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Abstract. We present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on ordering relations
between stored data values. The underlying formalism of our framework is that
of forest automata (FA), which has previously been developed for verification
of heap-manipulating programs. We extend FA by constraints between data el-
ements associated with nodes of the heaps represented by FA, and we present
extended versions of all operations needed for using the extended FA in a fully-
automated verification approach, based on abstract interpretation. We have imple-
mented our approach as an extension of the Forester tool and successfully applied
it to a number of programs dealing with data structures such as various forms of
singly- and doubly-linked lists, binary search trees, as well as skip lists.

1 Introduction

Automated verification of programs that manipulate complex dynamic linked data struc-
tures is one of the most challenging problems in software verification. The problem
becomes even more challenging when program correctness depends on relationships
between data values that are stored in the dynamically allocated structures. Such order-
ing relations on data are central for the operation of many data structures such as search
trees, priority queues (based, e.g., on skip lists), key-value stores, or for the correctness
of programs that perform sorting and searching, etc. The challenge for automated verifi-
cation of such programs is to handle both infinite sets of reachable heap configurations
that have a form of complex graphs and the different possible relationships between
data values embedded in such graphs, needed, e.g., to establish sortedness properties.

As discussed below in the section on related work, there exist many automated veri-
fication techniques, based on different kinds of logics, automata, graphs, or grammars,
that handle dynamically allocated pointer structures. Most of these approaches abstract
from properties of data stored in dynamically allocated memory cells. The few ap-
proaches that can automatically reason about data properties are often limited to specific
classes of structures, mostly singly-linked lists (SLLs), and/or are not fully automated
(as also discussed in the related work paragraph).

In this paper, we present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on relations between the
stored data values. Our framework is based on the notion of forest automata (FA) which
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has previously been developed for representing sets of reachable configurations of pro-
grams with complex dynamic linked data structures [11]. In the FA framework, a heap
graph is represented as a composition of tree components. Sets of heap graphs can then
be represented by tuples of tree automata (TA). A fully-automated shape analysis frame-
work based on FA, employing the framework of abstract regular tree model checking
(ARTMC) [7], has been implemented in the Forester tool [13]. This approach has been
shown to handle a wide variety of different dynamically allocated data structures with
a performance that compares favourably to other state-of-the-art fully-automated tools.

Our extension of the FA framework allows us to represent relationships between data
elements stored inside heap structures. This makes it possible to automatically verify
programs that depend on relationships between data, such as various search trees, lists,
and skip lists [17], and to also verify, e.g., different sorting algorithms. Technically, we
express relationships between data elements associated with nodes of the heap graph by
two classes of constraints. Local data constraints are associated with transitions of TA
and capture relationships between data of neighbouring nodes in a heap graph; they can
be used, e.g., to represent ordering internal to some structure such as a binary search
tree. Global data constraints are associated with states of TA and capture relationships
between data in distant parts of the heap. In order to obtain a powerful analysis based on
such extended FA, the entire analysis machinery must have been redesigned, including
a need to develop mechanisms for propagating data constraints through FA, to adapt
the abstraction mechanisms of ARTMC, to develop a new inclusion check between
extended FAs, and to define extended abstract transformers.

Our verification method analyzes sequential, non-recursive C programs, and auto-
matically discovers memory safety errors, such as invalid dereferences or memory
leaks, and provides an over-approximation of the set of reachable program configu-
rations. Functional properties, such as sortedness, can be checked by adding code that
checks pre- and post-conditions. Functional properties can also be checked by querying
the computed over-approximation of the set of reachable configurations.

We have implemented our approach as an extension of the Forester tool, which is
a gcc plug-in analyzing the intermediate representation generated from C programs. We
have applied the tool to verification of data properties, notably sortedness, of sequential
programs with data structures, such as various forms of singly- and doubly-linked lists
(DLLs), possibly cyclic or shared, binary search trees (BSTs), and even 2-level and
3-level skip lists. The verified programs include operations like insertion, deletion, or
reversal, and also bubble-sort and insert-sort both on SLLs and DLLs. The experiments
confirm that our approach is not only fully automated and rather general, but also quite
efficient, outperforming many previously known approaches even though they are not
of the same level of automation or generality. In the case of skip lists, our analysis is
the first fully-automated shape analysis which is able to handle skip lists. Our previous
fully-automated shape analysis, which did not handle ordering relations, could also
handle skip lists automatically [13], but only after modifying the code in such a way
that the preservation of the shape invariant does not depend on ordering relations.

Related Work. As discussed previously, our approach builds on the fully automated
FA-based approach for shape analysis of programs with complex dynamic linked data
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structures [11,13]. We significantly extend this approach by allowing it to track ordering
relations between data values stored inside dynamic linked data structures.

For shape analysis, many other formalisms than FA have been used, including, e.g.,
separation logic and various related graph formalisms [21,16,8,10], other logics [19,14],
automata [7], or graph grammars [12]. Compared with FA, these approaches typically
handle less general heap structures (often restricted to various classes of lists) [21,10],
they are less automated (requiring the user to specify loop invariants or at least inductive
definitions of the involved data structures) [16,8,10,12], or less scalable [7].

Verification of properties depending on the ordering of data stored in SLLs was con-
sidered in [5], which translates programs with SLLs to counter automata. A subsequent
analysis of these automata allows one to prove memory safety, sortedness, and termi-
nation for the original programs. The work is, however, strongly limited to SLLs. In
this paper, we get inspired by the way that [5] uses for dealing with ordering relations
on data, but we significantly redesign it to be able to track not only ordering between
simple list segments but rather general heap shapes described by FA. In order to achieve
this, we had to not only propose a suitable way of combining ordering relations with
FA, but we also had to significantly modify many of the operations used over FA.

