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Abstract The average diffusion propagator (ADP) obtained from diffusion MRI
(dMRI) data encapsulates important structural properties of the underlying tissue.
Measures derived from the ADP can be potentially used as markers of tissue
integrity in characterizing several mental disorders. Thus, accurate estimation of the
ADP is imperative for its use in neuroimaging studies. In this work, we propose
a simple method for estimating the ADP by representing the acquired diffusion
signal in the entire q-space using radial basis functions (RBF). We demonstrate
our technique using two different RBF’s (generalized inverse multiquadric and
Gaussian) and derive analytical expressions for the corresponding ADP’s. We also
derive expressions for computing the solid angle orientation distribution function
(ODF) for each of the RBF’s. Estimation of the weights of the RBF’s is done by
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enforcing positivity constraint on the estimated ADP or ODF. Finally, we validate
our method on data obtained from a physical phantom with known fiber crossing of
45 degrees and also show comparison with the solid spherical harmonics method
of Descoteaux et al. (Med Image Anal 2010). We also demonstrate our method on
in-vivo human brain data.

1 Introduction

A popular dMRI acquisition technique is High Angular Resolution Diffusion
Imaging (HARDI), which involves acquiring diffusion information for a single
b-value (single shell) in several gradient directions uniformly spread on a sphere
[16]. While this protocol allows for resolving the angular structure of the neural
fibers, it does not provide information about the radial signal decay, which is
sensitive to white matter anomalies [6].

To obtain accurate information about the neural architecture, diffusion spectrum
imaging (DSI) was proposed by [17]. This high resolution technique requires
upwards of 512 gradient directions and more than an hour to scan each subject
(spatial resolution of 2 mm3), which makes it impractical to use in clinical settings.
Consequently, other imaging and analysis schemes have been proposed, namely,
Hybrid Diffusion Imaging (HYDI) [18], Diffusion Propagator Imaging (DPI) [7],
Diffusion Kurtosis Imaging (DKI) [9], CHARMED [2], NODDI [20], spherical
polar Fourier basis [3, 10], MAP-MRI [12], spherical ridgelets [14] and high-
order tensor models [4, 8]. Each of these techniques captures a different aspect
of the underlying tissue geometry. Thus, the CHARMED and NODDI models
utilize specific acquisition sequences to estimate the axon diameter distribution,
while DKI uses low-to-medium b-values (b < 3;000) to obtain information about
the non-Gaussian part of the diffusion process. The work of [18] on the other
hand uses numerical computations to compute the propagator from measurements
spread intelligently in the q-space, while DPI, spherical polar Fourier basis, and
the spherical ridgelet methods extend the spherical representation of a single shell
to multiple shells by adding a radial term to their basis functions. The method
developed in [12] works by representing the diffusion propagator (and the diffusion
signal) using Hermite polynomials. Although significantly different, our work is
closest in spirit to the box-spline and Hermite polynomial method of [12, 19].

2 Our Contributions

In this work, we use radial basis functions, which are radially symmetric functions,
for representing the diffusion data and computing the average diffusion propagator
(ADP). Representing the diffusion data using radially symmetric RBF’s reduces the
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problem of computing the 3D Fourier transform of the diffusion signal to a simple
1D Fourier transform of the RBF. This in turn leads to a very simple expression
for computing the Fourier transform of the diffusion signal. Given that the acquired
diffusion signal E.q/ in q-space is related to the average diffusion propagator via
the Fourier transform, the radial basis functions thus become a natural choice for
computing the ADP. Further, these functions have been used quite successfully in
other fields of research involving interpolation in high-dimensional spaces [5].

The novel part of our work lies in using radial basis functions to represent
the diffusion data in the entire q-space and deriving analytical expressions for
computing the corresponding ADP for two different RBF’s. We also derive closed
form expressions for computing the solid angle ODF and validate our methods on a
physical phantom data set with a known crossing angle, apart from showing some
in-vivo results on human brain data.

