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Abstract In the framework of macroscopic human crowd models, pedestrian
dynamics are described via local density and flow fields. In theory at least, these
density and flow fields are often required to have a certain degree of regularity such
as being smooth. In this paper, we describe a new method for the calculation of
spatio-temporally smooth, locally defined density and flow fields from pedestrian
trajectories. This method is based on kernel density estimation with variable
bandwidth and—for a large range of scale—yields spatially averaged values close
to the density or flow defined in the standard way.

In order to evaluate our approach and compare with other techniques such as the
fixed-bandwidth estimator or the Voronoi estimator, we use a data set of intersecting
pedestrian flows extracted from a human crowd experiment that we conducted at
Technische Universität Berlin.

Finally, we argue that the proposed model may be interpreted as to not only
describe the transport of pedestrian mass via particle flow but also as the result of
variations in the pedestrians’ personal space in crowded situations. We suggest that
this approach may be useful for the description and/or visualization of clogging
phenomena, or crowd disasters which may be thought of as events where a sudden
compression of personal space occurs.
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1 Introduction

The study of pedestrian dynamics has important applications in crowd management
such as devising strategies for the evacuation of buildings or public places. In order
to evaluate the predictive power of mathematical models designed to emulate human
crowd behavior, it is a common procedure to compare numerical simulations based
on these models with empirical data. These empirical data are usually extracted from
video recordings of either naturally occurring human crowds [7] or pedestrian flows
that have been produced by controlled experiments [2, 3, 23]. In general, the latter
are devised to demonstrate crowd behavior in special situations such as evacuation
or passing through a bottleneck. In our work, we put a particular emphasis on
analyzing intersecting pedestrian flows, and in Sect. 2 we describe experiments that
were conducted with this purpose.

Furthermore, different modeling approaches demand the extraction of different
types of data: For example, the social force model [6] and the cellular automaton
model [1] aim at predicting pedestrian trajectories, whereas continuum methods [8]
adopted from fluid mechanics describe the dynamics via a density and flow field
associated with the crowd. The computation of the density on a large range of spatial
scale from a crowd consisting of only a few pedestrians is a challenging task because
of the low number of samples. In this context, we propose a variable-width kernel
density estimation described in Sect. 3 and apply this algorithm to our experimental
data (Sect. 4).

We conclude with a short summary and an overview of remaining problems in
Sect. 5.

2 Experiments

In the experiment which we use here to illustrate our method, two pedestrian flows
(groupA, 142 subjects, and group B , 83 subjects) intersected at an angle of 90ı for
1 min in a region of about 25 m2, reaching a peak density of about five pedestrians
per square meter. The scene was recorded from a gallery at a height of about
6 m with five networked and temporally synchronized JVC VN-V25U surveillance
video cameras. Here, we analyze the data provided by the three central cameras
which covered the area where the actual intersecting of the pedestrian flows took
place, see Fig. 1. A similar experiment with this purpose has been conducted in [4].
However, we process data from multiple cameras, and therefore, a larger field of
view covering a larger portion of the observation area than one camera view could
be captured. Also, in our experiments, the pedestrians did not move along specified,
confined corridors.

The cameras were calibrated by applying a pinhole model to the world and image
coordinates of about 30 reference points in the scene. After camera calibration,
the spatio-temporal positions of the pedestrians were extracted by photogrammetric
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Fig. 1 Intersecting pedestrian flows. Red diamonds: group A, blue crosses: group B

means—a particular challenge was presented by the fact that due to constructional
limitations the scene could not be captured from a bird’s eye view. For more
details, we refer to [14, 15]. First, for each frame, the heads of the pedestrians
were marked manually, aided by the Lucas–Kanade tracking algorithm [11, 18].
Then, for each pedestrian the floor position was marked in (at least) one frame
in order to compute the height of the respective pedestrian via the homography
determined from camera calibration. This information is sufficient to calculate the
pedestrians’ world coordinates above ground for each frame. Smooth trajectories
were then obtained via approximation with cubic B-splines. Finally, the trajectories
extracted from different cameras were merged by combinatorial assignment with
the Kuhn–Munkres algorithm, also known as the Hungarian method [9, 13].

The experimental data, i.e., videos and extracted trajectories, can be downloaded
at http://www.math.tu-berlin.de/projekte/smdpc/.

