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Abstract Diffusion-weighted imaging (DWI) and tractography allow to study the
macroscopic structure of white matter in vivo. We present a novel method for
deformable registration of unsegmented full-brain fiber track sets extracted from
DWI data. Our method attempts to align the track orientation distributions (TODs)
of multiple subjects, rather than individual tracks. As such, it can handle complex
track configurations and allows for multi-resolution registration. We validated the
registration method on synthetically deformed DWI data and on data of 15 healthy
subjects, and achieved sub-voxel accuracy in dense white matter structures. This
work is, to the best of our knowledge, the first demonstration of direct registration
of probabilistic tractography data.

1 Introduction

Because of their unique ability to study the macroscopic structure of white matter
(WM) in vivo, diffusion-weighted imaging (DWI) and tractography have become
important tools in neuroscientific research. Probabilistic tractography methods on
high angular resolution diffusion imaging (HARDI) data have been shown to
be robust to noise and complex fiber configurations such as crossings, but the
large amount of tracks they typically generate are difficult to analyse manually.
Automated analysis, such as clustering and labelling of tracks into anatomical
bundles [9, 12, 20] and population-based variability analysis [8], is facilitated by
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the availability of a population atlas of the expected track configuration. While such
atlases can be built by registration of anatomical images of different subjects, it
has been pointed out [8, 13] that direct registration of the extracted tractograms
may be better suited for population-based analysis of the track configuration, as
the matching criterion is directly related to the structures of interest.

Current methods for non-rigid track-based registration (e.g., [2, 8, 21]) require a
pre-existing segmentation of WM bundles. Registration of unsegmented, full-brain
tractography data has, to our knowledge, been limited to affine transformations
[11, 13, 22]. Moreover, the effectiveness of these methods has only been demon-
strated for deterministic, DTI-based tractography. Secondly, many of these methods
are based on distance measures between a compact set of sample tracks [11, 13],
feature points [2] or “fiber modes” [22], and thereby neglect part of the information
contained in dense track sets. A notable exception is the metric on currents [8], in
which the distance is defined based on the spatial distribution of the mean local
track direction. In regions of crossings or track dispersion, however, this mean track
direction is ill-defined.

In this paper, we examine the use of an image-domain representation of the
spatial and angular distribution of full-brain track sets for deformable registration
and atlas construction. In contrast to the current state-of-the-art, our method does
not depend on a pre-existing bundle segmentation and is able to handle crossings
and dispersion. We evaluate our method on artificially deformed data of a single
subject (known ground-truth) and on HARDI-based probabilistic tractography data
of 15 normal subjects, and compare the results to image registration methods based
on the fractional anisotropy (FA) and the fiber orientation distribution (FOD).

2 Methods

2.1 Track Orientation Distribution

The core idea of this paper is to represent the tractogram as a probability distribution
function (PDF) in the image domain, rather than a set of individual tracks (samples
from this distribution). One example of such representation is the map resulting
from track-density imaging (TDI) [3], in which the intensity of each voxel is
determined by the number of tracks that cross that voxel. In recent work, our group
has generalized TDI to incorporate angular information as well [6]. As such, we
obtain a full spatio-angular PDF of the tractogram, named the track orientation
distribution (TOD).

Suppose each track t that crosses a voxel r is linearly parametrized by " according
the length along the track, and "1 and "2 are the values of this parametrisation at the
voxel boundaries. The TOD in that voxel is a function in u 2 S

2 and is formally
defined as
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Fig. 1 Illustration of the track orientation distribution of SH order 16 for 3 different track
configurations: a single line segment (left), a curved track (middle) and a crossing of 2 fiber track
bundles (right)

TOD.r; u/ D
X

t

Z "2

"1

Qızt ."/.u/

"2 � "1

d" ; (1)

where zt ."/ is the local direction of t at position " and Qızt ."/.u/ is the apodized
point spread function (PSF) oriented along this direction. The apodized PSF [15]
is the closest strictly-positive approximation of a Dirac ı-function in the spherical
harmonics (SH) basis [4] of order `max, as shown in blue in Fig. 1. Hence, each track
additively contributes to the TOD in a voxel by averaging the apodized PSF along
its intersecting part (through integration and normalization).

