
Rabinizer 2:

Small Deterministic Automata for LTL\GU

Jan Křet́ınský1,2,� and Ruslán Ledesma Garza1,��

1 Institut für Informatik, Technische Universität München, Germany
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We present a tool that generates automata for
LTL(X,F,G,U) where U does not occur in any G-formula (but
F still can). The tool generates deterministic generalized Rabin
automata (DGRA) significantly smaller than deterministic Rabin
automata (DRA) generated by state-of-the-art tools. For complex
properties such as fairness constraints, the difference is in orders of mag-
nitude. DGRA have been recently shown to be as useful in probabilistic
model checking as DRA, hence the difference in size directly translates
to a speed up of the model checking procedures.

1 Introduction

Linear temporal logic (LTL) is a very useful and appropriate language for speci-
fying properties of systems. In the verification process that follows the automata-
theoretic approach, an LTL formula is first translated to an ω-automaton and
then a product of the automaton and the system is constructed and analyzed.
The automata used here are typically non-deterministic Büchi automata (NBA)
as they recognize all ω-regular languages and thus also LTL languages. However,
for two important applications, deterministic ω-automata are important: proba-
bilistic model checking and synthesis of reactive modules for LTL specifications.
Here deterministic Rabin automata (DRA) are typically used as deterministic
Büchi automata are not as expressive as LTL. In order to transform an NBA
to a DRA, one needs to employ either Safra’s construction (or some other ex-
ponential construction). This approach is taken in PRISM [7] a leading proba-
bilistic model checker, which reimplements the optimized Safra’s construction of
ltl2dstar [4]. However, a straight application of this very general construction
often yields unnecessarily large automata and thus also large products, often too
large to be analyzed.

In order to circumvent this difficulty, one can focus on fragments of LTL.
The most prominent ones are GR(1)—a restricted, but useful fragment of
LTL(X,F,G) allowing for fast synthesis—and fragments of LTL(F,G) as investi-
gated in e.g. [1]. Recently [6], we showed how to construct DRA from LTL(F,G)
directly without NBA. As we argued there, this is an interesting fragment also

� The author is supported by the Czech Science Foundation, grant No. P202/12/G061.
�� The author is supported by the DFG Graduiertenkolleg 1480 (PUMA).

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 446–451, 2013.
© Springer International Publishing Switzerland 2013

Rabinizer 2: Small Deterministic Automata for LTL\GU 447

because it can express all complex fairness constraints, which are widely used
in verification. We implemented our approach in a tool Rabinizer [3] and ob-
served significant improvements, especially for complex formulae: for example,
for a conjunction of three fairness constraints ltl2dstar produces a DRA with
more than a milion states, while Rabinizer produces 469 states. Moreover, we
introduced a new type of automaton a deterministic generalized Rabin automa-
ton (DGRA), which is an intermediate step in our construction, and only has 64
states in the fairness example and only 1 state if transition acceptance is used.
In [2], we then show that for probabilistic model checking DGRA are not more
difficult to handle than DRA. Hence, without tradeoff, we can use often much
smaller DGRA, which are only produced by our construction.

Here, we present a tool Rabinizer 2 that extends our method and imple-
ments it for LTL\GU a fragment of LTL(X,F,G,U) where U are not inside
G-formulae (but F still can) in negation normal form. This fragment is not only
substantially more complex, but also practically more useful. Indeed, with the
unrestricted X-operator, it covers GR(1) and can capture properties describing
local structure of systems and is necessary for description of precise sequences
of steps. Further, U-operator allows to distinguish paths depending on their
initial parts and then we can require different fairness constraints on different
paths such as in waitU(answer 1 ∧ φ1) ∨ waitU(answer 2 ∧ φ2) where φ1, φ2 are
two fairness constraints. As another example, consider patterns for “before”:
for “absence” we have Fr → (¬pUr), for “constrained chains” Fr → (p →
(¬rU(s ∧ ¬r ∧ ¬z ∧X((¬r ∧ ¬z)Ut))))Ur.

Furthermore, as opposed to other tools (including Rabinizer), Rabinizer 2

can also produce DGRA, which are smaller by orders of magnitude for complex
formulae. For instance, for a conjunction of four fairness constraints the con-
structed DGRA has 256 states, while the directly degeneralized DRA is 20736-
times bigger [2]. As a result, we not only obtain smaller DRA now for much
larger fragment (by degeneralizing the DGRA into DRA), but also the power of
DGRA is made available for this fragment allowing for the respective speed up
of probabilistic model checking.

