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Abstract In this paper we investigate the effect of single-shell q-space diffu-
sion sampling strategies and applicable multiple-fiber analysis methods on fiber
orientation estimation in Diffusion MRI. Specifically, we develop a simulation
based on an in-vivo data set and compare a two-compartment “ball-and-stick”
model, a constrained spherical deconvolution approach, a generalized Fourier
transform approach, and three related methods based on transforms of Fourier
data on the sphere. We evaluate each method for N D 20, 30, 40, 60, 90 and
120 angular diffusion-weighted samples, at SNR D 18 and diffusion-weighting
b D 1;000 s=mm2, common to clinical studies. Our results quantitatively show
the methods are most distinguished from each other by their fiber detection ability.
Overall, the “ball-and-stick” model and spherical deconvolution approach were
found to perform best, yielding the least orientation error, and greatest detection
rate of fibers.
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1 Introduction

Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) uniquely reveals the
complex white-matter pathways of the human-brain, in-vivo. As such, DW-MRI has
been enthusiastically applied to a broad range of clinical and neuroscience research,
including analysis of brain trauma [8], assessment of neurological diseases such as
Alzheimer’s disease [4], and mapping the human brain connectome [10].

In recent years, advances in DW-MRI have led to a variety of diffusion sampling
strategies and many alternative analysis methodologies which aim to reveal the
complex nature of white-matter tissue microstructure, such as intra-voxel crossing
fiber bundles. For the researcher, it can be very difficult to choose among the
acquisition and analysis methods available without detailed knowledge of their
strengths and weaknesses, and as a result data may be sub-optimally processed.

In this paper we quantitatively compare the following six multiple-fiber dif-
fusion analysis methods: a two-compartment “ball-and-stick” model (BSM) [3],
a (non-negativity) Constrained Spherical Deconvolution (CSD) approach [11], a
generalized Fourier transform method known as Generalized q-sampling Imaging
(GQI) [14], and three related approaches based on transforms of Fourier data on the
sphere (analytical Q-Ball Imaging (QBI) [6], Funk-Radon and Cosine Transform
(FRACT) QBI [7], and Constant Solid Angle (CSA) QBI [1]).

We evaluate these methods by developing a ground-truth of fiber orientations
from in-vivo brain data, and then synthesize the diffusion-weighted signal. After
processing the synthetic data by each of the methods, we compare results in terms
of fiber detection accuracy and individual fiber orientation error. We focus our study
on a SNR and diffusion-weighting common to Diffusion Tensor Imaging (DTI) [2],
as DTI remains the primary diffusion acquisition scheme used in routine clinical
neuro-radiological imaging sessions.

2 Materials and Methods

2.1 Diffusion-Weighted Data Synthesis

A diffusion-weighted dataset was synthesized according to a multi-tensor model
accommodating three fibers per voxel in addition to a free-diffusion compartment.
For any given voxel, the signal model is:
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where S0 simulates T2-weighting, f0 and D0 are the volume fraction and diffusivity,
respectively, of the isotropic free-diffusion compartment, fk and Dk are the volume
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fraction and diffusion tensor, respectively, of the kth fiber in the voxel, b is the
diffusion-weighting, and gj is a unit vector representing the j th diffusion sampling
direction. Altogether the volume fractions satisfy f0 C .1 � f0/

P3
kD1 fk D 1.

Each fiber’s tensor was computed from a rotated single tensor model according to
Dk D Rx .v/ DxRx .v/>, where v is a vector defining the desired fiber orientation,
and Rx .v/ is the rotation matrix to rotate the vector [1 0 0]> oriented along the
x-axis, to along v. The single fiber tensor is:
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Complex Gaussian noise was added to the synthesized DW signal (1) to achieve
a Rician distribution of noisy magnitude diffusion data:
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where n1 and n2 are independent and identically distributed pseudorandom Gaus-
sian variables with zero mean and standard deviation �n D �S0=SNR, in which �S0

is the mean signal from a homogeneous white-matter region of the S0 image, and
SNR is the desired signal-to-noise ratio of the magnitude data.

2.2 Quantitative Metrics

After processing the synthesized data, the accuracy of fiber estimation was quantita-
tively determined in terms of individual fiber orientation error, and accuracy of fiber
detection.

2.2.1 Fiber Orientation Error

The fiber orientation error is the angular separation between pairs of estimated
and actual fiber directions, and lies in the range 0–90ı. In this study, we report
individual orientation errors for the pairing of estimated and actual fibers that yields
the minimum total error on a voxel-by-voxel basis. Each estimated fiber is paired
with only one actual fiber.

