The Diffusion Dictionary in the Human Brain
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Functions
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Abstract To relate diffusion-weighted MRI-signal to the underlying tissue struc-
ture remains one of the major challenges in interpreting experimental data, in
particular for reconstruction of the structural connectivity in the human brain.
Various ideas to tackle this problem are around, either model-based or model-free.
We proceed on a third way by proposing a method that automatically determines
the basis components of diffusion-weighted MRI signal without any usage of prior
knowledge. The resulted components can be well associated with white matter,
gray matter and cerebrospinal fluid, respectively. The performance of our method
is demonstrated on two DSI datasets and one multi-shell acquisition.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) has the potential to
probe non-invasively the cellular structure of living biological tissues. In particular,
it is capable to visualize the fibrous structure of brain white matter [6] and thus
enables in-vivo reconstruction of anatomical connectivity in the human brain. One
of the major challenges on this way is the extreme complexity of the relation
between the diffusion-weighted signal and the underlying cellular structure of
investigated tissue.

Practical implementations are currently limited to multi-compartment models
or mathematical model-free decompositions of the signal although some progress
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of other kind has been recently achieved [10]. In this study we aim at a better
understanding of the composition of the diffusion-weighted MRI signal by finding
its additive components in a data-driven way using a method known in the machine
learning community as dictionary learning. The goal of dictionary learning is to
find a set of basis functions that describe the observations in a sparse manner. There
are only a few studies that applied this idea in the context of DW-MRI [1, 5, 9].
The major contribution of the present study is the application of this approach in a
rotation invariant manner leading to very short and interpretable dictionaries. The
motivation for this work is as follows.

There are two well established facts about the form of the diffusion-weighted
signal. If the signal is sensitized by using narrow pulses of magnetic field gradients,
it can be straightforwardly interpreted in terms of the diffusion propagator. This
method is called the g-space imaging (QSI) [2] also known as diffusion spectrum
imaging (DSI). In what follows, we use the term QSI which is historically the
first and is now synonymous to DSI. The problem of relating the signal to the
structure is then delegated to the dependence between structure and the propagator.
However, the condition of narrow gradient pulses is often violated in practical
measurements. In this case a guideline is provided by the cumulant expansion [7],
which is a functional expansion of the logarithm of signal in powers of diffusion-
sensitizing gradient. The signal at low diffusion weighting is fully characterized by
the diffusion tensor. Its relation to the tissue structure is in general unknown, but its
six independent elements can be found from data. For stronger diffusion weighting
the next term of cumulant expansion becomes noticeable. In this regime the signal
shape is more specific to the structure of investigated tissue, which is favorable for
exploration of this structure, however the interpretation of the signal in terms of the
tissue structure becomes more difficult.

To tackle this challenge the tissue is usually decomposed into different com-
partments. The signals from the individual compartments are combined additively
not applying the cumulant expansion to the sum. This leads to the so-called multi-
compartment models. The compartments can be often identified morphologically,
which is helpful for data interpretation. Multi-compartment models are so popular
and numerous that one can talk about taxonomy of those [11].

An alternative approach is to describe diffusion-weighted signal using a well
established mathematical decomposition not referring directly to the structural
content of investigated tissue. In this view, this approach is similar to the cumulant
expansion. The most useful is the decomposition in spherical harmonics [4],
however relating the expansion coefficients to tissue properties is hard. The Sparse
QSI approach of [5] and the parametric dictionary approach of [9] may also be seen
as a way to find such basis functions automatically, however the interpretation of
the extracted dictionaries is just as difficult.

In this study we combine these two major approaches. That is, we try to find
basis functions automatically, but on a level such that they may be interpretable
as compartments. The outcome of our algorithm is a set of discriminative basis
functions, the ‘building blocks’ of the DW-MRI signal. The key idea is to search
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for a few basis function possessing axial symmetry with continuously steered
orientation, which is the main difference to [1, 5, 9], where the functions are
arbitrarily shaped and not steered depending on the underlying orientation.

This approach directly provides a ‘fiber response function’ (FRF) in the case of
white matter. The biophysical content of these functions is clarified by observing
their contributions in different brain areas. It turns out that they can be well
associated with the different tissues in the brain.

In this work we apply the approach to ‘high resolution’ g-space data (= QSI) and
a multi-shell acquisition. Applications to single shell data are also possible, where
our approach can be seen as an automated method for estimating the FRF from the
whole brain instead of from a few selected ‘single compartment’ voxels [3].

