in a suspension increase in size they acquire greater sedimentation velocity
essential to obtain a good separation by sedimentation. Two methods for
increasing the size of solid particles are studied in this chapter, coagulation by
reducing inter-particle electrostatic repulsion and flocculation by bridging particles
with polymeric agents. Most mineral particles suspended in water in the neutral pH
range have negative surface charges. Positive ions in solution are attracted and
adsorbed at the negatively charged surface forming the so-called double layer with
its Stern plane and the diffuse layer. The Zeta potential measures the difference in
the electrical potential of the charged surface and the bulk of the solution in
commercial instruments. If particle surfaces come close together, they attract each
other by van der Waals force. If there is no counteracting force, the particles will
coagulate and settle out of the suspension. The study of orthokinetic coagulation
follows. It is generally accepted that polymers used as flocculants in mineral
processing plants aggregate fine particle suspensions by bridging mechanisms.
Such bridging links the particles into loose flocs and incomplete surface coverage,
which ensures that there is sufficient unoccupied surface available on each particle
for adsorption during collisions of chain segments attached to the particles. The
description of flocs as fractal objects permits a better understanding of their
behavior. Flocculation kinetics shows that a short and highly intensive mixing
gives the best results for particle aggregation.

7.1 Introduction

It is common knowledge that particle size in a suspension plays an important role
in mineral processing. Concentration results are strongly dependent on the size of
the treated particles and there is an optimum size range where recovery is optimal.
Recovery is low with particles outside this optimal range. Because it is necessary
to reduce particle to achieve proper liberation, over-grinding is unavoidable.

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_7,
� Springer International Publishing Switzerland 2014
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Unfortunately, concentrates or tailings dewatering by thickening and filtration is
difficult when treating particles that are very fine. In those cases, size enlargement
by particle aggregation is beneficial.

Agglomerated particles in a suspension increase in size and acquire a greater
sedimentation velocity essential to obtain good separation by sedimentation. The
agglomerates also form more permeable cakes accelerating filtration processes.

Different methods are available to increase the size of solid particles. The most
common are coagulation, by reduction of inter-particle electrostatic repulsion,
flocculation by bridging particles with water soluble polymeric agents called
flocculants and oil agglomeration, in which an oily hydrocarbon is used to
agglomerate hydrophobic particles suspended in water, hence producing hydro-
phobic agglomerates.

7.2 Coagulation

Most mineral particles suspended in water in the range of neutral pH possess neg-
ative surface charge, as shown schematically in Fig. 7.1. Positive ions in solution
are attracted and adsorb at the negatively charged surface. The adsorbed layer
remains rigidly attached and forms what is known as the Stern plane or Stern layer.
Outside the Stern layer, there is a diffuse layer in which positive ions outnumber
negative ones and balance the excess charge in the Stern layer. The electrostatic
potential at the near particle surface decreases linearly through the Stern layer and
then exponentially through the diffuse layer reaching zero at the bulk of the solution.
The Stern and diffuse layers are called the double layer and are important in
determining surface forces acting among particles. When the solution flows along
the particle, it becomes stagnant at a certain distance from the particle surface. This
distance is called the shear plane. The difference of electrical potential between the
shear plane and the bulk of the solution is called Zeta Potential, which can be
measured experimentally with several commercial instruments.

Fig. 7.1 Electrical potential
distribution near a particle
surface submerged in an
electrolyte
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Particle interactions in a solvent depend on surface forces. The most universal
components of them are long-range ionic electrostatic repulsive forces and short-
range London-van der Waals attractive forces. Figure 7.2 shows the distribution of
the potential energy of particle interaction.

The combination of molecular dispersive and ion-electrostatic forces occurring
when the diffuse parts of the electrical double layers of two particles overlap,
defines the stability of the suspension. Electrostatic repulsive forces are respon-
sible for particle stability by establishing a barrier to prevent particle surfaces from
coming sufficiently close to each other for van der Waals attractive forces to act.

If particle surface come close together, they attract each other by van der Waals
force. If there is no counteracting force, the particles will coagulate, that is, they
will aggregate and settle out of the suspension. The stability of fine hydrophobic
particles in a suspension is described by the DLVO theory (Derjagin-Landau-Ver-
wey-Overbeek). Figure 7.3 gives the energy of particle interactions versus dis-
tance between two particle surfaces and the different cases of attraction and
repulsion that can occur.

Distance beteen particle surfaces

P
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l

Ve repulsive

Vw atractive

Fig. 7.2 Schematic
representation of potential
particle interaction energy.
Ve represents ion-
electrostatic and Vw
represents London-Van der
Waals molecular or
dispersion components
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Fig. 7.3 Energy versus inter-
particle surface distance,
showing four types of
interaction depending on the
ratio of magnitude of
repulsive forces: A Rapid
coagulation, B Slow primary
and secondary coagulation.
C Coagulation with energy
barrier and D Stable
dispersion
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In case A, particles only experience attractive forces and fall directly in the
primary minimum potential; the system is totally unstable and particles coagulate
rapidly and irreversibly. In case B, repulsion produces sufficiently a high potential
barrier Vmax to prevent particles from coagulating spontaneously, but permits a slow
coagulation in the secondary minimum potential if Vmin\kT : These coagula can be
easily re-dispersed by introducing some agitation or increasing the temperature of
the system. Curve C represents a sufficiently high potential to prevent coagulation.
Curve D represents a system with such high level of repulsive forces that coagu-
lation cannot occur under any circumstance, resulting in a stable dispersed system.
Vmax and Vmin barriers can be lowered by adding electrolytes, which increase the
ionic strength of the solution by diminishing the thickness of the electrical double
layer or diminishing the surface charge by adding counter-ions.

In general, mineral particles suspended in water acquire negative charge.
Therefore, adding multivalent ions, such as Al3+, Fe3+, Fe2+, Ca2+ o Mg2+ form
coagula by neutralizing the surface charge or compressing the double layer,
diminishing its thickness, permitting particles to come enough close together for
attractive forces to act. Coagulation conditions can be quantified through the Zeta
potential f, see Fig. 7.1. This parameter measures the magnitude of the electrical
potential at the shear plane of the electrical double layer (measured, for example,
by electrophoresis), which is proportional to the particle surface potential. The
potential at which particles begin to coagulate is known as critical Zeta potential.
It has been empirically found that the ionic concentration at which particles
flocculate is proportional to z�6; where z is the ion valence. This relationship is
known as the Schultze-Hardy rule.

Particle suspensions in the various stages of mineral processing are much larger
than those of a colloidal system. The particle range for what are termed fines in
these processes is from 1 to 10 microns. Therefore, the dominant forces are inertial
and convective, which are produced by an agitator, a pump or the action of gravity.
These flow conditions can impose enormous energy on the particles, permitting
them to overcome the energy barriers of electrostatic repulsive forces without the
necessity of neutralizing the charge. An excessively violent agitation can re-dis-
perse the particles and coagulation never occurs.

The results of these two types of coagulation, by charge neutralization or by
hydrodynamics overcoming the energy barrier, are different, and in the first case a
neutral coagula is obtained while in the second the aggregate has an electric
charge.

7.2.1 Coagulation Kinetics

Orthokinetic coagulation of colloidal systems is described by the Smoluchowki-
Müller theory (Laskowski and Pugh 1992; Gregory 1986a, b). If the collision
efficiency is represented by Ec, the rate of disappearance of particles n by coag-
ulation in a suspension is given by:
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dn

dt
¼ �kcn2 where kc ¼

4EckT

3l
ð7:1Þ

where k is the Boltzman constant, l is the liquid viscosity and T is the absolute
temperature. The collision efficiency, with values between 0 and 1, depends on
suspension stability, where Ec ¼ 1 corresponds to a completely destabilized sys-
tem. The fines in mineral processing are relatively large compared to colloidal
particles. Therefore, the suspension can be considered completely destabilized
with Ec ¼ 1: Integrating Eq. (7.1) results in:

n ¼ n0
1

1þ n0kct
ð7:2Þ

where n0 is the initial particle concentration.

Problem 7.1 Calculate the fraction of particles remaining in suspension in a
coagulation process if the initial particle concentration is n0 ¼
10;000 particles/cm3

� �
and the kinetic constant kc ¼ 0:01 cm3=s:

From Eq. (7.2) we get the results of Fig. 7.4.

7.3 Flocculation

The aggregation of particles from dispersions by adsorption of large polymer
chains of several particles is called flocculation. There are several types of floc-
culation which depend on the way the polymers act on the particle surface. The
most important type is bridging flocculation in which small quantities of large
chain flocculant are adsorbed over many particles simultaneously, producing
strong flocs. At higher flocculant concentrations than needed, they adsorb com-
pletely in one particle, leaving less possibility of simultaneous adsorption in other
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particles, which re-stabilizes the suspension. Consequently, there are optimal doses
of polymeric flocculants. If one or more linear polymers adsorbs on particles, a gel
forms with a three-dimensional network. In this case, the aggregation is termed
network flocculation. Strict control of linear or ramified flocculants can produce
very compact flocs known as pellets. This type of flocculation is called pellet
flocculation. See Figs. 7.5 and 7.6.

These three types of flocculation can occur with all types of flocculants, neutral,
cationic and anionic. In the case of neutral flocculants, pellet flocculation is the
only mechanism possible.

The action of cationic polymers on negatively charged particles is similar to
coagulation, where surface charge neutralization predominates over formation of
polymer bridges. This aggregation is called electrostatic flocculation and should
be distinguished from bridging flocculation. The mining industry uses anionic
flocculants more than cationic flocculants with negatively charged particles. In this
case, the adsorption mechanism is covalent bonds or chemical reaction on the
particle surface. This aggregation is called flocculation by salt bond. Bridging
flocculation is the most important of these aggregation mechanisms.

Fig. 7.5 Flocculation by
molecular flocculant bridges.
a Flocculation of several
particles. b Re-stabilization
by excess flocculant

Fig. 7.6 Pellet flocculation
(Glover et al. 2000)
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It is generally accepted that polymers used as flocculants in mineral processing
plants aggregate fine particle suspensions by bridging mechanisms. Bridging is
considered the consequence of adsorption of segments of flocculant macromole-
cules on the surface of more than one particle. Such bridging links the particles
into loose flocs and incomplete surface coverage, which ensures that there is
sufficient unoccupied surface available on each particle for adsorption during
collisions of chain segments attached to the particles. However, it is important to
note that adsorption and flocculation are not separate sequential processes, but
rather occur simultaneously. The merit of modern polymeric flocculants is their
ability to produce larger and stronger flocs than those obtained by coagulation.

Theoretically, the flocculants can be applied either after destabilizing the sus-
pension via coagulation or without prior destabilization. The flocculants are known
to be not very effective in treating stable suspensions and so the first option, which
involves prior destabilization by coagulation, is always better.

The type of solid, its surface charge and the electrolytes present determine the
appropriate type of flocculant and flocculation.

7.3.1 Flocs as Fractal Objects

A fractal is an object that displays self-similarity on all scales, that is, the same
type of structure appears at every scale. A plot of a property of the object versus its
scale on a log–log graph gives a straight line, the slope of which is called its fractal
dimension.

A floc is a fractal object because its basic form repeats itself as it grows.
Figure 7.7 shows a computer generated floc formed by the successive aggregation
of two primary particles.

Based on this basic form, Biggs et al. (2000) constructed a larger floc shown in
Fig. 7.8.

It is customary in mineral processing to describe the size of mineral particles
with the volume equivalent diameter de, that is, with the diameter of a sphere
having the same volume as the particle. Flocs formed by aggregation of particles
can be measured in a similar manner. The mass of a floc is proportional to its
diameter dF , called mass fractal size, elevated to the exponent Dm, called mass
fractal dimension, or just fractal size (Fig. 7.9).

m dFð Þ / dDm
F ð7:3Þ

Fig. 7.7 Floc formed by the
successive aggregation of two
particles
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Figure 7.10 show, on the left, a computer simulation by Bushell (2005) of
several flocs with different fractal dimensions Dm and, on the right, a photograph
of flocs of copper flotation tailings.

The fractal dimension Dm of a floc varies in the range 1\Dm\3 and gives a
good indication of the compactness of the floccules. Small values of Dm indicate
loose floccules while higher values indicate more compact floccules. The majority
of floccules have sizes in the range of 1:7\Dm\2:5. The flocs in Fig. 7.10b have
an approximate fractal dimension of Dm ¼ 2.

The fractal dimensions of a floc have a major effect on its properties. For
example, the relationship between the number of primary particles npF in one floc,
called the aggregate number, the single particle equivalent diameter dp, the floc
fractal diameter dF and the fractal dimension Dm can be expressed by the empirical
equation (Gregory 2009):

npF ¼ 1:33� 0:10ð Þ � dF

dp

� �Dm

; ð7:4Þ

Fig. 7.8 Schematic
representation of the fractal
structure of flocs (Biggs et al.
2000)

Fig. 7.9 Fractal diameter dF

of a floc
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From this expression, a floc containing a number of primary particles npF , has a
dimensionless size dF=dp given by:

dF

dp
¼ npF

1:33

� ffi1=Dm

ð7:5Þ

Problem 7.2 Calculate the dimensionless floc size, for flocs with mass fractal
dimensions of 1:5\Dm\3 containing particles between 2� npF � 10:000:

Figures 7.11 and 7.12 show plots of Eq. (7.5) with the mass fractal dimension
as parameter and with the number of primary particles per floc as the parameter.

Fig. 7.10 Floc structure. a Structure with different mass fractal dimensions simulated by Bushell
(2005). b Actual flocs of a copper flotation tailing (Concha and Segovia 2012)
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7.3.2 Floc Size Measurement

The most commonly used experimental method for mass fractal dimension mea-
surement uses the slope of the straight line obtained by plotting the mass of the
aggregates versus the mass fractal size (Fig. 7.13).

In Gregory (2009) proposed light dispersion to determine the fractal mass
dimension of an aggregate. If a light ray of magnitude Q is directed toward a
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Fig. 7.13 Mass versus
fractal diameter of a floc
according to Glover et al.
(2000), where Dm ¼ 1:6452
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sample of flocs, the dispersed light I(Q) is proportional to the magnitude Q to the
power of Dm:

IðQÞ / q�Dm with q ¼ 1=k0ð Þ4pv0 sin h=2ð Þ ð7:6Þ

where v0 is the dispersion medium refractive index k0 is the wavelength of the
incident light and h is the dispersion angle. Figure 7.14 gives an example where
Dm ¼ 2:12 is obtained from the slope of the straight-line region of the curve.

A more direct method of floc measurement is visualization with a video camera
during the flocculation process (Wu et al. 1999). The images are digitalized and
the particle size is measured by applying a statistical technique. Concha and
Segovia (2012) installed a floc window, shown in Figs. 7.15 and 7.16, in an on-line

Fig. 7.14 Light intensity versus the magnitude q of the dispersion vector in logarithmic scales
(Bushell et al. 1998)

Fig. 7.15 Floc cell, AMIRA
project P996
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instrument to determine thickening parameters in an industrial thickener. They
obtained the following size analysis: x10 ¼ 10:30; x25 ¼ 18:70; x50 ¼ 31:45; x75 ¼
45:40 and x90 ¼ 66:70l, with an average of �x ¼ 41:00l and a standard deviation
of r ¼ 25:4.

7.3.3 Orthokinetic Theory of Flocculation

The optimal flocculation condition for a given concentrate or tailing refers to the
agitation time to obtain the highest settling velocity of the aggregates, that is, the
greatest floc size and density. To obtain this information we must resort to floc-
culation kinetics.

Consider flocculation as the phenomena of the formation of aggregates of two
or more primary particles in a suspension. These aggregates are called flocs. The
aggregation occurs by collision of the primary particles in a hydrodynamic field
and aggregation by adsorption of long chains of polymer molecules. The fractal
form of the flocs suggests that all flocs grow in a similar way, although there is
some evidence of re-arrangements among flocs (Selomulya et al. 2001). This fact
permits analyzing the formation of flocs by studying the formation of one floc.

Since collision among particles is produced by mechanical energy in a shear
field, it is essential that the method of producing the agitation permit the calcu-
lation of the shear rate of the flow. The magnitude of shear rate and the application
time is important since, on the one hand, it improves the contact among particles to
produce agglomeration and, on the other; the strong agitation destroys the flocs.
The balance of these two effects is fundamental to obtain larger and denser flocs.

Traditionally it was thought that the shear rates _c during flocculation should be
less than _c � 100 ðs�1Þ to avoid rupturing the formed flocs (Hogg 2000), but
Rulyov (2004) showed that values much greater than these, _c up to 2; 000 ðs�1Þ,
could be used successfully for very short time, less than 10 (s). This method is
termed ultra-flocculation.

Fig. 7.16 Normal and digitalized images of flocculated copper tailings
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Degree of flocculation

The rate at which flocculation occurs is principally governed by the frequency
of collision of particles but also by the fraction of surface covered by the floc-
culant. When collision is the result of mechanical or hydro-dynamical agitation it
is called orthokinetic flocculation.

According to Gregory (1986a, b) orthokinetic flocculation is produced for
mono-sized particles at the rate:

VT
dnp

dt
¼ �k1ðhÞ � k2 Ec; _cð Þn2

pðtÞ ð7:7Þ

where np is the number of primary particles per unit volume remaining in a volume
VT of suspension at time t, dp is the particle size and k1ðhÞ and k2 Ec; _cð Þ are the
kinetic constants with values:

k1ðhÞ ¼ hð1� hÞ and k2 Ec; _cð Þ ¼ 8
3

Ec _cd3
p ð7:8Þ

where h is the surface coverage with flocculant, Ec is the collision efficiency and _c
the shear rate.

The maximum value of k1 ¼ 0:25 is obtained when h ¼ 0:5 therefore, for this
flocculant coverage, Eq. (7.8) becomes:

VT
dnpðtÞ

dt
¼ � 2

3
_cEcd3

pnpðtÞ2 ð7:9Þ

This equation is the starting point of the majority of flocculation kinetic studies
and was first developed by Smoluchowski in 1917 (Elimelech et al. 1998).

In many works, assumptions associated with using Eq. (7.9) are not clearly
established and some of them interpret npðtÞ as the number of primary particles
remaining at time t and others as the number of flocs produced at time t. To solve
Eq. (7.9) many authors assume that the composition of the suspension is constant
over time, which can only be true at the beginning of the process. This assumption
permits establishing a relationship between the number of particles and the initial
solid volume fraction of the suspension, transforming, in this way, Eq. (7.9) into a
linear equation to obtain an exponential solution for the number of particles.

Here, we will consider that a primary particle of size dp will join other primary
particles to form an aggregate. Therefore, while the number of primary particles
decreases (primary particles in the suspension diminishes) the number and con-
centration of flocs increase in the system. We will interpret Eq. (7.9) as the rate of
disappearance of primary particles with time, where npðtÞ is the number of primary
particles remaining in the suspension at time t and np0 is the number of original
primary particles present in the suspension.

For constant values of _c, dp and Ec; the fraction of primary particles remaining
in suspension at time t is:
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npðtÞ
np0
¼ 1

1þ 2=3ð Þnp0 _cEc d3
pt=VT

ð7:10Þ

If u0 is the volume concentration of primary particles at t ¼ 0, the initial total
volume of primary particles is VTu0 ¼ p=6ð Þd3

pnp0; then the Eq. (7.10) can be
written in the form:

npðtÞ
np0
¼ 1

pþ 4u0 _cEd3
ptc

ð7:11Þ

The number of primary particles contained in all flocs at time t, is equal to the
number of primary particles that have disappeared at time t, that is, np0 � npðtÞ

� �
.

On the other hand, the number of flocs nf present in the suspension at time t is
equal to the number of primary particles contained in all flocs divided by the
number of primary particles contained in one floc npf . Then, the number of flocs is
nf ðtÞ ¼ n0 � npðtÞ=npf : From (7.11) the number of flocs in the suspension at time t:

nf ðtÞ
np0

npf ¼
4u0 _cEd3

ptc

pþ 4u0 _cEd3
ptc

ð7:12Þ

Problem 7.3 Determine the relative number of particles n=np0 left at time t and
the number of flocs nF present at time t for a suspension with u0 ¼ 0:04,
Ec ¼ 1 and _c ¼ 1; 100 and 500 1=s:
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Fig. 7.17 Number of primary particles left in the suspension at time t, with the shear rate as a
parameter
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Figures 7.17 and 7.18 show that, with high shear rates, a few seconds are
sufficient for complete flocculation.

Considering that the relationship between the number of primary particles npðtÞ
and np0, and their volume fraction is npðtÞ ¼ 6VTupðtÞ=pd3

p and n0 ¼ 6VTu0=pd3
p ,

from (7.11) we have the relationship between up tð Þ and u0 as:

upðtÞ ¼
pu0

pþ 4u0 _cEct
ð7:13Þ

If we define the degree of flocculation Gf ¼ 100 u0 � upðtÞ
� �

=upðtÞ
� �

as the
percentage of particles that have disappeared from the suspension (incorporated
into the flocs) at time t, the degree of flocculation at time t, and the time t to obtain
a given degree of flocculation are:

Gf ¼ 100
4u0 _cEct

pþ 4u0 _cEct
t ¼ pGf

100� Gf

� �
� 4u0 _cEc

ð7:14Þ

Problem 7.4 Assuming a suspension with an initial volume fraction of u0 ¼ 0:04
(10 % solid) and a collision efficiency of Ec ¼ 1:0, calculate: (a) the degree of
flocculation as a function of time and (b) the time necessary to obtain a certain
degree of flocculation for shear rates _c ¼ 1; 10; 100 and 1;000 s�1. Figures 7.19,
7.20 show the results.
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These plots show the immense effect of the shear rate on the degree of floc-
culation. To obtain a Gf ¼ 90 ð%Þ for different values of _c the following times are
needed: 200 (s) for _c ¼ 1 s�1, for 200 s; _c ¼ 10 s�1, for 20 s; _c ¼ 100 s�1; for 2 s,
_c ¼ 500 s�1 for 0.2 s.

7.3.4 Flocculation Hydrodynamics

In the kinetic model of flocculation the term _c depends on the hydrodynamic
conditions under which flocculation occurs. The value of the efficiency of collision
Ec depends on the stability of the suspension of primary particles. A totally
unstable suspension has a value Ec ¼ 1:0. This is the case for the majority of
mineral suspensions since they have sizes much greater then colloidal particles and
tend to settle in gravity fields.

We have seen the effect of shear rate _c on the degree of flocculation; therefore it
is important to investigate the shear rate in the several ways a thickener can be fed.
These shear rates can be calculated from the hydrodynamics of the flow. As
examples, we will analyze the cases of flows in a pipe, a feedwell, a shear vessel
and an agitated tank.

(a) Flocculation in a pipe

Pulp circulating in a circular tube with a diameter D at a flow rate of Q and an
average velocity of �vz has an average shear rate �_c of (see Chap. 11):

_c ¼ 16
3D

�vz ; _c ¼ 64Q

3pD3
ð7:15Þ

Problem 7.5 Calculate the average shear rate in a 48-inch diameter pipe feeding
pulp to a thickener at 2.0 m/s.
.

Data
D (in) 48
V (m/s) 2
Results
D (m) 1.2
Q (m3/s) 2.33
�_c 8.75

This problem shows that flocculation in a cylindrical tube requires a much
smaller tube diameter to obtain higher shear rates. The AJ Parker CRC presented
the pipe flocculation reactor shown in Fig. 7.21. Figure 7.22 shows the effect of
reaction time and shear rate on the size of the flocs. For all shear rates, the floc
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diameters increase, reaching a maximum at a time which increases as the shear
rate diminishes. This experiment shows that optimum flocculation is obtained for
less than 10 s with a shear rate of 175 s-1, with the time increasing as the shear
rate decreases.

Fig. 7.21 Tube reactor in an
operation of the Bayer
process according to the AJ
Parker CRC

Fig. 7.22 Floc size as a
function of time for several
pipe diameters and flow rates
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Köck and Concha (1999) simulated the flow in the E-Duc feeding system of a
copper tailing thickener. The simulation showed that in the main part of the system
the shear rates were on the order of _c ¼ � 7 s�1, with small regions with shear
rates _c ¼ � 18 s�1 and a maximum shear rate of _c ¼ � 28 s�1 (Fig. 7.23).

(b) Flocculation in a feedwell

Obtaining the shear rate in a feedwell is difficult and the best tool to do it is
CFD. Köck and Concha (1999) used Fluent to model a simple feedwell with a
tangent entry. They found that the average shear rate was on the order of 1 s-1. For
this shear rate, a copper tailing thickener with a volume feed rate of
Q = 2,450 m3/h at 25 % solids, assuming an efficiency of collision of Ec = 85 %,
would have only a 44 % degree of flocculation.

A major and recent improvement in thickener design is the feedwell. For
example, Outotec describes the Vane feedwell (Outotec web page): ‘‘the upper
zone, into which feed, dilution water and flocculants are added, provides enhanced
mixing and energy dissipation. This maximizes flocculant adsorption, eliminates
the possibility of coarse/fine segregation and ensures that all particles are aggre-
gated by the flocculant. Efficient operation is maintained in this upper zone at
varying feed rates. The lower zone promotes gentle mixing for continued aggre-
gate growth, with the option of secondary flocculant dosing. This zone also enables
aggregates to uniformly discharge under low shear conditions’’. The idea of this
feedwell is flocculation at two different shear rates (Fig. 7.24).

(c) Flocculation in a shear chamber

A shear chamber is a cylindrical vessel with a second co-axial cylinder that is a
couple of millimeters smaller in diameter than the vessel. The internal cylinder Rint

rotates at a constant speed X rad/s concentrically to the inner cylinder Rext, thus
producing a Couette flow. This device is the essential part of a viscometer. The
advantage of a shear vessel is that the shear rate can be determined precisely
(Schramm 1998) for any rotation speed in a laminar flow (Fig. 7.25):

Fig. 7.23 Shear rate
mapping in the interior of an
E-Duc feeding a tailing
thickener (Köck and Concha
1999)
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_c ¼ 2X� R2
ext

R2
ext � R2

int

s�1 ð7:16Þ

where X ¼ 2pN=60 rad/s is the angular velocity, N is the rotational speed in (rpm)
and Rext and Rint are the radius of the exterior and interior cylinder. Rulyov (2010)
indicates that in turbulent flow the shear rate is 4.5 times higher than that of
laminar flow.

Fig. 7.24 Outotec Vane
feedwell (Outotec web page)

Fig. 7.25 Couette flow
(Schramm 1998)
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Problem 7.5 Determine the shear rate for a Couette viscometer with exterior/
interior cylinder diameters of 102/100 mm, and rotational speed of 100 rpm.
.

Data
Dext (mm) 102
Dint (mm) 100
N (rpm) 100
Results
X (s-1) 10.5
c (s - 1) 539

The continuous shear chamber proposed by Farrow and Swift (Farrow and
Swift 1996a, b, c) is based on Couette geometry. The flocculant is introduced
between the concentric cylinders where the suspension flow is circulated. The
shear rate is selected by changing the rotational speed and the reaction time is
obtained by varying the suspension flow rate, or changing the addition port from 1
to 4 in Fig. 7.26. Figure 7.27 shows the shear chamber of the AJ Parker CRC,
Perth, Australia.

Fig. 7.26 Shear chamber according to Farrow and Swift (1996a, b, c)
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Fig. 7.27 Continuous shear
vessel at AJ Parker CRC,
Perth, vessel

Fig. 7.28 Effect of floc sizes
on their settling velocity for
two rotational speeds of the
shear Farrow and Swift
(1996a, b, c)
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Figure 7.28 shows the effect of the rotational speed of the shear chamber on the
efficiency of flocculation, measured by the settling velocity of the flocs, where a
change from 100 to 200 rpm results in a 50 % increase of the settling velocity. The
result was interpreted as a change from open flocs to flocs of the pellet type.

(d) Ultrafloculation

In general flocculation is performed at shear rates lower than _c\200 s�1 to
avoid the rupture of flocs. Lower values of the shear rate imply longer reaction
time. Rulyov (2004) and Ruylov and Korolov (2008) demonstrated that very high
shear rates could be applied to avoid rupturing flocs if very short reaction times are
considered. Longer times are needed for the flocs to grow. For example, a sus-
pension of fine coal is completely flocculated in only one or two seconds at
1;000\ _c\2;000 s�1.

Recently Rulyov (2004) designed the Ultrafloc Tester, a laboratory instrument
to characterize flocculation. The instrument is based on the suggestion by Gregory
(Elimelech et al. 1998; Glover et al. 2000; Gregory 2009) of using light dispersion
to obtain the fractal dimension of the flocs. Figure 7.29 shows the instrument.

Based on his Laboratory Ultrafloc Tester, Rulyov developed industrial Ultra-
flocculators, such as depicted in Fig. 7.30. The version shown in the figure has a
capacity of 200 m3/h and was applied for coal and quartz suspensions. Figure 7.31
shows results for fine quartz suspensions.

(e) Flocculation in a stirred tank

Hogg (1987) recommended stirred tanks for flocculation in the laboratory.
These devices consist of cylindrical tanks with four baffles agitated by a six-blade
turbine impeller. Figure 7.32 shows the standardized version. Figure 7.32 shows a
turbulent stirred tank used by Spicer et al. (1996) to obtain intimate contact
between the solid–liquid phases.

Fig. 7.29 Laboratory ultra-
flocculator with shear rates in
the range of
100\ _c\40;000 s�1 (Rulyov
et al. 2011)
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Fig. 7.30 Ultraflocculator
for the industrial flocculation
of coal flotation tailings
(Rulyov et al. 2009)
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The dimensions of Hogg’s flocculation vessels are given in the table.

Suspension volume V cm3 Tank diameter DT cm Impeller speed range rpm

300 7.6 500–1,500
900 10.3 300–1,000
2,700 15.5 200–800

In these stirred tanks the turbulence is described by the macro and micro scale
of turbulence. The macro scale ‘ refers to the size of the eddies where the tur-
bulence originates, and the micro scale k0 to the size of the eddies where the
turbulence is dissipated. If the tank is properly designed, it is possible to establish
the average shear rate in terms of the properties of the system (Concha 1985).

The rotation of the impeller in a stirred tank produces eddies with magnitude ‘
on the order of the tank diameter ‘�DT . If the speed u of the liquid at the top of
the impeller is on the order of �u�NDT , where N is the impeller speed in (rpm),
then the Reynolds number can be written in the form Re ¼ DT N2=m, where m is
kinematic viscosity.

Fig. 7.32 Standard
flocculation vessel according
to Hogg (1987)
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Turbulent flows in stirred tanks are anisotropic. The largest eddies, where the
turbulence is generated, disintegrate gradually producing successive smaller eddies
until the energy is dissipated from the smallest eddies. If the macros-scale of the
turbulence is much greater than the micro-scale, there will be an intermediate size k
of eddies that slightly dissipates energy. These eddies transport energy in all direc-
tions with the consequence that the directional information is lost. Therefore, eddies
much smaller than the macro-scale of the turbulence k� ‘ are statistical independent
of direction and the only information that they transmit is the rate of dissipation e of
the kinetic energy, which constitutes the principal property of the system.

If the Reynolds number of the flow Re ¼ DT N2=m is high, and the volume being
considered in a turbulent flow is smaller than the macro-scale, the turbulence can
be considered locally isotropic. Since the variables in stirred tanks, such as the
tank diameter and height and the impeller diameter, affect the process through the
specific energy function e and since only average values of the dissipation energy
are known, the Kolmogoroff theory will be valid for similar systems (Levich
1962).

Spicer et al. (1996) indicate that the specific energy function ê and the average
shear rate �_c for the flow in stirred tank are given by:

ê ¼ PNN3D2
T

V

� �
and _c ¼ ê

m

� �1=2

ð7:17Þ

Fig. 7.33 A stirred tank with
Rushton impellers of 1.2 cm
(Spicer et al. 1996)
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where N is the rotational speed of the impeller in rps, DT is the diameter of the
stirred tank in m and V is the liquid volume in m3. If we let A ¼ kADT and
H ¼ kHDT , the volume of the tank is V ¼ p=4ð Þk2

DkHD3
T :

The shear rate is:

_c ¼ 4Pn

pmk2
AkH

 !
N3=2DT ð7:18Þ

Equation (7.18) can be written in the form:

_c ¼ kN3=2DT where k¼ 4Pn

pmk2
AkH

 !
ð7:19Þ

For small Reynolds numbers, the power number PN is a function of Re-1, and
becomes a constant for Re [ 104.

Problem 7.6 Calculate the shear rate in the stirred tank in Fig. 7.33 with a
diameter of A = 15 cm, height of fluid H = 15 cm and an impeller diameter of
D = 5 cm at the rotational speeds of 300, 500 and 700 rpm.

.

D (m) 0.05 0.05 0.05
T (m) 0.15 15 15
N (rpm) 200 500 700
N (rps) 3.333 8.333 11.667
l[Pa-s] = (kg/ms2) 1.00E-03 1.00E-03 1.00E-03
q (kg/m3) 1,000 1,000 1,000
V (m2/s) 1.00E-06 1.00E-06 1.00E-06
ka = A/D(-) 3 3 3
kh = H/D(-) 3.00E+00 3.00E+00 3.00E+00
Re (-) 5.56E+05 3.48E+06 6.81 E+06
V (m3) 2.649E-03 2.649E+03 2.649E+03
Pn (-) 1.200E+00 4.333E-01 4.333E-01
k (1/ms5/2) 247.7 247.7 247.7
c (1/s) 75.4 297.9 493.5

7.4 Flocculant Properties

Polymeric flocculant are organic reagents with long molecular chains and
molecular weights in the range of 106 (g-mol) or more. They can be natural
polysaccharides, such as gelatins, alginates and agar–agar, or synthetically based
acrylic materials derived from petroleum, such as high molecular weight poly-
acrylamide. The advantage of synthetic flocculants is that their molecular struc-
ture, in terms of molecular weight and the degree of hydrolysis or ionicity, can be
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designed at will according to industrial requirements. Since they are obtained from
chemical reagents, their quality is more consistent than that of natural flocculants.
Furthermore, they can be designed with higher molecular weights, which is a
technical and economical advantage.

Polyacrylamide is often listed as a nonionic flocculant. However, the vast
majority of commercial flocculants are hydrolyzed polyacrylamides (or co-poly-
mers of acrylamide and acrylic acid). Consequently, they contain some carboxylic
groups that are expressed as the degree of anionicity. Figure 7.34 shows a pure
polyacrylamide and Fig. 7.35 a hydrolyzed polyacrylamide.

Other examples of synthetic polymers are:

• Non-ionic: polyethylene oxide and polyvinyl alcohol
• Anionic: Sodium polyestyrene sulphonate
• Cationic: Polyethylamine, dialidimetyl ammonium chloride.

Polymers in general act through hydrogen bridges, but ionic polymers also react
by electrostatic interaction. For this reason, the election of the proper flocculant for
a given task depends on the surface charge of the particle and on the physico-
chemical conditions of the solution, such as pH and ionic force.

The most important characteristics of polymeric flocculants are their molecular
weight, the nature of their functional groups and, especially, their charge density in
the case of ionic groups. The charge density depends on the ionizable group and on
its degree of ionization. The charge is established during reagent synthesis and the
degree of ionization depends on the nature of the ionic group and the conditions of
the solution. Strongly ionized groups like sulphonates or quaternary amines are
totally charged in most cases, while weakly ionized groups like carboxyl and
tertiary amines are affected by the pH of the solution. Anionic polymers with
carboxylic groups are not completely charged until pH is over 6. In more acidic
solutions, the ionic degree decreases. Cationic polymers, based on tertiary amine
groups, have reduced charges when pH is lower than 8.

When negatively charged particles come in contact with non-ionic or anionic
polymers, flocculation does not occur unless a cation, such as Ca2+ is added to

Fig. 7.35 Hydrolized
polyacrylamide

Fig. 7.34 Polyacrylamide
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promote the adsorption of the polymer on the particle surface by bonding simul-
taneously to the ionic groups of the polymer and to the negative sites of the
mineral surface. An example is flocculation of kaolin with anionic polymers.
Kaolin is not flocculated by NaCl but flocculates in the presence of small quan-
tities (1-2 mmolar) of Ca2+ ions.

An optimal polyelectrolyte charge density is necessary for bridge-flocculation
to occur. For example, flocculation with polyacrylamide improves as the polymer
molecular weight increases and at an optimum value of hydrolysis of about 30 %.
An increase in hydrolysis produces the mutual repulsion of the different polymer
segments; the hydrocarbon chain straightens and expands. Simultaneously, the
increase in ionicity decreases polymer adsorption on the negative particles. The
optimum hydrolysis value lies between these two tendencies.

Polymers with opposite charges to the particles adsorb strongly due to ionic
attraction. Cationic polymers are widely used to flocculate negative particles and
charge neutralization fully explains the flocculation mechanism. The optimum
flocculation condition in this case is charge neutralization. Excess flocculants can
re-stabilize the suspension by giving the particles a positive charge. The best
flocculant for these tasks are polymers with strong electrical charges, their
molecular weight being a secondary factor.
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Chapter 8
Thickening

Abstract The chapter analyzes thickening in-depth. In an extensive introduction,
the history of thickening is laid out from the Stone Age to the present, emphasizing
people and institutions that have been important actors. The chapter then reviews the
thickeners used in the mining-mineral industry. During sedimentation, particles
settle individually except for collision among them, exerting interaction between
them solely through the fluid. At a certain concentration, particles begin to touch
each other permanently transforming the suspension into a network of solid particles
called sediment. At that point forces among particles are transmitted directly from
particle to particle. If settling particles that reach the bottom of the vessel and lie one
on top of the other are incompressible, such as glass beads, the whole process ends,
but if they are compressible, as in the case offlocculated copper flotation tailings, the
weight of the sediment compresses the flocs lying underneath expelling the water
from the pores. This phenomenon of extracting water by compression is called
consolidation. The theory of sedimentation-consolidation is deduced from the
equations for a particulate system and constitutive equations for the solid-fluid
interaction force and sediment compressibility are postulated. Batch and continuous
sedimentation are analyzed and simulations are compared to data from the literature.
Experimental determination of thickening parameters and instruments for their
determination are presented. Old and new methods for thickening design are
reviewed and software for the design and simulation of batch and continuous
thickening are presented. Finally, strategies for the operation and control of indus-
trial thickening are discussed.

8.1 Introduction

8.1.1 From the Stone Age to the Middle Ages

Thickening is not a modern technique and was certainly not invented in the
Americas. Whenever people have tried to obtain concentrates from ore, two
processes have been used inseparably, crushing and washing. There is evidence

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_8,
� Springer International Publishing Switzerland 2014
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that in the 4th Egyptian dynasty, around 2,500 BC, the ancient Egyptians dug for
and washed gold. There is also evidence of washing gold in Sudan in the 12th
dynasty. Nevertheless, the earliest written reference to crushing and washing in
Egypt is Agatharchides, a Greek geographer who lived 200 years before Christ.
Ardillon in his book ‘‘Les mines du Laurion dans l’antiquité’’ described the pro-
cess used in the extensive installation for crushing and washing ores in Greece
between the 5th and 3rd centuries BC. In his book ‘‘The living rock’’, Wilson
(1994) described mining gold and copper in the Mediterranean from the fall of the
Egyptian Dynasties to the Middle Ages and the Renaissance (Concha and Bürger
2002a).

The development of mineral processing from unskilled labor to craftsmanship
and eventually to an industry governed by scientific discipline is largely due to the
Saxons in Germany and Cornishmen in England, beginning in the 16th century. An
international exchange of technology began between these two countries and
continued for an extended period. But it was in Saxony where Agricola (1950)
wrote his book ‘‘De Re Metallica 1950’’, the first major contribution to the
development and understanding of the mining industry, published in Latin in 1556,
and shortly after translated to German and Italian. Agricola’s book had a tre-
mendous impact, not only on the mineral industry but also on society in general,
and continued to be the leading textbook for miners and metallurgists outside the
English-speaking world for at least another 300 years. Apart from its immense
practical value as a manual, the greatest influence of De Re Metallica was in
preparing the ground for the introduction of a system of mining education, which,
with various modifications to suit local conditions, was later to be adopted
internationally.

Agricola’s book describes several methods for washing gold, silver, tin and
other metallic ores. He described settling tanks used as classifiers, jigs and
thickeners, and settling ponds used as thickeners or clarifiers. These devices
operated in batches or semi-continuously. A typical description is as follows; see
Figs. 8.1 and 8.2:

To concentrate copper at the Neusohol in the Carpathians, the ore is crushed and washed
and passed through three consecutive washer-sifters. The fine particles are washed through
a sieve in a tub full of water, where the undersize settle to the bottom of the tub. At a
certain stage of filling tub with sediment the plug is drawn to let the water run out. Then,
the mud is removed with a shovel and taken to a second tub and then to a third tub where
the whole process is repeated. The copper concentrate that has settled in the last tub is
taken out and smelted.

It is evident from these references that by using washing and sifting processes,
from the ancient Egyptians and Greeks to the mediaeval Germans and Cornishmen
knew the practical effect specific gravity of the various components of an ore and
used sedimentation in operations that can now be identified as classification,
clarification and thickening. There is also evidence that in the early years no
distinction was made among these three operations.
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8.1.2 The Invention of the Dorr Thickener

Clarification and thickening involve the settling of one substance in solid partic-
ulate form on a second substance in liquid form. While clarification deals with
very dilute suspensions, thickening produces more concentrated pulps. Perhaps

Fig. 8.1 Settling tanks
described by Agricola

Fig. 8.2 Washing and
settling according to Agricola
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this is why clarification was the first of these operations to be described mathe-
matically. The work of Hazen in 1904 was the first to analyze factors affecting
particle settling from dilute suspensions in water. He showed that the detention
time is not a factor of the design of settling tanks, but rather that the solid removed
is proportional to the surface area of the tank, to the settling properties of the solid
matter, and inversely proportional to the flow rate through the tank.

The invention of the Dorr thickener in 1905 can be considered a starting point
of modern thickening. It made continuous dewatering of dilute pulp possible,
whereby a regular discharge of a thick pulp of uniform density takes place con-
currently with the overflow of a clarified solution. Scraper blades or rakes driven
by a suitable mechanism and rotating slowly over the bottom of the tank, which
usually sloped gently toward the center, moved the material as fast as it settled
without enough agitation to interfere with the settling (Dorr 1915).

The first reference to variables affecting sedimentation was in 1908. Authors
such as Ashley (1909), Nichols (1908a, b), Forbes (1912), Clark (1915), Free
(1912) and Ralston (1916) studied the effect of solid and electrolyte concentra-
tions, the degree of flocculation and temperature on the process.

Mishler (1912, 1916), an engineer and superintendent at the Tigre Mining
Company concentrator in the Sonora desert in Mexico, was the first to show by
experiment that the rate of settling slimes is different for diluted and concentrated
suspensions. While the settling speed of diluted slimes is usually independent of
the depth of the settling column, thick slime sedimentation rates increase with the
depth of the settling column. He devised a formula by which laboratory results
could be used in continuous thickeners.

Based on Clark’s results (Clark 1915) and their own experiments, Coe and
Clevenger (1916) recognized that the settling of an initially homogenous flocculent
suspension gives rise to four settling zones. From top to bottom, they distinguished
(see Fig. 8.3) a clear water zone A, a zone of constant initial concentration B, a
transition zone of variable concentration C and a compression zone D.

Coe and Clevenger (1916) argued that the solid handling capacity, today called
solid flux, has a maximum value in the thickener at a certain dilution, between the

Fig. 8.3 Batch settling of a compressible pulp according to Coe and Clevenger (1916)
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feed and the discharge concentration. Independently from Mishler (1912) they
developed a similar equation, which with certain corrections, continues to be the
most reliable method of thickener design to date.

Several authors described the settling of suspensions by extending Stokes’
equation, or by empirical modeling (Egolf and McCabe 1937; Ward and Kam-
mermeyer 1949; Work and Kohler 1940; Kammermeyer 1941), but no further
important contributions were made on thickening technology until the 1940s.
Stewart and Roberts (1933), reviewing the state-of-the-art of thickening, wrote:

The basic theory is old but limitations and modifications are still but partially developed.
Especially in the realm of flocculent suspensions is the underlying theory incomplete.
Practical testing methods for determining the size of machines to be used are available, but
the invention and development of new machines will no doubt be greatly stimulated by
further investigation of the many interesting phenomena observed in practice and as fresh
problems are uncovered.

8.1.3 Operating Variables in a Continuous Thickener

In the decade after Comings published his paper ‘‘Thickening of calcium carbonate
slurries’’ (Comings 1940) at least nine engineering theses under his guidance at the
University of Illinois considered the effect of operating variables in continuous
thickening. Comings and his co-workers described these findings in an important
paper (Comings et al. 1954). They show four zones in a continuous thickener: the
clarification zone at the top, the settling zone underneath, the upper compression
zone further down and the rake action zone at the bottom. Two of the most
important features in the operation of a thickener were expressed for the first time,
firstly that the concentration in the settling zone is nearly constant for a thickener
at a steady state, with the concentration depending on the rate at which the solid is
fed to the thickener and not on the concentration of the feed. It was verified that in
most cases the feed was diluted to an unknown concentration on entering the
thickener. The second finding was that for the same feed rate, increasing or
decreasing the sediment depth could adjust the underflow concentration.

Roberts (1949) advanced the empirical hypothesis that the rate at which water is
eliminated from a pulp in compression is always proportional to the amount of
water left in the sediment.

8.1.4 Kinematical Theory of Sedimentation

Coe and Clevenger’s design procedure (1916), which was the only quantitative
work on sedimentation during the first half of the 20th century, was based on a
macroscopic balance of the solid and fluid in a sedimentation vessel and on the
observation of the different concentrations established in the thickener. No
underlying sedimentation theory existed.
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In his celebrated paper ‘‘A theory of sedimentation’’ in 1952 G. J. Kynch, a
mathematician at the University of Birmingham in Great Britain, presented a
kinematical theory of sedimentation based on the propagation of concentration
waves in the suspension (Kynch 1952). The suspension was considered a con-
tinuum and the sedimentation process was represented by the continuity equation
of the solid phase (See Chap. 5 of his book).

The basic assumption of Kynch’s theory is that at any point in the flow field the
settling velocity is a function solely of the concentration of local solids. Kynch
showed that if the form of the flux-density function and the initial concentration of
a suspension are known, the solution of the continuity equation can be constructed
by the method of characteristics, and that this procedure describes the complete
sedimentation process.

This chapter had a major influence on the development of thickening thereafter.
When Comings moved from Illinois to Purdue University, research on thickening
continued there for another 10 years. Three theses by Tory (1961), Stroupe (1962)
and De Haas (1963) analyzed Kynch’s theory and proved its validity by experi-
ments with glass beads. Their results were published in a series of joint papers
(Shannon et al. 1963; Shannon and Tory 1965, 1966). Batch sedimentation was
regarded as the process of propagating concentration waves upwards from the
bottom of the settling vessel. The concept of an ideal suspension and ideal
thickener was presented for the first time by Shannon and Tory (1966) and
complemented by Bustos et al. (1990a, 1999) and by Concha and Bustos (1992).

Kynch’s theory was so successful that there was a tendency to extend its
validity. Several authors, among them Fitch (1983) and Font (1988), tried to
modify Kynch’s theory to account for the compressive effects. This approach
encountered several problems that could not be solved within the theory and a
different theory was needed.

At the beginning of the 1980s, mathematicians from the University of Con-
cepción in Chile and the Darmstadt Technical University in Germany and later the
University of Stuttgart in Germany, in collaboration with the Department of
Metallurgical Engineering at the University of Concepción, worked on conser-
vation laws. They started a comprehensive study of the mathematical aspects of
sedimentation. Their results were published in the doctoral theses by Bustos
(1984), Kunik (1990) and in several papers by Bustos, Bürger, Concha, Wendland
and other collaborators and in the book by Bustos et al. (1999). The first step in
their work was to establish a rigorous framework for the theory of batch sedi-
mentation of ideal suspensions (Kynch’s theory). Using the method of charac-
teristics, Bustos and Concha (1988a, b) and Concha and Bustos (1991) constructed
entropy weak solutions of Kynch’s problem, in which zones of constant concen-
trations are separated by shocks, rarefaction waves or combinations of these. For
flux density functions with two inflexion points, they presented five modes of
sedimentation. These finding were complemented with two other Modes of Sedi-
mentation in Bustos et al. (1999) and Bürger and Tory (2000).