3 Data Representation Using Radial Basis Functions (RBF)

The idea behind data representation using radial basis function is to express a
continuous function by means of a linear combination of radially symmetric basis
functions centered around the given data points. Given a radial basis function
�.r/ D �.kxk/; x 2 Rd and a sampling of the continuous function f .x/ as a set of
N data/location pairs f.xi ; fi /g (with distinct locations xi ), its radial basis function
reconstruction is given by: Of .x/ D PN

iD0 wi �.kx � xi k/; where the interpolation
weights are computed by solving the linear system induced by

fj D
NX

iD0

wi �.kxj � xi k/; (1)

which can be written in matrix form as

wi D .Aji/
�1fj ; Aji D �.kxj � xi k/: (2)

To estimate the ADP, we are interested in radial basis functions that can be
easily Fourier transformed. In this work, we chose the following two functions as
candidates for RBF’s [5]: the Gaussian and the generalized inverse multiquadric:

�g.r/ D e�c2r2

; �gm.r/ D 1

.r2 C c2/�C1
; c > 0:

These choices are driven by the fact that all these functions are (conditionally)
positive definite leading to a unique solution for wi [5].
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3.1 Application to Diffusion MRI

Diffusion MRI measurements are assumed to have antipodal symmetry, i.e., f .x/ D
f .�x/. This feature of dMRI data can be accounted for in our RBF approach in the
following two ways: (i) the number of measuremtents can artifically be doubled,
i.e., for every pair .xi ; fi / add a pair .�x; fi /, (ii) the symmetry can be taken
into account directly in the interpolation procedure. This paper follows the latter
route, since explicitly keeping the antipodal pairing clarifies the Fourier relations in
Sect. 3.2. The RBF expansion for the antipodal case may be written as

fj D
NX

iD0

wi

�
�.kxj � xi k/ C �.kxj C xi k/

�
: (3)

For this to hold, wi D wj if xi D �xj .

3.2 Estimating the ADP with Radial Basis Functions

The diffusion measurements are expressed by radial basis functions as a continuous
function f .x/. The ADP is then given by its Fourier transform. Since the RBF
representation is a simple linear combination, its Fourier transform is also given
by a linear combination of the Fourier transforms of the individual basis functions.
The Fourier transform of a radial basis function is also radially symmetric and may
be computed using the Hankel transform [5]. As shown in [13], the n-dimensional
Fourier transform of a radially symmetric function of n variables is related to the
Hankel transform of order n

2
� 1. Thus, given a radially symmetric RBF �.r/, its

n-dimensional Fourier transform is also radially symmetric and is given by:

˚.k/ D .2�/
n
2 k� n

2 C1H n
2 �1

�
r

n
2 �.r/

�
;

where the �-th order Hankel transform H .�/ is defined as [13]

H� .f .r// WD
Z 1

0

rf .r/J�.kr/ dr;

where J� is the �-th order Bessel function of the first kind. Note that, the
n-dimensional Fourier transform is only a function of the radial co-ordinate
in the Fourier domain.

For the Gaussian radial basis function the 3D Fourier transform is thus (see [1]
for integral expressions)

˚g.k/ D .2�/
3
2

1p
k

Z 1

0

e�c2r2

r
3
2 J 1

2
.rk/ dr D

� �

c2

� 3
2

e
� k2

4c2 ;
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and for the generalized inverse multiquadric it becomes

˚gm.k/ D .2�/
3
2

1p
k

Z 1

0

1

.r2 C c2/
�C1

r
3
2 J 1

2
.rk/ dr;

D .2�/
3
2

1p
k

c
1
2 ��

�
k

2

��
1

� .� C 1/
K 1

2 ��.kc/

D .2�/
3
2

r
c

k
K 1

2
.kc/; for � D 0:

where K�.�/ is the �-th order modified Bessel function of the second kind and � .�/
denotes the gamma function.

