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Abstract Diffusion magnetic resonance imaging (dMRI) is an important tool that
allows non-invasive investigation of the neural architecture of the brain. Advanced
dMRI protocols typically require a large number of measurements for accurately
tracing the fiber bundles and estimating the diffusion properties (such as, FA).
However, the acquisition time of these sequences is prohibitively large for pediatric
as well as patients with certain types of brain disorders (such as, dementia). Thus,
fast echo-planar imaging (EPI) acquisition sequences were proposed by the authors
in [6, 16], which acquired multiple slices simultaneously to reduce scan time. The
scan time in such cases drops proportionately to the number of simultaneous slice
acquisitions (which we denote by R). While preliminary results in [6, 16] showed
good reproducibility, yet the effect of simultaneous acquisitions on long range fiber
connectivity and diffusion measures such as FA, is not known. In this work, we
use multi-tensor based fiber connectivity to compare data acquired on two subjects
with different acceleration factors (R D 1; 2; 3). We investigate and report the
reproducibility of fiber bundles and diffusion measures between these scans on two
subjects with different spatial resolutions, which is quite useful while designing
neuroimaging studies.
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1 Introduction

High Angular Resolution Diffusion Imaging (HARDI) involves acquiring diffusion
information for a single b-value in several gradient directions uniformly spread on a
sphere [17]. This protocol allows for resolving the angular structure of the neural
fibers, while diffusion spectrum imaging (DSI) proposed by Wedeen et al. [20]
provides important information about the radial signal decay, which is sensitive to
minor white matter pathology. Both, HARDI and DSI acquisition schemes require
several measurements along different gradient directions making them difficult to
use in clinical settings. To reduce the scan time, two different yet complimentary
approaches have been proposed; (i) Multi-slice acquisitions: This approach used
the standard MRI hardware to cleverly acquire multiple slices simultaneous, thus
reducing the scan time. (ii) Compressed sensing: These approaches used the concept
of compressed sensing to reconstruct the diffusion signal in q-space from very
few measurements. Before these approaches can be used in neuroscience studies,
they have to be compared and validated to better quantify their effect on various
structures of the brain. In this work, we propose to compare and contrast three
simultaneous multi-slice acquisition protocols in terms of their ability to trace fiber
tracts and estimate diffusion measures such as, fractional anisotropy (FA), and trace
(TR). Simultaneous multi-slice acquisitions: Traditional acquisition techniques
typically rely on rapid, single-shot two-dimensional (2D) Echo Planar Imaging
(EPI) acquisition methods. However, for high-resolution imaging where a large
number of slices are needed to cover the brain, a long repetition time (TR) is
required. This renders the method inefficient compared with 3D encoding methods.
Conventional accelerated 2D parallel imaging approaches [7] can greatly increase
the speed of the EPI encoding by eliminating phase encoding steps. Although
beneficial for other reasons, this does not translate to a significant reduction in TR or
acquisition time, as diffusion sequences contain large, fixed time blocks that cannot
be shortened, such as the time for diffusion encoding or the time to a suitable echo
time (TE) for T2* contrast.

In comparison, accelerating the data acquisition using the simultaneous acquisi-
tion of multiple slices can be very effective as it directly reduces the amount of time
needed to acquire a fixed number of slices. For example, if three imaging slices
are acquired per shot instead of one, the total acquisition time decreases directly
by a factor of 3. When TR > T1, then the acquisition can maintain a nearly fully
relaxed equilibrium magnetization even for three acceleration. Furthermore, unlike
standard parallel imaging techniques, simultaneous multi-slice acquisition methods
do not shorten the readout period or omit k-space samples. Therefore, they are not
subject to a

p
R penalty on SNR (where R is the acceleration factor) found in

conventional parallel imaging acceleration. Thus, in this work, we use the multi-
slice acquisition protocol detailed in [16], which uses both the inplane (acceleration
factor of 2) and slice accelerations to simultaneously acquire data from multiple
slices. In this case, the repetition time TR is reduced proportionately to the number
of multi-slice acquisitions R.
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2 Our Contributions

