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Preface

This volume contains the invited and contributed papers presented at the 11th
International Symposium on Automated Technology for Verification and Analy-
sis (ATVA 2013), held in Hanoi, Vietnam, during October 15–18, 2013. Over the
last decade, ATVA has established itself as a premier venue for researchers and
practitioners working on both theoretical and practical aspects of automated
analysis, verification, and synthesis of computing systems. The symposium also
provided a forum for interaction between the regional and international research
communities working in these areas. The rich legacy of ATVA continued this
year as well, resulting in a very strong technical program.

We received a total of 73 regular submissions and 23 tool submissions, ex-
cluding those that were incomplete. The submissions came from 31 different
countries spanning five continents. Each submission was reviewed by at least
three reviewers, with 295 reviews in total. These were followed by an intensive
10-day online discussion via the EasyChair system. As a result, 27 regular pa-
pers, 12 tool papers, and three short papers were finally accepted. This number
is slightly higher than in previous years, especially for tool and short papers.
Our selection policy for regular papers followed the ATVA tradition, keeping a
high scientific quality. For tool and short paper selection, we slightly extended
our view to their future possibility and attempts/ideas inspiring participants.

Our program also included three distinguished keynote talks and invited tu-
torials (prior to technical programs) by Alessandro Cimatti (ITC-IRST), Marta
Kwiatkowska (University of Oxford), and Jerome Leroux (LaBRI, University of
Bordeaux). The ATVA symposium this year also had the two co-located work-
shops, Infinity 2013 (co-chaired by Lorenzo Clemente and Lukáš Holik) and
TTATT 2013 (chaired by Sebastian Maneth). They extended the scope, interac-
tions, and depth, especially for theoretical views closely related to ATVA.

Many people put in a lot of effort and offered their valuable time to make
ATVA 2013 successful. First of all, we would like to thank all of the authors,
who worked hard to complete and submit papers to the symposium. Also, we
would like to thank the Program Committee members (46 from 16 countries)
and 88 external reviewers, who provided detailed reviews for the submissions and
online discussions with intense energy and enthusiasm. Without them, a compet-
itive and peer-reviewed international symposium simply cannot take place. We
also thank the Steering Committee members for providing guidance on various
aspects of planning of the symposium.

The Organizing Committee of the symposium made a tremendous effort in
every aspect of the organization of the symposium. We thank all members of
the Organizing Committee for their dedication to the success of the symposium.
Without their support, we could not even consider hosting the symposium. Last
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but no least, we give special thanks to Nguyen Ngoc Binh, General Chair of the
symposium, for providing helpful guidance whenever it was needed.

The University of Engineering and Technology of the Vietnam National Uni-
versity, Hanoi, the host of the symposium, provided support and facilities for or-
ganizing the symposium and its workshops and tutorials. ATVA 2013 was partly
sponsored by the National Foundation for Science and Technology Development
(NAFOSTED) of Vietnam. We are grateful for their support.

We sincerely hope that the readers find the proceedings of ATVA 2013 infor-
mative and rewarding.

October 2013 Dang Van Hung
Mizuhito Ogawa
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Integrating Policy Iterations in Abstract Interpreters . . . . . . . . . . . . . . . . . 240
Pierre Roux and Pierre-Löıc Garoche
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Acceleration for Petri Nets

Jérôme Leroux�

LaBRI, Université de Bordeaux, CNRS

Abstract. The reachability problem for Petri nets is a central problem
of net theory. The problem is known to be decidable by inductive invari-
ants definable in the Presburger arithmetic. When the reachability set is
definable in the Presburger arithmetic, the existence of such an induc-
tive invariant is immediate. However, in this case, the computation of
a Presburger formula denoting the reachability set is an open problem.
Recently this problem got closed by proving that if the reachability set
of a Petri net is definable in the Presburger arithmetic, then the Petri
net is flat, i.e. its reachability set can be obtained by runs labeled by
words in a bounded language. As a direct consequence, classical algo-
rithms based on acceleration techniques effectively compute a formula in
the Presburger arithmetic denoting the reachability set.

1 Introduction

Petri Nets are one of the most popular formal methods for the representation and
the analysis of parallel processes [1]. The reachability problem is central since
many computational problems (even outside the realm of parallel processes)
reduce to this problem. Sacerdote and Tenney provided in [14] a partial proof of
decidability of this problem. The proof was completed in 1981 by Mayr [13] and
simplified by Kosaraju [8] from [13,14]. Ten years later [9], Lambert provided a
further simplified version based on [8]. This last proof still remains difficult and
the upper-bound complexity of the corresponding algorithm is just known to
be non-primitive recursive. Nowadays, the exact complexity of the reachability
problem for Petri nets is still an open-question. Even an Ackermannian upper
bound is open (this bound holds for Petri nets with finite reachability sets [2]).

Basically, a Petri net is a pair (T, cinit) where T ⊆ Nd × Nd is a finite set of
transitions, and cinit ∈ Nd is the initial configuration. A vector c ∈ Nd is called
a configuration. Given a transition t = (p,q), we introduce the binary relations
t−→ over the configurations defined by x

t−→ y if there exists v ∈ Nd such that
x = p + v and y = q + v. Notice that in this case y − x is the vector q − p.
This vector is called the displacement of t, and it is denoted by Δ(t). Let σ =

t1 . . . tk be a word of transitions tj ∈ T . We denote by Δ(σ) =
∑k

j=1 Δ(tj), the
displacement of σ. We introduce the binary relation σ−→ over the configurations
defined by x

σ−→ y if there exists a sequence c0, . . . , ck of configurations such that
c0 = x, ck = y, and such that cj−1

tj−→ cj for every 1 ≤ j ≤ k. A configuration
� Work funded by ANR grant REACHARD-ANR-11-BS02-001.

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 1–4, 2013.
c© Springer International Publishing Switzerland 2013
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Fig. 1. The Hopcroft and Pansiot net

c ∈ Nd is said to be reachable if there exists a word σ ∈ T ∗ such that cinit
σ−→ c.

The reachability set of a Petri net is the set of reachable configurations.

Example 1.1. The Petri net depicted in Figure 1 was introduced in [7] as an
example of Petri net having a reachability set which cannot be defined by a
formula in the logic FO (N,+), called the Presburger arithmetic. In fact, the
reachability set is equal to:{

(p1, p2, p3, p4, p5) ∈ N5 | ( p1 = 1 ∧ p4 = 0 ∧ 1 ≤ p2 + p3 ≤ 2p5 ) ∨
( p1 = 0 ∧ p4 = 1 ∧ 1 ≤ p2 + 2p3 ≤ 2p5+1 )

}

Recently, in [10], the reachability sets of Petri nets were proved to be al-
most semilinear, a class of sets that extends the class of Presburger sets (the
sets definable in FO(N,+)) inspired by the semilinear sets [5]. Note that in
general reachability sets are not definable in the Presburger arithmetic [7] (see
Example 1.1). An application of the almost semilinear sets was provided; a final
configuration is not reachable from an initial one if and only if there exists a
forward inductive invariant definable in the Presburger arithmetic that contains
the initial configuration but not the final one. Since we can decide if a Presburger
formula denotes a forward inductive invariant, we deduce that there exist check-
able certificates of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general Petri net reachability
problem based on two semi-algorithms. A first one that tries to prove the reach-
ability by enumerating finite sequences of actions and a second one that tries
to prove the non-reachability by enumerating Presburger formulas. Such an al-
gorithm always terminates in theory but in practice an enumeration does not
provide an efficient way for deciding the reachability problem. In particular the
problem of deciding efficiently the reachability problem is still an open question.

When the reachability set is definable in the Presburger arithmetic, the exis-
tence of checkable certificates of non-reachability in the Presburger arithmetic is
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immediate since the reachability set is a forward inductive invariant (in fact the
most precise one). The problem of deciding if the reachability set of a Petri is de-
finable in the Presburger arithmetic was studied twenty years ago independently
by Dirk Hauschildt during his PhD [6] and Jean-Luc Lambert. Unfortunately,
these two works were never published. Moreover, from these works, it is difficult
to deduce a simple algorithm for computing a Presburger formula denoting the
reachability set when such a formula exists.

For the class of flat Petri nets [3, 12], such a computation can be performed
with accelerations techniques. A Petri net (T, cinit) is said to be flat if there exist
some words σ1, . . . , σk ∈ T ∗ such that for every reachable configuration c, there
exists a word σ ∈ σ∗1 . . . σ∗k such that cinit

σ−→ c. (A language included in σ∗1 . . . σ∗k
is said to be bounded [4]). Acceleration techniques provide a framework for de-
ciding reachability properties that works well in practice but without termina-
tion guaranty in theory. Intuitively, acceleration techniques consist in computing
with some symbolic representations transitive closures of sequences of actions.
For Petri nets, the Presburger arithmetic is known to be expressive enough for
this computation. In fact, denoting by σ∗

−→ the binary relation
⋃

n∈N
σn

−−→ where

σ ∈ T ∗, the following lemma shows that σ∗
−→ can be denoted by a formula in the

Presburger arithmetic.

Lemma 1.2 ( [3]). For every word σ ∈ T ∗ and n ≥ 1, we have x
σn

−−→ y if, and
only if, the following formula holds:

∃x′,y′ x
σ−→ x′ ∧ y − x = nΔ(σ) ∧ y′

σ−→ y

As a direct consequence, since the Presburger arithmetic is a decidable logic,
the following algorithm can be implemented by denoting the sets C with Pres-
burger formulas.

Acceleration(T, cinit)
(1) C← {cinit}
(2) while there exists c

t−→ c′ with c ∈ C, t ∈ T and c′ �∈ C
(3) select σ ∈ T ∗

(4) C← {y ∈ Nd | ∃c ∈ C c
σ∗
−→ y}

(5) return C

Naturally, when this algorithm terminates, it returns the reachability set.
Moreover, under a fairness condition on line (3), this algorithm terminates on
any flat Petri net. Basically, it is sufficient to assume that the infinite sequence of
words σ1, σ1, . . ., selected during repeated executions of line (3), contains, as sub-
sequences, all the finite sequences of words in T ∗. As a direct consequence flat
Petri nets have reachability sets effectively definable in the Presburger arith-
metic [12]. Recently, we proved that many classes of Petri nets with known
Presburger reachability sets are flat [12], and we conjectured that Petri nets
with reachability sets definable in the Presburger arithmetic are flat. In fact, the
following theorem shows that the conjecture is true. As a direct consequence,
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classical tools implementing the previous acceleration algorithms always termi-
nate on the computation of Presburger formulas denoting reachability sets of
Petri nets when such a formula exists.

Theorem 1.3 ( [11]). A Petri net is flat if, and only if, its reachability set is
definable in the Presburger arithmetic.
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Abstract. Probabilistic model checking is an automated technique to
verify whether a probabilistic system, e.g., a distributed network protocol
which can exhibit failures, satisfies a temporal logic property, for exam-
ple, “the minimum probability of the network recovering from a fault in
a given time period is above 0.98”. Dually, we can also synthesise, from a
model and a property specification, a strategy for controlling the system
in order to satisfy or optimise the property, but this aspect has received
less attention to date. In this paper, we give an overview of methods for
automated verification and strategy synthesis for probabilistic systems.
Primarily, we focus on the model of Markov decision processes and use
property specifications based on probabilistic LTL and expected reward
objectives. We also describe how to apply multi-objective model check-
ing to investigate trade-offs between several properties, and extensions
to stochastic multi-player games. The paper concludes with a summary
of future challenges in this area.

1 Introduction

Probabilistic model checking is an automated technique for verifying quantita-
tive properties of stochastic systems. Like conventional model checking, it uses a
systematic exploration and analysis of a system model to verify that certain re-
quirements, specified in temporal logic, are satisfied by the model. In probabilis-
tic model checking, models incorporate information about the likelihood and/or
timing of the system’s evolution, to represent uncertainty arising from, for exam-
ple, component failures, unreliable sensors, or randomisation. Commonly used
models include Markov chains and Markov decision processes.

Properties to be verified against these models are specified in probabilistic
temporal logics such as PCTL, CSL and probabilistic LTL. These capture a va-
riety of quantitative correctness, reliability or performance properties, for exam-
ple, “the maximum probability of the airbag failing to deploy within 0.02 seconds
is at most 10−6”. Tool support, in the form of probabilistic model checkers such
as PRISM [29] and MRMC [27], has been used to verify quantitative properties
of a wide variety of real-life systems, from wireless communication protocols [19],
to aerospace designs [9], to DNA circuits [32].

One of the key strengths of probabilistic model checking, in contrast to, for
example, approximate analysis techniques based on Monte Carlo simulation, is

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 5–22, 2013.
c© Springer International Publishing Switzerland 2013
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the ability to analyse quantitative properties in an exhaustive manner. A prime
example of this is when analysing models that incorporate both probabilistic
and nondeterministic behaviour, such as Markov decision processes (MDPs). In
an MDP, certain unknown aspects of a system’s behaviour, e.g., the scheduling
between components executing in parallel, or the instructions issued by a con-
troller at runtime, are modelled as nondeterministic choices. Each possible way
of resolving these choices is referred to as a strategy. To verify a property φ on
an MDPM, we check that φ holds for all possible strategies ofM.

Alternatively, we can consider the dual problem of strategy synthesis, which
finds some strategy ofM that satisfies a property φ, or which optimises a spec-
ified objective. This is more in line with the way that MDPs are used in other
fields, such as planning under uncertainty [34], reinforcement learning [42] or
optimal control [8]. In the context of probabilistic model checking, the strategy
synthesis problem has generally received less attention than the dual problem of
verification, despite being solved in essentially the same way. Strategy synthesis,
however, has many uses; examples of its application to date include:

(i) Robotics. In recent years, temporal logics such as LTL have grown increas-
ingly popular as a means to specify tasks when synthesising controllers
for robots or embedded systems [47]. In the presence of uncertainty, e.g.
due to unreliable sensors or actuators, optimal controller synthesis can be
performed using MDP model checking techniques [31].

(ii) Security. In the context of computer security, model checking has been
used to synthesise strategies for malicious attackers, which represent flaws
in security systems or protocols. Probability is also often a key ingredient
of security; for example, in [41], probabilistic model checking of MDPs was
used to generate PIN guessing attacks against hardware security modules.

(iii) Dynamic power management. The problem of synthesising optimal (ran-
domised) control strategies to switch between power states in electronic
devices can be solved using optimisation problems on MDPs [7] or, alter-
natively, with multi-objective strategy synthesis for MDPs [21].

In application domains such as these, probabilistic model checking offers var-
ious benefits. Firstly, as mentioned above, temporal logics provide an expressive
means of formally specifying the goals of, for example, a controller or a malicious
attacker. Secondly, thanks to formal specifications for models and properties,
rigorous mathematical underpinnings, and the use of exact, exhaustive solution
methods, strategy synthesis yields controllers that are guaranteed to be correct
(at least with respect to the specified model and property). Such guarantees may
be essential in the context of safety-critical systems.

Lastly, advantage can be drawn from the significant body of both past and
ongoing work to improve the efficiency and scalability of probabilistic verifica-
tion and strategy synthesis. This includes methods developed specifically for
probabilistic model checking, such as symbolic techniques, abstraction or sym-
metry reduction, and also advances from other areas of computer science. For
example, renewed interest in the area of synthesis for reactive systems has led to
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significantly improved methods for generating the automata needed to synthe-
sise strategies for temporal logics such as LTL. Parallels can also be drawn with
verification techniques for timed systems: for example, UPPAAL [33], a model
checker developed for verifying timed automata, has been used to great success
for synthesising solutions to real-time task scheduling problems, and is in many
cases superior to alternative state-of-the-art methods [1].

In this paper, we give an overview of methods for performing verification and
strategy synthesis on probabilistic systems. Our focus is primarily on algorith-
mic issues: we introduce the basic ideas, illustrate them with examples and then
summarise the techniques required to perform them. For space reasons, we re-
strict our attention to finite-state models with a discrete notion of time. We also
only consider complete information scenarios, i.e. where the state of the model
is fully observable to the strategy that is controlling it.