The tool can be downloaded and additional materials and proofs found at
http://www.model.in.tum.de/�kretinsk/rabinizer2.html

2 Algorithm
b ∨ (a ∧X(aUb))

ttff

{b}, {a, b}∅

{a}

2{a,b}2{a,b}

Let us fix a formula ϕ of LTL\GU . We con-
struct an automaton A(ϕ) recognizing mod-
els of ϕ. Details can be found on the tool’s
webpage. In every step, A(ϕ) unfolds ϕ as
in [6], now we also define Unf(ψ1Uψ2) =
Unf(ψ2) ∨ (Unf(ψ1) ∧ X(ψ1Uψ2)). Then it
checks whether the letter currently read complies with thus generated require-
ments, see the example on the right for ϕ = aUb. E.g. reading {a} yields
requirement X(aUb) for the next step, thus in the next step we have Unf(aUb)
which is the same as in the initial state, hence we loop.

448 J. Křet́ınský and R.L. Garza

Some requirements can be checked at a finite time by this unfolding, such as
bU(a ∧Xb), some cannot, such as GF(a ∧Xb). The state space has to monitor
the latter requirements (such as the repetitive satisfaction of a∧Xb) separately.
To this end, let Gϕ := {Gψ ∈ sf(ϕ)} and Fϕ := {Fψ ∈ sf(ω) | for some ω ∈
Gϕ} where sf(ϕ) denotes the set of all subformulae of ϕ. Then Rec := {ψ |
Gψ ∈ Gϕ or Fψ ∈ Fϕ} is the set of recurrent subformulae of ϕ, whose repeated
satisfaction we must check. (Note that no U occurs in formulae of Rec.) In the
case without the X operator [6,3], such as with GFa, it was sufficient to record
the currently read letter in the states of A(ϕ). Then the acceptance condition
checks whether e.g. a is visited infinitely often. Now we could extend this to keep
history of the last n letters read where n is the nesting depth of the X operator
in ϕ. In order to reduce the size of the state space, we rather store equivalence
classes thereof. This is realized by automata. For every ξ ∈ Rec, we have a finite
automaton B(ξ), and A(ϕ) will keep track of its current states.
Construction of B(ξ): We define a finite automaton B(ξ) = (Qξ, iξ, δξ, Fξ)
over 2Ap by

a ∨ b ∨X(b ∧Ga)

ttb ∧ (Ga)

ffGa

{a}, {b}, {a, b}∅

2{a,b}

{b}, {a, b} ∅, {a}

– the set of states Qξ = B+(sf(ξ)), where
B+(S) is the set of positive Boolean
functions over S and tt and ff ,

– the initial state iξ = ξ,
– the final states Fξ where each atomic

proposition has F or G as an ances-
tor in the syntactic tree (i.e. no atomic
propositions are guarded by only X’s
and Boolean connectives),

– transition relation δξ is defined by tran-
sitions

χ
ν−→ X−1(χ[ν]) for every ν ⊆ Ap and χ /∈ F

i
ν−→ i for every ν ⊆ Ap

where χ[ν] is the function χ with tt and ff plugged in for atomic propositions
according to ν and X−1χ strips away the initial X (whenever there is one) from
each formula in the Boolean combination χ. Note that we do not unfold inner
F- and G-formulae. See an example for ξ = a ∨ b ∨X(b ∧Ga) on the right.

Construction of A(ϕ): The state space has two components. Beside the com-
ponent keeping track of the input formula, we also keep track of the history
for every recurrent formula of Rec. The second component is then a vector of
length |Rec| keeping the current set of states of each B(ξ). Formally, we define
A(ϕ) = (Q, i, δ) to be a deterministic finite automaton over Σ = 2Ap given by

– set of states Q = B+(sf(ϕ)∪Xsf(ϕ))×
∏

ξ∈Rec

2Qξ where XS = {Xs | s ∈ S},

– the initial state i = 〈Unf(ϕ), (ξ 	→ {iξ})ξ∈Rec〉;
– the transition function δ is defined by transitions

