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Abstract This work introduces a model-based super-resolution reconstruction
(SRR) technique for achieving high-resolution diffusion-weighted MRI. Diffusion-
weighted imaging (DWI) is a key technique for investigating white matter non-
invasively. However, due to hardware and imaging time constraints, the technique
offers limited spatial resolution. A SRR technique was recently proposed to address
this limitation. This approach is attractive because it can produce high-resolution
DWI data without the need for onerously long scan time. However, the technique
treats individual DWI data from different diffusion-sensitizing gradients as inde-
pendent, which in fact are coupled through the common underlying tissue. The
proposed technique addresses this issue by explicitly accounting for this intrinsic
coupling between DWI scans from different gradients. The key technical advance is
in introducing a forward model that predicts the DWI data from all the diffusion
gradients by the underpinning tissue microstructure. As a proof-of-concept, we
show that the proposed SRR approach provides more accurate reconstruction results
than the current SRR technique with synthetic white matter phantoms.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a key non-invasive
technology for investigating brain white matter in vivo [8]. The technique enables
the mapping of white matter microstructure over the whole brain [1, 11, 14, 16]
and the inference of the complex structural connectivity that white matter
supports [4,5,7]. However, due to its intrinsic signal-to-noise (SNR) characteristics,
DWI is currently limited to relatively low spatial resolution when compared to
standard anatomical scans. A voxel in typical DWI data is at least 8 times the size
of a 1 mm3 voxel in standard T1-weighted anatomical data. The latter’s millimeter
and sub-millimeter resolution is essential for resolving fine details in anatomical
structures, such as the subfields of the hippocampus [15]. Hence, there is increasing
interest in new acquisition and computational techniques that can achieve similarly
high resolution in DWI so that tissue microstructure and connectivity can be
examined even for very small structures.

There are a number of possible approaches to increasing the spatial resolution of
DWI data. The most straightforward one is to reduce the slice thickness while simul-
taneously increasing the in-plane resolution to maintain isotropic voxels. However,
this approach leads to substantial reduction in SNR: Reducing each voxel dimension
by half decreases the SNR by a factor of 8. The loss in SNR can be compensated by
repeated acquisitions but would require a 64-fold increase in imaging time, which is
feasible only for postmortem studies [6, 12]. Another approach is to use reduced
field-of-view (FOV) imaging. This allows isotropic sub-millimeter resolution in
vivo [15] but at a price of restricted anatomical coverage. Specialist hardwares, such
as the human connectome project scanner, are now able to achieve better spatial
resolution with more advanced imaging sequences and hardware specifications; but
such advances are not generally accessible to the standard clinical scanners.

The present paper explores a different approach known as the super-resolution
reconstruction (SRR) [3]. The technique constructs a set of isotropic high-resolution
(HR) DWIs from multiple sets of anisotropic low-resolution (LR) acquisitions
(Fig. 1 provides an illustration). By leveraging intelligent image reconstruction,
the SRR approach requires only a modest increase in imaging time, thus has the
potential to become a practical solution to realizing higher resolution in DWI.
Such an algorithm was first proposed by Scherrer et al. [13]. Their technique,
henceforth referred to as the current SRR, carefully addresses the mismatch in
diffusion-sensitizing gradients between different DWI scans due to subject motion,
and is demonstrated with in vivo human brain data. However, one limitation of this
technique is that it treats the DWI data for each diffusion gradient independently to
the ones from the other gradients and solves the SRR problem for each in isolation.
Such treatment is problematic because the DWIs from different gradients are not
independent but rather dictated, and hence strongly coupled, by the same underlying
tissue microstructure. Ignoring this strong dependency may lead to overfitting and
thus potentially biased reconstruction of HR DWIs.

