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Abstract The authors propose a method that selects a set of motion probing
gradient (MPG) directions, which is adapted for measuring fiber tracts in some
specific region of interest (ROI) with smaller number of MPGs. Given a training set
of diffusion magnetic resonance (MR) images, the method selects the set of MPG
directions by minimizing a cost function, which represents the square errors of the
reconstructed oriented distribution functions (ODFs). This selection of MPGs is a
combinatorial optimization problem, and a simulated annealing scheme is employed
for selecting the MPGs. Experimental results demonstrated that the set of MPG
directions selected by our proposed method reconstructed the ODFs more accurately
than an existing method based on spherical harmonics and on greedy optimization.

1 Introduction

1.1 Background

High angular resolution diffusion imaging (HARDI) is a powerful modality among
diffusion MRI techniques, which are used for white matter fiber tractography. In
HARDI, M different motion probing gradients (MPGs) are iteratively applied
while capturing a diffusion MR image, and a diffusion-weighted signal (DWS)
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along the MPG direction is measured at all voxels at each iteration. Using a larger
number of M , e.g. M D 256, one can measure diffusion MR images with higher
angular resolution. The imaging, though, is more time consuming, when more
MPG gradients are applied. It would take, e.g., more than 30 min to take one data
set, whenM D 256.

Many approaches, hence, have been proposed for shortening the imaging
time[1, 2]. One of the main strategies for this time shortening is to capture images
in a parallel manner[3–5]. The other main strategy is to reduce the number of MPG
directions. The angular resolution is in general degraded, though, if you decrease
the number of MPG gradients, M . One approach for suppressing this degrading
is to use the framework of the compressed sensing[2, 6]. The other approach is to
select a subset of M MPG directions, which is adapted for the measurements of
some specific fiber tracts in brains[1]. Such the selection of tract-adaptive MPG
directions is highly useful because an imaging target is often limited to a specific
fiber tract structure with higher priority. Once the MPG directions are selected, you
can improve also the parallel imaging methods by applying only the selected MPG
directions. A structure of a specific fiber tract, of course, varies among patients,
but the distribution of the directions of the fiber tract is anisotropic. The goal of
the study is to obtain one set of MPG directions that is adaptive to each specific
fiber tract of any patients. In this article, we propose a method that selects a set
of MPG directions adaptive to a specific fiber tract, so that we can reconstruct the
ODFs around the tract with less number of MPGs. The problem to be solved for
this purpose is stated in the following section. It is a future work to obtain a set of
MPG directions that is adaptive to any patients.

1.2 Problem Statement and Objective

Let a unit 3-vector, ri .i D 1; 2; � � � ;M /, denote the i -th MPG direction used in the
HARDI, whereM is the total number of the directions. Let˝M D fr1; r2; � � � ; rM g
denote a set of all of the MPG directions. Let a diffusion weighted signal (DWS)
along r at the j -th spatial location be denoted by sj .r/, where r is a 3-vector. The
distribution of the diffusion coefficients at each spatial location can be represented
by a continuous point-symmetry function defined on a unit sphere, and a HARDI
measures the DWS along each sampling direction, ri 2 ˝M , defined on the
hemisphere. Once one measures a set of the DWSs, fQsj .ri /ji D 1; 2; � � � ;M g
at j , one can approximately obtain the continuous distribution of the strength by
interpolating the measurements on the sphere.

Let assume that a subset of the MPG directions, ˝m, is used for the measure-
ments, where m D j˝mj and 0 < m � M , and that the continuous distribution
is approximated by interpolating the measurements, fQsj .ri /jri 2 ˝mg. Let the
approximation be denoted by Osm.r/. The efficiency of the imaging is improved when
a smaller number of the MPG directions, m, is used, but the angular resolution
of Osm.r/ decreases in general, and the resolution varies depending on the MPG
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directions included in ˝m. It makes little sense to find the best combination of m
MPG directions, if the distribution of the directions of fiber tracts is isotropic: You
can just draw out randomly some of the MPG directions from ˝M for determining
˝m (m < M ). It does make sense, though, to find the best one, if the distribution is
anisotropic and is known in advance.

It was proposed in [1] to find the best set of the MPG directions adapted for
measuring the structures of the pyramidal tracts (PYT). In the method, the best
subset, ˝�

m, is determined by using a set of training data, S D fQsj .ri /ji D
1; 2; � � � ;M; j D 1; 2; � � � ; NPg, which are measured at NP voxels in the pyramidal
tracts of multiple cases. These training data are measured by using all of theM MPG
directions, and the region of PYT in each measured image is labeled manually by
an expert. The best subset, ˝�

m, is obtained by minimizing the cost function shown
below.

