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Abstract One of the approaches in diffusion tensor imaging is to consider a
Riemannian metric given by the inverse diffusion tensor. Such a metric is used for
white matter tractography and connectivity analysis. We propose a modified metric
tensor given by the adjugate rather than the inverse diffusion tensor. Tractography
experiments on real brain diffusion data show improvement in the vicinity of
isotropic diffusion regions compared to results for inverse (sharpened) diffusion
tensors.

1 Introduction

In the Riemannian framework for diffusion tensor imaging (DTI) [3] white matter
is represented as a Riemannian manifold and neural fibres are conjectured to
coincide with certain geodesic curves' (shortest paths in a non-Euclidean sense).
In this way the problem of tractography becomes one of finding geodesics. This
is attractive from a practical point of view, as it obviates the need for ad hoc
stopping and bending criteria necessary in traditional fibre-tracking algorithms.

IClassification of geodesics as fibres requires additional connectivity measures [1, 16].
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Finally, it has the conceptual advantage that Riemannian geometry is a well-
understood and powerful theoretical machinery, facilitating mathematical modeling
and algorithmics [1,2,6, 11, 13, 14, 16]. However, there are problematic aspects to
the existing formulation of the Riemannian paradigm [11, 13]. The appealing idea is
to transform anisotropic diffusion in Euclidean space to free Brownian diffusion in
a curved Riemannian space. However, this is not achieved with the usual definition,
in which the metric is identified with the inverse diffusion tensor. A related problem
is that the standard metric does not favor tracts through anisotropic diffusion regions
over tracts through isotropic ones, making masking a necessary preprocessing step
in geodesic tractography.

In this paper we reconsider the relation between the DTI tensor and the
Riemannian metric tensor. The question of how to choose an appropriate metric
has been recently addressed [8, 9]. Below we stipulate a novel Riemannian metric
that does yield Brownian motion in the corresponding curved space. We investigate
the practical implications of the proposed metric on geodesic tractography by
performing experiments on real brain diffusion data. We contrast our results with
geodesic curves obtained from the inverse (sharpened) diffusion tensor. Experiments
show that in our approach tracts avoid isotropic diffusion regions such as ventricles.

2 Theory

2.1 Preliminaries

We use the following notation and conventions. DY diffusion tensor, Dj;: inverse
of DY, d =det DY, g;: metric tensor, g¥: inverse of g;, g =detg;, 3; = d/dx". A
linear diffusion generator . is a differential operator of the form?

& =a"¥(x)0;0; + b (x)9; (1
where a”(x) and b’ (x) are smooth functions and a” is a symmetric positive definite

tensor, with inverse a;;. If we define a Riemannian metric on M as g;(x) = a;(x),
then we can rewrite .Z as

=N, +B 2)

where B = B(a¥(x), b’ (x)) is a smooth vector field and A, is the Laplace-Beltrami
operator w.r.t. the metric g;;:

. . . . ;- def ;
2We use Einstein’s summation convention: a;b’ = S a;b'.
i
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By =—= 0 (VE"0) = g70:0; + —= 0, (&g’ 3)
«= 57 (Veg"0:) = f 9; (Vzg") 0

The operator .Z is said to be an intrinsic Laplacian if B = 0. By definition, an

intrinsic Laplacian generates Brownian motion on (M, g) [4]. However, with the

usual identification g% = DY, the standard anisotropic diffusion generator yields

% = 8;(DY3;) = D¥d;0; + (3, DV)0; = Ag + — (3;d) DU, (4

d

where B = (1/2d)(9;d) D¥9;, which generally does not vanish (unless d is
constant). We conclude that this operator is not an intrinsic Laplacian and therefore
the diffusion process associated with .%} is not a Brownian motion on (M, g). This
discrepancy has not been signalled before in the literature.

2.2 Riemannian Framework Revisited

We propose to modify the Riemannian framework for DTI in such a way that the
diffusion process associated with the diffusion generator is a Brownian motion
on (M, g), for a certain Riemannian metric g. We consider metrics which are

conformally equivalentto g = D!, i.e.

gij = f(x)Dy %)

where f(x) is a positive scalar function. The corresponding Laplace-Beltrami
operator, Eq. (3), is

A;}Z%Dijaiaj‘i‘ f(a jD7)d; + lf(fa /- )D i (6

Here we have used the relation g = det g; = f 3d~". This expression is similar
to the anisotropic generator given by Eq. (4), except for an overall scaling factor of
1/f and the last term. The last term vanishes uniquely if f o d, and so without
loss of generality we set ' =d so that g; = d Dj;, and

def

S =N =d'DY9;0; +d (3, D7)y, (7

By construction the generator .% is an intrinsic Laplacian. The diffusion process
associated with % is thus a Brownian motion on (M, g). Therefore, we postulate

the following Riemannian metric in the context of DTI:

gj=d Dy (®)
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Recall that, for a regular square matrix A,

A7 = —— adi(4) ©)
with adj(A4) the adjugate matrix. Thus the proposed metric is the adjugate of the
diffusion tensor, rather than the inverse.

Note that the metric proposed in Hao et al. [8] is also of the form given by Eq. (5).
In their case, the local factor is chosen so that geodesic curves more closely follow
the diffusion tensor principal eigenvectors. Our metric, on the other hand, relates
anisotropic diffusion in Euclidean space to isotropic diffusion in the corresponding
Riemannian space. In sum, although both metrics are local rescalings of the inverse
diffusion tensor they arise from rather distinct considerations.