Note that the TOD in Fig. 1 resembles the fiber orientation distribution
(FOD) [17], but while they are of similar qualitative nature, they have an entirely
different meaning [6]. The FOD estimates the local fiber distribution from DWI data,
whereas the TOD is a direct representation of any given tractogram, as generated
by a given algorithm. Hence, the TOD incorporates more global information, while
the FOD is directly related to the DWI data in a single voxel.

2.2 TOD Registration and Reorientation

The TODs of N different subjects are represented as images of their coefficients
in the SH basis of order `max D 4. As such, the track set registration problem is
redefined as a more convenient image registration problem. Inspired by existing
work on FOD registration [14], we minimize the sum of squared differences
(SSD) between all pairs of transformed TOD coefficients. By Parseval’s theorem
for spherical harmonics, this corresponds to minimizing the squared amplitude
difference between the transformed TODs, integrated over S2.

In this study, we use the diffeomorphic demons algorithm [19], adapted for
groupwise, multi-channel registration as in [5]. The SSD is minimized between
the corresponding TOD coefficients ci Œk� and ci Œj � of all subject pairs Œk; j � by
calculating the symmetric demons forces

Fi Œk; j � D � .ci Œk� � ci Œj �/ .rci Œk� C rci Œj �/=2

k.rci Œk� C rci Œj �/=2k2 C .ci Œk� � ci Œj �/2=.2�/2
; (2)
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where � is the maximum step size. The total pairwise force FŒk; j � is the (weighted)
average of all channels, and the final force acting on subject k is defined as the
average force exerted by all other subjects, i.e.,

FŒk� D 1

N � 1

NX

j D1
j ¤k

X

i

wi Fi Œk; j � : (3)

The weights wi are defined such that the total weight of all coefficients of every
order ` is the same, i.e., the 0th order coefficient has weight 1

3
, the 5 coefficients

of order 2 each have weight 1
5�3 and the 9 4th order coefficients have weight

1
9�3 . In our experience, these weights improve the robustness of the registration
against challenging initialization. Note that as FŒk; j � D �FŒj; k�, N.N � 1/=2

pairwise force fields need to be computed. The algorithm proceeds as in [19]:
fluid regularization is applied by smoothing the total force field; the exponential of
this update field is composed with the total deformation field; and finally diffusion
regularization is applied by smoothing the total deformation field.

After each iteration, the TOD in every voxel is reoriented by applying the method
of Raffelt et al. [15]. To this end, the TOD is decomposed into a mixture of
apodized PSFs along equally distributed directions and reoriented by rotating and
recomposing each of these PSFs, based on the Jacobian of the local deformation.
In terms of computation time, reorienting the TOD is much more efficient than
recomputing the TOD of the transformed tracks, especially for large track sets.

3 Experiments and Results

3.1 Data, Processing and Fiber Tracking

HARDI images of N D 15 healthy subjects were acquired with a Siemens 3T
system, using a twice-refocussed spin-echo sequence and an isotropic voxel size
of 2.5 mm. For each subject, DW images in 75 uniformly distributed gradient
directions at b D 2;800 s=mm2 and 10 non-DW images (b D 0 s=mm2) were
acquired. Using MRtrix [18], we obtained the FODs of SH order 8 with constrained
spherical deconvolution [17] and computed two million tracks for each subject using
probabilistic streamline tracking with uniform seeding in a full brain mask, step size
0.2 mm, minimum curvature radius 1 mm, FOD amplitude cutoff 0.1, and minimum
track length 10 mm.
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3.2 Experiment 1: Synthetically Deformed Single Subject

In this first experiment, we aim to evaluate our registration method on tractography
data of multiple deformed copies of a single subject with known anatomical
correspondences. Therefore, we randomly selected 1 subject in the group, and
warped and reoriented its FODs onto each of the 14 other subjects according to
the deformation fields obtained from groupwise demons registration of b0, FA
and MD channels [5]. As such, we obtained 14 synthetic images and ground-truth
deformation fields between each pair. We then generated fiber tracks in each of
these images individually and computed the TODs. By deforming the FOD images,
instead of the tractography data, this setup allows to test the algorithm’s robustness
against inter-subject differences in seeding and track density.