For representing the diffusion signal throughout q-space, the RBFs are centered
at each of the data points at which the measurements are available. Thus, a
translation of the RBF’s should be taken into account while computing the Fourier
transform F of the q-space diffusion signal. A translation of a basis function causes
(according to the Fourier shift theorem) a phase shift of its Fourier transform, i.e.,
F .f .x// D F.k/; ! F .f .x C a// D eiaT kF.k/: Due to the antipodal
symmetry assumed for diffusion weighted imaging, i.e., f .x/ D f .�x/ we have

F .f .x C a/ C f .x � a// D 2 cos.aT k/F.k/

and thus the 3D Fourier transforms for an antipodal basis pair for the Gaussian RBF
and the generalized inverse mutliquadric RBF becomes

˚a
g .k/ D 2

� �

c2

� 3
2

e
� kkk2

4c2 cos.aT k/; (4)

˚a
gm.k/ D .2�/

3
2

r
c

kkkK 1
2
.kkkc/ cos.aT k/; for � D 0: (5)

Finally, from coefficients estimated in (3), the ADP using each of the RBF’s can
be computed using the following expressions:

Pg.r/ D
NX

iD0

wi ˚
xi
g .r/ D 2

NX

iD1

wi

� �

c2

� 3
2

e
� krk2

4c2 cos.xi
T r/; (6)

Pgm.r/ D
NX

iD0

wi ˚
xi
gm.r/ D 2

NX

iD1

wi .2�/
3
2

r
c

krkK 1
2
.krkc/ cos.xi

T r/; (7)

where the expression for Pgm.r/ was computed for � D 0. A closed form expression
for the ADP using the generalized inverse multiquadric can also be computed for
any � � � 1

2
:
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P �
gm.r/ D 2.1��/ .2�/

3
2

NX

iD1

wi

� .� C 1/

�krk
c

�.��0:5/

K 1
2 ��.krkc/ cos.xi

T r/: (8)

3.3 Computing the Orientation Distribution Function (ODF)

The orientation distribution function (ODF) can be computed using the ADP [17]
by evaluating the integral �.u/ D R 1

0
P.ku/k2 dk; where u is a unit vector on S 2

and k is the radial co-ordinate. For the Gaussian RBF this integral can be evaluated
analytically as:

�g.u/ D 8.�c/2

1X

iD0

wi

�
1

2c2
� .xi

T u/2

�

exp
��.cxi

T u/2
	

;

and for the generalized inverse multiquadric, the ODF (solid-angle version) is
given by:

�gm.u/ D 2.1��/ .2�/
3
2

NX

iD0s

wi

� .� C 1/
c.��0:5/

Z 1

0

k�C1:5K0:5��.kc/ cos.kxT
i u/dk;

D .4�/
3
2 c�3

NX

iD0

wi� .1:5/� .
2�C1

2
/

� .� C 1/
F

�
3

2
;

2� C 1

2
I 1

2
;

�.xT
i u/2

c2

�

; � > �1

where F is the Gauss-hypergeometric function.

3.4 Estimation Procedure

Estimation of the coefficients wi in Eq. (3) can be done in a number of different
ways. One of the simplest method is to estimate wi by solving a linear system
of equations with as many measurements as unknowns (wi ). Thus, w D A�1f ,
where f is a vector of measurements acquired at various q-values, and the matrix
A is as defined in Eq. (2). This method however, does not account for the fact that
the diffusion propagator is positive. Thus, one could enforce this constraint while
estimating the vector of weights w. The cost function then becomes:

min
w

k Aw � f k2; s:t: Bw � 0;

where, the matrix B is computed from Pg.r/ or Pgm.r/ (Eq. 6) by choosing a
particular value for the radius krk. Alternatively, one could enforce this positivity
constraint to ensure that the estimated ODF is also positive everywhere. In this case,
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the matrix B is constructed using the expression for �g.u/ or �gm.u/. Notice that,
in this case, one does not have to choose the radius parameter krk. Estimation of w
can now be done using quadratic programming by minimizing the cost function:
minw.wT AT Aw � 2f T A/; s:t: Bw � 0.