2.2.2 False-Positive and False-Negative Rate

The number of incorrect fibers (either false-positives corresponding to spurious fiber
orientations, or false-negatives corresponding to missing true fiber orientations) was
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recorded as the difference between the number of estimated and actual fibers on a
voxel-by-voxel basis. Upon summing over all similar voxels (those with 1, 2 or 3
fibers in the ground-truth) the false-positive (negative) rate is the number of spurious
(missing) fibers, as a percentage of the actual number of fibers present.

3 Application: Comparison of Fiber Estimation of Several
Diffusion Analysis Methods

We use the simulation framework of Sect. 2 to compare the performance of several
diffusion analysis methods. In the following sections we describe how the ground-
truth of fiber orientations were determined from in-vivo data, mention parameters
of the data synthesis and analysis, and present results.

3.1 Establishment of Ground-Truth

A 28-year-old right-handed male volunteer without any history of neurological
disease was scanned on a GE 3T HDxt scanner (General Electric, Milwaukee,
WI, USA), equipped with an 8-channel head coil. The subject signed an informed
consent form approved by the Institutional Review Board of the University of
Southern California.

Diffusion-weighted images were acquired by a twice-refocused pulsed-gradient
spin-echo sequence with TE/TR D 83.4/16,100ms, matrix D 128�128, ASSET
acceleration factor of 2, voxel size D 2:4 � 2:4 � 2:4 mm, 60 contiguous slices,
150 diffusion gradient directions with diffusion-weighting b D 1;000 s=mm2, and
10 non-diffusion weighted images. The acquisition took approximately 43 min.

The diffusion data was processed by the FSL [9] probabilistic multiple-fiber
method BEDPOSTX estimating up to three fibers per voxel; default options were
used in running BEDPOSTX. A threshold of 0.10 was applied to second and third
fiber volume fractions to reduce the possibility of minor fibers as a result of data
over-fitting.

The estimated fiber volume fractions (f1, f2, f3) and orientations (v1, v2, v3), for
each voxel, constituted the utilized output from BEDPOSTX. Because of differences
between the BEDPOSTX multi-fiber signal model, and that used for data synthesis
(1) the isotropic compartment fraction determined by BEDPOSTX was not used.
Instead, the fiber fractions were normalized (

P3
kD1 fk D 1) and f0 was iteratively

determined on a voxel-by-voxel basis by systematically adjusting its value until the
generalized fractional anisotropy (GFA [13]) of the synthetic data matched that of
the in-vivo data to within a tolerance of 0.00005.

Also, an anatomical T1-weighted SPGR image (TE/TR D 2.856 ms/7 ms) was
acquired with resolution 1 � 1 � 1 mm. This image was registered to the mean
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Fig. 1 Diffusion sampling patterns used for data synthesis and analysis. In each case, the number
of vertices on the sphere is twice the number of diffusion-weighting directions, N , due to the
symmetry of diffusion (a measurement in direction g D Œgx gy gz�

> is equivalent to a measurement
in direction �g)

non-diffusion weighted image and subsequently segmented into white-matter
(WM), gray-matter (GM) and cerebrospinal fluid (CSF) using default options in
SPM. The tissue probability maps were down-sampled by linear interpolation to the
resolution of the DW images, and each voxel was classified as WM, GM, or CSF
according to its most probable tissue type.

3.2 Data Synthesis

Parameters for the single-fiber tensor and diffusivity of the free diffusion compart-
ment were obtained from DTI analysis of the in-vivo data (Sect. 3.1). Approximately
250 voxels classified as WM and having 0:85 � FA � 0:95 were used to determine
eigenvalues f�1; �2; �3g D f1:70; 0:17; 0:17g � 0:001mm2=s (FA D 0.89) for the
single-fiber tensor model. The free diffusion parameter D0 was computed for each
tissue compartment by averaging mean diffusivity over similarly classified voxels,
resulting in fDWM

0 ; DGM
0 ; DCSF

0 g D f0:68; 0:96; 2:25g � 0:001mm2=s.
To evaluate the effect of angular sampling on fiber estimation, we evaluated six

sampling patterns consisting of N D 20, 30, 40, 60, 90 and 120 pairs of angular
samples. The sampling directions were based on minimization of electrostatic
energy of antipodal pairs of charged particles on the sphere, as computed by Cook
et al. [5] and are shown in Fig. 1.