˝�
m D arg min

˝m

NPX

jD1

MX

iD1
kQsj .ri /� Osjm.ri /k2: (1)

A set of spherical harmonics (SH) is used for the interpolation, and a greedy strategy
is employed for the minimization in [1]. In the followings, the method proposed in
[1] is called as a SHG-method (Spherical harmonics and greedy). The objective of
our study was to improve the SHG-method.

The first contribution of our study is that, instead of the DWS itself, the authors
determine the best set by using the orientation distribution functions (ODF) in
the proposed method. The ODF is commonly used for tracing fiber tracts and for
analyzing their structures [7, 8]. Let OsjM .r/ denote a continuous function obtained
by the interpolation of the measurements, fQsj .ri /ji D 1; 2; � � � ;M g. Let f j

M .r/

and f j
m .r/ denote the ODFs obtained from OsjM and Osjm, respectively. The proposed

method determines the best set,˝�
m, by minimizing the following cost function (the

exact definition of the cost will be shown later):

˝�
m D arg min

˝m

NPX

jD1

MX

iD1
kf j

M .ri /� f j
m .ri /k2: (2)

It is not trivial to unveil if ˝�
m and ˝�

m are identical or not. The authors experimen-
tally found that they are different, and believe that the ODFs should be employed
for determining the subset of the MPG directions if one uses ODFs for the analysis.

The second contribution is that the method for the interpolation and for the min-
imization are improved in this study. The problems shown in (1) and (2) are
the combinatorial optimizations, for which the greedy approach is too naive. The
distributions of the MPG directions in ˝m are non-uniform in general, and it is not
easy to accurately interpolate the measurements without any aliasing errors, if you
use the spherical harmonics. For the interpolation, we employ the spherical radial
basis functions (SRBF), which has a scale parameter, and the proposed method



70 H. Hontani et al.

adaptively determines not only˝�
m but also the value of the scale by minimizing the

cost function. For the minimization, we applied two methods. In one method, we
employed an approach used in a sparse PCA [9]: An approximated sparse solution
of a relaxed original problem is obtained by using a lasso. In another method,
we employed a simulated annealing. In this article, the latter method is described
because it outperformed the former one.

2 Proposed Method

Given a set of the training data, S , the proposed method obtains the subset of the
MPG directions,˝m, that is appropriate for measuring the structures of PYT.

2.1 Interpolation with SRBF

In the proposed method, the spherical radial basis function (SRBF) is employed
for interpolating the measured data, fQsj .ri /jri 2 ˝mg. The SRBF is defined as
follows [10]:

 .t j�/ D 1p
1C �2 � 2� cos t

; .0 < � < 1/; (3)

where � is the scale factor. Let g.ri ; rj / denote the geodesic distance between ri
and rj on the unit sphere. Using SRBF, one can interpolate the measurements as
follows:

Osjm.r/ D
X

ri2˝m
ci .g.r; ri /j�/; (4)

where the coefficients, ci , are uniquely determined based on the following con-
straints:

Osjm.ri / D Qsj .ri /: (5)

The interpolated function, Osjm.r/, is defined on the unit sphere

2.2 Optimization

The cost function to be minimized is as follows, when you determine the MPG
directions using the distribution of DWSs:
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EDWS.˝m; �/ D
X

j

MX

iD1
kQsj .ri / � Osjm.ri /k2: (6)

The cost function with the ODFs is as follows:

EODF.˝m; �/ D
X

j

MX

iD1
kf j

M .ri /� f j
m .ri /k2; (7)

where f j
M .r/ and f

j
m .r/ are the ODFs obtained by applying the Funk-Radon

transformation to the apparent diffusion coefficients (ADCs) corresponding to
OsjM .r/ and to Osjm.r/, respectively. In the proposed method, the cost functions are
minimized by iteratively updating˝m and � . The Metropolis sampling approach is
used for the update.

At the k-th iteration (k D 1; 2; � � � ) of the minimization process, one of the two
propositions shown below is randomly selected, and the proposition is accepted with
a probability,pk . Let the temporal subset and the scale factor at the k-th iteration be
denoted by ˝.k/

m and by �.k/.

