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Abstract Before starting a diffusion-weighted MRI analysis, it is important to
correct any misalignment between the diffusion-weighted images (DWIs) that was
caused by subject motion and eddy current induced geometric distortions. Conven-
tional methods adopt a pairwise registration approach, in which the non-DWI, a.k.a.
the b D 0 image, is used as a reference. In this work, a groupwise affine registration
framework, using a global dissimilarity metric, is proposed, which eliminates the
need for selecting a reference image and which does not rely on a specific method
that models the diffusion characteristics. The dissimilarity metric is based on
principal component analysis (PCA) and is ideally suited for DWIs, in which the
signal contrast varies drastically as a function of the applied gradient orientation.
The proposed method is tested on synthetic data, with known ground-truth transfor-
mation parameters, and real diffusion MRI data, resulting in successful alignment.
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1 Introduction

Diffusion MRI of the brain is based on the anisotropic diffusion of water due
to the presence of nerve fibers. For diffusion MRI models, such as the diffusion
tensor model, it is crucial for reliable analysis that all acquired images are spatially
aligned. However, during the acquisition, subject motion and eddy currents may
cause misalignment, which are typically characterized with global 3D affine trans-
formation models, [11, 17]. Alignment of the diffusion-weighted images (DWIs)
is commonly achieved by a pairwise affine registration of every single DWI to
the non-DWI (i.e., b D 0) image [6, 17]. Recently, several groupwise registration
approaches were proposed, e.g. [1,13,15,23], in which a global dissimilarity metric
is minimized during a simultaneous optimization of the transform parameters for
all images. In this way, a bias towards the reference image is avoided and the
intensity information of all images is taken into account simultaneously, leading
to more consistent registration results [13,15]. Especially for data with a low signal-
to-noise ratio (SNR) it is preferable to use the intensity information of all images
simultaneously.

In this work, we propose a novel groupwise registration method for diffusion
MRI data, using a dissimilarity metric based on principal component analysis
(PCA). Our method is based on the assumption that aligned data can be modeled by
a limited number of principal components with high eigenvalues, while unaligned
data will need more principal components with high eigenvalues. Rohde et al. have
previously used this principle as a post-hoc evaluation method [17]. Melbourne et al.
[14] also use PCA in a registration. They use a progressive principal component
registration (PPCR), iteratively subtracting the principal components from the
original image data.

In our work we use the PCA during registration by deriving a dissimilarity metric
that explicitly maximizes the selected eigenvalues. This approach does not make
assumptions about the diffusion, such as the diffusion tensor model, which means
that it can potentially be used for any other diffusion approach as well, such as
diffusion kurtosis imaging, [5], or diffusion spectrum imaging [25].

2 Method

2.1 Groupwise Registration Framework

Let Mg.x/ be the series of g 2 f1 : : : Gg images to be registered, with x a 3D
voxel position. During registration, a transformation Tg.xI �g/ is applied to each
image Mg

�
Tg.xI �g/

�
. The transformation Tg.xI �g/ is parameterized by �g and

the goal is to find �g. For the groupwise registration approach the transform
parameters for each separate volume are concatenated into one parameter vector
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� D �
�T

1 ; �T
2 ; : : : ; �T

G

�T
. Transform parameters O� are estimated by minimizing a

dissimilarity metric D W O� D arg min� D.�/.

2.2 Dissimilarity Metric

Given sample locations xi with i 2 f1 : : : N g, we can define M .�/:

M .�/ D

0

B
@

M1 .T1 .x1I �1// : : : MG .TG .x1I �G//
:::

: : :
:::

M1 .T1 .xN I �1// : : : MG .TG .xN I �G//

1

C
A (1)

The dissimilarity metric is based on PCA performed on the measurements in M .�/.
Define the G � G correlation matrix K associated with M:

K D †�1C†�1 D 1

N � 1
†�1

�
M � M

�T �
M � M

�
†�1; (2)

M is a matrix within each column the column-wise average of M. † is a diagonal
matrix that equals the square root of the diagonal of the covariance matrix C: † D
diag

�p
C11; : : : ;

p
Cgg; : : : ;

p
CGG

�
. Element i; j of K describes the correlation

between the images Mi and Mj. The correlation between an image with itself is
one by definition. On the diagonal of K we therefore find only ones. The trace of K
is then equal to the number of images in the series, G. Our metric is then defined as