In [1], another approach for verifying data-dependent properties of programs with
lists was proposed. However, even this approach is strongly limited to SLLs, and it is
also much less efficient than our current approach. In [2], concurrent programs operat-
ing on SLLs are analyzed using an adaptation of a transitive closure logic [4], which
also tracks simple sortedness properties between data elements.

Verification of properties of programs depending on the data stored in dynamic
linked data structures was considered in the context of the TVLA tool [15] as well.
Unlike our approach, [15] assumes a fixed set of shape predicates and uses inductive
logic programming to learn predicates needed for tracking non-pointer data. The experi-
ments presented in [15] involve verification of sorting and stability properties of several
programs on SLLs (merging, reversal, bubble-sort, insert-sort) as well as insertion and
deletion in BSTs. We do not handle stability, but for the other properties, our approach
is much faster. Moreover, for BSTs, we verify that a node is greater/smaller than all the
nodes in its left/right subtrees (not just than the immediate successors as in [15]).

An approach based on separation logic extended with constraints on the data stored
inside dynamic linked data structures and capable of handling size, ordering, as well as
bag properties was presented in [9]. Using the approach, various programs with SLLs,
DLLs, and also AVL trees and red-black trees were verified. The approach, however,
requires the user to manually provide inductive shape predicates as well as loop in-
variants. Later, the need to provide loop invariants was avoided in [18], but a need to
manually provide inductive shape predicates remains.

Another work that targets verification of programs with dynamic linked data struc-
tures, including properties depending on the data stored in them, is [22]. It generates
verification conditions in an undecidable fragment of higher-order logic and discharges
them using decision procedures, first-order theorem proving, and interactive theorem
proving. To generate the verification conditions, loop invariants are needed. These can
either be provided manually or sometimes synthesized semi-automatically using the ap-
proach of [20]. The latter approach was successfully applied to several programs with
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SLLs, DLLs, trees, trees with parent pointers, and 2-level skip lists. However, for some
of them, the user still had to provide some of the needed abstraction predicates.

Several works, including [6], define frameworks for reasoning about pre- and post-
conditions of programs with SLLs and data. Decidable fragments, which can express
more complex properties on data than we consider, are identified, but the approach does
not perform fully automated verification, only checking of pre-post condition pairs.

2 Programs, Graphs, and Forests

We consider sequential non-recursive C programs, operating on a set of variables and
the heap, using standard commands and control flow constructs. Variables are either
data variables or pointer variables. Heap cells contain zero or several selector fields and
a data field (our framework and implementation extends easily to several data fields).
Atomic commands include tests between data variables or fields of heap cells, as well
as assignments between data variables, pointer variables, or fields of heap cells. We also
support commands for allocation and deallocation of dynamically allocated memory.

0 Node *insert(Node *root, Data d){
1 Node* newNode = calloc(sizeof(Node));
2 if (!newNode) return NULL;
3 newNode→data = d;
4 if (!root) return newNode;
5 Node *x = root;
6 while (x→data != newNode→data)
7 if (x→data < newNode→data)
8 if (x→right) x = x→right;
9 else x→right = newNode;

10 else
11 if (x→left) x = x→left;
12 else x→left = newNode;
13 if (x != newNode) free(newNode);
14 return root;
15 }

Fig. 1. Insertion into a BST

Fig. 1 shows an example of a C function insert-
ing a new node into a BST (recall that in BSTs, the
data value in a node is larger than all the values of
its left subtree and smaller than all the values of
its right subtree). Variable x descends the BST to
find the position at which the node newNode with
a new data value d should be inserted.

Configurations of the considered programs
consist to a large extent of heap-allocated data.
A heap can be viewed as a (directed) graph whose
nodes correspond to allocated memory cells. Each
node contains a set of selectors and a data field.
Each selector either points to another node, to the
value null, or is undefined. The same holds for pointer variables of the program.

We represent graphs as a composition of trees as follows. We first identify the cut-
points of the graph, i.e., nodes that are either referenced by a pointer variable or by
several selectors. We then split the graph into tree components such that each cut-
point becomes the root of a tree component. To represent the interconnection of tree
components, we introduce a set of root references, one for each tree component. After
decomposition of the graph, selector fields that point to cut-points in the graph are redi-
rected to point to the corresponding root references. Such a tuple of tree components is
called a forest. The decomposition of a graph into tree components can be performed
canonically as described at the end of Section 3.

Fig. 2(a) shows a possible heap of the program in Fig. 1. Nodes are shown as circles,
labeled by their data values. Selectors are shown as edges. Each selector points either to
a node or to ⊥ (denoting null). Some nodes are labeled by a pointer variable that points
to them. The node with data value 15 is a cut-point since it is referenced by variable x.
Fig. 2(b) shows a tree decomposition of the graph into two trees, one rooted at the node
referenced by root, and the other rooted at the node pointed by x. The right selector
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of the root node in the first tree points to root reference 2 (i denotes a reference to the
i-th tree ti) to indicate that in the graph, it points to the corresponding cut-point.
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(b) Forest decomposition.

Fig. 2. Decomposition of a graph into trees

Let us now formalize these
ideas. We will define graphs
as parameterized by a set Γ
of selectors and a set Ω of
references. Intuitively, the ref-
erences are the objects that se-
lectors can point to, in addition
to other nodes. E.g., when rep-
resenting heaps, Ω will con-
tain the special value null; in
tree components, Ω will also
include root references.

We use f : A ⇀ B to denote a partial function from A to B (also viewed as a total
function f : A → (B∪ {⊥}), assuming that ⊥ �∈ B). We assume an unbounded data
domain D with a total ordering relation �.