We ran the proposed registration method on the 14 synthetic TOD images
using a multi-scale strategy. The registration starts with maximum step size � and
regularization kernel widths �fluid and �diff all equal to 5.0 mm, then proceeds at
2.5 mm and finally at 1.25 mm, with 500 iterations at each scale. In our experience,
this is sufficient to ensure convergence. The resulting deformation fields and their
inverse were composed in order to obtain all pairwise deformation fields. The
accuracy of the registration is assessed by computing maps of the Euclidean distance
between these deformations and their corresponding ground-truth. The mean of
the distance maps of deformations that map onto the same subject then provides
a measure of the registration accuracy of that subject.

In addition, we compared to the accuracy of direct image registration by
performing the same groupwise demons algorithm with identical parameter settings
on the FA (single channel) and on the FOD coefficients (cutoff at `max D 4) of the
14 synthetic images. For comparability, all distance maps (defined in the space of
the different images) are warped to the original atlas space, i.e., the atlas that was
used to generate the synthetic data and the ground-truth deformations. As such, we
can average all distance maps across subjects and properly compare FA, FOD and
TOD as features for registration.

Figure 2 shows these maps of the averaged deformation distance, masked to
the full brain. The figures suggest that the accuracy of FA and FOD registration
is relatively uniform across the brain, while TOD registration achieves a higher
accuracy in dense white matter yet lower in the frontal lobe and the distal gyri.
The box plots in the bottom row of Fig. 2 confirm this observation: the median
registration error in the full brain mask is 2.52 mm for FA registration, 2.55 mm for
FOD registration, and 2.45 mm for TOD registration, but the variability of the TOD
registration error is larger. If we define a WM mask by thresholding the TDI map of
each subject at 25 % of its maximum, the accuracy of FA and FOD registration
remains approximately unchanged, while the median error of TOD registration
drops to 1.51 mm.
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Fig. 2 Results of Experiment 1. Euclidean distance between inter-subject deformation fields and
their ground-truths, for FA (left), FOD (middle) and TOD (right) based registration. The top row
shows the deformation errors mapped to a common atlas space. The bottom row shows box plots
of the registration error in all voxels in a brain mask, and voxels where the track density is larger
than 10 % and 25 % of the maximum

Fig. 3 Results of Experiment 2. Coronal slice of the mean TOD atlas and a close-up of the crossing
of the corpus callosum and the corticospinal tract. The 0th order coefficient of the TOD (the TDI
map) is overlaid with spherical plots of the TOD (`max D 4) in all voxels

3.3 Experiment 2: Multiple Subjects

We applied the presented registration method to the track sets of the 15 different sub-
jects, using the same multi-scale setup and the same parameters as in Experiment 1.
The outcome is the mean TOD atlas shown in Fig. 3, as well as 15 deformation fields
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Fig. 4 Results of Experiment 2. Axial, sagittal and coronal slabs (thickness 7.5 mm) of the
subsampled tractograms (1,000 tracks) of all subjects before (left) and after (right) registration.
Each subject is represented in a unique colour

that map the subjects onto atlas space. Figure 4 shows a subsample of the original,
probabilistic track sets of all subjects, and the same tracks warped to atlas space. The
results demonstrate that the dense white matter structures are successfully aligned
and clearly reflected in the mean TOD atlas. Remaining alignment errors are located
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Fig. 5 Results of Experiment 2. Box plots of the angular correlation coefficient between the
TOD (SH order 8) of the transformed tracks, for FA (left), FOD (middle) and TOD (right) based
registration. Box plots are shown for all voxels in a brain mask, and for voxels where the track
density is larger than 10 and 25 % of the maximum

in the caudal end of the corticospinal tract, at the interface of WM and cerebrospinal
fluid (CSF) in the ventricles, and in the cortical gyri.

We repeated this experiment using FA and FOD based registration, like we did
in Experiment 1. Next, we use the resulting deformation fields to transform the
original tracks of all subjects to the space of each atlas, and recompute the TOD of
the transformed tracks at order `max D 8. Note that this exceeds the order used
for registration, and hence contains more detailed angular information. We then
assess the quality of the registration by mapping the angular correlation coefficient
of the TOD of all subject pairs. The angular correlation coefficient rA between 2 SH
functions U.�; �/ D Pn

iD0 uiYi .�; �/ and V.�; �/ D Pn
iD0 vi Yi .�; �/ is defined as

rA D
Pn

iD1 ui � viqPn
iD1 u2

i �
qPn

iD1 v2
i

; (4)

and scales between �1 and 1 [1]. The results are displayed in Fig. 5, and show that
in deep white matter, i.e., in high track density masks, the angular correlation of the
TOD atlas is significantly higher than for the FA and FOD atlases.