Similar solutions can be constructed by the method of characteristics for con-
tinuous sedimentation of ideal suspensions (Bustos et al. 1990a; Bustos and
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Concha 1996; Concha and Bustos 1992; Concha and Bürger 1998). The solution of
this equation leads to three Modes of Continuous Sedimentation. For a detailed or a
concise overview of the construction of weak solutions, see Bustos et al. (1999) or
Concha and Bürger (1998) respectively. See also Chap. 5.

On the basis of the construction of weak solutions, Bustos et al. (1990b) for-
mulated a simple control model for continuous sedimentation of ideal suspensions
in an ideal continuous thickener. It shows that certain steady states can always be
recovered after perturbation of the feed flux density by solving two initial and
boundary value problems at known times.

Diehl (1997, 1999) and Bürger et al. (2001, 2002) studied the effect of vessels
with varying cross section and boundary conditions. Diehl showed that basically
the suspension concentration increases because of its conical shape. Bürger et al.
(2002) indicated that because of the varying cross sections, characteristics and iso-
concentration lines do not coincide; numerical methods must be used to obtain
results. Chancelier et al. (1994), Diehl (1997) and Bürger et al. (2002) treated the
feed, discharge and overflow mechanisms as discontinuities of the flux density
function adding a source term at the feed level, thus making boundary conditions
unnecessary.

8.1.5 Phenomenological Theory
of Sedimentation-Consolidation

The experience of several authors, among them Yoshioka et al. (1957), Hassett
(1958, 1964a, b, 1968), Shannon et al. (1963), and Scott (1968a, b), demonstrate
that, while Kynch’s theory accurately predicts sedimentation for suspension of
equally sized rigid particles, this is not the case for suspensions of compressible
materials.

Behn (1957) was the first writer to attempt to apply consolidation theory to the
settling of compressible slurries, but it was Mompei Shirato et al. (1970) who first
solved the combined settling-consolidation problem. Using material coordinates,
they obtained settling curves and excess pore pressure profiles. It took another five
years for Adorján (1975, 1976) to present an ad-hoc theory of sediment com-
pression, giving the first satisfactory method of thickener design.

At about the same time, a group of researchers in Brazil gave the phenome-
nological sedimentation theory a proper framework. Important research was going
on in Brazil in the 1970s on thickening and flows through porous media in general.
At COPPE, the Graduate School of the Federal University of Rio de Janeiro,
several researchers and graduate students were applying a newly developed
mathematical tool, the Theory of Mixtures of continuum mechanics to particulate
systems. The findings of Giulio Massarani, Affonso Silva Telles, Rubens Sampaio,
I-Shih Liu, José Teixeira Freire and João D’Avila (D’Avila 1976, 1978; D’Avila
and Sampaio 1977; D’Avila et al. 1978), to mention only a few, were presented at
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the Porous Media Symposia organized uninterruptedly every year since 1973 by
Massarani and his group. This series was renamed the Brazilian Congress on
Particulate Systems in 1996. Contributions presented at these meetings are well
documented in yearly-published annals.

With strong ties to the Brazilian researchers, the author of this book worked in
the same direction at the University of Concepción in Chile. Initial findings were
presented by Bascur and Concha at the 1975 IMPC in Sao Paulo Brazil, by Bascur
(1976) and Barrientos (1978) in their Engineering Theses, and Concha and Bar-
rientos (1980) at the Engineering Foundation Conference on Particle Technology
in New Hampshire, USA. Independently, Kos (1977) used the Theory of Mixtures
to set up a boundary value problem for batch and continuous sedimentation.
Thacker and Lavelle (1977) used the same theory for incompressible suspensions.

During the 1980s several papers, among them Buscall and White (1987),
Auzerais et al. (1988), Landmann et al. (1988), Bascur (1989) and Davis and
Russel (1989) showed that the phenomenological model based on the Theory of
Mixtures was well accepted by the international scientific community.

The phenomenological theory of sedimentation-consolidation assumes that a
particulate system composed of two superimposed continuous media with some
restrictions obeys local mass and momentum balances and constitutive equations
for stresses and forces. The result is a non-linear degenerate parabolic differential
equation (Bürger and Concha 1998; Bürger et al. 1999; Bustos et al. 1999)
describing the sedimentation and consolidation of flocculated suspensions.

Bürger et al. (2000b) and Bürger and Karlsen (2001) devised numerical
methods for solving this equation. These numerical methods have built-in prop-
erties to appropriately reproduce discontinuities of the entropy solutions, espe-
cially the suspension-sediment interface, where the equation changes from
parabolic to hyperbolic. This property makes it unnecessary to track the interface
explicitly, that is, the scheme has the so-called shock-capturing property Bürger
et al. (2000d). Garrido et al. (2000) showed the application of this method to
several batch sedimentation processes published in the literature.

Concha and coworkers (Garrido et al. 2004, 2003) developed a thickener design
and simulation procedure based on the numerical method of Bürger and Karlsen
(2001). This procedure was the most comprehensive design method yet presented
in the literature. Garrido (2005) and Concha et al. (2006a, b) presented methods
and new instrumentation to determine thickening parameters and Segovia and
Concha (2012) designed and constructed on-line instruments to determine these
parameters. Using these instruments Segovia et al. (2011) and Betancourt et al.
(2013) presented algorithms for the automatic control of thickeners.

A research group in Melbourne Australia developed steady state thickener
models based on the same theory but with slightly different variables and
parameters. Their results are equivalent to those of Concha and co-workers (Green
1997; Green et al. 1998; De Kretser et al. 2001; Usher et al. 2001; Usher 2002;
Shane et al. 2005).
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8.2 Equipment

The continuous thickener is a typical device that has not changed much since Dorr
invented it in 1905. They have become larger and are built of different materials,
such as wood, steel or cement and their raking system has been improved and
modernized, but their elements continue to be the same. Figure 8.4 shows the
original Dorr thickener. The cylindrical tank is the body of the equipment, with the
feedwell, overflow launder, rakes and underflow discharge, all common elements
in any modern thickener.

In small units of less than 30 m in diameter, the cylindrical tank is steel or
wood, while tanks up to 150 m in diameter are made of concrete. The bottom of
the thickener is made of the same material as the tank and has a cone in the center
to improve sediment evacuation.

The feedwell is a small concentric cylinder designed to thoroughly mix
incoming pulp with the flocculant and in some cases to dilute the feed and deliver
it evenly into the thickener. Many thickeners have baffles to accomplish these
tasks. See Figs. 8.5 and 8.6. We will discuss this subject further in Sect. 8.7.

Rakes transport the sediment from the bottom of the tank to the underflow
discharge orifice. The rakes, which can have several supporting structures, rotate at
a rate on the order of one revolution per hour. A secondary effect of the rakes is to
produce channels in the sediment through which water can escape to the surface,
thus increasing the pulp density of the underflow. The rakes can have a central
motor as shown in Fig. 8.6 or a peripheral tracking system, Fig. 8.7.

All thickener models have mechanism to lift the rakes whenever the torque to
move the sediment becomes excessive. See Figs. 8.8 and 8.9.

Supernatant water overflows at the top of the thickener through overflow
launders as shown in Fig. 8.10. The overflow launder at the tank periphery
receives water recovered from the pulp and evacuates it slowly to avoid dragging
fine particles. A flow of about 0.1 (m3/min/m of perimeter) is common.

Fig. 8.4 Original Dorr thickener. a Schematic Dorr thickener invented in 1905 (Dorr 1936).
b 6 m diameter Dorr thickener, Kennicott Alaska 1938 (conventional thickener)
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8.2.1 Conventional, High Rate, High Density and Paste
Thickeners

Thickeners are usually classified into four types: conventional thickeners, high-rate
thickeners, high-density thickeners and paste thickeners. See Fig. 8.11.

In a Conventional Thickener the feedwell is located in the upper part of the
tank. When the feed enters it, it is diluted to the so-called conjugate concentration

Fig. 8.5 Feedwell with two tangential entries and internal baffles (courtesy Dorr-Oliver)

Fig. 8.6 Small thickener
with two tangential entries
showing centrally driven
rakes (courtesy Dorr-Oliver)
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by an upcoming flow of water. The diluted suspension settles at a constant velocity
to form sediment at the bottom of the tank. Figure 8.12 shows a scheme of a
conventional thickener.

Fig. 8.7 Thickener with peripheral tracking system (courtesy of Eimco process equipment)

Fig. 8.8 Rakes with lifting system (courtesy of Dorr-Oliver)

Fig. 8.9 Rakes with lifting system (courtesy of Eimco process equipment)
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In the early 1960s machines known as high capacity or high rate thickeners
were introduced into the mining industry by various manufacturers (Eimco HI-
CAP, Enviroclear High Capacity CT). See Fig. 8.13.

These thickeners have longer feedwells that deliver the feed directly into the
sediment. When the feed is mixed with the high-density sediment, it increases in
concentration forming a suspension with a concentration equal to or higher than
the critical concentration. Therefore there is no settling zone in this type of
thickener. Often the underflow of high capacity thickeners is recycled to the feed,

Fig. 8.10 Overflow launders (courtesy of Outokumpu Supaflo technologies)

Conventional High Rate High Density Paste

Fig. 8.11 Schematic drawings of the different types of thickeners (Fl Smith)

Fig. 8.12 Schematic
drawings of a conventional
thickener

184 8 Thickening



producing a mixture of higher concentration that supposedly increases the
equipment capacity.

Later in this chapter we will show that it is more appropriate to talk of con-
ventional and high capacity operations than of conventional and high capacity
thickeners, and furthermore, that if one chooses to operate a thickener in a high
capacity mode, there is always a conventional operation that has equal or higher
capacity. It is the flocculant dose, the feed dilution and the optimum shear rate that
eventually defines the capacity of a thickener.

The term high capacity or high rate thickeners is used for small to medium
sized thickener but also for large conventional thickeners processing very high
tonnage due to the optimization of flocculation by careful choice of the flocculant
dose and feed slurry concentration. See Fig. 8.14.

High-density and paste thickeners are similar to conventional or high rate
thickeners, but with steeper cones and much higher cylindrical tanks. The addi-
tional height produces more pressure on the sediment at the bottom of the tank and
therefore denser underflow. Picket fences are used in both types of thickeners to
help consolidate the sediment. The only difference between them is that paste
thickeners are much taller and slimmer than High Density thickeners. Figure 8.15
shows a schematic view and Figs. 8.16 and 8.17 show high-density thickeners.

Fig. 8.13 Schematic view of high capacity thickeners. a EIMCO HI-CAP thickener (Eimco
2011). b EVIRO-CLEAR CT (Enviro Clear 2011)

Fig. 8.14 125 m high-rate thickener (Smith 2013)
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Fig. 8.15 Schematic views of paste thickeners. a Conventional mode of operation Innovat
(2013). b High capacity mode of operation Delkor (2013)

Fig. 8.16 View of high density and paste thickeners (courtesy of Eimco process equipment)
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8.3 Thickening Theory

Thickening consists of the superposition of two phenomena, sedimentation and
consolidation, which behave differently.

During sedimentation, particles settle individually by collision among them and
through the fluid by pressure and friction. See Fig. 8.18a. Sedimentation of indi-
vidual particles and suspensions, which was analyzed in Chaps. 4 and 5, consist of
gravity settling particles or flocs in a fluid, in our case, water. At a certain

Fig. 8.17 View of paste thickeners. (courtesy of Eimco process equipment)

(a) (b)Fig. 8.18 Physical model of
sedimentation and
consolidation.
a Sedimentation.
b Consolidation
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concentration, particles begin to touch each other transforming the suspension into
a network of solid particles called sediment. Now, forces among particles are
transmitted directly from particle to particle. If settling particles that reach the
bottom of the vessel and lay one on top of the other are incompressible, such as
glass beads, the whole process ends, but if they are compressible, as is the case
with flocculated copper flotation tailings, the weight of the sediment compresses
the flocs lying underneath expelling the water from the pores. This phenomenon of
extracting water by compression is called consolidation. See Fig. 8.18b.

Consolidation is an important discipline in several fields besides thickening, for
example in Geotechnique, which studies the behavior of the ground when build-
ings are constructed. In this case, the applied force on the consolidating material is
the external weight of buildings. In thickening, the force compressing the sediment
is its own weight, which makes a major difference in the theory of consolidation
given the scale of the forces.

Sedimentation and consolidation are usually separated by an interface having a
characteristic concentration. The concentration of this interface, where the sedi-
menting particles or flocs begin to touch each other, is called a critical concen-
tration, also known as compressive yield point by authors from the field of
colloidal science.

8.3.1 Dynamic Thickening Process

Field Equations

The phenomenological theory of sedimentation ignores the individuality and
physical structure of particles and fluids, and considers the solid and the fluid as
continuous media. The properties of the solid and fluid involved in thickening are
those describing sedimentation and consolidation: (1) the concentration of the
suspension; (2) the solid phase velocity, (3) the fluid phase velocity, (4) the solid–
fluid interaction force, (5) the excess pore pressure and (6) the compressibility of
the sediment. Properties (1) to (6) have the following associated field variables.
See Chap. 3.

Solid concentration; as volume fraction uðz; tÞ ð8:1Þ

Solid flux density f ðz; tÞ ð8:2Þ

Convective pulp velocity qðz; tÞ ð8:3Þ

Solid--fluid interaction force mdðz; tÞ ð8:4Þ

Excess pore pressure peðz; tÞ ð8:5Þ

Solid stress effective reðz; tÞ ð8:6Þ
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These variables constitute a dynamic thickening process in regions where the
variables are continuous when they obey the following four field equations. See
Chap. 3.

ou
ot
þ of

oz
¼ 0 ð8:7Þ

oq

oz
¼ 0 ; with q ¼ vs � ð1� uÞvr ð8:8Þ

ore

oz
¼ �Dqugþ md

1� u
ð8:9Þ

ope

oz
¼ � md

1� u
ð8:10Þ

where f ¼ uvs is the solid flux density function, vr ¼ vs � vf is the relative solid–
fluid velocity and md is the solid–fluid dynamic interaction force. To understand
the conditions for these equations to be valid, see Chap. 3.

At discontinuities, the field equations are not valid and the following jump
conditions should be used:

f½ � ¼ r u½ �; q½ � ¼ 0 ð8:11Þ

where r is the displacement velocity of the discontinuity. For conditions that
r must obey, see Eqs. (5.12, 5.13).

Constitutive Equations

Since we have six field variables and only four field equations, two constitutive
equations should be established to describe the relationship between the dynamic
variables md and re and the kinematic variables u and vr:

md ¼ md u;ucvrð Þ ð8:12Þ

re ¼ reðu;uc; vrÞ ð8:13Þ

Compressibility of the Sediment

Experience has demonstrated that the solid effective stress can be expressed
solely as a function of the concentration. As we noted at the beginning of this
chapter, the only way momentum is transferred directly from particle to particle
during sedimentation is by particle collision. Therefore, for solid concentrations
below the critical level where particles are suspended in the fluid, the effective
stress is a constant. At concentration greater than the critical concentration, the
network of particles formed transmits forces directly among particles in the sed-
iment. The self-weight of the particles is transmitted through the network
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producing compression and increasing the solid concentration of the sediment.
This phenomenon can be characterized by the following restriction for solid
effective solid stress reðuÞ:

r0e ¼
dre

du
¼ 0 for u\uc

� 0 for u�uc

�
ð8:14Þ

Two common expressions have been used for the solid effective stress:

reðuÞ ¼
constant for u\uc

a exp buð Þfor u�uc

�
ð8:15Þ

reðuÞ ¼
constant for u\uc

r0
u
uc

� �n
�1

� �
for u�uc

(
ð8:16Þ

Solid–Fluid Interaction Force During Sedimentation ðu\ucÞ

During settling, for u\uc, the flocs move slowly through the fluid and the
hydro-dynamical force can be represented as a linear function of relative solid–
fluid velocity:

md ¼ �lKðuÞvr ð8:17Þ

where KðuÞ is the translational solid–fluid resistance coefficient. Replacing KðuÞ
in Eq. (8.9), with r0eðuÞ ¼ 0, yields:

0 ¼ �Dqug� lKðuÞvr

1� u
; u\uc

from which the relative solid–fluid velocity vr is:

vr ¼ �
Dquð1� uÞg

lKðuÞ ð8:18Þ

Replacing vr from (8.18) in (8.8); from the result calculate vs and, multiplying by
u, obtain:

f ¼ qu� Dqu2ð1� uÞ2g

lKðuÞ ð8:19Þ

Defining a parameter fbkðuÞ in the form:

fbkðuÞ ¼ �
Dqu2ð1� uÞ2g

lKðuÞ ; ð8:20Þ
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Eq. (8.19) can be written in the form:

f ¼ quþ fbkðuÞ; for u\uc ð8:21Þ

Finally, replacing (8.21) in (8.7) yields:

ou
ot
þ o

oz
quþ fbkðuÞð Þ ¼ 0; for u\uc ð8:22Þ

Equation (8.22) describes the sedimentation of particles, compressible or not, in a
suspension of less than the critical concentration u\ucð Þ. It can be identified as
Kynch’s equation for continuous sedimentation of ideal suspensions. See Eqs. 5.8
and 5.10. The function fbkðuÞ, defined by (8.20), is the Kynch solid flux density
function and can be considered the constitutive equation for the sedimentation
process. The Kynch sedimentation process is completely determined once the
constitutive equation and the initial conditions are established.

Adding Eqs. (8.9) and (8.10) gives:

o pe þ reð Þ
oz

¼ �Dqug

from which the excess pore pressure can be obtained once (8.22) is solved for uðzÞ:

peðzÞ ¼ � re þ Dqg

ZL

z

uðnÞdn

0
@

1
A ð8:23Þ

Solid–Fluid Interaction Force During Consolidation ðu�ucÞ

During consolidation, the fluid moves slowly though the porous bed constituting
the sediment and can be quantified by the permeability of the bed and the viscosity
of the fluid. For the slow motion of a Newtonian fluid through a compressible
porous bed, Darcy’s equation is valid (see Chap. 6):

md ¼ �
l

kðuÞ ð1� uÞ2vr ð8:24Þ

where kðuÞ and l are the permeability of the sediment and the fluid viscosity
respectively. Replacing md from (8.24) in (8.9) and from this result calculate vr:

vr ¼ �
kðuÞ

l
� Dqug

ð1� uÞ 1þ r0eðuÞ
Dqug

ou
oz

� �
for u�uc ð8:25Þ

Replacing (8.25) in (8.8) and multiplying by u, gives us:

f ¼ qu� kðuÞ
l
� Dqu2g

ð1� uÞ 1þ r0eðuÞ
Dqug

� �
ou
oz

for u�uc ð8:26Þ
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Parameter fbkðuÞ, for u�uc, is defined in the form:

fbkðuÞ ¼ �
kðuÞ

l
� Dqu2g

ð1� uÞ for u�uc; ð8:27Þ

and note that Eq. (8.27) has the same role as Eq. (8.20) but now permeability kðuÞ
is the parameter instead of the translational resistance coefficient KðuÞ.

Equations (8.20) and (8.27) can be combined to define an extended Kynch solid
flux density function for all values of u:

fbkðuÞ ¼
�Dqu2ð1� uÞ2g

lK uð Þ for u\uc

� kðuÞ
l

Dqu2g for u�uc

8
>><

>>:
; ð8:28Þ

Substituting (8.28) on Eq. (8.8), we can write the solid flux density function for the
whole range of concentration in the form:

f ¼ quþ fbkðuÞ 1þ r0eðuÞ
Dqug

� �
ou
oz

for 0\u\1 ð8:29Þ

Thickening Equation

Replacing (8.29) in (8.7) yields:

ou
ot
þ o

oz
quþ fbkðuÞ 1þ r0eðuÞ

Dqug

ou
oz
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¼ 0; for 0\u\1 ð8:30Þ

which can be written in the form

ou
ot
þ o

oz
quþ fbkðuÞð Þ ¼ o

oz
� fbkðuÞr0eðuÞ

Dqug

ou
oz

� �
; for 0\u\1 ð8:31Þ

Equation (8.31) is a degenerate parabolic partial differential equation. The
name comes from the fact that for values of u\uc; reðuÞ ¼ 0 the equation
becomes hyperbolic:

ou
ot
þ o

oz
quþ fbkðuÞð Þ ¼ 0; for u\uc ð8:32Þ

This result shows that for compressible flocculated suspensions Kynch’s equation
is still valid in those regions where the concentration is less than critical.

Still another form of expressing Eq. (8.31) is obtained by defining the diffusion
coefficient D in the form:

D ¼
0 for u\uc

� fbkðuÞr0eðuÞ
Dqug

for u�uc

8
<

: ð8:33Þ
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then replacing (8.33) in (8.31) the following alternative of the thickening equation
is obtained as a convective-diffusion equation:

ou
ot
þ o

oz
quþ fbkðuÞð Þ ¼ o

oz
DðuÞ ou

oz

� �
; for 0�u\1 ð8:34Þ

8.3.2 Batch Thickening

To obtain a description of batch thickening, we will repeat and complete the stages
in the sedimentation process described in Chap. 5.

(a) Before sedimentation starts, the suspension is flocculated and homogenized by
agitation so that its concentration is constant.

(b) At the beginning of sedimentation, all flocs settle at the same speed forming a
well-defined water-suspension interface in the upper part of the column. This
interface descends at the same speed as the flocs. This stage is called hindered
settling. A diffuse interface indicates incomplete flocculation, especially of the
fine particles.

(c) When the flocs reach the bottom of the column, they rapidly occupy the entire
available area forming a sediment. From then on, the flocs accumulate one on
top of another, compressing those lying underneath. We say the sediment is
under compression or consolidation.

(d) The interface between the sediment and the settling suspension has no flocs
lying on top of it and therefore suffers no compression. The concentration at
which this occurs is called critical concentration.

(e) Following a given constant concentration u over a period of time, for example,
setting an X Ray instrument such as that described by Been and Sills (1981) at
a given concentration, it will move upwards during sedimentation from the
bottom of the column at a constant characteristic speed as time passes. This
upward motion is termed the wave of constant concentration u.

(f) At a certain instant, the water-suspension and the suspension-sediment inter-
faces meet. The coordinates at this time are called critical height and critical
time and they define the critical point where hindered sedimentation ends and
flow in the porous media and consolidation prevails. In time, consolidation
ends and a characteristic concentration profile is established in the column.
Water in the upper part is followed by a concentration gradient from the
critical concentration at the top to the sediment to a maximum concentration at
the bottom of the column. Figure 8.19 is a typical sedimentation curve
showing the interfaces and constant concentration lines.
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(a) Initial and boundary value problem

In batch sedimentation there is no convective flow, therefore q ¼ 0 and (8.31)
reduce to:

ou
ot
þ o

oz
fbkðuÞ 1þ 1

Dqug

oreðuÞ
oz

� �� �
¼ 0; 0� z� L; for 0\u\1 ð8:35Þ

From stage (a) of batch sedimentation, the initial condition is known and is set
at uðz; tÞ ¼ u0 for 0� z� L, and the boundary condition at z ¼ L is uðL; tÞ ¼ 0.

At the bottom of the column, where z ¼ 0, the velocity of the solid is zero and
therefore the solid flux fbkð0; tÞ ¼ 0. From (8.29), for t� 0, the boundary condition is
ou=ozjz¼0¼ Dqug=r0eðuÞ. Then the initial-boundary condition can be expresses as:

uðz; 0Þ ¼ u0; for 0� z� L ð8:36Þ

uðL; tÞ ¼ 0; for t [ 0 ð8:37Þ

ou
oz

ffiffiffiffi
z¼0

¼ Dqug

r0eðuÞ
; for t� 0 ð8:38Þ

where L and u0 are the initial height and initial concentration of the suspension.

Fig. 8.19 Sedimentation curve for a copper flotation tailing, showing the water-suspension
interface (u = 0.05) and the suspension-sediment interfaces (u = 0.23) and several lines of
constant concentration. Data from Becker (1982)
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Figure 8.20 shows the typical form of parameters fbkðuÞ and reðuÞ.

fbkðuÞ ¼ u1uð1� uÞc and reðuÞ ¼
0 for u�uc

a expðbuÞ for u[ uc

�
ð8:39Þ

where u1; c; a and b are empirical parameters.
Mathematical analysis by Bürger et al. (2000b) imply that the initial-boundary

value problem, given by Eqs. (8.35) to (8.39), has a unique solution depending on
u0 and is therefore well posed, even in cases where r0eðuÞ is discontinuous at
u ¼ uc.

(b) Numerical solution

The initial-boundary value problem is solved numerically using a finite-dif-
ference operator splitting method described by Bürger and Concha (1998). The
equation is split into a second order diffusion equation, a linear convective
equation and a non-linear first order hyperbolic equation, which are solved
numerically for each time step by an implicit finite difference method, a second
order upwind method and a second order total-variation diminishing method,
respectively. For details see Bürger and Concha (1997, 1998), Bustos et al. (1999)
and Bürger et al. (2000c). The algorithm for the solution of the equation is given in
Fig. 8.21.

The solution to this problem, with parameters shown in Fig. 8.20, is given by
the settling curve in Fig. 8.19 and the concentration profile in Fig. 8.22.

(c) Simulation and comparison with published experimental results

Several cases published in the literature were simulated with Eq. (8.35) and
compared with the experimental results (Bürger et al. 1999, 2000a; Garrido et al.
1999). All simulations of batch sedimentation with the phenomenological model
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Fig. 8.20 Thickening parameters for a flocculated copper flotation tailing. Data from Becker
(1982). a Solid flux density function. b Solid effective stress
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closely approximate the experimental results for the settling curve, concentration
profile and excess pressure profile. These results affirm the value of the model
presented in this work. See Figs. 8.22, 8.23, 8.24, 8.25, 8.26, 8.27.

Fig. 8.21 Algorithm for the
simulation of batch
sedimentation according
to Garrido et al. (2001)

Fig. 8.22 Concentration profile for batch sedimentation with parameters given in Fig. 8.20
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Fig. 8.23 Simulation of the sedimentation of a flotation copper tailing (Bürger and Concha
1998). a Concentration profiles. b Excess pore pressure profiles

Fig. 8.24 Simulation and experimental sedimentation data of Holdich and Butt (1997) (Garrido
et al. 2000). a Settling curve. b Concentration profile for 22.000 s

Fig. 8.25 Comparison of simulated and experimental results of Been and Sills (1981) for the
settling and consolidation of a soil. a Simulation. b Experimental
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8.3.3 Model of Conventional Thickening

To analyze continuous conventional thickening it is useful to study separately
steady state and transient behavior. For steady state, the field equations are sig-
nificantly simplified with ou=ot ¼ 0 and there is no need to solve the entire
degenerate parabolic equation numerically.

(a) Field equations at steady state

Equations (8.35) to (8.39) represent the transient evolution of the field variables
in a continuous thickener. Eliminating the time dependence of these equations, the
steady state in a continuous thickener is obtained for regions where the variables
are continuous:

of

oz
¼ 0 ð8:40Þ

oq

oz
¼ 0; with q ¼ vs � ð1� uÞvr ð8:41Þ

ore

oz
¼ �Dqugþ md

1� u
ð8:42Þ

ope

oz
þ ore

oz
¼ �Dqug ð8:43Þ

Equations (8.40) and (8.41) indicate that the solid flux density f and the volume
average velocity q are constant in the thickener and are determined by boundary
conditions. At discontinuities, fluxes are continuous and r uþ;u�½ � ¼ 0 and
q½ � ¼ 0.

Fig. 8.26 Simulation and experimental data from Been y Sills (1981) experiment N� 11, (Bürger
et al. 2000a). a Concentration profile. b Excess pore pressure profile
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Fig. 8.27 Comparison of simulated results with experimental results of kaolin suspensions.
Dreher (1997): a t = 0.052 days, b t = 0.312 days, c t = 0.87 days, d t = 2.13 days,
e 3.91 days and f = 13.27 days (Bürger et al. 2000)
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(b) Solution of the boundary value problem

Feed

The feed to the thickener is assumed totally flocculated in the feedwell and is
mixed with the upcoming water as it enters the thickener body at z ¼ L. It dilutes
rapidly and spreads evenly throughout the thickener’s cross-section. The only
source of solids in the thickener is the feed and, since no solid passes to the
overflow, the solid flux density is continuous at the feed level. This phenomenon is
modeled by assuming a surface source of strength fF at the feed level L. Ideal
Continuous Thickener (ICT), (see Sect. 5.3.1 for the definition). If we choose
QF [ 0, the volume flow of the feed pulp of solid concentration uF , the solid feed
flux density fF is defined by:

fF ¼
�QFuF

S
\0

where S is the thickener’s cross-sectional area. Then, by (8.40):

f ðzÞ ¼ fF

Due to the dilution of the feed, the concentration at the feed level uL, known as
conjugate concentration can be obtained by solving the implicit equation:

f ðLÞ ¼ fF ¼ quL þ fbkðuLÞ

The thickener will show a zone I with water (see Fig. 8.28), a zone II with the
constant conjugate concentration uL, a zone III with varying concentration from
uc to uL, depending on the Mode of Continuous Sedimentation (see Chap. 5, Sect.
5.2.2) and a zone IV of sediment.

Underflow

At the underflow, z ¼ 0, the pulp of concentration uD is evacuated by gravity or
by pumping through an orifice at the bottom of the thickener at a volume flow rate
of QD without mixing with any other source of solid or water. We model this as a
surface sink fD defined by:

fD ¼
�QDuD

S

The volume average velocity at the underflow is:

q ¼ �QD

S
¼ fD

uD

The solid flux density at the underflow is then:

fD ¼ fF ¼ quD ð8:44Þ
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Eq. (8.41) shows that q is independent of z, therefore:

qðzÞ ¼ q ¼ fF
uD

ð8:45Þ

A zone IV of increasing concentration will form below zone III, from the
critical concentration uc to the underflow concentration uD. Figure 8.28 shows the
four zones in a thickener at a steady state. The concentration profile z ¼ zðuÞ in
zone IV at steady state can be obtained from Eq. (8.42) oz=ou:

ozðuÞ
ou

¼ fbkðuÞr0eðuÞ
Dqug

1
fF � fbkðuÞ � quð Þ ð8:46Þ

Integrating this expression with q ¼ fF=uD and boundary condition z ¼ 0 and
u ¼ uD results in:

zðuÞ ¼
Zu

uD

fbkðnÞr0eðnÞ
Dqng fF 1� n=uDð Þ � fbkðnÞð Þ dn ð8:47Þ

Figure 8.29 shows a typical concentration profile of the sediment in a continuous
thickener.

Z o n e  I

RQ

F F
Q ,

D DQ ,

Z on e  II

Z on e  II I

Z o n e  I V

ϕ

ϕFig. 8.28 Ideal conventional
thickener (ICT). Zone I water,
Zone II suspension of
constant concentration, Zone
III suspension of variable
concentration and Zone IV
sediment
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Overflow

In a conventional thickener at steady state no solid particle passes to the
overflow and therefore solids are restricted to 0 � z � L. If the overflow of water
is designated by QR [ 0, the macroscopic balance of pulp, solid and water in the
thickener is:

Solid : QFuF ¼ QDuD

Pulp : QR ¼ QF � QD ð8:48Þ

Water : QR ¼ QF 1� uF

uD

� �
� QD

uD

uF
� 1

� �
ð8:49Þ

(c) Existence of a steady state

The concentration in a thickener is either constant or increases downwards, that
is, the concentration gradient is zero or negative, ou=oz� 0. From Eq. (8.46):

ou
oz
¼ � Dqug

r0eðuÞfbkðuÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
[ 0

quþ fbkðuÞ � fFð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� 0

� 0 ð8:50Þ

Since fbk\0, the first term of (8.50) is positive and the term in round braked must
be less than or equal to zero, that is:

fk ¼ quþ fbkðuÞ� fF ð8:51Þ

The Inequality (8.51) indicates that at steady state in a flux-density function versus
concentration plot, in the range uL�u�uD, the term quþ fbkðuÞ should always
be below the straight horizontal line representing the feed flux density fF .
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Fig. 8.29 Typical
concentration profile in a
continuous thickener at
steady state
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Figure 8.30a shows a valid steady state where fF lies above the continuous flux
density curve and an invalid steady state, where the feed flux density is under the
continuous flux density curve. Figure 8.30b shows the corresponding concentra-
tion profiles. For an invalid steady state the thickener overflows.

Problem 8.1 Consider a flotation tailing 35[%] solid in concentration with the

following thickening parameters: fbkðuÞ ¼ �6:05� 10�4uð1� uÞ12:09 m=s and
reðuÞ ¼ 5:35 expð17:9uÞ. The solid and fluid densities are qs = 2.65 t/m3 and
qf = 1.0 t/m3 respectively. Plot the solid flux density function versus concentra-
tion and the concentration profiles for the following three solid feed fluxes
F = 178 tph, F = 200 tph and F = 260 tph in a thickener of D = 53 m in
diameter and an underflow of wD = 57.3 % solid by weight.

Data

F (tph) 178.0 200.0 260.0
D (m) 43.0 43.0 43.0
S (m2) 1,452.2 1,452.2 1,452.2
qs (ton/m3) 2.65 2.65 2.65
qf (ton/m3) 1.0 1.0 1.0
wF (%weight) 35.0 35.0 35.0
wD (%weight) 57.3 57.3 57.3

Results

uF 0.169 0.169 0.169
uD 0.336 0.336 0.336
q Pulp (ton/m3) 1.28 1.28 1.28
QF (m3/h) 139.2 156.4 203.3
QD (m3/h) 199.82 224.51 291.87
q (m/s) -3.82E-05 -4.29E-05 -5.58E-05
fF (m/s) -1.28E-05 -1.44E-05 -1.88E-05

Figure 8.31 shows two valid and one invalid steady state. Figure 8.32 gives the
corresponding concentration profiles. The profile corresponding to the invalid
steady state tends to infinite and the thickener could not handle that feed rate
without overflowing.

8.3.4 Model of Conventional Thickening in Vessels
with Varying Cross-Section

Conventional thickeners have two sections with different areas, a cylinder at the
top and conical at the bottom to aid to the underflow discharge. The ideal con-
ventional thickener used for modeling a real thickener ignores these facts and
assumes a constant cross section for the equipment. In the following section, we
will introduce a model for an ideal varying cross-section thickener.
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Consider the settling of a flocculated suspension with constant concentration
uðz; tÞ on each horizontal cross-section in a vessel with varying cross-sections
sections SðzÞ, where 0� z� L is the vertical coordinate. The solid and fluid par-
ticles are subjected to the effect of stresses, gravity, buoyancy and drag force.

(b)
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Fig. 8.30 a Valid solid flux density (f = -8.96 9 10-6 m/s) and invalid solid flux density
(f = -1.36 9 10-5 m/s) versus concentration at steady state. b Concentration profiles for
examples in Fig. 8.31a
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Continuity Equation

If the suspension is considered a continuous superimposed two-component
medium, the conservation of mass for the solid and fluid components are:

ou
ot
þ 1

S zð Þ
o

oz
S zð Þuvsð Þ ¼ 0; 0� z� L; t [ 0 ð8:52Þ

� ou
ot
þ 1

S zð Þ
o

oz
S zð Þ 1� uð Þvf

	 

¼ 0; 0� z� L; t [ 0 ð8:53Þ

where t is time and vs and vf are the solid and fluid velocity components respec-
tively and S(z) is the varying cross-sectional area.

Adding these two equations, the mass balance of the suspension is obtained:

o

oz
S zð Þqðz; tÞð Þ ¼ 0 ð8:54Þ
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Fig. 8.31 Solid flux density
function versus concentration
for Problem 8.1. Two valid
steady states for F1 = 178
(tph) and F2 = 200 (tph) and
one invalid steady state
for F3 = 260 (tph), with the
same feed and underflow
concentration

Fig. 8.32 Concentration
profile for problem 8.1
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where q ¼ vs � ð1� uÞvr is the volume average velocity and vr is the relative
solid–fluid velocity. Note that:

�S zð ÞqðtÞ ¼ Q z; tð Þ[ 0 ð8:55Þ

Qðz; tÞ is the volume flowrate of suspension through the thickener, which
according to (8.55) is independent of z:

Q z; tð Þ ¼ Q 0; tð Þ ¼ QDðtÞ; 0� z� L; t [ 0 ð8:56Þ

where QD [ 0 is the prescribed suspension volume underflow rate. From
q ¼ vs � 1� uð Þvr,

uvs ¼ quþ u 1� uð Þvr ¼ �
QDðtÞ
SðzÞ uþ u 1� uð Þvr ð8:57Þ

Substituting equation into (8.52) yields:

ou
ot
þ 1

S zð Þ
o

oz
�QDðtÞuþ S zð Þu 1� uð Þvrð Þ ¼ 0; 0� z� L; t [ 0 ð8:58Þ

We saw that the relative solid–fluid velocity vr can be written in terms of the
Kynch flux density function fbkðuÞ and the solid effective stress reðuÞ in the form:

vr ¼
fbkðuÞ

u 1� uð Þ 1þ r0eðuÞ
Dqug

ou
oz

� �
for 0� z�L ð8:59Þ

Therefore replacing in Eq. (8.58) gives:

ou
ot
þ 1

S zð Þ
o

oz
�QDðtÞuþ S zð ÞfbkðuÞ 1þ r0eðuÞ

Dqug

ou
oz

� �� �
¼ 0

which can be written for 0� z� L; t [ 0 in the form:

ou
ot
þ 1

S zð Þ
o

oz
�QDðtÞuþ S zð ÞfbkðuÞð Þ ¼ 1

S zð Þ
o

oz
S zð Þ�fbkðuÞr0eðuÞ

Dqug

ou
oz

� �
ð8:60Þ

Equation (8.60) is a degenerate parabolic partial differential equation representing
the sedimentation of a flocculated suspension in a thickener with varying cross-
sections. This equation reduces to a hyperbolic equation representing the sedi-
mentation of an ideal suspension when the concentration is less than or equal to the
critical, u\uc:

ou
ot
þ 1

S zð Þ
o

oz
�QDðtÞuþ S zð ÞfbkðuÞð Þ ¼ 0; for 0 � z � L; t [ 0 ð8:61Þ
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Initial and Boundary Conditions

Consider Eq. (8.61). At t ¼ 0, the initial concentration distribution is known:

u z; tð Þ ¼ u0ðzÞ; for 0� z� L ð8:62Þ

At z ¼ zF , the thickener is fed with a suspension of concentration uFðtÞ at a
volume flow rate of QFðtÞ� 0. Therefore, the solid flux at the feed is
QFðtÞuFðtÞ� 0:

QFðtÞuFðtÞ ¼ QDðtÞuD � SðLÞfbkðuLÞ; for t� 0 ð8:63Þ

where uL ¼ uðL; tÞ. At z ¼ 0, the solid flux density fD reduces to its convective
part, therefore:

f ð0; tÞ ¼ quD

and the boundary condition is:

ou
oz

ffiffiffiffi
z¼0;t

¼ �Dqug

r0eðuÞ

ffiffiffiffi
z¼0;t

; for t� 0 ð8:64Þ

The difficulty in solving Eq. (8.60) is the degeneracy into a non-linear hyper-
bolic equation for u\uc. Since this equation is discontinuous for u\uc, it has
weak solutions that need an additional entropy condition to single out the physi-
cally relevant solution. Such a solution for (8.60) was proven by Bürger and
Karlsen (2001).

Steady State

At steady state, Eq. (8.60) becomes:

S zð Þf ðzÞ ¼ SFfF ¼ �QFuF ; for 0� z� L ð8:65Þ

Since at z ¼ 0 the solid flux is QDuD,

QFuF ¼ QDuD ð8:66Þ

On the other hand, for a constant underflow rate of QD, the steady state solution
of Eq. (8.60) is:

�QDuðzÞ þ S zð ÞfbkðuÞ ¼ �SðzÞ fbkðuÞr0eðuÞ
Dqug

du
dz
þ C ð8:67Þ

where C is an integration constant. Using the boundary condition (8.64) for a
desired underflow concentration uD yields C ¼ �QDuD. Replacing this value in
(8.67) we have:

�QD uðzÞ � uDð Þ þ S zð ÞfbkðuÞ ¼ �SðzÞ fbkðuÞr0eðuÞ
Dqug

du
dz
; for 0� z� L ð8:68Þ
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Existence of a Steady State

We have a steady state if the concentration increases downwards in the
thickener, that is, if:

du
dz
� 0 for 0� z� zc ð8:69Þ

where zc is the top of the sediment layer at u ¼ uc. Since the right side of (8.68) is
negative, we have:

�QD uðzÞ � uDð Þ þ S zð ÞfbkðuÞ� 0; for 0� z� zc ð8:70Þ

Concentration Profile

(a) In the hindered settling region, where u�uc, Eq. (8.70) becomes:

�QD uðzÞ � uDð Þ þ S zð ÞfbkðuÞ ¼ 0

and, since QDuD ¼ QFuF , the concentration in Kynch’s region can be obtained by
solving uðzÞ for values zc� z� L, from the implicit algebraic equation:

�QDuðzÞ þ S zð Þfbk uðzÞð Þ ¼ �QFuF ð8:71Þ

(b) In the sediment, where 0� z� zc, we can write from (8.60):

du
dz
¼ Dqug

fbkðuÞr0eðuÞ
� QD

SðzÞ uðzÞ � uDð Þ þ fbk uðzÞð Þ
� �

; 0� z� zc ð8:72Þ

This equation can be solved with the boundary condition uð0Þ ¼ uD.

8.3.5 Clarifier-Thickener Model

In the 1970s and 1980s, equipment called High Capacity Thickeners were intro-
duced to the mining industry by various manufacturers such as Eimco and Env-
iroclear, among others. See Fig. 8.13a and b.

These devices were promoted as having smaller unit area requirements than
conventional installations. The distinct feature of this device was that the feed was
introduced via a deep feedwell below the top of the sediment. The claim was that
by eliminating the settling zone it was possible to reduce space requirements.

Although the conventional thickener model, as described above, is the best tool
available today to design, simulate and control industrial thickeners, it has theo-
retical and practical drawbacks. From a theoretical point of view, there is deficient
interpretation of the global conservation principle because it does not consider the
overflow stream in the solid balance equation. From a practical point of view, the
model does not permit the suspension to rise over the feeding level, which is
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sometimes the case in high capacity thickeners. This is not very relevant in con-
ventional thickeners, but is especially important in thickener fed under the sedi-
ment level. These problems led to the development of the clarifier-thickener model
(Diehl 1995, 1996, 1997, 2000 2001; Bürger et al. 2001, 2003).

In spite of the fact that the Conventional Thickener model, as shown in the
previous section, is the best tool available today to design, simulate and control
industrial thickeners, it has theoretical and practical draw backs. From a theoretical
point of view, there is a deficient interpretation of the global conservation principle
by not consider the overflow stream in the solid balance equation. From a practical
point of view, the model does not permit the suspension to rise over the feeding
level, which is sometimes the case in High Capacity Thickeners. This fact has little
relevance in conventional thickeners, but is especially important in thickener fed
under the sediment level. These problems lead to the development of the Clarifier-
Thickener Model ( Diehl 1995, 1996, 1997, 2000, 2001; Bürger et al. 2001, 2003).

Consider a thickener and divide the vessel into two zones: (1) z� zF , where the
solids can flows upwards and z� zF , where the solid flows downwards. z = zF

represents the feeding level, z = 0 represents the underflow level, z = zc, is the
surface of the sediment level and z = zO is the overflow level. See Fig. 8.33.

The feed volume flowrate of pulp and solid are introduced as a singular surface
sources of strength QFðtÞ and QFðtÞuFðtÞ at z = zF. The underflow volume flux of
pulp and solid, QDðtÞ and QDðtÞuDðtÞ respectively, leave as a singular surface
sinks at z ¼ 0. QOðtÞ and QOðtÞuOðtÞ are the overflow volume flux and solid
overflow volume flux at z ¼ zO, with Qi [ 0; with i ¼ F; D; O.

Macroscopic mass balances yields:

QFðtÞ ¼ QDðtÞ þ QOðtÞ ð8:73Þ

QFðtÞuFðtÞ ¼ QDðtÞuDðtÞ þ QOðtÞuOðtÞ ð8:74Þ

Fig. 8.33 Schematic view of a clarifier-thickener
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Defining:

qF ¼ �
QF

S
; qD ¼ �

QD

S
; qO ¼

QO

S

which can be written as

qFðtÞ ¼ qDðtÞ � qOðtÞ ð8:75Þ

qFðtÞuFðtÞ ¼ qDðtÞuDðtÞ � qOðtÞuOðtÞ ð8:76Þ

The spacial velocities for both zones are

q tð Þ ¼ qOðtÞ for zF\z\zO

qDðtÞ for 0\z\zF

�
ð8:77Þ

and the solid flux density ~fk z; t;uð Þ for both zones including the singular surface
qFðtÞuFðtÞ is

~fk z; t;uð Þ ¼

qOðtÞ u� uFð Þ for z� zO

qOðtÞ u� uFð Þ þ fbkðuÞ for zO [ z [ zF

qDðtÞ u� uFð Þ þ fbkðuÞ for zF � z [ 0
qDðtÞ u� uFð Þ for z� 0

8
>><

>>:
ð8:78Þ

Figure 8.34 shows the flux density functions for zO [ z [ zF and zF � z [ 0.
With these variables, the phenomenological sedimentation-consolidation

equation reads:

ou
ot
þ o

oz
~fk z; t;uð Þ ¼ � o

oz

fbkðuÞr0eðuÞ
Dqug

ou
oz

� �
ð8:79Þ

The numerical solution to this problem was presented by Bürger et al. (2003).
This numerical scheme ensures that the solution generate converges to physically
relevant one.

Fig. 8.34 Solid flux density
functions in the clarification
and thickening zones
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Steady States

At steady state yields

~fk z;uð Þ ¼ � fbkðuÞr0eðuÞ
Dqug

ou
oz

� �
ð8:80Þ

The conditions to obtain a steady state are:

• That du=dz\0 for 0� z� zc, where z ¼ zc is the location of the critical con-
centration uc.

• That at discontinuities the jump condition rðþ:�Þ ¼ fþk � f�k
	 
�

uþ � u�ð Þ is
valid and that the concentration should satisfy the jump stability (entropy of the
jump).

• The term in bracket at the right side of (8.80) is continuous function of z.

Modes of Operation

Betancourt and Concha (2011) argue that it is better to talk about a high
capacity mode of operation instead of high capacity thickener. It is possible to
establish two modes of operation for the clarifier-thickener depending on the
location of the critical concentration uc: if uc occurs in the thickening zone
0\z\zF , we have the Conventional Mode of operation, and if uc occurs in the
clarification zone zF\z\zO we say that the unit is operated in high capacity
mode.

Conventional Mode of Operation
This mode of operation is characterized by a continuous concentration profile

from z ¼ 0 to z ¼ zc\zF .

du
dz
¼ ðqD n� uDð Þ þ fbkðnÞÞDqng

fbkðnÞr0eðnÞ
for 0� z� zc

uð0Þ ¼ uD

ð8:81Þ

In the region zc\z\zF the concentration takes the constant value uL, called
conjugated concentration. The profile is calculated by integrating with boundary
condition uð0Þ ¼ uD, provided qD n� uDð Þ þ fbk nð Þ\0. The conjugate concen-
tration uL is calculated from

qDuD ¼ qDuL þ fbkðuLÞ ð8:82Þ

considering the entropy stability conditions (see Bürger and Narváez 2007):

qOuþ fbk uð Þ� 0 for u 2 ð0;uLÞ
qD uL � uð Þ þ fbk uLð Þ � fbk uð Þ� 0 for u 2 ðuL;ucÞ

ð8:83Þ
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High Capacity Mode of Operation
The High capacity mode of operation is characterized by a continuous con-

centration profile from z ¼ 0 to zc [ zF , followed by a concentration u ¼ 0 for
zc\z� zO. The concentration profile for this mode of operation is calculated from:

du
dz
¼

ðqD u� uDð Þ þ fbkðuÞÞDqug

fbkðuÞr0eðuÞ
for zD� z\zF

ðqOuþ fbkðuÞÞDqug

fbkðuÞr0eðuÞ
for zF\z� zc

8
>>><

>>>:

uð0Þ ¼ uD

ð8:84Þ

provided the following entropy conditions holds

qDðu� uDÞ þ fbkðuÞ� 0; for uðzFÞ�u�uD

qOuþ fbkðuÞ� 0; for 0\u�uðzFÞ
ð8:85Þ

Problem 8.2 Consider a flotation tailing with the following thickening parame-

ters: fbkðuÞ ¼ �6:05� 10�4uð1� uÞ12:09 and re ¼ 5:35 expð17:9uÞ. The mate-
rial, with solid a density 2.65 t m3 and a fluid density of 1.0 t/m3, will be treated in
a Clarifier-Thickener with D = 53 m in diameter and 5 m in height. The feedwell
delivers the feed al zF ¼ 1:2 m and the sediment should not rise above 2 m. If the
feed and underflow concentrations are wF = 35.0 % and wD = 57.3 % solid by
weight respectively. (1) What is the capacity of the thickener, the volume average
velocity and de volume overflow velocity? (2) Draw the solid flux density func-
tions and (3) draw the concentration profile.