Graphs. Let Γ be a finite set of selectors and Ω be a finite set of references. A graph g
over 〈Γ,Ω〉 is a tuple 〈Vg,nextg,λg〉 where Vg is a finite set of nodes (assuming Vg∩Ω =
/0), nextg : Γ → (Vg ⇀ (Vg ∪Ω)) maps each selector a ∈ Γ to a partial mapping nextg(a)
from nodes to nodes and references, and λg : (Vg ∪Ω)⇀D is a partial data labelling of
nodes and references. For a selector a ∈ Γ, we use ag to denote the mapping nextg(a).

Program Semantics. A heap over Γ is a graph over 〈Γ,{null}〉 where null denotes the
null value. A configuration of a program with selectors Γ consists of a program control
location, a heap g over Γ, and a partial valuation, which maps pointer variables to Vg ∪
{null} and data variables to D. For uniformity, data variables will be represented as
pointer variables (pointing to nodes that hold the respective data values) so we can
further consider pointer variables only. The dynamic behaviour of a program is given
by a standard mapping from configurations to their successors, which we omit here.

Forest Representation of Graphs. A graph t is a tree if its nodes and selectors (i.e., not
references) form a tree with a unique root node, denoted root(t). A forest over 〈Γ,Ω〉
is a sequence t1 · · · tn of trees over 〈Γ,(Ω�{1, . . . ,n})〉. The element in {1, . . . ,n} are
called root references (note that n must be the number of trees in the forest). A forest
t1 · · · tn is composable if λtk( j) = λt j (root(t j)) for any k, j, i.e., the data labeling of root
references agrees with that of roots. A composable forest t1 · · · tn over 〈Γ,Ω〉 represents
a graph over 〈Γ,{null}〉, denoted ⊗t1 · · · tn, obtained by taking the union of the trees of
t1 · · · tn (assuming w.l.o.g. that the sets of nodes of the trees are disjoint), and connecting
root references with the corresponding roots. Formally, ⊗t1 · · · tn is the graph g defined
by (i) Vg = ∪n

i=1Vti , and (ii) for a ∈ Γ and v ∈ Vtk , if atk (v) ∈ {1, . . . ,n} then ag(v) =
root(tatk (v)

) else ag(v) = atk(v), and finally (iii) λg(v) = λtk(v) for v ∈Vtk .

3 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of tuples of
trees that represents a set of graphs via their forest decomposition.
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Tree Automata. A (finite, non-deterministic, top-down) tree automaton (TA) over 〈Γ,Ω〉
extended with data constraints is a triple A = (Q,q0,Δ) where Q is a finite set of states,
q0 ∈ Q is the root state (or initial state), denoted root(A), and Δ is a set of transitions.
Each transition is of the form q → a(q1, . . . ,qm) : c where m ≥ 0, q ∈ Q, q1, . . . ,qm ∈
(Q∪Ω), a = a1 · · ·am is a sequence of different symbols from Γ, and c is a set of local
constraints. Each local constraint is of the form 0 ∼rx i where ∼ ∈ {≺,�,�,�,=, �=},
i ∈ {1, . . . ,m}, and x ∈ {r,a}. Intuitively, a local constraint of the form 0∼rr i states that
the data value of the root of every tree t accepted at q is related by ∼ with the data value
of the root of the ith subtree of t accepted at qi. A local constraint of the form 0 ∼ra i
states that the data value of the root of every tree t accepted at q is related by ∼ to the
data values of all nodes of the i-th subtree of t accepted at qi.

Let t be a tree over 〈Γ,Ω〉, and let A = (Q,q0,Δ) be a TA over 〈Γ,Ω〉. A run of A
over t is a total map ρ : Vt → Q where ρ(root(t)) = q0 and for each node v ∈Vt there is
a transition q → a(q1, . . . ,qm) : c in Δ with a = a1 · · ·am such that (1) ρ(v) = q, (2) for
all 1 ≤ i ≤ m, we have (i) if qi ∈ Q, then ai

t(v) ∈Vt and ρ(ai
t(v)) = qi, and (ii) if qi ∈ Ω,

then ai
t(v) = qi, and (3) for each constraint in c, the following holds:

– if the constraint is of the form 0 ∼rr i, then λt(v)∼ λt(ai
t(v)), and

– if the constraint is of the form 0 ∼ra i, then λt(v)∼ λt(w) for all nodes w in Vt that
are in the subtree of t rooted at ai

t(v).

We define the language of A as L(A) = {t | there is a run of A over t}.

Example 1. BSTs, like the tree labeled by x in Fig. 2, are accepted by the TA with one
state q1, which is also the root state, and the following four transitions:

q1 → left,right(q1,q1) : 0 �ra 1,0 ≺ra 2
q1 → left,right(null,q1) : 0 ≺ra 2

q1 → left,right(q1,null) : 0 �ra 1
q1 → left,right(null,null)

The local constraints of the transitions express that the data value in a node is always
greater than the data values of all nodes in its left subtree and less than the data values
of all nodes in its right subtree.

A TA that accepts BSTs in which the right selector of the root node points to
a root reference, like that labeled by root in Fig. 2, can be obtained from the above
TA by adding one more state q0, which then becomes the root state, and the additional
transition q0 → left,right(q1,2) : 0 �ra 1,0 ≺rr 2 (note that the occurrence of 2
in the root reference 2 is not related with the occurrence of 2 in the local constraint). ��
Forest Automata. A forest automaton with data constraints (or simply a forest automa-
ton, FA) over 〈Γ,Ω〉 is a tuple of the form F = 〈A1 · · ·An,ϕ〉 where:

– A1 · · ·An, with n ≥ 0, is a sequence of TA over 〈Γ,Ω�{1, . . . ,n}〉 whose sets of
states Q1, . . . , Qn are mutually disjoint.