3 Density and Flow Estimation

Empirical data of human crowd behaviors are usually represented by the trajectories
of the pedestrians. Probably the most basic way to compute a density from such
trajectories would be to divide the number of pedestrians in a given region by
the area of that region, at a given point in time. However, this “standard” density

http://www.math.tu-berlin.de/projekte/smdpc/
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estimator yields data with large scatter—let alone a smooth density function defined
at every point. Very similar problems occur when estimating the flow by counting
pedestrians that pass through a given cross section.

At least two approaches for computing the density have been suggested in the
literature as alternatives:

1. In [7], a local density field is computed via the sum of Gaussians with a
fixed standard deviation (typically 0:7m) centered at each pedestrian. Formally,
this approach may be recognized as a kernel density estimation with fixed
bandwidth, which is a basic tool in statistical data analysis (see [19], for
example). This method results in a smooth density field defined at every point. Of
course, the kernel estimator yields the same result as the standard density when
spatially averaged across large regions. However, for isolated pedestrian groups
of “mesoscopic” size one typically observes values that are significantly lower
than the standard density since a large portion of the “pedestrian mass” is located
outside of the respective region.

2. The authors of [20] propose two similar estimators, both of which are based on
the Voronoi diagram defined by each pedestrian’s position as a Voronoi site. The
Voronoi method has been successfully applied to study pedestrian flows through
observational areas that feature a constrained geometry, such as corridors or the
vicinity of bottlenecks, see also [23]. The main idea in this approach is to account
for the personal space occupied by each pedestrian, and this personal space is
represented by the area of the corresponding Voronoi cell. The values for the
Voronoi density are very close to standard densities, but with significantly less
scatter. However, the Voronoi estimator does not yield a smooth local density
function defined at every point. Also, for sparse and unconstrained crowds, a
significant number of Voronoi cells may be quite large (in fact, may even have
infinite area) resulting in densities that are lower than expected. However, a more
recent suggestion is to mitigate this problem by introducing a fixed limit to the
size of the cells [10]. In this paper, we only consider the original definition for
the Voronoi density that is denoted in [20] as “DV ”.

In this work, we propose yet another method, based on kernel estimation with a
variable bandwidth defined by Eq. (3) below. This method is conceptually a blend
of the Voronoi estimator (accounting for personal space) and the fixed-bandwidth
kernel estimator (yielding smooth density fields).

3.1 Standard and Voronoi Density

At a given point in time t , suppose we observe a (large) number N of pedestrians
labeled by some suitable index set J such that jJ j D N . The positions of these
pedestrians are denoted by xj .t/ 2 R

2, j 2 J . We may then define a local density
distribution
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�.t;x/ D
X

i2I
ki .t;x/ D

X

i2I
ı.x � xi .t// (1)

where ı denotes the Dirac delta function. The index set I � J labels the pedestrians
of interest—for example, the whole crowd, in which case I D J , or a group of
pedestrians with a common destination. For this density field—which is obviously
not smooth but highly singular—the spatial average across some region˝ � R

2 is
simply given by the number of pedestrians contained in˝ divided by the area of˝:

h�.t; � /i˝ D 1

j˝j
Z

˝

�.t;y/ d2y D 1

j˝j
X

i2I

Z

˝

ı.y � xi .t// d2y D jI˝.t/j
j˝j

with I˝.t/ WD fj 2 I jxj .t/ 2 ˝g. We will refer to this way of computing the
density as the standard density.

The Voronoi method also defines a local density field which—like the standard
density, or the kernel density defined in the next subsection—may be written in the
form �.t;x/ D P

i2I ki .t;x/. In this case, we have

ki .t;x/ D
(

1
jVi .t/j if x 2 Vi .t/;
0 if x 62 Vi .t/;

where Vi.t/ is the Voronoi cell the seed of which is given by xi .t/. Obviously,
this local density field is, in general, not continuous. Also note that without the
introduction of some upper bound to the size of the cells, the local Voronoi density
is not properly normalized, i.e.,

R
R2
�.t;y/ d2y ¤ jI j.