Primarily, we describe techniques for Markov decision processes. The first
two sections provide some background material, introduce the strategy synthesis
problem and summarise methods to solve it. In subsequent sections, we describe
extensions to multi-objective verification and stochastic multi-player games. We
conclude the paper with a discussion of some of the important topics of ongoing
and future research in this area.

An extended version of this paper, which includes full details of the algorithms
needed to perform strategy synthesis and additional worked examples, is avail-
able as [30]. The examples in both versions of the paper can be run using PRISM
(and its extensions [15]). Accompanying PRISM files are available online [49].

2 Markov Decision Processes

In the majority of this paper, we focus on Markov decision processes (MDPs),
which model systems that exhibit both probabilistic and nondeterministic be-
haviour. Probability can be used to model uncertainty from a variety of sources,
e.g., the unreliable behaviour of an actuator, the failure of a system component
or the use of randomisation to break symmetry.

Nondeterminism, on the other hand, models unknown behaviour. Again, this
has many uses, depending on the context. When using an MDP to model and
verify a randomised distributed algorithm or network protocol, nondeterminism
might represent concurrency between multiple components operating in parallel,
or underspecification, where some parameter or behaviour of the system is only
partially defined. In this paper, where we focus mainly on the problem of strategy
synthesis for MDPs, nondeterminism is more likely to represent the possible
decisions that can be taken by a controller of the system.

Formally, we define an MDP as follows.

Definition 1 (Markov decision process). A Markov decision process (MDP)
is a tuple M=(S, s, A, δM, Lab) where S is a finite set of states, s ∈ S is an
initial state, A is a finite set of actions, δM : S×A → Dist(S) is a (par-
tial) probabilistic transition function, mapping state-action pairs to probability
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distributions over S, and Lab : S → 2AP is a labelling function assigning to
each state a set of atomic propositions taken from a set AP.

An MDP models how the state of a system can evolve, starting from an initial
state s. In each state s, there is a choice between a set of enabled actions A(s) ⊆
A, where A(s)

def
= {a ∈ A | δM(s, a) is defined}. The choice of an action a ∈ A is

assumed to be nondeterministic. Once selected, a transition to a successor state
s′ occurs randomly, according to the probability distribution δM(s, a), i.e., the
probability that a transition to s′ occurs is δM(s, a)(s′).

A path is a (finite or infinite) sequence of transitions π = s0
a0−→s1

a1−→· · ·
through MDP M, i.e., where si ∈ S, ai ∈ A(si) and δM(si, ai)(si+1)>0 for all
i ∈ N. The (i+1)th state si of path π is denoted π(i) and, if π is finite, last(π)
denotes its final state. We write FPathM,s and IPathM,s, respectively, for the set
of all finite and infinite paths ofM starting in state s, and denote by FPathM
and IPathM the sets of all such paths.

Example 1. Fig. 1 shows an MDPM, which we will use as a running example.
It represents a robot moving through terrain that is divided up into a 3 × 2
grid, with each grid section represented as one state. In each of the 6 states, one
or more actions from the set A = {north, east , south,west , stuck} are available,
which move the robot between grid sections. Due to the presence of obstacles,
certain actions are unavailable in some states or probabilistically move the robot
to an alternative state. Action stuck , in states s2 and s3, indicates that the robot
is unable to move. In Fig. 1, the probabilistic transition function is drawn as
grouped, labelled arrows; where the probability is 1, it is omitted. We also show
labels for the states, taken from the set AP = {hazard , goal1, goal2}.

Rewards and Costs. We use rewards as a general way of modelling various
additional quantitative measures of an MDP. Although the name “reward” sug-
gests a quantity that it is desirable to maximise (e.g., profit), we will often use
the same mechanism for costs, which would typically be minimised (e.g. energy
consumption). In this paper, rewards are values attached to the actions available
in each state, and we assume that these rewards are accumulated over time.

Definition 2 (Reward structure). A reward structure for an MDP M =
(S, s, A, δM, Lab) is a function of the form r : S ×A→ R�0.

Strategies. We reason about the behaviour of MDPs using strategies (which,
depending on the context, are also known as policies, adversaries or schedulers).
A strategy resolves nondeterminism in an MDP, i.e., it chooses which action (or
actions) to take in each state. In general, this choice can depend on the history
of the MDP’s execution so far and can be randomised.

Definition 3 (Strategy). A strategy of an MDP M = (S, s, A, δM, Lab) is a
function σ : FPathM→Dist(A) such that σ(π)(a)>0 only if a ∈ A(last(π)).

We denote by ΣM the set of all strategies ofM, but in many cases we can restrict
our attention to certain subclasses. In particular, we can classify strategies in
terms of their use of randomisation and memory.



Automated Verification and Strategy Synthesis for Probabilistic Systems 9

s0 

s4 s3 

0.5 

east s1 
south 

0.8 

0.1 

{goal1} 

s2 

s5 

{hazard} 

0.1 

{goal2} 

{goal2} 

south 
0.5 

0.6 
0.4 

stuck 

east 

stuck 

0.4 

0.6 west 

west 

east 0.1 

0.9 
north 

Fig. 1. Running example: an MDP M representing a robot moving about a 3 × 2 grid

1. randomisation: we say that strategy σ is deterministic (or pure) if σ(π) is
a point distribution for all π ∈ FPathM, and randomised otherwise;

2. memory: a strategy σ is memoryless if σ(π) depends only on last(π) and
finite-memory if there are finitely many modes such that σ(π) depends only
on last(π) and the current mode, which is updated each time an action is
performed; otherwise, it is infinite-memory.

Under a particular strategy σ of M, all nondeterminism is resolved and the
behaviour of M is fully probabilistic. Formally, we can represent this using an
(infinite) induced discrete-time Markov chain, whose states are finite paths of
M. This leads us, using a standard construction [28], to the definition of a
probability measure PrσM,s over infinite paths IPathM,s, capturing the behaviour
of M from state s under strategy σ. We will also use, for a random variable
X : IPathM,s → R�0, the expected value of X from state s inM under strategy
σ, denoted Eσ

M,s(X). If s is the initial state s, we omit it and write PrσM or Eσ
M.

3 Strategy Synthesis for MDPs

We now explain the strategy synthesis problem for Markov decision processes
and give a brief overview of the algorithms that can be used to solve it. From
now on, unless stated otherwise, we assume a fixed MDPM = (S, s, A, δM, Lab).

3.1 Property Specification

First, we need a way to formally specify a property of the MDP that we wish
to hold under the strategy to be synthesised. We follow the approach usually
adopted in probabilistic verification and specify properties using temporal logic.
More precisely, we will use a fragment of the property specification language
from the PRISM model checker [29], the full version of which subsumes logics
such as PCTL, probabilistic LTL, PCTL* and others.
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For any MDP M, state s ∈ S and strategy σ:

M, s, σ |= P�� p[ψ ] ⇐⇒ PrσM,s({π ∈ IPathM,s | π |=ψ}) �� p
M, s, σ |= Rr�� x[ ρ ] ⇐⇒ Eσ

M,s(rew (r, ρ)) �� x

For any path π = s0s1s2 . . . ∈ IPathM:

π |= true always
π |= a ⇐⇒ a ∈ L(s0)
π |=ψ1 ∧ ψ2 ⇐⇒ π |=ψ1 ∧ π |=ψ2

π |=¬ψ ⇐⇒ π �|=ψ
π |= Xψ ⇐⇒ s1s2 . . . |=ψ

π |=ψ1 U�k ψ2 ⇐⇒ ∃i � k .
(
sisi+1 . . . |=ψ2 ∧ (∀j<i . sjsj+1 . . . |=ψ1 )

)
π |=ψ1 U ψ2 ⇐⇒ ∃i � 0 .

(
sisi+1 . . . |=ψ2 ∧ (∀j<i . sjsj+1 . . . |=ψ1 )

)
For any reward structure r and path π = s0s1s2 . . . ∈ IPathM:

rew(r, C�k)(π)
def
=

∑k−1
j=0 r(sj)

rew(r, C)(π)
def
=

∑∞
j=0 r(sj)

rew(r, F b)(π)
def
=

{∞ if ∀j ∈ N : b /∈ L(sj),∑k−1
j=0 r(sj) otherwise, where k = min{j | b ∈ L(sj)}

Fig. 2. Inductive definition of the property satisfaction relation |=

Definition 4 (Properties and objectives). For the purposes of this paper, a
property is a formula φ derived from the following grammar:

φ ::= P�� p[ψ ]
∣∣ Rr�� x[ ρ ]

ψ ::= true | b | ψ ∧ ψ | ¬ψ | Xψ | ψ U�k ψ | ψ U ψ

ρ ::= C�k
∣∣ C ∣∣ F b

where b ∈ AP is an atomic proposition, 
� ∈ {�, <,�, >}, p ∈ [0, 1], r is a
reward structure, x ∈ R�0 and k ∈ N. We refer to ψ and ρ as objectives.

A property is thus a single instance of either the P�� p[ψ ] operator, which asserts
that the probability of a path satisfying (LTL) formula ψ meets the bound

� p, or the Rr�� x[ ρ ] operator, which asserts that the expected value of a reward
objective ρ, using reward structure r, satisfies 
� x. For now, we forbid multiple
occurrences of the P or R operators in the same property,1 as would typically
be permitted when using branching-time probabilistic logics such as PCTL or
PCTL* for verification of MDPs. This is because our primary focus in this
tutorial is not verification, but strategy synthesis, for which the treatment of
branching-time logics is more challenging [4,10].

For an MDP M, state s and strategy σ of M, and property φ, we write
M, s, σ |=φ to denote that, when starting from s, and operating under σ, M
satisfies φ. Generally, we are interested in the behaviour of M from its initial
state s, and we writeM, σ |=φ to denote that M, s, σ |=φ. A formal definition
of the satisfaction relation |= is given in Fig. 2. Below, we identify several key
classes of properties and explain them in more detail.

1 We will relax this restriction, for multi-objective strategy synthesis, in Sec. 4.
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Probabilistic Reachability. For probabilistic properties P�� p[ψ ], a simple but
fundamental class of path formulae ψ are “until” formulae of the form b1 U b2,
where b1, b2 are atomic propositions. Intuitively, b1 U b2 is true if a b2-labelled
state is eventually reached, whilst passing only through b1 states. Particularly
useful is the derived operator F b ≡ true U b, representing reachability, i.e., a b
state is eventually reached. Another common derived operator is G b ≡ ¬F ¬b,
which captures invariance, i.e., that b always remains true. Also useful are step-
bounded variants. For example, step-bounded reachability, expressed as F�k b ≡
true U�k b, means that a b-state is reached within k steps.

Probabilistic LTL. More generally, for the probabilistic properties P�� p[ψ ]
defined in Defn. 4, ψ can be any formula in the temporal logic LTL. This allows
a wide variety of useful properties to be expressed. These include, for example:
(i) G F b (infinitely often b); (ii) F G b (eventually always b); (iii) G (b1 → X b2)
(b2 always immediately follows b1); and (iv) G (b1 → F b2) (b2 always eventually
follows b1). Notice that, in order to provide convenient syntax for expressing
step-bounded reachability (discussed above), we explicitly add a step-bounded
until operator U�k . This is not normally included in the syntax of LTL, but does
not add to its expressivity (e.g., b1 U�2 b2 ≡ b2 ∨ (b1 ∧ X b2)∨ (b1 ∧ X b1 ∧ X X b2)).

Reward Properties. As explained in Sec. 2, rewards (or dually, costs) are
values assigned to state-action pairs that we assume to be accumulated over
time. Properties of the form Rr�� x[ ρ ] refer to the expected accumulated value of
a reward structure r . The period of time over which rewards are accumulated is
specified by the operator ρ: for the first k steps (C�k), indefinitely (C), or until
a state labelled with b is reached (F b). In the final case, if a b-state is never
reached, we assume that the accumulated reward is infinite.

3.2 Verification and Strategy Synthesis

Classically, probabilistic model checking is phrased in terms of verifying that a
modelM satisfies a property φ. For an MDP, this means checking that φ holds
for all possible strategies ofM.

Definition 5 (Verification). The verification problem is: given an MDP M
and property φ, does M, σ |=φ hold for all possible strategies σ ∈ ΣM?

In practice, this is closely related to the dual problem of strategy synthesis.

Definition 6 (Strategy synthesis). The strategy synthesis problem is: given
MDPM and property φ, find, if it exists, a strategy σ ∈ ΣM such thatM, σ |=φ.

Verification and strategy synthesis for a property φ on MDPM can be done in
essentially the same way, by computing optimal values for either probability or
expected reward objectives, defined as follows:

Prmin
M,s(ψ) = inf

σ∈ΣM
{PrσM,s(ψ)} Emin

M,s(rew(r, ρ)) = inf
σ∈ΣM

{Eσ
M,s(rew (r, ρ))}

Prmax
M,s(ψ) = sup

σ∈ΣM
{PrσM,s(ψ)} Emax

M,s(rew(r, ρ)) = sup
σ∈ΣM

{Eσ
M,s(rew (r, ρ))}
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When s is the initial state s, we omit the subscript s.
Verifying, for example, property φ = P�p[ψ ] againstM or, dually, synthesis-

ing a strategy for φ′ = P�p[ψ ] can both be done by computing Prmin
M (ψ). For

the former,M satisfies φ if and only if Prmin
M (ψ) � p. For the latter, there exists

a strategy σ satisfying φ′ if and only if Prmin
M (ψ) � p, in which case we can

take σ to be a corresponding optimal strategy, i.e., one that achieves the optimal
value. In general, therefore, rather than fix a specific bound p, we often simply
aim to compute an optimal value and accompanying optimal strategy. In this
case, we adapt the syntax of properties to include numerical queries.

Definition 7 (Numerical query). Let ψ, r and ρ be as specified in Defn. 4. A
numerical query takes the form Pmin=?[ψ ], Pmax=?[ψ ], Rrmin=?[ ρ ] or R

r
max=?[ ρ ]

and yields the optimal value for the probability/reward objective.

In the rest of this section, we describe how to compute optimal values and
strategies for the classes of properties described above. We also explain which
class of strategies suffices for optimality in each case (i.e., the smallest class of
strategies which is guaranteed to contain an optimal one). This is important both
in terms of the tractability of the solution methods, and the size and complexity
of the controller that we might wish to construct from the synthesised strategy.
As mentioned earlier, an extended version of this paper, available from [49],
presents full details of these methods. Coverage of this material can also be
found in, for example, [21,5,2] and standard texts on MDPs [6,26,38].

3.3 Strategy Synthesis for Probabilistic Reachability

To synthesise optimal strategies for probabilistic reachability, it suffices to con-
sider memoryless deterministic strategies. For this class of properties, and for
those covered in the following subsections, the bulk of the work for strategy
synthesis actually amounts to computing optimal values. An optimal strategy is
extracted either after or during this computation.

Calculating optimal values proceeds in two phases: the first precomputation
phase performs an analysis of the underlying graph structure of the MDP to
identify states for which the probability is 0 or 1; the second performs numerical
computation to determine values for the remaining states. The latter can be
done using various methods: (i) by solution of a linear programming problem;
(ii) policy iteration, which builds a sequence of strategies (i.e., policies) with in-
creasingly high probabilities until an optimal one is reached; (iii) value iteration,
which computes increasingly precise approximations to the exact probabilities.

The method used to construct an optimal strategy σ∗ depends on how the
probabilities were computed. Policy iteration is the simplest case, since a strategy
is constructed as part of the algorithm. For the others, minimum probabilities
are straightforward – we choose the locally optimal action in each state:

σ∗(s) = argmina∈A(s)

∑
s′∈S δ(s, a)(s′) · Prmin

M,s′(F b)

Maximum probabilities require more care, but simple adapations to precompu-
tation and value iteration algorithms yield an optimal strategy.
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For step-bounded reachability, memoryless strategies do not suffice: we need
to consider the class of finite-memory deterministic strategies. Computation of
optimal probabilities (and an optimal strategy) for step-bounded reachability
amounts to working backwards through the MDP and determining, at each step,
and for each state, which action yields optimal probabilities. In fact, this amounts
simply to performing a fixed number of steps of value iteration.