– ϕ is a set of global data constraints between the states of A1 · · ·An, each of the form
q ∼rr q′ or q ∼ra q′ where q,q′ ∈ ∪n

i=1Qi, at least one of q, q′ is a root state which
does not appear on the right-hand side of any transition (i.e., it can accept only the
root of a tree), and ∼ ∈ {≺,�,�,�,=, �=}. Intuitively, q ∼rr q′ says that the data
value of any tree node accepted at q is related by ∼ to the data value of any tree node
accepted at q′. Similarly, q ∼ra q′ says that the data value of any tree node accepted
at q is related by ∼ to the data values of all nodes of the trees accepted at q′.
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A forest t1 · · · tn over 〈Γ,Ω〉 is accepted by F iff there are runs ρ1, . . . ,ρn such that ρi is
a run of Ai over ti for every 1 ≤ i ≤ n, and for each global constraint of the form q∼rx q′
where q is a state of some Ai and q′ is a state of some A j, we have

– if rx = rr, then λti(v)∼ λt j (v
′) whenever ρi(v) = q and ρ j(v′) = q′,

– if rx = ra, then λti(v) ∼ λt j (w) whenever ρi(v) = q and w is in a subtree rooted at
some v′ with ρ j(v′) = q′.

The language of F , denoted as L(F), is the set of graphs over 〈Γ,Ω〉 obtained by
applying⊗ on composable forests accepted by F . An FA F over 〈Γ,{null}〉 represents
a set of heaps H over Γ.

Note that global constraints can imply some local ones, but they cannot in general
be replaced by local constraints only. Indeed, global constraints can relate states of
different automata as well as states that do not appear in a single transition and hence
accept nodes which can be arbitrarily far from each other and unrelated by any sequence
of local constraints.

Canonicity. In our analysis, we will represent only garbage-free heaps in which all
nodes are reachable from some pointer variable by following some sequence of selec-
tors. In practice, this is not a restriction since emergence of garbage is checked for each
statement in our analysis; if some garbage arises, an error message can be issued, or
the garbage removed. The representation of a garbage-free heap H as t1 · · · tn can be
made canonical by assuming a total order on variables and on selectors. Such an order-
ing induces a canonical ordering of cut-points using a depth-first traversal of H starting
from pointer variables, taken in their order, and exploring H according to the order of
selectors. The representation of H as t1 · · · tn is called canonical iff the roots of the trees
in t1 · · · tn are the cut-points of H, and the trees are ordered according to their canonical
ordering. An FA F = 〈A1 · · ·An,ϕ〉 is canonicity respecting iff for all H ∈ L(F), formed
as H =⊗t1 · · · tn, the representation t1 · · · tn is canonical. The canonicity respecting form
allows us to check inclusion on the sets of heaps represented by FA by checking inclu-
sion component-wise on the languages of the component TA.

4 FA-Based Shape Analysis with Data

Our verification procedure performs a standard abstract interpretation. The concrete
domain in our case assigns to each program location a set of pairs 〈σ,H〉 where the
valuation σ maps every variable to null, a node in H, or to an undefined value, and H
is a heap representing a memory configuration. On the other hand, the abstract domain
maps each program location to a finite set of abstract configurations. Each abstract
configuration is a pair 〈σ,F〉 where σ maps every variable to null, an index of a TA in
F , or to an undefined value, and F is an FA representing a set of heaps.

Example 2.Example 2. The example illustrates an abstract configuration 〈σ,F〉 encoding a single
concrete configuration 〈σ,H〉 of the program in Fig. 1. A memory node referenced
by newNode is going to be added as the left child of the leaf referenced by x, which
is reachable from the root by the sequence of selectors left right. The data values
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along the path from root to x must be in the proper relations with the data value of
newNode, in order for the tree to stay sorted also after the addition. The data value of
newNode must be smaller than that of the root (i.e., qr �ra qnN), larger than that of its
left child (i.e., q ≺ra qnN), and smaller than that of x (i.e., qx �ra qnN). These relations
and also q ≺ra qx have been accumulated during the tree traversal. ��

F = 〈A1 A2 A3,ϕ〉
σ(root) = 1,σ(x) = 2,σ(newNode) = 3

A1 :

{
qr → left,right(q,null) : 0 �ra 1
q → left,right(null,2) : 0 ≺ra 2

A2 : qx → left,right(null,null)
A3 : qnN → left,right(null,null)
ϕ = {qr �ra qnN,q ≺ra qnN,qx �ra qnN,q ≺ra qx}

The verification starts from an
element in the abstract domain that
represents the initial program con-
figuration (i.e., it maps the ini-
tial program location to an abstract
configuration where the heap is
empty and the values of all vari-
ables are undefined, and maps
non-initial program locations to an empty set of abstract configurations). The verifi-
cation then iteratively updates the sets of abstract configurations at each program point
until a fixpoint is reached. Each iteration consists of the following steps:

1. The sets of abstract configurations at each program point are updated by abstract
transformers corresponding to program statements. At junctions of program paths,
we take the unions of the sets produced by the abstract transformers.

2. At junctions that correspond to loop points, the union is followed by a widening
operation and a check for language inclusion between sets of FA in order to deter-
mine whether a fixpoint has been reached. Prior to checking language inclusion, we
normalize the FA, thereby transforming them into the canonicity respecting form.