For each sampling pattern, four data sets were generated with b D 1;000 s=mm2

and independent noise realization according to (3), to yield SNR D 18 in the
magnitude data. One noisy non-DW image was simulated for every ten DW images.

3.3 Data Analysis

The synthetic data sets were processed by the six multi-fiber diffusion analysis
methods listed in Table 1, alongside parameters experimentally found to give
optimal results in each case. For BSM and CSD methods, FSL [9] and mrTrix
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Table 1 Summary of analysis methods. For BSM and CSD, the parameters are specified as
command line arguments to FSL and mrTrix programs. In the remaining cases, notation from
the methods’ paper is used. The * indicates super-resolved CSD

Diffusion-weighting directions, N

Analysis method 20 30 40 60 90 120

BSM [3] �nf D 3 �nf D 3 �nf D 3 �nf D 3 �nf D 3 �nf D 3
CSD [11] �lmax D 6* �lmax D 8* �lmax D 8* �lmax D 10* �lmax D 12* �lmax D 12

�num D 3 �num D 3 �num D 3 �num D 3 �num D 3 �num D 3
�thresh �thresh �thresh �thresh �thresh �thresh

D 0.30 D 0.35 D 0.30 D 0.35 D 0.45 D 0.40
GQI [14] � D 1:66 � D 1:85 � D 1:90 � D 1:95 � D 2:05 � D 2:10

QBI [6] L D 4 L D 6 L D 6 L D 8 L D 10 L D 12

� D 0:006 � D 0:006 � D 0:006 � D 0:006 � D 0:006 � D 0:006

FRACT [7] L D 4 L D 6 L D 6 L D 8 L D 10 L D 12

� D 0:006 � D 0:006 � D 0:006 � D 0:006 � D 0:006 � D 0:006

� D 0:10� � D 0:40� � D 0:40� � D 0:45� � D 0:45� � D 0:45�

CSA [1] L D 4 L D 4 L D 4 L D 4 L D 4 L D 4

ı D 0:01 ı D 0:01 ı D 0:01 ı D 0:01 ı D 0:01 ı D 0:01

Table 2 Threshold values used in detecting local maxima, in terms of mean value of the applicable
spherical function (SDF or ODF)

Diffusion-weighting directions, N

Analysis method 20 30 40 60 90 120

GQI 0.92 0.92 0.92 0.92 0.92 0.92
QBI 0.00 0.00 0.00 0.00 0.00 0.00
FRACT 0.30 0.70 0.70 0.70 0.70 0.70
CSA 2.10 1.90 1.75 1.55 1.45 1.33

[12] were used, respectively, for data processing. We implemented the remaining
approaches in MATLAB following the formulations given in the references.

Estimated fiber orientations were output directly by FSL [9] and mrTrix [12]
for BSM and CSD methods, respectively. For the remaining approaches, fiber
orientations were determined from local maxima of spherical functions (either spin
distribution functions (SDF) or orientation distribution functions (ODF)), with the
use of thresholds to eliminate minor spurious peaks resulting from noise. In all
cases, the spherical functions were reconstructed on a 4th-order regular icosahedron
tessellation of the sphere with 2,562 vertices. Table 2 summarizes the threshold
values used.
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Fig. 2 Comparison of color FA images obtained from DTI analysis of (a) the acquired in-vivo
data, and (b) an example of synthetic noisy data (SNR D 18) generated according to (3) and
the fiber parameters established in Sect. 3.1. The data used to obtain (b) was simulated using the
gradient directions of the in-vivo data

3.4 Results

3.4.1 Comparison of In-Vivo and Synthetic Data

Confidence in the simulation model (1) and fiber directions estimated from the in-
vivo data can be established by comparing color FA images, which indicate the
primary orientation of white-matter in voxels with a single fiber orientation. Such
results obtained from DTI analysis are shown in Fig. 2.

Correspondance between the in-vivo and synthetic data results of Fig. 2 indicates
accurate fiber estimation and simulation of the diffusion-weighted signal for the
ground-truth directions of the whole brain.

3.4.2 Fiber Orientation Estimation

In the figures that follow, each data point is the mean value over all similar voxels
from all independent noise realizations of the quantity indicated. Only voxels
satisfying the following criteria in the ground-truth were included in results:

• Voxel must be classified as WM.
• Individual fibers must have a volume fraction of at least 15 %.
• The free-diffusion compartment size is no more than 30 %.