Proposition I The scale factor, � , is updated. �.kC1/ D �.k/ C �, where � is
a random variable, which obeys a uniform distribution, � � U.��;�/. The
subset is not updated: ˝.kC1/

m D ˝
.k/
m . The positive value, �, is experimentally

determined in advance.
Proposition II The subset, ˝.k/

m , is updated. One MPG direction is selected from
˝
.k/
m and from its complement, N̋ .k/m , and they are interchanged to obtain˝.kC1/

m .
The scale factor is not updated: �.kC1/ D �.k/.

The probability, pk , is determined as

pk D min

"
1; exp

(
�E�.˝.kC1/

m ; �.kC1// �E�.˝.k/
m ; �.k//

T .k/

) #
; (8)

where * denotes DWS or ODF, and T .k/ is the temperature that is monotonically
decreased while the iteration.

Annealing Minimization The training data set, S , is input, and the optimizers of
˝m and of � are output.

1. Set the value of � and the values of T .1/ > T .2/ > � � � > T .K/, where K is
the maximum number of the iteration.

2. Set k D 1, compute the initial subset of˝.1/
m , and set �.1/ D 0:5.

3. Randomly select one of the propositions, and temporally update to ˝.kC1/
m

and �.kC1/.
4. Compute pk , and accept ˝.kC1/

m and �.kC1/ with the probability pk . If they
are not accepted, reset as ˝.kC1/

m D ˝.k/
m and �.kC1/ D �.k/.
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5. Set k  k C 1, and back to 3 until it converges or k > K .
6. Output˝.k/ and �.k/ as the optimizers.

The initial subset, ˝.1/
m , is obtained by using a greedy minimization method. Let

˝nni D ˝nnri , where ri 2 ˝n.

Greedy Minimization The training data set, S , is input, and ˝.1/
m is output.

1. Set � D 0:5 and set n DM .
2. Compute a MPG direction, ri� 2 ˝n where i� D arg mini

�
E�.˝nni ; �/�

E�.˝n; �// :

3. Set n! n � 1 and back to 2 if n > m.
4. Output˝m.

2.3 Preprocessing

Our method applies a bilateral filter [11] to given training images to eliminate
measurement noises. As mentioned above, all measured points, f.ri ; Qsj .ri //jri 2
˝mg, are located on the graph of Osj .r/. In other words, measurement noises are also
reconstructed by the interpolation. A bilateral filter computes the weighted averages
of given images as follows:

Qsj .ri / 1

Z

X

u

wd .j; u/ws.j; u/Qsu.ri /; (9)

where Z is a normalization coefficient. Let the Euclid distance between the voxels,
j and u, be denoted by d.j; u/. Then the weights, wd .j; u/ and ws.j; u/, are
determined as follows:

wd .j; u/ D expf��1d2.j; u/g; and ws.j; u/ D expf��2kQsj .ri /� Qsu.ri /k2g:
(10)

The values of the coefficients, �1 and �2, are experimentally determined.

3 Experimental Method

The performance of the proposed method was compared with that of the SHG-
method, which minimizes the following cost function:

E 0
DWS.˝m/ D

X

j

MX

iD1
kQsj .ri /� Osjm.ri /k2: (11)
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The difference between E 0
DWS and EDWS in (6) is their arguments: The arguments

of E 0
DWS do not include � , becausethe spherical harmonics (SH) are used for

the interpolation of the measurements. Let a m-vector, Qsj D Œ� � � ; Qsj .ri /; � � � �T
(ri 2 ˝m), denote the measurements obtained using the MPGs in˝m. For obtaining
the continuous function, Osjm.r/, the SHG-method interpolates the measurements by
projecting Qsj to a subspace, which is spanned by a set of spherical harmonics with
lower frequencies. The projection is computed with a L2-regularization. It should
be noted that this projection smooths the functions and reduces the measurement
noises. The bilateral filtering is, hence, not required.

The greedy algorithm shown in the previous section is used for minimizing
E 0

DWS.˝m/. Once SHG-method obtains the subset of the MPG directions,˝�
m, then

you can compute the ODF, f j
m .r/, from Osjm.r/.

3.1 Simulation Experiments

Artificial diffusion images were firstly used for comparing the performances
between the proposed method and the SHG-method. Setting M D 256 and
distributing ri uniformly on the unit sphere, we firstly generated a set of artificial
DWSs using the following equation:

sj .ri / D sj0
LjX

lD1
˛
j

l expf�b.rTi T jl ri /g; (12)

where Lj is the number of fiber tracts at the j -th voxel and ˛k determines the
mixture proportion of the tracts. T jl D diag.1:7; 0:3; 0:3/� 10�3 if fiber tracts exist
at the voxel, j . We set b D 1;500 s/mm2 and s0 D 10 in the simulation. Then, we
added Rician noises to sj .ri / to obtain the artificial measurements, Qsj .ri /.