Our widening operation bounds the size of the TA that occur in abstract configura-
tions. It is based on the framework of abstract regular (tree) model checking [7]. The
widening is applied to individual TA inside each FA and collapses states which are
equivalent w.r.t. certain criteria. More precisely, we collapse TA states q,q′ which are
equivalent in the sense that they (1) accept trees with the same sets of prefixes of height
at most k and (2) occur in isomorphic global data constraints (i.e., q ∼rx p occurs as
a global constraint if and only if q′ ∼rx p occurs as a global constraint, for any p and x).
We use a refinement of this criterion by certain FA-specific requirements, by adapting
the refinement described in [13]. Collapsing states may increase the set of trees accepted
by a TA, thereby introducing overapproximation into our analysis.

At the beginning of each iteration, the FA to be manipulated are in the saturated
form, meaning that they explicitly include all (local and global) data constraints that are
consequences of the existing ones. FA can be put into a saturated form by a saturation
procedure, which is performed before the normalization procedure. The saturation pro-
cedure must also be performed before applying abstract transformers that may remove
root states from an FA, such as memory deallocation.

In the following subsections, we provide more detail on some of the major steps of
our analysis. Section 4.1 describes the constraint saturation procedure, Section 4.2 de-
scribes some representative abstract transformers, Section 4.3 describes normalization,
and Section 4.4 describes our check for inclusion.
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4.1 Constraint Saturation

In the analysis, we work with FA that are saturated by explicitly adding into them vari-
ous (local and global) data constraints that are implied by the existing ones. The satura-
tion is based on applying several saturation rules, each of which infers new constraints
from the existing ones, until no more rules can be applied. Because of space limita-
tions, we present here only a representative sample of the rules. A complete description
of our saturation rules can be found in [3]. Our saturation rules can be structured into
the following classes.

– New global constraints can be inferred from existing global constraints by using
properties of relations, such as transitivity, reflexivity, or symmetry (when applica-
ble). For instance, from q �rr q′ and q′ ≺ra q′′, we infer q ≺ra q′′ by transitivity.

– New global or local constraints can be inferred by weakening the existing ones. For
instance, from q ≺ra q′, we infer the weaker constraint q �rr q′.

– Each local constraint 0 ≺rr i where qi ∈ Ω or qi has nullary outgoing transitions
only can be strengthened to 0 ≺ra i. The latter applies to global transitions too.

– New local constraints can be inferred from global ones by simply transforming
a global constraint into a local constraint whenever the states in a transition are
related by a global constraint. For instance, if q → a(q1, . . . ,qm) : c is a transition,
then from q �rr qi, we infer the local constraint 0 �rr i and add it to c.

– If q is a state of a TA A and p is a state of A or another TA of the given FA such that
in each sequence of states through which q can be reached from the root state of A
there is a state q′ such that p ∼ra q′, then a constraint p ∼ra q is added as well.

– Whenever there is a TA A1 with a root state q0 and a state q such that (i) q0 �rr q,
(ii) q has an outgoing transition in whose right-hand side a state qi appears where
qi is a reference to a TA A2, and (iii) c includes a constraint 0 �rr i, then a global
constraint q0 �rr p0 can be added for the root state p0 of A2 (likewise for other kinds
of relations than �rr). Conversely, from q0 �rr p0 and q0 �rr q, one can derive the
local constrain 0 �rr i.

– Finally, global constraints can be inferred from existing ones by propagating them
over local constraints of transitions in which the states of the global constraints
occur. Let us illustrate this on a small example. Assume we are given a TA A that has
states {q0,q1,q2} with q0 being the root state and the following transitions: q0 →
a(q1,q2) : {0 ≺rr 1,0 ≺rr 2}, q1 → a(null,null) : /0, and q2 → a(null,null) : /0.
Let p be a root state of some TA in an FA in which A appears. There are two ways
to propagate global constraints between the states of A, either downwards from the
root towards leaves or upwards from leaves towards the root.
• In downwards propagation, we can infer q2 �ra p from q0 �ra p, using the local

constraint 0 ≺rr 2.
• In upwards propagation, we can infer q0 ≺rr p from q2 ≺rr p, using the local

constraint 0 ≺rr 2.
In more complex situations, a single state may be reached in several different ways.
In such cases, propagation of global constraints through local constraints on all
transitions arriving to the given state must be considered. If some of the ways how
to get to the state does not allow the propagation, it cannot be done. Moreover, since
one propagation can enable another one, the propagation must be done iteratively
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until a fixpoint is reached (for more details, see [3]). Note that the iterative propa-
gation must terminate since the number of constraints that can be used is finite.

4.2 Abstract Transformers

For each operation op in the intermediate representation of the analysed program cor-
responding to the function fop on concrete configurations 〈σ,H〉, we define an abstract
transformer τop on abstract configurations 〈σ,F〉 such that the result of τop(〈σ,F〉) de-
notes the set { fop(〈σ,H〉) | H ∈ L(F)}. The abstract transformer τop is applied sep-
arately for each pair 〈σ,F〉 in an abstract configuration. Note that all our abstract
transformers τop are exact.

Let us present the abstract transformers corresponding to some operations on abstract
states of form 〈σ,F〉. For simplicity of presentation, we assume that for all TA Ai in F ,
(a) the root state of Ai does not appear in the right-hand side of any transition, and (b)
it occurs on the left-hand side of exactly one transition. It is easy to see that any TA can
be transformed into this form (see [3] for details).