Solution

F = 179.337 tph solid; qD = 2.5859E-5; qO = 2.5108E-5

Flux density function fro problem 8.2.
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Concentration profile for problem 8.2.

8.4 Thickening Parameters and Their Determination

There is agreement today that conventional thickeners can be designed based on
laboratory experiments. Nevertheless, one of the difficulties in thickening is lab-
oratory determination of parameters. Although the thickening process is described
by both sedimentation and consolidation, to ignore consolidation leads to errors.
Most experimental work to determine parameter today is solely related to
sedimentation.

8.4.1 Relevant Parameters

Parameters describing the thickening process are the solid flux-density function
fbkðuÞ and the solid effective stress reðuÞ. The solid flux density function is related
to the resistance coefficient KðuÞ for concentrations below the critical level, and to
the sediment permeability kðuÞ for concentrations equal to or greater than the
critical. The solid effective stress reðuÞ is related to the compressibility of the
sediment.

Initial Settling Velocity

Two simple models are often used to describe the initial settling velocity as a
function of concentration, one with two parameters u1 and c, presented by Rich-
ardson and Zaki in 1954, and the other with three parameters u1 ; um ; n, pre-
sented by Michels and Bolger in (1962):
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uðuÞ ¼
u1 1� uð Þc Richardson and Zaki or

u1 1� u
um

� �n
Michels and Bolger

(
ð8:86Þ

Solid Flux Density Function

The solid flux density function is given for values less and greater than the
critical concentration by:

fbkðuÞ ¼
u� uðuÞ for u\uc

k0
uc
u

� �m
for u�uc

(
ð8:87Þ

where the coefficient of resistance KðuÞ is given by

KðuÞ ¼ � Dqu2ð1� uÞ2g

l� fbkðuÞ

 !
for u\uc ð8:88Þ

and the permeability of the sediment kðuÞ by:

kðuÞ ¼ l
Dqu2g

fbkðuÞ ð8:89Þ

Initial Settling Velocity

Settling experiments are usually performed with different solid concentrations
in one or two-liter capacity graduate cylinders, with an initial suspension height of
around 35 cm. For each concentration, the height of the water suspension interface
is recorded as a function of time.

Problem 8.3 Calculate the initial settling velocities for a suspension of calcium
carbonate with solid and fluid densities of qs ¼ 2;710 ðkg=m3Þ and qf ¼
1;000 ðkg=m3Þ respectively.

Table 8.1 gives the experimental height of the water-suspension interface.
Settling plots are drawn with these data, see Fig. 8.35. The initial settling veloc-
ities are obtained from the linear sections of the settling plots for short times. A
straight line is drawn for each concentration, see Fig. 8.36. The slopes of these
lines yield the settling velocities shown at the bottom of Table 8.1.

From Fig. 8.36 the initial settling velocities as a function of u are:

uð0:017Þ ¼ �2:91� 10�4 m=s; vs 0:044ð Þ ¼ �7:97� 10�5 m=s

uð0:103Þ ¼ �3:07� 10�5 m=s; vs 0:265ð Þ ¼ �1:16� 10�6 m=s
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The initial settling velocities are correlated with concentration using Richard-
son and Zaki’s equation uðuÞ ¼ u1ð1� uÞc. The result is shown in Fig. 8.37,
obtaining the following parameters: u1 ¼ �1:72� 10�4 and c ¼ 15:6.

Table 8.1 Settling velocity data for a calcium carbonate suspension

u = 0.265 u = 0.103 u = 0.044 u = 0.017

Time (s) Height (m) Time (s) Height (m) Time (s) Height (m) Time (s) Height (m)

0 0.338 0 0.338 0 0.338 0 0.338
1,692 0.336 1080 0.292 1,080 0.210 468 0.128
2,304 0.335 1,368 0.284 1,332 0.186 720 0.076
3,204 0.331 1,692 0.274 1,620 0.162 1,008 0.051
6,804 0.329 1,980 0.265 1,908 0.144 1,908 0.044
10,404 0.326 2,556 0.247 2,520 0.112 2,520 0.041
15,804 0.319 3,132 0.230 3,096 0.096 5,508 0.037
23,004 0.312 6,120 0.172 6,120 0.079 9,108 0.030
37,404 0.301 9,720 0.162 9,720 0.073 14,508 0.029
51,804 0.291 15,120 0.150 15,120 0.064 21,708 0.029
66,204 0.277 22,320 0.139 22,320 0.061 36,108 0.028
80,604 0.274 36,720 0.127 36,720 0.057 50,508 0.028
95,004 0.264 51,120 0.122 51,120 0.056 64,908 0.027
109,404 0.257 65,520 0.118 65,520 0.056 79,308 0.027
123,804 0.252 79,920 0.117 79,920 0.054 93,708 0.027
138,204 0.247 94,320 0.115 94,320 0.054 108,108 0.026
152,604 0.243 108,720 0.115 108,720 0.054 122,508 0.026
167,004 0.238 123,120 0.115 123,120 0.054 136,908 0.025
181,404 0.235 137,520 0.113 137,520 0.054 151,308 0.025
195,804 0.232 151,920 0.113 151,920 0.054 165,708 0.025
210,204 0.230 166,320 0.113 166,320 0.054 180,108 0.025
ms (m/s) = -1.160E-06 -3.070E-05 -7.970E-05 -2.910E-04
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Fig. 8.35 Settling curve for
calcium carbonate
suspensions at four different
concentrations. Data in
Table 8.1
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Flux Density Function

The solid flux density function is given in Eq. (8.90) and Fig. 8.38, where the
critical concentration was uc ¼ 0:177 and Eq. (8.87) was used to obtain
k0ðucÞ and m:
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Fig. 8.36 Initial settling
velocities for cases of
Table 8.1 and Fig. 8.35
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fbku ¼ �1:72� 10�4uð1� uÞ15:6 for u\uc

�4:66� 10�5u2 0:177=uð Þ5:4 for u�uc

�
ð8:90Þ

The effect of the parameters c and u1 on the flux density function are shown in
Figs. 8.39 and 8.40.
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Resistance Coefficient and Permeability

The solid–liquid resistance coefficient KðuÞ and the permeability kðuÞ can be
obtained from Eqs. (8.88) and (8.89) and from the solid flux density function
fbkðuÞ on (8.90) (Fig. 8.41, 8.42):

KðuÞ ¼ �9:75� 10�5u=ð1� uÞ15:6 ð8:91Þ

kðuÞ ¼ �4:66� 10�5u2 0:177=uð Þ5:4 ð8:92Þ
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Fig. 8.41 Resistance coefficient for the cases in Table 8.1
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Critical Concentration

Roberts (1949) proposed the following equation for consolidation of com-
pressible suspensions:

dD

dt
¼ �K D�D1ð Þ; for Dc�D�D1 ð8:93Þ

where D is the dilution, that is, the ratio of mass of water to mass of solid in the
suspension, K is a rate constant and t is time. The subscript c and ? refer to the
critical and the equilibrium dilution. He considered D�D1 proportional to
z� z1, where z1 is the final sediment height (Tory and Shannon 1965) then, D

can be substituted by z in equation and Robert’s equation may can be written in the
integrated form:

z� z1
L� z1

¼ exp �Ktð Þ; for L� z� z1 ð8:94Þ

Obviously, Eq. (8.94) is not valid for the whole sedimentation range, but only
for consolidation. Robert showed that, in plotting Eq. (8.94) for the whole sedi-
mentation range, three straight lines can be drawn with the solution of this
equation, one for hindered settling, one for the intermediate range and the last for
consolidation. See Fig. 8.43. The critical point in this figure is the intersection of
the second and the third lines. With the value of the critical time tc, the critical
height zc can be obtained from the settling plot.

Problem 8.4 Calculate the critical concentration for data for Problem 8.3.
Figure 8.43 shows the plot of ðz� z1Þ=ðL� z1Þ versus t for a concentration
u ¼ 0:044.
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Fig. 8.43 Settling data plotted according to Robert’s equation for a suspension with an initial
concentration of u0 = 0.044
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From Fig. 8.43, the critical time for the concentration u ¼ 0:044 is
tc ¼ 15;000 s. The critical height zc ¼ 0:064 m is obtained from the settling plot
for tc ¼ 15;000 s, see Fig. 8.44.

In Kynch’s theory, uc is the final concentration, therefore uc can be obtained
from the volume balance at t ¼ 0 and t ¼ tc:

Luo ¼ zcuc ð8:95Þ

For the case of Fig. 8.44:

uc ¼ 0:338� 0:044=0:064 ¼ 0:232 ð8:96Þ

The critical concentration obtained in this way depends on the initial suspension
concentration u0, because Eq. (8.95) is valid only for Kynch’s regime at the end of
sedimentation. It converges to a constant value as the initial concentration tends to
zero (Mode of sedimentation I, see Chap. 5). Therefore, for every test with a
different initial concentration, a critical concentration is calculated and plotted
against the initial concentration, as shown in Table 8.2 and Fig. 8.45. Extrapola-
tion to u0 ¼ 0 gives the critical concentration uc ¼ 0:177.

A simpler and more accurate method for calculating the critical concentration is
based on the conservation of the total solid mass before and after sedimentation,
similar to (8.95), but now with compression. Before settling, the pulp is homog-
enized with a solid mass qsLSu0, where S is the cross sectional area of the column,
L is the initial height of the suspension and qs and u0 are respectively its density
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Fig. 8.44 Calculation of the critical height and critical time for the concentration u ¼ 0:044 are
zc = 0.064 m, tc = 15,000 s
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and concentration. After sedimentation all the solid material is contained in the
sediment, so the following equation is valid:

Lu0 ¼
Zuc

uD

udu ð8:97Þ

Solid Effective Stress

Consolidation occurs due to the self-weight supported by the sediment layers
and its effect is seen in the concentration profile. Therefore, the constitutive
equation for effective solid stress can be calculated by using the measured values
of the concentration profile at the end of a batch sedimentation-consolidation
process.

Table 8.2 Initial versus critical concentrations

u L tc zc uc

0.017 0.338 14,500 0.029 0.198
0.044 0.338 15,000 0.064 0.232
0.103 0.338 30,000 0.130 0.268
0.265 0.338 75,000 0.275 0.326

0

0.05

0.1

0.15

0.2

0.25

0.3

0.000 0.100 0.200 0.300 0.400

Critical concentration ϕ c

In
iti

al
 c

on
ce

nt
rt

io
n 

ϕ
0

ϕ c=0,177

Fig. 8.45 Critical versus initial concentration. The final value of the critical concentration is
uc ¼ 0:177
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Consider equation:

ore

oz
¼ �Dqug� l

kðuÞ ð1� uÞvr; for u�uc ð8:98Þ

At the end of the consolidation process, all velocities are zero. Therefore vr ¼ 0 in
the previous equation. Writing ore=oz ¼ ore=ou� du=dz, Eq. (8.98) can be
written in the form:

ore

ou
¼ � Dqug

du=dz

ffiffiffiffi
t!1

; for 0� z� zc ð8:99Þ

Measuring the concentration profile at the end of the consolidation process, the
functional form of the solid effective stress can be obtained by integrating this
equation in the range uD�u�uc:

reðuÞ ¼ �
Zu

uD

Dqng

dn=dzð Þ dn ð8:100Þ

As we have already seen, there are two models in common use for the solid
effective stress reðuÞ, an exponential function and a potential function:

reðuÞ ¼
a exp buð Þ or

r0
u
uc

� �m
�1

� �
for u�uc

(
ð8:101Þ

Determination of the Critical Concentration

Since at the top of the sediment, z ¼ zc, and the concentration is u ¼ uc, to find
the critical concentration, the concentration profile of the sediment should be
integrated until Eq. (8.100) is satisfied. Using the exponential equation of (8.101)
for the solid effective stress, from (8.99) we have:

du=dz ¼ � Dqug

ab expðbuÞ ; for 0� z� zc ð8:102Þ

Problem 8.5 Defining A1 ¼ � ab
Dqg and A2 ¼ a, the values of a; b and uc can be

simultaneously determined by means of the following numerical integration of the
mass balance (Fig. 8.46):

u0L ¼
Zuc

uD

zðuÞdu ð8:103Þ
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u0L ¼ uc A1 lnðucÞ þ A2uc þ
A2ucð Þ2

2� 2!
þ � � � þ A2ucð Þn

n� n!

 !
þ A3

þ A1 u lnðuÞ � uþ A2u
2
þ A2uð Þ2u

2� 3!
þ � � � þ A2uð Þnu

n� ðnþ 1Þ!

 !
þ A3u

 !ffiffiffiffiffi

uD

uc

ð8:104Þ

where uD and uc are respectively the underflow and critical concentration. For
example, for L ¼ 0:4 ðmÞ and u0 ¼ 0:18, the application of (8.104) yields the
values a ¼ 2:35; b ¼ 17:9 and uc ¼ 0:23.

Permeability

The determination of the permeability for the region u�uc can be done once
the critical concentration has been determined.

For values greater than the critical concentration, the following empirical
equation can be used:

fbkðuÞ ¼ k0
uc

u

� �m

ð8:105Þ

For example, in Fig. 8.47, for u ¼ uc ¼ 0:23, fbkðucÞ ¼ k0 ¼ 6:67� 10�12 and
the best value for the parameter m ¼ 0:8 is obtained by non-linear regression.

8.5 Instrumentation for the Automatic Determination
of Thickening Parameters

It is surprising that until recently the Marcy balance and one-liter graduate cyl-
inders were the off-line instruments to routinely measure pulp concentrations and
thickening parameters in the laboratory and in plants. These artifacts have been

ϕc=0.23
ϕ0=0.18

Fig. 8.46 Calculation of the
consolidation parameters and
the critical concentration

8.4 Thickening Parameters and Their Determination 223



used for most of the 20th century. They are obsolete but are still used by many
laboratories in mineral processing. One of the aims of my academic and profes-
sional work has been to update theory and instrumentation in this area.

8.5.1 Measuring Suspension Concentrations

Controlling pulp density in a concentrator is a daily task. Knowledge of this
parameter is essential in processes as diverse as grinding, flotation, solid–liquid
separation, and concentrate and trailing transport. The Marcy balance is used in
laboratories and plants despite its limitations and imprecise readings. Two new
instruments have been developed by Concha et al. (2011) called the DensiTest and
Industrial Picnometer, which use the same principles as the Marcy balance, but
with a digital strain gauge and a robust picnometer for larger samples.

The advantage of the DensiTest, beside its precision, is that the vessel can have
any volume since it can be introduced to the instrument as input data. The results
can be obtained in all the units used in mineral processing, such as pulp density, %
solid by weight, volume fraction and dilution (Fig. 8.48).

The Industrial Picnometer can be used to determine solid, liquid and suspen-
sion densities. The instrument consists of a balance and a touch screen notebook

Fig. 8.47 Solid flux-density function. From Burgos and Concha (2005)
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concealed in a robust valise. A simple software program directs the operator
during measurement (Fig. 8.49).

8.5.2 Solids Flux Density Function

Traditionally thickener unit areas were obtained by settling tests with suspensions
of several concentrations in one or two-liter graduate cylinders, measuring the
water-suspension interface at regular intervals. In a plot of the water-suspensions

Marcy Balance Densitest

Fig. 8.48 Suspension
concentration measurement

Fig. 8.49 Industrial
picnometer (Cettem
instruments)
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interfaces versus time, the initial straight line was chosen to indicate the suspen-
sion hindered settling velocities (Fig. 8.50).

The principal problem with this experimental procedure is that it is difficult to
make simultaneous measurements in several graduate cylinders and, therefore,
there is no certainty that all measurements are made under the same conditions. On
the other hand, measurements in diluted suspensions at the beginning of the test,
which are of primordial importance, are difficult to read by the naked eye.

To solve this problem an instrument called SediRack was developed at the
University of Concepción (Concha et al. 2005, 2011). SediRack can perform five
simultaneous settling tests. The instrument consists of a frame, with five trans-
parent one-liter tubes with rubber stoppers that contain the suspension. There is a
central axis for the rotation of the tubes to homogenize all five suspensions
simultaneously. Once homogenous suspensions are attained, an appropriate dose
of a flocculant is injected and further agitation as necessary. Alternatively a
rocking motion can complement rotation.

Once homogenization is completed, the water-suspension interface in the tubes
is recorded by the video camera of a notebook. The data are processed automat-
ically to produce the settling velocities for the suspension concentrations. Using an
optimization procedure, the software calculates the solid flux density function and
Coe and Clevenger thickener unit area. See Figs. 8.51 and 8.52.

Figures 8.53 and 8.54 show the settling curves and the calculated solid flux
density function and thickener unit area obtained by Coe and Clevenger’s method.
(See the next section).

SediRack On-line (PSE)

Although it is important for a mineral processing plant to perform periodic
laboratory batch tests to determine thickening parameters and in this way adjust
operations, it is even more important to be able to make on-line determinations of
these parameters. For this purpose, the University of Concepción developed an on-

Fig. 8.50 Batch
sedimentation experiment
with different suspension
concentrations
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line version of the SediRack, called (PSE). See Fig. 8.55 (Segovia and Concha
2012 patent pending).

PSE is an instrument to determine the settling velocity of suspensions in an
industrial thickener. The instrument is based on the laboratory instrument Sedi-
Rack that was developed and patented by the University of Concepción and used
successfully in laboratories and concentrators in Chile. After its validation in
Chilean copper concentrators, it was able to:

1. Determine the settling velocities of flocs coming out of the feedwell, which is
an important parameter to design control strategies.

2. Determine the dilution in the feedwell.
3. Determine the dilution of the feed entering the thickener.
4. Determine the optimal flocculation dose for a pulp entering the thickener.

Fig. 8.51 SediRack
instrument to measure the
solid flux density function

Fig. 8.52 SediRack
complete with notebook with
webcam
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Fig. 8.53 Settling plots obtained for five different concentrations

Fig. 8.54 Solid flux density and thickening unit area obtained
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The instrument has six main components:

• Tank for storing and homogenizing the pulp.
• Tank for storing and preparing the flocculant.
• Set of settling tubes to measure the settling velocity.
• An ultra-flocculation reactor (See Chap. 7).
• Flow meters, pumps, and valves.
• Video camera to record the water-suspension interface.

Figure 8.56 shows the complete PSE system.
A complete test takes about 10 min. The settling curves and the numerical

results of the initial settling velocities for different suspension concentrations are
given in Fig. 8.57.

8.5.3 Solids Effective Solid Stress

An instrument called SediTest was developed by Concha et al. (2008) The
instrument consists of a settling column with 16 conductivity sensors. It measures
the conductivity profile when consolidation is complete. Figure 8.58 shows the
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Fig. 8.55 Scheme of the PSE instrument (SediRack on-line)
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first prototype of the instrument. Figure 8.59 shows the evolution of conductivity
during the settling experiment.

The conversion between conductivity and concentration is done with an
empirical equation based on Maxwell’s work (Garrido 2005):

u ¼ ðks þ 2kf Þð1� KÞ
ðkf � ksÞðK þ 2Þ ð8:106Þ

where kf and ks are the concentration and the conductivity of the suspension, kf is
the conductivity of the fluid, ks is the conductivity of the solid and K ¼ ks

�
kf . The

Fig. 8.56 PSE instrument. a General view. b Sedimentation tubes. c Flocculant tank and dose
pumps. d Pulp mixing tank
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computer software chooses long-term conductivities and converts them into con-
centrations and plots them, as shown in Fig. 8.60.

Equation (8.106) reference goes here converts into concentration profile into the
solid effective stress reðuÞ (Fig. 8.61).

SediTest On-line (SMC)

For the compressibility of the sediment, represented by the solid effective stress
reðuÞ, an on-line instrument was also developed at the University of Concepción
by (Segovia and Concha 2012; patent pending). See Figs. 8.62 and 8.63.

The SMC On-line determines the compressibility of sediment by measuring the
concentration profile in a thickener. It consists of the following components:

• Airflow controller to maintain constant flow in the instrument.
• Level detection of the detector.

Fig. 8.57 Initial settling
velocities from PSE

Fig. 8.58 Prototype of
seditest instrument to
measure sediment
compressibility
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• Descent detention.
• Differential pressure measurement.
• Washing the cable and detector.
• Data processing.

The instrument measures the pulp concentration as solid volume fraction in the
thickener on the basis of differential pressure measurements following the
equation:

upulp ¼
DP

ðqsolid � qLiquidÞ � g � Dh
�

qLiquid

ðqsolid � qLiquidÞ
ð8:107Þ

Figure 8.64 shows concentration profiles measured in an industrial thickener of
a Chilean copper concentrator. The horizontal axis represents the solid concen-
tration and the vertical axis represents the height of the thickener.

TK AIR FV-02

FV-01

FV-04

Flow meter

FV-03

Flow meter

FIC
02

FIC
01

AIR

Pressure 
gauge

Fig. 8.62 Schematic view of
the SMC (SediTest on-line)

(b)(a)Fig. 8.63 Prototype of SMC
instrument. a General view of
prototype. b Sensor and
instrumentation
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8.6 Thickener Design

The design of a new thickener or the determination of the capacity of an existing
thickener requires calculations at steady state. Since 1912, several methods have
been proposed for thickener design. They can be classified based on their physical
foundation as: macroscopic balances, batch Kynch kinematical process, continu-
ous Kynch kinematic process and dynamic sedimentation process (Concha and
Barrientos 1993). In this section, we discuss their advantages and limitations.

8.6.1 Methods Based on Macroscopic Balances

Mishler (1912) and Coe and Clevenger (1916) proposed the first methods of
thickener design based on macroscopic balances.

(a) Mishler’s method

Consider a thickener at steady state, with a solid mass feed flow of F (MT
-1), a

concentration DF [-], expressed as a dilution, defined as the ratio of liquid to solid
mass, an underflow mass rate and concentration D (MT

-1) and DD [-] respectively
and a mass flow rate of water in the overflow of O (MT

-1). A solid and water mass
balances gives:

Solid : F ¼ D ð8:108Þ

Water : FDF ¼ DDD þ O ð8:109Þ

Fig. 8.64 Concentration
profile in an industrial copper
tailing thickener obtained by
the SMC
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If qf is the water density, the volume overflow rate of water is QO ¼ O=qf , then:

QO ¼
F DF �DDð Þ

qf
ð8:110Þ

According to Mishler (1912) the overflow rate of water QO within the thickener is
equal to the volume flow rate of water formed in a settling column during sedi-
mentation for a suspension of the same concentration as that of the feed (Fig. 8.65).

Since the rate of water appearance, R [ 0 in the batch test is equal to the rate of
descent of the water suspension interface, the water volume flow rate is
QO ¼ S� R, and from Eq. (8.110):

S ¼ F DF �DDð Þ
qf R

ð8:111Þ

Mishler used the units of (short tons/day) for F, (feet/min) for R and (pounds/cubic
feet) for qf , so that the area in square feet is:

S ¼ 0:0222S ¼ F DF �DDð Þ
qf RðDFÞ

in ðft2Þ ð8:112Þ

The method consists of measuring the settling velocity RðDFÞ of the water-
suspension interface in a settling column, with the dilutions of the feed to the
thickener, and using Eq. (8.112). This balance has the implicit assumption that the
concentration in zone II in a thickener is that of the feed to the thickener.

The unit area, defined as UA ¼ S=F, is given by:

UA ¼ 0:0222S ¼ DF �DDð Þ
qf RðDFÞ

in ðft2=stpd) ð8:113Þ

Problem 8.6 Use Mishler’s method to calculate the area of a thickener to treat
1,200 (tpd) of calcium carbonate with a density of 3.6 t/m3 and feed concentration
of wF ¼ 35 % solids by weight. The settling velocity of a sample of feed is R ¼
8:24� 10�6 m=s and the density of the water is 1.0 t/m3. An underflow concen-
tration of 52.4 % solid by weight is needed.

F F O

D, D

RR

Fig. 8.65 Macroscopic mass
balance in a continuous
thickener according to
Mishler (1912)
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The relationship between dilution and % solid by weight is:

DF ¼
100� wF

wF
¼ 100� 35:0

35:0
¼ 1:857

DD ¼
100� wD

wD
¼ 100� 52:4

52:4
¼ 0:908

UAM ¼
DF �DD

qf R
¼ 1:857� 0:9084

1:0� 8:24� 10�6 � 24� 3600
¼ 1:33 ðm2=tpd)

S ¼ UAM � F ¼ 1:3326� 1:200 ¼ 1599 ðm2Þ
D ¼ 4� S=pð Þ1=2¼ 45:1 ðmÞ

The following table shows the results.

wF % solid weight DF DD R m/s UA m2/tpd F tpd S m2 D m

35 1.8570 0.9080 8.24E-06 1.333 1,200 1,599 45

(b) Coe and Clevenger’s method

Coe and Clevenger (1916) used the same mass balance as Mishler, but indi-
cating that in a thickener a range of pulp concentrations, each with a specific
settling velocity, will appear from the feed to the discharge the concentration. See
Fig. 8.66.

The feed with pulp dilution DF passes through several dilutions Dk before
leaving the thickener with dilution DD. The pulp with the lowest settling velocity
predominates in the settling zone. A mass balance at the level of dilution Dk gives:

Solid : F ¼ D ð8:114Þ

Water : FDk ¼ DDD þ O ð8:115Þ

Calculating the mass flow rate of water O and the volume flow rate QO results in:

Qo ¼
F Dk �DDð Þ

qf

vs
vf

vf =vs

F, DKvs vs

Fig. 8.66 Macroscopic mass
balance in a continuous
thickener according to Coe
and Clevenger (1916)
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With the same argument given by Mishler, the unit area UA is given by:

UACC ¼
Dk �DDð Þ
qf RðDkÞ

ð8:116Þ

Since settling velocities at different dilutions give different UAs, several settling
experiments should be made with dilutions ranging from the feed to the discharge
dilution, calculating the respective unit area. The maximum unit area should be
chosen. Coe and Clevenger used the following units: liquid density
qf ¼ 62:4 ðlb=ft3Þ, settling velocity R in (ft/h) and thickener capacity F in (lb/h/
ft2), with the result that the unit area is given in (ft2/lb/h) per pounds:

UACC ¼ max
DF �Dk �DD

0:01604
Dk �DD

RðDkÞ

� �
ðft2=lb=h) ð8:117Þ

Taggart (1927) and Dalstrohm and Fitch (1985) used qf ¼ 62:4 ðlb=ft3Þ and the
settling velocity Rk in (ft/h), giving the Unit Area in (ft2/stpd):

UATDF ¼ max
DF �Dk �DD

1:33
Dk �DD

RðDkÞ

� �
ðft2=stpd) ð8:118Þ

Expressing the densities q in [kg/m3], the concentrations in volume fraction of
solids u ¼ qf = qf þ qsD

	 

and the solid flux density fbkðuÞ ¼ �uRðuÞ\0 in (m/

s), equation can be written in the form:

UACC ¼ max
uF �uk � uD

1:1574� 10�2 � 1
qsfbkðukÞ

uk

uD
� 1

� �� �
ðm2

�
tpd) ð8:119Þ

Problem 8.7 Use Coe and Clevenger’s method to calculate the area of a thickener
to treat 1,200 tpd of calcium carbonate with a density if 2.53 t/m3 and feed con-
centration of w = 35 % solids by weight. The density of the water is 1 t/m3. The
settling velocity of pulps ranging from the feed to the underflow concentration is
given in the next table. An underflow concentration of 52.4 % solid by weight is
needed.

Experiments at different concentrations gave the following settling velocities:

Concentration as % solids by weight Concentration as dilution Settling velocity R in m/s

35.0 1.857 8.24 9 10-6

40.0 1.500 4.27 9 10-6

45.0 1.222 2.06 9 10-6

50.0 1.000 8.9 9 10-7

52.4 0.908 5.76 9 10-7
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Using equation in metric units, we have for Dk ¼ 1:857:

UAð1:857Þ ¼ 1:857� 0:908
8:24� 10�6 � 24� 3600

¼ 1:333 m2=tpd

Calculating all concentrations of the table above, the following results were
obtained:

Wk % sol uk Dk DD R m/s AU m2/tpd F tpd S m2 D m

35.0 0.177 1.8570 0.9080 8.24E-06 1.3330 1,200.00 1,599.6 45
40.0 0.211 1.5000 0.9080 4.27E-06 1.6046 1,200.00 1,925.6 50
45.0 0.247 1.2220 0.9080 2.06E-06 1.7642 1,200.00 2,117.0 52
50.0 0.286 1.0000 0.9080 8.90E-07 1.1964 1,200.00 1,435.7 43
52.4 0.306 0.9080 0.9080 5.70E-07 0.0000 1,200.00 0.0 0

The area of the thickener is S ¼ 2117 ðm2Þ and D ¼ 52 ðmÞ.
Coe and Clevenger argued that the height of the thickener is important only if

the underflow concentration is greater than the critical concentration. In that case,
space should be provided for the sediment to have a sufficient residence time to
reach the underflow concentration.

Call t* the time to reach the required underflow concentration in a batch test.
Divide the time interval [0, t*] in n intervals Dti ¼ ti�1 � ti. The height zi of each
interval is calculated as zi ¼ Vi=S with i = 1,2,…n, where Vi is the volume of the
sediment with average pulp density �qi and S is the column cross-section area. The
volume Vi is Vi ¼ FDti=ui�qi, where F is the mass flow rate to the thickener. Then:

zi ¼
FDti

ui�qiS
; i ¼ 1; 2; . . .; n

¼ 1
UA

Dti
�ui Dq�ui þ qf

	 


and the total height is:

zc ¼
X

i

zi

¼ 1
UACC

X

i

Dti

�ui Dq�ui þ qf

	 
; i ¼ 1; 2; . . .; n
ð8:120Þ

In these expressions, �ui ¼ ui�1 � ui. For a height zc, Coe and Clevenger rec-
ommended the addition of 0.50–1.00 m for clear water.

Problem 8.8 For the data of Problem 8.7, calculate the height of the thickener.

The unit area in problem 8.7 was UA0 ¼ 1:76 m2=tpd for an underflow con-
centration of wD ¼ 52:4 ½%� solids by weight. In terms of solid volume fraction,
the underflow concentration is uD ¼ 0:306 (Figs. 8.67, 8.68).
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Applying Eq. (8.120) the sediment height should be 0.813 m. Adding 1.0 m for
the clear water zone, the total height of the thickener must be more than 1.813 m.
See the following table.

Zi cm ui Dti s DZi m

0.338 0.177 0 0
0.331 0.181 10 0.000
0.328 0.182 8,000 0.221
0.324 0.185 12,000 0.109
0.319 0.188 16,000 0.107
0.315 0.190 20,000 0.105
0.311 0.192 24,000 0.104
0.308 0.194 28,000 0.103
0.306 0.196 30,500 0.064

Hc (m) = 0.813
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Fig. 8.67 Calculation of the
height of a thickener
according to Coe and
Clevenger (1916) (Concha
and Barrientos 1993)
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8.6.2 Methods Based on Kynch Sedimentation Processes

Kynch’s theory led several researchers, including Talmage and Fitch (1955),
Wilhelm and Naide (1979), Oltmann (), Hassett (1958, 1961, 1964a, b, 1968) and
Yoshioka et al. (1957) to use this theory as the basis for thickener design. The
method used universally until then was that of Coe and Clevenger (1916) but it
was felt that it required too many laboratory tests. Researchers looked for a
methodology that required less effort in the laboratory and Kynch’s theory was the
answer.

To describe the different methods developed by this group of researchers,
divide them into those based on the Kynch Batch Sedimentation Processes and on
the Kynch Continuous Sedimentation Process. To review Kynch’s theory see
Chap. 5.

(a) Methods based on Batch Kynch Sedimentation Processes

Consider an ideal suspension subjected to batch sedimentation. Kynch’s theory
shows that the suspension concentration uðz; tÞ can be obtained from a hyperbolic
conservation law for regions where the variables are continuous, by the theory of
characteristics:

ou
ot
þ of

oz
¼ 0 ð8:121Þ

For discontinuities, jump conditions replace Eq. (8.121):

r uþ;u�ð Þ ¼ f½ �
u½ � ; with 	½ � ¼ 	ð Þþ� 	ð Þ� ð8:122Þ

The necessary conditions to obtain a solution to Eq. (8.122) are: to have a con-
stitutive equation for the flux density function f ¼ f ðuÞ and initial and boundary
conditions.

In a settling curve z ¼ zðtÞ, as in Fig. 8.69, tangents such as Z=T to the settling
curve are the rate of displacement of the discontinuity of a given concentration in
the water/suspension, and represents the sedimentation velocity of suspensions of
concentration Z=T ¼ vsðukÞ:

rIðuÞ ¼ rð0;uÞ ¼ fbkðuÞ � fbkð0Þ
u� 0

¼ fbkðuÞ
u
¼ vsu �

Z

T
ð8:123Þ

The straight lines starting at 0; 0ð Þ and ending at zk; tkð Þ, for several values of k, are
characteristics with constant concentration uk and slope f 0bkðuÞ.

The volume of solids per unit cross sectional area in the settling column is u0L.
While traveling from 0; 0ð Þ to zk; tkð Þ the wave of concentration uk crosses the total
volume of solids, then:
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u0L ¼
Ztk

0

uk vsðukÞ þ f 0bkðuÞ
	 


dt

¼ uk
Z

T
þ zk

tk

� �
tk

From Fig. 8.69, we see that Z=T ¼ Z � zkð Þ=tk, therefore

u0L ¼ ukZ ð8:124Þ

Therefore, the value of the concentration uk can be found as:

uk ¼ u0
L

Z
ð8:125Þ

From Kynch’s theory, many pars uk; vsðukÞð Þ can be obtained from a settling
curve by drawing tangents as shown in Fig. 8.70.

Since uk ¼ u0L=Z and vsðukÞ ¼ �Z=T , then fbkðuÞ ¼ ukvs ukð Þ ¼ �u0L=T .
The unit area can be calculated from Coe and Clevenger’s equation:

UACC ¼ max
uF �uk �uD

1:1574� 10�2 � 1
qsfbkðukÞ

uk

uD
� 1

� �� �
m2=tpd

From (8.125) uk=uD ¼ ZD=Z and fbkðukÞ from yields the unit area determined
from Kynch’e equation:

UAK ¼ max
uF �uk �uD

1:1574� 10�2 � T

qsu0L
1� ZD

Z

� �� �
m2=tpd ð8:126Þ

Problem 8.9 Use Kynch’s theory for batch sedimentation to calculate the area of
a thickener to treat 1,200 tpd of calcium carbonate with a density if 2.5 t/m3 and
feed concentration of w = 35.0 % solids by weight. The density of the water is

T

P(Zk,tk)

P(Zc,tc)

Z

L

0
t

z

Fig. 8.69 Settling curve
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1 t/m3. A settling curve is given for a suspension with 10.3 % solid by weight. An
underflow concentration of 52.4 % solid by weight is needed.

The table below and Fig. 8.71 show the values of T and Z obtained from the
tangents and the tangent drawn to the curve.
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Fig. 8.71 Tangents in the settling curve from Kynch’s theory
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Fig. 8.70 Determination of the concentration and settling velocity of a suspension according to
Kynch’s method of batch sedimentation
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According to this method, the area of the thickener is S ¼ 2;747 m2 and the
diameter is D ¼ 59 m.

Talmage and Fitch method

Talmage and Fitch (1955) wrote from Fig. 8.72:

Z

T
¼ Z � ZD

tu

where ZD is the tangent to the settling curve for the underflow concentration uD,
and tu is the intersection of the tangent Z-T with the horizontal drawn from ZD. The
coordinate ZD is obtained from ZD ¼ u0L=uD.

Replacing into (8.126), and observing that the maximum of tu is tU, the fol-
lowing simple equation is obtained:

AU ¼ max|{z}
Z

tu

qsu0L

� �
� tU

qsu0L
ð8:127Þ

AUTF ¼ 1:1574� 10�2 tU
qsu0L

; ðm2tpd) ð8:128Þ

TD

P(Zk,tk)

Z D

L

0

z

TtUtu

Z

Time t

Fig. 8.72 Talmage and Fitch
construction (1955)

Zk cm Tk s L cm u0 uk fbk(u) m/s AU0 m2/tpd F tpd S m2 D m

0.338 20,0000 0.338 0.265 0.265 4.4785E-07 1.3762797 1,200 1,652 46
0.330 395,000 0.338 0.265 0.271 2.2676E-07 2.2891053 1,200 2,747 59
0.320 500,000 0.338 0.265 0.280 1.7914E-07 2.1805432 1,200 2,617 58
0.310 610,000 0.338 0.265 0.289 1.4684E-07 1.7290118 1,200 2,075 51
0.300 760,000 0.338 0.265 0.299 1.1786E-07 0.9165819 1,200 1,100 37
0.293 850,000 0.338 0.265 0.306 1.0538E-07 0 1,200 0 0
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Talmage and Fitch method consist of:

1. Performing a settling test with an ‘‘intermediate ‘‘concentration. (we will dis-
cuss this further on).

2. Drawing the settling curve.
3. Determining the height ZD from ZD ¼ u0L=uD.
4. Drawing a horizontal line from ZD to the settling curve. The intersection defines tU.
5. If metric units are used, using Eq. (8.128) to calculate the unit area.

Problem 8.10 Use Talmage and Fitch’s method to calculate the area of a
thickener to treat 1,200 tpd of calcium carbonate with a density if qs ¼ 2:5 t=m3

and feed concentration of wF ¼ 35 % solids by weight. The density of the water is
qf ¼ 1 t=m3. A settling curve is given for a suspension with w0 ¼ 47:9 % solid by
weight. The underflow concentration is wD ¼ 52:4 % solid by weight. The critical
concentration is wc ¼ 42:7 % by weight.

According to Kynch’s theory ZD ¼ u0 � L=uD ¼ 0:265� 0:338=0:303 ¼
0:293. Figure 8.73 should be constructed.

Applying Eq. (8.128), the unit area UATF can be calculated. The results can be
summarized in the following table:

tU 50,000
AU0 2.251
S 2,702
D 59

Time (s) Height (m)

0 0.338
1692 0.336
2304 0.335
3204 0.331
6804 0.329

10404 0.326
15804 0.319
23004 0.312
37404 0.301
51804 0.291
66204 0.277
80604 0.274
95004 0.264

109404 0.257
123804 0.252
138204 0.247
152604 0.243
167004 0.238
181404 0.235
195804 0.232
210204 0.230
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Fig. 8.73 Talmage and Fitch construction (1955)
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Since Talmage and Fitch’s method is used for all types of pulps, compressible
and incompressible, in some cases the horizontal line drawn from ZD does not cut
the settling curve. In these cases, Talmage and Fitch recommend drawing the
tangent Z-T for the critical concentration uc and obtaining tU as the intersection of
this line with the horizontal line. See Fig. 8.74.

Oltman method

From experience, Fitch and Stevenson (1976) found that thickener area obtained
from the critical concentration was too great and adopted an empirical modifica-
tion proposed by Oltman, an engineer at Dorr Oliver. Without justification, Oltman
proposed substituting the tangent to the settling curve by the straight line drawn
from point ðL; 0Þ passing through the point ðzc; tcÞ. See Fig. 8.74.

Talmage and Fitch and Oltman’s method are based on the knowledge of the
critical concentration and on the assumption (erroneously) that a compressible
pulp at the underflow concentration follows Kynch’s theory.

8.6.3 Methods Based on Continuous Kynch Sedimentation
Processes

In Chap. 5 Sect. 5.2.3 Kynch’s theory for a continuous process was studied.
Figure 5.14a and c show that Unit Area of an ideal thickener treating an ideal
suspension is given by:

UA0 ¼
1

qsfbkðu

M Þ
u

M
uM
� 1

� �

where uM and u

M are the concentration of the maximum point in the flux-density
curve and the conjugate concentration, respectively. The underflow concentration

T

P(Z c,tc)

Z

L

0
t

z

ZD

tUto

Fig. 8.74 Talmage and Fitch
II (1955) and Oltman’s
construction (Fitch and
Stevenson 1976)
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is uD ¼ uM . These methods imply knowledge of the flux-density function. See
Fig. 5.14a and c.

Yoshioka and Hassett Method

Yoshioka et al. (1957) proposed a method of thickener design based on the
knowledge of the batch flux-density function and its relationship with the con-
tinuous flux density and the underflow concentration (see Chap. 5, Sect. 5.2.4). If
fbkðuÞ is the batch fluxdensity and fkðuÞ is the continuous flux density, we can
write at steady state:

fF ¼ fk ¼ quþ fbkðuÞ ð8:129Þ

(8.129) is written in the form:

fbkðuÞ ¼ fF � qu ð8:130Þ

In a graph of fbkðuÞ versus u, Eq. (8.130) represents a straight-line tangent to
fbkðuÞ at u ¼ uM with slope q ¼ fF=uD. Figure 8.75 shows these functions with
the ordinate axis as �fkðuÞð Þ and �fbkðuÞð Þ.

The design method can be summarized as follows:

1. Draw the given batch flux-density function.
2. Select the underflow concentration.
3. For the given batch flux-density function, draw a straight line from the point,

0;uDð Þ tangent to the batch flux density curve at point u ¼ uM .
4. The line cuts the ordinate at point fF ; 0ð Þ.
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Problem 8.11 Using the method of Yoshioka and Hassett, design a thickener to
process 1,200 tpd of calcium carbonate with a feed concentration of 35 % solids
by weight. The solid density is 2.5 t/m3 and the desired underflow concentration is
52.4 % solids by weight. The solid batch flux-density function is given in
Fig. 8.76.

The feed and underflow concentrations are:

uF ¼
1� 35:0

2:5� 100� 35:0ð Þ þ 1� 35:0
¼ 0:177

uD ¼
1� 52:1

2:5� 100� 52:4ð Þ þ 1� 52:4
¼ 0:306

In Fig. 8.76 a straight line starting from and tangent to the curve give a value of
�fF ¼ 2:64� 106 ðm=sÞ. Then the thickener capacity is given by:

S ¼ F

�fF � qs � 3600� 24
¼ 1200

2:64� 10�6 � 2:5� 3600� 24
¼ 2104 ðm2Þ

UA0 ¼
S

F
¼ 2104

1200
¼ 1:753 ðm2=tpd); D ¼ 52 (m)

Hassett (1958) noted a problem in the interpretation of the underflow concen-
tration. Figure 8.76 shows that according to Kynch’s theory only two concentra-
tions exist in the thickener at steady state, the underflow concentration uM and the
conjugate concentration u

M . Hassett said:
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… In this way the theory predicts the absence of the feed concentration and the underflow
concentration in the thickener, which means that an abrupt growth of concentration must
exist in the underflow….

The theory developed in Chap. 5 shows that Hassett’s reasoning is wrong because
he tried to apply Kynch’s theory to compressible suspensions. The theory is correct
for ideal but not for compressible suspensions.

Wilhelm and Naide Method

Wilhelm and Naide (1979) also started from the knowledge of the flux-density
function for continuous thickening, like Yoshioka and Hasset, and wrote similar
equation at steady state:

fF ¼ quþ fbkðuÞ ¼ quD

Differentiating with respect u results:

0 ¼ qþ f 0bkðuMÞ

from which:

q ¼ �f 0bk uMð Þ ð8:131Þ

Substituting in the previous expression yields:

�f 0bkðuMÞuþ fbkðuÞ ¼ �f 0bkðuMÞuD

This equation should apply for u ¼ uM , then:

�f 0bkðuMÞuM þ fbkðuMÞ ¼ �f 0bkðuMÞuD ð8:132Þ

Now, if we assume that the solid settling velocity can be expressed in the form:

vsðuÞ ¼ �au�b; ð8:133Þ

the solid flux-density function fbkðuÞ would be fbkðuÞ ¼ �au1�b and its derivative
at u ¼ uM:

f 0bkðuÞ ¼ �að1� bÞu�b
M ð8:134Þ

Substituting (8.134) with (8.132), and calculating uM results in:

uM ¼
b� 1

b
uD ð8:135Þ

Relacing uM from (8.135) in (8.134) and the result in (8.131) yields:

q ¼ �að1� bÞ b� 1
b

� ��b

u�b
D ð8:136Þ
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Since at steady state fF ¼ quD, using (8.136) we reach the result:

fF ¼ �að1� bÞ b� 1
b

� �1�b

u1�b
D ð8:137Þ

and the area and unit area AU are:

S ¼ F

�fF � qs � 3600� 24
¼ F

qs � 3600� 24

b�1
b

	 
b�1
ub�1

D

abð1� bÞ ðm
2Þ

UA ¼ S

F
¼ 1
�fF � qs � 3600� 24

¼ 1
qs � 3600� 24

b�1
b

	 
b�1
ub�1

D

að1� bÞ ðm2=tpd)

ð8:138Þ

The expression vs uð Þ ¼ �au�b in (8.133) represents the settling velocity solely
in a narrow range of concentrations, therefore the complete function AUðuÞ must
be replaced by a series of expressions valid in this narrow range. In this way,
expression (8.138) is valid for each region, as shown in Fig. 8.77. Wilhelm and
Naide conclude that the maximum value found for AUðuÞ must be chosen as the
correct value for the Unit Area.

Problem 8.12 Using Wilhelm and Nadie’s method of thickener design to process
1,200 tpd of calcium carbonate with a feed concentration of 35 % solids by
weight. The solid density is 2.5 t/m3 and the desired underflow concentration is
52.4 % solids by weight. From a table of data, the settling velocity was calculated
and plotted in Fig. 8.77. The feed and underflow concentrations are respectively:

uF ¼
1� 35:0

2:5� 100� 35:0ð Þ þ 1� 35:0
¼ 0:177

uD ¼
1� 52:1

2:5� 100� 52:4ð Þ þ 1� 52:4
¼ 0:306

For each region, these equations can be applied to obtain the following values
for the unit area, the highest of which should be chosen. See Fig. 8.78.

Wilhelm and Nadie’s design method gives a value of UA ¼ 1:815 m2=tpd and
S ¼ UA� F ¼ 1:815� 1200 ¼ 2178 m2; D ¼ 53 m2.

8.6.4 Methods Based on the Phenomenological Theory

In Sect. 8.3.6 we demonstrate that, for a steady state to exist in a continuous
thickener, it is necessary that the following inequality be obeyed:

fF � quþ fbkðuÞ; for uL�u�uD ð8:139Þ
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where fF is the feed solid flux-density function, and fbkðuÞ is Kynch’s batch flux
density function. Since q ¼ fF=uD, substituting (8.139), the following is valid for
the steady state: fF � fF

uD
uþ fbkðuÞ; for uL�u�uD:
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Dividing by u and rearranging yields:

fF �
fbkðuÞ
1� u

uD

; for uL�u�uD ð8:140Þ

Flux Density

By definition F ¼ �qsfFS, where F is the thickener capacity measured as solid
mass flux, and S is the thickener’s cross sectional area. Then, substituting into
(8.140) gives:

F

S
� qsfbkðuÞ

1� u
uD

; in ML�2T�1; for uL�u�uD ð8:141Þ

Unit Area

Since the unit area is the reciprocal of solid flux density:

S

F
� 1

qsfbkðuÞ
1� u

uD

� �
; in L�2M�1T; foruL�u�uD ð8:142Þ

Defining the unit area function UAðuÞ:

UAðuÞ :¼ � 1
qsfbkðuÞ

� �
1� u

uD

� �
; for uL�u�uD ð8:143Þ

And the unit area is:

UA ¼ max
uL �u�uD

UAðuÞð Þ ð8:144Þ

Height of the Sediment

The height of the sediment is obtained by integrating the equation:

zc ¼
Zuc

uD

r0eðnÞfbkðnÞ
Dqng fF � qn� fbkðnÞð Þdn ð8:145Þ

where uD and uc are the underflow and the critical concentrations respectively.
To the height of the sediment ‘‘zc’’ in the thickener, a height ‘‘h’’ for the

sedimentation zone and a height ‘‘c’’ for the clear water must be added. The last
two zones have arbitrary depth.