DPCA D
GX

gD1

Kgg �
LX

jD1

�j D G �
LX

jD1

�j; (3)

where �j is the j-highest eigenvalue of K and L is a user-defined number. It is
expected that for diffusion weighted images that follow the diffusion tensor model,
the optimal value for L agrees with the number of free parameters in the tensor
model. The diffusion tensor model has seven free parameters: the six independent
diffusion tensor elements and the intensity for b D 0. Usually more images are
acquired to obtain a better estimation of the model parameters. The redundancy in
the number of measured images becomes visible when PCA is applied: a limited
number (L) of eigenvectors describes most of the variance in the aligned data.
However, when the images are misaligned, the number of eigenvalues that describe
most of the data variance is higher. During optimization of DPCA, the total variance
minus the L highest eigenvalues is minimized. The image data is registered such that
it can be described best by the eigenvectors belonging to the L highest eigenvalues.
Real data does not follow the diffusion tensor model everywhere, [2]. The real data
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is more complicated than the model fitted so it is expected that for real data the
optimal value for L � 7.

2.3 Metric Derivative

For minimization with gradient based optimizers the metric derivative with respect
to � must be known. Differentiating Eq. (3) with respect to � and using the approach
of van der Aa et al. [21] for calculating eigenvalue derivatives we get:

@D

@�
D �

LX

jD1

@�j

@�
D �

LX

jD1

vT
j

@K
@�

vj; (4)

where vT
j is the jth eigenvector of the matrix of K. The unlikely repetition

of eigenvalues which leads to linear combination of eigenvectors being also an
eigenvector, invalidating the above expression, is ignored [21]. Schultz and Seidel
[18] also use this approach, for calculating eigenvalue derivatives of the diffusion
tensor in DW-MRI data. Using Eqs. (2) and (4) we get for the derivative of D with
respect to an element �p:

@D

@�p

D � 2

N � 1

LX

iD1

"

vT
i †�1

�
M � M

�T
 

@M
@�p

� @M
@�p

!

†�1vi

CvT
i †�1

�
M � M

�T �
M � M

� @†�1

@�p
vi

#

:

(5)

The expression above is obtained after some simplifications and using the fact that

vT
i BTEvi D vT

i ETBvi: (6)

for two matrices B and E and vector vi .
The derivative of †�1 with respect to �p is equal to

@†�1

@�p
D � †�3

N � 1
diag

"
�

M � M
�T

 
@M
@�p

� @M
@�p

!#

(7)

and @M=@�p and @M=@�p are computed using

@Mg
�
Tg
�
xiI �g

��

@�p
D
�

@Mg

@x

	T �@Tg

@�p

	 �
xiI �g

�
: (8)
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2.4 Transformation Model

The applied affine transformation is defined as Tg.xI �g/ D A.x � c/ C t C c,
where A is a matrix without restrictions and c is the center of rotation. For the
parameterization we use an exponential mapping of A, similar to [23]:

A D exp .�/ D exp

0

@
�1 �2 �3

�4 �5 �6

�7 �8 �9

1

A and t D .�10; �11; �12/T ; (9)

where exp.�/ is the matrix exponential and omitting subscript g for clarity. For the
calculation of the metric derivative, @Tg=@�g is required. This derivative is trivial
for the translation part of the transform. For the linear part the approach of Fung is
applied [4]. Consider the following system of differential equations:

d

dt
y D �y with solution at t D 1 W y .1/ D exp .�/ y .0/ : (10)

Now differentiate Eq. (10) with respect to �p:

d

dt

�
@

@�p

y
	

D @�

@�p

y C �
@

@�p

y (11a)

@

@�p

y.1/ D @ exp .�/

@�p

y.0/ C exp .�/
@

@�p

y.0/ (11b)

and define:

z D
 

@
@�p

y

y

!

and Q� D
 

� @�
@�p

0 �

!