Let us introduce some common notation and operations for the below transformers.
We use Aσ(x) and Aσ(y) to denote the TA pointed by variables x and y, respectively, and
qx and qy to denote the root states of these TA. Let qy → a(q1, . . . ,qi, . . . ,qm) : c be
the unique transition from qy. We assume that sel is represented by ai in the sequence
a= a1 · · ·am so that qi corresponds to the target of sel. By splitting a TA Aσ(y) at a state
qi for 1 ≤ i ≤ m, we mean appending a new TA Ak to F such that Ak is a copy of Aσ(y)
but with qi as the root state, followed by changing the root transition in Aσ(y) to qy →
a(q1, . . . ,k, . . . ,qm) : c′ where c′ is obtained from c by replacing any local constraint of
the form 0 ∼rx i by the global constraint qy ∼rx root(Ak). Global data constraints are
adapted as follows: For each constraint q ∼rx p where q is in Aσ(y) such that q �= qy,
a new constraint q′ ∼rx p is added. Likewise, for each constraint q ∼rx p where p is in
Aσ(y) such that p �= qy, a new constraint q ∼rx p′ is added. Finally, for each constraint
of the form p ∼ra qy, a new constraint p ∼ra root(Ak) is added.

Before performing the actual update, we check whether the operation to be per-
formed tries to dereference a pointer to null or to an undefined value, in which case
we stop the analysis and report an error. Otherwise, we continue by performing one of
the following actions, depending on the particular statement:

x= malloc() We extend F with a new TA Anew containing one state and one transition
where all selector values are undefined and assign σ(x) to the index of Anew in F .

x= y->sel If qi is a root reference (say, j), it is sufficient to change the value of σ(x)
to j. Otherwise, we split Aσ(y) at qi (creating Ak) and assign k to σ(x).

y->sel= x If qi is a state, then we split Aσ(y) at qi. Then we put σ(x) to the i-th
position in the right-hand side of the root transition of Aσ(y); this is done both if qi

is a state and if qi is a root reference. Any local constraint in c of the form 0 ∼rx i
which concerns the removed root reference qi is then removed from c.

y->data= x->data First, we remove any local constraint that involves qy or a root
reference to Aσ(y).Then, we add a new global constraint qy =rr qx, and we also keep
all global constraints of the form q′ ∼rx qy if q′ ∼rr qx is implied by the constraints
obtained after the update.
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y->data∼ x->data (where ∼∈ {≺,�,�,�,=, �=}) First, we execute the saturation
procedure in order to infer the strongest constraints between qy and qx. Then, if
there exists a global constraint qy ∼′ qx that implies qy ∼ qx (or its negation), we
return true (or false). Otherwise, we copy 〈σ,F〉 into two abstract configurations:
〈σ,Ftrue〉 for the true branch and 〈σ,Ffalse〉 for the false branch. Moreover, we ex-
tend Ftrue with the global constraint qy ∼ qx and Ffalse with its negation.

x= y or x= NULL We simply update σ accordingly.
free(y) First, we split Aσ(y) at all states q j, 1≤ j ≤m, that appear in its root transition,

then we remove Aσ(y) from F and set σ(y) to undefined. However, to keep all pos-
sible data constraints, before removing Aσ(y), the saturation procedure is executed.
After the action is done, every global constraint involving qy is removed.

x== y This operation is evaluated simply by checking whether σ(x) = σ(y). If σ(x)
or σ(y) is undefined, we assume both possibilities.

After the update, we check that all TA in F are referenced, either by a variable or from
a root reference, otherwise we report emergence of garbage.

4.3 Normalization

Normalization transforms an FA F = (A1 · · ·An,ϕ) into a canonicity respecting FA in
three major steps:

1. First, we transform F into a form in which roots of trees of accepted forests corre-
spond to cut-points in a uniform way. In particular, for all 1 ≤ i ≤ n and all accepted
forests t1 · · · tn, one of the following holds: (a) If the root of ti is the j-th cut-point
in the canonical ordering of an accepted forest, then it is the j-th cut-point in the
canonical ordering of all accepted forests. (b) Otherwise the root of ti is not a cut-
point of any of the accepted forests.

2. Then we merge TA so that the roots of trees of accepted forests are cut-points only,
which is described in detail below.

3. Finally, we reorder the TA according to the canonical ordering of cut-points (which
are roots of the accepted trees).

Our procedure is an augmentation of that in [11] used to normalize FA without data
constraints. The difference, which we describe below, is an update of data constraints
while performing Step 2.

In order to minimize a possible loss of information encoded by data constraints, Step
2 is preceded by saturation (Section 4.1). Then, for all 1 ≤ i ≤ n such that roots of trees
accepted by Ai = (QA,qA,ΔA) are not cut-points of the graphs in L(F) and such that
there is a TA B = (QB,qB,ΔB) that contains a root reference to Ai, Step 2 performs the
following. The TA Ai is removed from F , data constraints between qA and non-root
states of F are removed from ϕ, and Ai is connected to B at the places where B refers
to it. In detail, B is replaced by the TA (QA ∪QB,qB,ΔA+B) where ΔA+B is constructed
from ΔA ∪ΔB by modifying every transition q → a(q1, . . . ,qm) : c ∈ ΔB as follows:

1. all occurrences of i among q1, . . . ,qm are replaced by qA, and
2. for all 1≤ k ≤m s.t. qk can reach i by following top-down a sequence of the original

rules of ΔB, the constraint 0 ∼ra k is removed from c unless qk ∼ra qA ∈ ϕ.
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4.4 Checking Language Inclusion

In this section, we describe a reduction of checking language inclusion of FAs with
data constraints to checking language inclusion of FAs without data constraints, which
can be then performed by the techniques of [11]. We note that “ordinary FAs” corre-
spond to FAs with no global and no local data constraints. Intuitively, an encoding of
an FA F = (A1 · · ·An,ϕ) with data constraints is an ordinary FA FE = (AE

1 · · ·AE
n , /0)

where the data constraints are written into symbols of transitions. In detail, each tran-
sition q → a(q1, . . . ,qm) : c of Ai,1 ≤ i ≤ n, is in AE

i replaced by the transition q →
〈(a1,c1,cg) · · · (am,cm,cg)〉(q1, . . . ,qm) : /0 where for 1 ≤ j ≤ m, c j is the subset of c
involving j, and cg encodes the global constraints involving q as follows: for a global
constraint q ∼rx r or r ∼rx q where r is the root state of Ak,1 ≤ k ≤ n, that does not
appear within any right-hand side of a rule, cg contains 0 ∼rx k or k ∼rx 0, respectively.
The language of AE

i thus consists of trees over the alphabet ΓE = Γ×C×C where C is
the set of constraints of the form j ∼rx k for j,k ∈ N0.