H ¼ cþ hþ zc ð8:146Þ
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Solid Inventory in the Thickener

Solid inventory is the amount of solid stored as sediment and suspension in the
thickener at any time. This material consists of a pulp of the conjugate concen-
tration uL and a sediment of variable concentration from uc to uD. Then, the solid
inventory can be expressed as:

I ¼
ZL

0

qsuðzÞSdz ¼ qsuLS L� zcð Þ þ
Zzc

0

qsuðzÞSdz ð8:147Þ

where L is the height of the outlet of the feedwell.

(a) Adorjand’s Method

Adorjan (1975, 1976) was the first author to utilize Eq. (8.144) for thickener
design. Although his deduction differs from the one used here. Adorjan argues that
a thickener operated under limiting condition, that is, designed using Eq. (8.143)
with the equal sign, requires a considerable pulp depth and therefore it must be
operated at only a fraction of the limiting rate. This fraction he called the loading
factor, and he designed it by k ¼ F=F0, where F is the actual feed rate and F0 is
the limiting feed rate. In terms of unit area UA ¼ UA0=k; with 0� k� 1. Adorjan
adopted as criteria to select k a safety factor in the design, so that a certain
deviation from the design would be possible.

Problem 8.13 Using Adorjan’s method, design a thickener to process 1,200 (tpd)
of calcium carbonate with a feed concentration of 35 % solids by weight. The solid
density is 2.5 t/m3 and the desired underflow concentration is 52.4 % solids by
weight. Constitutive equations for the settling velocity and the solid effective stress
are available with critical concentration at 42 % solids by weight:

fbkðuÞ ¼ �1:72� 10�4u� ð1� uÞ15:6 m=s

reðuÞ ¼ 2:0expð22uÞ Pa

The feed and underflow concentrations are respectively uF ¼ 0:177 and
uD ¼ 0:306.

Replacing the corresponding numerical values in Eq. (8.144), the following is
obtained:

UAFðuÞ ¼ �
1

2:5� 3; 600� 24��1:72� 10�4 � uð1� uÞ15:6

u
0:306

� 1
� �

Plotting the unit area function UAðuÞ, gives Fig. 8.79, with a maximum at
u ¼ 0:256 and a unit area of 1:756 m2=tpd. Using the safety factor k ¼ 0:95,
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Adorjan’s Unit Area becomes: UA ¼ 1:75=0:95 ¼ 1:84 m2=tpd. Finally, the area
and diameter of the thickener are: S ¼ 1:84� 1; 200 ¼ 2; 208 m2 and D ¼ 53 m.

(b) Cettem’s Method

In a recent work, Concha and collaborators (Garrido et al. 2003) developed an
algorithm to design and simulate continuous thickeners. Equations (8.143) and
(8.144) are also the bases of this method:

UA u;uDð Þ : ¼ 1
qsfbkðuÞ

u
uD
� 1

� �
; for uL�u�uD

UA ¼ max
uL �u�uD

UA uð Þð Þ

It is interesting to note that Eq. (8.144) has the same form as Coe and Cle-
venger’s equations. But there is a small but important difference. Coe and Cle-
venger assumed that the range of concentration where the value of UAðu;uDÞ
should be maximized was the feed and the underflow concentrations uF �u�uD,
while Cettem’s method used the known fact that the feed to a thickener is always
diluted to the conjugate concentration uL when entering the thickener, therefore
the range of concentration should be uL�u�uD. Figure 8.80 shows the
difference.

In designing a thickener, the desired feed flow rate F and underflow concen-
tration uD, together with the thickening parameters fbkðuÞ ; reðuÞ ; uc and the
solid and liquid densities qs andqf , must be known. With these values, the function
UAðu; uDÞ can be calculated for any value of uL�u�uD.

The first step in the design procedure makes use of the solution to the phe-
nomenological model at steady state plotting the function UAðu; uDÞ in the
interval uL�u�uD, see Fig. 8.80.
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The problem to calculate the maximum indicated in the figure is that the
conjugate concentration uL is unknown until the value of fF ¼ �F=qsS is calcu-
lated, and to do so, we need to know the thickener cross sectional area S, which is
the result we are seeking. Therefore, the problem is undetermined and to solve it
we must assume a value of uL, for example uL � 0:01. Once uL is chosen, the
maximum of UAðu;uDÞ is obtained, and the area S and diameter D can be cal-
culated. Now, fF and q can be obtained and, therefore, the concentration profile in
the thickener can be calculated from Eq. (8.145) and the value of the sediment
height zc is obtained.

The next step in the design is to set a target for the value of the sediment height
zc in the thickener. This value is a restriction imposed by the motor of the rakes,
which allows a given maximum torque. For example, 20 % of the available height
L of the thickener is a reasonable value. Then, an iteration changing the value of
D obtains the desired zc value.

Finally, once the thickener diameter is obtained, it is approximated to the next
integer (or to the next commercially available thickener diameter) and the calculation
is repeated to obtain: (1) the final thickener diameter, (2) the thickener cross sectional
area S, (3) the Unit Area UA, (4) the mass and water balance in the thickener, (5) the
solid inventory I, (6) the concentration profile in the thickener, (7) the sediment
height zc and (8) the correct value the conjugate concentration uL (Fig. 8.81).

Problem 8.14 Use CETTEMS’s method to process 1,200 tpd of calcium carbonate
with a feed concentration of 35[%] solids by weight. The solid density is 2.5 (ton/
m3) and the desired underflow concentration is 52.4[%] solids by weight. Con-
stitutive equations for the settling velocity and the solid effective stress are
available with critical concentration at 42[%] solids by weight. Consider the
design of the thickener with L ¼ 6 ðm) height and a sediment height of 20 ½%� of L,
knowing the following properties of the tailings:
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the unit area for a copper flotation tailing
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Solid density qs ¼ 2;500 ðkg=m3Þ
Liquid density qf ¼ 1;000 ðkg=m3Þ
Feed concentration wF ¼ 35:0 ½%� solid by weight

Critical concentration wc ¼ 40:2 ½%� solid by weight

Conjugate concentration uL ¼ 0:01

Underflow concentration wD ¼ 52:4 % solid by weight

Settling parameter fbkðuÞ ¼ �1:72� 10�4 � u� ð1� uÞ15:6 ðm=s)

Compression parameter reðuÞ ¼ 2:0 exp 22uð Þ ðPaÞ

To perform the calculation we use the software SimEsp developed by Concha
and collaborators (Garrido et al. 2003, 2004; Burgos and Concha 2005) (Fig. 8.82).

(a) Design step

Choose the Design Module and enter: the solid feed rate F ¼ 50 (tph),
ð1200=24Þ, the underflow concentration wu ¼ 52:4½%� solid by weight, the critical
concentration wc ¼ 42:8 ½%� ! uc ¼ 0:23, assume a conjugate concentration
uL � 0:01 and enter the parameters of the flux density function
u1 ¼ �1:72� 10�4 ðm=sÞ and c ¼ 15:6. Press the calculate button to obtain the

Fig. 8.81 Algorithm for the
design of continuous
thickeners by
CETTEM’S method (Concha
et al. 2003)
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Unit Area function UAðuÞ and the unit area AUðuL ¼ 0:01Þ ¼ 3:044 m2=tpd
giving a thickener cross sectional area of S ¼ 3653:4 m2 for the assumed conjugate
concentration. See Fig. 8.83.

• Simulation step 1

To continue, press the Simulation button to obtain Fig. 8.84. The information
from the Design Module is transferred automatically to the Simulation Module.
Add the feed concentration wF ¼ 35 %, the sediment height in terms of the
available thickeners height zc ¼ 20 %, the consolidation parameters
a1 ¼ 2:0 Pa and a2 ¼ 22. Choose between Case 1, for a flat bottom thickener or

Fig. 8.82 Industrial
thickener simulator SimEsp

Fig. 8.83 Design module
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Case 2 or 3 for conical bottom thickeners. For this problem use Case 1. Now press
the Optimize button to start the iteration and obtain the thickener diameter:
D ¼ 55:84 m.

Set the thickener diameter to the next greater integer in meters D ¼ 56 m, and
press the Calculate button to obtain the final result in Fig. 8.85.

fF ¼ �2:256� 10�6 m=s; q ¼ �7:378 m=s; zc ¼ 1:18 m; uL ¼ 0:016;

I ¼ 2385:6 tons; AU ¼ 2:05 m2=tpd; S ¼ 2; 463 m2; D ¼ 56 m; QU ¼ 65:42 m3=h

Figure 8.86 gives a material balance around the thickener and Fig. 8.87 shows
the concentration profile in the thickener.

Figure 8.88 shows the continuous solid flux density and the feed flux density.
The interception of the feed flux density function with the convective flux qu gives
the underflow concentration uD and with the continuous flux density function
gives the conjugate concentration uL.

It is possible to design the thickener for 50 tph feed with different values for the
sediment height. Press button (%zc-D) and the results are given in Fig. 8.89, which
shows that the higher the sediment is allowed, the smaller the thickener diameter
required.

• Simulation step 2

Once the thickener is designed, it is interesting to study its flexibility to other
feed rates. For example, for the designed thickener of D = 56 m, choose button
(%zc-F) and see the concentration profiles for each the thickener capacity in
Fig. 8.90. Figure 8.91 shows the height of the sediment for each thickener
capacity.

Fig. 8.84 Simulation and optimization module
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Fig. 8.86 Mass balance in
the designed thickener

Fig. 8.85 Simulation and optimization module
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Fig. 8.87 Concentration
profile in the designed
thickener for sediment with
20 % of the total height
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Fig. 8.90 Simulation of the concentration profile for the designed thickener for several thickener
feed rates and constant underflow concentration

Fig. 8.91 Simulation of the sediment height for several thickener capacities at constant
underflow concentration
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8.6.5 Comparison of Thickener Design Methods

The following table compares the results of the diverse thickener design methods.

Thickener design Unit area Area in m2 Diameter in m

Mishler 1.333 1,599 45
Coe y Clevenger 1.764 2,117 52
Kynch 2.289 2,747 59
Talmage and Fitch 2.251 2,702 59
Yoshioka and Hasset 1.783 2,104 52
Wilhelm and Naide 1.815 2,178 53
Adorjan 1.840 2,208 53
CETTEM 2.05 2,463 56

The smallest thickener diameter is obtained with Mishler’s design and the
largest with methods based on Kynch sedimentation processes. The phenomeno-
logical methods have the additional advantage that fitting the best equation to the
experimental data eliminates experimental errors. Finally, CETTEM’s method takes
into account the desired height of the sediment in the thickener and provides a plot
of thickener capacity versus sediment height.

It is interesting to point out that, although the most recent phenomenological
models validated Mishler and Coe and Clevenger’s equations for the unit area,
these older methods gave the smallest thickener areas. The error in Coe and
Clevenger’s method is to assume that the concentration in the settling zone of the
thickener is that of the feed concentration and, therefore, performing laboratory
experiments above this concentration. The phenomenological model gave a value
of uL ¼ 0:016 as the limiting concentration for a unit area of UA ¼ 2:05 ðm2=tpdÞ.
This concentration is far lower than the feed concentration of u ¼ 0:177. This is
why the laboratory experiments should include smaller concentrations in the range
of u � 0:01.

Figure 8.92 shows the experimental points used by Coe and Clevenger’s and
the additional point by CETTEM’s methods. Figure 8.93 also explains the weakness
of Adorjan’s method. According to the calculations he obtained
AU ¼ 1:756 ðm2=tpdÞ, similar to Coe and Clevenger, and with a safety factor of
0.95 he reached AU ¼ 1:84 ðm2=tpdÞ. A comparison to Cettem’s methods shows
the safety factor should have been 0.75.

Problem 8.15 Consider a flocculated suspension of a copper tailing defined by

the flux density function fbkðuÞ ¼ �6:05� 10�4u 1� uð Þ12:59 ðm=sÞ critical con-
centration of uc ¼ 0:23 and a solid effective stress of reðuÞ ¼ 5:35 exp

ð17:9uÞ ðPaÞ. Assume feed and underflow concentrations of wF ¼ 35:0 ½%� and
wD ¼ 57:3 ½%� by weight. The solid feed is 178 (tph) and the solid and liquid
densities are 2,600 (kg/m3) and 1,000 (kg/m3) respectively.
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(1) Design a cylindrical thickener with L = 6 (m) to handle the feed rate and (2)
design a cylindrical-conical thickener to handle the feed rate with 5 (m) and 1 (m)
for the cylindrical and conical height respectively. Allow a sediment height of
40 % L.

Using SimEsp we obtain:

Type of thickener Area m2 Diameter m Unit area m2/tpd uL Inventory tons

Cylindrical 1,385 42 0.324 3.05 9 10-2 2,739
Cylindrical-conical 1,521 44 0.417 9.7 9 10-3 2,993

Figure 8.94 shows the comparison between the concentration profile in the
cylindrical and the cylindrical-conical thickeners.
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8.7 Operational Strategies and Metallurgical Control

8.7.1 Steady State

In Sect. 8.3 we showed that the condition for obtaining a steady state in a thickener
is that the extended flux density function should lie below the solid feed flux
density, in the region of concentration between the conjugate and the underflow
concentrations:

fkðuÞ� fF ; for uL�u�uD

At steady state fF ¼ quD, where fF ¼ �QFuF=S ¼ �F=qsS, is the solid feed
flux density function, q ¼ �QD=S is the volume average velocity, QF and QD are
the feed and underflow volume flow rates, F is the solid mass flow rate and S is the
thickener cross sectional area.

The sediment height is obtained from (8.145), which can be written in the
following form:

zc ¼ �
Zuc

uD

r0eðuÞdu

Dqug fF 1�u=uDð Þ
fbkðuÞ � 1

� �

Varying Feed Rates

If a thickener, provided with an underflow pump with variable speed, is operating
at steady state, the solid underflow rate balances the solid feed rate. If the solid
feed rate suddenly increases and we do not change the underflow volume flow rate,
the excess solid material accumulates in the thickener, increasing the pulp
inventory. The increase in sediment height, and weight produces an increase in the

Cylindro-Conical

Cylindrical

Fig. 8.94 Concentration
profile in a flat-bottomed and
a conical-bottomed thickener
for the same capacity
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underflow concentration so that eventually the solid underflow rate will again
balance the solid feed rate. Figure 8.95 shows this effect for copper tailings.

Problem 8.16 Consider a 53 m diameter by 6 m high thickener treating a copper
tailing with solid and fluid densities of qs ¼ 2;500 and qf ¼ 1;000 ðkg/m3Þ and
several solid feed rates: 160; 178; 185 and 190 tph. The following thickening
parameters are given:

fbkðuÞ ¼ �6:05� 10�4 � u� ð1� uÞ12:59

reðuÞ ¼
0 for u�uc ¼ 0:23

5:35 expð17:9uÞ N/m2 for u�uc ¼ 0:23

�

If the pulp feed is 203.9 m3/h.

Using the SimEsp simulator, the results shown in Figs. 8.95 and 8.96 and the
following table are obtained.

Results of the simulation of Problem 8.16

F
tph

fF m/s QD m3/
h

q m/s WD % sol
weight

Sediment height
m

160 -8.06 9 10-6 203.4 -2.56 9 10-5 53.4 0.40
178 -8.97 9 10-6 203.4 -2.56 9 10-5 57.4 1.20
185 -9.32 9 10-6 203.4 -2.56 9 10-5 58.8 2.20
190 -9.57 9 10-6 203.4 -2.56 9 10-5 59.9 4.96

8.7.2 Underflow Concentration Control

During the operation of a thickener, the underflow concentration is expected to
remain constant under changes in feed rates. An increase in the solid feed flux
F and/or the feed concentration uF , is offset by a corresponding increase in the

160 tph

185 tph

178 tph

190 tph

Fig. 8.95 Concentration
profile in a copper tailing
thickener for increasing feed
rate, with a volume underflow
rate of QD = 203.9 m3/h
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underflow volume rate QD to maintain a steady state. In thickeners provided with
variable speed underflow pumps, the underflow concentration control is accom-
plished by changing the pump velocity. If the thickener has gravity discharge,
changing underflow discharge rings makes changes in the volume underflow rate.

Usually, the feed rate is not measured in thickeners. In these cases, indirect
internal variables must be used. The underflow concentration is the direct effect of
the self-weight of the sediment; therefore, the solid pressure at the bottom of the
tank or the sediment height can be used as internal variables.

The total pressure P in a suspension of volume fraction u, is the sum of the
solid effective stress reðuÞ and the fluid pore pressure p. Therefore:

reðuÞ ¼ P� p ð8:148Þ

and depending on the constitutive equation of the solid effective stress, the con-
centration can be obtained by inverting (8.148). For example, if the solid effective
stress is expressed as reðuÞ ¼ a1 expða2uÞ, the concentration is:

u ¼ 1
a2

ln
P� p

a1

� �
ð8:149Þ

or if the solid effective stress is expressed as reðuÞ ¼ r0 u=ucð Þn�1ð Þ, the con-
centration is:

u ¼ uc
P� pþ r0

r0

� �1=n

ð8:150Þ

These equations show that the concentration of the sediment can be inferred by
measuring the pore pressure and the total pressure. In this case, the measurement is
at the bottom of the tank.
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As we have already seen, the sediment height zc can be calculated from
equation:

zc ¼ �
Zuc

uD

r0eðuÞdu

Dqug fF 1�u=uUð Þ
fbkðuÞ � 1

� �

therefore, zc can be used to infer the necessary volume underflow rate to maintain a
constant underflow concentration under a variable feed rate. For the case of the
calcium carbonate, the following relationship exists between the sediment height
and the volume underflow rate (Fig. 8.97).

8.7.3 Feed Dilution

The feed enters a thickener, mixes with the upcoming water and dilutes to the
conjugate concentration uL at z = L. The conjugate concentration can be obtained
by solving the implicit Kynch equation at z = L:

fF ¼ quL þ fbkðuLÞ ð8:151Þ

The conjugate concentration does not depend directly on the feed concentration
uF , but only on the solid feed rate fF , the convective pulp velocity in the thickener
q and the pulp nature through the Kynch flux density function fbkðuÞ.

Problem 8.17 Consider a copper tailing with the following settling properties:
2.500 kg/m3 in density and a solid flux density fbkðuÞ ¼ �6:05� 10�4�
u� ð1� uÞ12:59. For a 53 m diameter thickener with a feed rate of 185 tph, a feed
concentration of 21.7 % and underflow concentration of 58.8 % solid by weight,
calculate the conjugate concentration.
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Fig. 8.97 Underflow volume
flow rate versus sediment
height to obtain a constant
underflow concentration of
wD = 52.4[%] by weight
with variable feed rate

266 8 Thickening



From Eq. (8.151):

S ¼ pD2

4
¼ 3:14157 � 532

4
¼ 2206 m2

fF ¼ �
F

3600� qs � S
¼ 185

3600� 2:5� 2206
¼ �9:32� 10�6 m=s

uD ¼
qf � wU

qs � ð100� wUÞ þ qf � wU
¼ 1000� 58:8

2500� ð100� 58:8Þ þ 1000� 58:8
¼ 0:363

q ¼ fF
uD
¼ 9:32� 10�6

0:363
¼ �2:57� 10�5 ðm=sÞ

fF ¼ quL þ fbkðuLÞ
� 9:32� 10�6 ¼ �2:57� 10�5 � uL � 6:05� 10�4 � uL � ð1� uLÞ12:59

Solving this implicit equation we get: uL ¼ 0:0185; wL ¼ 4:5½%� solid by weight

This problem can also be solved graphically as in Fig. 8.98. The value of uL is
obtained at the intersection of fF with the continuous solid flux density function fkðuÞ.

Since the feed to a thickener dilutes naturally, the question arises whether there
is any advantage in diluting the pulp before feeding it to the thickener. There are
two possible advantages. Firstly, a concentrated pulp entering a more diluted zone
behaves like a density current that reaches deeper into the tank, requiring more
time for its homogeneous distribution. This effect can be minimized if the con-
centration of the entering feed is similar to that of the receiving zone. Secondly,
the flocculant is added to the feed stream and as we will see later, flocculation is
more effective for diluted suspensions.

Water is usually very costly around concentrators; therefore mechanisms are
introduced into the feed wells to permit auto-dilution with the rising overflow
water. The most commonly used are; (1) dilution by overflow through ports in the
upper part of the feedwell, and (2) dilution by jet-suction.
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1. Dilution ports and overflow

Consider the feedwell shown in Fig. 8.99. We can make the following mass
balance for a feed with density qF ¼ 1:1 ðton=m3Þ diluted to qS ¼ 1:05 ðton=m3Þ
when entering the thickener, then:

qFzF ¼ qSzS þ qWzW

1:1� zF ¼ 1:05� zS þ 1:0� zW

zF ¼ 0:95� zS þ 0:91� zW

zF\zS þ zW

where qF ; qS and qW are the pulp density and zF ; zS and zW are the depth of the
feed, the suspension and the water respectively.

Because the feed pulp and the conjugate suspension are denser than the water
qW ¼ 1:0, the water level outside the feedwell is always higher then that of the
feed, as shown in Fig. 8.99. This principle can be used for dilution by overflow or
through ports in the feedwell. Figure 8.100 shows a feedwell with water ports.

2. Dilution by jet suction

When a fluid is injected as a high velocity jet into a tank containing a secondary
stationary fluid, the secondary fluid is suctioned into the boundary layer of the first
fluid mixing with it. The amount of secondary fluid depends on the jet diameter
and velocity. This principle is used to dilute the feed in a thickener, as is shown in
Fig. 8.101.

Since the pulp is fed by gravity, the height of the head tank controls the speed of
the jet and therefore, the amount of water suctioned. The inner and outer pipes
diameters are design variables. Figure 8.102 shows this type of feeding mechanism
implemented by a thickener manufacturer.

F
W

S

Fig. 8.99 Dilution ports in a
feedwell
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Figures 8.103 and 8.104 show the velocity magnitude and velocity vectors in a
typical E-Duc System and Fig. 8.105 shows the solid concentration distribution in
a typical feedwell (Köck and Concha 2003).

Fig. 8.100 Feedwell with water ports to dilute the feed (Supaflo technologies)

F

Fig. 8.101 Dilution of the
thickener’s feed by jet
eductor
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Fig. 8.102 E-Duc from EIMCO process equipment

Fig. 8.103 Velocity distribution for the E-Duc dilution system, Köck and Concha 2003
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Fig. 8.104 Velocity vector for the E-Duc dilution system, Köck and Concha 2003

Fig. 8.105 Concentration distribution at the inlet and outlet of a feedwell in a thickener, Köck
and Concha 2003
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8.7.4 Limiting Concentration

According to Coe and Clevenger, the limiting concentration in a thickener
establishes the settling rate and lies between the feed and the underflow concen-
tration. We have seen that the feed is diluted to the conjugate concentration on
entering the thickener and therefore the range for the limiting concentration should
be extended to include the conjugate concentration.

The limitations are determined by the flux density function and by the values of
the conjugate and the underflow concentrations. In most cases, the conjugate
concentration is the limiting concentration. See Fig. 8.106 for the cases of copper
tailings and calcium carbonate, where the conjugate concentrations are
uL ¼ 0:0185 and uL ¼ 0:0160. They are also the limiting concentrations, giving
unit areas of AU ¼ 0:516 ðm2=tpdÞ and AU ¼ 2:05 ðm2=tpdÞ respectively.

8.7.5 Effect of the Flocculant Dose on Thickener Capacity
and Fines Control

Flocculants are added to a thickener to increase the settling velocity of the particles
by forming flocs. A floc is an aggregate of many particles of different sizes having
a greater overall size, but a lower density. Flocculated pulps leave clear water and
sharp water-suspension interfaces when settling. For more information on this
subject see Chap. 7.

The flocculant dose is an important factor from a technical and economic point
of view. There is an optimum amount of flocculant that has to be experimentally
determined. An excessive dose reduces the settling velocities, and consequently
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the thickener capacity, and increases the operating cost. There are several ways to
optimize the flocculant addition as a thickener, the most commonly used is to
perform settling experiments with different pulp dilutions and flocculant dose.
There is also the possibility of selecting the dose according to floccules properties
such as flocculant molecules size and density.

Problem 8.18 Consider settling tests performed on copper tailings for several
flocculant doses. The result shows that the solid flux density function and the solid

effective stress can be written in the form: fbkðu; gptÞ ¼ u1ðgptÞ � u� ð1�
uÞ12:59; m/s and reðuÞ ¼ 5:35 expð17:9uÞ; Pa.

Calculate the capacity of a 57 m diameter thickener for a solid density of
qs ¼ 2:500 kg=m3, flocculant dose of 2, 4, 6, 8 and 10 gpt for an underflow
concentration of 52 % solid. The feed concentration is 49.3 % solid and the critical
concentration is 40.6 [% solid] by weight.

The calculated solid flux density functions and initial settling velocities, for
different flocculant dose, are described in Figs. 8.107 and 8.108.

uoo = -1x10-06(gpt)3 + 4x10-05(gpt)2 - 3x10-4(gpt) - 6x10-05 [m/s]
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With the above information, the capacity of the thickener can be calculated for
each flocculant dose, to give the same sediment height, that is, 20 % of the total
available thickener height. The result is given in Fig. 8.109.

The fact that a change in the flocculant dose drastically affects the capacity of a
thickener shows that the addition of flocculant as a variable to control fines in the
overflow water must be taken carefully. In general flocculant is added in pro-
portion of the thickener’s solid feed rate. But, when fines are controlled by floc-
culant addition, an excess of flocculant can be detrimental for the thickener’s
capacity. This effect was dealt with in Chap. 7.

8.7.6 Effect of the Shear Rate on Flocculation
and on Thickener Capacity

The flocculant is injected directly into a thickener in the feedwell or into the pipe
feeding the thickener. In both cases the exact position of injection is in the zones of
greatest shear. Farrow et al. (2001) presented shear rate distribution in a feedwell
calculated with CFD and predicted the favorable positions for flocculant injection.
Reports of sampling of industrial thickener by Farrow et al. (1999) confirmed that
CFD predictions and modeling resulted in significant improvement in industrial
thickener operation in Australia. Kahane et al. (1997) reported on work in a plant
in Australia were the relocation of the addition points of flocculant to the lower
part of the feedwell, where the natural dilution occurs, doubled the thickening
capacity of the plant.

In Chap. 7 Köck and Concha (1999) presented a CFD model of a typical
feedwell of a copper tailing flotation thickener, concluding that the average shear
rate in the feedwell was very low, on the order of 1 s-1. Köck and Concha (1999)
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also used CFD to establish the properties of an E-Duc system of a copper tailing
flotation thickener, Fig. 8.110. It was established that the average shear rate in the
tube was �_c� 8 s�1 and that in a small region it reached _c� 27 s�1.

8.7.7 Optimum Flocculation of Thickener Feeds

Farrow et al. (2001) indicated that for a specific solid-flocculant system under high
shear conditions, the average size of the flocs increases rapidly from 30 to 130 lm
in 15 s before the rupture of flocs occur. Under low shear conditions, flocs slowly
increase in size from 30 to 100 (lm) in 50 (s) without any floc rupture. This
difference in growth velocity and floc is extremely important in industrial thick-
eners. The key for a good feedwell design is to provide appropriate hydrodynamic
conditions and sufficient residence time for floc growth.

Rulyov (2004) and Concha et al. (2012) showed that optimum flocculation is
obtained by a proper combination of feed dilution, high shear rate � 500 s�1 for
short periods � 5 s and a flocculant dose for the collision of particles and floc-
culant macro-molecules, and low shear floc growth ð� 60 sÞ, leading to maximum
floc size and density. Unfortunately this combination cannot be obtained within a
feedwell. See Chap. 7.

The auto-dilution of a suspension in a feedwell is established once the type of
dilution system of the feed has been chosen. The shear rate during flocculation
depends on the thickener feeding system or feedwell design, which is determined
for a given thickener. Therefore, under a change of mineralogy or particle size
distribution, the only control variable available is the flocculant dose so that with
operational variables it is not possible to maintain an optimum flocculation in a
thickener. The solution to this problem is to flocculate the suspension in a spe-
cialized reactor before feeding it to the thickener. This specialized industrial
reactor has not yet been developed for copper concentrators.

Fig. 8.110 Distribution of
shear rate in an E-Duc
feeding system to a thickener
(Köck and Concha 1999)
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Chapter 9
Filtration

Abstract Filtration is the process whereby a solid separates from a fluid by
making the suspension pass through a porous bed, known as a filter medium. The
bed retains the particles while the fluid passes through the filter medium and
becomes a filtrate. To establish a flow of filtrate, it is necessary to apply a pressure
difference, called a pressure drop, across the filter medium. There are several ways
to do this depending on the driving force, for example: (1) gravity, (2) vacuum, (3)
applied pressure, (4) vacuum and pressure combined, (5) centrifugal force, and (6)
a saturation gradient. Usually the different driving forces require different filtration
equipment called filters. Two main dewatering stages are studied, cake formation
and dehumidification, which are studied as mono-phase flow and two-phase flow
of a fluid through rigid porous medium, respectively. Field variables and consti-
tutive equations are deduced from the chapter on flow in porous media. Methods of
filtration, cake porosity, permeability, capillary curves and relative permeabilities
are presented. Finally models of continuous filters are developed.

9.1 Definition, Equipment and Operation

Filtration is the process whereby a solid separates from a fluid by making the
suspension pass through a porous bed, known as a filter medium. The bed retains
the particles while the fluid passes through the filter medium and becomes a
filtrate.

To establish a flow of filtrate, it is necessary to apply a pressure difference,
called a pressure drop, across the filter medium. There are several ways to do this
depending on the driving force, for example: (1) gravity, (2) vacuum, (3) applied
pressure, (4) vacuum and pressure combined, (5) centrifugal force, and (6) a
saturation gradient. Usually the different driving forces require different filtration
equipment called filters.

We can distinguish three classes of filtration: (a) filtration with cake-formation,
(b) filtration without cake-formation and (c) deep filtration.

F. Concha A, Solid–Liquid Separation in the Mining Industry,
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9.1.1 Filtration with Cake Formation

During filtration with cake-formation, the filter medium retains the solid of the
suspension on the surface of the filter medium as a layer called a filter cake. This
layer forms naturally when the pores of the filter medium are smaller than the
particles. When this is not the case, it is necessary to cover the filter medium with a
thin sheet of a fibrous material, called a filter aid that blocks the particles from
passing to the filter medium. This type of filtration, in which the flow is perpen-
dicular to the filter medium surface, is the most commonly used in the mineral
industry (see Fig. 9.1).

Filtration without cake formation

When the suspension flow is parallel to the filter medium surface, the medium
retains the particles and allows the fluid pass through. However, the flow produces
a high shear at the solid surfaces that prevents the formation of a solid layer over
the filter medium, returning the particles to the suspension. In this way, the filtrate
crosses the filter medium while the particles increase the suspension concentration
with time. This type of filtration, which is called cross flow filtration, is useful
when suspensions are to be concentrated and there is no need for a dry solid
product. Although filtration without cake formation is also used in solid–liquid
filtration, it is mainly used in solid–gas separation (see Fig. 9.2).

Deep bed filtration

To filter fine particles in diluted suspensions, filter media are used. The filters
have pores that are larger than the particles they retain. Since they have greater
depths, particles penetrate the interior of the filter medium and are captured by the
fibers or particles forming the medium. This type of filter loses its properties with
time, and it is necessary to clean it to eliminate particles from its interior or replace
the filter with a new one. Two examples of deep filtration are sand filters and car
air filters (see Fig. 9.3).

PULP

FILTRATE

CAKE

p=p0

p>p0

FILTER MEDIUM

Fig. 9.1 Filtration with cake
formation
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A filtration process depends on many factors:

• fluid properties, such as density and viscosity,
• nature of the solid, such as its size, shape and size distribution,
• properties of the suspension, such as concentration and compressibility,
• filter capacity,
• commercial value of the material and whether the solid or the fluid is the

valuable material,
• whether it is necessary to wash the cake,
• whether it is important to keep the product from contamination.

9.1.2 Operating Variables

The principal variables in a filtration process are presented in the (Fig. 9.4).
Inlet variables Feed mass flow F(t) and feed % solid wF(t).
Outlet variables Cake discharge mass flow m(t) and cake humidity h(t).
Design variables Filtration area S and pressure drop Dp:
Control variables Cake formation time t1, cake washing time t2 and cake de-

moisturizing time t3.
Parameters Cake porosity e, permeability k(e) and compressibility reðuÞ:

Filtrate density qf and viscosity lf, solid density qs and
sphericity w.

Perturbations Particle size and particle size distribution; Agitation.

Fig. 9.3 Deep bed filtration

FEEDCONCENTRATE

FILTRATE

FILTRATE

Fig. 9.2 Filtration without cake formation
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Filtration cycles

All filtration equipment, whether batch or continuous, operate in cycles of cake
formation, washing, drying and discharge.

• Cake formation: The first step in a filtration process is the formation of the cake.
A pump feeds the pulp into the filter chamber for pressure filtration, or the sus-
pension of solid particles is suctioned through the filter medium during vacuum
filtration. The magnitude of the deposited material depends on the pressure gra-
dient, on the suspension concentration and on the filtration time. In this stage of
the cycle there is a continuous flow of filtrate across the cake and filter medium.

• Cake washing: When it is necessary to eliminate impurities from the filter cake,
washing is part of the process. Washing implies calculating the minimum
amount of water necessary to displace the liquor from the cakes pores and the
time necessary to do this.

• Cake drying: Drying is a key part of the filtration process. Usually the overall
requirement is a cake with a small amount of moisture, for example 8 % by
weight for copper concentrates. Drying is accomplished by blowing dry air over
the filter cake until enough water is displaced from the pores to obtain a given
humidity. To control this part of the process it is necessary to know the amount
of water retained in a saturated filter cake and the tolerated residual humidity in
the product. Generally, this is a technical and an economic choice.

• Cake discharge: The separation of the cake from the filter medium and its
discharge are important steps for efficient filtration. In vacuum filtration, blades
scrape the filter cloth and discharge the cake by gravity. In hyperbaric, or
pressure filtration, removing the dried cake is complicated because of the need
to maintain pressure in the filtration chamber. Valves pressurize and de-pres-
surize the discharge area, depending on the filtration cycle.

PARAMETERS

DISIGN

OUTLET

PERTURBATIONS

CONTROL VARIABLES

S

ΔP

QC(t)

Particle size 
Particle size 
distribution 

QF(t)

ϕ F(t)
INLET

ε, k(ε), σe(ε), ρ s, ρ f, μ, Agitation; t1, t2, t3

(1−ϕC)(t)

Fig. 9.4 Variables of the filtration process
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9.2 Filtration Equipment

Vacuum filters had the advantage over pressure filters of their simple design and
operation, which made them very popular in the mining industry for most of the
twentieth century. Pressure filters began displacing vacuum filters in the 1980s due
to the limitation in pressure drop with vacuum filters, which depends on local
atmospheric pressure. This restriction is fundamental in mines in high altitudes, in
some cases of more than 4,000 m.a.s.l. The limitations of vacuum filters and the
great advances in control mechanism for pressure filtration have made the latter
the favorite of the mining industry today.

An interesting alternative is the combination of vacuum and pressure equipment
in a single unit. If a traditional vacuum filter is introduced into a pressure chambers
so that the pressure drop is increased, a hyperbaric filter is obtained.

9.2.1 Vacuum Filters

There are four types of vacuum filters: drum, disc, pan and band. Whereas the first
three produce cakes with 12–18 % humidity, a band filter reaches humidity levels
of 8–10 %. In the following section we will briefly describe this equipment.

Drum filter

The drum filter consists of a rotating drum with the lower part submerged in a
pool containing the suspension to be filtered. The drum surface is covered with a
filter medium called a filter cloth. The suspension is suctioned from the drum
interior, which is maintained under vacuum. While the drum rotates, the filtrate is
suctioned into the drum interior and the solid is retained, forming a cake on the
submerged surface of the filter cloth. This surface eventually emerges from the
pool where air is suctioned through the cake displacing the water from the pores.
During the rotation, it is possible to wash and dry the cake. Finally, a scrapping
mechanism separates the cake from the filter cloth and discharges it on a chute
before the surface of the drum submerges again into the suspension pool. These
operations complete a cake forming-drying-washing-drying and discharge filtra-
tion cycle for the drum filter (see Fig. 9.5).

Disc filter

The disc filter consists of a horizontal shaft mounted on two main bearings.
The shaft supports and connects a certain number of discs with the vacuum.
The bottom of each disc is submerged in a pool with a suspension from which the
filtrate is suctioned by the vacuum while the solid forms a cake on the disc surface.
Each disc presents several sectors that are individually connected to the vacuum
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chamber. The sectors are covered with a filter cloth. The discs rotate producing the
different filtration cycles: cake formation-drying-washing-drying-discharge. The
advantage of this equipment over the drum filter is its greater filtration surface per
unit of floor area, which is because both surfaces of the disc are operative. Another
advantage is its modular structure in sectors that permits the changing only the
damaged filter cloths (see Figs. 9.6 and 9.7).

A special type of disc filter uses micro-pore ceramic sectors instead of steel
covered with filter cloth. These vacuum filters are called ceramic filters.

There are two types of ceramic material. The first has 1.5-micron pores, with a
capillary entry pressure of 1.6 bars, while the second has 2.0-micron pores with
capillary entry pressure of 1.2 bars (for the meaning of entry pressure see Problem
(9.9) in Sect. 9.5.1). When a ceramic disc is submerged in a pool containing a
suspension, the capillary action initiates suction without any external force (see
Fig. 9.8).

Fig. 9.5 Drum filter

View of the discs Detail of a filter sector 

Fig. 9.6 Disc filters
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The solid material accumulates at the disc surface and the dewatering continues
as long as liquid is present. This process is called capillary filtration, which
combines the advantages of the conventional disc filter with the capillary effect.
Ceramic filters are used to filter copper concentrates and industrial minerals.

Pan filter

The pan filter consists of a series of horizontal trays rotating around a central
vertical axis. Each tray is a trapezoidal sector slightly inclined from the central
axis. All the trays are connected to a common valve. Filter cakes form on the trays
and are washed with a liquid jet. At a given point in the filter, a screw conveyor
drags the cake to the center of the tray and discharges it. Alternatively, each tray is
tilted to discharge the cake. The main disadvantage of the pan filter is that there is
only one filter surface and therefore the capacity per unit of floor is limited (see
Fig. 9.9).

Fig. 9.7 Ceramic filters

Fig. 9.8 Ceramic plate of a
disc filter

9.2 Filtration Equipment 287



Horizontal belt filter

The horizontal belt filter uses a continuously moving rubber belt to support and
transport the filter cloth (see Fig. 9.10). A vacuum is applied below the filter cloth
via a stationary vacuum box running the length of the filter. The advantage of this
filter is the flexibility to choose the length of the stages in a filtration-washing-
drying cycle. Belt filters are used in some concentrators, especially in gold mines,
to recover water from mineral tailings, with recovery up to 80 %.

9.2.2 Pressure Filters

Nowadays vacuum filters like the drum, disc, pan and belt filters are less accepted
in the mining industry because of the high moisture content of their products,
which require thermal drying to reach an adequate humidity level of around 8 %.
Pressure filters are presently the most reliable approach to filter concentrates in the
mineral industry. They directly deliver cakes with 8 % humidity or less. As
vacuum filters, they operate in cycles, but have to stop operating to feed the
suspension and to discharge the cake, making the operation discontinuous.

Fig. 9.9 Horizontal pan filter

Fig. 9.10 Horizontal belt-filter and a schematic view
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Three types of pressure filters are commonly used: vertical filter presses, hor-
izontal filter presses and candle filters.

(a) Vertical filter press

In vertical filter press the separation takes place in chambers between plates.
The plates have openings for feeding and draining the filtrate. The plates are held
together by hydraulic pressure. They are mounted between two lateral bars that are
fixed at one end and connected to a hydraulic system at the other (see Fig. 9.11).

Filtration stage
A high-pressure hydraulic pump locks the pressure filter plate-pack. Feed slurry

enters the filter chambers through the top-feed ports. Filtration begins immediately
on both sides of the chamber. The filtrate drains through the ports of each chamber.
The double-sided filtration gives speedy buildup of the filter cake, making the
filtration part of the cycle short.

Compression stage
When the cake has formed, a rubber membrane is inflated by compressed air on

one side of each cake and eliminates water by compression.

Blowing stage
Compressed air flows to the surface of the filter cake displacing the water in the

cake to the filtrate discharge. The membrane remains inflated for a certain period
to maintain good cake stability. The duration of the air blowing depends on the
material to be dewatered but is typically 1–4 min.

Cloth washing stage
With the plate-pack still in the open position, the cake chute door (drip tray) is

closed and spray nozzles rinse the cloth. Cloth vibrators actuate during the cloth
washing. This sequence takes about 30 s, after which the filter is closed and the
cycle begins again.

Fig. 9.11 Vertical filter press
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Cake discharge stage
When the cakes are ready for discharge, the cake chute door (drip tray) is

retracted and the filter opens by actuating the high capacity hydraulic pump. The
filter opens at a rate exceeding one chamber per second. The cloths hang freely
from the suspension bar and the cakes are released at the same rate. During the
fully open position, the cloth is vibrated to ensure release of any cake residue.

(b) Horizontal filter press

The horizontal filter press has become very popular recently. It has the com-
bination of features that the process industry is looking for, low cake humidity
and high capacity in a small area (see Fig. 9.12).

The equipment consists of a series of horizontal chambers one on top of the
other on a continuous belt. In this way, the filter area per floor area is multiplied.
The chambers are fixed in space and do not move during operation. The belt
consists of a high resistance moving filter cloth mounted over driving rods, which
move the filter belt during the discharge operation. In the upper part of the
chambers are flexible rubber diaphragms that compress the cake during the
expression cycle. The filtration cycle has the following stages:

1. Cake formation
The slurry is pumped into all the filter chambers simultaneously. The solids
begin to form as the filtrate displaces more slurry enters the chamber. As the
solids build up, the pumping pressure increases. The filtrate is forced through
the cloth until the required solid thickness is achieved.

Fig. 9.12 Horizontal plates filter press
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2. Diaphragm Pressing I
High-pressure air or water automatically inflates the diaphragm located at the
top of each chamber, reducing the chamber volume and squeezing the solids to
remove additional filtrate. The tightly woven filter cloth produces clear filtrate.
High pressure of over 5 bars maximizes efficiency. Pressing the diaphragm
produces homogenous saturated solids of uniform thickness, which assists the
air blowing step.

3. Solid Washing
Pressure filters can wash dewatered solids in situ to maximize solute removal or
to recover mother liquor with minimal dilution. The wash liquid distributes
evenly on the homogenous solid since the filter plates are horizontal. The wash
liquid flows through the solids, displacing the mother liquid with minimal
mixing.

4. Diaphragm Pressing II
The diaphragms are re-inflated, forcing the wash liquid uniformly through the
solids. This produces a washing efficiency of over 95 %, with consistent sat-
urated solids and minimum wash liquid consumption.
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5. Air Blowing
Compressed air blows through the solids for final dewatering. The moisture
content reaches values around 8 % and is controlled by adjusting the pressure
and duration of the blowing air.

6. Solids Discharge and Cloth Washing
After the plate-pack opens, the dewatered solid is conveyed out of the chambers
on the moving filter cloth (see Fig. 9.13).

(c) Candle filter

Filtration takes place in a pressure vessel. The filter consists of a series of
porous tubes on the outside of which the cake forms. The filtrate flows inside the
tubes and is collected at the bottom of the vessel. After completion of the cake
formation cycle, the cake adhering to the filtration element is washed with a
suitable medium. To ensure the driest possible product, the washed cake is dried
for as long as necessary, with any of the following media: ambient air, hot air,
nitrogen or steam. Figure 9.14 shows a candle filter.

Fig. 9.13 Discharge of the filter cake
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9.2.3 Hyperbaric Filter

Vacuum filters have 0.8 atmospheres as limiting pressure drop under the most
favorable conditions, that is, at sea level. Using them in high mountains, where
mines are usually found, the pressure drops drastically.

In the late 1980s Professor Dr. Werner Stahl and co-workers introduced vac-
uum filters, such as disk and drum filters, in a pressure vessel, in this way,

Fig. 9.14 Candle pressure filter

Fig. 9.15 Hyperbaric filter
showing the pressure
chamber with a disc filter
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increasing the available pressure drop. They can easily add four or more bars to a
natural vacuum filter. This equipment is called a hyperbaric filter (see Fig. 9.15).

As in all pressure filters, the discharge is a problem in this new filter. Humidity,
which in vacuum filters does not fall to 15 %, reaches 8 % in hyperbaric filters.

9.3 Filtration Theory

Depending on the material to be filtered, and the magnitude of the pressure drop,
the filter cakes can remain rigid or are compressed. Copper concentrates, and in
general other metal concentrates, are incompressible if flocculants are not used
during the thickening process. On the contrary, flocculants are always used with
flotation tailings, so their filter cakes are compressible. When filtering these tail-
ings, what is not that common, vacuum filter are used and therefore the pressure
drop is small and the material can be considered incompressible under these
conditions.

The conclusion is that in the majority of mineral processing plants filter cakes
are nearly incompressible and the theory of flow through rigid porous beds is valid
as the basis to develop a filtration system. If in some instances this is not the case,
compression must be introduced in the theory.

Filtration with incompressible cakes

Consider a filtration process under the following restrictions:

1. The properties of the suspension, the cake and the filtrate are constant.
2. The cake formed is incompressible.
3. The filtration surface is plane.
4. The percolation velocity of the filtrate across the filter cake and the filter

medium is slow.

Restriction (1) permits eliminating the densities from the material balances.
From restriction (2), the filter cake is assumed to be rigid and the solid component
of the particulate system is immobile. In cases of curved surfaces, for example in
drum filters, restriction (3) requires that the diameter of the drum is much greater
than the cake thickness and restriction (4) permits using Darcy’s law as a con-
stitutive equation for the percolation velocity.

Filtration as a batch or a continuous process works in cycles that begin with the
entry of pulp into the filter and ends with the discharge of the filter cake. A
continuous filter is capable of making several thousand cycles before changing
filter media or mechanical maintenance is necessary. In each cycle we can dis-
tinguish two fundamental stages: (a) the cake formation stage, which includes
pumping the suspension into the filter chambers and compression of the suspen-
sion on the filter medium by means of pressured air, a rubber diaphragm or a
piston, and (b) cake dewatering by blowing or suctioning air through the filter
cake. In special cases, other stages are added, for example, if the filter cake is
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compressible a (c) expression stage is used to compress the cake to reduce its
porosity and eliminate some of the water saturating the cake. If the solid material
is to be free of contaminants, a (d) washing stage is used, followed by another
dewatering stage.

9.3.1 Cake Formation

Consider the following field variables [see Eqs. (6.39) and (6.40)]: cake porosity
eðz; tÞ, percolation velocity qðz; tÞ and excess pore pressure peðz; tÞ. These variables
constitute a simple filtration process if the following field equations are satisfied:

eðz; tÞ ¼ e0 and qðz; tÞ ¼ q0 ð9:1Þ

ope

oz
¼ l

kðe0Þ
q0 ð9:2Þ

where e0 is the constant porosity of the filter cake and q0 and kðe0Þ are the per-
colation velocity and the cake permeability, both constant.

Consider Fig. 9.16 representing a filtration process with a plane rigid filter cake.
Call p0 ¼ peð�‘mÞ; pm ¼ pemð‘mÞ and, p‘ðtÞ ¼ peð‘ðtÞÞ, then the pressure drop
Dp1 ¼ p‘ � pm [ 0 and Dp2 ¼ pm � p0 [ 0:

The boundary conditions are:

peð�‘mÞ ¼ p0 ð9:3Þ

Fig. 9.16 Filtration with plane incompressible cake
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peð‘ðtÞÞ ¼ p‘ ð9:4Þ

The term simple refers to the fact that these equations represent the simplest
case of a filtration process.

In vacuum filtration, the filter element is partially submerged in the suspension,
which is fed with a pump. The suspension is kept homogeneous by agitation. In
this case, the pressure drop is constant and depends on the available vacuum and
local atmospheric pressure.

