
PYECDAR: Towards Open Source Implementation
for Timed Systems

Axel Legay and Louis-Marie Traonouez

INRIA Rennes, France
firstname.lastname@irisa.fr

Abstract. PYECDAR is an open source implementation for reasoning on timed
systems. PYECDAR’s main objective is not efficiency, but rather flexibility to test
and implement new results on timed systems.

1 Context

To solve complex problems such as scheduling tasks in embedded applications, the
ability to reason on real time is mandatory. It is thus not a surprise that, over the last
twenty years, the rigorous design of real-time systems has become a main research topic.
Among major successes in the area, one finds the UPPAAL toolset [1] that is promoted
by industries, and that has been used to verify complex properties of complex protocols
such as the Herschel-Planck, the root contention protocol, or Audio-Control Protocol
developed by Philips. Recently, timed tools have been extended to reason not only on
the properties of the system, but also on the effects of its interactions with a potentially
unknown environment. Tools such as UPPAAL-TIGA do this via game-theory [2]. The
code of UPPAAL and related toolsets is not available and their interfaces are fixed in
stone. Those choices shall not been seen as drawbacks, but rather as strategic choices
for an industrial dissemination. However, from a scientific point of view, this makes it
hard for researchers to reuse part of those toolsets to quickly implement and evaluate
their new results without sharing them with tool makers.

We present PYECDAR (https://project.inria.fr/pyecdar/) that is a new python imple-
mentation of well-known results on timed systems and games. We then show that the
tool can be used to implement new results in timed systems. Our main objective with
PYECDAR is to offer an open source platform to quickly test new results on timed sys-
tems. Of course, this implementation is not as competitive as well-established toolsets,
but it is very flexibility and easy to use and extend.

2 The PYECDAR Toolset in a Nutshell

As a foundation to develop new algorithms, PYECDAR offers an implementation of the
reachability analysis for timed automata as well as an implementation of the forward
algorithm from [2] that is used to solve reachability problem for timed games. Then,
the tool offers the implementation of a series of brand new results on timed systems.
The first is the timed specification theory from [3] that has been developed to reason
on complex systems described as a combination of components. The specifications of

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 460–463, 2013.
c© Springer International Publishing Switzerland 2013

 https://project.inria.fr/pyecdar/


PYECDAR: Towards Open Source Implementation for Timed Systems 461

tea!

coin?

tea!

cof!

coin?

Idle

Serving

y=0

y>=4

y<=6

y>=2

(a) Specification

cof! tea!

coin?

coin?

Idle

Serving

y=0

y==5

y<=5

y==5

(b) Implementation

cof! tea!

Idle

coin?

not out_of_teay>=4 and
not out_of_cof

y<=6
Serving

y=0

(c) Adaptive specification

Fig. 1. Specifications of timed systems

those components are given by Timed Input/Output Automata (TIOA), where inputs
represent behaviors of the environment, and outputs those of the system. The tool is
able to 1. decide whether an implementation (e.g. Fig. 1b) conforms to a given specifi-
cation (e.g. Fig. 1a), decide whether a specification can be implemented (consistency),
3. compare specifications (refinement – timed game), 4. logically/structurally compose
two specifications, 5. synthesize a specification from a set of requirements (quotient),
and 6. prune states from which the environment has no strategy to avoid bad behaviors
(compatibility) – the operation requires the implementation of a timed game. The theory
has also been implemented in ECDAR [4]. An advantage of PYECDAR is that its inter-
nal data structures can be used to save (and reuse) the result of composing/synthesizing
specifications, while the one of ECDAR cannot. Also, PYECDAR can perform compati-
bility on combined systems while ECDAR cannot.

PYECDAR also offers the implementation of an extension of [5] to decide whether an
implementation automaton is robust: i.e. if it remains conform to a specification when
its output guards (resp. input) are exceeded (resp. restricted) by some Δ value. The tool
can also synthesize the maximal Δ for which the implementation remains robust. The
results extend to all the operations of the theory [6]. As an example, implementation of
Fig. 1b is robust with respect to specification of Fig. 1a up to Δ = 1. Beyond that point,
the perturbations of the output transitions, which is 5 −Δ ≤ y ≤ 5 +Δ, exceeds the
guard y ≥ 4 and the invariant y ≤ 6 of the specification. It is worth mentioning that
the internal structure of ECDAR does not permit to implement robustness on top of the
specification theory. So, albeit the work in [6] is an extension of the one in [3], using
ECDAR would require an entirely new implementation. Several robustness theories for
timed automata have been implemented in tools such as shrinktech [7], but PYECDAR

is the first to offer this feature for a complete specification theory.
Finally, PYECDAR offers the ability to reason on variability [8]. There, the model is

an extended timed automata that permits to represent features of both the system and its
environment – such features may appear or disappear at runtime. As an example, Fig. 1c
represents a specification of the system using two adaptive features for the environment
(out_of_tea and out_of_cof). These features may be enabled or disabled at run-
time during input transitions, which may restrict the possible behaviors of the system.
PYECDAR exploits an extension of timed game algorithms to synthesize e.g., the mini-
mal set of features that are needed by a system so that it verifies a timed CTL property,
whatever the environment does. To the best of our knowledge, PYECDAR is the first to
offer a timed implementation of such a complex problem in software engineering.



462 A. Legay and L.-M. Traonouez

3 Architecture of the Tool
PYECDAR works inside an interactive python shell, and offers a set of modules and
fonctions to load models and perform computations. In PYECDAR, models are written
by using the interface of UPPAAL or ECDAR, and uploaded via an XML file. Once the
models have been loaded, the user can perform one or several queries via the shell in an
on-demand manner.