: (12)

Then Eqs. (11a) and (11b) can be written as:

d

dt
z D Q�z; with solution at t D 1 W z.1/ D exp

� Q�
�

z.0/ (13a)

z.1/ D
 

exp .�/ @
@�p

exp .�/

0 exp .�/

!

z.0/: (13b)

Combining Eqs. (13a) and (13b) it follows that @
@�p

exp .�/ can be extracted from

exp. Q�/.
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2.5 Optimization

The adaptive stochastic gradient descent (ASGD) [7] is used for optimization. This
optimizer randomly samples the image in order to reduce computation time. A
conventional multi-resolution strategy is used to avoid convergence to local minima.
The number of random samples, the number of resolution levels and, the number of
iterations per resolution level are user-defined parameters. The average deformation
of the DWIs is constrained to zero. To guarantee this the approach of Balci et al. is
applied [1]:

@D�

@�g
D @D

@�g
� 1

G

X

g0

@D

@�0
g
: (14)

A scaling between the matrix elements of the transform and the translations is
necessary, due to the different ranges in voxel displacement that they cause. The
scaling is done according to Klein et al. [7].

2.6 Groupwise Approaches Proposed by Others

Wachinger et al. [23] proposed accumulated pair-wise estimates (APE) as a family
of metrics. One of the metrics they propose is the sum of squared normalized
correlation coefficients. This can be written as the sum of the squared elements
of the correlation matrix K. We implemented this metric as follows:

DAPE D 1 � 1

G

sX

j

X

j

K2
ij : (15)

Metz et al. [15] proposed the sum of the variances, assuming no intensity changes
between images. The metric is defined as:

DVAR D 1

NG

NX

iD1

GX

gD1

"

Mg
�
Tg
�
xi; �g

�� � 1

G

X

g

Mg
�
Tg
�
xi; �g

��
#2

: (16)

Both metrics are compared with our method DPCA.

2.7 Implementation

The method is implemented in the publicly available registration package elastix
[8]. In all experiments we used 10,000 samples, 2 resolutions, and 1,000 iterations
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per resolution. The sampling was performed off the voxel grid, to reduce interpola-
tion artifacts [8]. Masks are used in all experiments. For the synthetic data a mask
is used to exclude the background, in order to only sample in the region of the
brain. This is done to make sure that the zero voxel values in the background are
not helping the registration. For both the synthetic data and the real data, a mask is
used to exclude the high voxel values of the b D 0 image (in cerebrospinal fluid).
When excluding the high voxel values the correlation between the b D 0 image and
the DWIs is increased. In preliminary experiments it was observed that this mask is
necessary for good alignment.

3 Experiments and Results

3.1 Synthetic Data

A noiseless, initially perfectly aligned, synthetic DWI set [9], with size 107�79�60,
1:8 � 1:8 � 2:4 mm3 voxel size and G D 61, was transformed with five random
parameterized affine transformations. The matrix elements of � were drawn from a
normal distribution 0:01N .0; 1/ and tx , ty and tz were drawn from N .0; 1/ (mm).
The five transformed image sets are registered with the three different metrics DPCA,
DAPE and DVAR, where for metric DPCA different values for L are investigated:
L 2 f1 : : : 10g. The synthetic data is simulated using the diffusion tensor model.
For L D G, DPCA D 0 and the expected optimal value for L is 7, since this is
the number of free parameters in the diffusion tensor model. The range chosen for
investigating the impact of L is therefore expected to be sufficiently broad.

In the next experiment Gaussian noise1 was added to the synthetic DWI set,
which gives a resulting SNR of 8.65. Our metric, using L D 6, was used to register
the noised DWI set with the same initial five transforms.

Evaluation measure Let Tg.xI O�g/ be the transformation that was computed by
the registration. The deformation field of the initial aligned data, after application
of the composition of Tg.xI O�g/ and Tg.xI �init; g/ should be zero: dg.x/ D
Tg
�
Tg.xI �init; g/I O�g

� � x D 0. However, the constraint, Eq. (14), was not applied
to the initial transformation, so we subtract the mean of the deformation field:
d�

g .x/ D dg.x/ � 1
G

PG
gD1 dg.x/. Our measure for the registration error was then

defined as the mean and standard deviation of kd�
g .x/k for all x and g.