3.2 Kernel Density and Flow Estimators

In order to obtain a smooth density field instead of the distribution given by Eq. (1),
one way is to replace the Dirac distribution by suitable nascent Dirac functions. One
may understand this technique as a smoothing procedure that replaces the singular
Dirac peaks by peaks of finite height and non-zero width. The main difficulty is
given by the problem to choose appropriate widths for the new peaks. To this end,
consider a kernel pedestrian density estimator with isotropic kernel function:

�.t;x/ D
X

i2I
ki .t;x/ D

X

i2I

1

.�di.t//2
�K

�
x � xi .t/

�di.t/

�
:

The dimensionless number � > 0 is a global smoothing parameter. In the following,
we will always assume � D 1, and that the kernel is given by a Gaussian function:
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K.y/ D 1

2�
exp

�
�kyk2

2

�
:

Probably the most natural formula for computing a corresponding flow field
would be given by:

jm.t;x/ D
X

i2I
ki .t;x/ � dxi .t/

dt
: (2)

However, the continuity equation is generally not satisfied with jm as the only flow
component. Instead, we have

@�.t;x/

@t
C div.jm.t;x/C j c.t;x// D 0

with an additional, irrotational flow

j c.t;x/ D
X

i2I
ki .t;x/ � d ln.di .t//

dt
� .x � xi .t//:

Note that j c vanishes if, for each label i 2 I , the corresponding bandwidth di.t/
is fixed, i.e., it does not depend on the point in time t . Thus, if we wish to enforce a
law of “pedestrian mass conservation”, a sensible choice for the total flow is given
by j D jmCj c . Furthermore, Eq. (2) also applies to the limiting case di ! 0, i.e.,
the standard density, to provide a standard flow. The spatial average of the standard
flow with respect to some region ˝ is simply given by the sum of the pedestrians’
individual velocities divided by the area of that region:

1

j˝j
X

i2I

Z

˝

ı.y � xi / d2y � dxi .t/

dt
D 1

j˝j
X

i2I˝.t/

dxi .t/

dt
:

As for the choice of bandwidth, one may assume it to be fixed—for example,
di.t/ � 0:7m [7]. More generally, the numbers di.t/ can be computed from the
current positions of the pedestrians in a suitable way—a formal analogue of this
procedure in statistical data analysis is known as a sample smoothing estimator [21].
For the nearest-neighbor kernel estimator we previously proposed in [14], we have:

di .t/ D min
j2J; j¤i

.kxi .t/ � xj .t/k/:

Note, however, that in general, the functions t 7! di .t/ defined in this way are
not differentiable, yielding a density field that is not smooth with respect to the
time variable t . Therefore, for some fixed additional parameter p 2 R, p > 1, we
propose the following functions instead (cf. [15]):
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Fig. 2 The bandwidth, defined by Eq. (3), assigned to a particular pedestrian A as a function of
the distance to another individual pedestrian B . Dotted line: with no other pedestrian present. Solid
line (dashed line): with one other pedestrian C (three other pedestrians C , D and E) located at a
constant distance of 2 m to A

d
.p/
i .t/ D

0

@
X

j2J; j¤i
.kxi .t/ � xj .t/k/�p

1

A
� 1
p

: (3)

The bandwidths thus defined are smooth functions and at the same time
generalize the nearest-neighbor kernel as its limiting case of p ! 1. In the
following, when we speak of variable bandwidth, we will always assume that Eq. (3)
applies, with p D 4. Figure 2 shows a toy-model calculation for a single pedestrian:
The bandwidth decreases with the number of pedestrians located in the near vicinity,
and their respective distance. We interpret this behavior as the compression of
personal space in crowded situations, see Sect. 4.

3.3 Modeling Obstacles

In order to model obstacles, we propose the following additional procedure to be
implemented when computing smooth density and flow fields via kernel estimation.
Note, however, that we choose not to use this method for the computations presented
here since the computational overhead is barely justified for the few obstacles
present in the area where we conducted our experiments. Nevertheless, for more
constrained geometries—such as a corridor, for example—we expect this method to
be of some value. First, define the characteristic function of the experimental area:

�.x/ D
(
0 if x is inside an obstacle,

1 if x is not inside an obstacle.
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Then, define a smoothed characteristic function by convolution with a suitable
mollifier:

��.x/ WD .� �  �/.x/ D
Z

R2

�.x/ �  �.y � x/ d2y:

