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  Prol ogue   

    My Story 

 My story begins when I was in high school and I enjoyed solving geometry prob-
lems such as those involving congruent triangles. It was like a game to me. I was 
solving problems by looking for alternative solutions and applying tactics; but I did 
not use the name “problem solving”. At the University of Sydney, I majored in 
Mathematics and Psychology but also studied Latin (language, history, and philoso-
phy), Anthropology (much of which came from studies of the people of Papua New 
Guinea and Africa), and Education. However, my membership of Student Action 
for Aborigines (Australian Freedom Ride, 1965) began my understanding of 
Indigenous cultures and struggles from an Indigenous perspective. I had long con-
versations with Aboriginal friends and with people who respected the Aboriginal 
and Papua New Guinean (PNG) communities with whom they lived for many years 
and whose languages they had learnt. I also learnt from personal visits and tutoring 
at the Foundation for Aboriginal Affairs (set up and run by the Aboriginal commu-
nity) and “a home” where children, now known as the stolen generation, were sent 
by the Northern Territory government. I thought deeply about my own Christian 
faith and considered the underpinnings of numerous political perspectives. 

 After a teacher education course and high school teaching, I married and lived in 
Papua New Guinea where the next critical part of the story begins. During this time, 
I taught mathematics at the PNG University of Technology (Unitech) where the 
Mathematics Education Centre (MEC) was supporting numerous research studies 
that took account of culture but were mostly educational psychology studies. Along 
with other technology degrees, I taught students in architecture and valuation in 
which visuospatial reasoning and geometry were important components. I taught 
Education and Health Education at Balob Teachers College (and in the community 
and Unitech voluntarily) so an interest in cultural infl uences grew. My colleagues 
and their spouses among many others infl uenced my thinking about culture and 
education and to them I am grateful for truly enriching my life over many years─Glen 
Lean, with whom I worked closely, Geoff Smith, Jack and Mary Woodward, Dan 
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and Carrie Luke, Rod and Yombu Selden, Neil and Betty (deceased) Roberts, 
Wilfred and later Roa Kaleva, Ken and Helen Costigan, Chris and Naomi Wilkins, 
Philip Clarkson, Else and Ron Schardt, Teresa (deceased) and Paul Hamadi, Mea 
Dobunaba (deceased), Tess (deceased) and Geoff Chan, Deveni and Marion Temu, 
and Misty Baloiloi; and many students including Ai Wandaki, Migleri, Petrus, and 
Patrick, and many families from Morobe, Gulf, Central and Milne Bay at Church in 
the Taraka settlement or from other connections. Special friends were Ron 
(deceased) and Rosemary Elias and Margaret Peter (deceased). I went to many vil-
lages with friends, bushwalking friends, students to visit their families, or for super-
vising cultural school experiences. My growing interest in cultural visuospatial 
reasoning was strengthened on return visits to Balob and Unitech with its 
Architectural Heritage Centre. 

 In the 1980s, I had the pleasure to work under Professor Kathleen Collard at 
Unitech with an international group of mathematicians and mathematics educators. 
The Department, supported by the MEC, had some great resources for teaching just 
the right mathematics for the range of technologies, with explanations and some 
worked examples and a short set of exercises building up the concepts and proce-
dures well. It was a modifi ed self-paced mastery learning approach but effective. We 
also used calculators and computers, being very early innovators in using technol-
ogy. For one professional learning session Kathleen promoted problem solving 
which she said was the new approach in the UK. The very word problem raised a 
negative connotation for me so I was quickly engaged to see what value there was 
in this approach. Having a go at using this new problem-based learning, I prepared 
a problem scenario with the building science lecturers. Being a different approach 
to the highly directed materials, it did not go down too well with students. However, 
there was clear merit in generating group work and mathematical conversations 
about mathematics in a relevant context. 

 Alan Bishop and Ken (MacKenzie) Clements both made visits to the MEC at 
Unitech resulting in profound infl uences on research overseas and in PNG and on 
themselves, Glen Lean, and myself. Alan, Ken, and I have continued to converse on 
issues of PNG education, and space and geometry, Ken being my doctoral supervi-
sor. Alan and Ken carried out research with Glen Lean on spatial abilities and the 
impact of experience and culture on these abilities. The MEC had many papers on 
this topic that sparked my interest to research this area. I enjoyed working with 
Architecture and Surveying students but also seeing how computer graphics played 
a role in reasoning and decision-making in statistics and modelling. 

 On returning to Australia after 15 years in PNG, with Bob Perry and colleagues 
at the University of Western Sydney, we developed a social constructivist classroom 
for students requiring additional mathematics to become teachers. This teaching 
approach results in some valuable insights into students’ responsiveness    to problem 
solving (Owens, Perry, Conroy, Geoghegan, & Howe, 1998). There has been a con-
tinuing emphasis on problem solving through mathematics associations and cur-
ricular documents (see our literature review for one syllabus revision, Owens & 
Perry, 1998) and the work of many eminent researchers arguing for the importance 
of problem solving (Appendix   A    ). 
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 In the late 1980s, certain space and geometry problems with pentominoes,  tangram 
sets, and pattern blocks had become popular but I wondered what students were learn-
ing from these activities. Hence began my enquiry fi rst with adult learners (preservice 
teachers) and then young school students working through a series of activities. 
I tackled and synthesised the broad literature from psychology on spatial abilities and 
visual imagery and then developed a group test appropriate for young children and 
related to classroom activities to measure visuospatial reasoning. I explored how 
young children were thinking and using visuospatial reasoning when they undertook 
ten one-hour geometry tasks. My fi ndings on visuospatial reasoning have been incor-
porated into Chap.   2     of this book. I continued to pursue this area of research in terms 
of teacher education and adults’ visuospatial reasoning about angle equality. Lynne 
Outhred has been a constant critiquing and collaborating collegial friend. 

 During the 25 years since we lived in PNG, I have continued to visit for periods 
of a couple of weeks to several months to work with PNG colleagues on various 
projects. Over 40 years, I have visited, revisited, or stayed (one night to 3 weeks) in 
more than 63 villages in more than 52 language groups, not to mention the many 
times I have talked with university students, colleagues, and participant researchers 
about their thinking when carrying out village activities. Our in-depth conversations    
built on our anthropological studies and my study of how cultural beliefs and prac-
tices impact on health and well-being and mathematical understanding. People 
shared their village technologies and rich cultures with us and thus began my inquiry 
into the mathematical profi ciencies of PNG villagers and how they enrich my own 
understanding of mathematics. 

 There are always signifi cant moments in one’s life that have directed one’s think-
ing. Some of these occurred for me when observing my PNG students or villagers. 
In my fi rst year in PNG, a mature-aged, Jimi valley student, nose pierced at initia-
tion, told me that he had spent some money to buy a block of land in Australia by 
responding to a newspaper advertisement but he had not had a response about it. 
Although he did not progress with his university studies, I did spend time trying to 
teach him addition with little success. At the time, I was unaware of his PNG count-
ing system (a two-, fi ve-cycle system) but I was aware of how he, and many stu-
dents, learnt by taking risks. 

 Village ethnoscience and technology    is indelibly written on my memory. I watched 
men making canoes with a stone adze among their implements, the curves and 
thickness and overall shape were well established in their visuospatial memory. 
I was fascinated to watch women set up a fi re at Labu with several layers of limbom 
palm covered with shells from the saltwater lake, and a fi re blown by the wind to 
start at the front to cook the shells perfectly. They picked up each shell and returned 
it to the fi re if not ready or else they dropped it in the mesh to remove sand and then 
into the bag for smashing with a stick for lime ( kambang ) chewed with betel nut 
( buai ). It was sold in the city of Lae’s market reached by sailing canoe across the 
treacherous mouth of the Markham River or by dinghy with a hole in the bottom 
where the passengers put their feet on a plastic bag to seal it. We watched at Yombu 
Seldon’s village out of Tufi , and in many other places, the making of sago with 
scraping the pith with an adze, the sheaths placed at appropriate angles, the fi brous 
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collar for strainer, for the washing and collecting of sago starch. Making  tapa , 1  
string, and  marita  2  soup were other ethnotechnologies requiring extensive visuospa-
tial thinking. 

 When we returned in 1997, another signifi cant moment occurred. I visited the 
Department of Architecture    and Building Studies at Unitech and was amazed at the 
wonderful sculptures that fi rst year students had made from three colours of paper 
and cardboard without using glue or sticky tape. I carried out a retrospective inter-
view study of their problem solving (Owens, 1999b, see Chap.   5    ). Many of them 
used cultural practices to join the paper pieces and make attractive visuospatial 
arrangements. What stayed with me was their identity. If we are Papua New 
Guineans, we will be good designers and architects. Would students also say, we are 
Papua New Guineans, we will be good mathematicians? I had my answer when 
reading through the ethnomathematics projects written in 1995, 2000–2013 at the 
University of Goroka (UoG). Students were writing proudly about their amazing 
parents, Elders and ancestors, their practices and their mathematics. They were 
incorporating ecocultural identities into their mathematical identities (Owens, 
2012a, see Chaps.   5     and   8    ). 

 Our recent research projects have extended our knowledge in the areas of space, 
geometry, and measurement. One of the projects was related to delivery of educa-
tion and involved an evaluation of an Australian funded project for improving 
teacher education for primary and secondary schools in PNG (Clarkson, Owens, 
Toomey, Kaleva, & Hamadi, 2001). (While this research kept me in touch with PNG 
education, I will not refer to it further in this book.) Another involved the catalogu-
ing and production of electronic materials for a website at the Glen Lean 
Ethnomathematics Centre at UoG. I read many of the original records of fi rst con-
tact which Glen had collected for his study of counting systems. By organising his 
work into electronic documents and databases, we became more familiar with his 
extraordinary study, its strengths and his diffi culties to report from diverse data 
sources that gave different information (see Owens, 2001c and later chapters). Then 
we began a long-term study on measurement. At UoG, I worked with Rex Matang 
(deceased) and Wilfred Kaleva who are very special people, Martin Imong, Charly 
Muke, and from Madang Teachers College Sorongke Sondo, and more recently 
Vagi Bino, Geori Kravia, and Susie Daino. I am in debt to all of them for their col-
legiality    and personal care of me. 

 For the measurement project   , assisted by PNG colleagues, participant research-
ers, and research assistants, we have gathered data (from 345 languages from 425 
sources) from linguistic records, by open-ended questionnaires, semi-structured 
interviews, focus groups, story-telling, and place visits. These were supplemented 
by the ethnomathematics projects. The questionnaires were completed by preser-
vice and inservice teachers and staff who selected to complete them for us from 
three tertiary institutions in PNG. All consented for the information to be collated 

1   Tapa  is made from the inner bark of trees, particularly the tulip tree (two leaves sprout at the 
same point). 
2   Marita is a very long, red nut of a pandanus tree which makes an oily red, fl avoured soup. 
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and shared in research reports and papers. Most questionnaires were completed 
electronically. We made visits to ten villages specifi cally to gather data on measure-
ment and space. In each place, we talked with Elders, often in a village group and 
often more than one group, and to people visiting from other language groups. All 
these were previously negotiated by participant researchers from the area. In addi-
tion, I carried out 15 interviews at Universities and colleges and we held fi ve focus 
groups (students from four distinct regions and one group of linguists) to discuss 
emerging summaries of the data. The interviews and visited villages were chosen to 
include Papuan (Non-Austronesian) highland and lowland language groups and 
coastal Austronesian language groups from ten Provinces. Most interviews were in 
Tok Pisin, a few in English. All interviews were tape-recorded and/or videorecorded 
with consent and transcribed by Tok Pisin speakers (a language which I also speak 
fl uently). There was code switching between languages. Language words were 
translated during the interview if used. There is continuing evidence of specifi c 
cultural practices and also the growing loss of these practices along with the lan-
guages. It is urgent that these ecocultural practices be valued and maintained in 
ways negotiated with the communities. Results from these studies can be found in 
Owens (2007, 2012b, 2013b), Owens and Kaleva (2008a, 2008b), and in Chaps.   4    , 
  5    , and   8     of this book. Returning to Australia, we were able to meet up with Australian 
Indigenous friends and make new ones through teaching fi rst at University of 
Western Sydney and then at Charles Sturt University. Both have special programs 
for Indigenous students. My Indigenous friends in Dubbo made me feel welcome 
when we came to live here and I have particularly valued the wisdom of the Elders 
and what I have learnt through partnerships and projects like the bidialectal approach 
to teaching English (Standard Australian and Aboriginal English), Stronger Smarter 
Leadership evaluation, rural and Indigenous quality teacher projects, and a forum 
on continuities in education with the local community. 

Elders at Kopnung village, Jiwaka Province, PNG, demonstrate cultural practices (weaving and 
trap-making with the children learning visuospatially).
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 I have also been privileged to attend international conferences to share and 
debate issues around ethnomathematics with researchers in Sweden, Africa, the 
Americas, and New Zealand. In particular, I mention Norma Presmeg, Gerry Goldin, 
and Keith Jones who, at different times, discussed extensively with me the notion of 
visuospatial reasoning in different contexts, and also Ylva Yannok Nutti, Annica 
Andersson (who accompanied me on one PNG trip), Lisbeth Lindberg, Bill Barton, 
Uenuku Fairhall, Colleen McMurchy-Pilkington, Tamsin Meaney, Jerry Lipka, 
Barabara Adams, Rik Pinxten, Maria do Carmino Santos Domite, Maria Cecilia de 
Castello Branco Fantinato, Marcos Cherinda, Milton Rosa, Daniel Orey, and Cris 
Edmonds-Wathen but really too many to list them all. In Sweden, Macau, and 
Yemen, I visited communities to discuss culture and mathematics education. Ravi 
Jawahir studied geometry in Mauritius with me. In the last 10 years, I taught sub-
jects linked to Human Society and Its Environment and social justice   . Consequently, 
issues of identity, environmental and cultural sustainability, and the importance of 
education situated in the place of the students (both local and global) have domi-
nated my thinking. All these meetings and experiences have enriched my thinking. 
I hope I can share this from my life story in this book. 

 This book takes you through my journey to establish an ecocultural perspective 
for mathematics education, especially in areas relevant to visuospatial reasoning in 
space, geometry, and measurement. While the rich PNG and Australian Indigenous 
cultures form the basis of the argument, this book is relevant to other places as I am 
sure the following chapters, breadth of references, and other researchers’ fi ndings 
and arguments will testify. I want to acknowledge the endless times my PNG and 
Australian Indigenous friends have shared with me and whether wittingly or unwit-
tingly taught me and brought me to the thesis presented in this book.  

    Ecocultural Background of Papua New Guinea 

 PNG is a country rich in a wide diversity   , over 850, Melanesian cultural groups. 
Each has its own language. Each has its own cultural values, practices, relation-
ships, understandings, adaptations to other cultures, and systematic ways of inter-
preting, designing, explaining, measuring, enumerating, comparing, and using 
information (data) to make decisions. Tropical PNG is half the New Guinea main-
land plus thousands of islands, large and small. The mainland and many islands are 
mountainous but there are also large upland and lowland valleys, fast fl owing rivers 
from gorges to coastal plains, swamps, and coral seas. People have adapted to their 
environments, and their mathematics refl ects their living in their places. Villagers 
are adept at living from gardens, the bush, and the river or sea to build their houses, 
supply their food, and engage in building reciprocal relationships. Pigs are an 
important form of wealth in many places. From the capital city to most other cities 
of the country, one has to fl y or go by sea. Mobile phones are popular where services 
and power for recharging are available. Most villages do not have electricity, piped 
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water, or road transport although these facilities are increasing. The country has rich 
mineral resources and many cash crops. 

 From the late nineteenth century, the Territory of Papua was under Australian 
authority while New Guinea became a Mandated Territory after World War 1. The 
Second World War was fought on their soils. In many places in the interior of the 
mainland, tribal law and fi ghting were the norm (Gammage, 1998). Land belonged 
to and was held onto by different clans of different language groups. Trade routes 
were well established. Many atrocities occurred before and after Australian admin-
istration infi ltrated the regions. At all times, expatriates were reliant on Indigenous 
knowledge and labour, and maintained some form of western privilege such as sal-
ary or housing to survive. In the late 1960s, around the time that Aboriginal 
Australians were recognised by a referendum (1967), it was clear that Australia was 
sooner or later to give PNG its independence, having already established a parlia-
ment, a University, police, army, health and education services, and provided oppor-
tunities for leaders to learn about party politics and democracy. The Churches 
provided much of the education especially at the teacher training level and in remote 
areas, and this continues today. After a time of self-government (1973—the year we 
went to PNG), it became Independent on 16 September 1975. 

 Over the years, curriculum writers and mathematics school books attempted to 
give a PNG fl avour to examples. Today, schooling under the reform begins with 
elementary schools (Elementary Prep, Elementary 1, and Elementary 2) built by 
communities with local teachers who are minimally trained and paid a small wage 
by government for a half day teaching. Schooling is generally in the vernacular  Tok 
Ples  or in cities in the lingua franca,  Tok Pisin . Education transfers to English during 
Elementary 2 and continues when children start primary school (Grades 3–8). From 
2014, the offi cial government policy is to have English as the language of instruc-
tion from Prep. There are examination barriers to go to secondary school or to senior 
secondary school. The curriculum was adapted from overseas. Syllabi take account 
of diversity by being relatively general in outcome statements and using English 
words to explain, for example, position and direction. Unintentionally the syllabus 
is reinforcing English approaches through the language rather than a vernacular 
approach. Nevertheless, the syllabus says vernacular words and environmental 
shapes and places should be used. While this might occur, it is important to over-
come the hegemony of school education mathematics and to give teachers an idea 
of how to bridge between the vernacular and the English-language approach to size   , 
shape, position, and direction (see Chaps.   7     and   8    ).      

  Dubbo, NSW, Australia     Kay     Owens    
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    Chapter 1   
 Introduction: Visuospatial Reasoning 
in Context 

                      Curiosity is an active habit—it needs the freedom to explore 
and move around and get your hands in lots of pots. 

(Llewellyn,  1991 ) 

   If a man seriously desires to live the best life that is open to 
him, he must learn to be critical of the tribal customs and tribal 
beliefs that are generally accepted among his neighbours. 

(Betrand Russell) 

      The Challenge 

 There is currently a renewed interest in visuospatial reasoning. Part of this interest 
has been generated by the use of diagrams    in paper-and-pencil national testing    but 
interest also comes from the application of mathematics to real life, and a renewed 
interest from dynamic geometry software. However, to appreciate the importance of 
visuospatial reasoning, we must fi rst discuss the earlier research from the twentieth 
century. Research in spatial abilities and visual imagery during the last century was 
heavily infl uenced by psychological studies. This book draws from this literature 
but follows a less conventional line of argument by opening up new lines of enquiry 
which are demanded by other educational research literature concerned with the 
social aspects of learning and the cultural contexts of education. In this chapter, a 
preliminary defi nition of visuospatial reasoning is provided given that there are 
other closely associated terminologies. This chapter will provide an overview of the 
basic premises of the book. It begins with a short historical background that will be 
expanded in Chap.   2     on spatial abilities and visuospatial reasoning. How does 
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visuospatial reasoning occur in the mind? How does it develop in children? These 
questions are further addressed in this chapter and Chap.   2    . 

 However, an expanded understanding of visuospatial reasoning shows the impor-
tance of the contexts of education for developing visuospatial reasoning. Does the 
ecocultural perspective throw new light on visuospatial reasoning research? Will we 
reach a new richer perspective on visuospatial reasoning? An overview of ecocul-
tural perspectives in education is presented in this chapter with an expansion in 
Chap.   3    . Can visuospatial reasoning and an ecocultural perspective be drawn 
together through considering identity within an ecocultural context impacting on 
the mathematical learner? The argument is introduced in this chapter but developed 
throughout the book. Does visuospatial reasoning occur in different contexts when 
people undertake activities of a spatial nature? These questions are addressed in 
Chaps.   4     and   5     in particular. 

 Infl uential in this argument is the synthesis of the disparate literature on identity 
which can be rather simplistically classifi ed as cultural identity and identity from a 
psychological perspective. Is this possible? This chapter begins this argument which 
is developed throughout the book but particularly in Chaps.   5    ,   6    ,   7    , and   8    . With the 
growing interest in dynamic geometry, there is a resurgence on how visuospatial 
reasoning occurs within that environment. However, will the emphasis on identity in 
developing a mathematical learner be appropriate for the classroom using electronic 
devices to pursue spatial concepts and geometry? Chapter   9     tackles this question for 
younger students. Chapter   10     provides an overview of the argument put forward 
throughout this book illustrating the importance and advantage of an ecocultural 
perspective on visuospatial reasoning for mathematics and mathematics education.  

    Historical Overview of Relevant Research 
on Spatial Abilities and Visual Imagery 

 In the early 1900, Binet and Simon were looking at intelligence in young children. 
They meant by this the ability to adapt and solve new problems. Their early items 
and scales focused on attention, memory, and spatial discrimination (Munn,  1961 ). 
Down through the years tests of intelligence continued to be developed. In many 
models, there was recognition of spatial ability versus verbal ability and other abili-
ties but the critical argument lay around whether there was an overall general intel-
ligence factor (e.g. Spearman’s model) or not (e.g. Thurstone’s model) (Watson, 
 1965 ). Importantly for the general argument of this book, these tests consistently 
used items of a spatial nature. 

 Piaget, one of the great infl uences on educational thinking, regarded “cognitive 
processes as also being expressed in thought and intelligence between which he 
(made) no sharp distinction” (Watson,  1965 , p. 175). He reconciled the continuous 
scaling for intelligence tests as measuring “products and not the operations used by 
children” (Watson,  1965 , p. 189). Furthermore he focused on perception and imagery 
when considering conceptual development (Piaget & Inhelder,  1956 ,  1971 ; Piaget, 
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Inhelder, & Szeminska,  1960 ). Hence Piaget from his earliest thinking about 
 children’s cognitive development recognised that visualisation and spatial con-
structs were embedded in cognitive processing, thought, and conceptualisation. 

 Many different spatial abilities have been defi ned as specifi c constructs, often 
determined through factor analysis models (Eliot,  1987 ). In mathematics education, 
there was recognition from the 1960s not only that such abilities may affect learning 
but also that these abilities could be, and indeed should be, nurtured. Meanwhile 
educational psychologists began to write about visual imagery or visualisation as 
important in concept development, often based on Piaget’s earlier ideas. Many of 
these studies made use of reaction times when subjects responded to items antici-
pating, for example, mental rotation of objects. This simple approach was called 
into question when it was realised that analysis might be used as well as mental 
rotation during the measured reaction time (Shepard,  1975 ). Other psychologists 
developed more factors about imagery and spatial ability until Lohman, Pellegrino, 
Alderton, and Regian wrote:

  Although the number of potentially identifi able spatial factors is quite large (perhaps even 
unbounded), the number of distinct psychological processes required by spatial tasks appears 
to be much smaller. … Visual stimuli must be held in sensory memory while encoding pro-
cesses (or pattern matching productions) operate to identify all or parts of the stimuli … We 
have six basic categories of processes: pattern matching, image construction, storage, retrieval, 
comparison, and transformation. (Lohman, Pellegrino, Alderton, & Regian,  1987 , p. 273) 

   They concluded that:

  Spatial ability may not consist so much in the ability to transform an image as in the ability 
to create the type of abstract, relation-preserving structure on which these sorts of transfor-
mations may be most easily and successfully performed. (p. 274) 

   This synthesis of ideas brought a halt to the ever-expanding micro divisions that 
had been occurring and enabled educationists to start using these constructs in a 
meaningful manner. The mathematical learner was seen as making mental images 
that highlighted salient aspects but the learner went beyond the details of the image 
to imagine and reason visuospatially in the same way as an artist goes beyond the 
image (Goldenberg, Cuoco, & Mark,  1998 )   .  

    Visuospatial Reasoning and School Test Performance 

 There was some recognition of the importance of visuospatial reasoning in testing    
regimes in the past. Kouba et al. ( 1988 ) noted that in the fourth National Assessment 
of Educational Progress (NAEP in USA), students made good use of visual clues in 
questions involving the equality of angles (75 % correct in grade 7) and sides (62 % 
correct in grade 3) but often did poorly on questions lacking visual clues such as 
questions on adjacent angles (14 % in grade 7 correct) and on points on a circle 
(26 % correct in grade 3; 35 % correct in grade 6). Sometimes, though, visual dia-
grams    seemed to mislead students especially when concepts were not well estab-
lished; thus, in some questions, students made errors because they seemed not to 
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realise that the length of a diagonal interval was longer than the lengths of horizontal 
intervals on a grid or that a circle could be drawn containing any three given non-
collinear points. In angle-matching tasks, students are more likely to perform better 
if they know analytical principles such as vertically opposite angles are equal and 
can decide quickly when an analytical principle is relevant and when visual rotation 
and decision-making are needed. Angle-matching tasks are more diffi cult if the dia-
grams are more complex, angles are dissected by lines, angle distractors are visually 
close in size, or angles are rotated, more distant, or external (when only internal 
angles of a polygon are anticipated) (Owens,  1998a ). 

 Similar visual cues seem to have misled students in Basic Skills Tests (Australian 
Council for Educational Research,  1989–1991 ) in which the diagram of an object to 
be weighed was accompanied by larger diagrams    of masses (Owens,  1997a ). In 
other questions, for example, in determining the number of balls which would fi t in 
a box, the visual cues were helpful to students. For visuospatial reasoning of grade 
6 students, an interesting comparison can be made between two questions involving 
the joining of shapes to make a new shape. For one, 88 % of the answers were cor-
rect but for the other only 66 % were correct. One reason for the lower result was 
that students used an analytic approach noting the pointiness of the shape, and then 
chose a triangle without checking whether it was the correct triangle. Such an 
approach, in which analysis rather than a holistic method is used, can lead initially 
to more errors being made because the task involves more than one step and the 
student fails to continue to solve the problem. It also points to the attention of the 
graphic formation and its distraction for the problem (see also Diezmann & Lowrie, 
 2012 ). International comparisons such as Trends in International Mathematics and 
Science Study (TIMSS) and PISA (Mullis, Martin, Kennedy, & Foy,  2007 ; Sturrock 
& May,  2002 ) show that the low student performance in geometry at all levels is 
quite alarming (Lappan,  1999 ).    

 The report on the teaching and learning of geometry by the Royal Society and 
Joint Mathematical Council ( 2001 ) argues that “the most signifi cant contribution to 
improvements in geometry teaching will be made by the development of good mod-
els of pedagogy, supported by carefully designed activities and resources” (p. 19). 
In fact, a primary cause of this poor performance in geometry may be the curricu-
lum; both in what topics are treated and how they are treated but also in the poor 
preparation of teachers and their own lack of visuospatial reasoning in geometry. 
The Council noted that either work on three-dimensional objects is left out or 
aspects are learnt by rote. However, more research into effective geometry educa-
tion is needed. While a minority of students may have only reached the basic level 
across various questions in NAEP testing   , there was reasonable evidence of visuo-
spatial reasoning being part of the curriculum and children having good attempts at 
the questions using visuospatial reasoning even if they were not correct (Brown & 
Clark,  2006 ). Furthermore, research continues to suggest that low socio-economic 
status can reduce the basic spatial ability and reasoning skills as a result of a lack of 
experiences outside of school related to conceptual and number learning required in 
measurement education (Casey, Dearing, Vasilyeva, Ganley, & Tine,  2011 ). Such 
results would indicate that an ecocultural perspective on visuospatial reasoning in 
geometry and measurement is needed to address inequity.  
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    Visuospatial Reasoning in Mathematics Education Research 

 Mathematics educators since the 1970s began to develop theories that purposefully 
incorporated visual imagery (used in this book as synonymous with visualisation; 
see detailed discussion on defi nition later in this chapter). Initially visual imagery 
was often relegated to foundational levels of conceptualisation (e.g. Pirie & Kieren, 
 1991 ; van Hiele,  1986 ), although over time this did begin to change with Biggs and 
Collis, for example, revising their taxonomy recognising the importance of visuali-
sation throughout the ongoing development of cognition (Campbell, Collis, & 
Watson,  1995 ). Pirie and Kieren discussed “folding back   ” to the earlier visual stages 
as concepts developed and then they developed both an action and verbal descrip-
tion for each level (Pirie & Kieren,  1991 ,  1994 ). Action is often a visuospatial mem-
ory or reasoning. Furthermore, at the higher levels of structure, and reifi cation, 
visual imagery or visuospatial reasoning is signifi cant (Presmeg,  2006 ). Others pro-
vided theoretical ideas that were relevant at all ages such as Goldenberg et al.’s 
( 1998 ) coverage of visuospatial reasoning to include:

•    Seeing processes that are both geometric and metaphorical  
•   Seeing quantity for verifi cation and calculation  
•   Seeing pattern and structure for exploring conjectures and devising proofs    

 All of these are relevant to geometry and measurement. With these “habits of mind”, 
more mathematical power is possible but it requires curricula “to treat visual imag-
ery    as a central ingredient in mathematical discovery, invention, and explanation” 
(Goldenberg et al.,  1998 , p. 39). This was indeed a feature of several US projects for 
middle and high school students and in Australia with the Count Me Into Space 
project (Owens, McPhail, & Reddacliff,  2003 , see Chap.   2    ). 

 Nevertheless, the term “space” was causing diffi culties in mathematics education 
and schools in general. The term was dropped from the UK and eventually the 
Australian mathematics curriculum although defi ned in geography. Furthermore, a 
new challenge arose for the theory and development of visuospatial reasoning with 
the rise of the twin movements of outcomes-based education and national testing   . 
These took hold globally resulting in a focus on observable outcomes rather than 
internal thinking processes (Ellerton & Clements,  1994 ). Hence visualisation was 
relegated to external representations such as diagrams   , computer-generated graph-
ics, and concrete models (Zimmermann & Cunningham,  1991 ). A recent handbook 
(Clements, Bishop, Keitel, Kilpatrick, & Leung,  2013 ) developed the role of visuo-
spatial reasoning only at higher levels through the use of dynamic geometry soft-
ware and statistical packages but there was a brief reference to blind and deaf 
students’ visuospatial learning. The role of visuospatial reasoning was otherwise 
not covered as was the case in an earlier review from Australasia (Perry, Anthony, 
& Diezmann,  2004 ). Although there was encouragement of the use of visualisation 
for early arithmetic, there was little mention for geometry in an important book on 
advice to teachers (Kilpatrick, Martin, & Schifter,  2003 ). However, there are text-
books emphasising visualisation across the curriculum subjects (Jones,  2012 ). 
Other handbooks from the International Group for the Psychology of Mathematics 
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Education (Gutiérrez & Boero,  2006 ) and National Council of Mathematics 
Teachers (Lester,  2007 ) provide substantial reviews on aspects of visuospatial rea-
soning in mathematics. 

 Despite the importance of reasoning about objects with representations (Battista, 
 2007a ), outcomes-based education and paper-and-pencil testing    have resulted in a 
lack of mention of visuospatial reasoning in curriculum. A recent critique of the 
Australian curriculum (Lowrie, Logan, & Scriven,  2012 ), although a similar cri-
tique probably applies to many other curricula, noted that,

  in fact, there is no reference to spatial or visual reasoning in the entire document. The lack 
of attention afforded spatial reasoning in the curriculum is compounded by the fact that no 
indirect mention of such processing is framed within the four profi ciency strands. For 
example, there is no mention of “drawing a diagram”, “imagining in your mind’s eye”, or 
any intent to promote reasoning which encourages students to manipulate or move objects 
within an internal, visual, space. Such processing is accepted as an essential aspect of math-
ematics reasoning. Without such reasoning, the depth of understanding within this mathe-
matics strand is lost. Therefore, the “signposting” (for teachers) that spatial and visual 
reasoning is critical to this strand has been removed from both content and mathematical 
profi ciencies. (Lowrie et al.,  2012 , p. 74) 

   Despite this retrograde step in curriculum documents and in the research litera-
ture, there has been a growing interest in visuospatial reasoning associated with 
dynamic geometry software (Falcade, Laborde, & Mariotti,  2007 ) with limited cov-
erage in other areas. Interestingly beyond mathematics education research, there 
also continues to be an interest in visuospatial reasoning and its development 
through education. For example, because of an increase in representations of geo-
graphical information, the National Research Council Committee on Geography 
(NRCCG   )  (200 6) commissioned a comprehensive report into this developing area 
of representation, knowledge, and conceptualisation. NRCCG    and other researchers 
mentioned in this book would agree that the role of visuospatial reasoning from 
early childhood to adult career education has been underestimated. School  education 
has failed to realise that there are a number of newly established ways of represent-
ing the four dimensions (three space dimensions and a time dimension) in a wide 
range of fi elds from physiotherapy to geography, and from geometry to number 
patterns requiring such reasoning (Shah & Miyake,  2005 ). 

 Some visuospatial reasoning is about external representations which have an 
ecocultural basis, often determined by the specifi c science such as medicine or sur-
veying. However, the issue for this book is around what might provide a sound 
foundation in childhood education. The recent impact of ecocultural research has 
highlighted new ways in which we can perceive childhood mathematics education 
and new possibilities for mathematics itself (Ness & Farenga,  2007 ).  

    Defi ning Visuospatial Reasoning 

 Battista ( 2007a ) noted that geometric reasoning requires “spatial reasoning which 
includes generating images, inspecting images to answer questions about them, 
transforming and operating on images, and maintaining images in the service of 
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other mental operations” (p. 843). In other words, the mental operations on mental 
visual imagery are about space. The term “visuospatial reasoning” emphasises the 
reasoning associated with and dependent on visual imagery but also expressed and 
argued with spatial references. Spatial abilities, spatial skills, and both spatial and 
visual imagery are part of this reasoning. Although the importance of visuospatial 
reasoning was lost through the splintering of spatial abilities, its signifi cance is now 
being recognised by educators such as the NRCCG     (200 6). Visuospatial reasoning 
is a necessary way of reasoning that develops during childhood. In my conception 
of visuospatial reasoning, there is no attempt to separate visuospatial reasoning that 
is about spatial visible things from visual thinking to understand other concepts in 
the way that Senechal ( 1991 ) proposed. Recreating the visible in terms of visualis-
ing from alternative perspectives, re-seeing, and reconstructing shapes is supple-
mented by representing abstract ideas such as multiplication of two-digit numbers 
or algebraic binomials, and then seeing change, process, quantity, or other structure. 
These are all part of visuospatial reasoning (Goldenberg et al.,  1998 ). However, 
visuospatial representations overlap categories. For example, a graph or a number 
line representation of addition may represent arithmetic but at the same time they 
have their own inherent spatial values and meanings. The overlap in visuospatial 
reasoning that crosses the boundaries of mathematical categories and other knowl-
edge categories in general will be more evident as we consider some of the ecocul-
tural perspectives and emplaced understandings of space (see Chaps.   3    ,   4    , and   5    )   . 

 The NRCCG    noted that “spatial thinking” results from early activities in physi-
cal spaces (a three-dimensional and time dimensional world) and went on to discuss 
the spatial thinking that occurs in intellectual spaces related to the physical spaces 
but involving concepts. Finally they refer to spatial reasoning about intellectual 
spaces where representations have not been generated from the space-time world 
but represent concepts, frameworks, models of processes, and relationships in a 
wide range of fi elds. For example, spatial representations may be a spatial form of 
geographic information, objects, or diagrams    linked to knowledge areas other than 
mathematics. In addition, the Committee noted that spatialisation includes an atti-
tude or long-term approach to considering things in a spatial manner. 

 This Committee considered reasoning as one aspect of spatial thinking along 
with imagery and spatial processes. I argue that visuospatial reasoning is more 
encompassing than the NRCCG    committee’s reasoning. The NRCCG     (200 6) 
defi ned spatial thinking mostly in terms of distance and measuring with a visual 
component, a symbolic component, and a reasoning component. However, the rea-
soning component is inadequately developed in their defi nition and this problem 
provides one reason why I consider visuospatial reasoning as more rather than less 
comprehensive than spatial thinking. The reason for this is to encompass the impact 
of all forms of sensory input and the variety of imagery associated with experiences 
in a physical world. Spatial imagery    refers to kinaesthetic and motor imagery as 
opposed to visual imagery in careers such as aviation where physical response time 
is critical (Wickens & Prevett,  1995 ). In cognitive education fi elds, spatial imagery 
is also used to refer to static images about one-, two-, or three-dimensional spaces 
resulting from both visual and kinaesthetic experiences leaving the terms visual and 
spatial to refer to sensory input (see also    Clements & Sarama  2007a ,  2007b ). 

 Defi ning Visuospatial Reasoning
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 Some cultural studies have noted that spatial reasoning and imagery are linked to 
kinaesthetic experiences and resultant imagery. For example, tilting the head to see 
the stars (Worsley,  1997 ) or sensing the motion in a boat (Hutchins,  1983 ) embodies 
spatial information on position. Molnar and Slezakova ( 2012 ) refer to geometric 
spatial imagination as reproducing and anticipating static and dynamic images by 
using attributes of and relationships between shapes. Furthermore, spatial abilities 
and visual imagination play a part in visuospatial reasoning. Children’s gestures 
assist with abstraction of space and geometric conceptions and in a metonymic way 
in communicating and imagining (Kim, Roth, & Thom,  2011 ). Spatial imagery    can 
refer to the diagram or graph about which reasoning occurs in geometry in which 
experiment and change of features may be needed to reason about properties. 
Finally, the term spatial imagery has been used to identify its role within sociocul-
tural place imagery (Tuan,  1977 ) but I argue that spatial and visual imagery do 
require a sociocultural perspective. In order to capture all these meanings the term 
visuospatial reasoning is used in this book. 

 There are many examples of visuospatial reasoning from everyday life and many 
defi nitions    (Liben,  1988 ). The educational literature has blurred the meaning of 
visuospatial reasoning. Some of the literature talks about visual imagery and dis-
cusses it in terms of both internal and external representations (Gutiérrez,  1996 ; 
Owens & Outhred,  2006 ). On the other hand, defi nitions often focus on symbolic 
representations and diagrams   . Thus spatial reasoning may be restricted to interpret-
ing graphs or diagrams. In order to emphasise that reasoning is in the head, I use the 
term visuospatial reasoning to include the mental visual imagery research. At the 
same time, by turning to the fi elds of psychology and education the nature of visuo-
spatial apprehension and cognitive processes is expounded (Mason,  2003 ). 

 Shah and Miyake ( 2005 ) consider “visuospatial thinking” from a psychological 
perspective including summaries of individual differences on psychometric assess-
ments and the relationships between spatial and navigational abilities determined by 
these assessments on spatial activities like navigating. They also introduce the idea 
of comprehension of visuospatial representations or “spatial situation models” 
(p. iv) which provides a language perspective on visuospatial reasoning. In this 
book, I begin with a defi nition that is more encompassing; starting with the psycho-
logical literature but extended to have a stronger ecocultural perspective that encom-
passes culture, language, context, and ecology. 

 We begin with the following defi nition and description. Visuospatial reasoning 
incorporates a wide range of spatial abilities, spatial skills, visual and spatial imag-
ery, representations and processes, and related concepts. Visuospatial reasoning is 
the mental process of forming images and concepts and mentally modifying and 
analysing these visual images. In the mathematical context, visuospatial reasoning 
is using visual images creatively in mathematical problem solving. Visuospatial 
imagery involves the relationship, position, and movement of parts of an image or 
sequence of images. The spatial component of imagery may result from bodily 
movements as well as visual perception. Frames of reference may be bodily rather 
than in terms of visual or cardinal (orthogonal north–south east–west) frames 
(Wickens & Prevett,  1995 ). However within this defi nition some extensions of 
meaning are needed, and I turn to these now.  
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    Extending the Meaning of Visuospatial Reasoning 

 Mental often dynamic or patterned imagery that embodies relationships is part of 
visuospatial reasoning (Owens,  1993 ; Presmeg,  1986 ). Imagery signifi es a schema 
of the relationships, one in which the cognitive processes, some innate, are not sepa-
rated from the social context when reasoning (Walkerdine,  1988 , p. 3). One example 
of visuospatial reasoning that illustrates that reasoning is a result of cognitive and 
sociocultural infl uences is presented in the following paragraphs. 

 Watson and Crick’s development of the double helix as a mathematical model for 
DNA was seen by NRCCG     (200 6) as “the result of a brilliant exercise of imagina-
tive visualisation that is constrained by empirical data, expressed by two- dimensional 
images, and guided by deep scientifi c knowledge and incisive spatial intuition” 
(p. 8). Imaginative visualisation, then, is infl uenced by conceptual knowledge not 
only of mathematics but also of the fi eld in which the concepts are embedded, the 
result of being a part of a community of scientifi c practice. The imagining depends 
on visuospatial intuitions which are dependent on incidental learning and not just 
maturation (van Hiele,  1986 ). In other words, the spatial awareness, spatial abilities, 
spatial relationships, and spatial visualisation (see Chap.   2     for more details of these 
concepts) have been honed through experiences that may or may not have been 
explicated by the thinker. Watson and Crick’s representation was initially two 
dimensional although later models were three dimensional (NRCCG,  2006    , p. 2). 
The development of the representation indicates the sociocultural aspects of 
 visuospatial reasoning as well as the fact that intuition and imagination which are 
infl uenced by culture and place are also aspects of visuospatial reasoning.    

 As a footnote to the story about Crick and Watson, I mention two other uses of 
the double helix representation for representing knowledge.    The fi rst comes from 
Lovat and Toomey ( 2009 ) who used it to describe the intertwining of quality teach-
ing and values education. While the familiarity of the DNA representation was a 
context for their imagery, they provide examples of an ecocultural perspective in 
education with schools focused on values, community, and relationships. The sec-
ond use of the double helix relates to the mathematics of the Yolngu   , Northern 
Territory, Australia, as presented by Thornton and Watson-Verran ( 1996 ) in video 
format and by the Yolngu in a fl attened string of “diamonds” represented in their 
own art forms (Fig.  1.1 ). The representations    emphasise the importance that an 
activity occurred in the same place at the same time on each of the cycles of the 
double helix repeated yearly in both directions (past and future). Thus women wash 
the poisons out of cycad nuts in the same creek area at the same time every year. An 
Elder sits to negotiate with stories on the sand near the sting-ray-shaped lagoon, 
laying his spear into sand as his Elders have always done. Each act was visuospatial 
and rich with meaning, history, and relationships.    Hence the double helix originated 
from visuospatial reasoning in very different contexts. 

Visuospatial reasoning is also infl uenced by spatial imagery and context. This 
example is taken from the fi eld of aviation (Liu & Wickens,  1992 ; Wickens & 
Prevett,  1995 ). In the cockpit, local guidance is received from the view ahead 
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observed by the pilot and through instruments that provide two-dimensional (2D) 
representations of local space and position in a global system. Combined, these 
provide spatial awareness of the three-dimensional (3D) world. The pilot or naviga-
tor needs to mentally transform and align both sets of information rapidly before 
taking action. These actions are partially at the physical level and carried out auto-
matically as one does after learning to walk or ride a bicycle. Much of this is 
 determined by spatial imagery from nerve endings in the muscles and skin within 
the neuromuscular system but nevertheless linked to higher schema in the mind 
where adaptation needs to be made for a particular circumstance. Wickens and 
Prevett’s study suggested that some information, for example, terrain details, was 
not recalled after the simulation because there was a focus on the fl ight path or the 
information was gleaned only for the working memory and not stored in longer term 
memory. The angle of the person at the time at which the 3D position information 
was supplied impacted on the speed and accuracy (clarity) of the scanning and 
 generation of connections between the sets of information. These studies emphasise 
the bodily as well as visual awareness in visuospatial decision-making.  

    Visuospatial Reasoning and Geometry 

 In order to encapsulate the diversity of possible geometries    that are particularly 
developing in modern contexts such as those related to medical imaging or tiling in 
computer graphics, a broad defi nition was given in the International Commission 
for Mathematical Instruction (ICMI) study (Mammana & Villani,  1998 ). Geometry    
is reasoning about the visual. It is clear how Euclidean geometry and analytical 
geometry (where graphs and algebra meet) are part of this defi nition. However, by 
this defi nition, geometry is about much more, and is more related to professional 
and cultural contexts. This defi nition allows for creativity and is less about learning 

  Fig. 1.1    Drawings to 
illustrate Australian 
Aboriginal art about 
relationships       
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defi nitions, symbols, axioms, and proofs. It is about all forms of convincing espe-
cially deductive reasoning including refutation by counter-examples, and making 
modifi cations because of good reasoning. Reasoning is about understanding, 
explaining, and convincing. It allows for inductive and visual reasoning and expla-
nations, and for interactions with visualisations and constructions. Learners, the 
new geometers, interweave intuitive-visual reasoning and deductive reasoning. 

 Visuospatial reasoning provides a new way of looking at the situation in order to 
suggest a generalisation   , and an explanation of why the generalisation holds. 
Furthermore students need to learn how to reason about visuals. It is also important 
to move beyond the initial, intuitive visualisation which might have visually domi-
nant misleading aspects to a more advanced level of visualising by re-seeing the 
visual and reasoning from the newly attended aspects of the visual.  

    Bridging from the Psychological 
to the Ecocultural Perspective 

 Representations of space in terms of systems, measurements, projections, and other 
graphic features such as organisation of fi gure-ground features (i.e. the separation 
of a fi gure from the background) for readability, interpolation, and extrapolation 
(NRCCG,  2006    , p. 3) are socioculturally determined. Furthermore the purpose for 
this visuospatial reasoning illustrates the importance of visuospatial reasoning in 
terms of sociocultural purpose, that of scientifi c advancement. Geographical 
advancements in the broad study of society linked to place are also served by math-
ematics. The Committee points out the importance of visuospatial reasoning in 
terms of a range of specialised skills that over time will become increasingly spe-
cialised such as those involved in interpreting MRIs (magnetic resonance imaging) 
and using the tools for capturing such images. There are many areas such as applied 
psychology, geography, physiotherapy, occupational therapy, medicine, architec-
ture, design, computer science, semiotics, and animal cognition in which visuospa-
tial reasoning is essential (Shah & Miyake,  2005 ). In schools, visuospatial reasoning 
impacts on a range of mathematical topics and some of these will be explored in 
Chaps.   8     and   9    . 

 In many countries school curriculum    refers to spatial awareness in primary 
schools as part of geometry or problem solving. It is recognised that visualisation of 
spatial attributes of objects and numerical representations assist the learning of con-
cepts (Shah & Miyake,  2005 ). However, there is little recognition that these ways of 
representation and thinking have an out-of-school source (Pegg & Davey,  1998 ). 
Nevertheless, early childhood educators often refer to the context of education as 
infl uencing the thinking of the child (Brofenbrenner & Ceci,  1994 ). Children are 
immersed in not only a spatial realm but also one that has meaning to them in terms 
of their activity in the space and their relationships with others in the space. 
Education therefore has an ecological basis. This is further discussed in Chap.   3    . 
However, the question remains to be answered in this book: How do ecological and 

 Bridging from the Psychological to the Ecocultural Perspective
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out-of-school experiences impact on visuospatial reasoning? How does this knowl-
edge broaden our understanding of visuospatial reasoning? And to what extent is it 
valuable for school education, especially in the early years, to build on this 
knowledge?  

    An Ecocultural Perspective on Learning 

 This book draws on work by myself and others to explore visuospatial reasoning in 
a cultural context and to explore how visuospatial reasoning is culturally constructed 
and culturally responsive. The term ecocultural is used to summarise the notion of 
responsiveness    embedded in place and residing in culture and ecology. In other 
words, education besides recognising a school, system, and global perspectives as 
contexts may benefi t from connecting to place and culture to understand and 
strengthen visuospatial reasoning.    

 This notion of ecocultural education implies a place-based   , experiential educa-
tion in which the learners construct knowledge, skills, and values from making 
meaning from direct experiences in their ecocultural places through the learning 
cycle of refl ection, critical analysis, and synthesis. Conceptualisation of that place 
in terms of beliefs, values, taken-as-shared understandings, and language 
 representations are embedded in meanings about space and geometry and of neces-
sity are associated with that place. Relationships developed within and between 
places are also signifi cant in establishing meanings. Thus a critical approach to 
education that considers place also provides for specifi city relevant to the learner. 
It provides for an interdisciplinary curriculum which is ecological in terms of the 
contexts for learning both in the learning space and in the spaces in which the 
learner lives. Furthermore, a place-based education has a cultural context that is 
multigenerational and the boundaries between school and community can be 
crossed in a variety of constructive ways (Gruenewald & Smith,  2007 ). This is 
explored further in Chap.   3    . 

 Throughout this book, mathematics of a variety of different cultures is recog-
nised indicating a rich variety of ways of visuospatial reasoning. In that recogni-
tion, we confront issues of equity and social justice   , of valuing difference, and of 
the cultural rights of First Nations before colonisation. Place-based education has 
particular relevance to First Nation or Indigenous communities because their 
worldviews are built on their relationships between their land, their place, and 
themselves. 

 Mathematics of cultural groups or identifi ed social groups is referred to as ethno-
mathematics involving mathematical concepts and techniques used by a sociocul-
tural group. These mathematical techniques may vary but could be said to involve 
some general principles of mathematics such as generalising patterns of relation-
ships and variance (Johnston-Wilder & Mason,  2005 ). However, the extent and con-
text of the relationships vary because of the ecocultural situation. For example, the 
relationship might be about a physical position or it might indicate a whole set of 
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societal relationships as found with the way houses are positioned in a village such 
as those in the Trobriand Islands, PNG (Costigan,  1995 ), or with houses showing 
self-similarity in Africa (Eglash,  2007 ), or land identifi cation showing connection 
to clan groups of the Yolngu   , Australia (Thornton & Watson-Verran,  1996 ). The 
extraction of the relationship from the data or situated problem occurs in mathemat-
ical modelling (Rosa & Orey,  2012 ). While the extent to which the relationship 
should be divorced from the context is debatable, in terms of the ecocultural 
approach to mathematics, the debate is about how mathematics should be viewed, 
be learned, and be used. It is a debate about values in education (Adler,  2002 ; 
Atweh, Barton, & Borba,  2007 ; Barton,  2008 ; Bishop,  1988 ; Clarkson & Presmeg, 
 2008 ; Valero & Zevenbergen,  2004 ). 

 Matang ( 1998 ) argues there are two ways in which culture is connected to math-
ematics and mathematics education. One way is that the defi nition of mathematical 
knowledge is somewhat implicit, in that, mathematics is not a universal, formal 
domain of knowledge waiting to be discovered, but rather an assemblage of cultur-
ally constructed symbolic representations and procedures for manipulating these 
representations (Stigler & Baranes,  1988 ). Thus cognitively speaking, the advocates 
of this view argue that the incorporation of representations and procedures by chil-
dren into their cognitive systems is a process that occurs in the context of socially 
constructed activities. In other words, the mathematical skills that children learn in 
school are the results of the combination of previously acquired knowledge and 
skills, and new cultural input, rather than logically constructed on the basis of 
abstract cognitive structures (Saxe & Esmonde,  2005 ). Accordingly, the notion of 
culture functions not as an independent variable that can promote or retard the 
development of mathematical abilities, but as an integral part of the mathematical 
knowledge. 

 The second way suggested by Matang is that the analysis of cultural infl uences 
on mathematical knowledge can demonstrate both the differences and invariance in 
mathematical knowledge across cultures (Bishop,  1988 ; Kimball,  1974 ; Nunes, 
 1992 ). Thus I contend that mathematics is defi ned as the ability to make inferences 
on the basis of these logical structures rather than the classifi cations, hierarchies, 
and procedures of mathematical content. Mathematics includes the organisation of 
the presentation of subject matter but also the relationship between teacher and 
learner. The conceptual conditions that provide humanity with its sense of identity 
also provide people with experiences that are meaningful in their worldview. 

 The key issue in this debate is not that of mathematics per se but of the ownership 
of the knowledge and how that might be shared in and out of school classrooms. In 
this respect, the people involved and their relationships are critical. For Indigenous 
communities, the role of the Elders and the roles related to specifi c relationships are 
central (Owens et al.,  2012 ). It is also an argument about democracy and policy 
(O’Sullivan,  2008 ). Without specifi c policies that permit an Indigenous voice and a 
recognition of Indigenous knowledge and the associated rights, there will be little 
progress in establishing a continuity of education. These issues are illustrated 
through the examples of visuospatial reasoning presented in this book.    

 An Ecocultural Perspective on Learning
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 An ecocultural perspective assists teachers to be aware of the complexity of the 
ecocultural contexts in which students learn mathematics and to build successful 
school–community engagements through authentic open relationships built up over 
time under structures and plans that will sustain the relationships. Goals are thus 
mutually set within a social justice    framework that provides equity and respect 
(Civil & Andrade,  2002 ; Gervasoni,  2005 ).    Both the societal and individual con-
structions of mathematics are dynamic and so the mathematics may not remain 
static. A good example of the dynamic nature of mathematics is given by Muke’s 
( 2000 ) study of number among the Yu Wooi speaking community Mid-Whagi 
(Jiwaka Province, PNG) in which the language incorporates variants of the lingua 
franca Tok Pisin (Pidgin English) arising from practices of counting with larger and 
larger amounts of money for various new purposes. Similarly, Saxe and Esmonde 
( 2005 ), in their genetic developmental work, provided evidence of how changes 
occurred in the Oksapmin’s (Sandaun Province, PNG) counting systems and the use 
of the word  fu  (meaning the complete whole) over time developed to incorporate 
new meanings for the whole and for its usefulness in determining amounts and mak-
ing agreements based on their counting systems.  

    Ecocultural Identity and Mathematical Identity 

 Ownership of mathematics like all learning requires personal connection and 
responsiveness    that impacts on one’s identity. Ownership and a sense of belonging 
are embedded in sociocultural experiences and those of being in and connecting to 
a place, family, and culture as well as to a school or learning community. Figure  1.2  
(based on Owens, 2007/ 2008 ) provides a simplifi ed view of the relationship between 
ecocultural identity and mathematical identity. The basis of the argument is that 
learners need to become self-regulated   , confi dent learners with a sense of ownership 
of their mathematical problem solving in order to identify as mathematical thinkers. 
The social milieu and control of the social processes involved in learning play a 
signifi cant role in this development. Furthermore, visuospatial reasoning is particu-
larly infl uenced by ecocultural practices as I argue in this book. Hence the role 
visuospatial reasoning plays in learning geometry and developing a mathematical 
identity is critical and requires fostering.

   Davis ( 1999 ) argues that identity    is an enactive, dynamic, interactive ever- 
changing state of being. It is the doing of mathematics in an ecocultural context that 
is the identity. Ecocultural context surrounds and interacts with the learner whose 
values, beliefs, attitudes, and feelings control the cognitive processing involved in 
becoming a self-regulating    learner together with and interacting with their 
 ecocultural identity. The ecocultural context of learning infl uences the way a person 
thinks and feels about mathematical learning. For example, the form of questions 
(teachers and students), the expectations of the classroom, the available materials, 
and others in the learning space impact on the individual’s cognitive and affective 
processing (Owens & Clements,  1998 ). The various cognitive aspects of the 
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 self-regulating    learner (Jonassen, Peck, & Wilson,  1999 ) will incorporate a range of 
conceptual, heuristic, visual, and processing skills for working on individual prob-
lems (Owens,  1993 ; Owens & Clements,  1998 ) but over time self-regulation 
becomes an overarching aspect (Macmillan,  2009 ). Within these cognitive processes 
is reasoning and it is argued that visuospatial reasoning is a critical aspect of reason-
ing in terms of ecocultural infl uence. Responsiveness of the learner to the ecocul-
tural situation and mathematical problem situation (referred to as situated learning 
by Lave,  1988 ) develops the ecocultural mathematical identity of the person. 

 The individual psychological aspects of the self-regulating    learner interact with 
the individual ecocultural identity, which is also evolving (Davis,  1999 ). Both the 
psychologically and ecoculturally developing aspects contribute to the formation of 
identity as a mathematical thinker. The social context that encourages mathematical 
problem solving will still impact and surround this identity. Hence the identity is 
fl uid depending on space (those people, power-relationships and environments 
around them) and time (dependent on experience). Identity may be relatively stable 
but it may develop and change at different velocities depending on the circum-
stances. An “aha” experience may change the identity quickly (Goldin,  2000 ), 
whereas thinking about the number and variety of problems that one has solved over 
a period of time may move a person more slowly towards an identity as a mathemat-
ical thinker. Problem solving within a community will also change one’s identity 
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when identity as a mathematical thinker is valued and tacit knowledge is explicated 
and communicated mathematically. Furthermore, in different contexts, such as a 
regimented drill-based classroom, identity as a mathematical thinker may not be as 
evident as in another type of classroom or social setting.    

 Learning through observation and listening, through imitating, and through prac-
tice develops psychological aspects of the self-regulating    learner but ecocultural 
identity    encompasses learning as belonging (community) and involves continuous 
aspects of social interaction with the community and the context of learning (Owens, 
 1999b ; Wenger,  1998 ). This identity also incorporates learning as experience (mean-
ing) by which language between members of the community provides the meaning 
for problem solving and learning. Learning as becoming is the resultant dynamic 
identity as a mathematical thinker. 

 Identity as a mathematical thinker infl uences the ecocultural context since the 
learner engages in mathematical activity and engages with others. “Being engaged 
to the fullest of one’s identity is the source of creativity required for participation” 
in both the community of practice and “outside that community” (Wenger, cited in 
Kahan,  2004 , pp. 30 and 33). Knowledge presented in a classroom is valued less 
than an “experience … that … often involves feeling like an integral part of a 
 community” of practice (Kahan,  2004 , p. 31). “A person’s identity is engagement in 
the world” (Wenger, cited in Kahan,  2004 , p. 36) which is unique and complex, 
dynamic, evolving, and enacted (Davis,  1999 ; Wenger,  1998 ). Is it possible to pro-
vide examples from PNG that establish an explanation of how an ecocultural per-
spective impacts on visuospatial reasoning in mathematics education? This idea has 
been pursued by Owens ( 2012a ,  2014 ) and in Chaps.   7     and   8     of this book.  

    Moving Forward 

 This book is intended for mathematics educators rather than geographers or other 
vocations and the research from vocational fi elds is considered only when it eluci-
dates our understanding of visuospatial reasoning in childhood space, geometry, 
and mathematics education. Does the suggested framework based on psychological 
and sociocultural perspective strengthen our understanding of education and iden-
tity and the role of visuospatial reasoning in learning? I argue both fi elds strengthen 
the education debate on visuospatial reasoning and so I present an ecocultural per-
spective that captures this rich understanding. 

 The focus is on prior-to-school, primary, and middle school education within a 
cultural context. For this reason, the informative research around dynamic geometry 
software or the software used to analyse numerical data sets is only used to 
strengthen arguments from research relevant to the younger age group. 

 Chapter   2     begins with the research of the 1980s and 1990s around perception, 
spatial abilities, visual imagery, intuition or incidental learning, noticing and 
 attending, intention, and awareness. However, more recent studies of learning in 
context and its impact on visuospatial reasoning are used to extend our former 
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understanding. Chapter   2     mostly covers a psychological perspective whereas  
Chap.   3     considers cultural psychology and psycholinguistic studies to present a new 
perspective on visuospatial reasoning that is not embedded in the psychological 
literature but rather in the ecocultural literature. Chapter   3     covers out-of-school and 
early school learning experiences involving visuospatial reasoning and transitions 
in visuospatial and geometric reasoning, designing and imagining in creative play, 
and in measuring. However, these ecological approaches will be developed in terms 
of place-based education and the geographies of learning spaces to present a critical 
pedagogy of place (Barnhardt,  2007 ; Ferrare & Apple,  2012 ; Gruenewald,  2008 ). 
This chapter establishes an ecocultural perspective of visuospatial reasoning and a 
social justice    perspective on education. 

 These fi rst three chapters provide a way forward in the argument to consider 
Indigenous perspectives as a fundamental ecocultural perspective for education. 
Cultural research on space as place (Tuan,  1977 ) and language are critical in under-
standing an ecocultural perspective in education. The particular focus in Chap.   4     is 
on visuospatial reasoning associated with representing spatial position. Language 
issues relevant to size and measurement are also discussed. It draws particularly on 
linguistic literature relevant to Pacifi c countries. Chapter   5    , however, will focus on 
the visuospatial reasoning associated with Indigenous activities in PNG which is 
rich in having more than 850 different cultures. I synthesise research recently 
undertaken collaboratively with PNG colleagues and participant researchers to 
strength the ecocultural perspective of visuospatial reasoning. Chapter   6     extends 
this perspective by drawing on research within other Indigenous cultural groups 
around the world. 

 Nevertheless, the importance of this ecocultural perspective must be relevant to 
mathematics and mathematics education which is discussed in the rest of the book. 
Chapter   7     looks at the impact on understanding the nature of mathematics, mathe-
matics education, and identity exemplifi ed by ethnomathematics education projects 
in PNG. Chapter   8     considers the impact in practice for Indigenous and transcultural 
situations. The hybridity of visuospatial reasoning in two-way education is 
evident. 

 However, a test of this ecocultural perspective for visuospatial reasoning is by 
consideration of students in settings which are rich in digital technology. In 
Chap.   9    , the authors discuss research from early childhood and primary or elemen-
tary school settings in terms of visuospatial reasoning and the role of the ecocultural 
technological context in development of identity.    The concluding chapter, Chap.   10    , 
draws together the research and discusses the implications of an ecocultural per-
spective of visuospatial reasoning on our understanding of mathematics and our 
implementation of mathematics education. The challenges for curriculum, teacher 
education, global citizenship, multicultural classrooms, and Indigenous education 
are addressed in terms of new perspectives on education such as place-based 
education.                                                                                                            

 Moving Forward
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    Chapter 2   
 Visuospatial Reasoning in Twentieth Century 
Psychology-Based Studies 

                      Ensuring that knowledge and skills are meaningful requires 
engaging the imagination in the process of learning. 

(Egan,  1992 ) 

   I would say that all discovery requires imagination. 

(Donald Coxeter, 1907–2003, cited in Hagen (2003)) 

      The Challenge 

    From early in the twentieth century, there was interest by psychologists and 
 educators about visual and spatial abilities along with other abilities perceived as 
valuable for learning. The scientifi c approach to research dominated the scene. 
Visual perception and spatial abilities were the main areas of interest for educa-
tional psychologists. Both constructivism and information processing theories were 
important drivers of research on visuospatial reasoning (or at least spatial abilities 
and visual imagery) in the twentieth century. Many mathematics educators empha-
sised that concepts are not passively received but are actively constructed as the 
learner uses existing schema to interpret information and draw inferences from this 
information (for example, Lohman, Pellegrino, Alderton, & Regian,  1987 ; Skemp, 
 1989 ; Steffe,  1991 ). In this learning, visuospatial reasoning plays a part when “the 
stored memories and information processing strategies of the brain interact with the 
sensory information received from the environment to actively select and attend to 
the information and to actively construct meaning” (Osborne & Wittrock,  1983 , 
p. 4). The immediate context of the student was seen as relevant and it was accepted 
that memory was infl uenced by external prior experiences in a broader context. 
What was the legacy of the twentieth century from studies on visual imagery and 
spatial abilities? The infl uence of psychology on mathematics education was sig-
nifi cant in this area of visuospatial reasoning but what impact could it have in the 
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classroom? For some educators, Krutetskii’s ( 1976 ) idea of visual and verbal rea-
soning was sidetracked into multiple intelligences or was there more to be learnt 
about visuospatial reasoning for mathematics education and in particular space, 
geometry, and measurement? In this chapter, I set out to research these questions, 
fi rstly through an extensive critical literature review and then via a number of empir-
ical studies. Much of the work on visual imagery and spatial abilities was carried 
out in the 1970s and 1980s, so much of the foundation work for our understanding 
of visuospatial reasoning comes from that literature. A generative model of learning 
(Osborne & Wittrock,  1983 ) assisted to bridge the gap between information pro-
cessing theories and constructivist learning theories. Other areas of research on 
visuospatial reasoning have been prompted by how children with disabilities learn 
visuospatial knowledge. Age-related studies are critiqued especially in terms of 
diversity of tasks in which visuospatial reasoning occurs and can be affected by the 
task. Then I explore in my studies how children are using visuospatial reasoning in 
school. I develop this research to show how students’ attention and responsiveness    
are critical to their learning. However, it is salient at fi rst to note the complexity of 
terminology generated by theorists and researchers in developmental psychology, 
factor analysis, and information processing studies on visual imagery, visualisation, 
and spatial abilities (Eliot,  1987 ).     

    Visuospatial Reasoning and Studies on Spatial Abilities 

 Terminology in these studies varied. For example, the word  visualisation  may refer 
to internal (mental) representations or external representations (Goldin,  1998 ), or to 
a specifi c spatial ability which was described and assessed by different kinds of test-
ing    items by different authors. It is worthwhile explaining this at the start of this 
chapter because it also gives the reader a greater appreciation of what is meant by 
visuospatial reasoning, a term that I say encompasses all these areas. The term 
 visual imagery  was usually used as an alternate to other forms of information pro-
cessing or mental skills such as verbal processing. Spatial abilities were seen as a 
more stable intellectual quality than using visual imagery (Bishop,  1983 ) although 
training studies and age or maturation studies have shown spatial abilities can 
improve and change over time and with experience (Cox,  1978 ; Eliot,  1987 ; Lean, 
 1984 ). Problem-solving studies suggested some people preferred to process visuo-
spatially while others preferred processing verbally (Krutetskii,  1976 ; Moses,  1977 ; 
Quinn,  1984 ; Suwarsono,  1982 ). This chapter teases out some of this complexity 
and then synthesises it drawing out important points for geometry education. 

 Visualisation or visual synthesis is contrasted with verbal reasoning in some 
intelligence tests but visualisation in other studies refers to one of the spatial skills—
the mental rotation of a representation (visual image) of an object—in contrast to 
orientation in which the person considers the view of the object from another per-
spective (Eliot,  1987 ; McGee,  1979 ;    Michael, Guilford, Fruchter, & Zimmerman 
 1957 ). Tartre ( 1990a ) argued that the idea of limiting visualisation to mental rotation 
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alone, especially of three-dimensional objects, is too limiting. She included all 
forms of transformation under visualisation and expanded orientation to include 
other forms of re-seeing shapes as shown in Table  2.1  which shows how various 
terms are used for similar spatial abilities based on examples of test items used by 
the various authors.

   The term spatial relations is also used in different ways. Pellegrino and Hunt 
( 1991 ) used it to refer to mental rotation tasks because, in terms of information 

     Table 2.1    Visualisation and orientation      

 Tartre’s categories 
 Descriptions and similar 
tests  Comments 

  Visualisation   “Mentally moving”  • Manipulation (Eliot & McFarlane- Smith, 
 1983 ) except alternative perspectives 

  Mental rotation  
 • Rotating 2D 

shapes 
 • More than rotation especially of 3D 

given it was often done by analysis 
 • Rotating 3D 

shapes 
  Transformation  
 • 2D to 2D  • Form board tasks, 

integration of detail, 
tessellations, 
tangrams 

    • “Integration of detail” (Pellegrino & 
Hunt,  1991 ) and “spatial relations” 
(Johnson & Meade,  1985 ; Thurstone & 
Thurstone,  1941 ) except related to 
orientation—completing fi gures and 
fi tting parts together 

 • 2D to 3D  • Surface 
development tasks 

 • 3D to 3D  • 3D tessellations 
 • 3D to 2D  • Unfolding tasks 
  Orientation  
  Multiple 
representations  

 See comment above 

  Re - seeing  
 • Reorganisation of 

the whole 
 • Alternative 

perspectives 
 • Thurstone’s spatial relations possibly 

 • Part of fi eld  • Completing fi gures  • Pellegrino & Hunt’s “adding detail”, 
“deleting detail” 

 • Ambiguous 
fi gures 

 • Find part or fi t part  • Lohman et al. ( 1987 ) have fl exibility of 
closure (disembedding) as separate 
factor 

 • Hidden fi gures  • Figure- ground 
perception (Del 
Grande,  1990 ) 

 • Also called 
“disembedding” 

 • Recognition (Eliot 
& McFarlane- Smith, 
 1983 ) 

 • Eliot & McFarlane’s
 -  visual memory
 -  copying 
  -  maze tests 

 are not included in Tartre’s examples 

 Visuospatial Reasoning and Studies on Spatial Abilities
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processing, it is likely that, in fact, parts are rotated and checked in relation to other 
parts in sequence. Although “adding detail” and “deleting detail” were not classi-
fi ed by Pellegrino and Hunt ( 1991 ) with surface development and the integration of 
detail tasks, they do appear to be the same as Tartre’s “part of fi eld”. Examples of 
items for assessing and investigating these spatial abilities can be found in my two 
tests:  Thinking About 2D Shapes  (Appendix   B    , see also Owens,  1992a ,  1993 ) and 
 Thinking About 3D Shapes  (Owens,  2001a ) discussed later in this chapter. These 
tests were for young children (5–10 years) and more like school experiences than 
most tests.  

    Visuospatial Reasoning from an Information 
Processing Perspective 

 While some information processing theorists’ perspectives were incorporated into 
the discussion above on spatial abilities, they emphasised perceptual speed and the 
effects of speed and accuracy in spatial abilities. Poltrock and Brown ( 1984 ) sug-
gested that individual differences were particularly due to the visual buffer (short- 
term memory of the image) and speed of processing. Measures of the processing for 
particular tasks depend on their complexity, speededness, and susceptibility to more 
than one solution strategy, so spatial abilities are reliant on creating structures which 
are abstract and relation-preserving and on which transformations can be easily and 
successfully performed (Lohman et al.,  1987 ). Time is also signifi cant for process-
ing not only static spatial relations but also dynamic spatial relations which involve 
a time order and are generally studied by a series of computer images (Aust,  1989 ; 
Pellegrino & Hunt,  1991 ).    New contextual areas requiring visuospatial reasoning 
include dynamic information presented, for example, in representing past and future 
weather patterns, and graphing data with traces.    

 Within the information processing theories, there are different emphases pertain-
ing to visual imagery as a processing/storage medium. First, Paivio’s dual-coding 
theory (Paivio,  1971 ,  1986 ) states that there is a non-verbal as well as a verbal sym-
bolic modality for processing physical objects, scenes, environmental sounds and 
images, and general images. Kosslyn’s surface representation theory (Kosslyn, 
 1981 ; Kosslyn & Pomerantz,  1977 ) suggests that during perception, units are 
abstracted, interpreted, and stored in long-term memory. In Pylyshyn’s abstract 
transformational model ( 1979 ) the verbal and non-verbal information can also be 
transferred between modes by a set of propositions. A visual representation, some-
times accompanied by a verbal one, is generated by this proposition (Kieras,  1978 ). 
Imagery and propositions together with other memory structures interpret and are 
used for testing    perceptions in short-term memory during learning (Gagné & White, 
 1978 ). Pictorial images then are not original photographic images but “quasi- 
pictorial representations that are supported by a medium that mimics a coordinate 
space” (Kosslyn,  1981 , p. 46) explaining Bruner’s ( 1964 ) notion of concrete, picto-
rial, and abstract representations. Support for visual images being processed, based 
on reaction time, in a way that is similar to manipulation of physical objects showed 
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a linear relationship between the degree of rotation or number of transformations 
and the time taken to respond to the task (Cooper & Shepard,  1973 ; Shepard,  1971 , 
 1975 ). However Shepard also noted that analysis rather than rotational methods 
could account for reaction time. 

 No matter how the storage of imagery occurs, the need to generate spatial repre-
sentations is an initial stage in the processing of a spatial problem, according to the 
fl owchart models of Egan ( 1979 ) and Carpenter and Just ( 1986 ). The emphasis is on 
part-whole relationships. For orientation, the model requires comparisons on dimen-
sions one at a time while visualisation tasks require a search followed by a looping 
of transformation and checking. The particular task will affect the processing 
(Carpenter & Just,  1986 ; Paivio,  1971 ). Images can be generated by encoding a 
physical stimulus, retrieving a previously constructed representation, constructing a 
new representation from non-iconic (verbal) descriptions, or by some combination 
of these processes. Visuospatial reasoning is affected by the adequacy, effi ciency, 
and accuracy of the encoding and the retaining of detail during transformations or 
comparisons. Some tasks do not require transformations but only assessment. 
Choice of frame of reference for encoding, consideration of size and proportion, 
and interpreting perceptual distortion are three aspects affecting processing and 
would be related to the ability of interpreting fi gural information which Bishop 
( 1983 ) contrasted to the ability of visual processing. 

 Carpenter and Just ( 1986 ) based much of their work on detailed analyses involv-
ing retrospection and eye fi xation, but a study by Poltrock and Agnoli ( 1986 ) further 
describes the importance of effi cient imagery and what is entailed in it. They used 
structural equation modelling and found that a range of tests of spatial abilities 
required a number of visual imagery processes. The resultant model was used to 
relate the imagery-cognitive components as determined in laboratory tests to spatial- 
test performance by a linear regression analysis and then to a factor analysis of the 
spatial tests. Effi cient image rotation and effi cient image integration contributed to 
performance on all the spatial tests, but image generation time did not. This last fac-
tor was correlated with image memory performance. Adding detail and image scan-
ning were two further imagery components suggested by Kosslyn ( 1983 ) and others 
(Brunn, Cave, & Wallach, 1983, cited in Poltrock & Agnoli,  1986 ; Poltrock & 
Brown,  1984 ). Visual memory and vividness of imagery did not correlate with spa-
tial ability (Lohman et al.,  1987 ) and Burden and Coulson ( 1981 ) also found that 
students used a variety of approaches to visual processing and that these processes 
could not be restricted to the processing methods suggested by Egan ( 1979 ) and 
discussed above. 

 Lohman et al. ( 1987 ) concluded that visualisation is the most general spatial- 
ability factor. The tests that load on this factor were quite diverse: tests of rotation, 
refl ection, folding of complex fi gures, combining fi gures, multiple transformations, 
or no transformations. They listed another nine spatial factors: spatial orientation, 
fl exibility of closure (embedded fi gures test), spatial relations, spatial scanning, per-
ceptual speed, serial integration, closure speed, visual memory, and kinaesthetic 
memory. This list is not a complete list of spatial abilities and, indeed, Guilford’s 
structure of the intellect was a model schematising a multifaceted intellect involving 
three dimensions—content, product, and operations—and it encompassed many 
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cells with fi gural content that could be related to spatial abilities and visual 
 processing (Magoon & Garrison,  1976 ). Lohman et al. ( 1987 ) stated that tasks 
which were complex tended to load only on the one factor called visualisation, but 
simple tasks, generally involving time, tended to involve more specifi c factors. 
While they summarised basic categories of processes as pattern matching, image 
construction, storage, retrieval, comparison, and transformation, Kosslyn ( 1981 ) 
listed other processes (rotate, scan, pan, zoom, and translate images, inspect and 
classify patterns). Among others, Carpenter and Just ( 1986 ) emphasised the use of 
analysis and checking in both orientation and visualisation procedures and this 
might explain the confl ict between Tartre’s classifi cation and others. If this is the 
case, then visuospatial reasoning is not just a skill but it involves the understanding 
of concepts because analysis and checking are limited when images are not concep-
tualised; a point that is generally not mentioned in the literature but which is taken 
up in discussing types of visual imagery later in the chapter. 

 The question remains whether visuospatial reasoning is a spatial ability or a 
higher order ability encompassing spatial ability. Visuospatial reasoning can be 
used in non-spatial problem solving (Deregowski,  1980 ; Krutetskii,  1976 ; Owens, 
 2002c ). The terms “imagistic processing” or “imagining” capture the creative use of 
mental visuospatial reasoning in solving problems (Goldin,  1987 ). The extent of 
visuospatial reasoning is refl ected in the following statement:

  producing or using geometrical or graphical representations of mathematical concepts, 
principles or problems, whether hand drawn or computer drawn … that is, the use of math-
ematical visualisation is intended to be a mental process but also to produce a drawing to 
assist in understanding or problem-solving. (Zimmermann & Cunningham,  1991 , p. 1) 

   Visuospatial reasoning also incorporates “the ability to represent, transform, 
generate, communicate, document, and refl ect on visual information” (Hershkowitz, 
 1990 , p. 75) and to relate certain concepts to physical embodiment, pictorial or 
concrete through which each person would develop certain conceptualisations 
(Bauersfeld,  1991 ). Visuospatial reasoning then is a mental process that may come 
from, create, or manipulate physical representations (see also the discussions 
reported by Goldin,  1998 ). Visuospatial reasoning encompasses spatial abilities but 
goes well beyond these skills.     

    Studies of Learners with Disabilities 

 Another area that assists us to know about visuospatial reasoning is the studies with 
people with disabilities. Witelson and Swallow ( 1988 ) suggested that both hemi-
spheres support spatial performance with maturation points at age 5 years and at 
puberty. Damage to the left hemisphere of the brain (often seen as dominant in 
language acquisition) reduces this performance. Landau ( 1988 ) noted that basic 
principles of spatial cognition of students who confronted their environment mainly 
by hand were the same systems as those of sighted children. By contrast, Stiles- 
Davis, Kritchevsky, and Bellugi ( 1988 ) showed right hemisphere-damaged infants 
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display normal ability to identify class relations so long as these were not spatial 
relations. Furthermore, for spatial groups and relations, they were impaired com-
pared to others whereas the left hemisphere-damaged children did not show the 
same diffi culties. In the cases of a child with a disability that reduces spatial think-
ing, then appropriate language development seems to provide alternative pathways 
(Mandler,  1988 ). Visuoperception can be adequate for tasks like recognition of 
unfamiliar faces, perception of form, and closure for children with Williams 
Syndrome. However, visuospatial thinking is limited for these children as evident 
by their focussing on irrelevant features like height reduction to conserve quantities, 
by not showing connectivity of parts of perceived objects, and by not recognising 
transformed shapes indicating defi cits in the visuospatial skills of drawing, spatial 
construction, line orientation, spatial transformations, and spatial memory (Bellugi, 
Sabo, & Vaid,  1988 ). This study in particular indicated a distinction between 
visuoperceptual skills and visuospatial reasoning. 

 Lillo-Martin and Tallal ( 1988 , p. 437) also note that “while the well-known left- 
and right-hemisphere distinctions are upheld, some degree of plasticity, transfer-
ability, and compensatory change are indicated [by the studies reviewed by 
Stiles-Davis et al., ( 1988 )]”   . In the area of attention, studies of subjects who were 
deaf and hearing who knew or did not know American Sign Language (ASL) pro-
vide further information. Deaf subjects showed compensatory mechanisms with 
occipital activity in both hemispheres while the hearing group with ASL (deaf par-
ents who signed) had increased left temporal-parietal activity compared to the hear-
ing group without ASL showing functional reallocation (Neville,  1988 ). In a further 
study (Poizner & Tallal, cited in Lillo-Martin & Tallal,  1988 ) there was no compen-
satory performance and Lillo-Martin and Tallal ( 1988 ) suggest this was due to the 
critical fl icker frequency, lack of verbal labels, and the positioning of the visual 
stimuli on the eye. These last-mentioned researchers suggest that a spatial language 
still uses the left hemisphere although some brain reorganisation takes place. They 
conclude that “function rather than form dictates cerebral organization, at least for 
language and spatial cognition” (Lillo-Martin & Tallal,  1988 , p. 438). While the 
acquisition of language and visuoperceptual functions are innate in certain parts of 
the brain, a limitation on that area may limit performance in early childhood but 
will lead to changes in brain organisation and limited plasticity. It may be that chil-
dren without brain dysfunction or limitation may process differently and there is no 
implication for adult performance from these studies. In addition, timing might 
also affect performance on tasks related to motion and localisation in space 
(Anderson,  1978 ; Neville,  1988 ; Shepard,  1988 ).    “Interactions of spatial process-
ing with other, related areas, such as temporal processing, is an integral part of 
understanding spatial cognition” (Lillo-Martin & Tallal,  1988 , p. 440). However, 
the studies suggest that context and social experiences in early childhood will dra-
matically affect development in the area of visuospatial reasoning. 

 Processes include spatial perception, object location, line orientation, spatial 
synthesis, spatial memory, spatial attention, spatial mental operations like rotation, 
and spatial construction (Kritchevsky,  1988 ). Spatial attention seems to be  infl uenced 
by both sides of the brain and so does construction with one part particularly 
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 requiring more thought than the other to draw, for example, an image with adequate 
angles and detail. Objects can be located using both visual and verbal information. 
   Importantly training that involves areas of the brain other than the perceptual, visual 
memory section assists in spatial construction needed for basic tasks designed to 
improve spatial attention, memory, and construction. 

 Healy and colleagues (Healy & Fernandes,  2011 ; Healy & Powell,  2013 ) have 
also studied learning of blind students. In a unit on symmetry they particularly noted

  There were differences between approaches to symmetry adopted by the two students. For 
example, the student who had never had access to the visual fi eld tended to treat geometrical 
objects as dynamic trajectories and attempted to look for invariance relationships among 
the sets of points which defi ned the trajectories; the second student attempted to character-
ize the objects he was feeling in terms of objects he remembered from before he lost his 
sight. Nevertheless there were also similarities. Notably, both students tended to move their 
hands or corresponding fi ngers from each hand in a symmetrical manner over the materials 
they were exploring. (Healy & Powell,  2013 , p. 78) 

   Reisman and Kauffman ( 1980 ) provided a range of visuospatial issues for con-
sideration in this regard from work with disabilities.    Visuoperceptual disorders 
underlie diffi culties in spatial orientation, recognising position, discriminating fi g-
ure from ground, and distinguishing near–far relationships together with sequential 
memory, visual spatial memory, or constancy of form diffi culties. These diffi culties 
impact on arithmetic skills and understandings as well as spatial-geometry under-
standing. Similarly Farnham-Diggory ( 1967 ) showed that alternative ways of read-
ing using pictographs are possible although disability may slow progress. These 
studies on learners with alternative abilities indicate that visuospatial reasoning 
occurs using different pathways   .  

    Age and Visuospatial Reasoning 

 While I argue later that strategies for visuospatial reasoning are found across ages, 
it is important to consider earlier studies and to build on them but at the same time 
show how modifi cations to assessing provide evidence to critique stage and age-
related limitations. Piaget and Inhelder ( 1956 ,  1971 ) claimed that children who had 
not yet reached the concrete operational stage could not solve problems requiring 
mental rotation of images because this task required conservation skills. Visuospatial 
reasoning was linked to maturation and considered available only to those who had 
developed certain levels of thinking. However, Rosser, Lane, and Mazzeo ( 1988 ) 
who considered age as a predicting variable contributing to level of development 
actually found that young children could solve rotation problems which were not 
diffi cult (such young children may not be conserving). The children reproduced the 
simple models of two rods, which formed a T or an L, and a circle placed at the end 
of a rod or in the right angle. Most children aged 4 and 6 could reproduce a model 
present in front of them and when it was shown and then hidden while 8-year-olds 
could also memorise and represent an anticipated rotation (which was indicated by 
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hiding and rotating a model), and represent another perspective by moving a model. 
Owens ( 1992a ) developed an innovative paper-and-pencil test that used cardboard 
cut-outs in explaining the items and stickers for some responses. On an item inspired 
by Rosser et al. (1988), she found that these items were relatively easy (on a Rasch 
analysis) for children aged 7 and 9 years. The test incorporated items that linked to 
spatial abilities (Eliot & McFarlane-Smith,  1983 ) but more closely linked to typical 
classroom activities. It was developed in two equivalent versions, a copy of one is 
available in Appendix   B    . 

 Invariance of parts of a shape was more complex than that required by the 
Piagetian conservation of length task (the staggered lines test involving two equal 
horizontal sticks with non-vertical starting points).    Kidder (1978) found that only a 
small percentage of conservers could choose the correct length of a side of a trans-
formed triangle, and Thomas (1978) found that non-conservers (determined by the 
Piagetian task), irrespective of grade (1, 3, or 6), were less likely to be correct in 
assessing invariance of length of the side of a triangle under rotations, translations, 
and refl ections than conservers in that grade. The older students considered the 
vertices as well as the sides of the triangle. This result suggests that conservation 
may not have been the most important determinant of the results of this study but 
some other factor such as the strategy used to make the decision or some features of 
the task   . 

 van Hiele ( 1986 ) suggested that concepts in geometry such as equality of angles 
develop through the following stages and depend very much on experience. Students 
do not tend to reason about properties, although they may about parts, without fi rst 
apprehending (attending and noticing) and reasoning visually. According to van 
Hiele, the stages are the following:

    1.    The student reasons about basic geometric concepts … primarily by means of 
visual considerations of the concept as a whole without explicit regard to proper-
ties of its components. …   

   2.    The student reasons about geometric concepts by means of an informal analysis 
of component parts and attributes. Necessary properties of the concept are 
established…   

   3.    The student logically orders the properties of concepts, forms abstract  defi nitions, 
and can distinguish between the necessity and suffi ciency of a set of properties 
in determining a concept. (Martlew & Connolly,  1996 , p. 31)    

  Students with less developed approaches to concepts such as equality of angles 
may be operating in the earlier two stages. Several later studies suggested that 
development through these stages was concept specifi c (see summary in Owens & 
Outhred,  2006 ).    

 From a study of 2- to 5-year-old children’s constructions and drawings of geo-
metric shapes, Fuson and Murray (1978) reported that the verbal descriptions given 
by children were holistic and that, if an attribute was mentioned, it was in the con-
text of describing a whole shape, for example, “the pointy one”. The study showed 
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that children could construct each of the shapes before they could draw it or analyse 
it suggesting that there were at least two prerequisites for drawing shapes:

    1.    The ability to discriminate the parts of the shape   
   2.    The ability to operate on a mental image of a shape so that

    (a)    The parts of the shape can be related in a sequential order.   
   (b)    The part(s) of the shape already drawn on the paper can be coordinated with 

the mental image of the whole shape that is projected onto the paper. (p. 80)         

 Support for an interaction between the visuospatial reasoning and the external 
actions (verbal and visual) as critical to our understanding of visuospatial reasoning 
comes from two interview and observational studies by Mansfi eld and Scott (1990) 
and Wheatley and Cobb (1990). Instead of determining the kinds of transformations 
that students could carry out by giving them test items in which students had to 
recognise transformed shapes, Mansfi eld and Scott’s (1990) study observed 23 pre- 
school to grade 1  1 children selecting shapes to cover other shapes which were either 
marked with suitable divisions or not. (For example, a square could be covered by 
two right-angled isosceles triangles or two rectangles.) Although older children in 
this study tended to be able to solve more problems than younger students, this was 
mainly the result of their persistence rather than their more effi cient or varied strate-
gies. Covering shapes which did not have divisions was more diffi cult for children 
than covering those with divisions. Recognising shapes which would not lead to a 
solution and re-positioning pieces increased success. Rotating shapes and turning 
the pieces over were more advanced strategies. Children tended to use the same 
strategies in two interviews over time since persistence meant that a poor strategy 
could gain success eventually (Owens & students,  2007 ). 

 In Wheatley and Cobb’s ( 1990 ) study, 24 children from fi rst and second grade 
were given fi ve pieces in the shapes of a right isosceles triangle, a parallelogram, 
and a square, and two smaller similar triangles which could be joined to form the 
other three shapes. The children were briefl y shown a square with lines drawn to 
indicate that it could be covered by the three triangles. They were then asked to 
cover a blank square with the pieces. Wheatley and Cobb determined that the overt 
actions of the children represented images and conceptual structures. Students 
seemed to be using the following aspects of imagery and structures:

    1.    The divisions of the square could be thought of as being made up of two- 
dimensional space rather than just lines.   

   2.    The size of shapes could be compared with imagined shapes.   
   3.    Mental rotations could be used to anticipate how the space might be fi lled.   
   4.    The whole is made up of parts in specifi c positions.    

  Wheatley and Cobb described the children’s behaviour in terms of several levels: 
(a) imagining two-dimensional shapes as linear objects (matching shapes using 
their lengths); (b) covering the shapes globally (covering with overlaps or gaps 

1   This study and my own were undertaken in Australia where in fact grades are called Year 1, Year 
2, etc. but grade is used here for consistency with other countries. 
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without aligning sides); (c) structuring an unfi lled space as a shape (after position-
ing some pieces, children perceived the remaining space as a shape); (d) partially 
constructing images (mental images tended to involve only one aspect of the whole); 
and (e) constructing relational images (parts and properties were noticed as parts of 
the image). Such a description of students’ visuospatial reasoning suggests a grow-
ing alignment between conceptual understanding and visuospatial development. 

    In attempting to provide a summary of children’s uses of shapes, Clements, 
Wilson, and Sarama ( 2004 ) also suggested levels such as precomposer, piece assem-
bler, picture maker, shape composer, and substitution composer but these appear to 
be a guide but not defi nitive levels in terms of students’ behaviour or ways of thinking. 
Especially in terms of some consideration of the diffi culties and nature of tasks is 
needed (Wilson,  2007 ). While these studies provide evidence of visuospatial rea-
soning, it is clear that trying to bring levels to these ways of reasoning is restrictive 
of students’ diversity of thinking for any puzzle. However, experience, visuospatial 
reasoning, and decision-making are evident. One puzzle was to cover a bone shape 
by fi ve regular hexagons. One student who had placed four isosceles trapezia on the 
shape but not as a hexagon was not immediately sure of covering it nor could he 
imagine where each trapezium would be placed. The visual and his train of thought 
may have prevented recall of other facts that he knew such as trapezia make a hexa-
gon. His mental imagery was sophisticated already as he had begun a puzzle which 
required placing, imagining, and mentally counting trapezia in quite a diffi cult way 
compared to the tasks in my own studies (NSW Department of Education and 
Training Curriculum Support and Development,  2000 ; Owens,  1993 ).     

    Visuospatial Reasoning on Different Tasks 

 There is a further caution raised in comparing research using different tasks. Task 
features are signifi cant factors in tests of spatial abilities. For example, students in 
all grades (up to 11) found it was very diffi cult to visualise the rotation of letters 
which had rotational symmetry (the S and N) and the horizontal refl ection of the 
non-symmetric J. The half-turn clockwise also yielded greater differences between 
the grades than the two refl ections or the counterclockwise rotation. Vurpillot (1976) 
explained that the use of a horizontal reference line in spatial perception tasks 
encourages subjective preference for distinguishing a “top” and a “bottom” of a 
shape while a vertical reference line encourages preference for homogeneity of per-
ception favouring recognition of symmetry. 

 The need to consider variations in the type of transformation as well as the type 
of fi gure involved in the task was taken up by Schultz (1978). She varied the type of 
transformation, the mode (horizontal or diagonal), the lengths between positions 
before and after the transformation, the size of the confi guration, and the type 
(meaningful, that is, the sailing-boat confi guration, or not). The confi gurations were 
made of three coloured parts. She found the following: (a) lack of familiarity and 
unexpected sizes of shapes interfered with comprehension but not as much as type 

 Visuospatial Reasoning on Different Tasks



30

of transformation and features of the transformation itself; (b) “meaningful confi gu-
rations apparently facilitated the operational comprehension of a task” (p. 205) and 
large shapes were preferred; (c) translations were far more “do-able” than refl ec-
tions and rotations by 7-, 8-, and 9-year-old children; (d) rotations and diagonal 
refl ections increased error rate or were found to be not “do-able”; (e) diagonal trans-
lations often resulted in re-orientation of the shape in the same direction; and (f) the 
distance of a displacement was a signifi cant variable. However, the study did not 
give the signifi cance of the differences in the percentages of different categories. 
Horizontal and vertical displacements in translation and rotation tasks were signifi -
cantly easier than diagonal-displacement tasks for fi rst graders but orientation of the 
fi gure made it even harder (see also Owens & Outhred,  1997 ). First graders’ scores 
on subtests on the recognition of shapes and left–right orientation were relatively 
high but were low on subtests on perspective, fi gure-folding, and reasoning. After 
instruction the experimental group only improved signifi cantly on the perspective 
subtest. Moyer (1978) found that explicit knowledge of the physical motion associ-
ated with a transformation did not necessarily help the child’s ability to perform the 
transformation task. 

 Lehrer, Jenkins, and Osana ( 1998 ) considered children’s reasoning for choosing 
two out of three shapes they considered alike. They suggested there were nine types 
of visuospatial reasoning with one kind of reasoning using properties and two kinds 
based on class of shape. The visuospatial reasoning was seen to vary with immedi-
ate context. For example, a skinny rectangle placed in an oblique orientation was 
considered similar to a skinny parallelogram with oblique small sides by a large 
proportion of children but when the parallelogram was enlarged, there was not the 
same degree of error in terms of defi nitions of shapes. Visuospatial reasoning was 
infl uenced by context within the page but also by children’s schooling about what 
makes shapes the same. In other words, the school culture and the degree to which 
they had been enculturated into this Euclidean, defi nition-based system of shapes 
infl uenced their decision-making. 

 However, studies of children’s intuitive behaviour yield other fi ndings in terms of 
symmetry. Children from a very early age experience symmetry because it is an 
aspect of our bodies, of nature, and of many person-made constructions. Booth 
( 1994 ) studied pre-school students’ art and showed a natural tendency to paint sym-
metrically such as matching coloured lines on opposite sides of a central vertical 
line of symmetry and in patterns such as rows of coloured dots. Nevertheless, other 
ideas infl uence their paintings such as a desire to fi ll the whole page with paint. 
More formal, paper-and-pencil studies around 1990 showed children’s diffi culties 
with symmetry as illustrated by an analysis of grade 6 students’ responses in New 
South Wales (NSW) on Basic Skills Tests. Two questions on symmetry involving 
mirror refl ections were poorly answered by grade 6 students: 69 % were correct on 
a question involving a grid and a vertical refl ection line, but only 20 % coloured in 
parts of a refl ected face correctly. By comparison, over 80 % of students in grade 3 
and grade 6 were correct on questions involving folding (Owens,  1997a ). It seems 
that recognition of transformed shapes depends on the nurturing of natural sym-
metrical experiences. 