Example 2. We return to the MDP M from Fig. 1 and synthesise a strategy
satisfying the property P�0.4[ F goal1 ]. To do so, we compute Prmax

M (F goal1),
which equals 0.5. This is achieved by the memoryless deterministic strategy that
picks east in s0, south in s1 and east in s4 (there is no choice to make in states
s2, s3 and any action can be taken in s5, since goal1 has already been reached).

Next, we consider label goal2 and a numerical query Pmax=?[ F
�k goal2 ] with a

step-bounded reachability objective. We find that Prmax
M (F�k goal2) is 0.8, 0.96

and 0.99 for k = 1, 2 and 3, respectively. Taking k = 3 as an example, the optimal
strategy is deterministic, but finite-memory. For example, if we arrive at state
s4 after 1 step, action east is optimal, since it reaches goal2 with probability 0.9.
If, on the other hand, we arrive in s4 after 2 steps, it is better to take west , since
it would be impossible to reach goal2 within k − 2 = 1 steps.

3.4 Strategy Synthesis for Probabilistic LTL

To synthesise an optimal strategy of MDPM for an LTL formula ψ, we reduce
the problem to the simpler case of a reachability property on the product of
M and an ω-automaton representing ψ. Here, we describe the approach of [2],
which uses deterministic Rabin automata (DRAs) and computes the probability
of reaching accepting end components. Since the minimum probability of an LTL
formula can be expressed as the maximum probability of a negated formula:

Prmin
M (ψ) = 1− Prmax

M (¬ψ)

we only need to consider the computation of maximally optimal probabilities.
A DRA A with alphabet α represents a set of infinite words L(A) ⊆ αω. For

any LTL formula ψ using atomic propositions fromAP , we can construct [45,18,5]
a DRA Aψ with alphabet 2AP that represents it, i.e., such that an infinite path
π = s0

a0−→s1
a1−→s2 . . . ofM satisfies ψ if and only if Lab(s0)Lab(s1)Lab(s2) . . . is

in L(Aψ). We then proceed by building the (synchronous) productM⊗Aψ ofM
and Aψ. The product is an MDP with state space S × Q, where Q is the set of
states of the DRA. We then have:

Prmax
M (ψ) = Prmax

M⊗Aψ
(F acc)

where acc is an atomic proposition labelling accepting end components ofM⊗Aψ .
An end component [2] is a strongly connected sub-MDP ofM, and whether it is
accepting is dictated by the acceptance condition of Aψ . Computing Prmax

M (ψ)
thus reduces to identifying the set of all end components (see, e.g., [2,5]) and cal-
culating the maximum probability of reaching the accepting ones.
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To build an optimal strategy maximising the probability of an LTL formula,
we need to consider finite-memory deterministic strategies. An optimal strategy
of this class is constructed in two steps. First, we find a memoryless deterministic
strategy for the product M⊗Aψ , which maximises the probability of reaching
accepting end components (and then stays in those end components, visiting
each state infinitely often). Then, we convert this to a finite-memory strategy,
with one mode for each state q ∈ Q of the DRA Aψ.

Example 3. Again, using the running example (Fig. 1), we synthesise a strat-
egy for the LTL property P�0.05[ (G ¬hazard ) ∧ (G F goal 1) ], which aims to both
avoid the hazard -labelled state and visit the goal1 state infinitely often. The
maximum probability, from the initial state, is 0.1. In fact, for this example, a
memoryless strategy suffices for optimality: we choose south in state s0, which
leads to state s4 with probability 0.1. We then remain in states s4 and s5 indef-
initely by choosing actions east and west , respectively.

3.5 Strategy Synthesis for Reward Properties

The techniques required to perform strategy synthesis for expected reward prop-
erties Rr�� x[ ρ ] are, in fact, quite similar to those required for the probabilistic
reachability properties, described in Sec. 3.3. For the case where ρ = F b, tech-
niques similar to those for P��p[ F b ] are used: first, a graph based analysis of
the model (in this case, to identify states of the MDP from which the expected
reward is infinite), and then methods such as value iteration or linear program-
ming. The resulting optimal strategy is again memoryless and deterministic.

For the case ρ = C, where rewards are accumulated indefinitely, we need
to identify end components containing non-zero rewards, since these can result
in the expected reward being infinite. Subsequently, computation is similar to
the case of ρ = F b above. For step-bounded properties ρ = C�k, the situation
is similar to probabilities for step-bounded reachability; optimal strategies are
deterministic, but may need finite memory, and optimal expected reward values
can be computed recursively in k steps.

Example 4. We synthesise an optimal strategy for minimising the number of
moves that the robot makes (i.e., the number of actions taken in the MDP)
before reaching a goal2 state. We use a reward structure moves that maps all
state-action pairs to 1, and a numerical query Rmoves

min=?[ F goal2 ]. This yields the
optimal value 19

15 , achieved by the memoryless deterministic strategy that chooses
south, east , west and north in states s0, s1, s4 and s5 respectively.

4 Multi-objective Strategy Synthesis

In this section, we describe multi-objective strategy synthesis for MDPs, which
generates a strategy σ that simultaneously satisfies multiple properties of the
kind discussed in the previous section. We first describe the case for LTL prop-
erties and then summarise some extensions.
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Definition 8 (Multi-objective LTL). A multi-objective LTL property is a
conjunction φ = P��1p1 [ψ1 ] ∧ . . . ∧ P��npn [ψn ] of probabilistic LTL properties.
For MDPM and strategy σ, M, σ |=φ if M, σ |= P��1p1 [ψ1 ] for all 1 � i � n.

An algorithm for multi-objective LTL strategy synthesis was given in [20],
although here we describe an adapted version, based on [22], using deterministic
Rabin automata. The overall approach is similar to standard (single-objective)
LTL strategy synthesis in that it constructs a product automaton and reduces
the problem to (multi-objective) reachability.

First, we ensure that all n properties P��ipi [ψi ] contain only lower probabil-
ity bounds 
� ∈ {�, >}, by negating LTL formulae as required (e.g., replacing
P<p[ψ ] with P>1−p[¬ψ ]). Next, we build a DRA Aψi for each LTL formula ψi,
and construct the product MDP M′ =M⊗Aψ1⊗ · · ·⊗Aψn . We then consider
each combination X ⊆ {1, . . . , n} of objectives and find the end components of
M′ that are accepting for all DRAs {Ai | i ∈ X}. We create a special sink state
for X inM′ and add transitions from states in the end components to the sink.

The problem then reduces to a multi-objective problem on M′ for n reach-
ability properties P��1p1 [ F acc1 ], . . . , P��npn [ F accn ], where acci represents the
union of, for each set X containing i, the sink states for X . This can be done by
solving a linear programming (LP) problem [20].

Optimal strategies for multi-objective LTL may be finite-memory and ran-
domised. A strategy can be constructed directly from the solution of the LP
problem. Like for LTL objectives (in Sec. 3.4), we obtain a memoryless strategy
for the product MDP and then convert it to a finite-memory one onM.

We now summarise several useful extensions and improvements.

(i) Boolean combinations of LTL objectives (rather than conjunctions, as in
Defn. 8) can be handled via a translation to disjunctive normal form [20,22].

(ii) expected reward objectives can also be supported, in addition to LTL prop-
erties. The LP-based approach sketched above has beeen extended [22] to
include reward objectives of the form Rr�� x[ C ]. An alternative approach,
based on value iteration, rather than LP [23], allows the addition of step-
bounded reward objectives Rr�� x[ C

�k ] (and also provides significant gains
in efficiency for both classes of properties).

(iii) numerical multi-objective queries generalise the numerical queries explained
in Defn. 7. For example, rather than synthesising a strategy satisfying prop-
erty P��1p1 [ψ1 ]∧P��2p2 [ψ2 ], we can instead synthesise a strategy that max-
imises the probability of ψ1, whilst simultaneously satisfying P��2p2 [ψ2 ].
The LP-based methods mentioned above are easily extended to handle nu-
merical queries by adding an objective function to the LP problem.

(iv) Pareto queries [23] produce a Pareto curve (or an approximation of it)
illustrating the trade-off between multiple objectives. For example, if we
want to maximise the probabilities of two LTL formulae ψ1 and ψ2, the
Pareto curve comprises points (p1, p2) such that there is a strategy σ with



16 M. Kwiatkowska and D. Parker

0.8 0.6 0.4 1 0.2 0  
0  

0.2 

0.4 
0.5 

0.3 

0.1 
ψ1 

ψ2 

Fig. 3. Pareto curve (dashed line) for maximisation of the probabilities of LTL formulae
ψ1 = G ¬hazard and ψ2 = G F goal1 (see Ex. 5)

PrσM(ψ1) � p1 and PrσM(ψ2) � p2, but, if either bound p1 or p2 is increased,
no strategy exists without decreasing the other bound.

We refer the reader to the references given above for precise details of the
algorithms and any restrictions or assumptions that may apply.

Example 5. Previously, in Ex. 3, we synthesised a strategy for the LTL prop-
erty P�0.05[ (G ¬hazard) ∧ (G F goal 1) ] and found that the maximum achievable
probability was 0.1. Let us now consider each conjunct of the LTL formula as a
separate objective and synthesise a strategy satisfying the multi-objective LTL
property P�0.7[ G ¬hazard ]∧ P�0.2[ G F goal1 ]. For convenience, we will abbrevi-
ate the objectives to ψ1 = G ¬hazard and ψ2 = G F goal1.

Following the procedure outlined at the start of this section, we find that
there is a strategy satisfying P�0.7[ψ1 ] ∧ P�0.2[ψ2 ]. To give an example of one
such strategy, we consider a numerical multi-objective query that maximises
the probability of satisfying ψ2 whilst satisfying P�0.7[ψ1 ]. The optimal value
(maximum probability for ψ2) is

41
180 ≈ 0.2278, which is obtained by a randomised

strategy that, in state s0, picks east with probability approximately 0.3226 and
south with probability approximately 0.6774.

Finally, we also show, in Fig. 3, the Pareto curve obtained when maximising
the probabilities of both ψ1 and ψ2. The grey shared area shows all points (x, y)
for which there is a strategy satisfying P�x[ψ1 ] ∧ P�y[ψ2 ]. Points along the
top edge of this region, shown as a dashed line in the figure, form the Pareto
curve. We also mark, as black circles, points (PrσM(ψ1),Pr

σ
M(ψ2)) for specific

deterministic strategies of M. The leftmost circle is the strategy described in
the first part of Ex. 2, and the rightmost one is the strategy from Ex. 3.

5 Controller Synthesis with Stochastic Games

So far, we have assumed that the nondeterministic choices in the model represent
the choices available to a single entity, such as a controller. In many situations, it
is important to consider decisions being made by multiple entities, possibly with
conflicting objectives. An example is the classic formulation of the controller
synthesis problem, in which a controller makes decisions about how to control,
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for example, a manufacturing plant, and must respond to nondeterministic be-
haviour occurring in the environment of the plant.

It is natural to model and analyse such systems using game-theoretic methods,
which are designed precisely to reason about the strategic decisions of competing
agents. From a modelling point of view, we generalise MDPs to stochastic games,
in which nondeterministic choices are resolved by multiple players and the re-
sulting behaviour is probabilistic (MDPs can thus be seen as 1-player stochastic
games). We restrict our attention here to turn-based (as opposed to concurrent)
stochastic games, in which a single player is responsible for the nondeterministic
choices available in each state. In line with the rest of the paper, we assume
finite-state models and total information.

Definition 9 (SMG). A (turn-based) stochastic multi-player game (SMG) is
a tuple G = (Π,S, (Si)i∈Π , s, A, δG , Lab), where S, s, A, δG and Lab are as for an
MDP, in Defn. 1, Π is a finite set of players and (Si)i∈Π is a partition of S.

An SMG G evolves in a similar way to an MDP, except that the nondeterministic
choice in each state s is resolved by the player that controls that state (the player
i for which s ∈ Si). Like MDPs, we reason about SMGs using strategies, but
these are defined separately for each player: a strategy σi for player i is a function
mapping finite paths ending in a state from Si to a distribution over actions A.
Given strategies σ1, . . . , σk for multiple players from Π , we can combine them
into a single strategy σ = σ1, . . . , σk. If a strategy σ comprises strategies for all
players of the game (sometimes called a strategy profile), we can construct, like
for an MDP, a probability space PrσG over the infinite paths of G.

For strategy synthesis on SMGs, we generate strategies either for an individual
player, or for a coalition C ⊆ Π of players. We extend the definition of properties
given in Defn. 4 in the style of the logic rPATL [14].

Definition 10 (Multi-player strategy synthesis). For a property P�� p[ψ ]
or Rr�� x[ ρ ] and a coalition C ⊆ Π of players, (zero-sum) multi-player strategy
synthesis is expressed by a query 〈〈C〉〉P�� p[ψ ] or 〈〈C〉〉Rr�� x[ ρ ]. For example,
〈〈C〉〉P�� p[ψ ] asks “does there exist a strategy σ1 for the players in C such that,
for all strategies σ2 for the players Π\C, we have Prσ1,σ2

G (ψ) 
� p?”.

Intuitively, if 〈〈C〉〉P�� p[ψ ] is true, then the players in C can collectively guaran-
tee that P�� p[ψ ] holds, regardless of what the other players do. Like for the other
classes of strategy synthesis described in this paper, we can also use numerical
queries for stochastic multi-player games. We write, for example, 〈〈C〉〉Pmax=?[ψ ]
to denote the maximum probability of ψ that players in C can guarantee, re-
gardless of the actions of the other players.

Multi-player strategy synthesis can be solved using rPATL model checking.
Details for the the full logic rPATL (which allows nested operators and includes
additional reward operators, but omits C�k and C) are given in in [14]. Basically,
model checking reduces to the analysis of zero-sum properties on a stochastic
2-player game in which player 1 corresponds to C and player 2 to Π\C. For
reachability properties (i.e., 〈〈C〉〉P�� p[ F b ]), memoryless deterministic strategies
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Fig. 4. Left: A stochastic 2-player game modelling an unknown probability interval.
Right: The maximum value with which ctrl can guarantee reaching goal1 for probability
interval [p, q] = [0.5−Δ, 0.5 +Δ]. See Ex. 6 for details.

suffice and optimal values and strategies can be computed either with value it-
eration or strategy iteration [16,17]. For an LTL property ψ, we again reduce
the problem to a simpler one on the product of the game G and a deterministic
automaton representing ψ. Unlike MDPs, there is no notion of end components.
Instead, we can either use the strategy improvement algorithm of [13] to directly
compute probabilities for Rabin objectives, or convert the DRA to a determin-
istic parity automaton and compute probabilities for parity objectives [12].

Example 6. To give an example of strategy synthesis using stochastic games, we
consider a simple extension of the MDPM from the running example (Fig. 1).
We assume that the existing choices in the MDP are made by a player ctrl , and
we add a second player env , which represents nondeterministic aspects of the
environment. Recall that transition probabilities inMmodel uncertain outcomes
of robot actions due to obstacles. For example, when action south is taken in
state s1 of M, the MDP only moves in the intended direction (to s4) with
probability 0.5; otherwise, it moves to s2. Let us now instead assume that this
probability (of going to s4) can vary in some interval [p, q].

Fig. 4 (left) shows how we can model this as a stochastic two-player game.2

States controlled by player ctrl are, as before, shown as circles; those controlled
by player env , are shown as squares. When action south is taken in state s1, we
move to a new state s6, in which player env can choose between two actions,
one that leads to s4 with probability p and one that does so with probability q.
Since players are allowed to select actions at random, this means player env can
effectively cause the transition to occur with any probability in the range [p, q].