〈ψ, (Rξ)ξ∈Rec〉 ν−→ 〈Unf(X−1(ψ[ν])),
(
δξ(Rξ, ν)

)
ξ∈Rec

〉

Rabinizer 2: Small Deterministic Automata for LTL\GU 449

On A(ϕ) it is possible to define an acceptance condition such that A(ϕ)
recognizes models of ϕ. The approach is similar to [6], but now we have to take
the information of each B(ξ) into account. We use this information to get look-
ahead necessary for evaluating X-requirements in the first component of A(ϕ).
However, since storing complete future look-ahead would be costly, B(ξ) actually
stores the compressed information of past. The acceptance condition allows then
for deducing enough information about the future.

Further optimizations include not storing states of each B(ξ), but only the
currently relevant ones. E.g. after reading ∅ in GFa ∨ (b ∧GFc), it is no more
interesting to track if c occurs infinitely often. Further, since only the infinite
behaviour of B(ξ) is important and it has acyclic structure (except for the initial
states), instead of the initial state we can start in any subset of states. Therefore,
we start in a subset that will occur repetitively and we thus omit unnecessary
initial transient parts of A(ϕ).

3 Experimental Results

We compare our tool to ltl2dstar, which yields the same automata as its Java
reimplementation in PRISM. We consider some formulae on which ltl2dstar

was originally tested [5], some formulae used in a network monitoring project
Liberouter (https://www.liberouter.org/) showing the LTL\GU fragment is prac-
tically very relevant, and several other formulae with more involved structure
such as ones containing fairness constraints. For results on the LTL(F,G) sub-
fragment, we refer to [3]. Due to [2], it only makes sense to use DGRA and we
thus display the sizes of DGRA for Rabinizer 2 (except for the more complex
cases this, however, coincides with the degeneralized DRA). Here “?” denotes
time-out after 30 minutes. For more experiments, see the webpage.

Formula ltl2d* R.2

(Fp)U(Gq) 4 3
(Gp)Uq 5 5
¬(pUq) 4 3
G(p→ Fq) ∧ ((Xp)Uq) ∨ ¬X(pU(p ∧ q)) 19 8
G(q ∨XGp) ∧G(r ∨XG¬p) 5 14
((G(F(p1) ∧F(¬p1)))) → (G((p2 ∧Xp2 ∧ ¬p1 ∧Xp1 → ((p3) → Xp4)))) 11 8
((p1 ∧XG(¬p1)) ∧ (G((Fp2) ∧ (F¬p2))) ∧ ((¬p2))) → (((¬p2)U
G(¬((p3 ∧ p4) ∨ (p3 ∧ p5) ∨ (p3 ∧ p6) ∨ (p4 ∧ p5) ∨ (p4 ∧ p6) ∨ (p5 ∧ p6))))) 17 8

(Xp1 ∧G((¬p1 ∧Xp1) → XXp1) ∧GF¬p1 ∧GFp2 ∧GF¬p2) →
(G(p3 ∧ p4∧!p2 ∧Xp2 → X(p1 ∨X(¬p4 ∨ p1)))) 9 7

Fr → (p → (¬rU(s ∧ ¬r ∧ ¬z ∧X((¬r ∧ ¬z)Ut))))Ur 6 5
((GF(a ∧XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧XXb))) 353 73
GF(XXXa ∧XXXXb) ∧GF(b ∨Xc) ∧GF(c ∧XXa) 2127 85
(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨Xe)) 18176 40
(GF(a ∧XXc) ∨ FGb) ∧ (GFc ∨FG(d ∨Xa ∧XXb)) ? 142
aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨FGd) ∨ aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb) ? 60

450 J. Křet́ınský and R.L. Garza

References

1. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM
Trans. Comput. Log. 5(1), 1–25 (2004)

2. Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized Rabin pairs for
probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)

3. Gaiser, A., Křet́ınský, J., Esparza, J.: Rabinizer: Small deterministic automata for
lTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 72–76. Springer, Heidelberg (2012)

4. Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata,
http://www.ltl2dstar.de/

5. Klein, J., Baier, C.: Experiments with deterministic omega-automata for formulas
of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

6. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012)

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

http://www.ltl2dstar.de/

	Rabinizer 2: Small Deterministic Automata for LTLGU
	1 Introduction
	2 Algorithm
	3 Experimental Results
	References