To address this limitation of the current SRR approach, we propose a technique
that adopts a model-based strategy to explicitly account for the intrinsic coupling
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Fig. 1 Forward models of the current and the proposed SRR techniques: The imaging protocol p
acquires K D 3 low-resolution diffusion-weighted images for each of the N diffusion-sensitizing
gradients. For the i th gradient, the three anisotropic low-resolution diffusion-weighted images are
denoted by LRi

x , LRi
y , and LRi

z. The current SRR technique outputs one high-resolution diffusion-
weighted image for each of the N gradients, with HRi denoting the output for the i th gradient.
In contrast, the proposed SRR technique outputs one high-resolution image for each of the M

parameters of the underlying tissue model T , with Ti denoting the output for the i th tissue
parameter

between the DWIs from different diffusion gradients. This leads to a new SRR
formulation for DWI that treats the anisotropic LR data from different gradients as
a single input and solves the SRR problem for all the gradients in one setting. As a
proof of concept, the proposed technique is demonstrated with synthetic phantom
data and its performance evaluated quantitatively against the current method [13].
The rest of the paper is organized as follows: Sect. 2 describes the proposed
SRR framework; Sect. 3 details the design of the simulation data experiment for
validating the proposed technique and reports the findings; Sect. 4 summarizes the
contribution and discusses future work.
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2 Model-Based Super-Resolution Reconstruction

The classic SRR problem aims to produce an isotropic HR image from a set of
anisotropic LR images along each of the K D 3 orthogonal spatial axes [3]. Each
LR image covers exactly the same FOV but is acquired in different (orthogonal)
planes with high resolution in-plane but low resolution through-plane. The problem
is typically solved with a maximum a posteriori (MAP) formulation which involves
an image acquisition model that relates the LR images to the HR images and a
spatial regularization prior to handle the ill-posedness of the problem.

In the case of DWI, the input to the SRR problem becomes a set of K

anisotropic LR images for each of the N diffusion gradients. The number of
diffusion gradients in a typical DWI acquisition is 30 or more. The objective is to
reconstruct from these NK anisotropic LR images a set of N isotropic HR images,
one for each diffusion gradient. The current SRR technique [13] solves this problem
by treating the set of K LR images from each diffusion gradient as independent and
determine the corresponding HR image individually with the standard algorithm.
As a result, the resulting HR images for different gradients may not retain the
necessary coherence required for them to faithfully reflect the underlying tissue
microstructure.

To address this problem, the proposed SRR algorithm is performed simultane-
ously on all the NK LR images from all the diffusion gradients and utilizes an image
acquisition model that relates the LR images to the HR images of the underlying
tissue microstructure. The remainder of this section presents the proposed forward
model, the new SRR algorithm, and the solution using the steepest gradient descent
optimization.

2.1 Forward Model

The forward model in the current SRR technique [13] predicts the anisotropic
LR images for each diffusion gradient from the isotropic HR images of the same
gradient. The proposed forward model differs from [13] in that it aims to explicitly
take into account the coupling between the images for different gradients governed
by the underlying tissue. This is accomplished by predicting the HR images from
all the diffusion gradients themselves from a set of HR tissue parameter maps T,
given an appropriate tissue model, and an imaging protocol p. (See Fig. 1 for an
illustration.) The tissue model prescribes the relationship between the voxel-wise
DWI measurement for each gradient and the tissue microstructure at the voxel. The
imaging protocol p specifies the diffusion weighting (the b-value) and the set of
diffusion gradients g.

We assume for simplicity that the input data has undergone the appropriate
preprocessing to correct for motion and eddy-current distortion, for example
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following the methods given in [13]. Then the proposed forward model takes the
following simple form:

Qyk.T; p/ D Dkx.T; p/C �k (1)

where k is the index over the K orthogonal planes, Qyk is the predicted LR images
for all the gradients, x.T; p/ is the HR images predicted by the chosen tissue model,
Dk is the downsampling operator, and �k is the residual noise.

The proposed formulation is not limited to any particular tissue model; the choice
of the tissue model depends on the application. For the present demonstration, we
adopt the simple ball-and-stick model [2], which has been previously used in a
different super-resolution setting for resolving partial volume effect in DWI [9]. At
each voxel, the signal along a given diffusion gradient is determined by a small set of
parameters: the relative fraction of the ball and stick compartments, the diffusivity,
which is the same for both compartments, and the orientation of the stick.

2.2 Super-Resolution Reconstruction

The proposed algorithm determines Ox, an estimate to the unknown HR images x, by
first solving for the tissue parameter maps T with the MAP formulation:

OT D arg max
T

p .T j y/ D arg max
T

p .y j T/ p .T/ D arg max
T

Œln p .y j T/ C ln p .T/� (2)

The HR estimates Ox is subsequently determined directly from OT using the chosen
tissue model.