For example,

 �.x/ D
(

1
�2

exp.� �2

�2�kxk2 / if kxk < �;
0 if kxk � �:

For each fixed time t and pedestrian i 2 I , compute (by any method of choice)
the function ki .t;x/ associated with this pedestrian’s position, and correct this
function so that it vanishes inside of obstacles:

k
.corr/
i .t;x/ D ki .t;x/ � ��.x/R

R2
ki .t;y/ � ��.y/ d2y

:

Calculate the density � and the flow component jm with these corrected kernel
functions. In order to compute the corresponding value for j c , numerically solve
the Poisson equation

4u D @�

@t
C div.jm/;

and define j c D �grad.u/. In order to solve this equation, one may use, for
example, finite-differencing [16, pp. 1024–1030], and choose a constant Dirichlet
boundary condition far away from the observation area to enforce uniqueness.

4 Results and Discussion

Figure 3 illustrates how the variable-bandwidth estimator distributes pedestrian
mass to favor densely crowded regions. Probably any sensible macroscopic crowd
model provides a mechanism that prevents pedestrian mass to be distributed to
regions of already high density since pedestrians generally avoid crowded areas.
On the other hand, as opposed to this repulsive short-range action, it is often
assumed that there is also an attractive long-range action (similar to the effect of
chemotaxis, cf. [17]). Our method of computing densities is in fact consistent with
this assumption: Consider two single pedestrians approaching one another. At long
distances, they will not regard each other as obstacles since their personal space is
still large, and their mass is distributed over a large region. At shorter distances,
however, they will avoid entering the personal space of each other since this would
lead to a very large local density.
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Fig. 3 Pedestrian density
field at a fixed point in time.
Top: variable-bandwidth
estimator, bottom:
fixed-bandwidth estimator
(di D 0:7m). Max. value:
7:1m�2. Red diamonds:
group A, blue crosses:
group B

Also, this tendency to highlight pedestrian clusters may prove to be advantageous
for (visually) identifying (social) groups in naturally occurring human crowds, the
study of which is also an important task; see, for example, [12].

As for the flow computed via the variable-bandwidth method, the additional
component j c arises from the shrinking or expanding of the Gaussians due to the
change in distance between pedestrians. In other words, j c describes the transport
of mass via compression of the pedestrians’ personal space in crowded situations.
On the other hand, one might be tempted to think of jm as the “actual” transport
of pedestrian mass due to the displacement of pedestrians. However, one has to
be careful with this interpretation since the length scale determined by Eq. (3) is
to be understood as a free path and not an approximation of the physical size of
the pedestrian. Nevertheless, in the context of crowd disasters, we suggest that this
distinction between the flow components may be an appropriate way to identify
panic situations: Even if regions with large density � or flow j exist, this does not
necessarily indicate a (potentially) dangerous situation—imagine, for example, an
elevator full of people or a large marathon event, respectively. However, it has been
noted that panic situations can be characterized by a number of typical features,
a comprehensive list of which is given in [5]. These features include physical
interactions between people, clogging and incoordinated movement—all of which
are indicated by large changes in density due to the compression of personal space
(Fig. 4). In Fig. 3, a comparison of the fixed-bandwidth and variable-bandwidth flow
is given by example. The fixed-bandwidth flow appears as a simple superposition
of the pedestrian flows A and B . Both computation methods yield a free flow of
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Fig. 4 Pedestrian flow field
at a fixed point in time. Top:
variable-bandwidth estimator,
bottom: fixed-bandwidth
estimator (di D 0:7m). Blue
and red arrows indicate the
velocities of individual
pedestrians

pedestrian mass exiting the observation area in the region marked (b). In contrast to
this, in region (a), the variable-bandwidth estimator shows a sink of pedestrian mass
which is due to the compression of personal space when one lane of the bifurcating
flow B meets the dominant flow A almost head on.

Figure 5 shows the functions div j and div j c spatially averaged across a
microscopic region, plotted against time. We see that temporal changes in density
are more pronounced with the variable-bandwidth method. It can also be noted that
the temporal changes of personal space indicated by div j c have a larger amplitude
when the two pedestrian flows actually meet. However, we acknowledge that this
observation is not fully conclusive since the large scatter might also be caused by
random measurement errors.