We propose to quantitatively compare three different multi-slice acquisition
schemes corresponding to the acceleration factors of R D f1; 2; 3g respectively.
Existing work in [6, 16] has shown the efficacy of multi-slice acquisitions only
at a voxel level and hence its effect on long and short range fiber tracts is not
known. Further, a comprehensive analysis of the reproducibility of several diffusion
measures, such as, FA and trace has not been done. In this work, we use a multi-
tensor unscented Kalman filter (UKF) based tractography algorithm of [2, 10]
to obtain full brain connectivity and quantitatively compare fiber bundles from
different acquisitions. We also compare the effect of spatial resolution on diffusion
measures (FA and trace) and fiber bundle connectivity for the three acceleration
factors. Thus, to the best of our knowledge, this is a first such quantitative study on
comparing multi-slice acquisitions. Knowing the performance of each type of scan
can provide useful information during the design of neuroimaging studies.

3 Methods

Multi-tensor analysis: It is now quite well-known that the single tensor method is
inadequate for representing multi-fiber compartments [17]. Consequently, several
advanced models have been proposed in the literature to represent the fiber
orientation distribution functions (fODF) [1, 4, 11, 12]. However, all of these
methods estimate the fODF at each voxel independently and then a separate
tractography algorithm is used to trace the fiber tracts. In contrast, the method of
[10] does a joint fiber model estimation and tractography, by accounting for the
correlation in diffusion of water along the fiber tract while recursively estimating
the model parameters. Further, as reported in [2, 13], adding an isotropic “free-
water” component to the model can better characterize the signal and produces
more accurate fiber tracts. We thus use two-tensors and an isotropic free-water
compartment to model our signal S :
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where, qi 2 S
2 is the gradient direction, w1 C w2 D 1 and wi forms the volume

fraction of each component, D1 and D2 are cylindrical tensors and Diso is an
isotropic tensor with fixed diffusivity of 0.003 mm2=s as given in [14]. For a
thorough treatment on the UKF based tractography algorithm, please refer to [10]
(http://www.nitrc.org/projects/ukftractography/).

Metric for comparing fiber bundles: Several metrics have been proposed to
compute distances (overlap) between fiber bundles, in the context of fiber bundle
registration [5, 19]. In this work, we propose to use the Bhattacharyya metric B

http://www.nitrc.org/projects/ukftractography/
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on probability distributions [9] to quantify overlap between fiber bundles, due to
its simplicity in computation and interpretation. To compute B , we estimate the
probability distribution for each of the spatial co-ordinates (x, y, z) of a fiber
bundle using a kernel density estimator [3]. Then, the Bhattacharyya metric in the
x-coordinate Bx is given by: Bx D R p

p1.x/p2.x/dx, where p1.x/; p2.x/ are
the pdf’s to be compared. To compute the distance between two fiber bundles, we
simply take an equally-weighted combination in each co-ordinate:

B D 1

3

�Z p
p1.x/p2.x/ dx C

Z p
p1.y/p2.y/ dy C

Z p
p1.z/p2.z/ d z

�
:

Note that, if p1 D p2, then Bx D R
p1.x/ dx D 1. Thus, values of B are bounded

between 0 and 1. Further, B will be 1 for a perfect match between two fiber bundles
and 0 for no overlap at all.