4 Discussion

The TOD offers a new solution to the track set registration problem, akin to the
use of Gaussian mixture models in point cloud registration. By modelling the
(discrete) tractogram as a (continuous) probability distribution, we can successfully
register track sets without relying on correspondences or prior segmentation. This
is especially important for the very large (on the order of millions), probabilistic
tractography datasets that are increasingly popular.

As opposed to existing track set registration methods, the TOD neglects the long-
range connectivity information contained in the track set. The TOD, like the FOD,
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can not discriminate crossing, kissing and fanning configurations. For the purpose
of registration, however, this enhances the robustness against spurious tracks. It
is precisely because ambiguous FOD configurations often result in false positive
tracks, that we wish to exclude long-range information from the matching criterion.

The representational power of the TOD depends on the maximal harmonic
order `max of the SH basis, i.e., higher orders allow to model more complex
track configurations. However, this high-order information may not contribute
much additional information to the matching criterion, especially at the expense
of the additional computation time that higher orders impose on the registration
and reorientation. We therefore selected `max D 4 as a compromise between both.
Figure 3 shows that fourth order TODs, while relatively smooth, are sufficient to
capture the main directions of crossing bundles.

The experiments show that the presented method can successfully align large
probabilistic track sets of 15 subjects. The resulting atlas (Fig. 3) models the
expected local track configuration. The mean registration accuracy on data with
known ground truth is on the order of the voxel size and improves in regions of
high track density, i.e., where the TOD contains the most information. We have
compared these results to more conventional image registration methods based on
the FA and the FOD, as registration of the underlying DWI data is currently the
only alternative to non-rigid alignment of probabilistic track sets. Figure 2 shows
that the registration accuracy in the FA and FOD atlas is homogeneous over the
whole brain and of the same order as the accuracy of TOD registration. However,
the misalignment errors of the TOD registration are localized to regions where the
tractogram is sparse (e.g., in the frontal lobe, where magnetic field homogeneities
are known to affect the reconstruction). With a track density threshold as low as 10 %
of the maximum, the TOD registration significantly outperforms image registration.

With respect to DWI registration in general, the improved quality of the regis-
tration in white matter is promising for group analysis of WM-targeted pathologies,
although we must stress that the robustness of our method against pathological data
has not yet been evaluated. In addition, the sensitivity of TOD registration to the
tracking algorithm and its parameters should be investigated prior to such analysis,
but this goes beyond the scope of this work.

5 Conclusion and Future Work

We have presented a novel method for deformable registration of fiber track sets.
Rather than comparing individual fibers, we seek to optimise the similarity between
the TODs, spatio-angular probability distributions of the full-brain track configu-
ration, of all subjects. Our method does not require track correspondences or prior
bundle segmentation, is robust against interrupted and spurious tracks, and is able to
handle crossings and probabilistic tractography data. The resulting population atlas
is well suited as prior to track-clustering methods [9, 12, 20] and for population-
based analysis of the track configuration [8], as it avoids bias towards the underlying
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DWI data. Indeed, the results indicate that direct registration of the tractograms
outperforms conventional image registration methods in dense white matter.

Several potential improvements remain to be explored. For one, the current
similarity measure, i.e., SSD on the TOD coefficients, is sensitive to track density
differences and might therefore cause misalignment errors. Entropy- or correlation-
based similarity metrics might perform better in that respect. Moreover, similar to
the approach taken in Raffelt et al. [14] for FOD registration, the current set-up
applies reorientation after each iteration, but ignores it in the calculation of the
diffeomorphic update field. Accounting for SH reorientation in the optimization
is a daunting task and has, to the best of our knowledge, only been done in
the LDDMM framework [7]. However, it could lead to faster convergence and
more accurate registration, particularly in the distal gyri. Secondly, as the TOD
can be represented on an arbitrary voxel grid, future work will investigate if the
registration can benefit from a multi-resolution optimisation scheme. Finally, as
suggested by Siless et al. [16], T1-weighted images can provide additional contrast
in CSF and grey matter, although this requires accurate correction of susceptibility-
induced distortion of the DWI data (e.g., using a reverse-phase encoding acquisition
protocol [10]). In fact, as the TOD is represented in the image domain, the proposed
method is very well suited to be extended with other modalities.
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