4 Experiments

To test our method, we use data acquired from a physical phantom with a crossing
angle of 45ı. The spherical crossing phantom was built as given in [11] and data
was acquired at five different b-values b D f1;000; 2;000; 3;000; 4;000; 5;000g.
Each b-value shell consisted of 60 gradient directions, for a total of 300 diffusion
acquisitions. The weights w were estimated using the quadratic cost function
with the positivity constraint. Figure 1 shows the baseline and FA images of the
phantom near the crossing angle. The acquisition was done at a spatial resolution of
2 � 2 � 7 mm3 to get a better coverage of the crossing region.

Estimation of the weights w was done for two RBF’s: (1) the Gaussian RBF and
(2) the inverse multiquadric with � D 0. Figure 2 shows the estimated propagator
in the crossing region by setting the following parameters: c D 0:20; krk D 0:20

in Pg.r/ and Pgm.r/ (Eq. (6)) (positivity constraint was enforced to obtain positive
ADP’s).

The average crossing angle estimated for the ADP computed using the Gaussian
RBF was 50:16ı ˙ 4:23ı, and for the generalized inverse multiquadric it was
52:75ı ˙ 5:02ı. Similarly, we also computed the ADP and the ODF using the solid
spherical harmonics method (order L D 6) of [7]. The average angular crossing
estimated using this method was 59:74ı˙6:78ı (which is an angular error of 14:74ı)
(Fig. 3).

4.1 In-Vivo Results

We tested our method on in-vivo human brain data acquired with the following
scan parameters: b-values of f250; 900; 2;000; 3;600; 5;600g s/mm2, with each b-
value shell having f6; 60; 60; 60; 60g gradient directions (a total of 246 gradient
directions), spatial resolution of 2:5 mm3 isotropic, TE D 130 ms, and TR D 10.6 s.
Figure 4 shows the ADP computed using the Gaussian and the generalized inverse
multiquadric RBF at krk D 0:2. We should note that this value of krk does not
correspond to the physical space in mm, but is the variable in Fourier domain for
RBF functions ˚.r/ placed at each data point. Further, we used c D 0:2 for the
Gaussian RBF and c D 2 for the generalized inverse multiquadric. As can be seen
in Fig. 4, the ADP for both RBF’s looks quite similar with crossing fibers visible in
the centrum semiovale.
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Fig. 1 Photographic, Baseline (b D 0) and fractional anisotropy (FA) images of a spherical
phantom, where two fiber bundles cross at 45ı angle. (a) Phantom. (b) Baseline (b D 0). (c) FA
(zoomed)

Fig. 2 Diffusion propagator (ADP) estimated using (a) Gaussian RBF. (b) Generalized inverse
multiquadric with � D 0

Fig. 3 ODF estimated using (a) Solid spherical harmonics (order L D 6) of [7]. (b) Generalized
inverse multiquadric
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Fig. 4 ADP estimated using (a) Gaussian RBF and (b) Generalized inverse multiquadric for the
rectangular region shown on a coronal color coded FA slice

5 Conclusion

In this work, we presented a first application of using radial basis functions for
representing the diffusion data in the entire q-space as well derived closed form
expressions for computing the average diffusion propagator (ADP). We derived
analytical expressions for the ADP and ODF using two RBF’s, namely, the Gaussian
and the generalized inverse multiquadric. We showed some quantitative results on a
physical phantom data set and compared our method with an existing state-of-the-
art method of [7]. Our preliminary results on phantom and in-vivo data shows that
the proposed method performs quite well in realistic scenarios.

Nevertheless, there are a few limitations of the current method, which we wish
to address in our future work. First, the user has to choose the parameter c of the
RBF which could potentially affect the results. Typical ways to set this parameter is
to use that value for c that minimizes the fitting error in a leave-one-out (or leave-
many-out) cross-validation scheme [15]. Second, in this paper, we used a relatively
dense sampling scheme, which can be a limiting factor due to long acquisition time.
In our future work, we will explore the robustness of this method when very few
data samples are available. Further, we will also investigate other potential RBF’s
which may perform better than the ones used in this work.
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