4 Experiments

Data acquisition: We acquired diffusion MRI data on two subjects using the
following set of parameters and an in-plane acceleration factor of 2: (1) For subject
# 1, we used the following scan parameters: 60 gradient directions at a b-value of
1,000, (echo time) TE D 130 ms, spatial resolution of 2 � 2 � 2 D 8 mm3. Three
data sets were acquired for three acceleration factors R D f1; 2; 3g with repetition
time TR D {10.6, 5.5, 3.7} s respectively. (2) For subject # 2, all parameters were
the same, except the spatial resolution, which was 2:5 � 2:5 � 2:5 D 15:62 mm3. A
decrease in the spatial resolution from 8 to 15:62 mm3 increases the SNR by a factor
of 2 (proportional to the increase in size of the voxel 15:62

8
). This would allow us to

quantify the effect of increased SNR on diffusion measures and tractography. All the
diffusion data sets for each subject were aligned to the same co-ordinate system and
corrected for motion and eddy current distortion using FLIRT [8]. A T1-weighted
image acquired for each subject was parcellated into several gray matter regions
(corresponding to the SRI24 atlas) using the CMTK toolkit [15].

To quantify the differences between the acquisitions corresponding to the various
acceleration factors, we performed whole brain tractography using the multi-tensor
algorithm of [10], with 10 seeds per voxel. All parameters in the tractography
algorithm were kept the same for all acquisitions. Fiber bundles connecting 66
different regions of the SRI24 atlas were extracted for each subject. For each fiber
bundle, we computed the following error metrics, assuming that the acquisition with
R D 1 is the “gold standard”.

1. Overlap between fiber bundles was computed using B .
2. Percentage difference in FA: 100 � .FAg�FA/

FAg
, where FAg is the mean FA of the

gold standard.
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Fig. 1 Qualitative comparison of interhemispheric precentral fibers traced for two subjects and
acceleration R of 1 (red), 2 (green), and 3 (blue). Fibers from R D 2 data (green) overlap quite
well with the standard R D 1 (red) protocol for the both subjects. (a) Subject #1, R D {1,2}.
(b) Subject #1, R D {1,3}. (c) Subject #2, R D {1,2}. (d) Subject #2, R D {1,3}

3. Percentage difference in trace (TR): 100 � .Tg�T /

Tg
, where Tg is the mean trace of

the gold standard fiber bundle.

These metrics allow for computing the error in the estimation of the principal
diffusion direction(s) and diffusion measures for the various acceleration factors.
We should note that, as reported in [16], the SNR decreases with increase in the
number of multi-slice acquisitions. Thus, we expect increased error for R D 3.

Fiber bundle connectivity: Figure 1 shows the fibers connecting the left and right
precentral gray matter regions of the brain for both the subjects. Red fibers indicate
“gold standard” with R D 1, while green and blue indicate fibers traced with R D 2

and R D 3 respectively. Since the number of voxels in subject #2 is less (due to
lower spatial resolution), the overall number of fibers are fewer compared to subject
#1.

Fiber bundle overlap: Figure 2 shows a fiber connectivity graph color coded with
the fiber bundle overlap measure B between the gold standard R D 1 and the fast
acquisitions with R D 2; 3 for both the subjects. We observe that in both the cases,
there is a significant overlap (around 0.9) for the case of R D 2, while it decreases
in several fiber bundles for R D 3. Specifically, at higher spatial resolution (subject
#1), the noise for R D 3 acceleration significantly affects the tractography algorithm
causing reduced overlap compared to a similar acquisition for subject #2 (with lower
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Fig. 2 Fiber bundle connectivity graph color coded with overlap measure B for both the subjects.
In general, overlap is close to 0.9 for both subjects for R D 2. Increased SNR due to bigger voxel
size in subject #2 produces better overlap for R D 3. (a) Subject #1, overlap B for R D {1,2}.
(b) Subject #1, overlap B for R D {1,3}. (c) Subject #2, overlap B for R D {1,2}. (d) Subject #2,
overlap B for R D {1,3}

spatial resolution). However, in general, for both the subjects, the overlap always
exceeds B D 0:8 for all fiber bundles.