In Ex. 2, we computed the maximum probability of reaching goal 1 as 0.5. Now,
we will consider the maximum probability that ctrl can guarantee, regardless
of the choices made by env , i.e., the maximum probability of reaching goal1,

2 This notion can be captured more cleanly by annotating transitions directly with
probability intervals [40], or with more general specifications of uncertainty [39].
Here, we just aim to give a simple illustration of using a stochastic 2-player game.
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if the probability of moving to state s4 after action south can be any value
in [p, q]. This is done with the query 〈〈ctrl〉〉Pmax=?[ F goal1 ]. We compute this
value for various intervals [p, q] centred around the original value of 0.5, i.e., we
let p = 0.5−Δ, q = 0.5+Δ and vary Δ. Fig. 4 (right) plots the result. From
inspection of the game, we can deduce that the plot corresponds to the function
min(0.5−Δ, 0.15− 0.1Δ). This means that, if Δ � 7

18 (i.e., if p � 1
9 ), then it is

better to switch to the strategy that picks south in state s0, rather than east .

6 Challenges and Directions

In this paper, we have given a brief overview of strategy synthesis for proba-
bilistic systems, pointing to some promising application areas, highlighting the
benefits that can be derived from existing work on probabilistic verification, and
summarising the algorithmic techniques required for a variety of useful strategy
synthesis methods. We invite the reader to consult the extended version of this
paper [30] for further details.

As noted at the start, the current presentation makes a number of simplifying
assumptions. We conclude by reviewing some of the key challenges in the area
of strategy synthesis for probabilistic systems.

– Partial observability. In this paper, we assumed a complete information set-
ting, where the state of the model (and the states of its history) are fully
visible when a strategy chooses an action to take. In many situations, this is
unrealistic, which could lead to strategies being synthesised that are not fea-
sible in practice. Although fundamental decision problems are undecidable in
the context of partial observability [3], practical implementations have been
developed for a few cases [11,24] and some tool support exists [36]. Develop-
ing efficient methods for useful problem classes is an important challenge.

– Robustness and uncertainty. In many potential applications of strategy syn-
thesis, such as the generation of controllers in embedded systems, it may
be difficult to formulate a precise model of the stochastic behaviour of the
system’s environment. Thus, developing appropriate models of uncertainty,
and corresponding methods to synthesise strategies that are robust in these
environments, is important. We gave a very simple illustration of uncertain
probabilistic behaviour in Sec. 5. Developing more sophisticated approaches
is an active area of research [46,37].

– Continuous time and space. In this paper, we focused on discrete-time prob-
abilistic models. Verification techniques have also been developed for models
that incorporate both nondeterminism and continuous notions of time, in-
cluding probabilistic timed automata [35], interactive Markov chains [25] and
Markov automata [43]. Similarly, progress is being made on verification tech-
niques for models with continuous state spaces, and hybrid models that mix
both discrete and continuous elements [48,44]. Developing efficient strategy
synthesis techniques for such models will bring the benefits of the methods
discussed in this paper to a much wider range of application domains.
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In many practical application domains, the software is organized into a set of
threads, whose activation is exclusive and controlled by a cooperative scheduling
policy: threads execute, without any interruption, until they either terminate or
yield the control explicitly to the scheduler.

The formal verification of such software poses significant challenges. On the
one side, each thread may have infinite state space, that might require some
abstraction. On the other side, the scheduling policy is often important for cor-
rectness, and an approach based on abstracting the scheduler may result in loss
of precision and false positives. Unfortunately, the translation of the problem
into a purely sequential software model checking problem turns out to be highly
inefficient for the available technologies.

We discuss a software model checking technique that exploits the intrinsic
structure of these programs. Each thread is translated into a separate sequential
program and explored symbolically with lazy abstraction [1], while the overall
verification is orchestrated by the direct execution of the scheduler. The approach
is optimized by filtering the exploration of the scheduler with the integration
of partial-order reduction [2]. The technique, called ESST (Explicit Scheduler,
Symbolic Threads) [3] has been implemented and experimentally evaluated on a
significant set of benchmarks [4]. The results demonstrate that ESST technique
is way more effective than software model checking applied to the sequential-
ized programs, and that partial-order reduction can lead to further performance
improvements.
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Abstract. Some applications of linear temporal logic (LTL) require to
translate formulae of the logic to deterministic ω-automata. There are
currently two translators producing deterministic automata: ltl2dstar
working for the whole LTL and Rabinizer applicable to LTL(F,G) which
is the LTL fragment using only modalities F and G. We present a new
translation to deterministic Rabin automata via alternating automata
and deterministic transition-based generalized Rabin automata. Our
translation applies to a fragment that is strictly larger than LTL(F,G).
Experimental results show that our algorithm can produce significantly
smaller automata compared to Rabinizer and ltl2dstar, especially for
more complex LTL formulae.

1 Introduction

Linear temporal logic (LTL) is a popular formalism for specification of behavioral
system properties with major applications in the area of model checking [8,5].
More precisely, LTL is typically used as a human-oriented front-end formalism
as LTL formulae are succinct and easy to write and understand. Model checking
algorithms usually work with an ω-automaton representing all behaviors vio-
lating a given specification formula rather than with the LTL formula directly.
Hence, specifications written in the form of LTL formulae are negated and trans-
lated to equivalent ω-automata [31]. There has been a lot of attention devoted
to translation of LTL to nondeterministic Büchi automata (NBA), see for ex-
ample [10,11,29,15] and the research in this direction still continues [12,4,2].
However, there are algorithms that need specifications given by deterministic
ω-automata, for example, those for LTL model checking of probabilistic sys-
tems [30,9,5] and those for synthesis of reactive modules for LTL specifica-
tions [7,26], for a recent survey see [20]. As deterministic Büchi automata (DBA)
cannot express all the properties expressible in LTL, one has to choose deter-
ministic automata with different acceptance condition.

There are basically two approaches to translation of LTL to deterministic
ω-automata. The first one translates LTL to NBA and then it employs Safra’s
construction [27] (or some of its variants or alternatives like [23,28]) to transform
the NBA into a deterministic automaton. This approach is represented by the
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tool ltl2dstar [16] which uses an improved Safra’s construction [17,18] usually
in connection with LTL to NBA translator LTL2BA [15]. The main advantage of
this approach is its universality: as LTL2BA can translate any LTL formula into
an NBA and the Safra’s construction can transform any NBA to a deterministic
Rabin automaton (DRA), ltl2dstar works for the whole LTL. The main dis-
advantage is also connected with the universality: the determinization step does
not employ the fact that the NBA represents only an LTL definable property.
One can easily observe that ltl2dstar produces unnecessarily large automata,
especially for formulae with more fairness subformulae.

The second approach is to avoid Safra’s construction. As probabilistic model-
checkers deal with linear arithmetic, they do not profit from symbolically rep-
resented deterministic automata of [24,22]. A few translations of some simple
LTL fragments to DBA have been suggested, for example [1]. Recently, a trans-
lation of a significantly larger LTL fragment to DRA has been introduced in [19]
and subsequently implemented in the tool Rabinizer [14]. The algorithm builds
a generalized deterministic Rabin automata (GDRA) directly from a formula.
A DRA is then produced by a degeneralization procedure. Rabinizer often pro-
duces smaller automata than ltl2dstar. The main disadvantage is that it works
for LTL(F,G) only, i.e. the LTL fragment containing only temporal operators
eventually (F) and always (G). Authors of the translation claim that it can be
extended to a fragment containing also the operator next (X).

In this paper, we present another Safraless translation of an LTL fragment to
DRA. The translation is influenced by the successful LTL to NBA translation
algorithm LTL2BA [15] and it proceeds in the following three steps:

1. A given LTL formula ϕ is translated into a very weak alternating co-Büchi
automaton (VWAA) A as described in [15]. If ϕ is an LTL(Fs,Gs) formula,
i.e. any formula which makes use of F, G, and their strict variants Fs and
Gs as the only temporal operators, then A satisfies an additional structural
condition. We call such automata may/must alternating automata (MMAA).

2. The MMAA A is translated into a transition-based generalized deterministic
Rabin automaton (TGDRA) G. The construction of generalized Rabin pairs
of G is inspired by [19].

3. Finally, G is degeneralized into a (state-based) DRA D.

In summary, our contributions are as follows. First, note that the fragment
LTL(Fs,Gs) is strictly more expressive than LTL(F,G). Moreover, it can be shown
that our translation works for a fragment even larger than LTL(Fs,Gs) but still
smaller than the whole LTL. Second, the translation has a slightly better the-
oretical bound on the size of produced automata comparing to ltl2dstar, but
the same bound as Rabinizer. Experimental results show that, for small formu-
lae, our translation typically produces automata of a smaller or equal size as the
other two translators. However, for parametrized formulae, it often produces au-
tomata that are significantly smaller. Third, we note that our TGDRA are much
smaller than the (state-based) GDRA of [14]. We conjecture that algorithms for
model checking of probabilistic system, e.g. those in PRISM [21], can be adapted
to work with TGDRA as they are adapted to work with GDRA [6].
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2 Preliminaries

This section recalls the notion of linear temporal logic (LTL) [25] and describes
the ω-automata used in the following.

Linear Temporal Logic (LTL). The syntax of LTL is defined by

ϕ ::= tt | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where tt stands for true, a ranges over a countable set AP of atomic propositions,
X and U are temporal operators called next and until, respectively. An alphabet
is a finite set Σ = 2AP ′

, where AP ′ is a finite subset of AP . An ω-word (or
simply a word) over Σ is an infinite sequence of letters u = u0u1u2 . . . ∈ Σω. By
ui.. we denote the suffix ui.. = uiui+1 . . ..

We inductively define when a word u satisfies a formula ϕ, written u |= ϕ, as
follows.

u |= tt
u |= a iff a ∈ u0

u |= ¬ϕ iff u �|= ϕ
u |= ϕ1 ∨ ϕ2 iff u |= ϕ1 or u |= ϕ2

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff u1.. |= ϕ
u |= ϕ1 Uϕ2 iff ∃i ≥ 0 . (ui.. |= ϕ2 and ∀ 0 ≤ j < i . uj.. |= ϕ1 )

Given an alphabet Σ, a formula ϕ defines the language LΣ(ϕ) = {u ∈ Σω |
u |= ϕ}. We write L(ϕ) instead of L2AP(ϕ)

(ϕ), where AP(ϕ) denotes the set of
atomic propositions occurring in the formula ϕ.

We define derived unary temporal operators eventually (F), always (G), strict
eventually (Fs), and strict always (Gs) by the following equivalences: Fϕ ≡ ttUϕ,
Gϕ ≡ ¬F¬ϕ, Fsϕ ≡ XFϕ, and Gsϕ ≡ XGϕ.

LTL(F,G) denotes the LTL fragment consisting of formulae built with tempo-
ral operators F and G only. The fragment build with temporal operators Fs, Gs, F
and G is denoted by LTL(Fs,Gs) as Fϕ and Gϕ can be seen as abbreviations for
ϕ ∨ Fsϕ and ϕ ∧ Gsϕ, respectively. Note that LTL(Fs,Gs) is strictly more expres-
sive than LTL(F,G) as formulae Fsa and Gsa cannot be equivalently expressed
in LTL(F,G).

An LTL formula is in positive normal form if no operator occurs in the scope
of any negation. Each LTL(Fs,Gs) formula can be transformed to this form using
De Morgan’s laws for ∧ and ∨ and the equivalences ¬Fsψ ≡ Gs¬ψ, ¬Gsψ ≡ Fs¬ψ,
¬Fψ ≡ G¬ψ, and ¬Gψ ≡ F¬ψ. We say that a formula is temporal if its topmost
operator is neither conjunction, nor disjunction (note that a and ¬a are also
temporal formulae).

Deterministic Rabin Automata and Their Generalization. A semiau-
tomaton is a tuple T = (S,Σ, δ, sI), where S is a finite set of states, Σ is an
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alphabet, sI ∈ S is the initial state, and δ ⊆ S×Σ×S is a deterministic transi-
tion relation, i.e. for each state s ∈ S and each α ∈ Σ, there is at most one state
s′ such that (s, α, s′) ∈ δ. A triple (s, α, s′) ∈ δ is called a transition from s to s′

labelled by α, or an α-transition of s leading to s′. In illustrations, all transitions
with the same source state and the same target state are usually depicted by
a single edge labelled by a propositional formula ψ over AP representing the
corresponding transition labels (e.g. given Σ = 2{a,b}, the formula ψ = a ∨ b
represents labels {a}, {a, b}, {b}).

A run of a semiautomaton T over a word u = u0u1 . . . ∈ Σω is an infinite
sequence σ = (s0, u0, s1)(s1, u1, s2) . . . ∈ δω of transitions such that s0 = sI . By
Inft(σ) (resp. Infs(σ)) we denote the set of transitions (resp. states) occurring
infinitely often in σ. For each word u ∈ Σω, a semiautomaton has at most one
run over u denoted by σ(u).

A deterministic Rabin automaton (DRA) is a tuple D = (S,Σ, δ, sI ,R), where
(S,Σ, δ, sI) is a semiautomaton and R ⊆ 2S × 2S is a finite set of Rabin pairs.
Runs of D are runs of the semiautomaton. A run σ satisfies a Rabin pair (K,L) ∈
R if Infs(σ) ∩K = ∅ and Infs(σ) ∩ L �= ∅. A run is accepting if it satisfies some
Rabin pair of R. The language of D is the set L(D) of all words u ∈ Σω such
that σ(u) is accepting.

A transition-based generalized deterministic Rabin automaton (TGDRA) is a
tuple G = (S,Σ, δ, sI ,GR), where (S,Σ, δ, sI) is a semiautomaton and GR ⊆
2δ × 22

δ

is a finite set of generalized Rabin pairs. Runs of G are runs of the
semiautomaton. A run σ satisfies a generalized Rabin pair (K, {Lj}j∈J) ∈ GR
if Inft(σ) ∩K = ∅ and, for each j ∈ J , Inft(σ) ∩ Lj �= ∅. A run is accepting if it
satisfies some generalized Rabin pair of GR. The language of G is the set L(G)
of all words u ∈ Σω such that σ(u) is accepting.

A generalization of DRA called generalized deterministic Rabin automata
(GDRA) has been considered in [19,14]. The accepting condition of GDRA is
a boolean combination (in disjunctive normal form) of Rabin pairs. A run σ is
accepting if σ satisfies this condition.

Very Weak Alternating Automata and Their Subclass. A very weak
alternating co-Büchi automaton (VWAA) A is a tuple (S,Σ, δ, I, F ), where S is
a finite set of states, subsets c ⊆ S are called configurations, Σ is an alphabet,
δ ⊆ S × Σ × 2S is an alternating transition relation, I ⊆ 2S is a non-empty set
of initial configurations, F ⊆ S is a set of co-Büchi accepting states, and there
exists a partial order on S such that, for every transition (s, α, c) ∈ δ, all the
states of c are lower or equal to s.

A triple (s, α, c) ∈ δ is called a transition from s to c labelled by α, or an
α-transition of s. We say that s is the source state and c the target configuration
of the transition. A transition is looping if the target configuration contains the
source state, i.e. s ∈ c. A transition is called a selfloop if its target configuration
contains the source state only, i.e. c = {s}.

Figure 1(a) shows a VWAA that accepts the language described by the for-
mula G(Fsa ∧ Fsb) ∨ Gb. Transitions are depicted by branching edges. If a target



28 T. Babiak et al.

Gψ

Fa Fb

Gb

tt

b

tt a ttb

(a)

Gψ

Fa

Fb

Gb

{a} ∅ {b} {a, b} {a} ∅ {b} {a, b}

· · ·

0 1 2 3 4 5 6 7 8

T0 T1 T2 T3 T4 T5 T6 T7

(b)

Fig. 1. (a) A VWAA (and also MMAA) corresponding to formula Gψ ∨ Gb, where
ψ = Fsa ∧ Fsb. (b) An accepting run of the automaton over ({a}∅{b}{a, b})ω.

configuration is empty, the corresponding edge leads to an empty space. We
often depict all transitions with the same source state and the same target con-
figuration by a single edge (as for semiautomata). Each initial configuration is
represented by a possibly branching unlabelled edge leading from an empty space
to the states of the configuration. Co-Büchi accepting states are double circled.