3 Experiments

3.1 Method

We obtain geodesic curves from the inverse, inverse sharpened, and our newly
proposed case, the adjugate diffusion tensor. In particular, we use a sharpened
diffusion tensor [7]

(D) = d'5* (DY) (10)

where @ > 1 is a constant. We take representative values o« = 2,4 [10, 17]. In order
to find the optimal geodesic® connecting a given target point to the seeding region
we use the Fast-Sweeping algorithm in [12]. The algorithm assigns to each voxel the
minimum cost of reaching it from a set of neighbours following predefined spatial
orientations, provided that seeding points have zero cost. As local cost we use the
infinitesimal curve length function:

L(x. 1) = (gs(0 i 1) (11)

where y = y(¢) is a curve parameterized by ¢, y = dx/dt is the tangent vector,
and g; is the inverse, the inverse sharpened, or the adjugate of the diffusion tensor.
The minimum cost and the spatial direction chosen are stored at each voxel. The
set of preferred orientations comprise a vector field which may be “back-traced”
(integrated) from the target to the seeding points to retrieve the desired geodesics.
Recall that only a subset of geodesic curves corresponds to actual fibres; therefore
we refer to geodesics either as candidate fibres, or simply as tracts.

3Here we consider the shortest geodesic between any given pair of points to be optimal.
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a b

Fig. 1 Candidate fibres possibly corresponding to corticobulbar (blue) and corticospinal tracts
(brown), in an anterior view. No candidate fibres shown in-between since we do not consider
target points in that part of the cortex. A tumour is located next to the ventricles on the left-hand
side. Results for metric given by (a) inverse diffusion tensor and (b) adjugate diffusion tensor.
Candidate fibres going through the ventricles or the tumour are indicated by yellow and red arrows,
respectively. Bundles obtained with our approach, in (b), avoid both the CSF in the ventricles and
the tumour

3.2 Results

We consider a diffusion MRI data set with 64 gradient directions and a b-value of
3,000 s/mmz; the dimensions are 128 x 128 x 60 and the voxel size is 1.75 x 1.75 x
2mm?, corresponding to a patient with a tumor located next to the ventricles. We
have segmented the cerebrospinal fluid (CSF) inside the ventricles, together with
the tumour. We seed from the cerebral peduncles to a number of target points in the
motor cortex, and visualize the obtained tracts using 3D Slicer [15].

In Figs. 1 and 2 we show candidate fibres reaching the trunk and foot motor area
of the cortex (upward bundle) and the lip area (bundle bending to the left), which
ought to correspond to the corticospinal and corticobulbar tracts. In Fig. 1 we show
tractography results for metrics given by the inverse and adjugate diffusion tensor,
and the outcome for inverse sharpened diffusion tensors is given in Fig. 2. Results
obtained with our approach, Fig. 1b, seem to better resemble the anatomy of the
stipulated white matter bundles. Additionally, the curvature of the candidate fibres
is smoother and the bundles are more coherent. A particularly interesting result
is the fact that our candidate fibres circumvent the ventricles, known to be void of
fibres, while most of the ones obtained with other approaches go through them. Note
that for sharpened tensors, Fig. 2, less bundles cross the CSF than in the original
diffusion tensor case, Fig. 1a. Still, the problem is not completely overcome, as it is
the case in our approach, Fig. 1b.

In Figs.1 and 2 we also see that our tracts do not go through the tumour.
This is consistent with our findings concerning the CSF since diffusion in tumours
is usually also isotropic. Our results may reflect real fibres being pushed aside
by a tumour, or white matter integrity inside the tumour having been destroyed.
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Fig. 2 As in Fig. 1, but now showing results for metric given by (a) inverse sharpened diffusion
tensor d'/> D2 and (b) inverse sharpened diffusion tensor d D ~* (d = det D). Note that results
from sharpened tensors improve compared to those without sharpening in Fig. 1a (i.e., less tracts
cross isotropic diffusion regions), but the problem is not completely overcome as in our approach

In contrast to the ventricles case however, fibres might be found within a tumour
and therefore we cannot draw any definitive conclusions about the validity of our
results in this sense.

4 Conclusion and Discussion

We propose a new Riemannian metric in the context of DTI. We show results
of geodesic tracking on real brain diffusion data, based on different ways to
extract the Riemannian metric from the diffusion tensor. Tracts obtained with
our approach avoid the encountered isotropic diffusion regions such as ventricles.
Experiments show that this is not the case for some popular metrics proposed in
the literature, including those involving heuristic diffusion tensor sharpening. It
would be interesting to compare our method to the deconvolution sharpening in
Descoteaux et al. [5]. Another known drawback of geodesic tractography based on
the inverse diffusion tensor is the fact that geodesic curves tend to take shortcuts
in the case of high-curvature tracts. In future work we will evaluate our metric in
relation to this problem.

In summary, while masking has been necessary in (geodesic) tractography to
avoid shortcuts through isotropic diffusion regions, our approach obviates such a
preprocessing step as this is taken care of in an elegant way by the rigorously
defined Riemannian metric. Finally, while in this work we only consider the effects
on tractography, the choice of metric will also influence connectivity indices and
Riemannian scalar measures in DTT [2].
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