2 Visuospatial Reasoning in Twentieth Century Psychology-Based Studies



31

 The infl uence of visual skills, and diversity of means by which students can 
answer a simple angle-matching task should not be underestimated. Spatial skills 
such as disembedding or re-seeing were noted as helpful in using imagery and in 
solving spatial problems. Tasks themselves, especially the directions given to stu-
dents, may encourage use of different kinds of reasoning; for example, novel tasks 
and tasks which relate to physical objects may encourage visuospatial reasoning 
(Paivio,  1971 ). Krutetskii ( 1976 ) pointed out that some students preferred visual 
methods, others analytical or verbal methods while other students preferred to use 
both methods. Lowrie ( 1992 ) found that students chose visual or verbal methods 
depending on the nature of the problem and how diffi cult they found it. Many stud-
ies (see, for example, Burden & Coulson,  1981 ; Lohman,  1979 ; McGee,  1979 ; 
Poltrock & Agnoli,  1986 ; Shepard,  1975 ) indicate that different people use different 
strategies for doing the same spatial tasks. For example, on tasks in which the sub-
ject has to decide if the object has been rotated, some subjects have rotated the 
visual image to the new orientation, others have considered the object from a differ-
ent perspective, and others recognised features and used more  analytic  strategies. 
Studies by Egan ( 1979 ) and by Carpenter and Just ( 1986 ) have shown that  part- whole 
analysis can be used in both “orientation” (other perspective) and “visualisation” 
(transformation) tasks. The skill of being able to disembed shapes and parts of 
shapes seems to be a different skill from those requiring mental manipulation of 
images (see Table  2.1 ; Eliot,  1987 ; Tartre,  1990a ) but the tasks which seem to 
require this skill may still be completed by analytic procedures. 

 If this is indeed the case, then visualisation (used in the broad sense of all visual 
imagery) is a skill which can involve analysis and checking and hence concepts 
(Clements,  1983 ; Krutetskii,  1976 ). This point was not recognised in the earlier fac-
tor analysis literature on spatial abilities. Despite their differences both Pylyshyn 
( 1981 ) and Kosslyn ( 1983 ) would agree that both verbal (analytic) and visual infor-
mation can be processed, and that there is a means of mental storage which can be 
used either verbally or visually as needed in the working mind. Individuals vary in 
their preference for mode of mental representation whether by verbal, visual, or 
both mediums. Hence I incorporate these mental activities into visuospatial reason-
ing, avoiding confl ict of terminology and emphasising these are using reasoning.     

    Personal Approaches to Visuospatial Reasoning 

 As Lohman et al. ( 1987 ) have suggested, visuospatial reasoning depends on a range 
of spatial abilities, visuospatial memory, and image integration and manipulation. 
In Poltrock and Agnoli’s ( 1986 ) study, effi cient image rotation, image integration, 
adding detail, and image scanning contributed to performance on spatial tests but 
image generation time did not. Numerous studies have assessed the impact of visual 
skills and choice of visual or analytical methods on problem solving. In the narrow 
area of spatial tasks, Barratt ( 1953 ) found that the choice to use imagery was impor-
tant on tests with high loadings on a spatial-manipulation factor but less important 
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on tests loading on a reasoning factor. Carpenter and Just ( 1986 ) found that those 
who solved tasks sequentially tended to have lower scores than those who rotated 
shapes holistically. However, Sheckels and Eliot ( 1983 ) found students who per-
formed well on visual rotation tasks and processed visual materials analytically 
performed well on visual and combined visual/verbal mathematical problems. 

 One study of a personal characteristic, namely the preference for visual process-
ing, that is, visuality   , was carried out by Suwarsono ( 1982 ). His Mathematical 
Processing Instrument (MPI) consisted of a Mathematical Processing Test (30 ver-
bal problems) and a questionnaire that asked subjects to choose between a visual 
and a verbal solution as similar to their own solution method. From the question-
naire a mathematical visuality score was obtained. He considered the effect of train-
ing in verbal and visual methods on performance and the use of visuality in 
mathematical problem solving. Suwarsono found that spatial ability and picture- 
completion ability were not related to mathematical visuality. This was also found 
by Lean and Clements ( 1981 ) with tertiary students in Papua New Guinea.    

 Suwarsono ( 1982 ) found that visuality    did not assist or hinder mathematical 
problem solving. However, Lean and Clements ( 1981 ) found that students who used 
analytic–verbal processes tended to perform better than those preferring visual pro-
cesses. As the MPI was designed for seventh-grade Australian students, it may have 
been too easy for the tertiary students of Lean and Clements’ study (the mean test 
score in Lean and Clements’ study was 11.1 out of 15 as opposed to 17.3 out of 30 
for Suwarsono’s sample). Furthermore, Tartre ( 1990b ) found in a problem, in which 
the area of an irregular fi gure was to be estimated and calculated, that spatial- 
orientation ability (picture-completion test) was related to each of the following: the 
quality of the estimate, changing unproductive mind set, adding marks to show 
relationships, mentally moving or assessing size and shape of part of a fi gure, get-
ting the correct answer without hints, and relating to previous knowledge structures. 
Barratt ( 1953 ) asked students to indicate the extent to which they used visual imag-
ery. He claimed that those who used it extensively did well on tests with high load-
ings on a spatial-manipulation factor but no better than others on tests with high 
loadings on a reasoning factor. Thus there is no simple explanation for achievement 
but rather an indication of the complexity of visuospatial reasoning. 

 Students who have high spatial ability can still choose to use verbal methods of 
solving problems. In several studies, scoring on the test of verbal reasoning was the 
only variable explaining variance on post-training mathematical problem-solving 
performance except pre-training performance (other variables included pre-training 
mathematical visuality   , spatial ability, and picture-completion ability) (Lean & 
Clements,  1981 ; Quinn,  1984 ; Suwarsono,  1982 ). The importance of verbal reason-
ing, at least on problems presented verbally, could be explained by better abstract 
thinking (as Lean and Clements have suggested) or by the nature and familiarity of 
the problem (as Paivio has suggested). Further support for the value of analytical 
thinking despite high visual processing ability comes from Sheckels and Eliot 
( 1983 ) who found that, as only two visual variables—rotation and embedding—
were related, the choice to use visual imagery (visuality) was unrelated to the ability 
to rotate visual material or to the preferred visual processing of material. 

2 Visuospatial Reasoning in Twentieth Century Psychology-Based Studies



33

 By contrast, Webb ( 1979 ) found that, besides mathematical achievement and 
 verbal reasoning, only pictorial representation out of 13 variables accounted for a 
signifi cant amount of variance. Moses ( 1977 ) also found that there were correlations 
for scores on the problem-solving inventory, measures of spatial ability, reasoning, 
and degree of visuality    which were all signifi cantly different from zero. However, she 
analysed students’ written responses to the problem-solving tasks to determine 
degree of visuality but this procedure has doubtful validity, especially when it is 
considered that the problem-solving inventories were too diffi cult for most students. 
However Hegarty and Kozhevnikov ( 1999 ) have found that there are two types of 
visualisers: concrete imagery and abstract imagery affecting performance especially 
on items that did not require a high verbal skill. Why might this be the case? The key 
study described in this chapter helps provide an answer and explains the role verbal 
skills play together with visual imagery in problem solving. 

 A number of the above studies have used spatial-ability tests which could be high 
on reasoning factors rather than visual imagery. The type of task and level of diffi -
culty make it problematic to conclude whether there is value in using visual 
approaches to solve problems. In order to overcome this uncertainty, training stud-
ies were used to assess the situation. This approach, together with exploratory quali-
tative studies of students involved in problem solving, has provided alternative 
methods of exploring visuospatial reasoning.  

    Training 

 Kyllonen, Lohman, and Snow ( 1984 ) found that short strategy training and perfor-
mance feedback improved performance on a spatial-visualisation (3D rotation) task 
and a surface development transfer task but visualisation training was otherwise 
ineffectual. In general they found verbal–analytic training assisted more diffi cult 
paper-folding problems and for low visual–low verbal subjects a combination of 
enactive practice and feedback with visualisation strategy training helped. Higher 
aptitude students especially in verbal reasoning were already profi cient in analytic 
strategies in the same way as Fennema ( 1984 ) found with the strategies of  “encoding 
and classifying folds, rehearsing the sequence of folds, and deducing the solution 
using the rules provided by the analytic treatment” (p. 143). General spatial activi-
ties were as effective as short general training according to Baenninger and 
Newcombe’s ( 1989 ) meta-analysis of correlational students. However, a three-week 
training programme did increase spatial visualisation for students in all grades 
5–8 in Ben-Chaim, Lappan, and Houang’s ( 1988 ) study. Lean ( 1984 ) comprehen-
sively summarised studies on training in 3D visuospatial reasoning and concluded 
that general geometry courses are less likely to improve the skill of interpreting 
fi gural information (a term used by Bishop,  1983 ) than specifi c training courses. 
Furthermore, he noted that there is less conclusive evidence for being able to train 
visual processing. Lean ( 1984 ) warned that two major features could lead to misin-
terpretation of the value of training: (a) the training or testing    may be  indicative of 

 Training
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skill in interpreting fi gural information or in some analytic skills rather than a visu-
alisation skill (see also Deregowski,  1980 ), and (b) any improvement may merely be 
from practice rather than from a real improvement in visual skills as indicated by 
retention and transfer of skills to other tasks. (The latter argument was expounded 
by Piaget, Inhelder, & Szeminska ( 1960 ).) Cultural factors will also infl uence devel-
opment of spatial skills (Bishop,  1983 ,  1988 ). 

 Nevertheless, kindergarten children showed an improvement on a perspective 
task after eight training sessions (Miller, 1977, cited in Lean,  1984 ), but in Cox’s 
( 1978 ) study with 20 individual training sessions, there was no transfer to a matrix 
task, prediction of a cross section, or the prediction of the water level in a tilted jar, 
and he concluded that the basic requirement for learning and achieving on the spa-
tial tasks was not just operational thinking but spatial skills specifi c to the task. 
Retention scores (after 7 months) on the tasks which were similar to those in their 
training were also signifi cantly different from the control group. Moses ( 1977 ) car-
ried out a problem-solving training study in which grade 5 children improved their 
scores on spatial-ability tests as well as reasoning and problem-solving tasks as a 
result of the training (see also Lean & Clements,  1981 ; Quinn,  1984 ). 

 There have been a few articles outlining programmes developed to improve geo-
metric and visual skills in younger children (Abe & Del Grande,  1983 ; Flores,  1995 ; 
Frostig & Horne,  1964 ; Kurina,  1992 ) but a carefully evaluated programme by Del 
Grande ( 1992 ) found that a course involving transformation of shapes did in fact 
improve the spatial visualisation (perception) of grade 2 students. The activities 
involved concrete shapes, geoboards, other common classroom aids, and pencil-
and- paper activities. Similarly, Perham ( 1978 ) found that instruction in fl ips, slides, 
and turns (using activities involving tracing paper, geoboards, and free drawing as 
well as class and group discussion) assisted performance on tasks involving slides, 
fl ips, and refl ections except those involving diagonal transformations, and some of 
those involving turns (see also Genkins,  1975 ). 

 Other training studies have involved older students. Although Lean ( 1984 ) con-
cluded that general geometry studies tended not to show improvements in spatial 
abilities, a study by Bishop ( 1973 ) provided evidence that active participation in a 
geometry course did positively affect spatial abilities. A signifi cant feature of this 
course was the use of manipulatives. Bishop’s result lends support to the van Hiele’s 
( 1986 ) theory that recognition should precede analysis in geometry and that manip-
ulatives and everyday experiences have an important part to play in this. Saunderson 
( 1973 ) is another to make use of concrete activities at the post-secondary level in 
Papua New Guinea. His training programme involved both three-dimensional and 
two-dimensional activities and his tests also covered both areas. He used informal 
activities including three two-dimensional activities—tangrams, pentominoes, and 
enlarging tile shapes. Both the use of form board tests and the nature of his activities 
suggested that the improvement in spatial skills after training was linked to improve-
ment in analytical skills. Rowe’s ( 1982 ) training study considered the effects of 
different types of spatial programmes. The study involved grade 7 students, with 
one group undertaking training of spatial skills for transforming two-dimensional 
shapes, another group undertaking training on three-dimensional shapes, and a third 
group acting as a control. The group involved in the two-dimensional programme 
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improved statistically signifi cantly more than those involved in the three- dimensional 
programme but only on the test items involving two-dimensional shapes and easier 
spatial skills. Wearne (cited in Lean,  1984 ) found that the greatest improvement in 
scores for secondary students was associated with an increased number of analytic 
solution strategies. Caution is needed in applying studies and the van Hiele theory 
applicable for older students to younger students. The studies described later in this 
chapter address these concerns and provide a less structuralist approach to learning 
and using visuospatial reasoning.     

    Key Study on Children’s Visuospatial Reasoning 

 In order to overcome this problem, I undertook a classroom study with children in 
grades 2 and 4 (Owens,  1993 ; Owens & Clements,  1998 ). The children came from 
three different schools in low socioeconomic areas of Sydney with most children hav-
ing English as a second language. Within each class, based on their pretest scores, 
children were matched and randomly allocated to one of the teaching groups: geom-
etry investigations working individually, geometry investigations in groups of three or 
four children, or number investigations. Children in the geometry groups participated 
in 10 2  one-hour investigative tasks requiring visuospatial reasoning    over 5 weeks 
involving pattern blocks, tangrams, matchstick puzzles, and pentominoes while the 
control group undertook number problems. Children were also learning about shapes 
and angles by comparing them. The lessons are detailed below to indicate the kind of 
learning plans used to provide appropriate investigations for visuospatial reasoning   :

    1.    Explore similarities and differences in the seven tangram pieces. 3 

    (a)    Compare the pieces and decide what is similar about the pieces. What is 
different? What is the same about the square, parallelogram, and middle- 
sized triangle?   

   (b)    Notice what shapes you can make by joining two or three pieces together 
in different ways. Draw them.   

   (c)    Estimate how many small triangles are needed to make each of the other 
shapes, for example, the large triangle. Check it.   

   (d)    How many different ways can you make the large triangle with the smaller 
pieces? Draw them. When you wanted to make the shape, how did you 
move the pieces?   

   (e)    Extension: Make squares out of the pieces.    

2   All children participated in an introductory lesson, so the kind of interactive behaviour expected 
in investigations was established and children and I came to know each other. The class teacher 
taught the other half of the class and then we swapped. 
3   Tangram sets were made from cardboard with three sizes of right-angled isosceles triangles (two 
large, two small, and one medium), a parallelogram, and a square which combine to make a square. 
This is a well-known puzzle that can be used to make many shapes and pictures and the shapes 
have special relationships, e.g. the square, parallelogram, and medium triangle can all be made 
from two small triangles. 

 Key Study on Children’s Visuospatial Reasoning
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      2.    Explore the variety of pentomino shapes you can make with fi ve squares. 4 

    (a)    Take fi ve square breadclips. Put them together so that the side of one joins 
exactly onto the side of another. When you make a shape, leave it. Take fi ve 
more breadclips and make another shape. Keep making new shapes.   

   (b)    Check there are no two shapes which are the same although they are turned 
over or around another way.   

   (c)    How did you decide two shapes were the same?   
   (d)    How did you try to make new shapes?   
   (e)    What is the same about all the shapes in space?    

      3.    Explore how squares have to be arranged to make more and more squares from 
the same number of matches.

    (a)    Take 12 matches. Make one square. Now try to make two squares of the 
same size. Try to make three, then four squares. One of these number of 
squares can’t be done. Which one?   

   (b)    Draw your answers.   
   (c)    Now take 24 matches and make one, then two, then three … up to nine 

squares of the same size. Which one can’t be done?   
   (d)    Why did you decide to arrange the squares in a certain way?   
   (e)    Why does it help to join the squares?   
   (f)    When did you use a similar arrangement?   
   (g)    Extension: How did you know something won’t work?       

   4.    Explore ways of making each pattern block shape larger. How do you know the 
shape is the same but larger? 5 

    (a)    Take one of each kind of pattern block. Next to it make the same shape but 
larger using a number of the same pattern block. Record or draw how you 
did it.   

   (b)    How do you know the shapes are the same?   
   (c)    Extensions: Is there another way of making the same shape but using dif-

ferent blocks? 
 What can you say about the area of the bigger shape? 
 Can you make the shape even larger? How many blocks do you think you 
will need?    

      5.    Explore how to make angles using other angles of the tangram pieces. 6 

    (a)    Which angles are the same, larger, and smaller? Which angles are the 
 largest? Draw each in your book.   

4   Grade 2 started with four squares; square breadclips were used. 
5   Foam sets were used consisting of an equilateral triangle, an isosceles trapezium (equal to three 
triangles), a square, two sizes of rhombus, one of which is equal to two triangles, and a regular 
hexagon (equal to six triangles), a readily available set. 
6   Angles of shapes were marked by the thumb and forefi nger to show size. The forefi nger is rotated 
to line along the other arm of the angle. 
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   (b)    Join the angles of the pieces together to make the angles.   
   (c)    How many of the smallest angle are needed to make each of the other 

angles?   
   (d)    Can you make them another way? Try making bigger angles.   
   (e)    Use an angle to draw angles in different ways on paper.   
   (f)    Extensions: Draw shapes which are different but have one of the angles the 

same.   
   (g)    Is there another way of making the same shape but larger? 

 What do you notice about the shapes you used to make the large shape?     

      6.    Explore how to make angles using other angles of the pattern blocks.

    (a)    Compare the angles of the pattern blocks. Which are the same? Which are 
bigger than a right angle (angle on the square)?   

   (b)    Draw each angle in order of size.   
   (c)    How can we make each angle out of other angles?   
   (d)    How many of the smallest angle are needed for each of them? Write it 

down on your drawing.   
   (e)    Extension. Draw some shapes which have these angles but are different to 

look at.       

   7.    See shapes in three different designs made with matches.

    (a)    Two squares were joined at a vertex on the workcard.

•    Make the design.  
•   Add two matches to make three squares. 
• Return to the fi rst design, add four matches to make three squares.
• Return to the fi rst design, add four matches to make four squares.      

   (b)    A hexagon from equilateral triangles was on the workcard.

•    Make the design.  
•   Remove three matches to get three equal shapes with four sides.  
•   Return to the original design, remove four matches to leave two of this 

four-sided shape.  
•   Return to the original design, remove four matches and leave two equal 

shapes with four sides but another kind.  
•   Return to the original design, remove three matches and leave three 

triangles.      

   (c)    A square made from four squares was on the workcard. Make the design. 
Return to the original design each time.

•    Remove two matches to leave three squares.  
•   Remove four matches to make two squares.  
•   Remove two and leave two squares.  
•   Move three matches to make three squares.      

   (d)    Extension: Try your own ideas.       

 Key Study on Children’s Visuospatial Reasoning
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   8.    Explore more about shapes by making their outlines (tangram pieces and pat-
tern blocks).

    (a)    Take one of each shape. Next to each shape, make the outline of the shape 
with matches. When you need different lengths, use the sticks.   

   (b)    Draw each shape without tracing.   
   (c)    Which shapes have sides of the same length?   
   (d)    What is the same and what is different about any two shapes?   
   (e)    What is the same and what is different about the triangles?   
   (f)    Extension: Join two shapes and make the outlines of the new shapes.       

   9.    Explore lines of symmetry and other types of symmetry for the pentomino shapes. 7 

    (a)    Guess where a shape can be folded in two so that the two sides lie on top of 
each other. Try it. Draw over the lines that you fi nd make two symmetrical 
halves.   

   (b)    How can you explain the two halves match?   
   (c)    Are there any shapes which look symmetrical but don’t fold so the two 

sides lie on top of each other? How can you move the piece so it lies on top 
of itself?   

   (d)    Extensions: Use pattern blocks to make designs with symmetry. 
 Add a square to the pentominoes to make symmetrical shapes.    

      10.    Explore why some pentomino shapes tessellate and why others do not 8 

    (a)    Try to arrange the tiles of the same shape so there are no gaps. Will the 
same pattern go on in all directions?   

   (b)    Why do they fi t together? Why don’t they fi t together?   
   (c)    Extension: Join two kinds of shapes so there are no gaps. 

 Join one of each pentomino shape together to make rectangles.       

      A test (Owens, 1992, 1993; see Appendix   B    ) was developed specifi cally for the 
study. Items that fi tted well for an underlying trait on visuospatial reasoning based 
on a Rasch analysis were used for analysis. This test was deliberately designed to 
cover the range of areas discussed previously in reviewing the literature on visual 
imagery and spatial abilities but relevant and interesting to young school children. It 
was coloured and involved coloured stickers. It was introduced wtih carboard cut-
outs to match practice examples. The results of the test showed that grade 4  students 
reached a higher level of visuospatial reasoning than grade 2 as shown in Table  2.2 . 

   An analysis of covariance with pretest scores and factors of gender, year level at 
school and different learning groups indicated a signifi cant difference in scores for the 
groups in the delayed posttest (F= 5.072, p = 0.026). Furthermore, the confi dence inter-
vals of the means of the differences between delayed posttest scores of two-dimen-
sional thinking and pretest scores showed that the mean gain scores of the students 
involved in spatial learning experiences were signifi cantly greater than for students 

7   Each shape was printed on paper. 
8   Each shape was made from cardboard and a number given in each packet. Packets were swapped 
between children. 
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participating in number learning experiences (Fig.  2.1 ).    The learning experiences had a 
signifi cant effect on children’s visuospatial reasoning as assessed by this test.     

    Visuospatial Reasoning—Getting Inside Children’s Heads 

 However, I also carried out a grounded theory study to explore how children were 
thinking during the investigations. Initially, I gave the problems to teacher education 
students and then to fi ve individual children from pre-kindergarten to grade 5 in 
order to get spoken comments on visuospatial reasoning. Besides teaching in the 
three schools mentioned above, I also explored whether the fi ndings were evident in 
a fourth school in another part of Sydney from a slightly higher low socioeconomic 
area and in a school in PNG. While some children worked individually on the visuo-
spatial geometry lessons, others worked in small groups of three (or occasionally 
four). Groups in classrooms were videotaped but I also observed and videotaped 9  12 
groups of three children (from each year group, there was a group working individu-
ally although they could talk to each other and another working as a cooperative 
group sharing materials and fi ndings). Following on from the problem-solving les-
son each day, I used stimulated recall interviews in order to “get inside children’s 
heads” and add to the observed behaviour and conversations. The use of materials 
meant that their reasoning was “out there on the table” (Richard Skemp in  Twice 
Five Plus the Wings of a Bird ) (Campbell-Jones,  1996 ; Skemp,  1989 ). 

 All incidents were replayed and analysed based on the children’s descriptions 
and actions. A constant comparative method was used to make assessments of the 
nature of thinking. For example, if certain movements with materials were associated 

9   John Conroy, a retired mathematics educator from Macquarie University assisted with videotap-
ing. All children were taught by myself. Lapel microphones were attached to children. To avoid 
class disruptions half the class working individually were taught followed by half the class work-
ing in groups on number or space problems. 

1 2 3 4

Type of
learning
experience

Spatial

Number

∗ is the mean,o is the median

5 6 7 8 9 10 11 12

∗

∗

o

o

  Fig. 2.1    Confi dence intervals for means of the difference between scores on two-dimension 
delayed posttest and pretest for spatial versus number groups       
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with visuospatial reasoning explained in the stimulated recall of children being 
interviewed, then it was assumed that similar movements by another child were of 
this nature. The results indicated that there was frequent use of visuospatial 
 reasoning of different kinds, some more than others. 

 Coding of over 1,800 incidents 10  (identifi ed sections of actions or interactions 
with people or material) from all the videoclips indicated that visuospatial reason-
ing was involved in 540 cases and that three fi fths involved holistic recognition and/
or memory of visuospatial procedures but a half involved other types of visuospatial 
reasoning (Table  2.3 ). It should be noted that an incident could involve more than 
one kind of reasoning.

   The study found imagery was important in reasoning, in creating new concepts, 
and more generally in directing the actions of children. The results supported the 
perspectives of Lakoff ( 1987 ) and Johnson ( 1987 ) who argued that imagination was 
a complex, embodied basis for making meaning about concepts and propositional 
judgements. Such a view suggests that visual imagery plays a pivotal role in concep-
tual development (Shepard,  1971 ; Tartre,  1990b ). 

 Kaufmann ( 1979 ) has suggested that visuospatial reasoning occurs with parallel 
mental transformations enhancing problem solving more than sequential verbal 
processing. According to Kaufmann ( 1979 ) verbal processing is too bound to con-
vention to allow for new ideas whereas visuospatial reasoning is

  more idiosyncratic, varied and fl exible as to rules, and this fact makes it potentially more 
adaptable as a representational system for the transformational activity needed in solving 
tasks which possess a high degree of novelty. … [This is not the] traditional Gestalt view of 
problem-solving as consisting of an immediate restructuring of the perceptual fi eld. On the 
basis of our fi ndings, we hold the view that the solution to a problem is obtained by building 
an analogous situation from other areas of visual experience. This process we regard as 
mediated by transformational activity effected through the visual symbolic system. (p. 79) 

   This kind of interpretation of problem solving provides support for the conclu-
sion, which is suggested by the data in the present study, that the role of visuospatial 
reasoning is crucial in the problem-solving process. Dreyfus (1991) is another to 
argue that visuospatial reasoning plays a signifi cant role in higher levels of thinking. 
According to Dreyfus,

  visual reasoning is not meant only to support the discovery of new results and of ways of 
proving them, but should be developed into a fully acceptable and accepted manner of rea-
soning. (p. 40) 

   This study illustrated the variation within visuospatial reasoning and how visuo-
spatial reasoning develops and assists learning. While simpler names were used for 
in-school programmes based on this research, descriptions of different kinds of 
imagery were later confi rmed as a useful tool for teaching and assessing (see later 
in this chapter). 

10   The videorecorded actions and interactions were described and spoken words recorded. An inci-
dent was a small self-contained segment of learning that could be described. After analysis, these 
tended to be a small cycle (context, context providing input, child or children’s thinking, response 
affecting context), many of which formed a cycle within learning. (See Fig.  2.17  on responsiveness 
in problem solving towards end of this study.) 
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    Holistic, Concrete, Pictorial Imagery 

 Students using concrete pictorial imagery (as named by Presmeg,  1986 ) tended to 
recognise the whole shape but some would make a shape but not hold an image in 
mind, and some would not recognise the confi guration until it was completed. In the 
pictorial form, the image was often given a name that corresponded to a real-life 
object. For example, Michael, 11  in kindergarten, frequently named the pentomino 
shapes, “That’s a cup” (for the C shape), while Sam in grade 2 named a confi gura-
tion of tangram pieces as a sailing boat. This natural tendency helps to place the 
names of shapes into a wider ontological perspective. Indeed the pentomino activity 
especially helped children to realise that there were two-dimensional shapes with-
out names or symmetry. This was a signifi cant step in conceptualising the meaning 
of the word “shape”. When Sam was making outlines of the trapezium and the 
parallelogram, he was pushing the pieces as if he were trying to get the pieces into 
place so the confi guration matched his image. Holistic imagery generally did not 
enable students to recognise a lack of proportionality when they were making a 
trapezium or a parallelogram that was not similar to the given shape. 

 When students had made one large square with 24 matches and then had to make 
two or more squares with the matches, it was clear that often they made decisions 
on the basis of visual stimuli, with no counting or calculating being used. They 
seemed to use visuospatial intuition as a basis for predicting whether the required 
number of squares could be made with the matches that were left. Similarly, in the 
tangram activity several of the students, who had made the large triangle in two or 
three ways, responded very quickly to the question on its area by saying that four of 
the small triangles were needed to make a large triangle; it was only later that they 
began to reason verbally from their image. This visuospatial intuition is raised again 
in Chap.   5     where I discuss visuospatial reasoning in PNG. 

 James had a clear conception of the lengths of sides and this was strengthened by 
actually comparing sides. Later James and Victor made shape outlines for the tan-
gram and pattern block pieces when Victor explained that James had not made a 
right-angled triangle, as James had thought, but that he had just made an equilateral 
triangle in another orientation. Victor himself had made the right-angled isosceles 
triangle with the long side horizontal and he checked it with the tangram piece 
which he put on top (“a lid”, he called it). This discussion between James and Victor 
helped James to perceive the right-angled triangle in both orientations. 

 One developing visuospatial reasoning skill was the ability to recognise shapes 
in different orientations, including the more uncommon pentomino shapes and the 
right-angled triangle in unusual orientations (see Kathy, para. 4.03; James and 
Victor, previous paragraph). The problems themselves encouraged the use of this 
skill. For example, once students realised that two pentominoes were the same, they 
more readily avoided or recognised another pair of congruent shapes, either because 
the meaning of the problem was clearer or because they had developed that 

11   All names are pseudonyms. 
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 visuospatial reasoning skill. Those students who had already imagined actions on 
shapes in their minds, especially the fl ipping of shapes, tended to manipulate mate-
rials more fruitfully. 

 Although James was part of a cooperative group, he began the second spatial 
activity somewhat competitively. He was thoroughly involved in making new shapes 
from four square breadclips and then in making pentominoes. He also enjoyed com-
menting and in other ways expressing his achievements and feelings of pleasure. 
(“Names” have been used for each pentomino shape and illustrated.) 

    Excerpt 1 

 1.01  James continues to count how many he has made, comparing his 
number with his friend’s number. 

 1.02  Using four squares, he makes a “Z”, checks that it is all right, and then 
makes a “cross” avoiding repeating the Z. 

         
 1.03  His friend points out “it is half her”, so he changes it to a “T”. 

      
 1.04  He begins with fi ve squares deliberately positioning the pieces to make 

a Z. Then he makes a “lineZ”. 
      

 1.05  He notes his friend’s shape saying “yours has three columns. Mine has 
two; she copied me”. (Each made the lineZ in different orientations.)       

 1.06  Despite the teacher suggesting that they work together, he keeps 
making shapes quickly and happily, commenting on how well he is 
going. He uses a tactic of beginning a new shape with “three in a row”. 
He counts his shapes and says “I’m beating her”. He knows what he is 
making before he completes the shape, showing joy before he fi nishes 
making the shape. He places three in a row and claps as he makes a 
“C”. 

      

 1.07  He cannot recognise the “odd” shape in different orientations despite 
moving his body to assist orientation. He changes the shapes to make 
the easily recognised shapes “L3” and the “square-like shape”, 
comparing the incomplete shapes with his short-term memory images 
of those he has made (that is, he is not physically glancing at his 
shapes). 

      
 1.08  He changes his tactic from starting with three in a row to beginning 

with four in a row. He makes the “L4”. 

      
 1.09  He quickly grabs the last fi ve breadclips so that he can make another 

shape. 
 1.10  He wants to make a car but ends up with lineZ, globally deciding it is 

different and says “Oh, I can’t make any more”. His activity wanes 
when the teacher asks if they can fi nd any shapes that are repeated in 
the group’s work. 

 1.11  He recognises the repeated lineZ and L4. 
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   Similarly children marked angles with thumb and forefi nger. James’ affective 
responsiveness   , visuospatial reasoning, and tactics are evident. 

 Michael in kindergarten was joining tangram shapes to make another shape. He 
had the two small triangles joined to make the parallelogram but he was concerned 
that they were not the same size when he put them next to each other although he 
could see they were the same when placed on top. He was pointing to the sides and 
saying, “no, they aren’t, see” as he points to the two unequal sides near each other 
(Fig.  2.2a ). In the next few moves he matched sides of the different shapes, disembed-
ding the side from the shape and realising sides could have the same length although 
the overall shape and area were the same and a shape could have the sides with differ-
ent lengths. Similarly children marked angles with thumb and forefi nger (Fig.   2.2b ).

   Holistic concrete imagery assists students to learn about concepts such as a shape 
does not have to have a name or be symmetrical, or a side of a shape is not the size 
of a shape. In addition, holistic concrete images can play a part in visuospatial rea-
soning especially as a basis for size estimates and checks. The parts of an image may 
be recognised as parts of an everyday object or picture but they may be the geomet-
ric features such as lines and angles. However, it is soon enhanced by dynamic 
visuospatial reasoning and concepts as illustrated in the example below of Victor 
recognising equal angles on shapes that are turned.    The important skill of disembed-
ding parts from the shape and imaging concrete objects or pictures in two or more 
ways depends on past experiences, the current problem, and on which aspects of the 
objects or pictures are taken account of and which are ignored (Thomas,  1978 ).      

    Dynamic Visuospatial Reasoning 

 Dynamic visuospatial reasoning 12  is signifi cant in problem solving. In the past, 
teachers have often regarded dynamic imagery descriptions, for example, “a rhom-
bus is a pushed-over square”, as inadequate and unhelpful. By contrast, this study 
indicates how students have made connections between images and associated con-
cepts through dynamic imagery. A common example of a verbal description arising 

12   Presmeg ( 1986 ) referred to dynamic imagery as involving movement in remembering formulae 
such as moving letters in expanding a product of two binomials. 

  Fig. 2.2    Children attending 
to parts of shapes. 
( a ) Michael attends to 
the sides of the shape. 
( b ) Children attend to the 
angle by marking and 
turning their fi nger away 
from their thumb       
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from visuospatial reasoning is the use of the phrase “a pushed-over square” for a 
rhombus. In this study, many students thought of shapes as being modifi cations of 
other shapes; for example, Sam described an irregular, symmetrical hexagon as “It’s 
bigger. … It looks a bit like a square” (Fig.  2.3a ).

   Michael in kindergarten has already established dynamic visuospatial reasoning. 
Before making something, he stops and thinks and later he says the shape that was 
in his mind. 

    Excerpt 2 

 2.01  Michael is asked to make shapes using four squares. He makes a square and when he is 
given four more squares, he adds them on, saying as he starts “It’s a rectangle”. 

 2.02  He then proceeds to use another four squares and says “I know. I could make a longer 
triangle, I mean rectangle”. As he makes another shape he smiles and says “a rectangle. 
I made a skinny rectangle” (Fig.  2.3b ). 

 2.03  Next he makes a shape and says “an icecream cone” and scoffs that others would call it a 
diamond. When I challenge with “but that is a square”, he says “we made the square” 
(now modifi ed as a rectangle). At fi rst, he decides that the diamond is not a square but 
then concedes, commenting that names can be confusing. 

 2.04  He is given four more squares. “I know”. He fi ddles with them under the table and, 
having decided to make an M, asks for another square. He makes an M with fi ve squares 
on the table. “It’s a bit upside down for you”. He modifi es the M so that I can see the M 
on the other side of the table. “An M for you, a W for me” (Fig.  2.3b ). 

   Michael’s extension of the square to a rectangle (para. 2.01) and his use of sym-
metry to change the W into an M (para. 2.04) are examples of dynamic visuospatial 
reasoning. He found no diffi culty in regarding both a thin and a fat rectangle as 
examples of a rectangle, and he appears to have decided on making the thin rect-
angle as a result of his visuospatial reasoning of the larger one becoming thin (para. 
2.02). Nonetheless, a degree of analysis of a shape is needed with this form of imag-
ery if one is to be fully successful in making and describing shapes. 

a b

c

  Fig. 2.3       Examples of dynamic visuospatial reasoning. ( a ) Sam’s hexagon “like a square”. ( b ) 
Michael’s rectangles, and M to W. ( c ) Peter’s trapezium to parallelogram       
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 Peter, in grade 4, also made use of dynamic imagery when he transformed a tra-
pezium to a parallelogram by sliding one parallel side along and swinging the lateral 
match across to meet it (see Fig.  2.3c ). 

 Dynamic visuospatial reasoning is an important step in extending prototypical 
images and concepts. For example, visuospatial reasoning provides for a diversity 
of triangles if one imagines moving the vertices of an equilateral triangle to other 
positions (see James and Victor’s discussion about triangles above). Some proper-
ties of a square are invariant within a rhombus, but not all of them (Sam’s efforts 
above). Similarly, the extension of a square to form a “rectangle” maintains some 
properties (for example, right angles and parallel sides) but deliberately changes 
others (see Michael’s description and action above). 

 Emphasis has been given to the use of dynamic visual reasoning in many 
computer- based geometry experiences. In dynamic geometry software, for exam-
ple, dynamic changes can be made to shapes, and students can see that the changes 
which occur in some parts of the shapes affect some properties while other proper-
ties remain constant. In addition, the basic notion of partial inclusion in visual rea-
soning permits connections to be made between shapes (Owens & Reddacliff,  2002 ; 
Tartre,  1990b ). Furthermore, dynamic transformations can lead to property recogni-
tion; from this perspective computer-software microworlds which enable transfor-
mations to be carried out easily can be useful. However, one of the advantages of 
equipment like that used in the present study is that shapes can be changed physi-
cally. There is the disadvantage, though, that with static shapes there are no “in- 
between” positions. This disadvantage can be overcome to a certain extent with 
cutting, folding, uncovering, superimposing, and using a movable perimeter to pro-
duce “in-between” states. My favourite piece of equipment is a loop of thin elastic 
which each pair of children can use to make different triangles or different quadri-
laterals. The use of a loop of string makes a thought-provoking comparison (see 
activities later in the chapter).      

    Visuospatial Action Reasoning 

 Presmeg ( 1986 ) classifi es imagery, which has a strong emphasis on muscular activ-
ity, as “kinaesthetic imagery” but Wickens and Prevett ( 1995 ) suggested this is spa-
tial imagery, rather than visual imagery. In fact, Kim, Roth, and Thom ( 2011 , p. 207) 
have noted the following:

    (a)    Gestures support children’s thinking and knowing   
   (b)    Gestures co-emerge with peers’ gestures in interactive situations   
   (c)    Gestures cope with the abstractness of concepts   
   (d)    Children’s bodies exhibit geometrical knowledge    

  However, in the cases described now, the visual imagery holds spatial actions 
and whether or not there is spatial imagery, there is visuospatial reasoning. 
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 Action imagery is also important in children recognising parts of shapes in 
 different orientations. When children were doing the test, it was clear they were 
thinking about the angles in different orientations as shown in Fig.  2.4  where Victor 
is concentrating on the angles of the shapes. Later when asked how he fi rst did not 
recognise the right angle on the triangle in a different orientation but then self- 
corrected, he said, “because at fi rst, I didn’t recognise it as the same shape” and he 
turned the paper to indicate how he recognised it in his head.

      When children were doing the test item that asked whether the pentomino shape 
on paper could be made into an open box, you could see them thinking and doing 
slight hand movements like Peter and Victor in Fig.  2.5 .

  Fig. 2.4    Victor, grade 2, recognising equal angles on different shapes and on shapes in different 
orientations       

  Fig. 2.5    Peter and Victor mentally folding the pentomino shapes to form an open cube       
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   In viewing the playback of her work with pentominoes, Sally who had just 
 fi nished grade 4 commented, “In my mind, I pictured my hand moving the pieces 
around the shape”. This clearly matched my observation of her efforts to obtain new 
pentomino shapes—she was reasonably systematic in moving the pieces around 
partly made shapes searching for new pentominoes. While solving the problems, 
she said that she was using “ideas in her mind” but she did not give the imagery 
names as she might have done if she had evoked whole shape images. In fact, this 
was commonly noticed with children making pentomino shapes and a comparison 
between adults and children raises some interesting points about experience on 
forming pentominoes (Owens,  1990 ). 

 In this study, I asked whether certain pentomino shapes prompt the making of 
other shapes? If so, was this due to the relative strength of a shape in visuospatial 
memory, the modelling of shapes with names or symmetry, the grid analysis of the 
shape, or the simplicity of the shape? The task was completed by 52 adults and 12 
children. To investigate the differences for adults and children, each shape was 
given a value based on the order in which it was made (1–12 with a value of 13 if it 
was not made). The median scores for each group—adults and children—were cal-
culated and correlation coeffi cients between shapes were calculated (see Fig.  2.6 ). 
The square-like shape was made early by the children but they often discarded it 
initially because “it really wasn’t a square”. Once accepted as a shape, it was fre-
quently remade by children, often in different orientations, but they would recog-
nise it as the same and change it. This shape correlated highly with the + shape as 
children were deciding what was acceptable as a shape, the T shape was made early, 
often fi rst. Children tended to begin with three in a column (see left diagram in 
Fig.  2.6b ) while adults often started with four in a column and hence the line (fi ve 
in a column) and L with four were made early by the adults and often quite late by 
the children. The other common starting point was the three with two in one column 
and one in the next (see top of Fig.  2.6b ). From both starting points shapes such as 
a T were made. Children often started the same way each time and when they 
seemed to have exhausted ideas, they would switch to this shape with either three or 
four in a column. The high correlations between the T and LineZ, W and LineZ, L4 
and C, and W and C suggest that the movement of one square from the previous 
confi guration to make a new one was common. From the L3 many shapes were 
made; the C gave some pleasure as a recognisable shape.   

   It was evident that certain tactics were used as illustrated in Fig.  2.6  as well as in 
the key study. For example, Jodie in grade 2 began with three squares and made 
shapes from this base until she could make no more. Then she tried another starting 
combination. Besides the fi gural similarities between shapes, the comparison of 
adult and children’s data would suggest that imagery, short-term memory, strategy, 
and propositions (e.g. what constitutes a shape) infl uence order of appearance of 
different shapes. Thus from the observational data and the above analysis, it seems 
that experience infl uences children and adults’ decision-making indicating an eco-
cultural perspective to visuospatial reasoning is appropriate. 

 Students knew that pieces were to be joined or moved in a particular way even 
though they did not know the entire procedure to make a required shape. Once 
Kathy, in grade 4, was comfortable with the problem, she made deliberate moves to 
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  Fig. 2.7    Kathy’s large 
triangle and rectangle from 
the tangram pieces       

Shapes

sq line L4 Slip
L4

L3 Z Odd Line
Z

C W T +

Children 1.5 8.5 7 8 8.5 9 5 10 5 10.5 4.5 4

Adults 1 3 8 8 10 5 8 10 4 12 6 7.5

Mean order of shapes being made by children and adults.

Correlations in order of appearance of shapes.

sq line Z

r = .67

r = .56 r = .76 r = .67r = .64

T L4 C C W

r = .7

r = .7r = .75 r = .7

Children

Adults

r = .57 r = .5 not sign. (p< .05)

line lineL4 L3 L4 L3 line T W z + WT

OR

r = .56 .

+

slipL4

a

b

  Fig. 2.6       Mean order of pentominoes being made and correlated data for adults and children. ( a ) 
Mean order of shapes being made by children and adults. ( b ) Correlations in order of appearance 
of shapes       

create various shapes. In viewing the part of the video which recorded her making 
the large triangle with smaller pieces of the tangram set (Fig.  2.7 ), she commented, 
“I was sort of moving them around in my brain. … Like I was just seeing the tri-
angle in my brain moving and me putting the square there so I got it”. In fact when 
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she was fi tting in the last little triangle, I stopped her messing it all up with a “no, 
no” which gave her time to imagine it turned and placed correctly in place.

   Action-based visuospatial reasoning occurred more frequently once students 
began to develop and implement tactics for solving problems. This reasoning was 
supported by concepts relating to the effects of operations or transformations on 
pieces and linked to dynamic or pattern imagery. Action imagery was a common 
means by which students solved the physical problems in this study. Action imagery 
is closely related to physical manipulations and to operational concepts. As action 
images were combined, procedural imagery was likely to develop. At this point, one 
of the paradoxes of learning occurred. While procedures are being developed, a high 
level of thinking takes place, but once they become automatised, and are reduced to 
algorithms, the level of thinking is reduced.     

    Pattern Visuospatial Reasoning 

 Pattern imagery 13  was evident when Sally carefully counted as she made a rectan-
gular array of eight squares with the matches (Fig.  2.8b ), and during the video 
playback stated “Like the picture was in my brain but it didn’t work”. In fact, she 
had interpreted the problem as meaning that the squares had to be in a square or 
a rectangle; she recalled “you couldn’t have odd shapes like that—they had to be 
square or rectangle”. Interestingly, she quickly succeeded in making both four 
and nine squares (Fig.  2.8b ). In fact, students in PNG, who were less experienced 

13   Presmeg ( 1986 ) used the term “pattern imagery” and illustrated it with symbolic and numeral 
patterns. 

a b c

d e

  Fig. 2.8       Examples of pattern visuospatial reasoning. ( a ) Peter’s hexagon. ( b ) Sally’s 4, 8, and 9 
squares with 24 matches. ( c ) Pattern repeated for both types of rhombus. ( d ) Right-angled triangle 
pattern that was also used for equilateral triangles by Sally. ( e ) Lena’s pattern of squares       

 

 Visuospatial Reasoning—Getting Inside Children’s Heads



52

with  structured materials, frequently made the nine squares fi rst and then tried to 
make the four squares. Perhaps the strength of the image of tessellated squares 
resulted from familiarity with squares (or diamonds) used in their pandanus 
weaving and string bag designs, providing support for an ecocultural perspective 
on visuospatial reasoning (see Chap.   5     for more details on PNG designs and 
coloured pictures).

   Sally also used pattern visuospatial reasoning. Sally chats as she manipulates the 
tangram pieces. She gives a clear description of how she remembers about the tri-
angle pattern (Fig.  2.8d ). “Last year we made a Christmas tree out of triangles. That 
is how I know you put one up and one down. Four of these small triangles would 
make the larger one like this”. This comment represents the use of imagery associ-
ated with a specifi c experience, and relates to what Gagné and White ( 1978 ) called 
episodic memory. Clearly there was a pattern involved as well as actions such as 
slides and rotations of triangles. 

 Similarly, Victor in grade 2 explained how he knew that three triangles made up 
the trapezium in the retention test, by referring to his making of the shape earlier 
with the pattern blocks (a similar pattern as the right-angled triangles). When Jodie, 
in grade 2, was asked why she had been able to make the triangle with pattern 
blocks so quickly, she said that she had remembered that there was a similar task 
before (in the pretest, an equilateral triangle was illustrated with appropriate lines 
for folding into a triangular pyramid). Jodie, Jonah, and other students called the 
pentomino cross “a box”, relating it back to the net for an open box given in the 
pretest practice item. Pattern visuospatial reasoning was used by Peter when he was 
having diffi culty making the hexagon outline with matches (Fig.  2.8a ). He com-
mented, “I know, I’ll make it like the other day”. And he proceeds to add one tri-
angle next to the other as he had done with the pattern blocks and designs-with-matches 
problem. 

 In the tangram problem, students remembered patterns such as the confi guration 
of the square and two triangles for making the large triangle, and they relied on this 
pattern when they rebuilt the large triangle for the class. Pattern visuospatial reason-
ing became important for students making the enlargement of the second rhombus. 
Generally they positioned the pieces to repeat the pattern of the previous enlarge-
ment rather than trying other possibilities. The following excerpt illustrates Sam’s 
use of pattern visuospatial reasoning (Fig.  2.8c ) especially when he explains to his 
friend but he also generalises about how pattern block shape enlargements can be 
made using pattern knowledge by using four similar pattern blocks to make an 
enlarged shape. It should be noted that Sam and his collaborative group have English 
as a second language; his language is the same as one of the other group members 
but he does not use this language in class. 
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    Excerpt 3 

 3.01  Sam discusses whether they can make a square or not with trapezia and suggests that 
you can only make a square with squares. He makes a 3 × 3 square and claps. 

 3.02  He says “I’m going to make a triangle”, and he collects triangles. He nearly has the 
triangle and knows how to complete it. When asked how he did it, he says “because it is 
a triangle and you make a triangle with little triangles and the corners are sharp so you 
can make it like that”. 

 3.03  He turns to the blue rhombi (with 60° and 120° angles) and says, “You can make a 
square with these. Oh, no, you can make a diamond”. 

 3.04  He takes two rhombi and touches points symmetrically, but misses seeing the enlarged 
rhombus and joins the sides. 

 3.05  He listens to the teacher talking to his friend and then concentrates on his own work and 
quickly puts pieces together to make the rhombus. He is happy, and the teacher praises 
him and asks if it is the fi rst time he has made it and he says, “Yes”. 

 3.06  He then describes to his friend how to do it “You put this here and this here” (touching 
the points of the rhombi). He goes on to describe how to make the triangle, “Up and 
down, up and down” to help his friend make her triangle. He is pleased with himself. 

 3.07  He now selects four trapezia and places three together but cannot get the fourth one in 
correctly. After a while he leaves it as a fi ve-sided shape saying, “It looks like a 
trapezium”, clearly knowing that it is not one yet. 

 3.08  He then moves both end pieces, leaves the symmetrical “butterfl y”, and then makes two 
joined hexagons… and then places triangles on the sides to make a long hexagon. The 
teacher asks him what is different about his hexagon and the yellow one. “It’s bigger”. 

 3.09  The teacher runs her fi ngers along the sides and asks about them. He says “It looks a bit 
like a square” [he is referring to the angles of a square]. 
 When the teacher asks about his friend’s parallelogram, made from joining six rhombi, 
he says “It is bigger and kind of like a square”. Returning to the hexagon, he says, “It is 
unstraight”. When the teacher asks about the sides of the parallelogram, he says “not 
pointy”. 

 3.10  He places two trapezia together and asks his friend what it is called and is told “a 
hexagon”. 

 3.11  The teacher asks him if he can make the brown shape (rhombus with angles of 15° and 
135°). He says he has made it, pointing to the blue one but she says, “No, a skinny 
one”. So he collects the narrow brown rhombi and quickly follows the same pattern to 
make it. “I’m the best in the world”, he laughs. 

 3.12  He remakes the squares and then he remembers he still has to make the red one (the 
trapezium) but he thinks no one can, if he can’t think how to make it. He sees that his 
friend is making the red one with rhombi and triangles, so he tries the same and makes 
a trapezium but not of the correct proportion. He realises and tries to adjust it without 
success. 

   Sam described or demonstrated several patterns and used pattern visuospatial 
reasoning to make the second rhombus (Fig.  2.8c ), and this was supported by his 
notion that larger shapes were made by joining four similar smaller shapes. He also 
noted when a shape had some features like but not the same as another shape. For 
him, the angles of the shapes were more dominant than the lengths of sides, a fea-
ture noted in other students’ work. 
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 A group of children in PNG also seemed to make considerable use of pattern 
visuospatial reasoning. This was their fi rst experience with pattern blocks (although 
the school had some dusty attribute blocks which contained a parallelogram, square, 
oblong, triangle, and circle).  

    Excerpt 4 

 4.01  Lena puts squares in a pattern, touching corners but not joining sides (Fig.  2.8e ). Susan 
puts the brown rhombi with sides together and then touches the middle points and puts 
the third in place before disarraying quickly. The teacher says, “Close. You nearly had it. 
Do it again”. They do and Nora places in the fourth rhombus. 

 4.02  Meanwhile Lena collects the blue rhombi, joins two with the 120° angles at the top, and 
then joins the third and completes the enlarged rhombus with the fourth. But then she 
spaces them apart and puts the rhombus the other way as if she didn’t recognise the 
rhombus. … (Fig.  2.8c ). 

 4.03  The teacher (not knowing what they have already made) asks if they have made “this 
diamond” (blue rhombus) yet. There is no reply but they don’t make it and instead Susan 
collects up the narrow rhombi and puts four of them together but as an arrow. Susan 
looks up, satisfi ed and perhaps baffl ed. … 

   The initial pattern with squares was reminiscent of bilum (string bag) patterns 
(see Chap.   5     for examples). It is interesting to note that Susan did not really estab-
lish a fi rm pattern image of the rhombus after making it the fi rst time, and that Lena 
did not recognise her fi rst rhombus. Lena tried to have three obtuse angles on the 
shape (perhaps because of the usual positioning of the “diamond” with the obtuse 
angles to the sides). Nevertheless, she did fi nally succeed in making the patterns. 

 A specifi c type of pattern visuospatial reasoning is the image of a grid. Sally, like 
other students, used this form of imagery in the pentomino problem when she 
 systematically searched for new shapes by imagining where the pieces would be on 
the grid in order to make a new shape (see Fig.  2.6 ). Recognition of the structure of 
the pattern is important for imagining the covering of a rectangle with tiles and 
understanding the ideas behind area especially linking the equal rows to calculating 
areas (Outhred,  1993 ). Simultaneously students were showing similar diversity of 
approaches with some evidence of becoming more effi cient in the paper-and-pencil 
test used in my study (Fig.  2.9 ) (Owens & Outhred,  1997 ,  1998 ).

   An analysis of the responses to the items on the test on covering areas revealed 
some interesting features about drawing and visuospatial reasoning. Figure  2.9  
gives the items of the test referring to covering areas and a picture of a child com-
pleting the test. Children who drew on their worksheets were considered for analy-
sis. Table  2.4  provides the percentages of responses indicating that covering with 
triangular tiles (Items 3, 4, and 5) was more diffi cult than with rectangular (includ-
ing square) tiles (Items 2 and 7). The diffi culty was particularly marked when the 
shape to be covered was the unfamiliar trapezium shapes (Items 4 and 5). On the 
fi rst testing    more than half the students thought the trapezia could not be made by 
tessellating the given triangles, and less than a third of them could give the correct 
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number of triangles. After teaching, students performed better. Although many 
 students seemed to realise that the square (Item 7), the rectangle (Item 2), and the 
equilateral triangle (Item 3) could be made by tessellating the given tile, they were 
unable to visualise the tessellations to work out how many tiles would fi t. For both 
the equilateral triangle (Item 3) and the square (Item 7), many students wrote 3 or 
5 tiles as their answer. For the rectangle (Item 2), common answers were 8 and 9, 
but larger answers were also given which suggests that some students disregarded 
the size of the tile. Students’ drawings frequently indicated diffi culties with size 
estimates.   

  Fig. 2.9    Worksheet for tiling shapes (Form S) and grade 2 child completing the items       

   Table 2.4    Percentage of responses of children on pretest and on delayed posttest   

 Item 

 “No” response 
 “Yes” response, wrong 
number 

 “Yes” response, correct 
number 

 Pretest 
 Delayed 
posttest  Pretest  Delayed posttest  Pretest  Delayed posttest 

 2  30  21  42  39  29  40 
 3  45  35  27  32  28  32 
 4  52  36  19  16  28  48 
 5  57  53  15  17  27  30 
 7  33  26  28  25  39  48 

   Note . All these items (2–7) could be covered. Items 1 and 6 had no drawings so are not included in 
the table and 8 was a “no” answer  
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   Figure  2.10  illustrates some of the responses from children in PNG. Students’ 
responses were infl uenced by their cognisance of the following: (a) maintaining tile 
size, (b) covering without gaps or overlaps, (c) aligning tiles, (d) matching features 
of tiles such as angles, sides, and the triangular parts of the trapezia, and (e) relating 
the diagrams    to various activities encountered during the learning experiences. 
Students needed to imagine or draw the relevant tessellation and to be aware of its 
structure. The triangle and trapezia tessellations were more diffi cult than the rectan-
gular case as students had to consider the orientation of the tiling unit. Finally, stu-
dents needed to be aware of the limitations of their own drawings. Students fi rst 
considered covering a region with tiles by fi lling in from the sides and corners. 
Gradually they became more systematic, aligning tiles accurately and attending to 
features such as size and shape. Participating in activities or doing the test appeared 
to help students but not necessarily if they were remembering the visual image only. 
They might have been visualising as a picture rather than as a grid. In the interviews, 
several students who had been involved in the activities with concrete materials 
spontaneously remarked that they had made the isosceles trapezium from  equilateral 

Test 
occasion

Item 2 Item 3 Item 4 Item 5 Item 7

Oma (Year 2)
First

Second

Third

Nima (Year 2)
First

Second

Third

  Fig. 2.10    Examples of children’s responses to test items on covering areas with tiles       
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triangles in class and with their overall improvement from pretest to delayed post-
test, it seems they had episodic imagery (Gagné & White,  1978 ).

   The development of the grid structure for covering the rectangle with square tiles 
is particularly worthy of discussion.    As an emerging strategy, a child might draw 
one to a few squares somewhere inside the rectangle, and then might align a square 
with an edge or corner of the rectangle. Children then tend to draw the squares one 
at a time in a row, row after row. There is a tendency for the rows to slant and narrow 
and for squares to get smaller. Children often recognise that there are too many 
squares in the drawing and may or may not discount the drawing as giving the pos-
sible answer. In some cases, children chose not to draw but could give the correct 
answer.    Size and perpendicularity of lines improve as children continue to draw 
individual tiles until they attempt to draw a grid structure, partially or fully (Owens 
& Outhred,  1998 ). Occasionally, it is evident that the child’s thinking is not fully 
refl ected in the paper-and-pencil test score. This is evident in Oma’s triangles on 
trapezium and her attempts for the rectangular tiles. It is also clear that she put more 
weight on her diagram when reasoning than what might have otherwise made sense. 

 By contrast, Nima discounted the small parts of square tiles on the rectangle in 
her second attempt. Her attempt to enlarge the triangles resulted in a less favourable 
structure than on her fi rst attempt. Nevertheless, there is clear development in her 
attempts across all the diagrams    based on various reasonings. For example, the tiles 
must not overlap (rectangle tiles) or my diagrams are not good enough to decide as 
she used a good sense of size and pattern in her mental imagery. However, she 
seemed to have diffi culties in counting. Children were not required to draw and this 
part of the study used only examples where children attempted to draw but there 
was alignment with the simultaneous study by Outhred resulting in the fi ndings 
presented in our joint papers and discussed above (Owens & Outhred,  1996 ,  1997 ).      

    Procedural Visuospatial Reasoning 

 The use of procedural visuospatial reasoning can be associated with parts being 
deliberately placed in relationship to each other. For example, in making the large 
triangle with the tangram pieces, some students deliberately turned the square so 
that the right angle of the square matched the right angle of the large triangle and 
having done that they then placed the small triangles. In comparison, less experi-
enced students tended to place the square on the large triangle so the bases were 
together. Other less experienced students made many trials of the possible positions 
of pieces. This was partly due to the dominance of the features such as similarity 
and horizontal lines (see Fig.  2.11 ).

   Students also considered overall size of area. Unlike Wheatley and Cobb’s 
( 1990 ) claim in their study with early covering, overall length was not dominating 
but rather overall size (area). Kathy, for example, stated during video playback of 
her covering the large triangle of the tangram with the smaller pieces, “I chose it 
(the square) because the others would not fi t, they were too big [sic]”. Kathy meant 
the other pieces would not cover enough and she went on to position the square so 
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that the triangles also fi tted. Visual analysis often began with students joining pieces 
together by matching angles and equal sides. This led to further analysis and subse-
quently to successful completion of the task. (See Fig.  2.7  which is the large triangle 
that Kathy made.) 

 Through their actions, children often had imagery of procedures in their minds, and 
this procedural image they used as they deliberately positioned pieces to remake 
shapes. Remaking the large triangle with different pieces (three only) was easy for most 
students. When a shape was made from a larger number of pieces, the students often 
remember part of the procedure. This was common with the square made from fi ve 
pieces. Colin, in grade 2, remembered how to position two pieces but then had to re-
image the rest; on the other hand, Tess and her group, in grade 4, remembered how all 
the pieces needed to be positioned. In fact, Tess’ making of the square, with some help 
from her friends, indicated how action imagery developed into procedural imagery. 

    Excerpt 5 

 5.01  Natalie makes the large square (Fig.  2.12a ) and she, Tess, and Damien decide to cover 
it. Tess puts the square into the corner and proceeds, saying “Wait, wait”. (She 
completes the stages shown in Fig.  2.12b–d .) However, both Damien and Natalie also 
see the places for the triangles. She then shifts the square across (Fig.  2.12b ) and 
suggests that they need another square, but they only have the medium triangle. 

 5.02  Damien removes the pieces and begins with the medium triangle in the corner, places 
the parallelogram next to it, but then the square won’t fi t, so he removes the square and 
parallelogram, and then the medium triangle. 

 5.03  Natalie suggests they put the parallelogram on the side, so Tess picks it up but returns to 
putting the square into the corner (Fig.  2.12e ), and they remake the fi rst confi guration in 
another orientation. 

 5.04  Tess places the parallelogram against the medium triangle and then slides it across to 
the corner with the triangle (Fig.  2.12f–h ). She fl ips the triangle as she moves it away. 
She continues to reposition the parallelogram on the large square. 

 5.05  Natalie says “perhaps if you turn them over”. Tess places the parallelogram into the 
corner as she had before (Fig.  2.12i ), seeing the various spaces that are left. Natalie gets 
bored and wants to use the book. 

 5.06  Tess picks up the square and fi lls in the top section carefully (Fig.  2.12j ). She then 
collects the small triangles and restrains Damien from placing the medium triangle 
correctly, taking it from him. Although she is thinking she is unsure of herself, relying 
on action imagery rather than a completed pattern picture. 

 5.07  She fl ips the triangle into position (Fig.  2.12k ) so that the point completes the right 
angle with the parallelogram. “Yeah, yeah”, says Natalie. They all see where the small 
triangles will fi t. Tess sits back, content. 

  Fig. 2.11    Dominance of similarity and horizontal lines in initial trials before visuospatial reason-
ing improved       
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   Most of the positioning was done by Tess but Natalie, who made the initial 
square with the big triangles, also made some comments. Towards the end Damien 
began to manipulate the medium triangle, but Tess took it from him and positioned 
it herself. Certain procedures were more common than others. Initially, there was 
a tendency to match the right angles and to choose pieces to cover areas, but then 
came the realisation that two angles could be used to construct the right angle 
(para. 5.04, Fig.  2.12f ). The juxtaposition of the two pieces and the observation of 
the ways that areas could be fi lled by the shapes assisted later problem-solving 
attempts. When the design was spoilt, the students had no trouble in reassembling 
the design, even though it was slightly rotated. The deliberate positioning of pieces 
into corners or against sides, and the checking of spaces that were left gave rise to 
the use of procedural imagery by all three students, whether they were watching or 
doing most of the manipulating. This kind of imagery is reminiscent of the proce-
dures suggested by Carpenter and Just ( 1986 ) for recognising shapes in rotated 
positions.   

         Visuospatial Reasoning in Concept Development 

 Hershkowitz ( 1989 ) involved preservice and experienced primary teachers in her 
investigation into changes in the use of visual images which support concepts aris-
ing in the course of an activity. She investigated the use of concept images for a 
right-angled triangle, an isosceles triangle, an altitude of a triangle, a quadrilateral, 

  Fig. 2.12    Using action imagery to develop procedural imagery       
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and two shapes defi ned specifi cally for the investigation. She concluded that there 
are three levels of use of concept images:

    1.    The prototypical example is used as the frame of reference and visual judgement 
is applied to other instances. This seems to be the most common behaviour in the 
identifi cation of right-angled triangles, where subjects failed to identify exam-
ples which contradict the vertical–horizontal prototype, and in the altitude task, 
where subjects failed to draw altitudes which contradict their concept image of 
an internal altitude.   

   2.    The prototypical example is used as the frame of reference but subjects base their 
judgements on the prototype self-attributes and try to impose them on other con-
cept examples. When this does not work, they do not accept the fi gure as a con-
cept example.   

   3.    The critical attributes are used as a frame of reference in the formation of geo-
metrical concepts. In this case there is a chance that the individual will form 
concept images that are less (or not at all) visually biased (p. 74).    

  Hershkowitz pointed out the importance of ensuring that students see various 
examples of concepts. This procedure should prevent some students from imposing 
a visual bias on concept images. 

 In looking at the development of the angle concept in one of the collaborative 
groups in the key study described above, classroom interactions and use of manipu-
latives were predominant over the series of lessons (Owens,  1996b ). There were a 
number of activities in which students were required to notice and begin to develop 
their concept of an angle. In particular, a case study of a grade 2 cooperative group 
provides a good example. Jodie, James, and Victor were asked to fi nd small, middle- 
sized, and large angles on the tangram pieces. Immediately they checked the points 
of the pieces by overlaying them as the teacher had demonstrated in introducing the 
pretest where they were to mark angles on different shapes equal to the marked 
angle on a shape. Jodie called the 45°, the sharp angle, and associated it with “big”. 
When the teacher called it the small angle and illustrated with the thumb and fore-
fi nger that they were only turned a small amount to lie along the arms of the angle 
(see Fig.  2.2b ), she quickly readjusted her language pairing “sharp” with “small” 
(she was a bright child with English as a second language, so was used to learning 
new English words). The third member of their group, Victor, was absent from the 
previous lesson, so he was self-regulating    and still doing the previous activity of 
making the large triangle with the other pieces of the tangram set as well as thinking 
about the angles. The discussion indicated how Victor, who seemed to know what 
was meant by the size of points (the word generally used by these children to refer 
to angle), temporarily considered that he should be comparing the size of the sides 
of the shapes. The interaction between students helped Victor to clarify what was 
meant by “the point of the same size”. James, who had been able to match points in 
the previous activity, began this later session by choosing the wrong points, largely 
because he was choosing the small or middle-sized triangles. He established 
the meaning by listening to the teacher and to Jodie and by checking points with 
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the drawings in their book. Thus the perceptual size of triangles dominated but the 
interaction with those around him and the visual representations assisted him to 
establish the meaning of angle size. 

 In their next activity, the children were able to order the angles in the pattern 
block set and draw them in order. They were encouraged to give them size values of 
the unit equal to the smallest angle (the 15° angle of the narrow rhombus of the set). 
In a later activity, the group made shape outlines and Victor explained that James 
had not made a right-angled triangle as James had thought but that he had just made 
an equilateral triangle in another orientation. Victor himself had made the right- 
angled isosceles triangle with the long side horizontal and he checked it with the 
tangram piece which he put on top (“a lid”, he called it). The teacher asks what was 
meant by bigger angle. Jodie replied “more spread out” and picked up the tangram 
right-angled triangle and the pattern block equilateral triangle, put one on top of the 
other and said, “see it is bigger”. 

 Interestingly, the children in different groups often noticed and recognised angles 
and they were perceptually more noticeable than length, or the starting and ending 
of a side, or straightness of a side. However, they had more diffi culty to describe 
angles and without the use of the fi ngers would have struggled to show their under-
standing. Communication encouraged identifi cation and representation of the 
angle-problem situations, and development of cognitive processes for solving the 
angle problems. Interactions with others and internal representations assist analysis 
which is an important aspect of concept development and problem solving 
(Krutetskii,  1976 ; Lean & Clements,  1981 ). 

 In a further study (Owens,  1998a ), adults were required to identify equal angles 
in complex fi gures. Different conditions—visual, physical, aural, or spoken cue-
ing—did not make a statistically signifi cant difference on students’ ability to solve 
the tasks. The reasoning provided by the adults suggested that prior experiences at 
school, often with negative feelings, and their view of themselves performing math-
ematically impacted on the their performances. Few of the adults felt comfortable 
about just perceiving the angles to be equal without “proof”, so many drew on 
remembered knowledge about vertically opposite angles and angles in isosceles 
triangles. Other school-based knowledge such as angles related to transversals 
across parallel lines or exterior angles of polygons were not recalled. The adults 
who were given information in training audibly as well as visually had signifi cantly 
less variation in scores on the test suggesting selective attention resulting from the 
additional auditory cueing played a part in their visuospatial reasoning. 

 These studies have shown that prior experiences and informal experiences can 
help students to establish visualisations. A unit on similarity for grade 5 prepared 
by Woodward, Gibbs, and Shoulders ( 1992 ) was to provide informal experiences 
for students to gain a good foundation for concepts about ratio and proportion. 
Such experiences included comparisons of angles and sides of similar fi gures. 
In fact, van Hiele ( 1986 ) maintained that the level of development in reasoning is 
more dependent on instruction or informal experiences (incidental learning) than 
on age.     
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    Visuospatial Reasoning in Problem Solving 

 As the students in the key study described in this chapter continued trying to solve 
a problem, they seemed to use less pictorial/global imagery and more dynamic and 
action imagery, and fi nally more pattern and procedural imagery. Imagery, judging 
from the students’ actions, involved recognition of different parts of pieces. Active 
involvement in the problems clearly increased students’ use of imagery and their 
skills with images. Generally the improvement was associated with the following:

    1.    Students began to relate concepts to their visuospatial reasoning. Concepts asso-
ciated with manipulations occurred mostly when action visuospatial reasoning 
was used. However, other conceptualisations related to size, angles, shapes, pat-
terns, and symmetry were used. Concepts supported the imagery that guided 
tactics and manipulations, rather than vice versa. The meanings of verbalisations 
were not always clear suggesting that only limited conceptualisation had 
occurred.   

   2.    Students, upon settling into the tactical stage of the problem-solving process, 
generally used reasoning other than concrete visuospatial reasoning.   

   3.    Some problems encouraged students to manipulate visual images mentally while 
others encouraged the use of disembedding skills and yet others pattern or action 
visuospatial reasoning. Any one student may use a variety of types of imagery 
(see, for example, Sam and Tess in excerpts 3 and 5 above, respectively). Some 
children completed some activities more easily than others such as Sam enlarg-
ing pattern block shapes whereas he struggled with other activities.   

   4.    Dynamic and action visuospatial reasoning developed into other forms such as 
pattern and procedural visuospatial reasoning. However, there is no hierarchy of 
types of visuospatial reasoning.   

   5.    Pattern visuospatial reasoning especially provided the necessary connection 
between a visual image and an abstract conceptualisation, possibly because the 
processes of looking for, recognising, and describing patterns are basic forms of 
mathematical thinking.   

   6.    Visuospatial learning experiences can assist in developing these mathematical 
thinking skills and structured materials, like those used in this study, can encour-
age recognition and use of patterns (Owens & Outhred,  1998 ).   

   7.    The structured nature of the types of visuospatial reasoning described in this 
study not only refl ected images of the physical embodiments which were 
used but also served as a way by which imagery was structured and used for 
reasoning.     

 Although imagery is necessarily individualistic, in the sense that an image 
“resides” in a particular person’s mind, it makes sense to say that different people 
can have more or less common images and visuospatial reasoning in the same way 
that we say people have a shared understanding of a concept. Shared visuospatial 
reasoning particularly develops as a result of shared physical phenomena, problems 
to solve, body movements, and social interactions. 
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 Visual representations in mathematics are not simply personal or disassociated 
images but they convey explicit knowledge structures that are constructed and nego-
tiated in a context of visual representations that operate within shared rules, habits 
of seeing, and cultural practices (Voigt,  1994 ). Further, the different kinds of visuals 
that are generated depend on signs that are taken-as-shared but personally created 
(perhaps limited or enhanced by experience) although tools and hegemony (e.g. the 
common two arcs for a bird, the equilateral triangle on its base) may determine their 
nature. Visuals may be learned (e.g. the name of a type of triangle and a representa-
tive diagram), associated with a relevant experience (e.g. manipulation of string to 
form a triangle), or established through relational structural similarities (e.g. draw-
ing a square as a rectangle with all sides equal). 

 Some visual representations require patterns that may lead to structures. Figural 
patterns often lead to a description or algebraic representation (Outhred,  1993 ; 
Owens & Outhred,  1998 ). Early generalisations are often additive but then multipli-
cative thinking occurs, at least in children from European backgrounds but in other 
cultures there may be a more multiplicative approach (see later reference to research 
on enlarging houses and counting groups in PNG, Chap.   5    ). Figurative patterns 
need a high Gestalt effect such as children picturing a bag of lollies for a multiplica-
tive pattern rather than a series of dots although arrays can be physically created. In 
line with Dörfl er’s ( 2004 ) arguments, diagrams    are valuable for visuospatial reason-
ing if they are structural and relational and the arrangement expresses the relation-
ship. They need to possess internal meaning or rules for transforming the diagram. 
They have an external referential meaning, inside or outside mathematics. They 
need to be generic or visually general and transformed in a perceivable way. 
A visual template such as the circling of parts of each stage of a fi gurative pattern 
that is growing according to the pattern encourages pattern recognition and appre-
hension of the pattern (Rivera,  2011 ). The role of directing attention and then the 
self-developed selective attention are part of the visual reasoning process associated 
with diagrams.     

    Visuospatial Reasoning in Learning 

 Pirie and Kieren ( 1991 ) suggested the beginning of problem solving for new learn-
ing is “primitive knowing” and this links to intuition which is discussed later. 
Learners then make and hold an image to which they “fold back” (revisit) in order 
to go forward again with their learning through noticing properties of the imagery, 
and then “formalising”, “observing”, “structuring”, and “inventising”. Presmeg 
( 2006 ) suggested that imagery was also a way of reifying conceptual understanding 
and could be considered part of formalising on which observations can be made, 
structured, and developed or used creatively. Perhaps Hegarty and Kozhevnikov’s 
( 1999 ) concrete and abstract visualisers are better understood as those who select 
one type of visualising more than the other. Visualising about everyday objects, 
concepts, and processes is different from mental objects, concepts, and processes 
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(Rivera,  2011 ). The latter can be associated with the higher levels of Pirie and 
Kieren’s model when mentally formal defi nitions and structural complexities are 
recognised.    The dynamic and pattern imagery associated with concepts, metaphors 
and metonymies reifi es the concept ascertained from various, often concrete and 
practical, sources (Presmeg,  1997 ). This imagery develops through problem solving 
in which actions of a learner (e.g. to interpret or to construct by way of predicting, 
classifying, translating, or scaling), situations (e.g. abstract or contextualised), vari-
ables (e.g. the data type and whether concrete or abstract), and focus (i.e. the loca-
tion of attention) are identifi able (cf. Leinhardt, Zaslavsky, & Stein,  1990 ; Owens, 
 1993 ; Rivera,  2011 ). Thus visualisation can vary in each circumstance. 

 Giaquinto ( 2011 ) analysed a number of diagrams    to tease out visuospatial rea-
soning. He particularly noted that fi rst there was perceptual recognition of a con-
cept such as a square that depended particularly on symmetry in the horizontal and 
vertical plane but also in recognising the equality of angles. He noted that people 
have a tendency to attend to the vertical with the infl uence of gravity or external 
reference frames such as the page, table, or body position more than other positions 
and orientations (see earlier work, e.g. Vurpillot,  1976  and inexperienced responses 
in Fig.  2.11 ). If this experience was repeated it would become an acceptance of a 
square in a geometric sense. In my own study with adults (Owens,  1998a ), perceiv-
ing equal angles was generally achieved but the context such as the complexity of 
the diagram or orientation of the angles or an exterior angle of a fi gure made it 
harder for equal angles to be perceived. In these cases, adults would recall school 
mathematical information to assist in identifying equal angles such as vertically 
opposite angles, angles of an isosceles triangle, or those associated with transver-
sals of parallel lines, for some adults. Sides of triangles were more readily per-
ceived as equal. 

 The adults used visualising and imagining to assist in decisions about angles. 
Similarly Giaquinto ( 2011 ) found visualising and imagining assisted to reinforce 
the dispositions or beliefs about the square. He also noted that dispositions could be 
given different degrees of support. For example, directly perceiving or remembering 
an experience that could be easily judged by memory, e.g. countable objects, may 
be easier than imagining a length compared to a remembered length. However, 
some explanation to support the comparison would be supportive of the disposition 
or belief. This might rely on a past experience or an intention to carry out a visual 
imagination. The intention focuses the attention and noticing of certain aspects such 
as the visual comparison of line lengths or the more holistic shape being translated 
or rotated or refl ected. Squares can be both recognised when partially obscured 
drawing on visual memory or representations in the mind and imagined (see also 
Rivera,  2011 ).    However, while physical proof and imagined proof require similar 
brain functioning, the imagined proof is often more convincing rather than percep-
tion of a physical representation because it is not likely to hold the imperfections of 
a physical representation. There can be diffi culties such as imagining an object in an 
unusual orientation and not actually perceiving the imagined image correctly. It 
might be that another fi gure is in the mind distracting the visual imagination. There 
is also the possibility that the imagination is too complex or has too many steps or 
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parts to be carried out easily and thus repeated in the mind consistently (see the 
story of the two girls re-enacting the string fi gure to recall the next step in 
Vandendriessche,  2007 ). It is also possible that a person imagines incorrectly 
because of a lack of conceptual knowledge. 

 Visual imagination can provide suffi cient discovery and in some circumstances 
justifi cation for a belief or proof in geometry. This visualising provides stronger 
reasoning than seeing because aspects of the diagram or object might not be gener-
alised suffi ciently and may require text to establish the justifi cation. Giaquinto 
( 2011 ) concluded that there is not a dichotomy between geometric and algebraic 
thinking but rather spatial thinking is used in conjunction with symbolic arguments. 
He used the four proofs of the sum of numbers as a culminating example to illus-
trate. While one algebraic induction proof was symbolic, the Gaussian proof of 
ordering the numbers in reverse order below and seeing that horizontally there are 
so many numbers and vertically the sum is  n  + 1 requires spatial thinking as well as 
symbolic understanding. In the other proofs, the forming of a mat of dots by joining 
two triangular stairs of the numbers or by looking at the area of squares is basically 
spatial with the square one being more geometrical in nature. Nevertheless, spatial 
thinking is key in a proof requiring both vertical and horizontal reading approaches 
or when proofs involving arrays require both their horizontal and vertical size to be 
noted. This is also the case for rectangular area arrays (Owens & Outhred,  1996 ). 

 Although visuospatial reasoning is often usefully employed in problem-solving 
situations, such reasoning is not always recognised or regarded as legitimate. Often 
the person who evokes an image does not necessarily appreciate its richness, and the 
use of external representation to communicate its meaning to another person may 
not be successful (Dreyfus,  1991 ). Therefore visuospatial reasoning may have been 
undervalued in a number of twentieth century geometry studies.     

    Visuospatial Reasoning, Metaphor, and Metonomy 

 Johnson ( 1987 ) and Lakoff ( 1987 ) refer to the possibility of visuospatial reasoning 
in communication when they discuss the use of metaphors in thinking. Through 
metaphor, connections among existing image schemata are made and extended. 
Metaphorically (through new contexts) and metonymically (through partial repre-
sentations) imagery develops mathematical thinking. While Vurpillot ( 1976 ) noted 
that young children in her study tended to categorise items on partial equivalence 
and indicated that this was a limitation in their conceptualisation, the excerpts and 
examples in this chapter suggest that metonymically part-whole connections of 
image schemata assist children to develop more abstract thinking. The act of prob-
lem solving, in itself, and interactions with others, tended to facilitate the formula-
tion of alternative perceptions of concrete materials. Learning from problem solving 
is more than just associating conceptual knowledge to visuals. This view is sug-
gested by    Clements, Battista, and Sarama’s ( 1998 ) careful analysis of young 
 students’ verbal and visual responses. The details of their report refl ect those in my 
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own study. Thus it is evident that imagery is likely to promote fl exibility in thinking 
and creativity in problem solving. Nevertheless, inferences need to go beyond the 
imagery of the physical (Giaquinto,  2011 ). 

 In the key study described above, there were many examples in which ideas were 
creatively reconnected. Jonah, a grade 2 student, made two pentomino crosses in 
different orientations and said, “This is a box and this is a robot”. Tess (excerpt 5) 
remade a right angle from two pieces despite the pieces having non-matching sides 
and Sally (discussed under pattern visuospatial reasoning) linked her image of her 
Christmas tree to the triangle enlargement. In each case, imagery did not appear to 
be primarily structured in terms of propositions; rather the proposition (such as 
Sally’s description of the pattern) supported the image. 

 Metaphor and metonomy are often the genesis of connections. The connections 
enable features, for example, a pattern, associated with one confi guration to be 
applied in a related situation. The so-called “concept images” (Fuson & Murray, 
 1978 ) can act metonymically for a concept, emphasising certain characteristics of 
the concept.    Images need to be embedded in various visual and conceptual sche-
mata if they are to provide a dynamic infl uence on a person’s approaches to a 
problem- solving task. Without this, the concept image can limit conceptualising 
and creative thinking. Furthermore, the dynamic moving of images of shapes into 
related shapes can assist the development of conceptual relationships. 

 The continuous manipulation of materials meant that students were able to see 
where shapes could be added or taken away and this experience encouraged their 
visualising of results before trying the manipulations. The tangram tasks, in particu-
lar, involved children in a great deal of turning around and over pieces, and of 
matching angles in order to fi t shapes together. The making of shapes, the compar-
ing of angles, and the fi nding of shapes in designs improve students’ visuospatial 
reasoning in that students were encouraged to disembed shapes and parts from more 
complex shapes and to imagine where other shapes could be (cf. Tartre’s classifi ca-
tion of re-seeing, Table  2.1 ). Students were using both their short-term and long- 
term visual memories in order to achieve greater problem-solving effi ciency. 

 Based on Goldin’s ( 1987 ) model of problem solving there are fi ve interconnected 
language systems (the word “language” suggests “re-presentation” or processing of 
information). The categories are related here specifi cally to the processing of visuo-
spatial problems which are likely to be met in early childhood:

    1.    Verbal/syntactic processing has input which can be verbal (as it is in word prob-
lems) but it can also be non-verbal in visuospatial problems. For example, stu-
dents learn whether a diagram of a parallelogram is representative of all 
parallelograms or whether it is intended as a precise drawing such as a scale 
drawing of an area of land. The output can be imagistic processing or formal 
mathematical notation.   

   2.    Formal notational processing usually refers to arithmetic or algebraic statements 
or to statements in geometric proofs such as AE || BD. In the spatial area, another 
example would be the categorising of shapes and the schematising of these cat-
egories in a tree diagram or Venn diagram or drawing a triangle to represent all 
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triangles. Goldin ( 1987 ) points out the dangers of direct translation into this 
system without involving the imagistic confi guration.   

   3.    Imagistic processing involves the “feel” for the problem. In addition to 
 visuospatial reasoning, this representation can include pattern recognition, and 
the matching of non-verbal sensory inputs to previously encoded information. 
The task content and context are incorporated into the processing.   

   4.    Planning and executive control language include heuristic processes such as 
plans, strategies, tactics, and self-assessments. This category involves a recursive 
capability so that the processes can act as control not only on the other domains 
but also on itself. It incorporates the notion of metacognition described by Flavell 
( 1987 ), Lester ( 1983 ), Mildren ( 1990 ), and others.   

   5.    Each of these four processes is affected by and infl uences the affective system of 
representation. Affects include feelings, attitudes, beliefs, and values.       

      Context and Visuospatial Reasoning About 3D Shapes 

 Following on the analysis of how important noticing and imagining were in the 
development of children’s angle concept over several sessions as described above 
(Owens,  1996b ) and the impact of audible cueing in the adults’ angle study (Owens, 
 2004a ) described above, I began to explore how children make images and notice 
parts of three-dimensional shapes and how they might consider properties (Owens, 
 2004a ). Here I report on the section of the study involving testing    children in grade 
3 in three different ecocultural areas: a girls’ private school in an Australian city, a 
school in a lower socioeconomic, multicultural area in an Australian city, and a mul-
ticultural city school in PNG with children from a diversity of family backgrounds 
and with a greater range of ages. All classes had teachers who taught mathematics 
well. The study also involved individual interviews of six children immediately after 
they had completed each page of the test on 3D thinking (they came from the lower 
SES school in Australia). Prior to this study, test items were developed for different 
categories of visuospatial reasoning and those that had the best validity from a Rasch 
analysis were selected (Owens,  2001a ). The test  Thinking About 3D Shapes  covered 
the following: recognising 3D shapes within shapes, joining two 3D shapes together 
to make a third shape (a rectangular prism) or an illustrated shape, tessellating a 
block to make a given shape, viewing objects from different positions, imagining 
folding, marking, and unfolding paper, and imagining folding a 2D shape to make a 
variety of 3D shapes or objects. The test was introduced by showing 3D shapes, 
ensuring the children knew the names, showing the children how to draw them on the 
board in isometric form, and illustrating the folding of paper, marking, and unfold-
ing, and folding a rectangle and a net to form 3D shapes. 

 Some results are presented here. In the following tables, the lowest percentage 
and the highest percentage from the three classes are given. In this study, I made no 
attempt to link ecocultural background with results other than to note difference. 
The results showed that for recognising shapes in other shapes some degree of 
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sophistication of reading diagrams    was necessary because many children ignored 
the absence of a line in one diagram. For spatial relations or joining blocks to form 
a rectangular prism or illustrated block, children could explain how they were think-
ing (see Fig.  2.13  showing some of the items from the test, reduced in size). Ahmed 
at fi rst could not see how these curved shapes would make a rectangular prism but 
then he referred to putting in the piece to make it smooth.

   Ahmed:  (B3, 5) No because it is too long and can’t make it, because it would be pointy at 
the top, so if turn over would be pointy at top? 

 Interviewer: Yes, what makes you turn it over, 
 Ahmed: So it is like this pointy. 

   It was interesting that the students considered the fl at and in some cases rectan-
gular surface that would be made by joining blocks together. Students did the items 
by analysis and mental rotation.

  Ian:  If put that triangle [sic] same as that but facing other way, make a fl at surface just like 
that (points to triangular face). (C1, 4) 

   Ian is aware that two blocks will join to give a fl at surface together. Other stu-
dents also expressed similar approaches. Visuospatial reasoning is important for 
tessellating blocks to fi ll a 3D shape (test, C2) in order to understand and calculate 
volume. Students generally found it easy to select whether blocks of the type illus-
trated will tessellate but are unable to keep the size stable in considering the number 
required, generally imagining many more blocks. Like the 2D tiling activities (see 
above, Owens & Outhred,  1997 ,  1998 ), students fi nd it diffi cult to see how blocks 

  Fig. 2.13    Selection of test items: joining 3D shapes together to make other shapes       
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join to give a distinctly different shape. For Item C2, 4, student diffi culty was in 
seeing how the square face can be formed from the thin triangular prisms. Some 
students also fi nd it diffi cult to consider size; and two interviewed students counted 
many rectangular prisms as making up the cube in another item whereas two rect-
angular blocks, one sitting vertically on and perpendicular to the other, had quite 
low percentages (36–53 %).

  Ahmed: (Points to C2, 4) If joined together, it will make that 
 Interviewer: What was going on in your mind? 
 Ahmed: A square 
 Interviewer: You seemed to be counting? Can you explain what you were doing, 
 Ahmed: It’s like a book? 
 Interviewer: Can you explain, 
 Ahmed: (Counts) one two three four. 

   On the other hand, Joe says “but won’t fi t into square” still seeing the triangle 
fi tted onto the square face of the larger triangular prism. He counts but is unable to 
draw to explain what he was thinking. 

 For Part C1 there was little difference between the schools. For Part C2, two 
schools fl uctuated from item to item between the middle and lower ranking suggest-
ing ecocultural context was infl uencing items differently. 

 Part D1 “Can you see it another way?” (Fig.  2.14 ) involved students in recognis-
ing shapes from different perspectives.

From which position are you looking at  the object?

Circle A from above, B from in front, C from side,
or if you don’t know, circle No.

1. A
B

B

B

A

A

A

C

C

B C No 2. A B C No 3. A B C No

4. A B

7. A B C No  8. A B C No 9. A B C No

No 5. A B No 6. A B No

  Fig. 2.14    Items for recognising shapes from other perspectives       
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   Most items were around the middle of the diffi culty range but some were quite 
diffi cult (confi rmed by a Rasch analysis). Percentages in different schools are given 
in Table  2.5 . The chair viewed from the front (D1, 3) was the most diffi cult one to 
recognise especially for children from the school with less experience with reading 
books and pictures but they did not have a diffi culty recognising that D1, 5 was not 
a representative of the square pyramid (they were not the lowest scoring school on 
this item).    Recognising the small parts in Item D1, 2 as legs, and the seats of the 
swing in D1, 7 and D1, 8 was a key difference between those getting these items 
correct and those that could not, refl ecting the issue of the importance of lines in the 
earlier questions and Bishop’s ( 1983 ) interpretation of fi gural information.

   The last two parts of the test required visuospatial reasoning in mentally folding, 
punching a hole, and unfolding and then in making various 3D shapes (not neces-
sarily closed) from a net or a rectangle. Lack of experience seemed to affect the 
results for the hole punching and opening questions since percentages for the two 
items for the different classes ranged from 29 to 75 %. Similarly for the items in 
Fig.  2.15 , typical mistakes were not seeing the triangular prism as hollow prisms 
despite being told suggesting prior experience affected thinking in line with an eco-
cultural perspective.

   Although most students drew the lines for the “table” (E2, 2) correctly, in other 
cases students drew lines horizontally. It seemed that the move from the isometric 
view to a fl at paper was particularly diffi cult. Interestingly, only one interviewed 
student could imagine the rectangular paper being rolled to form a cylinder (E2, 3) 
refl ecting the overall lower percentages for this question (25–67 %). Many students 
put lines on the rectangle, usually curved at the ends to illustrate rolling. The suc-
cessful student, who knew there were no fold lines, was asked if he had done this in 
class but he could not remember and the current teacher confi rmed this but they had 
used solid cylinders in building with blocks. 

 The items for folding open cubes were generally diffi cult. The order of diffi culty 
was similar to that found on a previous test  Thinking About 2D Shapes  that had 
incorporated these items (Owens,  1992a ).    If students began to use a square that was 
not going to be the base, then they often struggled to imagine an alternative starting 
point for folding or to turn their shape to decide the base. The net requiring folding 
up and two sides to be turned (E3, 3) was the hardest (percentages for correctly 

   Table 2.5    Percentages of students who were correct on completing prisms and recognising shapes 
from different perspectives   

 B3  3  4  5  C1  4  C2 

 4 

 4 number = 4  Yes 

 Lowest percentage  22  38  28  85  52  24 
 Highest percentage  87  73  73  95  73  53 

 D1  1  2  3  4  5  6  7  8  9 

 Lowest percentage  71  47  14  42  54  54  62  43  48 
 Highest percentage  87  63  47  67  90  67  93  67  80 
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selecting it ranged from 38 to 48 % with the correct base shaded being 33–43 %). 
These  percentages were similar to the unusual net for the triangular pyramid, E1, 2. 
The shape (an L shape) that could not be folded to make an open cube was not con-
sistent with the rest of the items but it provided a negative response to at least one of 
these items. Many students selected this item as a net but failed to imagine that some 
faces would be doubled with others left open. 

 The wide variety of items involved students in a range of visuospatial reasoning 
skills including fi tting objects together, mental rotation of objects, viewing from 
another perspective, and mentally folding. The interviews indicated that students 
were mentally manipulating objects or parts of the fi gures that were perceptually 

Part E� The shape is folded up. Can it form a 3D pyramid?
Circle Yes or No.

1. Yes No 2. Yes No

Part E� Can the rectangular paper be folded to make the hollow 3D shape?
Circle Yes or No.
If Yes, draw in the where you would fold the paper, if a fold is needed.

1. Yes No 2. Yes No

3. Yes No

Can the triangular paper be folded to make the hollow
3D shape? 
Circle Yes or No.
If Yes, draw in the line where you would fold the paper.

4. Yes No
Part E� Can the shape be folded to make an open cube?

Circle Yes or No.
If Yes, shade in the bottom of the open cube.

3.  Yes No

  Fig. 2.15    Selected items from test: imagining folding 2D shape paper to make a 3D shape       
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accessible in the form of the diagram and they commonly analysed the shapes and 
considered parts.    The test was not timed and so speed of image making and that of 
image scanning were not teased out as separate processes. 

 Re-seeing shapes and recognising shapes in different orientations, and noticing 
and imagining parts of shapes were skills being developed by this age group. 
Students appreciated parts of fi gures were hidden in some cases but could not imag-
ine the piece that is hidden. It seems that details of fi gures are not always noted. This 
is evident when lengths, points of intersection, and size are not distinguished but 
shape is more important. Responses from students who were not strong (e.g. 
Ahmed) supported Tartre’s ( 1990b ) suggestion that low scoring problem solvers did 
not integrate analytical and spatial skills well. 

 Some recent studies have considered the impact of symmetry of objects (both 
familiar toys and abstract arrangements of blocks) from different perspectives. One 
recent European study (author unknown) suggested that symmetry might in fact 
assist students to concentrate on other features for determining perspective whereas 
asymmetry was less of a problem with a familiar toy than an abstract block arrange-
ment. Children’s reasoning for front/back perspectives was predominantly related to 
features of the object or the alignment of features within the object for both sym-
metric and asymmetric objects (animals and blocks) rather than an extrinsic align-
ment. However, for side views of symmetric animals, students in lower elementary 
school struggled to provide a reason or struggled to use a description whereas most 
students could describe characteristic differences for asymmetric animals. For side 
views of block arrangements, there were more descriptions of symmetric arrange-
ments as well as asymmetric and front/back perspectives. It is suggested teachers 
should develop front/back perspectives using both symmetric and asymmetric 
objects but for side views it is worthwhile beginning with asymmetric objects. The 
left–right relation could also be stressed as what can be seen is not always success-
ful. Importantly, the world around the child in terms of complex living creatures 
seems to provide more clues for reasoning intuitively.     

    School Learning Experiences and 3D Visuospatial Reasoning 

 The test was later used to show the effectiveness of a series of lessons from the 
Count Me Into Space project in NSW, Australia, on visuospatial reasoning of grade 
2 students from fi ve schools across three districts of the city of Sydney, Australia, 
matched with schools from the same districts (Owens,  2004b ). While there was a 
signifi cant difference between students who undertook the activities on orientation 
and motion (see below) including work on 2D to 3D shapes on the immediate post-
test, there was no signifi cant difference after 6 months. The confi dence interval of 
the mean of scores for the groups overlapped. However, when the students were 
broken into three groups according to their pre-intervention scores, there was virtu-
ally no overlap for those students in the lowest group—intervention had confi dence 
intervals for the mean of 38 ± 3.5 and non-intervention 31 ± 3.5 (see Fig.  2.16 ). 
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This confi rms reports by teachers that the weaker students gained considerably from 
the classroom experiences. The group work, discussion, and hands-on experiences 
encouraged a sense of ownership of their work and helped these students to improve. 
The programme captured the essence of the research especially in developing imagery 
for (a) recognition of 2D symmetry and 2D and 3D shapes in different orien tations, 
(b) modifying shapes that keep certain properties (dynamic changes), (c) perceiving 
parts of 3D shapes, and (d) imagining 2D nets of 3D shapes.

   Given the differences in results from the three schools (grades 2–4) in different 
ecocultural contexts and the impact of school learning experiences in the studies 
discussed above, it seems important to pursue the infl uence of context on visuospa-
tial reasoning.     