4.1 Comparison with Other Methods

In the following, we would like to compare the different methods mentioned in this
work as to their ability to represent the mean density and flow on different spatial
scales. To this end, the spatially averaged density and flow is plotted versus the time
in Fig. 6, computed via different methods in three regions of different size. One may
characterize these regions as microscopic, mesoscopic and macroscopic—although
we do not wish to claim that this terminology should generally be applied to regions
of the respective size.
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For the computations, we assumed that the pedestrians stop and cease to move
once they exit the area covered by the cameras. This was to avoid outliers in the
flow measurement because of incomplete trajectories—cf. the first issue noted in the
concluding section of this work. Also, this workaround assures a fairer comparison
with the Voronoi method that we implemented in its unmodified form that was
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originally proposed in [20] and which was not designed for sparse, unconstrained
crowds.

Naturally, the methods yield very similar values for the macroscopic region.
However, for microscopic regions a significant difference can be noted: the standard
density shows large scatter while all three alternative methods appear as smoothed
versions of this standard density. Therefore, these methods may be used to reliably
compute the density and flow for sparse or dense crowds, and work well on any
scale.

While there is not much difference in the total values of the density, the temporal
variation, and therefore the divergence of the flow, may show vast differences
between fixed and variable bandwidth method as illustrated by Fig. 5.

5 Conclusion

In this paper, we have demonstrated that kernel estimation methods provide an
attractive alternative to the standard or the Voronoi method of measuring densities
or flows. Also, these kernel methods naturally yield smooth density and flow fields.
We argue that estimating such fields from experimental data is helpful in evaluating
macroscopic crowd models which yield precisely this type of data. Also, we have
shown that even kernel methods with variable bandwidth may be designed in such
a way that the resulting density and flow field satisfy the continuum equation.

Moreover, the kernel estimator with variable-bandwidth proposed by us may
provide a useful model for changes in personal space, which is also a key idea when
formulating the approach based on Voronoi diagrams. These changes in personal
space reflect in the dynamic density and flow fields and may be used to effectively
visualize effects such as clogging or counter flows.

However, there are some practical and theoretical issues that particularly concern
the variable-bandwidth kernel method:

1. In human crowd experiments, trajectories are often incomplete as pedestrians
leave the area observed by the cameras. This circumstance usually results in
the computation of temporally discontinuous densities and very large flows
because of the sudden change in density when pedestrians leave the observation
area and “vanish”. Although this problem may potentially present itself with
any computation method, the variable-bandwidth kernel method is particularly
susceptible to it.

2. It would be preferable to obtain the parameter values � and p in a data driven,
automatical manner—for example, by techniques already known from statistical
data analysis. We suggest that one approach to obtain the parameter �, at least,
might be given in [22]. On the other hand, analogies relating probability and
pedestrian densities only extend to a certain degree and one might think that these
parameter values should be fixed as they are inherent to any crowd configuration.
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3. We have to acknowledge that the variable-bandwidth estimator lacks robustness
against errors in the measurement of the pedestrians’ trajectories. For example,
if the spatio-temporal positions of two different pedestrians were to (almost)
coincide due to a measurement error, very large, factually incorrect density values
may occur. If no reliable data is available, a workaround would be given by
enforcing a lower limit on the bandwidth.

4. In some circumstances, the variable-bandwidth estimator yields large local den-
sity values (> 10m�2) that—in principle—cannot be predicted by macroscopic
models which usually have a restricted range of density values. However, this
might only reflect the fact that macroscopic models are designed to describe
crowds at large scales.

5. As already noted earlier, the divergence of the flow depends significantly on the
type of kernel used for computation, at least when averaged across microscopic
regions (see Fig. 5). It also largely depends on the chosen parameters, and the
relationship of such graphs to discrete analogues based on the standard density
remains unclear.

We conclude by noting that the measuring techniques presented here may be
understood as particular smoothing procedures based on the standard definition of a
particle density, which do not seem to add any particularly relevant information to
the data. In fact, if one is solely interested in the spatial average across macroscopic
regions of dense crowds, probably any technique would suffice. However, even an
artificial increase in spatio-temporal resolution may prove to be insightful when
visualizing data based on sparse pedestrian flows and/or microscopic regions of a
crowd, resolving fine-structure that would otherwise remain unseen (cf. [23]).
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