Results Table 1 shows the mean and standard deviation of kd�.x/k for the
experiments with the synthetic DWI set, for each different metric and before
registration. For L D 6 our method performs best. But for L > 3 our method is

1Although noise in MR images is Rician distributed, for SNR > 5 it can be approximated with a
Gaussian distribution [19].
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Table 2 Results for
synthetic DWI set with noise

Tinit m ˙ � (mm) m ˙ � (mm) m ˙ � (mm)
# DPCA DAPE DVAR

1 0.11 ˙ 0.20 1.30 ˙ 0.85 4.51 ˙ 6.22
2 0.11 ˙ 0.20 1.37 ˙ 1.03 3.70 ˙ 6.25
3 0.11 ˙ 0.20 1.42 ˙ 1.00 3.60 ˙ 6.51
4 0.11 ˙ 0.20 1.48 ˙ 0.98 3.37 ˙ 5.82
5 0.11 ˙ 0.20 1.47 ˙ 1.04 3.98 ˙ 6.02

already better than DAPE. For L D 2, the error is particularly high. Visual inspection
revealed that in this case the registration resulted in two completely misaligned
groups of images Mg , although the images within each group were properly aligned
with each other. This apparently leads to a correlation matrix K with two relatively
high eigenvalues. Table 2 shows the results of the experiments with noisy synthetic
DWI set, for all metrics. For the noisy dataset our method is the best of the three.

3.2 Real Diffusion Weighted Data

Five diffusion MRI data sets were obtained from different previous studies to
evaluate our new approach. Details of these studies:

1. 10 b D 0 s/mm2; 60 b D 700 s/mm2; 2:0 � 2:0 � 2:0 mm3 voxel size; 1.5T; [10]
2. 1 b D 0 s/mm2; 60 b D 1;200 s/mm2; 1:75 � 1:75� 2.0 mm3 voxel size; 3.0T; [3]
3. 1 b D 0 s/mm2; 32 b D 800 s/mm2; 1:75 � 1:75� 2.0 mm3 voxel size; 3.0T; [24]
4. 1 b D 0 s/mm2; 32 b D 800 s/mm2; 1:75 � 1:75� 2.0 mm3 voxel size; 1.5T; [22]
5. 1 b D 0 s/mm2; 45 b D 1;200 s/mm2; 1:72 � 1:72� 2.0 mm3 voxel size; 3.0T;

[16]

For all data sets we choose L D 6.
To evaluate the registration, ExploreDTI [12] is used. B-matrix rotation is applied
[3]. Directional Encoded Colormaps (DEC) and the standard deviation (STD) across
the DWIs show a bright rim at the edge of the brain when the images are not
aligned [20]. DEC maps and STDs of the DWIs of the five datasets before and after
alignment are shown in Fig. 1. The bright rim is visible in the data pre alignment
and is not visible in the data post alignment. The method is therefore successful in
aligning the data. Metrics DVAR and DAPE were also tested. In agreement with the
results on synthetic data, the proposed metric DPCA outperformed DVAR and gave a
slight improvement over DAPE, based on inspection of the DEC and STD maps.
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STD of DWIs
pre alignment

dataset 1 2 3 4 5

STD of DWIs 
post alignment

DEC 
pre alignment

DEC 
post alignment

Fig. 1 STD (equal intensity range for pre and post registration) and DEC maps of datasets 1–5,
pre and post alignment

4 Conclusions

With regard to the synthetic DWI set our method outperforms the two existing
groupwise methods with which it was compared.

The use of L D 6 eigenvalues performed best. This is due to the underlying
structure of the synthetic DWI data: the degrees of freedom are determined by the
directions of the diffusion in the brain. The diffusion tensor model has 7 free model
parameters, so the optimal value for L was expected to be 7. This optimal value is 6
due to the use of the mask: The eigenvalue spectrum of the aligned synthetic DWI
shows that 99 % of the data variance is described by 6 eigenvectors when the high
values are masked, but without masking the high values, this number is 7. Masking
out these high values decreases the data variance that is described by the b D 0

image, leading to a decrease in the number of eigenvectors describing most of the
data variance.
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The number of eigenvalues is a parameter that must be set correctly to obtain the
best results, however the synthetic data experiments suggest that large values of L

are preferable to small values of L. The optimal value for L for real data may not
be 6. Further research qualifying the performance of the registration for real data is
necessary to see if the optimal value should be >6.

It would be an improvement if the method could also work without the necessity
of the mask. Furthermore it would be interesting to investigate if the proposed
method also works on other applications that involve intensity changes over time,
such as perfusion-imaging or T1 mapping data.

Altogether the proposed method offers potential improvements over the current
standard to align diffusion weighted data, due to the general benefits of groupwise
registration, the fact that the method is not parameterized with a diffusion model,
and the good results obtained on the synthetic and real data.
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