Input Language. PYECDAR supports the main language elements from ECDAR. That
allows to design TIOAs with the syntax from [3], and additionaly to use extended syntax
elements, like constants and integer variables. See https://project.inria.fr/pyecdar/ for the
grammar. TIOAs are specified with the ECDAR interface that is freely available, and then
saved in XML. In case of features, Boolean variables are added to the model to witness
the presence or absence of each feature. For the internal representation, PYECDAR relies
on the UPPAAL DBMs library used to represent the timing constraints of the model and
a classical graph-based structure to represent its syntax. Contrary to ECDAR, PYECDAR

creates a dedicated structure for each component, including those that are obtained by
combining existing ones. ECDAR is rigid and can only represent a new component by
a pointer on states of the structures of those that participated to its creation. As a con-
sequence, ECDAR cannot perform composability that consists in removing “bad states”.
Indeed, since new components do not have their own structure, this operation would
eventually remove states of individual components that participated to its creation and
hence falsify the design. If features are present, then PYECDAR combines BDDs used
to logically represent sets of features on transitions with DBMs (see [8] for details). Fi-
nally, PYECDAR also uses polyhedra, with bindings to the Parma Polyhedra Library, to
encode parametric constraints in case the user wants to solve a robustness problem.

Queries. PYECDAR offers two types of queries. The first one comes as a set of operators
such as composition or quotient to build complex systems from small ones. The second
type concerns operational queries such as the one of checking consistency, refinement,
robustness, or properties of adaptive systems (see https://project.inria.fr/pyecdar/ for the
complete list of queries). Depending on the problem to be solved, PYECDAR outputs
different kinds of results. As an example, if the tool is used to synthesize the set of fea-
tures that allows to satisfy some temporal formula, this set is output as a binary expres-
sion. The tool can also be used to determine the winning states for a timed game, which
allows to determine if the consistency, compatibility or refinement problems have been
solved. Finally, using a counter-example refinement approach (CEGAR), it can com-
pute the maximum perturbation allowed by the system to solve a robustness problem.
PYECDAR offers some extra features such as saving TIOAs into a new XML file so that
they can be reused in other designs.

Algorithms. 1. PYECDAR implements the on-the-fly safety game algorithm from [2]
that is used e.g. to check consistency and refinement. The tool also uses a model trans-
formation to reduce robust consistency/compatibility to consistency/compatibility and
hence reuse the former algorithm. 2. The CEGAR algorithm is a parametric extension
of the first [9] that allows to compute the maximal delta for which an implementation
remains robust. 3. The last algorithms are backward propagation game algorithms [8]
that compute the set of features that satisfies a formula for an adaptive system.

 https://project.inria.fr/pyecdar/
 https://project.inria.fr/pyecdar/


PYECDAR: Towards Open Source Implementation for Timed Systems 463

4 PYECDAR in Action

We quickly demonstrate how to use PYECDAR. Assume that the models presented in
Fig. 1 are saved in an XML file machine.xml. We first load the XML file of the first
two TIOAs:

In [1]: W = pyecdar.loadModel("machine.xml")
In [2]: MS = W.getSpecification("MachineSpec")
In [3]: MI = W.getSpecification("MachineImpl")

We check if the implementation of Fig. 1b satisfies the specification in Fig. 1a:

In [4]: MI <= MS
Out[4]: True

We can then compute the maximum perturbation allowed by the implementation.
This applies the CEGAR approach, starting with value 5, and with a confidence 0.1 for
the result. The result is computed after 2 iterations and Δ = 1 is returned.

In [5]: MI.maxRobSat(MS,5,0.1)
INFO:CEGAR: New game with value 5
INFO:REACH:2 states visited.
INFO:CEGAR: ...game is lost; refining...
INFO:CEGAR: ...refinement result: max=1 min=0 strict: False
INFO:CEGAR: New game with value 1
INFO:REACH:6 states visited.
INFO:CEGAR: ...game is won;
INFO:CEGAR: ...refinement result: max=1 min=1 strict: False
Out[5]: 1.0

Other examples, e.g. checking a temporal formula on the adaptive specification of
Fig. 1c, are described on https://project.inria.fr/pyecdar/

References

1. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing uppaal over 15
years. Softw., Pract. Exper. 41, 133–142 (2011)

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-tiga:
Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 121–125. Springer, Heidelberg (2007)

3. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed i/o automata: a complete
specification theory for real-time systems. In: HSCC, pp. 91–100. ACM (2010)

4. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: ECDAR: An environment for
compositional design and analysis of real time systems. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer, Heidelberg (2010)

5. Chatterjee, K., Prabhu, V.S.: Synthesis of memory-efficient "real-time" controllers for safety
objectives. In: HSCC, pp. 221–230. ACM (2011)

6. Larsen, K.G., Legay, A., Traonouez, L.-M., Wąsowski, A.: Robust specification of real time
components. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919,
pp. 129–144. Springer, Heidelberg (2011)

7. Bouyer, P., Markey, N., Sankur, O.: Robust reachability in timed automata: A game-based ap-
proach. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II.
LNCS, vol. 7392, pp. 128–140. Springer, Heidelberg (2012)

8. Cordy, M., Legay, A., Schobbens, P.Y., Traonouez, L.M.: A framework for the rigorous design
of highly adaptive timed systems. In: Proc. FormaliSE, pp. 64–70. IEEE (2013)

9. Traonouez, L.-M.: A parametric counterexample refinement approach for robust timed speci-
fications. In: FIT. EPTCS, vol. 87, pp. 17–33 (2012)

 https://project.inria.fr/pyecdar/

	PyEcdar: Towards Open Source Implementation for Timed Systems
	1 Context
	2 The PyEcdar Toolset in a Nutshell
	3 Architecture of the Tool
	4 PyEcdar in Action
	References