Pressure filters are fed with centrifugal pumps. At the beginning of the feeding
process, the resistance of the cake and filter medium is low and the volume flow
rate is high and relatively constant. As the cake resistance increases, the pressure
drop also increases, while the volume flow rate decreases depending on the pump
characteristic curve. Figure 9.17 shows the characteristic curves of a centrifugal
pump and the curve of the system (see Chap. 11).

Once the filter chambers are full of suspension, the feed is stopped and a
constant pressure is applied by a rubber membrane. This step of the cake formation
stage is called expression.

These considerations lead to the study of the filtration process in the special
case of constant pressure drop.

(a) Cake formation with constant pressure drop

Consider the case of a constant pressure drop across the filter cake and the filter
medium:

Dp ¼ Dp1 þ Dp2 ¼ p‘ � p0 [ 0 ð9:5Þ

Fig. 9.17 Characteristic curves of a centrifugal pump
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Each pressure drop is a positive constant, therefore integration of Eq. (9.2) for a
given instant t leads to:

Zp‘

pm

dpe ¼
Z‘ðtÞ

0

l
k e0ð Þ

q0dz ) p‘ � pm ¼ Dp1 ¼
l‘ðtÞ
k e0ð Þ

q0 ð9:6Þ

Zpm

p0

dpe ¼
Z0

�‘m

l
km

q0dz ) pm � p0 ¼ Dp2 ¼
l‘m

km
q0 ð9:7Þ

where km and ‘m and k e0ð Þ and ‘ðtÞ are the permeability and thickness of the
filter medium and of the filter cake, and q0 is the percolation velocity, that is, the
volume flow rate of filtrate per unit filter area and e0 is the porosity of the filter
cake. Adding Eqs. (9.6) and (9.7) yields:

Dp ¼ l
‘m

km
þ ‘ðtÞ

k e0ð Þ

� �
q0 ð9:8Þ

We define the filter medium resistance Rm ¼ ‘m=km, so that (9.8) becomes:

Dp ¼ l Rm þ
‘ðtÞ

k e0ð Þ

� �
q0 ð9:9Þ

The volume flow rate of filtrate Qf can be expressed in terms of the percolation
velocity q0, and in terms of the volume of filtrate Vf ðtÞ.

Qf ¼ q0S :¼ dVf ðtÞ
dt

ð9:10Þ

where S is the filtration area. Qf has a simple relationship with the cake thickness
‘; see Eq. (9.14). Substituting (9.10) in the previous equation gives:

Dp ¼ l
S

Rm þ
‘ðtÞ

k e0ð Þ

� �
dVf ðtÞ

dt
ð9:11Þ

Cake mass and thickness, filtrate volume and cake formation time

We want to obtain a practical cake formation equation involving the mass of
solid msðtÞ, the volume of filtrate obtained Vf ðtÞ and the thickness of the filter cake
‘ðtÞ, all as functions of time t. The volume fraction of solids u0 is written as:

u0 ¼
solid volume

suspension volume
¼ solid volume

solid volumeþ liquid volume
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The liquid volume is equal to the filtrate volume produced, plus the liquid
retained in the saturated filter cake, then:

u0 ¼
m e0; tð Þ=qs

m e0; tð Þ=qs þ Vf ðtÞ þ S‘ðtÞe0
� � ð9:12Þ

The solid mass is the volume of the solid in the filter cake times its density:

m e0; tð Þ ¼ qs 1� e0ð ÞS‘ðtÞ ð9:13Þ

Substituting Eq. (9.13) with Eq. (9.12) and calculating ‘ðtÞ or m e0; tð Þ we get:

‘ðu0; tÞ ¼
u0

1� u0 � e0

Vf ðtÞ
S

! m u0; e0; tð Þ ¼ u0 1� e0ð Þ
1� u0 � e0

qsVf ðtÞ ð9:14Þ

Expression (9.14) gives the relationship between the thickness of the filter cake
and the mass of material filtered, with the volume of filtrate at any given time
t. Substitution with Eq. (9.11) yields:

DpS ¼ l Rm þ
u0 1� e0ð Þ

S 1� u0 � e0ð Þk e0ð Þ
Vf ðtÞ

� �
dVf ðtÞ

dt
ð9:15Þ

The only variable in this expression is the filtrate volume Vf ðtÞ, therefore
integrating the time interval 0 to t gives:

Z t

0

DpS

l
dg ¼

ZVf

0

Rmdnþ
ZVf

0

u0

S 1� u0 � e0ð Þk e0ð Þ
ndn

DpS

l
t ¼ RmVf þ

u0

2S 1� u0 � e0ð Þk e0ð Þ
V2

f

ð9:16Þ

Filtrate volume:

Solving the quadratic Eq. (9.16) yields the volume of filtrate over time:

Vf ðtÞ ¼ Skðe0Þ
1� u0 � e0

u0

‘m

km

� �2

þ 2Dpe

lkðe0Þ
u0

ð1� u0 � e0Þ
t

" #1=2

� ‘m

km

8
<

:

9
=

; ð9:17Þ

Cake thickness

Substitution of Vf ðtÞ from (9.14) with (9.16) gives the algebraic equation in
terms of the thickness ‘ðtÞ of the cake:

‘2 þ 2kðe0Þ
‘m

km
‘� 2

kðe0Þ
l

Dp
u0

ð1 � u0 � e0Þ
t ¼ 0 ð9:18Þ
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‘ðtÞ ¼ kðe0Þ
‘m

km

� �2

þ 2Dp

lkðe0Þ
u0

ð1� u0 � e0Þ
t

" #1=2

� ‘m

km

8
<

:

9
=

; ð9:19Þ

Cake mass:

Substituting Eq. (9.13) with (9.19) yields the cake mass formed at time t:

mðe0; tÞ ¼ qsSð1� e0Þkðe0Þ
‘m

km

� �2

þ 2Dp

lkðe0Þ
u0

ð1� u0 � e0Þ
t

" #1=2

� ‘m

km

8
<

:

9
=

; ð9:20Þ

Cake formation time:

Inverting Eq. (9.20) the time to form a cake is:

t ¼ ms

qsSð1� e0Þkðe0Þ
þ ‘m

km

� �2

� ‘m

km

� �2
( )

2Dp

lkðe0Þ
u0

1� u0 � e0

� ffi�1

ð9:21Þ

All these expressions become simpler if the filter medium specific resistance
Rm ¼ ‘m=km is neglected.

Filtrate volume:

Vf ðtÞ ¼ S
2
l

� �1=2 1� u0 � e0

u0

� �1=2

ðkðe0ÞÞ1=2Dp1=2t1=2 ð9:22Þ

Cake mass:

mðe0; tÞ ¼ qsð1� e0ÞS
2
l

� �1=2 u0

1� u0 � e0

� �1=2

ðkðe0ÞÞ1=2Dp1=2t1=2 ð9:23Þ

Cake thickness:

‘ðtÞ ¼ 2
l

� �1=2 u0

1� u0 � e0

� �1=2

ðkðe0ÞÞ1=2Dp1=2t1=2 ð9:24Þ

Cake formation time:

t ¼ l
2q2

s S2

� �
1� u0 � e0

u0ð1� e0Þ2

 !
1

Dpkðe0Þ

� �
m2

s ð9:25Þ

It is important to take note that the expressions for filtrate volume, cake mass
and cake thickness are proportional to the square root of the product of the
pressure drop and time.
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Equations developed in the previous section are valid for cake formation in a
steady state, but also for a dynamic process where the amount of solid deposited
per time unit is small compared to the solid already forming the cake. This occurs
throughout the main part of the cake formation stage, except at the beginning of
the process. For example, during the feeding of a pressure filter, the flow is
variable, but the process becomes steady when the compression starts. It is obvious
that all the equations developed are valid for the washing stage of the filter cake.

Figure 9.18 shows the experimental curve of cake formation in the laboratory.
The circles represent experimental points, while the curve was drawn with
Eq.(9.17). For about 25 % of the filtration time, the filtration volume Vf ðtÞ pro-
duced is proportional to the time t. From that time on, Vf ðtÞ is proportional to t1=2.

In effect, Darcy’s law is valid at any instant t, therefore:

Dp ¼ l
‘m

km
þ ‘

kðe0Þ

� �
q ð9:26Þ

For the first instance, the cake thickness ‘ can be ignored, giving:

Dp ¼ l
‘m

km
q; since q ¼ Vf ðtÞ=St :

Dp ¼ l
‘m

km

Vf ðtÞ
St

; ) Vf ðtÞ ¼
SDp

l
km

‘m
t ð9:27Þ

and the filtrate volume is a linear function for short times.
These considerations are important when filtration parameters are to be

obtained in the laboratory.
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Fig. 9.18 Modeling of the cake formation step during pressure filtration
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(b) Cake formation with constant volume

Filtration with constant volume occurs when the pulp is fed with a positive
displacement pump. In this case, the volume flow rate is constant. Equation (9.8) is
still valid, but now q is a constant and Dp is variable:

DpðtÞdt ¼ l
‘m

km
þ d‘ðtÞ

kðe0Þ

� �
q

DpðtÞSdt ¼ l
‘m

km
þ d‘ðtÞ

kðe0Þ

� �
Q

where Q is the volume flow rate of filtrate. The thickness of the cake and the mass
of solid in the cake is then:

‘ðtÞ ¼ Skðe0Þ
lQ

Z t

0

DpðnÞdn� ‘mkðe0Þ
km

ð9:28Þ

msðtÞ ¼
Sqsð1� e0Þkðe0Þ

lQ

Z t

0

DpðnÞdn� ‘mqsð1� e0Þkðe0Þ
km

ð9:29Þ

Values for DpðtÞ should be obtained from the pump curve.

Problem 9.1 (Wakeman and Tarleton 1999a) A filtration experiment is performed
with a 45 cm2 area pressure filter at 70 kPa. The ratio of moist to dry cake is 1.34.
The densities of the solid, filtrate and feed pulp are respectively:
qs ¼ 2,640 kg/m3, qf ¼ 1,000 kg/m3 and q0 ¼ 1,320 kg=m3. The viscosity of the
filtrate is l ¼ 0:01 poises. The filtrate production in time is given in Table 9.1.
Determine the time necessary to obtain a filter cake with a thickness of 4.5 cm.

Volume fraction of the suspension is u0 ¼
q0 � qf

qs � qf
¼ 1,320 � 1,000

2,640 � 1,000
¼ 0:195

Cake porosity:

e0 ¼
Vf

Vf þ Vs
¼

mf

�
qf

mf

�
qf þ ms=qs

Table 9.1 Filtrate production over time

Time t, s Volume Vf, cm3 Time t, s Volume Vf, cm3

0 0 457 285
170 141 527 320
275 200 589 341
340 230 660 370
390 252
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e0 ¼
1

1þ msqf

mf qs

but:

mf þ ms

ms
¼ 1:34;

ms

mf
¼ 1

0:34

then:

e0 ¼
1

1þ qf

0:34qs

¼ 1

1þ 1:00
0:34 � 2:64

¼ 0:473

There is a direct relationship between the mass in the cake, the suspension
concentration, cake porosity and filtrate volume. From (9.14), we have:

‘ðtÞ
VFðtÞ

¼ u0

1� u0 � e0

1
S
¼ 0:195

1� 0:195� 0:473
1

45
¼ 0:0131

VFðtÞ ¼
‘ðtÞ

0:0131
¼ 4:5

0:0131
¼ 344:75

From the table we can obtain the correlation between time versus the volume of
filtrate (see Fig. 9.19).

t VFð Þ ¼ �3 � 10�6V3
F þ 3:8 � 10�3V2

F þ 7:397 � 10�1VF � 3:142 � 10�1

t = -3E-06Vf
3 + 0.0038Vf

2 + 0.7397Vf - 0.3142

R2 = 0.9995
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Fig. 9.19 Filtrate volume in time, from the previous table
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Substituting VFðtÞ in the equation for t VFð Þ results in:

t VFð Þ ¼ � 3 � 10�6ð344:27Þ3 þ 3:8 � 10�3ð344:27Þ2 þ 7:397

� 10�1ð344:27ÞVF � 3:142 � 10�1

¼ 500 s

9.3.2 Cake Dehumidification

During the filtration process, the cake formation stage removes the main part of the
water from the suspension. At the end of this stage, the suspension covering the
filter cake disappears and the filter cake looks dry but its pores are saturated with
water. Saturation s is the fraction of pore volume in a porous medium filled by
water. The saturation varies between zero and one, 0� s � 1. If s ¼ 1, the cake
pores are full of water and if s ¼ 0, the cake is dry. The only way to eliminate
water from a saturated filter cake is by expression and/or by dehumidification.

For compressible cakes, it is possible to eliminate some water by expression,
that is, by applying pressure and squeezing the filter cake like a sponge. In this
case, the mechanism of expression is the reduction of the pore size by
compression.

In dehumidification, the water is displaced from the filter cake by air. During
vacuum filtration, air is suctioned through the filter cake, while in pressure fil-
tration the air is blown into the filter cake. During dehumidification, air and water
flow simultaneously through the filter cake. In general, the solid particles attract
water, wetting the solid skeleton. The air, on the contrary, displaces the water from
the pores, but leaves a thin film adjacent to the solid surfaces held by capillary
forces. These phenomena make the flow of water different in a water saturated and
unsaturated porous medium.

To calculate the water and airflow through an unsaturated filter cake, the theory
of two-phase flow through a porous medium is used (see Chap. 3). Darcy’s
equation can be used in this case but here the permeabilities of the liquid and air
are not functions of the cake porosity only, but are also a function of saturation,
kiðe0; sÞ; i ¼ ‘; a, called effective permeabilities, where ‘ and a refers to liquid and
air respectively:

q‘;a sð Þ ¼ k‘;a e0; sð Þ½ �
l

ope

oz
ð9:30Þ

Relative permeabilities of the liquid kr‘ðe0; sÞ and air kraðe0; sÞ are defined as the
quotient between the effective permeabilities k‘;a½ðe0; sÞ� and the permeabilities
k‘;a½ðe0Þ� for the flow ql;a under the same pressure gradient ope=oz:
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kri e0; sð Þ ¼ ki e0; sð Þ
k e0ð Þ

; where i ¼ ‘; a ð9:31Þ

With these definitions of relative permeability, Darcy’s equation for the water
and airflow in a filter cake are:

q‘ðsÞ ¼
kr‘ e0; sð Þ � k e0ð Þ

l‘

ope

oz
ð9:32Þ

qaðsÞ ¼
kra e0; sð Þ � k e0ð Þ

la

ope

oz
ð9:33Þ

The relative permeabilities must be determined experimentally. Figure 9.20
shows the relative permeabilities of a wetting fluid (water) and a non-wetting fluid
(air) in a filter cake.

When air is blown through the filter cake, it displaces the water from the pores
and water and air leaving simultaneously. When the cake saturation reaches the
residual saturation s1, only air will flow out. The rest of the water is retained in the
cake by capillary forces.

Functional forms for the relative permeabilities must be postulated to introduce
them in Eqs. (9.32) and (9.33)

kriðsÞ ¼ fi s; s1ð Þ; with i ¼ ‘; a ð9:34Þ

where s and s1 are the instantaneous and the residual saturations, and i refers to
the type of fluid.
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Fig. 9.20 Experimental relative permeability curves for the flow of water and air through a
copper concentrate filter cake
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Blowing time

Taking into consideration that qf ðtÞ ¼ oVf ðtÞ=ot, for the blowing stage Eq.
(9.11) is written in the form:

Dp

l‘
¼ Rm þ

‘

kðe0Þkr‘ðsÞ

� �
dVf ðtÞ

dt
ð9:35Þ

The thickness of the cake is constant and equal to ‘ ¼ ms=S 1� e0ð Þ and the
water in the cake at time t is S‘e0sðtÞ, where sðtÞ diminishes with time. The filtrate
volume is Vf ðtÞ ¼ S‘e0 1� sðtÞð Þ, so that: dVf =dt ¼ �S‘e0ds=dt. Introducing these
relationships in Eq. (9.35) yields an equation in terms of the saturation:

Dp

l‘
¼ � Rm þ

‘

kðe0Þkr‘ðsÞ

� �
S‘e0

ds

dt

Integrating with respect to s:

Z t

0

Dp

l‘
dn ¼ �

Zs

1

S‘e0 Rm þ
‘

kðe0Þkr‘ðgÞ

� �
dg

Integrating, the blowing time to reach a saturation s is obtained:

t ¼ ‘e0l‘S
Dp

Rmð1� sÞ þ ‘

kðe0Þ

Z1

s

dg
f‘ gð Þ

0
@

1
A ð9:36Þ

The integral in (9.36) can be calculated once the function f ðsÞ is known.

Airflow

Since in pressure filtration the pressure gradient is much greater than the sat-
uration gradient, the latter can be neglected (see Sect. 6.5.4) and the air flow
necessary to reach a given saturation can be obtained by directly integrating Eq.
(9.33):

Dp

la
¼ Rm þ

‘

kðe0ÞkraðsÞ

� �
qaðtÞ

The air flow rate is Qa ¼ Sqa, therefore:

QaðtÞ ¼
SDp

la

� �
Rm þ

‘

kðe0ÞkraðsÞ

� ��1

ð9:37Þ

In these equations, Rm and S are equipment parameters, qs; kðe0Þ and e0 are
characteristic parameters of the porous medium, q‘ and l‘ are properties of the
fluid and Dp; ‘ and sðor tÞ are operational parameters and variables.
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Humidity is the ratio of water mass to total mass expressed as percentage.
Equation (9.38) gives the relationship between saturation and humidity:

h ¼ 100
q‘e0s

q‘e0sþ qs 1� e0ð Þ and s ¼ qs

q‘

1� e0

e0

h

100� h
ð9:38Þ

9.3.3 Cake Washing

The same equations and methods used for cake formation and blowing can be used
for cake washing, with a restriction on the concentration of the element that is to
be eliminated.

9.4 Filtration Parameters and Their Measurements

Figure 9.4 shows the several variables and parameters that influence the filtration
process. Inlet variables are feed pulp flow and concentration. Outlet variables are
filter capacity, mass of solid filtered per time unit and the thickness and humidity
of the filter cake. Design variables are filtration area and pressure drop in the
equipment. Control variables are applied pressure, times for cake formation,
washing, expression and blowing, temperature, pH, additives and pulp agitation.
Perturbations are the type of material, particle size and size distribution, impu-
rities in the feed material. Parameters are porosity, permeability and compress-
ibility of the cake, relative permeabilities for air and water and residual saturation.

In the previous section, we developed relationships between these variables and
parameters. To complete the necessary information to design and simulate a fil-
tration process, it is necessary to determine the dependence of the parameters on
the properties of the solid and the liquid.

9.4.1 Filtration Parameter Measurements

Several companies that provide equipment have laboratory instruments to measure
filtration parameters that are based on similar principles but differ in the amount of
sample they can take and the quality of their instrumentation. Here we will
describe FILTRATEST, an instrument designed by Bokela GmbH.

The core of FILTRATEST is a stainless steel pressure vessel that supports pressures
up to 10 bars (150 w) and therefore can simulate a vacuum and most pressure
filtration processes. The instrument has a filtration area of 19.63 cm2 and a water
jacket that permits operation at controlled temperatures. A set of rotameters of
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different sizes measures the airflow rate. A digital manometer controls air pressure.
A beaker sitting on a digital balance receives and weighs the filtrate. The porta-
bility of the instrument is fundamental to take measurements at plant sites. The
Fig. (9.21) shows the FILTRATEST.

Software especially designed for this instrument registers the exact time and
filtrate produced during cake formation, expression and blowing cycles. From
these data, functional forms are postulated for the filtration rate and time, from
which the permeabilities of the cake and the specific resistance of the filter
medium are calculated. The relative permeabilities for the water and air are also
calculated.

(a) Cake porosity

The cake porosity is a function of the size distribution of the particles forming
the porous bed. A bed formed of particles of only one size will have the same
porosity irrespective of the size of the particles. The case of sphere packing
illustrates this. Table 9.2 (Wakeman and Tarleton 1999b) shows the porosity for
different types of sphere packing.

We can see that a three-fold value of the porosity of spheres is possible
(0.26–0.78) for different types of packing. The nominal value used for porosity in
filter cakes is e0 ¼ 0:4, a bit lower than the average in Table 9.2.

In the case of filter cakes, it is more useful to determine the porosity experi-
mentally. There are three ways to do that: by drying and weighing the cake, by
measuring the depth of the saturated cake, and by a water balance at the end of the
bed formation time. When the cake is saturated, the water has disappeared from
the suspension and the difference between the total water in the suspension and the
water in the filtrate gives the volume of water saturating the cake, which is equal to
the volume of pores in the cake.

Fig. 9.21 FILTRATEST

instrument
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Problem 9.2 A sample of copper concentrates was taken from a Larox pressure
filter with a cylinder of 5 cm in diameter. The thickness of the sample was 35 mm.
The weight of the sample after drying was 147 g and the density of the solid
3.87 g/cm3.

The cake porosity then was:

e0 ¼ 1� 147=3:87
p � 52=4ð Þ � 3:5

¼ 0:45

Problem 9.3 In a laboratory test 138.7 g of copper concentrate, with a density of
4,300 kg/m3, was filtered from a suspension of 72.2 % solid by weight. The cake
formation time was t1 ¼ 42:7 s and, during that time, 20.6 cm3 of filtrate was
recovered. Calculate the saturated cake porosity.

1� e0 ¼
Vs

Vs þ Vfq
¼ Vs

Vs þ Vf � VF

e0 ¼ 1� ms=qs

ms=qs þ ms � ð100� wsÞ=ws � VF

e0 ¼ 1� 138=4:30
138=4:30þ 138 � ð100� 72:2Þ=72:2� 20:6

e0 ¼ 0:50

For compressible filter cakes, constitutive equations, such as Eqs. (9.39) and
(9.40) describe their porosity (Tiller et al. 1985):

e ¼ 1� pb
s ð9:39Þ

e ¼ 1� a lnðps=bÞ ð9:40Þ

Table 9.2 Porosity versus type of packing for spheres

Types of packing Coordination number Porosity e0

3 0.7766
4 0.6599
5 0.5969

Cubic 6 0.4764
7 0.4388

Orto-rombic 8 0.3955
9 0.3866

Tetragonal 10 0.3019
11 0.2817

Romohedral 12 0.2595
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Problem 9.4 Laboratory tests were performed with 80 g of a copper flotation
tailing in the FILTRATEST having 19.63 cm2 of filter area, giving a cake with a
porosity e ¼ 0:493 at a pressure drop of 0.75 bars. Tests at different pressure drops
yielded the result shown in Table 9.3. Determine the constitutive equation for the
compressibility of the cake as a function of porosity.

The correlation between the pressure ps and thickness height is, see Fig. 9.22

‘ ¼ 2:8708 p�0:0519
s cm:

The cake thickness for a pressure of 0.75 bars is

‘ ¼ 2:8708ð0:75Þ�0:0519 ¼ 2:914 cm

Calculating the cake volume Vc and the solid volume Vs from the filter area and
the cake thickness, for a pressure of p ¼ 0:75, we obtain:

Vc ¼ S � ‘

¼ 19:63 � 2:914 ¼ 57:20 cm3

Vs ¼ 1� eð Þ � Vcake

¼ ð1� 0:493Þ � 57:202 ¼ 29:0 cm3

Finally, the values of the cake porosity for the various pressures ps are calcu-
lated from:

1� e psð Þ ¼
Vs

VcakeðpsÞ
¼ 29:0

19:63 � 2:9 � p�0:0519
s

Figure 9.23 shows a plot of the solid volume fraction versus the applied
pressure.

Table 9.3 Filter cake
compression

Pressure drop. bars Cake height (cm)

0.8 2.90
1.0 2.87
1.5 2.81
2.0 2.77
2.7 2.73
3.0 2.71
3.5 2.70
4.0 2.68
4.7 2.66
5.0 2.63
5.5 2.62
6.0 2.61
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From Fig. 9.23 the following constitutive equations can be obtained by non-
linear fitting:

e ¼ 1� 0:514 p0:0519
s ð9:41Þ

The constitutive equation for the solid pressure is:

ps ¼
1� e
0:514

� �19:27

ð9:42Þ

1- ε = 0.5146p s
0.0519
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Fig. 9.23 Solid volume fraction (1 - e) versus pressure drop for a copper flotation tailing
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Fig. 9.22 Cake thickness heights versus pressure drop for a copper flotation tailing
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Problem 9.5 A flotation tailing is filtered in a vacuum band filter at 0.75 bars,
obtaining a cake with e0 ¼ 0:493 in porosity. An experimental test to determine
the compressibility of the cake gave the following constitutive equation:

e ¼ 1� 0:5146 p0:0519
s

What would the porosity be if the same material were filtered in a hyperbaric
filter with 3 bars of overpressure and in a Larox PF filter at 6 bars.

For the different filters, we have:

Larox PF eð6 barsÞ ¼ 1� 0:5146 � ð6Þ0:0519 ¼ 0:435

Hiperbaric flilter eð3:75 barsÞ ¼ 1� 0:5146ð3:75Þ0:0519 ¼ 0:449

(b) Filter medium resistance and cake permeability

The filter medium is an important component in the filtration process. It is a
medium with pores of different sizes and geometry, the structure of which can
cause variations in the way in which the particles are deposited and in the dis-
tributions of the filtrate flow. A filter cloth must not only retain the solid particles
and produce a clean filtrate, but must also resist the stresses imposed by the
equipment. Therefore in addition to the specific resistance to filtration, we must
consider the mechanical resistance as another parameter.

Experimental determination

To determine the specific resistance of a filter medium Rm and the permeability
of the filter cake kðeÞ Eq. (9.17) is written in the form:

t

Vf ðtÞ
¼

Rmlf

SDp
þ

lf

2S2Dp

u0

1� u0 � e0ð Þkðe0Þ
Vf ðtÞ ð9:43Þ

where Rm ¼ ‘m=km, and ‘m and km are the thickness and permeability of the filter
medium, information that is usually not known.

Write Eq. (9.43) in the form:

t

Vf ðtÞ
¼

Rmlf

SDp|ffl{zffl}
a

þ
lf

2S2Dp

u0

1� u0 � e0ð Þkðe0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

Vf ðtÞ ð9:44Þ

t

Vf
¼ aþ bVf

From the plot of t
�

Vf versus Vf , the value of Rm and kðe0Þ can be obtained
from the intercept ‘‘a’’ on the ordinate and from the slope ‘‘b’’ of the straight line
(see Fig. 9.27):
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Rm ¼ a � DpS

lf
and k e0ð Þ ¼

1
b
�

lf

2S2Dp

u0

1� u0 � e0
ð9:45Þ

Problem 9.6 (Massarani 1978) Calculate the filtration area necessary to treat
10,000 1=h of a 5 % by weight calcium carbonate suspension. The solid density is
2,500 kg/m3. The filter operates at 20 �C and 40 w of pressure. Laboratory
experiments with a filter with 500 cm2 area and 40 w pressure give a cake 3.2 cm
in thickness. The weight percentage of solids of the cake is 60.2 % and the vis-
cosity is l ¼ 1 cp. Figure 9.24 shows a plot of t=Vf versus Vf :

Parameters:
From Fig. 9.24 the ordinate intercept a ¼ 0:0071 and the slope is b ¼

1 � 10�6 and from Eq. (9.44), the intercept and slope are given by:

a ¼ 0:0071 ¼ l
SDp

‘m

km
and b ¼ 1 � 10�6 ¼ 1

2S

u0

ð1� u0 � e0Þkðu0Þ

u0 ¼
5

2:5 � ð100� 5Þ þ 5
¼ 0:0206 ðSuspensionÞ

ucake ¼ 1� e0 ¼
60:2

2:5 � ð100� 60:2Þ þ 60:2
¼ 0:374 Cakeð Þ

e0 ¼ 1� 0:209 ¼ 0:791 Cakeð Þ

t/Vf = 1E-06Vf + 0.0071

R2 = 0.9977
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Fig. 9.24 Plot of t/Vf versus Vf to calculate filtration parameters
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Dp ¼ 40 � 6:897 � 104 ¼ 2:76 � 106 dyns=cm2

l ¼ 0:01 g/cm-s

From (9.45):

Rm ¼ a � DpS

lf
¼ 0:0071 � 40 � 6:897 � 104

0:01
¼ 9:79 � 108 cm�1

kðu0Þ ¼
l

2S2Dp
� u0

1� u0 � e0
� 1

b

¼ 0:01
2 � 5002 � 2:76 � 106

� �
0:0206

1� 0:0206� 0:209

� �
1

10�6

� �

¼ 1:18 � 10�16 cm2

QFiltrate ¼ 10,000 � 103

3:6 � 103

� �
¼ 2,777:8 cm3=s

From Eq. (9.11) the filtration area is:

S ¼ l � Rm þ
‘ðtÞ

kðu0Þ

� �
QFiltrate

Dp

¼ 0:01 � 9:67 � 108 þ 3:2
�

1:94 � 10�11
� �� �

� 2,777:8
2:76 � 106 � 105

� �

¼ 1:7584 � 105 cm2 � 77:87 m2

Problem 9. 7 Calculate the permeability and resistance of the filter medium of a
material filtered in the laboratory at 70 kPa through a filter area of 45 cm2. The ratio
of the wet and dry cake weight was 1.34. The solid, filtrate and feed pulp densities is
qs ¼ 2,640 kg=m3, qf ¼ 1,000 kg/m3 and pulp density q ¼ 1,320 kg=m3. The fil-
trate viscosity is lf ¼ 0:01 poises. Table 9.4 shows the filtrate production over time:

Calculate the permeability and filter medium resistance.
Volume fraction in the feed:

u0 ¼
1,320� 1,000
2,640� 1,000

¼ 0:195

Table 9.4 Filtration production in time

Time t in s Volume in cm3 Time t in s Volume in cm3

0 0 457 285
170 141 527 320
275 200 589 341
340 230 660 370
390 252
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The ratio of wet to dry cake is the inverse of the solid fraction of the cake,
therefore:

X ¼ ms

ms þ mf
¼ 1

1:34
¼ 0:746

Volume fraction of solids in the cake:

uc ¼
qf X

qsð1� XÞ þ qf X
¼ 1,000 � 0:746

2,640 � ð1� 0:746Þ þ 1,000 � 0:746
¼ 0:527

Cake porosity e ¼ 1� uck ¼ 1� 0:527 ¼ 0:473
Plotting t=Vf versus Vf , we obtain the Fig. 9.25.
From the figure a = 0.88946 and b = 0.00246, so that:

Rm ¼ a � DpS

lf
¼ 0:88946 � 7:0 � 105 � 45

0:01
¼ 2:80 � 109cm�1

kðeÞ ¼ 1
b
�

lf

2S2Dp
� u0

1� u0 � e
¼ 1

0:00246
� 0:01

2 � 452 � 7 � 105

� 0:195
1� 0:195� 0:473

¼ 8:44 � 1011 cm2

t/V = 0.00246V + 0.88946
R2 = 0.98310

0.0
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Fig. 9.25 Determination of the cake permeability and filter medium resistance
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Specific resistance of the cake is:

a ¼ ‘

kðeÞ ¼
0:784

8:44 � 10�10
¼ 5:33 � 10�1

Problem 9.8 Calculate the specific resistance of the filter medium and the cake
permeability for a copper concentrate filtered in a Larox PF filter. A laboratory test
was performed in the FILTRATEST having a filtration area of 19.63 cm2. A sample of
156.78 g of solid was filtered at 2 bars for 39.76 s, time at which the cake was
formed. The volume of filtrate formed at any time was registered and is shown
Fig. 9.26. (Fig. 9.27)

The following data are known: (Tables 9.5, 9.6, 9.7)
Plotting t/Vf versus Vf in Fig. 9.28, we get the correlation:

t=Vf ¼ t=ð�0:0029 � t2 þ 0:480 � t � 2:841Þ

From Fig. 9.28 the values of a and b are a ¼ 3:0855 s/cm3 and
b ¼ 0:029 s/cm6, then:

Rm ¼
a � Dp � S

lf
¼ 3:0855 � 2 � 105 � 19:63

0:012
¼ 1:0095 � 109 cm�1

V f = -0.0029t 2 + 0.4804t  - 2.841

R2 = 0.9981
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Fig. 9.26 Filtrate volume versus time for the laboratory experiment in a FILTRATEST. The line
gives the polynomial correlation
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Pulp concentration 78 % solid
Feed volume fraction u0 ¼ 78

3:87 � ð100� 78Þþ 78 ¼ 0:478

Cake porosity

e ¼ 1� 156:78=3:78
19:63 � 3:6

¼ 0:43

k e0ð Þ ¼
1
b
�

lf

2S2Dp

u0

1� u0 � e

¼ 1
0:029

0:012

2 � ð19:63Þ2 � 2 � 106

0:48
1� 0:478� 0:43

¼ 5:74 � 10�9 cm2

Table 9.5 Data for the
filtration of a copper
concentrate in a Larox PF
filter

Parameters Larox PF filter

Solid density, g/cm3 3.87
Filtrate density, g/cm3 1.0
Feed pulp concentration, % by weight 78.0
Filtrate viscosity, kg/m-s 0.0012
Particle size Size analysis
Feed pulp temperature, �C 20
Feed pulp pH 9.1
Pressure during cake formation, bar 2
Air pressure during blowing, bar 4
Cake thickness, mm 3.6

Table 9.6 Particle size
analysis

Mesh size Average size x, lm Weight retained, g f3(x)

35/48 365 2.32 0.024
48/65 252 0.77 0.008
65/100 178 1.87 0.019
100/150 126 7.75 0.079
150/200 89 16.22 0.165
200/270 63 27.15 0.277
270/400 45 23.73 0.242
-400 31 18.27 0.186
SUMM 98.15 1.000

Table 9.7 Laboratory data Cake thickness, mm 36
Weight of wet cake, g 168.28
Weight of dry cake, g 156.78
Cake formation time t1, s 39.76
FILTRATEST area, cm2 19.63
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Effect of the particle size

The Kozeny–Carman equation for the permeability of porous media was given
in Sect. 6.3, Eqs. (6.29)–(6.33):

t /V f = 0.029V f + 3.0855

0
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0 2 4 6 8 10 12 14 16

Filtrate volume V f

t /
V

f,
 s

/c
m

3

t /V f=t/(-0.0029t 2+0.4804t -2.841)

Fig. 9.27 Classical t/Vf versus Vf curve for the determination of the permeability and the filter
medium resistance
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Fig. 9.28 Capillary curve: pressure drop versus saturation
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k eð Þ ¼
d2

p

36b

 !
e3

1� eð Þ2
; k eð Þ ¼ d2

ew
2

36b

� �
e3

1� eð Þ2
;

k eð Þ ¼ �x2
12

b as=avð Þ2

 !
e3

1� eð Þ2

ð9:46Þ

These equations show that the permeability of a filter cake depends on the
characteristics of the particles through two particle parameters, the average particle
size and the particle shape, both squared, and on the porosity through the function

e3
.
ð1� eÞ2. This last function, as we have already seen, depends on size distri-

bution, the packing factor and particularly the applied pressure.

Problem 9.9 For the data of problem 9.8, use the Kozeny–Carman equation to
predict the permeability of a filter cake formed at 6 bars of applied pressure.

At 4 bars of cake formation pressure, the porosity was e ¼ 0:43. Since the
copper concentrate is practically incompressible, we can assume that at 4 and
6 bars the porosity will be the same. Assume a sphericity of w ¼ 0:5 for the
concentrate. The particle size distribution is given in Table 9.8.

The surface volume average is �x12 ¼ 1
1:85 � 10�2 ¼ 54:18 lm and the equivalent

volume diameter de ¼ 0:69 � �x12 ¼ 0:69 � 54:18 ¼ 37:39 lm (Concha et al.
1973). After Coulson and Richardson (1968), b ¼ 5, therefore:

k eð Þ ¼ dewð Þ2

36b
e3

1� eð Þ2
¼ 37:39 � 10�4 � 0:5ð Þ2

36 � 5
� 0:433

1� 0:43ð Þ2
¼ 4:75 � 10�9 cm2

(c) Residual saturation and capillary curve

The entry pressure and the residual saturation are two important parameters to
determine the operating conditions of an industrial filter. Entry pressure is the

Table 9.8 Particle size distribution

Mesh size Average size x, lm Weight retained, g f3(x) xf3(x) f3(x)/x

35/48 365 2.32 0.024 8.89 6.67E-5
48/65 252 0.77 0.008 1.98 3.11E-5
65/100 178 1.87 0.019 3.39 1.07E-4
100/150 126 7.75 0.079 9.95 6.27E-4
150/200 89 16.22 0.165 14.71 1.86E-3
200/270 63 27.15 0.277 17.43 4.39E-3
270/400 45 23.73 0.242 10.88 5.37E-3
-400 31 18.27 0.186 5.77 6.00E-3
Sum 98.15 1.000 72.99 1.85E22
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minimum pressure at which a saturated filter cake begins dewatering. It is the
lower boundary for the blowing pressure. Residual saturation is the value at which
the saturation does not decrease with increased pressure.

Problem 9.9 Calculate the entry pressure and the residual saturation for a copper
concentrate, with a density qs ¼ 3:87 g

�
cm3, having the data of Table 9.9, plotted

in Fig. 9.28 showing the values pb ¼ 0:20; s1 ¼ 0:50:

The figure shows that it is unnecessary to blow air at pressures over 2.5 bars,
and that the minimum saturation possible is s = 0.50. Since the porosity is
e ¼ 0:43, the minimum humidity of the final cake is:

h ¼ 100 �
qf es

qf esþ qsð1� eÞ

¼ 100 � 1,000 � 0:43 � 0:50
1,000 � 0:43 � 0:50þ 3,870 � ð1� 0:43Þ ¼ 8:9 %

Correlation for the residual saturation

According to Wakeman, see Eqs. (6.74) and (6.75) of this book, the residual
saturation can be calculated in terms of the capillary number with the following
equations:

s1 ¼ 0:155 1þ 0:031 N�0:49
cap


 �
; Ncap ¼

e3
av�x

2
12Dp

1� eavð Þ2‘c

Table 9.9 Filtrate production in time during the blowing stage

Dp Filtrate volume Vf Liquid in the cake V Porosity e Saturation s

0.00 16.47 26.3 0.43 1.00
0.20 17.07 25.7 0.43 0.98
0.40 22.84 19.9 0.43 0.76
0.45 24.32 18.5 0.43 0.70
0.47 26.17 16.6 0.43 0.63
0.50 27.09 15.7 0.43 0.60
0.55 27.79 15.0 0.43 0.57
0.60 28.39 14.4 0.43 0.55
0.65 28.56 14.2 0.43 0.54
0.70 28.57 14.2 0.43 0.54
0.80 28.57 14.2 0.43 0.53
0.90 28.86 13.9 0.43 0.53
1.00 28.89 13.9 0.43 0.51
1.50 29.32 13.5 0.43 0.50
2.00 29.58 13.2 0.43 0.50
2.50 28.58 13.2 0.43 0.50
3.00 29.58 13.2 0.43 0.50

9.4 Filtration Parameters and Their Measurements 319

http://dx.doi.org/10.1007/978-3-319-02484-4_6
http://dx.doi.org/10.1007/978-3-319-02484-4_6


where Ncap is the capillary number, eav and ‘ are the average cake porosity and
the thickness, �x12 is the surface-volume average particle size, Dp is the pressure
drop across the cake and c is the liquid surface tension.

Problem 9.10 Determine the residual saturation for the filter cake of the previous
problem. The experimental information is:

eav ¼ 0:43; �x12 ¼ 54:18 lm; Dp ¼ 2:5 bars, ‘ ¼ 3:5 cm, c ¼ 72 dyns=cm

Ncap ¼
e3

av�x
2
12Dp

1� eavð Þ2‘c
¼
ð0:43Þ3 � 54:18 � 10�4ð Þ2 � 2:5 � 106

� �

1� 0:43ð Þ2 � 3:5 � 72
¼ 0:0713

s1 ¼ 0:155 � 1þ 0:031 � N�0:49
cap


 �
¼ 0:155 � 1þ 0:031 � 0:0713�0:49

� �

¼ 0:173

The value obtained with Wakeman’s correlation is about 35 % of the
experimental value of s1 ¼ 0:50.

(d) Relative permeability

We defined the relative permeability of the water and that of the air in a porous
medium at time t, as the ratio of the respective water and air permeability at time
t and the permeability of the saturated cake. As we know, this last parameter is a
property solely of the porous medium.

To calculate the permeabilities of the water and the air during the blowing
filtration stage, the flow of water and air as a function of time must be known
(Table 9.10).

Problem 9.11 Determine the relative permeabilities of water and air for a copper
concentrate filtration process. Experiments were made with the FILTRATEST on a
copper concentrate pulp with 73 % solid by weight. Experimental conditions
were: Dp ¼ 6 bars for the cake formation stage, filtration area S ¼ 6:55 cm2,
temperature T ¼ 20 �C, filtrate viscosity l ¼ 1 mPa-s, air viscosity 0:0187 mPa-s,
concentrate density qs ¼ 4:50 g

�
cm3. At the end of the filtration cycle, the humid

cake weighed 46.57 g and after drying, the weight was 43.27 g. The cake for-
mation stage took 37 s and liberated 5.79 g of filtrate. The expression stage
eliminated 4.56 g of filtrate during 38 s at Dp ¼ 7:5 bars. Finally, during 121 s, air
blown at Dp ¼ 6 bars liberated 1.99 g of additional filtrate. Table 9.11 shows data
for the several filtration stages. The rate of filtrate production is given in the first
two columns of Table 9.12, for the cake formation stage, and the first three col-
umns of Table 9.13 for the blowing stage.
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Cake permeability
To calculate the cake permeability, we model the filtrate volume flow from

Table 9.12.
Figure 9.29 shows a plot of the filtrate volume versus time for the cake

formation stage.

Table 9.10 Summary of the mass balance results

Data Symbol Unit cgs

Solid density qs 4.5
Temperature T(�C) 20
Filter area S 6.5
Pressure drop in cake formation DP 6.00E+06
Pressure drop in expresion DP 8.50E+06
Pressure drop in blowing DP 6.00E+06
Filtrate viscosity lf 0.01
Air viscosity la 0.000187
Weight of humid cake Wh 4.66E+01
Weight of dry cake Wd 4.33E+01
Cake formation time t1 3.70E+01
Cake expresion time t2 3.80E+01
Cake blowing time t3 1.21E+02
Filtrate from formation V1 5.79E+00
Filtrate from expresion V2 4.56E+00
Filtrate from blowing V3 1.99E+00
Parameter t/Vf versus Vf a 4.73E+00
Parameter t/Vf versus Vf b 2.85E-01
Results
Weight of humid cake Wh 4.66E+01
Weight of dry cake Wd 4.33E+01
Filtate in saturate cake Vfsc 9.85E+00
Filtrate after expresion Vfaexp 5.29E+00
Filtrate in final cake Vffc 3.30E+00
Total filtrate produced Vf 1.23E+01
Water in suspension Vwat0 1.56E+01
Humidity of saturated cake hsc 18.54
Humidity of final cake hfc 7.09
% solid in suspension w0 73.5
Volume fraction in suspension u0 0.381
Cake volume of saturated cake Vcsat 19.47
Cake volume after expression Vcaexp 14.91
Cake porosity in cake formation e0 0.506
Cake thickenes in formation Lexp 2.97
Cake thickeness after blowing Lb 2.28
Cake porosity after blowing in blowing eab 0.355
Cake final saturation S 0.624
Cake permeability k(e) 2.29E-10
Filtermedia resistance Rm 1.86E+10

9.4 Filtration Parameters and Their Measurements 321



From the figure, the following correlation are obtained:

Vf ¼ �0:0012 t2 þ 0:2189 t � 0:5716

Using this correlation, a graph t=Vf versusVf yields Fig. 9.30.
From the correlation t=Vf ¼ 4:7322þ 0:2848Vf , the following parameters

a and b are:

a ¼ 4:7322 and b ¼ 0:2848

With these values, the permeability and the filter medium resistance are:

Table 9.11 Data for different filtration cycles

Stage Time s Dp bars Filtrate production at stage, g

Formation 36.69 6.0 5.79
Expression 38.31 7.5 4.56
Blowing 120.57 6.0 1.99
Total 195.57 12.34

Table 9.12 Filtrate production in time during the cake formation stage

Cake formation stage

time t, s Vf cm3 Vf (sim) cm3 t/Vf (sim) s/cm3

2.14 0.01 0.0491 43.550
4.18 0.25 0.2932 14.255
6.21 0.68 0.6570 9.452
8.24 1.14 1.0682 7.714
10.27 1.56 1.4913 6.887
12.31 1.93 1.9115 6.440
14.34 2.34 2.3170 6.189
16.37 2.65 2.7064 6.049
18.4 3 3.0788 5.976
20.43 3.35 3.4339 5.950
22.47 3.75 3.7740 5.954
24.5 4.06 4.0966 5.981
26.53 4.48 4.4042 6.024
28.56 4.7 4.6979 6.079
30.6 4.99 4.9798 6.145
32.63 5.27 5.2481 6.217
34.66 5.48 5.5051 6.296
36.69 5.79 5.7514 6.379
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kðeÞ ¼ 1
b
� l

2S2Dp
� u0

1� u0 � e0

¼ 1
0:2848

� 0:01
2 � 6:552 � 6 � 106

0:381
1� 0:381� 0:506

¼ 2:293 � 10�10 cm2

Rm ¼ a � DpS

l
¼ 4:7322

6 � 106 � 6:55
0:01

¼ 1:860 � 10þ10 cm�1

Relative permeability
The first four columns of Table 9.13 show data for the blowing stage. The plot

of the filtrate volume versus time for the blowing stage gives: (see Figs. 9.31, 9.32,
9.33, 9.34):

Vf ¼ �0:0482þ 0:544 t0:278 Qf ðtÞ ¼ 0:1512 t�0:722

QaðtÞ ¼ 46:17 1� 1= expðtÞð Þ þ 0:02713 � t

The effective and relative permeabilities of the filtrate and of the air are given by:

keaðtÞ ¼
‘

Dp

� �
�

lf Qf ðtÞ
S

� �
and kra ¼

kea

k eð Þ

kaðtÞ ¼
‘

Dp

� �
� laQaðtÞ

S

� �
and kraðtÞ ¼

kra

k eð Þ

The saturation is given by:

s ¼ Vf�suspension � Vf�totalðtÞ
Vf�suspension � Vf�cakeformation þ Vf�expression

� � ¼ 15:64� Vf�totalðtÞ
15:64� 5:79þ 4:56ð Þ

¼ 15:64� Vf�totalðtÞ
5:29

;

The residual saturation is s1 ¼ 0:535, so that the reduced saturation becomes:

sr ¼
s� s1
1� s1

¼ s� 0:535
1� 0:535

¼ s� 0:535
0:465

The relative permeabilities can now be correlated with the reduced saturation in
the form (see Fig. 9.35):

krf srð Þ ¼ exp �5:50 1� s2
r

� �� �
kra srð Þ ¼

0:67 1� sr

� �

1� 0:92 � sr � 0:045 � s2
r

:
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V f = -0.0012t 2 + 0.2189t  - 0.5716
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Fig. 9.29 Filtrate volume versus time for the cake formation stage
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9.5 Continuous Modeling

9.5.1 Vacuum Filters

Vacuum filtration is an important process in the mining industry and for the first
half of the 20th century it was the only filtration process in practice.

In this type of filtration, pulp feeds a tank in which a filter is submerged. The side
of the filter in contact with the feed is at atmospheric pressure while the other side
connects to a vacuum pump that provides a pressure drop across the filter. The
difference in pressure drives the filtrate across the filter medium leaving the solid
adhering in the form of a cake. The maximum theoretical pressure available for this
type of filter is one atmosphere, but the pressure drop in the piping system and,
especially, the height of the location with respect to sea level drastically diminishes
this value, often reaching 0.6–0.8 bars. Thus vacuum filtration operates at low and
constant pressure drop and therefore the filter cake produced is incompressible.

Rotary drum, disc, band and pan filters operate under vacuum. The selection of
the appropriate filter for a given duty depends principally on the material to be
filtered. Pulps with large solid particles, such as potassium chloride or potassium
sulphide crystals, are difficult to maintain in suspension and therefore band filters
are best, while disc or drum filters are appropriate for pulps of fine material.