    Visuospatial Reasoning in Context 

 Kaufmann ( 1979 ) claimed that visual imagery did not necessarily lead to fl exibility 
in problem solving, and that this might have been the result of limitations brought 
about by socially induced gender differences (see my discussion of many studies on 
gender and visuospatial reasoning, especially the meta-analysis by Linn and Hyde 
( 1989 ) in my thesis (Owens,  1993 )). Perceived rules of the classroom also impact 
on using visuospatial reasoning as well as children’s interactions. From my key 
( 1993 ) study as described above, this was evident from both the competitive 
approach of James in his group with making pentominoes (excerpt 2) and later 
Victor’s discussion with him about the right-angled triangle with a horizontal hypot-
enuse. It was also evident in the classrooms when children moved the shapes too 
quickly to allow all the groups to think about the shapes. Tess was doing this ini-
tially in making a square from the tangram pieces (excerpt 5). Susan (in grade 2 in 
PNG, excerpt 4) tended to be a dominant fi gure within her group and her quick 
pulling apart of trial confi gurations may have prevented the students seeing shapes 
within shapes. Interestingly, none of the students in her group saw the nearly com-
pleted trapezium in enlarging pattern block shapes, and the complete trapezium was 
never made by the group despite several more attempts. (Most groups in all grades 
and schools were unable to make the trapezium and many were unable to complete 
it even when three pieces were correctly positioned.) In one class in PNG, a girl 

27.5 31 34.5

Non-Intervention Group

34.5 38 41.5

Intervention Group

  Fig. 2.16    Performance of low attainers from both groups on three-dimensional shape test       
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made one shape and sat with fi nger on her lips and hand up waiting for the teacher 
to give her praise and further instruction (until she realised she was to make many 
shapes if she could) (Voigt,  1985 ). 

 In my study (Owens,  1993 ), I found the classroom context had to be considered 
to fully appreciate the results. Classroom learning environments should provide not 
only receptive-language opportunities when students process another person’s com-
munication by listening, reading, interpreting diagrams   , pictures, and actions but 
also expressive-language opportunities for speaking, writing, drawing, performing, 
and imagining (Del Campo & Clements,  1990 ). If this is the case, then students who 
manipulate and speak about their angle-matching tasks are more likely to perform 
better on angle-matching tasks in future. I decided to see if preservice teachers 
could put this into practice. (Later I will discuss a widely used programme Count 
Me Into Space which encouraged visuospatial reasoning.) The preservice teachers 
planned learning experiences after learning about the different types of visuospatial 
reasoning and the importance of substantive communication in the classroom. They 
used Wood’s ( 2003 ) model involving strategy reporting and inquiry to prepare the 
learning experiences. The following extract indicates children, perhaps for the fi rst 
time using visuospatial reasoning, to respond to teacher’s questions. The following 
transcript from the pentomino lesson shows how she encouraged students to interact 
and give their opinions. (T stands for teacher.)

  T: Is that the same shape or a different one 
 D: Same 
 T: How come it’s the same? 
 S: It’s been rotated 
 E: It’s different 
 T: Why do you think its different E? 
 E: Because the square we’re looking at is in the top row not the bottom row 
 T: Someone else 
 V: They’re the same because if you rotate it’s on the right side not the left side 
 T: What happens, yep someone else 
 J: If you fl ip it over and rotate it once. 

   In a later lesson the children were drawing examples of shapes, fi rst in small 
groups and then discussing whether some given descriptors fi tted the shape. In the 
process they tried to draw a 40°, 40°, and 100° triangle to visualise the obtuse- 
angled isosceles triangle.

  T: So everyone got the isosceles triangle. 
 J: You know how you call it an acute isosceles triangle, doesn’t it have to be acute? 
 T:  What does everyone else think? Do you think you can have obtuse angled isosceles 

triangle? 
 R: No then it would be scalene. (Other students comment in the background.) 
 T: Then it would turn into a scalene 
 D: If both angles (pause) in the corners, it would go out like that (shows with hands) 

   Students continued to discuss other shapes on the paper deciding on whether 
they were irregular or not. In this extract and later in the lesson, students were initi-
ating conversation. So conversations in the classroom can direct students’ attention 
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to features of shapes encouraging visuospatial reasoning to make decisions and 
develop concepts. I now consider attention in more detail. It is not just external 
attention.     

    Attention 

 Flavell ( 1977 ) commented that attentional processes become increasingly interwo-
ven with other cognitive processes such as memory, learning, and intelligence. 
Attention is attracted by perceptually outstanding features such as nearness, isola-
tion, size, special form, colour (Gell,  1998 ), number of items, and the inherent inter-
est of the items (Bishop,  1973 ). As a result, people attend to certain features of a 
visual stimulus. 

 Selective attention is the result of focusing on both external and internal stimuli 
(Flavell,  1977 ). Selective attention can be affected by the visual ability of making 
ground-fi gure changes. For example, a student can change focus from a part of a 
shape to the whole shape. Less experienced students may focus on partial features 
to decide equivalence and may not be logical or recognise relevant orders such as 
size (Vurpillot,  1976 ). Selective attention can be improved by repetition and the 
recognition of a relationship which can be employed to solve a problem (Vurpillot, 
 1976 ). If students consciously or unconsciously assess information as incoherent, 
then they do not attend to the input (Egan,  1992 ; Lévi-Strauss,  1968 ; Mason,  2003 ). 
Such restrictions may reduce the effectiveness of selective attention in developing 
conceptual links but students’ attention can be infl uenced by others through looking 
and listening to others as noted above with adults and children. 

 When students respond to problems that require visualisation skills such as those 
required in spatial problem-solving tasks with manipulatives or computer assis-
tance, there can be an interference effect. Some researchers have contributed the 
diffi culties to cognitive overload (e.g. English,  1994 ). English argues that the equip-
ment can make excessive demands on the individuals’ working memory and this 
cognitive overload interferes with the learning of desired concepts. Studies sug-
gested that chunking material, practice, and reducing redundant and irrelevant mate-
rial especially if it splits attention in the same perceptual mode can assist selective 
attention or learning (Sweller & Chandler,  1991 ). The nature of the material and its 
familiarity, diffi culty, uncertainty, and modality of presentation also infl uence atten-
tion (Baddeley,  1992 ; Kahneman,  1973 ; Liu & Wickens,  1992 ). Disputes about 
selective attention were about the effect of early and late selection and about limited 
and unlimited capacity. However, Johnston and Heinz ( 1978 ) demonstrated that 
selection can be either early (based on physical characteristics) or late (based on 
semantic analysis) depending on the nature of the task, the instructions, and so on. 
Attention is assisted by ecocultural contexts that encourage observation, repetition, 
interest, and chunking material together from a holistic perspective.  

 Attention
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    Unlimited Capacity Model of Attention for Action 

 Then a more fl exible view of attention was developed. Rather than identifying rigid 
upper limits, studies have demonstrated that our capacity to attend and use informa-
tion is infl uenced. Allport ( 1987 ) argued that early selection is really about “the 
relative effi ciency of  selective cueing  (which) is simply irrelevant to questions about 
the level of processing accorded to the ‘unselected information’” (p. 409). Processing 
of both cued and non-cued information proceeds at least to categorical levels of 
analysis. Allport argued that unlimited capacity for perceptual attention for action 
explains results of experiments. He referred to

  crosstalk interference between parallel processes. … Whenever the task-specifi ed inputs are 
not the single most compatible among concurrently available inputs for the task- specifi ed 
actions, (inputs need to) be actively decoupled from the control of particular actions. … It 
is a radically different conception, however, from the earlier notion of a central, limited 
capacity, or even from that of multiple limited ‘resources’ (Allport,  1987 , p. 411). 

   Selective attention has been described as like a spotlight on possible inputs and 
as a fi lter of sensory information. However, van der Heijden ( 1992 ), based on his 
experimental fi ndings with short exposures, disagreed with both these metaphors 
for selective attention which imply limitation and loss of sensory information. 
Supporting Allport, he provided a model to avoid limitations and loss. The model 
involved the separation of location and identity for stimulus inputs and the impor-
tance of a feedback loop during processing from the location to the inputs. Thus 
attention can shift mentally to notice other information. Different sensory features 
of objects are coded automatically and spatially in parallel and are located in appro-
priate maps (Treisman,  1988 ; van der Heijden,  1992 ). Uncued information may take 
longer to locate but combinations of features specify objects through a master map 
of where features are located by neuronal activity selectively enhancing (not inhibit-
ing or attenuating) processing (van der Heijden,  1992 ). Higher order centres involv-
ing past experiences and conceptualisations improve the locating. These centres 
involve expectations and intentions which infl uence selective attention. For exam-
ple, if persons expect only to see an angle without a line dissecting it, they will not 
attend to angles that are dissected. Expectation infl uences the location (a) directly 
with verbal cueing, (b) via another module with attribute cueing, and (c) with a link 
from identity to the higher centre and then to location if symbolic cues are used. 
This theoretical position suggests a dependence on prior experience. The end result, 
though, is action (Allport,  1987 ). 

    Clements and Sarama ( 2007a ) noted that mental maps are not like paper maps. 
They distinguish between the areas of the brain that note what an object is, “spatial 
visualisation” (its identity in van der Heijden and Allport’s term), and the way upon 
which it is perceived “spatial orientation”. While this may be a helpful distinction, 
it is not clear cut in that interaction with objects, their contexts, and people infl u-
ences both skills. Part of visualisation and location involve recognition of objects. 
Furthermore language plays a role in such mental maps. 
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 The above summary of van der Heijden and Allport’s work provides a way of 
understanding selective attention in classroom settings as well as perception experi-
ments. Various aspects of the classroom environment—words from the teacher or 
fellow students, the position of concrete materials, the expectation associated with 
a routine of classroom activities, and the task description—may infl uence selective 
attention. The student identifi es, processes through higher centre schema, to give a 
location that leads to attending selectively to the inputs, with further loops as needed. 
Selective attention is infl uenced by expectation and intention as well as perceptual 
inputs and internal feedback through the higher centres. Expectations and intention 
are part of the inner visual system and alter internal and external feedback. 
Classroom and other social interactions form part of past experiences, and they 
frequently infl uence expectations and intentions. For example, the prior knowledge 
and feelings associated with the angle-matching tasks in the adult study on angles 
(this chapter) infl uenced students in the computer environment. Thus contexts and 
ecology of learning become important infl uences on learning.     

    Ecology and Visual Perception 

 One of the earliest theorists to discuss visual perception and ecology was Gibson 
( 1979 ). He discussed the affordances that the ecology provided in perception. In 
particular, he noted the position of the head, the body, and the way in which the eyes 
were looking relative to the head in perceiving but he also noted the texture, curva-
ture, and blocks to vision that the ecology produced that impacted on visual percep-
tion. Motion was integral to visuospatial perception and “ambient light” resulting 
from the environment impacted on visual perception. Thus like van der Heijden’s 
processing model, further connection between context and perception results in 
visuospatial reasoning at a relatively basic physical level of the brain and nervous 
system. Ecology, however, impacts on the higher processes almost immediately as 
seen in studies with children crawling and viewing their surroundings (Cheng, 
Huttenlocher, & Newcombe,  2013 ). 

 Visuospatial reasoning can be involved not only in tasks with objects or drawings 
which are smaller than a person but also in tasks in which the person is part of his 
or her surroundings requiring spatial ability or visualisation in the larger spatial 
arena (Clements,  1983 ; Werner,  1964 ). Near spaces are fi rst identifi ed with recogni-
tion of where and what is there with developing discernment and discrimination 
(Newcombe & Huttenlocher,  2000 ). Thus we note that external contexts can feature 
in the development of visuospatial reasoning from an early age. Learmonth, 
Newcombe, Sheridan, and Jones ( 2008 ) showed when children were placed in a 
rectangular space, they were able to use geometric features such as the lengths of 
sides of the rectangular walls at around 18 months while they use the landmarks 
such as colour at around 5–6 years suggesting language was essential at this stage. 
Nevertheless, 18-month-old children can make decisions if the space they are using 
is small rather than large and so movement is available to them. A more defi nitive 
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and comparative study suggested that children by 3 are able to use geometric 
 features and by 4 they are able to use landmark information. In this study, walls of 
a rectangle with one wall being red were used but the child was not able to move 
outside the smaller rectangle so that nearness and distance were separated. As a 
result, they found that 3-year-olds were able to use previous experiences (four pre-
liminary trials in which they were able to move to the outer walls) to successfully 
notice and use the features in a second set of four trials. This study suggests that 
experience assists students to make decisions. By comparing the various conditions 
of their experiment and three earlier studies, Learmonth et al. showed that effort was 
not an effect for the children not being able to make a correct decision in the larger 
room but the age of the children. The age at which students could make decisions 
based on features was between 3 and 4. “Spatial language may be one of these fac-
tors but not the necessary and suffi cient condition for developmental change” 
(p. 424). The difference is not due to verbal versus visual strength. Instead an adap-
tive combination view suggests that both geometry and features affect decisions in 
which movement can assist attention to the spatial framework. Furthermore, young 
children aged 5–9 years have an ability to reason about nonlinear relationships. 

 Clements and Sarama ( 2007a ,  2007b ) noted that mental structures develop with 
what they call Euclidean or horizontal/vertical organisations associated with large 
and small objects. Clements and Sarama supported the point that interactions infl u-
ence development but ecocultural perspectives best support a diverse range of fi nd-
ings that go beyond the more narrow studies of children infl uenced by western 
languages, perspectives, and built environments. Whatever the mental mapping, it 
seems that younger children (3.5 years) need to move through the space to show 
their visuospatial mapping. These are interesting results since later chapters (e.g. 
Chaps.   4    ,   6    , and   7    ) establish the infl uence of Indigenous families moving with young 
children around their lands on the knowledge of space that these children bring to 
school (e.g. Pinxten & François,  2011 ; Pinxten, van Dooren, & Harvey,  1983 ).     

    Attention and Responsiveness 

 Attention for action (Allport,  1987 ) is an apt concept that links well with the model 
of problem solving that developed from my earlier studies (Owens,  1993 ; Owens & 
Clements,  1998 ). This is illustrated in Fig.  2.17  which suggests that responsiveness    
or action results from the complex interaction of cognitive processing. The term 
 responsiveness  implies a degree of understanding of the situation, involvement, and 
interest in the activity. The analysis of data indicated that cognitive processing 
embraced selectively attending, perceiving (e.g. listening, looking), visual imagin-
ing, conceptualising, intuitive thinking, and heuristic processing (such as establish-
ing the meaning of the problem, developing tactics, self-monitoring, and checking). 
Responsiveness has an underlying affective aspect. With the changes in imagery, 
selective attention, and understanding, there is active progress in problem solving.   
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   Individual responsiveness    also impacted on students’ learning. There are several 
points to note about James’ responsiveness in excerpt 1. First, a friendly competition 
existed between the students and this motivated them to participate and achieve 
(para. 1.01 and 1.06). Certain affective characteristics are evident in his  behaviour—
his responses to his successes (para. 1.01 and 1.06), his competitiveness (para. 1.01, 
1.06, and 1.09), his desire to make shapes (para. 1.09), and his loss of interest at the 

Responsiveness
Person …
Imposes concepts and imagery on materials
Manipulates material
Applies heuristics
Records, displays, describes
Notices aspects of materials / people
Expresses feelings
Communicates with the teacher / student

Influence
Context…
Influences perceptions especially seeing
   and hearing
Affects feelings
Affects the opportunity to manipulate
Disrupts thinking
Encourages/discourages communication

Context
Teacher
Materials

set problem
availability
placement

Other students
comments
cooperation

Classroom
groupings
seating
expectations
time constraints

Cognitive Processing
Selectively attending
Perceiving, listening, looking
Intuitive thinking
Heuristics
-     establishing meaning of
      problem
-     developing tactics
-     self monitoring
-     checking

Imagining
Conceptualising
Affective processes
-     response to organization,
      success
- confidence, interest
- tolerance of open-ended

situation

   Fig. 2.17    Aspects of problem solving             
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end (para. 1.10). James’ use of visuospatial reasoning infl uenced his  responsiveness—
not only his manipulation of materials (para. 1.03, 1.04, 1.07, and 1.10) but also his 
comment to his friend (para. 1.05) and his self-assessments (para. 1.06, 1.10, and 1.11) 
which tend to keep him on task. His visuospatial reasoning helps him to stay on task 
(para. 1.06 and 1.10). Third, he assessed or monitored his own progress on the task 
and this, too, infl uenced his responsiveness. He showed his monitoring by express-
ing how he was progressing (para. 1.01 and 1.06) and by changing his tactic in an 
appropriate way (para. 1.08 and 1.10). Finally, he expressed his understanding and 
knowledge (para. 1.03, 1.04, 1.05, and 1.11). The changes in his responses (para. 
1.03 and 1.10/11) were precipitated by comments to him by his friend and by the 
teacher. Thus we see how his responsiveness was affected by (a) his understanding 
of the problem, (b) his use of visual imagery associated with comments by other 
students and the teacher, (c) his self-monitoring, and (d) his attitudes. At the same 
time, we can see how his visuospatial reasoning and tactics improved and infl u-
enced his responsiveness. 

 Materials or words spoken by others are important in students selectively attend-
ing and hence using concepts and images actively to solve problems (Owens, 
 2004a ). While imagery has a role in generating intuitive responses, in inducing 
selection of and refl ection on concepts, and in precipitating the direction of actions, 
the verbalisation of concepts often assists in interpreting perceptions and actions. In 
this way, conceptualising and verbalising are important in assisting meaning and 
later attention where analysis of the imagery is possible. 

 An example (already discussed above in the study of pentominoes from both 
adults and children) might clarify the role of selective attention and show why spa-
tial concepts are constructed largely by idiosyncratic means. Students joined fi ve 
squares to form different (pentomino) shapes. At fi rst, some students made only 
symmetrical shapes or shapes with names. When they realised they were required to 
make more shapes, they realised that symmetry and a common name were not 
essential for defi ning “a shape”. Their expectation infl uenced selective attention and 
initial schema location. Intentional and conceptual changes also occurred when they 
considered shapes in different orientations and the students developed their under-
standing of what constituted sameness and difference for that problem situation. 
(See Owens & Clements,  1998 , for other examples.)    

 A subsequent study corroborated the fi ndings this time in the context of adult 
students learning mathematics through interactive construction of concepts. An 
analysis of critical incidents revealed that interactions, affect, and responsiveness    
were important features of learning in a problem-solving classroom setting (Owens, 
Perry, Conroy, Geoghegan, & Howe,  1998 ). With further research, discussed later 
in this book, this model was modifi ed to the diagram on identity in Fig.   1.2     taking 
even greater note of context. 

 Giaquinto also supported the argument that visuospatial reasoning requires an 
aspect shift (Allport,  1987 ; Owens & Clements,  1998 ). This particularly relates to 
disembedding and embedding as discussed earlier and motion as depicted often by 
arrows in diagrams    although motion may be implied in other kinds of diagrams 
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imaged with paper-based symbols and on computer screens (Giaquinto,  2011 ). 
Dynamic imagery entails motion in imagination (Laborde, Kynoigos, Hollebrands, 
& Strässer,  2006 ; Presmeg,  1986 ).    

 Shifts within an ecocultural perspective are evident in the thinking of Indigenous 
communities. For example, in Malalamai when asking about the relationship of 
houses to measurement and I pictured the square units tessellating depicted by 
squares with corners at the posts of the houses, the participant researcher Sorongke 
Sondo noticed half as much again as the size of the house which provided the addi-
tional fl oor space on which people sat, lay, and built rooms. In school mathematics, 
this perspective relates to ratio of areas rather than area units. When discussing the 
planting of crops, both Malalamai and Yupno people referred to the two equal 
lengths used for spacing plants at the points of equilateral triangles. However, com-
ments were about the beautiful tessellating pattern of equilateral triangles repre-
sented by this planting. They had an overview of the shapes and the pattern but little 
way of connecting the geometry associated with the equal lengths to these shapes or 
patterns. The intention of the person was also infl uencing visuospatial reasoning. 
   The villagers and myself attended to different aspects because our intentions in 
terms of cultural and school mathematics dominated our attentions and perspec-
tives. Chapter   5     will provide other examples in which disposition, metonomy, 
motion, intention, and visuospatial reasoning impact on activity. 

 Visuospatial reasoning with number size and number lines is also cultural. While 
in western society most people recognise small numbers, it is less likely that one can 
immediately estimate larger collections as many Indigenous people do. In Chap.   5    , 
I discuss the work of Paraide that shows that cultural context infl uences not only 
arithmetic knowledge but also the imagination. A similar result was found by Willis 
( 2000 ) and by Treacy and Frid ( 2008 ) in Australia but not necessarily by others 
working with traditional representations on testing    cards (Warren, Cole, & Devries, 
 2009 ). Furthermore, the cultural symbolism of a society impacts on visualising size 
of number (Giaquinto,  2011 ). For example, western societies are more likely to note 
the size of 0.45 than the binary 101101. This might not be the case in an oral society 
with a two-cycle system as found in PNG. 

 Furthermore, there is a tendency to have a left–right orientation of size for the 
number line in western societies. By summarising results from a number of studies, 
Giaquinto ( 2011 ) noted that participants’ reaction times for deciding whether a 
number was greater or smaller than a given number varied when the smaller number 
buzzer was in the left hand compared to if it was in the right hand. The reverse was 
the case for Arabic monoliterates who read from right to left and reaction times 
were less strong for bilingual persons. It is interesting to note that societies with 
body-part tally systems such as the Oksapmin have strong visualisation of number 
(Saxe,  2012 ) but unlike the western number line, it might be considered that they 
have less of a sense of infi nity since the last number tends to end at the point sym-
metrically opposite the fi rst number such as on the little fi nger of the other hand 
from where the counting system starts (Owens,  2001c ). While some PNG and 
Australian groups would want to complete counting at the end of the cycle, others 
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considered counting people or reiterating the numbers since the notion of cyclic 
repetition was also important in the cultures and in those ways establishing an infi n-
ity in number. 

 However, image scanning, zooming-in, and extrapolating are tools available to 
be used on number lines when numbers out of current range are required (Giaquinto, 
 2011 ). While visual imagery, number sense, and the desire to illustrate concepts by 
drawing might be innate, the number line is based on cultural conventions. Non-
written- symbolic cultures and young children will use a variety of representations 
of number, not necessarily a number line (Thomas, Mulligan, & Goldin,  2002 ). 
Thomas’ study showed children’s imagination with numbers written in a spiral but 
also school experiences such as a line of numbers and contextual experiences such 
as watching calculator screens changing with the constant addition of one. The 
whole recent movement on number learning (e.g. NSW Department of Education 
and Training,  1998 ), however, has emphasised the importance of fi gurative or visuo-
spatial reasoning in the mind and much teaching and research is supporting this 
visuospatial aspect of learning arithmetic.     

    Developing a Theoretical Framework 
of Visuospatial Reasoning 

 Reviewing the earlier studies resulted in the development of a theoretical frame-
work that could be used to inform teachers of young students’ early visuospatial 
reasoning in geometry. The framework was also designed to build on ideas devel-
oped by The Count Me in Too project for arithmetic (NSW Department of Education 
and Training) through which teachers became familiar with such terms as emergent, 
perceptual, and fi gurative (imagery) stages. The success of emphasising both inves-
tigating and visualising together with describing and classifying for both part-whole 
and orientation and motion aspects of geometry is given in several papers (Owens, 
 2002a ,  2002c ,  2004b ; Owens & Reddacliff,  2002 ). The framework is summarised in 
Table  2.6 .

   The actual activities (NSW Department of Education and Training Curriculum 
Support and Development,  2000 ) consisted of ten lessons where students make tri-
angles, explore symmetry, build with blocks, and draw.  
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   Table 2.6    A framework for geometry based on visuospatial reasoning         

 Investigating and visualising  Describing and classifying 

  Part-whole relationships  
 The student:  The student: 

 Emerging 
strategies 

 Attempts to put pieces together to see 
what is obtained 

 Matches shapes with everyday 
words, e.g. ball for a circle 

 Perceptual 
strategies 

 Recognises whole shapes used to 
build a shape or picture 

 Describes similarities and 
differences and processes of 
change as they use materials 

 Pictorial imagery 
strategies 

 Disembeds parts of shapes from the 
whole shape 

 Discusses shapes, their parts, and 
actions when the shape is not 
present 

 Matches parts of different shapes 
 Completes a partially represented 
shape or simple design 

 Pattern and 
dynamic imagery 
strategies 

 Develops and uses a pattern of 
shapes or relationship between parts 
of shapes 

 Discusses patterns and movements 
associated with combinations of 
shapes and relationships between 
shapes 

 Plans and dynamically modifi es a 
shape to illustrate similarities 
between different representations of 
the same concept 

 Effi cient 
strategies 

 Assesses images and plan the 
effective use of properties of shapes 
and composite units to generate 
shapes 

 Describes effective use of 
properties of shapes to generate 
new shapes 

  Orientation and motion  
 The student:  The student: 

 Emerging 
strategies 

 Recognises shapes that match the 
child’s fi xed image(s) 

 Uses a shape word for a fi xed 
image 

 Perceptual 
strategies 

 Recognises shapes in different 
orientations and proportions; 
checking by physical manipulation 

 Describes similarities and 
differences and processes of 
change as they use materials 

 Pictorial imagery 
strategies 

 Generates a series of static images of 
shapes in a variety of orientations 
and with different features 

 Discusses shapes, their parts, and 
simple actions when the 2D and 
3D shapes are not present but 
recently seen 

 Pattern and 
dynamic imagery 
strategies 

 Predicts changes by mentally 
modifying shapes and their attributes 
using motion or pattern analysis 

 Describes a number of changes 
that will occur with one or more 
actions 

 Represent patterns and relationships 
of change by modelling or drawing 

 Discusses patterns and movements 
associated with combinations of 
shapes and relationships between 
shapes 

 Effi cient 
strategies 

 Selects effective strategies to make 
changes needed to achieve a planned 
product 

 Describes effective use of 
properties of shapes to generate 
new shapes 

 Developing a Theoretical Framework of Visuospatial Reasoning
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    Assessment Tasks 

 Teachers were also provided with assessment tasks for individual interview. These 
were also used to evaluate the programme. A number of carefully established card-
board cut-outs, drawings, sticks, and string are required and all tasks are presented 
so that students can show if they are using mental visuospatial reasoning before they 
are allowed to use materials in using perceptual strategies. Figure  2.18  provides 
some items from the test to illustrate how the task is presented with probe questions 
for extension or simplifi cation. The fi rst task is about recognising shapes (repre-
sented by cardboard cut-outs) in the environment.

   The tasks did provide a range of strategies to be observed by different students. 
While students did not necessarily show the same type of strategy across all ques-
tions, there was a tendency for this to happen. Table  2.7  shows how one task could 
be used to decide what strategies were being used.

   Task 4 (Fig.  2.18 ) shows how the skill of re-seeing parts is manifested in visuo-
spatial reasoning while responses to the orientation and motion Task 2 (Fig.  2.18 ) 
indicated the development of orientation skills and noticing angles. Results for Task 
6 (Fig.  2.18  and Table  2.7 ) on making triangles show how a carefully designed task 
can illustrate a full range of strategies. It was a particularly novel task for consul-
tants and teachers.

   Table  2.8  gives the results of assessment on the tasks (Owens,  2002b ). These 
results indicate the effectiveness of the framework, series of activities, and teachers’ 
professional development. The number of students who improved on each item and 
overall in the classes whose teachers undertook professional development and 
taught with the activities was signifi cantly higher than those without the geometry 
lessons that emphasised visuospatial reasoning. This was the case whether profes-
sional development was through a consultant or a school facilitator. An attitude 
question also indicated that more students felt they were good at mathematics most 
of the time, more decided this because of self-assessment, and more recalled spe-
cifi c activities. Teachers confi rmed that students enjoyed the lessons and remem-
bered content well. Thus the framework implemented by teachers, the tasks, and 
assessments were valuable in increasing visuospatial reasoning but also in estab-
lishing self-regulation and positive attitudes leading to evidence of the development 
of a mathematical identity. 

 The tasks can be used for individual assessment or for the basis of activities for 
the class (see Owens,  2006a ). The questions and probes can be used by the teacher 
to assist in students’ learning and assessment during class experiences. The technol-
ogy may be as simple as card cut-outs but computer-generated tasks could extend 
learning from previous activities with concrete materials. It is worth noting that 
Lehrer et al. ( 1998 ) had taken several different geometric and measurement tasks 
and had used probe questions and described different levels of assistance on each 
item, moving from more abstract to concrete to demonstrated responses. One of his 
questions related to transformation of a core square made up of four smaller differ-
ent squares. Repeating transformations made a strip for a quilt. 
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Part-Whole Relationships
Task 3: Imagining shape completion

Task 4: Reseeing shapes

Orientation and Motion
Task 2: Angle recognition, visual memory, and rotation skills

(a) (b)

(c) (d)

Task 6: Dynamic imagery
Use 40 cm string, joined to form a loop; a firm stick.

Place the loop of string on the table and hold two points firm, about 12cm apart.

Provide the student with the stick.

“Use this stick to pull the string tight and make a triangle.”

How would you describe the triangle you have made?

Make other triangles? 

How would they change?

Probe: If the student cannot explain, let them use the stick to demonstrate and tell about the 
triangles they are making.
Point to one of the sides of the triangle.

Tell me what you would have to do to make this side shorter.

Point to the other side.

As the first side is made shorter, what will happen to this side?

Make the following diagrams on a circle using long and short sticks, point out the tab,
let the student make the same diagram on their circle with tab mark aligned with yours.
The first two are uncovered, the third is covered before the student starts, and the fourth
is shown to the student, covered, and turned before the student starts.

Students use sticks of the same lengthto form 2 squares joined together along a side and
then 2 triangles joined along a side. They are asked to draw the 2 triangles, while
covered and are asked “If I take the middle stick away, what shape would I have?”

A square is gradually revealed. Each time, the student is asked what it might be and to 
trace where it might be. They are encouraged to give more than one answer.

  Fig. 2.18    Tasks for assessment in Count Me Into Space       
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 During implementation of the tasks, a grade 2 girl, who mostly showed emerging 
strategies and seemed to have most diffi culty with describing and classifying, was 
able to show perceptual or pictorial imagery strategies in other tasks such as Task 6. 
These were novel questions for her and may have been less associated with her 
general struggle with learning shape labels in English. The assessment provided the 
basis to plan suitable activities for her. For example, she needed experiences in sort-
ing and grouping many different kinds of triangles, squares, and rectangles (two 
kinds at a time); talking about the reasons for grouping, e.g. four sides or four cor-
ners; seeing shapes within shapes in matchstick type puzzles; doing more jigsaws; 
and making geometric shape like squares with tangram pieces. 

 On the other hand, a boy in the same class generally showed pattern and dynamic 
imagery strategies and an ability to see shapes within shapes assisted by good gen-
eral language. However, his recognition of diversity when referring to a shape like 
“a triangle” still needed extension. He needed activities like matching parts of 
 different shapes in order to notice similarities and differences, and to develop prop-
erties. He also needed more language to describe the parts and types of shapes. 
Interestingly, in Task 6, he showed some hesitation in positioning the stick to mark 
the vertex of the triangle to shorten its side, trying to indicate that it would be further 

    Table 2.7    Examples of different visuospatial reasoning strategies for a task   

 Visuospatial 
reasoning strategies 

 Indicators of investigating and 
visualising 

 Indicators of describing and 
classifying 

  Part - whole relations :  task 3 — imagining shape completion by tracing possible hidden shapes  
 Emerging  Traces an edge  Says any shape name 
 Perceptual  Attempts to trace hidden shape 

or traces visible triangle 
 Says triangle 

 Pictorial  Traces for a triangle or square 
or rectangle or two of the same 
kind 

 Says triangle or square or 
“diamond” or rectangle 

 Pattern and dynamic  Traces possible shapes of 
varying sizes 

 Explains how the shapes change by 
lengthening or shortening the sides 

 Effi cient  Indicates tracings and various 
changes 

 Readily explains how different 
shapes could be underneath 

  Orientation and motion :  task 6 — dynamic imagery using a stick to move a loop of string  
 Emerging  Moves stick but does not make 

or recognise a triangle 
 Perceptual  Makes a triangle 
 Pictorial  Makes two or more triangles, 

e.g. right angle, isosceles 
 Knows names and properties of 
different types of triangles 

 Pattern and dynamic  Automatically slides stick to 
make different triangles 

 Comments on changes to triangles 
and gives names of different types of 
triangles 

 Makes both acute and 
obtuse- angled triangles 

 Effi cient  Shows an arc of points to 
shorten side 

 Explains why continuous range of 
triangles can be made in general 
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away than the line of the string (tending towards effi cient strategies). He was ready 
to use properties to establish that squares are rectangles and that the same names 
apply when the shapes are in turned positions (a problem that can be exacerbated by 
the use of words like diamonds), and to use words like rhombus, trapezium, quadri-
lateral, or four-sided shape.     

    Moving Forward 

 This chapter has synthesised psychological literature around spatial abilities and 
around visual imagery especially from the last century. These were heavily infl u-
enced by psychological studies and experimental designs. Visual imagery research 
was particularly common from the information processing theories of psychology 
but several theorists have linked it to perceptual and contextual aspects of learning. 

   Table 2.8    Student improvement on assessment tasks   

 Task 

 Number (%) who 
improved with 
school-based 
facilitator 

 Number (%) 
who improved 
with 
consultant 

 Number (%) 
who improved 
without 
programme 

  χ  2  value 
comparing 
consultant and 
non-intervention 
group  Group 1  Group 2 

  Part - whole 
relationships  

  N  = 135   N  = 193   N  = 140   N  = 75 

 Task 1  89 (66)  129 (67)  87 (62)  31 (41)  8.54* 
 Task 2  63 (47)  130 (67)  85 (61)  25 (33)  14.65** 
 Task 3  74 (55)  113 (59)  72 (51)  18 (24)  15.10** 
 Task 4A  95 (70)  131 (68)  74 (53)  22 (29)  10.94** 
 Task 4B  73 (54)  122 (64)  84 (60)  27 (36)  11.26** 
 Three or 
more tasks 

 79 (64)  141 (73)  77 (55)  20 (27)  15.83** 

 All tasks  17 (14)  40 (21)  19 (14)  0 (0)  ** ,†  
  Orientation 
and motion  

  N  = 136   N  = 160   N  = 73   N  = 34 

 Task 1A  57 (43)  73 (46)  33 (42)  9 (26)  4.48* 
 Task 1B  63 (49)  98 (61)  Not included  Not included 
 Task 2  41 (31)  69 (43)  43 (59)  13 (38)  3.97* 
 Task 3  73 (54)  94 (59)  42 (58)  9 (26)  8.97* 
 Task 4  72 (53)  81 (51)  44 (60)  12 (35)  5.80* 
 Task 5  66 (49)  80 (50)  38 (52)  8 (24)  7.70* 
 Three or 
more tasks 

 70 (53)  103 (66)  37 (51)  9 (26)  5.55* 

 All tasks  16 (12)  19 (12)  8 (11)  0 (0)  ** ,†  

  *Difference assessed by chi-square analysis is signifi cant at  p  < 0.05 level 
 **Difference assessed by chi-square analysis is signifi cant at  p  < 0.01 
  † No chi-squared value calculated because  n  = 0 in one cell of the table  

 Moving Forward
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In my research, I attempted to draw all these psychological literacies together to 
discuss children’s thinking when problem solving. I drew on qualitative research in 
order to get inside children’s heads to see how they were visuospatially reasoning. 
Visuospatial reasoning relies on four skills    (Wessels & Van Niekerk,  1998 ) that I 
elaborate as follows:

•    Visual skills especially seeing and re-seeing aspects of the environment, objects, 
and shapes  

•   Verbal skills that support comparisons and decisions with words, and encourage 
interactions about the visuospatial reasoning  

•   Tactile skills such as cutting, joining, and folding that support or provide affor-
dances in the visuospatial reasoning  

•   Mental skills especially mentally manipulating spatial images    

 Encouraging these skills together strengthens measurement and geometry educa-
tion. These skills come together through pattern and dynamic imagery used in 
visuospatial reasoning supporting the learning of processes and concepts in mea-
surement and geometry and expressed in conjecture, explanation, argument, and 
proof. 

 Visuospatial reasoning emphasises reasoning associated with and dependent on 
visual and spatial imagery but also expressed, developed, and argued spatially. 
Visuospatial reasoning is the important part of reasoning with visual and spatial 
imagery or imagination. It is a mental process linked to physically seeing and doing 
in a spatial world that has spatial relations. Geometry    is about spatial relations. We 
reason not just in verbal written proofs often associated with high school geometry 
such as congruent triangles and trigonometry or circle theorems but with perceiving 
and interpreting diagrams   . In primary school that reasoning relates to shapes, both 
two-dimensional and three-dimensional, their interrelationship, and lines; and to 
transformations and symmetries. It also relates to interpreting drawings. A drawing 
may be used as a metonymical representation of a class of shapes thus “knowing 
what a triangle is, is more than being able to label an equilateral triangle sitting on 
its base as a triangle” (D. McPhail, Count Me Into Space videos). Initially we know 
that students cannot always verbalise why a shape is, for example, a triangle—they 
seem to have a global understanding much as they do that a chair is a chair. On the 
other hand, a young student may just focus on the pointiness without seeing the 
whole or noticing other important properties. Students may also have a fi xed image 
that needs to be developed by experiences. For example, one young boy making a 
triangle with a loop of elastic thinks that a right-angled triangle must be placed with 
horizontal and vertical sides. Students will realise that a variety of examples of a 
shape can be categorised as one particular shape. Students will begin to associate 
more and more properties or parts as necessary for that shape. They will also begin 
to decide what is not necessary for a shape to belong to a particular category. None 
of this is restricted to the school mathematics shapes. These comments could be 
noted in other ecocultural environments. 

 It is often thought that children need to develop words fi rst but they in fact 
develop a visual image of a shape before they have the language to talk about it. 
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When children talk about their images, their explanations help them to clarify what 
is in their images and to develop their concepts. Children often say about triangles 
that they have properties like having “three sides” by rote (note how often children 
leave out that they are straight and intersect) but children need to be able to perceive 
these sides separate from the whole shape and to reason visually often by running 
their fi nger down each side as they count. A good example of physically represent-
ing visuospatial reasoning through dynamic imagery is that of pulling a vertex of a 
triangle formed on a computer screen or a piece of thin elastic. There are an unlim-
ited number of triangles. Prior to reasoning in that way, children might only recog-
nise a couple of images of triangles or think they are the shapes with “pointy bits 
and not corners”. Without extending children’s imagery of triangles they may have 
a prototypical fi rst image and procept (Gray & Tall,  2007 ) or beginning conceptual 
understanding. 

 Visuospatial reasoning occurs when a child seeing part of a hidden shape says, 
   “it can’t be a triangle because it has two corners” (pointing to the right angles of the 
partially revealed shape) (Count Me Into Space video) or when the same child in 
seeing one “corner” and a triangular section of the shape can show that “it could be 
a larger triangle or an even larger triangle underneath or even a rectangle or a larger 
rectangle or a square underneath”. Every time the child told us what shape it might 
be, she traced with her fi nger where the shape might be. In the research on this hid-
den shape task, one child from grade 2 said “it could be any shape”. When asked 
what he meant, he called it by an imaginary name and traced out a zigzag line at the 
end of the imagined extended sides. (Being an English-as-a-second-language 
learner, this child had learnt to “play” with words and this strengthened his visuo-
spatial reasoning.) Children can mentally slide, rotate, and turn over shapes or 
refl ect them. By talking and pointing, students indicate that they notice parts and 
visualise their relationships. These are skills required in visuospatial reasoning. 

 Students learn to attend to the more important aspects of images, overcome ini-
tial static perceptions in favour of pattern and dynamic ones, and acquire appropri-
ate mathematical conventions in developing and conceptualising visuospatial 
reasoning (Hegarty & Kozhevnikov,  1999 ; Owens & Outhred,  2006 ). Episodic and 
illustrative visuospatial reasoning is important in transforming visuospatial images 
to new situations as shown by the above examples such as Sally’s tangram and pen-
tomino problem solving. Diagrams need to be manipulative whether mentally and/
or virtually and then visuospatial reasoning can be applied through the use of struc-
tures and propositions to new situations (Dörfl er,  2004 ) as illustrated in the exam-
ples in this chapter. However, it depends on the valuing of the visuospatial 
representations and reasoning whether these remain signifi cant in memory and pur-
pose (Rivera,  2011 ). Gestures in cultural practices are mathematical representations 
in use and constitute the interface between embodied and cultural aspects of know-
ing and learning geometry (Kim et al.,  2011 ). Signifi cant are the manifestations of 
visuospatial reasoning, especially through actions, when two communities of prac-
tice merge whether they be western and Indigenous or community and school as the 
chapters that follow develop (Civil & Andrade,  2002 ; Gutstein,  2006 ; Téllez, 
Moschkovich, & Civil,  2011 ). 

 Moving Forward
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 Visuospatial reasoning and a move away from stereotypical images and practices 
is important for visuospatial reasoning to be evident in all areas of mathematical 
problem solving. The following example illustrates this well as it links to limita-
tions in both geometry and number as a result of teaching practices that fail to 
encourage students’ use of visuospatial reasoning. M. Clements (whose work has 
been discussed earlier in this chapter) reported on a study by Zhang with grade 5 
children ( 2012 , p. 14). The teacher used a textbook that used area-model representa-
tions of fractions (circle and rectangle) following a Standards curriculum. At the 
end of the teaching, the children, and the teacher to a lesser extent, could only rep-
resent fractions and not use fraction concepts to solve a simple problem, “fi nd a 
third of the way around an equilateral triangle”. He noted that “These students 
thought about simple fractions in terms of parts of a circle, and many of them knew 
of nothing else” because of the overuse of one kind of “visual algorithm”. A similar 
limitation has been found with base 10 block representations of fractions. However, 
to correct this through a verbal, especially symbolic representation, would be worse 
and curricula that encourage multiple visual representations should not be crowded 
so they result in visuospatial reasoning in only one context or medium. Rather there 
needs to be a visuospatial reasoning approach in which problems that require some 
visualising are set but then students are encouraged to act through heuristics such as 
to draw, compare with other representations of a third, compare with other fractions 
of this representation, and represent with another model. This argument also applies 
in geometry and measurement education. 

 The complexity of visuospatial reasoning and the way it relates visual imagery, 
spatial abilities, and other forms of thinking is important. Nevertheless, the case is 
established that the context, both within the classroom and in the community and 
indeed the school with its curriculum and teachers and government policies, is impact-
ing on visuospatial reasoning. In fact, attempts to recognise visuospatial reasoning in 
the geometry area of mathematics, at least in Australia, have met with structuralist 
theories of development, rigid thinking of two categories of 2D and 3D separately, 
poor teacher content knowledge or pedagogical content knowledge, paper-and-pencil 
testing,    and the view that visuospatial reasoning cannot be assessed by such testing 
without even realising its role in the test (Lowrie, Logan, & Scriven,  2012 ).    

 Some of the authors cited in this chapter made reference to the importance of 
context, in terms of perception in small and large spaces, in terms of development 
and reasoning, and in terms of classroom routines and expectations. My own 
research in classrooms indicated a strong infl uence of teachers, peers, and materials 
on children’s ways of thinking and learning but also the role of expectations in 
learning. Learners rely on “deep, personal, and situated structures” (Goldenberg & 
Mason,  2008 , p. 183) to provide a possible variety and range of examples of a con-
cept but at the same time their attention needs to be drawn to the generality whether 
intuitively or by interaction with an external source. 

 However, what are the possible impacts of family and community’s shared 
knowledge, values about aspects of education, and ways of teaching on visuospatial 
reasoning? In the next chapter, we will establish a case for considering visuospatial 
reasoning from an ecocultural perspective. Examples of culture and ecology and 
theories of education related to an ecocultural perspective will be developed.                                                                                                                                                                                                    

2 Visuospatial Reasoning in Twentieth Century Psychology-Based Studies



91© Springer International Publishing Switzerland 2015 
K. Owens, Visuospatial Reasoning, Mathematics Education Library, 
DOI 10.1007/978-3-319-02463-9_3

    Chapter 3   
 Changing Perspective: Sociocultural 
Elaboration 

                      A paradigm shift occurs when a question is asked inside the 
current paradigm that can only be answered from outside it. 

(Goldberg  1997 ) 

 … what young children learn and remember are things that 
arise as a “natural” and often incidental consequence of their 
activities … Setting out deliberately to commit a body of 
information to memory is quite a different affair from such 
examples of natural or spontaneous remembering, where what 
is subsequently recalled is something one literally handled, 
attended to or in some way had to take cognisance of in the 
course of doing a practical activity. 

(Dave Hewitt, 2001) 

      The Challenge 

 In the previous chapter, I illustrated that earlier research on cognitive psychology 
was limited in explaining how we learn about and use visuospatial reasoning. While 
it helps to establish how the brain may be processing information of this nature and 
how it is attending to aspects of visuospatial information, there remain questions 
about how the world outside our minds is indeed interacting with our mind. An 
exploration of intuitive, tacit knowledge shows the importance of situated learning. 
Much of this learning occurs in activity. Questions arise about bodily involvement 
in visuospatial reasoning and how practice—participation in activity—infl uences 
this reasoning. 

 There are also questions about how different ecologies, environments, societies, 
and cultures impact on visuospatial reasoning. There has been an argument for a 
sociocultural perspective in education for some time and these aspects need to be 
considered for visuospatial reasoning. I wanted to understand the impact of place and 
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culture on reasoning. Since place has a spatial aspect, it is expected that visuospatial 
reasoning should be understood in terms of place and culture. First we need to appre-
ciate how a critical approach might impact on our thinking especially about space 
and place. To do this we draw particularly on elaborations of a critical  pedagogy of 
place, that is, how a questioning approach to the relevance of curricula and classroom 
practice might infl uence our view on learning and subsequent social justice    issues 
(Gruenewald,  2008 ; Gruenewald & Smith,  2007 ; Somerville,  2007 ). Furthermore, 
people with a sociocultural perspective also espouse quality education as the child 
belonging, being, and becoming as expressed in Australian early childhood educa-
tion (Department of Education formerly DEEWR,  2009 ) and no doubt elsewhere 
(Radford,  2006 ). How is identity perceived in these terms? What does this mean in 
terms of visuospatial reasoning? 

 Much of the work in this area results from anthropological, cultural, and semiotic 
research in cognitive psychology as an explanation of meaning and learning. Has it 
remained too focused on the psychological aspects rather than the sociocultural 
perspectives that might link, for example, intentions and self-regulative approaches 
to learning? (Macmillan,  1998 ). Part of our thinking in this area is also challenged 
by the genetic developmental and anthropological psychologists.    These psycholo-
gists investigate by asking specifi c questions to different cohorts in order to look at 
the sense of meaning both for different age groups and also within the diversity of 
the cultural group at any one time. These approaches were used by Wassmann and 
Dasen ( 1994a ,  1994b ) and Saxe (Saxe  1985 ; Saxe & Esmonde,  2005 ) in exploring 
classifi cation and number in remote communities of PNG. Saxe’s ( 2012 ) theory of 
change over time but with recognition at any one time of diversity within a cultural 
group informs an ecocultural perspective of visuospatial reasoning. 

 However, there are questions about how there is change over time in our visuo-
spatial reasoning in terms of both age and experience of fairly common activities 
such as schooling and what might change in terms of new types of experiences. The 
question can be addressed from a sociocultural perspective particularly by consider-
ing cultures where rapid change is now occurring. However, there is a need to 
explore how this ecocultural perspective can be integrated theoretically with the 
psychological research.  

    Local Context 

 One issue that van Hiele ( 1986 ) grappled with in his book was that of intuition   . He 
felt that intuition was often incidental learning that occurs in everyday activities. A 
parent who uses the term “cylinder” to talk with a child when a particularly noisy 
tanker goes past encourages the child to note the shape and often the word. The par-
ent is likely to draw a circle in the air by hand and describe it as round reinforcing 
the nature of the shape. The noise attracts the child’s attention and the signifi cant 
person, the parent, provides words and representations of the shape. Thus a reinter-
pretation of van Hiele’s work illustrates that the ecocultural context of learning is 
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critical for geometric understanding. However, explicating signifi cant knowledge is 
important as illustrated by the tanker example (Aikenhead,  2010 ). 

    Similar to other researchers’ changing perspective (for example, Bishop, Barton, 
Gerdes, & Saxe), experiences with Indigenous people, their worldview, and their 
metaknowledge have resulted in my change in perspective about visuospatial 
 reasoning from that of an internal way of thinking within an individual to that of a 
sociocultural phenomenon. A similar account of how people develop their local iden-
tity as one born and bred in a place, but not Indigenous, required Garbutt ( 2011 ) to be 
confronted by what it personally meant including resolving the problem of Indigenous 
ownership. Spatial links to an area as well as specifi c ways of thinking, kinship rela-
tions within the area, and a history in the area were all relevant. However, from my 
experiences in PNG, the term “local” referred to Papua New Guineans, generally 
born and bred in the place. Local was used to avoid the term “native”, then regarded 
as derogative. Hence, I see spatial knowledge that is local as primarily Indigenous. 

 However, I was to be further confronted. In a forum with local Indigenous com-
munity Elders and others in Dubbo (where I now live), the group moved away from 
the Brofenbrenner’s (Brofenbrenner & Ceci,  1994 ) ecological perspective. They 
gave prominence to the role of Elders in all spheres of life that supported a child. 
The child was not in the centre surrounded by the systems of school and family as 
Brofenbrenner had illustrated but the child in the family was supported by the fam-
ily with the Elders’ infl uence, the school with the Elders’ infl uence, and the peers 
with the Elders’ infl uence (Owens et al.,  2012 , see Fig.  3.1 ).

   The child’s knowledge was not independent of the sociocultural context. The 
child’s learning was not just represented in the child’s mind but the child in the fam-
ily. The child did not just internalise knowledge shared by others but the knowledge 
was part of relationships within the family and with the Elders. Local takes on a 
meaning that incorporates the family and Elders’ knowledge and their worldview 
and interpretation of space in terms of place. Thus space designations are part of 
relationships with people. The close connection between culture and place and peo-
ple is identifi ed. Local, however, can extend in boundaries and in time. Hence, contemporary 

Child in house and family
(grandparents & other main
carers with different specific
roles)

Community with key
roles of Elders

School with Elders

What the child brings to education

Social environment – peers,
older children – with Elders

  Fig. 3.1    The role of Elders in the education of the child.  Source : Owens et al. ( 2012 )       

 

 Local Context
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culture and not just historical culture are part of the sociocultural context. The 
historical perspective is not forgotten in Brofenbrenner’s model or in Indigenous or 
community’s local knowledge, whatever the community may be. The historical per-
spective is embedded in memory and language and frequently embodied in routines, 
tools, play, practice, and activity. 

 Furthermore, border crossing or generative changes in spatial concepts and 
visuospatial reasoning occur. These changes result from the reasoning or even dog-
matic or hegemonic representations of more powerful individuals such as teachers 
and curriculum writers (Aikenhead,  2010 ). Indigenous cultures have developed 
meaning and reasoning in mathematics and these ways of thinking are not necessar-
ily found in western or schooled societies. However, individuals cross cultural 
boundaries in everyday activities and in school requiring education to be aware of 
the social injustices and the loss of world knowledge that occurs with dominance 
and lack of continuity of learning for individuals.     

    An Example of an Ecocultural Practice 

 By taking an ecocultural perspective, it is possible to make sense of what seems like 
discrepancies in PNG counting systems from the same language group. From my 
investigation into Lean’s (Lean,  1992 ) thesis on counting systems (Owens,  2000b ) 
and my own data, such as the sets of Alekano (Gahuku-Asaro) counting words 
given by different speakers (Eastern Highlands Province, PNG), there are not uni-
versal sets but a diversity of ways of conceiving certain numbers. Table  3.1  provides 
some numbers with associated embodiments. The discrepancies do not reduce the 
fact that there is mathematics but a more important ecocultural and individual iden-
tity is at play. Both men could understand the other and I as an outsider could under-
stand and accept both based on my broad knowledge of PNG counting systems.

   “ Logosigi  squared means 2 plus 2” but “ logosigi  to power of 4 means 2 plus 2 plus 
2 plus 2”. Since reduplication is common, many words are phrased as squared, e.g. 
 kau  2  for  kaukau , sweet potato. This is part of PNG humour even if it might be a visual 
representation that is confusing for school mathematics. It is likely that the variation 
in Table  3.1  is infl uenced by a neighbouring language (Bena Bena). Nevertheless 
across Gahuku-Asaro    area, in different villages, slightly different counting words 
were given. Other words of interest are those words for large numbers. In Gavehumito 
village (2004), the teacher noted “100  asasi ligizani luga luga  (stick or 10 hand fi n-
ished fi nished); 200  go ’  hamo  ( bilum  one); 1,000  mulisi  ( hip  = heap)”. 1     

 More common were the various ways of combining twos and ones for 6 and 7 
especially in languages with 1 and 2 as the frame words for the counting system or 
there is more than one way to say 4. In Wiradjuri   , NSW, Australia, 4 can be expressed 
 bula bula , or  bungu , or  magu  (Grant & Rudder,  2010 ). However, there are more 
complex systems. For example, Paraide ( 2010 ) explains how the complex ways of 
measuring and counting in Tinatatuna, the Tolai language (East New Britain, PNG), 

1   Bilum  and  hip  are words in Tok Pisin, the lingua franca of PNG. 
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builds on both 10s and 12s (3 groups of 4). For example, 12 coconuts are called a 
 pakaruati  (one lot) and then 10 or 20 of these lots are named. These forms of 
 counting are associated with practical activities and with the visual representations 
of the sets. For Hagen and related languages, there is both a (4, 8 cycle) system and 
a 10 system. Gestures are associated with both systems and different morpheme 
combinations are used for numbers depending on what is being counted, the cere-
mony, or purpose. From these various examples, even simple mathematical activi-
ties like counting are a way of expressing identity and the individual identity within 
the rich identity of the cultural group.  

    Values in Education 

 There is often an emphasis on the cultural confl icts that occur in schooling where 
colonial or western perspectives dominate. Furthermore, acculturation of mathe-
matics allows school mathematics and those in position of power within the school 

    Table 3.1    Alternative numbers in Gahuku      

 First man  Second man  First man  Second man 

 1  Hamo  Hamako  8  Nigizani hamo asu 
o’oko makotoka 
logsive hamo ol 
omalago 

 Logosi 4  means 
logosi is repeated 
4 times “means 2 
plus 2 plus 2 plus 
2 plus 2” 

 2  Logosita  Logosi  9  Nigizani hamo a su 
o’ko logosive logosive 
oli’o malago 

 Luguhagi 
luguhagi 
luguhagi 

 3  Logidigi 
hamoki 

 Luguha (logosigi 
moka) 

 10  Nigizani logosi asu igo 
(nagahuni hamo) 

 Golaha 

 4  Logosivi 
logosive 

 Logosigi 2  “Logosigi 
squared meaning 2 
plus 2” 

 11  Nigizani logosi asu 
oko ligisaloka hamo 
oli’o malago (2 hands 
fi nished and one on the 
leg) 

 Golohaki 
hamakoki 

 5  Logosigi logosi 
hamo or 
nigizani hamo 
asu igo (one 
hand fi nished) 

 Logosigi luguhagi  15     Nagahuni makoki 
logosi logosi hamo or 
nigizani logosi asu ‘olo 
ligisa hamo asuigo (2 
hands fi nished–one leg 
fi nished) 

 Golohaki 
luguhagi logosigi 

 6  Luguha luguha  Luguha logosi  20  Nagahuni logosi or 
nigizani logosi aso’oko 
nigisa logosi asu igo (2 
hands fi nish, 2 legs 
fi nish) 

 7  Luguha luguha 
hamoki 

 Luguha logosigi 
makoki (segininaga) 

 Values in Education
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system to dominate. However, I contend that there are important strengths of 
 cultures that must be highlighted before acculturation or multicultural stances are 
taken. I am not sure that any of the choices of strategy generally espoused for inter-
cultural relationships, that is, integration, assimilation, separation, or marginalisa-
tion, satisfactorily achieve the ecocultural perspective that is contended in this book. 
Like the Elders in my local Wiradjuri community and others whom I have met from 
other Indigenous communities (in Australia, Sweden, New Zealand, PNG), rela-
tionships between people are dominant. Many Pacifi c people are relational beings 
legitimised by

  Sacred relationships built on the values of tapu (sacred bonds), alofa (love and compassion), 
tautua (reciprocal service), fa’aloalo (respect and deference), fa’amaualalo (humility), and 
aiga (family); to them, culture is the core of their very existence, both individually and col-
lectively. Nevertheless, being cognisant of the negative consequences of colonisation and 
forced acculturation among Pacifi c cultures is critical for working towards balanced inter-
cultural relationships that can lead to positive outcomes for people of the Pacifi c. … 
[Educational developments should align] with Pacifi c cultural values of shared responsibil-
ity, reciprocity, and interdependence. (Vakalahi,  2011 , p. 87) 

      Thus I suggest that a strong recognition, extension, and valuing of cultural math-
ematics in a school setting are important for effective and effi cient learning of other 
mathematics through an effective transition approach.     

    Signifi cation, Meaning, and Becoming 

 One of the challenges for cognitive psychologists has been that representations of 
objects in the mind have not remained constant over time or place or people or 
indeed within a person. Objectifi cation is indeed a probabilistic determinant or deci-
sion of best practice of people’s responses to a stimulus. In other words, the debate 
between subjectivity and objectivity around meaning and interpersonal communica-
tion is around the certainty of words or diagrams    signifying objects without dispute. 
Objective knowledge was challenged by radical constructivists and social construc-
tivists (Davis, Maher, & Noddings,  1990 ; von Glasersfeld,  1991 ) through either an 
emphasis on personal, radical, individualistic construction of meaning or the social 
impact of others on meaning-making. One approach to fi nding a way forward was to 
talk of taken-as-shared meaning (Lerman,  2001 ). In that situation, cultural and social 
infl uences were recognised in discussions on mathematical concepts that might have 
been taken as a universal mental possibility for all persons even though some might 
favour visual or verbal or other ways of solving problems and knowing. 

 “Concepts of meaning indeed are based on presuppositions concerning the rela-
tionship between the cognizing subject and the object of knowledge” (Radford, 
 2006 , p. 40). Referencing systems are related to the relationship between the person 
and the object and its position in space. Generalisations of patterns found in experi-
ments (Peirce,  1998 ), no matter if embedded in everyday activity, are often associ-
ated with numbers but are established in terms of the sociocultural contexts and 
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what they might mean for future communities. Intentions then closely monitor the 
meaning that is established for the person individually and the person within the 
cultural group. Thus, for example, the mathematics involved in building a village 
house in PNG requires consideration of many construction principles but also reci-
procity, recognising relationships in terms of assistance and gifts. In a collaborative 
group task in a classroom, the value placed on collaboration, purpose, relevance, 
sharing, and appropriate communication will infl uence the resulting mathematising 
from the task. 

 However, by building on and modifying the constructs of Peirce ( 1998 ) and 
Radford ( 2006 ), I suggest nature (the environment) might indeed provide possibili-
ties and restrictions on the experimentation, abstraction, and interpretation within 
mathematics. An ecocultural perspective is more comprehensive than either a psy-
chological or sociocultural perspective. Furthermore, it is possible to extend these 
generalities and concepts by relating meanings and by making logical possibilities. 
Thus intention in learning is controlled by more than sensing and perceiving as the 
psychologists suggested in generative learning theories (Osborne & Wittrock,  1983 ) 
though these information processing theories provided a good theoretical back-
ground for earlier work on visuospatial reasoning. Furthermore, according to Radford 
( 2006 , p. 42), “ideas and mathematical objects … are conceptual forms of histori-
cally, socially, and culturally embodied refl ective, mediated activity”. In that way, 
language plays a part in the establishment of meaning and representation and reason-
ing. Habits and patterns of language and activity provide a mediated realm for signi-
fying objects and their position in space. This point is taken up further in Chap.   4    . 

 Furthermore, it is possible to have an intuitive sense of relationships based on our 
intentions, according to Radford ( 2006 ) in expanding on Husserl’s notion of praxis. 
Thus refl ective practice increases the likelihood of learning and making meaning. 
For example, geometric generalisations are ideals that develop from the more spe-
cifi c examples that are generated through refl ection from one to another. Such gen-
eralisations occur through visuospatial reasoning about the examples and how they 
can be modifi ed to provide a different example but with certain properties main-
tained and represented in both words and diagrams   . For example, a triangle made 
from a loop of thin elastic can be modifi ed by pulling points or moving their posi-
tion in a dynamic way as occurs if the loop is held by three fi ngers. A similar occur-
rence occurs in dynamic geometry software. The person may generate some 
triangles by chance but the construct is best appreciated when the person compares 
the examples and deliberately tries to make specifi c examples. Thus through praxis, 
conceptual meanings are generated. Through intention, we attend to certain aspects 
of the phenomenon or generalisation in order to create meaning and conceptual 
understanding. The intending and referring that occur in practice are creating mean-
ing not only for the individual but also for others. It is the historicity of culture that 
provides the meaning for problem solving and learning and inter-subjectivities. 
“A set of morphological instruments, syntactic and lexical systems, literary genres, 
fi gures of speech, forms of representation of events, etc. that are part of our cultural 
inheritance” anchor the referring and signifying of the ideal of the object through 
interaction and negotiation (Radford  2006 , p. 53). This set of representations 

 Signifi cation, Meaning, and Becoming
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 provides our way of referring to ideas embedded in culture. In other words, 
 “mathematical objects are conceptual forms of historically, socially, and culturally 
embodied, refl ective, mediated activity” (Radford  2006 , p. 59). 

 However, alternative perspectives, different ways of attending to the object or 
concept, and different people can reach different but probably related ideals. It may 
be that the spatial textures of the object or environment are what draw the attention 
or affect the intention of the person making meaning. This spatial aspect is encom-
passed in an ecocultural perspective.    

    Taking this critical perspective further, Soja ( 2009 ) suggests the meanings of 
human spatiality and related concepts such as place, location, locality, environment, 
and geography are best understood in terms of thirdspace, a metaphor to keep an 
open perspective on geographical imagination to incorporate multiple postmodern 
views as a space for race, gender, and class without privileging. Following Lefebvre 
( 1991 ), Soja suggests social production of social space as a spatio-analysis. He 
envisaged multilevels of the right to difference (from body to nation). Firstspace—
perceivable spatial dimensions and direct connections such as measuring; second-
space as spatial representations, cognitive processes, and symbolic meaning in the 
dualistic geographical imagination but now thirdspace as a critical discourse that 
problematises spatiality and avoids reductionism in interpretation. Thus an ecocul-
tural perspective on space perceives and works with the overlapping perspectives of 
the various descriptions of a place. There are different ways (western and tradi-
tional) of describing a route that is also part of a mythological story of how the place 
was formed. 2  These multiple spaces intersect to provide new mathematical knowl-
edge such as noticing unusual fl at stones, the movement of water, the surrounding 
vegetation and the provision of food from the plants, distances embodied in walking 
the track, and the ownership and sharing of the land. 

 This open perspective on spatial knowledge provides for radical, creative mental 
spaces and relationships. Mental spaces consist of perceived spaces of practices and 
social relationships; conceived spaces that are representations; and lived representa-
tional spaces that embody clandestine meanings. The thirdspace is a social space 
that transcends the fi rst two dimensions (physical and mental)—all three are “real 
and imagined, concrete and abstract, material and metaphorical” (Soja,  2009 , p. 52). 
Soja presents “being” as having spatial, social, and historical aspects that are 
 balanced in the three spaces in spatial imagination. This trialectic ontological asser-
tion of space, time, and being-in-the-world impacts on epistemology and empirical 
analysis. It provides for a recognition of othering and an emancipatory change 
which is never fi xed but permits lifespaces and life views in epistemologically 
derived situations such as education. Spatiality as a term prevents the dualism of 
physical and mental and becomes the perceived, conceived, and lived spatiality as a 
practical sense of the spatiality of social life. It is incorporated into our sense of 
visuospatial reasoning. 

2   An example are the song-lines found in Australian Aboriginal and PNG stories such as the half- 
man story, their river and valley told by men of Kaveve village, Eastern Highlands Province, or the 
songs of tracks associated with particular Foi hunters, Southern Highland Province. 
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 Thirdspace provides resistance to hegemonic power. A new spatial awareness 
emerges as a product of spatial imagination that combines the physical and mental 
in a lived space, or location of culture (Bhabha,  1995 ). The ecocultural perspective 
as a thirdspace provides a critique of the dominant culture’s liberal permission of 
cultural diversity. Thus the Yolngu    women 3  wash cycad nuts in the same place at the 
same time of the year every generation, so the place has more meaning and more 
mathematical generalisations than just a western description of location. Lossau 
(2009) links thirdspace to borderlines and border crossings (Jegede & Aikenhead, 
 1999 ) as a strength rather than a limitation or negative compromise in learning and 
she suggests it provides an outward and expanding position, even as a hybrid. 
Thirdspace implies the myriad of circulating crossing of boundaries and movements 
from centre to periphery. However, it is important to keep multiple perspectives 
rather than reduce them to a common form. Lossau explains that the spatial meta-
phor permits ordering of ideals, connections, and relationships in the knowledge. It 
permits difference indicated by distance between ideals but spatial imagination can 
only be imagined by a hidden reifi cation. However, I am concerned that difference 
is, like any representation, reducing difference to dimensions and positioning in all 
its implied meanings. To that I would bring into the metaphor the notion of topology 
rather than dimensions as a way of understanding difference in the thirdspace. 
Topology emphasises relationships rather than metered distances on various dimen-
sions and thus reducing the ordering of different perspectives. 

 Furthermore the ecologies of the classroom itself, especially during cooperative 
group work, may also be important in terms of the positioning of students including 
the various mathematical and social identities of the student (Esmonde,  2009 ). The 
relationships between people in the classroom have variation, not only as a result of 
gender and language and prior experiences but also in terms of the contextual ecolo-
gies of the students. As Macmillan ( 1998 ) showed in early childhood settings, dis-
cussions were assisted by mathematical language and other aspects of game or role 
positioning within the classroom but language profi ciency also positioned students 
in the social interactions. Teachers extended the students’ play    and thinking, thus 
permitting “identity    formation by encouraging tolerant and accepting co- participation, 
responsible self-regulation and clear and negotiable access to resources, activity and 
meanings” (Macmillan,  1998 , p. 122). The mathematical activities and discourses 
then lead to individual motivations of curiosity, challenge, choice, and imagination 
resulting in interpersonal motivations and socio-regulative interactions.     

    A Genetic Approach to Ecocultural Perspectives 

 A genetic approach considers how form and function of signs (language, objects, 
and symbols) change over time. In some ways, in a simplistic understanding of a 
genetic approach, I think it is a sad perspective in that it loses difference and 

3   Northern Territory, Australia. 
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multiplicity of visuospatial reasoning. It indicates a hegemony of language and 
practice and an acculturation or enculturation often into school mathematics rather 
than an enhancement of school mathematics. It is often marked by a loss of lan-
guage and the role of perceived power (see Saxe’s ( 2012 ) example of the teacher’s 
authority in giving the changed counting words for Oksapmin). However, it does 
indicate that cultural identity is fl uid just as change is inevitable. Language becomes 
an important part of change, or at least it is a visible sign of change. The use of 
language and signs does not necessarily precede the development of thought. 
Similarly, practice may or may not determine thought and skills. However, both 
language and practice facilitate communication and may facilitate thinking. 
However, we explore Saxe’s genetic development model in more detail as it illus-
trates the impact of ecocultural change on valuing and reasoning. 

 Saxe ( 2012 ) does not think the amplifi cation metaphor, that suggests signs and 
systems assist in the extension of thought, is appropriate for explaining change 
because the circumstances and the systems may be quite varied. It may not be the 
result of the sophistication of a system or representation or its function. Each system 
in practice develops its own complexities. To keep culture and cognition separate 
and to suggest that one infl uences the other fails to draw adequate analysis from the 
sociohistorical cultural and cognitive developmental processes. Saxe maintains that 
both culture and cognition participate in constituting the other. Both are processes. 
One thing to note is that there is variation in culture. Descriptions of cultural prac-
tice frequently ignore the diversity within the society but Saxe’s explanation is simi-
lar to de Abreu’s ( 2002 ) explanation about the common valuing of a practice in a 
particular ecological circumstance. Culture has representations, practices, and arte-
facts but diversity is also a property of culture and boundaries. As Saxe puts it, these 
properties of culture are osmotic in many ways resulting in variance and change. 
Cognition is a process and is not internal as opposed to external as in representa-
tions. Thus the representation is part of the cognitive process and it has cultural 
forms and cognitive functions for both individual and group activity. Form–function 
relations as processes in motion are constituted and shifted in the processes of 
microgenesis, sociogenesis, and ontogenesis. 

 Saxe has written clearly, engaging the reader in the fi rst chapter with his personal 
journey into a little known realm of the world, the Oksapmin of the highland reaches 
of the west Sepik area of PNG. He follows this with his theoretical journey referring 
to various theories that approach psychology from an anthropological or cognitive 
(constructivist) perspective to present his genetic model that incorporates 
 microgenetic development at the personal level and how this relates to the socioge-
netic level as individuals in the society infl uence each other and over time to an 
ontogenetic level that leads to changes also in the individual and at the social level. 
This criss- cross infl uence is illustrated diagrammatically in Fig.  3.2 .

   Furthermore, the interplay between positional identities and the elaboration of 
mathematical goals may be explored. At the microgenetic level, change is not a 
mere transmission from individual to individual as in one person suggesting a new 
use for a particular idea but change for the individual is the result of development 
in society of the construction and use of ideas and their representations and 
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 modifi cations. This is the sociogenetic level. These of course limit the individual 
possibilities and provide an understanding of the form–function relations (ideas, 
objects, and signifi ers and their uses) over time. Ontogenesis is the individual devel-
opment over time. A blind person who uses a cane to navigate makes adaptive 
changes to spatial thinking through the physical manipulations and responses of the 
stick on objects during practice and in new ecologies. Practice in various situations 
permits adaptation to new situations but there may need to be sound or other guid-
ance for the adaptations to be effective and effi cient. 

 Saxe used an interesting research procedure. Initially in the fi eld he observed 
everyday activities but also asked people to specifi cally explain, for example, how 
they counted which was quite visually demonstrated. They showed their system of 
tallying objects against parts of their body in a fi xed order starting at the thumb 
(which is not a common starting point for body tally systems in PNG) of one hand 
to the small fi nger to the wrist, lower arm, inner elbow, upper arm, shoulder, ear, 
eye, nose, and then across and down the other side but going from the thumb to the 
small fi nger    (not a mirror image which is also unusual among the body-part tally 
systems) (Lean,  1992 ; Owens,  2001c ). Sometimes they stopped at 20, the elbow of 
the other arm, because that matched with 20 shillings equalling a pound (during the 
former Australian administration) and then adjusted that to $2 and fi nally to K2 
(two kina note—all amounts below this are coins). Others went back up the arm to 

  Fig. 3.2    The interplay of genetic aspects in cultural contexts.  Source : Saxe ( 2012 , p. 33)       
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the elbow to 30. The visuospatial connection between shillings and 10 toea (the 
coins looked the same in size and colour 4 ) were also used as a standard value for a 
pile of food in the market. In this study, there was already variation among the 
people. Saxe then selected specifi c groups of people to support the view that certain 
experiences were likely to be associated with certain approaches but to also show 
that it was a relatively common approach or valorisation within a specifi c age group. 

 Having come from an empirical tradition of psychology, Saxe describes his 
methodologies for a range of studies which he grouped into two areas. The fi rst 
related to the infl uence of the outside money economy found in trade stores and 
used by others who had worked outside the community and to a lesser degree by 
those who sold garden produce and paid school fees only. The second area related 
to the two-way infl uence of societal and school ways. On his visits, 20 years apart, 
he selected certain divergent groups to interview that illustrated different degrees of 
contact. This also related to different visits across time providing a check on the 
genetic explanation of change. However, he did not lose the serendipitous opportu-
nities and the opportunity to review videotapes. Furthermore, he has shared his 
visual research on the web ( Saxe, nd ).    

 I select here to evaluate the fi ndings from his fi rst study on the money economy. 
The number of interviewees was large, nearly 80 in four categories requiring walk-
ing a considerable distance between trade stores and villages. The addition and 
subtraction problems with or without 10 toea (10t) coins (still called shillings by 
some) were carefully counterbalanced. Each oral word problem was presented in 
terms of the trade-store buying and each number indicated on the body-part equiva-
lent. The visuospatial reasoning using body parts and the trade-store experience are 
evident. Saxe’s graphs present interesting differences in results but a good propor-
tion of all groups with coins present correctly answering most questions, with more 
coaching of older people and of schooled young adults for subtraction (quite a few 
had been systematic but gave the wrong addition answer). Saxe noted a common 
understanding of the story problem without actually designating whether the prob-
lem was a difference or sum when coins were not present. The visuospatial rele-
vance of coins and the oral communications were evident. It seems that the body-part 
tally system is indeed a built-in ruler-type representation for numbers that is easily 
used for problems to which in school we would apply arithmetic concepts of 
 addition or subtraction. This method was used mostly by older adults and to a lesser 
extent by young adults and plantation returnees but not often by trade-store owners 
whose practice with costs allowed them, I contend, to visualise or recall in ready- 
reckoner form the ratio of values for different amounts of goods or for commonly 
added amounts. 

 A more intriguing method of responding to problems was the use of double- 
enumeration or matching of parts obtaining a result by one-to-one correspondences 
of body parts. Some people used words rather than body parts to match providing a 
more effi cient response. For these people, it was clear that the body parts were a 

4   The coin is sometimes called a shilling and it is not unusual for a younger man to give the kina 
and toea values in pounds and shillings to the Elders, without any apparent effort in calculating. 
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number system. This method was used by a signifi cant number of people across 
groups except the older adults. The body-tallies led to an interesting compensation 
method where both arms were used with the shoulder (10) being a critical part in the 
designation and transfer of parts (e.g. 16 might be 10 on one arm and 6 on the other). 
This method was used by a few of the trade-store owners and by very few others 
(mainly plantation returnees). In addition, by providing scores for advanced strate-
gies that used body parts as a system to provide accuracy, Saxe was able to show a 
signifi cant difference between groups. An analysis of variance, supported graphi-
cally, showed greater use by trade-store owners, with less use by plantation return-
ees and young adults with no advanced strategies or use of the body parts in a 
numerical system for older adults with problems without coins being present. The 
question remains whether this was lack of practice or indeed genetic development 
from social experiences. For either explanation, the visuospatial representation and 
reasoning are evident. 

 Saxe indicated that hegemony and position of people such as trade-store owners, 
teachers, missionaries, patrol offi cers, and returning employees can have a stronger 
impact on the development of practice than other people. Thus Tok Pisin methods 
of referring to currency were universal unlike the diversity of ways of developments 
in naming and valuing currency. The example of K5 is particularly indicative of 
people “playing” with words to develop a phrase to represent the K5. Unlike the 
restricted variety indicating ontogenesis for K2 or K20 resulting from the estab-
lished 20 parts to the whole, K5 was referred to as a combination of K2, K1, and 50t, 
often with doubles such as two K2 and two 50t. While he might suggest how this 
illustrates both personal developments that become new forms of knowledge over 
time (ontogenesis) infl uenced by sociocultural developments, there are also impor-
tant values in the play of words when children are learning about money and values. 
Similarly the various numeric equivalents for  fu , “a complete group of plenty”, are 
associated at different times and by different people with differing amounts in a 
consistent way. However,  fu  is also associated with doubling. There is no explana-
tion about how this developed although doubling occurs to turn K1–K2, K5–K10, 
and K10–K20, each of which is marked by coins or notes. Doubling is notifi ed by 
“married”. The grouping of 20 is common practice among various language groups 
of PNG and for many travelled participants 20 became the  fu  rather than the original 
27 in the body tally system. Visuospatial representations and words were linked 
through the double arms. With activity and interactions between people, there are 
changes both of signifi cation and meaning but in each case the meanings between 
variant ways of naming the currency are in themselves important in reasoning. 

 Part of the reasoning or “play” with words for different amounts subsumes the 
visuospatial reasoning. For example, the use of the name “hole fl at” for the K1 coin 
(which has a hole) or the word “leaf” for the green two kina note assists people to 
know these denominations and use these to make K5. It would be instructive for 
teachers to make use of these various forms of describing K5 to encourage learning 
rather than to just replace with English or Tok Pisin (very similar counting systems 
based on base 10).    
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 In a similar way, when children are fi rst learning to make and remember  additions, 
use of the body-part tally system as a number line (equal spacing is not important 
because it is signifying counting numbers) in conjunction with English can provide 
a good visuospatial reasoning platform. The children may learn the order of the 
words because they are also body parts. They can see them. They can count to a 
number like six and count on eight by matching corresponding parts of the other 
hand and/or orally counting up another eight. It is worthwhile noting that it passes 
the 10 (shoulder) which takes on special signifi cance now that there is a regularly 
used base 10 counting system in place. I have regularly noticed across different 
language groups in PNG young adults (whose schooling was in English and not 
their own language) using their traditional counting systems to make words (string 
of words or morphemes) for larger numbers by using different combinations of 
morphemes or words that represent smaller numbers (see discussion earlier in this 
chapter). In this current period of change, various systems are being used. So this 
“play” with counting words seems to be strengthening the arithmetic. If one person 
in Gahuku-Asaro says 18 is three groups of 5 and 3 and another says it is 2 groups 
of 5 and then 5 and then 3, both are correct and providing different arithmetic 
expressions. Both have visuospatial representations behind their reasoning (Gahuku- 
Asaro has groupings of fi ve in the counting system). In forming larger numbers 
once the pair of hands has been used, people will “borrow” the hands of others 
standing around in the group with a nod at each person keeping track of their pairs 
(two hands) of fi ves. Thus we fi nd the ecologies of people are infl uencing their con-
struction of visuospatial reasoning behind their number combinations and descrip-
tions and physical representations.    

 Saxe’s theory does allow for the differences within a society and the changes that 
occur within a society. This was an area that Montiel and Managal ( 2011 ) were 
concerned about in looking at cultural identity. The degree to which there is conti-
nuity in change can be signifi cant for the integrity of a person’s identity of self- 
worth by which they make effective decisions. However, in terms of mathematical 
identity    as outlined in the fi rst chapter, self-regulation and the ongoing sociocultural 
interaction embedded in sociogenesis will impact on mathematical identity in terms 
of practice, values, satisfaction, and effectiveness. If practices are valued by the 
person and society in their ecocultural context, then mathematical identity will 
develop and the loss of cultural identity and ecocultural mathematics will be 
avoided.  

    Visuospatial Reasoning in a Navigating Team’s 
Sociocultural Knowledge 

 In PNG, we had occasion to travel on sailing single-outrigger canoes along the coast 
or across large rivers as well as canoes in inland rivers and lakes. At other times we 
travelled on dinghies with outboard motors and larger coastal boats. But it was the 
use of sail, wave, and rowing around particularly diffi cult points that amazed us 
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most. These canoes are not easy to steer, let alone balance and manage waves. The 
recognition of wave, current, and place even in the half light of the early morning 
and the automatic responses of the sailors and rowers as a group illustrated visuo-
spatial reasoning that was shared among the men and embodied in their strong pad-
dling and steering actions. 

 The breaking down of boundaries of inside/outside (social/mental) in cognition 
was a critical premise of Hutchins ( 1995 ) in his account of the cognition of a team 
of navigators on a US navy    ship. His study of the team and their cognition showed 
that the calculations of position and the various knowledge and roles were partially 
represented by the breakdown in the tasks to be done in the social order of the ship’s 
crew and relationships as well as in the navigation tools that were used. He provided 
several examples of the breakdown in the fl ow of information that illustrated well 
this inside/outside view of cognition. One was of the need of those having access to 
the chart, assisting the position bearer to fi nd a required landmark. Access to experi-
ence and the chart permitted one crew member to give an approximate bearing by 
which the attention of the bearer was narrowed suffi ciently for him to locate the 
required landmark. In other incidences, the reasoning prompted by a possible mis-
hearing of a position or the inability to know what precise point was required for a 
bearing was overcome by an interaction of people through a written and oral 
exchange of information and through a physical gesture as well as a description. 
The reasoning was completed by a team working on the spatial problem together. In 
another incident, it was obvious from plots on a chart of bearing lines that three 
close beam landmarks were not as good as using a beam and another landmark 
closer to the line of travel. The chart facilitated one crew member pointing out this 
situation to another. To complete discussion of the team’s visuospatial reasoning, he 
described how the team created their own shortcut or modularisation for speeding 
up calculations, albeit with an error initially under the pressure of a large moving 
ship that had lost power. In this critical incident, the team developed and shared a 
new mathematical approach which was not, unlike many other activities and tools, 
part of the legacy of navigation techniques. Nevertheless, it would be easy for 
another person or team to develop this method again. 

 One of the infl uences on Hutchins in interpreting the results of his study was his 
study of Micronesian navigators. He outlines how different cultures establish their 
representations of position, direction, and distance and I will return to this in Chap.   6    . 
Firstly, in western society, familiarity with small maps representing large space pre-
sumes a position will be fi xed by orthogonal axes. It is accepted that the Mercator 
representation of the earth is visually incorrect for representing distances and areas 
the further one leaves the equator for higher latitudes. Hence radio-beacon, the 
shortest distance between two places on the spherical globe along great circles, 
rhum directions which is by line-of-site, or straight-line reckoning are used, often 
simultaneously, to decide position. Over a relatively small area, these are virtually 
the same. Navigation charts become a computational tool on which lines and circles 
of distance are represented and by which computation and decisions can be made 
about time to reach other destinations at certain expected speeds. These charts 
and the visuospatial thinking of navigators who use them come from a history of 
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western mathematics. Tools also include previously recorded information, tables for 
allowing for magnetic north effects on the compass, and routines for sharing tasks. 

 By contrast, the navigators of the Pacifi c, specifi cally those of Micronesia, use 
alternative but equally effective methods to navigate to unseen places without an 
extensive array of equipment found on large ships and yachts. There are in both 
navigation systems certain constraints. There are representations and computations 
in both systems. This is discussed in Chap.   6    .  

    Visuospatial Reasoning in Measurement 

 Area    measurement is a particularly problematic issue for children if visuospatial 
reasoning from ecocultural contexts is not incorporated into the learning. Rahaman 
( 2012 ) showed that students’ greater reliance on formal strategies to undertake 
problems related to area in other contexts reduced the use of their own strategies. 
She suggested the importance of incorporating contextual and visual experiences 
into the curriculum. One issue is that people can have two different visual images of 
a rectangle, one as a border and one as a fi lled-in rectangle associated with a two- 
dimensional space having area, an image required for measurement of area. Doig, 
Cheeseman, and Lindsay ( 1995 ) also found these alternatives occurred with chil-
dren. They reported that more children placed given tiles around the rectangle as if 
a door frame but if they were given a drawn square, then more attempted to fi ll in 
the rectangle. Martin and Schwartz ( 2005 ) showed that students tend to realise the 
grid arrangement and its link to multiplication of areas with square units on small 
rectangles but not for larger areas when students resorted to addition rather than 
multiplication. Furthermore, the similarity of a rectangular unit also led to alternate 
physical and mental processes. It could be argued that ideas are not so stable in dif-
ferent environments requiring learning in different contexts and adaptable pro-
cesses. In Chap.   5    , I will discuss the ecocultural issues associated with visuospatial 
reasoning used by PNG people in comparing areas. 

 Visuospatial reasoning is particularly important in estimating and draws on eco-
cultural experiences. How important is estimation   ? A study by Adams and Harrell 
( 2003 ) asked 17 people in different occupations:

    1.    For what kinds of tasks do you frequently engage in estimating?   
   2.    Why do you choose to estimate instead of using a tool to obtain a 

measurement?   
   3.    Why do you choose to use a tool to obtain a measurement instead of estimating? 

(p. 229)    

  The reasons for estimation are mainly to save time but they also do it to verify the 
validity of the measuring tools and methods.    It might also be that precise measures 
are not possible or relevant or a quotation for a customer is needed or just because 
it is enjoyable. However, at other times, it is not appropriate just to estimate such as 
a product has to be consistent, risks are too high, it is inside the body or it is a new 
task. However, this form of visuospatial reasoning can be developed through 
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 practice, using multiple senses, encouraging it as a step in the procedure that requires 
prior knowledge, and for  making decisions. These kinds of estimations are happen-
ing for “employees, customers, consumers, and participants in recreation … estima-
tion is really at work!” (pp. 243–244). Ecocultural context is a vitally relevant part 
of the visuospatial reasoning of estimating.  

    Embodiment of Spatial Knowledge 

 Dialling a telephone, using a calculator, and touch-typing are all examples of 
embodiment of knowledge of the position of numbers and letters on these tools. 
Pilots of planes also have spatial imagery as well as visual imagery on which they 
make split-second decisions (Wickens & Prevett,  1995 ). From Hutchins’ writing 
and that of others who have sat with the Pacifi c navigators, there are embodied 
memories as well as mental memories assisting with the visuospatial reasoning and 
decision-making. In the Caroline Islands, the tilting of the head to 45° provides a 
kinaesthetic means of selecting the angle of inclination to view the star constella-
tions (Worsley,  1997 ). This embodiment    of direction is also evident when sailors 
can feel the state of the swell under the canoe. This may assist in positioning the 
canoe in reference to the island (leeward, side, or front of the island from the direc-
tion of the swell) (Bryan,  1938 ). In the Marshall Islands, the sailors have sea roads 
that are taken regularly and that take account of the swells and currents. They physi-
cally attend to the forces of nature in determining the extent of travel in a given time, 
so they take account of fast moving waters or winds appropriately. 

 PNG Indigenous peoples know of trading and cultural partners far away as 
observed by their long-distant trading circles such as the kula trade around the 
Papuan Islands, the Hiri Motu trading and winds along the south coast of PNG, the 
Rai Coast-Madang trade, and the highlands to coast trade. Australian Indigenous 
peoples also travelled long distances for trade, relationship building, seasonal adap-
tation, and knowing the land. The time of year, the winds, and the cycles in food 
production all infl uence these navigations together with trading goods such as food, 
pots, stone, oil, shell money, knowledge, and salt. Distances may be associated 
bodily with time taken to cover the distance. The crew of the sailing canoe respond 
to the boat load, swells, winds, and position of reefs (and land if visible) to adjust 
paddling and sail position (personal experiences). Similar skills are then applied to 
small “banana” (fi breglass) boats with outboard motors. These tools of movement 
are then part of the cultural identity and response to space and place.  

    Early Childhood Experiences 

 Nativist perspectives might suggest hard wiring like language modularity and 
sequencing in the brain (Butterworth,  1999 ; Dehaene, Izard, Pica, & Spelke,  2006 ). 
However, this nativist view of spatial sense is only part of the story about 
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visuospatial reasoning. Yakimanskaya’s ( 1991 ) social theory suggests spatial 
 thinking is based on one’s needs, urges, and motivations and that advanced thinking 
engenders frames of reference requiring active and dynamic manipulation of objects 
or activity. However, these frames of reference are culturally bound as suggested by 
Pinxten, van Dooren, and Harvey’s ( 1983 ) anthropological theory of universalism. 
They gave three types of space divisions: physical, sociogeographical, and cosmo-
logical spaces. They noted all three spatial semantic categorises of near, separate, 
and contiguous (3 of 118 terms for the Navajo) are used by different cultural groups. 
Thus we need to explore the bridge between ecocultural and psychological perspec-
tives of visuospatial reasoning. 

 In Chap.   2    , visuospatial reasoning in early schooling    was illustrated and exam-
ples of different responses were given. The chapter shows the limitations of psycho-
logical theories especially that of Piaget for which topological thinking and 
conservation were considered necessary before visuospatial reasoning could begin 
in the areas of classifi cation, orientation, motion, and part–whole relationships 
within shapes. It was also established that in classrooms, students’ attention resulted 
from both internal thinking and classroom context. Hence we began to see that a 
broader perspective was necessary for understanding early childhood visuospatial 
reasoning. Ness and Farenga ( 2007 ) provided a strong argument for visuospatial 
reasoning in the everyday context of block play. In spatial development, mental 
constructions of space are developed after the activity and are culturally bound. By 
analysing videotapes of children in block play, they developed a theory of how chil-
dren learn to think spatially and scientifi cally. They observed patterns of behaviour 
and development of process skills and cognitive abilities that showed how children 
begin to learn about space and architectural relationships. As a result they presented 
a new, alternative way to measure cognitive abilities and development in children 
noting that topological thinking is not opposed to Euclidean relationships but rather 
the lack of some Euclidean relationships like parallel lines has not yet been estab-
lished. They also counter the applicability of Piaget’s theory based on cross-cultural 
and socioeconomic concerns (see also Dasen & de Ribaupierre  1987 ; Opper,  1977 ). 
Socioeconomic status, culture, and family background also impact on mathematical 
achievement (Ginsburg, Lin, Ness, & Seo,  2003 ; Pappas, Ginsburg, & Jiang,  2003 ; 
Sukon & Jawahir,  2005 ). Gerdes ( 1998 ) has consistently shown the rich mathemat-
ics of African groups and illustrated how they link with school mathematics, for 
example, in the refl ections and symmetries of the women’s  latima  drawings. 

 In Chap.   2    , intention was noted as an important part of visuospatial reasoning 
directing attention and responsiveness   . Ness and Farenga ( 2007 ) expanded on the 
role of intention    as a search component of visuospatial reasoning. Intention can 
lengthen the time spent observing and attending to aspects of the environment 
(Baillargeon,  2004 ) showing that young children may have greater cognitive appre-
ciation than Piaget contended. The link between action in say Logo programming 
and abstract geometric concepts is evident in school children.

  Spatially structuring an object determines its nature or shape by identifying its components, 
combining components into spatial composites, and establishing interrelationships between 
and among components and composites. (Clements, Battista, & Sarama,  1998 , pp. 503–504) 
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   Studies with small children illustrate how spatial as well as visual experiences 
are important in visuospatial reasoning (Greenspan,  2007 ; Learmonth et al.,  2008 ). 
Since visuospatial reasoning has both a spatial and visual aspect, Greenspan ( 2007 ) 
suggests that a child who has diffi culty in remembering and problem solving in a 
spatial environment needs more practice in problem solving in highly motivating 
visual–spatial situations. In some cases, the tasks need to be simpler and small, so 
success is achieved in navigating spaces. For example, block play provides oppor-
tunities for visuospatial reasoning through rotating and joining objects to create the 
playful idea. Some of the play    indicates early measurement concepts such as larger 
and smaller in area, volume, or length. Furthermore, geometric and architectural 
concepts are also used in block play in making enclosed and connected spaces, 
straight surfaces, right angles, edges, and balancing blocks (Clements et al.,  2004 ; 
Ness & Farenga,  2007 ). 

 However, Learmonth et al.’s ( 2008 ) experiments go further in suggesting that 
visuospatial reasoning is not merely the linking of spatial features with language. 
The ecology and size of a space require not only movement experience but also 
other spatial features to solve problems of orientation. When features in the space 
are closer or the space itself is smaller, young children are more able to orientate 
themselves than in larger spaces or with features being more distant to them. This 
applies to children much younger than the 6 years that Piagetian studies may have 
indicated. Landau, Gleitman, and Spelke ( 1981 ) noted that a child blind from a few 
hours after birth and blindfolded adults can be shown points in space twice which 
they touch and then they are able to move between them along any line, albeit not 
straight but as if determining gradually the position      . This would suggest an embod-
ied spatial awareness. However, Cheng, Huttenlocher, and Newcombe ( 2013 ) have 
reviewed the literature on navigation and reorientation in a relatively small space 
and suggested there are more factors involved than at fi rst realised. There is the 
recognition of geometric features found in spaces with corners and surfaces meeting 
(with less adaptability for animals raised in circular environments). There are the 
landmark features and horizon features especially relevant in larger spaces. There 
are a range of cues and values from the environment that direct attention and encour-
age navigation. It seems that even unconscious visuospatial thinking is affected by 
the environment. 

 Mathematics should build on the child’s sense of place from the beginning. An 
important role for formal education is to ensure that children explore their space and 
be given the tools by which to explore this space.

  Children, developing at their own individual rates learn through their active response to the 
experiences that come to them; through constructive play, experiment and discussion … 
(to) become aware of relationships and develop mental structures which are mathematical 
in form … about … spatial aspects of objects and activities which … (they) encounter. (The 
Mathematical Association 1956 Report cited in National Research Council Committee on 
Geography,  2006 , pp. v, vi) 

   However, this link to home and culture may not be recognised by mathematical 
curricula and school systems especially for Indigenous communities. 
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 When we look at the processes of education and the theoretical underpinnings 
for the educational process, there is much to be learnt from studying different cul-
tures. There may be ideas about concepts that are foundational for our understand-
ings but need to be made more explicit for school and early childhood education 
(Ness & Farenga,  2007 ). Furthermore, there may be different constructions of con-
cepts that differ from those commonly pronounced in western developmental psy-
chology that states the child constructs relative (projective) spatial concepts, those 
in relationship to his or her own body (in front, behind, left, right), before develop-
ing absolute (geocentric) concepts. In a small study in Bali, Indonesia   , Wassman 
and Dasen (2007) found indications that in some cultural and linguistic contexts, 
this sequence could be reversed. Using two tasks they found that young children in 
Bali used a completely absolute (geocentric) encoding of spatial arrays; older chil-
dren and adults, while also showing a preference for the absolute encoding system 
(coherent with the culturally sanctioned orientation system), were also able to use a 
relative encoding. If confi rmed by further research, this would be the fi rst demon-
stration of a reversal in stages of cognitive development that dominates western and 
hence current early educational theory worldwide, and an argument in favour of 
(moderate) linguistic relativity. However, Dasen and de Ribaupierre ( 1987 ) sum-
marised a number of studies and showed that Indigenous cultures in both Africa and 
Australia despite a degree of acculturation favoured the spatial area and showed 
equivalent reasoning capacity to western neo-Piagetian testing    but not necessarily in 
quantifi cation suggesting child-rearing practices or ecocultural experiences 
strengthened their visuospatial reasoning. They also suggested that to give levels 
and order in development was not possible without similar ecocultural backgrounds 
(see also Fischer & Silvern,  1985 ). Thus Piagetian and neo-Piagetian perspectives 
and views of levels and indeed mathematics education as set out in curricula often 
limited our understanding of children’s visuospatial reasoning. 