A multitransition T with a label α is a set of transitions with the same label
and such that the source states of the transitions are pairwise different. A source
configuration of T , denoted by dom(T ), is the set of source states of transitions
in T . A target configuration of T , denoted by range(T ), is the union of target
configurations of transitions in T . We define a multitransition relation Δ ⊆
2S ×Σ × 2S as

Δ = {(dom(T ), α, range(T )) | there exists a multitransition T with label α}.

A run ρ of a VWAA A over a word w = w0w1 . . . ∈ Σω is an infinite sequence
ρ = T0T1 . . . of multitransitions ofA such that dom(T0) is an initial configuration
of A and, for each i ≥ 0, Ti is labelled by wi and range(Ti) = dom(Ti+1).

A run can be represented as a directed acyclic graph (DAG). For example,
the DAG of Figure 1(b) represents a run of the VWAA of Figure 1(a). The dot-
ted lines divide the DAG into segments corresponding to multitransitions. Each
transition of a multitransition is represented by edges leading across the corre-
sponding segment from the starting state to states of the target configuration.
As our alternating automata are very weak, we can order the states in a way
that all edges in any DAG go only to the same or a lower row.

An accepting run corresponds to a DAG where each branch contains only
finitely many states from F . Formally, the run ρ is accepting if it has no suffix
where, for some co-Büchi accepting state f ∈ F , each multitransition contains
a looping transition from f . The language of A is the set L(A) = {w ∈ Σω |
A has an accepting run of over w}. By Infs(ρ) we denote the set of states that
occur in dom(Ti) for infinitely many indices i.
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Definition 1. A may/must alternating automaton (MMAA) is a VWAA where
each state fits into one of the following three categories:

1. May-states – states with a selfloop for each α ∈ Σ. A run that enters such
a state may wait in the state for an arbitrary number of steps.

2. Must-states – every transition of a must-state is looping. A run that enters
such a state can never leave it. In other words, the run must stay there.

3. Loopless states – states that have no looping transitions and no predecessors.
They can appear only in initial configurations (or they are unreachable).

The automaton of Figure 1(a) is an MMAA with must-states Gψ,Gb and
may-states Fa,Fb.

We always assume that the set F of an MMAA coincides with the set of
all may-states of the automaton. This assumption is justified by the following
observations:

– There are no looping transitions of loopless states. Hence, removing all loop-
less states from F has no effect on acceptance of any run.

– All transitions leading from must-states are looping. Hence, if a run contains
a must-state that is in F , then the run is non-accepting. Removing all must-
states in F together with their adjacent transitions from an MMAA has no
effect on its accepting runs.

– Every may-state has selfloops for all α ∈ Σ. If such a state is not in F , we can
always apply these selfloops without violating acceptance of any run. We can
also remove these states from all the target configurations of all transitions
of an MMAA without affecting its language.

3 Translation of LTL(Fs,Gs) to MMAA

We present the standard translation of LTL to VWAA [15] restricted to the
fragment LTL(Fs,Gs). In this section, we treat the transition relation δ ⊆ S ×
Σ × 2S of a VWAA as a function δ : S × Σ → 22

S

, where c ∈ δ(s, α) means
(s, α, c) ∈ δ. Further, we consider Gψ and Fψ to be subformulae of Gsψ and Fsψ,
respectively. This is justified by equivalences Gsψ ≡ XGψ and Fsψ ≡ XFψ.

Let ϕ be an LTL(Fs,Gs) formula in positive normal form. An equivalent VWAA
is constructed as Aϕ = (Q,Σ, δ, I, F ), where

– Q is the set of temporal subformulae of ϕ,
– Σ = 2AP(ϕ),
– δ is defined as

δ(tt, α) = {∅} δ(a, α) = {∅} if a ∈ α, ∅ otherwise
δ(¬tt, α) = ∅ δ(¬a, α) = {∅} if a �∈ α, ∅ otherwise
δ(Gsψ, α) = {{Gψ}} δ(Gψ, α) = {c ∪ {Gψ} | c ∈ δ(ψ, α)}
δ(Fsψ, α) = {{Fψ}} δ(Fψ, α) = {{Fψ}} ∪ δ(ψ, α), where

δ(ψ, α) = δ(ψ, α) if ψ is a temporal formula

δ(ψ1 ∨ ψ2, α) = δ(ψ1, α) ∪ δ(ψ2, α)

δ(ψ1 ∧ ψ2, α) = {c1 ∪ c2 | c1 ∈ δ(ψ1, α) and c2 ∈ δ(ψ2, α)},
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– I = ϕ where ϕ is defined as

ψ = {{ψ}} if ψ is a temporal formula

ψ1 ∨ ψ2 = ψ1 ∪ ψ2

ψ1 ∧ ψ2 = {O1 ∪O2 | O1 ∈ ψ1 and O2 ∈ ψ2}, and

– F ⊆ Q is the set of all subformulae of the form Fψ in Q.

Using the partial order “is a subformula of” on states, one can easily prove
that Aϕ is a VWAA. Moreover, all the states of the form Gψ are must-states and
all the states of the form Fψ are may-states. States of other forms are loopless and
they are unreachable unless they appear in I. Hence, the constructed automaton
is also an MMAA. Figure 1(a) shows an MMAA produced by the translation of
formula G(Fsa ∧ Fsb) ∨ Gb.

In fact, MMAA and LTL(Fs,Gs) are expressively equivalent. The reverse trans-
lation can be found in the full version of this paper [3].

4 Translation of MMAA to TGDRA

In this section we present a translation of an MMAA A = (S,Σ, δA, I, F ) with
multitransition relation ΔA into an equivalent TGDRA G. At first we build a
semiautomaton T and then we describe the transition based generalized Rabin
acceptance condition GR of G.

4.1 Semiautomaton T

The idea of our seminautomaton construction is straightforward: a run σ(w) of
the semiautomaton T tracks all runs of A over w. More precisely, the state of T
reached after reading a finite input consists of all possible configurations in which
A can be after reading the same input. Hence, states of the semiautomaton are
sets of configurations of A and we call them macrostates. We use f, s, s1, s2, . . .
to denote states of A (f stands for an accepting state of F ), c, c1, c2, . . . to denote
configurations of A, and m,m1,m2, . . . to denote macrostates of T . Further, we
use t, t1, t2 . . . to denote the transitions of A, T, T0, T1 . . . to denote multitran-
sitions of A, and r, r1, r2 . . . to denote the transitions of T , which are called
macrotransitions hereafter.

Formally, we define the semiautomaton T = (M,Σ, δT ,mI) for A as follows:

– M ⊆ 22
S

is the set macrostates, restricted to those reachable from the initial
macrostate mI by δT ,

– (m1, α,m2) ∈ δT iff m2 =
⋃

c∈m1
{c′ | (c, α, c′) ∈ ΔA}, i.e. for each m1 ∈

M and α ∈ Σ, there is a single macrotransition (m1, α,m2) ∈ δT , where
m2 consists of target configurations of all α-multitransitions leading from
configurations in m1, and

– mI = I is the initial macrostate.

Figure 2 depicts the semiautomaton T for the MMAA of Figure 1(a). Each
row in a macrostate represents one configuration.
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Fig. 2. The semiautomaton T for the MMAA of Figure 1(a)

4.2 Acceptance Condition GR of the TGDRA G

For any subset Z ⊆ S, must(Z) denotes the set of must-states of Z. An MMAA
run ρ is bounded by Z ⊆ S iff Infs(ρ) ⊆ Z and must(Infs(ρ)) = must(Z). For
example, the run of Figure 1(b) is bounded by the set {Gψ,Fa,Fb}.

For any fixed Z ⊆ S, we define the set ACZ ⊆ 2S of allowed configurations of
A and the set ATZ ⊆ δT of allowed macrotransitions of T as follows:

ACZ = {c ⊆ Z | must(c) = must(Z)}
ATZ = {(m1, α,m2) ∈ δT | ∃c1 ∈ ACZ , c2 ∈ (m2 ∩ACZ) : (c1, α, c2) ∈ ΔA}1

Clearly, a run ρ of A is bounded by Z if and only if ρ has a suffix containing only
configurations of ACZ . Let ρ be a run over w with such a suffix. As the semiau-
tomaton T tracks all runs of A over a given input, the run σ(w) of T ‘covers’
also ρ. Hence, σ(w) has a suffix where, for each macrotransition (mi, wi,mi+1),
there exist configurations c1 ∈ mi ∩ ACZ and c2 ∈ mi+1 ∩ ACZ satisfying
(c1, wi, c2) ∈ ΔA. In other words, σ(w) has a suffix containing only macro-
transitions of ATZ . This observation is summarized by the following lemma.

Lemma 1. If A has a run over w bounded by Z, then the run σ(w) of T contains
a suffix of macrotransitions of ATZ .

In fact, the other direction can be proved as well: if σ(w) contains a suffix of
macrotransitions of ATZ , then A has a run over w bounded by Z.

For each f ∈ F∩Z, we also define the set ATf
Z as the set of all macrotransitions

in ATZ such that A contains a non-looping transition of f with the same label
and with the target configuration not leaving Z:

ATf
Z = {(m1, α,m2) ∈ ATZ | ∃(f, α, c) ∈ δA : f �∈ c, c ⊆ Z}

Using the sets ATZ and ATf
Z , we define one generalized Rabin pair GRZ for

each subset of states Z ⊆ S:

GRZ = (δT �ATZ , {ATf
Z}f∈F∩Z) (1)

Lemma 2. If there is an accepting run ρ of A over w then the run σ(w) of T
satisfies GRZ for Z = Infs(ρ).

1 A definition of ATZ with c1 ∈ (m1∩ACZ) would be more intuitive, but less effective.
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Proof. As ρ is bounded by Z, Lemma 1 implies that σ(w) has a suffix riri+1 . . .
of macrotransitions of ATZ . Thus Inft(σ(w)) ∩ (δT �ATZ) = ∅.

As Z = Infs(ρ) and ρ = T0T1 . . . is accepting, for each f ∈ F ∩ Z, ρ in-
cludes infinitely many multitransitions Tj where f ∈ dom(Tj) and Tj contains
a non-looping transition (f, wj , c) ∈ δA satisfying f �∈ c and c ⊆ Z. Hence, the
corresponding macrotransitions rj that are also in the mentioned suffix riri+1 . . .

of σ(w) are elements of ATf
Z . Therefore, Inft(σ(w))∩ATf

Z �= ∅ for each f ∈ F ∩Z
and σ(w) satisfies GRZ . ��

Lemma 3. If a run σ(w) of T satisfies GRZ then there is an accepting run of
A over w bounded by Z.

Proof. Let σ(w) = r0r1 . . . be a run of T satisfying GRZ , i.e. σ(w) has a suffix
of macrotransitions of ATZ and σ(w) contains infinitely many macrotransitions

of ATf
Z for each f ∈ F ∩ Z. Let ri = (mi, wi,mi+1) be the first macrotransition

of the suffix. The definition of ATZ implies that there is a configuration c ∈
mi+1 ∩ ACZ . The construction of T guaranties that there exists a sequence of
multitransitions of A leading to the configuration c. More precisely, there is a
sequence T0T1 . . . Ti such that dom(T0) is an initial configuration of A, Tj is
labelled by wj for each 0 ≤ j ≤ i, range(Tj) = dom(Tj+1) for each 0 ≤ j < i,
and range(Ti) = c. We show that this sequence is in fact a prefix of an accepting
run of A over w bounded by Z.

We inductively define a multitransition sequence Ti+1Ti+2 . . . completing this
run. The definition uses the suffix ri+1ri+2 . . . of σ(w). Let us assume that j > i
and that range(Tj−1) is a configuration of ACZ . We define Tj to contain one wj-
transition of s for each s ∈ range(Tj−1). Thus we get dom(Tj) = range(Tj−1). As
rj ∈ ATZ , there exists a multitransition T ′ labelled by wj such that both source
and target configurations of T ′ are in ACZ . For each must-state s ∈ range(Tj−1),
Tj contains the same transition leading from s as contained in T ′. For may-

states f ∈ range(Tj−1), we have two cases. If rj ∈ ATf
Z , Tj contains a non-

looping transition leading from f to some states in Z. The existence of such a
transition follows from the definition of ATf

Z . For the remaining may-states, Tj

uses selfloops. Formally, Tj = {tsj | s ∈ range(Tj−1)}, where

tsj =

⎧⎪⎨⎪⎩
(s, wj , cs) contained in T ′ if s ∈ must(Z)

(s, wj , {s}) if s ∈ F ∧ rj /∈ ATs
Z

(s, wj , cs) where cs ⊆ Z, s /∈ cs if s ∈ F ∧ rj ∈ ATs
Z

One can easily check that range(Tj) ∈ ACZ and we continue by building Tj+1.
To sum up, the constructed run is bounded by Z. Moreover, Tj contains

no looping transition of f whenever rj ∈ ATf
Z . As the run σ(w) is accepting,

rj ∈ ATf
Z holds infinitely often for each f ∈ F ∩ Z. The constructed run of A

over w is thus accepting. ��

The previous two lemmata give us the following theorem.

Theorem 1. The TGDRA G = (T , {GRZ | Z ⊆ S}) is equivalent to A.
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5 Translation of TGDRA to DRA

This section presents a variant of the standard degeneralization procedure. At
first we illustrate the idea on a TGDRA G′ = (M,Σ, δT ,mI , {(K, {Lj}1≤j≤h)})
with one generalized Rabin pair. Recall that a run is accepting if it has a suffix
not using macrotransitions of K and using macrotransitions of each Lj infinitely
often.

An equivalent DRA D′ consists of h + 2 copies of G′. The copies are called
levels. We start at the level 1. Intuitively, being at a level j for 1 ≤ j ≤ h
means that we are waiting for a transition from Lj. Whenever a transition of K
appears, we move to the level 0. A transition r �∈ K gets us from a level j to
the maximal level l ≥ j such that r ∈ Lj′ for each j ≤ j′ < l. The levels 0 and
h+ 1 have the same transitions (including target levels) as the level 1. A run of
G′ is accepting if and only if the corresponding run of D′ visits the level 0 only
finitely often and it visits the level h+ 1 infinitely often.

In general case, we track the levels for all generalized Rabin pair simultane-
ously. Given a TGDRA G = (M,Σ, δT ,mI , {(Ki, {Lj

i}1≤j≤hi)}1≤i≤k), we con-
struct an equivalent DRA as D = (Q,Σ, δD, qi, {(K ′

i, L
′
i)}1≤i≤k), where

– Q = M × {0, 1, . . . , h1+1} × · · · × {0, 1, . . . , hk+1},
– ((m, l1, . . . , lk), α, (m′, l′1, . . . , l

′
k)) ∈ δD iff r = (m,α,m′) ∈ δT and for each

1 ≤ i ≤ k it holds

l′i =

⎧⎪⎨⎪⎩
0 if r ∈ Ki

max{li ≤ l ≤ hi+1 | ∀li ≤ j < l : r ∈ Lj
i} if r /∈ Ki ∧ 1 ≤ li ≤ hi

max{1 ≤ l ≤ hi+1 | ∀1 ≤ j < l : r ∈ Lj
i} if r /∈ Ki ∧ li ∈ {0, hi+1},

– qi = (mI , 1, . . . , 1),
– K ′

i = {(m, l1, . . . , lk) ∈ Q | li = 0}, and
– L′i = {(m, l1, . . . , lk) ∈ Q | li = hi + 1}.

6 Complexity

This section discusses the upper bounds of the individual steps of our translation
and compares the overall complexity to complexity of the other translations.

Given a formula ϕ of LTL(Fs,Gs), we produce an MMAA with at most n
states, where n is the length of ϕ. Then we build the TGDRA G with at most
22

n

states and at most 2n generalized Rabin pairs. To obtain the DRA D, we
multiply the state space by at most |Z|+2 for each generalized Rabin pair GRZ .
The value of |Z| is bounded by n. Altogether, we can derive an upper bound on
the number of states of the resulting DRA as

|Q| ≤ 22
n

· (n+ 2)2
n

= 22
n

· 22
n·log2 (n+2) = 22

n

· 22
n+log2 log2(n+2)

∈ 2O(2n+log log n),

which is the same bound as in [19], but lower than 2O(2n+logn) of ltl2dstar.
It is worth mentioning that the number of states of our TGDRA is bounded by

22
|ϕ|

while the number of states of the GDRA produced by Rabinizer is bounded

by 22
|ϕ| · 2AP(ϕ).
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7 Simplifications and Translation Improvements

An important aspect of our translation process is simplification of all interme-
diate results leading to smaller resulting DRA.