Qsj .rj / D
q
.sj .ri //

2 C .N .0; �2//
2
; (13)

where N .0; �2/ is a Gaussian, of which the mean is zero and the variance is �2.
We generated a set of artificial diffusion images, of which size was 15�15�1. Two
fiber tracts cross together in each of the images as shown in Fig. 1a. The two tracts
cross with 85ı at the center of the image, and the corresponding mixture proportion,
˛1:˛2 = 0.5:0.5. Fixing sj .ri / and adding the random Rician noises, we generated
one set of training images and a set of test ones. Varying the Rician noise level and
the structure of the fiber tracts, sj .ri /, we generated multiple sets of training data
and test ones. Figure 1b shows an example of the ADC generated at the intersection
of the two tracts. An example of the corresponding ODF is shown in Fig. 1c. The
blue axes shown in the figure indicate the directions of the fiber tracts at the voxel.
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Fig. 1 (a): The distribution of the fiber tract directions in the artificial diffusion images. (b): An
ADC profile observed at the cross point. (c): The ODF corresponding to (b). (d): The SRBF with
different values of � . (e): Fiber cup image. (f): Region of interest

The performances were quantitatively evaluated using not only the value ofEODF

in (7) but also the locations of the local maxima of the reconstructed ODFs. Let
Nrjl .l D 1; 2; � � �Lj / denote the gold standard of the fiber tract directions at the

j -th voxel, and let Orjl denote the local maximum of the ODF closest to Nrjl . The

distribution of ıjl D Orjl � Nrjl was evaluated, because the local maxima of ODFs

are often detected in tractography for estimating the directions of fiber tracts. ıjl
becomes closer to zero, when the local maximum is more reliable.

3.2 Phantom Experiments

A phantom data, Fiber cup [12], was then used for evaluating the performances of
the methods. One of the advantages of using phantom data is that the gold standard
of the fiber tracts structures in the image is available. Figure 1e shows the image.
A ROI was manually labeled as shown in Fig. 1f. The subsets, ˝�

m and ˝�
m, were

computed from the measurements in the ROI of the Fiber cup image. In addition,
randomly selectingm MPG directions from theM D 64 ones, we obtained another
subset, ˝�

m. Using these subsets of MPG directions, we reconstructed the ODFs,
f
j

m� , f j

m�
, and f j

m� for each voxel in the ROI, respectively. The RMS errors between

the gold standard, f j
M .r/, and the reconstructed ones were evaluated as shown in (7).
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In addition, we verified if the subset, ˝�
m, was adapted for measuring the fiber tract

structures of a ROI. Another subset, ˝	
m, was computed by the proposed method

not from the ROI but from the whole tract regions in the image. The ODF, f j

m	
,

were reconstructed for each voxel in the ROI, and its RMS error was evaluated for
comparing that of f j

m�
.

3.3 Clinical Image Experiments

Clinical four diffusion weighted images (DWI) captured by a Siemens 1.5T scanner
(Avanto) were used for the performance evaluation. The b-value was 1,000 s/mm2.
The spatial resolution was 3 mm, the total number of the MPG directions, M , was
256, and TR and TE were 5,000 and 97 ms, respectively. We manually labeled
the left PYT region in each of the DWIs. The number of the labeled voxels was
about 1,500 in each DWI. Leave-one-case-out cross validation was applied for the
performance evaluation. The RMS errors of the reconstructed ODFs were evaluated
in an analogous way described above.

4 Experimental Results

4.1 Simulation Experiments

The graph shown in Fig. 2a shows the RMS errors. In the graph, the x-axis shows the
number of the MPG directions,m, and the y-axis shows the RMS. As shown in the
graph, the subset, ˝�

m, selected by the proposed method reconstructed the ODFs
more accurately than ˝�

m selected by the SHG-method. The Wilcoxon signed-rank
test showed that the difference between the RMS errors that correspond to ˝�

m and
to ˝�

m was statistically significant at p < 0:05.
The proposed method can select not only the m MPG directions but also the