 There are other examples to be found in the literature where there is variation 
from the dominant western view. Harris ( 1989 ) noted that small children responded 
to north–south, east–west descriptions in remote desert Australian Indigenous 
groups including with north referencing the direction that the speaker was looking. 
Spencer and Darvizeh ( 1983 ) compared the route descriptions of British and Iranian 
preschool children. The latter group gave more vivid and fuller accounts of sites 
along a route, but less directional information than the former. By 3 years of age, the 
two groups of children were found to communicate spatial information to others in 
the manner of adults in their culture, suggesting that communicative competence in 
the spatial domain involves the acquisition of culturally patterned skills for describ-
ing space. This linguistic feature is further expanded in Chap.   4     on language. 

 Cultural artefacts like maps and diagrams    also facilitate an individual’s visuospa-
tial reasoning. Even preschool children can acquire a sense of large scale space 
from maps (   Clements & Sarama  2007a ). This visuospatial knowledge may be 
restricted to certain cultural groups as indicated by studies reviewed later in 
this book.  
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http://dx.doi.org/10.1007/978-3-319-02463-9_4


111

    Critical Perspective of Place 

 We often need a stimulus to think differently about mathematics whether it be 
 linking cultural experiences with technology (Eglash,  2007 ), recognising non-Euro-
pean mathematics (Joseph,  2000 ), or emphasising a social justice    stance supported 
by ethnomathematics (Civil & Andrade,  2002 ; D’Ambrosio,  2006 ; Gomes & 
D’Ambrosio,  2006 ; Tutak, Bondy, & Adams,  2011 ). In this chapter, I have been 
developing a critical approach emphasising the importance of sociocultural and, to 
a lesser extent, ecological aspects that impact on spatial relations for reasoning. In 
this section, I will expand on the critical approach and show that ecologies need to 
be considered as well as sociocultural aspects. Thus I develop an ecocultural per-
spective. This perspective is centred in the students’ understanding of space from 
their experiences in the place (Gruenewald & Smith,  2007 ; Somerville, Power, & de 
Carteret,  2009 ) and their culture’s systematic ways of thinking about space. In this 
way, space understanding is place based   . 

 While some critical theorists note the importance of recognising the hegemony 
of the more dominant in society (Freire,  1992 ; Giroux,  1997 ), locally, nationally, or 
globally, and that this hegemony may result in disempowerment based on race or 
class or locality, place-based education emphasises that the ecology of place itself 
impacts on the learner and on education (Bush,  2005 ; Gruenewald,  2008 ).    Thus 
ecology of place for establishing funds of knowledge       with the community and fam-
ily (Civil & Andrade,  2002 ; González, Moll, & Amanti,  2005 ) and the impact of 
those funds on the thinking of the teacher who involves the community and family 
in education are critical infl uences on pedagogy. 

 Ferrare and Apple ( 2012 ) suggest that the tools of visuospatial reasoning and the 
spatiality of ecology apply to education at different levels, that is, the size of the 
space. It may be the space covered by a curriculum at the policy level and how that 
is perceived to be enacted. It may be the issues of home-schooling, rural and urban 
schooling, or schooling and neighbourhoods. At the micro-level, there are the 
spaces within classrooms, spatial positioning and spatial arrangements for students 
in classrooms and the “messages” that they contain, and facilities and other aspects 
related to schooling, e.g. for the child with disabilities. It is also about the place of 
schooling. In a study in Brazil, learning was in the park for the street children while 
Sweden and Alaska talk of outdoor education and PNG’s cultural mathematics 
encourages teachers to go out to the gardens and places where mathematics is car-
ried out in activities.    When working with Indigenous students in NSW, motivation 
was gained by looking at shapes of parts of plants and leaf arrangements, uses of the 
plants, and their positions in the outdoor environment. A number of studies in this 
region have involved mapping community areas, planting gardens with plants of 
signifi cance to their Indigenous cultures, and other activities outside in the commu-
nity but all with their Indigenous Elders. 

 Ferrare and Apple ( 2012 ) also discuss the value of having some spatial analysis 
tools to investigate and apply spatial theory to education. For example, social analy-
ses and mapping tools are important to ethnomathematics and the placement of 
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schools and the population attending the school in terms of cultural diversity. So in 
PNG, the urban school may use the lingua franca but a village school might be on 
the grounds of a particular language group and use that language. Other language 
groups may or may not utilise their Tok Ples language and there are varying infl u-
ences of neighbouring languages, proximity of languages, and the social networks, 
e.g. through marriage with other language groups. As we saw in Saxe’s study, access 
to towns or work created other linguistic changes for their own language and its 
maintenance. In addition, spatiality infl uences the connections made between a 
developing economy and the position (value and location—space and place) of 
local lands. 

 Furthermore,

  Bowers ( 2001 ) advocates “eco-justice”    as a critical framework for educational theory and 
practice. Eco-justice has four main focuses: (a) understanding the relationships between 
ecological and cultural systems, specifi cally, between the domination of nature and the 
domination of oppressed groups; (b) addressing environmental racism, including the geo-
graphical dimension of social injustice and environmental pollution; (c) revitalizing the 
non-commodifi ed traditions of different racial and ethnic groups and communities, espe-
cially those traditions that support ecological sustainability; and (d) reconceiving and 
adapting our lifestyles in ways that will not jeopardize the environment for future genera-
tions. Like critical pedagogy, eco-justice is centrally concerned with the links between 
racial and economic oppression. (Gruenewald,  2008 , p. 310) 

   For example, Gutstein ( 2007 ) involved his class by considering the issue of a 
block of land    that could be a play area for the youth and children of the barrio in a 
US city. The project involved the class in mathematics, visuospatial reasoning with 
walking to the place (embodying knowledge), maps, and measurement. They used 
their mathematics as part of their argument for the play area. Thus the sociopolitical 
activity gave value and meaning to mathematics (Mellin-Olsen,  1987 ). There is a 
connection between culture and place that visuospatial reasoning can enhance. 
Furthermore, place    also links with relationships between people and the environ-
ment. Thus visuospatial reasoning is also critical for the environment and its rela-
tionship to people.

  Woodhouse and Knapp ( 2000 ) describe several distinctive characteristics to this developing 
fi eld of practice: (a) it emerges from the particular attributes of place, (b) it is inherently 
multidisciplinary, (c) it is inherently experiential, (d) it is refl ective of an educational phi-
losophy that is broader than “learning to earn”, and (e) it connects place with self and com-
munity. … Current educational discourses seek to standardize the experience of students 
from diverse geographical and cultural places so that they may compete in the global econ-
omy. Such a goal essentially dismisses the idea of place as a primary experiential or educa-
tional context, displaces it with traditional disciplinary content and technological skills, and 
abandons places to the workings of the global market. (Gruenewald,  2008 , p. 314) 

   Engagement with experiences in space results in valuing place (Tuan,  1977 ). 
Sobel ( 2008 ) emphasises that children will develop a sense of place through differ-
ent stages but the beginning is being in the place and being able to act within that 
place. It is our childhood experiences that give us a love of place    and begin our lit-
eracy of space and place (Somerville,  2007 ). A sense of space as place develops 
through movement (crawling, bike-riding, exploring, and walking) in the place, and 
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visual, aural, and olfactory images of places that arouse a pleasant emotion (Sobel, 
 2008 ; Tuan,  1977 ). The mind discerns a network of places or objects in a spatial 
relation and distinguishes the unique characteristics of shapes and objects. 
Furthermore, these experiences occur within a culture and family so that the values, 
relationships, and ways of thinking about the place are embedded in culture and 
associated language. 

 An ecocultural perspective is more than just engaging students; although that is 
important, it is also impacting on how they reason. It is this argument that the follow-
ing chapters address. While classrooms and state curricula limit experience and hence 
reasoning, place-based education shows how visuospatial reasoning can develop 
when “socioecological places” are a part of “exploration and action” and developing 
relationships (Gruenewald,  2008 , p. 318). For Indigenous communities, there is a 
decolonising and reinhabitation of thinking. Reinhabitation also connects and pro-
vides continuities with living in a place and utilising visuospatial reasoning in the 
process. It provides for globalisation and transformation of cultural perspectives as a 
matter of course but in emphasising visuospatial reasoning, it is possible for adequate 
decision-making relevant to a community and culture in the geographical space in 
which they live, supporting their sense of being and belonging. Decolonising think-
ing    requires a return to cultural ways of visuospatial reasoning that maintain places 
and relationships and ensure that with school mathematics education, these cultural 
ways strengthen and extend beyond the limitations of intended and implemented cur-
ricula and high-stakes examinations. Embedded in this view is diversity of visuospa-
tial reasoning that may come about by diverse ecocultural contexts. One way of 
exploring this diversity is to study cultural and natural diversity affecting visuospatial 
reasoning and community decision-making resulting from the reasoning. 

 This ecocultural    approach to teaching and learning requires intellectual inquiry, 
practical inquiry, and emotional inquiry by the teacher and the student (Barnett, 
 2010 ; Department of Education formerly DEEWR,  2009 ; Pinxten et al.,  1983 ). 
Ecocultural knowledge inquiry is centred in place, family, and community and is 
frequently undertaken in practical activity but it has a strong connection in terms of 
identity and meaning (emotional inquiry). Activities relevant to the community may 
strengthen the conceptual development of spatial concepts and indeed strengthen 
relationships between the mathematics of the community, students’ understanding 
of mathematics, and other aspects of life. Indeed, this ethnomathematics is richer 
than school mathematics which may restrict the mathematical thinking of the user 
or learner. For example, the referencing of space may link to activity and associated 
visual imagery providing not only a symbolic and verbal representation for learning 
but also a visual, kinaesthetic, and episodic connection. The ecocultural mathemati-
cal identity of the student and the contextualisation of the mathematics are strength-
ened. The specifi city to place may be closely linked with linguistic structures and 
the purpose for the mathematics. It is not, however, necessarily restricted or limited 
in its system of mathematical relationships since the principles can be applied to 
new spaces and shapes. Furthermore, they can be adapted to new representational 
systems as occurs with the nexus of school mathematics and communication with 
outsiders to a community. Such inquiry results from appreciating space and geom-
etry within a global transcultural community.  
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    Moving Forward 

 Rather than seeing mathematics as a body of knowledge to be learned through fi xed 
levels of presentation as structuralists like Piaget and van Hiele suggested or curri-
cula often suggest, ecocultural perspectives on visuospatial reasoning imply that 
there is not a dualism between the mind and objects but that learning is an active 
involvement of being and becoming enshrined in one’s identity. Mathematics is not 
just a set of procedures or tools to be used but it is enacted through history and soci-
ety by people’s responsiveness    to an ever changing world. Furthermore, individual 
and collective knowledge are “in dynamic, co-specifying and ecological unity. … 
Systems of mathematics can be as divergent as each of our histories” ( Davis,  1999 , 
p. 331). How then do individuals communicate this knowledge? How might ecol-
ogy, society, and culture impact on visuospatial reasoning? How might ecology 
impact on teaching? We will consider the fi rst question in the next chapter, the sec-
ond question will permeate the rest of the book as we consider different societies, 
and the third question is addressed specifi cally in Chap.   7    .                                                                                                 
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    Chapter 4   
 Place, Culture, Language, 
and Visuospatial Reasoning 

                      One doesn’t understand concepts and ‘then’ solve the problems, 
one understands concepts ‘by’ solving problems. One doesn’t 
communicate mathematical ideas ‘as well as’ reason about 
mathematics, rather, ‘through’ communication one refi nes one’s 
mathematical  reasoning. 

(Elizabeth Badger, 1992) 

      The Challenge 

 In Chap.   2    , psychological theories were discussed establishing that people store infor-
mation that is accessible as either verbal or visual information either mentally or 
physically. Language was established as a representation both mentally and exter-
nally. Visual information was perceived as diagrams    although the physical look of 
formulae, for example, can contain a pattern for the memorisation of material 
(Presmeg,  1986 ). There were different strategies for visual imagery in the mind 
including emerging strategies, perceptual strategies, concrete pictorial imagery, 
dynamic and pattern imagery, and effi cient strategies. The last two were closely linked 
to reasoning with imagery. Furthermore, dynamic and pattern imagery may have been 
associated with bodily movement. However, a question arises about whether a lan-
guage approach to education leads to a cognitive psychology focused on representa-
tion or does it relate to other cultural aspects or place-based aspects of learning. 

 Language development occurs as students learn names of shapes through family, 
television, pre-school experiences, blocks used in play, and in school activities where 
the dominant approach is to use western school mathematics. Schooling, home facili-
ties, and language/culture infl uence the making of designs and arranging shapes. 
Everyday experiences impact on spatial language, so social inequities (Cross, Woods, 
Schweingruber, & National Research Council, Committee on Early Childhood 
Mathematics,  2009 ) and cultural differences for learning geometry may be substantial. 
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One issue is that of support for homework and another is the availability of reading 
material and encouragement for reading (Sukon & Jawahir,  2005 ). 

 Questions arise about whether language is a signifi cant aspect of visuospatial 
reasoning and whether language changes the way one thinks about visuospatial 
experiences. Is it possible to have a window into this reasoning from a linguistic 
perspective? How do languages show different ways of visuospatial reasoning? 
How might this relate to identity? 

 From an ecological perspective, a place is a space inhabited by people with val-
ues and relationships and, as a result, the place takes a signifi cant role in meanings 
and specifi c ways of thinking (Chap.   1    ) at a personal and a societal level (Chap.   3    ). 
Place is local with local ecologies but it is part of a global place. In Chap.   3    , I argued 
for the importance of a sociocultural perspective on visuospatial reasoning and that 
societies infl uence individuals’ perspectives on space and place. Language is the 
way in which people in a society communicate, and ideas are generated. What do 
we learn from language studies in terms of space and measurement understandings? 
Furthermore, we argued for a critical perspective of place in terms of social justice   . 
Visuospatial reasoning is understood in terms of an ecocultural perspective permit-
ting children to keep and build on the strengths of their place and culture. 

 This chapter draws on linguistic and anthropological research to assist in under-
standing these bases of education. It establishes how important land is to the think-
ing of cultural groups as portrayed in communicating in various ways. It provides 
evidence of visuospatial reasoning varying according to ecocultural contexts. In 
particular, it notes that position, size, shapes, and patterning are unique to different 
language groups. Language structures indicate that ways of denoting all of these 
aspects differ from western or school mathematics. It shows that different cultural 
groups value different shapes and kinds of patterns in different ways and that world-
views impact on the place of these mathematical concepts and their uses in different 
ways. To explore this issue, I look specifi cally at language for measuring space and 
locating in space but fi rst I provide some background to languages.  

    The Role of Language 

 Within this critical perspective of place,    Setati and Adler ( 2000 ) note the role of 
language in a critical ecocultural pedagogy:

  Firstly, the political and pedagogical issues in rural and urban multilingual mathematics 
classrooms in South Africa are different, and this  contextual diversity  needs to be recog-
nised in language-in-education policy, research and practice. Secondly, moving between 
languages (e.g. English and isiZulu) is only part of the process of learning mathematics in 
multilingual classrooms. There are numerous, distinct mathematical discourses that require 
navigation at the same time. (p. 244) 

   Thus permitting code switching    between languages and leaving the choice of 
mathematical register to the students in the co-learning of mathematics can “privi-
lege the students’ competence in all their languages. … code switching can be used 
as a mark of solidarity empowering the students in the classroom” (Prediger, 
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Clarkson, & Bose,  2012 , p. 6124). While informal language may assist students to 
understand the mathematical concepts and informal contexts permit gestures to 
 support the language and interpersonal relations, additional language skills are 
needed to communicate in the school and technical registers. The interplay of regis-
ters is illustrated in Fig.  4.1 .

   For mathematics classrooms, it is hence important to facilitate transitions between all these 
registers. It also becomes important for teachers to understand the possibilities that are 
afforded to students to gain deeper understanding if they are encouraged to use their lan-
guages effectively. (Prediger et al.,  2012 , p. 6215) 

   In addition gestures, diagrams   , and other visuospatial representations are impor-
tant in these transitions. One way of achieving transitions between registers is 
through a teacher “revoicing”, for example, using adequate technical/mathematical 
language to say again what a child has said as a part of increasing the second lan-
guage understanding. Revoicing a child’s idea through the use of repetition, rephras-
ing, and expansion allows the child to be seen as the authority of the idea and an 
agent in the action of mathematical problem solving (Turner, Dominguez, 
Maldonado, & Empson,  2013 ). The boundaries between the contexts of the registers 
are necessarily fl uid, so teachers can develop the registers to advantage through dif-
ferent activities. The register (technical L2) is important in skilling multilingual 
students through activities of translating from one register into another, fi nding and 
fi tting registers for consolidating vocabulary, examining or aligning when registers 
are not aligned, explaining how to fi nd a mathematical relation or structure in a 
certain register, and collecting and refl ecting different means of expression within 
one register (Prediger et al.,  2012 ). 

 Representation is not a direct correspondence but refl ective of “context, func-
tions, and social embeddedness” (Prediger et al.,  2012 , p. 6218). Furthermore, 
changing representations also indicates meaning in itself and the way it can be used 
and the properties it provides. For example, a graphical or algebraic expression of a 
straight line yields different communications. Similarly, changes in language and 
visuospatial representations can also explicate meaning, purpose, and techniques 
of the two forms. For example, Saxe’s ( 2012 ) study on money showed numbers, 

  Fig. 4.1    The interplay of registers    in fi rst language (L1) and second language (L2).  Source : 
Prediger et al. ( 2012 , p. 6216)       
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monetary terms, and the term  fu  (complete group of plenty) varied in representation 
with different contexts, personal backgrounds, and time. The social purpose infl u-
ences the register represented in the content fi eld and text structure (Derewianka & 
Jones,  2012 ). Language analysis then is important for social justice    in the teaching 
situation. 

 A critical social analysis concerned exclusively with human relationships fails to 
demonstrate ecological thinking whereas an ecocultural pedagogy seeks the twin 
objectives of decolonisation and reinhabitation, important particularly for 
Indigenous students (Barnhardt,  2007 ), but it also takes account of different geogra-
phies. This ecocultural perspective challenges all educators to refl ect on the rela-
tionship between the kind of education they pursue and the kind of places we inhabit 
and leave behind for future generations and in which the learner takes initiative, 
makes decisions, is accountable for the results, poses questions, experiments, and 
solves problems, all regarded as central to mathematics education. All require 
visuospatial reasoning. Places are visualised. Actions in places are visualised. 
People reason holistically about places that they visualise (Pinxten et al.,  1983 ). 

 I call this an ecocultural perspective in order to emphasise culture linked to land 
as embedded in relationships and language. There is a growing body of research that 
illustrates alternative ways of viewing position in Indigenous communities (Owens, 
 2013b ; Owens et al.,  2011 ; Pinxten & François,  2011 ; Senft,  2004b ). Language and 
other representations refl ect some of this thinking as indicated by sociocultural 
studies (Adler,  2002 ; Barton,  2008 ; Gerdes,  1999 ; Owens & Kaleva,  2008a ,  2008b ).  

    Cultural Ways of Thinking Refl ected in Language 

 Rivera and Rossi Becker ( 2007 ) queried that culture might not necessarily provide 
a reason for diverging from western school mathematics because there are still indi-
vidual differences in mathematical thinking in a specifi c cultural group. However, 
culturally shared language provides evidence of a widely taken-as-shared way of 
mathematical thinking that does show a cultural difference in mathematics that 
should be taken into account in understanding mathematics. Barton ( 2008 ) shows 
from a study of languages that mathematics is much more relative and dependent on 
human experience than is usually accepted. Mathematics expressed in school with 
English words is only one mathematical experience. There are many languages that 
express mathematical thinking quite differently. Furthermore, Barton shows that it 
is worthwhile pursuing mathematics as it is expressed in different languages. The 
world needs to nurture difference for its rich possibilities and creativity as well as 
providing culturally responsive mathematics education (Averill et al.,  2009 ). As 
Rivera and Rossi Becker suggested, taking cultural ways of thinking together with 
school mathematical pursuits means the learner can identify culturally and mathe-
matically, and develop his/her own ways of thinking mathematically. “A more pow-
erful ethnomathematics program in contemporary times involves understanding the 
structure of complexity of cultures in ways that explain how members in such 
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cultures are able to preserve valuable mathematical practices and might overcome 
those that constrain them from fully participating globally” (Rivera & Rossi Becker, 
 2007 , p. 222). Anthropology has led the way to contested spaces where negotiation, 
institutionalisation, and internalisation of practice might be resisted. Thus it is 
important to appreciate the ecocultural reasons behind certain Indigenous practices 
and how they are shared, constrained, and pursued and to assist in reconciling dif-
ferent conceptual and practical variances. 

 Meaney, Trinick, and Fairhall’s ( 2012 ) study pursued similar issues. They 
showed (a) how creative, language- and culture-rich, place-based mathematics edu-
cation can develop in the unavoidable political climate; (b) how cultural back-
ground can be used to resource students; and (c) how to meet the challenges of 
context—community, teacher knowledge and ability, and professional develop-
ment. Furthermore, Meaney et al. provide a comprehensive coverage of how one 
large Indigenous language group in    New Zealand  Aotearoa  nationally developed its 
mathematics register and met the challenges of implementing education in  te reo 
Māori . They provide guidelines and salutary messages for others, including smaller 
language groups with greater language changes as in PNG, to establish similar 
projects successfully. Furthermore, they support the importance of every mathe-
matics educator recognising the importance of ethnomathematics in current school 
education. The language permits and encourages teachers to draw students’ atten-
tion to important points through linguistic markers. Furthermore, the way that 
mathematical terms in  te reo Māori  were developed has resulted in assisting stu-
dents to develop deep meaning. In addition, logical connectives within the syntax 
of the language clarify logical relationships. Their study shows the strengths of 
using culture and language in learning mathematics, not only on national testing    
regimes but also in terms of how the language and culture resource mathematical 
thinking and learning. 

 Most researchers on mathematics education in bi/multilingual classrooms have 
argued for the use of the learners’ home languages as resources for learning and 
teaching mathematics (Adendorff,  1993 ; Adler,  2002 ; Moschkovich,  2002 ; Ncedo, 
Pieres, & Morar,  2002 ). Further, the active involvement of parents in the children’s 
homework, often in the children’s fi rst language, can be a source of confusion if 
different notations and algorithms are used. If confl ict between home and school 
exists, a suitable balance needs to be worked out. The family comes to understand 
the value of different approaches to learning and the implications of this in what the 
children do in mathematics lessons while the school acknowledges and builds on 
family reasoning through activity or discussion. 

 Children who speak a language other than the language of instruction confront a 
substantial barrier to learning. In the crucial early grades when children are trying 
to acquire basic literacy as well as adjust to the demands of the school setting, not 
speaking the language of instruction can make the difference between succeeding 
and failing in school, and between remaining in school and dropping out (Lockheed 
& Verspoor,  1991 ). The fi rst language    of a child is inseparable from his/her cultural 
heritage and as such deserves our recognition and support. If a child does switch to 
his/her mother tongue in an effort to solve a mathematical problem that child should 
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not be discouraged (Then & Ting,  2011 ). Then and Ting suggested that a better 
policy is to recognise the value of the mother tongue, encourage its full development 
beyond surface fl uency, but at the same time allow English or main language of 
instruction to become a naturally preferred medium for mathematical thought. 
Children taught mathematics by their parents in fi rst language fi nd themselves 
   switching languages in class more frequently. Many multilingual primary-level 
pupils have great diffi culty with reading and writing mathematics. They have poor 
mathematical vocabulary and can read only the simplest mathematical test, accord-
ing to Then and Ting ( 2011 ). 

 Among the challenges for developing the  te reo Māori  schooling was that of 
writing mathematics in  te reo Māori  given it was predominantly an oral language 
(Meaney et al.,  2012 ). In their professional development, teachers learnt to use dif-
ferent genres and explicitly develop fi eld, tenor, and mode for refl ection, recording 
mathematical activity, and conventional interaction with others. Meaney et al. pro-
vided considerable data to justify the point that not only is writing important but 
also the expected quality of the writing is important and possible in  te reo Māori . 
The importance of revitalising the language strengthens the mathematical learning. 
Another issue is how to balance the need to use other terms for explaining and at the 
same time developing the approved mathematical register. It is important to deci-
pher those words that easily connect from other uses to the mathematical use and 
those that need further translation/explanation. 

 Another study that particularly looked at the issue of language and geometry was 
carried out by Jawahir (Jawahir, Owens, Sukon, & Sunhaloo,  2011 ; Jawahir, 2013) 
in Mauritius.    In his intervention comparative study, he chose not to look at written 
Creole       but he used oral Creole for discussion and teaching (see Chap.   8     for more 
detail). In particular, Jawahir noted that researchers like van Hiele ( 1986 ) pointed 
out the importance of language in developing levels of geometric reasoning so that 
holistic reasoning was a foundation for later analysis, relational connections 
between shapes and later justifi cations and explanations. For example, in analysis, 
students may describe the properties of the shapes informally and imprecisely or 
they may describe explicitly and exclusively using formal geometric concepts and 
language to describe and conceptualise shapes in a way that attends to a suffi cient 
set of properties to specify the shapes. Thus Jawahir considered verbal skills along 
with visual, drawing, logical, and applied skills. Furthermore, he noted that gestures 
and actions were signifi cant in communication especially with manipulatives. 
Students who used Creole particularly with investigative processes of learning per-
formed better than those using English which was a second language.  

    Locating, Visuospatial Reasoning, and Communicating 

 Structural features of language have signifi cant implications for cognition and 
learning in visuospatial reasoning within mathematics particularly in terms of loca-
tion or spatial understanding and processing. François et al. ( 2013 ) support this 
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issue stating that some Indigenous languages like Athapaskan and Cherokee (Native 
American languages) and some PNG languages are basically viewing reality as 
events with substantially no noun categories.

  The structure of the Indo-European languages distinguishes between verb and noun forms. 
With this distinction corresponds a differentiation between things/states and operations/
processes in the conceptualization of reality. Intuitively, mathematical thinking sophisti-
cates these deep structural linguistic and cultural differentiations. Hence, the emphasis on 
geometric fi gures (with a thing-character) and their constitutive forms, on sets and their 
elements, on operations (of multiplication and so on) [that is] performed on entities (a num-
ber, a series, etc.). The point we want to make is that formal thinking elaborates the intuitive 
world view which is given in language and in folk knowledge (Atran,  1990 ). … Actions in 
Navajo begin, stop, change or transform. The cosmos can be understood as a universe of 
events, rather than a universe of things. In such a view no part-whole logic of ‘beings’ or 
‘objects’ and their elements [exists] … (Pinxten et al.,  1983 ). In Academic Mathematics, on 
the other hand, the very basis for formal reasoning is a part-whole logic: the world of expe-
rience is split in parts. For example, in geometry a line is defi ned as a set of points, or a 
plane is said to be a set of lines. (François et al.,  2013 , p. 30, pp. 29–30) 

   Thus language does refl ect but also impacts on visuospatial reasoning and needs 
to be taken into account when we argue that visuospatial reasoning is impacted by 
culture. For example, for the Navajo, with a dominance of    verbs rather than nouns, 
and the use of movement to describe position, reasoning is different to English 
descriptions that make use of prepositions to express relationships. Pinxten et al. 
( 1983 ) also show that ecology is taken into account in geometry. For example, in 
expressing position, Pinxten et al. defi ne this as actions related to certain landmarks 
evident on land that might seem to western eyes as fairly devoid of objects. Thus the 
description of position is unique and within a totally different system to the 
Euclidean western system but nevertheless rich not only as a system but also as part 
of a worldview of objects. 

 From a perspective based on western    languages we might consider that space is 
initially referred to in terms of the planes associated with the body. These are the 
central vertical planes providing (a) left and right and (b) front and back. The third 
plane may be at our feet as the plane of the ground providing a height dimension. 
Such a way of referring to space is consistent with a three-dimensional orthogonal 
Euclidean approach that provides for pathways, areas, and volumes. The natural 
symmetry of the left–right plane and the expectation that one is standing in a verti-
cal position underlie these expectations. The speaker’s position and orientation are 
important referentials (Senft,  1997 ). In fact,

  One of the main features of natural language is its ‘contextuality’—and it is in this context- 
boundness that language, perception, and cognition meet. … Space, our perception of 
space, and our orientation in space are basic for human action and interaction in a number 
of domains- Konrad Lorenz even regards our spatial cognitive capacities as one of the roots 
for human thinking. (Senft,  1997 , p. 2) 

   In many western    referencing systems the speaker or the listener is considered but 
it is also possible to locate in terms of a third object. However, there are times when 
the context actually provides the meaning. For example, a ball is in front of the tree 
usually means the ball is between the speaker and the tree but if the tree is in the 
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front yard of the house, it may mean in front of the tree in alignment with the 
 generally accepted front of the house and the speaker can be anywhere. In addition, 
static confi gurations may use the way one faces but a dynamic confi guration may be 
more about alignment or parallel relationships. Furthermore, the metaphoric and 
extended use of words can be linked by visuospatial reasoning (Lakoff,  1987 ). For 
example, “over” is used in a number of ways associated with position and action on 
a hill. Words and oppositional concepts such as “here” and “there” are very much 
determined by sociocultural experiences. English also changes when it is reported, 
so “it is cold here” is reported as ‘it is cold there’ (Ehrich,  1991 , cited in Senft, 
 1997 ). Finally the words may also be associated with a symbolic use rather than a 
descriptive relationship to the object. “Over the top” refers to a person’s expression 
that is unreasonably exaggerated. Furthermore, some words also have an emphatic 
purpose like the  su  in Turkish which is something that the addressee should take into 
account (Ozyürek,  1998 , cited in    Senft,  2004a ). Similar emphatics are evident in 
Papuan languages (Tupper,  2007 ) and te reo Māori.  

    Language Patterns in Papua New Guinea 

 The role of language in an ecocultural pedagogy for visuospatial reasoning in space 
and geometry is further explained by considering the rich diversity of languages in 
PNG. Some PNG Indigenous languages have

  a greatly complicated verbal system, but pay little attention to the noun, lacking perhaps any 
system of classifi cation or giving very little attention to distinctions of number and relation-
ships of case to other parts of the utterance. … (Others have very elaborate gender or noun- 
class systems) often involving grammatical concord with all conceptually connected parts 
of the utterance (Capell,  1969 , p. 13). 

   In verb-oriented systems like the non-Austronesian language (NAN) of Kâte, the 
emphasis lies apparently in what happened, when it happened, and how it happened, 
rather than in the people or object involved or the place of the occurrence. The verb 
with post-, pre-, and infi xes might    take six English sentences to convey the same 
message. On the other hand, in noun-oriented systems such as Baining   , a NAN 
language, East New Britain Province, an utterance gives attention to the persons and 
objects such that the action words are allowed to take care of themselves (Capell, 
 1969 ). A rarer type of language classifi ed as numeral dominated is the Kiwai 
 language spoken by the Indigenous people who live around the mouth of the Fly 
River in Western Province. As noted by Capell ( 1969 ), in    Kiwai language, there is 
“prefi xal indication of the manner of the actions—one action only, one action 
repeated, a number of actions together or in sequence needed to carry out the task in 
hand” (p. 15). Nearby are languages with “many” being determined by repeated 
action or increasing number of actors, so there is little counting per se and more 
classifi cation of “many” or “few”. These are some of the structural features that 
illustrate a staggering and complex linguistic and cultural diversity found among the 
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Indigenous languages of PNG. These structural features have signifi cant  implications 
for cognition and learning in mathematics education. 

 One early PNG study of directionals to indicate a spatial relation of person, 
place, or thing to another person, place, or thing was in a       Narak speaking village in 
Jimi valley (Cook,  1967 ). A few examples are provided here together with meta-
phoric uses. Cook lists 19 directionals.  pla  refers to a high relative position on the 
vertical axis but also in the case of a pig, it means large and fat while it can refer to 
where God is thought to reside in heaven.    It is also used to refer to up over a person, 
the direction of climbing, looking away from the person, and a long or short dis-
tance.  kalA  is vertically straight down in direction, so God came down or a place 
down a ridge but it can also refer to the poor condition of a small, skinny pig. It has 
an opposite sense to  pla. paNo  refers to the middle of something while  kora  means 
on the same level as something else. These examples show the metaphorical exten-
sions and complex meanings associated with just a couple of words.  

    Frames of Reference for Space and Place 

 Position depends on frames of reference and different cultural descriptions. In gen-
eral space is referred to by local and directional prepositions or postpositions (“at”, 
“on”, “in”; “in front of”; “behind”), locatives—local or place adverbs (“here”, 
“there”), dimensional or spatial adjectives (“high”, “low”, “wide”), demonstratives 
(“this”, “that”), static and dynamic motion verbs (“to stand”, “to come”, “to go”, “to 
bring”, “to take”), directionals (e.g. “to”, “into”), and presentatives (“there is”) 
(Senft,  1997 , p. 8). These terms form deictic systems and there is a large variety of 
these systems across languages. In addition, languages have gestures such as point-
ing or raising the eyebrows to indicate position. However, the number of terms used 
in any one language may vary. Senft ( 1997 ) presented an argument made by others 
that the more the man-made spaces in a society, the smaller the size of the spatial 
deictic system. He gives as examples the fact that English has two terms for position 
(“here” and “there”) but Yup’ik has 30 terms and East Eskimo has 88 terms. This is 
partly attributed to the man-made function given to the object associated with the 
position. For example, “the key is in the door” or “the satellite is in space”. The loca-
tive markers of a language impose an implicit classifi cation on spatial confi gurations. 
Indo-European categories are topological relationships (e.g. proximity, inclusion, 
surface contact), Euclidean notions, and functional notions concerning typical uses. 

 The Inuit have four different suffi xes, roughly corresponding to “at”, “from”, 
“via”, and “to”, but they also indicate (a) if the event is at the beginning, middle, or 
end of the sequence; (b) expand on the position further away with an idea of “up”, 
“down”, “in”, “out”, and “same plane”; (c) perspective of speaker, the addressee, or 
some other reference point; and (d) the relative size/shape of the place partially 
determined by the speed and nature of the motion involved (Ascher,  1994 ). 

 Typical of studies that look at language and frames of reference (Gerdes,  1999 ) 
is that carried out by Edmonds-Wathen ( 2012a ) using cards that have pictures with 
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a tree and a man in different orientations (facing different ways and on different 
sides of the tree). A person describes the position of the man when compared to the 
tree.    In general, frames of reference fall into three categories although the language 
may have a word that could cover more than one of these categories. These catego-
ries are usually described as being intrinsic, that is, the words link the items of the 
representation (picture or drawing); relative, that is, the words link the items to the 
describer’s position looking at the drawing; or absolute, that is, terms such as north, 
south, east, and west are used. For Iwaidja (Edmonds- Wathen,  2011 ) on Croker 
Island, northern Australia, there was a second absolute frame of reference being 
“deep sea” (west) and “mainland” (east) but if the describer was facing west, this 
could also be used in a relative sense if the describer noticed that the man was 
behind the tree in an English description. Other languages use landmarks to denote 
position. Local landmarks and environmental features are also used to denote places 
and the position of objects. One example is the use of  “west-sea- down” and “east-
land-up” relevant to the geography and ecology of the    Iaai on Uvea, an island in 
New Calendonia (Ozanne-Rivierre,  2004 ). (See in Chap.   5     a classroom use men-
tioned by Muke and in Chap.   6     the Mayan use of seas.) 

 Prepositions or postpositions generally provide a connection that is obvious by 
context or by the expected relationship between objects, e.g. the book on the table. 
For this reason, prepositions are frequently minimal and may or may not impact on 
word order.                      Alekano (Eastern Highlands Province, PNG) has up to 15 slots or posi-
tions for different types of words and relationships between words in a  sentence. 
Wiradjuri in NSW, Australia, has three positional suffi xes—one for being next to a 
person or on or in an object, another for coming to a person, and another for going 
away from a person which vary with the class of noun (Grant & Rudder,  2010 ). For 
example, the suffi x - gu  is added to the noun for movement towards the person or 
thing, that is, the person or thing is the purpose of the action (but also - gu  is added 
to all the nouns for two or more objects owned by a person, rather than using “and”). 
Table  4.1  also shows how suffi xes are used for movement away illustrating variance 
over type of word. In some languages, words vary with addressor and/or addressee 
or a third person or object as reference point and the number of people involved may 
also modify the words to be used (e.g. Samoan as presented by Mosel,  2004 ). 

    Table 4.1    Examples of added suffi xes for movement in Wiradjuri   

 Word ending  Suffi x  Wiradjuri base word  With suffi x  English 

 “ ang ” a   - dhi    ngurang    ngurandhi   From the camp/home 
 “ i ” or “ ny ”  - dyi    mirri    mirridyi   From the dog 
 “ aa ”  - ri    yinaa    yinaari   From the woman 
 “ ang ”  - ga    ngurang    ngurangga   In/by/at the camp/home 
 “ i ” or “ ny ”  - dya    wiiny    wiinydya   At the fi re 
 “ a ”, “ ir ”, “ n ”  - dha    dhaagun    dhaangundha   In the dirt 
 “ l ”, “ r ”, “ rr ”  - a    gibir    gibira   By the man 
 “ ng ”  - gu    galing    galinggu   To the water 

   Note :  a for “ ang ” ending, “ g ” is dropped  
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Sometimes words vary with the use of gestures (e.g. Saliba, Milne Bay, PNG; 
Margetts,  2004 ).

   Stokes ( 1982 ) also notes that for the    Anindilyakwa from Groote Island in 
Northern Territory, Australia, the word for “come” and “go” is the same generic 
word requiring context for meaning, that the suffi x - manja  is used for “at”, “in”, 
“on”, and “by” requiring the context to provide meaning, and that the question 
“where” can be asked by an adverbial for a person but of an object by an adjective. 

 Codrington ( 1885 ) much earlier noted that Melanesians and Polynesians have a 
habit of continually introducing positional suffi xes, “adverbs of place and of direc-
tion such as ‘up’ and ‘down’, ‘hither’ and ‘hence’, ‘seaward’ and ‘landward’”. One 
deictic system that can be found in a number of Austronesian and non-Austronesian 
Papuan languages in PNG, in languages of the Pacifi c, and in Australian Indigenous 
languages includes varying words which refer to a place quite distant, ones that 
encode medial distance, and ones that imply proximity with visibility impacting 
on  choice of words (Senft,  1997 ). Wiradjuri    has three suffi xes for “here” - nha , 
“there”, - nhana , and “way over there”, - nhanala . Senft’s edited books (Senft  1997 , 
 2004b ) provide many linguistic examples of deictic differences from the work of 
linguists among Austronesian and non-Austronesian Papuan languages of Oceania, 
PNG, and Melanesian areas to the west (such as West Papua and Suluwase). These 
alternatives also affect the way people measure (see comments on Kilivila    later in 
this chapter on measurement). 

 It is common for “behind” and “front” to be used for denoting persons but in dif-
ferent ways in diverse languages. The diversity of frames of reference in PNG and 
Australia illustrates particularly the diffi culties of using the metaphorical “before” 
and “after” with numbers on the nu   mber line for various reasons. For example, 
when Matang ( 2008 ) carried out his study (personal observation) and used the Tok 
Pisin terms, he was using the words in the opposite way to that used in English. 
Similarly, the Iwaidja, Australia (Edmonds-Wathen,  2012b ), and Walpiri       in Central 
Australia (Graham,  1988 ) both used “before” and “after” in ways different to that of 
English. “After” in some languages can be a word used only in a relative sense so 
that it can also be translated into English as “before”, “previously”, or “after” 
depending on the context. “Before” in Walpiri is also used for “larger” because it 
has an associated time factor linked to growth. That is, a child who is “before” (that 
is born before) will be larger than the other child. This leads to confusion with the 
metaphor of the number line but it can also be easily overcome by teachers who 
only refer to the “number one less than” rather than “before”. However, there is also 
a spatial orientation diffi culty. In Iwaidja, a person could say a man is before the tree 
when the man has his back to the tree. This intrinsic approach linking the items on 
a diagram would be different to the English description if the tree was (partially) 
covering or in front of the man from the position of the describer. It could also be 
the case from the position of the describer of the drawing that the man was to the left 
or right of the tree with his back to the tree. So the word for “in front of” which has 
a stronger directional component in terms of the items of the diagram may be better 
than a term which has a different meaning in    Iwaidja like “before” (Edmonds- 
Wathen,  2012a ). 
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 Anindilyakwa use words like “below” for a canoe on the sea but not on the land, 
and it is the same as the word used for “inside” the shelter in that there was a cover 
only “over” rather than surrounding the person (Worsley,  1997 ) and separating from 
the outside (Fig.  4.1 ). “Outside” is outside the jungle in a clear space and could be 
distant and an area explained as “from here to there” (Stokes,  1982 ).  Angwurn.dik-
irra  is for a space like a strait or between objects, usually narrow, while a confi ned 
space is a verb stem for enclosing. So the connection between lines and area is not 
expressed in Anindilyakwa    as lines are generally associated with aspects of an 
object such as a spear (Stokes,  1982 ) and can apply to both horizontal and vertical 
lines which can introduce straight lines often associated with “becoming straight”. 
Other words like “horizontal”, “oblique”, “vertical”, “corner” would be distin-
guished by verbs for “lying”, “leaning”, and “standing upright” and the adjective for 
“crooked”, respectively. There are “fl at” objects. Shapes like rectangles are only 
recognised in terms of objects such as a bark painting or rectangular sail (Stokes, 
 1982 ). However, there are several ways of noting round and specifi cally to denote 
the sphere shape of the turtle egg from the other ovoid-shaped eggs (Fig.  4.2 ).

   Compass points or cardinal points may be denoted (Harris,  1989 ). In addition, 
dimensional axes, usually in reference to the body, are used but in some cases, the 
position of the axes can be moved. For example, Ralph Lawton (personal commu-
nication, 2010) noted that          measurement varied depending on whether the plane 
was on the ground or at the arms for Kilivila, Milne Bay, PNG (an Oceanic 
Austronesian language). Such diversity merely hints at the diverse ways of repre-
senting space verbally but also the effect of the ecocultural infl uence on language 
and visuospatial reasoning.  

  Fig. 4.2    Shelters in the camp, Yalata, South Australia (Owens, 1966)       
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    Language in Comparing and Measuring space 

 Each language has its own way of referring to sizes. Some have comparative words 
such as “longer” or “more distant”. For the Anindilyakwa from Groote Island, 
northern Australia, size is covered by three adjectives, “small”, “big”, and “huge” 
(Worsley,  1997 ) although Stokes ( 1982 ) notes a diversity of words for thick or fat 
and thin for people, animals, and things but additional ones for things. There is 
remarkable fl exibility with the use of qualifi ers such as “more” or “very” (Stokes, 
 1982 ; Worsley,  1997 ). There was a word for “short” usually used with a noun and 
interestingly the word for “foot” was also used. In Tok Pisin in PNG  centimetre  is 
used for the short unit. Worsley also pointed out that other taken-as-shared mean-
ings in western education take on different meanings in Anindilyakwa language. 
“Empty” has a spatial sense but it implies what might be expected and while com-
parisons of “more than” and “less than” were measured, the approximation was 
adequate (Worsley,  1997 ). Distance is seen as the time taken to reach a place and the 
words for “soon” and “near” are interchangeable. However the words for “to another 
place” can be used for “far away” and the prefi x for “rather” and suffi x for emphasis 
are used for comparison as well as the intensifi er for “more” further away. The 
verbs of motion have certain features to express a great distance or length of time 
(Stokes,  1982 ). 

 Providing a sense of size often requires narratives. In PNG, if I wanted to know 
how long it would take me to walk to a village, I would ask how many hours it 
would take the speaker (a villager) and how long it would take me (a white woman), 
then I would take the average. Usually it turned out to be a good estimate! Time was 
often used to indicate length of the track from village to village. However, the idea 
of an hour was not well sensed. This did not mean that they were unfamiliar with 
time bodily and mentally. When I was staying in a village in the mountains behind 
Lae, Morobe Province, women who had gathered greens from the garden would get 
up early enough to wrap the bundles and walk to the road head in time for the truck 
for the 1-h journey to sell at the market by 7.30 am. In a village in Oro Province, 
people without watches needed to be at the nearest airport at 8 am. They rose in the 
dark at the right time to prepare, knowing how long it would take to sail and paddle, 
negotiate the winds and swells, and arrive in time. After 4 h, we arrived at 8 am. En 
route, the two men worked in unison with hardly a word especially as they added 
paddling to the sail to round a particularly diffi cult point, watching the rolling 
waves carefully as the canoe was heavily loaded. There was clearly taken-as-shared 
visuospatial reasoning. 

 Jones ( 1974 ) argued that it was not always easy for languages in PNG to express 
certain concepts related to measurement. Ways of reasoning about size and making 
decisions in activities involving measurement in PNG are covered in Chap.   5     and 
implications for education in Chap.   8    . Here we will discuss language patterns 
related to space and measurement. A study by Owens and Kaleva ( 2008b ) in PNG 
revealed that vernacular words for size and other related ideas are complex. Data 
came from questionnaires completed by tertiary students, village observations and 
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discussions, and linguistic records for 360 of the 850 languages of PNG. Most 
 languages appear to be able to refer to volume, mass, area, and length but a verb 
may be involved implying an action on size, e.g. making bigger. There may be a 
limited number of comparative adjectives or very general concepts like  size . 
Participants talk about size but often thought for some time before completing the 
word lists as there is often not an exact match between English words and their own 
language for meaning nor necessarily the same kind of speech pattern. For example, 
the word may not be an attribute word or adjective.    Mussau in New Ireland has an 
auxiliary clause (van den Berg, SIL, personal communication, 2006). They also 
have the word “mother” to refer to large things. It is similar to the Huon Peninsular 
 awara . In a similar way, Korafe speakers in Oro Province use metaphors for size. 
For example, a child is a chunk of the father or a smaller version of the father. 
However, they use suffi xes for “bigger” and “biggest” but they will also use redupli-
cation (repeating morphemes) which is found for descriptive words (larger and/or 
smaller) (Farr (deceased), SIL, personal communication, 2006). 

 Reduplication is common in PNG languages and is used for similarity or other 
purposes (e.g. continuing verb, plurals, groups like two by two, emphasis). Dobu 
speakers further along the coast in Milne Bay Province use the word  kaprika  for 
“pumpkin” which changes to  kapukapurika  for “small pumpkin” (Capell,  1943 ). 
This may indicate a different type as well as different size. Manam on Karkar Island 
Madang Province and Tinatatuna (Tolai or Kuanua) on East New Britain are spoken 
many hundreds of kilometres away but they also use reduplication. A Manam 
speaker gave  dadaka ,  memekei , and  kanabibia  for “big” and  kengekenge ,  sikisiki , 
 mukumuku ,  seisei , and  bisibisi  for “little” (see Table  4.2 , from the measurement 
study in PNG).

   “Very” is expressed in consistent ways in most PNG Austronesian languages. It 
might be translated “enormous” and has equivalents in Tok Pisin of “mama” or 
“tripela”. In non-Austronesian languages this term might not exist. “Larger” might 
be expressed by comparison of two objects with a comparison word between (order 
is important). Sometimes one word like “long” was negated (usually within the verb 
structure) to suggest “short” and a language with this structure is likely to use other 
paired opposites in a similar way. Other languages use a range of diminutives (lin-
guist focus group, personal communication, 2006). 

 Table  4.2  also shows a number of different words in some of the languages for 
the same concept in English for either different objects or purposes. 1  This variation 
is found in Manam for several concepts, in Tinatatuna (Tolai or Kuanua) for “com-
pare”, and in Kewapi words for “little”. Some variations can be explained in terms 
of the infl uence of other languages. For example, for Tinatatuna the word “to mea-
sure” includes  mak ( ai ) which is similar to the Tok Pisin (PNG’s lingua franca) word 
and the overlap of words in the three highland languages (Huli and Kewapi in 

1   The variations in the table may be due to different sources of data (for example, different partici-
pants writing down an oral language or the date on which the data was collected, e.g. the 1900s fi rst 
contact or later records and recently collected data) but in other cases, the same participant pro-
vided the multiple number of words confi rmed by others from the language group (e.g. Manam). 
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Southern Highlands Province and Enga) suggests interlanguage infl uence. Other 
words building on the same morpheme indicate relationships between the words. 
One particular Huli speaker noted that volume was a combination of length, width, 
and height (Piru,  2005 ). The impact of western education might be evident in this 
comment but only one student from the hundreds who completed questionnaires 
from the Southern Highlands Province noted that her family (unlike others) dis-
cussed area in terms of area units. 

 Some languages have an adjective for a measurable attribute that is used for all 
objects and others have words and suffi xes for specifi c classifi cations, e.g. round 
objects, fl at objects, people, and food (classifi ers). In other cases, the attribute word 
varies depending on the item being discussed. For example, in Korafe  big  for fi sh is 
different to  big  for people (Farr (deceased), SIL linguist, personal communication, 
2007). Other languages have words, suffi xes or prefi xes, or action words for differ-
ent types of objects. In other cases, only certain kinds of objects may be compared 
(e.g. volume of stone is not compared to volume of water). 

 Two further linguistic features, ways of indicating emphasis and order of words, 
can impact on discussions about measurement activities (Tupper,  2007 ). Emphasis 
is used to draw attention to a particular point and the point could be the size of the 
object although there may not be a particular word used for size. Emphasis was seen 
as a strength of  te reo Māori  as mentioned above (Meaney et al.,  2012 ). In the sec-
ond case, the smaller object is placed before the word for the larger object in the 
sentence but there is no comparative morpheme, so the context of the sentence indi-
cates that size is being considered. 

 Although this is only a small selection of the data from around 360 PNG lan-
guages, it does indicate that concepts of size exist and that there is a diversity of 
ways of expressing attributes related to size and difference in specifi city. However, 
just the vocabulary fails to provide the more complex ways of discussing size that 
are embedded in sentence structure and in other ways of representing the attributes. 
Complicating this issue is that measurement and size may not be the only consider-
ations taken into account in reasoning. For example, when comparing the area of 
two gardens people would take into account fertility, distance from the village, the 
number of people needing to use the land, closeness to water, cleared or currently 
bush or fallow, and crops. Thus size of area is only a part of the visuospatial 
 reasoning. The visuospatial image may be much richer in terms of other attributes 
and features relevant to the decision making. 

 A further consideration in discussing locating and communicating visuospatial 
reasoning is the way in which a group might reach a decision about a place. In other 
words, it may not be a single or small number of words that locate or describe an 
object or person but it might be part of a larger discussion about the position or 
object. It is the discussion itself that can be signifi cant to the speakers (cf. Salzmann, 
 2006 , on disease in Mindanao, Philippines).  
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    Implications of Language for Visuospatial Reasoning 

 In the previous chapter, I referred to the study of Hutchins ( 1995 ) on the navy team’s 
use of tools including a Mercator map that required additional information to 
improve navigation. These tools had been developed over many hundreds of years 
to assist navigation and the team with specifi c roles required information from dif-
ferent people and certain commonly held and understood rules of thumb such as the 
better choice of visual sites for accuracy with position or the expected amount of 
travel distance at certain speeds. 

 Other historical situations illustrate the diffi culties of referring to space by a 
spatial frame    with the speaker as the centre and two orthogonal (perpendicular) axes 
denoted by the directions—north, south, east, and west. This static frame was an 
issue by the sixth century BC for the Greeks viewing the world as a sphere, so they 
divided the heavens into zones and the earth into fi ve latitudinal zones (Tuan,  1977 ). 
Furthermore, reference to space also had place-based and cultural connotations. For 
example, European folklore linked people to their environment; for example, the 
north were hardy, the south easy-going (Tuan,  1977 ) whereas in some Arabic dia-
lects the word for “south”, where the once fl ourishing Yemen lay, was also used for 
“right”, and “plenty” (Senft,  2004b ). Valuing place and position is often encapsu-
lated in the language of the cultural group. For the Chinese the four sides of the 
rectangle were represented by animals. Ancient Greece used planetary gods—east 
denoted light, white, sky, and up while west was darkness, earth, and down. For 
Europe, zodiac star signs were linked with patterns of farm work like the coming of 
rain, breeding fl ock, harvest, mowing, and raking (Tuan,  1977 ). Thus reference 
terms were associated with other aspects of life that required decision making. 

 The analysis presented in this chapter illustrates how the ecocultural context is 
signifi cant in the language of spatial referencing. The language directs the visuospa-
tial reasoning in both the metaphorical use and the signifi cance of position/location in 
the culture where ideas of movement and relationships of people in a context are more 
important than the diagrammatic representation to be described by a viewer. This is 
complicated by other cultural views such as the position of the man and the woman 
when walking. In some cultures, the man should go before the woman or vice versa 
whereas in others the expected position is side by side. Similarly, women are never to 
be above a man such as stepping over his legs. I also suggest that a diagram which is 
more abstract than the man and the tree would also present some diffi culty because it 
does not have the directional relationships clearly presented as illustrated by the 
Wiradjuri words (Table  4.1 ). This brings us to the use of maps in cultural contexts.  

    Maps as Representations of Visuospatial Reasoning 

 Location is usually considered in terms of an orthogonal coordinate system (Uttal, 
Fisher, & Taylor,  2006 ). Students may begin with locating on one dimension before 
using two and three orthogonal dimensions. The use of x and y axes with later 
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developments for       positions described in terms of negative to positive numbers is 
familiar and a basis for coordinate geometry or the visual representations of alge-
braic statements or relationships. Higher levels might provide polar coordinate ref-
erencing of position such as angle from north clockwise and distance from the 
origin or reference point. A similar idea of amount of turn and distance travelled is 
used in Logo geometry (see Chap.   9    ). Affordable programmable toys have encour-
aged practice and recent research shows how effective these toys are in developing 
spatial and pattern thinking in early educational settings (Highfi eld, Mulligan, & 
Hedberg,  2008 ). 

 Early childhood experiences in western schooling emphasise the use of preposi-
tions like “in”, “on”, “inside” and words like “left” and “right”. Some studies of 
mapping have discussed developments in primary schools indicating that responses 
tend to move from more pictorial representations with some indication of direction 
to those showing greater accuracy in terms of angles formed by non-orthogonal 
roads, and relative lengths (Owens,  2000a ). Mapping is introduced as a plan view 
and in mathematics little attention is usually paid to the common use of contour 
lines on maps. The use of landmarks in big space is also noted by researchers (Liben, 
 2006 ) as an everyday way of giving spatial positions. There is an accepted disconti-
nuity about descriptions of spaces that can be within a person’s immediate view 
such as on a piece of paper and descriptions of big space. 

 My research with school children (Owens,  2000a ; Owens & Geoghegan,  1998 ) 
showed that children can map their way from home to school from 4 or 5 years of 
age. Initially they note landmarks and indicate turns generally in the correct direc-
tion. As their mapping develops, they provide more detail in terms of less obvious 
landmarks and provide turns with right angles.    Later they are able to indicate other 
angles, and later the proportion of parts of the land is better represented. According 
to    Clements and Sarama ( 2007a ) consciously self-regulated    map reading behaviour 
through strategic map referral increased 4- to 6-year-olds’ competence with reading 
route maps. 

 At a primary school in Goroka, PNG, I was observing a good teacher with her 
class. She had explained mapping clearly and demonstrated with the whole class 
participating in mapping the classroom. They had also mapped their houses. She 
said that some had not put an outer wall on the house but just made a map of objects 
relative to themselves in the house. I wondered if the “walls” of some self-help 
houses were not considered as part of the map of the internal space of the house and 
not part of the place they called home. This was the second lesson on mapping the 
school buildings and playground. Some had not considered the map in terms of 
north and some had drawn a mirror image of the school. Then the children shared 
their maps and discussed what was good and what could be improved with the maps 
(Fig.  4.3 ). This was a multilingual school and a mixed socioeconomic status school 
with a good proportion of well-educated parents. I also wondered if some of the 
diffi culties resulted from the lack of maps in the culture and the different structure 
of language for location from English. I recalled the earlier work by Bishop and 
Lean (Bishop,  1979 ) in which they noted that tertiary students initially had  diffi culty 
interpreting the position of photographs    of a visible structure taken from different 

4 Place, Culture, Language, and Visuospatial Reasoning

http://dx.doi.org/10.1007/978-3-319-02463-9_9


133

perspectives but that they quickly learnt to read these two representations (solid 
model and 2D picture) and that it was indeed a lack of pictures (photographs, fi lms, 
and books with illustrations) in their ecocultural context. How different might ideas 
be about mapping in different cultures in different places?

   For the Yolngu    of northern Australia, every person and every other thing is either 
 Yirritja  or  Dhuwa , the two clan groupings. The division of land is dependent on the 
sacred sites (Fig.  4.4a ). The creation of the sites comes from the dreaming creatures 
who created the clans who are now responsible for the sacred sites and who main-
tain the power by observing appropriate ceremonies and by painting, dance, and 
song (Thornton & Watson-Verran,  1996 ). “There is a metaphorical force essential 
for their way of life and sustaining their world” (Watson-Verran & Turnbull,  1995 ). 
In discussing and drawing the various places, a clan Elder represented the connec-
tivity of the water fl ow; thus, a line is not a Cartesian mapping but a topological 
mapping in western mathematical terms. However, such a description (topological 
mapping)    does not present the fullness of the representation (Fig.  4.4c ). Each place 
has connections with activities carried out by ancestors such as a place for camping 
when visiting, or a place for washing cycad nuts to remove poisonous chemicals. 
A walking track was the Elder’s responsibility and he would maintain it in song-
lines, 2  ceremonies, and practices. The land is represented by areas around sacred 
sites being either    Yirritja or Dhuwa like a patchwork of nondescript shapes with the 
areas between being grey and not clearly delineated as the distance from the sacred 
site diminishes (Thornton & Watson-Verran,  1996 ). This referencing of space is not 

2   While walking/maintaining a track, an Elder would sing the song associated with the land and 
clan referencing the parts and points of the track as he went. 

  Fig. 4.3    Mapping the school (multilingual town school, Goroka, PNG) (Owens  2001a ,  2001b )       
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  Fig. 4.4    Non-orthogonal maps indicating visuospatial reasoning about place       

 

4 Place, Culture, Language, and Visuospatial Reasoning



135

by an orthogonal grid. Furthermore, to solve problems of space as place, people 
cooperate as some  knowledge is known by Yirritja and some by Dhuwa. 

 The place where negotiations occur is roughly the shape of a stingray which bur-
ies its tail in the sand just as one of the Elders and the ancestors before him buried 
their spears in the sand when negotiating a peaceful solution for revenge. This is 
near the stingray-shaped lagoon. Thus the shape and the place are metaphors and 
powerful images for complex ideas. Activity is set in kin relations, land rights and 
responsibilities, and sacred understandings. The land is constituted by living it. The 
conventions of the map that the Elders drew are representations interpreted in terms 
of systematic relationships. The Yolngu    system of spatial knowledge (which they 
call  Djalkiri ) is detailed and provides a means by which a person can fi nd his/her 
way anywhere across the land. The structures of the various forms of representation 
in ceremonies, everyday living, and in the land itself locate space appropriately in 
the footsteps of the ancestors. 

 One aspect of the visuospatial reasoning for Aboriginal Australians is that the 
spatiotemporal entities are not as paramount as the relationship entities (Watson- 
Verran & Turnbull,  1995 ). Similarly, the travels of the ancestors in creating the 
landscape constitute tracks or song-lines that traverse the whole country. For the 
Yolngu   ,  gurrutu  the recursive relationships and  djalkiri  the location and their over-
lap form a strong mathematical structure representing ecocultural living. 

 People represent the position of places using dance and song. “Indigenous dance 
isn’t just Indigenous dance—it’s a map in itself, a directory of the culture behind the 
dance” (E. Johnston, nd, on Northern Territory languages in particular). Songs are 
used in many activities while    traversing land and sea and for various reasons usually 
associated with spirituality or for rhythm of movement (personal experiences in 
PNG). A community project in the Blue Mountains (on the outskirts of Sydney) 
involves maps, pathways, and “song-lines” (Cameron,  2003 ). People use song-lines 
to maintain the connection with the route that is taken when traversing their land. 

 Time becomes evident in many map representations of space and place. 
Wassmann ( 1997 ) noted that with the descriptions and even more the map drawing 
(both of which are not generally required in everyday communication except with 
people from outside) some sense of walking the route was involved. For example, a 
slightly longer line represented a diffi cult time-consuming stretch    of the track for a 
   Yupna man, Morobe Province. Similarly, Harris ( 1989 ) provided an example of the 
direction and nature of walking in an Aboriginal map and discussed the meaning of 
maps that could be described as topological (connecting places) but deeply embed-
ded in relationships of place and people (Fig.  4.4d ). 

 To walk a trek in    Kaveve village (Eastern Highlands Province, PNG) is to walk 
the story of the half-man who lived in that place (personal experience, Fig.  4.4 ). The 
story connected the place across time. In PNG, songs communicating with the spir-
its are used when traversing the land or remembering people who traversed the land 
(Rumsey & Weiner,  2001 ; personal experience). Hence I am vividly reminded that 
representations of land whether in words, diagrams   , actions, or land formation 
embed relationships between people and between people and the land and hence 
reasoning about relationships.

 Maps as Representations of Visuospatial Reasoning
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   Language is a major clue to the limitations of describing position in terms of two 
orthogonal reference lines or by distance and direction from a reference point. 
Pinxten’s (Pinxten,  1997 ; Pinxten et al.,  1983 ) study of Navajo concepts highlights 
even more the diffi culties of concepts and language that are not easily connected. For 
example, a word like space for the Navajo referred to a saucer-like grand container. 
Thus the notion of infi nite needs to be established in another way         . With the issue of 
static object, the idea of a “snapshot” of motion is helpful along with  the recognition 
that the western mathematics wants to emphasise the object that in Navajo mathe-
matics was a spot in passing in the dynamic moving approach to place. Surface could 
be seen as where two volumes come together. What is quite distinct is the emphasis 
in western mathematics of part-wholes, of the hierarchical logic of point, line, plane, 
and three dimensions or of the distinction between distance and time. 

 There were examples in PNG mathematics of similar diffi culties. However, the 
westernisation of curriculum meant that many teachers in their projects (see Chap. 
  8     for examples) were unable to focus on the mathematical thinking of their Elders 
and family but rather saw objects as a static object to link to western mathematics. 
Thus they emphasised their material culture especially built objects and fi nal design 
features if they were seen as mathematics, e.g. symmetry and shapes. At best, these 
teachers described “deciding by eye” or “in their head” but did not have the math-
ematical language or connection between school and home mathematics to discuss 
the use of ratio or rate estimates, to note complete groups or encompassing sizes, or 
spiritual values of design or design making. Simply to explain as thirdspace think-
ing is one way forward (Soja,  2009 ) but Pinxten and François ( 2012b ) outlined the 
depth by which Indigenous mathematical systems are more complex requiring their 
own unique ways of seeing western mathematics as a part of the larger mathemati-
cal complex. Furthermore, Indigenous mathematical systems are not only important 
but should also not be lost to the world.  

    Shapes 

 One of the issues in school mathematics is the use of labels and names for shapes as 
we mentioned in Chap.   2    . It is important for children to describe and classify shapes 
and for them to recognise the generally accepted concept behind a shape name. 
I recall a conversation with Usiskin (personal communication, Utrecht, 2001) about 
the myriad of defi nitions for common shapes like “rectangle” and “trapezium” 
(“trapezoid”) across the USA. Some countries have rhombus, others do not; some 
have oblongs, others do not. No doubt defi nitions are culturally determined and 
often without the same ways of thinking as mathematicians might claim. I have had 
conversations with experienced teachers about terms such as “regular”, “diagonal”, 
and “pattern” since they seemed to be using the terms differently to me. It is no 
wonder that    Battista ( 2007b ) noted how two boys were coming to an agreement 
about the use of a rectangle maker to make a particular shape in a Microworld.
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  Matters were further complicated because ‘slant’ meant not-perpendicular for Matt but 
tilted from the vertical for Tom. … In school geometry, shapes are described by referring to 
 relationships between their parts . … Common-language use of the word  slant  … refer(s) to 
the relationship of lines and segments to the  up - down or vertical frame of reference . Thus, 
Matt’s use of the word slant (to refer to the angle of the shape) was evoking a totally differ-
ent, common-language meaning for Tom. (Battista,  2007b , p. 71) 

   The teacher’s discussions with the children continued to indicate that they 
noticed different parts of shapes and their position differently and language contin-
ued to be an issue. When the teacher drew a rectangle with no horizontal sides next 
to a parallelogram with short sides almost horizontal, the children focused on the 
fact that these sides were not on top of each other like in the rectangle, meaning 
vertically above each other on the screen. However, with further manipulation and 
having their attention drawn by the teacher to the measures also on the screen, the 
students realised that the rectangle’s angles remained at 90 o  whereas the other 
shape’s angles varied. 

 The episodes reminded me of watching children with elastic loops to make 
shapes. One small boy made a triangle and to convince his partner, he turned it as it 
was a right-angled triangle, so there were horizontal and vertical sides as if that was 
the only way of having a right-angled triangle. “Activities assist students to start 
with holistic reasoning, they constantly encourage and support students’ develop-
ment of ever-sophisticated knowledge of the properties of shapes” (Battista,  2007b , 
p. 78). However, the most signifi cant issue in regard to shape naming is the use of 
words for categories. In Chap.   5    , I discuss further how categories of objects when 
counting may denote shapes in different PNG and other languages—there are dif-
ferent counting words for different categories. 

 Such contextual references are common place in visuospatial reasoning whether 
they limit or extend thinking. In a study on language in a collaborative classroom in 
PNG, Muke ( 2012 ) found that a teacher chose to assist children to know left and 
right by reference to places located at some distance from them in the school on 
their left and right. This might of course not be helpful for the children if they were 
in a different orientation or place but for the moment it was a reference point for 
them. (See above for discussions about cardinal points and left and right). It was 
common practice in PNG, for people to think about east and west with little thought 
for north and south due to their familiarity with the rising and setting sun that does 
not vary much throughout the year close to the equator. In temperate zones, the 
sun’s position in the north and south is far more important in terms of its heat inside 
a dwelling. 

 Similar problems arise with terms like “straight”, and “right angle” often per-
ceived as straight ahead or vertical on the page. “Diamond” often prevents children 
from realising a square is a square in any orientation or it confuses the rhombus and 
kite names. Thus the term in Tok Pisin is particularly diffi cult. However, words for 
Euclidean shapes are not necessarily part of traditional PNG cultures and languages. 
The ways in which shapes are made are not necessarily linked to the Euclidean 
property approach to shapes. “Diamonds” are more likely to be made than squares 
in weaving and bilums (see Figs.   5.14     and   5.16    ). Shapes are associated with changes 

 Shapes
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to number patterns rather than changing properties. Parallelograms are distinguished 
from rectangles by the diagonals being equal although every attempt is made to get 
angles at right angles in house building, for example. Students will provide shape 
names in some cases but one teacher identifi ed “starry” as a common shape which 
he related to pentagon, hexagon, and octagon, all of which people knew how to 
make through open cane or bamboo weaving, bilum-making, and tattoos. The 
angles of weaving and the over–under routes of the bamboo are signifi cant (see 
Chaps.   5     and   8    ). However, other people were not familiar with these names for the 
shapes as found with the shape on a bilum called naming of the  fi fti toea  (a coin that 
is not round but not a hexagon which is the shape on the bilum, Fig.   5.16    g). 

 It is evident that language can either hinder or be used to develop concepts about 
shapes or other spatial concepts. If students learn through talking mathematics, then 
it is important for teachers to spend time on assisting children and parents to explain 
and justify their thinking especially in multilingual classrooms. If there are lan-
guage confusions or lack of language words then it is important to spend time on the 
constructing of meaning and explaining around activities that are culturally relevant 
(see Chap.   8     for one project attempting to do this).  

    Moving Forward 

 This chapter shows that language about space and measurement is not just associ-
ated with representations mentally as suggested by information processing psychol-
ogists nor physically as suggested by mathematicians who ignore the ecocultural 
context of mathematics. Language refl ects an ecocultural perspective on space, 
place, and visuospatial reasoning not only for communicating purposes but also for 
visuospatial reasoning associated with place. Language gives insight into the ways 
of reasoning in comparing size or determining position. In the examples provided, 
language in words or visually is associated with communities living in the places 
and with communities’ relationships with those places. 

 The differences between various frames of reference are indicative that visuospa-
tial reasoning and decision making are refl ected in language and that language and 
reasoning are closely interwoven and supportive of each other. With visual and ver-
bal representations, visuospatial reasoning is extended. For example, the time 
needed for walking a track is more clearly portrayed in maps that refl ect hard time- 
consuming sections of the track. However, both verbal and visual representations 
could be misinterpreted if the cultural and linguistic context is removed. 

 I return now to the diagram presented in Chap.   1     on identity as a mathematical 
thinker. Language is a tool for expressing visuospatial reasoning in a cultural way. 
Thus cultural identity and valuing that identity will be expressed in responsive 
social interactions and in clearly presenting meaningful relationships. This expres-
sion of culture about the land and ecology of the person, the place of the person, 
promotes cognitive, affective responsiveness    in solving problems in a visuospatial 
way. Language assists the person to structure the appreciation of the environment 
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and to use words and diagrams    as tools for problem solving. As a result, a person 
develops his/her identity, not only as a mathematical thinker but also as one thinking 
ecoculturally. Visuospatial reasoning refl ected in mathematical literacy is a critical 
part of that identity. 

 Visuospatial reasoning is expressed in language but are there other ways in which 
ecocultural perspectives are portrayed? To explore this, I will discuss visuospatial 
reasoning in practices of people in PNG in the next chapter and from other coun-
tries, particularly with Indigenous communities in the following chapter.                                                                                         

 Moving Forward
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    Chapter 5   
 Visuospatial Reasoning in Cultural Activities 
in Papua New Guinea 

                      In real life the problem itself is at the centre and the information 
and skills are defi ned around the problem. 

(   Dasen & de Ribaupierre  1987 ) 

 For ‘non-Western’ or ‘non-literate’ people, ‘the only approach 
to pattern is through seeing it and thinking through it and that 
is something Western societies are no longer able to do’ 
(p. 177). Westerners, Were says, no longer know how to learn 
from the visual and must have verbal exposition. 

(Were,  2010 ) 

      The Challenge 

 In Chap.   2    , it seemed that tasks that might have been classifi ed as assessing 
 visualisation skills were in fact being done through verbal-analytic skills if they 
were set as a dichotomy by the researchers (see, for example, Shepard,  1971 ). Thus 
we came to question, the understanding of visuospatial reasoning or even visuo-
spatial skills from a purely psychological perspective. I referred to some earlier 
studies on spatial abilities and visualisation that showed that experience or training 
could infl uence visuospatial reasoning although authors may not have used the 
expression,  visuospatial reasoning, at the time (see, for example, Lean & Clements, 
 1981 ). In Chap.   3    , I referred to other studies which considered that naturalistic 
experiences and sociocultural background could have a signifi cant role to play in 
learning and use of visualisation.    Dasen and de Ribaupierre ( 1987 ) summarised 
research that took some account of ecocultural contexts but their theory was largely 
within a neo- Piagetian framework. The issue was again raised more recently by 
Shayer ( 2003 ) who has been an advocate of Piagetian studies in various cultural 
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contexts for many years. However, can we argue that difference in visuospatial 
reasoning can be explained by culture? In this chapter, I will consider how ecocul-
tural context nurtures visuospatial reasoning in the everyday lives of children and 
adults in PNG societies. 

 In Chap.   3    , I indicated that there are an increasing number of sociocultural stud-
ies that could be considered to have similarities to prior-to-school research in that 
the geometric constructions are not arbitrary but have many practical advantages 
(Gerdes’ Foreword in Ness & Farenga,  2007 ). Sociocultural studies draw our atten-
tion to the diversity of mathematical ideas that are used by different sociocultural 
groups. Carraher ( 1988 ) found that people in all classes and walks of life are capa-
ble of performing quite complex mathematical operations provided that the context 
in which the mathematics is presented links with the learners’ personal worlds. For 
example, carpenters used what school mathematics would call symmetry ideas in 
making designs on boxes (Millroy,  1992 )   . They created designs centred on the 
boxes in culturally infl uenced ways. The carpenters used mathematical ideas and 
thinking that was tacit knowledge manifested through activities and not spoken. 

 The importance of recognising these visuospatial and geometric ways of reason-
ing expands not only our understanding of geometries but also how people actually 
learn to think spatially and geometrically.    Equity in education will be enhanced by 
drawing on these sociocultural studies (Barton, Poisard, Do, & Domite  2006 ; 
 D’Ambrosio 2006 ). Much of this sociocultural learning occurs in a place and is 
therefore involving the body in activity in that place. An emphasis for Indigenous 
communities in particular is in outdoor cultural activities which occur in a place 
with particular spatial knowledge and processes. However, activity situated in place 
begins the development of visuospatial reasoning. Such reasoning is integrated with 
other knowledge arising from the ecocultural situation. Such reasoning is provided 
with purpose in pursuit of the cultural activity which is inevitably infl uenced by 
ecology. The person is interested in reasoning through the problematic situation of 
the cultural pursuit. 

 Is it possible to show that this is ubiquitous and varied even within one country, 
PNG? What is the difference in this visuospatial reasoning that will establish a new 
perspective? This chapter will outline a number of cultural activities in various 
groups in PNG to see if visuospatial reasoning occurs in garden making, village 
arrangements, travel, and construction of buildings, canoes, woven objects, carved 
objects, and continuous string bags. It draws on village experiences with participant 
researchers in numerous places in PNG, supplemented by interviews, questionnaire 
data, and documents. An ecocultural perspective is evident in these cultural events. 
Of necessity, bodily actions together with descriptions, and the spatial arrangements 
of places are used to understand visuospatial reasoning. Links are made to system-
atic ways of thinking in terms of geometry and measurement. Furthermore, as noted 
in Chap.   3     and illustrated again in this chapter, cultural fl uidity and adaptation of 
activities infl uence ways of thinking (Saxe,  2012 ; Saxe & Esmonde,  2005 ). This 
chapter gives examples of village technologies (see also prologue) that I have 
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observed and in many cases discussed in detail with the villagers. Much of the detail 
is about practices that require a visuospatial understanding of measurement. 
The tacit knowledge that is evident in the conversations with villagers and in their 
demonstration of constructions is specifi c to certain cultural groups. There are some 
commonly used processes but also diversity.  

    Earlier Studies on Spatial Abilities and Visualisation 
Recognising Ecocultural Contexts 

 One early (1980s) study in PNG considered how cultural background infl uenced 
representations made by children with no schooling, those with no schooling but a 
school available, and those who went to school in the remote Jimi Valley, now 
Jiwaka Province (Martlew & Connolly,  1996 ). Their study occurred where there 
was little known depiction of representations of forms but there was face and body 
art and headdresses which were often symmetrical and colourful, woven geometric 
armlets   , and arrow and axe bindings. The unschooled    children may have seen labels 
on tins in trade stores or the use of pictures by health or church workers and school 
room items spread between scattered houses within or between villages. First, they 
noted that there were a number of studies in different places in the world showing 
differences and similarities in development of human drawings from the usual 
scribble, “tadpole” (combined face and body with elongated legs), to more conven-
tional drawings with a circle above a triangle or rectangle body with stick legs and 
arms and then with fi ngers and hair (which is common among western school 
 children). However, in some places, just an elongated shape was made with varying 
degrees of curves. 

 In Jimi Valley their careful analysis showed that there were signifi cant differ-
ences between groups. A few unschooled younger children produced scribbles and 
shapes but there were more drawings specifi cally found in Jimi Valley with both 
contours and stick fi gures. For older unschooled children, there were more conven-
tional fi gures in Jimi Valley style whereas those who went to school or were near 
school were more likely to produce transitional fi gures, Jimi conventional and 
school conventional fi gures. The unschooled did not produce the western style of 
tadpole (although they were aged 10). There was some interaction of gender, age, 
and ability on a spatial block test (introduced by tiles being placed to give meaning 
to the arrangements of tiles on drawings). Once the notion of representation was 
accepted, then students were able to produce transitional and Jimi conventional 
 fi gures. A modelling of drawing soon resulted in spontaneous representational 
drawings suggesting minimal schooling will lead to an acceptance of representa-
tions (Martlew & Connolly,  1996 ). Thus we fi nd that visuospatial reasoning in 
depicting people was infl uenced by culture and by schooling. 
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 Another study by Gunn ( 1986 ) on Tabar Island, one of the island groups of New 
Ireland, considered rock art. Most depictions engraved by pecking and abrading 
were exceptionally well depicted, particularly of  masalai  1  animals, while humans 
were represented by faces especially with eyes.    What is thought to be examples of 
older art include the concentric circles or spirals, some inside circles, some bent, 
and some said to relate to female genitalia. The rock art is mainly found around a 
river and although there may be links to  malang     gan  art (painted on wood or 
 sculptured in wood, rock, or coral) from elsewhere in New Ireland, there seems to 
be creativity, quality representations of shapes, and depiction of classifi cation, e.g. 
of  masalai  images. Figure  5.1  illustrates some of the art: (a) refl ects  malanggan  art 
but there were also free lines used for drawing noses, bodies, spirals, and bent con-
centric circles; (b) relates to and “tells” the story    of two women who agree to meet 
but a  masalai  comes instead of one of the women so the other woman hides under a 
waterfall. The symbolism of shape is unique and illustrative of the importance of 
curves rather than straight lines in this culture as in many cultures. Chronology, 
relationships, and proximity are embedded in the art.

   It is interesting to compare this rock art with the visuospatial rock-art representa-
tions from a different area of PNG, namely art drawn above bone burials in the 
Snake River Valley of the Buang    area of Morobe Province (see Fig.  5.1c ). 
Interestingly, the art depicted cultural stories and the features of the art are linked to 
perceptions and values. The Snake River art suggests a headdress on the person’s 

1   Tok Pisin word for spirit beings. 

  Fig. 5.1    Rock art in Papua New Guinea.  Source : ( a ), ( b ) Tabar Island drawings (Gunn,  1986 ); ( c ) 
Snake River (1975)       
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head. Stories of who drew these fi gures and how they were drawn up high on the 
rock face changed from my fi rst visit in 1975 to a later visit around 1985 although 
initially attributed to people for a specifi c reason and later to  masalai . 

 Reichard’s ( 1933  [reprinted 1969]) classic study of pattern for  kapkap , the disc 
patterns from    New Ireland, PNG, recognised the technical workings of pattern as a 
system of relations. These were also passed down by  maimai  to younger carvers of 
the shell by allowing them to observe or look on as they worked. They would not 
ask questions. They could also learn by remembering the image which they saw 
only briefl y at, for example, mourning ceremonies. The size of the discs  represented 
the status of the wearer. Some “anthropological studies see the pattern as an 
 aesthetic medium capable of engendering person-object relations that is intricately 
related to mythopoeic worlds”. (Were,  2010 , p. 9). Gell ( 1998 ) suggests “pattern as 
locus of agency in ritual and everyday domains”. He contends that “objects are 
thought-like in nature, being material manifestations of the workings of the 
extended mind that are able to engender social relations”. The objects represent 
real relationships and reach into the past and into the future possibilities and aspi-
rations. The designs are memorised. “Objects are the workings of the mind, objec-
tifi ed in an external form that can be displaced both spatially and temporally” 
(Gell,  1998 ). Thus the visuospatial memory associated with the creative task and 
the impact of ecocultural identity is strongly infl uencing their mathematical 
reasoning. 

 When making new  kapkap , the maker is thinking through images and transform-
ing images to create new understandings. To create the fi rst circular pattern, a tri-
angle is cut and a diametrically opposite one is cut, this is done around the circle. 
The next concentric circle has shapes that are smaller and the ratio between shapes 
in each circle is kept for the next circle. Symmetry and reduction in size (similarity) 
are keys to carving the  kapkap . Central designs are often by rotation rather than 
symmetry so the fourfold design can be transformed into a fi vefold or eight pointed 
design. Other modifi cations include straight to curved lines, negative to positive 
spaces, and reversals of triangles. Cultural relations are embedded in the notion of 
the wafer thin translucent tortoise shell connected by the string to the strong clam 
shell disc. Exchange of shell-money at various points, and recognition of  kastom  2  
being revived and of the intricate pattern of matrilineal and patrilineal land owner-
ship is closely linked to the creation of  kapkap  today (Reichard,  1933  [reprinted 
1969]; Were,  2010 ). 

  Kapkap  also connect and cross borders (Jegede & Aikenhead,  1999 ), that is 
across the societies found on the islands from New Ireland, Mussau, Buka, 
Bougainville, and into North Solomons. Furthermore, the  kapkap  symbolism is 
modifi ed to church  kapkap  to recognise leadership. Performances are also expected 
at, for example, opening of new church and there is still rivalry between clans and 
groups regarding how well they are keeping to  kastom . There are headstones with 

2   Tok Pisin word for traditional customs. 
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 kapkap  and other symbols and carved poles in churches even where Ba’hai religion 
was dominant suggesting a strengthening of the traditional beliefs connecting from 
past to present and future and a changing of spiritual life whereas the use of  kapkap  
is more restricted in SDA church area (Were,  2010 ). Another adaptation of circular 
discs as symbols of leadership is seen in the Trobriand decoration in Fig.  5.2a  but in 
this case, it has not been created in the same way or with the same meaning. Thus 
we see the visuospatial reasoning behind the making of  kapkap  intricately con-
nected to culture and transcending societies appropriately.

                 Kula-shell from Massim, 3  Milne Bay Province, “take on their own trajectories 
through trading networks, across the islands, carrying the biographies of former 
owners as they circulate through    generations and across the ocean’s expanse. … 
locus for thought itself—devices through which exchange patterns direct thought” 
(Were,  2010 , p. 11). This notion was applied by (Pickles,  2009 ) to cards taking their 
own place in thought during relationship pattern changes in card games in Goroka 
following interpretation of the Kula trade in Milne Bay. So visuospatial reasoning 
has a perspective that takes account of interpersonal spatial relationships in a way 
that is relatively unknown in western thought in mathematics. It refl ects the idea that 
the physical spatial interacts with the mental visuospatial reasoning of the person, 
an idea discussed in terms of tools and computer screens mediating reasoning 
(Goos, Galbraith, Renshaw, & Geiger  2003 ).  

3   Massim refers to a number of islands generally involved in the Kula trade route including the 
Trobriand Islands. 

  Fig. 5.2    Objects that become part of visuospatial reasoning and identity connections. (a) Trobriand 
dancers with models of discs, 1975. Note tapa cloth worn by lead male and “grass” skirts by teen-
age girls. (b) Card game Goroka       
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  Fig. 5.3    Kambea Rambu string fi gures and story. ( a ) The course set for Kambea Rambu. ( b ) 
Passing Puri. ( c ) At Ronga village. ( d ) Wando Range. ( e ) 4 m deep well along roadside. ( f ) Cane 
bridge crossing Suku River. ( g ) Rushing imaginary Suku River. ( h ) Akero rainforest where wild 
orchids and possums abound. ( i ) Showing bird of paradise nest along the road side. ( j ) A bee heap 
adjacent to bird’s nest. ( k ) Side view of Mount Kambea showing its exciting feature. ( l ) Showing 
treeless Peak of Mount Kambea. ( m ) The targeted point at the top of Kambea Peak       
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  Fig. 5.4    Tattoo design drawn by Rea, Motu teacher at Tubusereia and copies by grade 2 children 
who chose which design to do from her self-made big book. ( a ) Chest tattoo incorporating tear 
design. ( b ) Back tattoo. ( c ) Hand tattoo. ( d ) Stomach tattoo. ( e ) Leg tattoo. ( f ) Drawing the rect-
angles for the basic hand tattoo. ( g ) Next stage, with others’ drawings. ( h ) Proud of the fi nished 
drawing. ( i ) Lack of rulers encouraged hand drawing       

  Fig. 5.5    Visuospatial reasoning in counting by Tolai community, PNG. ( a ) Nuts bundled in sets of 
6 and 4 more providing words for 10 from this visuospatial arrangement. ( b ) Marking length or 
number of shell-money. ( c ) 10 × 10 × 3.  Source : Paraide (2010)       
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  Fig. 5.6    Triangular pattern 
used in planting cash 
and other crops       

  Fig. 5.7    Typical bridges in PNG requiring visuospatial reasoning to build. ( a ) Cantilever/suspen-
sion bridge that I crossed around 1986 across the tributary of the Busu between Boana and Hobu. 
It had been rebuilt after a fl ood. ( b ) Suspension bridge below Boana, one of two crossing the upper 
reaches of the Busu that I crossed in 1973 and another I crossed in 1983. Bridges have to be 
replaced or repaired when materials rot       
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  Fig. 5.8    PNG architecture students’ sculptures. ( a ) David used pattern, stability, repetition, and 
measurement. ( b ) Willie’s holistic sculpture illustrates his use of curves and repetition. ( c ) Ian used 
three-dimensional shapes in his compact sculpture. ( d ) TKeps developed a functional idea. ( e ) 
Fred incorporates traditional decoration and curves. ( f ) Taurus used the sea devil and counterpoint 
balance. ( g ) Fing developed ideas from modern buildings, repetition and asymmetry. ( h ) Bell’s 
sculpture shows traditional infl uences       
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  Fig. 5.9    PNG gardens form area units. ( a ) Drains divide garden into areas, Kopnung, Jiwaka, 
2006. ( b ) Three stalks in each mound in rows of two or three mounds       

  Fig. 5.10    PNG round houses. ( a ) Large, round house, Kaveve, Eastern Highlands, 2006. ( b ) 
Using rope tied to centre post to mark the edge of the round house. The leg at the other end of the 
rope is dragged to mark the circle, Kaveve. ( c ) Lower area space in a small round house covered 
with utensils and nuts drying. Karuku nuts drying over fi replace, Kaveve       
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  Fig. 5.12    PNG preparing a  mumu  (Kaveve village, Eastern Highlands, 2006). ( a ) Heating the 
stones. ( b ) Adding the food, karuku nuts. ( c ) Covering with dry grass, green grass, and then soil. 
( d ) Pouring water through a hole onto the mumu stones to make steam to cook food       

  Fig. 5.11    Rectangular houses. ( a ) Men’s house for 25 men with four corner sleeping rooms, 
Kopnung, Jiwaka, 2006. ( b ) Making a model and showing measuring techniques, Kopnung, 
Jiwaka, 2006       
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  Fig. 5.13    PNG coastal houses. ( a ) House with woven decorated walls, basic house on nine posts, 
Malalamai, Madang Province, 2006. ( b ) Placing morata on the roof of a house, checking spaces, 
Kela, Morobe, 1997. ( c ) Weaving walls  blind  with a desgin, Lolobai, Morobe, 1997. ( d ) Morata 
ready for a particular size house, Mis, Madang, 2006. ( e ) Designing new house styles, and single 
outrigger canoe, Lolobai, Morobe coast, 1997. ( f ) Long house for families, Kanganaman, Middle 
Sepik river, 1983       
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  Fig. 5.14    Leaf and cane weaving. ( a ) Weaving patterns for walls,  diagonal, zigzag, diamond  
Kopnung, Jiwaka Province, 2006. ( b ) Woven basket, internal and base layer wider, pandanus, 
Kepara village, Central Province, 2004. ( c ) Basket display—Yalibu, Southern Highlands trays—
introduced; Buka, Bougainville lady’s handbag and tray; fi sh traps; Sepik mask. Sepik carved man 
looking on. ( d ) Sepik mask , 1986. ( e ) Woven fl oor mat, Milne Bay, 1984. ( f ) Carry bag that men 
learn to make in the men’s house. Note bilum with baby in background. ( g ) Hat making passed 
down by men         
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Fig. 5.14 (continued)

  Fig. 5.15    Various carrying and storage objects, PNG. ( a ) Palm frond temporary basket for carry-
ing food or distributing in exchanges. ( b ) Limbom basket, Wosera, East Sepik, 1983. ( c ) Karuka 
nut basket for trading from highlands to coast when stored nuts are dry, Kaveve, Eastern Highlands, 
2006. ( d ) Mountain design woollen bilum with karuka nuts, Kaveve, Eastern Highlands, 2006       
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  Fig. 5.16    PNG continuous string bag,  bilum , designs. ( a ) Continuous string bags (bilum) requires 
string to be joined by rubbing on thigh. Women learn from each other. Bena Bena, Eastern 
Highlands, 1975. ( b ) Rai coast bush string being made and wound onto spindle, Madang Province, 
2013. ( c ) Two-strand twisted wool bilum, Watabung, Simbu Province, 1978 with close-up. 
( d ) Bilum made by Engan woman, PNG highlands with closeup, variation on the rainbow design, 
2001. ( e ) Close-up rainbow design, Kamano-Kafe, Eastern Highlands, 2006. ( f  ) Computer – 
 network design made by Kamano-Kafe woman, Eastern Highlands, Province, PNG, 2006 with 
close-up. ( g ) Soccer ball bilum, 2005 with close-up. ( h ) Open stitch of traditional carrying bilum, 
1997. ( i ) The fl ower pattern design from tiles used by Caroline from Sepik living in Madang, 1997. 
( Source . Jondu, 2008). (  j ) Both sides of a bush string traditional bilum, East Sepik Province, 2001. 
( k ) Bilum in plastic, Tufi , Oro Province, note the use of colours and different stitches for effect 
and the combination of rectangles in rows to form squares, 1986. ( l ) Girl at Malalamai, Rai coast, 
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Fig. 5.16 (continued) Madang carrying bilum, strengthening neck  muscles, being like mother, 
2004. ( m ) Pig toy on cane frame with large stitch bilum and light bilum underneath, looking inside 
at frame, 1997. ( n ) Two different loops used for effect or for different purposes, Balob Teachers 
College student project, 1997. ( o ) Bilum and two kinds of shell for chest piece and status, 1997           
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Fig. 5.16 (continued)
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    Overview of PNG Material Cultures Involving 
Visuospatial Reasoning 

 Culture is infl uenced by ecology, and culture infl uences ways of visuospatially rea-
soning particularly through the cultural activities and creation of artefacts. In par-
ticular, visuospatial reasoning is apparent in designs. I have several books (Dennett, 
 1975 ; Madang Teachers College,  1973 ) and a CD (Architectural Heritage Centre, 
 1996 ) of different designs and patterns but anthropological studies provide good 
insight into the deep meanings of design involving visuospatial reasoning. 

 Some of the most beautiful examples of design in PNG (see coloured photo-
graphs for examples) are on carvings (Figs.  5.17  and  5.18 ) but there are also designs 
in weaving cane, split bamboo, pandanus, and other leaves (Figs.  5.13a, c ,  5.14 , 
 5.18b ); in bilums (continuous string bags) (Figs.  5.15c  and  5.16 ); pots (Fig.  5.19 ); 
grass skirts, headdresses, body painting, and masks (Figs.  5.15f  and  5.19f ); as free- 
hand drawing on tapa cloth (made from bark of specifi c trees—Fig.  5.20 ); and in 
decorations that have limited life on the sides of school boards and in the sand. 
Woven cloth for wrapping was not part of PNG cultures. Tapa    and bilum were used 
for coverings (Figs.  5.2  and  5.21 ). Bilums are in fact made from fi gure-of-eight type 
loops    created from a continuous string—(see Fig.  5.16h ). Creative design has led to 
a range of hats, clothes, and bags using bilum looping, furniture carving, arts such 
as pottery (Fig.  5.23 ), or story images (Ison, ~ 1986 ).

  Fig. 5.17    PNG stone carvings and bindings. ( a ) Bindings on stone adze still used for canoe and 
sago working; stone axe, Highlands 1976; bindings on arrows (jagged one for men) 1975, arm 
band from Rai coast Madang 2013. ( b ) Rare stone carvings, Hagen, 1985. See also Fig.  5.20d        
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   Fig. 5.18    Diverse wooden carvings from across PNG. ( a ) Bilum hook, hardwood, Palambi, East 
Sepik River, 1983. ( b ) Tray, Kiriwina, Trobriand Islands, 1973; Mat Gulf Province, 1997. ( c ) 
Carvings from Tami Island, plates 1978, bowls 1980. ( d ) Carvings from Trobriands, diversity, 
kwila and ebony woods, small gourd, 1975. ( e ) West New Britain—single bird with fl at wings, 
1975; developments to snake and birds with raised wings, 66 cm, 1982. ( f ) Trobriands, 1975. ( g ) 
Sepik carvings. Myth, kundu drum, male 128 cm ~1986. ( h ) Yam storage and display house, 
Trobriands, 1975. ( i ) Large seafaring canoe prow, Trobriand Islands, 1975. ( j ) Model of lakatoi 
canoe, Tubusereia, Papuan coast, Central Province, 2013. ( k ) Story board, Kambot, Murik Lakes, 
Sepik River, East Sepik, 1973. ( l ) Story board, Kambot, 1988. Note variations from earlier. Village 
woman with adze making sago. Connections of people with totems, animals, place, myths. ( m ) 
Carved poles of Haus Tambarans, middle Sepik River, East Sepik, 1983. ( n ) Carved logs represent-
ing all provinces, Sepik carvers, designed by Department of Architecture and Building Science, 
PNG University of Technology, for University of Goroka Library, ~5 m 2002. ( o ) Crocodile carving 
by East Sepik carver, 1997           
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Fig. 5.18 (continued)
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Fig. 5.18 (continued)
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  Fig. 5.19    Pottery from Sepik River, East Sepik, and Markham Valley, Morobe, PNG. ( a ) Wosera 
pot, East Sepik, 1983. ( b ) “Stove” Chambri Lake, East Sepik for sago pancake plate and for smoke 
to reduce mosquitoes, 1983. ( c ) Sepik River pot, 1997. ( d ) Head only of sago storage pots—
humour, made for tourists, Chambri Lakes, 1978. ( e ) Pot for cooking snake, Zumin, 1984; nearby 
Adzera village, 2006. ( f ) Mask: Tortoise shell, cassowary feather, basket, clay, East Sepik, 1985       
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  Fig. 5.20    Tapa from across PNG. ( a ) Section of tapa used as cloak for dancing. 180 cm × 110 cm, 
Oro Province, 1975. ( b ) Tapa cloth, 55 cm × 136 cm, Oro Province, 1976. ( c ) Long strip of tapa 
worn by youth and men wrapped between legs and around waist. Oro, 1976. ( d ) Anga tapa used as 
coat, raincoat, and hiding club, Menyamya, Morobe, 1985       
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  Fig. 5.21    Examples of diverse dances, decorations, and displays associated with  singsing,  PNG .  
( a ) Mudmen masks,  Gilitue , preparing for cultural activity; see Table   8.1     for making of mask (John 
 2007 ). ( b ) Highland warriors with bilum skirts, painted faces, feathered headdresses, Goroka 
Show, 2005. ( c ) Wig and bamboo strips indicated pig kills in exchanges, 1975 (see Fig.   8.1    b for 
making wigs from another cultural group. ( d ) Bena headgear, 1976. ( e ) Huon Peninsula kundu 
drums and “sails” headdress, 1978. ( f ) Henganofi  tell a story of war and grief, 1984. ( g ) Anga 
dances at their show 1985       
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  Fig. 5.22    PNG village activities requiring visuospatial reasoning. (a) Village court case seeking 
compensation of a pig and money. (b) Pig kill sharing after compensation. (c) Cash crops—coffee 
drying, tobacco, sugar cane Bena, Eastern Highlands, 1975       

  Fig. 5.23    PNG modern 
pottery       
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          Each cultural group that carves has different designs and patterns. Colouring is 
signifi cant with carvings, pottery, and other artefacts that are painted (Figs.  5.19a, d  
and  5.16m ). While masks can be thought of as three dimensional, the overall use 
especially of white paint can create alternative perspectives such as on the tortoise 
shell mask (Fig.  5.19f ). The ends of the Trobriand tray, head, and canoe prow are 
related designs (Fig.  5.18b, d , e), curving intricately. 