We simplify input formulae by reduction rules of LTL3BA, see [4] for more
details. Additionally, we rewrite the subformulae of the form GFψ and FGψ
to equivalent formulae GFsψ and FGsψ respectively. This preference of strict
temporal operators often yields smaller resulting automata.

Alternating automata are simplified in the same way as in LTL2BA: removing
unreachable states, merging equivalent states, and removing redundant transi-
tions, see [15] for details.

We improve the translation of an MMAA A to a TGDRA G in order to
reduce the number of generalized Rabin pairs of G. One can observe that, for
any accepting run ρ of A, Infs(ρ) contains only states reachable from some must-
state. Hence, in the construction of acceptance condition of G we can consider
only subsets Z of states of A of this form. Further, we omit a subset Z if, for
each accepting run over w bounded by Z, there is also an accepting run over w
bounded by some Z ′ ⊆ Z. The formal description of subsets Z considered in the
construction of the TGDRA G is described in the full version of this paper [3].

If a run T0T1 . . . of an MMAA satisfies range(Ti) = ∅ for some i, then Tj = ∅
for all j ≥ i and the run is accepting. We use this observation to improve
the construction of the semiautomaton T of the TGDRA G: if a macrostate m
contains the empty configuration, we remove all other configurations from m.

After we build the TGDRA, we simplify its acceptance condition in three
ways (similar optimizations are also performed by Rabinizer).

1. We remove some generalized Rabin pairs (Ki, {Lj
i}j∈Ji) that cannot be sat-

isfied by any run, in particular when Ki = δT or Lj
i = ∅ for some j ∈ Ji.

2. We remove Lj
i if there is some l ∈ Ji such that Ll

i ⊆ Lj
i .

3. If the fact that a run ρ satisfies the pair GRZ implies that ρ satisfies also
some other pair GRZ′ , we remove GRZ .

Finally, we simplify the state spaces of both TGDRA and DRA such that we
iteratively merge the equivalent states. Two states of a DRA D are equivalent
if they belong to the same sets of the acceptance condition of D and, for each
α, their α-transitions lead to the same state. Two states of a TGDRA G are
equivalent if, for each α, their α-transitions lead to the same state and belong
to the same sets of the acceptance condition of G. Moreover, if the initial state
of D or G has no selfloop, we check its equivalence to another state regardless of
the acceptance condition (note that a membership in acceptance condition sets
is irrelevant for states or transitions that are passed at most once by any run).

Of course, we consider only the reachable state space at every step.

8 Beyond LTL(Fs,Gs) Fragment: May/Must in the Limit

The Section 4 shows a translation of MMAA into TGDRA. In fact, our trans-
lation can be used for a larger class of very weak alternating automata called
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may/must in the limit automata (limMMAA). A VWAA B is a limMMAA if
B contains only must-states, states without looping transitions, and co-Büchi
accepting states (not exclusively may-states), and each state reachable from a
must-state is either a must- or a may-state. Note that each accepting run of a
limMMAA has a suffix that contains either only empty configurations, or con-
figurations consisting of must-states and may-states reachable from must-states.
Hence, the MMAA to TGDRA translation produces correct results also for lim-
MMAA under an additional condition: generalized Rabin pairs GRZ are con-
structed only for sets Z that contain only must-states and may-states reachable
from them.

We can obtain limMMAA by the LTL to VWAA translation of [15] when it
is applied to an LTL fragment defined as

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where ψ ranges over LTL(Fs,Gs). Note that this fragment is strictly more expres-
sive than LTL(Fs,Gs).

9 Experimental Results

We have made an experimental implementation of our translation (referred to
as LTL3DRA). The translation of LTL to alternating automata is taken from
LTL3BA [4]. We compare the automata produced by LTL3DRA to those pro-
duced by Rabinizer and ltl2dstar. All the experiments are run on a Linux
laptop (2.4GHz Intel Core i7, 8GB of RAM) with a timeout set to 5 minutes.

Tables given below (i) compare the sizes of the DRA produced by all the
tools and (ii) show the number of states of the generalized automata produced by
LTL3DRA and Rabinizer. Note that LTL3DRA uses TGDRA whereas Rabinizer
uses (state-based) GDRA, hence the numbers of their states cannot be directly
compared. The sizes of DRA are written as s(r), where s is the number of states
and r is the number of Rabin pairs. For each formula, the size of the smallest
DRA (measured by the number of states and, in the case of equality, by the
number of Rabin pairs) is printed in bold.

Table 1 shows the results on formulae from [14] extended with another para-
metric formula. For the two parametric formulae, we give all the parameter
values n for which at least one tool finished before timeout. For all formulae
in the table, our experimental implementation generates automata of the same
or smaller size as the others. Especially in the case of parametric formulae, the
automata produced by LTL3DRA are considerably smaller. We also note that
the TGDRA constructed for the formulae are typically very small.

Table 2 shows the results on formulae from Spec Patterns [13] (available
online2). We only take formulae LTL3DRA is able to work with, i.e. the formulae
of the LTL fragment defined in Section 8. The fragment covers 27 out of 55
formulae listed on the web page. The dash sign in Rabinizer’s column means

2 http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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Table 1. The benchmark from [14] extended by one parametric formula

Formula
LTL3DRA Rabinizer ltl2dstar

DRA TGDRA DRA GDRA DRA

G(a ∨ Fb) 3(2) 2 4(2) 5 4(1)
FGa ∨ FGb ∨ GFc 8(3) 1 8(3) 8 8(3)

F(a ∨ b) 2(1) 2 2(1) 2 2(1)
GF(a ∨ b) 2(1) 1 2(1) 4 2(1)
G(a ∨ Fa) 2(1) 1 2(2) 2 2(1)
G(a ∨ b ∨ c) 2(1) 2 2(1) 8 3(1)

G(a ∨ F(b ∨ c)) 3(2) 2 4(2) 9 4(1)
Fa ∨ Gb 3(2) 3 3(2) 3 4(2)

G(a ∨ F(b ∧ c)) 3(2) 2 4(2) 11 4(1)
FGa ∨ GFb 4(2) 1 4(2) 4 4(2)

GF(a ∨ b) ∧ GF(b ∨ c) 3(1) 1 3(1) 8 7(2)
(FFa ∧ G¬a) ∨ (GG¬a ∧ Fa) 1(0) 1 1(0) 1 1(0)

GFa ∧ FGb 3(1) 1 3(1) 4 3(1)
(GFa ∧ FGb) ∨ (FG¬a ∧ GF¬b) 4(2) 1 4(2) 4 5(2)

FGa ∧ GFa 2(1) 1 2(1) 2 2(1)
G(Fa ∧ Fb) 3(1) 1 3(1) 4 5(1)
Fa ∧ F¬a 4(1) 4 4(1) 4 4(1)

(G(b ∨ GFa) ∧ G(c ∨ GF¬a)) ∨ Gb ∨ Gc 12(3) 4 18(4) 18 13(3)
(G(b ∨ FGa) ∧ G(c ∨ FG¬a)) ∨ Gb ∨ Gc 4(2) 4 6(3) 18 14(4)
(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧ Fc 5(2) 4 5(2) 18 7(1)
(F(b ∧ GFa) ∨ F(c ∧ GF¬a)) ∧ Fb ∧ Fc 5(2) 4 5(2) 18 7(2)

GF(Fa ∨ GFb ∨ FG(a ∨ b)) 4(3) 1 4(3) 4 14(4)
FG(Fa ∨ GFb ∨ FG(a ∨ b)) 4(3) 1 4(3) 4 145(9)

FG(Fa ∨ GFb ∨ FG(a ∨ b) ∨ FGb) 4(3) 1 4(3) 4 145(9)

∧n
i=1(GFai → GFbi)

n = 1 4(2) 1 4(2) 4 4(2)
n = 2 18(4) 1 20(4) 16 11324(8)
n = 3 166(8) 1 470(8) 64 timeout
n = 4 7408(16) 1 timeout timeout

∧n
i=1(GFai ∨ FGai+1)

n = 1 4(2) 1 4(2) 4 4(2)
n = 2 10(4) 1 11(4) 8 572(7)
n = 3 36(6) 1 52(6) 16 290046(13)
n = 4 178(9) 1 1288(9) 32 timeout
n = 5 1430(14) 1 timeout timeout
n = 6 20337(22) 1 timeout timeout

that Rabinizer cannot handle the corresponding formula as it is not from the
LTL(F,G) fragment. For most of the formulae in the table, LTL3DRA produces
the smallest DRA. In the remaining cases, the DRA produced by our translation
is only slightly bigger than the smallest one. The table also illustrates that
LTL3DRA handles many (pseudo)realistic formulae not included in LTL(F,G).

Experimental results for another four parametric formulae are provided in the
full version of this paper [3].
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Table 2. The benchmark with selected formulae from Spec Patterns. ϕi denotes the
i-th formula on the web page.

LTL3DRA Rabinizer ltl2dstar LTL3DRA Rabinizer ltl2dstar

DRA TGDRA DRA GDRA DRA DRA TGDRA DRA GDRA DRA

ϕ2 4(2) 4 — 5(2) ϕ27 4(2) 4 — 5(2)
ϕ3 4(2) 3 4(2) 5 4(1) ϕ28 6(3) 3 8(3) 14 5(1)
ϕ7 4(2) 3 — 4(2) ϕ31 4(2) 4 — 6(2)
ϕ8 3(2) 3 3(2) 5 4(2) ϕ32 5(2) 5 — 7(2)
ϕ11 6(2) 6 — 10(3) ϕ33 5(2) 5 — 7(3)
ϕ12 8(2) 8 — 9(2) ϕ36 6(3) 4 — 6(2)
ϕ13 7(3) 7 — 11(3) ϕ37 6(2) 6 — 8(3)
ϕ17 4(2) 4 — 5(2) ϕ38 7(4) 5 — 6(3)
ϕ18 4(2) 3 4(2) 5 4(1) ϕ41 21(3) 7 — 45(3)
ϕ21 4(2) 3 — 4(2) ϕ42 12(2) 12 — 17(2)
ϕ22 4(2) 4 — 5(2) ϕ46 15(3) 5 — 20(2)
ϕ23 5(3) 4 — 5(3) ϕ47 7(2) 7 — 6(2)
ϕ26 3(2) 2 4(2) 5 4(1) ϕ48 14(3) 6 — 24(2)

ϕ52 7(2) 7 — 6(2)

10 Conclusion

We present another Safraless translation of an LTL fragment to deterministic
Rabin automata (DRA). Our translation employs a new class of may/must al-
ternating automata. We prove that the class is expressively equivalent to the
LTL(Fs,Gs) fragment. Experimental results show that our translation typically
produces DRA of a smaller or equal size as the other two translators of LTL
(i.e. Rabinizer and ltl2dstar) and it sometimes produces automata that are
significantly smaller.
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approach to suspension and other improvements to LTL translation. In: Bartocci,
E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer,
Heidelberg (2013)
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29. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

30. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS 1985, pp. 327–338. IEEE Computer Society (1985)

31. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, pp. 332–344. IEEE Computer Society (1986)



Improved Upper and Lower Bounds
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Abstract. We present a new ranking based construction for disam-
biguating non-deterministic Büchi automata and show that the state
complexity tradeoff of the translation is in O(n · (0.76n)n). This expo-
nentially improves the best upper bound (i.e., 4 ·(3n)n) known earlier for
Büchi disambiguation. We also show that the state complexity tradeoff
of translating non-deterministic Büchi automata to strongly unambigu-
ous Büchi automata is in Ω((n − 1)!). This exponentially improves the
previously known lower bound (i.e. Ω(2n)). Finally, we present a new
technique to prove the already known exponential lower bound for dis-
ambiguating automata over finite or infinite words. Our technique is
significantly simpler than earlier techniques based on ranks of matrices
used for proving disambiguation lower bounds.

1 Introduction

Unambiguous Büchi automata over infinite words represent an interesting class
of automata that are structurally situated between deterministic and non-
deterministic Büchi automata, and yet are as expressive as non-deterministic
Büchi automata. For notational convenience, we use UBA (respectively, NBA)
to denote the class of unambiguous (respectively, non-deterministic) Büchi au-
tomata over infinite words in the rest of this paper. The expressive equivalence
of UBA and NBA was first shown by Arnold [1], and later re-proven by Carton
and Michel [3] and Kahler and Wilke [6]. Bousquet and Löding [2] showed that
language equivalence and inclusion checking can be achieved in polynomial time
for a sub-class of UBA, called strongly unambiguous Büchi automata (or SUBA),
which is expressively equivalent to NBA. In later work [5], two other incompa-
rable sub-classes of UBA were also shown to admit polynomial-time language
inclusion and equivalence checking. The class of automata studied by Carton
and Michel have also been called prophetic automata by others [4]. In a recent
work, Preugschat and Wilke [11] have described a framework for characterizing
fragments of linear temporal logic (LTL). Their characterization relies heavily
on the use of prophetic automata and special Ehrenfeucht-Fräıssé games.

Despite the long history of studies on UBA (including several papers in recent
years), important questions about disambiguation still remain open. Notable
among these are the exact state complexity trade-offs in translating NBA to
language-equivalent UBA or SUBA. The state complexity trade-off question asks
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“Given an n-state NBA, how many states must a language-equivalent UBA (resp.,
SUBA) have as a function of n?” The present work attempts to address these
questions, and makes the following contributions.

1. We show that the NBA to UBA state complexity trade-off is in O(n ·
(0.76n)n). This is exponentially more succinct than the previously known
best trade-off of 4 · (3n)n due to Kahler and Wilke [6]. The improved upper-
bound is obtained by extending Kupferman and Vardi’s ranking function
based techniques [9] to the construction of unambiguous automata.

2. We show that the NBA to SUBA state complexity trade-off is in Ω((n−1)!).
This is exponentially larger than the previously known best lower bound of
2n − 1 due to Schmidt [13]. The improved lower bound is obtained by a
full-automaton technique [14].

3. We present a new technique for proving the already known fact that the NBA
to UBA state complexity trade-off is at least 2n − 1. Our proof generalizes
to all common notions of acceptance for finite and infinite words, and is
conceptually simpler than the earlier proof based on ranks of matrices due
to Schmidt [13].

2 Notation and Preliminaries

An NBA is a 5-tuple A = (Σ,Q,Q0, δ, F ), where Σ is a finite alphabet, Q is a
finite set of states, Q0 ⊆ Q is the set of initial states, δ : Q×Σ → 2Q is the state
transition relation and F ⊆ Q is a set of accepting or final states. For notational
convenience, we often use (with abuse of notation) δ(S, a) to denote

⋃
q∈S δ(q, a)

for S ⊆ Q. Given a word α ∈ Σω (also called an ω-word), let α(j) denote the
jth letter of α. By convention, we say that α(0) is the first letter of α. A run ρ
of A on α is an infinite sequence of states q0q1q2 . . . such that qi+1 ∈ δ(qi, α(i))
and qi ∈ Q for all i ≥ 0. Given a run ρ of A on α, let ρ(j) denote the jth state
along ρ. The set inf (ρ) is the set of states of A that appear infinitely often along
ρ. A run ρ is called final if inf (ρ) ∩ F �= ∅; it is called accepting if it is final and
q0 ∈ Q0. An ω-word α is said to be accepted by NBA A iff there is an accepting
run of A on α. The set of ω-words accepted by A is called the language of A and
is denoted L(A). A state qs of an NBA is called a principal sink if the following
conditions hold: (i) qs is non-final, (ii) every state, including qs, has an outgoing
transition on every a ∈ Σ to qs, and (iii) qs has no outgoing transitions to
any state other than qs. It is easy to see that every NBA can be converted to
a language-equivalent NBA with a principal sink by adding at most one state.
Unless otherwise stated, we assume that all NBAs considered in this paper have
a principal sink.