2 Method

We denote the diffusion weighted signal by S(q), where q is the measurement
location in g-space. We define q = g+/b/t4, where b is the b-value specified during
the measurements, 7, the diffusion time and g is the unit vector in the direction of
the diffusion-sensitizing gradient. The main idea of our approach is the assumption
that the DW1I-signal S(q) can be decomposed into a small set of N axial-symmetric
basis functions Vi (q) with k = 1,... N, where each V} can be arbitrarily oriented
in g-space. By V' we denote the k-th basis function oriented such that the symmetry
axis is m € S». The signal is represented as

N
S(q) k§=1/Szak' Vi (q) dn

where ;. , € R™ are positive superposition weights. Our goal is to find appropriate
functions V} such that the weights ok, are as sparse as possible. As already
mentioned above this problem is known as dictionary learning [8]. By minimizing
the non-convex problem

M [ o 2

N
arg min Z Z ( /S Ol,i,n V(q) dn— S/ ((Ii)) + Al | (1)
k=152

a>0,V=>0 ;j=1|i=1

il =1

we hope to get functions V) that allow a sparse representation. The additional
constraint ||V||> = 1 is used to avoid scaling ambiguities. Here, q, ..., qo denote
the measurement points in g-space and S',..., S™ the measurements at M voxels
that should be representative not necessarily cover the whole brain.
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2.1 Representation of Basis Functions

For optimization the basis functions V,* should be represented in a non-redundant
manner. We consider a simple non-parametric representation:

V(@) = ve(Im- ql/[ql. 1q]) @)

where v; are appropriately discretized ‘template’ functions of two arguments and
V! determined from vy by bilinear interpolation. Depending on the DW-scheme
(the q; locations) it can happen that some of the points of v; are not sampled at
all. To keep vy reasonably looking we used an additional small prior of smoothness
with respect to the arguments, | Vv |?, to avoid discontinuities. We discretized vy on
a7x7 grid, which is a bit finer than a usual QSI protocol provides (515 directions, a
ball of radius 5). So, overall each basis functions consists of 49 — 1 = 48 unknowns
(which are the grid-locations) that have to be estimated.

2.2 Implementation and Optimization

We followed the usual optimization approach [8] by minimizing in an alternating
manner, first with respect to a and then for V and so forth. As the ‘template’
representations v of the basis are linearly related to the ‘steered’ signal represen-
tation V,* there is a matrix A" such that V;* = A"v;. Thus, the objective looks
[l - (Av) — S||> + A||a||1, which differs from [8] in the presence of additional
transformation A, which does not essentially affect the optimization procedure. The
direction n was discretized with 128 directions on the half-sphere.

The approach has been implemented in MATLAB using the function lsqgnonneg
for optimization. We apply a stochastic, chunk based learning procedure: The basis
function are initialized with the exponential model of water plus some random noise,
then (1) a chunk of M random voxels is selected and the weights « are fitted based
on the current basis functions. (2) the weights are fixed and the objective (1) is
minimized with respect to the basis functions in the chunk of M random voxels. To
damp the convergence (otherwise oscillatory behavior can occur [8]) we keep the
basis functions from the last iteration in ‘memory’, by adding the additional term
™|V — V1342 to the objective. This procedure is repeated until convergence.

The most important parameters of our approach are the regularization strength
A and the number of basis functions N. We found that the results are quite robust
against the learning rate r, which we set to 10. The chunk size M was set to 100,
which results in a computation time per iteration of some seconds on an ordinary PC.



The Diffusion Dictionary in the Human Brain Is Short 51
3 Experiments

We consider three datasets, two QSI datasets and one multi-shell dataset. All
datasets were acquired on a Siemens 3T TIM Trio using an SE EPI sequence.
The resolution of the QSI dataset is 2.2 x 2.2mm in plane and 3mm in slice
direction. The echo time is 165ms allowing a maximal b-value of 8,000 mm?/s.
The full g-ball is sampled in Cartesian manner at 515 locations. The multi-shell
dataset has isotropic resolution of 2mm with echo time 108 ms and b-values of
1,000, 1,450, 1,700, 2,000 mm?/s with growing number of encoding directions (33,
45,55, 65).

The voxels fed in our algorithm were determined by a whole brain mask
segmented by SPM 8. We have found that the convergence of the algorithm is quite
fast. Already after a few iterations (about 25), the shape of the basis functions start
to be stable.

The choice of the number N of basis functions and A is a crucial issue in our
algorithm. We have found that N = 3 results in a non-redundant meaningful set of
basis functions. These functions are shown in Fig. 1 for one of the QSI datasets with
A = 0.01. The effect of deviations from this choice is discussed below.

The most dominant function (in terms of a whole brain accumulated «) is a
strongly anisotropic one, which seems to be associated with white matter (A)
according to the known properties of diffusion in this tissue. The second (B) and
third (C) show much less anisotropy and could be associated with gray matter
and cerebrospinal fluid, respectively. This interpretation is further confirmed by the
distribution of weights « in the brain. To show a physically meaningful scaling of
the weights we multiplied them by V!(0)/S(0) in order to make them interpretable
as volume fractions. Figure 1 shows the resulted maps of scalar weight (a sum over
all orientations ) ok n) at several transversal slices. It is evident that a meaningful
segmentation into three major brain tissues is obtained according to the locally
dominant basis function. Subdominant contributions are present in the majority of
voxels. The three weights demonstrate qualitatively different distributions in the
whole brain (the histograms in Fig. 1). The weights for function A are shown in
Fig. 1 using unnormalized glyph representation. This supports the interpretation of
this weight as ‘fiber density’.