 The carver in 3D makes the most of the original material. Thus beautiful Tami 
bowls result in perfect symmetries curving up the sides of the bowl created by the 
grain of the wood, or the crocodile carver considers where the legs and curve of the 
tail will be before carving the log. What is noticeable is the use of symmetry and 
asymmetry in carvings and in repeated designs (Fig.  5.20 ). Much of the design work 
is free hand but strings and sticks are also used to improve the carver’s eye with sym-
metry (personal communication, Sepik carver, 1983). Most carving is of wood, but 
some is in stone both for utilitarian purposes such as axes and adzes (Fig.  5.17a ) but 
also for special purposes including small secret objects or perhaps as ornaments 
(Fig.  5.17b ). The following sections discuss some of the representations found on 
artefacts.     

    Visuospatial Reasoning That Connects Euclidean 
Geometry and Topology 

 While academic mathematics uses the logic of setting additional constraints on 
topological relations to achieve other geometries like projective geometry or 
Euclidean geometry    (see Appendix   G    ), curricula in schools often treat them as 
dichotomies. By looking at PNG design, we begin to see an alternative where 
visuospatial reasoning meshes ways of thinking that would be reduced by such 
classifi cations. Part of the reason for this is linked to the geometric features found 
in the artefacts being indicative of social identity and relationships with members of 

  Fig. 5.24    Timor Leste crafts, ~1999. ( a ) Ikat weaving. ( b ) Small basket with fi tting lid       
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the community. Geometric design is often the abstract aspect making connection to 
relationships but this is connected to representational art within the same artefact. 
However, there is also personal expression in the design or artefact (National 
Museum of Australia,  2013 ). 

 In some cases, it is the act of painting that is important and not the carving per se 
( Hauser-Schäublin, 1996 ) (examples in Fig.  5.18g, j , k, l, m are painted). The white line 
of paint is continuous in even large complex    designs in    Abelam art (middle Sepik) 
( Hauser-Schäublin, 1996 ) in much the same way as the string is continuous in 
bilums. The artist starts at the top and leaves an end to attach the next design row. 
Other colours fi ll, interpret, and highlight the white thread. The main string for the 
bilum may be decorated but the white thread for the whole bilum is one continuous 
string in Abelam. Looking at the various bilum patterns in Fig.  5.16 , there are 
numerous ways in which continuity is portrayed, not only in repetition but also in 
lines traversing the object. 

 Knots are often formed by tightening loops for specifi c purposes and according 
to Kuchler ( 1999 ) can be represented in carvings and formed to make wrappings 
(I am reminded of the beautiful bindings on house rafters in Fiji but practical bind-
ings are evident in Fig.  5.17a ). Kuchler suggested that bindings and knots are for 
both functional and relational senses (e.g. the living and the dead). It is the process 
of creating the knot or the “knot” in the carving that establishes the relationships 
between different objects. 

 The purpose associated with visuospatial reasoning varies and is evident when

  the stability of pattern is the result of the subordination of technique to the spatial framing 
of the image. Rather than ‘fi nding’ the design of the fi gure in the wood during carving, the 
geometric contours of the image are drawn on sand or onto the wood that is used for carv-
ing, thus allowing improved or innovative techniques of fabrication only minimal scope to 
infl uence the resulting product. It is this geometric design of a  malanggam  which is owned 
and exchanged in the north of New Ireland   , quite unlike the New Guinea netbag described 
by MacKenzie ( 1991 ) which is validated in terms of its technical execution and exchanged 
as artefact. (Kuchler,  1999 , p. 155) 

   The bilum itself can be transformed into a hard two-dimensional fi gure for men’s 
use in ceremonial houses whereas they are left soft and bulbous for women in many 
areas (Kuchler,  1999 ). 

 The weaving by men of seating mats, carry bags, and hats from a coconut frond 
(Fig.  5.15d, e ) is also common across many areas but at least in Abelam, it is the 
lattice that is of signifi cance as it represents the criss-cross of moieties ( Hauser- 
Schäublin, 1996 ). It is also evident in their weaving of white on dark for fl oor mats. 
The Abelam, like many groups, also use ways of “concealing and revealing”, the hanging 
fronds at an entrance or around an area to be hidden (see Fig.  5.13f ), the decorations 
for dance to hide the individual and to be spiritual. For the Abelam, the strips and 
their combinations are signifi cant. To appreciate the visuospatial reasoning behind 
these, one has to look at the cultural and the environmental, ecological values. In many 
places, men weave the walls  blinds  4    for houses. Men in the highlands learnt how to 
weave from coastal men and replaced the tightly joined wooden planked walls with 

4   Tok Pisin for walls woven from different materials. 
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them. The wooden planks were hard work by hand and the possibilities of arrows 
through the walls became less over time. 

 In Fig.  5.18m , one can see a pole with the    crocodile design which was also used 
for ridged tattooing in initiation ceremonies (Middle Sepik, East Sepik Province, 
PNG). The designs on the poles prepared for the library at the University of Goroka 
(Fig.  5.18n ) were taken from all provinces (not necessarily from carvings) but 
carved by Sepik carvers under guidance of architects from PNG University of 
Technology (Unitech) that houses the Architectural Heritage Centre. The design of 
the end plates of the Trobriand bowl and head refl ect the front boards of the canoes 
(Fig.  5.18b, f , i). Interestingly, the carving of a tree kangaroo and pig from this same 
area stylistically are to my eyes quite different but a friend from the Trobriands 
on entering my house was easily able to recognise all the carvings from his island 
(see Fig.  5.18b, d, f ). The designs of the East Sepik are rugged and often portray 
people Fig.  5.18a, g, k, l, m ). The bilum hook is exquisitely fi ne hard wood; the 
storyboard soaked and fi red. The storyboards tell important stories. The background 
shows the people of the village in different activities including using an adze for 
scraping sago. The board’s story links the environment and its creatures and spirits 
to the people. Adzes are commonly used to carve but chisels (nowadays) are used 
for fi ner work and knives for smaller items such as the serrated ends of arrows used 
for fi ghting men (Fig.  5.17a ). Shell or glass is used for smoothing the pieces, a 
necessity for many items like bows. 

 The Wosera       pot (Fig.  5.19a ) is distinctly different from the Chambri Lake 
(Fig.  5.19 b, d ) and Sepik River pots—similar faces are found on lintels of the low 
men’s houses in Wosera. Pots were important trade items in many places: Papuan 
coast, the Madang coast, Sepik River, and the Markham valley. All were cooked on 
slow fi res (note the smoke colourings on the pots) so the skill of the craftsman was 
extraordinary given the size of some pots. Generally a coil and pat method was used. 
Like bilums, many traditional designs in wood and clay mark the place. 

 Whatever the carving or design, the spiritual culture, the artistic culture, the envi-
ronment, and people living in that environment, all had an infl uence on the reason 
for carving, what it looks like, how it was undertaken, and how to share the ecocul-
tural knowledge to others. One example recorded by Bowden (~ 1990 ) in Kwoma 
speaking area of the Washkuk Hills notes that men’s houses are made of wood sig-
nifi cant for men. 5 

  Kwoma art is highly stylized and for the most part abstract. … design elements in themselves 
do not … have fi xed ‘meanings.’ Such signifi cance as they have derives entirely from the 
‘meaning’ of a painting as whole. … The best Kwoma artists are never content simply to 
reproduce existing representations of clan totems (or other entities) but pride themselves on 
their capacity to modify and embellish them imaginatively. (Bowden,  1990 , pp. 487–488) 

   Similar traits were evident in the collection of pictures by Aiyura National High 
School students developed to accompany a local legend (Ison, ~ 1986 ). 

 While symmetries are evident in the paintings that Bowden commissioned, 
curves dominate and the environment provides a source for content. Smidt (1990) 

5   Women have all married-in to the clan which is small. 
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discusses the symbolic meaning in    Kominimung masks (on a tributary of the Ramu 
River and with some similarities in terms of  haus man  or  haus tambaran  6  as the Sepik 
River area). Again totems, colours, and the limited number of design elements are 
evident but for a variety of purposes. For their matrilineal society, there are male and 
female masks, mostly associated with yam festivals. Visuospatial reasoning is 
used to create the masks which are tall, symmetrical, and attached to a basket hat. The 
making of different head gear in the    Wantoat Morobe area was featured in one of the 
teacher’s projects (see Chap.   8    ) that made links to geometric shapes for mathemat-
ics teaching. 

 Tapa    painted in Oro Province PNG are richly curved patterns, sometimes with 
some symmetry refl ected or rotated (Fig.  5.20 a–c ). Some lines continue for at least 
a section of the design refl ecting some of the possible cultural reasons mentioned 
above on continuous lines. Paints are natural colours. However, there is no regu-
lated, stamped, or rubbed tapa designs as found in Fiji or Tonga, respectively (see 
Chap.   6    ). Tapa or other fl at tree materials used on masks may be painted as stylised 
faces. Tapa is surprisingly widespread across Austronesian and non-Austronesian 
cultures but of different kinds and purposes but it does have signifi cance [on this 
point, I would disagree with  Hauser-Schäublin (1996) ]. The softer cloth worn by 
young men is carefully prepared by women to fi t well as a wrap (demonstrated in 
both Malalamai, Madang Province, and Adzera, Markham Valley, Morobe Province). 
It was an important cloth in dance in Oro Province (see Fig.  5.20a–c ) and as a cape 
for covering and secrecy in Menyamya (Fig.  5.20d ). In each place, the original tree, 
shape and size of fi nal product after pounding fl at, or amount of string from the tree 
were visuospatially linked in memory.  

    Continuous String Bag:  Bilum  

 Bilums are made of fi bres from different trees and some introduced sisal-type plants 
but commonly from the inner bark of the  tulip  7  trees (Fig.  5.16a, b , h, j) which also 
supplies the supple tapa (Fig.  5.20c ). When the women make the bilum, each fi gure-
of-eight type “loop” is completed one at a time and the length of string or wool 
wound onto the thumb and small fi nger as the wool is pulled through the loop. When 
the length of wool is fi nished, they rub the start of the new strand with the end of the 
old one to have a continuous length. Rubbing together is the same as they do to 
make the shop wool strong by taking two lengths and rolling on their leg. 

 The string bags from PNG are traditionally the work of women and signify com-
plex gendered meanings (Mackenzie,  1991 ). Mackenzie noted that for the Telefol, 

6   Tok Pisin:  haus man  is ‘men’s house’;  haus meri  is ‘women’s house’;  haus tambaran  is the house 
or building for special traditional, spiritual activities undertaken by men. They have special signifi -
cance and can be quite large in Southern Highlands, Sandaun, East Sepik, and Madang provinces 
but many places have similar activities in their  haus man. 
7   Tok Pisin for an ubiquitous tree with a pair of leaves from each leaf stalk. The leaves are edible 
and provide fl avour and nutrients in food dishes. 
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Sandaun Province, and similar ideas occur in other groups, a bilum can be seen as 
our mother; it has continuous fertility. The bilum is also seen as a womb and as a 
sharing. It has been used for political and protection purposes too. However, there 
are many kinds of bilums and there are transformations in signifi cations when used 
by men who are related to the maker. Mackenzie noted that generally the bilum for 
men is then attached to hard or fl at surfaces or bound in some way. Japeth Maki 
(personal communication, 1997) said that if his wife from the Sarawaged mountains 
of Morobe “is going to make one for her husband to carry his betel nut and other 
personal items then it will be a small, rectangular bilum and the patterns will be 
associated with important relationships and meanings for the clan. This will infl uence 
the creativity of the bilum”. 

 Different places have different purposes for the bilums although it is common to 
carry bilums for food and for babies, and to have small ones for special objects. For 
example, in some places they form front skirts (Fig.  5.21b, c ) or other signifi cant 
apparel for men, and sometimes for fi shing. There are several different kinds of 
continuous looping methods for different purposes (Mackenzie,  1991 ). The carrying 
bilum (Fig.  5.15d ) has a fi gure-of-eight type loop which can stretch easily (loops are 
generally spaced by a strip of pandanus). For heavy loads, they are carried on the 
forehead dropping over the back requiring strong neck muscles developed from 
childhood (Figs.  5.15d  and  5.16l ) but today many are worn on the shoulder. 

 However, in more recent times the traditional designs and bush string have been 
replaced, fi rst by plastic rope bought in trade stores and then by brightly coloured 
wool with two strands twisted on the leg to strengthen it (Fig.  5.16 ). Bilum designs 
were associated with a particular group and even a particular woman (Fig.  5.16c  
belonged to Margaret Peter from Watabung; other illustrated bags were the work of 
specifi c women known to me). However, stretch is reduced in the tight woollen 
bilums. Designers build on their knowledge to create new patterns (see an example 
in Fig.  5.16d, e ). These days, one woman may have learnt or developed over 20 
designs and the designs pass up and down the country. By knowing the basic tech-
niques, a bilum maker can observe another person and with few words, learn to 
create a new design (Lillian Supa from Simbu, interview 2008). Poilep Kamdring, a 
school principal, from Manus Island living in Lae, Morobe Province noted that a 
highlands woman showed her how to make her mountain-design bilum (Fig.  5.15d ). 
She described its making:

  fi rst the lower triangular sections were begun going back and forth with the one colour for 
the short distance. It is stepped so she would do one block less each time. There were 4 
loops for each block wide and two deep. When she (the highlands woman) reached the top 
of the triangle she went down the side to the bottom again with the spare loop. The method 
here would be to look to see the blocks were of the same size but also to count. There would 
be four groups of four loops, then three groups of four loops, two groups of four loops and 
then one group of four. This might be linked to multiplication. There is a good visual repre-
sentation of how the numbers increase in multiplication and can be linked to counting by 
groups, that is 4, 8, 12, 16, etc. Here is a natural experience of the visual imagery associated 
with multiplication. (Kamdring, Interview, 1997) 

   Caroline from Middle Sepik proudly told me how she had developed the fl ower 
design like on the tiles at Madang Resort Hotel (Fig.  5.16i ). She showed how

Continuous String Bag: Bilum



172

  I started with a few rows of soft loops which I remove at the end and replace with strong 
opening loops. I decided to put in two then three fl owers across the bilum. (Interview, 1997) 

   She worked diagonally too and noted, when asked if she counted, that she counted 
5, 10, 15, or 20 to make up the pattern. Lilian Supa described making her bilums:

  We might need four reels (skein) to do one round so twelve all together … To change 
colours, we use a number of needles, it can be up to ten or fourteen or it can come down to 
six or four. The soccer ball design (see Fig.  5.16g ) used six needles, two for each of three 
colours. We twist one rope for one needle, so that’s when we try to change the pattern of the 
bilum. … we have the same two colours but different needles, then we stop it here and then 
third colour we come here and then the fi fth needle sew it right down ( to the corner of the 
bilum). The hexagons are actually made from two trapezium so the diagonal downward 
colour being changed will fl ow well. …We sometimes say ‘you must leave two or continue 
and make the bilum for fi ve spaces and then you continue on with the next one’ and these 
are some of the instructions that we give. Sometimes we say ‘You use the needle and you 
go in and out and go down’ … The traditional kundu drum design is now sometimes called 
triangle today. (Interview with Lilian Supa, from Simbu Province, April, 2008) 

   A full description for the 50 toea design    was given by Amos in an ethnomathematics 
teaching project (see the excerpt in   Appendix D    ). 

 Some women are very creative and can imagine the pattern well. Mea Dobunaba 
from Central Province, a mathematics education lecturer, made bilums but she tends 
to draw the design fi rst and she plans what to do from there. This she does because 
she has not the experience to build up new designs in her mind (personal communi-
cation, 1997). 

 Lengths of string are also taken into consideration in handicrafts and visualised. 
Mea explained that her mother was able to tell her how long to make a string for 
threading beads to make an anklet for dancing. The weaving in and out made a dif-
ference to the lengths and experience had taught her how long to make these lengths 
of string. Women sell strands of wool in the market. They take a large skein bought 
at the store and divide it up into manageable lengths, each about the length of a leg 
doubled as the foot when sitting acts as a peg. Women know how much to buy of 
each colour to make the bilum of their desired size and pattern. 

 The discussions above indicate how adaptations are systematically described in 
terms of enacted technical patterns (D’Ambrosio’s ethno-mathe- technical  sense). 
Visuospatial reasoning dominates the task as decisions are made to change colours, 
move to going down instead of up, and to work with several needles some of which 
have the same colour.      

    String Figures 

 String fi gures (often called cat’s cradles) and clapping games are a common pastime 
in many Indigenous communities and played by most children in places like 
Australia. Clapping games involve a pair of children reciting a rhyme as they clap 
in various ways. They make up new ways of clapping, new orders, and new rhymes, 
often quite complex. They are constantly creating and repeating patterns. 
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 Vandendriessche ( 2007 ) studied the creating of string fi gures in the Trobriand 
Islands. Like earlier researchers, he noted a series of “operations” such as hooking 
a piece and twisting it onto the fi nger. He was also able to identify “sub-procedures” 
and to ascertain how they were built up into “procedures” that created a design or 
used to produce a new design. The actual activity involves the body, mostly the 
fi ngers and hands, in transforming the loops by changing the apparent position of 
the loop on the fi ngers although this might be seen as the same topological space. 
Not only are the procedures repeated often in play and to while away time in the wet 
season, but this repetition reinforces the longevity of the visuospatial dynamic 
imagery in the brain. He recites the occasion on which two girls started one design 
but kept reaching a point where they were unsure so each time they returned to the 
beginning hoping their fi ngers would “remember” the next action. Spatial memory 
within the body supports visuospatial memory and reasoning. Associated with a 
number of objects or parts of a story, these procedures are readily repeated. 
Furthermore, there is repetition in sub-procedures to create new complex designs. 
Story rhymes accompanied some of the fi nal products or the sub-procedures. 
Thus, as Vandendriessche says, these are mathematical algorithms (operations, sub- 
procedures, procedures) but the importance is that they are visual and spatial 
and ordered and remembered. In fact he associated polynomes with the various 
sub- procedures. Repeating procedures, recognising designs within designs, moving 
onto the next sub-procedure, creating new designs, relating them to cultural activi-
ties, and recalling partially forgotten ones involve visuospatial reasoning. Thus an 
ecocultural perspective encourages a recognition of visuospatial reasoning in this 
common cultural activity that indeed varies across cultures (see his references to 
different parts of the world). 

 The Senfts ( 1986 ), who also lived in the Trobriand Islands, gave further details 
that suggest that the string fi gures which are often given plant names will have other 
metaphorical purposes such as reference to sexual themes or sexual parts of the 
male or female body. Nevertheless, there is a two-dimensional shape representation 
of a three-dimensional object and shape comparison and classifi cation. However, 
there are many different activities represented by the string fi gure-making such as 
building a house, paddling a canoe, the ebb and fl ow of water, a child running off to 
toilet, an animal or insect running, sometimes with the resultant fi gure moving over 
part of the person’s body. In another the curves represent the repetition and moving 
circular actions of a man digging out a canoe with an adze. This dynamic visuospa-
tial representation is complex and ecocultural. The games are for entertainment and 
so the connotations and actions are for enjoyment. There are also tricks that change 
dramatically to the fi nal product or end it supporting the affective aspects of self- 
regulation in our model of Chap.   1     (Fig.   1.2    ). The Senfts documented 89 different 
fi gures by name and drawings (only four appeared to relate to myths, healing, or 
religion although there may be second meanings despite translation of the chants 
that accompanied the string fi gures) and furthermore, since string fi gures are made 
by all age groups and men and women, many could be identifi ed by many people in 
the village Tauwema (Trobriand Islands, PNG   ) although some were more familiar 
to different groups of the community. 

String Figures
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 Thus we see visuospatial reasoning in creating and recreating the string fi gures 
are culturally part of the society and infl uenced and interpreted by their links to 
other people and to the environment. Even the sharing and messages embedded in 
the string fi gures or the accompanying songs illustrate these important cultural 
understandings associated with the different shapes and connection of shapes, 
sometimes but generally not, as each move is made in the learning and demonstrating 
of the string fi gures. A few of the designs connect to records of string fi gures made 
by other people in PNG or elsewhere in the world. Interestingly none were given 
simple names such as the number of created diamonds as westerners might call 
them but these were the ones often noted in other places in either the horizontal or 
vertical position [see further discussion on string fi gures in Maude and Wedgwood 
( 1967 )]. The richness of the chants with the complexity of the making of the design 
is remarkable even among the diversity of PNG groups. 

 A Kagua/Erave (Southern Highlands, Province) teacher reported on the use of a 
string game related to walking to Kambea Peak ( Kambea Rambu ), the highest point 
in the Kagua/Erave area, rising 400 m above the surrounding valleys. It is a rugged, 
beautiful rainforest area traversed by subsistence farmers on foot. The making of the 
sequence of string fi gures tells the story of how to reach the peak. “Rambu game is 
important for entertainment that pictures our great mountains, rivers, boy-girl rela-
tionships, bird’s nest, bee hive … the size, shape, and features of the known moun-
tain, rivers, and bridges”. This is the story of getting to the peak. The rope is initially 
wavy and is knotted as the storyteller sets the scene for travel. As shown in Fig.  5.3a–m , 
the story unfolds. As fi ngers are inserted into the loop,

  the  Magawano  sing-sing group set a course to Mount Kambea [Fig.  5.3a ], … the fi rst stage 
called  ripiae - pare  in Kewa Language. … two fi rst fi ngers ( kimala - lapo ) are placed inter-
weave picking up segment of rope from opposite hands [b] … the second stage which is 
called p uri - ronga pora  (road from Puri to Ronga). The Magawano sing-sing group is travel-
ing through Puri-Ronga road and bypasses Puri village and arrived at (densely populated) 
Ronga village [c]. … they set the course to Kambea Peak. After one and half hour walk they 
passed through Wando Range [d]… on the way they pass a well [e] … travellers gather 
there to quench their taste (sic) after a long walk from Ronga village to the mountain range. 
… The sing-sing group slowly walked down the range and arrived at Wando cane bridge 
(Wando Riwi-Ro) [f]. The bridge is twenty metres long that crosses over the quickening 
Suku River [g]. … The troop had a bathe in Suku River and continued on with the journey 
to Mount Kambea through a thickest rainforest called Akero [h]. In the interior of the rain-
forest, a Bird of Paradise nest is found on a tree along the road side [i]. One of the group 
member dashes towards the nest to capture the bird sleeping in its nest. Unfortunately a bee 
hive adjacent to bird’s nest chases him out of getting to the nest [j]. The Akero rainforest 
itself is about ten square kilometres, contain about 9000 species of plants; over 200 are tree- 
size with easy crossing rivers fl ow from Kambea through the forest down to Suku River [k]. 
Most often people get off track and never make it to the top of Kambea peak   . However, 
Mount Kambea is about 400 metres high from Wando Bridge and the imaginary mountain 
formed by rope is shown [l]. … Right at the top of the peak there is a target point where the 
Magawano sing-sing group successfully accomplishes their destiny [m]. Kagua/Erave 
teacher   , 2007)    

   The visuospatial imagery and representations in the string fi gures are closely associ-
ated with the environment and cultural practices. Thus an ecocultural perspective for 
visuospatial reasoning throws a new light on the resulting fi gures, some of which are 
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not generally created by others or recognised as signifi cant steps in the making of 
 fi gures. These  rambu  stories and fi gures vary but many people can repeat them so there 
is sequencing, meaning, and links between sub-procedures and resultant fi gures.  

    Weaving Patterns 

 In many parts of the world, people make objects by weaving. This is the case in 
PNG (see Figs.  5.13a, c ,  5.14 ,  5.15a, b ,  5.18b ). There is a wide variety of traditional 
weaving for different purposes in different PNG cultures as illustrated by the fi gures 
but visuospatial reasoning is evident in the way objects are created and this has been 
explained extensively for cultures from other countries (e.g. the hat). There have 
also been adaptations such as the fl at trays and trays with handles in Fig.  5.14b, c . 

 Straightforward weaving created the mat in Fig.  5.18b  except that colour has 
been used to create a pattern. Twill weaving (called  diagonal  in PNG) is the weav-
ing made by two layers of strands, staying generally in perpendicular directions to 
each other, having each strand going over and under more than one strand, and start-
ing each new row a step over to one side (Fig.  5.14a , left example). When weaving, 
a group of strips form a design and the group of strips is repeated to repeat the 
design (Fig.  5.14a, b, e ). Strips which go along the whole way exactly over and 
under the same strips are said to be in the same phase. Thus in Fig.  5.14a , the diago-
nal design repeats every fourth row while the middle  zigzag  design repeats every 10 
rows and the  diamond  repeats every 12th row. 

 The basket in Fig.  5.14b  has wider strips of one kind of pandanus on the base and 
the inner layer which forms the fundamental shape. Another pandanus is used for 
the outside. While the overall shape began with an available box around which the 
basket was woven and the natural width and splitting of a leaf into strips limits some 
decisions, the number of wide strips and selected width of small strips were keys for 
creating the dimensions of the basket as well as the design (interview with Augerea 
Wala and Roa Kaleva from Alukuni village, Keapara language group, Central 
Province). The front piece has vertical, horizontal, and diagonal lines of symmetry 
as well as rotational symmetry. The attractive motif on the woven fl oor mat 
(Fig.  5.14e ) also has a vertical symmetry. Some weaving is carried out using leaves 
bent over the starting frond at 60° but at other times the weaving is determined by 
the natural shape of the vertical strips (e.g. Fig.  5.15a ) and/or the intended outcome 
as seen in the mask (Fig.  5.14c, f ) and the fi sh traps (Fig.  5.14c ). 

 Symmetry is one of the more obvious results of designs created and often 
repeated by Indigenous cultures. It is evident that the artisans use systematic ways 
of making, creating, and recreating the symmetry. Weaving patterns are partly 
counted, looked at while being created but they are also spatially or physically acti-
vated. Thus it is important to talk of visuospatial reasoning in understanding the 
thinking. Furthermore, as mentioned in Chap.   2    , there is a strong use of pattern 
imagery that is invoked and linked to number patterns as well as the specifi c visual 
pattern. When an Elder in Kopnung made a mistake, the other Elder took him back 
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to the beginning row of the phase discussing how the fi rst over or under in the row 
would impact on the fi nal result (see illustration in the prologue of this book). Each 
were using pattern imagery and reasoning with this to make the correction. Further 
patterns were supplied by Kono ( 2007 ) in preparing for his mathematics classes. 
His work is discussed in terms of his identity to think mathematically in Chap.   7    .  

    Tattoos 

 Mekeo    designs are said to come from a mother Elu Auko    who fell into the under-
ground village while she dug a hole for planting taro, leaving her baby hanging in 
the bilum. She was taught the designs before she was returned to the village but a 
misunderstanding in gifts led to no further contact between the underground and 
above ground villages. The designs or patterns are called

  mafe aka   betel nut bunch 
  a -u - gapa       tall tree 
  aipa   wild 
  pafa   plank 
 ki-u  knee 
 fagago  gather 

   The combined patterns are called:

  uf u   chief’s house 
  ipi   tapa cloth 
  keve   seashell 

   (Louisa Opu, University of Goroka project)    

 The Motu    have a number of designs or patterns for tattoos. They include the tear 
drop which relates to the women farewelling and missing their men on the danger-
ous trading voyage in the large sailing canoes following the winds. The drawing of 
these designs illustrates the way in which certain partial shapes are foregrounded by 
the drawer in making the various tattoos which are usually made on different body 
parts (see example in Fig.  5.4 ). The children tended to draw the rectangles and par-
allel lines fi rst. Resulting triangles were then coloured but in some cases children 
also completed the triangle (Fig.  5.4i ). This is signifi cant as the teacher had referred 
to this as the “half triangle” (before inservicing, for her, triangles were all equilat-
eral). Designs are combined, for example, the drawing shown in Fig.  5.4i  is repeated 
in a slide symmetry for the hand, refl ected for a leg tattoo, and refl ected on the other 
vertical side for a stomach tattoo and modifi ed (Fig.  5.4d  and i) or refl ected and 
incorporating other designs (Fig.  5.4a and b ). The children’s copying of designs 
strengthened the visuospatial reasoning required to copy or create these or similar 
designs. The tear-drop pattern was also linked to number as a two steps, turn left, one 
step, turn right, two steps pattern by the grade 1 teacher teaching number patterns 
and combinations.     
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    Visuospatial Reasoning with Number 

 First is the use of hands and feet and associated gestures. This is not unusual with 
Indigenous communities, for example, the    Yup’ik, Alaska, USA, point to their feet 
as they count 11–19 and at 20 raise both hands into the air and indicate a complete 
circle (Lipka & Adams,  2004 ). Common gestures include counting off fi ngers as 
they are bent down, holding out the fi st for fi ve, slapping fi sts together for 8 or 10 
depending on the counting purpose’s counting cycle, and nodding head towards 
another person when “borrowing” the hands of other people especially in counting 
systems with a cycle of 5. On reaching a complete group, such as in a body-tally 
system which might mark off anything from 13 to 59 body parts, a gesture like rais-
ing both hands might be used (as occurs for “ fu ” in Oksampmin, Saxe,  2012 ). 

 However, spatial displays are also used rather than counting. These displays are 
for comparison especially when shell-money is used for trade and    displayed rather 
than counted. For example, at Loboda on the north-east tip of Normanby Island in 
the Dobu language area, Lean ( 1992 ), after Thune ( 1978 ), writes:

  In discussing various aspects of the traditional culture such as measurement of shell-money, 
measurement of time, exchange of objects between groups, and so on, each of which provides 
a situation in which numbers might theoretically be used, Thune observes that, in each case, 
the Loboda invoke alternative ways of describing their world which make use of relative 
rather than absolute scales or in which the qualitative aspects of objects are inextricably bound 
up with their quantifi cation, and thus an abstract system of enumeration disassociated from 
the objects to be quantifi ed is, on the whole, unnecessary and irrelevant. For example, in the 
ritual exchange of yams, a group giving yams should eventually receive an amount equivalent 
to what they gave. In this case, it is the overall size of the total pile of yams to be given which 
is signifi cant rather than the number of individual yams in the pile. The ‘size’ of a yam pile 
is recalled for purposes of repayment in terms the names of the people who received parts 
of it. Other categories of goods to be exchanged: pig, betel nut, store goods, etc. are treated 
in the same way. This form of ‘name accounting’ obviates the use of a precise enumeration 
of the items in a given category. (Lean,  1992 , his Appendix on Milne Bay) 

   Various languages use a signifi er for counting by the number in the group. This can 
be found, for example, with Tinatatuna    (the language of the Tolai, East New Britain, 
PNG) even though the numerical knowledge underlying the various lengths is also 
well established (Lean,  1992 ; Paraide,  2010 ). The Tolai counting with fi ngers and 
toes can reach 2,000 since each number represents 100. Notches or specifi c fern 
sticks can be used for numbers between the hundreds. Quartets of eggs or corn are 
named with specifi c words whereas groups of fi ve small animals might be counted. 
 Tambu , strings of about 10–12 shells is traditional money which is counted or mea-
sured or just subitised in bundles. There are words for pairs, threes, fours, fi ves, 
sixes, and eights associated with tambu so each number is recognised visuospatially. 
Similar discussions on number are found in New Ireland and other places using 
tambu. In addition, typically Austronesian counting words are used on the Duke of 
York island for pairs, for example,  urua  for two pairs (Lean,  1992 , his Appendix on 
East New Britain). 

 For the Tolai, different items are generally grouped in different ways, usually 
for ease of carrying. Thus the counting words are associated with these groupings. 
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For example, for coconuts, the groups of two are grouped by two to make four and 
then another two are added to make the set of six. For 10 coconuts, it is the set of 
six plus four,  a kurene ma varivi  and twelve is two groups          of six  a ura kurene  or 
when joined as a group of 12  a / tikana tanguwani  (see Fig.  5.6 ). Women will gener-
ally carry two groups of 12 on either side of the rope across their forehead or men 
with fewer over their shoulders (so they are ready to fi ght). For counting large numbers, 
10 sets of 12 are placed together. Meanwhile, taro are in bundles of 3, 6 then 12 
(Paraide,  2008 , 2010) (Fig.  5.5    ). 

 For shell-money, lengths are often three times 5, 10, 12, 20, 100 depending on 
the purpose or purchase. Lengths of shell-money  tambu  are marked from the fi ngers 
to the mid-upper arm  a turamamalikun ( u ) or hung to the shoulder  a viloai  (Fig.  5.6b ), 
to the centre line of the body  a bongabongo , to the other elbow  a leke  or the other 
hand,  a pokono / tikana pokono . It is this last length that is then bundled into tens 
 a / tikana arivu  then threes up to tens and the tens of tens  a / tikana arivu  and so three 
bundles are  a utula mar ( i ) (Paraide,  2008 ). 

 In Kilivila on the Trobriand Islands and many other languages, we fi nd counting 
associated with specifi c classifi cations of objects. These classifi cations might be 
described in terms of shape characteristics, purpose, or categories with English- 
word equivalents like a specifi c food or animal or person. One of the earliest records 
of this was:

  In (Kilivila) the Demonstratives and Adjectives as well as the Numerals do not exist in a 
self-contained form, conveying an abstract meaning. There are no single words to express 
such conceptions as ‘this’, ‘big’, ‘long’, ‘one’, etc., in abstract. Thus, for example, there is 
no equivalent of the word ‘one’, or of any other numeral. Whenever the number of any 
objects is indicated the nature of these objects must also be included in the word. 
(Malinowski,  1917–1920 , p. 41) 

   Thus we fi nd interesting visuospatial cultural reasoning associated with language 
and number. Lean, following Malinowski, points out that there are eight groups for 
which different participles exist (examples are found in Table  5.1 ) (Lean,  1992 , his 
Appendix on Milne Bay). (See Appendix   C    , this book, for full list). While more 
recent data may modify this information, the signifi cance of these data are that they 
illustrate an alternative way of reasoning and there is no doubt that the visuospatial 
imagery and related concepts link closely to the categories of objects, mostly physi-
cal, indicated by the morphemes associated with the different classes. The charac-
teristics of the objects in the classes are sometimes related to position on shapes, e.g. 
protuberances and corners; shape, e.g. long things; size and shape, e.g. round, bulky 
objects; or grouping, e.g. bundles of different types of food; and parts including 
large area subdivisions. These classifi catory systems are also found in languages on 
Bougainville such as Nasioi (a non-Austronesian language) and other island and 
coastal areas. Often, the number word is a link to a specifi c bundle of food. For 
example, in Motu (an Austronesian language), small counting numbers (1–9) are 
numerals albeit related to each other (e.g. 8 = 4 pairs or 4 twos, 9 is 4 pairs plus 1) 
and even associated with the hand for 5 (as are most Austronesian and Polynesian 
languages of the Pacifi c usually based on  lim  or  lima ) but 10 varies with the type of 
food bundle, that is 10 fi sh    would not be the same word as 10 yams or 10 bananas 
(Tubusereia teachers, personal communication).
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   Fisher (~ 2010 ) also documented the Kuruti (Manus Province) ways of counting. 
The frame pattern for the counting system is typical of Manus languages in that 
after 5, the words relate to “going up to 10”. Six indicates starting up to the group. 
Thus 7 = 3 to make 10, 8 = 2 to make 10, and 9 = 1 to make 10. 10 is  sungoh  in most of 
the classifi cation groups except relating to time periods (cooking a pot of food) or lunar 
months   . This is different to Motu which has a different word for 10 depending on the 
objects being grouped. In particular Fisher noted 22 different systems related to 
classifi catory systems. For this language and its associated languages    Ere, Lele, and 
Gele’, Lean ( 1992 ) suggested there were approximately 43 groups, many having 
visuospatial characteristics. Interestingly, Fisher was able to give the words, at least 
for the round objects, fruits, and nuts up to 900,000. These are objects that are likely 
to be in large numbers. He also illustrated how there are different counting words 

   Table 5.1    Selection of names for classifi catory groups in Kilivila    a    

 Group  Participle  Category description 

 1  Day (ke)  Trees and plants; wooden things; long objects (canoes, sticks, poles) 
 Dway (Kwe)  Round, bulky objects; stones; abstract nouns (betel nut, houses, yams) 
 Ya  Leaves; fi bres; objects made of leaf or fi bre; fl at and thin objects 

(coconuts, spherical containers, clothes, string) 
 Kwoya 
(mweya) 

 Human and animal extremities (legs, arms); fi ngers of a hand 

 2  Kila  Clusters (“hands”) of bananas 
 3  Pila  Parts of a whole; divisions; directions (books) 
 4  Kabulo  Protuberances; ends of an object 

 Nutu  Corners of a garden 
 Niku  Compartments of a canoe 
 Kubila  Large land-plots-ownership divisions 
 Siwa  Sea portions-ownership divisions with reference to fi shing rights 

 5  Kapwa  Bundles—wrapped up (Packages) 
 Oyla  Batches of fi sh 
 Yuray  Bundles of four coconuts, four eggs, four water bottles 
 (Kupwa)  (Fish counted in twos) 
 (Kayo)  (Crabs counted in twos) 

 6  Kasa  Rows 
 Gili  Rows of spondylus shell discs on a belt 
 Gula  Heaps 

 7  Numerals without a prefi x are used to count baskets of yams and 
numbers can be very large 

 8  Uwa  Lengths, the span of two extended arms, from tip to tip (fathoms) 
 Respondents to the Counting System Questionnaire also gave 

 (Bwa)  Short or thick solids 
 (Kaula)  Groups of 20       

   a  Source : Lean (1992) based on Malinowski (1917) with additions from Counting System Questionnaire 
data given by tertiary students provided in parentheses. Further work has been done by Lawton and 
assistants since the 1960s  

Visuospatial Reasoning with Number



180

for banana trees, banana leaves, stalks of bananas, hands of bananas, and individual 
bananas. Each grouping is signifi cant in cultural practices. There are morpheme 
similarities and patterns in each of the counting systems although modifi ed to sit 
with the classifi er. In Chap.   3    , there was also discussion of how the number “line” 
using body-part tallying was used and also modifi ed referring mostly to Saxe’s work 
together with how hands are used for representing numbers (based on our own 
studies). 

 Thus the visuospatial representations are well developed from experiences and 
closely linked to values associated with numbers or at least the size and nature of the 
group of objects situated within cultural relationships. The language indicates 
that particular ways of reasoning from the    visuospatial representations is occurring. 
We can expect that a similar occurrence will be evident with measurement.  

    The Measurement Study 

 The measurement study    from the Glen Lean Ethnomathematics Centre, UoG, PNG 
was ethnographic which is appropriate to investigate “ways of acting, interacting, 
talking, valuing, and thinking, with associated objects, settings, and events (that 
impact on) … the mental networks” that constitute meaning (Gee,  1992 , p. 141). 
Data were collected 8  and analysed and the analysis checked with other participants’ 
and communities’ data as the grounded theory developed. Our research project 
required participants who were familiar with their own communities’ activities and 
preferably investigating their own cultural practices. We were conscious of the vari-
ous relationships between ourselves, the participants and the village Elders whom 
we interview with a participant researcher (Owens,  2006b ). Villages referred to in 
this chapter come from a variety of environments (mountains, coastal areas, and 
large valleys) and language types (Austronesian, non-Austronesian, and hybrid 
languages). Data from 16 in-depth interviews (demonstrations, discussions, and 
observations with some semi-structured questions) either in the village (visited by 
at least two researchers) or at the University of Goroka have been complemented 
by questionnaires completed by hundreds of UoG and other tertiary students, and 
focus group data from students and linguists. The following sections represent some 
of the fi ndings of this research. 

 Ecology    is strongly evident and infl uential on cultures in PNG which has a huge 
variety of land types (albeit equatorial with a high rainfall) from islands (large and 
small), coastal strips, valleys (narrow and wide; upland and lowland), and high 
steep mountain ranges. There are coral reefs, swamps, fertile valleys, and uninhab-
itable areas. There are high density and low density areas and over 850 languages, 
that is, cultures, in PNG. People live in cities but have connections to remote and 

8   Data continues to be collected whenever visits are made to village communities or discussions are 
held with people from different communities. 
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rural areas where the majority of people live in bush material housing as subsis-
tence farmers and/or hunter-gatherers. PNG cultures vary considerably, noticeably 
in terms of relationships between people, with the land and water, in the use of 
number, and in cultural activities from dancing (see Fig.  5.21 ) to house building 
(Figs.  5.10  and  5.11 ).  

    Visuospatial Reasoning About Length 

 Above, we saw how lengths of shell-money were compared. There are a number of 
examples of visuospatial reasoning about comparing and measuring lengths, and 
about obtaining a half and a third of a length. Common is the use of a rope to mark 
a length against which to compare in future or to equally space posts. Words related 
to length measures were discussed in Chap.   4    . One informant from Mailu (Magi) in 
Central Province, PNG, where large canoes are still made, especially for racing 
made comments that are summarised:

  The things measured are length of the hull, depth of the hollow and the thickness of the 
hull. The specifi c people who carry out this measurement are men aged between 20–40. 
The older men either supervise or help when they are needed. … The log is measured using 
arm span depending on how long the owner wants it to be, for example 20 arm spans. Then 
it is hollowed using a hard adze. The time may vary for it to be completed depending on the 
size of the canoe. But before hollowing, the depth is estimated. While hollowing, the others 
observe and estimate the thickness of the hull and when they see that it suits the length and 
depth of the hull, they stop. They also measure the actual thickness of the top edges of the 
hull using their hand. An arm span is the combination of 9 hand spans. Sometimes the depth 
of the hull is measured using hand spans. This is done to be more accurate. … The size of 
the hull can be associated with the area of the sail as well as the speed of the canoe. 
All  lakatoi s 9  have a longer and shorter hull [stabilizer]. The shorter hull is half an arm span 
from the two ends of the longer hull. This caters for the speed and size of the sail. Inaccurate 
measurements have caused many accidents such as capsizing, etc. 

   The group activity described in the making of the canoe establishes close visuo-
spatial reasoning between boat builders. While the arm span was suggested as the 
means of measuring, men in other places might use strides. However, my observation 
is that this overall length is often not measured as it will depend on the available tree 
and so length descriptions in terms of arm lengths or strides are often poorly assessed. 
The ratio of depth and length is fairly carefully appreciated as this will limit its use 
in open seas. Thickness increases towards the base of the hull and feeling both 
sides of the hull is common practice but knocking it while the leg touched it or 
listening to the sound helps in determining the appropriateness of the thickness at 
different depths (the practice varying from place to place and between people in the 
same village). 

9   Motuan word used throughout PNG for sea-going canoes with single outrigger and usually a 
mast, often with a crab-sail (Fig.  5.18f ). 
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 Composite units were also discussed for the Ambulas language area,    Wosera, 
East Sepik Province. One bamboo length called,  kama nak  is equivalent to fi ve 
bamboo internodes called  ndik nak tamba . About 5 × 7 bamboo    length (that is seven 
lengths of fi ve internodes) is equal to one garden area or  tumbu . Other informants 
suggested a length of rope would be used for fi ve steps when building a house or 
garden but this seemed to be a variable decision depending on the building or pur-
pose for the composite unit. In Kilivila, Trobriand Islands, measuring systems vary 
for horizontal and vertical directions in conjunction with the body ( Senft, 2004a ) 
and in some cases, the position of the axes can be moved from ground level to arm 
level with alternative words (Lawton, 2007 and Wado, 2006, personal communications) 
but there is a range of unit lengths indicated particularly by parts of the arms. 

 Lengths that were in circular form were established visuospatially as equivalent 
to the same length in a straight line from various experiences. For example, in Kâte    
areas, Morobe Province, the circumference of the common bamboo types are well 
known so the lengths can be used for measuring the number of bamboo lengths 
required when split to cover the fl oor of a particular house. String is carried to the 
garden to get the correct lengths and the correct number. The long walk to the bamboo 
stand and the sustainability of the stands are motivators in cutting just the correct 
number of lengths (Rex Matang, personal communication). In Panim, Madang, 
Elders confi rmed that stands of bamboo were carefully cut down after I mentioned 
that a group of people said they just cut lengths without measures as they said it did 
not matter if there were unused lengths or not enough.     

    Visuospatial Reasoning About Area 

 The concept of area in PNG is interesting because there are no traditional area units 
as we have in western mathematics. Only one student mentioned that she and her 
family used area units but they were the only ones in her village and surrounds. 
When people think of measuring units, they inevitably think of length units like 
steps and handspans. However, people compare areas and plan areas for housing, 
sleeping, gardening, meeting, and many other things. There are some unrecognised 
area units commonly in use. 

 Around Goroka in the Eastern Highlands Province (EHP), people speak Alekano 
(also referred to as Gahuku-Asaro). Land area is compared by looking at it, discuss-
ing it, and marking the boundary with tanget plants but there is no formal measure-
ment. When making a garden close to the house, people will decide half of it by 
standing in the middle of one side and deciding where the half way line should go. 
Half the garden is left fallow. 

 Kaukau (sweet potato) is planted in mounds, generally with two mounds between 
drains (Fig.  5.9b ). The fi fth pair of mounds, say, might be marked with a sugar cane 
or other plant. The various garden sizes seem to be well established in the mind sug-
gesting that people have a good visual image of the areas involved with the garden, 
halves of the garden, rows of mounds, and blocks of mounds between drains 
(Fig.  5.9a ). 
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 In the Whagi Valley (Yu Wooi or Mid-Whagi speakers) in the Jiwaka Province in 
the western highlands, Kopnung village elders discussed the fl oor plan of the rect-
angular men’s house in terms of the number of men who might sleep in it and by 
comparison to another house. Round numbers are used, e.g. “it is for 25 men” and 
they refer to the area of a room as “7 foot by 7 foot” (Fig.  5.11a ). The square sleep-
ing room is visualised as sleeping around 7 men with the length for the man also 
being 7 foot. The prone position image seems as strong as the vertical. The rectan-
gular fl oor plan is divided into three parts, roughly equal. In the middle is the area 
for sitting around the fi re. The outer thirds are each divided into two squares for 
sleeping. These fractions are decided by using a length of stick from each corner of 
the house to mark the points with some try-and-modify techniques. Thus the 25 
men’s house has space for 7 men in 4 rooms = 28 men, although this calculation as 
such would not be made and the general size is all that is required to denote its 
importance. Such discussions are common place across the highlands region. 

 In the coastal village of Malalamai in the Madang Province (Fig.  5.13a ), fl oor 
areas are decided by what space the villager wants for the expected size of the 
family and activities like sleeping, eating, talking, and cooking, and the extent to 
which he can afford to build such a house given the amount of manpower that it 
requires. Plans may be modifi ed by what is available to them in the bush. People 
think of the fl oor space in terms of the number of rows of posts. These are 6, 9, or 
12 posts with the base row of 3. From house to house, the space between posts is 
about the same. People talk of the house as half as big again when comparing a 12 
post house to a 9 post house. In other language groups (e.g. at Panim, Madang), 
further inland where the winds are not so strong and the posts shorter, posts may 
be further apart. 

 The length of the roof  morata  (made from narrow limbom planks and sewn 
sago leaves) is also considered in deciding the length of the house (Fig.  5.13b, d ). 
“The morata are about one and a half arm spans long. This will infl uence the size of 
the house and a bamboo will be used to keep this length”. Other measures occur. 
“Short equal sticks (about a hand span) will be used to keep the space between the 
(morata) planks equal and the planks parallel. Trees that provide suffi cient sago 
leaves for that house are carefully selected to provide adequate waterproofi ng by the 
roof” (Sorongke Sondo, Malalamai, fi eld visit). Panim men said that “for a 9 post 
house they will select fi ve very big sagos ready to eat and more for a 12 post house, 
may be nine. If it ends up being insuffi cient, they will get more later” (such approxi-
mation is not accepted by all places or older men in the language group). Although 
some people spread morata further apart, people are able to look at a pile of morata 
and decide if it is enough for a particular roof. Malalamai men noted that they can 
look at the limbom palm and know how many planks they can make for roofi ng. The 
women do the same for tulip trees and different-sized bilums made from the inner 
bark of these trees. In places further inland or for smaller structures that use kunai, 
people estimate the area of kunai needed for the roof of a certain house. People 
talked of the house as requiring, for example, 40 or 70 bundles of kunai. These rela-
tionships are embedded in experience and suggest that a ratio-type, comparative 
approach to measurement is a starting point rather than a simple arithmetic approach. 
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 Yams may be carefully grown in rows but not necessarily. People have a practical 
idea of how big the area needs to be for the number of yams wanted in a house gar-
den. Cash crops like cocoa are planted out at the vertices of tessellated equilateral 
triangles. Two standard bamboo lengths are used. To mark the tree holes, a straight 
row is fi rst made with the two sticks. Then places for plants in the next row are 
marked using the two sticks to form the other two sides of the equilateral triangle. 
This means that plants are staggered for best use of the ground as shown in Fig.  5.6 . 
Again the number of plants for a particular area is known from experience. 
They will buy or prepare the appropriate number of seedlings or small plants. 
Interestingly, this method is now also used for kaukau mounds in various villages 
across the country depending on the terrain. 

 Whether it is a square surrounding the mound for plants in rows or the triangles 
formed by marking the vertices of the triangles, these are subitised 10  area patterns 
that can be used in teaching about area units in school just as the space for a sleeping 
person can be used. Similarly, familiarity with rice bags and laplaps (a cloth wrapped 
around the waist like a skirt) laid on the ground, and woven coconut frond mats also 
form good area units by which people make decisions on area size.     

 What is also found is the use of lengths for determining area. The paces may be 
for one side or for two adjacent sides. In general, people are familiar with equivalent 
widths of land so the variation in length is fairly evidential of size. This applies to 
both rectangular and trapezium-shaped land that seems to form naturally by the 
slopes and clearing of the mountains. This visuospatial reasoning about area may 
explain the discrepancy that Bishop ( 1979 ) found, and which I subsequently con-
fi rmed in a number of interviews, but not all, with children and adults who said they 
add lengths at home but multiply at school without necessarily making the fuller 
connection of visualised area assisted by taking steps to measure at home and the 
areas drawn on paper at school. An investigation into why both “rules” work is 
important in learning about problem solving and visuospatial reasoning. 

 In both weaving and bilum making, there are often squares or “diamonds” used 
in design (Figs.  5.13a ,  5.14a, b, e,   5.16c, d, f, I, j, l ) and other shapes created from 
two smaller shapes (e.g. Fig.  5.16f, g  where triangles and trapezium make up the 
square and the hexagon, respectively). The number of strips per wide strip in the 
basket in Fig.  5.15b  was considered when the basket was being made. Both the nar-
row and wide strips create area units and the smaller squares make up the larger 
composite square. 

 Although earlier bilums from fi bre in many places had stripes in different colours 
(Fig.  5.16a, b, h, j ) or with a slightly different loop (Fig.  5.16n ) to form squares, or 
patterns of numbers to create the design, these were also incorporated into the 
bilums made from plastic rope (Fig.  5.16k, l ) and wool (Fig.  5.16c–g ). The area of 
the squares might vary from bilum to bilum but were roughly equal in size across 

10   Know and see. In terms of numbers, children recognise small numbers of dots without counting 
in western communities. Other subitising occurs in Indigenous communities (Sue Willis, personal 
communication, ~1996) and is confi rmed in my observations in PNG. 
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bilums for a particular group and within the one bilum. These squares provide an 
excellent image of tessellated squares and were relevant in the making of different- 
sized bilums (Fig.  5.16c ). Furthermore, there was a connection between the loops in 
a square and that in a rectangle, often just obtained by using a wider strip of panda-
nus used to space the rows of loops or with increasing the number of loops to make 
different rectangles. Thus dynamic imagery was incorporated into shape variation 
but also in knowing how areas were created and covered.         

    Visuospatial Reasoning About Volume 

 Size is a general word and is often used for any fi lled space whether it be two dimen-
sional, three dimensional, or one dimensional. In PNG, this word is used ubiquitously 
and is important in reciprocity of goods as well as the number of exchanged items. 
Size is often considered in terms of a group of objects. “One never gives just one 
thing, it has to be a group”, said one of my colleagues. Generosity in giving is valued. 
When a packet of biscuits is being shared, no one takes one biscuit; it is always two or 
more. Matching of objects such as pigs will be marked by a checking of size but how 
this is done is very much dependent on the cultural group involved. It is not unusual 
to see two smaller pigs representing a big pig. People know weight well. Women in 
particular carry large, heavy loads in bilums hung off their forehead down their back 
or in limbom baskets. Men carry heavy loads on their shoulders. Gathering food such 
as heavy karuku nuts and bringing home garden food is common (Fig.  5.16i  and  5.15 ). 

 Size is often expressed with an emphatic word such as  tripela  (Tok Pisin, the 
lingua franca) meaning “very big”. Size is compared albeit in idiosyncratic ways in 
different cultural groups. Sometimes it is specifi c to certain objects and other times 
it is a generic idea. For example, words for size of rocks would not be compared 
with size of food item in some language groups (linguists’ focus group). There is 
considerable discussion on this in Chap.   4     on language and visuospatial reasoning. 

 In school mathematics, calculation of volume is initially for the rectangular 
prism with the associated calculation of length × width × height to obtain cubic units. 
There is little looking and estimating to compare sizes or to estimate the ratio of 
volumes when a linear aspect is increased. However, in the villages of PNG, we fi nd 
practices in which a length measure can be associated with a volume of various 
shaped objects. Lengths are used to compare volumes. The notion of a big pig is 
primarily about volume but it has mass and more importantly fat. Pigs may be car-
ried giving an idea of mass but what is seen is volume. 

 Although ordering objects (e.g. the volumes of pigs, piles of food, bilums, and 
baskets) by sight is frequently done, people measure various lengths as a technique 
to help with volume comparisons. Some people mentioned that they look to see how 
close the belly is to the ground and others the length to the thigh. The Kamano-Kafe 
(EHP) mentioned the girth of the pig is measured by seeing how far apart the fi ngers 
are when the arms are placed around the pig. There can be much discussion about 
the comparative sizes. One participant from the Southern Highlands Province (SHP) 
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noted that women keep the string length used to measure the girth as a record for 
when the measurement is needed again (in a reciprocal exchange). Another partici-
pant said that the length of each pig is marked by a knot on a long rope and this long 
rope is kept for later additions and for comparisons. If the length of the girth indi-
cates the volume of the pig, then the link between girth and volume is not necessar-
ily determined numerically but visually and it is associated with a range of other pig 
features. “When measuring a pig size, a small rope was used to measure the size 
around the pig and also the length of the pig. Then they can weigh out the cost in 
terms of how much fat or meat it contains” (Angal speaker, SHP). Reference to 
length when discussing the volume of a pig occurred across many provinces from 
the coast to the highlands. 

 Volume was also associated with parts.    Kerapi, from Imbongu, SHP, noted they add 
up quarters of pigs (e.g. literal language translation of a  half  is  quarter quarter ) but 
also distribute the quarters and divide them into more parts for further distribution.

  (For bride price and land disputes, people) have different ways of arrangement, preparation 
and payments. However in my culture, the traditional wealth is of less signifi cance. Upon 
the display of items, the length of items, traditional money, the pigs and bunches of banana 
are measured. They use ropes and bamboo nodes to measure the length and sizes of food 
stuff and pigs. One hand span (arm span) of beads, is equivalent to two smaller female 
piglets and half of the beads (from fi nger tip to middle of the chest) is equivalent to two 
male piglets. Although they have a digit tally counting system, they will also tie knots for 
each of the pieces of wealth with different ropes for each kind of wealth. They use a chain 
of dogs’ teeth to measure the beads used for making the payments. They associate these 
with the length of the beads and the money displayed. (Yupna man, northern Finisterre 
range, Madang) 

   Lengths are used in conversations to make decisions about the size or volume of 
items and to make judgments about the wealth or value of the objects. 

 The width of pig fat measured in fi nger widths is associated with the amount of 
fat/oil obtained in terms of bamboo containers. Fat, a valued product of the big pig, 
is distilled into oil and measured in bamboo tubes. While the connection is not given 
a multiplicative number, experience indicates how much one could estimate. “The 
sheets of fat from the pig would be stripped off the membrane allowing the fat to run 
into bamboos. They would also boil it to get the oil. They might get four bamboo 
containers [of pig fat] from a big pig” (Kamano-Kafe speakers, EHP). Related to 
this is the use of fi nger widths in the highlands to describe the size of a fi sh, the 
width of the fi sh indicating its overall area and volume (noted by a coastal man 
teaching in the highlands). 

 “Food piles were also compared by Elders, especially on deciding greatest and 
smallest piles” said a    Kamano-Kafe speaker and a Fore (EHP) man wrote, “People 
weigh (by hefting with the hands) the heaviness and lightness, [estimate the] length 
(long or short) and size (big or small) and fi nally group them in order of their size, 
length and weight:

•    Heavy, long, big  
•   Heavy, short, big  
•   Light, long, small  
•   Light, short, small”    
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 A    Kumbu (or Kewapi, SHP) participant mentioned that the size of the kaukau 
bilum (string bag) will be discussed by up to 40 people which he compared to the 
400 who might be involved in deciding the area of land. When ceremonies are held 
in many places, the number of pigs, bilums, baskets, and piles of food are compared. 
Size is only one factor that might be taken into account. For example, for the Arop 
in Sandaun Province, it is the number that predominates. In the exchanges of baskets 
and bilums of food, the type of food also matters (several villages, Madang 
Province). For most communities, the amount must be more than generous. 

 Experiments with small volumes are common in making medicines, food pastes, 
and colours (noted by Yupna, Yu Wooi, and Telefol speakers). Body paints are 
widely used and in many places    colours are used for walls, artworks such as face 
boards of  haus tambarans , dying strings, carvings, and pottery.

  After the designs are carved on the wood (of the door board), they used three different tra-
ditional colours to paint the designs that have been carved. The traditional colours used are; 
maroons called  Baagaan , white called  Buuguung  and black colour from carbon called 
Amsiring. To make the paint shiny and bright some grease pig are (sic) mixed according to 
the correct proportion with the three traditional colours mentioned above. (Telefol, Sandaun, 
Onggi,  2005 ) 

   The amount of water needed for creating the steam that rises from food cooked 
with heated stones in a ground cooking pit ( mumu ) was a commonly given example 
of volume (Fig.  5.12 ). Familiarity with different types of mumus, different sizes, 
different woods, and different foods are all combined in the knowledge used by the 
Elders to make decisions about the volume of water. Common units were the large 
cooking pots or the nodes of bamboo with the full length of bamboo having usually 
a composite of 3 or 5 node lengths. Pits vary from round to rectangular especially if 
a pig or two are to be placed in the mumu. Mumu volumes are also described in 
terms of bundles of food soaked in coconut milk and wrapped in banana leaves for 
a number of coastal and island communities. 

 Other conversations about volume revolved around the size of the round house 
and its radius so the house was small enough to keep warm, large enough for the 
family’s needs, and feasible in terms of available helpers and materials needed for 
construction. House building is always associated with a feast to thank the helpers. 
The garden must be ready for the feast and the amount of garden food, bush food, 
and pigs would be determined. Villagers in a    Panim village noted:

  When there is a feast, then the various families will bring food. The pigs will be tied to the 
sticks (“stik pik”) which are put in the ground, carefully indicating how many each line will 
get. Each group will get their share. When the pig is distributed, then all the men will check. 
Then a piece goes to each man and usually a coconut-leaf basket of food is used and distrib-
uted to each man in the group. Each basket has an opening about 50 cm wide. There is a 
rope handle to put on a pole so it can be carried. For feasts, the family would need very 
heavy bilums of mixed produce to share and trade. Each family would supply large bilums 
full of food. They would use big clay pots, make a hole in the ground for the fi re and put the 
pots in the hole. It was important to prepare much more food than the men could eat and to 
prepare 5 to 7 plates full per person. Pots were made at the beach where the clay and sand 
could be used together whereas Panim was in the bush. They traded garden food for ground 
pots and never pigs. Usually 1 to 3 bilums of mixed garden food for one pot but they also 
took account of friendship. They would also trade eight or nine packets of sago wrapped in 
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the bag made from the palm. They would trade bilums of different sizes for different size 
pots. They might buy three or four pots at a time. (Elders from Panim in the coastal 
 hinterland, Madang) 

   This description indicates that volume is a key aspect of the trading but other 
factors such as type of food and relationships of people are affecting the exchanges. 
The limbom bark basket (Fig.  5.15b ) and fl our sack are commonly used measures 
of volume for many items—sago, coffee, vanilla, and so on. Since taken-as-shared 
concepts develop through practice, the regularity by which a sack, basket, pot, ball, 
or packet of sago was used resulted in a relatively consistent unit of measure. Similar 
examples have been given for length (   Owens  2007a ). However, there are few exam-
ples of composite units for volume. One example is from Abau speakers who wrap 
up six sago balls in a banana leaf and pack these into the limbom basket. 

 Volume is important to people as part of a visual display and often as a point of 
reference although mass may be the real source of comparison. The visual imagery 
associated with some activities provides a good basis for reasoning and making 
comparisons. Nevertheless, other values might dominate such as ensuring more 
than enough is given. In actions and in discussions, there will be subtle ways of 
establishing volumes. In all the above examples, reasoning includes an ecoculturally 
infl uenced visuospatial consideration. 

 The importance of accuracy in traditional activities is determined by the individual, 
the available resources, effort, common practice, and purpose. In many cases, the sizes 
do not have to be accurate and position can be assessed by eye but in other cases, such 
as the positioning or removal of the central post of a house, greater accuracy is needed. 
Size is often only a part of valuing an exchange as mentioned above in terms of the 
type of food. The display of food itself is important as mentioned to me recently in a 
Simbu welcome display of food. Further communities make decisions about how to 
assess value and quality such as measuring different lengths of pigs, piling food in 
certain ways, and measuring lengths of mami yams, not just for size but for their other 
cultural connections. In most of this decision- making visuospatial reasoning is 
involved. The connections of experience supported by sometimes lengthy discussions 
are important. As mentioned earlier, it is also the relationships of the people involved 
in the measuring or decision-making that is important. At times, the person for 
whom the house is built or the chief builder whose body measurements are used in 
the building may provide the reference lengths. At other times the person is not 
signifi ed. Sometimes lengths are kept for later events. Other times any stick or rope 
is used for comparing equality of lengths.     

    Visuospatial Reasoning About Three-Dimensional Designs 

 In Kaveve village, Eastern Highland, an Elder was asked to show us how he made a 
round house (Fig.  5.10a ). He dressed for the occasion with his government badge, 
and pig tusks. He explained that the size of the house and its volume affected its 
warmth provided by a fi re for which the wood had to be cut down and carried from 
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the bush. Hence he was now sleeping in the relatively small house that he was given. 
However, he was also building a very big house overlooking the valley, a status 
house. In his description, he mentioned levelling the ground, the need for bush 
materials, and then, with prompting from the group of onlookers, he drew a rough 
circle dragging his foot. He then immediately went into the need to plant large 
gardens in order to provide a feast for all the helpers who might be family or others. 
This was a signifi cant aspect of building a house for him. However, other Elders 
who were aware of the model making insisted on showing us more detail of making 
the circle using a central pole and a rope to drag the foot around in a circle 
(Fig.  5.10b ), building the roof, and using steps (heal to toe) to ensure measures on 
rectangular houses were sound. The circle shape and its various parts were well 
experienced through living in the space (Fig.  5.10c ). Thus visuospatial reasoning 
was used to determine how best to utilise the fl at surfaces (at several levels includ-
ing its roof space) and the three-dimensional space. Similarly, platforms are also 
created inside the roof spaces of houses on the coast, see Fig.  5.13 ). 

 However, young children have the opportunity to observe the construction of 
houses. This includes the making of walls. In many places, woven walls or  blinds  
are used. If the wall is for a round house, then children see the rectangle curved to 
form part of the wall and another rectangular blind used for the remaining part of the 
wall (see Fig.  5.11 ). Walls and mats are rolled up and unrolled. These surface areas 
are created and the visuospatial images can be used to reason about rectangles and 
curved surfaces of cylinders (the round house walls) or of rectangular prisms for 
rectangular-shaped houses [Fig.  5.10b  (toilet and shower house in background) and 
5.13]. If vertical sticks are used to form the wall (Figs.  5.11a  and  5.13e ), then 
another visuospatial image is provided as a series of equal length sticks or planks 
covering the area. In other words, surface areas are made, spaces are covered. 

 Names of shapes often indicate their relevance and relationships to other objects. 
Henry Kawale from Golin, Gumine, Eastern Highlands PNG suggested shape 
names: for a shelter  oke , egg-shaped  milinkalin , and “for making the patterns of the 
woven walls, they use designs, patterns, and shapes given traditional names corre-
sponding to the environment around them,  mepki  = mountain,  amil  = diamond like 
panda nuts”. Many teachers provided shape names that often linked to nature. 

    Roofs 

 In nearly every place, discussion was held about how steep the roof should be 
(Fig.  5.11b ). Generally it was built so that the water ran off but not so steep that 
the kunai grass covering (if used) would slide off. Morata was new to coastal 
areas, having been brought into the country by Samoan missionaries prior to 
1900. However, this also led to variations such as a separate roof over the door-
way, and a much steeper roof in Panim (inland, away from strong coastal winds), 
Madang. The spacing of rafters or morata was also carefully considered so that the 
roof was waterproof and each section well secured. In one house with a central 
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apex, forming a pyramid (not very common) and rectangular houses, the vertical 
and horizontal roof trusses were carefully cut and positioned. Much of this was 
pre-planned but often pieces were checked and cut during the building phase. 
Inevitably, the slope of the roof which was regularly mentioned as a good example of 
angle was determined by a group of men, standing away from the house and telling oth-
ers whether to raise the wood more or lower it until the desired angle was determined. 
The other end of the rectangular house was made by using lengths equal to the 
symmetrically opposite end. Nevertheless, the central pole or poles had to be care-
fully positioned (see Fig.  5.11a ). 

 The use of equal lengths was common place for fi nding central points and thirds, 
measuring from the corners. This was evident when three elders and two younger 
men acting as interpreters modelled how they built a rectangular house in Kopnung, 
Jiwaka Province (Fig.  5.11b ). The house has three sections, two ends for sleeping 
and the middle for sitting. First, they explained the height of the wall is equal to the 
height of the man’s armpit while the internal wall is the height of the man’s hand 
raised above his head. This gives a good slope for the roof as described above in 
terms of coping with rain and wind but also not so high, so the building stays warm. 
Making a model meant that this slope and wall heights could be problematic so care-
ful decisions were made to keep the roof line sensible. The model which was smaller 
than the normal house had height and length roughly as expected but interestingly, 
the ratio of one to the other was also kept for the desired slope. There were good 
judgments about the lengths as modern mathematics might say in terms of trigono-
metric ratios for the angle of the roof. To achieve this, the inner third of the house was 
narrowed in the model but still roughly a third and the shorter man used as the mea-
suring standard. Similar judgments were also made when a house was made larger 
than usual too (Fig.  5.11a ). A careful look at this house shows the basic rectangular 
shaped house has rounded ends to provide more internal space and to make the house 
look outstanding. The roof line has been carefully planned for the modifi ed design.     

    Bridges 

 A village (men, women, and children) had been to the city of Lae, Morobe Province, 
PNG to buy a tank and they were walking it back to their village, a day’s walk from 
the road head. There is a small creek to cross at the start and we came to the creek 
to fi nd the villagers had spent the night beside the creek as the creek was a fl ooded, 
fast fl owing torrent. Within an hour the men had eyed the saplings and vines grow-
ing beside the track, and cut down with their sharp bush knives appropriate ones of 
the required length to bridge the torrent. They knew the vertical and horizontal 
lengths well. They also managed a hand rail and the whole village, some carrying 
the two halves of the tank, and ourselves crossed the river.    

 Many bridges are suspension bridges or cantilever bridges requiring greater 
understanding of loads and counterbalances (Fig.  5.7 ). Huge stones anchored and 
balanced the bridges. The bridges were made of bamboo or hardwood with vines 
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looping under the walkway logs attached to the handrail or suspension ropes to 
prevent sideway slips. Heights of uprights, lengths of vines and walkways, and 
ramps all have to be determined. In Chap.   8    , there is a brief discussion of a teacher’s 
project that involved a suspension bridge (see also Owens,  2014 ).   

    The Ecocultural Holistic Context 

 Although the above sections have closely considered the various activities and how 
they might be linked to school mathematics in terms of familiar western concepts 
such as area and volume, it is salient to describe one cultural activity to see how 
much of the activity links with mathematical thinking and in particular visuospatial 
reasoning. Mathematics is holistic and integral to the unseparated parts of the activ-
ity. Mark ( 2006 ) discusses wealth and exchanges related to marriage, bearing chil-
dren and their development, and Moka ceremonies of the    Melpa, Western Highlands, 
PNG. Gifts are given at each of these times to the mother’s family in establishing the 
relationship of the woman or child to the father’s clan. An initiatory gift is returned 
with one of higher value. Such items as pigs, shells (six kinds), cassowary, salt, oil, 
decoration, bird of paradise plumes and other feathers are exchanged. The account 
of pigs and shell given is represented on the  owu mak , the bamboo slats on the chest 
decoration where one slat equals eight shell or pigs (at least in the past) (Fig.  5.21c ). 
The shell-money is also displayed on the ground or on the warriors as they march 
forward (Fig.  5.21b ). On the rectangular ceremonial ground  moka pena , there is a 
line of symmetry lengthwise marked by the pegs for the pigs  kung pugkl , and the 
corners are marked off as places where the women can stand and sway as a group. 
T   he men will circle around the sticks in an oval shape or march up and down sym-
metrically on either side of the line—both groups are equal in number and number 
of marches up and down. There will be a men’s house  manga pukglum  at the top end 
of the ground (Fig.  5.11a ). After the exchange, young girls might dance with the 
men in the  murli  or  waipa  in circular patterns. There are various symmetrical 
designs painted especially on the face but also on parts of the body where they may 
signify the clan group. A pattern of equilateral triangle tessellations forming “dia-
monds” that tessellate are used to identify the Nenga in Mul District. Colours vary 
along with designs. Persons who decorate another signifi es relationships. 

 The gifts for exchange are counted in sets of eights  engag  or  ki  ( tendta ) which is 
one complete group of four fi ngers of both hands. As the person counts, the fi ngers 
are bent down starting from the little fi nger of the left hand. When counting money, 
the suffi x – mun  is added. The fi sts are slapped together and then if they count in 
tens, the two thumbs are wiped down the lips or “closing on top of four fi ngers of 
both hands”. A number such as 29 could be expressed as  engag pumb ragl pip 
engage pumb ragl pip wote engage pump to gul  (8 + 2) + (8 + 2) + 8 + 1 or  ki ragltiki 
wote timbikak pukit pumb to gul  (8 × 3) + 4 + 1.  ki ragl  16 is literally “hands of two 
men” and  ki ragltiki  24 is “hands of three men”.  Wote  and  gugl  mean “include” or 
“also” while  pentipa  means “attached to” or “included” and are used as adjectives 
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to describe addition or order of operations. Mark notes that there are several alterna-
tives for each of the counting words besides the two given. He also notes that the 
shells especially but also other items are displayed in groups of eight. The visual 
displays are all part of the visuospatial reasoning. Negative numbers are refl ected in 
the ceremony as credit or  pund , what is not with them but in credit. Zero is refl ected 
in  poor mon  as “fi nish none”. The whole of the pig is  mundiimbuke . Similarly the 
fractions of “half”  pukrui pentik  and “quarter”  pukrui por  11  have considerable 
signifi cance when halving and quartering the pig. 

 The time for moka is usually during the season with long periods of sun. Mark 
gives the following information on seasons. The fi rst month in the pair has - komum  
as a suffi x while the second month in the pair has - akil  as suffi x (Table  5.2 ).

   The time of the day is denoted by “expecting light”, “light appearing”, “fi rst light 
like light in evening with setting sun”, “morning sun”, “afternoon sun new”,  “setting 
sun”, “time when a passer-by’s face is not clear”, “darkness here”, “young children 
sleep”, and “deep sleep”. T   hus Mark illustrates the connection between design, 
shapes, and time in terms of cultural activities. Cultural activities contain a wealth 
of mathematical thinking including visuospatial representations and reasoning.  

    The Importance of Ratio or Multiplicative 
Thinking in Reasoning 

 In discussing material required for different-sized houses, amounts of food required 
for variations in exchanges, and balance for canoes, cantilever bridges, or house fea-
tures, there was always a sense of proportional reasoning occurring. If one aspect 

11   Por  is also the  Tok Pisin  word for four so some borrowing is occurring.  Pukrui  is also used for a 
third. 

   Table 5.2    Seasons in Melpa or Hagen, Western Highlands, PNG   

 Month (roughly)  Language  Translation/cultural signifi cance 

 January–February  ting  A word, relates to weather, wet season. Time for clearing, 
planting, and gardening. 

 March–April  owuiil  A bird name: this bird which fl ies along the mountain 
following the river down as time of the dry season is soon to 
arrive so work hard in preparation. 

 May–June  paan  A word, crops are harvested, reference made to wind that 
blows. Time for Moka, usually third week of June. 

 July–August  Puun  Red pandanus fruit 
 September–October  Tipaan  Wet weather is coming so collect fi rewood and food for the 

coming wet time. Pigs might start to stay in the house out of 
the weather. 

 November–
December 

 Piill  The name of the cuscus who might “steal” the pandanus 
nuts that are ripe for harvest in the jungles. 

     Source : Mark ( 2006 )  
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increased, so did the other aspects but this is not necessarily a linear comparison. 
This is the case for wall, fl oor, roof, and grass areas although areas could be reduced 
to two requirements (e.g. the number and length of split bamboo for a wall or fl oor). 
The fact that a 12-post house is regarded as a half as much again as a 9-post house 
implies that the materials for fl oor, wall, and roof are half as much again. Since 
some lengths may be fi xed (e.g. the width of the house), this makes some decisions 
easier.    However, fi nding the sago trees or limbom palms that will give half as much 
again for morata is still part of the visuospatial reasoning built on experience.    

 Volumes too are considered proportionally. Even ascertaining the volume for 
the pig led to an increase in the number of length measures used in discussions 
(e.g. girth and length and height) although mostly two small pigs are taken as equal 
to one big pig. Volumes are increased and in proportion for medicines, paints, and 
for sauces (e.g. marita, a red-pandanus nut) or in other food cooking. Discussions 
are around comparisons with previous experiences and by eye decisions.  

    Architecture Students’ Visuospatial Reasoning 

 One of my PNG studies presented as an argument for an ecocultural perspective on 
visuospatial reasoning used qualitative approaches to investigate the possible infl u-
ences of culture on design and mathematical ways of thinking (Owens,  1999b ). 
First-year PNG Architecture    students had produced an attractive variety of paper 
sculptures and I wanted to fi nd out how they were thinking in order for them to 
develop such unique sculptures. Students had previously made a sculpture using 
glue and any available materials that they wished to use (e.g. “junk”, cardboard, 
sticks). For their second sculpture, students were restricted to using cardboard 
(3 mm thick) and paper that came in three colours, a maximum size for the sculp-
ture, and the requirement glue, sticky tape, staples, etc. could not be used. They 
were encouraged to work directly with three-dimensional space. The students were 
motivated by this activity and spent many hours to solve the problems associated 
with building their sculptures. I wondered to what extent their cultural background 
infl uenced them? To what extend did they use their previous mathematical ways of 
thinking? How did they reason in developing their sculptures? 

 A third of the fi rst year    architecture class of 34 students 12  at Unitech were inter-
viewed by me after completing their sculptures. The interviews were coded for 
themes coming through the students’ comments. 

12   Two of the 14 students were female. Eleven were from coastal provinces of PNG, two from 
highland provinces, and one was from a neighbouring Melanesian country, the Solomon Islands. 
Two students lived with their parents on oil palm plantations away from their home province, six 
lived in cities, and a few lived in rural towns. Several boarded at high school and most boarded at 
senior high school. Comments were made about the art classes and carvings at one of the senior 
high schools—three attended this school. It is signifi cant that most parents and one guardian had 
incomes and half had post-school training. 
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 First, positive feelings resulted from their problem solving. This is to be expected 
in self-regulating    students as part of their developing identity. Half the students spon-
taneously noted that their sculptures were pleasing them and they were particularly 
intrigued that they were producing such a beautiful or different or imaginative sculpture. 
For example, David started with the idea of a trophy (Fig.  5.8a  is his fi nal sculpture) 
but when I asked him what he liked about his design he said, “It is beautiful and it did 
not symbolise [anything]. It didn’t exist and doesn’t represent anything in this place, 
and I came up with this thing!” Willie (Fig.  5.8b ) said, “The most [pleasing] thing 
about the sculpture which really intrigued me was about the curves and the way I 
made the curves”. Ian (Fig.  5.8c ), however, noted that his feelings infl uenced his 
sculpture in a different way. He said, “I designed it on how I was feeling at the time. 
I didn’t want to build something big, I felt small inside, I was pressured and school 
was mounting on me”.  

    Ecocultural Visuospatial Reasoning as Architects 

 Students noted spontaneously their imagination or their use of imagery. TKeps 
(Fig.  5.8d ) said, “most of it was from my imagination and creativity so it gives me 
idea of which things to fi t into each part”. When describing their imagery, 30 % of 
the students’ comments that they imagined something not relating to anything phys-
ical 50 % referred to some physical object that might have started them off but 20 % 
spontaneously noted that they moved away from being bound by the initial physical 
idea as they responded to their work and began to imagine ideas or solve the prob-
lem of joining parts together. Three students (20 %) had initially wanted to make 
moving objects. 

 Students saw themselves as creative designers of buildings. Two students specifi -
cally commented that they liked buildings in cities and that they were intrigued by 
them and studied them. Others commented on their personal study of designs at the 
National Art School or in traditional carvings. Traditional backgrounds were men-
tioned spontaneously as important in 60 % of cases but only 30 % directly noted that 
they incorporated traditional ideas into their sculpture. Their traditional background 
seemed to be part of a belief that their cultural experiences were valuable for cre-
ativity and were a part of their identity as a designer. Interestingly, this did not seem 
to be as strong with the two female students but their families had longer associa-
tions with western cultures. Cultural ideas led to the use of curves, spirals, or sym-
metry. For example, Fred (Fig.  5.8e ) noted:

  When I started to create the sculpture, it came out of my imagination. What I learnt back at 
home I added onto the materials and it came to what it looks like now. … It was totally fl at 
[cardboard] but when I started to put bits and pieces in, I think it looks like a house and I 
make like a house and I started to think about making house back at home … It is the spiral 
thing that looks like it swirls around and the woven part that makes it attractive. … like 
ancestors in traditional types they used to make spiral bits they just bend hard woods to 
make small juts and to fi sh… 

   Ian (Fig.  5.8c ) perceived village life and stories as infl uential.
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   Ian: Village life, talking to elders, they were telling traditional stories and I tried to 
incorporate some of the traditional designs into it as well. Partly some of my 
sculptures, they tell people how I feel. If I am angry, the sculpture looks very 
scary and taunted and dull. It depends on the mood I am in.  

  Interviewer: Can you explain how stories are in there [the sculpture]?  
  Ian: Not really. Patterns on main mast and shapes on curved areas are found in my 

tradition. In it there are lots of zigzags.    

 Besides Ian, four other students deliberately attempted to transfer a traditional 
drawing or mask as a major part of the sculpture. Taurus from the Solomon Islands 
based his sculpture (Fig.  5.8f ) on a sea devil traditional design and story, and Bell’s 
mask face (Fig.  5.8h ). Like Bell, others used weaving techniques for effect. Often 
the idea of  bilas  13  seemed to encourage consideration of the use of colour or extra 
features. Taurus says:

  The part I like the most is the rising face as it expresses features of what the sea devil is like 
with its two big eyes, the erecting tongue devouring and the two birds in opposite, which he 
used to navigate the unknown seas. I like it because eyes are bent, circular, and it is out of 
single paper. … It is symmetry. 

   Decoration had signifi cance culturally and architecturally, and this reasoning is 
being vocalised. Furthermore, students readily applied visuospatial reasoning and 
mathematical knowledge to draw circles or to measure sizes and equal lengths. 
Some began with shapes like triangles, circles, and cylinders and tried to build on 
these. Other aspects of mathematics that were mentioned were repetition and pat-
tern, perspective, the use of measurement to improve accuracy, the use of mathemat-
ics to develop different, more diffi cult designs, and the importance of three- and 
two-dimensional images. 

 For many, creating designs meant creating something original and different from 
what already existed in the environment or in other’s work. Some wanted difference 
on different sides of their sculpture while others wanted some similarity in, say, 
opposite sides. Others strived not to have symmetry but to have balance in the artis-
tic sense. This is noticeable in comments made by Fing (Fig.  5.8g ).

  When I visited the National Art School I saw paintings and they made me interested, lines 
going here and there and gives me a depth of feeling I really like this and I see my own work 
and I can put it here and there and it looks good…. When I needed strips I measured the 
same length with ruler but … I looked at it and cut them to make them look better and not 
too symmetrical and all the same [see parts at the top of Fig.  5.8g ]. … It was time consum-
ing to build back structure with circles (see the repeated design, Fig.  5.8g ). 

   Fing used mathematical ideas in several ways and linked architectural and math-
ematical ideas in an abstract way in thought and action:

  I was just thinking and feeling structures are just like building numbers that go on and on 
and structures go on and on, more like infi nity or repetition or what goes on and comes 
back; big, small and just like that. 

13   Tok Pisin word for all forms of decoration. 
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   The view of Fing’s sculpture (Fig.  5.8g ) illustrates how he used visuospatial 
repetition for effect. Repetition can also be seen in Willie’s sculpture (Fig.  5.8b ) and 
David’s sculpture (Fig.  5.8a ). David said:

  [The curves] are about 50 cm long and I measured it from one join to another and cut out to 
fi t papers around, I tried it out and I saw a pattern, then I drew it and I would join it up with 
slits in right place. 

   This is an interesting comment as the physical development of the sculpture was 
infl uencing his visuospatial reasoning like Fing and many others. Furthermore, 
David used the slit method that was common in cultural practices. 

 Nearly all students made reference to symmetry, proportion and wholeness of 
their sculpture. One used cylinders and circles to achieve a holistic entity; others 
used repeated curves. As Ian (Fig.  5.8c ) said:

  I don’t like to make symmetrical things because I have the idea that nothing is perfect 14  so 
when I created my sculpture I didn’t want it to look symmetrical. … when I design it with 
awkward shapes, it challenges the mathematical side of me how it fi ts together. e.g. circular 
bit that protrudes, I didn’t want it to protrude too much … At last minute, I removed some 
of it, especially unnecessary and didn’t fi t picture when look from all angles, and I asked 
opinions from friends 

   Bell made similar comments about the holistic nature of his sculpture (Fig.  5.8h ). 
Students particularly wanted the parts of their sculptures to be in an aesthetically 
pleasing proportional relationship. For example, Ian modifi ed the size of his parts so 
they looked good together and no one shape dominated. This reasoning also related 
to balance. Thus they were using visuospatial reasoning as they worked with their 
cardboard and paper. Half the students noted the importance of either a fi rm founda-
tion or some means of making the sculpture sturdy so it would not topple over. This 
problem frequently led to interesting creative changes to the sculpture. Willie 
(Fig.  5.8b ) said:

  I thought I had better start with sketch of anything, I was sketching anything that came into 
mind of statue … I had a sketch with base and these curves … One problem was I had dif-
fi culty in balancing curves and they were wobbling and would not stand up straight so I put 
cardboards in and it was fi rm … 

   Knowing balance was important, several students measured carefully to mark the 
centre of a part. This was an application of mathematical knowledge to their visuo-
spatial reasoning. Ian used stays to hold his mast fi rm and circular weights on a stick 
to balance the high part (Fig.  5.8f ). He summed up his view on foundations:

  I think it is important in architecture. If it is right then rest will stand up. … Mainly the fi t-
ting in of joints was the bit that needed cautious work. But with patience and advice from 
my colleagues and the successive trials that I made, I fi nally made it. It was constructed in 
a simple manner. The solid foundation were then followed by the bits and pieces that made 
up the rest. For example the scalloped papers. Extra weights were forced into it on various 
areas requiring it so as to balance the entire fi gure. 

14   This is a cultural perspective often seen in bilums (string bags) which will have a section that is 
not quite the same as the rest of the bilum. 
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   Both the mast stays and counterbalances in bush-material bridge building are 
commonly found in PNG (as discussed earlier in this chapter). 

 From an architectural perspective, functionality was not important in this design 
project. The students’ works were considered as sculptures rather than models of 
buildings but TKeps (Fig.  5.8d ) particularly talked about the functions of different 
parts of his music studio.

  I began with cardboard as a strong foundation. After setting up cardboard, I started cutting 
paper and bend the shapes to make the building. … That part and four corner was apartment 
where musical instruments can be played and stored and top part is entertainment centre. … 
It is a building not on ground fl oor so I want it to be a few metres high above ground level 
so there is a bit of cardboard as base for uplifting building. The fl oor level can become some 
sort of foot track for others coming in. 

   The integrity of his sculpture came from his consideration of it as a music studio 
so that all aspects, position and shape of parts and nature of decorations, were 
related to this function. 

 Students saw that mathematics could be used in architecture and ideas such as 
symmetry, repetition, balance, and relative proportion were seen as part of this 
mathematical perspective on architecture   . In most cases, students considered math-
ematics as measurement and calculation. Several students noted that they or tradi-
tional workers or architects had used measurement to get symmetrical sides, to 
make equal slots when joining, and to help with balance. This was thought to be a 
practical and important use of mathematics for architecture. In one case triangular 
and circular shapes had to be developed from the measurements so that they would 
sit together. 

 Shapes were also considered as part of mathematics. Ian began by “playing 
around with common shapes” and Clive discussed the nature of a cone. The impor-
tance of estimation and accuracy were noted in terms of the purpose for which 
mathematics was being used. For example, they noted that in building a bush mate-
rials house in the village, estimation was most appropriate although equality of 
lengths as marked by the length of a stick or a piece of rope was seen as necessary. 
For architects, measurement and calculation improved accuracy. Ratio was seen in 
terms of scale but was linked to the idea of parts of a holistic structure without cer-
tain parts dominating; this was also referred to as being in proportion. One student 
specifi cally noted perspective and another the importance of plans. Two students 
commented that it was mathematical to be able to judge how big a structure might 
be when one considered the plan of a building and its height. 

 Interestingly, all students could suggest some type of traditional activity that 
involved systematic thinking. Order of events was one idea expressed by students. 
For example, it was needed in preparing gardens, in the kitchen, in fi shing, in house- 
building (order in which sections are completed), and in using the stars. Other math-
ematical ideas were evident when most students referred to getting houses straight 
by use of ropes and sticks or by planting sticks in a line. They commented that it was 
a skill to get the lines straight. One specifi cally commented that a good builder 
would have a plan in his mind but the onlooker would only know what it was when 
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they saw the fi nished building. They noted that good builders could vary the plans 
and would know how many uprights, or sago-leaf bundles would be needed for the 
particular house. One commented that there were differences in the ways of build-
ing houses. Sometimes the outside plan was decided and then divided up while 
others considered the rooms to be needed before fi nalising the plan. It was also 
noted that diagonal struts were not in all houses. However, uprights in the walls 
were often close together. 

 Interestingly, students frequently expressed themselves inadequately when they 
fi rst tried to explain how they used mathematics. Clive only linked in his school 
mathematics when he tried to form a cone with a piece of paper. Other students 
referred to triangles when they meant three-dimensional shapes but others used the 
terms prism and pyramid although one used the term prism when he in fact had a 
frustrum. Nevertheless, these students had strong visual images of the shapes they 
were referring to in both two-dimensional and three-dimensional representation 
and in terms of modifying their shapes for specifi c purposes including dynamic 
three- dimensional changes. 

 It should be noted that this visuospatial reasoning was occurring within a 
problem- solving situation. About half the students commented on the problem of 
getting started. Most overcame this problem by drawing or cutting papers or watch-
ing others. Once started they usually kept going. Time was also a problem noted by 
about a third of the students. Some noted that it took time to fi x aspects of their 
sculpture or to make the many parts. 

 Sometimes change in ideas and imagery came about because they had physically 
to make the object without glue so this problem led to invention   . For example, Fing 
used holes and rolled paper to hold parts together and then he used this idea for 
effect (see Fig.  5.8g ). In fact a number of students noted that the joining of papers 
by slotting two papers together, each with a slit half way across, was used in tradi-
tional crafts while the rolled paper in a hole was done at school for holding papers 
together (staples, pins, and other clips were not available to them). It was also used 
in traditional buildings to hold the joists for a fl oor although a Y shape was more 
likely. 

 The use of physical objects rather than drawings fl ared their imagination. 
However, as with all concrete materials that are used for learning, students really 
needed to be faced with a problem in order for there to be connections between past 
experiences and imagery, new imagination, relationships, holistic ideas, and appli-
cation of ideas. Furthermore, students also set their own problem—how to make the 
sculpture more pleasing. One approach was to think of an idea, physically cut it out 
and try it checking its effectiveness by holding up pieces of paper to see how it 
would look while others drew sketches. Students commented on the diffi culties of 
stability and joining parts together and on their thinking in order to solve the prob-
lems. Their refl ection and development of solution ideas was an important aspect of 
their designing (see comment on pattern by David). This aspect of problem solving 
illustrates how self-regulating    and self-monitoring of progress through the problem 
was essential for developing identity. 
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 Most students spontaneously made a comment about the infl uence of others. 
Although many of them noted that they tried not to be infl uenced and to make some-
thing original, they saw an idea like a woven mat and decided to use it, or a friend 
had talked about an idea which was then used such as Japanese ikebana fl owers. 
One noted that his friends thought his sculpture was different things and that pleased 
him as it was in the eye of the beholder that a sculpture should be interpreted. Others 
had specifi c help to overcome a problem like how to make joins. A couple of students 
noted that, although they were given comments to start them or help with a problem, 
what they did was still their own idea. Another said it was important for students to 
work in groups both in mathematics and when creating structures because students 
could learn best that way and give each other ideas. Thus we see how cultural con-
text was infl uencing their identity as a mathematical learning in terms of the self-
regulating    responsive learner as discussed in Chap.   1     (Fig.   1.2    ).  

    Responsiveness During Rich Activity 

 The responsiveness    model (summarised in Chap.   2    , Fig.   2.17    ) was initially devel-
oped from young students solving two-dimensional spatial problems (Owens, 
 1996b ; Owens & Clements,  1998 ) but it was found to be applicable to tertiary stu-
dents (Owens et al.,  1998 ) and now to students working in three-dimensional space 
problems. This study places visuospatial reasoning in the context of responsiveness. 
By being responsive, reacting to what they saw, reacting to their imagination, or the 
comments of others and their feelings about their work, students were being respon-
sive. Without responsiveness, the problems would not have been overcome but more 
importantly their imagination and creativity would not have fl owed. Responsiveness    
is a compound variable; its components are dependent on a balance of cognitive and 
affective processing. Responsiveness is the movement forward, the risk-taking of 
problem solving. Often multiple thoughts have to be held for consideration and 
action over several seconds or minutes until the context reacts to the development. 
In cultural activities and in projects such as the architecture students’ projects, 
responsiveness is a movement within the aspects of Fig.   2.17     but connecting ecocul-
tural infl uences and self-regulation in identifying as a mathematical thinker or 
architectural thinker in Fig.   1.2    . 

 While culture was an underlying infl uence on students, it was clear that the stu-
dents were using only minor aspects of tacit knowledge (Millroy,  1992 ) with both 
architectural and mathematical concepts and processes. It seems that explicit dis-
cussion of this cultural knowledge would assist students to develop a recognition of 
the social, political, class, and colonial aspects of their school, architecture, and 
mathematics education (Ward & Wong,  1996 ). Such discussions would assist stu-
dents to develop their cultural heritage in their architectural design, to create cultur-
ally rich design, and to recognise the interactions between some of these less 
apparent aspects of architectural and mathematical education.  