This paper concerns unambiguous and strongly unambiguous Büchi automata.
An unambiguous Büchi automaton (UBA) is an NBA that has at most one
accepting run for every α ∈ Σω. An NBA is a strongly unambiguous Büchi
automaton (SUBA) if it has at most one final run for every α ∈ Σω. Clearly, a
SUBA is a special kind of UBA.
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Given an NBA A = (Σ,Q,Q0, δ, F ) and an ω-word α, the run-DAG of A
on α is a directed acyclic graph, denoted GAα , with vertices in Q × N. The
vertices of graph GAα are defined level-wise as follows. We define level 0 of GAα
to be L0 = {(q, 0) | q ∈ Q0}. For i ≥ 1, level i of GAα is defined inductively
as Li = {(q, i) | ∃(q′, i − 1) ∈ Li−1 such that q ∈ δ(q′, α(i − 1))}. The run-
DAG GAα is given by (V,E), where V =

⋃
i≥0 Li is the set of vertices and

E = {((q, i), (q′, i + 1)) | (q, i) ∈ V, (q′, i + 1) ∈ V, q′ ∈ δ(q, α(i))} is the
set of edges. It is easy to see that every path in GAα corresponds to a run of A
(from an initial state) on α, and vice versa. We call vertex (q, i) an F -vertex (or
final -vertex) if q ∈ F . Vertex (q, j) is said to be a successor of vertex (q, i), or
reachable from vertex (q, i), if there is a directed path in GAα from (q, i) to (q, j).
If, in addition, j = i + 1, vertex (q, j) is called an immediate successor of (q, i).
For notational convenience, for every natural number n ≥ 1, we use [n] to denote

the set {1, 2, . . . , n}, [n]odd (resp., [n]
even

) to denote the set of odd (resp., even)
integers in [n], and 〈n〉 to denote the set [n] ∪ {∞}, where ∞ > j for all j ∈ [n].

2.1 Full Rankings

In [9], Kupferman and Vardi showed that given an NBA A with n states and a
word α ∈ Σω, there exists a family of odd ranking functions that assign ranks
in [2n] to the vertices of GAα such that α �∈ L(A) iff all infinite runs of A on
α that start from its initial states get trapped in odd ranks. We extend the
notion of odd rankings and define a full-ranking of GAα = (V,E) as a function
r : V → 〈2n〉 that satisfies the following conditions: (i) for every (q, i) ∈ V ,
if r((q, i)) ∈ [2n]odd then q /∈ F , (ii) for every edge ((q, i), (q′, i + 1)) ∈ E,
r((q′, i+1)) ≤ r((q, i)), and (iii) every infinite path in GAα eventually gets trapped
in a rank in {∞}∪[2n]odd, with at least one path trapped in∞ iff w ∈ L(A). The
remainder of the discussion in this section closely parallels that in [9,7], where
ranking based complementation techniques for NBA were described.

For every α ∈ Σω, we define a unique full-ranking, r�A,α, of G
A
α along the same

lines as the definition of the unique odd ranking rKVA,α in [9,7]. Specifically, we

define a sequence of DAGs G0 ⊇ G1 ⊇ . . ., where G0 = GAα . A vertex v is finite
in Gi if there are no infinite paths in Gi starting from v, while v is F-free in Gi

if it is not finite and there is no F -vertex (q, l) that is reachable from v in Gi.
The DAGs Gi are now inductively defined as follows.

– For every i ≥ 0, G2i+1 = G2i\ {(q, l) | (q, l) is finite in G2i}.
– For every i ≥ 0, if G2i+1 has at least one F -free vertex, then G2i+2 = G2i+1\
{(q, l) | (q, l) is F-free in G2i+1}. Otherwise, G2i+2 is the empty DAG.

A full-ranking function r�A,α can now be defined as follows. For every i ≥ 0,

– If G2i has at least one finite vertex, then r�A,α((q, l)) = 2i for every vertex
(q, l) that is finite in G2i. Otherwise, no vertex is ranked 2i by r∗A,α.

– If G2i+1 has at least one F -free vertex, then r�A,α((q, l)) = 2i + 1 for every
vertex (q, l) that is F -free in G2i+1. Otherwise, r�A,α((q, l)) = ∞ for every
vertex (q, l) in G2i+1.
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Using the same arguments as used in [9], it can be shown that if A has n states,
the maximum finite (i.e., non-∞) rank in the range of r�A,α is in [2n]. In the
subsequent discussion, we use FullRankProc to refer to the above “technique” for
assigning full-ranks to vertices of a run-DAG.

Analogous to the concept of a level-ranking defined in [9], we define a full-
level ranking as a function f : Q → 〈2n〉 ∪ {⊥}, such that for every q ∈ Q, if
f(q) ∈ [2n]odd, then q �∈ F . Let FL represent the set of all full-level rankings and
FL∞ represent the subset of FL containing only those full-level rankings f such
that f−1(∞) �= ∅. Given two full-level rankings g1 and g2, and a letter a ∈ Σ, g2
is said to be a full-cover of (g1, a) if for all q ∈ Q such that g1(q) �= ⊥ and for all
q′ ∈ δ(q, a), g2(q

′) ≤ g1(q). A full-ranking r of GAα induces a full-level ranking for
every level l ≥ 0 of GAα such that all states not in level l of GAα are assigned rank
⊥. It is easy to see that if g and g′ are full-level rankings for levels l and l + 1
respectively, induced by a full-ranking r, then g′ is a full-cover of (g, α(l)). Let
max odd(g) (resp., max rank(g)) denote the highest odd rank (resp., highest
rank) in the range of full-level ranking g. A full-level ranking g is said to be tight
if the following conditions hold: (i) max rank(g) is in [2n]odd∪{∞}, and (ii) for
all i ∈ [2n]odd such that i ≤ max rank(g), there is a state q ∈ Q with g(q) = i.

The ranking r�A,α has several interesting properties that collectively character-
ize it. These are described in Lemma 1. Due to space restrictions, we are unable
to include proofs of all lemmas and theorems in the paper. All proofs omitted
from the paper can be found in [8].

Lemma 1. Let A = (Σ,Q,Q0, δ, F ) be an NBA, and α ∈ Σω. Let (q, l) be a
vertex in GAα . For every l ∈ N and q ∈ Q, we have the following.

1. There exists a level l∗ > 0 such that all full-level rankings induced by r�A,α

for levels l > l∗ are tight.
2. If (q, l) is not an F-vertex or r�A,α((q, l)) = ∞, there exists q′ ∈ δ(q, α(l))

such that r�A,α((q
′, l + 1)) = r�A,α((q, l)).

3. If (q, l) is an F-vertex with rank r�A,α((q, l)) ∈ [2n]even, there exists a vertex
(q′, l+1) such that q′ ∈ δ(q, α(l)) and either r�A,α((q

′, l+1)) = r�A,α((q, l)) or
r�A,α((q

′, l + 1)) = r�A,α((q, l))− 1.
4. If r�A,α((q, l)) �=∞, there is no q′ ∈ δ(q, α(l)) such that r�A,α((q

′, l+1)) =∞.

5. If r�A,α((q, l)) ∈ [2n]even, every path starting from (q, l) in GAα eventually
visits a vertex (q′, l′) such that 1 ≤ r�A,α((q

′, l′)) < r�A,α((q, l)).

6. If r�A,α((q, l)) ∈ [2n]odd and r�A,α((q, l)) > 1, there exists a (q′, l′) such

that (q′, l′) is an F -vertex reachable from (q, l) in GAα , and r�A,α((q
′, l′)) =

r�A,α((q, l))− 1.
7. If r�A,α((q, l)) = ∞, there exists a (q′, l′) such that (q′, l′) is an F -vertex

reachable from (q, l) in GAα , and r�A,α((q
′, l′)) =∞.

Properties 2, 3 and 4 in the above Lemma can be checked by examining consec-
utive levels of the ranked run-DAG; hence these are local properties. In contrast,
checking properties 5, 6 and 7 requires examining an unbounded fragment of the
ranked run-DAG; hence these are global properties.
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3 Improved Upper Bound by Rank Based Disambiguation

The main contribution of this section is a ranking function based algorithm,
called BüchiDisambiguate, that takes as input an NBA A = (Σ,Q,Q0, δ, F ) with
|Q| = n, and constructs a UBA U = (Σ,Z,Z0, δU , FU ) such that (i) L(U) =
L(A), and (ii) |Z| ∈ O(n · (0.76n)n). Without loss of generality, we assume that
Q = {q0, q1, . . . qn−1}, Q0 = {q0} and q0 �∈ F . For notational convenience, we
use “A-states” (resp., “U-states”) to refer to states of A (resp., states of U) in
the following discussion.

3.1 Overview

Drawing motivation from Schewe’s work [12], we define a state of U to be a
4-tuple (f,O,X, i), where i ∈ 〈2n〉, f : Q→ 〈2n〉∪{⊥} is a FL∞ ranking, and O
and X are subsets of Q containing A-states that are ranked i by f and satisfy
certain properties. Since every state of U gives a full-level ranking of A, a run of
U gives an infinite sequence of full-level rankings of A, which can be “stitched”
together to potentially obtain a full-ranking of GAα . The purpose of algorithm
BüchiDisambiguate is to define the transitions and final states of U in such a way
that a run of U on α ∈ Σω is accepting iff the “stitched” full-ranking of GAα
obtained from the run is exactly r�A,α, as defined in Section 2.1.

Informally, algorithm BüchiDisambiguate works as follows. Suppose U is in
state (f,O,X, i) after reading a finite prefix α(0) . . . α(k − 1) of α. On reading
the next letter, i.e. α(k), we want U to non-deterministically guess the full-level
ranking, say f ′, induced by r�A,α at level k + 1 of GAα . Furthermore, every such
choice of f ′ must be a full-cover of (f, α(k)) and must satisfy the local properties
in Lemma 1. Given f , f ′ and α(k), the local properties are easy to check, and
are used in algorithm BüchiDisambiguate to filter the full-level rankings that can
serve as f ′. Once a choice of f ′ has been made, algorithm BüchiDisambiguate
uses the O-, X- and i-components of the current state (f,O,X, i) to uniquely
determine the corresponding components of the next state (f ′, O′, X ′, i′). In
doing so, we use a technique reminiscent of that used by Miyano and Hayashi [10],
and subsequently by Schewe [12], to ensure that the global properties in Lemma 1
are satisfied by the sequence of full-level rankings corresponding to an accepting
run of U . Note that the choice of f ′ gives rise to non-determinism in the transition
relation of U . However, in every step of the run of U on α, there is a unique choice
of f ′ that can give rise to r�A,α when the full-level rankings corresponding to the
run are “stitched” together.

A closer inspection of Lemma 1 shows that there are two types of global
properties: those that relate to every path (property 5), and those that relate to
some path (e.g., properties 6 and 7). Schewe gave a ranking based construction to
enforce properties of the first type in the context of Büchi complementation [12].
We use a similar idea here for enforcing property 5. Specifically, suppose U is in
state (f,O,X, i) after reading α(0) . . . α(k− 1), and suppose f ′ has been chosen
as the full-level ranking of level k + 1 of GAα . Suppose further that we wish to
enforce property 5 for all vertices (q, k + 1) in GAα where q is assigned an even
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rank j by f ′. To do so, we set i′ to j, populate O′ with all A-states assigned rank
j by f ′, and use the O-components of subsequent U-states along the run to keep
track of the successors (in A) of all A-states in O′. During this process, if we
encounter an A-state qk with rank < j in the O-component of a U-state, we know
that property 5 is satisfied for all paths ending in qk. The state qk is therefore
removed from O, and the above process repeated until O becomes empty. The
emptiness of O signifies that all paths in GAα starting from A-states with rank
j at level k + 1 eventually visit a state with rank < j. Once this happens, we
reset O to ∅, choose the next (in cyclic order) even rank i and repeat the above
process. Using the same argument as used in [12], it can be shown that a run of U
visits a U-state with O = ∅ and i set to the smallest even rank infinitely often iff
the sequence of full-level rankings corresponding to the run satisfies property 5.

A naive way to adapt the above technique to enforce property 6 (resp., prop-
erty 7) in Lemma 1 is to choose an odd rank (resp., ∞ rank) i > 1, populate
O′ with a single non-deterministically chosen A-state assigned rank i by f ′,
and track a non-deterministically chosen single successor of this state in the O-
components of U-states along the run until we find an A-state that is final and
assigned rank i−1 (resp.,∞). The problem with this naive adaptation is that the
non-deterministic choice of A-state above may lead to multiple accepting runs
of U on α. This is undesirable, since we want U to be a UBA. To circumvent this
problem, we choose the O-component of the next state, i.e. O′ in (f ′, O′, X ′, i′),
deterministically, given the current U-state (f,O,X, i) and α(k). Specifically, for
every A-state qr in O, we find the α(k)-successors of qr in A that are assigned
rank i by f ′, and choose only one of them, viz. the one with the minimum in-
dex, to stay in O′. For notational convenience, for S ⊆ Q = {q0, . . . qn−1}, let
↓ S denote the singleton set {qi | qi ∈ S and ∀qj ∈ S, i ≤ j}. Then, we have
O′ =

⋃
qr∈O ↓ {ql | ql ∈ δ(qr, α(k)) and f ′(ql) = i}.

Choosing O′ as above has an undesired consequence: not all A-states that
are successors (in A) of some state in O and have rank i may be tracked in
the O-components of U-states along the run. This may prevent the technique of
Schewe [12] from detecting that property 6 (or property 7) is true in the sequence
of full-rankings corresponding to a run of U on α. To rectify this situation, we use
the X-component of U-states as follows. We periodically load the X-component
with a single A-state from O, which is then removed from O. All successors (in
A) of the A-state thus loaded in X are then tracked in the X-components of
U-states along the run, until we encounter a final A-state with the desired rank
(i− 1 for property 6, and ∞ for property 7) in X . Once this happens, we empty
X , load it with another A-state (specifically, the one with the minimum index)
from O, remove this chosen state from O, and repeat the process until both O
and X are emptied. When both O and X become empty, we set i to the next
rank i′ of interest in cyclic order, load O with all A-states assigned rank i′, and
repeat the entire process. Extending the reasoning used by Schewe in [12], it
can be shown that a run of U visits a U-state with O = ∅, X = ∅ and i set to
the smallest rank of interest infinitely often iff the corresponding sequence of
full-level rankings satisfies property 6 (or property 7, as the case may be).
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3.2 Our Algorithm and Its Analysis

The pseudocode for algorithm BüchiDisambiguate is given below. Note that the
checks for global properties are deferred until all full-level rankings have be-
come tight. This is justified by property 1 in Lemma 1. The choice of initial
state of U is motivated by the observation that q0 is ranked ∞ in the full-
level ranking induced by r�A,α at level 0 of GAα iff α ∈ L(A). Finally, algorithm
BüchiDisambiguate implements the following optimization when calculating the
next U-state (f ′, O′, X ′, i′) from a given U-state (f,O,X, i) and a ∈ Σ: if i is odd
or∞ and if δ(X, a) intersects O′, then X ′ is reset to ∅ instead of being populated
with δ(X, a). This is justified because every A-state in O′ must eventually have
one of its successors (in A) with rank i moved to the X-component of a U-state
further down the run, for the run of U to be accepting.

Algorithm : BüchiDisambiguate
Input: NBA A = (Σ,Q,Q0, δ, F )
Output: UBA U = (Σ,Z,Z0, δU , FU )

– States : Z = FL∞ × 2Q × 2Q × 〈2n〉. Furthermore, if (f,O,X, i) ∈ Z, then O ⊆ Q,
X ⊆ Q, and f ∈ FL∞ is such that ∀qj ∈ O ∪X, f(qj) = i.

– Initial State: Z0 = {(f,O,X, i) | f(q0) = ∞, O = X = ∅, i = 1 and ∀q ∈ Q (q �=
q0 → f(q) = ⊥)}.