Reproducibility in FA: For each fiber bundle, we also computed the percentage
difference in FA for the R D f2; 3g accelerations factors. For the case of R D 2,
most fiber bundles showed less than 8 % difference in estimation of FA (with a few
exceptions). This is in line with other single tensor based studies that have reported
an average variability of about 5 % in white matter and 10–15 % in gray matter
between scans of the same subject on the same scanner [18]. In our case, since the
tractography algorithm traces tracts well into the gray matter, the average difference
in FA (of white matter) was slightly higher as given in Table 1. Further, as seen in
Figs. 3 and 4, the accelerated acquisitions result in an overall decrease in estimation
of FA and trace.

Reproducibility in Trace (TR): As seen in Fig. 4 (and Table 1), trace is less
affected with the multi-slice acquisitions compared to FA. However, an overall
decrease in trace is noticed for all accelerated acquisitions, albeit within the range
of variability seen in standard acquisitions.
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Fig. 3 Connectivity graph is color coded with percentage difference in FA for fast acquisitions.
˙6 % difference is observed for most fiber bundles for R D 2 acquisition (both subjects), whereas
the difference is quite high for R D 3 in both subjects. (a) Subj. #1, % FA difference in R D {1,2}.
(b) Subj. #1, % FA difference in R D {1,3}. (c) Subj. #2, % FA difference in R D {1,2}. (d) Subj.
#2, % FA difference in R D {1,3}

Fig. 4 Connectivity graph is color coded with percentage difference in trace (TR) observed
between the acquisitions. ˙6 % is observed for most fiber bundles for R D 2 acquisition (both
subjects), whereas the difference is quite high for R D 3. (a) Subj. #1, % TR difference in R D {1,
2}. (b) Subj. #1, % TR difference in R D {1, 3}. (c) Subj. #2, % TR difference in R D {1, 2}.
(d) Subj. #2, % TR difference in R D {1, 3}



10 Y. Rathi et al.

Table 1 Average percentage
difference in estimation of
whole brain FA and trace

FA TR

– R D 2 R D 3 R D 2 R D 3

Subject # 1 (%) 7.70 9.63 6.03 8.32
Subject # 2 (%) 4.96 7.39 4.55 6.10

5 Conclusion

In this work, we compared simultaneous multi-slice acquisitions of diffusion MRI
on two subjects with acceleration factors of R D f1; 2; 3g. We used a multi-tensor
tractography algorithm to trace several fiber bundles of the brain and investigated
the fiber bundle overlap and reproducibility of diffusion measures such as FA and
trace compared to the standard acquisition of R D 1. Further, we investigated
the effect of spatial resolution (2 mm vs 2:5 mm isotropic) on such acquisitions.
While preliminary in nature, we can draw the following inferences from the results
obtained: (i) Fiber bundles obtained from the R D 2 acceleration factor show
a very good overlap (close to 0.9) with the standard acquisition for both spatial
resolutions. For R D 3, the overlap is lower, yet greater than 0.8 in all cases.
Thus, the orientation of white matter fibers is not significantly affected in accelerated
scans, as also reported in [16]. (ii) For R D 2, the average variation in FA and trace
is similar to that reported in standard (R D 1) test-retest studies [18]. However,
there are a few fiber bundles that show a significantly higher difference in FA. This
could potentially be due to the increased noise in accelerated scans affecting the
tractography algorithm. (iii) For R D 3, several fiber bundles showed significant
deviation in diffusion measures compared to the gold standard. (iv) Since the lower
resolution scan of subject # 2 had better SNR, it was reflected in lower variance
in the estimated FA and trace (see Table 1). However, due to significant partial
voluming, we observed fewer or no connections between a few gray matter regions
for this subject (even in the “gold standard” scan). Thus, overall, lower spatial
resolution while increasing the SNR, performed at sub-par levels in terms of finding
connections between regions. Overall, an accelerated acquisition with R D 2 could
safely be used in neuroimaging studies. We should however note that, this work is
quite preliminary and needs to be augmented with a comprehensive comparison on
several subjects, which is part of our future work.
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