Responsiveness During Rich Activity
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    Decision-Making 

 Visuospatial reasoning also plays a role in decision-making across many cultures 
and activities. Architects, engineers, and builders are aware of the space and orienta-
tion of buildings, but they are also aware of the impact that their buildings have on 
people. Some people continue to build as they have since prehistoric or early histori-
cal times partly due to available materials and climate, but others are keener to adopt 
change. For example, in the villages along the Morobe coast in PNG, there are 
unique house styles, built out of the same bush materials that were used in earlier 
generations, but not following the age old designs (Fig.  5.13e ). The change has 
come from many infl uences such as living close to a modern city, interactions with 
members of the Department of Architecture    and Building Studies at Unitech, and 
individual expression of house builders (   Owens, fi eld research  1997 ). At the other 
end of the PNG mainland in villages of Enga Province, some houses have been built 
so the structure joined circular and rectangular shaped houses while others modifi ed 
the rafters so they can remove the central pole of the traditional round house as 
groups in other parts of Enga had done (personal communication, Henry Atete, 
1997). People across PNG are skilful in adapting traditional building designs by 
enlarging fl oor plans, based on the knowledge of the overall building and cultural 
requirements of fl oors, walls, and roofs as discussed earlier in the chapter. In many 
Indigenous communities, these requirements and plans are held mentally and 
require skilful visuospatial reasoning to organise building and make changes. Words 
may be used to create the site, but plans assist design and change. 

 Kaveve villagers, EHP, built a beautiful guest house with rectangular walls, an 
entrance way with a high square pyramid roof, a hallway to bedrooms and veran-
dahs to access other rooms, all from bush materials and with typical village “decora-
tions” such as tufts for roof tops. Not only are people creating mathematical designs 
for utilitarian reasons but also for their effi ciency and beauty. Visuospatial reasoning 
involves the elegant and effi cient reason and that of beauty and creativity.  

    Power, Identity, and Relationships in Architecture 

 The impact of culture on architecture    is easily noted in the use of decorative designs 
in societies such as PNG. However, this may appear to be superfi cial compared to 
modern building design or construction. Ward and Wong ( 1996 ) have argued that 
architecture provides for basic needs and design services but should not be limited 
to matters of visual aesthetics. Rather architecture should address issues of power 
and social transformation. In their development of a pedagogy of the design pro-
cess, they encouraged participants to “demythologize their [the teachers’ and 
students’] own beliefs about architecture, education and racial prejudice and 
about the relationship between them”. 
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 Eisenman ( 1988 ) argued that second languages like architecture and mathemat-
ics were avoiding cultural roots and class, a view that Ward and Wong ( 1996 ) illus-
trate is not possible. While  Māori  carvings in buildings have special meaning, the 
 Whare Wananga  project (Ward & Wong,  1996 ) considered precise placement of 
building elements such as the use of the atrium as a meeting place   . Another project 
that considered cultural roots was the design for a museum for the Mashantucket 
Pequot Nation for which the guiding principles were couched initially in ideas 
“of cultural diversity and place identity as generating principles in architecture” 
(Atkin & Krinsky,  1996 , p. 237). Interestingly, these views from architecture are 
salient to the social and cultural aspects of mathematics education and education 
encountered in PNG. 

 Indigenous societies also link serious business to certain structures, as seen in 
buildings specifi cally built for ceremony and bonding relationships. This is evident 
in  haus tambarans  of the Sepik and Rai Rivers of PNG and the long houses of Sepik 
Provinces (Fig.  5.13f ), Western Province and Southern Highlands in PNG. However, 
across many PNG cultures there are men’s houses (Fig.  5.11a ) as well as places for 
births and other female needs.    Power relationships are part of the rituals and design 
of the place. 

 Indigenous communities can have complex spatial relational arrangements that 
educate about relationships. This is the case for the Trobriand Islanders of PNG for 
whom the position of houses in their villages is dependent on relationships and 
status (Costigan,  1995 ). The Sepik River architecture as well as changes and differ-
ences in settlement patterns portray visuospatial reasoning that takes account of the 
environment, heritage, movement from place to place, and relationships with peo-
ple. Thus the shapes of the  haus man ,  haus tambaran , who they belong to and which 
clans occupy space inside, and proximities are all affected (Coiffi er, ~ 1990 ;  Hauser- 
Schäublin, ~1990 ). “The built environment, like language, has the power to defi ne 
and refi ne sensibility. It can sharpen and enlarge consciousness. Without architec-
ture, feelings about space must remain diffuse and fl eeting” (Tuan,  1977 , p. 107). 
Furthermore, for many Indigenous groups, a place       has its own natural features 
imbued with feelings (e.g. the half-man story), and this can impact on design as seen 
in the ways, the architecture students created sculptures based on traditional house 
and other designs. Finally it should be noted that places of signifi cance can have 
different features depending on the space they take up. For example, the space 
may be small (decoration or mark of ownership or status) or of medium size like 
a home and this will depend on the place and culture (compare various homes in 
Figs.  5.10 ,  5.11 , and  5.13 ).  

    Visuospatial Reasoning with an Ecocultural Perspective 

 Power structures frequently prevent the mathematician from making links outside of 
academic, mainstream mathematics. Links are frequently in the direction of applica-
tion to the outside world. However, ethnomathematics encourages visuospatial 
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reasoning from ecocultural contexts to school mathematics and back. A good example 
was provided by Adam ( 2010 ) who analysed the weaving of food covers in Malaysia, 
modifi ed the mathematics and then asked the weavers if they would make these new 
designs. However, there were various reasons (like the cone being too steep) that discour-
aged them from making some designs. Nevertheless, it was possible to bring mathemati-
cian and practitioners together. In many ways, mathematicians do this in everyday 
work when part of a team of economists or scientists as they seek new approaches. 

 It is, however, diffi cult to describe the visuospatial reasoning that occurs within 
one’s own head especially when this is not generally part of discussion. New 
approaches to teaching arithmetic by encouraging children to visualise numbers, 
hold in their head a visual image such as a 10 frame from which to solve a problem, 
and to use an empty number line to mentally calculate a solution encouraging 
children to describe their visualisation and reasoning. There are cultural ways of 
 transmitting much of the cultural mathematics as is    shown in the sharing of string 
fi gures and bilum making. Among the mathematics, there are

•    Visual ready-reckoner like methods for ratio  
•   Area images that are subitised and used when dealing with area problems  
•   Estimates of quantities that are embedded in the cultural purpose for the objects  
•   Bodily movements associated with actions and the nature of the sea or mountains 

when sailing or walking  
•   Estimates of lengths of string in all orientations and in curved or straight formats 

or in a ball  
•   Bodily and visual recognition of right angles and other angles determined by 

extending lines in two directions    

 However, this is only the tip of the visuospatial reasoning and ecocultural per-
spectives. It is not necessarily possible or right to expand further on the visuospatial 
reasoning available to an Indigenous cultural group who have built up these knowl-
edge processes over thousands of years. Suffi ce it to say such knowledge should be 
acknowledged and encouraged to be available for that community’s ongoing pur-
pose for the sake of that community (Nakata,  2011 ; Owens,  2013a ). Nevertheless, it 
is important in intercultural settings and curriculum to include both content and 
perspectives that refl ect this Indigenous knowledge.  

    Moving Forward 

 This chapter outlined some key ways in which visuospatial reasoning can be 
acknowledged in terms of language and discussion, comparisons, ready-reckoner 
ratios, prior constructions, and actions. The context for decision-making is impor-
tant as illustrated by the examples related to reciprocity and the environment. Thus 
the ecocultural tools, purposes, and problems infl uence the visuospatial reasoning 
and subsequent outcomes. These examples support the ecocultural perspective of 
visuospatial reasoning in mathematical identity. They illustrate how cultural 
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identity forms part of the mathematical identity and valorisations of the community 
(de Abreu,  2002 ). 

 In this chapter, there are examples that take content relevant to western schooling 
with an ecocultural perspective. Furthermore, the above examples also provide 
ways in which western mathematics and mathematics learning can be enhanced and 
enriched. In Chaps.   7     and   8    , I pursue this issue further. 

 The examples illustrate how the intention of the person directs the person’s attention 
to specifi c features of the environment and social and physical problems associated 
with living in that environment (Owens & Clements,  1998 ). Both visual and spatial 
imagery is involved in recognising the situation and comparing it to previous situa-
tions. In this mental activity is the role of practice (Lave,  1988 ; Masingila,  1993 ; 
Nasir & de Royston,  2013 ; Roth & McGinn,  1998 ; Rouse,  2007 ; Wenger,  1998 ). 
Practice provided the ready-reckoners by which many of the spatial  decisions were 
made. The mental imagination (dynamic visuospatial imaging) was not always 
associated with numerical values but rather with visual images resulting from prac-
tice and experience. Practice too encouraged the embodiment of visuospatial knowl-
edge. Nevertheless, within a new problematic situation, the person or community 
need to reason. Practice also provided for intuitive thought. The examples illustrate 
that often a community or group of people reach a decision either because the results 
have implications for them and for group solitarity or for spatially being able to 
view the situation from a different perspective as in deciding the slope of the roof. 
Thus our understanding of visuospatial reasoning is extended to incorporate an eco-
cultural perspective. 

 While PNG provided a rich basis for this study because of the wide diversity of 
ecological situations and language cultures, it is important to substantiate the eco-
cultural perspective from other areas of the world. In the next chapter, I draw on 
studies from other countries, ecologies, and cultures.                                                                                 

Moving Forward
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    Chapter 6   
 Visuospatial Reasoning in Other Cultures 

                      What avail is it to win prescribed amounts of information 
about geography and history, to win ability to read and write, 
if in the process the individual loses his (or her) own soul: 
loses his (or her) appreciation of things worthwhile, of values 
to which these things are relative; if he (or she) loses the desire 
to apply what he (or she) has learned and above all, loses the 
ability to extract meaning from his (or her) future experiences 
as they occur. 

(   John Dewey, 1938, p. 49) 

      The Challenge 

 An ecocultural perspective of visuospatial reasoning was established in Chap.   5     
through fi rst-hand and recorded experiences in PNG. Geometry    and measurement 
cover a broad spectrum in terms of locating, comparing, and measuring of different 
attributes and notions, experiencing the physical world in all its manifestations, and 
going beyond the physical to abstract ideas. Is it possible to capture more of the 
wealth of visuospatial reasoning if an ecocultural perspective is taken across 
recorded experiences in other parts of the world? 

 This chapter will draw on studies infl uenced by cultures in the Americas, 
Australia, Pacifi c, Africa, Middle East, and Asia. In particular we note how visuo-
spatial reasoning is enriched by locating and experiencing in the physical world and 
beyond and how visuospatial reasoning is used in creativity of different people.  

http://dx.doi.org/10.1007/978-3-319-02463-9_5
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    Early Studies of Visuospatial Reasoning 
with an Ecocultural Perspective 

 One of the earliest and continuing studies in this area was by Berry ( 1966 ,  2003 , 
 2011 ). His work indicates that individual differences arising from psychological, 
socioeconomic, and ecocultural experiences promote better adaption in an intercul-
tural environment. He advocates multicultural frameworks at the classroom and 
national curriculum level to produce mutuality and reciprocity, equity in participa-
tion, and maintenance of cultures and identities. However, in this chapter we will 
look at his early study of perceptual and reasoning skills that compared Scots from 
UK, Temne    from Sierra Leone, and Eskimos from Alaska. The study was carried 
out at a time when quantitative analysis prevailed and relatively culture-free tests 
were used (he noted that socioeconomic disadvantage in lack of visual materials did 
impact on test results when culture was kept constant). One interesting aspect was 
his comparison of words and environments in which he noted that the whiteness of 
the Eskimo environment    seemed to contribute to high ability in noticing detail and 
more language words (rather than English transliterations). He also attributed this 
higher ability to child-rearing practices in which the stricter upbringing was associ-
ated with lower scores on perception and reasoning and women’s dependence more 
fi eld-dependent perceptual characteristics. He noted that western education reduced 
transitional communities’ perceptual scores. He “concluded that ecological demands 
and cultural practices are signifi cantly related to the development of perceptual 
skills; it has been shown that perceptual skills vary predictably as the demands of 
the land and the cultural characteristics vary” (Berry,  1966 , p. 228).  

    Navajo Knowledge 

 Another long-term study that shows the strengths of traditional community living 
comes from Pinxten and colleagues with a strong anthropological/sociological anal-
ysis of mathematical thinking (François & Pinxten,  2012 ; François, Pinxten, & 
Mesquita,  2013 ; Pinxten,  1991 ; Pinxten & François,  2011 ,  2012a ; Pinxten, van 
Dooren, & Harvey,  1983 ; Pinxten, van Dooren, & Soberon,  1987 ). Part of Pinxten’s 
argument for a strong, rich geometry that differs from western mathematics is 
refl ected in the following passage, taken from a small story he tells:

  Coming out of the pass he paused to eat, and then moved on in the direction of Badger 
Rock. He did not see the rock for a good time, since it was hidden by the black wall of 
Snake Rock extending right across you, from the south to the north. It had to be followed 
for a long time until one could see the small pass, which was hidden behind three juniper 
trees. They were the only trees sitting together on the edge of Snake Rock. When one did 
not know there was a pass behind them, one would keep following the rock for miles, with-
out being able to cross it. Chee had found the pass and started climbing the steep path, while 
Chuck barked at the herd, which was wary of following Chee up the slide. After a remarkably 

6 Visuospatial Reasoning in Other Cultures



207

short climb, Chee reached the fl at top of the rock, where all of a sudden he saw Eagle’s 
Nest, the small fl at stone, only a few yards away from him. At that point, he started looking 
for Badger Rock. A whole range of rock formations was spreading out before him, as far as 
the eye could see. He stood above the canyon of his parents, unable to see anything of it 
beneath him. He carefully looked at the rocks in the distance in front of him and recognized 
Badger Rock after a while. He could walk at ease now, almost on a fl at surface until he 
would reach a small canyon he had to cross, straight to Badger rock. When he would make 
a turn to the right at this standing rock called the Badger, he would walk away from the sun 
and reach the arroyo of Salt Water in a short time. (Pinxten & François,  2011 , p. 262) 

   Pinxten and François then attempt to summarise the richness of Chee’s mathe-
matics for non-Navajo:

  It is almost impossible to picture the real “landscape” Chee is tracking through; one is 
dwarfed by the enormous red mesas and other rock formations one wanders through, and 
no “straight” line will be defi nable as the shortest distance between two points one can see. 

 Chee works with the following elements in order to orient himself: 

1.  The sun; different positions function as a clock for Chee. If his spatial markers mismatch 
with the sun’s positions, he knows he is in serious trouble. 

2.  Certain conspicuous rock formations are major references or markers. 
3.  The general topological notion of path is essential, as are the cardinal directions. 
4.  The need for water and feed for the animals is essential in the notion of path Chee uses. 
5.  Adjacency and separation are two topological notions that have an important status in 

Chee’s movements. 
6.  Going up and down, front and behind, narrowness and wideness as nonmetrical spatial 

notions play a primary role in Chee’s orientation. 

 If we make abstraction of most of the actual rocks and mesas, dips, and canyons, we 
could draw a little map to represent the major features of the orientation system Chee works 
with. However, that would take Chee out of his context and into the schooled context we 
expect from him at the expense of the home knowledge. (Pinxten & François,  2011 , p. 203) 

   Pinxten with colleagues developed a geometry curriculum for the Navajo based 
on their rich cultural knowledge embedded in place and survival. This is considered 
further in Chap.   8     to illustrate that mathematics education can and should take 
account of the rich knowledges of communities. The dynamics of spatial boundaries 
is further elaborated by Ascher ( 1994 ). If the activity can continue on the other side, 
then the boundary is on Navajo land but if it has to be reversed or modifi ed then it is 
a boundary with non-Navajo land.

  The mountain ridge itself is an interrelated system of parts that are in motion and in the 
process of change. Further, the entire earth, of which the mountain ridge is an integral part, 
is in motion as well. The earth and sky are always undergoing expansion and contraction. 
… to the Navajo, the signifi cance is the processes of which the boundary is a part and how 
it affects and is being affected by those processes. …space should not be segmented in an 
arbitrary and static way.” (Ascher,  1994 , p. 129) 

   Thus the worldview is impacting on visuospatial reasoning of the Navajo provid-
ing relationships between places. The richness of visuospatial reasoning in an eco-
cultural context includes mental processing of richly connected places adding to the 
mental and emotional “mapping” associated with visuospatial reasoning.         

 Navajo Knowledge
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    Pacifi c Navigation 

 Navigating on land where there are some signs such as rocks and dips is one thing 
but navigating on the sea requires other extraordinary skills. Some of the most intri-
cate ways of describing place and space have come from the descriptions of navigat-
ing in the Pacifi c Ocean (Oceania). The following comments are based on earlier 
discussions by Akerblom ( 1968 ) on navigating in the Caroline Islands, Marshall 
Islands, and Gilbert Islands; and on the Caroline Islands by Lewis ( 1973 ); from 
Worsley’s ( 1997 ) journalistic style of writing; and from the Penn Museum of the 
University of Pennsylvania ( 1997 ) whose website provided dynamic images to 
assist understanding. Further work on the Marshall Islands navigation is available 
from Bryan ( 1938 ), Davenport ( 1960 ), and Spennemann ( 1998 ). However, Hutchins 
( 1983 ,  1995 ) provided a detailed explanation of the unique systematic visuospatial 
way of thinking of space used by Marshall Islands navigators. Uses of star charts in 
“wayfi nding” also occurred in the large Polynesian routes such as from Hawaii to 
Tahiti (Davis,  2009 ; Polynesian Voyaging Society, ~ 2003 ). Islands are out of sight 
and without a magnetic north compass, these sailors have sophisticated and skilled 
ways of travelling. Some sailors travelled thousands of kilometres and returned. 

 In the Caroline Islands, the star positions vary over the course of the year as the 
earth is on a tilt. A star chart had 32 positions. Sailors know an island’s position on 
a particular star direction and they have sea roads that are taken regularly which take 
account of the swells and currents. When sailors start off on a trip, they assess the 
strength of the swells and currents by noting how far off course they move. They 
then adjust their direction. According to Worsley, the star positions are less impor-
tant than the sea roads but they do provide a holistic visuospatial mental map on 
which to superimpose the sea paths. When travelling, the stars are kept between the 
halyards of the mast. Around each island there are usually two concentric circles for 
the limits of two kinds of birds. Swells also depict the position of islands when the 
boat is closer. In the Marshall Islands, stick charts represent the fl ow of swells 
around islands and divide up the plane so that a sailor can tell whether the canoe is 
on track for the island, or when coming from the other side has reached the dol-
drums behind the island. Curves illustrate the routes and sail positions to take 
account of the currents, refracted and defl ected swells. Close islands have different 
swell patterns. Davenport ( 1960 ) notes that more than one kind of stick chart may 
represent the island and sea information (Fig.  6.1b ). Furthermore, there are varia-
tions between the existing charts and the information they provide. Some provide 
more detail, others specifi c travel times or distances. Bryan ( 1938 ) noted there were 
three kinds of charts which he associated with the whole group, a part of the group, 
or as a general instruction (Fig.  6.1a ). Some are specifi c to given islands whereas 
others are more generic while others vary on the importance placed on either island 
locations or the swells. 

   Most important is the recognition of the sailing canoe being the reference point    
so that sailors give directions, along star lines including those yet to rise, of the start-
ing and fi nish islands and places, whether an island or a place on the sea, to the north 
or south of the travelling line (Fig.  6.1c , from Hutchins,  1995 ). As the canoe moves 
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along the travelling line they know from experience their speed, time, and likely 
distance. Predictions are adjusted accordingly as the stars confi rm position of the 
places in reference to the canoe. Sailors will wait for dawn and the bird fl ights 
before travelling on so they do not over sail their destination (Hutchins,  1995 ). 
Sailors have sea roads that are taken regularly and that take account of the swells 

  Fig. 6.1    Representations from the Marshall Islands. ( a ) Swells diagram (Davenport,  1960 , p. 22). 
Stick chart for learning places (Bryan,  1938 , p. 13). ( b ) Representation by Hutchins of the navigat-
ing system with the moving boat being the reference point (Hutchins,  1995 , p. 89)       
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and currents. Sea places are represented by a day’s sail ( etak ) or by being directly 
south of an island, and are named, for example, from Puluwat to Eauripie, whale 
1–6. The idea of a right-angle turn (breadfruit picker symbol), the trigger fi sh “map” 
also systematises the visuospatial images (Penn Museum,  1997 ). 

 The star charts with the moving stars around them provide visuospatial represen-
tations to assist the Caroline navigators to reason about “motion, relative position, 
and relative direction” (Ascher,  1994 , p. 149). While games are used to learn the 
main star positions initially using stones or coral, later their position from different 
sea places and islands are learned. Gradually the various games become more com-
plex. One game, island hopping, requires the names of islands on a particular star 
direction. Routes are combined and reversed in the games which have various nauti-
cal names. Dragging is a game in which the children give the position of places from 
a place which is not their home (Penn Museum,  1997 ). 

 However, these navigation systems are more than locating. They are a way of 
problem solving. They are elegant and effective ways for thinking in the head about 
position and movement. Interestingly the positional accuracy provided by these sys-
tems is embedded in the activity with an emphasis on connections and routes rather 
than lengths unlike scale maps in other navigation systems (Barton,  2008 ). The e tak  
brings together the navigator’s knowledge of rate, time, geography, and astronomy 
and used appropriately (not as a linear measure) to determine destination. It is a 
logical construct or cognitive map. 

 Watson-Verran and Turnbull ( 1995 ) argue that the cognitive map permits the 
knowledge to go beyond the local even though the Marshalles used wave swells 
which the Puluwatans did not. It can be extended to new situations. The importance 
of the visuospatial reasoning is that the knowledge is used contingent with the place 
and the environment at the time. The vast body of knowledge can be passed on 
encoded in song, ritual, testing   , mnemonics, group learning, connecting knowledge, 
and represented visuospatially with stick charts and stones on maps. The tacit 
knowledge and skills are also linked to the cognitive map for reasoning. The sets of 
information are coordinated but not necessarily in a unitising way as western mea-
surement expects. 

 Ascher’s ( 2002 ) thorough analysis of the stick charts and sailing techniques 
illustrate that the models are not intended to represent what is there like a map.

  [They] encapsulate and explain the system. When they are used by the Marshall Islanders 
for teaching, … they elaborate such depictions with words, but words alone would be insuf-
fi cient. Particularly for dynamic systems, diagrams    play a crucial role. They not only pro-
vide a way to visualize the interrelationships of the parts, but enable us to keep the entire 
system in mind while mentally manipulating or focusing on some part of it. 

 The essence of an explanatory model is its simplicity. … Essentials are phrased in terms 
of the geometric characteristics of the ocean phenomena─the substances of the land and sea 
and wind are recast into points, lines, curves, and angles, and the interplay of the phenom-
ena is recast into how these geometric aspects change and interact. (Ascher,  2002 , p. 114) 

   Ascher ( 2002 ) also notes that the young navigators lie in the water to feel the 
swells and that sailors will lie on the bottom of the boat to feel the swell. These 
spatial imageries like the tilting of the head to see the stars between the halyards 
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mentioned by Worsley ( 1997 ) illustrate the importance of spatial, bodily imagery 
given meaning ecoculturally in visuospatial reasoning.

  Numerical, spatial, and linear concepts in Melanesia, Polynesia, and Micronesia vary in 
accordance with distinctive physical environments and the social and cultural histories    
embodied in these Western assigned boundaries of the Pacifi c. (Goetzfridt,  2012 ) 

   One aspect that Goetzfridt mentions is the use of mnemonics for remembering 
star or geographic positions but in fact much of the memorisation is of a visual 
nature, the four points associated with a trip that forms a quadrilateral initially or 
trigger fi sh with different areas represented by the head, dorsal fi n, ventral fi n, and 
tail, together with places on the backbone for real or imagined places to assist with 
the navigation. The parts of the fi sh stylised as joined rhombus act as a metaphor for 
position and traversing the sea-lane. The use of fi sh names and many other distinc-
tive objects or imaginary creatures also aids memory. Thus is the scheme to assist 
the navigator from Polowat in the central Caroline Islands to Guam in the Mariana 
Islands. Similarly, the parrot fi sh probing at the reef hole enables the travel from one 
island to the next until the sailor arrives back at fi rst and catches the fi sh. The 
i- Kiribati envisaged the heavens as a giant roof with purlins associated with specifi c 
stars and through a story of travel over 150 stars could be named. Furthermore, it is 
in the visuospatial reasoning using trees and/or roots to discuss people in a group’s 
relationship with the land that metaphor is important (Goetzfridt,  2012 ).      

    Australian Aboriginal Astronomy 

 There is growing evidence that Aboriginal Australians knew of the movement of the 
stars and used them for calendric purposes and other practical purposes such as 
measurement of distance (Norris & Norris,  2009 ). Across the 400 or more Australian 
Indigenous languages and cultures, there are some similarities in stories related to 
the sun and moon. One story indicates that there was a long association between 
tides and moon and variation in tides. This is visuospatial reasoning in large space. 
From the Northern Territory comes this story.

  The Warlpiri people explain a solar eclipse as being the Sun-woman being hidden by the 
Moon-man as he makes love to her. On the other hand, a lunar eclipse is caused when the 
Moon-man is threatened by the Sun-woman who is pursuing him and perhaps catching up. 
These two stories demonstrate an understanding that eclipses were caused by a conjunction 
between the Sun and Moon moving on different paths across the sky, occasionally intersect-
ing. (Warner,  1937 ) 

   Norris and Norris ( 2009 ) suggest that a boomerang-shaped stone carving because 
of its juxtaposition to a man standing in front of the woman actually represents an 
eclipse. If so, Aboriginal Australians have provided some very early astronomy 
(these cultures are considered to have existed for more than 60,000 years). The stars 
are also used in calendars which are complex, with several seasons, and the appear-
ing of stars rising in a part of the sky may indicate the beginning of a cold season and 
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for deciding when to move for different food sources. The Mallee-fowl constellation 
(Lyra) appears in March when the birds build their mound nests and it disappears in 
October when the eggs are laid and could be collected (Boorong people of Victoria). 
Similarly, the rising of Scorpius tells the Yolngu    of Northern Australia that the 
Macassans from Indonesia will soon arrive to fi sh for Trepang. The dark patches of 
the milky way are called the emu in the sky by many Aboriginal groups (not all), and 
in Sydney can also be found the engraving of an emu (feet back) lined up with sky 
emu at the time when emus lay their eggs. The Yolngu also track Venus knowing it 
is “held” to the sun but also that it only rises in the morning on a few days each year 
when they hold their morning star ceremony for which they prepare over some time. 
Though information is now lost, the engravings by the Nganguraku    people on the 
Murray River cliff face are about the moon and sun, recording their movement in 
some way. The Wathaurung people of Victoria also built stone arrangements      , one 
line being east–west, other stones placed to be in line with the setting of the sun at 
the equinox (Norris & Norris,  2009 ). Thus visuospatial representations are used for 
astronomical purposes by Aboriginal people in Australia as early astronomers.      

    Circle Geometry and Straight-Edged Shapes 

 Not long after I fi rst began to explore the tile work of Portugal (Fig.  6.2 ) and Spain 
and the infl uences of the Middle East on these countries, I met Moustafa, a refugee 
in Australia from Afghanistan. He painted both landscapes and abstraction in min-
iature in circles. I asked him how he worked within the circle. Often he repeated his 
abstract design as rotational symmetry around the circle but other times he varied 
each sector. He fi rst divided 360° by the number of sectors, drew a radius, and liter-
ally used a protractor to draw in each radius for the number of sectors he wanted 
whether that was 12 or 16. However, the next step required considerable visuospa-
tial reasoning to ensure there was balance and no section of a sector dominated. 
Mostly he worked with curves carefully positioned on the sector. Colour too was 
carefully selected to ensure there was no dominance.    

   Figure  6.2  shows the basic circle constructions for developing a large range of 
tiled or painted spaces. Because of the interlocking spaces on the circle, one or more 
shapes are repeated and fi ll the space without gaps. Tessellations are the tilings of 
the same shape. The tiles join together without gaps or overlaps and with a pattern 
that allows the tessellation to continue in both directions. If two shapes are used it 
is a semi-tessellation. Some examples are shown in Fig.  6.2a  but the intriguing thing 
is how an artist can picture the shapes within the myriad of construction lines and 
create another design for straight-edged tiles or painted shapes. The circle designs 
are not all Islamic, but for the Moors and other Muslims they contained no images. 

 The extraordinary hollowed patterned arched ceilings of La Alhambra    (Fig.  6.2c ) 
are the most beautiful and amazing three-dimensional tessellations that illustrate 
extraordinary visuospatial reasoning. Architecturally, hollowed panels in ceilings in 
La Alhambra and the pantheons (Rome and Paris) make them lighter but still strong. 

6 Visuospatial Reasoning in Other Cultures



213

  Fig. 6.2    Visuospatial difference refl ected in tiles from around the world. ( a ) Circle construction 
lines and resulting tessellations La Alhambra, Spain. ( b ) Firenze duomo, Italy. ( c ) La Alhambra 
ceiling. ( d ) Tiles in Portuguese palace, 3D illusion. ( e ) 3D tiles on cheda Thailand         
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Domes and arches represent other marvellous architectural designs that portray 
visuospatial reasoning. Fine examples are the Sancta Sophia Turkey and the clev-
erly constructed duomo of Firenze by Brunelleschi with its internal spiral connect-
ing the inner and outer walls and providing a means of construction. The external, 
more recent tiling of the duomo (Fig.  6.2b ), the tiled fl oors of Pisa’s belltower, and 
the three-dimensional tiling of walls of chedas in Thailand (Fig.  6.2e ) and other 
parts of Asia must be some of the most exquisite tiling    in the world illustrating a 
strong link between visuospatial reasoning and creativity. In modern times, the 
“sails” of the Sydney Opera house with its modularised construction provides fur-
ther evidence of visuospatial reasoning in practice.  

    Creative Designs Across the World 

 Strong images from the Pacifi c are the sand drawings from Vanuata   . These continu-
ous curves are carefully crafted and associated with cosmology. The order in which 
each part of the fi gure is drawn indicates a strong overall visual image together with 
memory of order but the exactness is remarkable as shown in the fi gure from Deacon 
and Wedgwood ( 1934 ) shown in Fig.  6.3a . A strong sense of refl ective symmetry is 
evident. However, Goetzfridt ( 2012 ) emphasises the associated story encouraging a 
recognition of the emplacement of myth (Rumsey & Weiner,  2001 ).

   Ascher ( 1994 ) points out that some designs are repeated curves that may come 
from rotations or symmetries as shown in Fig.  6.3b  and which she associated with 
some of the  kolam  prepared by Tamil Nadu    women (e.g. Fig.  6.4b ) although they 
also have other symmetrical refl ected designs that can be incorporated in large 
designs (one or two refl ected symmetries) (Ascher,  2002 ). Interestingly she notes 
that the Siromoney have used the Tamil Nadu designs in computer rules such as in 
Logo, albeit in more straight rather than curved formats. It is noted that Ascher 
divided the  nitus  sand drawings into those with even-degreed graphs and those with 

Fig. 6.2 (continued)
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a pair of odd vertices, by the systems used to trace them as well as by the presence 
or lack of visual symmetry created by the tracing procedures. The  sona  decorations 
on embroidered cloth or sculpted wooden objects, masks, woven belts, hats, and 
other objects produced by the Bushoong for the Kuba exchange system of mainly 
Angola are copied as sand drawings by children (Ascher,  1994 ). They can also be 
analysed in similar ways. The men of Tshokwe in West Central Bantu    area create 
similar continuous line designs for signifi cant cultural purposes. These are topologi-
cally analysed by Ascher ( 1994 ). The Tshokwe place dots in rectangular format to 
divide the space and provide the structure (Fig.  6.4a ) but size may vary, and in most 
cases the vertices are of degree 4. (Some with odd vertices are actually being join-
able outside the rest of the structure.)

  Fig. 6.3    Creating designs in the Pacifi c. (a) One of at least 91 sand drawings recorded in Vanuatu 
(Deacon & Wedgwood,  1934 , p. 148). ( b ) Rotational and refl ective symmetry       in creating sand 
drawing using a base tracing, note the start (s) and fi nish points (f) (Ascher,  1994 , p. 53)       

  Fig. 6.4    Rows of dots used as markers for the curved lines to create the design. ( a ) Tshokwe 
(Central Africa)  Sona:  “the marks on the ground left by a chicken when it is chased” (Ascher,  1994 , 
p. 42). ( b ) Tamil Nadu  kolam : nose jewel that is embedded in other  kolam  (Ascher,  2002 , p. 65)       
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   Many studies of the symmetries of the beautiful Polynesian strip patterns such as 
those found in New Zealand  Aotearoa  have been made but visuospatial reasoning is 
evident in some of the designs described by Ascher ( 1994 ). D   ecisions were some-
times made so that colour usage did not follow the carved symmetry but rather cre-
ated a new idea in terms of symmetry loosely described as “juxtaposing one 
symmetry with another” (p. 170). Importantly while the ecology has infl uenced the 
designs,

  the harmonies, balances, rhythms, symmetries, and asymmetries …[are] related to and 
expressive of the structures that underlie the Maori belief systems. Complementarity, the 
relatedness of pairs through difference, and symmetry, the relatedness of pairs through 
sameness, are seen as organizing principles in much of Maori myth, religion, social life, and 
economies, … [including] the male-female complementary relationship, …the world of 
humans and the world of the gods. (Ascher,  1994 , p. 171) 

    Tapa     is often decorated with symmetrical designs. In Fiji,       stencils or stamps are 
used to repeat a design as individual blocks together with lines in regular patterns 
(Fig.  6.5 ) while in Tonga a board  kupesi  is prepared tying on curved and straight 
sticks into different patterns, using different triangular forms but also a plant motif 
with curved lines. Once the repeated pattern is rubbed directly on to the tapa placed 
above the kupesi and shifted along, then it is carefully painted along the rubbings. 
This is a group process so the making together of the  papa koka ’ anga  with the 
repeated pattern built along it using coconut sticks, then rubbing and painting 
together is an important part of pattern and design relationships. In Fig.  6.6 , various 
designs with rotational and translation symmetry are shown. Finally different 
colourings are applied. Finau (Finau & Stillman,  1995 ; Stillman & Balatti,  2001 ) 
linked this work to matrices for different translations to make a connection to 

  Fig. 6.5    Fijian tapa, 1977       
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 academic mathematics and to a variety of growing patterns in the background 
colourings or otherwise, all of which are pleasing and provide for creative variation 
in the tapa. As in PNG where group connections and group activity are just as 
important in the house construction or design, so it is in the creation of these Pacifi c 
designs.           Much of the tapa of PNG is unpainted but in Oro Province, free-hand 
designs with some repeated curves are common (Fig.   5.20    ).  

 Symmetry is one of the more obvious results of the designs created and often 
repeated by Indigenous cultures. It is evident that the artisans use systematic ways 
of making, creating, and recreating. The following, discussing embroidery and 
weaving of the Hñähñu: the Otomies   , Central America, is typical of most Indigenous 
artists in which detail, complexity, and cultural signifi cance in terms of relation-
ships ecoculturally are important.

  First, to become a traditional Otomi weaver is a life long process. A common situation is 
one in which there are several generations involved in creating woven or embroidered proj-
ects. That is, there is often a gathering that includes girls, mothers, aunts, grandmothers, and 
so on. Second, Otomi weavers and embroiderers must keep track of many counts of threads, 
and must make precise measurements. They must know the entire design from memory. 
The impressive part of the weaving or embroidery process is that the artist typically is not 
using diagrams    for the patterns, nor is that person using a ruler to measure distances. A third 
consideration is that the products fi nished by the artists (as is the case in many traditional 
contexts) often have important cultural signifi cance. Finally, it is important to mention that 
many kinds of weaving and embroidery designs are very time consuming to make. It is not 
unusual for traditional textile artists to take several weeks to make a work of their art. 
(Gilsdorf,  2009 , p. 91)     

   Symmetries are evident in the decorations from southern Africa. Signifi cant is 
the spatial embodied aspects of visuospatial reasoning in creating the designs. The 
 litima  designs

  Fig. 6.6    Tongan tapa designs.  Source : Finau and Stillman (1995). ( a ) Repeated rotated design 
with symmetries and a “perfect” colouring. ( b ) Repeated rotated design with symmetries and 
“imperfect” colouring but still attractive. ( c ) Various patterns incorporated into the repeated motif 
design. ( d )  Kupesi  board coconut fronds bend to form plant designs       
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  function as an extension of human action, and echoes the structure of the body. A painter, 
when drawing on the ground in explanation or preparation for mural painting, often draws 
with both hands. She begins at the top of an imaginary vertical, and the resultant forms on 
either side of this are simultaneously realized and are mirror images of each other. 
(Changuion, p. 35, cited in Gerdes,  1998 ) 

   The litima    designs consist of a basic square that is repeated or refl ected in the 
vertical axis and then a further two squares below are repeated or refl ected in the 
horizontal axis. In other cases, the change is also accompanied by a reversal of the 
dark and light areas. Many designs involve curved lines but there are also straight- 
edge designs. Despite the amazing diversity, each is beautiful, technically well done 
and well integrated in terms of the overall four-square design forming a new design 
unit. For example, some curved lines do not fi nish at a corner but join to a curve on 
the side of the next square. 

 Cherinda ( 2001 ,  2002 ) noted that colour can transform the same pattern of weav-
ing (a design motif) into different appearances (see Fig.  6.7a–c ). He provides us 
with a way forward in connecting artisan’s work to that of the mathematician as 
shown in Fig.  6.8 .

    The premise is that mathematical objects (ideas) produced by the learner in the process of 
weaving… can be applied for stimulating new mathematical ideas and for producing new 
patterns in the weaving of the mats as well. … It is the instances where I say that both are 
‘weavers’, versus both are ‘mathematicians’. (Cherinda,  2012 , p. 932) 

Math

Artisan

Learner

Cognition

twill
weaving

Products of art
(e.g. mat)

Mathematical ideas
(e.g. number
sequence)

Culture of
weaving

  Fig. 6.8    Cherinda’s diagram of ethnomathematics in terms of the mathematical learner.  Source : 
Cherinda ( 2012 )       

  Fig. 6.7    The artisan and learners’ designs.  Source : Cherinda ( 2012 ). ( a ) Artisan’s basic mat. ( b ) 
Highlighting with colour. ( c ) Another colouring       
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   Importantly, Cherinda details the visuospatial reasoning of students. For  example, 
he notes that one student said that you count over and under to copy a line of weave, 
that you look at what is there overall to know whether it is a good look or not. You 
look at what is above or below. To start a new phase, the student isolated the fi rst line 
of the weaving to copy. This is an important selective attention but also inductive 
reasoning. Cherinda noted that the student was able to create his own design, albeit 
by combining ones he had probably seen. These were created out of his mind. 
Another student too was able to count and reverse rows to create what they called 
beautiful designs. This affective aspect may or may not suggest recognition of sym-
metry as Cherinda claimed but it does indicate how affect is a critical aspect of self-
regulating    for a mathematical identity developed from an ecocultural perspective 
(Cherinda,  2012 ). 

 Cherinda perceived the connection between artisan and mathematical learner as 
bringing their own contextual knowledge to bear on their weaving and thus produc-
ing both inquisitive artisans and learners creating design in their own right (Fig.  6.8 ). 
Further argument on the process of learning visuospatial reasoning in schools is 
elaborated in Chap.   8    .    

 Weaving often creates three-dimensional objects. Adam ( 2010 ) worked with 
weavers of food covers indicating the ethnomathematics of the artisans and the 
visuospatial reasoning evident in deciding what modifi cations were appropriate. 
Adam provided some suggestions that she had generated from advanced academic 
mathematics. Weavers rejected one that would be too steep but considered one that 
lengthened the food cover. Gerdes showed how some African weavers took a fl at 
piece of woven mat and folded it to produce a cone shape container. The connection 
between fl at surface and fi nal product is not the same as the western view of surface 
area of a cone but there is embedded a cultural perception of size and purpose and 
strategies for modifi cation   . Many cultural groups make fi sh traps (Fig.   5.14    c), stor-
age containers (Fig.   5.15    a), baskets (Fig.   5.14    b–d), and masks (Fig.   5.14    c, d). The 
visuospatial reasoning in producing a slightly s      maller woven container compared to 
the woven lid is evident in the Timor Leste container (Fig.   5.24    b) or vice versa in 
the Buka basket (Fig.   5.14    c, bottom). This is not just a counting exercise nor a slight 
difference in length but one in which experiences provide visual images of what is 
required and what happens during weaving. A similar reasoning occurs with ikat 
weaving from Timor Leste (Fig.   5.24    a) where the lengths of thread are carefully 
determined so that the tie dying of sections of the skene of threads means that in the 
weaving process, the colour starts slightly before or after the previous row. A similar 
reasoning occurs with making a box and lid from a sheet of paper. The sheet for the 
lid will be about 6 mm shorter on adjacent sides (Owens,  2006a ). 

 Geometries are not necessarily linked to number as we found in PNG where 
visuospatial reasoning did not always occur with number and measurement although 
in some cases of gathering and counting food items there was a strong connection 
(see Chap.   5     and, for example, Paraide,  2010 ). Weaving and bilum making patterns 
may be, but are not always, counted to create designs. The visuospatial design imag-
ery and subitising are often suffi cient for the maker. 
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 However, there are examples from ethnomathematics studies that show the 
visuospatial representations support numerical ideas especially if numbers are asso-
ciated with spiritual values. In Mayan          cosmology, following the diagonals down 
and up a mat of three divisions to count 1–6 results in each row equalling seven 
which was associated with God in divine power and the resultant diamond pattern 
is linked to the signifi cance of the rattle snake. Priests traversing the steps of a 
temple also formed the diamonds that are associated with all of life in Mayan cul-
ture. The diamond was positioned representing space with blue diamonds for the 
seas on either side of the land in middle America, and for a sun on the sea from 
which it comes with a trajectory to the other sea. Like many Indigenous cultures, the 
rising and going down of the sun provided key reference points.

  Through the development of a sacred number system using mats with divine patterns, 
Mayan people possessed a sophisticated geometric and numerical creation story of their 
universe, whose fi rst record is related to sacred numerical values. Numbers, symbols, and 
words could direct the priests to corresponding numerical values. A study of Mayan prac-
tices demonstrates one use of an ethnomathematical—global perspective. Ethnomathematics 
serves as an academic counterpoint to globalization, and offers a critical perspective to the 
internationalization of mathematical knowledge through attempts to connect mathematics 
and social justice   . (Rosa & Orey,  2007 ) 

   It is important for ethnomathematics to take up the issue of some amazing math-
ematics existing in Indigenous cultures especially in terms of design. Their particu-
lar mathematical processes including visuospatial reasoning are to be valued, 
respected, and should be part of mathematics curriculum and education for the rights 
of learners as it is so important for their cultural and hence mathematical identities.  

    Settlement Patterns and Shelters: Place, not Just Position 

 In the Pacifi c, the patterns of settlement vary. However, in much of Polynesia rank-
ing, symmetry and position of housing is evidently signifi cant to the people. In 
         Palau, the long history of symmetry in the meeting house and in the village gave 
visuospatial representation to power in decision-making processes (Wickler,  2002 ). 
In Chap.   5    , the organisation of Trobriand Island villages was mentioned; the 
Trobriand Islands are relatively unique culturally in PNG in terms of hierarchy. In 
the Sepik PNG, other settlement patterns were evident. Land in PNG communities, 
like the Yolngu    map (Fig.   4.4    a) is often in patches, not only for sacred reasons. It 
may be due to intermarriage, status, the need for a variety of soils and environ-
ments such as fertile gardens, forest resources, grasslands, or food gathering 
resources such as swamps. Housing may be found on the various lands or even over 
the water. Hence the sections of housing at Tubusereia PNG over the water con-
nected by a walkway, sections on land nearby and further away could belong to the 
one family group. 

 Place markers for different sacred sites evident on Lamotrek Atoll, Yap, 
Micronesia provide another aspect of geometry (Metzgar,  1991 ,  2004 ). Such points 
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indicate lines and enclosure, a basic aspect of geometry in schools as well as tradi-
tionally. Similarly markers occurred on boundaries in most highland areas of PNG 
and in Hela and other areas of PNG drains demarcated the boundaries. The straight-
ness and slope of drains is another example of visuospatial reasoning (Fig.   5.9    , 
Edmonds- Wathen, Owens, Sakopa, & Bino  2014 ). Bellwood’s ( 1979 ) historic study 
drew on examples from all parts of Polynesia. He concluded that ecological factors 
including the nature of the environment (often relatively poor soil on coral bases), 
people living in that environment, social and political factors determine individual 
settlement location in terms of clustering and dispersal. 

 In west and central Afric   a, Eglash ( 1999 ,  2007 ) found that there was intentional 
design with social meanings mapped onto the scaling architectural patterns of 
houses. Circular houses in circles of circles and rectangular houses in ever- 
diminishing rectangles occurred. However, he found these scaling patterns, that he 
associated with fractals, in a wide variety of designs, for example, textiles, paint-
ings, sculptures, hairstyles, and religious symbols. The depth and richness of culture 
behind these is “lost” in summarising. However, one thing that Eglash has provided 
are useable tools for creating patterns on the computer and this will lead us into the 
next chapter. For example, he used the hairstyle cornstalks to assist in engaging 
Afro-American youth, and fourfold “beadwork” for creating a number of Native 
American designs. He notes:

  The presence of four-fold symmetry in Native American design is not a trivial geometric 
feature; rather it provides deep cultural connections spanning many facets of life, from reli-
gion to astronomy. Moreover its mathematical implications go far beyond that of refl ection 
symmetry, allowing exploration of processes ranging from transformational geometry to 
iterative computation. This is just one example of the more general need in ethnomathemat-
ics to expand from a focus on static images to include process-oriented frameworks that 
illuminate design in the making, and that offer students a creative medium they can appropri-
ate, for the purpose of expressing their own mathematical and cultural ideas. (Eglash,  2009 ) 

   In Brazil, de Castello Branco Fantinato ( 2006 ) found that belonging to a place 
and showing this by countering the expected way of driving on the road made it dif-
fi cult to assess by observatio      n people’s spatial knowledge and skills. Furthermore, 
women felt the quality of a garment to decide if they could buy it when unable to 
read the price. Thus in her brief report on the study, she illustrated how ecocultural, 
especially from a living and socioeconomic situation, impacted on people’s visuo-
spatial reasoning to solve mathematical situations. 

 In Chap.   5    , the role of visuospatial reasoning related to house building estab-
lished a strong case for culture and ecology being considered in discussions on 
visuospatial reasoning. In the USA, a similar situation occurs. Partly related to pre-
vailing winds and other factors, the Sioux tipi has three poles each planted at the 
vertex of the equilateral triangle (this triangle is not hard to achieve with two equal 
sticks as we saw in PNG). The long poles are tied at the top so the rope attached at 
the top falls to the centre of the triangle. While Rosa and Orey ( 2012 ) point out the 
signifi cance of the centre culturally, they do not make it clear whether the centre is 
actually found by using the medians (lines from vertex to middle of the opposite 
side) or whether this centre is estimated or determined by the three equal poles tied 
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at the top of the tipi and the rope falling. The centre is for the fi re for cooking, heating, 
and burning incense in the centre of holiness. It seems that their use of etic (outsider 
perspective) and emic (insider or empathetic perspective) ethnomodelling could be 
simplifi ed by talking of an ecocultural perspective of mathematics, especially visuo-
spatial reasoning. Sioux setting up their tipi is one further example to add to the 
collection discussed in this book. Thus the links between ethnomathematics, ethno-
modelling, and school experiences are seen to exist and be valuable. They are 
embedded in understanding visuospatial reasoning from an ecocultural perspective.     

    Moving Forward 

 One principle considered by the    Alaskan universities for cultural competence is that 
the curriculum “respects and validates knowledge that has been derived from a 
number of cultural traditions” (Alaskan Universities Council, ~ 2012 ). It then 
becomes evident that visuospatial reasoning taken from an ecocultural perspective, 
especially from Indigenous communities must be a consideration of curriculum. 
Can this be achieved in schools and in teacher education? In the next chapter, the 
arguments for the importance of this perspective for mathematics and mathematics 
education are presented. In Chap.   8     programmes that take an ecocultural perspective 
on education are illustrated showing the role visuospatial reasoning plays in the 
development of space, geometry, and measurement.                                                             
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    Chapter 7   
 The Impact of an Ecocultural Perspective 
of Visuospatial Reasoning on Mathematics 
Education 

                      At its best, schooling can be about how to make a life, which is 
quite different from how to make a living. 

(   Neil Postman, 1996) 

      The Challenge 

 Over the years there have been differences in the way researchers have viewed 
ethnomathematics (Shirley,  1995 ). Historical studies and studies of large societies 
(e.g. India) have referenced and evaluated non-western mathematics in terms of 
western mathematics rather than just referring to difference. This is evident in books 
and papers like those of Joseph ( 1991 ,  2000 ) who had grounds for emphasising the 
non- European bases of much mathematics to counter the Eurocentric view of math-
ematics. Another group of studies have looked at the mathematics behind the products 
of culture and made links with the western mathematics. These include studies by 
Eglash ( 2007 ), Fiorentino & Favilli ( 2006 ), Vandendreissche (REHSEIS-UMR7219, 
 2005 ; Vandendreissche, 2007) and Gerdes ( 1998 ,  1999 ). Some of these studies have 
used anthropological approaches and mathematical modelling to describe, for 
example, kinship relationships. This is evident in studies showing reciprocity and 
recursive patterns as shown in the Garma Project for the Yolgnu people in Australia 
(Thornton & Watson-Verran,  1996 ) or Eglash’s ( 2007 ) studies on self-similarity. 
However, other studies by Saxe (Esmonde & Saxe,  2004 ; Saxe,  1991 ,  2012 ), 
Wassmann ( 1997 ) and Dasen (Wassmann & Dasen,  1994a ) used both anthropologi-
cal and psychological approaches to illustrate the social cognitive psychology of 
knowing. This approach may result in assessment tasks that are itemised and not 
necessarily part of thinking in an actual cultural activity. Another group of studies 
have focussed on equity and expectations in learning in context including studies by 
Civil (Planas & Civil,  2009 ), de Castello Branco Fantinato ( 2006 ), Knijnik ( 2002 ), 
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Owens ( 1992b ,  1999b ),    Restivo et al. ( 1993 ), and Voigt ( 1985 ). Some of these stud-
ies of situated cognition (Lave,  1988 ) such as Carraher’s ( 1988 ) work on street 
vendors or Millroy’s ( 1992 ) work on carpenters have led to the idea of explicating 
tacit knowledge (Aikenhead,  2010 ; Frade & Falcão,  2008 ) as a key to enriching 
western mathematics with that of other cultures.        

 There is an overlap in ethnomathematics theory-building and work on languages in 
mathematics education (Adler,  2002 ; Barton,  2008 ; Clarkson & Presmeg,  2008 ; Setati 
& Adler,  2000 ). In a study of language, culture, and mathematics education, Matang 
( 2008 ; Matang & Owens,  2014 ) has shown the main difference between learning in 
the vernacular, a Creole (Tok Pisin or Papua New Guinea (PNG) Melanesian Pidgin 
English), or English is in terms of language of formal instruction. The children in 
vernacular schools spend at least 80 % of their classroom time learning to read and 
write in their own mother tongue unlike those in the Tok Pisin and English schools. 
The higher performance by children in vernacular schools is due to longer length of 
time spent by children in learning early number knowledge embedded in the counting 
number words. The digitally counting systems (e.g. Kâte), automatically reinforce 
the idea of composite units assisting children to construct larger numbers through 
the use of cyclic pattern numerals (i.e. 2, 5, 20) that are physically expressed through the 
use of fi ngers and toes, and hands and feet. The measurement study highlighted 
visuospatial reasoning in mathematical activities related to distance, volume, and 
area (see Chaps.   4     and   5    ; Owens & Kaleva,  2008a ,  2008b ). 

 Having considered in depth the value of ethnomathematics in terms of visuospatial 
reasoning in various place-based situations and the ecocultural nature of these 
activities, it is important to take a critical look at what this means for mathematics, 
mathematics education, and mathematical identity. Each of these will be addressed 
in this chapter. 

 It is often stated that over the ages people developed mathematics and expressed 
their ideas in various ways, in language, diagrams   , and actions. People shared their 
ideas about representation of systems and gradually a fairly dominant European 
mathematics was developed (Menghini,  2012 ). In some cases, mathematical ideas 
such as the relationship of sides of right-angled triangles were noted by many 
ancient cultural groups. However, it is also known that there are complex systems of 
mathematics that have often remained outside the European-infl uenced school systems 
such as Vedic mathematics. This book reinforces the importance of recognising 
diversity in mathematics and the creation of valuable mathematical ideas by sharing 
often unwritten mathematical processes and systems. By strengthening the impor-
tance of visuospatial reasoning in mathematics, I explore the richness of mathemat-
ics beyond the arbitrary symbols used in relationship and logic mathematics. It helps 
to establish the value of collaborative thinking in visuospatial reasoning much as 
Fermi 1  suggested as a means of problem solving. 

 While other authors have emphasised the importance of a consistency between 
culture and school for strong identity, I explicate how this occurs in practice. 

1   A collaborative estimate is made to solve these problems. For a brief explanation see  http://www.
edu.gov.on.ca/eng/studentsuccess/lms/fi les/fermiproblems.pdf 
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The model of identity as a mathematical thinker draws on ecocultural identity and 
establishes a strong mathematical identity by virtue of strong visuospatial reason-
ing being accepted in the learning. Data from some ethnomathematics projects in 
PNG and other places will be used to illustrate the challenges and values of this 
perspective. 

 Part of the purpose of encouraging an ecocultural perspective of visuospatial rea-
soning is to improve education especially in this important area of visuospatial reason-
ing. There is a justifi cation for both an emphasis on visuospatial reasoning and an 
ecocultural perspective in mathematics education. Many of the limited conceptions 
and lack of visuospatial reasoning can be attributed to the lack of links between 
ecocultural backgrounds and the mathematics of the classroom. By interpreting 
school mathematics in terms of the students’ background mathematics, it is possible 
to engage students in improved spatial sense and visuospatial reasoning. 

 In essence this chapter will develop the arguments presented and justifi ed in the 
previous chapters to show the importance and impact of an ecocultural perspective 
on understanding and valuing visuospatial reasoning. This chapter will bridge to the 
next chapter where an ecocultural perspective is established as signifi cant in terms of 
Indigenous cultures and transcultural/multicultural education and evidence of visuo-
spatial reasoning in practice in these contexts is given. Let’s fi rst turn to the impact 
of an ecocultural perspective and visuospatial reasoning on mathematics itself.  

    Impact on Mathematics 

 Mathematics can be considered as a way

  to explain and understand the world in order to transcend, manage, and cope with reality so 
that the members of cultural groups can survive and thrive (through) techniques such as count-
ing, ordering, sorting, measuring, weighing, ciphering, classifying, inferring, and modeling. 
(Rosa & Orey,  2012 , p. 3) 

   Visuospatial reasoning has a strong role to play in mathematics when people 
use techniques that are strengthened by visuospatial representations and skills and 
reasoning to make decisions, no matter how simple or complex. As Amos ( 2007 ) 
said about the many PNG women past and present who make bilums, “when making 
this bilum a lot (of) imagination is involved with vitalizing (sic) of the design or 
pattern”. This imagination in visuospatial reasoning brings life to the design. 

 Rivera ( 2011 ) argued that visuospatial reasoning was a legitimate way of thinking 
in mathematics. For example, π can be visually verifi ed by initially measuring the 
length of the diameter of a circle with a piece of string and then showing that its 
circumference is slightly more tha   n three times the diameter by tracing three copies 
of the string on the circumference. This is not a diffi cult task or unknown in PNG 
where round houses are common and people need to obtain materials for the walls 
(they also use six times the radius as the circumference, Fig.   5.10    ). Phi,  φ , whose 
exact value is (1 + √5)/2, is another example of an irrational number that could be 
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visualised by obtaining the ratio of the length and width of a golden rectangle 2  and 
whilst this shape does not seem particularly valued in PNG for deciding shapes of 
houses, the golden rectangle does occur. For example, when a house that has 4 × 3 
posts has half as much more fl oor area than the rectangular fl oor of the house with 
3 × 3 posts (Figs.  7.1a  and   5.13    ; Malalamai houses discussed in Chap.   5    ), then this 
is approximately in the form of the golden ratio (≈1.66). Visualising such ratios 
requires inferring particular relationships between parts. Rivera ( 2011 ) made the 
point that every square root of a non-perfect square number could be depicted by 
taking the length of the segment corresponding to the hypotenuse of the relevant 
right triangle. In some places in PNG, this was visualised in practice. For example, 
where rectangular houses are generally of the same size, the diagonal length as well 
as the side lengths are well known in       steps and in visualised lengths of ropes or 
saplings. In one area it was recorded that the villagers keep a rope with three knots 
(one at each end and in the middle obtained by folding exactly in half) and the 
diagonal rope with two knots (Fig.  7.1b ). These ropes are used to form right angles 
(Yamu, ~ 2000 ).

   While these are specifi c cultural examples, a general argument can be estab-
lished. Culture may be seen as a way of life in its entirety for a particular cultural 
group or society while mathematics, on the other hand, is a systematic problem- 
solving method purposely developed to solve the everyday problems of the exis-
tence of its members. Mathematics education can be seen as the processes and 
organisation that enable cultural knowledge whether that be in school or in the fam-
ily to develop and survive. The type of content knowledge is determined by the 
existing conceptual-knowledge frame of a particular cultural group including devel-
opments from various groups over time. This is further refi ned by the individual 
needs of learners as a prerequisite requirement to becoming an effective everyday 
problem solver. 

 An ecocultural perspective suggests that learning is not only about personal 
accomplishments and growth but also about the person’s function in a community’s 
activities and how they develop identities as mathematical learners and thinkers 
(Greeno,  2003 ). In particular, concern is for the interaction of learners with the 
ecocultural context—people and resources. Key to development of visuospatial 

2   For a brief note on the golden rectangle and associated golden ratio, see respectively  http://www.
mathopenref.com/rectanglegolden.html ;  http://www.goldennumber.net/golden-ratio/ 

  Fig. 7.1    Visuospatial reasoning about ratios represented by irrational numbers in western mathe-
matics. ( a ) Extending the house, half as much again. Malalamai, Madang Province, PNG. ( b ) Two 
ropes to form a right angle in PNG (Yamu, ~ 2000 )       
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reasoning is the opportunity for students to engage in constructing meaning of 
concepts and problems by engaging, trying ideas, visuospatially representing ideas 
mentally and physically in a way that they contribute collaboratively to each others’ 
communications verbally, materially, and visually. Ways of doing this need to be 
developed within the community of learners in an ecoculturally appropriate way. 
Thus there is no dichotomy between school learning of procedures and practical or 
applied procedures but rather the learning draws on the ecocultural experiences and 
approaches to develop the mathematics throughout the curriculum or learning 
sequences and to develop abstract mathematical reasoning. Visuospatial reasoning, 
explaining, and justifying are keys to this in terms of learning concepts and what it 
means to carry out these mathematical processes. It is likely that there will be a devel-
opment from intuitive reasoning to developing more sophisticated and integrated 
ideas and proofs where the oral and visuospatial precede and guide any later written 
reasons and proofs. Language plays a key role in these oral and shared visuospatial 
reasoning as well as what the community accepts as appropriate.    

 One of the purposes of mathematics is to solve problems and an ecocultural per-
spective encourages mathematics to be appropriate to the ecological and cultural 
context. Navigation    required the use of felt motion, visual stars and sea, a memory 
and application of the star maps, and a mental ready reckoner in visuospatial terms 
of the distance travelled in a period of time. These complex pieces of information 
formed the inputs into the visuospatial reasoning pursued by the navigators. Through 
practice, judgments over time made such decisions more reliable but I claim the 
reasoning was visuospatial although numbers may have assisted in minor ways such 
as counting days. There were representative maps held in the mind on which islands, 
sea places, and stars could be placed but if the navigator was at the centre then other 
places were dynamically moving.    Dynamic imagery is in fact an important part of 
visuospatial reasoning not only in navigation but also in other activities. For 
example, a person adjusting the position of posts, rafters, and other parts of a 
house, a bilum-maker growing a pattern towards the desired connecting shapes on 
a bilum (continuous string bag), or a person taking the next step in a string design 
(cat’s cradle) will all use visuospatial imagery even if they have used counting or 
measurement to support their imagery. Similar imagination occurred with knotting, 
fi shing, and carving. 

 Another signifi cant type of visuospatial reasoning was the recognition and use of 
patterns. When the Elders were discussing the weaving of the diamond, they rea-
soned about where to start the row, knowing from past experience and in the exam-
ple that they were working on what the pattern of overs and unders would result in 
the colour turning up in the right place to continue the slanting line of the diamond 
(see picture in prologue). Other patterns occurred, for example, in one place where a    
specifi c plant marked every fi fth pair of  kaukau  (sweet potato) mounds. The marker 
may have had other purposes such as a food, shade, or for decoration. However, the 
marker may not have been used all the time. 

 Another critical part of the patterns that may not have been as regular as we 
might expect from a western education are those embedded in the mental ready 
reckoners that matched certain spaces with others. These links were established 
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through experience in the ecocultural context   . For example, they occurred when 
men knew how much kunai grass to cut to cover a house whose fl oor area was half 
as much again as another one, or when women said they would need two  tulip  3  trees 
to make the 30 balls of string for a fi shing net, or the Elder went from describing 
the size of his house to that of the size of the garden needed to provide a feast for all 
the helpers required to build such as big house (Fig.   5.10    , Chap.   5    , Owens & Kaleva, 
 2008a ). These forms of reckoning were substantially in terms of related visual 
imagery associated with the place and aspects of the place. Like other tools in the 
visuospatial arena, decision making was based on best practice or probability of 
success. Experience largely informed the development of the mental reckoner and 
of its use in decision making. 

 One aspect of visuospatial imagery embedded in ecocultural contexts that has 
been given little attention in western mathematics is that of spatial imagery resulting 
from physical involvement in the activity. The ability to make decisions without 
necessarily explicating the reasons has been a part of air pilots skills but it is also a 
part of knowing the safety of a structure being built out of bush materials, the effec-
tiveness of an arrow or a trap or the balance of a canoe. Such visuospatial reason-
ing does not seem to have an equivalent in school mathematics. Odobu ( 2007 ) 
from    Manumanu village, Central Province, PNG provided a number of examples 
illustrating the spatial aspects of visuospatial reasoning derived from cultural 
activities (Fig.  7.2 ).

   Odobu provided similar examples of how people make sectors of circles espe-
cially in sharing and house building, make decisions about volumes (mostly thought 
of in terms of liquid and food for containers such as clay pots and baskets), and tell 
time especially for the Hiri trading and other activities that cover long periods like 
weeks and parts of a day rather than hours, minutes, and seconds. Odobu matched 
each aspect of geometry and measurement with typical examples from school text-
books which used PNG contexts but not necessarily from one place. These were 
similar to Jannok Nutti’s ( 2010 ,  2013 ) examples in which Sámi contexts were used 
but the basic curriculum is western as discussed in Chap.   8    . Throughout each of the 
discussions and examples given above, there is a bodily movement associated with 
the visuospatial reasoning. Odobu was less clear about the size of a kilometre and 
how that related to a hectare as this was school mathematics and his school experi-
ences had not associated this space with cultural embodied spatial experience. 
Nevertheless, his ecocultural mathematics was strongly associated with visuospatial 
reasoning—something that was commonly found in the teachers’ projects (some 
referred to in Chap.   5     and others in Chap.   8    ). His concepts were strongly established 
for ecocultural mathematics. 

 The question remains about whether visuospatial reasoning has the so-called 
logic of mathematics. I contend that it does when used by skilled people. Even the 
use of ‘by eye’ decisions in achieving a straight wall or a right angle between the 
walls of a house have logical connectors. There is logic in knowing that looking 
from further away along three or more sticks or people provides better for deciding 

3   Tok Pisin for two leaves coming from one leaf stalk; inner bark also used for tapa. 
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the straightness of a line or corner right angle. The decision making in itself is logical 
as seen in the following situations:

•    Looking from two or more directions for positioning the central pole of a house  
•   Noting which slopes for a roof are suffi cient for run off  

There are no clear methods of calculating areas. Area is a matter of practical experience
usually done by comparison. People know what areas look like and so they can construct
them through activities. For example, constructing base of a house, door of a house, base
of a canoe, canoe floor surface, clearing a piece of land for garden and so on.
The sides of surfaces are done in hand-spans or leg-spans.
For instance, one leg-span forward and one-
leg span across forms a space like this. shape like this

One can form many different shapes in the
similar way. The shapes may represent 
many different objects in traditional
cultures.

The measure of the area bounded by towns,
cities or plantations are too large to be
measured in mm, cm, or m. The area of
large dimensions are measured in metres
(sic) or hectares

Calculate the area of a triangular coffee
plantation in hectares.

Parallelogram is a shape obtained by tying two longer sticks and two shorter sticks end to
end and then skewing them to the right or left. Similarly, skewing a shape formed by four
equal sticks, you form rhombus. Parallelograms do not have a name in culture. However,
these shapes tend to tell people that house is going to fall.

Do activity done by people to resemble this
shape. Example: Two people walking in the
same direction. They are ‘w’ apart. One walks
a total of 'a' distance, while another walks 'b'
distance. The former walks longer than the
latter. If the distance between paths these two
people take remain same (w) and two paths are
parallel than area formed is a trapezium.

For the circle, kundu, base of highlands kunai house, clay pot, cut end of round object like
log. Measures are made by comparison. The designer could use the hand span, a piece of
rope or visual comparison. Sometimes a designer of the object thinks about the contents it
could hold say more food to feed larger family.
To draw a circle using a traditional method, hold with two hands a piece of rope, holding
one end of the rope firmly on the ground. Move another end around to form a round
shape. You are forming a circle.

8km      6km

a

Start            w finish
b

Unequal leg-span or hands-spans give a

  Fig. 7.2    Excerpt from student project on traditional measurement and shape construction (Odobu, 
 2007 )       
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•   Knowing that the closeness of the  morata  roof material depending on the length 
of the leaves makes a difference for waterproofi ng  

•   Knowing whether roof poles are close enough for tying on kunai thatching  
•   Preparing baskets of food that are large enough to satisfy an acceptable exchange  
•   Mixing materials in the right proportions to make a good paint, soup, or 

pancake           

 Hence I argue that an ecocultural perspective on visuospatial reasoning is 
mathematical and it enhances mathematical applications, ways of reasoning, and 
decision making.  

    Impact on Understanding Mathematical Learning 

 By taking the idea of situated cognition as a beginning premise, we can then begin 
to explore visuospatial reasoning in terms of ecoculture. For example, to what extent 
may experiences related to weaving impact on the reasoning of students about 
spaces and shapes. This may be quite different to the way a western student from an 
environment with television and structured blocks (such as pattern blocks with 
specifi c shapes) might both develop intuitive reasoning, conceptual reasoning, and 
purpose for reasoning. Furthermore, cultural values may become widespread in a 
society leading to reasoning from the cultural values.    De Abreu refers to this as 
valorisation.

     Cole’s [1998] version of cultural psychology has as a strength an emphasis on tool mediated 
action rather than pure cognition. Emphasis on action enabled the recognition of the hetero-
geneity of psychological processes of groups engaged in distinct social and cultural prac-
tices. It also allowed recognition of the distributed nature of human cognition. Thus, the 
action of a person does not need to be situated in one mind, but rather in an activity system. 
… However a weakness of Cole’s type of approach is that it does not yet provide a satisfac-
tory account of within-group diversity (de Abreu,  2002 , p. 174) 

   There is no doubt that the impact of various cultural tools used for mediating 
thought may indeed produce diversity within the group if values are considered. 
What one student or their family values may impact on the degree to which a par-
ticular tool is used. This is exacerbated by the many cultures that may be impacting 
on students and in some cases producing dissonance in thinking. In particular, 
perceptions and apprehensions of visual representations or reasoning from visual 
representations may take quite distinctly different perspectives. Owens and Clements 
( 1998 ) illustrated this by a scenario in which two people are viewing a house and 
while one views it from the perspective of being situated historically at a specifi c 
period and notices features related to this perspective, the other views it in terms of 
its suitability for their particular family. Again we see a link between diversity and the 
more psychologically embedded notion of attention which is a key to visuospatial 
thinking and reasoning   . 

 In her thorough analytical review of papers presented at conferences of the 
International Group for the Psychology of Mathematics Education, Presmeg ( 2006 ) 
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noted that education to encourage visualisation was critical for quality visualisation 
in learning and mathematical practice. To “fold back” to a visuospatial basis as Pirie 
and Kieren ( 1994 ) purported for the learner to then go forward with deeper under-
standing is a critical perspective to take on learning. Interestingly, one of the studies 
reviewed by Presmeg that illustrated this point was about a plumber having limited 
strategies but the studies discussed in Chap.   2     (Owens,  1999c ,  2005 ) were about 
classrooms in which visuospatial reasoning improved with activities involving 
spatial problems   . 

 Informal mathematics learning takes place outside the formal classroom environ-
ment but within the boundaries of a particular cultural group’s everyday activities 
and worldview and subsequent epistemology. Such learning has the advantage that it 
is not only familiar to the learners,    but importantly, it provides the necessary contex-
tual meaning to many abstract mathematical ideas and concepts taught in the formal 
classroom. It is also applying locally derived mathematics to solve the problems 
encountered in the particular ecology and culture. For example, in PNG, utilising the 
Indigenous knowledge within the formal classroom will not only enable the learners 
to construct meaningful mathematical relationships, but also provide an opportunity 
for interactions to occur between the learners themselves, as well as the teacher in 
explaining the many contrasting differences that exist across different cultural 
groups. The students can be learning in their home languages and using the words 
that hold powerful concepts embedded in the languages and using the wisdom that is 
thousands of years old    (Trudgen,  2000 ). The teacher can learn from the discussions 
if they are teaching cross-culturally and learning the language and culture. They can 
enhance school mathematics with the funds of knowledge available from form-
ing a community of practice with the families of the students (González, Moll, & 
Amanti,  2005 ). There are advantages for the learner if formal education takes 
seriously the notions of informal education, and in particular ideas that arise 
from ethnomathematics.  

    The Context for the Current School System 

 Most school systems are dominated by a fi nancially powerful and controlling 
government machine. These systems often stipulate a curriculum which is to be 
taught although the means of controlling the actual classroom practice may vary. 
In some cases, external examinations and testing    regimes provide high stakes for 
successful completion. These examinations are creeping into lower years of school-
ing. The examination items can control the curriculum in practice. In some cases, 
examination items are as close as possible to the curriculum intentions given the 
restrictions of the type of testing (usually restrictive paper-and-pencil testing) and 
the facilities for marking and assessing. Nevertheless, in spite of the examination 
regime, the curriculum generally remains dominant especially in the lower years of 
schooling although it may be interpreted by a textbook for teachers and students. 
The curriculum is generally developed by people in central government offi ces 
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working under guidelines from governments with varying degrees of input from the 
mathematics education researchers and teachers in the classroom. The impact of the 
government’s agenda may be less controlling in less authoritarian states but sys-
tems with neoliberal tendencies, consumerism and globalisation as westernisation 
may still prevent the diversity of mathematics developing (Atweh, Barton, & 
Borba,  2007 ). The centralised curriculum may prevent full potential in any system 
of mathematical reasoning for the student from a minority, with a fi rst language 
background different to the offi cial school language, from a class or gender group 
that prevents full opportunities for learning in some countries, or in a country that 
has been colonised. 

 Current schooling is strongly infl uenced by views of geometry and research into 
mathematics education that looks mainly at early geometry learning centred on 
naming, classifying, and defi ning shapes that were of interest to Euclid, the Greek 
mathematician two and a half thousand years ago.    Some researchers mainly see 
geometry as a way of strengthening the area of proof (Mariotti,  2006 ). Visuospatial 
reasoning is seen mainly as a way of reasoning spatially as part of mapping or locating 
(Clements,  2004 ) and later graphing in algebra to reason about relationships (Meira, 
 1998 ). However, visuospatial reasoning has a role beyond positioning as indicated by 
both NRCCG   ’s ( 2006 ) and Shah and Miyake’s ( 2005 ) comprehensive studies. 

 Space and geometry curricula in the primary school tend to focus on the shapes 
introduced in Euclid’s geometry. These begin with shapes like triangles, circles, 
rectangles, and squares. Curricula could begin with three-sided, four-sided general 
shapes and then name the subsets (Dreyfus & Eisenberg,  1990 ). Objects are also 
given names like cylinder, prism, and pyramid. This emphasis on shapes and on 
classifi cation is refl ected in the commonly    emphasised levels as outlined by the van 
Hieles (Battista,  2007a ; van Hiele,  1986 ) based on their studies of secondary school 
students. These have formed the basis of many curricula (Halat,  2007 ; Owens & 
Perry,  1998 ) and many research studies (Owens & Outhred,  2006 ). A look at these 
studies will indicate the approach taken to geometry education. 

 Many studies have used    van Hiele’s levels to indicate how students learn to 
name, classify, and defi ne shapes. Researchers have suggested that the development 
from Level 1 (recognition based on global perspective of a fi gure) to Level 2 (analy-
sis of the properties of fi gures) is not straightforward. This transition can be under-
stood in terms of students’ responses based on a realisation that aspects of a fi gure 
are important (identifi cation of features), an attempt to document more than one 
feature, and grouping of fi gures based on a single property (Pegg & Baker,  1999 ; 
Pegg & Davey,  1998 ). The transition from Level 2 to Level 3 is also problematic 
(Clements & Battista,  1991 ). Researchers focussed on class inclusion (for example, 
squares as a subset of rectangles) as a distinguishing feature of Level 3 (Currie & 
Pegg,  1998 ; De Villiers,  1998 ; Matsuo,  1993 ). However, Matsuo ( 1993 ) suggested 
students’ classifi cation of a square as a rectangle seemed to depend on the property 
that they focussed on. This might suggest alternative perspectives on classifi cation 
in which sociocultural experiences should be taken into account. Students might 
use known defi nitions or defi nitions they develop from perceiving certain proper-
ties (Shir & Zaslavsky,  2001 ,  2002 ) or procedural defi nitions that develop from 
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constructing shapes, for example in dynamic computer environments (Furinghetti & 
Paola,  2002 ) or simple thin elastic. It is at this point on constructing shapes and creat-
ing defi nitions that sociocultural experiences may lead to totally different perspectives 
on shapes. For example, beginning with weaving, curves, or paths as the dominant 
basic feature of various cultural groups discussed in Chaps.   5     and   6    , different 
properties and defi nitions may result in quite different systems of geometry.  

    Impact on Mathematics Education 

 Geometry    is grasping by exploring the space in which the child lives, breathes, and 
moves (National Council of Teachers of Mathematics,  1989 , referencing 
Freudenthal). In this statement, geometry is fi rmly situated in the space and place 
where the child is. The child explores this place both from the exploration based 
on his own perceptions and intuitions and from the infl uence of those around him. 
Through exploration, relationships of objects, their positions, their similarities, dif-
ferences, and features are established and generalisations drawn. 

 If you watch young children play, they will tell stories and establish relationships 
and roles. They may use trains with personalities, dolls, animals, cars, lumps of 
wood, or themselves in imaginative or adult roles to tell their stories. They are imag-
ining creatively and talking their own stories in their own language. Despite intona-
tions and long sentences, it is not generally standard school language. They will 
draw in any adults willing to participate by a few recognisable words or gestures. 
These imaginary activities will involve some form of mathematics such as the object 
that represents food being placed on a plate and held horizontally to bring it to 
another person or to a toy for tasting. It is clear that children have a strong sense of 
horizontal and vertical developed at least from experiences with gravity. Ness and 
Farenga ( 2007 ) noted that young children have a sense of location in space that has 
horizontal and vertical axes but also movement forward or back. Their world is not 
just that of topology as Piaget mentioned with spaces inside and outside or with 
proximity being considered as a signifi cant aspect of the space being explored by 
children. Furthermore, such imaginative play occurs in a space but that space is a 
place to these young children. As a result, the space takes on meanings that go 
beyond the simple geometric relationships. These meanings will become involved 
in the reasoning that the children use in play.    

 Early childhood contexts are mainly families (often extended) and in some cases 
institutions such as prior-to-school settings in which they may have contact with 
only a few other people on a regular basis. Children are developing relationships 
with signifi cant others whose interaction with them is often dominated by cultural 
mores about these relationships, what is considered appropriate ways of permitting 
children to learn and what are appropriate content for them to learn. This includes 
the spatial experiences provided to children and the various representations associ-
ated with these experiences. It will infl uence the way in which children can interact 
with the spaces and objects around them. 
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 Language is a dominant aspect of these contexts. Multilingual contexts can 
both enrich but also hinder development especially when the child fails to learn any 
language well (Clarkson,  2009 ; Valdés,  1998 ).    Values are a strong infl uence in 
determining the selection of experiences that signifi cant others provide for their 
children (Walden & Walkerdine,  1982 ). These are particularly relevant in experi-
ences that may differ by gender but they also impact on the dominance of labels for 
shapes in western education home and school situations. They are also important in 
the value put on place and the visuospatial reasoning associated with valuing place. 
The sociocultural background of the child will be infl uencing the way in which 
these relationships are described and perceived. Geometry is the abstraction of these 
relationships which are then used for further exploration and development of ideas. 
Geometric reasoning then is “the invention and use of formal conceptual systems to 
investigate shape and space” (Battista,  2007a , p. 843). However, “formal” may be 
specifi c to a cultural group. 

 Visual and language knowledge are combined to provide an understanding of 
shape and space agreed upon together as people interact over time from an early age 
(   Clements & Sarama  2007a ,  2007b ). Descriptions of specifi c experiences may be 
pragmatic arguments but they are interpretations of mathematical activity and social 
construction of concepts (Patronis,  1994 ). For example, a class of 16-year-olds took 
adjacent angles whose sum was a straight angle and showed that the bisectors of the 
angles were perpendicular, relying on angle measurements for “proof”. Even in 
dynamic geometry environments, students continuously move from “spatio-graphic 
geometry” to “theoretical geometry” when elaborating a proof. The student uses the 
fi gure to make conjectures or to control results, then shifts to using defi nitions and 
theorems, then goes back to the fi gure and so on (Laborde & Capponi,  1995 ). This 
approach appears to occur early. Students apply different cognitive actions such as 
attending to features like “it’s pointy”, to decide on prototypical images (such as the 
equilateral triangle for triangles), to dynamic changes like sliding or pushing images 
to transform into another shape (Clements & Sarama  2007a ,  2007b ; Lehrer, 
Jacobson et al.,  1998 ; Owens,  1996b ).    This pragmatic activity-based approach to 
arguments is closely akin to that found in Indigenous communities who discuss 
their house construction to make decisions. No single person is expected to make 
the decisions or to have a too restrictive rule-bound approach to the geometry 
involved (villages in PNG). 

 Tessellations can be found in many cultural groups. These may result in designs 
that involve Euclidean shapes but they are frequently developed from circle con-
structions as in Middle Eastern art (Critchlow,  1992 ) or weaving (Cherinda,  2001 , 
 2002 ). The progression of western students’ knowledge of tessellations is not well 
 understood (Callingham,  2004 ), with the exception of an array of square units 
(Outhred & Mitchelmore,  2004 ; Owens & Outhred,  1998 ). There is a development 
based on visualising the coverage of the area with tiles which results in seeing the 
structure of the tessellation. Callingham ( 2004 ) reverted to using the van Hiele levels 
as a way of describing students’ understanding of tessellations. Most students could 
describe an array of squares giving the name, informally or more technically 
describing the array and explaining the transformation to make the array. For other 
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shapes students were at the visualisation level and could only recognise and name 
shapes. Whether this was a sociocultural result or not was not explored. Nevertheless, 
the studies referred to in Chap.   2     show how students can develop a sound pattern 
imagery understanding of tessellations while studies of weaving indicate an alternative 
understanding of tessellations. 

 The South    African curriculum has emphasised development of visualisation as 
critical for geometry in the early years (Kuhn, personal communication, 1998). 
Another programme that moved away from the van Hiele development was provided 
by the  Count Me Into Space  s      tudies (NSW, Australia, Department of Education and 
Training) which emphasised developing strategies for investigating, visualising, and 
describing rather than just classifying shapes. Nevertheless, the same shapes such as 
triangles featured strongly in these programmes. Transforming shapes was seen as a 
strategy for exploring shapes and visualising rather than as a way of using rotation and 
refl ection to prove congruence, as many curricula do (Gutiérrez,  1996 ). 

 A large study illustrates this interaction between formal school and the child’s 
intuitive learning. Appropriate classroom experiences were designed

  around children’s everyday activity related to (a) perception and use of form (e.g. noticing 
patterns or building with blocks), leading to the mathematics of dimension, classifi cation, 
transformation; (b) wayfi nding (e.g. navigating in the neighborhood), leading to the math-
ematics of position and direction: (c) drawing (e.g. representing aspects of the world), lead-
ing to the mathematics of maps and other systems for visualizing space; and (d) measure 
(e.g. questions concerning how far? how big?), leading to the mathematics of length, area, 
and volume measure. (Lehrer, Jacobson et al.,  1998 , p. 170) 

   The emphasis here is on activities that are discussed in terms of using form, 
wayfi nding, drawing, and measuring which are all seen as everyday childhood 
experiences. These are universal activities but practiced differently in different soci-
eties (Bishop,  1988 ; Dehaene, Izard, Pica, & Spelke,  2006 ). Space and geometry at 
this stage consists of concepts such as dimension, classifi cation and transformation, 
position and direction, maps and other systems, and measuring which become both 
the geometry and the tools for exploring space. Again each of these appears to be 
universal but within each there is latitude for cultural difference and difference 
over time. 

 Processes for exploration in early geometry include inventions of ways to repre-
sent space, conversations that fi x mathematically important elements of space such 
as properties of fi gures, argument, and justifi cation around activities that involve 
manipulative tools or images, and narrative around what learners have done in 
stages, what they know informally and intuitively, and what they then own as part of 
their mathematical knowledge (Lehrer, Jacobson et al.,  1998 ). Such learning 
requires increasingly more sophisticated investigating and visualising; describing 
and classifying (Owens, McPhail, & Reddacliff,  2003 ). The link between visualis-
ing and investigating and geometry is visuospatial reasoning.    

 There is no shortage of studies that have now taken cultural competence of teachers 
seriously in education (e.g. Averill et al.,  2009 ). We discussed this earlier in refer-
ence to Indigenous education especially in Australia in supporting the role of Elders 
(see Chap.   3    , Owens et al.,  2011 ,  2012 ). The Sámi in Sweden established a Sámi 
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Handicraft School for adults to specialise in the various crafts such as knives with 
handles carved from reindeer horn for men and traditional clothing for women, and 
ways of thinking in their culture supported by revitalising their language.    At the 
same time, Sámi schools for children were established “to pass on norms, values, 
traditions, and cultural heritage” (Jannok Nutti,  2013 , p. 58) with teachers who were 
fl uent in at least one of the Sámi dialects. The Sámi Handicraft Centre, supported by 
the museum, also established a programme to bring to schools. With model rein-
deers (on wheels) and sleighs, the traditional equipment included ear-marking tools 
(each reindeer is marked by the owner’s geometric mark), ladles from beech tree 
boles used for drinking, reindeer skin pouches for coffee that folded as the coffee 
was drunk, ropes, and easily transported  lávvu  (cone-shaped tent). 

 In the school hall, the children simulate a trek to the reindeer and set up camp 
learning about

•    The lightness and minimal space needed for the trek  
•   How to tie different knots for the shapes  
•   Sizes, spaces, and uses of the different artefacts    

 The children learn to recognise different geometric marks by making them on 
“soft” (recycled foam) ears attached to the model reindeers. Adults and children 
learn how to cut to size the desired clothes and shoes, how to sew them and how to 
make the important decorative patterns. In practice, reindeer herders and their fami-
lies learn to track the reindeer and to map their routes, and are able to lasso their 
own reindeers and place them in their own corral when the reindeers are herded in 
summer. From the hundreds moving around quickly the skilled reindeer herders can 
recognise the markings on the skins of the calves of their own herd. This is a quite 
extraordinary visuospatial skill. The Sámi have their own approach to mapping 
based on the north, the rivers, and the reindeer routes. Much of the skill of the Sámi 
is in the ecocultural perspective taken to visuospatial reasoning around activities 
that relate to geometry and measurement (based on two personal visits, several oral 
presentations by Jannok Nutti, and Jannok Nutti,  2008 ,  2010 ). Jannok Nutti pro-
vided a summary of her earlier research Jannok Nutti ( 2007 ) into the mathematics 
of Sámi reindeer herders and handicrafters as follows:

  there are several conceptions, for example different names for reindeer herds based on the 
approximate number of animals. Unusual reindeer, for example animals with distinctive 
colours, function as support in counting or approximation of the wholeness of the herd. This is 
because reindeer herders easily recognise and identify this reindeer and if some of them are 
missing the herd is incomplete. The number of branded reindeer calves was counted by making 
marks on a wooden stick, by saving part of the ears of the branded calves, or by making notes 
on a piece of paper. Locating was made possible by well known objects in the natural environ-
ment, by the wind, or by rivers. The cardinal points were based on the landscape, the rivers, or 
lakes and the valleys around them. Body measurements were used. Depth of snow and water 
was measured with a stick or a rope and body measurement units, or with the help of the 
complete body. Distance was measured by the time it took to walk, by sound, or by sight. 
The concept of  beanagullan  is an example of a unit of measurement of distance.  Beanagullan  
can be translated as the distance at which a dog’s bark can be heard. Eight seasons divided the 
year and time was regulated by heat, light, or seasonal activities. The designing activity involves 
designing of buildings and artefacts. (Jannok Nutti,  2013 , p. 61) 
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   Each of the mathematical activities given in this paragraph involve a considerable 
amount of visuospatial reasoning as well as skills, and most relate to geometry or 
measurement of the environment, a cultural activity, or ecological response. Thus an 
ecocultural perspective of visuospatial reasoning is well exemplifi ed. 

 Jannok Nutti showed from an action research study that:

  teachers changed from a problem-focused perspective to a possibility-focused culture- 
based teaching perspective characterised by a self-empowered Indigenous teacher role, as a 
result of which they started to act as agents for Indigenous school change. The concept of 
‘decolonisation’ was visible in the teachers’ narratives. The teachers’ newly developed 
knowledge about the ethnomathematical research fi eld seemed to enhance their work with 
Indigenous culture-based mathematics teaching. (Jannok Nutti,  2013 , p. 57) 

   The self-empowerment of teachers who had to creatively make use of Sámi    
cultural knowledge and through those experiences develop students’ mathematical 
knowledge came from working together and their interest to attend seminars about 
Sámi mathematics, mathematics education, and Indigenous education. Thus the 
notion of ecocultural context becomes important in the self-regulating   , affective 
learner directly, and through the social competencies of the learner and ecocultural 
identity (Fig.   1.2    ). Furthermore, the teachers were responsive and affect was a part 
of their developing mathematical identity:

  The teachers’ active engagement, and visions of culture-based teaching and its implementa-
tion were central. They tried to rediscover or reinvent Sámi culture in a mathematics school 
context. The concept of “rediscovery” led to joy and dreams, but also to mourning for lost 
knowledge and made the concept of “mourning” visible. (Jannok Nutti,  2013 , p. 69)    

   It seemed that the Sámi cultural theme lessons with ethnomathematical learning 
were more productive than providing standard textbook type problems with a Sámi 
context. Teachers who followed this latter strategy were concerned that they needed 
to teach the students the national curriculum for them to become independent. 
Furthermore, there is other evidence to suggest that using cultural activities to teach 
mathematics can result in improvements in national assessments (Lipka & Adams, 
 2004 ; Meaney, Trinick, & Fairhall,  2013 ). 

 Other ecocultural situations have also illustrated the importance of visuospatial 
reasoning in mathematics education. Lipka, Wildfeuer, Wahlberg, George, and Ezran 
( 2001 ) illustrated how to introduce elastic geometry, or topology, into the elementary 
classroom through visuospatial reasoning using intuitive, visual, and spatial compo-
nents of storyknifi ng 4  as well as other everyday and ethnomathematical activities.  

    Tacit Knowledge in Visuospatial Reasoning 

 Frade and Falcão ( 2008 ) discussed the issues of making implicit knowledge explicit. 
We can generalise to say that people have a sense of area (tacit knowledge) devel-
oped through sleeping, gardening, and house building in particular. People are able 

4   For an example, see  http://aifg.arizona.edu/fi lm/storyknifi ng 

Tacit Knowledge in Visuospatial Reasoning

http://dx.doi.org/10.1007/978-3-319-02463-9_1#Fig2
http://aifg.arizona.edu/film/storyknifing


238

to use this idea of area to make judgements such as the estimated amount of material 
needed for a house of a particular fl oor size. Many participant researchers referred 
to the pacing of (the length of) a garden as a measure of a garden. However, people 
would visualise a garden by knowing its length. Some visualised the number of 
kaukau mounds, others visualised a garden with a common width. Similar comments 
could be made about fl oor plans and roof areas. The static environment provides 
some mathematical examples whereas mathematical thinking occurs during the process 
or activity. By making these points explicit, teachers can reduce the discontinuities in 
knowledge and hence build a fi rm basis for school mathematics. 

 In PNG’s measurement study, quantities were provided on numerous occasions to 
indicate amounts but these were frequently indicative of approximations or possibili-
ties like round numbers are used in western societies. Dehaene et al. ( 2006 ) noted a 
similar effect among the Mundurukú speakers of the Amazon, South America when 
they mentioned “fi ve” or “a handful” to refer to displays of fi ve up to nine dots or 
using “four” or “a few” when fi ve dots were presented. 

 Mathematical features such as shapes of bilums, pigs, holes, and houses were not 
mentioned in reference to volume; they were assumed by sight. However, length 
was seen as an important “rule-of-thumb” way of determining volume. For example, 
a length of string or part of the forearm was linked to the volume of a bilum, or the 
girth of a pig to its volume and hence its mass. Nomographs and ready-reckoner 
tables are possible equivalents to these mentally stored Indigenous knowledges. 
Nevertheless, the lengths that were referred to in describing a house did recognise 
the basic shape of the house. Thus radii for round houses or lengths of the sides for 
rectangles were mentioned together with heights. 

 One should also note the sophisticated ability of people to estimate needed 
amounts, for example, water for  mumu s 5  or garden areas. In each case, a good sense 
of comparative rates is applied, based on previous experience rather than on a math-
ematical calculation of volume. For this reason, comparisons are frequently made and 
confi rmed by a group of people when payment or decisions involving sizes of mass 
or volume are made. The visual reasoning dominates over the numerical reasoning 
although numbers will be called upon to support a discussion. In other cases, the 
number rather than the size will dominate so long as items are roughly equal in size.    

 If we turn to the issue of engaging students in school mathematics,

  in reality, many students do not see the need to learn school mathematics further adding to 
barriers of meaningful learning of mathematics as many of these formal mathematical 
methods are viewed by students to be inappropriate in solving many everyday practical 
problems at hand … Ethnomathematics, unlike the school mathematics, is both context- 
relevant and problem-specifi c thus provides the necessary linkage between the everyday 
cultural practices of mathematics and the teaching of school mathematics. … Recognition 
of students’ ethnomathematical knowledge also increases their self-esteem, which in turn 
increases their performance on school mathematics. (Matang,  2001 , pp. 2, 4)   

 D’Ambrosio ( 1990 ) also raised the relevance of mathematics and the importance of 
self-worth as signifi cant for mathematics education and aspects of tacit knowledge 

5   Food cooked in the ground using hot stones (see Fig. 5.12). 
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in visuospatial reasoning. A greater appreciation of the thinking behind out-of- school 
mathematics and school mathematics will bridge not only the conceptual-knowledge 
barriers but also the motivational barriers to learning. The teacher is no longer the 
sole transmitter of knowledge but knowledge resides within the community and 
community knowledge is valued. The teacher is a learner in the community of 
the contextualised classroom. As D’Ambrosio said in 2004 “ethnomathematics is 
the backbone of mathematics” 6  without which mathematics will not stand up and be 
of assistance to society. 

 Around the world, including PNG,    curricula have become more proscriptive in 
the last 15 years. Little attention was paid to ethnomathematics. However, current 
mathematics curricula under reform began the process to include a “wide variety of 
rich problems that: (a) build upon the mathematical understanding students have 
from their everyday experiences, and (b) engage students in doing mathematics in 
ways that are similar to doing mathematics in out-of-school situations” (Masingila, 
 1993 , p. 19). The details and analysis of PNG research provide sound evidence that 
ethnomathematics should be taken into account in curricula development and imple-
mentation. Mathematics teaching that is contextualised and concept oriented (rather 
than procedural) implies that teachers must incorporate students’ ethnomathematical 
knowledge into the planning of learning experiences. “In the long term this will not 
only make mathematics to be a meaningful and refl ective subject but relevant to solv-
ing everyday problems found in a complex and an evolving technologically- oriented 
society” (Matang,  2001 , p. 7).  

    Language and Concepts in Mathematics Education 

 Concepts are established by language so it is important to recognise the range of 
ways by which groups indicate measurement attributes. The diversity and uncer-
tainty by which speakers provided words for the commonly used school terms of 
volume, mass, unit, and composite unit (Chap.   4    ) indicated that most communities 
need to consolidate their Indigenous knowledge and determine how best to refer to 
these ways of thinking and acting in their language and then to appropriately link to 
school mathematics either by a clause, phrase, or single word. The mostly oral 
languages are rapidly changing and being overtaken by Tok Pisin (the main creole). 
In areas with long contact with English around Port Moresby, the language Motu 
has many transliterations (English terms sounding like Motu words) for mathemati-
cal concepts. This was also prevalent in Maori in New Zealand  Aotearoa  prior to the 
establishment of  te reo Māori  terms for mathematics (Meaney, Trinick, & Fairhall, 
 2012 ). Linguistic ways of comparing vary (Smith,  1984 ). For example, there may 
be a limited number of comparative adjectives or very general concepts like size. 

6   Keynote address: International Congress on Mathematics Education 10, Copenhagen, Denmark, 
2004. 
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Other languages have a wide variety of terms for “smallness” or “largeness” which 
was evident in our PNG data (see Chap.   4    ). 