One of the main costs of using filter cloth is the air consumption with power
demands on the order of 2–15 kW/m2 of filter area (Henriksson 2000). An alter-
native to filter cloth is ceramic plates made of alumina. These filters are homo-
geneous and have small pores on the order of 2 ml, which produce capillary
suction according to the Young–Laplace equation (see Sect. 6.5.1 in this book).
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Fig. 9.35 Relative permeability versus reduced saturation
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This action permits fluid flow through the filter medium with minimum help from a
vacuum, requiring only about 0.05 kW/m2 of filter area (Henriksson 2000). The
principal problem with ceramic filters is blockage of the pores with small solid
particles that must be removed with acid leaching.

Rotary Filter Model

Consider a rotary vacuum filter, for example a disc filter, rotating at N rpm with
cake formation and dehumidification stages. The time tR, in minutes, for each rev-
olution is tR ¼ 1=N. If the fraction of this time used during the cake formation is I,
then, the time for the cake formation stage t0 and the time for dehumidification t3 are:

cake formation stage:

t0 ¼ I � tR ¼
I

N
; min =rev ð9:47Þ

dehumidification stage

t3 ¼ 1� Ið Þ � tR ¼
1� I

N
; min =rev ð9:48Þ

Assume that the filter is submerged in the suspension forming an arc with an
angle of h, as is shown in Fig. 9.36. The fraction of time I in cake formation must
be equal to the fraction of filter area submerged in the suspension, that is
I ¼ h=360, then, Eqs. (9.47) and (9.48) become:

t0 ¼
h

360
� 1

N
and t3 ¼ 1� h

360

� �
� 1

N
; min =rev ð9:49Þ

(a) Cake formation

The relationship between the production of filtrate and the cake formation time
is given by Eq. (9.16), therefore:

θ

h

Fig. 9.36 Rotary vacuum
filter
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V2
f t0ð Þ þ 2Skðe0ÞRm

1� u0 � e0

u0
Vf t0ð Þ � 2S2kðe0Þ

Dp

l
1� u0 � e0

u0
t0 ¼ 0

Substituting (9.49) in this equation yields the volume of filtrate per revolution:

V2
f Nð Þ þ 2Skðe0ÞRm

1� u0 � e0

u0
Vf Nð Þ � 2S2kðe0Þ

Dp

l
1� u0 � e0

u0

h
360 N

Rearranging:

S

N

� �2 Vf Nð ÞN
S

� �2

þ 2Skðe0ÞRm
1� u0 � e0

u0

S

N

� �
Vf Nð ÞN

S

� �

� 2S2kðe0Þ
Dp

l
1� u0 � e0

u0

h
360 N

¼ 0

Dividing by S2=N2 gives:

Vf Nð ÞN
S

� �2

þ 2Nkðe0ÞRm
1� u0 � e0

u0

Vf Nð ÞN
S

� �

� 2 kðe0Þ
l

1� u0 � e0

u0

h N

360
¼ 0

Filtrate flow rate

The term Vf ðNÞN=S ¼ q0 is the filtrate flow rate produced per unit area during
N revolutions. Substituting the previous equation yields an equation for the pro-
duction of filtrate during the cake formation time

q2
0ðtÞ þ 2Nkðe0ÞRm

1� u0 � e0

u0
q0ðtÞ �

kðe0ÞNDp

l
1� u0 � e0

u0

h
180
¼ 0 ð9:50Þ

The solution to this equation is:

q0ðtÞ ¼ Nk e0ð Þ
1� u0 � e0

u0
R2

m þ
Dp

lk e0ð Þ
u0

1� u0 � e0

h
180 N

� �1=2

�Rm

( )

ð9:51Þ

Mass flow rate

The mass flow rate relates to the filtrate flow rate by Eq. (9.14), that is

msðtÞ ¼
qsu0ð1� e0Þ
1� u0 � e0ð Þ Sq0ðtÞ
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Substituting Eq. (9.51) yields:

msðtÞ ¼ qsð1� e0Þk e0ð ÞSN R2
m þ

Dp

lk e0ð Þ
u0

1� u0 � e0

h
180 N

� �1=2

�Rm

( )
ð9:52Þ

Neglecting the filter media resistance, Eqs. (9.54) and (9.52) become:

q0ðtÞ ¼
k e0ð ÞDp

l
1� u0 � e0

u0

h N

180

� �1=2

ð9:53Þ

msðtÞ ¼ qs 1� e0ð ÞS k e0ð ÞDp

l
1� u0 � e0

u0

h N

180

� �1=2

ð9:54Þ

Equations (9.51)–(9.54) permit the calculation of a rotary vacuum filter
capacity. In these equations u0 is the suspension volume fraction, e0 and k e0ð Þ are
the filter cake porosity and permeability during the cake formation stage, qs is the
solid particle density, l is the filtrate viscosity, Dp is the total pressure drop across
the filter, N is the filter velocity in rpm and h is the angle subtended by the part of
the filter submerge in the suspension.

It is useful to separate the variables in Eqs. (9.53) and (9.54) that are properties
of the suspension, the cake and the filtrate from operating variables:

q0ðtÞ ¼
1� u0 � e0

u0

� �1=2

� k e0ð Þð Þ1=2

Suspension and cake properties

� 1
l

� �1=2

Filtrate property

� Dp
h

180
N

� �1=2

Operational variables

ð9:55Þ

ms e0; tð Þ ¼ S
1� u0 � e0

u0

� �1=2

k e0ð Þð Þ1=2

Suspension and cake properties

� 1
l

� �1=2

�
Filtrate property

qs
Solidproperty

� Dp
h

180
N

� �1=2

Operational variables

ð9:56Þ

Cake thickness

The cake thickness is related to its mass by Eq. (9.13):

‘ ¼ ms e0; tð Þ
qsS 1� e0ð Þ ð9:57Þ

Replacing Eq. (9.57) with Eqs. (9.56) or (9.52), depending whether or not the
filter medium resistance is omitted, yields:

‘ e0; tð Þ ¼ k e0ð Þ � R2
m þ

Dp

lk e0ð Þ
u0

1� u0 � e0

h
180 N

� �1=2

�Rm

( )
ð9:58Þ
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‘ e0; tð Þ ¼ u0

1� u0 � e0

� �1=2

� k e0ð Þð Þ1=2 � Dph
180 N

� �1=2

ð9:59Þ

(b) Cake dehumidification

The cake dehumidification takes place by vacuum suction of the filtrate in the
interior of the equipment from the atmosphere at the surface of the filter cake. The
suction time t3 is given by Eqs. (9.36) and (9.49), then:

1� h
360

� �
1
N
¼ l‘e

Dp
Rmð1� sÞ þ ‘

k e0ð Þ

Z1

s

dg
kr‘ g; s1ð Þ

0
@

1
A ð9:60Þ

This equation relates the rotation speed to the final saturation. The air flow
during the dehumidification stage is given by Eq. (9.37):

QaðtÞ ¼
SDp

la

� �
Rm þ

‘

k e0ð Þkraðs; s1Þ

� ��1

ð9:61Þ

In these equations kr‘ðsÞ and kraðsÞ are the relative permeabilities of the liquid
and air respectively.

Problem 9.12 A rotary drum filter with 3 m2 of area operates at a speed of
0.5 rpm, an internal pressure of 30 kN/m2 and 30 % of its surface area submerged.
The atmospheric pressure is 1.013 9 105 N/m2. Calculate the filter capacity and
the final humidity of the cake. The cake is incompressible and the filter cloth
resistance is equivalent to the resistance of a 1 mm filter cake. The following data
are known:

Submerged angle h ¼ 120�

Surface area S ¼ 3m2

Rotational speed N ¼ 0:5 rpm
Atmospheric pressure 1.013 9 105 N/m2

Internal pressure 30 kN/m2

Suspension concentration N ¼ 0:5 rpm
Cake porosity e0 ¼ 0:40
Cake permeability k e0ð Þ ¼ 5 � 10�13m2

Cake thickness ‘ ¼ 2:3 cm
Solid density qs ¼ 2,000 kg

�
m3

Filtrate density q‘ ¼ 1,000 kg
�

m3

Filtrate viscosity la ¼ 1 � 10�3 Pa - s
Air viscosity la ¼ 1:85 � 10�5 Pa - s
Liquid relative permeability; kr‘ ¼ exp 4:466 s2

r � 1
� �� �

Air relative permeability kra ¼ 0:5521 � 1�srð Þ
1�0:9155 � sr�0:07643 � s2

r
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Results:

Filtration time:

Capacity:
Filter capacity given by (9.52)

ms¼qs � 1� e0ð Þ � k e0ð Þ � S � N R2
mþ

Dp

l‘ � k e0ð Þ
� u0

1�u0�e0
� h

180 � N

� �1=2

�Rm

( )

¼2,000 � ð1�0:4Þ � 5 � 10�13 � 3 � ð0:5=60Þ

� 2 � 109
� �2þ 0:713 � 105

1 � 10�3 � 5 � 10�13

0:111
1�0:111�0:4

� 120
180 � ð0:5=60Þ

� �1=2

�2 � 109

( )

¼0:731 kg=s

¼0:731 � 3,600=1,000¼2:64 tph

¼2:64 � 24¼63:4 tpd

Cake thickness:

From Eq. (9.57): ‘ ¼ ms
qs 1 � e0ð ÞSN ¼ 0:792

2,000 � 1 � 0:4ð Þ � 3 � 0:5=60 � 100 ¼ 2:64 cm

Filtrate flow: Qf ¼ ms
qs

1 � u0 � e0

u0

1
1 � e0

¼ 0:0025 m3=s

Cake humidity:

Equation (9.34) relates the filtrate flow to the relative permeability:

Dp

l‘
¼ Rm þ

‘

k e0ð Þ � k � kr‘ sð Þ

� �
q‘

The relative permeability is then:

kr‘ sð Þ ¼ ‘

Dp=l‘Q‘ � Rmð Þ � k eð Þ ¼
2:64

7:13 � 105 � 3
10�3 � 2:5 � 10�3 � 2 � 109
� �

� 5 � 10�13

¼ 0:635

If the constitutive equation of the relative permeability of the filtrate is given by:

Pressure drop Dp ¼ 1:013 � 105 � 0:3 � 105 ¼ 0:713 � 105 N=m2

Suspension concentration u0 ¼ 20 � 1,000=ð2,000 � ð100� 20Þ þ 20Þ ¼ 0:111
Filter medium resistance Rm ¼ 1 � 10�3

k e0ð Þ ¼
1 � 10�3

5 � 10�13 ¼ 2 � 109 m�1

Rotation time tR ¼ 1
N ¼ 60

0:5 ¼ 120 s

Cake formation time t1 ¼ h
360 tR ¼ 120

360 � 120 ¼ 40 s

Dehumidification time t3 ¼ 1� h
360

� �
� tR ¼ 1� 120

360

� �
� 120 ¼ 80 s
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kr‘ srð Þ ¼ exp 4:4662 � s2
r � 1

� �� ffl

Then, the reduced saturation is:

sr ¼
ln kr‘ srð Þ
4:4662

þ 1

� �1=2

¼ ln 0:635
4:4662

þ 1

� �1=2

¼ �0:4547
4:4662

þ 1

� �1=2

¼ 0:948

The final saturation is:

s ¼ s1 þ sr � 1� s1ð Þ ¼ 0:535þ 0:948 � 1� 0:535ð Þ ¼ 0:976;

and the final humidity is:

h ¼ 100 �
qf es

qf esþ qs 1� eð Þ

¼ 100 � 1,000 � 0:4 � 0:976
1,000 � 0:4 � 0:976þ 2,000 � 1� 0:4ð Þ ¼ 24:5 %

Air flow
The relative air permeability is given by:

kra ¼
0:5521 � 1� srð Þ

1� 0:91554 � sr � 0:076429 � s2
r

¼ 0:5521 � 1� 0:948ð Þ
1� 0:91554 � 0:948� 0:076429 � 0:948ð Þ2

¼ 0:453

The airflow through the filter cake is given by:

Qa ¼
SDpN

la

� �
� Rm þ

‘

k eð Þkra sð Þ

� ��1

¼ 3 � 7:1 � 105 � 0:5=60
1:85 � 10�4

� �
� 2 � 109 þ 2:30

5 � 10�13 � 0:453

� ��1

¼ 9:31 � 10�4m3=s

¼ 3:35 m3=h

¼ 80:4 m3=d

9.5.2 Pressure Filters

As we said in Sect. 9.2.2, pressure filters work in a semi-continuous manner, that
is, with filter cycles.

Pulp is fed to the filtration chambers from a manifold with as many rubber hoses
as there are filtration chambers. The chambers are closed spaces between the
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filtration cloth and the rubber diaphragm. As soon as all the chambers are closed, the
pulp is pumped and distributed evenly across the horizontal surface of the filter cloth
in all the chambers. When the chambers are full, air is pumped to the other side of the
diaphragms. Although filtration starts when the pulp begins to enter the chambers,
the cake formation continues until no further filtrates comes out of the cake. If the
material is compressible, the diaphragm pressure reduces the cake porosity in an
expression stage. Once cake formation and expression are finished, air is blown
through the cake to displace the water retained in the pores. Finally, automatic
mechanisms open the set of filtration plates to discharge the cake. The table below
shows a typical filtration cycle for a Larox pressure filter (Droguett 2000).

Stage Function Time (s)

1 Closing the plates 50
2 Filling the filtration chambers 85
3 Washing the feeding tube 13
4 Washing the feeding hoses 50
5 Pressing and expression 80
6 Compressed air release 5
7 Opening and closing the outlet tubes 30
8 Cake blowing 100
9 Pressure drainage 10
10 Opening the feeding valve 1
11 Cake discharge 18
12 Filter cloth washing 72
14 Total cycle 514

The table shows that time is divided into effective filtration time, cake formation
t1, cake pressing t2 and cake blowing t3 and time that is not used for filtration,
which is called dead time t4. The filtration time is 265 s and the dead time is 249 s.
Optimizing a filtration system should shorten filtration time and especially dead
time.

Problem 9.13 With the data from problem 9.11, calculate the capacity, in tpd, of a
horizontal pressure filter with 144 m2 in filter area, to produce a copper concentrate
cake, qs ¼ 4,500 kg=m3, with 8.5 % humidity. The feeding and cake formation
takes t1 = 85 s at Dp = 6 bars producing a cake of 3.0 cm. An expression stage at
7.5 bars takes t2 = 75 s and is followed by a blowing stage at 6 bars.

From problem 9.11 we have the following data and parameters:
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Cake formation stage:

Dp ¼ 6 � 106 N=m2

‘ ¼ 3:0 cm

e0 ¼ 0:520

Rm ¼ 9:80 � 109 cm�1

k e0ð Þ ¼ 1:55 � 10�10 cm2

S ¼ 144m2

Expression stage:

Dp ¼ 74:5 � 106N=m2

Reduction of porosity from e0 ¼ 0:520 to e ¼ 0:362

Blowing stage:

Dp ¼ 6 � 106 N=m2

e1 ¼ 0:362

Reduced permeability correlations:

k‘ ¼ exp 4:4662 s2
r � 1

� �� ffl

ka ¼
0:5521 1� srð Þ

1� 0:91554001 � sr:0:07642878 � s2
r

s1 ¼ 0:535

Since the solid volume is the same before and after pressing, we can write:

Vs ¼ V0 1� e0ð Þ ¼ V2 1� e1ð Þ
V ¼ ‘ � S

‘1 ¼ ‘ �
1� e0

1� e1
¼ 3 � 1� 0:400

1� 0:362
¼ 2:82

Blowing time
To obtain the desired humidity of 8.5 %, the saturation must be:

s ¼ qs

qf

1� e0

e0

h
100� h

¼ 4:5
1

1� 0:362
0:362

8:5
100� 8:5

¼ 0:737

sr ¼
s� s1
1� s1

¼ 0:737� 0:535
1� 0:535

¼ 0:4344

From expression (9.35) and from the relative permeability of the liquid, with
parameters a ¼ �4:466256 y b ¼ 4:4661532, we obtain the blowing time to get
a saturation of 0.4344:
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t3 ¼
l‘e0

Dpe
Rmð1� sÞ þ ‘ 1� s1ð Þ

k e0ð Þ

� ffiZ1

sr

dg
exp aþ bg2ð Þ

¼ l‘e0

Dpe
Rmð1� sÞ þ ‘ 1� s1ð Þ

k e0ð Þ

� ffi
1

2b � exp aþ bg2ð Þ

� ffi

t3 ¼
0:01 � 2:26 � 0:362

6 � 106
� 9:80 � 109 � ð1� 0:737Þ þ 2:26 � ð1� 0:535Þ

10:55 � 10�10

� ffi

� exp 4:466256� 4:4661532 � g2ð Þ
�2 � 4:4661532 � g

� ffi1

0:43

¼ 91:7 s

Airflow:
The airflow is calculated from (9.36):

Qa ¼
SDpe

la

� �
� ‘

k e0ð Þfa e0; sð Þ

� ��1

Qa ¼
SDpe

la

� �
� ‘

k e0ð Þ � a þ csr
1 þ bsr þ ds2

r


 �

0

@

1

A
�1

¼ 1:24 m3
�

s

Air consumption:

Va ¼ Qa � t3 ¼ 1:24 � 91:7 ¼ 113:8 m3

Filter capacity:
The time for one cycle is:

t ¼ t1 þ t2 þ t2 þ t4

¼ 85þ 80þ 92þ 249 ¼ 506 s

Therefore, for each cycle of 506 s, a cake is formed in 85 s.
Mass per cycle:

m e0; tð Þ ¼ qs 1� e0ð ÞS 2
l

� �0:5

� u0

1� u0 � e0

� �0:5

� k e0ð Þð Þ0:5 � Dp0:5
e � t0:5

¼ 2:356 � 107 g=cycle

¼ 2:356 � 107 � 3600=506 ton=cycle

¼ 167:6 tph:
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Chapter 10
Suspension Rheology

Abstract The importance of rheology in the mining industry derives from the fact
that all materials being processed are suspensions, that is, mixtures of solid par-
ticles and fluids, usually in water. In mineral processing plants, water is mixed
with ground ore to form a pulp that constitutes the mill feed. The mill overflow is
mixed again with water to adjust the solid content for classification in hydrocy-
clones. Pulp characteristics are essential in the transport of products to their final
destination. A suspension, like all types of materials, must obey the laws of
mechanics under the application of forces. The flow patterns of suspensions in
tubes depend on their concentrations and transport velocities. In diluted suspen-
sions at low velocities particles will settle. The suspension is termed a settling
suspension and the flow regime is considered heterogeneous. At a velocity beyond
a value at which all particles are suspended gives a non-settling suspension and the
flow regime is homogeneous with Newtonian behavior. Concentrated suspensions
are usually homogenous with non-Newtonian behavior. The variables and field
equations for all types of fluids are presented and constitutive equations differ-
entiate between Newtonian and non-Newtonian behavior. Empirical models of
non-Newtonian behavior are presented, including pseudo-plastic and dilatant
behavior with Cross and Carreau and Power-law models, and yield-stress models
with Bingham and Hershel-Bulkley models. The study of the operational effect on
viscosity includes variable such as solid particle size and concentration, temper-
ature, pressure, time and pH. Rheometry provides experimental methods to
determine rheological parameters such as viscosity and yield stress.

E. C. Bingham introduced the word rheology in 1929 to describe the study of
deformation and flow of all types of materials. The axioms of mechanics and the
mass and momentum balances are valid for all macroscopic bodies and the dis-
tinction among different materials is established by constitutive equations, that is,
the response of materials to applied stresses. Strictly speaking, rheology covers the
mechanical study of all matter considered as continua, but it is usually reserved for
those with non-linear constitutive equations, therefore leaving out Hooken solids
and Newtonian fluids. Rheology can be considered a description, with constitutive
equations also called rheological equations of state, of material behavior and not of

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_10,
� Springer International Publishing Switzerland 2014
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materials. A rheological study includes the formulation of constitutive equations
and the experimental methods to determine corresponding parameters, which is
called rheometry.

The importance of rheology in the mining industry derives from the fact that all
materials being processed are suspensions, that is, mixtures of solid particles and
fluids, usually water. In mineral processing plants these suspensions are termed
pulps. In a grinding plant, water is mixed with ground ore to form a pulp that
constitutes the mill’s feed. The mill overflow is mixed again with water to adjust
the solid content required to be classified in hydrocyclones. Pulp characteristics are
essential in the transport of products to their final destination in the flotation plant.

A suspension, like all types of materials, must obey the laws of mechanics
under the application of forces. The flow patterns of suspensions in tubes depend
on their concentrations and transport velocities. In diluted suspensions at low
velocities particles will settle. The suspension is termed a settling suspension and
the flow regime is considered heterogeneous. At a velocity beyond a value at
which all particles are suspended gives us a non-settling suspension and the flow
regime is homogeneous with Newtonian behavior. Concentrated suspensions are
usually homogenous but with non-Newtonian behavior. Generally, mineral pulps
have non-Newtonian behavior, therefore their rheological characteristics are
essential in the different unit operations in a mineral processing plant.

10.1 Introduction to Rheology

The incompressible stationary shear flow of a fluid can be described with the
following variables, (1) material density qðr; tÞ, (2) velocity vðr; tÞ and (3) the
stress tensor Tðr; tÞ, where r and t are the position vector and time respectively.
These three field variables must obey the mass and linear momentum field
equations:

r � v ¼ 0 ð10:1Þ

qrv � v ¼ r � T þ qg ð10:2Þ

where g is the gravitational constant vector.
Since there are three field variables and only two field equations, a constitutive

equation must be postulated for the stress tensor:

T ¼ �pI þ TEðrÞ ð10:3Þ

where p is the pressure and TE is the shear stress tensor or extra stress tensor.
The extra stress tensor defines the type of fluid, for example, a Newtonian fluid

is TE given by:

TE ¼ l rvþrvT
� �

ð10:4Þ
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where l is a constant called shear viscosity and rv is the shear rate tensor.
For a two-dimensional axi-symmetrical flow of a Newtonian fluid in the x2 or

z direction in case of a cylindrical tube, the shear stresses T12ðx1; x2Þ\0 or
Tr;zðr; zÞ\0 reduces to:

TE
12 ¼ l

ov2

ox1
TE

rz ¼ l
ovz

or
ð10:5Þ

The stresses are usually written in the form TE
12 � s or TE

rz � s and the velocity
gradient as ov2=ox1 ¼ _c or ovz=or ¼ _c, then Eq. (10.5) is used in the form:

s ¼ l _c ð10:6Þ

where the shear stress s is measured in Pascal (Newton per meter) (Pa = N/m2),
the shear rate _c in (s-1) and the viscosity in (Pa s).

Figure 10.1 represents the shear stress for the flow in a cylindrical tube in the
direction z, where sw is the shear rate at the wall of the tube (see Chap. 11).

10.2 Constitutive Equations

Materials with a constant viscosity behave as Newtonian fluids. Common fluids
like water and air have Newtonian behavior. For these types of fluids, the shear
stress is a liner function of the shear rate.

10.2.1 Suspensions with Newtonian Behavior

Diluted non-settling suspensions have Newtonian behavior, that is, the viscosity is
constant and the relationship between shear stress and the shear rate is represented
by a straight line called a rheogram, see Fig. 10.2 for a suspension with 0.01 volume
fraction of solids. Einstein’s constitutive equation applies; g ¼ gs � 1þ 2:5uð Þ,
where gs is the viscosity of the continuous phase.

r

Flow direction

R

z

Lp0p
wτ

wτ

τ

Fig. 10.1 Shear stress distribution for the flow in a cylindrical tube for p0 [ pL
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10.2.2 Non-Newtonian Behavior

Figure 10.3 shows a general viscosity curve for suspensions with non-Newtonian
behavior. At a low shear rate, the shear stress shows a constant viscosity region
followed by a drastic fall, then a new constant viscosity region and finally, in some
cases, an increase in viscosity at very high shear rates.

If we consider Newtonian behavior as a reference, see the red line in Fig. 10.4,
non-Newtonian behavior present two additional rheograms: pseudo-plastic, also
known as shear thinning behavior, typical of mineral suspensions and polymer
solutions (see the blue line in Fig. 10.4), and dilatant, also known as shear
thickening behavior, where viscosity increases with shear rate, see the magenta
line.

A copper flotation tailing has non-Newtonian behavior, that is, the constitutive
equation of the stress is a non-linear function of the shear rate. These types of
constitutive equations are written the same as Newtonian equations. However, in
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this case, viscosity is not constant but rather is a function of the shear rate.
Figure 10.5 shows an example.

s ¼ gð _cÞ _c ð10:7Þ

where g is the shear viscosity.

(a) Pseudo Plastic and Dilatant Behavior

In general, materials with pseudo-plastic behavior present two Newtonian
plateaus (constant viscosities; see Fig. 10.7), a first Newtonian plateau, with
constant viscosity g0 at low shear rates and a second Newtonian plateau, with
viscosity g1 at high shear rates. Sometimes the first Newtonian plateau is so high
that it cannot be measured, in which case, the low shear rate behavior is described
as an apparent yield stress sy. Sometimes, the second Newtonian plateau is short
and viscosity increases as the shear rate increases, which is termed dilatant
behavior.

In mineral processing, we find discrete or agglomerate particle suspensions with
different concentrations. At low concentrations, discrete particle suspensions have
Newtonian behavior, as shown in Fig. 10.2, but with higher concentrations their
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behavior is viscoplastic, see Fig. 10.5. In general, mineral particles at rest present a
negative surface charge when suspended in water (see Chap. 7) and consequently
become hydrated. In slow motion particles stay hydrated and present a certain
resistance to flow but with an increase in shear rate, the hydration layer is striped
away and particles become oriented in the direction of the flow, causing decreases
in flow resistance and viscosity, approaching an optimum constant orientation.

Dilatant flow behavior is found in highly concentrated suspensions and depends
on the solid concentration, the particle size distribution and the continuous phase
viscosity. The region of shear thickening generally follows that of shear thinning.

Densely packed particles have enough fluid inside to fill the void between
particles. At rest or at low shear rates, water lubricates particle surfaces, allowing
an easy positional change of particles when forces are applied and the suspension
behaves as a shear thinning liquid. At critical shear rates, packed particles lose
water, which causes an increase in interior concentration. Particle–particle inter-
action increases drag, causing dilatant behavior as shown in Fig. 10.6.

10.2.3 Empirical Rheological Models

Empirical constitutive equations are quantified with different mathematical mod-
els. We will describe Cross and Carreau models; Ostwal-de Waele, commonly
known as the power law model, the Herschel-Bulkley model and Bingham model.
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(a) Cross and Carreau Models

Cross and Carreau models are represented by Eqs. (10.8) and (10.9), respectively.
Given that _c ¼ s=g, the relationship between viscosity and shear rate is:

g� g1
g0 � g1

¼ 1
1þ ðk _cÞm s ¼ g

k
� g0 � g1

g� g1
� 1

� �1=m

ð10:8Þ

Carreau
g� g1
g0 � g1

¼ 1

1þ ðb _cÞ2
� ffið1�nÞ=2

s ¼ g
b
� g0 � g1

g� g1

� � 2
1�n

�1

" #0:5

ð10:9Þ

where g0 and g1 are the viscosities at low and high shear rates plateaus, and
k; b; m and n are experimental constants. Figure 10.7 represents the two models
in terms of g ¼ f _cð Þ , where k and b are curve fitting parameters with the
dimension of time and n as a constant.

(b) Power Law Model (Ostwal-de Waele)

Power law models represent pseudo-plastic and dilatant behavior with great
accuracy. Equation (10.10) represents the viscosity and shear stress for material
obeying the power law model:

g ¼ m _cn�1 and s ¼ m _cn ð10:10Þ
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where m is the consistency index, with units in Pa� s2 and n is the power index.
Values of the power index n\1 represent pseudo-plastic behavior and values of
n [ 1 dilatant behavior.

Problem 10.1 Determine the rheogram of the thickener underflow of a copper
flotation tailing from the experimental data in Table 10.1, obtained with a rota-
tional viscometer. Plot the rheogram and determine the parameters of the power
law model.

Results are shown in Eq. (10.11) and Figs. 10.8, 10.9, 10.10, where the points
are the experimental values and the lines represent the simulation with the power
law model.

g ¼ 1:723 _c0:727 ½Pas� s ¼ 1:723 _c0:2468 ½Pa� ð10:11Þ

(c) Models with Yield Stress

In concentrated flocculated suspensions, particles aggregate as flocs, which
interact with each other forming a network maintained by surface interaction
forces extending throughout the entire volume of the suspension. The application
of stresses to this structure deforms it elastically until the structure breaks down.
This break down is related to the yield stress of the material and can be considered
as the minimum shear stress at which the solid structure becomes liquid.
Knowledge about yield stress is essential in transporting suspensions, especially in
resuspending particles when they have settled in a pipeline or channel. See Chap.
11 for details.

There are two methods to measure the yield stress: (1) extrapolating the flow
curve to a zero shear rate and (2) directly measuring shear stress when the flow
begins. The first method depends on the rheological model in use, for example
Bingham or Hershel-Bulkley models, which provide different values that are in
both cases different from the yield stress determined by measuring with the vane
method. We conclude that shear rate should be determined by the method that
gives the best value for the application required.

1. Extrapolation from flow curves

Bingham Model

mineral pulps in tubes and channels the range of shear rates is usually high, on the
order of hundreds of seconds to minus one. At these ranges, viscosity is constant
and equal to the slope of the line of the shear values. In this case, the extrapolation
of this line to a zero shear rate gives an appropriate yield stress that, together with
the constant viscosity, provides the required rheological parameters. Bingham
proposed this method in 1922 with the constitutive equation:

s ¼ sy þ K _c ð10:12Þ
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Table 10.1 Rheological
experiment

c s g

0.01 0.490 49021
0.02 0.592 29616
0.03 0.662 22055
0.04 0.716 17893
0.05 0.761 15213
0.06 0.799 13325
0.07 0.834 11912
0.08 0.865 10810
0.09 0.893 9923
0.1 0.919 9191
0.2 1.111 5553
0.3 1.241 4135
0.4 1.342 3355
0.5 1.426 2853
0.6 1.499 2498
0.7 1.563 2234
0.8 1.622 2027
0.9 1.675 1861
1 1.723 1723
2 2.082 1041
3 2.326 775
4 2.516 629
5 2.674 535
6 2.811 468
7 2.932 419
8 3.040 380
9 3.140 349
10 3.231 323
20 3.904 195
30 4.361 145
40 4.718 118
50 5.014 100
60 5.270 88
70 5.497 79
80 5.701 71
90 5.887 65
100 6.059 61
200 7.321 37
300 8.178 27
400 8.846 22
500 9.402 19
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where sy is the yield stress and K is the constant plastic viscosity. Equation (10.12)
shows that Bingham’s model is the combination of a yield stress sy with a
Newtonian viscosity K. This model has the advantage of giving the result of the
modeling in one plot.
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Problem 10.2 Determine the parameters of Bingham’s model for the experi-
mental data in Table 10.2. For high shear stress values, a tangent drawn to the
shear stress-shear rate curve gives s as the intercept of the tangent with the vertical
axis and the viscosity as its slope. See Fig. 10.10.

sy ¼ 12:5 Pa and K ¼ 0:0196 Pa s ð10:13Þ

Herschel-Bulkley Model

For processes at low shear rates, the stress-shear function is curved and Bingham’s
model is inadequate since viscosity is not constant. In this case, the Herschel-
Bulkley model can be used with the constitutive equation:

s ¼ sy þ k _cz ð10:14Þ

where sy is the yield stress, k is the consistency index, similar to the power law
model, and n is the power index.

Problem 10.3 For the experimental data in Table 10.2, determine the rheological
parameters of the Herschel-Bulkley model.

The following values were obtained by non-linear curve fitting for the Her-
schel-Bulkley rheological parameters: sy ¼ 1:25; k ¼ 2:37; z ¼ 0:343, see
Figs. 10.11 and 10.12.
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For the same experimental data, the power-law model better describes the shear
stress in the whole range of shear rates. The drawback is that this model requires
knowledge of the variable viscosity obtained from the viscosity plot versus shear
rate, while Bingham’s model requires only the shear stress plot. We conclude that
the power-law model is better for processes requiring low shear rate (lower than
150 s-1 in Fig. 10.11). Engineers designing and operating pipelines in the mining
industry prefer Bingham’s model because it gives them a constant viscosity and a
yield stress value, which are important in transporting mineral pulps.

Table 10.2 Data of a rheogram for a copper flotation tailing

c (1/s) s (Pa) g (m Pa s) c (1/s) s (Pa) g (m Pa s)

0.0000 3.3 0.0000 186.5000 8.7 46.5300
0.4660 3.8 8109.0000 193.0000 8.7 45.0100
2.6380 4.5 1690.0000 199.4000 8.7 43.7300
5.5050 5.1 927.8000 205.8000 8.7 42.4100
8.9820 5.7 632.1000 212.3000 8.7 41.1800
12.9600 6.2 478.7000 218.7000 8.8 40.0700
17.3500 6.6 380.9000 225.2000 8.8 39.0100
22.1100 6.9 313.6000 231.5000 8.8 38.0400
27.1500 7.2 266.6000 238.0000 8.8 37.0300
32.4400 7.5 230.1000 244.4000 8.9 36.2200
37.8900 7.7 202.1000 250.8000 8.9 35.4400
47.6700 7.7 162.0000 257.3000 8.9 34.7500
53.4800 8.1 150.8000 263.7000 8.9 33.9300
59.5000 8.2 137.0000 270.2000 9.0 33.3700
65.5900 8.2 125.4000 276.6000 9.1 32.9500
71.8300 8.3 115.5000 283.1000 9.2 32.4500
77.9900 8.3 106.8000 289.5000 9.3 32.2100
84.2300 8.4 99.2600 295.9000 9.5 32.2300
90.5400 8.4 93.1500 302.4000 9.8 32.5300
96.8500 8.5 87.5300 308.8000 10.2 32.8800
103.2000 8.5 82.5300 315.3000 10.4 33.1200
109.5000 8.5 77.8900 321.7000 10.8 33.6200
115.9000 8.5 73.7100 328.2000 11.2 34.1300
122.4000 8.6 69.9300 334.6000 11.6 34.7200
128.7000 8.6 66.6400 341.1000 11.9 34.8800
135.1000 8.6 63.6700 357.0000 12.1 33.9600
141.5000 8.6 60.8100 362.2000 12.6 34.7700
148.0000 8.6 58.1600 369.1000 12.8 34.7800
154.4000 8.6 55.9700 375.8000 13.0 34.6500
160.9000 8.7 53.8000 382.4000 13.3 34.8500
167.3000 8.7 51.8400 389.1000 13.5 34.7300
173.6000 8.7 49.9900 395.7000 13.9 35.0800
180.1000 8.7 48.3700 402.3000 14.1 35.1100
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(d) Pseudo-Plastic-Dilatant behavior

Under some conditions, copper flotation tailings present pseudo-plastic-dilatant
behavior similar to that of Fig. 10.6. There are no models for this type of behavior,
but a polynomial of degree three or four can describe the entire rheogram in the
full range of shear rates.

τ  = 0.0196γ  + 12.521
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Fig. 10.11 Bingham model for data of Table 10.2
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Fig. 10.12 Herschel-Bulkley model for data from Table 10.2
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Problem 10.4 Determine the parameters for a rougher flotation tailing with data
given in Table 10.3 and represented in Fig. 10.13. The result with a four-power
polynomial is:

s ¼ �2:000� 10�9 _c4 þ 2:000� 10�6 _c3 � 6:000� 10�4 _c2 þ 7:940� 10�2 _c
þ 5:212

ð10:15Þ

10.2.4 Operational Effects on Viscosity

(a) The effect of concentration

Solid concentration has the most important effect on suspensions. In general,
properties such as yield stress and viscosity increase with solid concentration. The
viscosity of suspensions at low concentration can be modeled by a polynomial
extension of Einstein’s equation.

g ¼ g0 1þ k1uþ k2u
2 þ k3u

3 þ � � �
� �

ð10:16Þ

where g0 is viscosity at zero concentration, u is the volume fraction of solids,
k1 ¼ 2:5 is Einstein’s parameter and k2; k3; . . .kn are fitting parameters. For con-
centrations of less than 0:01 the suspension behaves Newtonian. See Fig. 10.14.

Krieger-Daugherty

At higher concentrations, suspensions have non-Newtonian behavior. Several
equations describe this behavior; one of the most commonly used is the Krieger-
Daugherty equation (Krieger 1972), in which viscosity depends on maximum
particle packing umax. See Eq. (10.17) and Fig. 10.14.

g ¼ g0 1þ u
um

� �a�um

ð10:17Þ

Table 10.3 Dimension of the sensors

Sensor system MV

Internal cylinder (Rotor) 18.4
Length L1 (mm) 60.0
Radius R1 (mm)

External cylinder 21.0
Length LC mm) 85.0
Radius R2 (mm)

Gap (mm) 2.60
Temperature range �C -30 �C a 100
Sample volume cm3 46
Viscosity range mPa s 20 a 4 9 105
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Exponential function

When using the power-law model for the rheogram, an exponential function
sometimes gives a good fit for the effect of solid concentrations. Figures 10.15 and
10.16 give an example of a copper flotation tailing at a shear rate of 200 s-1.

g ¼ 0:838� exp 0:142 %ð Þ _c�0:670 ð10:18Þ
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Fig. 10.13 Rheogram of a rougher flotation tailings of a copper ore at pH = 9.2 and 4 % solids
modeled by a four power polynomial
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Shaheen (1972) presented an alternative model to describe the concentration
effect:

g ¼ g0a� exp
bu

1� u=umð Þ

� �
ð10:19Þ

where a, b sand um are constant.

(b) Effect of particle size

Particle size distribution affects viscosity in three ways: (1) through the max-
imum particle packing um; (2) the presence of very small particles; and (3) particle
size distribution. Fine particles can fit in a packed bed between larger particles,
increasing the density and affecting the relative concentration u=um. Another
effect of small particles is to transform the continuous phase, usually water, into a
viscous suspension that directly affects overall viscosity. Finally, particle size
distribution contributes to shear thickening of mineral pulps, as shown in
Figs. 10.6 and 10.13.

Unfortunately, there is no theoretical information on how these variables
influence suspension viscosity. Consequently, the maximum packing density um is
usually obtained by curve fitting.
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(c) The effect of temperature

An exponential function (Tanner 1988) fits the effect of temperature on New-
tonian liquids.

g ¼ A exp B=ðT � T0Þð Þ ð10:20Þ

where T is the absolute temperature and A; B and T0 are characteristic constants.
In the absence of information on the effects of temperature on suspensions, the
equation for Newtonian fluids is used.

In Barrientos et al. (1994) performed numerous rheological experiments with
quartz samples of different sizes and concentrations. They proposed a general
equation based on the Shaheen model (1972) for the suspension viscosity in terms
of four dimensionless variables x=x0, u, Re and �C, where x and x0 are the
average and a reference particle size, u is the solid volume fraction, Re ¼ qf _cx2=g
is the flow Reynolds number, q0 and g0 are the fluid density and viscosity,
respectively, _c is the shear rate and �C is the temperature in Celsius. They sepa-
rated the functional form of this equation into three terms, one for the effect of
temperature, a second for the effect of concentration and a third for the interaction
between these variables.

g=g0 = p1 exp
3:462� 103

T
þ

� �
� exp

p2u
1� u=p3ð Þp4

� �

� 1þ p5 exp �p6up7ð Þ � x=x0ð Þp8

Re1=p9

� �p9
ð10:21Þ
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Fig. 10.16 Plot of viscosity versus particle concentration for data from Fig. 10.13
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Concha et al. (1999) performed 70 experiments with underflow material from
the feed, overflow and underflow of a copper ore grinding-classification circuit and
with ground underflow for several time ranges, temperatures from 5 to 25 �C and
concentrations from 15 to 40 % solid by weight. After obtaining nine parameters
of the four dimensional groups by non-linear curve fitting, they concluded by
simulation that particle size has a significant effect on rheograms solely for shear
rate values below _c � 200 s�1.

(d) Effect of pressure

In general, the effect of pressure on viscosity is small, except for materials such
as oil subjected to very high pressures, where an exponential equation can be used
(Tanner 1988).

g ¼ gð0Þexp p=bð Þ

where p is the applied pressure, gð0Þ is the viscosity at zero pressure and b is a
constant.

(e) pH Effect

It is well know that plant operators add lime to thickener underflow of copper
flotation tailings when it is too viscous for hydraulic transport. This does not
always solve the problem because pH affects the slurry in a complicated way.
Figure 10.17 show the viscosity of a copper flotation tailing for several particle
concentrations at a shear rate of 200 s-1.

Two minimum viscosities were present for this material at all concentrations,
one at pH 7.5 and the second at pH 9.0, with more pronounced values at high
concentrations. Several copper tailings present this behavior. To establish if this
behavior is due to the silica content of the tailings, experiments were made with
silica in distilled water. Figures 10.17 and 10.18 give the results. The two mini-
mums are also shown but with somewhat higher pH values.
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(f) The effect of time

Time is important in materials that suffer structural changes during measure-
ment. For example, some flocculated suspensions change structure while sheared,
which produces a change in viscosity. This behavior may be thixotropic or
rheopectic depending if the viscosity diminishes or increases with time. A sche-
matic drawing of these behaviors is shown in Fig. 10.19.

Fig. 10.18 Effect of pH on the viscosity of a suspension of silica of 2 % solids in distilled water
at a shear rate of 200 (s-1)
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10.3 Rheometry

Rheometry is that part of Rheology which provides experimental methods to
determine rheological parameters such as viscosity and yield stress, that is, it
establishes the methods to determine the constitutive equation of a fluid material.
Simple shear flows permit obtaining exact solutions of the Navier–Stokes equa-
tions, which in turn provides the rheological parameters.

10.3.1 Simple Shear Stationary Flows

Simple shear are flows produced by a unidirectional shear rate, an example of
which are the flows in a circular tube, rotational flows in the annular gap of
concentric cylinders, torsion flow between two flat plates and flow between a cone
and a plate, among other. These flows are of interest to mineral processing because
they provide the tools to calculate pipes and pumps (see Chap. 11) and experi-
mental methods to determine rheological properties; shear stress versus shear rate
plots; yield stress and viscosity versus shear rate.

(a) Flow in concentric cylinders

Consider the stationary rotational flow of a suspension of non-settling particles
in two concentric cylinders of radius R1 and R2 produced by the rotation of the
cylinders with angular velocities X1 and X2 respectively. Assume the cylinders
are open to the atmosphere at one end. Figure 10.20 shows the cylinder.

Considering a constant fluid density, variables for this problem are the viscosity
of the suspension and the tangential velocity of the fluid. The field equation in
cylindrical coordinates in laminar flow is:

g
o

or

1
r

o

or
rvhð Þ

� �
¼ 0 ð10:22Þ

R1

R2

R1R1
111

Ω

Ω

R2

2
Fig. 10.20 Rotational flow
between two concentric
cylinders
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with boundary conditions:

vh R1ð Þ ¼ X1R1 ; vh R2ð Þ ¼ X2R2 ; vr ¼ vz ¼ 0

where vh; vr and vz are the components of the velocity vector and X1 and X2 are
the angular velocities of the cylinders with radius R1 and R2.

Tangential velocity

Integrating Eq. (10.22) twice results in:

vh ¼
C1

2
r þ C2

r
ð10:23Þ

Applying boundary conditions, the constant C1 and C2 are:

C1 ¼
2 R2

2X2 � R2
1X1

� �

R2
2 � R2

1

� � C2 ¼
R1R2

2 X1 � X2ð Þ
R2

2 � R2
1

� � ð10:24Þ

and

vh rð Þ ¼ 1

R2
2 � R2

1

� � R2
2X2 � R2

1X1
� �

r þ R1R2
2 X1 � X2ð Þ

r

� �
ð10:25Þ

Shear Rate

Integrating Eq. (10.22) once yields:

ovh

or
¼ C1 �

vh

r
ð10:26Þ

Substituting C1 gives:

ovh

or
¼ R2

2X2 � R2
1X1

R2
2 � R2

1

� � � vh

r
ð10:27Þ

To obtain the average shear rate calculate the average of (10.27) for radius R1

and R2:

�_c ¼ 1
2

ovh

or

����
r¼R1

þ ovh

or

����
r¼R2

 !
ð10:28Þ
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Applying boundary conditions:

ovh

or

����
r¼R1

¼ R2
2X2 � R2

1X1

R2
2 � R2

1

� � � X1

ovh

or

����
r¼R2

¼ R2
2X2 � R2

1X1

R2
2 � R2

1

� � � X2

�_c ¼ R2
2X2 � R2

1X1

R2
2 � R2

1

� � � X2 þ X1ð Þ; s�1

ð10:29Þ

(b) Flow in a capillary

Consider the stationary laminar axial flow of a fluid in a cylindrical tube, see
Fig. 10.21. From Chap. 11 the flow rate and the shear stress at the wall of the tube
are given by:

Since the shear rate is linear in r, the average value of �_c is given by:

�_c ¼ 4� �vz

D
; �_c ¼ 5:1� Q

D3
ð10:30Þ

10.3.2 Types of Viscometers

There are two types of viscometers used in mineral processing, rotational and
capillary. Searle-type rotational viscometers are used for mineral pulps while
capillary viscometers are used for polymers.

(a) Rotary viscometers

The relative rotation of two concentric cylinders of a viscometer induces shear
rate in the fluid. Usually one cylinder rotates while the other is fixed. In a Searle
viscometer, the inner cylinder rotates while the outer cylinder is fixed. The system
is called Couette. See Figs. 10.22 and 10.23.
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Fig. 10.21 Axial flow in cylindrical tube. a Velocity distribution. b Shear stress distribution
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During measurement, the fluid to be tested is allowed into the gap between the
two cylinders. The relative motion of the cylinder induces a simple shear to the
fluid, which produces a torque in the other cylinder that is measured by a suitable
device. If the gap between the cylinders is small, the viscosity in the gap is
constant as shown in Fig. 10.22.

The Searle system is the most commonly used for mineral pulps.
For a Searle system from Eq. (10.29), the shear rate is given by:

_c ¼ X1R2
2

R2
2 � R2

1

� � ð10:31Þ

To determine a rheogram, a given shear rate _c is established in the equipment
by imposing a rotational speed N1 given in terms of _c by Eq. (10.32)

N1 ¼
60
2p

1� R1

R2

� �2
 !

_c rpm½ � ð10:32Þ

Fig. 10.22 Systems types
used in rotary viscometers

Fig. 10.23 Searle type of
measuring system. Shear rate
is measured on the rotor axis
and the outer cylinder is fixed
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where N1 is the rotational speed in rpm of the inner cylinder with a radius of
R1 and R2 is the radius outer cylinder.

A good example of a robust rotational viscometer for mineral pulps is the Haake
RV-20 viscometer under ISO standard 3219. Figure 10.24 shows this instrument.

Figure 10.25 shows typical sensors for suspensions. The grooves on the outside
of the inner cylinder and on the inside of the outer cylinder avoid slippage of
particles along the walls.

Fig. 10.24 Haake RV-20 rotational viscometer

Fig. 10.25 Grooved sensors type MV
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10.3.3 Standard Rheological Measurement (Rheogram ISO
3219)

1. Select the correct measuring system.
2. Fill the cup with a representative sample of slurry to the designated point.
3. Place the cup on the laboratory jack centered below the viscometer bob.
4. Slowly raise the jack so that the bob completely penetrates the slurry sample.
5. Fix the cup to the viscometer using the designated mounting screw.
6. Use the software from the rotational rheometer to produce a rheogram of the

slurry sample.
7. Present a rheogram of shear stress versus shear rate between 0 and 450 s-1.
8. Repeat for different concentrations.

Problem 10.5 The measurement of copper flotation tailings with a rotational
viscometer at 65 % solids gave the data in Table 10.4. Obtain the complete rhe-
ogram and determine the rheological parameters with Bingham, Power-law and
Herschel-Bulkley model.

Bingham Model

The Bingham model is characterized by a yield stress sy and a constant plastic
viscosity K. Results are given in Fig. 10.26.

sy ¼ 40 Pa and K = 0:197 Pa s

Power law model

The power law model is described by the constitutive equation: s ¼ m _cn

m ¼ 6:958 Pa and n ¼ 0:457

The result is shown in Fig. 10.27.