Dually, a decoding of a forest t1 · · · tn over ΓE is the set of forests t ′1 · · · t ′n over Γ
which arise from t1 · · · tn by (1) removing encoded constraints from the symbols, and
(2) choosing data labeling that satisfies the constraints encoded within the symbols of
t1 · · · tn. Formally, for all 1 ≤ i ≤ n, Vt′i = Vti , and for all a ∈ Γ, u,v ∈Vt′i , and c,cg ⊆ C,
we have (a,c,cg)ti(u) = v iff: (1) at′i (u) = v and (2) for all 1 ≤ j ≤ n: if 0 ∼rx j ∈ c,
then u ∼rx v, and if 0 ∼rx j ∈ cg, then u ∼rx root(t j) (symmetrically for j ∼rx 0). The
notation u ∼rx v for u,v ∈ Vt′ used here has the expected meaning that λt′i (u) ∼ λt′i (v)
and, in case of x = a, λt′i (u)∼ λt′i (w) for all nodes w in the subtree rooted by v.

The following lemma (proved in [3])assures that encodings of FA are related in the
expected way with decodings of forests they accept.

Lemma 1. The set of forests accepted by an FA F is equal to the union of decodings of
forests accepted by FE.

A direct consequence of Lemma 1 is that if L(FE
A ) ⊆ L(FE

B ), then L(FA) ⊆ L(FB).
We can thus use the language inclusion checking procedure of [11] for ordinary FA to
safely approximate language inclusion of FA with data constraints.

However, the above implication of inclusions does not hold in the opposite direction,
for two reasons. First, constraints of FB that are strictly weaker than constraints of FA

will be translated into different labels. The labels will then be treated as incomparable
by the inclusion checking algorithm of [11]. For instance, let FA = (A1, /0) where A1

contains only one transition δA = q → a(1) : {0 ≺rr 1} and FB = (B1, /0) where B1

contains only one transition δB = r → a(1) : /0. We have that L(FA) ⊆ L(FB) (indeed,
L(FA) = /0 due to the strict inequality on the root), but L(FE

A ) is incomparable with
L(FE

B ). The reason is that δA and δB are encoded as transitions the symbols of which
differ due to different data constraints. The fact that the constraint /0 is weaker than
the constraint of 0 ≺rr 1 plays no role. The second source of incompleteness of our
inclusion checking procedure is that decodings of some forests accepted by FE

A and FE
B

may be empty due to inconsistent data constraints. If the set of such inconsistent forests
of FE

A is not included in that of FE
B , then L(FE

A ) cannot be included in L(FE
B ), but the

inclusion L(FA) ⊆ L(FB) can still hold since the forests with the empty decodings do
not contribute to L(FA) and L(FB) (in the sense of Lemma 1).
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We do not attempt to resolve the second difficulty since ruling out forests with in-
consistent data constraints seems to be complicated, and according to our experiments,
it does not seem necessary. On the other hand, we resolve the first difficulty by a quite
simple transformation of FE

B : we pump up the TAs of FE
B by variants of their transitions

which encode stronger data constraints than originals and match the data constraints on
transitions of FE

A . For instance, in our previous example, we wish to add the transition
r → a(1) : {0 ≺rr 1} to B1. Notice that this does not change the language of FB, but
makes checking of L(FE

A )⊆ L(FE
B ) pass.

Particularly, we call a sequence α = (a1,c1,cg) · · · (am,cm,cg)∈ (ΓE)m stronger than
a sequence β = (a1,c′1,c

′
g) · · · (am,c′m,c′g) iff

∧
cg =⇒ ∧

c′g and for all 1 ≤ i ≤ m,
∧

ci =⇒ ∧
c′i. Intuitively, α encodes the same sequence of symbols a = a1 · · ·am as

β and stronger local and global data constraints than β. We modify FE
B in such a way

that for each transition r → α(r1, . . . ,rm) of FE
B and each transition of FE

A of the form
q → β(q1, . . . ,qm) where β is stronger than α, we add the transition q → β(q1, . . . ,qm).
The modified FA, denoted by FE+

B , accepts the same or more forests than FE
B (since

its TA have more transitions), but the sets of decodings of the accepted forests are the
same (since the added transitions encode stronger constraints than the existing transi-
tions). FA FE+

B can thus be used within language inclusion checking in the place of FE
B .

The checking is still sound, and the chance of missing inclusion is smaller. The follow-
ing lemma (proved in [3]) summarises soundness of the (approximation of) inclusion
check which is implemented in our tool.

Lemma 2. Given two FAs FA and FB, L(FE
A )⊆ L(FE+

B ) =⇒ L(FA)⊆ L(FB)

We note that the same construction is used when checking language inclusion between
sets of FAs with data constraints in a combination with the construction of [11] for
checking inclusion of sets of ordinary FAs. We also note that for the purpose of checking
language inclusion, we need to work with TAs where the tuples a of symbols (selectors)
on all rules are ordered according to a fixed total ordering of selectors (we use the one
from Section 3, used to define canonical forests).