 In each situation, the use of visuospatial reasoning will assist the community to 
determine what might be a good way of describing school mathematical terms 
in local languages. For example, if the visuospatial mental image for a preposition 
indicates one idea, how might it be modifi ed for another related concept. If num-
ber words are used for different groups of objects, then how can the language 
provide alternative abstractions for school arithmetic   . Alternatively, as you will 
fi nd in the discussion on elementary schools described below, only the treasures 
from the language are used for mathematics rather than taking a whole language 
approach. In other words, the strengths of cultural practice associated with lan-
guage that provide alternative abstractions or related abstractions for school math-
ematics might be used. An alternative abstraction might be the importance of 
“heaps” in spatial arrangements. Another abstraction might be the idea of “a com-
plete group”. In measurement, the idea of estimate might be strong as well as 
ratios for comparative lengths, volumes, and areas. The idea of comparing and 
measuring with a unit might be evident even if the word for unit still needs to be 
derived. 

 There is no doubt that there are culturally different concepts that are in some 
ways more complex but abstracted. The number for deciding equality may always 
be associated with quality. Yet it is used consistently. Number might be an initial 
approximation for equality when volume is the main equaliser. This is evident in 
exchanges based on pigs. Exchange systems are complex yet well established math-
ematically without reliance just on number. Does this go beyond Davidov’s ideas of 
abstraction (White & Mitchelmore,  2010 ) in which concepts in mathematics associ-
ated with different objects or constructs are eventually abstracted to a general math-
ematical term such as angle? It seems that western abstractions will dominate 
discussions on this issue due to global infl uences. However, it is important to recog-
nise that there are equally important worldviews and abstractions in different eco-
cultural situations.  

    Impact on Mathematical Identity 

 The main purpose for taking an ecocultural perspective to both mathematics and 
visuospatial reasoning is its impact on the person. The studies on mathematical iden-
tity cited in this book relate to adults and teachers. However, if a teacher has devel-
oped their identity as a mathematical thinker from an ecocultural perspective, then it 
is likely, as Fig.   1.2     suggests that the teacher will infl uence the students in a similar 
way. For example, the lecturers at UoG had a signifi cant impact on their students—
the preservice and in-service teachers (see examples in Chap.   8    ). The teachers in turn 
were preparing classes taking an ethnomathematics, often ecocultural, perspective as 
they made many references to the landscape, the environment, and people’s ways of 
living within the environment. 

7 The Impact of an Ecocultural Perspective of Visuospatial Reasoning…

http://dx.doi.org/10.1007/978-3-319-02463-9_4
http://dx.doi.org/10.1007/978-3-319-02463-9_1#Fig2
http://dx.doi.org/10.1007/978-3-319-02463-9_8


241

 Kono ( 2007 ) illustrates the impact of culture on his planning for teaching. 
Interestingly, he developed a number of mathematical ideas that were not from a 
standard textbook. First his cultural identity is expressed   :

  Mathematical concepts and principles are involved in most of the handiwork of the indig-
enous people of Papua New Guinea. These works are often overlooked and hence alienate 
the thoughts of mathematics learner. This makes the learner to think that mathematics has a 
foreign origin and has no relevance in our socio-cultural contexts. 

   Then he illustrates the weaving patterns including the “three up—three down 
[ diagonal ], chevron, V [vertical refl ections of each other] and block” (similar to the 
 diamond ). He notes the lines of symmetry of each (0, 1, and 2) and says

  Students should be told to look at the pattern of the weaves rather than the shape of the 
complete work. The symmetry lines are being darkened. Instead of asking the students to 
draw what is in the textbooks the teacher can encourage the students to improvise strips of 
materials such as papers, bamboos, … to create patterns for themselves from weaving’ 

   He suggests they could do these in other subjects if necessary. He then continues 
to produce some mathematics which is original to his own exploring of the visuo-
spatial representations of shapes. His report continues in Fig.  7.3 . 7  

   It is evident that the teacher was developing his mathematical reasoning from the 
visuospatial representations established through cultural learning and about which 
he was able to reason in an original fashion. These ideas were not covered in his 
own education. 

 One aspect that was strongly developed in the different teachers’ projects was the 
use of visuospatial representations in village objects (houses, traps, bilums, carvings) 
and village activities (selling food, playing games, imitating parents in hunting, mak-
ing objects, building houses, even arguing) to recognise mathematics. The teachers 
often said the mathematics was not necessarily recognised by the Elders as mathe-
matics. The teachers only thought of mathematics as school mathematics up until 
they developed their projects but they continued to think in terms of the school syl-
labus in terms of topics. However, they now extended their conceptualisations to 
incorporate traditional or contemporary cultural ways of thinking and doing. Pepeta 
( 2007 ) espoused this for his Enga community in Hawks’ land 8  around Wapenamanda, 
noting his cultural identity. He listed the activities he then developed from two kinds 
of houses (round house for men and rectangular house for women) (Fig.  7.4 ).

   He also provided a description for a game  bras fl aua  (like Happy Families) 
associated with algebra, and woven bands associated with shapes and correspond-
ing angles. It was very common for teachers to apply the ecocultural representations 
to school geometry shapes but behind this was knowledge of how the shapes were 
made. For example, how the surface area of the cone roof of a round house is 
covered with kunai grass, bundle by bundle, or planks placed vertically around the 

7   Some modifi cations to the text were made to describe angles rather than to use letters on the dia-
grams . Some diagrams have been omitted. 
8   He referred to his totem and his ecocultural links with the land. 
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The lines can be constructed in two ways: one, by drawing the lines to meeting the
corners, and two, by drawing any perpendicular lines from the centre of any side
meeting the opposite side right at the centre … .
For a regular hexagon

(a) Lines subtended from sides.  (b) Lines subtended from corners

If you should combine the number of symmetry lines, you will notice that the number of
lines of symmetry in any regular polygon is equal to the number of sides of that
polygon. Therefore we can write as

N = L  Where N = number of sides of a polygon
L = number of symmetry lines in that polygon.

Example:For a pentagon, N = 5 ∴L = 5, Nonagon, N = 9 ∴L = 9 and so on.
The number of sides is the equivalence of the number of bamboo strips that are

required to make one of these shapes. This also holds true for any equilateral triangle or
a regular quadrilateral. Ask your students to try it out.

Rotation and total interior angle of a polygon
This section will give any mathematics teacher an insight into his/her approach of
teaching geometry that the normal way of finding the total interior angle is not the only
mechanism of determining solutions. Lines of symmetry can also be employed in any
polygons to determine the total interior angles.

As in the example on regular hexagon, there are six (6) equilateral triangles.
However, in an equilateral triangle the measure of each angle is 60°
two angles = 120°. There are six sides so 120° x 6 = 720° the total
of the interior angles. Or 60° x 12 (total angles formed at the
corners) = 720°.
In another dimension (sic), say the symmetry lines are
perpendicular to the sides. In a pentagon, for instance. Pentagon has

five symmetry lines. The lines are drawn perpendicular to the sides to meet at the centre.
Then, angles at the centre sum to 360°. Since all the angles are equal and there are five
angles, denote 5x for all five angles, and hence 5x = 360°. ∴x = 72°. You can be able to
find obtuse angles of the triangles because the other two angles are right angles.

Hence 360° – (72 + 180)° = each obtuse angle, that is 108°. These
sum to 540°. These are the angles of the pentagon. If we isolate
one of the shapes in the large pentagon, it looks like a kite. But all
the kites are similar. Therefore it can be deduced that a pentagonal
shape is formed by a full revolution of only one kite. Any teacher
should be aware that as long as any two angles in a kite are known
the others could be calculated by rotating the kite for one revolution.
This idea can be applied in other regular polygons too.

  Fig. 7.3    Cultural identity refl ected in mathematical identity (Kono,  2007 )       
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wall or the sticks arranged in the frame of the roof of the rectangular house making 
triangles and trapezium (Figs.   5.11     and   5.13    ). 

 Cultural identity and recognition of mathematical knowledge as having a basis in 
culture were effective drivers in producing quality mathematics. Much of this can be 
credited to self-regulation for the following reasons (Fig.   1.2    ;  Owens, 2007/2008 , 
 2014 ; Wilson,  1997 ):

•    The projects were on topics that the teachers selected themselves  
•   They applied their own goals  
•   They explained the mathematics  
•   They solved the problems of sourcing the details of the activities and connecting 

them to school mathematics  
•   They structured learning environments for their school students  
•   They evaluated their successes in their conclusions    

 Affective aspects were revealed by the degree of engagement with the task, 
portrayal of ownership of the mathematics in the culture, their imagination to pre-
pare examples, resilience in problem solving, and the quality of their reporting. 

The traditional way of doing things especially designs reflect back the wisdom and
knowledge of the people though there was no knowledge of mathematics known to them
as today but mathematics was also used in the types of activities they performed every
day.
In the traditional society of PNG, adults take the responsibility for teaching children about
the cultural values and resources. The children learn by watching adults by trying things
out by correcting where necessary. Children spend lot of their time with the same age
group. They would build, make-believe, houses and gardens, pretend to hunt birds and
pigs … They acted out feasts, dancing, making moka (tee in Enga), building houses, bras
flaua, selling of food stuff, making bilums and string bags for different purposes, belts,
paying bride prices, and imitate the older people in many different ways. The girls also 
imitate their mothers working in the gardens, carrying bags, washing babies. These are the
shapes which are identified from the two traditional houses.

Shapes: What part to be calculated:
Triangle,             its area, base, height and the angles.
rhombus,            its sides, height, area and angles.
rectangle,            its area, width, height and the angles.
semi-circle,          its circumference, diameter and radius. Sector, area.
cylinder,             its height, area of the base, radius, volume and diameter.
circle,                 its radius, diameter, area and the volume.
cone,                  its area of the circular base, height. diameter and radius.
square.               its area, angles, height and the width.
Sphere               its area and the radius.
Trapezium          its area length and the height.
Cuboid              its area, volume, height, length and width.

  Fig. 7.4    Examples of built environment linked to school mathematics (Pepeta,  2007 )       
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Values about improving social cohesion if students found mathematics more relevant 
and less students might become “rascals” (criminals). Hope and aspiration was 
evident in some of the projects prepared at UoG. 

 There was a synergy between ecocultural mathematics and representations of 
school mathematics. Teachers valued the abilities or mathematical processes of their 
ancestors and Elders but their understanding was enhanced by school mathematics. 
The teachers recognised the importance that an ecocultural pedagogy had in terms of 
learning and developing their students’ sense of worth   .  

    Moving Forward 

 By taking an ecocultural perspective on visuospatial reasoning in mathematics, 
especially geometry and measurement, the meaning of mathematics is extended to 
incorporate more of the cultural ways of thinking mathematically. Indigenous 
cultures in particular have strong spatial experiences associated with mathematical 
concepts. Visuospatial reasoning is embodied in activity, often in a group situation. 
Furthermore, the few examples provided in this chapter support the view that cultural 
mathematics has a stronger basis for learning than school mathematics, creating 
visuospatial representations, and ways of thinking to which the learner can fold back 
during problem solving. Furthermore, despite concerns by teachers for students to 
perform on the national stage, it is clear that the learners were highly motivated by 
culture and that cultural identity could be harnessed for mathematics through an 
ecocultural approach in geometry and measurement education. However, can this 
extension of mathematics to value ethnomathematics address the social justice    issues 
and the global issues of education for Indigenous communities? The next chapter 
delves into how an ecocultural perspective on visuospatial reasoning for geometry 
and measurement assists learning for the Indigenous student and the curriculum.                                                                                                                          
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    Chapter 8   
 The Importance of an Ecocultural Perspective 
for Indigenous and Transcultural Education 

            Kay   Owens,       Marcos   Cherinda and       Ravi   Jawahir             

       Give a child a set of mathematical problems to be solved in ten 
minutes and graded for accuracy against the work of others, 
and the resulting performance may be dismal. Put the same 
child in a situation in which the problems are made meaningful, 
the same mathematics is used, and the solutions matter, and the 
child’s performance can soar. 

(Kilpatrick & Silver,  2000 ) 

 In the mathematics classroom…an ethnographic approach can 
give valuable insights into education and knowledge 
technology… towards how knowledge of pattern is generated 
and reproduced as carrier of thought of a particular kind. 

(Were,  2003 , pp. 25–26) 

      The Challenge 

 While there has been considerable work on visualising to assist children to learn 
early arithmetic (NSW Department of Education and Training,  1998 ; Wright et al., 
 2006 ), and some work on using patterns to begin early arithmetic for Indigenous 
Australians (Warren, Cole, & Devries,  2009 ), there is still a signifi cant challenge for 
this book. An argument is now presented that revolves especially around the ecocul-
tural perspective of education for visuospatial reasoning in geometry and measure-
ment and how this reasoning assists students in problem solving and in maintaining 
a cultural identity as part of their mathematical identity. 

    Lehrer, Jacobson et al. ( 1998 ) suggested that quality instructional design required 
input from researched models of student thinking, classroom-based collaborative 
research, parents as partners, professional development workshops, and teacher 
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authoring. Parents who are enabled to recognise their ecocultural mathematics will 
infl uence curriculum if they become partners. In their study,

  teachers went from posing tasks in isolation to developing sequences of tasks that provided 
children with opportunities for progressive elaboration of core concepts … on wayfi nding, 
mapmaking, and Logo … In particular teachers increasingly emphasized representational 
fl uency; children invented or appropriated multiple forms of representation. (Lehrer, 
Jacobson et al.,  1998 , p. 176) 

   Children reasoned from physical movements to recognise equivalent transforma-
tions and to generalise from their actions. Such questions as “do you think this is 
true all the time?” encouraged students to visualise and reason visuospatially. For 
example, in deciding whether a particular rectangle was larger than another, one 
child folded the thinner rectangle (6 × 2) in half and measured the other one (4 × 3). 
From this, she generalised to claim the 1 × 12 rectangle could go into the fi rst one 
too and proceeded to fold it into four and show how the strips covered the 4 × 3 
rectangle. From professional learning to developing substantial resources for teaching 
from a cultural basis, a strong identity and community of practice developed in a 
series of workshops in which student reasoning was the focus. The keys were build-
ing on children’s informal knowledge, promoting their invention, having classroom 
conversations for understanding, and teachers orchestrating the curriculum tasks 
and tools. These young children’s visuospatial reasoning was an entrée to conjec-
ture and proof. 

 However, the challenge is to provide examples related to visuospatial reasoning 
from various cultural practices. The weaving boards developed by Cherinda are a 
well-researched example of an ethnomathematical activity in practice (Cherinda, 
 2001 ) along with many examples from origami (but not covered in this book). I have 
provided several papers on using just paper and string to teach mathematics as a 
result of my transcultural experiences (Owens,  1996a ,  1998b ,  1999a ,  2001b ). There 
are other examples within the realm of paper-folding which link to other African 
practices (Gerdes,  1999 ). Other examples will come from object making, travel and 
position, and various topological visuospatial reasoning activities. 

 In effect, much of the change towards an ecocultural perspective comes from 
face-to-face discussions    between teachers and community members in order to 
develop a hybridity of thinking that will authentically link the ways of thinking of 
the community and the ways of thinking for a global education (González, Moll, & 
Amanti,  2005 ). In the future, students will be facing new and challenging problems 
for which a maintenance of ecocultural ways of thinking can provide a sound basis.  

    Continuities in Education Between Community and School 

 Many studies have considered the transitions and continuities between the contexts 
of learning mathematics (Owens et al.,  2012 ) but the forces of globalisation work 
to homogenise mathematics curricula and negate the differences (Atweh, Barton, 
& Borba,  2007 ). Nevertheless, there are studies that have recorded mathematical 
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activities incorporating ethnomathematics into formal mathematics (Eglash,  1997 , 
 2007 ) ensuring that diverse mathematical thinking is not lost in school. These 
include studies by Cherinda ( 2001 ,  2002 ), the    University of Goroka coursework 
projects (1995–2008) (some of which are referred to in this book under their 
authors’ names), Gorgorió, Planas, and Vilella ( 2002 ), McMurchy-Pilkington and 
Bartholomew ( 2009 ), Meaney and Fairhall ( 2003 ), and RADMASTE ( 1998 ). Some 
of these studies have resulted in actual curricula recommendations (Jannok Nutti, 
 2008 ; Lipka & Adams,  2004 ; Litteral,  2001 ; Pinxten, van Dooren, & Harvey,  1983 ). 

 Providing a culturally appropriate curriculum is a challenge for small communi-
ties as found in PNG (Litteral,  2001 ). Nevertheless, some efforts are being made to 
ensure that mathematics of small communities are used in education as determined 
by the education reform (Matang,  2008 ; Matang & Owens,  2006 ; Owens & Kaleva, 
 2008a ,  2008b ; Paraide,  2003 ). Similarly in Alaska, funding has been provided for 
the establishment of culturally relevant mathematics       units. Lipka and the Yup’ik 
community have established units of work that begin in the activities of the com-
munity. Students might build models of fi sh racks or discuss the importance of 
locating eggs on the island. They have shown that students’ attainment on mathe-
matics has increased signifi cantly (Lipka & Adams,  2004 ). 

 According to Clarkson and Kaleva ( 1993 ) one crucial reason for failures in 
implementing curricula that consider cultural aspects is an unwillingness by many 
experienced teachers to change their ways of presenting mathematics lessons that 
have become routine for them. Hence change in the classroom is diffi cult, leaving 
aside the bigger political diffi culties inherent in any educational change. Successful 
implementation of any curriculum reform in the classroom focusing on culture will 
depend at least on (a) the role of the teacher under the reform, (b) teacher beliefs and 
values about the new curriculum reform, (c) teacher background knowledge in 
mathematics (Matang,  1996 ), and (d) involvement of community in the school cur-
riculum and learning activities (Department of Education Employment Workplace 
Relations,  2009 ; Yunkaporta & McGinty,  2009 ). We would argue that these four 
points must be addressed. 

 One way to meet this change is for teachers to begin to utilise students’ mathe-
matical spatial experiences, which will be set within their own cultural experiences 
(ethnomathematics), gained from everyday encounters (their informal education) as 
the basis to teach school mathematics (Trudgen,  2000 ). We believe this will result 
in students becoming active participants of the information-sharing process within 
their classroom.    Clearly in this scenario the responsibility of the teacher changes 
from one that is imparting knowledge in an authoritarian manner to one that seeks 
to create a learning environment that promotes meaningful and interactive mathe-
matical discussions not only between teacher and students, but also between the 
students themselves. This no doubt will include the students telling the rest of the 
class mathematically related family stories (Matang,  2003 ; Matang & Owens,  2006 ; 
Owens,  2000b ; Trudgen,  2000 ; Yunkaporta & McGinty,  2009 ). Similar suggestions 
which could be followed have been made in relation to mathematics and language 
(Clarkson,  2009 ). 

Continuities in Education Between Community and School
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 In a comparative study of transcultural education in four countries: Sweden, 
Australia, PNG, and Yemen, I concluded that variation in the contexts highlighted 
the following themes in teaching:

•    Aspects of cultural context relevant to mathematics  
•   Meeting language differences in different ways  
•   Maintaining culture in different ways  
•   Teaching in a cultural context  
•   Teaching mathematics in a cultural context  
•   Having an emphasis on national values  
•   Using national language appropriately  
•   Developing context-specifi c strategies for diversity (Owens,  2008 )    

 If the impact of students’ informal education outside the classroom, and the 
notions of ethnomathematics are to be taken seriously, then teacher education 
programmes must also change   . Pre-service teachers will need to be given the oppor-
tunity of in-depth investigative studies of the mathematics content knowledge that 
they will teach. This mathematical background will give them confi dence to 
approach the teaching of mathematics within the immediate socio- and ecocultural 
contexts of school students, as has occurred in the Luléa University programme in 
Sweden (Johansson,  2008 ), the secondary education projects in PNG (University of 
Goroka Students SMAC351,  1998–2007 ), and the elementary school project on 
improving mathematics education (Bino, Owens, Tau, Avosa, & Kull,  2013 ).  

    Language-Based Activities in Multicultural Classrooms 

 Children in multicultural preschools assist each other very slowly to speak in 
English but factors such as the table mix of languages, the amount of English under-
stood and spoken at that stage, the child’s choice of playmates, the children’s 
personalities, and non-linear rates of learning, infl uence the progress made by chil-
dren (Fassler,  2003 ). One recommendation developed from this study was that 
teachers need to spend time talking with each group of children. 

 There are a number of language issues that arise in terms of visuospatial and 
geometric concepts. Words (morphemes) like verbs for actions and words like 
nouns for observable objects such as blocks are best used so students may learn to 
compare, estimate, and measure before they appreciate attributes of shapes. Even 
so, words that sound similar need careful       pronunciation and experience e.g. for 
English “side” and “size”; “estimation” and “evaluation”, “triangle” and “rectan-
gle”. Words may have two meanings—mathematical and general e.g. English “area” 
means a place in general usage but the measurable space inside a 2D boundary in 
mathematics (Owens,  1996b ). Diffi culties arise with what accompanies the idea 
implicitly e.g. length when referring to volume (Owens & Kaleva,  2008b ), not 
dissimilar to the linear scale on a measuring jug but requiring considerably more 
visuospatial reasoning from experiences. Some concepts have many constructs and 
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representations. For example angle and fraction require considerable language and 
experience for students to grasp. Diffi culties arise with prepositions as discussed in 
Chap.   4     on deixis but numerous hidden meanings in mathematical expressions may 
be overcome by using multiple language patterns (Davis,  2009 ). 

 Oral work by both teacher and students needs to be slow, purposefully repeated 
but not rapidly or loudly repeated. Oral work is often facilitated if teachers use 
whole class discussion, followed by paired or triple group discussions before 
individual thinking or work. This should then be followed by further sharing in the 
small group and then in slightly larger groups prior to any further whole class dis-
cussion so that all children have a chance to listen, talk, read, and write. Teacher’s 
and other students’ sentences need to be simple. Students should be allowed to code 
(language) switch. Code switching may occur between every day and more precise 
mathematical language; between dialects; between lingua francas and home lan-
guages and various national languages. Switching languages assists learning if 
knowledge is constructed rather than kept as unrelated ideas. Students of the same 
language group may talk in their own language to explain to each other while stu-
dents from other groups can try to explain as their gestures are often benefi cial in 
helping another student. Students help each other and speak more mathematics. 
Gaining understanding by playing with words and using bilingual facility will assist 
in constructing meaning. For example, a grade 2 student with English as a second 
language was able to develop the meaning of “bigger angle” by realising it did not 
mean “sharper” but the opposite “opening wide” (Owens,  1996b ). The words were 
switched for the different visuospatial imageries through reasoning and listening to 
and watching the teachers’ explanation and the actions of other students.  

    Visuospatial Reasoning in Metaphors: Selection 
and Relevance 

 Many metaphors are used in mathematics and teachers need to explain the metaphor. 
Teachers should avoid using western colloquial metaphors if these are not used in 
everyday talk in the community. However, there are often rich metaphors in cultures 
that can be used in mathematics. We have already shown that the slope of a roof is 
a good introduction to work on angles.    Visualisation (images in the mind from 
action on objects and pictures) provides a major context for oral learning. It 
requires students to make explicit in words what their learning is in addition to their 
learning by observation. 

 Diffi culties with a new language do not mean students have a lower ability to 
reason and furthermore the metaphors and experiences that can be drawn on by 
students are all the more critical for mathematics education. Students should be 
exposed to a range of tasks and not just easy ones and they should problem solve 
and speak about mathematical concepts to enhance the transference of skills and 
metaphorical language. Visuospatial representations either in drawings, gestures, or 
metaphors are important. Language games assist students to speak and listen to 
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mathematical terms e.g. drawing what is read in the school language or speaking 
this language to explain the drawing. For example, Murray provides a range of 
activities for teaching children with English as a further language (Murray,  2011 ). 

 Some mathematical areas are often stronger in other cultures e.g. circle geometry 
in Arabic art than in a western school culture, topology in Navajo or string designs 
(Vandendriessche,  2007 ). Furthermore, estimation skills (not necessarily matched 
by language) are often strong in Indigenous, subsistence cultures, and among 
artisans (Millroy,  1992 ; Owens & Kaleva,  2008a ). These can be important for the 
planning of curriculum. However, teacher education also requires addressing.  

    PNG Secondary Teachers’ Ethnomathematics Studies 

 In Chap.   5    , I discussed the mathematical thinking involved in different bridge- 
making experiences in PNG (Fig.   5.7    ). In Yambi ’s UoG ( 2004 ) project, he drew a 
bridge (Fig.  8.1a ) and related a number of school mathematics problems to the 
bridge. In particular, Yambi related the making of the bridge and the bridge diagram 
to assist students to visualise the context, the triangles, and the trigonometry required 
to solve the story problems, thus assisting the students visuospatial reasoning for 
trigonometry (see Owens,  2014 ). Yambi also used the wave of the vines holding the 
platform to the hand rails as an example of the sine wave. While this might not quite 
fi t a sine wave in practice, it was a wonderful way of modelling a sine wave (see 
Fig.  8.1a ). Another teacher, Imasa from Pindiu, Morobe, also linked the       sine wave 
to the curving of the rope used to bind split bamboo to two sticks to form a platform 
for a bandicoot trap.

   Another teacher    from Hela Province, PNG, noted that the framework for making 
a wig as shown in Fig.  8.1b  was similar to a parabola (Piru,  2005 ). This allowed Piru 
to encourage students to plot points and explore parabola on Cartesian coordinates. 
Piru emphasised the importance of accuracy in measuring so the wig was a snug fi t 
for the dancer’s head. They used a small unit of length called the  ki , related to the 
width of the fi nger. (See a wig from another cultural group in Fig.   5.21    c.) 

 Martin who speaks Magi (Mailu), Central Province, PNG, illustrated the connec-
tion between the traditional making of fi shing nets from bush string and the tying of 
knots to form squares (Fig.  8.1c ). He noted    measurement of both length and area (in 
Chap.   5     we noted that the idea of an area unit was not common but there were 
examples in culture of area units that could be used). The squares could be larger for 
different fi sh. He also mentioned other links to geometry such as parallel and per-
pendicular lines, upper and lower limits (lines), cylinders, and two-dimensions to 
three-dimensions in making a net for the weights (mostly stones). Paraide ( 2010 ) 
discussed Indigenous knowledge in terms    of currents, swells, and fi shing weights 
for baskets and nets and links between culture and school mathematics. 

 In the fi ve stones game (called knuckles in some countries) played in Finschaffen, 
Morobe Province, PNG,    and many other areas of PNG, the stones are seen in a 
visuospatial arrangement by David ( 2007 ) although scattered. From the arrange-
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ment of the stones in pairs and a triple further number patterns can be generated 
(Fig.  8.1d ). There can be a    step-by-step increase in the size of the square (as well as 
rectangle) and a triangle formed. She provided questions such as:

    1.    What shapes can be formed with four stones?   
   2.    What other mathematical properties can be formed with four stones?   
   3.    When a square is formed. We can increase the size of this square by adding more 

stones. How many more extra stones do you add to increase the size of the square 
to its next biggest size?   

   4.    What do you get after adding those extra stones in Question 3?    

  Fig. 8.1    Examples of visuospatial reasoning in ethnomathematics for secondary schools. ( a ) The 
vines from the handrail to the walking platform provides a metaphor for sine wave (Yambi,  2004 ). 
( b ) The wig shape is outlined by the  parabolas  and  dotted lines . The  head circle  is marked (Piru, 
 2005 ). ( c ) Fishing net ecocultural visuospatial representations (Martin,  2007 ). ( d ) Visuospatial 
arrangements in the fi ve stone game: fi rst line illustrates how stones are to be swept up (singles, 
twos, three); second line illustrates how rectangle and triangle numbers can be extended to give 
new patterns (David,  2007 )       
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  and she encouraged students to draw tables to see the patterns and then to form 
algebraic statements. 

 Figure  8.2  based on John’s ( 2007 ) report illustrates how the teachers were link-
ing ecocultural mathematics and visuospatial reasoning to school mathematics. 
Each of the points provided by John in this table was supported by example prob-
lems for the students. He chose the making of an Asaro mudmen mask    (see Fig. 
  5.21    a). While the syllabus and textbooks gave some examples of the topics related 
to typical PNG experiences, the project encouraged teachers to be creative and use 
visuospatial reasoning themselves but related to ecocultural contexts. As Kono 
( 2007 ) said,

   this project only serves to give some clues to practicing or prospective mathematics teach-
ers to be resourceful by incorporating cultural activities as concrete examples in teaching 
mathematics rather than abstract borrowed western ideas. 

   Julius ( 2007 ) is typical of the way in which the ecocultural aspects were inte-
grated into their mathematical presentations (Chap.   5    , Figs.   5.13    c and   5.14    a, c give 
background details). Figure  8.3  is from Julius’ report. Further examples are found 
in Owens ( 2014 ).

   These teachers were perhaps for the fi rst time posing problems and fi nding solu-
tions. They were really motivated to achieve a high standard over a period of time. 
Thus, as portrayed in Fig.   1.2     and discussed in Chap.   7    , the context which is not 
only the culture and environment but also the project encouraged the teachers to 
provide a transition between cultural mathematics and school mathematics. The 
ecocultural context infl uenced the self-regulating    learner which in turn developed 
their visuospatial reasoning, diagrams,    and other representations. In turn, identity as 
a mathematical thinker was beginning to develop. The analytical, rote-learnt school 
working out was not always accurate in the examples but in the high majority of 
cases this was adequate and diagrams were frequent (Owens,  2014 ). 

 Furthermore, the ecocultural context was a realistic focus for learning. de Corte, 
Verschaffel, and Eyende ( 2000 ) showed the importance of structuring the problem 
solving in mathematics by encouraging heuristics such as drawing a diagram, plan-
ning, and checking progress with the problem. The ecocultural context for these 
teachers were real world requiring similar ways of problem solving but not in some-
what contrived questions but in the daily real lives of people in a subsistence culture 
closely related to neighbours and the land. Teachers spontaneously represented their 
visuospatial reasoning mostly through diagrams    but also through description of 
dynamic action in story form providing their mental visuospatial imagery and 
reasoning. 

 Thus consideration of visuospatial reasoning from an ecocultural perspective is 
important for extending our understanding of the self-regulating    learner. These proj-
ects illustrated how self-regulation was more than metacognition but also realistic, 
involving, requiring guidance in structuring the problem context and intrinsically 
motivating as cultural connections for mathematics became evident.  
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  Fig. 8.2    Links between ecocultural mathematics and school mathematics (John,  2007 )       
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This project confronts the idea of Eurocentrism-i.e. the widespread prejudice about mathematics
as being predominantly of European origin, which can be used and manipulated as deemed best
according to their interpretation. This write-up gives a light by way of illustrations and proofs
using cultural designs of pitpit wall, as well as establishing a common understanding of 'cultural
conceptualization' in the context of teaching in classroom. … Within the diversity of rich cultural
heritage is embedded the complex and varied sets of mathematical knowledge that, I would say,
are not fully exploited to this very day. … We look at these mystique (sic) geometric forms and
patterns of such traditional activities and posed the question; why do these materials or products
possess the form they have?' We are all part and puzzle (sic) of these cultural activities and it
reflects some sort of mathematical knowledge, experience and wisdom. … I will use the designs
of pitpit wall pattern as illustration to determine the sum of the interior angle of polygons. Special
reference will be given to exterior angle of a triangle and sum of interior angle of a quadrilateral.
… Traditionally, these designs are performed by skilled and experienced person(s).There are, in
fact, eight different types of designs identified in the Sinasina area namely; X-shape, rending,
zigzag, modified, basic pentagonal, hexagonal shape, starry, and octagonal shape. I will use the
last four patterns as examples to determine interior and exterior angles of polygons (i.e. triangle
& quadrilateral), as well as showing the proof of the formula of the angle sum of polygons. …
traditionally termed; kewah, egleh, gamlageh, bongeh, for starry, pentagonal, hexagonal and
octagonal shapes, respectively.

a) If we consider the starry shape it seems
to look like a quadrilateral. By drawing
lines on the edges, as illustrated below,
we would come up with the kite

* Starric (sic) pattern from traditional
Sinasina ‘kewah’

b) Inscribed in the basic pentagonal weave are three
shapes, namely triangle, rhombus (sic, means kite)
and pentagon

* Basic pentagonal weave from Sinasina ‘egleh’
c) Either looking at the small patterns
inside the design or the sides derive the
octagonal shape

‘Gamlageh’
* Hexagonal shape from Sinasina

d) If we count the sides of the pattern inscribed in
this pattern we would identify eight sides.

‘Bongeh’
* Octagonal shape from traditional Sinasina

  Fig. 8.3    Tabare weaving shapes    from Julius’ ( 2007 ) project       

    PNG Elementary School Teacher Education Study 

 Having noted the impact on the secondary teachers through this project, it was 
important to see how elementary school teachers could incorporate an ecocultural 
perspective to mathematics and how that might impact on their visuospatial 
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reasoning. Elementary schools are built and maintained by the community. Teachers 
are grade 10 graduates who speak the language of the community. There is a transi-
tion from local language to English during elementary schools. Figure  8.4  shows 
typical rural schools in PNG. In 2013–2014, a design-based study in PNG, has 
elaborated several principles for teachers that can be applied across PNG’s 850 
cultures and languages and ecologies, remoteness, and experience. It applies no 
matter what the use of Tok Pisin or the use of Tok Ples provides. Although Muke 
(Muke & Clarkson,  2011 ) illustrated that teachers will use all three languages 
including English to explain concepts in class (see also    Setati & Adler,  2000 ), there 
was a much more complex picture emerging in practice. “Cultural Mathematics” 
required other principles in teachers’ knowledge.

   Figure  8.5  provides the model of principles used to guide workshops. After the 
fi rst workshop, it was found the learning experiences appropriate for children to 
learn mathematics needed to be expounded further so the middle principle was 
elaborated particularly based on research in mathematics education but also 
incorporating what we had learnt from our studies of PNG cultural ways of thinking 
mathematically. The principle on the nature of mathematical thinking deliberately 
moved away from learning facts and is inclusive of PNG mathematics. We were 
able to supply analyses of language from previous research.    Early childhood prin-
ciples needed enunciated as many teachers were teaching as they had been taught in 

  Fig. 8.4    Schools in Papua New Guinea. ( a ) Typical bush material school, Morobe, PNG, ~ 1984. 
( b ) Group work in Tsigimil Primary School grade 3. ( c ) Elementary school, Atzera language, 
Binimap, Morobe, 2006       
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primary school and few assessed their children’s learning. Finally, the role of Elders 
in the school was yet to be realised and applied to  Cultural Mathematics .

   A manual outlined all of these principles together with an inquiry model of 
planning and examples. A stand-alone website was developed with the manual 
information; example lessons; video examples of cultural activities, children learn-
ing and assessment tasks, and teachers’ sharing; and other workshop ideas. This was 
loaded onto touchscreen computers where possible and these effectively engaged 
the  teachers. The workshop began with a welcome activity setting the scene about 
mathematics and talking mathematics. Then Elders from a similar ecology were 
shown explaining their cultural activity and mathematics (see Chap.   5     for examples). 
This stimulated teachers in small groups to discuss some of their own cultural activ-
ities and tease out the mathematics involved. The systematic ways of thinking were 
supported by activity and discussion but systematic ways tend to be visuospatial 
reasoning about measurement, space, and geometry. 

  Fig. 8.5    Design of key principles for teacher professional development in  Cultural Mathematics        
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 Cultures are quite different across PNG and we deliberately targeted three 
ecologies for the research: highlands, coastal, and inland in coastal provinces. 
Starting with culture was a clear way of engaging teachers who are proud of their 
cultures. The workshop then covered good teaching approaches for young chil-
dren, what is known from research about how children best learn about arithmetic, 
measurement, and space and the key concepts in each. A key for bringing together 
each of these principles in planning learning experiences was the use of an inquiry 
method. To make it easy, it was suggested that the topic was covered over a week. 
Although days were allocated to each step, it was made clear that this need not be 
strictly followed. The inquiry method based on Murdoch ( 1998 ) and applied to 
 Cultural Mathematics  is shown in Fig.  8.6 .

   Teachers were given example learning plans (see Appendix   F     for an example) 
and early readers that related to mathematics topics. Murdoch’s steps proved to be 
a bonus for teachers to bridge the gap between culture and school mathematics. 
They were able to use it to extend their children’s thinking mathematically and to 

Weekly Learning Plan for Mathematics

Purpose: Children are expected to think and do mathematics through activities linked to cultural
practices. Children are expected to have a sense of belonging with the new ideas in culture and
school through a good transition that links cultural ways of thinking with school ways of
thinking.
Key Ideas: e.g. What is the new pattern and relationship?  How does the thinking lead to 
problem solving?
Prior knowledge: What do they know?  How do they think and feel?
Resources: Places to visit; materials for exploring, com paring, measuring, recording, modelling; 
game cards, spinners, Elders who know the cultural activity
Assessment: Observing ways children try things, what they say, how they problem solve, what 
they write, what they ask to make clear or to extend their exploring
Day 1   Tuning In

Children are motivated, have real world experience e.g. outdoor; listen and 
participate in a story. 

Finding Out
Children observe, notice, compare, measure, discuss mathematical patterns  

Day 2   Sorting Out
Children discuss, model, compare, make a table, draw a diagram, find same and 
different, 

Day 3   Going Further
Children apply to other numbers or another situation, read and discuss the maths 
book, use symbols, play a game, solve an open problem,

Day 4   Making Connections
Children summarise the mathematics, whole class discussion, or story writing, 

Taking Action
Share at home, solve a real problem. 

Day 5   Sharing, discussing, and reflecting
Children explain the mathematics, write a maths story, write their own summary, 
say what new mathematics they have learnt.
Teacher reviews and decides what to teach next based on assessment, cultural 
activities, and syllabus guides.

•

•
•

•

•

•

•

•

,

,

,

,

,

,

,

,

Planning to find out

  Fig. 8.6    Design of inquiry method for  Cultural Mathematics  based on Murdoch ( 1998 )          
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encourage practice of concepts and skills. Since the cultures are rich in visual exam-
ples these were linked to research on early arithmetic, measurement, and geometry 
(Moschkovich,  1996 ). 

 Some examples of the teachers preparing learning experiences will help to 
explain the importance of the visuospatial reasoning within the mathematical think-
ing of the teachers. The fi rst three examples come from the coastal village of 
Tubusereia, National Capital District, PNG where       Motu is the home language, 
often with English. In the fi rst example, the teachers of Elementary 2 were referring 
to the cultural practice of sharing fi sh. They set up the task of sharing 24 fi sh between 
four families (Fig.  8.7e ). They knew each family would get fi sh according to family 
size. However, their school mathematics at fi rst made them decide it had to be equal 
shares like division. Through discussion, teachers realised that an open-ended prob-
lem that was actually more like reality, was to decide all different ways of sharing 
the fi sh. The children responded well to deciding numbers and how they could fi nd 
other ways of sharing the fi sh. They began to systematically record. They practiced 
how to add numbers. All the time, the children were either using the fi sh they had 
made from cardboard to explain to each other or they were using the empty number 
line (which was new to them) to jump to the next number being added on and then 
decide on the last number to make 24. Note that in practice, the sharing often starts 
with the larger fi sh to each family, then the smaller ones (Odobu,  2007 ). Children 
used various strategies to make up new sets of numbers such as realising that if they 
gave 10 and 6 fi sh, then they needed another 2 numbers that added to 8.

   In another class, Elementary 1, the teacher took the tears tattoo,    2, 1, 2 pattern 
modelled it with steps (large)—2 forward, turn left, 1 forward, turn right, 2 forward; 
with strips of paper; and with dots on a sheet of paper. The ratio impact was evident 
to the children for the various activities using the same pattern. The results of visuo-
spatial reasoning of Elementary 2 children who copied a design are shown in Chap. 
  5    , Fig.   5.4    . Another teacher asked Elders to make a model garden for yam expecting 
it to be in rows of two mounds    but instead the Elders used the triangular pattern 
(Fig.   5.6    ). Nevertheless, the children in Elementary Prep not only asked questions 
of the Elders (the teacher had prompted children by giving some example questions) 
but also showed how the centres of the mounds were equidistant using a stick. They 
also compared the lengths of various yams and put them in order. They showed dif-
ferent ways of comparing and measuring. The open question approach to teaching 
reduced copying from the board and meant children were using visuospatial reason-
ing more and more. Questions asked of children after the lessons indicated that they 
understood well the meaning of half as big again and how to measure informally 
and to use a smaller unit to measure the remaining length and to give more than one 
pair of numbers that added to 13, explaining how they reasoned mentally to get 
another answer. Gestures indicated that they had used the idea, for example, of tak-
ing away one visually from on   e number and adding one to the other number. 

 In another area where teachers came from a number of different language groups 
in the mountains and along the Rai Coast of Madang Province, PNG, one group of 
teachers visually considered how they planted dry land rice and demonstrated using 
feet lengths (Fig.  8.7c ). Then they went further discussing other measuring units for 
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  Fig. 8.7    Bringing ecocultural experiences into the elementary classroom. ( a ) Preparing a diction-
ary of mathematical terms. ( b ) Trying out the lesson idea of using the body to make shapes follow-
ing the squares ( diamond ) in the weaving. ( c ) Simulating using steps to measure when planting 
rice. ( d ) Sharing the making of rope for a bilum and making a bilum relating it to mathematics. ( e ) 
Sharing fi sh between families according to need. Recording of children’s solutions explaining how 
they worked from one addition to another with visual supports       
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length, with both straight lines and curves. Another group fi rst wove patterns includ-
ing the  diamond  pattern. In going further, while sitting on the ground with crossed 
legs, they made diamonds with their knees at right angles and used their feet with 
the man opposite to make another smaller square. Then they discussed the proper-
ties of the squares. Other groups of teachers made model houses, models of differ-
ent kinds of fences, and models of bilums (Fig.  8.7d ) but each time discussing the 
equal lengths of fence posts or different heights of posts for the house for the roof 
slope, making the right angles, and using the radius to form a circle. One discussion 
was about the height of the    bow and arrows and how to compare them and people’s 
heights, and how to informally measure them. Each time, key ideas about measuring 
were being emphasised within the activity. Teachers were getting small groups to 
represent and discuss the key ideas based on their visuospatial representational and 
mental reasoning. Much of this work was being said in their Tok Ples which was 
translated into Tok Pisin for me or spoken in Tok Pisin. 

 The signifi cance of this approach to    teaching mathematics is the impact that the 
design principles have on establishing both teachers and children as mathematical 
thinkers and identifying not only with cultural mathematics but also school mathe-
matics. The ecocultural mathematical context (see Fig.   1.2    ) is evident in the math-
ematical problems, models of cultural practice, cultural tools of measuring and 
drawing, and valuing cultural practice. The cultural ways of thinking especially 
about ratio and pattern and size are not being lost. In terms of the model of identity, 
we see how the visuospatial reasoning within the more open questioning classroom 
was allowing children to be self-regulated   , an important aspect in their mathematical 
identity but also to use a range of cognitive and affective aspects of learning as indi-
cated also by the model in Fig.   2.17    . Teachers and children were goal setting, 
reasoning (including visuospatial reasoning), planning, self-evaluating by explain-
ing to their peers, reviewing by refl ection on the learning, using drawn and mental 
models, and working out how to present results or their thinking. There was a strong 
sense of ownership. Furthermore the social interactions and having a go at 
responding (instead of copying) were relatively new experiences. Thus we can see 
the beginnings of not only a cultural mathematical identity developing but one 
related to school. In the case of the teachers they were engaging in mathematical 
thinking and engaging others while some of the children were doing the same in 
explaining to peers. 

 In the workshops, after preparing and where possible trying out their planned 
learning experiences, the teachers discussed the issues of language and emphasised 
how language can have real treasures that can be used for explaining the mathemati-
cal concepts to children. Teachers considered a number of English words used in 
mathematics to try to decide on some appropriate Tok Ples words. This was not an 
easy task and again visuospatial reasoning was used to help make decisions 
(Fig.  8.6a ). Finally we looked at assessment and learning stories. We also intro-
duced a refl ective teacher’s questionnaire    and an interview schedule that teachers 
could use with a couple of children in their own class. They practiced it on each 
other and then children. This interview schedule reinforced much of what was being 
discussed throughout the workshop. Visualisation strategies were assessed as they 
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were in Count Me In Too Schedule for Early Numeracy Assessment (NSW 
Department of Education and Training,  1998 ) and Count Me into Space (NSW 
Department of Education and Training Curriculum Support and Development, 
 2000 ). Matang (Matang & Owens,  2014 ) had modifi ed some of the former in his 
study and we used simpler and shorter schedules than Matang’s but asked some 
questions on position, shapes, and measurement and questions specifi cally linked to 
PNG cultural practices.  

    Working with Mental and Physical Visuospatial 
Representations in Africa 

 For cultural weaving activities to be introduced into school, weaving boards of card 
with slits and loose cardboard strips were used by Cherinda ( 2001 ,  2002 ). Initially 
students were asked to copy the pattern and continue it. Children could feel, both 
tactually and mentally, how twill weaving developed from a cultural experience into 
visuospatial reasoning related to school mathematics. Questions, such as the follow-
ing, have been used to stimulate their thinking about weaving designs such as in 
Fig.  8.8b .

    Observe the path of strip L1 (fi rst horizontal  loose  strip). What is the number of the 
next L-strip with the same path as the path of L1?  

  Then, the path for L6 is the same as for L2. Consider the set L1–L4 as section A, 
and the set L5–L8 as section B. What do you say about the appearance of the two 
sections?    

 By the already verifi ed repetition of the paths of the L-strips, students can see 
that the two sections, A and B, are the same. The section B appears as an image of 
section A when this section is moved down. In such cases the “movement” from A 
to B (or vice-versa) is called a translation. Students are then encouraged to weave 
another pattern that shows vertical symmetry. For example, Fig.  8.8b, d  makes an 
attractive design with vertical symmetry or two axial symmetries. 

 Students are then encouraged to repeat the set which produces a square design 
(Fig.  8.8b  fi nished) and they can see both axial symmetries through the centre and 
by turning the board they can note there is a coloured square in each corner. This 
provides an example of rotational symmetry. For the design in Fig.  8.8d , with a hori-
zontal line of symmetry, students were asked to refl ect the design in the weaving. 
The diagonal pattern in Fig.  8.8c  is continued to provide a rotational symmetry 
design. Each diagonal will have three squares with the zigzag in between. The board 
can be rotated 180° to show the rotational symmetry. 

 Then students are asked to fi nd the fundamental block or unit for the weaving 
and this is then discussed in terms of squares, for example the four columns by fi ve 
lines in Fig.  8.8d . Then other fundamental blocks are provided and these are used to 
create intricate repeated designs. 

Working with Mental and Physical Visuospatial Representations in Africa
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 One important fi nding from Cherinda’s work is that weaving boards (WB) pro-
vided students with interaction between various representations of concepts. 
Furthermore, they were able to express their thinking.

  The fact that the subjects have manipulated the WB to certain extent and then continued 
thinking without it, at least physically (using numbers only, or reproducing woven pattern 
on squared paper to facilitate the reasoning) reveal the different representational systems 
that the learners used in attempting the least complex way to acquire and develop 
 mathematical knowledge. (Cherinda,  2012 , p. 942) 

   Cherinda ( 2002 ) found that students were motivated to learn (Fig.  8.7a ) and the 
active problem solving created this interaction between representations encouraging 
mental imagery and reasoning. Both these aspects were found by myself in PNG 
(Owens,  1999b ,  2012a ) and Australia (see Chap.   2    ; Owens,  1993 ). 

  Fig. 8.8    Weaving in Mozambique to encourage visuospatial reasoning in geometry. ( a ) Student 
motivated to learn in Mozambique. ( b ) Translation experience. ( c ) Repeated to produce rotational 
symmetry. ( d ) Weaving a refl ection pattern       
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 Teachers need to be shown how to carry out and incorporate the weaving activi-
ties into mathematics. The students did not always copy as expected and needed to 
be specifi cally directed to observe the repeated lines. Similarly for students to see 
the symmetry patterns specifi c questions were required. Cherinda encouraged the 
students to draw up number patterns, presenting the line associated with each 
repeated set of lines. In higher years of school, more complex examples were used. 
For example, they used two blue vertical colours followed by two yellow vertical 
strips on the weaving board to make much more complex patterns such as the her-
ringbone pattern.            

    Mental Mapping of the Navajo, USA 

 In Chap.   6    , we looked at the Navajo’s visuospatial reasoning and it is appropriate to 
note the importance of considering ethnomathematics as the overarching mathemat-
ics in which academic mathematics is a part (Owens,  2013a ). What works might 
become just as important as formal proof. There is no reason to doubt what Pinxten 
and François ( 2011 ) suggest could occur for any of the mathematical knowledges in 
“multimathemacy”. Building on Pinxten’s earlier work (Pinxten et al.,  1983 ; 
Pinxten, van Dooren, & Soberon,  1987 ), their example was that:

  Chee’s [Navajo youth] mental mapping and measuring be recognized and generalized to 
make it a powerful nonwestern geometry which has possibly more potential than we ever 
guessed, because it would offer problems and solutions about movement through space 
while starting from an intrinsically dynamic spatial understanding which is typically 
‘Navajo Indian’ and hence beyond the normal scope of the western academic mathemati-
cian. (Pinxten & François,  2011 ) 

   Quotations and discussions in Chap.   6     justify the need for such comments to be 
illuminary in mathematics education. 

 In Chap.   2    , mental mapping was raised in discussing its role in attention, inten-
tion, and responsiveness   . Ecocultural context has a prime role in mental mapping 
and should not be just regarded as background as other authors have suggested. 
Language as mentioned in Chap.   4     is a signifi cant part of the ecocultural perspec-
tive. For example, as mentioned in Chap.   4    , in many PNG cultures (Capell,  1969 ; 
Matang & Owens,  2014 ) and Navajo (Pinxten et al.,  1983 ), the emphasis is on verbs 
and not nouns so objects, parts, and wholes are not as signifi cant as verbs related to 
moving rather than being.

  The child pictures the landscape by means of ‘signifi cant’ rocks (i.e., with particular 
shapes), the adjacency of dips and water sources, the movements of the sun throughout the 
day, eventual greenery at different places, the entry of the hogan one fi nds along the path 
(i.e., the door of the hogan or dwelling place will always point to the east), the changes of 
color of the air throughout the day (going from white in the morning, over blue and yellow 
to black), and so on. All of these elements co-defi ne distance in the Navajo view. 

 …we start from the preschool and outside of school knowledge, make the concepts and 
intuitions explicit and label them in the native language. E.g., a line is conceptualized as the 
result of the uninterrupted movement of the child through a landscape. It corresponds more 
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to a path and is closely tied to the moving body. Or it can be understood as the result of two 
movements in a plane, one rock plateau spreading towards a different moving progression 
of what we call a river. Where the two movements meet we speak about a line. When look-
ing at the world of experience of the Navajo child, one notes that ‘a river’ is not a continuous 
thing … we can then go on and label ‘line’ in Navajo as a particular movement. Next, we 
explore the characteristics of the line explicitly and only then move to the lemmas and 
problems defi ned in the Euclidean geometry system. In this way, multimathemacy is shaped 
in the classroom practice. (François, Pinxten, & Mesquita,  2013 . p. 30–31) 

   Thus we fi nd language and visuospatial reasoning are signifi cant in an ecocul-
tural perspective. Curricula that take account of the ecocultural context encourage a 
sense of ownership but also provide for Indigenous knowledge processes to be used 
in reasoning especially visuospatially, planning, reviewing, and structuring the 
learning environment. Thus learner mathematical identity is encouraged (Fig.   1.2    ).        

    Yup’ik Mathematics Education 

 Like in PNG, there are many cultural practices that use proportional reasoning and 
some common body measurements that are used in a range of activities. However, a 
fi rst point should be made about realising how Elders who make garments are able 
to visually consider a person and then cut out a garment that will fi t using mental 
visualisation and reasoning based on experience. In another activity during the fi sh-
ing period a net of fi sh is loaded into wheelbarrows and taken to the drying racks 
providing typical volume units and proportional reasoning. People can estimate the 
number required and then the amount of fi sh on the rack becomes a volume unit for 
fi lling the smokehouse. Finally another volume unit is used to distribute the fi sh to 
families. Berries are picked into specifi c containers, amalgamated and then placed 
in plastic bags for the freezer providing further volume units and proportional rea-
soning between quantities. 

 In terms of measures of length, the various body parts are used for the kayak, for 
building the fi sh racks, and even for houses. A fi sh rack is fi ve half-fathoms by four 
elbow to elbow, hands clenched at the centre of body. Children build these to illus-
trate measurement units, how to measure and how the rack is utilised. Interestingly, 
the various body measures allow for a range of equivalent fractions as two of the 
smaller units equals the next larger unit. One unit equals three of the double hand-
span—little fi nger knuckle to little fi nger knuckle, thumbs touching naturally. 
Measures are also used in determining heights of stars, direction for travel from the 
star position, and estimated distances by angle of movement across the sky to 
signify an hour of time passing and distance likely to be travelled. Part of the rea-
soning relates to the fact that body parts are always available and objects fi t the 
person better if their own body measurements are used. An important point is that 
children who undertook these cultural mathematics units did signifi cantly better 
on a test of mathematics compared to the comparable control group (Lipka, Mohatt, 
& The Ciulistet Group  1998 )         .  
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    Thoughts on an Ecocultural Curriculum 

 These studies suggest that an alternative approach to curriculum for mathematics 
education in geometry and measurement might be needed. It is not easy to provide 
teachers with a curriculum that emphasises processes (see the UK move away from 
the curriculum  Man :  A course of study  in the 1980s). However, early childhood 
education in mathematics often emphasises processes such as sorting, comparing, 
matching, one-to-one correspondence, describing, drawing, and ordering. These are 
processes so it is not unexpected that a curriculum that notes the mathematical 
processes of an Indigenous group would also have such a list. 

 Comparing as measure: many of the cultural activities of PNG use comparing as 
a skill, generally as a visual skill supported by group discussions. Hence the curricu-
lum should contain a development of this skill. Comparing lengths is a beginning 
fi rst by sight and then by culturally used units such as steps and hand-spans. This 
would develop for comparing large areas such as gardens or fl oor space. This might 
include the number of mounds or people that could fi t into the area as an estimate 
prior to considering in terms of an informal area unit. Volume would also come as a 
comparison of items such as food like yams and piles of food. Small baskets or 
wraps of food could be used as informal volume units to supplement the capacity 
units such as pots or bamboo lengths. 

 Comparing as ratio: many activities compare two sizes at once. It might be the 
giving of packets of biscuits or bundle of sago to each child and the total number all 
together. It might be the fl oor of one house and the fl oor of another (half as much 
again), it might be noting how big a garden will need to be for a bigger family, how 
large an area of kunai or how large a sago plant to obtain roofi ng material for two 
different-sized houses. Comparing how many people can sit on a number of mats 
compared to another number of mats or how many people are provided for by one 
basket or bundle of food compared to several baskets or bundles. These can form 
ready reckoners for the idea of ratio or comparison. In school mathematics these 
will lead to multiplication and fractions and to ratio including trigonometry ratio but 
that is much later in school. The important point is to keep these ratio ideas as a 
strength for learning. 

 Ordering: many things might be ordered. Size or number may be ordered. Order 
might represent status. Position in relation to other objects or people in space might 
also be denoted. Order is often associated with value and this could be in terms of 
gifts or money or for other relationships. Order might not just be linear in the 
complex web of family relations. Time can also be ordered. 

 Sorting for classifying: In geometry, we name shapes with certain properties and 
we relate shapes according to properties. We analyse problems using these proper-
ties and derived information. In schools, these tend to be around Euclidean shapes 
predominantly 2D shapes. Sorting designs and shapes and objects according to their 
properties can be around curved designs, related either according to common use or 
symbolism use in creating a complex design, or by the way they are created. Hence 
different types of lines, particularly curves, and shapes or designs can be connected 
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to each other. By incorporating shapes other than Euclidean shapes, the curriculum 
can maintain the richness of traditional understanding of lines and shapes. 
Classifying is also evident in language such as classifi ers for counting. Objects can 
be grouped and the shapes discussed in both Tok Ples and English. 

 One-to-one correspondence: There are communities where counting is not car-
ried out, but there may be both one-to-one and one-to-many matches as well as the 
use of suffi xes to indicate number. It is also apparent in body part tally systems. 
Corresponding matching is associated with distribution, providing an introduction 
to sharing and division (often by pairs) as well as multiples for groups. It might be 
a different approach to introduce numbers.     

    Brazilian Initiatives 

 Rosa and Orey ( 2012 ) suggest that ethnomodelling is an important pedagogy for 
acknowledging the cultural origins of mathematics for different groups of students. 
Ethnomodelling    encourages students to fi nd out how a particular practice is carried 
out in the community and then to summarise it in a sequence that provides a mathe-
matical ethnomodel. In Brazil, a number of studies have considered the mathematics 
of different cultural groups. For the areas involving the Landless Movement, the stu-
dents can consider the methods for calculating area of irregular quadrilaterals by 
multiplying the averages of the opposite sides (Knijnik,  2002 ) or by squaring the 
result of dividing the sum of the sides by 4 (Flemming, Flemming Luz, & de Mello 
 2005 ) cited in Rosa and Orey ( 2012 ). In areas where Italian immigrants brought wine 
making or the German immigrants brought strong European mathematical ways of 
thinking, alternative ethnomodels could be likely for the students based on their eco-
cultural context. Rosa and Orey saliently reminded their readers that it is important to 
recognise the changing nature of cultures in undertaking ethnomodelling. 

 However, the language and complexity of the classroom illustrates how power 
dominates the situation in terms of language available to students and the ways in 
which ethnomodelling is expressed in language (Knijnik,  2002 ). Nevertheless, by 
focussing on visuospatial reasoning, teachers like the researchers

  explore the idea of miniature cycles of learning actions to focus on the mathematical learn-
ing that is taking place. We describe the dynamics and the complexity of the ongoing activ-
ity in the calculation of areas; and, how drawings form a part, and show their infl uence, in 
it. We argue that part of this infl uence was associated with the contradiction between 
abstract mathematical ideas and their empirical representations, revealed by the tensions 
perceived in the activities analysed; and, simultaneously, that we could see as an impelling 
force for the learning of the rules and norms which regulate the use of visual representations 
in school mathematics. (David & Tomaz,  2012 ) 

   The small cycles of learning in the classroom incident are closely linked to the 
cycle in Chap.   2     that arose from my study in primary schools in Australia (Owens, 
 1993 ) but also formed the basis of the establishing of a mathematical learning identity 
that takes account of the ecocultural context summarised in Chap.   1    .  
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    Language and Inquiry for Visuospatial Reasoning 
in Geometry: Mauritius 

 This research work was carried out with upper primary level pupils (fourth and fi fth 
graders) from four primary schools in Mauritius. To involve schools of different 
categories in the study, one high-performing school (School 1 with 213 students), 
two average-performing schools (Schools 2 and 3 with 367 students), and one 
low- performing school    (School 4 with 165 students) were randomly selected. A 
quasi- experimental design was selected to test the acquisition of geometric skills 
(visual, logical, applied, drawing, and verbal) after experimental teaching with 
inquiry- based teaching with the use of manipulatives and/or local language Creole. 
The students from each school were classifi ed into four groups: Group1 (traditional 
teaching with textbook and English), Group 2 (traditional teaching with textbook 
and Creole), Group 3 (inquiry-based teaching with manipulatives and English), and 
Group 4 (inquiry-based teaching with manipulatives and Creole). After the experi-
mental teaching, a posttest in the form of a multiple-choice paper-and-pencil ques-
tionnaire (MCQ) was collectively administered in all the groups for both fourth and 
fi fth graders. It contained 31 multiple-choice items and there were 4 options for 
every item and only 1 response was correct. The same posttest was again conducted 
after 6 or 7 weeks as a retention test. The aim was to measure how well pupils from 
different groups were able to perform on the MCQ geometry questionnaire and how 
their performances were affected with the passage of time. 

 It might be argued that direct drill and practice of the names of the 2D shapes and 
their properties with visual representation and practice exercises might be more 
effective at the recognition level and even at the analysis level for each of the geo-
metric skills. However, this research study has shown that the use of inquiry-based 
methods when combined with manipulative materials encouraged the pupils to 
become more adept at using the higher order thinking skill of analysis and to acquire 
the geometric skills with the additional use of Creole as language of instruction. 
Visual skill at both recognition and analysis levels were signifi cantly infl uenced by 
the use of inquiry-based methods with manipulative materials. This shows that 
acquisition of visual skill at the recognition level was generally within the ability of 
these primary level pupils. In addition, the use of inquiry-based teaching with 
manipulatives in Creole had promoted the acquisition of visual skill at the analysis 
level (basic property analysis of van Hiele level 2). In particular, in four of the eight 
items in the MCQ questionnaire where there were high success rates (greater than 
67.4 %), the pupils from group 4 outperformed pupils from groups 1 and 2. However, 
the other four items were diffi cult tasks with low average success rates of 43.3 % in 
the posttest and 42.9 % in the retention test. In the retention test only, the pupils 
irrespective of the teaching strategies used, had consistent poor performances in 
these four items whereas a few signifi cant differences in the posttest were favouring 
pupils from groups 3 and 4. It must be borne in mind that visual skill is crucial in 
the acquisition of geometric skills and also helps in the understanding of other 
abstract mathematical concepts and thinking (Clements, Battista, & Sarama  1998 ; 
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Jones,  1998 ; Lean & Clements,  1981 ; Wheatley & Cobb,  1990 ). It is the  visuospatial 
skill that helps pupils to acquire the “geometrical eye” essential in mathematics as 
stated by Godfrey ( 1910 ; Jones & Mooney,  2003 ). Hence, the acquisition of visuo-
spatial skill is important and the use of inquiry-based teaching methods with manip-
ulatives and Creole is signifi cantly helping in achieving this skill at both recognition 
and analysis levels. 

 Logical skill at recognition level is mainly about realising that there are differ-
ences and similarities among fi gures and that fi gures conserve their shapes in vari-
ous positions. There were hardly any signifi cant discrepancies in the performances 
of the pupils from the four groups. Logical skill at analysis level is mainly about 
using properties to distinguish fi gures and understand that fi gures can be classifi ed 
into different types. Despite the low success rates in both posttest and retention test, 
pupils from group 4 had performed signifi cantly better. 

 Applied skill at recognition level is mainly about identifying geometric shapes in 
physical shapes. There were a few signifi cant discrepancies which mostly favoured 
pupils from groups 3 and 4. Applied skill at analysis level is mainly concerned with 
the recognition of geometric properties of physical objects and there was only one 
item in MCQ questionnaire testing    the acquisition of applied skill at analysis level. 
Despite the low success rates in both posttest and retention test, pupils from group 
4 performed signifi cantly better. 

 Drawing skill is an essential skill required for the acquisition of geometric think-
ing and it is a crucial part of the geometry curriculum. Its acquisition at the recogni-
tion level requires the making of sketches of fi gures accurately labelling given parts 
and its acquisition at analysis level requires the translation of given verbal informa-
tion into picture and the use of given properties of fi gures to draw or construct the 
fi gures. The drawing skill requires a signifi cant amount of visuospatial reasoning. 
There were more pupils who acquired van Hiele level 2 skill in drawing the equilat-
eral and isosceles triangles than the two quadrilaterals: parallelogram and rhombus 
in both posttest and retention test. Thus, drawing triangles was easier than the quad-
rilaterals for the primary-level pupils. Concerning group-wise performances, no 
signifi cant difference was observed in the performances of the pupils in the drawing 
of the parallelogram, isosceles triangle, square, and rectangle. However, pupils from 
group 4 performed signifi cantly better than pupils from the other three groups in 
drawing the rhombus and equilateral triangle. Consequently, the use of different 
teaching strategies had little impact on the acquisition of drawing skill. Using isos-
celes right-angled triangles to construct quadrilaterals seemed to be a relatively dif-
fi cult task for the pupils (success rate below 52.8 %) and in general, an overall 
average percentage of 21.5 % had acquired van Hiele level 1 skill and 18.9 % had 
acquired van Hiele level 2 skill in manipulating the triangles to construct the quad-
rilaterals. The use of the different teaching strategies had little impact on improving 
drawing skill. It is observed that the teaching strategies had hardly infl uenced the 
acquisition of drawing skill in both the high-scoring and low-scoring items. Perhaps, 
the applied and practical nature of the items especially the use of identical triangles 
to construct quadrilaterals had equal impact on the pupils.     
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 It might have been thought that the use of English in the textbook, in class for instruc-
tion, and in the test may have assisted students with their verbal skill. However, for the 
seven items in the questionnaire on verbal skill, it was found that overall the success rate 
in all groups in both the posttest and retention test were low. The item which required 
completing a half-drawn rhombus with a line of symmetry needed both verbal and draw-
ing skills and the average success rates were 66.1 % in the posttest and 66.2 % in the 
retention test. Defi nitely the given diagram had helped all the pupils in their attempts. 
Otherwise for the other six items requiring only verbal skill, the success rates were low 
in both posttest and retention test (success rates 26.1–57.0 %). Generally, the pupils 
from groups 3 and 4 signifi cantly outperformed their counterparts from groups 1 and 
2 in all the seven items in the posttest and in three items in the retention test.    Table  8.1  
shows results. Writing the properties of some shapes in their own words proved to be a 
diffi cult task for the primary level pupils in both posttest and retention test and the low 
percentages of success confi rmed the fact. Concerning group-wise performances, gener-
ally pupils from group 4 performed signifi cantly better than the other groups mainly 
groups 1 and 2 in the tasks in both posttest and retention test. Thus, despite the low suc-
cess rates, pupils taught using inquiry-based methods with manipulatives had acquired 
verbal skill at analysis level signifi cantly better than the others. The use of Creole had 
further improved the acquisition.

   The use of the local language can act as a bridge to learning geometry. As men-
tioned by Khisty ( 1995 ), native language is a resource for learning because pupils 
are more successful when they continue to develop their native language skills 

   Table 8.1    Performance of pupils in items requiring verbal skill   

 Posttest  Retention test 

 Group 4 
signifi cantly 
better than 
groups 
listed a  

 Percentage 
of pupils 
acquiring the 
required skill 
in group 4 

 Group 4 
signifi cantly 
better than 
groups listed a  

 Percentage 
of pupils 
acquiring the 
required skill 
in group 4 

 1  Properties of sides 
of an isosceles triangle 

 1, 2  62.3  1, 2  56.6 

 2  Identifying a statement 
which was not true 
about a rectangle 

 1, 2  48.7  1, 2  47.5 

 3  Properties of a square  1, 2  74.7  1, 2  66.9 
 4  Completing a half-

drawn rhombus 
following a given 
statement about its 
symmetry 

 1, 2  77.4  2  71.9 

 5  Properties of a rhombus  1, 2  35.5  1, 2  40.1 
 6  Identifying a statement 

which was not true 
about a parallelogram 

 1, 2  44.2  1, 2  43.8 

 7  Comparing an angle 
with a right angle 

 1, 2  38.5  1  32.7 

   a Based on the partitioning Chi-square test with  p  < 0.05  
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rather than focusing exclusively on learning in English. Teachers and pupils must be 
encouraged to use their native languages to communicate especially at the basic 
schooling level. This creates a learning environment in which pupils feel more com-
fortable and have a greater sense of ownership of mathematics. In addition, pupils 
are able to acquire the practices of mathematics while at the same time maintaining 
their cultural and linguistic identities. When pupils present their ideas in their local 
language, they bring a great deal of thinking resources from their lives and habits 
which are helpful in the learning endeavour. Thus, the inclusion of local language 
Creole can be viewed as a step in providing a language-sensitive framework for 
constructing and reviewing content area assessments. 

 Figure  8.9a  shows two pupils who were collaborating to check the equality of the 
three angles of the equilateral triangle    using a bent pipe cleaner as angle-tester. In 
the following excerpt, a conversation between the two girls is presented.

    Pupil 1: Shall we bend the pipe cleaner and then place on the angles?  
  Pupil 2:  Maybe it is better to place the pipe cleaner on one angle and get a mea-

sure (just like an angle-tester) …then check for the other two angles…
what do you say?  

  Fig. 8.9    Children learning from manipulative activities in Mauritius. ( a ) Noting angle size (Group 4). 
( b ) Different shapes and sizes (Group 3). ( c ) Different quadrilaterals (Group 4). ( d ) Halving a 
rectangle (Group 4)       
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  Pupil 1:  It’s a good idea…ok let’s try it. Here is the angle-tester [she bends the 
pipe cleaner on one of the angles in the triangle]. Now you check whether 
it fi ts the other two angles.  

  Pupil 2:  Yes, see…it is fi tting the other two angles also…. Let’s tell the teacher 
that we found that all the angles are equal.    

 This small conversation illustrates how the two girls were able to construct the 
angle-property of the equilateral triangle while collaborating and using concrete 
materials. Their collaboration seemed to boost their confi dence to explore the angle- 
property. They used    verbal, visual, and logical skills in carrying out the task. 

 It was very encouraging to see how pupils, especially the low-ability ones, were 
able to spot the isosceles triangles on their own. Figure  8.9b  illustrates students’ 
enthusiasm and achievement. The isosceles triangles were the most commonly con-
structed triangles and it was observed that pupils from all the four schools were 
having an instinctive habit of choosing two equal length straws and one different 
length straw for their construction of triangles. As a result, all the pairs of pupils had 
at least one isosceles triangle constructed. The kinesthetic actions and semiotic 
activity had facilitated the learning of different types of triangles. 

 Figure  8.9c  shows the collaboration of pupils to construct parallelograms with 
elastic bands on geoboards. It was observed that the pair of pupils was constructing 
their parallelograms separately on the same geoboard then discussing whether the 
shapes were correct parallelograms. Then they removed or reshaped the ones they 
doubted as examples of parallelograms. Many pupils were very creative as they fi rst 
drew squares and rectangles and then stretched one pair of opposite sides to get their 
parallelograms. 

 Figure  8.9d  shows the pupils’ active involvement in drawing the diagonals of a 
green rectangular paper cut-out shape. S      tudents were physically involved in the 
activity of drawing diagonals on a range of shapes and then discussing their results. 
Activity assisted the connection between emotional engagement and learning that 
was central to the creation of the learning environment in the experimental classes 
with manipulatives. It not only guided the learning activities in the classroom but 
also sharpened the creation of the classroom culture and maintained a supportive 
and emotionally stable classroom environment in which all felt comfortable to take 
risks and to explore ideas in new ways. 

 Beside visuospatial reasoning, the classes with manipulatives have led the pupils 
to achieve experience of the aesthetic. Greene ( 2001 ) defi ned aesthetic learning as 
an “initiation into new ways of seeing, hearing, feeling, moving, reaching out for 
meanings and learning to learn integral to the development of persons—to their 
cognitive, perceptual, emotional, and imaginative development”. Thus, it is found 
that the use of inquiry-based teaching and investigative methods with manipulative 
materials is promoting cognitive, perceptual, emotional, and imaginative development 
in the pupils    which are in fact the main aims of teaching. Undoubtedly, these 
strategies will be benefi cial to the teaching of other mathematics content area beside 
geometry.  
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    Moving Forward 

 This chapter took up the challenge of why an ecocultural perspective on visuospa-
tial reasoning was important for Indigenous communities in transcultural situations. 
The chapter showed how intuitive or incidental experiences within an ecocultural 
context strengthen our understanding of mathematics and mathematics education 
for Indigenous communities.    The chapter also provided an example of visuospatial 
reasoning in classrooms where everyday language differed from the formal school 
language and the impact that language has on visuospatial learning and reasoning. 
An ecocultural perspective sheds new light on how gazing, noticing important fea-
tures, selectively attending, and interpreting visuospatial representations occur in 
visuospatial reasoning in problem solving in cultural contexts. This extends and in 
one sense re-interprets recent research on diagrams    or other external visual imagery 
(e.g. Lowrie, Diezmann, & Logan,  2012 ; Mason,  2003 ) taking account of the issues 
for different groups of students especially those undertaking national or state paper-
and- pencil tests. 

 The chapter illustrated how teacher education that takes account of ethnomathe-
matics provides teachers with a means of incorporating the strengths of visuospatial 
reasoning in an ecocultural context into the learning of students. In particular, the 
chapter considered geometry and measurement and extends the arguments from 
earlier chapters on the importance of taking an ecocultural perspective to extend our 
understand of visuospatial reasoning and the role it plays in problem solving, learn-
ing about geometry and measurement, and encouraging a stronger cultural and 
mathematical identity. 

 It provided examples of what Castagno and Brayboy claim as important for 
Indigenous youth, “a more central and explicit focus on sovereignty and self- 
determination, racism and Indigenous epistemologies in future work on CRS [cul-
turally responsive schooling] for Indigenous youth” (Castagno & Brayboy,  2008 , 
p. 941). The examples tap into at least some of the technologies, worldviews, rela-
tivities, place bases, and r   esponsibilities to community, self and the use of power of 
the learner. However, the holistic perspective must be maintained. It is anticipated 
that students will have the opportunity to use Indigenous knowledge and language 
to meet both local and western education goals. In particular, recognition of visuo-
spatial reasoning is in line with a stronger emphasis on holistic learning and seeing 
the whole picture as a critical aspect of Indigenous ways of learning. An ecocultural 
perspective of visuospatial reasoning as the examples show is in line    with the Alaska 
Native Knowledge Network principles for CRS:

•      A culturally-responsive curriculum reinforces the integrity of the cultural knowledge 
that students bring with them.  

•   A culturally-responsive curriculum recognizes cultural knowledge as part of a living 
and constantly adapting system that is grounded in the past, but continues to grow 
through the present and into the future.  

•   A culturally-responsive curriculum uses the local language and cultural knowledge as a 
foundation for the rest of the curriculum.  
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•   A culturally-responsive curriculum fosters a complementary relationship across knowl-
edge derived from diverse knowledge systems.  

•   A culturally-responsive curriculum situates local knowledge and actions in a global 
context. (Alaskan Native Knowledge Network,  1998 )       

   At the same time, can such an ecocultural perspective developed in the last few 
chapters and considered in this chapter as place-based education with    Indigenous or 
transcultural communities apply to students in a digital age? This is the focus of the 
next chapter.                                                                                                       
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    Chapter 9   
 Visuospatial Reasoning in Contexts 
with Digital Technology 

            Kay   Owens      and     Kate   Highfi eld    

               The Challenge 

 The ecocultural perspective on visuospatial reasoning was established by considering 
Indigenous communities and their practices and appropriate schooling and other 
diverse ecocultural practices illustrating visuospatial reasoning. However, today is 
the digital age so does research on visuospatial reasoning support this ecocultural 
perspective. Since most of the research on visuospatial reasoning has been focussed 
on dynamic computer-generated images, it is important to consider digital techno-
logical facilities as an ecological context. How can an ecocultural perspective of 
visuospatial reasoning enhance our understanding and valuing of visuospatial 
reasoning? In this chapter we consider how a computer-facilitated learning age 
infl uences an ecocultural identity and both self-regulation and visuospatial reasoning. 
It is then important to consider how these personal dispositions impact on mathe-
matical identity. 

 This chapter focuses on prior-to-school and elementary or primary schooling and 
the impact of the digital age on visuospatial reasoning. In particular, it will consider 
how students are reasoning visuospatially in the context of hand-held robots in early 
childhood (Highfi eld et al.,  2008 ). Highfi eld showed that children were capable of 
reasoning and learning concepts in mathematics through the use of robots. Analogies 
will be drawn with the use of diagrams for reasoning. 

 Sections of the chapter cover the importance of dynamic geometry softwares in 
the way that students reason visuospatially. Considering that there are many research 
articles in this area, several will be selected, especially those that look at the use 
of ICTs in different cultural groups and with primary and middle school students. 
The importance of reasoning in a visuospatial environment (Jones,  2000 ) and the 
importance in design of software (Christou, Pittalis, Mousoulides, & Jones,  2006 ; 
Jonassen,  1999 ) as it impacts on visuospatial reasoning, self-regulation and socio-
cultural identity will be explored. 
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 There is also an increasing interest in computers as tools in modelling (Goos et al., 
 2003 ) and in terms of this book in ethnocomputing (Eglash,  2007 ). However, this 
modelling approach can be more broadly interpreted in the modelling sense that 
is developed from a particular cultural group (Rosa & Orey,  2012 ). This strong 
support for valuing cultural mathematics joins with ecocultural perspectives in 
visuospatial reasoning and hence developing mathematical thinking identity that 
moves beyond the western-dominated perspective. 

 The argument continues with important reasons in today’s society for visuospatial 
reasoning. A discussion of the importance of ecocultural perspectives for appreciating 
geographical studies and the mathematical understandings necessary for such studies 
will illustrate the importance of visuospatial reasoning and the impact that ecology 
and culture have on this development and thinking.  

    Ecocultural Perspective of Measurement in Changing Worlds 

 An historical look at geometry from Fibonacci to the twentieth century shows that 
diagrams and practical mathematics with measurement    was commonplace and 
proofs such as Euclid’s were not always centre stage (Menghini,  2012 ). Is it possi-
ble that the digital era built on this background of measurement and experiment? 
Even Fibonacci gave a way of calculating the volume of a heap of wheat in a corner 
by measuring lengths horizontal to the fl oor on either side, multiplying and dividing 
by 2. Perhaps the PNG communities who use lengths for assessing volumes are not 
so different. Measuring is not uncommon in digital dynamic geometry experiences. 
Nevertheless, the geometric or spatial reasoning needs to link to more theoretical 
ways of thinking if the technology is to be considered mathematics. 

 Wassmann ( 1994 ) noted that the Yupno of Papua New Guinea employed three 
different ways of spatial perception and not just the one western way which is ego-
centric. They used object-centred locations such as relative positioning, absolute 
positioning (east, west, south, north), and anthropomorphic description to locate 
themselves depending on the time and context. However, it is possible to explore 
visuospatial reasoning in a digital environment despite Turkle and Papert’s ( 1990 ) 
suggestion that the multiple modes of thinking cannot be known. The ecocultural 
perspective and the model of mathematical identity within context assist us to 
understand the process of visuospatial reasoning in the digital context. 

 We are challenged by Lévi-Strauss’s ( 1968 ) view that visuospatial reasoning is only 
of the “primitive mind”. While we recognise this as a strength that should not be lost to 
Indigenous cultures, we can better understand visuospatial reasoning and improve 
learning in the digital age by realising the importance of visuospatial reasoning in 
the context of the “human-with-media” (Borba & Villarrea,  2005 ). The place of 
visuospatial reasoning    within the model of identity assists us to appreciate how

  the computer, with its graphics, its sounds, its text, and its animation, can provide a port of 
entry for people whose chief ways of relating to the world are through movement, intuition, 
and visual impression (Turkle & Papert,  1990 , p. 131) 

 and enhance learning for all students through media. Despite 
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 discrimination in the computer culture (that) takes the form of discrimination against 
approaches to knowledge, most strikingly against … an approach we call “bricolage”. 
(Turkle & Papert,  1990 , p. 135), 

 there are various students who, for one reason or another, do not want to do “black 
box” programming. The creative, visual approach is illustrated by a student Anne 

   Instead of thinking of compound objects as a way of getting a picture to be bigger, she 
thinks of compound objects as a way of getting sprites to exhibit a greater complexity of 
behavior, an altogether more subtle concept. Thus, Anne’s level of technical expertise is as 
dazzling in its manipulation of ideas as in its visual effects … ., her path into this technical 
knowledge is not through structural design, but through the pleasures of letting effects 
emerge. (Turkle & Papert,  1990 , p. 139) 

   Other students produced unexpected solutions. Thus Turkle and Papert argue 
that visuospatial reasoning is to be respected as much as formal abstract reasoning, 
that working with objects is also to be valued. As Sternberg ( 1987 ) put it, one of the 
intelligences is that of practical. 

 Because young children can form rules and properties that are incomplete, some 
children may not do as well from the more abstract approach as a child who has 
“a tendency to see things in terms of relationships rather than properties, access to 
a style of reasoning that allowed them to imagine themselves ‘inside the system’” 
(Turkle & Papert,  1990 , p. 144). They used a relationship to the gears to help them 
think through a problem but they presented their results in a more formal way. 

 Furthermore, the characteristics of media and their engagement of students have 
led to a number of studies connecting visuospatial reasoning to ecocultural contexts. 
The use of census databases is just one way (e.g. Australian Bureau of Statistics, 
 2013 ). Graphing programmes such as Tinkerplot also allow students to move and 
select and so both physically and visually engage with visuospatial reasoning to 
support a growing understanding of visuospatial displays of data and statistics. 
Dynamic, visual software and movies were used by Dalin ( 2013 ) to create a power-
ful means of students becoming mathematicians. He set about to create

  teaching and learning school mathematics in a human environment and through a human 
learning process. It can be done by translating the mathematical language into graphic, 
visual-dynamic-quantitative representation and providing the needed tools for active learn-
ing through self-experience and exploration. (Dalin,  2013 ) 

   Thus learning is understood in terms of the model in Chap.   1     in which ecocul-
tural contexts are signifi cant in the development of the mathematical learner through 
using visuospatial reasoning as well as other cognitive processes with motivation 
and self-regulation.  

    The Role of Digital Media in Developing 
Self-Regulation for Learning 

 Self-regulation especially in terms of motivation and self-assessing of actions has gen-
erally been assessed by observation and self-reports but the use of computers allows 
for some monitoring. In young children this is a possible important step forward for 
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self-regulation    in problem solving (de la Fuente Arias & Díaz,  2010 ). Furthermore, 
we can see the visuospatial reasoning that young children are undertaking. 

 Highfi eld’s (Highfi eld, Mulligan, & Hedberg, 2008; Highfi eld, 2010, 2013) work 
with young children suggests that simple robotics may provide opportunities for 
young mathematics learners to engage in self-regulation including metacognitive and 
problem-solving strategies. This work suggests that the act of planning, program-
ming, and observing the robots movement can act as a catalyst for engagement in a 
range of mathematical concepts and processes as well as prompt refl ection and revi-
sion of plans. While this cyclic engagement in problem solving (see Fig.   2.17    ) high-
lights the potential of these tools—the context of learning, the child’s engagement 
and responsiveness, multiple representational modes, and the role of a community of 
learners are key in this process. Figure   1.2     emphasises the context and self-regulation 
in the cycles. 

 The role of the teacher, however, may be critical in how well the computer tool 
and the students’ use of it and their collaboration. Laborde, Kynoigos, Hollebrands, 
and Strässer ( 2006 ) note that all papers presented at the PME conferences men-
tioned that in the dynamic geometry software environment “the notion of depen-
dency is diffi cult for students and not understood initially” (p. 286). Furthermore, 
the role of teacher seemed crucial in assisting students to move from the visualisa-
tion to another more substantial form of understanding. Laborde et al. emphasised 
the movement from graphic to mental back to graphic and then to mental activity. 
This switching, reminiscent of code switching, is an important aspect of both self- 
regulation and visuospatial reasoning. A strength of dynamic geometry software    is 
the availability of numerical and fi gural cues and the ability to produce and refi ne 
objects to fi nd a solution (Love,  1996 ). Key to understanding how students fi nd a 
general solution is a recognition that examples and attention to features is dependent 
on “a deep, personal, situated structure” (Goldenberg & Mason,  2008 , p. 138). 

 A study by Goos, Galbraith, Renshaw, and Geiger ( 2003 ) highlights how the idea 
of an ecocultural perspective on visuospatial reasoning can occur within the ecocul-
tural context of classrooms with digital media. The tools were becoming extensions 
of the students’ thinking especially under the prompting of the teacher. The teacher 
intervened on a few occasions encouraging the students to fi nd a solution using an 
alternative digital means, by seeing what other students were doing, and he also 
encouraged the group to share their fi ndings. The classroom approach as the teacher 
portrayed was critical in this ecocultural perspective. 

 Students’ attention and so persistence and self-regulation were the visuospatial 
representation of the graph that indicated three intersection points. It was then a 
matter for the group to verify these points. Again the teacher “encouraged the group 
to use the technology as a  partner  to re-organise their thinking” by using the 
 graphics calculator and spreadsheet on the computer simultaneously. Then when 
they were still struggling, he encouraged them to see what other groups were doing 
and the technology became a partner to mediate mathematical discussion between 
students, resulting in the group coming back together and working out how to set up 
the spreadsheet to fi nd all solutions. Their hastily prepared presentation was 
improved by questioning from students and the teacher helping to draw attention to 
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salient aspects of the task and how the different technologies created different 
representations of the task.

  Mathematical and communications technologies were thus seamlessly integrated to share 
and support argumentations on behalf of the group of students, suggesting that technology 
became an extension of  self  for members of this group. … “we were doing it ourselves, not 
just listening to the teacher. And seeing something visual helped our understanding.” … 
The students’ recollections of this experience hint at the sense of autonomy and power 
associated with appropriating technology into one’s personal repertoire of mathematical 
practice, that is, as an extension of self. (Goos et al.,  2003 ) 

   Reasoning about the nature of the graph, the use of the spreadsheet and the 
algebraic representation was parallel to the way in which Indigenous communities 
were reasoning about the visuospatial representations in their ecocultural context. 
“Tools”—computers and calculators producing graphs, spreadsheets, equations on 
the one hand; buildings, carvings, paintings, weaving, dancing, navigating, and ritu-
als creating visuospatial representations on the other hand—were used with reason-
ing and manipulation. Alternative and “hidden” meanings were understood from the 
mathematical context and ways of thinking and reasoning about the visuospatial 
representations. Both required technical expertise. Both required knowledge of the 
mathematical visuospatial ways of reasoning. 

 Furthermore, both achieved self-regulation, goal setting, cognitive processing 
with visualisation. Both involved communication with others within an ecocultural 
context and both resulted in a sense of achievement and belonging. Both resulted in 
being a member of the community of practice. Both connected the members to a 
sense of autonomy and power associated with appropriating technology. One was 
seen as mathematical but was also ecocultural; the other was mathematical but seen 
as ecocultural. Both were visuospatial reasoning from an ecocultural perspective. 

 Dynamic geometry software has been shown to encourage internalisation of 
motion from the visual screen that students manipulate. The dragging and trace 
tools in the dynamic geometry software are seen and manipulated being transformed 
into psychological tools supporting students’ reasoning.

  From the combination of observation and action students grasped variability as motion, 
while the idea of covariation, incorporated in the coordinated movement of points on the 
screen, was experienced through the coordination between eyes and hands. In most of the 
cases, students’ formulations refl ect the asymmetrical nature of the independent and depen-
dent variables and the twofold meaning of trajectory. (Falcade et al.,  2007 , p. 331) 

   These researchers showed how the classroom conversations encouraged the 
abstraction and recognition of the meaning of trajectory at a point and as a “jour-
ney” illustrating how the ecocultural context (a communicating classroom with 
DGS facility) was signifi cant in students’ visuospatial reasoning and sense of 
 creating the mathematical notions associated with functions. 

 Rivera ( 2011 ) established the importance of the role of technology for visuospatial 
reasoning. Computers as “servants” in Goos et al.’s terminology, not only “produce 
such static displays (i.e. the concrete objects) quickly and easily, but in addition it 
then becomes straightforward to create rotation and morphing animations that can 
bring the known mathematical landscape to life in unprecedented ways” but they 
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also allow users to “obtain fresh insights concerning complex and poorly understood 
mathematical objects” (Palais, 1999, pp. 647–648) as illustrated by Goos et al. 
above. Rivera particularly notes the evolving processes that occur with animation 
and how interaction with the computer and others assists the development of rela-
tions and theory implied by diagrams or codes that model a structure and display the 
relationship or concept. The tool becomes an extension of thinking. 

 In another example, the Singaporean use of representational rectangles that are 
manipulated, for example in fraction work, provide a strong visual analogy giving 
meaning through the classroom and curriculum culture of labelling the components 
and defi ning the spatial relations among the components, and thus becoming visuo-
spatial reasoning. Similarly, diagrams that represent geometric relationships   , often as 
a theorem, involve culturally accepted ways of marking vertices and segments, and a 
classroom accepted way of understanding the diagrams. Rivera ( 2011 ) established 
the existence and importance of visuospatial reasoning associated with the world of 
computer technology in education. In each case, the technology is “an extension 
of self”, a position established as part of visuospatial reasoning in an ecocultural 
context in the earlier chapters and again by Goos et al. ( 2003 ). 

 If we turn to the younger age group, there are benefi ts of virtual manipulatives 
for visuospatial reasoning. For example, virtual Pattern Blocks have colours that 
can be changed, they can be “snapped” into position, unlike concrete material and 
they “stay where they’re put” (Clements,  1999 , p. 51). The development of simple 
repetition, and transformation skills such as refl ection, rotation, and scaling are 
enhanced through on-screen manipulations.    Virtual Pattern Blocks and dynamic 
interactive software can provide representations of concrete manipulatives that allow 
children to experiment with a broader range of patterns with ease and fl exibility. 
Moyer, Niezgoda, and Stanley ( 2005 ) found that children’s patterns were more cre-
ative, complex, and prolifi c using virtual manipulatives compared with patterns 
formed with concrete materials. Highfi eld and Mulligan ( 2007 ) found technological 
tools allowed ease of representation, with children using virtual manipulatives con-
sistently engaged in increased experimental patterning producing a broader range of 
patterns, and edited or deleted them before completion. In part, this could be attrib-
uted to the “delete tools” that held “novelty value”, with the children enjoying “rub-
bing out” and “chucking” things in the “bin”. However, from observations, this can 
mean children fail to stop and refl ect on their pattern making thus requiring teacher 
intervention to encourage greater self-regulation in the problem solving. Interestingly, 
children not only use colour but can also orient blocks to form their pattern as illus-
trated in Fig.  9.1 . Transformations are also explored for fun as captured in the 
following conversation associated with Fig.  9.1b, c :

   Nicholas:  Oh he’s really big now. He’s really, really big. Wee … Oh … Big … Fat ( scaling 
the lion, enlarging it ) 

 Yvette: Make him long ( pointing to the seals ) .  
 Nicholas: Flat ( after shearing the seal ) .  

 Yvette: They’re both fl at ( pointing to the seals ) .  

   The fact that virtual objects can be cloned and repeated also allows for mea-
surement units. However, with young children, using the mouse and accidentally 
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clicking on the wrong icon can prevent good construction requiring some 
 guidance. The use of touch screens overcomes some of the diffi culties of using the 
mouse. In some instances, the screen manipulation can prevent good conversa-
tions and interactions between the children, again requiring some guidance. In 
this respect, adult support can be important in the context of play with technology. 
Further, it is found that children are more likely to click to be entertained and to 
choose books read to them rather than interactive programmes with non-routine 
problems. Hence the immediate class context as well as the digital age cultural 
context infl uences learning. 

 Particularly effective for problem solving with technology is the fl exibility of 
multiple strategies (   Sarama & Clements,  2009 ; Siegler, 1999), including: identifi ca-
tion of mathematical relationships, inference, generalisation, representation, anal-
ogy, recursive cycles of trial and error, and v   erifi cation (Greenes et al., 2003). 
However, as stated by Sophian (1999), successful problem solving is “more than the 
aggregate of the strategies they use; they also know something about the goal” and 
structure of problems and responses (p.18). Thus self- regulation assists with ensur-
ing the cognitive approaches are effective in students’ responsiveness (Fig.   1.2    ).  

    Visuospatial Reasoning in Geometry and Measurement 
Learning Through Digital Technology 

 When we consider visuospatial reasoning in geometry and measurement, research 
predominantly focuses on older children and on screen based tools. The focus on 
older children is likely due in part to curriculum based expectations—with older 
children encountering formalised geometry and thus this content area being given 
increased prevalence in research. However, it could be argued that this focus on 
older children is misplaced with essential measurement and geometry understandings 
developing at a much younger age (   Clements & Sarama,  2007a ). The focus on 
screen based tools is also key here and while this research (as outlined above) pro-
vides insight into a range of tools for use in developing geometry and measure-
ment learning there are a range of alternate digital tools that also have potential 
for learning. 

  Fig. 9.1    Children’s visuospatial reasoning when playing by manipulating objects on computer 
screens. ( a ) Block patterning. ( b ) Enlarged lion. ( c ) Lengthened seals       
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 Besides the studies above and studies on digital technology for area and three 
dimensional stacking for young children, research has mainly focused on the use of 
Logo programming but there have been differences in the success and usefulness of 
Logo. Some research has not always found Logo to be effective for young children. 
The dynamic representation of angle was found to cause confusion for some chil-
dren. The pathway that the turtle moved through and the angle of turn were not 
always easily interpreted even when laser beams illustrated the direction of the turtle 
(Kieran, 1986). Cope and Simmons (1994) also suggested that the immediate feed-
back obtained from    Logo programming may inhibit the development of angle con-
cepts. Their research with students aged 9–11 years, indicated that some learners 
utilised trial-and-error strategies rather than moving to more advanced, higher level 
understandings of angle and rotation. Nevertheless,    Clements and Battista ( 1989 ) 
and Noss (1987) describe children’s increase in understanding of angle concepts 
when using Logo. Misconceptions may in part be mitigated by appropriate peda-
gogic structures (   Sarama & Clements,  2004 ). Lehrer and Littlefi eld (1991) proposed 
mediated instruction, including structured teaching of Logo skills, as benefi cial for 
children in mastering Logo.    Clements and Battista ( 1991 ) also recommended tasks 
that are carefully planned to encourage comparison and avoid misconceptions. To 
this end, Lehrer, Jacobson, Thoyre, Kemeny, Strom, Horvath et al. ( 1998 ) espoused 
potential benefi ts of sequenced tasks and inquiry-based learning with Logo. 