Herschel-Bulkley Model

Herschel-Bulkley model combines a yield stress with a power-law model. Here
Fig. 10.28:

sy ¼ 1:25 Pa; k ¼ 2:37 Pa sz ; z ¼ 0:343

Determination of the yield stress with vanes

Given the importance of yield stress in transporting mineral pulps, it needs to be
determined accurately. The best way determine yield stress for values above 10 Pa
is direct measurement at shear rate tending to zero. Measuring yield stress of
mineral pulps at very low shear rates with rotary viscometers presents the problem
of particle slip at the rotating cylinder. To avoid this problem, the vane method is
used. This method consists of using a rotating vane, as shown in Fig. 10.29, to
measure the yield stress under static conditions. The vane is submerged in the pulp,
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Table 10.4 Experimental data of a copper mineral at 65 % solids

c (1/s) s (Pa) g (m Pa s) c (1/s) s (Pa) g (m Pa s) c (1/s) s (Pa) g (m Pa s)

0.00 7.45 0.00 90.54 54.72 604.40 226.10 83.63 369.90
0.09 7.56 81140.00 93.33 55.39 593.50 229.20 84.24 367.50
0.44 8.54 19200.00 96.27 56.31 584.90 232.40 84.79 364.90
0.90 9.65 10680.00 99.14 57.05 575.40 235.70 85.22 361.60
1.51 10.85 7174.00 102.20 57.78 565.60 238.90 85.77 359.10
2.26 12.05 5334.00 104.90 58.52 557.60 241.90 86.26 356.60
3.15 13.29 4223.00 108.00 59.31 549.40 245.20 86.76 353.80
4.07 14.53 3569.00 111.00 60.11 541.70 248.40 87.25 351.20
5.10 15.86 3111.00 113.80 60.90 535.00 251.50 87.80 349.00
6.24 17.09 2740.00 116.80 61.58 527.30 254.70 88.23 346.40
7.49 18.32 2446.00 119.80 62.31 520.20 257.90 88.72 344.00
8.82 19.53 2213.00 122.80 63.05 513.40 261.10 89.14 341.40
10.21 20.75 2033.00 125.80 63.66 506.00 264.30 89.70 339.40
11.72 21.96 1874.00 128.80 64.40 499.90 267.50 90.19 337.10
13.32 23.18 1741.00 131.80 65.13 494.10 270.80 90.55 334.40
14.96 24.41 1631.00 135.60 65.99 486.80 273.90 91.04 332.40
18.57 26.60 1433.00 138.60 66.66 481.10 277.10 91.53 330.30
20.61 28.01 1359.00 141.70 67.34 475.10 280.40 91.90 327.80
22.58 29.11 1289.00 144.70 68.01 469.90 283.50 92.33 325.70
24.54 30.15 1228.00 147.70 68.75 465.30 286.70 92.76 323.60
26.62 31.26 1174.00 150.80 69.36 460.10 290.00 93.19 321.40
28.75 32.36 1126.00 154.00 70.09 455.20 293.10 93.62 319.40
30.88 33.40 1082.00 157.00 70.64 450.00 296.30 94.04 317.30
33.09 34.50 1043.00 160.10 71.32 445.30 299.50 94.41 315.20
35.33 35.48 1004.00 163.20 71.99 441.10 302.80 94.78 313.00
37.61 36.58 972.90 166.50 72.60 436.20 306.00 95.21 311.10
39.92 37.57 941.00 169.50 73.22 432.10 309.10 95.58 309.20
44.73 39.46 882.20 172.60 73.83 427.70 312.40 95.94 307.10
47.38 40.69 858.70 175.70 74.50 424.00 315.60 96.37 305.40
49.96 41.61 832.80 178.90 75.12 419.80 318.70 96.74 303.50
52.47 42.59 811.60 181.90 75.73 416.20 321.90 97.11 301.60
54.98 43.57 792.40 185.20 76.34 412.30 325.20 97.54 300.00
57.56 44.55 773.90 188.20 76.95 408.80 328.40 97.78 297.80
60.22 45.34 753.00 191.40 77.51 404.90 331.50 98.27 296.40
62.87 46.26 735.90 194.50 78.12 401.70 334.70 98.52 294.30
65.59 47.12 718.40 197.60 78.67 398.10 338.00 98.88 292.60
68.24 48.04 704.00 200.90 79.28 394.70 341.20 99.25 290.90
70.97 48.96 689.90 204.00 79.83 391.30 344.40 99.62 289.30
73.69 49.88 676.80 207.20 80.45 388.30 347.60 99.80 287.10
76.34 50.61 663.00 210.30 81.00 385.20 350.80 100.30 285.90
79.14 51.53 651.10 213.50 81.49 381.70 354.00 100.70 284.40
82.01 52.27 637.30 216.60 82.10 379.10 357.20 100.90 282.50
84.87 53.12 625.90 219.80 82.59 375.80 360.40 101.30 281.00
87.67 53.92 615.00 222.90 83.14 372.90 363.70 101.60 279.30

366.90 101.90 277.70
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rotated at a speed of less than 10 [rpm] and torque is slowly increased. After a
linear elastic deformation of the shear surface formed, a maximum torque TM is
reached as shown in Fig. 10.30. Appropriate operating conditions are DT [ 3d and
N\10 ½rpm�. Three (kg) are needed for each test.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

Shear rate (1/s)

S
he

ar
 s

tr
es

s 
[P

a]

Esperimental data

τ =τ y+0.197 γ Pa]

Fig. 10.26 Bingham parameters for data from Table 10.4 by extrapolation of the rheological curve
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Fig. 10.27 Simulation with power law model of data of Table 10.4
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With vane measurements an approximate value of the yield stress is obtained
from Eq. (10.33) with values 20–30 % lower than the real value. This is because the
shear distribution is not uniform, the sides of the shear surface having different
values from each other. In the absence of theoretical knowledge, Nguyen and Boger
(1985) assumed a potential distribution with power m, and obtained the equation:

Tm ¼
pd3

2
‘

d
þ 1

3

� �
sy ð10:33Þ

Due to the presence of two unknowns, sy and m, in equation, it is necessary to
perform more than one test, usually three, with vanes of different shapes ‘=d to
obtain the values of these unknowns simultaneously.
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Fig. 10.28 Simulation with Herschley-Bulkley model for data from Table 10.4
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Writing Eq. (10.33) in the form:

2Tm

pd3
¼ ‘

d
sy þ

sy

mþ 3
ð10:34Þ

a plot of 2TM=pd3 vs: ‘=d gives a straight line. The slope of the line is sy and the
intercept with the vertical axis is sy=ðmþ 3Þ, which gives the value of m. See
Fig. 10.31. In the case of Fig. 10.31:

sy

mþ 3
¼ 2:8551 ! sy ¼ 32:444 ! m¼ 8:36 ð10:35Þ

(b) Capillary viscometers

A capillary viscometer is a straight cylindrical tube with diameter D and length
L, through which the sample to be tested flows with constant velocity v. The time
t for a given volume Q to flow between levels of the tube at a constant pressure
gradient is measured. If the material has a Newtonian behavior, the Hagen-
Poiseuille equation relates these variables. See Eq. (10.36).

Q ¼ 1
8
pR4

g
Dp

L
m3=s
	 


ð10:36Þ

Since Q ¼ �vz=t, where �vz is the average velocity. The flow is gravity driven
with Dp=L ¼ qg, and the kinematical viscosity is m ¼ g=q, we have:

m ¼ p
32

gD2

�vz
t cm2=s
	 


ð10:37Þ
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Fig. 10.30 Torque curve versus time showing the maximum torque reached
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For a determined capillary and constant velocity, Eq. (10.37) is written in the
form:

m ¼ K � t cm2=s; where K ¼ p
32

gD2

�vz
ð10:38Þ

Manufacturers have automated and standardized capillary viscometers and give
the constant K for each capillary to facilitate its use. An example is the Cannon–
Fenske capillary viscometer with Lauda control. See Fig. 10.32.
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Fig. 10.31 Yield stress determination with the vane method

Fig. 10.32 Cannon-Fenske Capillary Viscometer with Lauda Control
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Selection of capillary diameters

It is important that the material to be tested behave as a Newtonian fluid, because
of which the above equation was developed. To ensure this requirement, the flow
in the capillary must give a shear rate _c within the Newtonian range. In Chap. 11
we establish the following equation for the average shear rate in the flow in a tube:

�_c ¼ 6:8
Q

D3
ð10:39Þ

For example, the flow of 15 mm/s in a capillary of 1.01 mm gives a shear rate
of �_c ¼ 99 s�1, which is in the Newtonian range (see Chap. 11) and corresponds to a
Cannon–Fenske capillary N� 200.
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Chapter 11
Transporting Concentrates and Tailings

Abstract Ore, water and mineral pulps are transported among the different
operational units of a mineral processing plant. Water is pumped through pipelines
to the grinding plant to be mixed with the ore to form the pulp that constitutes the
mill feed. The mill overflow is again mixed with water to adjust the solid content
and is sent through pipes to be classified in hydrocyclones. Cyclone underflow
with coarse material is sent back to the mill and the overflow goes to the flotation
plant. Transport in the flotation plant and between flotation sections and solid–
liquid separation units is through pipelines, and finally flotation tailings are
transported to tailing ponds through pipelines or channels. This chapter of the book
is related to the transport of pulps in mineral processing plants. Starting from the
continuity equation and the equation of motion for a continuous medium, the
expression for the pressure drop during fluid flow in a tube is obtained. Newtonian
fluid behavior is used to treat cases of laminar and turbulent flows. The concepts
of friction factor and Reynolds number are introduced and the distribution
of velocity, flow rate and pressure drop in a tube are obtained. The transport of
suspensions in pipelines is then treated, defining the different regimes separated by
the limiting deposit velocity. First, the flow of heterogeneous suspensions is
introduced and the form to calculate head loss is presented. Next, homogeneous
suspensions modeled by different rheological approaches are discussed. Finally
equations for the transport of suspensions in open channel are dealt with.

Ore, water and mineral pulps must be transported among the different operational
units of a mineral processing plant. In the crushing plant, where the ore is
essentially dry, it is transported efficiently by conveyor belts. Water is pumped
through pipelines to the grinding plant to be mixed with the ore to form the pulp
that constitutes the mill feed. The mill overflow is again mixed with water to adjust
the solid content and is sent through pipes to be classified in hydrocyclones.
Cyclone underflow with coarse material is send back to the mill and the overflow
goes to the flotation plant. Transport in the flotation plant and between flotation
sections and solid-liquid separation is through pipelines, and finally flotation
tailings are transported to tailing ponds through pipelines or Channels.

F. Concha A, Solid–Liquid Separation in the Mining Industry,
Fluid Mechanics and Its Applications 105, DOI: 10.1007/978-3-319-02484-4_11,
� Springer International Publishing Switzerland 2014

373



Pipelines in mineral processing plants enable transporting maximum loads with
a minimum of space using conventional centrifugal pumps and pipes that in most
cases do not exceed 24 inches in diameter. Pipelines are extremely flexible and can
be used for short distance tailing disposal and long distance concentrate transpor-
tation, No matter how complex the topography; a pipeline can always be laid out.

Slurries can be classified as homogenous and heterogeneous suspensions.
Homogenous suspensions behave like fluids with increased density and particular
rheology, while in heterogeneous suspensions, also called mixed slurries; solid
particles settle and form a solid vertical concentration profile and some bed for-
mation while being transported.

A suspension at low solid concentration with particle sizes of less than 270 mesh
(50 lm) behaves heterogeneously and requires high transport velocity to prevent
particles from settling. The same suspension for high concentrations behaves
homogeneously at any transport velocity. The latter suspension behaves as a mono
phase fluid with particular rheological behavior. Knowledge about the rheological
properties of dense slurries is fundamental to design pipeline systems. The power
consumption to pump 100 (tph) of homogeneous slurry horizontally is between 0.1
and 0.2 (kW/ton-km) (Condolios and Chapus 1967). Gravity transport of homo-
geneous slurries is possible if there is a gradient of at least 1.5 (m) per 100 (m).

Slurries with particles larger than 270 mesh (50 lm) form heterogeneous or
mixed slurries that produce vertical concentration profiles and bed formations
while being transported. Particles in these suspensions are transported by saltation,
by bed movement or with concentration gradients that depend on the size of the
particles and the flow velocity. Higher velocities must be used to prevent settling.
Pulp with particle sizes under 9 mesh (2 mm) and at least 20 % of material under
270 mesh can be transported by centrifugal pumps with a power consumption of
about 3–4 kW/ton-km for a capacity of 100 tph (Condolios and Chapus 1967).
Materials with sizes over 9 mesh (2 mm) require more power, in the range of
6–12 kW/ton-km (Condolios and Chapus 1967), and subject pipes to severe wear.

11.1 Transporting Fluids in Pipelines

Incompressible stationary flow in a horizontal circular tube can be described by the
following variables, the fluid (1) density qðr; tÞ, (2) velocity vðr; tÞ and (3) stress
tensor Tðr; tÞ, where r and t are the position vector and time respectively. These
three field variables must obey the mass and linear momentum field equations:

r � v ¼ 0 ð11:1Þ

qrv � v ¼ r � T þ qg ð11:2Þ

where g is the gravitational constant.
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Since there are three field variables and only two field equations, a constitutive
equation must be postulated for the stress tensor:

T ¼ �pI þ TEðrÞ ð11:3Þ

where p is the pressure and TE is the extra stress tensor.
Cylindrical tubes have axial-symmetry and cylindrical coordinates can be used.

Thus for the horizontal tube shown in Fig. 11.1, the following equations are valid:

Continuity
ovz r; zð Þ

oz
¼ 0;) vz ¼ vzðrÞ ð11:4Þ

Since the velocity varies in the r direction only, TE
rz must be a function solely of r.

Momentum component r: 0 ¼ � op

or
þ oTE

rzðrÞ
oz

þ qgr ð11:5Þ

Momentum component h: 0 ¼ � op

oh
þ qgh ð11:6Þ

Momentum component z: 0 ¼ � op

oz
þ 1

r

o

or
rTE

rzðrÞ
� �

ð11:7Þ

Equation (11.7) can be written in the form:

op

oz
¼ 1

r

o

or
rTE

rzðrÞ
� �

¼ K ð11:8Þ

Integrating by parts and writing the pressure drop Dp ¼ p0 � pL [ 0, the left
side of (11.8) yields:

ZpL

p0

dp ¼
ZL

0

Kdz; ) pL � p0 � �Dp ¼ KL

K ¼� Dp

L

ð11:9Þ

g
z

g

gr gθ

θ

Fig. 11.1 Flow in a
horizontal tube
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For the right side of (11.8), integrating by parts yields:
Z

d rTE
rzðrÞ

� �
¼
Z

Krdr

TE
rzðrÞ ¼

1
2

Kr þ C

r

Since the stress is finite at the tube axis, Trzð0Þ 6¼ 1, for r ¼ 0 C ¼ 0, then:

TE
rzðrÞ ¼

1
2

Kr

Substituting K from (11.9) yields the distribution of shear stress in a cylindrical
tube:

TE
rzðrÞ ¼ �

1
2
Dp

L
r ð11:10Þ

Designating TE
rzðrÞ � sðrÞ, Eq. (11.10) is usually written in the form (See

Fig. 11.2):

sðrÞ ¼ � 1
2
Dp

L
r with Dp ¼ p0 � pL [ 0 ð11:11Þ

If we call sw the shear stress at the wall, from Eq. (11.10) we can write:

sw ¼ �
1
2
Dp

L
R ð11:12Þ

The ratio of shear stress at r and at the wall is:

sðrÞ
sw
¼ r

R
ð11:13Þ

It is important to realize that Eqs. (11.10–11.13) are valid for all types of fluids,
since we have not invoked any type of constitutive equation for TE

rzðrÞ.

R

z

Lp0p
wτ

wτ

τ

Flow direction

Fig. 11.2 Shear stress
distribution for the flow in a
cylindrical tube
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11.2 Newtonian Fluids

11.2.1 Laminar Flows

For a Newtonian fluid, the constitutive equation for the extra stress TE
rzðrÞ is:

TE
rzðrÞ ¼ l

ovz

or
þ ovr

oz

� �
ð11:14Þ

Using the continuity Eq. (11.4) and substituting (11.10) gives:

� 1
2

Dp

L
r ¼ l

ovz

or
ð11:15Þ

Velocity distribution

Integrating (11.15) with boundary condition vzðRÞ ¼ 0 at the wall gives:

vzðrÞ ¼
1
4

DpR2

lL
1� r

R

� ffi2
� �

ð11:16Þ

The velocity distribution is parabolic as shown in Fig. 11.3.

Volume flow rate

The volume flow rate is given by Q ¼
R R

0 2pvzðrÞrdr, then:

Q ¼ 1
2
pDpR4

lL

Z1

0

1� r

R

� ffi2
� �

r

R
d

r

R

� ffi

Q ¼ 1
8
DppR4

lL

ð11:17Þ

Fig. 11.3 Velocity
distribution for the flow of a
Newtonian fluid in a circular
tube
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Pressure gradient

Dp

L
¼ 8lQ

pR4

� �
ð11:18Þ

Average velocity

The average velocity can be obtained from the volume flow rate by �vz ¼ Q=A,
where A ¼ pR2 is the cross sectional area of the tube:

�vz ¼
1
8
DpR2

lL
ð11:19Þ

Shear rate at the wall

Defining the shear rate _cw ¼ ovz=orjr¼R at the wall as sw ¼ l _cw, from Eq.
(11.12) for sw, we get:

_cw ¼
1
2

DpR

lL
ð11:20Þ

and using (11.19) we can write:

_cw ¼
8�vz

D
ð11:21Þ

where D ¼ 2R is the tube diameter.

Maximum velocity

The maximum velocity is obtained from (11.16) for r ¼ 0:

vm ¼
1
4
DpR2

lL
ð11:22Þ

Problem 11.1 Calculate the velocity distribution of three fluids with different
viscosities, l ¼ 0:001; 0:002 and 0:008 ½Pa-s] in a tube 1 inch in diameter and
50 m in length, subjected to a pressure drop of 172 (Pa). As well, calculate the
flow rate, average and maximum velocity, wall shear stress and shear rate and the
Reynolds flow number.
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Data are: R ¼ 0:0127 m, L ¼ 50 m, Dp = 172 Pa, l ¼ 0:001; 0:002; 0:008 Pa-s
As an example, calculate with l ¼ 0:001 Pa-s (see Fig. 11.4).

vzðrÞ ¼
1
4

DpR2

lL
1� r

R

� ffi2
� �

¼ 172� 0:01272

4� 0:001� 50
1� r

R

� ffi2
� �

vzðrÞ ¼ 0:14 1� r

R

� ffi2
� �

m/s

Maximum velocity:

vm ¼ 0:14 m/s

Volume flow rate:

Q ¼ 1
8
DppR4

lL
¼ 172� p� 0:1274

8� 0:001� 50
¼ 3:52� 10�5 m3=s

Average velocity:

�vz ¼
Q

pR2
¼ 3:52� 10�5

3:14� 0:01272
¼ 0:035 m/s
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Fig. 11.4 Velocity distribution for the flow of three fluids; with viscosities 1, 2 and 8 cp, in a
cylindrical tube 1 inch in diameter and 500 m in length
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Shear rate and shear stress at the wall

_cw ¼
8�vz

D
¼ 8� 0:035

0:0127� 2
¼ 21:9 s�1

sw ¼ l _cw ¼ 0:001� 21:9 ¼ 0:022 Pa

Reynolds number Re ¼ qD�v

l
¼ 1000� 2� 0:0127� 0:035

0:001
¼ 1:77� 103

Summary:

Newtonian fluid

l (Pa-s) 0.001 0.002 0.008
L (m) 50 50 50
R (m) 0.0127 0.0127 0.0127
Dp (Pa) 172 172 172
Q (m3/s) 3.52E-05 1.76E-05 4.40E-06
v av (m) 0.070 0.035 0.009
vm (m) 0.14 0.07 0.02
cw (s-1) 21.9 10.9 2.7
sw (Pa) 0.022 0.022 0.022

q (kg/m3) 1.00E+03 1.00E+03 1.00E+03
Re 1.77E+03 4.41E+02 2.76E+01

Friction factor for Newtonian fluids

The dimensionless solid-fluid resistance coefficient, called the Fanning friction
factor, is defined as the ratio of friction at the wall to the dynamic pressure:

f ¼ �sw

1=2q�v2
z

ð11:23Þ

From Eq. (11.12) sw ¼ � 1
2

Dp
L R, substituting (11.23) yields:

f ¼ Dp

L

D

2q�v2
z

ð11:24Þ

Equation (11.24) shows that the Fanning friction factor can also be interpreted
as the ratio of the pressure gradient to halve the dynamic pressure. Substituting the
value of Dp=L from (11.19) with (11.24) results in:

f ¼ 16
qD�vz=l

Using the definition of the Reynolds number Re ¼ qD�vz=l, the Fanning friction
factor for the laminar flow of a Newtonian fluid is:

f ¼ 16
Re

ð11:25Þ
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Another definition of the friction factor is the ratio of head loss to velocity head:

k ¼ hL=
�v2

z

2 g

� ffi
L
D

� �
½m], and since hL ¼ Dp

qg, k ¼ Dp
L

D
1=2ð Þq�v2, then k ¼ 4f . This version

is called the Darcy-Weisbach friction factor. In terms of k, the friction factor for
Newtonian fluids is:

k ¼ 64
Re

ð11:26Þ

11.2.2 Turbulent Flows

The transport of suspensions occurs in laminar or turbulent regimes. The param-
eters defining the transition between laminar and turbulent flows are the Fanning
friction factor f and the Reynolds number Re.

Due to the overriding effect of viscosity forces in the laminar flow of Newto-
nian fluids, even flows over asperous surfaces appear smooth. Therefore, the
roughness of the walls, unless it is very significant, does not affect flow resistance.
Under these flow conditions the friction coefficient is always a function of the
Reynolds number alone.

As the Reynolds number increases, inertia forces, which are proportional to
velocity squared, begin to dominate. The turbulent motion is characterized by the
development of transverse component of the velocity, giving rise to agitation of
the fluid throughout the stream and to momentum exchange between randomly
moving masses of fluid. All this causes a significant increase in the resistance to
the motion in turbulent flow compared to laminar flow.

When the surface of the wall is rough, separation occurs in the flow past the
rough section and the resistance coefficient becomes a function of the Reynolds
number and the relative roughness e�, defined as the ratio of the roughness height
and the tube diameter:

e� ¼ e
D

ð11:27Þ

where e is the average height of the asperities and D is the tube diameter. While for
low velocity flows in smooth tubes the friction factor decreases with higher
Reynolds numbers, in rough tubes the friction factor increases with the Reynolds
number and constant relative roughness. This is because at low flows the viscous
sublayer d is greater than the roughness protuberances d [ e and the fluid moves
smoothly past irregularities, while at higher velocities the sublayer becomes
thinner than the roughness protuberances, d \ e, which enhances the formation of
vortices and increases the friction factor and pressure drop. Tubes are considered

Fig. 11.5 Flow past rough tube walls for different ratios of viscous sublayer to roughness asperity
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smooth as long as the height of the asperity is less than the thickness of the laminar
sublayer. See the following Fig. 11.5.

Nikuradse (1933) made flow experiments with tubes covered with different
sizes of sand to simulate uniform roughness. His results are given in Fig. 11.6,
which can be interpreted as consisting of three regimes (Tamburrino 2000): (1)
laminar flow, (2) transition to turbulence and (3) rough walls regime.

First regime. In the first regime, with Reynolds numbers lower than 2,100, f is
independent of the roughness of the tube and is given by:

k ¼ 64
Re

ð11:28Þ

Second regime. With Re [ 2; 100 and Re2\ 5 the friction factor is given by
the Blasius equation for all roughness (see Fig. 11.6):

1ffiffiffi
k
p ¼ �2 log

2:51

Re
ffiffiffi
k
p

� �
ð11:29Þ

For Re [ 2; 100 and 5 \ Re2\ 70 the friction factor increases with the
Reynolds number diverging to different lines for different degrees of constant
relative roughness:

1ffiffiffi
k
p ¼ � 2 log 2:5

Re
ffiffi
k
p þ e�

3:7

� ffi
for Re [ 2;100 and 5 \ Re2\ 70 ð11:30Þ

where the Reynolds roughness number is Re2 ¼ e�
ffiffiffiffiffiffiffi
f=2

p
Re.

Fig. 11.6 Friction factor k versus Reynolds number Re for tubes with uniform roughness, with
�D ¼ e�, according to Nikuradse (1933), Idelchik et al. (1986)
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Third regime. In the third regime the friction factor becomes a different con-
stant for each relative degree of roughness, independent of the Reynolds number:

1ffiffiffi
k
p ¼ �2 log e�

0:854

� �
for Re [ 2;100 and Re2[ 70 ð11:31Þ

Moody diagram for commercial pipes is a version of Eq. (11.30). See Fig. 11.7.

Problem 11.2 If D and �vz are known, calculate the pressure gradient due to friction
when water flows through a 4-inch diameter pipe at 1.5 m/s for pipe roughness
e ¼ 0 ðsmoothÞ; 0:1; 0:5 and 1 mm: Applying Eqs. (11.29–11.31) yields:

e (mm) 0 0.1 0.5 1
D (inch) 4 4 4 4
q (kg/m3) 1,000 1,000 1,000 1,000
l (Pa-s) 0.001 0.001 0.001 0.001
vav (m/s) 1.5 1.5 1.5 1.5
D (m) 0.1016 0.1016 0.1016 0.1016
E 0 0.00098425 0.00492126 0.00984252
Re 152,400 152,400 152,400 152,400
f 0.00413 0.00534 0.00771 0.51021
1/f0.5 - 1/f0.5 (0.00) (0.00) (0.00) (0.00)
ReE – 8 47 758

183 237 342 22,598

Fig. 11.7 Moody diagram
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Explicit equations for the friction factor

When the value of the average velocity or of the volume flow rate is not known, the
Reynolds number and the friction factor cannot be calculated directly. To avoid using
iterative calculations, Concha (2008) observed that Re

ffiffiffi
f
p

is a dimensionless number
independent of average velocity. From Eq. (11.24) f ¼ D=2q�v2

z

� �
� Dp=L, so that

Re2f ¼
qD�vz

l

� �2 D

2q�v2
z

� �
Dp

L

� �
¼ q

2l2

Dp

L

� �
� D3 ð11:32Þ

Since the left-hand side of this equation is dimensionless, the right-hand side
should also be dimensionless and a parameter N, with dimensions of size, which
can be defined as:

N3 ¼ 2l2L

qDp

� �
ð11:33Þ

so that (11.32) can be written in the form:

Re2f ¼ D

N

� �3

¼ D�3; and Re
ffiffiffi
f

p
¼ D

N

� �2=3

¼ D�2=3 ð11:34Þ

Similarly, Re=f is a dimensionless number independent of the pipe diameter.
Consider the function:

Re
f
¼ qD�vz

l

2q�v2
z

D

Dp

L

� ��1

¼ 2q2

l
Dp

L

� ��1

�v3
z ð11:35Þ

Defining the parameter F, with the dimension of velocity by:

Z3 ¼ l
2q2

Dp

L

� �
ð11:36Þ

then Eq. (11.35) can be written in the following form:

Re
f
¼ �vz

Z

� �3

¼ �v�3z ; and
1ffiffiffi
f
p ¼

�v�3=2
z

Re1=2
ð11:37Þ

Multiplying (11.32) and (11.37) yields:

Re ¼ D��v�z ð11:38Þ

From (11.34) f ¼ D�

�v�2z

and from (11.29) to (11.31) we get:

�v�z
D�1=2

¼ �4 log
1; 26

D�3=2
þ 2

3:7

� �
; ð11:39Þ
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Since for Re \ 2,100 f ¼ 16
Re and Re

f ¼ �v�3z , we finally obtain:and

for Re2; 100 �v�z ¼
1

16
D�2

for Re2; 100 �v�z ¼ �4 log
A

D�3=2
þ Be�

� �
D�1=2

where Re25 : A ¼ 1:25; B ¼ 0

5�Re2 � 70 : A ¼ 1:25; B ¼ 0:270

Re270 : A ¼ 0; B ¼ 0:171

ð11:40Þ

Re2 ¼ e�
ffiffiffiffiffiffiffi
f=2

p
Re.

Problem 11.3 If D and Dp=L are knownð Þ Calculate the flow rate that will be
achieved when water is forced through a pipe 8 inches in diameter under a pressure
gradient of 200 Pa/m, if the pipe roughness is e ¼ 0:25 mm.

e (mm) 0.25 0.25 0.25 0.25
D (inch) 8 8 8 8
q (kg/m3) 1,000 1,000 1,000 1,000
l (Pa-s) 0.001 0.001 0.001 0.001

200 200 200 200
D (m) 0.2032 0.2032 0.2032 0.2032
e� ¼ Z 0.0000508 0.00123031 0.00123031 0.001230315
N 0.00021544 0.00021544 0.00021544 0.000215443
Z 0.00464159 0.00464159 0.00464159 0.00464159
D* 943.17 943.17 943.17 943.17
v*av 7.6778 11.4969 420.7164 349.0550
vav 0.036 0.053 1.953 1.620
Re 7,241 10,844 396,807 329,219
f 16.00000 7.13560 0.00533 0.00774
ReE 1 25 25 25
Q (m3/s) 0.00115568 0.00173055 0.06332765 0.052540943

The 4th column with Re2 ¼ 25 gives the correct result.

Problem 11.4 If D and Dp=L are knownð Þ Calculate the flow rate that will be
achieved when water is forced through a 4-inch diameter pipe under a pressure
gradient of 180 Pa/m, if the pipe roughness is e ¼ 0 ðsmoothÞ; 0:1; 0:5 and 1 mm:
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11.3 Mechanical Energy Balance

In an open flow the mechanical energy balance reads:

p1 þ
1
2

qv2
1 þ qgz1 ¼ p2 þ

1
2
qv2

2 þ qgz2

Table 11.1 Friction head
losses

Fitting X

45� elbow 0.3
90� elbow 0.7
90� square elbow 1.2
Exit from leg of T-piece 1.2
Entry into leg of T-piece 1.8
Unions and couplings Small
Globe valve fully open 1.2–6.0
Gate valve fully open 0.15
Gate valve 3/4 open 1.0
Globe valve 1/2 open 4.0
Globe valve 1/4 open 16
Sudden expansion

1� D1=D2ð Þ2
� ffi2

Discharge into a large tank 1
Sudden contraction X ¼ 0:7867 D2=D1ð Þ6�1:3322 D2=D1ð Þ4

þ 0:1816 D2=D1ð Þ2þ 0:363

Outlet of a large tank 0.5

e (mm) 0 0.1 0.5 1
D (inch) 4 4 4 4
q (kg/m3) 1,000 1,000 1,000 1,000
lð Pa� sÞ 0.001 0.001 0.001 0.001
Dp=Lð Pa/mÞ 180 180 180 180

D (m) 0.1016 0.1016 0.1016 0.1016
e� ¼ Z 0 0.00098425 0.00492126 0.00984252
N 0.000223144 0.00022314 0.00022314 0.00022314
Z 0.00448140 0.00448140 0.00448140 0.00448140

D* 455.31 455.31 455.31 455.31
v*av 331.7712 290.4213 242.0344 218.0251
vav 1.5 1.3 1.1 1.0
Re 151,059 132,232 110,201 99,269
f 0.00414 0.00540 0.00777 0.00958
ReE – 6.76166 33.80828 67.61657
Q (m3/s) 0.012053971 0.01055164 0.00879364 0.00792133
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that is:

Dp

qg
¼ 1

2 g
�v2

z2 � �v2
z1

� �
þ z2 � z1ð Þ ð11:41Þ

where the first term is the pressure head with Dp ¼ p2 � p1 [ 0, the second term
is the velocity head and the third term is the head.

The basis to calculate flow in conduits is the mechanical energy balance in open
flows to which two additional terms are added, one for the positive head HT

imposed by the pump and one for the loss
P

hL due to the friction within the fluid,
on the pipe walls and on the fittings.

p1þ
1
2
qv2

1 þ qgz1 þ HT �
X

hL ¼ p2 þ
1
2
qv2

2 þ qgz2

HT ¼
Dp

qg
þ 1

2 g
�v2

z2 � �v2
z1

� �
þ z2 � z1ð Þ þ

X
hL

ð11:42Þ

friction Lh h=

=

Σ

elevation 2 1h z z

pressure
ph
g

Δ
ρ

HT [m]

Fig. 11.8 Total head versus
flow demand

Fig. 11.9 Figure for problem 11.5
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In Eq. (11.42) HT ¼ Po
qgQf

and
P

hL ¼
_Ev

qgQ , where Po and Qf are the power and

the flow rate delivered by the pump and _Ev is the speed of energy dissipation by
friction and

P
hL is the sum of the head loss in the pipe line hpipe ¼ L�v2

z=gD
� �

� f

and pipe line fittings given as the numbers X of velocity heads, X � �v2
z=2 g.

Table 11.1 gives the head loss for different fittings.
Figure 11.8 is a graphic description of the total head that a pump must deliver

to a given flow rate of a Newtonian fluid.

Problem 11.5 Water flows under gravity from reservoir A to reservoir B, both of
which are of large diameters. Estimate the flow rate through a 6-inch diameter
pipe, with a roughness e ¼ 0:4 mm, and 75 m length. See Fig. 11.9.

Apply Eq. (11.42):

0 ¼ 0þ 0þ z2 � z1ð Þ þ
X

hLX
hL ¼ z1 � z2 ¼ 40� 5 ¼ 35½m�

Head loss:

X
hL ¼ hfrictionðpipeÞ þ hfittingð1gate valveÞ þ hfittingð1globe valveÞ

þ hfittingð2elbowsÞ þ hentrance þ houtlet

1ffiffiffi
k
p ¼ �2 log e�

0:458

� �
forRe [ 2;100 and Re2[ 70

k ¼ �2 log e�=0:854ð Þð Þ�2

hfriction ¼k
�v2

z

2 g

� �
L
D

Re2 ¼ e�
ffiffiffiffiffiffiffiffi
k=8

p
Re

Data Xoutlet 0.5

D (in] 6 Xinlet 1
L (m) 75 Xelbow 0.7
e (mm) 0.4 Xglobe valve 6
z1 (m) 40 Xgate valve 0.15
Z2 (m) 5 k 0.039606674
Pf (kg/m3) 1.000 assume v [m/s] 5.11
l (Pa-s) 0.001 hfriction 25.94999706
Results hfittings 9.05
D (m] 0.1524 hL [m]* 34.99999706
e (m) 0.0004 hL–hL*0 2.94393E-06
e* [-] 0.002624672 Re* 778,898
hL = Z1 - Z2 35 Ree[70 143.85
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Fig. 11.10 Particle behavior for the flow of a suspension through a tube according to Chien
(1994)
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11.4 Transporting Suspensions in Pipelines

The flow patterns of suspensions in tubes depend on the transport velocity. See
Fig. 11.10. At low velocities, the particles form a bed at the bottom of the tube and
are not transported by the fluid. As the velocity increases, particles at the surface of
the bed start moving. At higher velocities, the sediment moves as a cloud in sal-
tatory motion, and some particles are suspended and carried away with the fluid. If
the velocity increases, most particles are suspended but some settle. Under this
condition the suspension is termed a settling suspension and the flow regime is
heterogeneous. Increasing the velocity further, all particles are suspended and
particles and fluid behave as a homogeneous mixture, the suspension is non-settling
and the flow regime is homogeneous. Each of these behaviors corresponds to a
pressure drop and the type of motion can be controlled by the pressure gradient.

The flow pattern for transporting suspensions in a tube is closely related to the
suspension concentration. When particles begin to move above a stationary bed, the
fractions of the feed concentration uF in suspension is in the fraction range of
0.7–12.0. Motions of the bed yield fractions of the feed concentration between
0:2\u=uF\0:7. Partial suspension gives fractions of feed concentration of 0:7
\u=uF\1 and a complete suspension of particles gives u=uF ¼ 1 (Table 11.2).

Settling velocity

Since particles will settle from a flowing suspension, it is important to be able to
calculate the settling velocity of the particles at several concentrations. This can be
obtained from laboratory experiments or by calculations from sedimentation
models. A useful model was proposed by Concha and Almendra (1979a), which
was discussed in Sect. 4.1.6.

For a suspension of spherical particles, Concha and Almendra (1979b) proposed
using the same equation as for single particles, but with the P and Q parameters
depending on the particle concentration. See Sect. 4.1.7.

11.4.1 Flow of Heterogeneous Suspensions

The flow of a suspension is heterogeneous if some particles segregate and settle.
This happens when the average flow velocity is not fast enough to maintain the

Table 11.2 Relationship between flow patterns and solid concentrations

Mixture velocity vMi Flow pattern Fraction of
concentration u=uF

vM1 Homogeneous suspension 1.0
vM2 Asymmetric suspension 0.7–1.0
vM3 Living bed with asymmetric suspension 0.2–0.7
vM4 Stationary bed with some particles in suspension 0–0.2
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largest particles in suspension. In a heterogeneous regime, particles will form a
concentration gradient without sediment at the bottom of the tube.

Figure 11.11 shows the pressure drop for the flow of a suspension as a function
of the average flow velocity, with concentration as a parameter. For each sus-
pension concentration there is a minimum flow velocity for which the pressure
drop has a minimum. This is the lowest velocity that avoids sediment formation in
the tube. Joining the minimum points for each concentration, a curve representing
the limiting settling velocity is obtained.

Limiting deposit velocities

As discussed in the previous section, between the initiation of particle motion
and the complete suspension at several concentrations, there is a small range of
velocities at which the pressure drop is minimal. This range of velocities vLðuÞ is
termed limiting deposit velocities. The limiting deposit velocity is the lowest
velocity at which no particles are deposited. The optimal transport velocity for a
suspension produces the lowest pressures drop without depositing particles, that is,
slightly to the right of the limiting deposit velocity in a pressure drop versus flow
velocity graph.

In practice, the most common regime is with heterogeneous suspensions where
the largest particles in the suspension settle, but this does not change the rheological
characteristics of the pulp, although a concentration gradient is present in the pipe.

Fig. 11.11 Head loss versus average transport velocity for 0.44 mm fine sand at several
concentrations (Condolios and Chapus 1963)
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Correlations for the limiting deposit velocities

The simplest way that particles do not settle in a heterogeneous regime is to
ensure that the regime is turbulent and that the Reynolds number for the largest
particles is in Newton’s regime (Faddick 1986):

Re ¼ D�vz

m
[ 4; 000 and Rep ¼

du

m
[ 1; 000 ð11:43Þ

where D and �vz are the diameter of the pipe and the average velocity of the flow, d
and u are the diameter of the largest particle in the suspension and its settling
velocity and m is the kinematic viscosity of the fluid.

Problem 11.6 Design a pipe for the flow of 600 tph of magnetite mineral slurry
that behaves as a Newtonian fluid with density 1,667 kg/m3 and viscosity 5 mPa-s.
The magnetite density is 5,000 kg/m3 and its maximum particle size is 5 mm. Make
sure that the flow regime is heterogeneous with an average velocity of 2.00 m/s.

Pulp volume flow is Q ¼ F
q ¼ 600

1;667=1;000 ¼ 0:100 m3=s

Particle size: d ¼ 0:005 m
Magnetite density

qs ¼ 5; 000 kg /m3

Water density

qf ¼ 1;000 kg/m3

% of solids:

w ¼
100� qs � ðq� qf Þ

q� ðqs � qf Þ
¼ 100� 5; 000� ð1; 667� 1;000Þ

1;667� ð5;000� 1;000Þ
¼ 50 % solid by weight

Volume fraction:

u ¼
qf � w

qs � ð100� wÞ þ qf w
¼ 1; 000� 50

5; 000� ð100� 50Þ þ 1; 000� 50
¼ 0:167

From Eq. (4.45):

P ¼ 3
4

l2
f

Dq� qf � g

 !1=3
3
4

0:0012

ð5; 000� 1; 000Þ � 1; 000� 9:81

� �1=3

¼ 2:674� 10�5 m1=3

Q ¼ 4
3

Dq� lf � g

q2
f

 !1=3

¼ 4
3
ð5; 000� 1; 000Þ � 0:001� 9:81

1; 0002

� � 1=3ð Þ
¼ 0:0374 m=sð Þ1=3

d� ¼ d

P
¼ 0:005

2:674� 10�5
¼ 187:01
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From Eq. (4.51):

u� ¼ 20:52
d�

1þ 0:0921� d�3=2
� ffi1=2

�1

� �2

¼ 20:52
187

1þ 0:0921� 187�3=2
� ffi1=2

�1

� �2

¼ 22:698

u ¼ u� � Q ¼ 22:689� 0:03740 ¼ 0:849 m/s:

Rep
qf ud

l
¼ 4243:0 [ 1; 000

Select the average transport velocity: �vz ¼ 2:0 m/s

D ¼ 4Q

p�vz

� �1=2

¼ 4� 0:100
3:14� 0:304

� �
¼ 0:2524 m = 10:0 in

Re ¼
qf �vzD

l
¼ 1; 667� 2:00� 0:2524

0:005
¼ 1:6827� 105 [ 4; 000

Reynolds number fulfills the conditions for a heterogeneous flow. Summary:

F (tph) 600 P 2.673688E-05
d (m) 0.005 Q 3.740152E-02
ps (kg/m3) 5,000 d* 1.870076E+02
pf (kg/m3) 1,000 u* 22.689
P (kg/m3) 1,667 u (m/s) 0.849
gf (Pa-s) 0.005 Rep 4243.0
lf (Pa-s) 0.001 vz (m/s) 2.00
QF (m3/s) 0.09998 D (m) 0.2524
w (% by weight) 50.0 D (inch) 9.94
/ 0.167 Re 1.6827E+05

It has not been possible to establish the limiting deposition velocity from
fundamentals, but many correlations have been proposed in the range of particle
sizes from 50 (ml])to 5 (mm) and pipes from 50 mm (2 in) to 300 mm (12 in).

Chien (1994) reviewed the work of many researchers, among them Durand
(1953), Durand (1953), Spells (1955), Newitt et al. (1955), Cairns et al. (1960),
Govier and Aziz (1961), Schulz (1962), Sinclair (1962), Condolios and Chapus
(1963), Yufin and Lopasin (1966), Zandi and Govatos (1967), Babcock (1968),
Shook (1969), Bain and Bonnington (1970), Charles (1970), Wilson (1979),
Thomas (1979), Oroskar and Turian (1980) and Gillies and Shook (1991).

Unfortunately these equations are valid for different particle sizes, densities and
pipe diameters, and therefore give different values of limiting velocities that range
from 0.5 to 7. Figure 11.12 shows the application of these equations to suspensions
of particles 150 microns in size and 2,650 kg/m3 in density, in an 8-inch pipe and
volume fractions from 0 to 0.30.
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In what follows, we use Durand’s equation (1953) with parameters by McEl-
vian and Rayo (1993):

vL cm/sð Þ ¼ FLðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 gDDq=qf

q
; for u\0:20 ð11:44Þ

FLðuÞ ¼
1:1 Dq=qf

� �1=5
FLMðuÞ for small d50 and small D

1:25 2 gDDq=qf

� ��1=4
FLMðuÞ for small d50 and big D

d80=d50ð Þ1=10FLMðuÞ for big d50 and extended distribution and small D

8
>><

>>:

ð11:45Þ

FLM ¼ 0:1248uþ 0:165ð Þ ln d50ð Þ
þ 0:6458uþ 1:224ð Þ for 0:005\d50ðmmÞ\0:5 ð11:46Þ

In these equations u is the volume fraction of solids in the suspension, FLM is
given by, with the particle diameter in mm and FLðuÞ by Rayo (1993), where the
units of the variables are vL m/s, D m, d m; q kg/m3 and g = 9.81 m/s2. Rayo’s
equation is based on numerous years of experience designing pipelines for the
copper mining plants in Chile.

Problem 11.7 Determine the limiting sedimentation velocity of quartz suspen-
sions flowing in pipes 200 m long and 2 and 8 inches in diameter. The particle
diameters are d50 ¼ 50 ml, d80 ¼ 374:5 ml and d50 = 1.5 mm and concentration
20 % solid by weight. The solid density is qs = 2,650 kg/m3; water density
qf = 1,000 kg/m3and suspension viscosity l = 5 cp. Use Durand’s equation
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Fig. 11.12 Several correlations for the limiting velocities versus suspension concentration
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(1953), with parameters by Rayo (1993). For the same data draw a figure of the
limiting velocity versus concentration.

Utilizing Eqs. (11.44–11.46) and Fig. 11.13 yields:

Durand and Rayo dsmall;Dbig dsmall; Dsmall dbig; Dsmall

qs(kg/m3) 2,650 2,650 2,650
qf (kg/m3) 1,000 1,000 1,000
L (m) 200 200 200
D (m) 0.2032 0.0508 0.0508
d50 (m) 1.500E-04 1.500E-04 1.500E-03
d50 (mm) 1.500E-01 1.500E-01 1.500E+00
d80 (m) 3.7450E-04 3.7450E-04 3.7450E-04
g (m/s2) 9.81 9.81 9.81
X (%sol) 20 20 20
l (Pa-s) 5.000E-03 5.000E-03 5.000E-03
u 0.2284 0.2284 0.2284
P 1.050E-04 1.050E-04 1.050E-04
Q 4.761E-02 4.761E-02 4.761E-02
d* 1.428E+00 1.428E+00 1.428E+01
u* 0.082 0.082 2.994
u 3.923E-03 3.923E-03 1.426E-01
Dq/qf 1.650 1.650 1.650
q (kg/m3) 1377 1377 1377
vL (m/s) 1.161 1.340 1.706
Rep 1.177E-01 1.177E-01 4.277E+01
Re 4.717E+04 1.362E+04 1.733E+04
CD 2.112E+02 2.112E+02 1.597E+00

Pressure drop in a heterogeneous regime

In a heterogeneous regime the head loss Jm has two contributions: JL to maintain
the turbulent fluid flow in a Newtonian fluid, and, JS to maintain the particles in
suspension in the fluid. Both values are measured in columns of water per meter of
pipe length J ¼ h=L ¼ Dp=qgLð Þ, evaluated at the average mixture velocity:

Jm ¼ JL þ JS ð11:47Þ

There is no generally accepted equation for the head loss for the flow of
suspensions. In a form similar to the limiting velocity, there are several empirical
equations that give results with great scatter. We will use the Durand and Con-
dolios equation (1953).

Jm ¼ JL 1þ 81uA�3=2
� ffi

; where A ¼
�v2

z

ffiffiffiffiffiffi
CD
p

gD Dq=qf
ð11:48Þ

If particle size is widely distributed, (Wasp et al. 1977) recommended calcu-
lating total head loss by weighing the individual head loss by its volume fraction;

11.4 Transporting Suspensions in Pipelines 395



Jm ¼
X

i

Jiui ð11:49Þ

where Ji and ui are the head loss associated with particle size xi in a suspension
with particle size distribution.

Problem 11.8 Calculate the pressure gradient due to friction when slurry, com-
posed of 1 mm silica particles with a density of 2,700 kg/m3, is pumped through a
5 cm diameter and 75 m pipeline at velocities of 3.5 m/s. The slurry contains
30 % silica by volume and the water has a density and viscosity of 1,000 kg/m3

and 0.001 Pa-s.