Assuming the Gaussian noise model with zero-mean and variance � and statisti-
cal independence between the noise from different acquisitions, the likelihood term
p.y j T/ can be written as:

p .y j T; �/ D
KY

kD1

p .yk j T; �/ D
KY

kD1

1p
2��2

exp

 
�kyk � Qyk.T; p/k2

2�2

!
(3)

We set the same spatial regularization prior as in [13], such that p .T j �/ D
exp.�� kQx.T; p/k2/ where Q is the 3-D discrete Laplacian. Substituting the
forward model, the tissue parameter maps T can be determined by the following
minimization:

OT D arg min
T

NX

iD1

KX

kD1

��yi
k �Dkxi .T; pi /

��2 C �
��Qxi .T; pi /

��2
(4)

where i is the index over the set of diffusion gradients specified by p. The objective
function differs from the one for the current SRR technique in two ways: first, the
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summation over all the N diffusion gradients; second, the underlying variables are
the HR tissue parameter maps T rather than the HR DWIs x. Here x is determined
from T by the chosen tissue model.

2.3 SRR Optimization Procedure

As in [13], we use the steepest gradient descent approach to optimize for the
parameters of the tissue microstructure. The best estimate to the tissue parameter
maps T is iteratively determined by the following update rule from differentiating
Eq. (4):

OTnC1
t D OTn

t � ˛

"
NX

iD1

@Oxi;n. OTn; pi /

@ OTn
t

 
KX

kD1

DT
k .Dk Oxi;n. OTn; pi / � yi

k/ � �QT QOxi;n. OTn; pi /

!#

(5)

where DT
k is the transpose of Dk, ˛ is the step size, and @xi .T;pi /

@Tt
is the partial

derivative of the diffusion signal predicted by the tissue model with respect to the
tissue parameter Tt . The initial estimate of the tissue parameters is obtained by
fitting the tissue model to the mean of the upsampled LR images. The minimization
is stopped either when the objective function, denoted as vobj, does not decrease
or when the difference between consecutive values of the objective function is
below a threshold �stop. The following pseudo-code summarizes the proposed SRR
optimization procedure:

bx0  Compute the average of the upsampled yk

bT0  Estimate tissue parameters from bx0

bx0.bT0; p/  Synthesize with the tissue model

WHILE kvn
obj � vn�1

obj k � �stop || vn
obj � vn�1

obj

FOR each tissue parameter t
bTnC1

t  Update with Eqn (5)
ENDFOR
bxnC1.bTnC1; p/  Synthesize with the tissue model

ENDWHILE

The parameters �, �stop and ˛ are set according to [13]: � D 0:001 and
�stop D 5 � 10�5. The step-size ˛ is initialized to 0:01 but automatically tuned
during optimization to accelerate the convergence. If the signs of two consecutive
gradients differ, ˛ is divided by two; if the signs are the same, ˛ is multiplied by
1:1. In addition, ˛ is restricted to Œ0:1; 10�6�.



Model-Based Super-Resolution of Diffusion MRI 31

3 Evaluation and Results

This section outlines the evaluation strategy, gives the detail of the synthetic data
experiment, and reports the quantitative comparison between the proposed SRR
technique to the current SRR approach.

3.1 Evaluation

We assess the proposed SRR technique with synthetic phantoms which provide
ground-truth data for establishing quantitative measures of performance. In partic-
ular, we generate ground-truth DWIs from synthetic phantoms constructed with the
software tool Fiberfox, part of the MITK Diffusion Imaging.1 Fiberfox combines
the advantage of synthetic DWIs with a level of realism that, so far, has only been
seen in real MR acquisitions. It combines complex voxel-wise diffusion modeling,
using the rich hierarchy of tissue models in [10], with the synthesis of large-scale
fiber configurations.