These criteria ensured selection of voxels with reasonable signal from fibers, as
compared to free diffusion, from which to estimate fiber orientations.
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Fig. 3 Single fiber estimation versus number of diffusion-weighting directions, N . Analysis
method indicated by color according to the legend. (a) Individual fiber orientation error. (b)
Corresponding false-positive rate

Single Fiber/Voxel Estimation

Figure 3 presents the results of orientation error, and false-positive rate, for voxels
containing single fibers in the ground-truth.

As would be expected the BSM method, which most closely matches the data
synthesis model (1), had the least fiber orientation error. The CSD approach was also
expected to perform well, as the single fiber response function for deconvolution was
estimated from a large number of voxels with identical single fiber tensor.

Two Fiber/Voxel Estimation

For voxels with two fibers, results are pooled according to the crossing angle (0–90ı)
of the two fibers in the ground-truth; 9 bins of width 10ı are used. Fiber orientation
error and false-negative rate is shown in Fig. 4 grouped by the number of diffusion-
weighing directions, N . For clarity, the false-positive rate, which never exceeds a
few percent for any data point, is not shown.

Figure 4 shows that as the crossing angle decreases from 90ı the orientation error
worsens and the false rate heads towards �50 %, at which point only one of the two
fibers in each voxel is detected (on average). At small crossing angles (0–20ı), the
two fibers begin to resemble a single fiber, and as a result the fiber orientation error
is small.

Figure 4 also shows that while there may be little separation of methods in
terms of orientation error, there can be substantial differences in fiber detection rate.
For example, at N D 60 and considering the 70–80ı crossing angle range, the
difference in orientation error between the best and worst methods is approximately
3ı, whereas the corresponding difference in false-negative rate is 45 %.
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Fig. 4 Two fiber estimation versus fiber crossing angle; analysis method indicated by color
according to the legend. (a)–(f) Individual fiber orientation error, with increasing N . (g)–(l)
Corresponding false-negative rate, with increasing N
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Fig. 5 Three fiber estimation versus number of diffusion-weighting directions, N . Analysis
method indicated by color according to the legend. (a) Individual fiber orientation error. (b)
Corresponding false-negative rate

Three Fiber/Voxel Estimation

In the case of three fibers per voxel, wherein each of the fibers are oriented
independently of each other and effectively randomly, a single crossing angle
is insufficient to describe the relative fiber orientations. However, as the true
fiber orientations are known from the ground-truth, we are still able to calculate
the orientation error of individual estimated fibers and detect instances of false-
negatives. Figure 5 presents the results of individual fiber estimation error, and
false-negative rate, for voxels containing three fibers in the ground-truth.

Figure 5 shows that increasing N significantly contributes to reduced orientation
error in the case of three fiber orientations per voxel. Unlike the single-fiber results
in Fig. 3, in which doubling N from 60 to 120 has little impact on estimation error,
there is noticeable improvement here.

We also found substantial differences in detection rate of fibers between the
methods, especially with regards to improvement in fiber detection that can be
achieved with increasing N ; see Fig. 5b.

4 Discussion and Conclusion

In this paper we have examined the accuracy of fiber estimation of six multi-fiber
diffusion analysis methods, at a diffusion-weighting of b D 1;000 s=mm2 and SNR
D 18, which are common in clinical studies. We also investigated the effect of
number of diffusion-weighting directions (from N D 20 to 120) on fiber estimation.

Our results reveal the most significant difference between the methods’ is
their ability to detect multiple fiber orientations. For clinically feasible DW-MRI
acquisitions of N D 20 to 60 diffusion gradient directions, the two-compartment
“ball-and-stick” model (BSM) and constrained (super-resolved) spherical decon-
volution (CSD) method yielded the most accurate fiber orientations and greatest
detection rate of fibers. While N D 120 is typically infeasible for clinical scans
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because of the time required, the results reveal that such high N is an important
factor contributing to the angular resolution necessary for a high detection rate of 3
fibers/voxel.

It is acknowledged that BSM and CSD are favorably biased compared to the
remaining methods due to the simulation framework, and so they should not be
expected to perform as optimally as is presented here on in-vivo data. However,
the relative performance of each method remains unbiased, and the results show
more substantial improvements for BSM and CSD as N increases, compared to the
remaining methods. For researchers processing DW-MRI data acquired in clinical
environments, the results indicate BSM and CSD are the best choices for data
analysis in terms of completeness and accuracy of recovering white-matter fiber
orientation.

In future work we plan to extend our study with tractography results. This
will allow us to investigate the effect of diffusion analysis method on recovering
white-matter pathways. Such work will be of interest to researchers undertaking
tractography based analysis, including studying brain networks.
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