5 Boxes

Forest automata, as defined in Section 3, cannot be used to represent sets of graphs with
an unbounded number of cut-points since this would require an unbounded number of
TAs within FAs. An example of such a set of graphs is the set of all DLLs of an arbitrary
length where each internal node is a cut-point. The solution provided in [11] is to allow
FAs to use other nested FAs, called boxes, as symbols to “hide” recurring subgraphs
and in this way eliminate cut-points. Here, we give only an informal description of
a simplified version of boxes from [11] and of their combination with data constraints.
See [3] for details.

A box �= 〈F�, i,o〉 consists of an FA F� = 〈A1 · · ·An,ϕ〉 accompanied with an input
port index i and an output port index o, 1 ≤ i,o ≤ n. Boxes can be used as symbols in
the alphabet of another FA F . A graph g from L(F) over an alphabet Γ enriched with
boxes then represents a set of graphs over Γ obtained by the operation of unfolding.
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Table 1. Results of the experiments

Example time

SLL insert 0.06
SLL delete 0.08
SLL reverse 0.07
SLL bubblesort 0.13
SLL insertsort 0.10

Example time

DLL insert 0.14
DLL delete 0.38
DLL reverse 0.16
DLL bubblesort 0.39
DLL insertsort 0.43

Example time

BST insert 6.87
BST delete 114.00
BST left rotate 7.35
BST right rotate 6.25

Example time

SL2 insert 9.65
SL2 delete 10.14
SL3 insert 56.99
SL3 delete 57.35

Unfolding replaces an edge with a box label � by a graph g� ∈ L(F�). The node of g�
which is the root of a tree accepted by Ai is identified with the source of the replaced
edge, and the node of g� which is the root of a tree accepted by Ao is mapped to the
target of the edge. The semantics of F then consists of all fully unfolded graphs from
the language of F . The alphabet of a box itself may also include boxes, however, these
boxes are required to form a hierarchy, they cannot be recursively nested.

In a verification run, boxes are automatically inferred using the techniques presented
in [13]. Abstraction is combined with folding, which substitutes substructures of FAs
by TA transitions which use boxes as labels. On the other hand, unfolding is required
by abstract transformers that refer to nodes or selectors encoded within a box to expose
the content of the box by making it a part of the top-level FA.

In order not to loose information stored within data constraints, folding and unfold-
ing require some additional calls of the saturation procedure. When folding, saturation
is used to transform global constraints into local ones. Namely, global constraints be-
tween the root state of the TA which is to become the input port of a box and the state
of the TA which is to become the output port of the box is transformed into a local
constraint of the newly introduced transition which uses the box as a label. When un-
folding, saturation is used to transform local constraints into global ones. Namely, local
constraints between the left-hand side of the transition with the unfolded box and the
right-hand side position attached to the unfolded box is transformed to a global con-
straint between the root states of the TA within the box which correspond to its input
and output port.

6 Experimental Results

We have implemented the above presented techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. We consid-
ered programs dealing with SLLs, DLLs, BSTs, and skip lists. We verified the original
implementation of skip lists that uses the data ordering relation to detect the end of
the operated window (as opposed to the implementation handled in [13] which was
modified to remove the dependency of the algorithm on sortedness).

Table 1 gives running times in seconds (the average of 10 executions) of the extension
of Forester on our case studies. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is “SLL” for singly-
linked lists, “DLL” for doubly-linked lists, and “BST” for binary search trees. “SL”
stands for skip lists where the subscript denotes their level (the total number of next
pointers in each cell). All experiments start with a random creation of an instance of the



238 P.A. Abdulla et al.

specified structure and end with its disposal. The indicated procedure is performed in
between. The “insert” procedure inserts a node into an ordered instance of the structure,
at the position given by the data value of the node, “delete” removes the first node with a
particular data value, and “reverse” reverses the structure. “Bubblesort” and “insertsort”
perform the given sorting algorithm on an unordered instance of the list. “Left rotate”
and “right rotate” rotate the BST in the specified direction. Before the disposal of the
data structure, we further check that it remained ordered after execution of the operation.
Source code of the case studies can be found in [3]. The experiments were run on
a machine with the Intel i5 M 480 (2.67 GHz) CPU and 5 GB of RAM.

Compared with works [15,20,5,18], which we consider the closest to our approach,
the running times show that our approach is significantly faster. We, however, note that
a precise comparison is not easy even with the mentioned works since as discussed in
the related work paragraph, they can handle more complex properties on data, but on the
other hand, they are less automated or handle less general classes of pointer structures.

7 Conclusion

We have extended the FA-based analysis of heap manipulating programs with a support
for reasoning about data stored in dynamic memory. The resulting method allows for
verification of pointer programs where the needed inductive invariants combine com-
plex shape properties with constraints over stored data, such as sortedness. The method
is fully automatic, quite general, and its efficiency is comparable with other state-of-the-
art analyses even though they handle less general classes of programs and/or are less
automated. We presented experimental results from verifying programs dealing with
variants of (ordered) lists and trees. To the best of our knowledge, our method is the
first one to cope fully automatically with a full C implementation of a 3-level skip list.

We conjecture that our method generalises to handle other types of properties in the
data domain (e.g., comparing sets of stored values) or other types of constraints (e.g.,
constraints over lengths of lists or branches in a tree needed to express, e.g., balanced-
ness of a tree). We are currently working on an extension of FA that can express more
general classes of shapes (e.g., B+ trees) by allowing recursive nesting of boxes, and
employing the CEGAR loop of ARTMC. We also plan to combine the method with
techniques to handle concurrency.
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