Specifically, two fiber configurations, fanning and helix, are chosen for the
present illustration (Fig. 2). Fiberfox is used to synthesize both the ground-truth
isotropic HR DWIs of each phantom and the corresponding anisotropic LR DWIs.
The LR acquisitions share the same in-plane voxel spacing as the HR data
but double the through-plane voxel spacing. The DWI data are simulated with
a standard clinical protocol: 30 isotropically-distributed diffusion gradients with
bD 1,000 s/mm2. To mimic real-world acquisitions, we perturb the LR acquisitions
with Rician noise at two levels corresponding to SNR of 50 and 20.

3.2 Results

The performance of the proposed and current SRR techniques is assessed by
the respective reconstruction error, which is measured as the departure from the
ground-truth HR DWI data. Specifically, we compute the mean-squared error (MSE)
between the ground-truth and predicted HR DWI data for each noise trial and report
the average over 15 different trials. Table 1 summarizes these averaged mean-
squared errors (MSE), showing that the proposed SRR consistently produces a
smaller reconstruction error than the current SRR.

In particular, the relative improvement in performance of the proposed SRR over
the current technique increases with decreasing SNR. For the SNR of 20, typical
of in vivo data, the error of the proposed SRR is significantly smaller than that of

1http://www.mitk.org/DiffusionImaging

http://www.mitk.org/DiffusionImaging
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Current SRR Proposed SRR

<-0.1

> 0.1

Phantom

Helix

Fanning

Fig. 2 Phantom data experiment: the fiber configurations of the phantoms (left), the reconstruction
errors for the current (middle) and proposed (right) SRR techniques. The dashed squares mark the
parts of the phantoms rendered in the middle and right columns. Each voxel-wise DWI data is
rendered as a 3-D glyph colored according to the reconstruction errors of the corresponding SRR
technique. For the helical phantom, the DWIs are viewed along the helical axis

Table 1 Mean-squared errors (MSE) of the reconstructed HR data with respect to the ground truth
and objective function values at the convergence

Fanning Helix

SRRcur SRRpro SRRcur SRRpro

MSE SNR 50 8:65 ˙ 0:057 4:94 ˙ 0:038 12:35 ˙ 0:079 8:57 ˙ 0:072

SNR 20 32:82 ˙ 0:188 8:20 ˙ 0:135 36:81 ˙ 0:326 11:88 ˙ 0:249

Objectives SNR 50 4:38 ˙ 0:044 10:67 ˙ 0:065 8:02 ˙ 0:054 14:39 ˙ 0:069

SNR 20 21:31 ˙ 0:254 56:80 ˙ 0:375 24:89 ˙ 0:250 60:68 ˙ 0:491

the current technique. This difference in performance between the two techniques
can be better visualized in Fig. 2, which illustrates the voxel-wise reconstruction
errors for one particular noise trial. The figure highlights additionally that the
reconstruction error from the current SRR is highly irregular.

To understand the improved performance with the proposed SRR, we compare
the objective function values from both techniques at the convergence in Table 1.
For the proposed SRR, the objective function is given in the right hand side of
Eq. (4) as the argument to arg min. For the current SRR, the objective function values
reported are summed over all the diffusion gradients to be exactly comparable to the
proposed SRR. The objective function in essence evaluates the squared difference
between the measured (noisy) LR DWI data and the predicted LR DWI data by each
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technique together with the penalty for spatial irregularity. It is interesting that the
values for the current SRR are consistently lower than the proposed SRR, suggesting
the former is overfitting the (noisy) data. This is consistent with the irregularity in
the reconstruction error illustrated in Fig. 2.

4 Discussion

In summary, this paper proposes a new SRR formulation for DWI data that
explicitly accounts for the dependency between the measurements from different
diffusion gradients. This is achieved with a model-based approach that links the
diffusion measurements directly to the underlying tissue model. The proof-of-
concept illustration with synthetic phantom data demonstrates the importance of
the proposed approach: ignoring the strong coupling between DWI data as in [13]
can lead to overfitting. This is unsurprising, given the number of parameters in
typical tissue models [10] are smaller than the number of diffusion gradients.
The overfitting problem should be even more significant for increasingly common
high-angular resolution diffusion imaging (HARDI) or multi-shell HARDI acqui-
sitions [1, 14, 16]. Future work will consider more complex tissue models that
can accommodate crossing fiber configurations and more sophisticated multi-shell
HARDI acquisitions using in vivo imaging data.
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