appropriate scale factor for the SRBF, � . The selected scale factor decreased as m
increased, as shown in Fig. 2b. In other words, more narrow SRBF was selected for
interpolating more dense measurements. The SRBFs with different values of � are
shown in Fig. 1c. In the figure, the blue, green, and the red curves correspond to
� D 0:6, 0.5, and 0.4, respectively. Examples of the reconstructed ODFs are shown
in Fig. 2d, e. Both results were obtained whenm D 30. In the figures, the red points
indicate the local maximum points. The ODF shown in (e) was obtained by the
SHG-method and that in (f) was obtained by the proposed method. The latter one
had higher angular resolution. They were obtained at the identical voxel with the
ODF shown in Fig. 2c, which was computed from the original signals.
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Fig. 2 (a): The relationships between m and the RMS errors in artificial images. Red: SHG-
method, Blue: Proposed method. (b): The change of � in Eq. (3) with respect tom. (c): An example
of the ODF computed from the original signal measured at the intersection between two tracts. (d):
The ODF reconstructed by SHG-method. (e): The ODF by the proposed method
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Fig. 3 Examples of the distributions of ıjl , which represents the error of the estimated fiber tract
direction. (a) The SHG-method. (b) The proposed method

The graphs indicated in Fig. 3 show some examples of the distributions of ıjl D
Orjl � Nrjl obtained at the intersection point of the two fiber tracts. Let ˘ denote
the plane spanned by the two tracts near the intersection point. The x axis of each
graph denotes the error in ˘ , and the y axis denotes the error along the direction
perpendicular to˘ . The distribution localizes on the origin (the center of the graph),
when the local maximum accurately locates at the fiber tract direction. As shown in
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Fig. 4 (a) The relationships between m and the RMS errors in phantom images. Green: Random
selection, Red: SHG-method, Blue: Proposed method. (b) The RMS errors of f j

m�
.r/ (blue) and

of f j

m	
.r/ (red). (c) The ROIs set by manually labeling the pyramidal tracts. (d) The relationships

between m and the RMS errors in clinical images. Red: SHG-method, Blue: Proposed method

the figure, the distribution of ıjl was widely spread when the SHG-method was
used. When the proposed method was used, on the other hand, the local maxima
were extracted near the correct tract direction.

4.2 Phantom Experiments

The RMS errors of the ODFs were evaluated for ˝�
m, ˝�

m, and ˝�
m. The random

selection of the MPG directions for ˝�
m was iterated 100 times, and the RMS error

was evaluated at each iteration for estimating the statistical distribution of the RMS
errors. The graph shown in Fig. 4a shows the results. In the graph, x-axis shows the
value of m and the y-axis shows the RMS errors. The green, red, and blue graphs
indicate the results obtained from ˝�

m, ˝�
m, and ˝�

m, respectively. The vertical bars
in the green graph shows the range of ˙� . The MPG directions selected by the
proposed method reconstructed the ODFs most accurately.
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The graph shown in Fig. 4b shows the RMS errors of f j

m�
and f j

m	
evaluated using

the identical set of voxels in the image. As shown by the graph, the RMS errors of
f
j

m�
were smaller than that of f j

m	
. The Wilcoxon signed-rank test showed that the

difference of the RMS errors was statistically significant at p < 0:05. This results
mean that the subset of the MPG directions adapted for the ROI is successfully
obtained by the proposed method.

4.3 Clinical Image Experiments

Labelling the pyramidal tracts, we set the ROI as shown in Fig. 4c. The mea-
surements in the ROI were used as the training set. The resultant graph of the
RMS errors are shown in Fig. 4d. As shown in the graph, the subset of the MPG
directions computed by the proposed method reconstructed the ODFs in the PYT
more accurately than that computed by SHG-method. The Wilcoxon signed-rank
test showed that the difference of the RMS errors was statistically significant
at p < 0:05.

5 Conclusion

A new method is proposed that selects a subset of MPG directions, which is
adapted for measuring fiber tracts in some specific ROI. The method interpolates
the non-uniformly sampled measurements using SRBF, and selects the subset based
on the accuracy of the reconstructed ODFs. The selection of the MPG directions
is combinatorial optimization problem, and a simulated annealing approach is
employed for solving it. Experimental results with artificial images, phantom ones,
and clinical ones demonstrated that the proposed method can select the subset that
can reconstruct the ODFs more accurately than the existing SHG-method. Future
works include to improve the optimization algorithm, and to apply the proposed
method to more clinical images for evaluating the performance. As mentioned
above, it is a future work to obtain a set of MPG directions that is adaptive to
any patients. Applying the proposed method to training data obtained from many
patients, you would be able to select such the set of MPG directions.
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