X
hL ¼ 23:96

�v2
z

2 g

� �
JL ¼ 23:96=75

�v2
z

2 g

� �
¼ 0:3195

�v2
z

2 g

� �

Jm ¼ JL 1þ 81 uA
�3=2

� ffi
; where A ¼

�v2
z

ffiffiffiffiffiffi
CD
p

gDDq=qf

u ¼
qf w

qsð100� wÞ þ qf w
¼ 1;000� 30

2;650 100� 30ð Þ þ 1;000� 30
¼ 0:139

P ¼ 3
4

l2
f

Dqqf g

 !1=3

¼ 3:59� 10�5 and Q ¼ 4
3

Dqlf g

q2
f

 !1=3

¼ 2:7842� 10�2
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Fig. 11.13 Limiting sedimentation velocity for quartz particles of two different sizes and three
different diameters, according to Durand’s equation with Rayo’s parameters
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d50 ¼ 1� 10�4 md� ¼ d50=P ¼ 2:78fp uð Þ ¼ 1� uð Þ�2:033¼ 1:3563 ; fq uð Þ
¼ 1� uð Þ�0:167¼ 1:0254u�

¼ 20:52
d�

fp uð Þfq uð Þ 1þ 0:0921f�3=2
p d�3=2

� ffi1=2
�1

� �2

¼ 0:7521u ¼ u� � Q

¼ 2:094� 10�2 ðm/s)Rep ¼
d50qf u

l
¼ 2:094CD

¼ 0:28 1� uð Þ�2:01 1þ 9:08 1� uð Þ�1:83

Re1=2

 !2

¼ 32 A ¼
�v2

z

ffiffiffiffiffiffi
CD
p

gD Dq=qf
A= �v2

z=2 g
� �

¼ 2
ffiffiffiffiffiffi
CD
p

D Dq=qf
¼ 2:31 ; A ¼ 2:31�v2

z Jm ¼ JL 1þ 81uA�3=2
� ffi

¼ 0:3195
�v2

z

2 g

� �
1þ 81� 0:138� 10v2

z

� ��3=2
� ffi

Assuming that vz ¼ 4:41 m/s ; with Jm ¼ 35=35 ¼ 1

1� 0:9183
�v2

z

2g

� �
ð1þ 81� 0:138 � ð10v2

z Þ
�3=2Þ ¼ 0:0858

Using the solver results in:

1�0:9183
�v2

z

2g

� �
1þ 81� 0:138� 10v2

z

� ��3=2
� ffi

¼ 0:0858

vz ¼ 4:61 m/s ; Q ¼ pD2=4
� �

vz ¼ 0:0842 m3=s:

11.4.2 Flow of Homogeneous Suspensions

A homogeneous flow regime is such that suspensions are non-settling. According
to Faddick (1985), if particles are small enough to be in a Stokes regime, their
settling velocity will be low in relation to their transport velocity, and the sus-
pension can be considered homogeneous.

Depending on the constitutive equation of the extra stress tensor, homogeneous
suspensions can behave as Newtonian or no-Newtonian. If a suspension behaves
Newtonian, the discussion and design criteria of Sect. 11.2 are valid. For non-
Newtonian suspensions, we will consider flows of Bingham, power law and
Herschel-Bulckley fluids in a tube.

(a) Bingham Fluids

Bingham fluids have the following constitutive equation for the shear stress in
cylindrical coordinates:
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TE
rzðrÞ ¼ sy þ K

ovz

or
ð11:50Þ

where K is a constant called plastic viscosity. From (11.10), TE
rzðrÞ is given by:

TE
rzðrÞ ¼ �

1
2
Dp

L
r ð11:51Þ

Calling Ry the radius for which the stress is TE
rz ¼ sy, we have:

TE
rzðRyÞ ¼ sy ¼ �

1
2
Dp

L
Ry; ð11:52Þ

Since the stress at the wall is given by (11.12), sw ¼ � 1
2

Dp
L R, the relationship

between the yield stress sy and the wall shear stress sw is:

sy

sw
¼ Ry

R
ð11:53Þ

Velocity distribution

Substituting (11.50) with (11.51) yields:

ovz

or
¼ � 1

2
Dp

KL
r þ sy

K

� �

Using (11.53) for sy results in: For

TE
rzðrÞ[ sy

ovz

or
¼ 1

2
Dp

KL
Ry � r
� �

ð11:54Þ

Integrating this expression yields:

vz ¼
1
2

Dp

KL
Ryr � 1

2
r2

� �
þ C

For r ¼ R; vzðRÞ ¼ 0, therefore:

C ¼ � 1
2

Dp

KL
RyR� 1

2
R2

� �

and

vz ¼
1
2

Dp

KL
Ryr � 1

2
r2

� �
� 1

2
Dp

KL
RyR� 1

2
R2

� �
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For

TE
rzðrÞ[ sy vzðrÞ ¼ �

1
2

DpR2

KL

Ry

R
1� r

R

� ffi
� 1

2
1� r

R

� ffi2
� �� �

ð11:55Þ

For

TE
rzðrÞ� sy vzðrÞ ¼ �

1
2
DpR2

KL

Ry

R
1� Ry

R

� �
� 1

2
1� Ry

R

� �2
 ! !

ð11:56Þ

Using (11.53) we obtain the alternative expressions:

vzðrÞ ¼ �
1
2
DpR2

KL

sy

sw
1� r

R

� ffi
� 1

2
1� r

R

� ffi2
� �� �

; for s [ sy

vzðrÞ ¼ �
1
2
DpR2

KL

sy

sw
1� sy

sw

� �
� 1

2
1� sy

sw

� �2
 ! !

; for s � sy

ð11:57Þ

Volume flow rate

The volume flow rate is given by Q ¼
R R

0 2pvzðrÞrdr, then:

Q ¼
ZR

Ry

2pvzðrÞrdr þ
ZRy

0

2pvzðrÞrdr

Q ¼
ZR

Ry

2p � 1
2
DpR2

KL

sy

sw
1� r

R

� ffi
� 1

2
1� r

R

� ffi2
� �� �� �

rdr

þ
ZRy

0

2p � 1
2
DpR2

KL

sy

sw
1� sy

sw

� �
� 1

2
1� sy

sw

� �2
 ! ! !

rdr

Q ¼� pDpR4

KL

Z1

Ry=R

sy

sw
1� nð Þ � 1

2
1� nð Þ2
� ffi� �

ndn

0
B@

þ
ZRy=R

0

sy

sw
1� sy

sw

� �
� 1

2
1� sy

sw

� �2
 ! !1

CAndn

Integrating this expression we obtain:

Q ¼ pDpR4

8KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

ð11:58Þ
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Average velocity

The average velocity is given by �vz ¼ Q=pR2, then:

�vz ¼
DpR2

8KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

ð11:59Þ

Shear rate at the wall

Using a similar procedure as in the case of Newtonian fluids, we have:

_cw ¼
8�vz

D
¼ 1

4
DpD

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

ð11:60Þ

Maximum velocity

From (11.57) the maximum velocity is that for 0 � r � Ry ðs\ syÞ

vm ¼
1
4
DpR2

KL
1� sy

sw

� �2

ð11:61Þ

Friction factor

Defining the Reynolds numbers ReB ¼ q�vzD=K and Re2 ¼2 =
ffiffiffi
f
p

ReB, the
friction factor according to Eq. (11.24) can be written as f ¼ DpD=2qL�v2

z :

f ¼ 16
ReB

1� 4
3

sy

sw

� �
þ 1

3
sy

sw

� �4
 !

for ReB\2; 100 ð11:62Þ

fsmooth ¼ 4:53 log ReB

ffiffiffi
f

p� ffi
� 2:3þ 4:5 log 1� sy=sw

� �� ffi�2
for ReB [ 4; 000 ; Re2\ 5

ð11:63Þ

frough ¼ fmooth �
fwater; rough

fwater; smooth

� �
for ReB [ 4; 000 ; 5 \ Re2\ 70 ð11:64Þ

f ¼ 4:07 log
D

2 2

� �
þ 3:36

� ��2

for ReB [ 4; 000 Re2[ 70 ð11:65Þ

Problem 11.9 For three suspensions of clay with density q ¼ 1; 275 kg/m3 that
can be represented by the Bingham model in the range 10 \ _c\ 500 ½s�1� with
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sy ¼ 5; 10 y 15Pa respectively and a plastic viscosity of K ¼ 150 mPa-s, flowing
in a cylindrical tube 1 inch in diameter and 200 m in length. See Fig. 11.14.
Calculate the pressure drop, the shear stress at the wall and the velocity distri-
bution necessary to transport 100 l of suspension per minute.

Pressure drop:

Q1 ¼ 100 ‘=min = 100/ð60 � 1; 000Þ ¼ 1:6667� 10�3 m3=s

Q2 ¼
p
8

DpR4

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

; �vz ¼
Qf

pR2
¼ 0:923 m=sð Þ; sw ¼

1
2

DpR

L

Q2 ¼
p
8

Dp� R4

K � L
1� 4

3
sy

0:5� Dp� R=L

� �
þ 1

3
sy

0:5� Dp� R=L

� �4
 !

Using solver to minimize the error DQ ¼ Q1 � Q2, by changing Dp leads to:

DQ ¼ 1:6667� 10�3 � p
8

Dp� R4

K � L
� 1� 4

3
5

0:5� Dp� R=L

� �
þ 1

3
5

0:5� Dp� R=L

� �4
 !

¼ 6:517� 10�9
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Fig. 11.14 Shear stress versus shear rate for a Bingham model of a material with plastic
viscosity of 150 (mPa-s) and yield stresses of 5, 10 y 15 (Pa)
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DQ ¼ 1:6667� 10�3 � p
8

Dp� R4

K � L
� 1� 4

3
5

0:5� Dp=L

� �
þ 1

3
5

0:5� Dp� R=L

� �4
 !

¼ 6:517� 10�9

Dp ¼ 4:10� 105 Pa

Dp ¼ 4:10� 105 � 1:45� 10�4 ¼ 60 psi

sw ¼
1
2
Dp� R

L
¼ 26:09 Pa ; Ry ¼ R� sy

sw
¼ 0:00487 m ; Re =

q� R� �vz

g
¼ 1:40� 104

The velocity distribution:

vzðrÞ ¼ �
1
2
DpR2

gL

sy

sw
1� r

R

� ffi
� 1

2
1� r

R

� ffi2
� �� �

For the three cases, calculations are in this excel sheet. See Fig. 11.15:

sy (Pa) 5 10 15
K (Pa-s) 0.150 0.150 0.150
Q (l/min) 100 100 100
R (inch) 1 1 1
L (m) 200 200 200
q (kg/m3) 1,275 1,275 1,275
Q (m3/s) 1.667E-03 1.667E-03 1.667E-03
R (m) 0.0254 0.0254 0.0254
sw (Pa) 26.09 32.76 39.42

sy=sw 0.19 0.31 0.38
cw (s-1) 173.94 218.39 262.83
VZav (m/S) 0.823 0.823 0.823
Dp (Pa) 4.109E+05 5.159E+05 6.209E+05
Dp (psi) 59.58 74.80 90.02
Ry (m) 0.00487 0.00775 0.00966
Ry (inch) 0.1916 0.3053 0.3805
Re 1.40E+04 1.40E+04 1.40E+04
DQ (m3/s) 6.517E-09 9.775E-09 9.492E-09
vm (m/s) 1.44 1.34 1.28

Problem 11.10 For three suspensions of materials with densities q ¼ 1; 275 kg/m3

that can be represented by the Bingham model in the range 10\ _c\500 s�1 with
sy ¼ 15 Pa respectively and a plastic viscosity of K ¼ 150; 300 and 500 mPa-s, see
Fig. 11.16, flowing in a cylindrical tube 1-inch in diameter and 200 m in length,
Calculate the pressure drop and velocity distribution necessary to transport 100 l of
the suspension per minute.
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Q ¼ 100½‘=m] = 100/ð60� 1;000Þ ¼ 1:6667� 10�3 m3=s

Q ¼ p
8

DpR4

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Shear rate γ , s-1

S
he

ar
 s

tr
es

s τ
, P

a

Plastic viscosity 150 mPa-s
Platic viscority 300 mPa-s
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Fig. 11.16 Shear stress versus shear rate for a Bingham model of a material with plastic
viscosity of 150, 300 and 500 (mPa-s) and yield stress of 15 (Pa)
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Fig. 11.15 Velocity distributions for a Bingham model of clays
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sw ¼
1
2
DpR

L
¼ Dp� 0:2

2� 200
¼ 5� 10�4Dp

Q ¼ p
8

Dp� 0:24

0:2� 200
1� 4

3
15

5� 10�4Dp

� �
þ 1

3
15

5� 10�4Dp

� �4
 !

Error ¼ 1:6667� 10�3 � p
8

Dp� 0:24

0:2� 200
1� 4

3
15

5� 10�4Dp

� �
þ 1

3
15

5� 10�4Dp

� �4
 !

¼ 1:000� 10�3

Using solver minimizing the Error by changing Dp leads to:

Dp ¼ 1:462� 106 Pa

sw ¼ 5� 10�4Dp ¼ 5� 10�4 � 1:462� 106

¼ 73:11 Pa

The velocity distribution is given by:

vzðrÞ ¼ �
1
2
DpR2

KL

sy

sw
1� r

R

� ffi
� 1

2
1� r

R

� ffi2
� �� �

¼ 1
2

0:22

0:15� 200
15

73:11
1� r

0:2

� ffi
� 1

2
1� r

0:2

� ffi2
� �� �

For the three cases, see Fig. 11.17.

sy (Pa) 15 15 15
K (Pa-s) 0.150 0.300 0.500
Q (l/min) 100 100 100
R (inch) 1 1 1
L (m) 200 200 200
q (kg/m3) 1,275 1,275 1,275
Q (m3/s) 1.667E-03 1.667E-03 1.667E-03
R (m) 0.0254 0.0254 0.0254
sw (Pa) 39.14 58.87 84.79
sy/ sw 0.38 0.25 0.18

cw (s-1) 260.95 196.24 169.57
vzav (m/s) 0.823 0.823 0.823
Dp (Pa) 6.210E+05 9.271E+05 1.335E+06
Dp (psi) 90.05 134.43 193.61
Ry (m) 0.00973 0.00647 0.00449
Ry (inch) 0.3832 0.2548 0.1769
Re 1.40E+04 6.99E+03 4.20E+03
DQ (m3/s) 9.995E-07 1.000E-06 1.000E-06
vm (m/s) 1.27 1.38 1.46
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(b) Power-Law Fluids

The constitutive equation for the shear stress of power law fluids flowing in a
circular tube is:

TE
rzðrÞ ¼ m

ovz

or

� �n

ð11:66Þ

where m is the consistency index and n is the power index.

Velocity distribution

Replacing (11.66) with (11.51) we have:

m
ovz

or

� �n

¼ � 1
2
Dp

L
r

Integrating yields

ovz

or
¼ �Dp

2 mL
r

� �1=n

ð11:67Þ
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Fig. 11.17 Velocity distributions for a Bingham model of a material with plastic viscosity of 20,
50 and 100 mPa-s and yield stresses of 15 Pa
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vzðrÞ ¼
Dp

2 mL

� �1=nZ
�rð Þ1=ndr þ C

¼ Dp

2 mL

� �1=n n

nþ 1
�rnþ1=n
� ffi

þ C

Using boundary condition vzðRÞ ¼ 0, results in:

vzðrÞ ¼
nR

nþ 1
DpR

2 mL

� �1=n

1� r

R

� ffiðnþ1Þ=n
� �

ð11:68Þ

Figure 11.18 of Problem 11.11 shows the velocity distribution for the flow of a
power law fluid in a tube for different values of the power index.

Volume flow rate

The volume flow rate is given by Qf ¼
R R

0 2pvzrdr, then substituting (11.68)
and integrating:

Qf ¼
ZR

0

2p
nR

nþ 1
DpR

2 mL

� �1=n

1� r

R

� ffiðnþ1Þ=n
� �

rdr

Q ¼ 2p
nR3

nþ 1
DpR

2 mL

� �1=n Z1

0

r

R
d

r

R

� ffi
�
Z1

0

r

R

� ffi 2nþ1=nð Þ
d

r

R

� ffi
0
@

1
A
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Fig. 11.18 Velocity distribution of power law fluids with consistency index m ¼ 3Pa - sn and
power law indices 0.20; 0.33; 0.50; 1 and 3
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Qf ¼ 2pR3 n

nþ 1
DpR

2 mL

� �1=n 1
2

r

R

� ffi2
				
1

0

� 1
2nþ 1ð Þ=nð Þ þ 1

� �
r

R

� ffi 2nþ1=nþ1ð Þð Þ
 !

Qf ¼ pR2 n
3nþ1ð Þ

DpRnþ1

2 mL

� ffi1=n

Average velocity

The average velocity is given by �vz ¼ Qf =pR2, then:

�vz ¼
n

3nþ 1ð Þ
DpRnþ1

2 mL

� �1=n

ð11:70Þ

and
8�vz

D
¼ 4n

3nþ 1ð Þ
DpR

2 mL

� �1=n

ð11:71Þ

Shear stress and shear rate at the wall and maximum velocity

Since the shear rate and shear stress at the wall are given by:

_cw ¼
ovz

or

				
r¼R

¼ � DpR

2 mL

� �1=n

sw ¼ m _cn
w

from (11.71) we finally have:

_cw ¼
3nþ 1ð Þ

4n

8�vz

D
sw ¼ m

3nþ 1ð Þ
4n

8�vz

D

� �n

ð11:72Þ

The maximum velocity is obtained from (11.68) for r ¼ 0, then:

vm ¼
nR

nþ 1
DpR

2 mL

� �1=n

ð11:73Þ

vzðrÞ ¼ vm 1� r

R

� ffiðnþ1Þ=n
� �

ð11:74Þ

Pressure drop

From (11.69)

Dp ¼ 2 mL
Rnþ1

3nþ1ð Þ
n

Q
pR2

� ffin
ð11:75Þ

Problem 11.11 For a mass flow of F ¼ 1;000 kg=h of a non-Newtonian fluid of
the potential type with a density of q ¼ 1;074 kg/m3, consistency index of m ¼ 3
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and power law indices of n ¼ 1=5; 1=3; 1=2 and 1; 3, calculate the pressure drop
Dp and draw a figure for the velocity distribution. See Fig. 11.18.

Wall shear stress and Reynolds number

Defining the friction coefficient in the same way as for Newtonian fluids in
laminar flow, f ¼ 16=Re, we can define a Reynolds number ReM for a power law
fluid as the ratio of the wall shear stress sw to the dynamic pressure Metzner and
Reed (1959). Then we have:

f ¼ �sw

1
2 q�v2

z

¼ 16
Re

ð11:76Þ

From (11.72) sw ¼ m 3nþ1ð Þ
4n

8�vz

D

� ffin

So that ReM is:

ReM ¼ q�v2�n
z Dn

8n�1m 3nþ1
4nð Þn ð11:77Þ

Transition to a turbulent regime

As in the case of fluids with Newtonian behavior, the friction factor gives the
transition from a laminar to turbulent flow.

With the Reynolds number defined by (11.77), the roughness Reynolds number

by Re2 ¼2
ffiffiffiffiffiffiffi
1=f

p
Re and the friction factor f ¼ �DpD=2qL�v2

z , we have:

f ¼ 16
Re

for Re\2; 100 ð11:78Þ

frough ¼
fwater�rough

fwater�smooth

16
Re

for Re\2; 100 ; 5 \ Re2\70 ð11:79Þ

n 0.20 0.33333333 0.50 1.00
q (kg/m3) 1,074 1,074 1,074 1,074
m (Pa-sn) 3 3 3 3
d (inch) 1.00 1.00 1.00 1.00
L (m) 10 10 10 10
F (kg/h) 1,000 1000 1,000 1,000
Q (m3/s) 9.311E-04 9.311E-04 9.311E-04 9.311E-04
R (m) 0.0127 0.0127 0.0127 0.0127
vzav (m/s) 1.838 1.838 1.838 1.838
vm (m/s) 0.49 0.92 1.53 3.68
Dp (Pa) 1.40E+04 3.12E+04 8.99E+04 2.73E+06
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f ¼ 4:53
n

log Re
ffiffiffiffiffiffiffiffiffi
f 2�n

p� ffi
þ 2:69

n
� 2:95þ 0:68

5n� 8
n

� ��2

; for

Re [ 4; 000 ; Re2\ 5
ð11:80Þ

frough ¼ 4:07 log
1

2 2

� �
þ 6� 2:65

n

� ��2

for Re [ 4; 000 ; Re2[ 70

ð11:81Þ

Figure 11.19 shows the friction factor as a function of Metzner’s Reynolds
number for different values of the power function n for smooth walls according to
Chhabra and Richardson (1999).

Problem 11.12 A polyacrilamide solution of q ¼ 1; 074 kg=m3 in density is to be
pumped through a tube one inch in diameter and 10 m in length at a rate of
2:500 kg=h. Measurement in the laboratory showed that the fluid can be repre-
sented by the power law model with m ¼ 3Pa-sn and n ¼ 0:5. Calculate the nec-
essary pressure to maintain the flow and calculate the velocity distribution, average
and maximum velocity.

Volume flow

Q ¼ F

q� 3; 600
¼ 6:466� 10�4 m3=s

Fig. 11.19 Friction factor as a function of Metzner’s Reynolds number for different values of the
power function n (Chhabra and Richardson 1999)
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Pressure drop:

Dp ¼ 2 mL

Rnþ1

3nþ 1
n

Q

pR2

� �n

¼ 1:059� 105 Pa

Average velocity

�vz ¼
Q

pR2
¼ 1:128 m/s

Velocity distribution:

vzðrÞ ¼
nR

nþ 1
DpR

RmL

� �1=n

1� r

R

� ffiðnþ1Þ=n
� �

¼ 2:128� 1� r

R

� ffiðnþ1Þ=n
� �

Maximum velocity:

vzðrÞ ¼
nR

nþ 1
DpR

RmL

� �1=n

¼ 2:128

Velocity distribution vz ¼ 2:128� 1� r

R

� ffiðnþ1Þ=n
� �

Problem 11.13 A non-Newtonian fluid with density equal to that of water flows
in a tube 300 mm in diameter and 50 m long at a rate of 300 kg/s. Rheological
measurements yield the following power law parameters:
m ¼ 2:74 Pa-s0:3 and n ¼ 0:30. Determine the necessary power of a pump and the
wall shear stress. See Fig. 11.20.

q (kg/m3) 1,074
m (Pa-sn) 3
n 0.5
D (inch) 1
L (m) 10
F (kg/h) 2,500
Q (m3/s) 6.466E-04
R (m) 1.270E-02
vzav (m/s) 1.277
D (Pa) 1.059E+05
vm (m/s) 2.12787

410 11 Transporting Concentrates and Tailings



Average velocity : �vz ¼
Qf

pR2
¼ 300=1; 000

3:14� ð0:15Þ2
¼ 4:24 m=sð Þ

The transitional or critical Reynolds number is Rec 	 2; 100.

ReMRc ¼
qv2�n

c Dn

8n�1m 3nþ1
4n

� �n ¼ 2; 100

then the critical velocity, that is, the velocity at which the flow changes from
laminar to turbulent, is:

vc ¼
8n�1m 3nþ1

4n

� �n
2; 100

qDn

 !n�2

¼ 2:91 m/sð Þ

Since the average velocity 4.24 (m/s) is greater than the critical velocity 2.91
(m/s), the regime is turbulent. The actual Reynolds number is:

ReMR ¼
q�v2�n

z Dn

8n�1m 3nþ1
4n

� �n ¼ 11090

With ReMR ¼ 11; 090 and n ¼ 0:3, from Fig. 11.16, we get a friction factor
f ¼ 0:0033.
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Fig. 11.20 Velocity distribution for a polyacrilamide solution with a power law model:
m ¼ 3½Pa-s0:5� y n ¼ 0:5
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The value of the pressure drop necessary to produce the flow is obtained from

the friction factor definition: f ¼ �sw=1=2q�v2
z ; sw ¼ � 1

2
Dp
L R ! f ¼ Dp

L
R

q�v2
z

therefore:

Dp ¼ 2q�v2
z L

D
f ¼ 1:9814� 104 ðPa)

and, the pump power Po is:

Po ¼ Qf � DP ¼ 6:0 kW

The wall shear stress is

sw ¼ �
1
2
Dp

L
R ¼ 29:7 Pa

D (m) 0.3
L (m) 50
q (kg/m3) 1,000
F (kg/s) 300
m (Pa-s0.3) 2.74
n 0.3
ReMRc 2,100
R (m) 0.15
Q (m3/s) 0.300
vzav (m/s) 4.24
vc (m/s) 2.921
ReMR 11,090
f (11090; 0.30) 0.0033
Dp (Pa) 19,814
Po (W) 5,944
sw (Pa) 29.7

(c) Herschel-Bulkley Fluid

The constitutive equation for the stress tensor for Herschel-Bulkley fluids in a
pipe has the form:

TE
rzðrÞ

\sy;
ovz

or ¼ 0


 sy; TE
rzðrÞ ¼ sy þ m ovz

or

� ffin

(
ð11:82Þ

Since for any fluid TE
rzðrÞ ¼ � 1

2
Dp
L r, for Herschel-Bulkley fluids we have:

TE
rzðRyÞ ¼ sy ¼ �

1
2
Dp

L
Ry
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Then:

TE
rzðrÞ � sy ¼ �

1
2
Dp

L
r � Ry

� �

Velocity distribution

For TE
rzðrÞ
 sy ; Ry � r � R :

ovz

or
¼ TE

rzðrÞ � sy

m

� �1=n

¼ �
Dp r � Ry

� �

2 mL

� �1=n

ð11:83Þ

Integrating with boundary condition vzðRÞ ¼ 0

vzðrÞ ¼ � Dp

2 mL

� �1=nZ
r � Ry

� �1=n
dr

vzðrÞ ¼ � Dp

2 mL

� �1=n

� n

nþ 1
r � Ry

� �ðnþ1Þ=nþC1

vzðRÞ ¼ � Dp

2 mL

� �1=n

� n

nþ 1
R� Ry

� �ðnþ1Þ=nþC1 ¼ 0

C1 ¼� � Dp

2 mL

� �1=n

� n

nþ 1
R� Ry

� �ðnþ1Þ=n

vzðrÞ ¼ � DpR

2 mL

� �1=n

� nR

nþ 1
r

R
� Ry

R

� �ðnþ1Þ=n

� 1� Ry

R

� �ðnþ1Þ=n
 !

ð11:84Þ

Using Eqs. (11.12) and (11.53) for the shear stress at the wall and the yield
stress, Eq. (11.84) can be written in the form:

vzðrÞ ¼ sw
m

� �1=n� nR
nþ1

r
R�

sy

sw

� ffiðnþ1Þ=n
� 1� sy

sw

� ffiðnþ1Þ=n
� �

; for Ry� r�R

ð11:85Þ

For TE
rzðrÞ\sy ; 0\r\ Ry where sy ¼ TE

rz Ry

� �
:

ovz

or
¼ 0 ! vzðrÞ ¼ vz Ry

� �
ð11:86Þ

From (11.84),

vzðrÞ ¼ � � DpR

2 mL

� �1=n

� nR

nþ 1
1� Ry

R

� �ðnþ1Þ=n

for 0� r�Ry ð11:87Þ
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vzðrÞ ¼ � sw
m

� �1=n� nR
nþ1 1� sy

sw

� ffiðnþ1Þ=n
for 0� r�Ry ð11:88Þ

Volume flow rate

The volume flow rate is given by Qf ¼
R R

0 2pvzrdr, then substituting (11.84)
and (11.87) into this equation and integrating yields:

Qf ¼ 2p
sw

m

� ffi1=n nR

nþ 1

ZRy

0

� 1� sy

sw

� �ðnþ1Þ=n

rdr

þ
ZR

Ry

r

R
� sy

sw

� �ðnþ1Þ=n

� 1� sy

sw

� �ðnþ1Þ=n

rdr

 !

0

BBBBBBBB@

1

CCCCCCCCA

¼ 2p
sw

m

� ffi1=n nR3

nþ 1

ZRy=R

0

� 1� sy

sw

� �ðnþ1Þ=n

ndn

þ
Z1

Ry=R

n n� sy

sw

� �ðnþ1Þ=n

� 1� sy

sw

� �ðnþ1Þ=n

n

 !
dn

0
BBBBBBBB@

1
CCCCCCCCA

Integrating yields (Bird et al. 1987):

Qf ¼ pnR3 sw

m

� ffi1=n 1
3nþ 1

1� sy

sw

� �2

þ 2
2nþ 1

sy

sw
1� sy

sw

� �
þ 1

nþ 1
sy

sw

� �2
 !

ð11:89Þ

Average velocity

The average velocity is given by �vz ¼ Q=pR2, then:

�vz ¼ nR
sw

m

� ffi1=n 1
3nþ 1

1� sy

sw

� �ðnþ1Þ=n

þ 2
2nþ 1

sy

sw
1� sy

sw

� �
þ 1

nþ 1
sy

sw

� �2
 !

ð11:90Þ
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Maximum velocity

The maximum velocity is obtained from (11.88), then:

vm ¼ �
sy

sw

� �1=n

� nR

nþ 1
1� sy

sw

� �ðnþ1Þ=n

ð11:91Þ

Problem 11.14 Figure 11.21 shows the velocity distribution for Herschel-Bulkley
fluids with yield stress sy ¼ 5; 10 and15Paconsistency index m = 3 Pa-sn and
power law indices of 0.50. See Fig. 11.21.
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Fig. 11.21 Velocity distribution of Herschel-Bulkley fluids with yield stresses sy=5; 10 and 15;
Pa, consistency index m = 3 Pa-sn and power law index of 0.50

sy (Pa) 15 10 5
n 0.5 0.5 0.5
m (Pa-sn) 3 3 3
q (kg/m3) 1,074 1,074 1,074
d (cm) 2.5 2.5 2.5
L (m) 10 10 10
F (kg/h) 2,500 2,500 2,500
Q (m3/s) 6.466E-04 6.466E-04 6.466E-04
R (m) 1.250E-02 1.250E-02 1.250E-02
vm (m/s) 1.318E+00 1.318E+00 1.318E+00
Dp (Pa) 1.125E+05 1.125E+05 1.125E+05
Ry 2.667E-03 1.778E-03 8.890E-04
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Transition to turbulent regime

As in the case of Newtonian fluids, the friction factor gives the transition from
laminar to turbulent flow. The Reynolds number is the same as that of pseudo
plastic fluids. See Eq. (11.77):

ReHB ¼
q�v2�n

z Dn

8n�1m 3nþ1
4n

� �n ; Re2 ¼2
ffiffiffiffiffiffiffi
1=f

p
ReHB ð11:92Þ

Now the friction factor f ¼ �DpD=2qL�v2
z is given by:

fsmooth ¼
1

22n�4

pR3

Q

� �
m

sw

� �1=n

� 1
ReHB

; for ReHB\2; 100 ð11:93Þ

frough ¼
fwater�rough

fwater�smooth

1
22n�4

pR3

Q

� �
m

sw

� �1=n

� 1
ReHB

; for

RePL \ 2; 100 ; 5 \ Re2\ 70
ð11:94Þ

fsmooth ¼
4:53

n
log RePL

ffiffiffiffiffiffiffiffiffi
f 2�n

p� ffi
þ 2:69

n
� 2:95þ 0:68

5n� 8
n

� ��2

; for

ReHB [ 4; 000 ; Re2\ 5

ð11:95Þ

frough ¼ 4:07 log
1

2 2

� �
þ 6� 2:65

n

� ��2

for RePL [ 4; 000; Re2[ 70

ð11:96Þ

Problem 11.15 The rheology of copper tailings is described by the values in the
following table:

% ty (Pa) g (mPa-s)

10 100 150 200

55 0.678 166 32 25 21
60 1.035 230 44 34 29
65 1.579 318 61 46 39
70 2.409 441 83 63 53

Calculate the pressure drop necessary to transport 5,000 l per minute of a
copper tailing with a density of 2,650 kg/m3, at 55, 60, 65 and 70 % of solid by
weight in a pipe 4 inches in diameter and 200 m long, if the rheological parameters
of the pulp are those given in the table. Model the rheology of the tailing and draw
the Rheological curves.
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Pressure drop:

Qf ¼ 5; 000 ‘=m = 5; 000=ð60� 1; 000Þ ¼ 8:333� 10�2 m3=s

Qf ¼
p
8

DpR4

KL
1� 4

3
sy

sw

� �
þ 1

3
sy

sw

� �4
 !

_cw ¼
8�vz

D
¼ 32Q

pD3
¼ 32� 1:6667� 10�3

3:14� 0:023
¼ 26:5 1=s

sw ¼
1
2

DpR

L
¼ Dp� 0:1016

2� 200
¼ 2:54� 10�4Dp

sy ¼ 0:678 Pa

Qf ¼
p
8

Dp� 0:10164

0:818� 200
1� 4

3
0:678

2:54� 10�4Dp

� �
þ 1

3
0:678

2:54� 10�4Dp

� �4
 !

Error ¼ 8:333� 10�2 � p
8

Dp� 0:10164

0:818� 200
1� 4

3
0:678

2:54� 10�4Dp

� �
þ 1

3
0:678

2:54� 10�4Dp

� �4
 !

¼ 6:998� 10�7Dp ¼

The following excel sheet permits the calculation of all solid percentages:

% solid sy Pa m n - 1 n
55 0.678 818.26 -0.6963 0.3037
60 1.035 1141.8 -0.6996 0.3004
65 1.579 1611.7 -0.7072 0.2928
70 2.409 2266.1 -0.7134 0.2866
Average -0.70 0.30

% solids 55 60 65 70
qs (kg/m3) 2,650 2,650 2,650 2,650
qf (kg/m3) 1,000 1,000 1,000 1,000
sy (Pa) 0.678 1.035 1.579 2.409
g (Pa-s) 0.818 1.142 1.612 2.266
Q (l/min) 5000.00 5000.00 5000.00 5000.00
R (inchs) 4.00 4.00 4.00 4.00
L (m) 200 200 200 200
q (kg/m3) 1520.80 1596.39 1679.87 1772.58
Q (m3/s) 8.333E-02 8.333E-02 8.333E-02 8.333E-02
R (m) 0.1016 0.1016 0.1016 0.1016
sw (Pa) 83.66 116.92 165.19 232.46
sy/ sw 0.01 0.01 0.01 0.01
cw (s-1) 102.28 102.38 102.48 102.59
vzav (m/s) 2.571 2.571 2.571 2.571
Dp (Pa) 3.294E+05 4.603E+05 6.504E+05 9.152E+05
Dp (psi) 47.76 66.74 94.30 132.71
Ry (m) 0.00082 0.00090 0.00097 0.00105
Ry (inch) 0.0324 0.0354 0.0382 0.0415
Re 3.82E+04 2.88E+04 2.14E+04 1.61E+04
DQ (m3/s) 9.998E-07 9.999E-07 1.000E-06 1.000E-06
vm (m/s) 5.11 5.11 5.11 5.10
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τ y = 0.0065e0.0845%
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Fig. 11.22 Yield stress versus % solid by weight for a copper tailing
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Fig. 11.23 Shear viscosity versus shear rate for a copper tailing with % solid by weight as
parameter
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g mPa-sð Þ ¼ 19:3673 exp 0:067 %ð Þ _c�0:7

sy Pað Þ ¼ 0:0035 exp 0:0845 %ð Þ
s Pað Þ ¼ 0:0035 exp 0:0845 %ð Þ þ 19:3673 exp 0:067%ð Þ _c0:3

Figures 11.22, 11.23, 11.24, and 11.25 show the results graphically.
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Fig. 11.24 Parameter m for a copper concentrate versus % solid
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Fig. 11.25 Shear stress versus shear rate for a copper tailing
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11.5 Transporting Suspensions in Open Channels

Due to the natural slopes of the land around mines, it is often convenient to use
Channels instead of pipelines to transport tailings. From a fundamental point of
view, the problem of Channel flow is more complex than tube flow because the
flow area is not known in advance and it can change while the flow is developing.
The case is simpler if the flow is uniform.

Although several Channel geometries are used in open Channel flows, the most
commonly used in slurry transport are the rectangular section, semicircular, and a
composed semicircular-rectangular section. The relevant geometrical parameters
are the cross-section flow area, A, and the wetted perimeter, P, as given in
Table 11.3.

Steady open Channel flow is classified as uniform or non-uniform. A uniform
flow is one for which the fluid depth h above the Channel bed is constant. Non-
uniform flows are further classified into gradually varied flows, where the cur-
vature of the free surface is small compared to the depth of the fluid, and rapidly
varied flows, where the curvature is comparable to the fluid depth. Analysis of
gradually varied flow is simpler because a hydrostatic pressure distribution can be
assumed. Curvature in rapidly varied flows adds a radial acceleration to the fluid
particles that must be added to the gravity effect to compute the pressure.

In studying steady state gradually varied flows in open Channels we want to
determine the flow depth h as a function of the distance x for a given flow rate Qf.

Table 11.3 Geometrical parameters of typical channels used for slurry conveyance

Geometry Area Wetted perimeter

b

h

A ¼ bh P ¼ bþ 2 h

h
a

β A ¼ a2

8 b� sen bð Þð Þ P ¼ a
2 b

a
h

A ¼ 2a h� að Þ þ p
2 a2 P ¼ paþ 2 h� að Þ
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In this case the flow depth depends on the Channel characteristics (geometry,
slope, wall roughness), and fluid properties (density and viscosity). See Fig. 11.26.

Flow of copper tailings in Channels has more favorable conditions than flow in
pipelines. For example, the concentration of the pulp in Channels has no influence
on the speed of the flow and whether or not the flow is turbulent, (velocities above
0.8 m/s will yield turbulent flow). The viscosity has no influence on the transport
velocity but influences in limiting deposit velocity. On the other hand, the head
loss can be calculated using the methods for water with similar wall conditions.
These simplifications are not valid for pipe flow.

The slope of the Channel is important. As a rule of thumb, slight slopes, such as
0.3 %, need transport velocities greater than 1.2 m/s to avoid embankment.
Velocities of 1.5 m/s are recommended for copper tailings (Kleiman 1960). If
water is added to a developed flow with high solid content, such as 45 % by weight
in a Channel with a slight slope and slow transport velocity, particles will settle.
This is because the water dilutes the pulp and larger particles can segregate. Once
a bed forms under this condition, it cannot be eliminated by washing with water. A
flow with high concentration at velocities higher than 1.0 (m/s) will eventually
removes the bed. Channels with slopes greater than 0.6 % and flows with high
solid concentration will not segregate particles if water is added, and Channels
with slopes greater than 0.9 % will not embank even with low flows.

11.5.1 Sub-Critical and Super-Critical Flow

Open Channel flows can be classified (Tamburrino 2000) in several ways,
depending on the aspects we are interested in. We already distinguished between
gradual and rapid flow, depending on the flow curvature. Other aspects we can
consider are also found in pipe flows, such as the flow variation over time (steady
or unsteady flow), and the importance of viscous effects with respect to inertia
(viscous or turbulent regime). For non-homogeneous suspensions, a turbulent flow
is required to avoid particle settling.

Another important classification arises from comparing mean flow velocity �vx

to the speed of the small surface wave c. Assuming low wave amplitude and

Fig. 11.26 Uniform and
non-uniform flow in a
channel
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negligible surface tension effects, the speed of a surface wave is given from
potential flow theory by:

c2

gh
¼ k

2ph
tgh

2ph

k

� �
ð11:97Þ

where k is the wave length and g is acceleration due to gravity. When k � h,
tgh 2ph=kð Þ 	 2ph=k, and the speed of a small perturbation on the free surface of a
flow having a finite depth is given by:

c ¼
ffiffiffiffiffi
gh

p
ð11:98Þ

A further classification arises when �vx is compared to c, it being customary to
work with the ratio �vx=c ¼ �vx=

ffiffiffiffiffi
gh
p

� Fr, which is termed the Froude number.
Thus, the following classification arises in open Channel flows:

Fr \ 1, the flow is called sub-critical (or tranquil flow).
Fr = 1, the flow is called critical.
Fr [ 1, the flow is called supercritical (or rapid flow).

When flow conditions are such that the Froude number moves in the range
0.8–1.2, the flow is called trans-critical. Design of open Channels usually avoids
trans-critical flows due to the presence of water surface oscillations and flow depth
variations. A supercritical regime is recommended for slurry transport in Channels.

The speed given in (0.91) is valid for two-dimensional flows. A general defi-
nition, valid for a Channel with any shape is as follows:

c ¼
ffiffiffiffiffiffiffiffi
g

A

bs

r
ð11:99Þ

where A is the flow cross sectional area and bs is the free surface width.

11.5.2 Steady Uniform Flow

In steady uniform flow there is equilibrium between the force generating the
motion (gravity) and the resistance force opposing the flow. Theoretically, a
gradually varied sub-critical flow will became uniform at an infinite distance
upstream, and a super-critical flow reaches the condition of uniform flow at an
infinite downstream. In practice however, as shown in Fig. 11.26, we can consider
a finite distance for the uniform flow to develop.

In the figure, the sluice gate provides a control section that imposes a boundary
condition for the flow downstream the gate. The flow that develops close to the
gate is non-uniform, with h as a function of x. After a certain distance, variations of
h with x are very small and of the order of the natural water surface fluctuations.
Here we can consider that the flow has reached the uniform condition. The uniform
flow is also called normal flow and its depth normal depth.
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Mass balance

The macroscopic mass balance indicates that the volume flow rate Q is con-
stant, then:

Q2 ¼Q1

A2�v2 ¼A1�v1
ð11:100Þ

where A is the wetted area and �vi is the average velocity. Since A2 ¼ A1, we have:

�v2 ¼ �v1 ð11:101Þ

Momentum balance

The macroscopic momentum balance at steady state applied to the control
volume defined between sections (1) and (2) in Fig. 11.26 results in:

I

S
qvv � ndA ¼

Z

V

qgdV þ
I

S
T � ndA ð11:102Þ

The wall shear stress sw is defined by:

sw ¼ �
1
S

Z

S
TE � ndA
� �

� i

where q is the pulp density and i is the unit vector in the direction of the flow.
Since the velocity and the areas are constant, the first term of Eq. (11.102) vanishes
and the other two terms become:

0 ¼ q ðg � iÞAL� swS ð11:103Þ

ðg � iÞ ¼ gsinh is the slope of the Channel, S ¼ LP is the wetted surface, that is, the
Channel surface in which the shear stress is acting. Then,

sw ¼ qgsinh
A

P
ð11:104Þ

Thus, Eq. (11.97) provides an expression for the average wall shear stress in terms
of the Channel characteristics (A, P and h), the density of the substance being
conveyed and the acceleration of gravity. Note that the equilibrium does not
discriminate between liquid and mixture, so that Eq. (11.104) is as valid for water
as for slurries.

The ratio between the cross sectional flow area and the wetted perimeter is
called hydraulic radius Rh, which is an important geometric parameter of the flow
representing the ratio between the slurry (or liquid) volume, where gravity is
acting, and the Channel surface where there is shear stress between the liquid (or
slurry) and the wall.
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Rh ¼
A

P
¼ bh

P

cross sectional areaih
wetted perimeterih

Note that Eq. (11.104) is valid for steady uniform flow in any geometry. The
only restriction is that the Channel must be prismatic, that is, its shape must not
change with distance in the flow direction:

sw ¼ qgsinhRh ð11:105Þ

For a rectangular Channel A ¼ bh and P ¼ bþ 2 h

sw ¼ qgsinh
bh

bþ 2 h
ð11:106Þ

Flow velocity

In terms of the dimensionless wall shear stress, known as Fannig friction factor,
defined by f ¼ 4sw=ð1=2Þ�v2

x , we have:

f ¼ 8qgsinh
bh

bþ 2 h

1
�v2

x

ð11:107Þ

The most popular expression for the Fanning friction f factor is:

f ¼ 116
v2

R1=3
h

ð11:108Þ

so that the average flow velocity is:

�vx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8qgsinh
116v2

bh

bþ 2 h

� �4=3
s

ð11:109Þ

where v is the roughness coefficient. Table 11.4 shows friction factors f for several
Channels of uniform cross sections.

Volume flow rate

From Eq. (11.109), the flow rate for rectangular Channels is:

Qf ¼ bh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8qgsinh
116v2

bh

bþ 2 h

� �4=3
s

ð11:110Þ
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Fluid depth

Calculating h from (11.110) yields:

h ¼ 1
b

116ðbþ 2 hÞ4=3v2Q2
f

8 gsenh

 !3=10

ð11:111Þ

The height h is calculated from the implicit Eq. (11.111) by iteration.
Another version of this equation is:

h ¼ 1
b
ðbþ 2 hÞ 116v2Q2

8 gsenh

� �3
4

 !2
5

ð11:112Þ

Limiting velocity

Domínguez and Harambour (1989) proposed the following limiting deposit
velocity to ensure that particles do not settle:

vL ¼ 0:6505 8g
qs

q
� 1

� �
d85

� �0:5 d85

4Rh

� �0:342 d99

d85

� �0:386

ð11:113Þ

where qs and q are the solid particle and pulp densities, di are the sizes where i %
of the material passes and Rh is the hydraulic radius.

Mechanical energy balance

The mechanical energy balance is:
I

S
1=2q�v2

xv � n
� �

dA ¼
I

S
v � T � ndA�

I

S
q/v � ndA� _Ev

I

S
1=2ð Þq�v2

xv � ndA ¼ �
I

S
pv � ndA�

I

S
q/v � ndA� _Ev

Table 11.4 Friction factors for channels

Type of channel of uniform cross section v; ft1=6 v;m1=6

Sides and bottom lined with wood 0.009 0.0074
Neat cement plaster; smoothest pipes 0.010 0.0082
Cement plaster; smooth iron pipes 0.011 0.0090
Unplanned timber evenly laid; ordinary iron pipes 0.012 0.098
Best brick work; well-laid sewer pipes 0.013 0.0170
Average brick work; foul iron pipes 0.015 0.0123
Good rubble masonry; concrete laid in rough form 0.017 0.0139
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Since

/ ¼ g gðxÞ þ z cos hð Þ
p ¼ qg h� zð Þ cos h½ �

1=2ð Þq�v2
2A2 � 1=2ð Þq�v2

1A1 ¼ �qg g2 þ h cos hð Þ�v2
2A2 � g1 þ h cos hð Þ�v2

1A1
� �

� _Ev

but �v2A2 ¼ �v1A1;�v2
2A2 ¼ �v2

1A1; p2�v2A2 ¼ p1�v1A1; z2�v2A2 ¼ z1�v1A1, so that this
equation reduces to:

g1 � g2 ¼ � _Ev=qgQ
� �

Since:

g1 � g2 ¼ Lsen h and hf ¼ _Ev=qgQ
� �

hf ¼ Lsen h ð11:114Þ

Thus, the viscous dissipation, or head loss, is just equal to the decrease in
potential energy for uniform flow.

Problem 11.16 A uniform flow of copper flotation tailings takes place in a
rectangular Channel constructed of concrete. If the angle between the Channel and
the horizontal is 1.0� and the Channel is 0.9 m wide and water is 0.50 m deep,
calculate the velocity and the volume flow rate.

v ¼ 0:0139 m1=6

Qf ¼ bh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 gsen hðbhÞ4=3

116v2ðbþ 2 hÞ4=3

vuut ¼ 0:9� 0:5

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 9:8� senð1� p=180Þ � ð0:9� 0:5Þ4=3

116� 0:01392ð0:9þ 2� 0:5Þ4=3

vuut ¼ 1:347 m3=s

�v ¼ Q

b� h
¼ 1:346

0:9� 0:5
¼ 2:99 m/s

b (m) 1.00
h (�) 1
Q (m3/s) 1.346
assume h* (m) 0.45
h*-h = 0 9.18E-06
g (m/s2) 9.81
v (m1/6) 0.0139
v ((m/s) 146683.42
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Problem 11.17 A Channel 0.9 m wide and 1 m high with a slope of 1.0� carries
1.347 m3/s of copper flotation tailings. Calculate the height of the water in the
Channel.

Using solver from Excel by assuming h = 1 m in Eq. (11.112) results in:

Problem 11.18 Design a Channel of rectangular cross section to transport a
volume flow rate of 0.3 (m3/s) of copper tailings. The Channel should have a slope
of tan h ¼ 0:0157 and a height to width ratio of h=d ¼ 0:5.

Assume h = 1 (m) in Eq. (11.112) and search for objective, with the result

tanh (�) 0.0157
Q (m3/s) 0.300
h/b 0.5
h (�) 0.01569871
assume h* (m) 0.27
b (m) 0.54
h*-h = 0 2.83E-04
g (m/s2) 9.81
v (m1/6) 0.0139
v (m/s) 2.05

Problem 11.19 For a smooth concrete Channel 2 m wide with a slope of 0.001
has a volume flow rate of 1.0 m3/s, determine the wall shear stress per unit length.

Using the solver of Excel and assuming h� ¼ 1 in Eq. (11.112) and calculating
sw from (11.106) gives:

q (kg/m3) 1,000
tanh (�) 0.001
Q (m3/s) 1.000
b (m) 2.00
g (m/s2) 9.81
h (�) 0.001
senh 0.001
assume h* (m) 0.21
h*-h = 0 2.62E-06
v (m 1/6) 0.0139
v (m/s) 2.41
sw (Pa/m) 1.68
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