 As a child plans and programmes the turtle’s movement in Logo their actions are 
inherently linked with spatial and geometric concepts, including shapes and angles, 
directionality, linear measurement, location and position and pathways (Clements, 
Battista, Sarama, Swaminathan, & McMillen,  1997 ). Clements and colleagues 
found that children’s engagement with shape construction in Logo enables children 
to progress quickly in geometric understandings (Battista & Clements,  1991 ; 
Clements,  1998 ). Children’s active construction of shapes in Logo facilitated the 
noticing of properties, verbal descriptions, and integration of geometric understand-
ings. Butler and Close (1989) also found that work in Logo enabled children to 
develop understanding of two-dimensional shapes. The construction of shapes in a 
dynamic environment pushed children beyond the static representations they would 
normally view in traditional representations of geometric concepts. Similar fi ndings 
are supported by research with children in primary school (Battista & Clements, 
 1991 ; Hoyles & Noss, 2003; Lehrer & Littlefi eld, 1991) and high schools 
(Khasawneh, 2009). 

 Simple easily programmable robotics engages students and avoids some of the 
issues of Logo on screen. Lack of interest partly results from other aspects of the 
digital age, namely fast moving, noise-producing manipulative screens. Spatial 
issues are also reduced with the fl oor turtle. Children are in the same three dimen-
sional space and can face in the same direction as the turtle       whereas a vertical screen 
made some tasks, especially on angles, diffi cult for students. In Highfi eld’s ( 2012 ) 
study, evidence of visuospatial reasoning is demonstrated not only by the children’s 
activities and conversations captured on video but also by their drawings. Highfi eld 
classifi ed the drawings made by 30 children (4 three-year olds, 6 four-year olds, and 
20 year 1, around age 6) as idiosyncratic/non mathematical, emergent spatial struc-
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ture, symbolic non-spatial structure, symbolic partial-spatial structure, symbolic 
spatial structure, and integrated symbolic spatial structure. Although only the four 
youngest children (3 year olds) produced the fi rst two of these categories, neverthe-
less, one child appeared to be drawing the Beebot (commercial robotic toy) 
(Fig.  9.2a ) with reasonable spatial arrangement and some movement by a line and 
two additional circles. The drawings of two lines labelled emergent spatial struc-
ture (see an example in Fig.  9.2b ) may have shown the child’s dynamic visuospa-
tial reasoning by the physical order in which they were drawn. It should be 
remembered that the child’s ability to draw to represent their thoughts might lag 
behind their spatial thinking as found in the Count Me into Space project where a 
child could verbalise the structure of four squares covering a larger square but 
could not draw it and knew it did not represent the image in his mind (see also other 
examples in Chap.   2    ).

  Fig. 9.2    Drawings by children of the movement of their robot. ( a ) Pictorial idiosyncratic. 
( b ) Emergent spatial. ( c ) Symbolic emergent spatial. ( d ) Symbolic partial-spatial. ( e ) Symbolic 
spatial. ( f ) Integrated spatial       
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   One 4-year-old child’s drawing was classifi ed as symbolic emergent spatial struc-
ture. His representation indicated the number of steps and a turn but placed these 
symbols side-by-side so that there was no indication of the robot’s movement path 
(Fig.  9.2c ). The most common type of drawing for 4 year olds (5 of the 6) and 6 year 
olds (11 of 19 actually drawn) was classifi ed as symbolic partial-spatial structure. 
These demonstrate an understanding of the robot’s movement and the use of symbols 
to demonstrate movement. In Fig.  9.2d , the child uses the symbols of a straight line 
to indicate movement forward and a curve line to indicate a rotation. Another child 
has used arrows to indicate three steps forward, with the number of arrows indicating 
the number of steps taken. The children’s use of spatial structure is classifi ed as par-
tial as the step length and the angle of rotation is indicative of the movement rather 
than structured with a measured or good estimate of the angle of rotation. 

 The next two drawings classifi ed as symbolic spatial structure represent suffi cient 
information in themselves to convey the movement and direction that the robot took 
with evidence of the programme steps (Fig.  9.2e ). These were produced only by 
5 year 1 students (around 6 years old). The last category of representation is integrated 
spatial structure produced by three children of this older group. They show evidence 
of integrating a representation of programming (for example correct number of 
equally sized steps and correct direction for turns) and incorporating programming 
elements in a coherent manner with the use of both symbols and spatial structure 
(see Fig.  9.2g ). Interestingly these children integrated their symbol for turn (like 
the dot) into other representations during the project. 

 Like any study attempting to classify diagrams into a fi xed set of structures, some 
drawings were not easily classifi ed. This indicates the diversity of visuospatial reason-
ing in their robot action, their thinking, and their drawing. Nevertheless, the study 
indicates that young children are reasoning visuospatially. More interesting are the 
videotapes of children problem solving in specifi c ways from easy movements such 
as make the robot move backwards to make the robot move forward three steps and to 
move forward and rotate. The children could respond to these tasks confi dently and 
without need for multiple attempts or using metacognitive strategies. 

 The more complex tasks of programming the robot to move in a square and to 
move through “house” tasks which required the child to move from the home posi-
tion in specifi ed ways (see Highfi eld & Mulligan,  2009  for further information) 
presented an opportunity to observe children’s use of problem-solving strategies    
and tools. Frequently children required multiple attempts and they used embodied 
action and gesture to problem solve such as using hands to indicate the steps they 
were considering, using the toy to model the planned movement, using whole body 
action to act out the steps for the toy to move or using symbols such as arrows to 
plan steps or movement. For example, there were 20 examples of children pointing 
to a position on the mat, 29 instances of them using their hand to iterate steps and 
plan length, and 40 instances of children moving their hand in an arc or sliding 
motion to indicate general movement or rotation without indicating distinct steps. 
These were embodiments of visuospatial reasoning. In 56 examples, either the eyes or 
head were used to “point” or indicate steps of movement also indicating visualising 
reminiscent of the way children learn to count and count on in their heads for early 
addition. In eight cases children used the toy to act out and plan movement. 
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 One interesting occurrence in the classroom play with robots happened when 
4-year-old children communicated in their pairs by observing and recording on 
their diagram a hook shape similar to that used by another pair. This was reminis-
cent of the problem solving that occurred in Owens study (Chap.   2    ) in which 
groups would use what other children were doing to assist their heuristic of assess-
ing their own work or as Goos recorded above when students were working with 
dynamic algebra systems or the architecture students (Chap.   5    ) said that they asked 
opinions of their friends or looked at what others were trying to do to assist their 
visuospatial reasoning to get started with problem solving or consider the aesthetics 
of their paper sculpture. In the last case, they noted that others used cultural prac-
tices, and they subsequently, used cultural practices. In a similar way, children 
observing others in a digital technological classroom illustrate a cultural affi nity to 
that kind of classroom, an ecocultural context. 

 Yelland and Masters (2007) articulate three types of collaborative scaffolding: 
cognitive, technical, and affective, and demonstrate that children who were scaf-
folded using these techniques demonstrated more sophisticated strategies in solving 
problems. Effective teacher cognitive scaffolding includes ensuring that the children 
have understood the task and are utilising and articulating the specifi c strategies, 
intervening at appropriate times to assist students with a diffi culty for which they 
need a little piece of information, and in larger more formal classrooms encouraging 
children to share at different steps in the inquiry (McCosker & Diezmann, 2009; 
Williams, 2008). Thus the role of the teacher    in the ecocultural classroom in the 
digital age has an important role just as Elders in an Indigenous community. 

 Highfi eld and Mulligan ( 2009 ) provided a list of ways in which robots could be 
used to establish processes and concepts in geometry and measurement in particular. 
These are shown in Table  9.1 . The use of the robot can facilitate children’s visuo-
spatial reasoning and learning.

   Highfi eld and Mulligan note:

  In this project it is signifi cant that the children engaged in multiple mathematical processes 
concurrently and sequentially; and they demonstrated perseverance, motivation and 
responsiveness to these tasks that would not usually be evident in their regular programs. 
(Highfi eld & Mulligan,  2009 , p. 27) 

   Educational robotic application (ERA) principles (Catlin & Balmires, 2010) for 
effective learning are grouped into three areas    pertaining to technology, student, 
and teacher.

•    Technology should demonstrate a range of intelligent behaviours, interact 
through a range of semiotic systems and use embodiment, enable the student to 
learn through meaningful interactions situated in space and time.  

•   Students should have engagement fostered, be able to engage in sustainable and 
long-term learning and be able to personalise the robotic learning experience.  

•   Teachers should be able to access and demonstrate effective pedagogy, present tasks 
that intersect with curriculum and assessment opportunities, ensure equitable 
access to the technology, meeting the practical needs of organising and delivering 
educational opportunities.    
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   Table 9.1    Uses of robots to develop visuospatial reasoning for concepts   

 Spatial 
concepts 

 Capacity: Creating and measuring space that is large enough for the toy to 
move through (such as a tunnel)    or fi t inside (such as a garage) 
 Angle of rotation: Exploring the rotation of the toy as a pre-set 90° angle, 
creating pathways that utilise a 90° angle 
 Directionality: Examining concepts such as forward, backward, rotate, left, 
right, and positional language 
 Position on a plane: Using increasingly complex language, “over there” 
becomes “in the far left corner”. Using terms such as over, under, beside, 
through, near, and far 
 Transformational geometry: Exploring concepts such as rotation and linear 
motion 

 Measurement  Informal and formal units: Using informal units, such as hands, counters, 
blocks, or the toy’s length, and formal units such as measuring tapes to 
ascertain distances and assist in creating programmes    
 Identifi cation and iteration of a unit of measure: Using the toy’s pre-set step as 
a unit of measure, when moving the toy; using hand and eye gestures as place 
holders in measuring distance 
 Direct comparison: Using the toy’s length to compare directly the distances 
needed to complete a pathway 

 Structure  Grid: Developing and using grids showing the toy’s step length to assist in 
planning and developing programmes 
 Gesture and movement: Using gestures and body movement to indicate and 
imagine the structure of regular steps, For example, when asked how she knew 
what the programme required, a child responded “I imagined where the steps 
would be” 

 Number  Perceptual and fi gurative counting: Engaging in both perceptual and fi gurative 
counting to ascertain the number of steps required to complete a given pathway 
 Comparison of number: When comparing programmes or movement pathways 
the children frequently compared number; for example: “I went eight forward 
and you only went six forward and so mine went further” 

 Problem 
solving 

 Estimation: Predicting and estimating the number of steps required to complete a 
pathway; examining the estimation to assess reasonableness before programming 
 Refl ecting: Observing a programme, refl ecting on attempts, and making the 
changes required 
 Trial and error: developing confi dence to trial a programme, even if incorrect 
and identifying errors 
 Recall of prior knowledge:    recalling prior knowledge and skills to apply in 
programmes 
 Investigating multiple solutions: Predicting and developing multiple solutions 
to tasks; for example, travelling clockwise, or anti-clockwise 
 Evaluating solutions: Examining the effi ciency of a programme to decide if it 
was most effective 

 Representation  Semiotic understanding of symbols: In order to programme the robot to move 
the children needed to develop an understanding of what each symbol meant. 
The forward arrow meaning one step forward, arrows to the left or right 
meaning rotation (not movement to the right) 
 Constructing and recording programmes using symbols: After completing a 
programme the children represented what they had done in the “robot diaries”. 
This required learners to develop a symbol system representing their programme 

   Note : Source—Highfi eld and Mulligan ( 2009 ), p. 26  
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 Although not yet widely adopted Catlin and colleague’s ERA principles are most 
relevant to the design and pedagogic affordances of a broad range of robotics and 
robotic toys. 

 Thus we fi nd that children’s ecocultural context in the digital age infl uences 
not only their ecocultural identity but their self-regulation in terms of both affec-
tive and cognitive processes and hence responsiveness. This responsiveness is 
assisting in establishing their ecocultural (digital) mathematical identity. In turn 
they were infl uencing each other in the classroom. The role of the teacher who has 
also established an ecocultural (digital) mathematical identity in this digital context 
is also critical.  

    Visuospatial Reasoning in the Digital Age Taking 
Account of Ecocultural Contexts 

 It is no wonder then that a number of researchers have used computer technology to 
engage Indigenous and disenfranchised students. Eglash ( 2007 ) has prepared a number 
of different programmes to engage students with pleasing results. Brown ( 2008 ) has 
also carried out a study in Australia emphasising

  Mathematics programs that accentuate Aboriginal students’ life experiences and contexts 
bring relevance to their learning, thus providing purpose and in turn increased levels of 
motivation and engagement. Mathematical modelling and problem solving can inject curi-
osity into what is sometimes considered by students to be a boring subject: when the two 
are properly combined, they can improve students’ attitudes towards mathematics (Falsetti 
& Rodríguez,  2005 ; Brown,  2008 , p. 95) 

   Brown’s study involved urban Indigenous Grade 4–7 students (primary school) 
in Queensland where cyclones are becoming more prevalent and have always been 
a concern. She utilised visual and written texts including graphs about cyclones and 
chocolate. Students in groups participated well saying they had a job to do and the 
mathematics was genuinely useful, and some shared the work, but the mathematics 
they were utilising, they did not necessarily recognise as themselves doing mathe-
matics at the time.

  Students are offered a variety of modes to deliver their fi ndings and indeed some students 
have requested to formulate their own. It is this level of student interest that indicates that 
mathematical modelling can be perceived by students to be a productive and worthy enterprise. 
(Brown,  2008 , p. 97) 

   Thus we see a sense of self-regulation, ownership, and identity with the require-
ments of the task, not necessarily seeing it as mathematical. Interpreting the visuo-
spatial representations was given a context of relevance to the students in their 
ecocultural environment. 

 Simulations are a digital age tool that can encourage visuospatial reasoning 
but also empathy for the tools and for the sources of content (Holton,  2010 ). 

Visuospatial Reasoning in the Digital Age Taking Account…
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Holton reminds us that learners’ views about learning from the computer and beliefs 
about control are critical in self-regulation and working with digital media. Jonassen 
(Jonassen,  1999 ; Jonassen et al.,  1999 ) whose work was critical for establishing the 
model in Chap.   1     (Fig.   1.2    ) noted the importance of information and computer tech-
nologies facilitating meaningful learning experiences that were active, constructive, 
collaborative, intentional, complex, contextual, conversational, and refl ective. 
These aspects all interact with each other. Thus students will create visuospatial 
representations but also discuss these so they have shared meanings. Contextual 
experiences take account of the ecocultural contexts. 

 Eglash’s work on culturally situated design tools (Eglash & Rensselaer 
Polytechnic Institute,  2003 ) including the VBL (virtual bead loom)    is established on 
a careful discussion of the ecocultural background from which the digitized designs 
are linked. So, for example, he discussed the extensive use of four-fold symmetry in 
Native American cultures for the VBL included on the webpage.

  Before reading the text, teachers can ask students to look at the designs and describe them; 
such discussions offer opportunities to introduce symmetry as a term and concept. The text 
describes, (as he does in the paper), how four-fold symmetry is a deep design theme in 
many Native American cultures, and is evident not only in a wide variety of native arts, but 
also indigenous knowledge systems such as base four counting, four-quadrant architecture, 
the “four directions” healing practice, etc. A second web page shows how such structures 
are analogous to the Cartesian coordinate system. Finally, the webpage introduces the 
Native American bead loom as another example in which we fi nd an analogue to the 
Cartesian grid. (Eglash,  2009 ) 

   Not only can students create given designs but from their creative design on the 
virtual tool, then can recreate a real example on a bead loom. Eglash noted

  There are three pedagogical frameworks that can be used with VBL. In  application/rein-
forcement  we start students with the task of simulating one of the original beadwork designs. 
Teachers have reported success in using this software for teaching Cartesian coordinates, 
refl ection symmetry and its relation to Cartesian values, numeric aspects of translation, and 
other subjects. In  structured inquiry  specifi c math challenges can be proposed by teachers: 
developing rules for the refl ection of polygons about the axis, numeric descriptions for color 
sequences, etc. For example, teacher Kristine Hansen at the Shoshone- Bannock reservation 
school had students create a rectangle in quadrant I (the positive-positive quadrant), and then 
apply the following:

    1.    Refl ect your rectangle into quadrant II with the following transformation (x,y) → (-x,-y)  
 Students then created transformation rules to place the rectangle in other quadrants. Doing 
this with asymmetric triangles might be even more effective since it would help visualize the 
refl ections. Another exercise carried out by Hansen:   

   2.    Program a green isosceles triangle at the bottom of the screen. Use the transformation 
(x,y) → (x,y + 5) to translate your triangle up 5 units. Continue to iterate this translation 
by translating your last triangle up 5 units until you reach the top of the grid.  
 This was assigned in early December; she reports that she had intended that the students 
create a Christmas tree, but to her surprise the students modifi ed the assignment and 
closely overlaid the triangles using a multitude of colors, creating what she describes as 
“the feathered bead pattern we see in a lot of the beadwork here on the reservation.” This 
indicates that one advantage to this more open-ended approach to ethnomath is that it 
lends itself better to “appropriation” (Eglash et al., 2004), thus offering a more 
constructivist- based learning environment in which students’ cultural sensibilities can 
be used as a bridge to math education.    
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  Finally there is  guided inquiry , in which students chose their own challenges. For example, 
one student of Puerto Rican heritage decided to create a beadwork image of the Puerto 
Rican fl ag, which includes an equilateral triangle. At fi rst he tried to create an equilateral 
triangle by having the same number of beads on each side, but that did not work because the 
beads along the diagonal are spaced farther apart than the beads along the vertical or hori-
zontal. He fi nally arrived at a solution by using the ratios of a 30-60-90 triangle to arrive at 
a discrete approximation (Fig. 8); a challenge that he might have balked at had it simply 
been assigned to him. (Eglash,  2009 ) 

   Adam ( 2010 ) went back and discussed possible food covers with the weavers. 
Eglash ( 2009 ) went back to the Shoshone-Bannock to fi nd the algorithm they used 
and built that into his programme. “Using iterative rules—e.g. “subtract three beads 
from the left each time you move up one row.” It worked better than the standard 
computer algorithm.  

    Moving Forward 

 This chapter has outlined some research that has considered the value of digital 
technology in encouraging visuospatial reasoning in problem solving. The digital 
age provides digital tools that can be engaged to enhance visuospatial reasoning as 
students learn mathematical processes and concepts. The ecocultural background is 
signifi cant for the students of today and infl uences the self-regulating student in 
terms of affective and cognitive strategies. The impact of the classroom context is 
evident. Furthermore, Eglash and others have shown how there can be a synergy 
between ecocultural Indigenous contexts and ecocultural digital-aged contexts. 
There is evidence to show that both engage the students’ self-regulation and visuo-
spatial reasoning. 

 The last chapter encapsulates the arguments presented throughout the book 
providing a synthesis of research from across the world, across time, and across 
paradigms of psychology, anthropology, and psychological education and critical 
philosophical approaches to education.                                                   

Moving Forward



291© Springer International Publishing Switzerland 2015 
K. Owens, Visuospatial Reasoning, Mathematics Education Library, 
DOI 10.1007/978-3-319-02463-9_10

    Chapter 10   
 An Ecocultural Perspective on Visuospatial 
Reasoning in Geometry and Measurement 
Education 

                      Education that consists in learning things and not the meaning 
of them is feeding upon the husks and not the corn. 

(Mark Twain) 

 Only when a result fi ts into a wider context do you really begin 
to see its signifi cance. 

(Mason, Burton, & Stacey,  1985 ) 

 One way of capitalizing on the strength of social studies of 
science, and avoiding the refl exive dilemma is to devise ways in 
which alternative knowledge systems can be made to 
interrogate each other 

(Watson-Verran & Turnbull,  1995 , p. 138) 

      The Challenge 

 The introduction to this book gave a preliminary description that visuospatial reasoning 
incorporates a wide range of spatial abilities and skills together with visual and spatial 
imagery, representations, processes, and related concepts. Visuospatial reasoning is 
the mental process of forming images and concepts and mentally modifying and 
analysing these visual images. Visuospatial imagery involves the relationship, posi-
tion, and movement of parts of an image or sequence of images. The spatial compo-
nent of imagery may result from bodily movement as well as visual perception. 
Frames of reference may be bodily rather than in terms of visual or cardinal frames. 
   Mental often dynamic or patterned imagery that embodies relationships is part of 
visuospatial reasoning. Imagery signifi es a schema of the relationships, one in 
which the cognitive processes, some innate, some intuitive are not separated from 
the social context when reasoning. However, visuospatial reasoning was only one 
aspect of the development of an identity as a mathematical thinker. The role of 
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visuospatial reasoning among other cognitive and affective aspects was positioned 
as important for self-regulation but more importantly the overall perspective showed 
how an ecocultural context infl uenced not only the ecocultural identity of the learner 
but its impact on the self-regulated    mathematical learner. 

 Chapter   2     discussed a number of studies from educational psychology on spatial 
abilities and visual imagery and their relevance to our understanding of how children 
learn mathematics. It presented the strong legacy of this research to our understand-
ing of visuospatial reasoning. In particular the chapter discussed linked studies that 
drew together the literature on visuospatial reasoning and illustrated its occurrence 
in classrooms. Aspects of these classroom studies illustrated how context—the 
particular problems, the materials, classroom expectations, and interactions with 
people infl uenced the cognitive and affective learning of children. The key study 
that showed the impact of a series of geometry problem-solving experiences on 
visuospatial reasoning emphasised that intention and attention played key roles in 
the way that the context infl uenced thinking. Nevertheless, without responsiveness    
there was no forward movement in problem solving and in turn the context was 
affected. However, mental schema, including visuospatial imagery and processes 
together with beliefs and values impacted on visuospatial reasoning. The effect of 
sociocultural and ecological situations was particularly relevant to what are often 
considered intuitive ways of visuospatially reasoning. 

 The third chapter established the importance of a critical perspective to under-
stand visuospatial reasoning in terms of place. Place has both spatial and cultural 
aspects. Each impacts on visuospatial reasoning. Education, it was argued, should 
take account of place, ecology, and culture. Thus an ecocultural    perspective on 
visuospatial reasoning was established. The fourth chapter showed how relevant 
this was from a linguistic point of view in terms of locating and comparing, two 
key aspects of geometry and measurement. The ecocultural perspective was 
expounded in terms of the rich cultures of Papua New Guinea in Chap.   5    . The infl u-
ence of culture on representations and creating representations was particularly 
evident. Visuospatial reasoning was illustrated in many ecocultural activities such as 
designing and constructing houses, boats, artefacts and in village activities such as 
food production and reciprocity exchanges. The importance of cultural identity and 
cultural ways of thinking was particularly evident in the areas of mathematical rea-
soning associated with space. Thus visuospatial reasoning was not only defi ned in 
terms of the complexities of psychological literature but it was also established in 
terms of an ecocultural perspective. This was supported by studies from other cul-
tural groups in Chap.   6    . 

 Importantly, in Chap.   7    , it was argued that an emphasis on visuospatial reasoning 
addressed perception of mathematics itself. Reasoning was logical and systematic 
within the visuospatial realm. It was evident in Indigenous cultures that visuospatial 
reasoning is a mathematical strength that is currently not recognised and nurtured in 
schools. The ecocultural perspective challenged perspectives of mathematics. 
Support for this argument was granted by a number of school education programmes 
reported in Chap.   8     that took an ecocultural perspective. Visuospatial reasoning was 
valued and valuable in transitions between home and school that took account of 
ecology and culture. 
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 Chapter   9     indicated that the ecocultural perspective also applied to digital worlds 
in which visuospatial reasoning was evident and where self-regulation was encour-
aged by the very nature of the inbuilt investigative system requiring refl ection to try 
another approach. The context and tools encouraged children to use visuospatial 
reasoning, keeping their interest in investigating, and evaluating their progress 
resulting in their responsiveness    and action. As a result, they established a sense of 
identity in working with the tools in a mathematical way. 

 The argument was established for an ecocultural perspective of visuospatial 
reasoning especially in geometry and measurement from the studies of Indigenous 
groups in various places especially in PNG. This ecocultural perspective of education 
applied to the digital age. This fi nal chapter draws these arguments into establishing 
the importance of visuospatial reasoning from an ecocultural perspective in enrich-
ing the discipline of mathematics and mathematics education. This perspective 
provides a synergy for education to be for both local and global contexts.  

    Mathematics 

 A recent report for the Programme for International Student Assessment (PISA) stated:

  Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathe-
matics in a variety of contexts. It includes reasoning mathematically and using mathematical 
concepts, procedures, facts, and tools to describe, explain, and predict phenomena. It assists 
individuals to recognise the role that mathematics plays in the world and to make the well-
founded judgments and decisions needed by constructive, engaged, and refl ective citizens. 
(Organisation for Economic Co-operation & Development,  2013 , p. 25) 

   This defi nition describes people with a mathematical identity as those who can 
engage with mathematics at the contextual level. In other words, people are able to 
think mathematically to make decisions related to their place, albeit local and 
global. Whatever processes and concepts are used, both involvement of context 
together with critical and consequential application are present in a developing eco-
cultural mathematical identity (Gresalfi  & Barab,  2011 ). It involves the disposition 
to think mathematically to understand situations and to solve problems. 

 Furthermore, the quoted defi nition applies across cultural and ecological con-
texts. Thus a person creating a  kapkap  decorated disc in PNG will be mathematical 
in the way they create and make the disc with an arrangement of shapes representing 
human and cultural relationships. A person who is considering school trigonometry 
will apply trigonometry to the making of a bridge but could also use cultural visuo-
spatial reasoning to select and join wood for the bridge. Both support each other 
when the synergy of ecocultural visuospatial reasoning is combined with western 
school mathematics. Experiences in the local and global world will provide for 
individual differences and excellences. 

 This book is not just probing ethnomathematics of Indigenous cultural groups in 
terms of visuospatial reasoning. It is arguing that these Indigenous ways of visuospa-
tial reasoning are indeed strengths for mathematics, the growing fi eld of geographic 
   representations (National Research Council Committee on Geography,  2006 ), and 
other mathematical sciences.

Mathematics
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  Visualization and visual thinking are far more than access, preparation, and motivation: 
They are worthy content themselves. Visual representations help people gain insights into 
calculations in arithmetic and algebra. Properties of mathematical processes are often dis-
covered by studying the geometric properties of their visual representations. … By ignoring 
visualization, curricula not only fail to engage a powerful part of students’ minds in service 
of their mathematical thinking, but also fail to develop students’ skills at visual exploration 
and argument. (Goldenberg et al.,  1998 , p. 6) 

   Today, mathematics curricula appear to be placing less emphasis on visuospatial 
reasoning under national and state testing    regimes that fi nd it hard to test except in 
terms of diagrammatic representations. However, visuospatial reasoning by com-
parison, ratio, and alternative relationships that link different dimensional knowl-
edges are important for geographic and other sciences. The importance of 
recognising differences in non-numeric representations and collaborative decision 
making is a way forward in mathematics and hence needs to be addressed in math-
ematics education. It is crucial that Indigenous ways of knowing are investigated 
and become springboards for school education especially in the transition from eco-
cultural contexts to school.  

    Theories of Mathematics Education 

 This book has illustrated some of the newer synergistic ways of researching in 
mathematics education. It has gone further than what Presmeg ( 1998 ) has suggested 
as ways forward with theory building. Presmeg noted that some research had already 
used linguistic and philosophical disciplines to integrate cognitive and imaginative 
rationality through prototypes, metaphors, and metonymies in mathematics since 
these processes underlie human reasoning itself. The study of language about size 
and position for PNG languages refl ects the ways of thinking of Indigenous PNG 
communities and their use of prototypes, metaphors, and metonymies in their repre-
sentations, reasoning, and connectivity in designs and cultural activities. This book 
demonstrates how these theoretical approaches enlighten our understanding of imagi-
native visuospatial reasoning.       Visuospatial reasoning is embedded in language, ges-
tures, activities, and visual representations of objects and mathematical systems 
related to roles and relationships, beliefs and systems. General principles of education 
that take account of Indigenous knowledges associated with the environment and 
place (Gruenewald,  2008 ) are explicated in the chapters of this book. 

 Other research studies, as Presmeg ( 1998 ) noted, have brought the sociological 
and anthropological together with the psychological perspectives in discussing 
social interactionism, mathematical development, mathematical meaning, and the 
nature of mathematics itself. The psychological studies in Chap.   2     led to a recogni-
tion of context and responsiveness    to context in terms of mathematics. Many of the 
studies presented in later chapters showed that context, specifi cally ecocultural con-
text, was signifi cant in learner and mathematical identity. This book in fact illumi-
nates the important role of considering visuospatial reasoning from an ecocultural 
perspective to appreciate how the ecocultural context really impacts on reasoning 
that is important for self-regulation, responsiveness and hence mathematical identity. 
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Anthropological studies of the making of  kapkap  (Chap.   5    ) and other objects 
(Chaps.   5    ,   6    , and   8    ), the qualitative studies of house and other constructions (Chap.   5    ), 
and ways of discussing location (Chap.   4    ) underline how visuospatial reasoning is 
enmeshed in cultural connectivity. The study of artefacts and activities summarised 
in Chap.   5     and by teachers (Chap.   8    ) illustrated the hybridity (González et al.,  2005 ) 
and in some cases the synergy of traditional and school ways of thinking mathemat-
ically. Underlying the many commentaries in Chaps.   5     and   6     of mathematical visuo-
spatial reasoning and the signifi cant role of culture in these ways of thinking is a 
valuing of the mathematical systems inherent in the cultures. 

 The arguments put forward in this book have crossed the thirdspace       of educa-
tional spatiality (Luitel,  2009 ; Soja,  2009 ) in providing a rich understanding of the 
ecocultural perspective. In other words, the area of mental transition, of creating an 
understanding of space from different perspectives permits a local and global per-
spective and various degree of each for the individual if not for the sociocultural 
group. The ecocultural context is represented in Fig.   1.2     from Chap.   1    , presented in 
this chapter as Fig.  10.1 . This fi gure gives the theoretical picture for discussing 
visuospatial reasoning from an ecocultural perspective. Signifi cantly, the fi gure rep-
resents the way in which ecocultural context directly and through an ecocultural 
identity impact on the developing learner’s cognitive and affective self-regulating    
and hence being and becoming an ecocultural mathematical thinker.

   Figure  10.1  provides an example of what Rosa and Orey ( 2012 ) suggest as a way 
of modelling mathematics and mathematics education from an ethnomathematics 
perspective that takes account of non-western approaches to mathematics educa-
tion. This is particularly evident in the PNG elementary school project for  Cultural 
Mathematics  in which key principles highlight a strong emphasis on culture, home 
language treasures, and partnerships. Nevertheless, the proposal became practical 
through an inquiry approach that encourages the teacher and students to explore the 
mathematics of cultural activity in order to recognise, develop, and use unique eco-
cultural visuospatial ways of thinking (Fig.  10.2 ). In doing so, strong school math-
ematical thinking is established. The synergy between cultural ways of reasoning 
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  Fig. 10.1    Developing identity as a mathematical thinker (full details given in Fig. 1.2)       
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and school mathematics ways of reasoning is illustrated in terms of multiplicative 
and ratio thinking but more importantly in recognising, maintaining, and strength-
ening cultural visuospatial reasoning.  

 Within theories of education, the emphasis on ecocultural contexts is signifi cant 
in that it not only recognises the natural and physical environment of children at 
home and at school but it recognises the cultural groups’ responses and systematic 
ways of thinking about geometry and measurement. The approach of this book 
leads to recognising not only a way of incorporating culturally responsive educa-
tion but also an important approach for all mathematics education to recognise 
visuospatial reasoning    and ecocultural perspectives more in order to strengthen 
mathematical learning for all students. The study of learning in a digital age justi-
fi ed this position. Thus local and global interactions and emphases are achieved in 
education.  

    The Synergy of Research Studies on Visuospatial Reasoning 

 I used to watch a clown fi sh take food and feed the anemone before he took food for 
himself. Of course, the anemone also provided the clown fi sh with protection and he 
ducked quickly into the tentacles if a large fi sh came near. This is a synergistic relation-
ship in which two things come together for a greater outcome than the sum of the two 
independently. Combining reasoning, especially visuospatial reasoning, with geome-
try content will result in strengthening students’ visuospatial reasoning needed in a 
wide range of experiences and geometry, another synergy. Visuospatial reasoning is an 
essential part of mathematical literacy applied in geometry and other areas of mathe-
matics (Lehrer & Chazan,  1998 ). However, visuospatial reasoning requires 

  Fig. 10.2    Simplifi ed design of principles for teaching ecocultural mathematics (Owens, Edmonsd-
Wathen, & Bino,  2014 )       
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development in the mind through many hands-on experiences. It is important to use 
activities that develop pattern and dynamic imagery. Actions of the learner—predict-
ing, classifying, translating, and scaling—are important in visuospatial reasoning 
whether abstract or contextual (Kim et al.,  2011 ; Rivera,  2011 ; Trninic & Kim,  2012 ). 
Students’ active aesthetic and technical judgements connect to geometry, architecture, 
and other cultural activities through refl ection and embodied    activities of inhabiting, 
drawing, and theorising (Rawes,  2007 ). If the task itself is contextualised and knowl-
edge shared among those of the community, the attention of the student is focused 
accordingly but still individually (Leinhardt et al.,  1990 ; Owens & Clements,  1998 ). 

 The perspective developed from bringing together a broad range of research 
studies is represented in Fig.  10.1 . A diagram is used to capture the complexity of 
the theoretical perspective emerging from this book. Within this perspective is the 
role of visuospatial reasoning. 

 Ecocultural mathematical context includes:

•    Mathematical problems  
•   Ecocultural assistance  
•   Ecocultural tools  
•   Ecocultural supports  
•   Valuing the ecocultural identity and ecocultural mathematical identity    

 Mathematical problems occur in and outside school.    In the Indigenous communi-
ties of PNG, these include construction of buildings and artefacts, building relation-
ships, providing food and fi nances, and other aspects of living. Developed over time 
are ways of thinking and interacting that are mathematical, often involving visuospa-
tial reasoning. Tools are often readily available such as ropes and sticks and body 
parts but there are also the shared visuospatial reasoning tools that are like mental 
visual ready reckoners incorporating relationships between spaces such as house 
size    and areas of kunai for roofi ng. In addition, relationships between people, sharers 
of knowledge and cultural activities, and ways of sharing reasoning are all supports 
for developing both ecocultural identity and learner identity. Within the cultures, 
respect is held for those who have knowledge for various cultural activities but also 
those with school knowledge. The synergy of these two aspects ensures that the 
school learner investigates, supports, and extends the ecocultural ways of thinking. 
This knowledge in turn forms a strong foundation for school mathematical learner 
identity. The projects written by the teachers, some of which were incorporated int   o 
Chaps.   5    ,   7    , and   8     illustrated the valuing of ecocultural knowledge and those who 
were using this knowledge to solve mathematical problems in cultural activities. 

 Ecocultural identity involves:

•    Responsive social interaction  
•   Clear access to social meaning and relations  
•   Responsive self-regulation  
•   Co-participation  
•   Alignment       
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 These aspects of ecocultural identity, being within a person are also mentioned in 
the self-regulating    learner. 

 The cognitive aspects of the self-regulating learner are:

•    goal setting  
•   reasoning  
•   planning  
•   self-evaluating  
•   reviewing  
•   information seeking  
•   using a tool box of strategies  
•   structuring the learning environment    

 Ecocultural identity was shown in the projects as a driving force in the teachers’ 
projects resulting in responsive products in terms of the reports, the use of language 
words, and stages of the activities or representations of cultural artefacts, and the 
identifi cation of people involved in the cultural activities. Furthermore, the students 
were responsively self-regulating    both in the teachers’ ethnomathematics projects 
(Chaps.   5     and   8    ) and the architecture projects referred to in Chap.   5    . They set them-
selves goals, reasoned about how to achieve these goals, made plans but also self-
evaluated their progress. In many cases, the teachers found out further cultural 
knowledge from their Elders and relatives. I trust my PNG ethnomathematics 
research incorporated into this book have been an adequate conduit to share some of 
this knowledge to illustrate its richness. 

 Affective aspects of the self-regulating learner include:

•    engagement  
•   imagination & creativity  
•   resilience in problem solving  
•   confi dence  
•   sense of ownership  
•   values and beliefs    

 The teachers and architects used other strategies including asking others for 
opinions but they also tried things out, applied ideas from other contexts, applied 
information, and made decisions about their work and learning environment. 
The architecture students particularly noted their feelings and engagement with the 
sculpture project while the teachers expressed their amazement and gratitude and 
cultural identity with their Elders’ knowledges. All were responsive in problem 
solving moving forward in solving their problems that involved thinking mathemat-
ically. Responsiveness is the mental disposition that results in actions such as speak-
ing, doing, and writing which in turn infl uences the problem-solving situation 
(see Chap.   2    , Owens,  1993 ; Owens & Clements,  1998 ). There is both an affective 
and cognitive depth to responsiveness   . It implies a sense of ownership and comfort 
with the mathematical situation. The teachers’ generally positive refl ections indi-
cated their developing mathematical identity which specifi cally incorporated the 
fact that they knew their Elders, ancestors, and families were thinking in culturally 

10 An Ecocultural Perspective on Visuospatial Reasoning in Geometry…

http://dx.doi.org/10.1007/978-3-319-02463-9_5
http://dx.doi.org/10.1007/978-3-319-02463-9_8
http://dx.doi.org/10.1007/978-3-319-02463-9_5
http://dx.doi.org/10.1007/978-3-319-02463-9_2


299

appropriate mathematical ways. Interestingly part of that recognition often noted 
that it was “by eye”, in their imagination, only the person knew and other terms 
indicating that this was not easily verbalised knowledge suggesting that the Elder or 
actor was using visuospatial reasoning. 

 The framework on mathematical identity presented in Fig.  10.1  meets the six 
criteria suggested by Dasen and Ripaupierre (1987), for good theories of cross- 
cultural and differential psychology. Such studies included those of Berry (Berry, 
 1966 ,  1969 ,  2003 ) that showed different and similar developmental growth in visuo-
spatial reasoning in different groups. I contend the criteria apply to the model rep-
resented in Fig.  10.1  although it is a synthesis of studies from educational psychology 
and sociocultural perspectives. First, cultural difference is built in the model in 
Fig.  10.1  by emphasising ecocultural contexts and encouraging self-regulation and 
responsiveness    to lead conceptual development. Stage theories of learning often 
focus only on the conceptual development and reduce the role of visuospatial reason-
ing and affect in learning. Not only is metacognitive or evaluative thinking of self-
regulation occurring but this is embedded in affective and meta-affective thinking. 
In all this, there are individual differences; so the model permits “both commonality 
and individual, situational and cultural differences” (Dasen & de Ribaupierre, 
 1987 , p. 805). 

 Second, the model permits differences at different levels of thinking. If engage-
ment in mathematics is at a superfi cial procedural level, there would be no evident 
collation of self-regulating    ways of thinking such as goal setting and checking pro-
cesses. When a deep level of engagement is reached self-regulating    is evident in a 
number of ways and will act with affective processes and dispositions to create a 
responsiveness    inherent in a developing mathematical identity. Third, the ecocultural 
context is infl uencing and being infl uenced by the learner in specifi ed ways. This 
raises the fourth criteria: through valorisation or as the model suggests ecocultural 
identity, individual performance will be affected by the ecocultural context. Evidence 
of cultural practices involving visuospatial reasoning in PNG and other countries is 
described in Chaps.   4    –  8    . Fifth, validation has been enacted describing and analysing 
several studies on visuospatial reasoning in different ecocultural communities. 
Discussion of developmental differences in cultures and the differences in beliefs 
and values and ecologies that infl uence visuospatial reasoning have been highlighted 
in the studies. Finally, the model allows for individual differences and outlines a 
range of ways such as cognitive processing in which self-regulation develops.  

    Visuospatial Reasoning 

 Having established the importance of self-regulation, responsiveness   , and ecocultural 
identity in the development of an ecocultural mathematical identity, I return to 
developing the importance of visuospatial reasoning. Imagination and intuition for 
concepts and known processes (see studies on adults discussed above and Rivera, 
 2011 ) play a part in establishing visuospatial reasoning. There is a two-way link in 
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the diagram between visuospatial reasoning and imagination and creativity. Affect 
and cognitive processing are not discrete but are experienced together. Discussions 
in Chap.   5     in particular illustrate just how much the ecocultural perspective provides 
for this affective and cognitive linking. Visuospatial reasoning has strong cultural, 
emotional, and visual aspects. However, visuospatial reasoning also develops from 
problem solving as shown in the studies discussed in this book. Chapter   2     outlined not 
only heuristics (closely linked to self-regulating   ) but numerous cognitive processes 
such as conceptual, visual imagining, selective attention, and perceptual factors that 
are important in learning. Visuospatial reasoning incorporates these cognitive areas. 
Nevertheless, contexts impact on these cognitive processes. 

 Cultural practices that are taken-as-shared    rules and habits-of-seeing impact on 
visuospatial reasoning (Hutchins,  1983 ). Nevertheless, structures can be instanta-
neous, result from practice (observed in ecocultural studies described above), or 
be recognised through the assistance of others. The whole may be held, details 
may be  discerned, variation recognised, relationships recognised, properties 
declared as common to many instances, and reasoning undertaken on the basis of 
these properties and relationships (Mason, Stephens, & Watson,  2009 ). Importantly, 
the structure permits problem solving, generating change, and accepting variabil-
ity consistently. Change in the object representing the geometry (fi gure or dia-
gram, virtual or concrete, words or symbols) are representative of the change in all 
examples. The relationships and structures are part of visuospatial reasoning as 
shown in the studies with young children. However, there is a development both 
within the individual and within society as these change and develop (Saxe,  2012 ). 
Shared intention motivates for sharing visuospatial reasoning within the cultural 
situation (Tomasello, Carpenter, Call, Behne, & Moll,  2005 ). 

 Visuospatial reasoning incorporates the many spatial abilities required to inves-
tigate. For example, re-seeing a shape assists the problem solver to see and assess 
alternative relationships between parts or between shapes as illustrated by responses 
to the assessment tasks on visuospatial reasoning discussed in Chap.   2    . Interpreting 
visual information also becomes signifi cant in a cultural context depending on the 
degree of exposure to similar images and to their position within other areas of 
education and culture. The links between spatial abilities, visualising, and investi-
gating were explored in Chap.   2    . Particularly important in visuospatial reasoning is 
pattern imagery and dynamic imagery.    The former is seen as a step towards gener-
alisation while the latter is increasingly recognised as a way of students developing 
their concepts, justifying their reasoning about concepts, and imagining and devel-
oping imagery that began as static or prototypical images. 

 Visualising and visuospatial reasoning will impact on geometric concept develop-
ment but at the same time concept development impacts on visuospatial reasoning as 
shown in the angle study with adults. Critical to concept develop is language whether 
this is through deliberate describing and classifying or as is often the case in 
Indigenous communities embedded in language structures and ways of classifying to 
identify certain objects, shapes, or other things that impact on visuospatial reasoning 
and concept development. Appropriate activities focusing on visuospatial reasoning 
with manipulatives such as those used in studies by Owens et al. ( 2003 ), Lehrer, 
Jenkins, and Osana ( 1998 ), Ness and Farenga ( 2007 ), Cherinda ( 2012 ), and Jawahir 
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( 2013 ), and digital technology such as used by Highfi eld ( 2012 ), Highfi eld, Mulligan, 
& Hedberg, (2008) and Sarama and Clements ( 2004 ) extend students’ space and 
geometry knowledge through visuospatial reasoning (discussed in this book). 

 Cognition involves conceptual and imagistic processing as well as heuristic pro-
cessing during problem solving while affect often empowers or limits cognitive 
processing (Goldin,  1992 ,  2000 ; Owens & Clements,  1998 ) (see Chap.   2     for discus-
sion and Fig.   2.17    ). For example,       acceptance of open-ended questions may impact 
on students’ willingness to attempt this kind of question as well as their knowledge 
of how to attempt such questions. Positive beliefs about being a problem solver 
develop as problems are successfully undertaken with cognitive strategy assistance 
or “aha” moments drawing the problem solver back to positive attitudes (Goldin, 
 2000 ). Transition of cultural identity to incorporate cultural mathematics can posi-
tively impact on establishing a mathematical identity incorporating culture and 
school mathematics. In particular, cognitive and imagistic strategies, self- regulation, 
and goal setting that are culturally centred develop this sense of identity (Owens, 
 2014 , see Chap.   8    ). 

 Imagination creates new images of the mathematics and the learner as a mathe-
matical thinker in a social context (Owens,  1997b ; Wenger,  1998 ). Imagery is a 
dynamic tool for giving concepts meaning (B. Davis,  1999 ). For example, the person 
can imagine a triangle changing shape or turning around. Imagery also allows one 
to visualise oneself as an actor solving the problem (Owens & Clements,  1998 ). 
Imagination precedes action and provides the opportunity to perceive different pos-
sibilities. Imagination partners risk taking (Owens,  1998a ; Wenger,  1998 ) as learn-
ers attempt activities beyond their current repertoire of procedures and feelings of 
familiarity and comfort. Imagination also partners resilience (Goldin,  1992 ; 
Zimmerman,  1990 ) whereby the person will persist to solve a problem despite dis-
comfort. The idea of seeing oneself as an actor in solving the problem is more 
transient than Sfard and Prusak’s ( 2005 ) view of learning as moving a person from 
their actual identity to their designated identity. It is a part of each problem-solving 
experience that builds up to a belief in oneself as a problem solver (Goldin,  1992 , 
 2000 ). This learning is part of the dynamic formation of identity and is not solely 
directed by the cultural knowledge and expectation of being a mathematical thinker. 
The identity is a state of being and becoming; it is constantly evolving (in B. Davis, 
 1999  terms); it is current rather than a goal or a narrative as suggested by Sfard and 
Prusak ( 2005 ).  

    The Importance of Visuospatial Reasoning 

 An important aspect of learning is self-regulation and the different types of imagery 
play their role in visuospatial reasoning at different times and in different situations 
permitting self-regulation. Furthermore different types of imagery are enhanced by 
different ecocultural experiences. For example, cultures that encourage careful 
watching and attending allow for procedural imagery to develop early. Ways of 
making artefacts that entail patterns or dynamic imagery encourage these kinds of 
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imagery and need fostering throughout schooling. Nevertheless, visuospatial rea-
soning plays a crucial role in self-regulating    during problem solving and learning. 

 The review of studies of ethnomathematics in Chaps.   5    –  8     shows that visuospatial 
reasoning is important in practice in Indigenous communities. Taking an ecocul-
tural approach to mathematics in schools and considering the links or alternatives 
to western mathematics requires making these links and alternatives explicit. 
This approach enhances mathematics and mathematics education. It is not so unlike 
the development of western mathematics, that Indigenous communities use a gener-
ate and test process (Van Moer,  2007 ).    While some western mathematics is deduc-
tive, much is comparative and inductive. Furthermore, the use of visuospatial 
reasoning may be more important than proof or generalisation (Rivera,  2011 ). 

 Culturally, visuospatial reasoning plays a crucial role in self-regulation and it in 
turn develops identity as a mathematical thinker. Culture and cultural identity are 
not only directly impacting on identity as a mathematical thinker through appreciat-
ing that culture has rich ways of thinking mathematically but indirectly in develop-
ing self-regulation through visuospatial reasoning infl uenced by ecocultural 
contexts. The projects presented in Chaps.   5    ,   7     and   8     illustrate this infl uence. The 
secondary teachers’ projects showed the motivation that cultural practices had. The 
vision to link cultural practice to school mathematics drove the teachers to produce 
good projects. Their self-regulation came from setting their own goals, reasoning 
about the mathematics and particularly visuospatially as they considered artefacts 
and activities, they planned appropriately for teaching and for presenting their 
reports, they evaluated whether their cultural practice did involve mathematics by 
comparing with the syllabus, they sought information from Elders, craftsmen, and 
books, and they used technology, observing, questioning, and visuospatial represen-
tations to develop their knowledge and to present it. They showed a sense of pride 
and ownership in their projects and resilience to complete them. They acted or 
responded to develop their ecocultural mathematical identity by presenting their 
cultural mathematics and linked school mathematics. 

 The elementary teachers likewise developed learning through discussion and 
reasoning as they came to grips with the mathematics of their cultural practices. 
Often they acted out their plans illustrating their visuospatial realisation of mathe-
matical knowledge in their cultures. Their pride in culture was evident in their keen 
participation and their grasp of their cultural mathematics. They valued their subject 
but they also valued school mathematics, especially the way they learnt it. The chal-
lenge was diffi cult as they developed their mathematical identity but they valued 
their new learning through the workshops. 

 The architecture students also developed their identity building on their cultural iden-
tity to show self-regulation in terms of goal setting, problem solving, reviewing their 
work, and visuospatially reasoning to create their sculptures. They responded and 
showed how pleased they were with their imagination and creativity and their fi nal prod-
ucts. They could articulate when their ecocultural context infl uenced their thinking. 

 Without an ecocultural perspective, it would be hard to express the importance or 
nature of visuospatial reasoning. It is for this reason that many mathematics educa-
tion programmes have paid little attention to its value. The importance of self- 
regulation and cultural identity on learning and mathematical identity is now well 
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established. Within this perspective, visuospatial reasoning is a key to problem solving, 
self-regulating,    and identifying with mathematics.  

    Contexts for Visuospatial Reasoning 

 Early visuospatial experiences (such as Japanese and Chinese writing, and socio-
economically provided experiences with “writing”, drawing, and viewing) have 
shown positive differences in developing spatial manipulation and later visuospatial 
reasoning (   Clements & Sarama,  2007a ). However, the PNG studies presented in 
Chap.   5     show how objects that are made in a culture have particular signifi cance in 
learning about what to attend to and what is valued in different relationships in 
society and how it is represented in the artefact. When there is western education, 
then a hybridity or confusion may develop in terms of what is seen as signifi cant 
shapes. Language either facilitates or hinders a hybridity of understanding which is 
apparent with the ubiquitous use of Tok Pisin in PNG and an English-language, 
western dominated curriculum. Tok Pisin may not express the cultural depth as Tok 
Ples does and it does not necessarily express the depth of the school mathematics. 
Pinxten (Pinxten,  1997 ; Pinxten et al.,  1983 ) noted a similar issue for parts and 
wholes for the Navajo. Nevertheless, in many environments and cultures, visuo-
spatial representations do show wholes (e.g. the dominance of circles), sections 
(e.g. of line combinations), connections (considering where and how parts are com-
bined), and later boundaries (see the lack of boundary and orientation in PNG chil-
dren’s mapping, Chap.   4    ). 

 Cross-cultural studies showed that not all children develop along the same lines 
that Piaget had suggested in terms of egocentric to cardinal descriptions of location. 
Psychological studies also suggeste   d that the diversity of spatial abilities and visual 
imagery classifi cations were so extensive and used in such diverse ways that hierar-
chical structural theories restricted opportunities if they dominated the curriculum. 
Children’s development in visuospatial reasoning follows possible trajectories from 
emerging strategies resulting from informal experiences, perceptual strategies 
encouraged by movement with and around objects, initial pictorial imagery strate-
gies in which re-seeing and viewing in alternate ways including those infl uenced by 
culture were important, and pattern and dynamic imagery encouraged by problem 
solving in cultural and novel situations. Visuospatial effi ciencies develop through 
experiences that are culturally relevant, motivating, and practiced but also associated 
mentally with verbalised patterns and relationships. However, these visuospatial 
strategies are not necessarily ordered or age or stage related but rather alternative 
strategies used as required. These strategies remain important and occur at different 
times in development of concepts and visuospatial reasoning throughout life. 

 Describing and classifying are dependent on language and the sociocultural back-
ground of the student as illustrated in Chap.   2    . Interestingly, both Lehrer, Jacobson, 
Thoyre, Kemeny, Strom, Horvath et al.’s ( 1998 ) and Owens and consultants’ (Owens 
& Reddacliff, 2002; Owens, McPhail, & Reddacliff,  2003 ) research with children 
showed the role of context, and the richness and interaction of cognitive processes 
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(Owens,  1993 ), and the diverse ways in which students learn. Both studies consid-
ered that stages such as those purported by van Hiele’s theory or later variants, usu-
ally based on SOLO taxonomy (e.g. Pegg & Davey,  1998 ), did not adequately explain 
what was happening. Lehrer et al.’s main argument was that learning was more incre-
mental and that variance was so great that imposing stages on children’s develop-
ment was not so helpful. Part of the reason for this was the complexity of mental 
processes that impact on learning, not to mention the impact of experiences. For 
example, Clements ( 1998 ) pointed out one 3-year-old was able to achieve higher 
scores on his test than all the 6-year-olds he tested.  

    Mathematics Teacher Education for Visuospatial Reasoning 

 The right in Sweden to education in your home language for the fi rst 3 years of 
schooling means that schools employ or involve speakers of the child’s language, 
specifi c Sámi schools are established, and the Sámi Education Board considers the 
need for Sámi mathematics in schools. One project involving the University in 
Luléa aims to increase capacity building in schools and provide teacher education 
about colonising processes. Teacher education       focuses on cognitive, cultural, com-
municative, creative, critical, social, and didactic competences (Johansson,  2008 ). 
At the same time, teachers develop projects with parents and the local community 
around language training, dance, music, joik (a Sámi way of singing), natural 
sciences and spirituality, storytelling pedagogy, the use of Elders in the daily work, 
independency and responsibility, and transferring knowledge e.g. branding reindeer 
calves and reading the signs of nature. Education begins outside with an Elder. Other 
challenges for teachers occur around bilingual education and revitalising of the Sámi 
language (Jannok Nutti,  2013 ). 

 Such an approach was developed in Dubbo, NSW with a forum organised by the 
local Wiradjuri community and the local University (Owens et al.,  2011 ,  2012 ). This 
forum established the importance of sharing, of valuing Indigenous knowledge, and 
specifi cally noting the past as it impacts on the present and future. It becomes impor-
tant for Indigenous people to have empowerment through inclusion, at various levels 
including that of their local community. Group interests are still an important com-
ponent of the political machine but sameness has been a focus of politics and liberal 
democracy rather than recognition of religious or cultural differences. Project fund-
ing rather than long-term funding has reduced the all important impact of personnel 
in this regard. The teacher and community members who participate long-term will 
have a greater impact on the child’s continuous education. Yolgnu in the north of 
Australia talk of  yothu yindi , literally mother child, “a metaphor for the balance and 
negotiation which runs through the natural world and should govern the social world” 
(Thornton & Watson-Verran,  1996 , p. 6). Furthermore, teachers are expected to plan 
to engage students in their own classrooms in mathematical thinking and thus fulfi ll 
the position taken by Wenger ( 1998 ) regarding the importance of identity for creative 
teaching and learning. 

 Given that Indigenous cultures have much to offer in terms of visuospatial 
reasoning, then the values and strategies outlined in the previous two paragraphs 
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provide for ways of incorporating visuospatial reasoning of Indigenous cultures in 
schools. The descriptions of Sámi cultural activities in Chap.   7     are indicative of 
ways of implementing in the school. Similarly the various studies referred to in 
Chap.   8     indicate the synergy between culture and school ways of visuospatial rea-
soning results in an emphasis on visuospatial reasoning and a strengthening of this 
aspect of mathematical thinking and mathematical identity.  

    Visuospatial Reasoning in Geometry and Measurement 

 From the beginning of this book, I have argued that problem solving has been one 
activity in which visuospatial reasoning occurs. A decision to place geometry and 
measurement into other areas of mathematics and the curriculum is one way of gen-
erating problems to solve. Examples of learning occurred in “Cultural Mathematics” 
as in PNG and in Alaskan mathematics units based on cultural practices like collect-
ing eggs or building fi sh racks. Courses involving probability and data management 
can also have a focus on cultural practices especially measurement practices linked 
closely to ethnoscience and ethnotechnologies and the mental ready reckoners of 
practitioners as found in PNG. Links with geography that recognises the importance 
of place also encourage a valuing of cultural mathematics of people. 

 Ecocultural activities such as fi nding the middle of the side of a wall with a fi xed 
length stick (a Kopnung village example) or using two equal ropes joined at the centre 
to draw house fl oor plans (an African practice) generate problems that can be extended 
and investigated systematically. Such an activity could preempt students fi nding the 
shape of the join of the midpoint of quadrilaterals which might be of all kinds (con-
cave and convex, some sides the same, all sides different), and even fi nd the areas of 
the whole shape and the smaller shape. Links to designs that might use this feature are 
possible. Estimating, tabulating, predicting, generating geometric fi gures with spe-
cifi c properties, modelling situation to explore mathematical relationships, and mak-
ing sensible measurement are all involved in such a problem. It can even be tackled at 
various school grades in various ways. Such problems provide for a transcultural 
learning experience that values cultural practices and it encourages visuospatial rea-
soning (Enderson,  2003 ). The teachers’ ethnomathematics projects and the elemen-
tary school project both aimed to show teachers how they could take cultural practice 
and extend and go further to develop the mathematical concepts and reasoning. 

 A key argument in this book has been the centrality of visuospatial reasoning in 
mathematical thinking especially in geometry and measurement. Strengthening, and 
at least not losing, the wealth of skills learned in community in Indigenous groups is 
argued as a key to improve mathematics education for these students. These are not 
only strong logical mathematical skills but they are also imbued with culture that has 
been shown to have a strong role in establishing mathematical identity through self-
regulation and motivation. When cultural mathematics is left unconnected to school 
mathematics dissonance develops (Esmonde & Saxe,  2004 ; Presmeg,  2002 ). 
Furthermore, strengthening visuospatial reasoning through problem solving for all 
students was shown by studies described in Chap.   2    , in Cherinda’s and Jawahir’s stud-
ies (Chap.   8    ), and Highfi eld’s study (Chap.   9    ) as effective for learning geometry.  
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    Developing Views of Spatiality 

 Having perused a range of Indigenous mathematical ways of reasoning, let me quickly 
review the way in which western views of space developed. The ancient Greek philo-
sophical positions gave western mathematics the view of infi nity of space, of unity or 
homogeneity of space, of immaterial but real space. Objects were in space but were 
perceived and experienced in terms of learning. In similar ways, Indigenous views of 
space incorporate a timeless perspective of place and a cohesiveness of place and 
objects with people and ideas. The immaterial is as strong as the real. Visuospatial 
reasoning mentally with or without objects or drawings or equipment is linked to the 
past and future through relationships to people and ecocultural activities.     

 Structuring space and place is dependent on culture and environment as evi-
dent from the diversity of ways of giving position in space and relating to that 
space (Chap.   4    ). This was evident from PNG and Pacifi c cultures but also Navajo, 
Wiradjuri, and Yolngu   . Interpreting, making, and using paintings and other objects 
were structured visuospatially as evident in Chap.   5     on PNG cultures. Furthermore, 
the early childhood research studies illustrate children’s visuospatial reasoning 
with Logo and other non-Logo navigational programmes that move small robots 
on the fl oor. Spatial concepts such as right and left, movement and order of move-
ment are established through visuospatial reasoning in exploratory activities. 

 Place-based education fosters connection and attachment to local places and pro-
vides interrelationships between one place and another.    Place-based education contex-
tualises opportunities to explore the ecological, social, and political dimensions of 
those places and recognises Indigenous conceptions of place as an inseparable link 
between person and country (Cameron,  2003 ). Critical pedagogy of place involves 
educating within a local and ecological context, identifying and challenging oppres-
sions of race, class, and gender (and nature), decolonizing, and reinhabiting 
(Gruenewald,  2008 ). Mathematics plays a critical role in this. First with the involve-
ment of the community, the curriculum can be decolonized and challenged. Second, 
students’ skills in understanding and creating maps of position including those with 
geographical information are critical for their decision making. Understanding graphs 
and systems helps in recognising that ecological systems are mathematically non-linear 
and are self-regulating    but that global warming is moving in a trajectory that will take 
it outside the recovery orbit. Thus visuospatial reasoning is critical in a global world.  

    The Issue of Equity 

 An ecocultural perspective in mathematics education is a critical pedagogy of place 
that impacts on learning about location, space, and place. Teaching and curriculum 
that take account of the complexity of classrooms (François,  2010 ) take the philo-
sophical perspective that each child has an equal right in the classroom. This goes 
beyond saying that each child should be presented with the western cultural view of 
mathematics. It suggests that diversity of ecocultural perspectives offers a better 
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perception of one’s own mathematical practices and provides opportunity for all 
students to appreciate, learn from, learn with others having alternative visuospatial 
ways of reasoning, and not to be limited especially by Euclidean ways of thinking 
or structuralists’ restrictions on curriculum (e.g. from zealous application of 
Piagetian and van Hiele stages). 

 François ( 2010 ) noted that it is often said that one learns better about language 
including one’s own if one learns more than one language. People’s outlook is 
broadened in this globalised world.

  This comparison could even be extended to the mathematics education where knowledge of 
mathematical practices of several cultural contexts and throughout time proves to be advan-
tageous. (François,  2010 , p. 199) 

   Tuinamuana ( 2007 ) in Fiji and González et al. ( 2005 ) in the USA also show that 
critical pedagogy with an inquiry-oriented paradigm results in a hybrid way of 
teacher thinking that serves their students better than a curriculum based on the 
western view of mathematics and psychological theories. Not only did students 
become engaged but teachers noted how their thinking was modifi ed and their views 
of mathematics developed. Furthermore, when school mathematics is imposed 
without regard to cultural background, it encourages a belief that mathematics 
is rote practice of procedures rather than about understanding and relevance 
(Lave, Smith, & Butler,  1989 ). 

 Chapter   8     illustrated the inquiry method    (Murdoch,  1998 ) with examples that 
elaborated:

•    Tuning in with cultural activities  
•   Finding out more about the mathematical ways of thinking culturally  
•   Sorting out to fi nd patterns and relationships  
•   Going further to make additional connections and investigate the problem 

further  
•   Drawing conclusions that often involved visuospatial representations  
•   Taking actions that applied the mathematical thinking and concepts or involved 

sharing with others or created cultural objects  
•   Refl ecting on the mathematics and taking ownership of the mathematics    

 The challenges for teachers were in creating the connections between tacit 
cultural knowledge and language structures, to develop the mathematical ideas and 
extend them to incorporate school mathematics. 

 An interactive and collaborative classroom approach in multicultural classrooms 
benefi ts all and assists in establishing the equal valuing of mathematical ways of 
thinking (César,  2009 ; Verlot & Pinxten,  2000 ). If the human, cultural aspects of 
mathematical reasoning are promoted in the classroom, then engagement of students 
occurs and mathematical thinking is extended by the multiculturality of a collabora-
tive setting. Part of this involves acknowledging one’s own cultural approach and 
ways of engaging with mathematics (Goldin, Epstein, Schorr, & Warner,  2011 ; 
Verner, Massarwe, & Bshouty,  2013 ). Refl ecting on learning this ethnomathematics 
is critical for the individual and for the group to achieve a strong ecocultural approach 
to visuospatial reasoning.  

The Issue of Equity

http://dx.doi.org/10.1007/978-3-319-02463-9_8
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    Challenges Addressed 

 Rivera and Rossi Becker ( 2007 ) explored the issues of whether ethnomathematics 
could be incorporated into the schooling of children (Adam, Alangui, & Barton,  2003 ). 
While social justice    and identity are addressed by incorporating ethnomathematics 
into classrooms, there are several issues. As these authors pointed out, sometimes the 
ethnomathematics of groups was limited and far from a full mathematics curriculum, 
other times the language was so different to the school language such as English that 
it was not possible to express the mathematical thinking of the group in English 
while the worst situations were just using ethnomathematics as an introduction or a 
side issue to teaching the school curriculum mathematics. This last approach may 
have motivated and linked children to school mathematics but it could also have led to 
an identity of a discarded past that was not valued. Truly globalising and internationalis-
ing mathematics require yet another perspective in which the curriculum and planning 
could incorporate not only similarities between    mathematics but also alternatives and 
synergies of the mathematical ways of thinking. In fact school mathematics should 
be seen as one mathematics among many ethnomathematics. 

 This book has explored in depth one of the strengths of many of the Indigenous and 
non-mainstream mathematical ways of thinking, namely visuospatial reasoning. 
By emphasising this aspect of learning and reasoning it is possible to develop a 
new approach to mathematical curriculum and to fi nd a common ground between 
different types of mathematics. In Chap.   8    , we considered several examples of 
ways forward for schools:

•    The use of language and manipulatives in investigating the mathematical concepts 
albeit from a standard school curriculum.  

•   Using the ecocultural context for embedding concepts in material culture, language, 
and problems that were relevant to students.  

•   Using an inquiry approach in which the key focus of the learning plan was the 
cultural mathematics which was investigated and how that investigation could be 
developed in terms of good practices for learning concepts and procedures 
appropriate for western mathematics.    

 Thus the western mathematics was regarded as an aspect of ecocultural mathematics. 
The strengthening of visuospatial reasoning in a digital age as illustrated in Chap.   9     
supports the argument. In each example there was visuospatial reasoning about the 
cultural context or activity that was to lead to an expansion that might have been gen-
erated by other cultural practices or western mathematics. The  argument expounded 
in this book emphasised the role of an ecocultural perspective in the framework of the 
development of a mathematical identity. Ecocultural context infl uences ecocultural 
identity and impacts on the developing learner’s cognitive and affective processing 
including visuospatial reasoning and self-regulating   . Through being responsive, the 
learner is being and becoming an ecocultural mathematical thinker.                                                                                

10 An Ecocultural Perspective on Visuospatial Reasoning in Geometry…

http://dx.doi.org/10.1007/978-3-319-02463-9_8
http://dx.doi.org/10.1007/978-3-319-02463-9_9
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                          Abbreviations 

    DEEWR    Department of Education Employment and Workplace Relations, split 
to Department of Education (Australian National Government)   

  GIS    Geographic information systems   
  NCTM    National Council of Teachers of Mathematics (North America)   
  NDOE    National Department of Education, Papua New Guinea   
  NRCCG       National Research Council Committee on Geography (UK)   
  NSWDET    New South Wales Department of Education and Training, became 

Department of Education and Community (DEC)   
  PNG    Papua New Guinea   
  Unitech    PNG University of Technology   
  UoG    University of Goroka         
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   Appendix A
A Synthesis of Problem-Solving Processes 

   Table A.1    Problem-solving    processes from some research literature       

 Heuristic  Conceptual  Imagistic  Affective 

 Goldin 
( 1987 ) 

 ……………….......  • Verbal syntactic  • Imagistic  • Affective 
 • Heuristic 
 • “aha”  • Formal notational 

 Lester 
( 1983 ) 

 • Control  • Knowledge…...........  ………………...…  • Affects 
 • Beliefs 
 • Sociocultural 

    Clarke 
(1989) 

 • Structural 
strategies 

 • Mathematical principles, procedures, 
facts 

 • Personal 

    Schoenfeld 
(1985) 

 • Control 
strategies….... 

 • Resources……………………  • Beliefs 

    Polya 
(1957) 

 ………………........   • Understand 
 • Plan 
 • Implement   
 ……........................ • Check 

 Krutetskii 
( 1976 ) 

 • Analysis, 
synthesis 

 • Understand the kind of problem……..  • Perception 
of problem 

    Yee (1990)  • Problem 
orientation 
heuristics 

 • Domain-specifi c knowledge..................  • Affective 
behaviours 

 • Problem 
solution 
heuristics 

 • Metacognition 
    Collis 
et al. 
(1992) 

 • Structure 
recognition 

 • “aha” 

 • Symbols  • Diagrams    
 • Images 

 • Beliefs 
 • Reality 
 • Common 

sense 

(continued)
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 Heuristic  Conceptual  Imagistic  Affective 

 Pirie/
Kieren 
( 1991 ) 

 • Folding back     • Property noticing.................................  • Primitive 
knowing  • Image making 

 • Image having 
 • Formalising......................................... 
 • Structuring.......................................... 
 ........................................• Observing 
 • Inventising........................................... 

   Note : Several of the terms used are best placed in more than one category as indicated by the  dotted 
line  stretching across to the other category 
 The conceptual processing category refers to the verbal and symbolic aspects of conceptual 
 processing   

Table A.1 (continued)

Appendix A: A Synthesis of Problem-Solving Processes
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 This test    has instructions which may be obtained from the author. Each section is 
introduced by examples with cardboard cutouts. It is not timed so children are 
requested to have a book to read or picture to draw if they fi nish before their class-
mates as it is done by section. To administer each child requires stickers coloured 
appropriately. For scoring in my study I selected items that had good validity 
according to a Rasch analysis (Owens,  1992a ). (Items were initially chosen from a 
trial set using discriminant analysis.) A simplifi ed black-and-white version with few 
items is    also available.           

     Appendix B
Test of Visuospatial Reasoning for Young 
Children 
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    Map of Papua New Guinea with provincial boundaries.  Source : Wikipedia.  1  
Central,  2  Simbu,  3  Eastern Highlands,  4  East New Britain,  5  East Sepik,  6  Enga,  7  
Gulf,  8  Madang,  9  Manus,  10  Milne Bay,  11  Morobe,  12  New Ireland,  13  Oro, 
 14  Autonomous Region of Bougainville,  15  Southern Highlands,  16  Western,  17  
Western Highlands,  18  West New Britain,  19  Sandaun,  20  National Capital,  21  
Hela,  22  Jiwaka   
   Papua New Guinea lies to the north of Australia with considerable history linked to 
Australia. The western half of the main island is under Indonesia now but often 
called West Papua. 

   Appendix C
Map of PNG and Some Counting 
System Details 
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   Details of Counting Systems       

    Table C.1    Alternative numbers in Gahuku provided by two men from Kaveve, Eastern Highlands, 
PNG (Table   3.1     from this table)   

 First man  Second man  First man  Second man 

 1  Hamo  Hamako  11  Nigizani logosi asu oko 
ligisaloka hamo oli’o 
malago (two hands fi nished 
and one on the leg) 

 Golohaki 
hamakoki 

 2  Logosita  Logosi  12  Nigizani logosi asu oko 
ligisa loka logosi 
oli’omalago (two hands 
fi nished and two on the leg) 
or nagahuni makoki 
logosita 

 Golohaki 
logosigi 

 3  Logidigi 
hamoki 

 Luguha (logosigi 
moka) 

 13  Nagahuni makoki logosigi 
makoki 

 Golohaki 
luguhagi 

 4  Logosivi 
logosive 

 Logosigi 2  
“Logosigi squared 
meaning 2 plus 2” 

 14  Nagahuni makoki logosi 
logosi 

 Golohaki 
logosigi 
logosigi 

 5  Logosigi logosi 
hamo or 
nigizani hamo 
asu igo (one 
hand fi nished) 

 Logosigi luguhagi  15  Nagahuni makoki logosi 
logosi hamo or nigizani 
logosi asu ‘olo ligisa hamo 
asuigo (two hands fi nished 
and one leg fi nished) 

 Golohaki 
luguhagi 
logosigi 

 6  Luguha luguha  Luguha logosi  16  Nagahuni hamo luguha 
luguha 

 Golohaki 
luguhagi 
logosigi 

 7  Luguha luguha 
hamoki 

 Luguha logosigi 
makoki 
(segininaga) 

 17  Nagahuni hamo luguha 
luguha hamoko 

 Golohaki 
segini 
nagaki 

 8  Nigizani hamo 
asu o’oko 
makotoka 
logsive hamo ol 
omalago 

 Logosi 4  means 
logosi is repeated 
four times “means 
2 plus 2 plus 2 
plus 2 plus” 

 18  Nagahuni hamo, luguha 
luguhagi logosi or nigizani 
logosi asu’oko ligisahamo 
asuiko mako toka luguha 
oli’o’mallago (two hands 
fi nished, one leg fi nished, 
and three on the other side) 

 9  Nigizani hamo 
a su o’ko 
logosive 
logosive oli’o 
malago 

 Luguhagi luguhagi 
luguhagi 

 19  Nagahuni logosi, hamo 
hakene igo (20-1) or 
nigizani logosi asu okake 
nigisa mako asu oko 
makotoka logosigi logosi 
oli’o’malago 

 10  Nigizani logosi 
asu igo 
(nagahuni 
hamo) 

 golaha  20  Nagahuni logosi or nigizani 
logosi aso’oko nigisa logosi 
asu igo (two hands fi nished 
and two legs fi nished) 

Appendix C: Map of PNG and Some Counting System Details
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    Table C.2    Names for classifi catory groups in Kilivila 1  (Table   5.1     is a s   election from this table)      

 Participle  Category description 

  Group 1  
 Tay (Te)  Human beings; males (men, boys) 
 Na  Persons of female sex; animals (pigs) 
 Day (ke)  Trees and plants; wooden things; long objects (canoes, sticks, poles) 
 Dway (Kwe)  Round, bulky objects; stones; abstract nouns (betel nut, houses, yams) 
 Ya  Leaves; fi bres; objects made of leaf or fi bre; fl at and thin objects 

(coconuts, spherical containers, clothes, string) 
 Sisi  Boughs (branches) 
 Li  Forked branches; forked sticks 
 Kavi  Stone blades 
 Kwoya (mweya)  Human and animal extremities (legs, arms); fi ngers of a hand 
 Luva  Wooden dishes 
 Kwoyla (kwela)  Clay pots (cups, containers) 
 Kada  Roads 
 Kaduyo  Rivers, creeks, sea passages 
 Vilo  Villages 
  Group 2  
 Kila  Clusters (“hands”) of bananas 
 Sa  Bunches of betel nut 
 Bukwa  Bunches of coconut 
  Group 3  
 Pila  Parts of a whole; divisions; directions (books) 
 Vili  Parts twisted off 
 Bubwa  Parts cut off by transversal cutting 
 Utu  Parts cut off; small particles 
 Si (Sisili)  Small bits (slices of meat, bread) 
 Kabila  Parts of meat cut off from animals 
  Group 4  
 Kabulo  Protuberances; ends of an object 
 Nutu  Corners of a garden 
 Niku  Compartments of a canoe 
 Kabisi  Compartments of a yam house 
 Nina  Parts of a song, of a magical formula 
 Mayla     Parts of a song, of a magical formula 
 Kubila  Large land-plots-ownership divisions 
 Siwa  Sea portions-ownership divisions with reference to fi shing rights 
 Kala  Days 
 Siva  Times (number of occurrences) 
  Group 5  
 Kapwa  Bundles—wrapped up (packages) 
 Oyla  Batches of fi sh 

(continued)

1  Malinowski   (1917)  with additions from Counting System Questionnaire data given by tertiary 
students provided in parentheses and noted at the end. 

Appendix C: Map of PNG and Some Counting System Details
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 Participle  Category description 

 Um’mwa  Bundles of taro 
 Kudu  Bundles of lashing creeper (dried reeds) 
 Yuray  Bundles of four coconuts, four eggs, four water bottles 
 (Kupwa)  (Fish counted in twos) 
 (Kayo)  (Crabs counted in twos) 
  Group 6  
 Kasa  Rows 
 Gili  Rows of spondylus shell disks on a belt 
 Gula  Heaps 
  Group 7  

 Numerals without a prefi x are used to count baskets of yams and numbers 
can be very large 

  Group 8  
 Uwa  Lengths, the span of two extended arms, from tip to tip (fathoms) 
 Respondents to the 
Counting System 
Questionnaire also 
gave 
 (Ta)  (Baskets) 
 (Tam)  (Vines) 
 (Yata)  (Watermelons, pumpkins) 
 (Bwa)  (Short or thick solids) 
 (Kaula)  (Groups of 20) 

Table C.2 (continued)

Appendix C : Map of PNG and Some Counting System Details 
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 An example of this design can be found in Fig.   5.16g    . Stana Amos ( 2007 ) provided 
the following instructions relating it to school mathematics.       

  Requirement : Four (4) different colours of choice: 
orange, white, green, and black: twist the yarn 

 – 1 loop (green) 

  Start by making :  – 1 loop (black) 
 – 5 loops (orange)  – 5 loops (orange), it goes up to where 

orange is and it stays there 
 – 4 loops (white), leaving one loop of orange  – 1 loop (white) 
 – 3 loops (green), leaving one loop of white  – 1 loop (green) 
 – 3 loops (black), it goes up to the mouth of the 

bilum and make two loops and it stays there 
 – 3 loops (black), it goes up to where 

black is and it stays there 
 – 1 loop (orange)  – 4 loops (orange), it goes up to where 

orange is and it stays there 
 – 1 loop (white)  – 1 loop (black) 
 – 3 loops (green), it goes up to the mouth of the 

bilum and make ten loops and it stays there 
 – 7 loops (white), it goes up to where 

white is and it stays there 
 – 1 loop (black)  – 1 loop (orange) 
 – 1 loop (green)  – 10 loops (green), it goes up to where 

green is and it stays there 
 – 3 loops (white), it goes up and it makes seven 

loops, leaving one loop of green and it is below 
green 

 – 1 loop (white) 

 – 1 loop (black)  – 1 loop (orange) 
 – 3 loops (orange), it goes up and makes four loops 

and it is below white, it leaves one loop of white 
 – 3 loops (black), it goes up to where 

black is and it stays there and the 
process continues, so every time 
when these ladies make bilum they 
have in mind how many loops to 
make and where to leave and start 
the next half of the design 

   Appendix D
Making the  Bilum  Pattern 50 Toea 
or Soccer Ball 

(continued)
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 – 3 loops (black) and it is below orange. It takes 
one loop of orange, white, and green and it goes 
to the mouth of the bilum making two (2) loops 
and it stays there 

  The mathematics derived from 
bilum-making pattern  

 – 1 loop (green)   (A) Ratio (Grade 10A ratio) 
 – 1 loop (white)   (B) Geometry (Grade 7A shapes) 
 – 3 loops (orange), and it goes up to the mouth of 

the bilum making ten (10) loops and it stays there 
  (A)  Ratio (using bilum pattern in 

teaching)  
 – 1 loop (black)  One round—half of the pattern is done 
 – 1 loop (green)  Two rounds—one complete pattern 
 – 3 loops (white) and it goes up and makes seven 

(7) loops leaving one loop of orange and it stays 
there 

 Three rounds—one and a half patterns 

 – 1 loop (black)  Four rounds—two complete patterns 
 – 3 loops (green), it goes up, makes four (4) loops, 

leaving one (1) loop of white 
 Five rounds—two and half-complete 
patterns 

 – 4 loops (black), it goes up taking one (1) loop of 
green, white, and orange, and it makes two (2) 
loops at the mouth of the bilum. The same process 
continues until you have half of the design done. 
When you come to the other end, tie the yarn 
together, making sure you make fi ve (5) loops of 
orange so that you will have even numbers and 
then you tie the yarn with the same colour that you 
have started with that is orange with orange, white 
with white, green with green, and black with black 

 Six rounds—three complete patterns 

  Second half of the pattern  

     

Number of
Patterns

Number of Rounds

1 1/2
2 1
3 3/2
4 2
5 5/2
6 3

    

 In order to complete the second half of the pattern, 
the four (4) colours are reversed, you start with 
black, green, white, and orange 

 A woman makes a bilum, she makes the 
second round, and one complete pattern 
is formed. Now if she makes ten (10) 
rounds, how many complete patterns 
will she make 

 – 3 loops (black), it stays there    (B) Geometry  
 – 3 loops (green), it goes up to where green is and 

it stays there 
 A teacher can ask questions such as: 

 – 1 loop (black)   (1)  How many different shapes can be 
identifi ed from the bilum design? 

 – 4 loops (white), it goes up to where white is 
and it stays there 

  (2)  Congruent shapes have same angle 
measure and when cut out it can fi t 
exactly into the other same shape. 
Can you identify congruent shapes 
and their angle measure? [fi gure of 
shapes supplied] 

  (3)  How many lines of symmetry can 
you draw? [fi gure of shapes 
supplied] 
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   Highlands Round House: Area 

   Purpose : Children will see what area is, how to look and compare, and how to put 
one area on top of another to help compare, and how to start measuring areas.      

   Key ideas : Spaces where people live are familiar areas. Areas have a size that can be 
compared and measured. Measuring area is about covering with an area unit 
without any gaps or overlaps. Rectangular areas are easier to measure with rect-
angular or square area units represented by an object.  

   Prior knowledge : Children cover areas by sleeping on spaces, laying out cloth and 
food on spaces, wrapping themselves up, noticing how many people can lie or sit 
in a space. (Earlier parts for Grade 1.)  

   Resources : A round house, a rectangular house, and another round house of a differ-
ent size or use.  

   Assessment : Observing ways children suggest to compare areas and do compare 
areas to assess their sense of area as a 2D space inside a boundary. Children 
select area units for measuring (not length units but cultural ways are a good 
discussion point—note relative accuracy for specifi c areas).

  Day 1 

•    Tuning in 

 –    Visit the (round) house. What areas are there in the house? What are they used 
for? What shapes are they? Why? Are some areas covered up? Which areas 
are bigger than others?

 – How will we compare areas?     

•    Finding out 

 –    What are the area places in the house (small laplap with karuka, bigger laplap 
with karuka, space for saucepans, space for fi re, space for fi rewood, space for 
clothes, space for food, water).  

   Appendix E
Example of Learning Plan 
for Cultural Mathematics 
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 –   Some of the small areas where the karuka are drying, are also used for 
 sleeping, how many people would sleep on this platform?  

 –   Look at the rectangular house and its divided fl oor spaces, are they the same 
size, double each other.  

 –   Look at another round house and compare the areas to the fi rst house. Are they 
bigger? Are they used for the same things?      

  Day 2 

•    Sorting out 

 –    Take areas in the classroom. Which are bigger spaces, what takes up the 
 bigger space, estimate, directly compare or use a unit  

 –   How can we compare the spaces? (Cover with laplap, big leaves, coffee bag, 
rice bag, banana leaf, breadfruit leaf, canvas—depending on house, whether 
rectangular or round)  

 –   Children cover the spaces with a “standard” area measure. For example, 
 coffee bags  

 –   No spaces between the units (notice mathematical language of unit), estimating      

  Day 3 

•    Going further 

 –    Garden areas. Visit a garden that is divided up into areas of a similar shape 
and size. Discuss the pattern of smaller areas tessellating without gaps to 
cover the area.  

 –   Read the book,  Areas in the Garden . 
 –  Discuss each page and do activities to reinforce the concepts and story of the 

book.  
 –   Bigger areas, e.g. joined classrooms in the building      

  Day 4 

•    Making connections 

 –    Area is the 2D space inside a boundary, area can have different shapes, area 
can be compared and measured. 

 –  Area units should take up all space inside and there can be parts of units. 
Different shapes can be the area unit.  

 –   Read the book,  Seli Measures Area  2 , discuss, and do the activities.  
 –   Try a rectangle or square paper and fold and tear into four equal triangles and 

rearrange into different shapes. 
 –  Use clay or playdough areas to represent the areas of a classroom; model or 

draw the plan and areas of the house in the sand (links to shapes, curved and 
straight lines).     

 2  Books for early readers prepared for the project (Owens,  2013d ). 
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•    Taking action 

 –    Find out how many A4 papers or large leaf would cover the area where you 
sleep.      

  Day 5 

•    Sharing, discussing, refl ecting   
•   What is area? 

 How do we compare area? 
 Can we have round areas and areas with straight sides?  

•   What are some ways of comparing and measuring areas? Children select an area, 
and a measuring unit and measure and record their fi ndings. (Teacher can use for 
learning story of children’s learning, noting aspects of visuospatial reasoning 
used by children and knowledge of measurement.) 

 (Owens,  2013c )        

Appendix E: Example of Learning Plan for Cultural Mathematics
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   Agenda for Action of National Council of Teachers 
of Mathematics       

   use visualisation and spatial reasoning to solve problems both within and outside of 
mathematics 

   Reasoning about Congruence and Similarity 
 Reasoning in Two Dimensions 
 Reasoning about Surface Area and Volume 
 Reasoning in Geometric Modelling 

  Key issues :

•    Geometric ideas are useful in representing and solving problems. Students 
should gain experience in using a variety of visual and coordinate representa-
tions to analyse problems and study mathematics.  

•   Instructional programs should not repeat the same measurement programs year 
after year and students should learn to choose appropriate units for measurement.  

•   Many students have diffi culty with understanding perimeter and area.  
•   Understanding that all measurements are approximations is a diffi cult but impor-

tant concept for students.  
•   Opportunities to use problem-solving strategies must be embedded naturally in 

the curriculum across the content areas.  
•   Reasoning and proof begin in the early years. A mathematical proof is a formal 

way of expressing particular kinds of reasoning and justifi cation.  
•   Conjecture is a major pathway to discovery. (Owens & Perry,  1998 )     

   Appendix F
Selection of Curriculum Statements 
and Issues 



328

   Singapore Curriculum 

  Key issues : 
 The curriculum is centred around a mathematical problem-solving framework that 
emphasises concepts, skills, processes, attitudes, and metacognition. Succinctly the 
concepts are numerical, geometrical, algebraic, and statistical. The skills begin with 
estimation and approximation; mental calculation; communication; use of mathe-
matical tools; and then manipulations. The processes are deductive reasoning 
(including logical thinking, deducing new information from existing; and drawing 
conclusion), inductive reasoning (including recognising patterns and structures and 
forming generalisation), and heuristics for problem solving (including using dia-
grams   , tables, making suppositions, and so on). Words such as  estimate, calculate, 
visualise, use  are common among the objectives (Owens & Perry,  1998 ).  

   Republic of South Africa 

  Key issues : 

  Implementation of the intention : 

 Mathematics enhances and helps to formalise the ability to be able to grasp, visual-
ise, and represent the space in which we live. In the real world, space and shape do 
not exist in isolation from       motion and time. Learners should be able to display an 
understanding of spatial sense and motion in time. 

 The outcome requires that learners:

  …describe and represent experiences with shape, space, time and motion, using all avail-
able senses. (   Department of Education, 1997) 

   The MALATI program noted the importance of visualisation under vision in 
stating:

   Descriptions of the orientation of an object is an indicator of Position, Vision  
  Demonstrate an understanding of the interconnectedness between shape, space, and 

time is an indicator of Position, Vision, Motion, Shape     

   Australian Curriculum 

 The Australian Curriculum: Mathematics aims to ensure that students:

•    Are confi dent, creative users and communicators of mathematics, able to inves-
tigate, represent, and interpret situations in their personal and work lives and as 
active citizens.  

•   Develop an increasingly sophisticated understanding of mathematical concepts 
and fl uency with processes, and are able to pose and solve problems and reason in 
Number and Algebra, Measurement and Geometry   , and Statistics and Probability.  
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•   Recognise connections between the areas of mathematics and other disciplines 
and appreciate mathematics as an accessible and enjoyable discipline to study.    

 Mathematics has its own value and beauty and the Australian Curriculum: 
Mathematics aims to instil in students an appreciation of the elegance and power of 
mathematical reasoning. Mathematical ideas have evolved across all cultures over 
thousands of years and are constantly developing. Digital technologies are facilitat-
ing this expansion of ideas and providing access to new tools for continuing 
 mathematical exploration and invention. The curriculum focuses on developing 
increasingly sophisticated and refi ned mathematical understanding, fl uency, logical 
reasoning, analytical thought, and problem-solving skills. These capabilities enable 
students to respond to familiar and unfamiliar situations by employing mathemati-
cal strategies to make informed decisions and solve problems effi ciently. 

 Measurement and Geometry    are presented together to emphasise their relation-
ship to each other, enhancing their practical relevance. Students develop an increas-
ingly sophisticated understanding of size, shape, relative position, and movement of 
two-dimensional fi gures in the plane and three-dimensional objects in space. They 
investigate properties and apply their understanding of them to defi ne, compare, and 
construct fi gures and objects. They learn to develop geometric arguments. They 
make meaningful measurements of quantities, choosing appropriate metric units of 
measurement. They build an understanding of the connections between units and 
calculate derived measures such as area, speed, and density. 

 Profi ciency strands are understanding, fl uency, problem solving, and reasoning. 
Using units of measure, shape, location, and transformation begin in the foundation 
year of school while geometric reasoning begins in grade 3 and relates to identify-
ing angles in the environment in various situations. Pythagoras and trigonometry 
begin in grade 9. Expected knowledge, concepts, skills, and processes are given but 
approaches to teaching are not prescribed (Australian Curriculum Assessment and 
Reporting Authority,  2010 ). 

  Key issues : 
 Culture is supposed to be considered but it is not mentioned in the content strands 
or any examples. 

 There is no mention of visuospatial reasoning. Representation and explaining are 
mentioned.  

   Papua New Guinea Elementary Syllabus 

 The learning outcomes and indicators will:   

•    Give teachers individually or in groups the fl exibility to write programs and units 
of work, which should be developed to suit local conditions and individual 
 student needs.    

 In Cultural Mathematics, a manageable number of outcomes are identifi ed for 
each grade in Elementary Prep, 1 and 2. They are: … created using an active verb to 
ensure students actively participate in the learning. 
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 The language of instruction at Elementary is the students’ vernacular, which will 
enable teachers to enhance the students’ understanding of mathematical concepts. 
Students need to use mathematics in different contexts. Teachers teaching this 
course must be competent in the language the children speak, so that they can 
explain the mathematical concepts clearly to their students. Students at Elementary 
will be able to link new mathematical concepts from the fi ve strands in this syllabus 
to their existing cultural knowledge. The students will integrate this knowledge so 
that they can confi dently use mathematics in their everyday lives. The Elementary 
Cultural Mathematics course provides many opportunities for relevant and purpose-
ful learning in an environment that is built on the principles of home life. 

  Aims : 

  Students develop :

•    A sound foundation for further mathematical learning  
•   Confi dence in applying mathematical skills  
•   Curiosity leading to the understanding of concepts  
•   Determination to persist with diffi cult problems  
•   Critical judgement in selecting approaches to problems  
•   An appreciation of the cultural diversity in numeracy    

  Space  
 This strand deals with giving information and directions to be followed to move 
from location to location. It also deals with the concept of shape and the language 
required to describe various shapes. 

  Measurement  
 This strand concentrates on the units used to describe length, weight, capacity, area, 
and time and how they are measured. The concepts in this strand focus on ways of 
measuring using local measurements as well as common formal measurements. 
Students will also estimate and calculate time using traditional ways.

  Space 
outcomes for 
each grade  

  P.1.1  Follow and give 
simple directions for 
moving in a space 

  1.1.1  Follow and 
give directions to 
move from place 
to place 

  2.1.1  Follow directions 
from simple maps 

 Indicator 
examples 

 • Give simple directions 
such as walk three steps 
forward, stop, take three 
steps left, turn right, take 
three steps backward 

 • Give directions 
to a person to 
fi nd a place in 
the community 

 • Talk about direction 
names in vernacular 
such as east (sun rises), 
west (sun sets), north, 
and south 

 • Demonstrate using 
directions given 

 • Draw simple maps to 
show directions to fi nd 
the school, villages, 
gardens, church 

 • Make a list of local 
names for directions 
such as east (sun rises) 

 • Make a list of 
directions to guide 
people to certain places 

 • Use direction words to 
play games 
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  Space 
outcomes for 
each grade  

  P.1.2  Identify locally known 
shapes by their visual 
appearance 

  1.1.2  Compare 
and group shapes 
in the community 

  2.1.2  Investigate and 
describe the features of 
geometric shapes 

 Indicator 
examples 

 • Collect and display 
locally known shapes in 
everyday life 

 • Sort shapes 
according to 
their 
differences and 
similarities 

 • Talk about the features 
of shapes such as 
edges, angles, curves, 
faces, sides, and corners 

 • Name and label locally 
known shapes in 
vernacular 

 • Make new 
shapes by 
putting simple 
shapes 
together 

 • Group shapes according 
to the number of sides, 
shapes, and angles 

 • Make a mobile of locally 
known shapes 

 • Make a collage of 
locally known shapes 

 • Display groups 
of different 
shapes from 
the community 
such as 
baskets, pots, 
kundus, and 
shells 

 • Count faces, corners, 
and edges of 
geometrical fi gures 

 • Sort and match shapes  • Name features 
of shapes in 
vernacular 
such as edges, 
angles, curves, 
and corners 

 • Build new shapes using 
three- dimensional 
shapes 

 • Make models of locally 
known shapes using 
sand, clay, or mud 

 • Group local 
shapes 
according to 
their features 
such as  a ll 
objects with 
curved edges 

 • Label using vernacular 
and say English words 
for features such as 
corners, edges, and 
angles 

 • Identify lines found in 
the local environment 
such as  r oads, rivers, 
and drawings 

 • Build objects 
using local 
materials and 
label the 
shapes used 

 • Identify and discuss 
types of lines that make 
up objects such as long, 
straight, sharp, curved, 
wavy, thick, and thin 

 • Draw line drawings of 
things such as gardens, 
houses, and playing 
fi elds 

 • Make line 
drawings of 
regular and 
irregular 
shapes found 
in the 
community 

 • Group lines according 
to their differences and 
similarities 

 • Find things in the local 
community where one 
half looks exactly the 
same as the other half 

 • Draw objects 
from different 
places that are 
symmetrical 

 • Make symmetrical 
shapes such as butterfl y 
wings, leaves, and 
fl ower petals 
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  Measurement 
outcomes for 
each grade  

  P.2.1  Measure the length, 
weight, and capacity of 
things using their own 
informal measuring units 

  1.2.1  Measure and 
compare the 
length, weight, 
and capacity of 
things using local 
informal units 

  2.2.1  Compare the 
accuracy of local measures 
of length, weight, and 
capacity 

 Indicator 
examples 

 • Match and compare 
lengths and heights 
using their own units 

 • Use things 
such as hand 
span, arm 
lengths, 
pacing, sticks, 
or other items 
to measure 
length 

 • Measure lengths in 
different ways and 
compare their accuracy 

 • Measure length, width, 
and height using their 
own units such as bottle 
tops, seeds, and leaves 

 • Use 
comparison 
words for 
measuring 
such as light, 
lighter, 
lightest, heavy, 
heavier, 
heaviest, long, 
short, tall, full, 
empty, and not 
much 

 • Talk about and practise 
some traditional 
measures from their 
local community 

 • Collect items of 
different weight and 
arrange them in order 
using their own units 

 • Use different 
containers and 
other items to 
measure 
capacity 

 • Compare local ways of 
measuring weight 

 • Match and compare light 
and heavy objects 

 • Measure capacity using 
various common 
containers 

 • Arrange light and heavy 
objects in a simple order 

 • Collect containers of 
different sizes and 
arrange them in order 

 • Use traditional ways to 
guess and order the 
amount of liquid such as 
water and juice 

 (National Department of 
Education PNG,  2003 ) 

    Key issues : 
 Curriculum appropriate for many cultures but requires good teacher preparation.   
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