Figure 2 shows a comparison of the basis functions with the exponential models
of the form exp[—D,(q-n)*t4 + D ,(¢> — (q-n)*)t4] with realistic parameters. The
basis functions are close to exponentials although systematic deviations are evident.
Note the constant non-decreasing values of component (A) of about 0.1 for large
|q| at the poles (large values of cos(6)). This offset can be attributed to a fraction of
immobilized, ‘still” water. An alternative interpretation via the effect of the Rician
noise floor is ruled out by the shape of component (C), which decreases down to
values about 0.02 at large |q].

The reproducibility of the results is illustrated in Fig.3 using another QSI
dataset and the multi-shell acquisition. For the QSI dataset the results are pretty
similar, however for the multi-shell acquisition the functions show some ‘spiky’
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Fig. 1 Results for QSI dataset 1. Upper right: The three basis functions (A,B,C) are shown,
where the first/second column shows polar/equatorial projections of the basis function (the z-axis
is horizontal). The grid for visualization is just the QSI g-space sampling. The third column shows
the internal representation (the v, in Eq. (2)) on the 77 grid (q in 1/mm). Top right and the central
row: The weight maps (o , summed over n) corresponding to the different compartments. Bottom
left: The weights for compartment A are shown as orientation distributions in the area shown in fop
left image (absolute scaling). Lower right: The whole brain weight distributions of all three basis
functions
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Fig. 2 Qualitative comparison of estimated basis function with usual exponential models. The
plots show the estimated functions vy (cos(#), |q|) as a function of |q| for different values of
cos(f) in green. Additional in red we show qualitatively similar exponential function (see text)
with parameters D, = 2, D, = 0.1 for (A), D, = 0, D, = 0.6 for (B) and D, = 0, D, = 3 for
(C) (units in pwm?/ms)
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Fig. 3 Results for QSI dataset 2 and a multi-shell scheme. The basis function are represented in
the same way as in Fig. 1

non-physical appearance which might be attributed to the internal representation of
our basis functions which is not fully compatible with the multi-shell acquisition
scheme. Nonetheless, the corresponding weight maps are still reasonable.

Finally, we discuss the dependence of basis functions on parameters N and A.
We have found that the results for N = 3 are rather independent of the choice
of A as long A is small enough. Even for A = 0 we obtain a qualitatively similar
picture (the positivity constraint is sufficient to regularize the problem). A high A
leads to situations where some of the basis functions are rarely used (see [8] for
similar observations). Figure 4 illustrates this behavior for N = 5. The functions
are sorted with respect to its overall contribution in terms of . For a high A = 0.1
one can observe that only one function is used intensively, where the remaining ones
very rarely and remain close to their initialization values. For smaller A the usage is
more distributed, where the three most prominent ones still can be associated with
the functions found for N = 3. By looking at the corresponding o-maps (data not
shown), for example for A = 0, one observes that the second and fifth component
show contributions mainly in white matter, while the third and fourth are responsible
for gray matter. The first one can still be associated with water. This is the expected
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Fig. 4 Basis function obtained for varying A and selecting N = 5. The blue bars indicate the
overall contribution of the basis functions to the fit
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behavior: For large N, the method tends to distribute the basis function found for
the minimal N (N = 3 in this case) over all available independent components.

4 Conclusion

This work proposes a novel data-driven way to decompose the diffusion-weighted
MRI signal into a superposition of a few basis functions using the technique of
dictionary learning. In contrast to previous studies [1, 5, 9], the basis functions
are assumed to be axially symmetric while the symmetry axis is rotated during
optimization to explain the measured signal. This rotationally-invariant definition
of the basis functions reduces drastically the size of the resulted dictionary, which
turned out to be N = 3 for the whole human brain.

The obtained three basis functions describe well the dominant contributions in
gray matter, white matter and cerebrospinal fluid, respectively. We underscore that
this result is obtained in a purely data-driven way without involving any anatomical
or biophysical prior knowledge. The anisotropic function dominating the signal in
white matter can be interpreted as the so-called ‘fiber response function’.

There might be several potential applications of our approach. The dictionary
could be used for denoising as in previous studies [1,5]. The good association with
the tissue type suggests using the proposed method for segmentation. It would be
intriguing to proceed towards biophysical analysis of the basis components to get
insight into morphological compartments behind these functions. Other way around,
the present results set boundary conditions for biophysical modeling of diffusion-
weighted signal.

In the context of fiber tracking, the simultaneous modeling of ‘all’ compartments
allows a more quantitative interpretation of the obtained fiber orientation distri-
bution (FOD). Applications to single g-shell experiments seem also to be useful,
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at least as an automatic determination of the fiber response function without the
restriction to voxels containing unidirectional fibers.

Present realization of our method puts several challenges for future work. In
particular, it is finding representations of basic functions that are adapted to the
diffusion-weighting schemes, which are less demanding than QSI and are thus
more clinically relevant. Another goal is the biophysical interpretation of the present
results.
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