– Transitions: For every (f ′, O′, X ′, i′) ∈ δU ((f,O,X, i), a), where a ∈ Σ, the follow-
ing conditions hold.
1. Let S = {ql | f(ql) �= ⊥}. For all qj �∈ δ(S, a), f ′(qj) = ⊥.
2. f ′ is a full-cover of (f, a).
3. For all qj ∈ Q such that f(qj) = ∞, there is a ql ∈ δ(qj , a) such that f ′(ql) =

f(qj).
4. For all qj ∈ Q \ F , there is a ql ∈ δ(qj , a) such that f ′(ql) = f(qj).
5. For all qj ∈ F such that f(qj) ∈ [2n]even, there is a ql ∈ δ(qj , a) such that

either f ′(ql) = f(qj) or f
′(ql) = f(qj)− 1.

6. For all qj ∈ Q such that f(qj) �= ∞, there is no ql ∈ δ(qj , a) such that
f ′(ql) = ∞.

7. In addition, O′, X ′ and i′ satisfy the following conditions.
(a) If f is not a tight full-level ranking, then O′ = X ′ = ∅, i′ = 1.
(b) If O ∪X �= ∅, then i′ = i. Furthermore, the following conditions hold. For

notational convenience, let O′′ =
⋃

qj∈O ↓ {ql | ql ∈ δ(qj , a) ∧ f ′(ql) = i}
and let X ′′ = {ql | ql ∈ δ(X, a) ∧ f ′(ql) = i}.
i. If i = 1, then O′ = X ′ = ∅.
ii. If i ∈ [2n]odd and i �= 1, then

a. If X = ∅, then X ′ =↓ O′′, O′ = O′′ \X ′.
b. Else if X ′′ ∩ O′′ �= ∅ or (∃ql ∈ δ(X, a) ∩ F, f ′(ql) = (i− 1)), then

X ′ = ∅, O′ = O′′.
c. Else, X ′ = X ′′, O′ = O′′.

iii. If i ∈ [2n]even , then O′ = {ql | ql ∈ δ(O, a) ∧ f ′(ql) = i}, X ′ = ∅.
iv. If i = ∞, then

a. If X = ∅, then X ′ =↓ O′′, O′ = O′′ \X ′.
b. Else if X ′′ ∩ O′′ �= ∅ or X ′′ ∩ F �= ∅, then X ′ = ∅, O′ = O′′.
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c. Else, X ′ = X ′′, O′ = O′′.
(c) If O ∪X = ∅, then X ′ = ∅. In addition, the following hold.

i. If (i = 1) then i′ = max rank(f ′).
Else if (i = ∞) then i′ = max({j | ∃q ∈ Q,f ′(q) = j} ∩ [2n]).
Else i′ = i− 1.

ii. O′ = {ql | f ′(ql) = i′}.
– FU = {(f,O,X, i) | O = X = ∅, i = 1, f is a tight full-level ranking}.

End Algorithm : BüchiDisambiguate

3.3 Proof of Correctness

Let ρ = (f0, O0, X0, i0), (f1, O1, X1, i1), . . . be an accepting run of the NBA U
constructed using algorithm BüchiDisambiguate. The run ρ induces a full-ranking
r of GAα as follows: for every i ≥ 0, r(q, i) = k iff fi(q) = k where k ∈ 〈2n〉.
Note that if fi(q) = ⊥, then q is not reachable in A from q0 after reading
α(0) . . . α(i − 1).

Lemma 2. For every vertex (q, l) in GAα , r((q, l)) = r�A,α((q, l)).

Theorem 1. L(U) = L(A).

Theorem 2. The automaton U is unambiguous.

Proof. Suppose, if possible, there is a word α ∈ Σω that has two distinct accept-
ing runs ρ1, ρ2 in U . By Lemma 2, r1((q

′, l′)) = r�((q′, l′)) = r2((q
′, l′)) for every

vertex (q′, l′) in GAα . Let (f1,l, O1,l, X1,l, i1,l) and (f2,lO2,l, X2,l, i2,l) be the lth

states reached along ρ1 and ρ2 respectively. We show below by induction on l
that (f1,l, O1,l, X1,l, i1,l) = (f2,l, O2,l, X2,l, i2,l) for all l ≥ 0.

Base Case : By our construction, O1,0 = O2,0 = X1,0 = X2,0 = ∅, i1,0 = i2,0 =
1. Since r1((q0, 0)) = r2((q0, 0)) as well, it follows that f1,0 = f2,0, and hence
(f1,0, O1,0, X1,0, i1,0) = (f2,0, O2,0, X2,0, i2,0).

Hypothesis : Assume the claim is true for l ≥ 0. Hence, (f1,l, O1,l, X1,l, i1,l) =
(f2,l, O2,l, X2,l, i2,l).

Induction Step : Let q ∈ Q be such that (q, l + 1) is a vertex in GAα . Since
r1((q

′, l′)) = r2((q
′, l′)) = r�A,α((q

′, l′)) for every vertex (q′, l′) in Gα, it fol-
lows that r1((q, l+1)) = r�((q, l+1)) = r2((q, l+1)). This implies f1,l+1(q) =
r�((q, l+1)) = f2,l+1(q). For every q′ ∈ Q such that (q′, l+1) is not in GAα , by
definition of level rankings, f1,l+1(q

′) = f2,l+1(q
′) = ⊥. Hence, f1,l+1(s) =

f2,l+1(s) for all s ∈ Q. We thus have the following relations: (i) f1,l+1 =
f2,l+1, and (ii) (f1,l, O1,l, X1,l, i1,l) = (f2,l, O2,l, X2,l, i2,l). Since step (7) of al-
gorithm BüchiDisambiguate uniquely determines the values of Ok,l+1, Xk,l+1,
ik,l+1 from the values of fk,l, fk,l+1, Ok,l, Xk,l, ik,l, for k ∈ 1, 2, it follows that
(f1,l+1, O1,l+1, X1,l+1, i1,l+1) = (f2,l+1, O2,l+1, X2,l+1, i2,l+1). This completes
the inductive step, and we have (f1,l, O1,l, X1,l, i1,l) = (f2,l, O2,l, X2,l, i2,l)
for all l ≥ 0. However, this contradicts the assumption that ρ1 and ρ2 are
distinct runs. Hence, ρ1 and ρ2 must be the same run of U .
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We have thus shown that for every α ∈ Σω, there is at most one accepting run
of U . It follows that U is unambiguous. ��

Theorem 3. The number of states of U is in O(n · (0.76n)n).

Proof. Every state of U is a (f,O,X, i) tuple, where f is a full-level ranking.
We encode (f,O,X, i) tuples as 3-tuples (p, g, i), where p ∈ {0, 1, 2} and g is a
modified ranking function similar to that used in [12,7].

While some states (f,O,X, i) in our construction correspond to tight full-level
rankings, others do not. We first use an extension of the idea in [12] to encode
(f,O,X, i) with tight full-level ranking f as a tuple (p, g, i), where g : Q →
{1, . . . , r} ∪ {−1,−2,−3,∞} and r = max odd(f). This is done as follows. For
all q ∈ Q but q /∈ O ∪ X , we let g(q) = f(q). If q ∈ O ∪ X and f(q) /∈ [r]odd,
then we let g(q) = −1 and i = f(q). This part of the encoding is similar to that
used in [12]. We extend this encoding to consider cases where q ∈ O ∪ X and
f(q) = k ∈ [r]odd.

There are three sub-cases to consider: (i) O ∪ X �= {q | q ∈ Q ∧ f(q) = k},
(ii) O∪X = {q | q ∈ Q ∧ f(q) = k} and O �= ∅, and (iii) X = {q | q ∈ Q ∧ f(q) =
k}. In the first case, we let p = 0, i = k, g(q) = −2 for all q ∈ O and g(q) = −3
for all q ∈ X . Since there exists a state q′ ∈ Q \ (O ∪X) with rank k, the range
of g contains k ∈ [r]odd in this case. In the second case, we let p = 1, i = k,
g(q) = k for all q ∈ O and g(q) = −3 for all q ∈ X . Finally, in the third case,
we let p = 2, i = k and g(q) = k for all q ∈ X . Thus, the range of g contains
k ∈ [r]odd in both the second and third cases as well. Note that the component
p in (p, g, i) is used only when i ∈ [r]odd. It is now easy to see that g is always
onto one of the sets Aj ∪ {1, 3, . . . , r}, where Aj is a subset of {∞,−1,−2,−3}.
The total number of functions of each of the above types is O(tight(n)). Since
p ∈ {0, 1, 2} following Schewe’s analysis [12], the total number of (p, g, i) tuples
is upper bounded by O(n · tight(n)) = O(tight(n+ 1)).

Now, let us consider states with non-tight full-level rankings. Our construc-
tion ensures that once an odd rank i appears in a full-level ranking g along
a run ρ, all subsequent full-level rankings along ρ contain every rank in {i, i +
2, . . .max odd(g)}. The O, X and i components in states with non-tight full-level
ranking are inconsequential; hence we ignore these. Suppose a state with non-
tight full-level ranking f contains the odd ranks {j, . . . , i−2, i}, where 1 < j ≤ i,
i = max odd(f). To encode this state, we first replace f with a level ranking g as
follows. For all k ∈ {j, . . . , i, i+1} and q ∈ Q, if f(q) = k, then g(q) = k− j + c,
where c = 0 if j is even and 1 otherwise. If f(q) = ∞, we let g(q) be ∞. Effec-
tively, this transforms f to a tight full-level ranking g by shifting all ranks down
by j − c. The original state can now be represented as the tuple (p, g,−(j − c)).
Note that the third component of a state represented as (p, g, i) is always non-
negative for states with tight full-level ranking, and always negative for states
with non-tight full-level ranking. Hence, there is no ambiguity in decoding the
state representation. Clearly, the total no. of states with non-tight full-level rank-
ings is O(n · tight(n)) = O(tight(n+ 1)). Thus, the total count of all (f,O,X, i)
states is in O(tight(n + 1)) = O(n · tight(n)), where tight(n) ≈ (0.76n)

n
. ��
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4 An Exponentially Improved Lower Bound
for NBA-SUBA Translation

In this section, we prove a lower bound for the state complexity trade-off in
translating an NBA to a strongly unambiguous Büchi automaton (SUBA). Our
proof technique relies on the full automaton technique of Yan [14].

Definition 1 (Full automaton). A full automaton A is described by the struc-
ture A = (Σ,Q, I, δ, F ) where Q is the set of states, I ⊆ Q is the set of
initial states, Σ = 2(Q×Q) is the alphabet and δ is defined as follows: for all
q, q′ ∈ Q, a ∈ Σ, 〈q, a, q′〉 ∈ Δ⇔ 〈q, q′〉 ∈ a.

Thus, a full automaton has a rich alphabet of size 2|Q|
2

, and every automaton
with |Q| states has an embedding in a full automaton with the same number
of states. An ω-word α over the alphabet Σ of a full automaton corresponds
directly to the run-DAG GAα of A. Correspondingly, a letter a ∈ Σ represents
the section of the run-DAG between two successive levels, and a finite word
w ∈ Σ∗ represents a finite section of the run-DAG.

For purposes of this section, we focus on a special family of full automata F =
{An | n ≥ 2}. Automaton An in this family is given by An = (Σn, Qn, In, δn, Fn),
where Qn = {q0, . . . , qn−1, qn} is a set of n + 1 states, In = {q0, . . . qn−2} is the
set of initial states, and Fn = {qn} is the singleton set of final states. We define
a Q-ranking for An to be a full-level ranking r : Qn → 〈n− 1〉 ∪ {⊥} such that
(i) r is a tight full-level ranking, (ii) r(qn) = ⊥, (iii) r(qn−1) = ∞, and (iv) for
every k ∈ [n− 1], |r−1(k)| = 1. The total number of Q-rankings of An is easily
seen to be (n− 1)!.

Let r1 and r2 be Q-rankings for An. The word w ∈ Σ∗n is said to be Q-
compatible with (r1, r2) if the following conditions are satisfied when w is viewed
as a finite section of the run-DAG of An, and r1 (resp., r2) is interpreted as the
full-level ranking of states at the first (resp., last) level of w.

– There is no path from the first level to the last level of w that either starts
or ends in qn.

– There is a path from qi in the first level of w to qj in the last level of w iff
either r1(qi) > r2(qj), or r1(qi) = r2(qj) ∈ [n− 1]odd ∪ {∞}. Such a path is
said to be final if it visits qn; otherwise, it is non-final.

Lemma 3. For every pair (r1, r2) of Q-rankings for An, there is a word w ∈ Σ∗n
that is Q-compatible with (r1, r2).

Proof sketch: We show how to construct w as the concatenation of three words
w1, w2, w3 ∈ Σ∗n. The proof that w1.w2.w3 is Q-compatible with (r1, r2) follows
from their construction, and uses an argument similar to that used in a related
proof in [14] (specifically, proof of Lemma 2 in [14]).

The word w1 is given by b1b2b3 . . . b2n, where each bi ∈ Σn = 2(Qn×Qn) is
defined as follows. For notational convenience, we use Idnon−final below as a
shorthand for {(qj , qj) | 0 ≤ j < n}, i.e. identity transitions for non-final states.
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q0 r1(q0) = 1

q1 r1(q1) = 2

qn−4 r1(qn−4) = n− 3

qn−3 r1(qn−3) = n− 2

qn−2 r1(qn−2) = n− 1

qn−1 r1(qn−1) = ∞

qn r1(qn) = ⊥

b1 b2 b3 b4 b5 b6 . . .

Fig. 1. Construction for w1

– b1 = Idnon−final ∪ {(qn−1, qn)}
– b2 = Idnon−final ∪ {(qn, qj) | 0 ≤ j < n}
– For 1 ≤ i ≤ n − 1, b2i+1 = Idnon−final ∪ {(qj , qn) | r1(qj) = n − i} and

b2i+2 = Idnon−final ∪ {(qn, qj) | r1(qj) < n− i}

Figure 1 shows the construction for an example word w1. The word w2 consists
of the single letter of Σn given by {(qi, qj) | r1(qi) = r2(qj) ∈ [n− 1]odd ∪ {∞}}.
The word w3 is constructed in the same manner as w1, but with r2 used in place
of r1.

Lemma 4. Let r1, r2 and r3 be Q-rankings for An. If w1 ∈ Σ∗n is Q-compatible
with (r1, r2) and w2 ∈ Σ∗n is Q-compatible with (r2, r3), then w1w2 is Q-compatible
with (r1, r3).

The proof follows from Lemma 3 and mimics the proof of a related result in [14]
(specifically, Lemma 3 in [14]).

We now show a factorial lower bound of the NBA to SUBA state complexity
trade-off. We make use of the following special class of UBA for this purpose. For
notational convenience, we use L(A{q}) to denote the set of ω-words accepted
by an NBA A = (Σ,Q,Q0, δ, F ) starting from state q ∈ Q.

Definition 2 (EUBA). A UBA A = (Σ,Q,Q0, δ, F ) is called a state-exclusive
UBA (EUBA) if for every state q ∈ Q either L(A{q}) ⊆ L(A) or L(A{q}) ⊆
Σω \ L(A). In other words, all words accepted starting from q are either in the
language of A or in its complement.

Theorem 4. Every EUBA that is language equivalent to the full automaton An

has at least (n− 1)! states.
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Proof. Let En be a EUBA such that L(En) = L(An). Let r1, r2, . . . , rn−1! be
the Q-rankings for An. Repeating this sequence of full-level rankings infinitely
many times, we get an infinite sequence of full-level rankings. Let wi be the word
(as constructed in the proof of Lemma 3) that is Q-compatible with (ri, ri+1),
for i ∈ [(n− 1)!− 1]. Let w be the infinite word (w1w2 . . . w(n−1)!−1)

ω.
From the construction outlined in the proof of Lemma 3, there is a final path

between qn−1 (ranked ∞) at the first level of states in wi to the same state
(ranked ∞) at the last level of states in wi, for every i ∈ [(n − 1)! − 1]. The
concatenation of these paths gives a path π′ that starts from qn−1 and visits the
final state qn infinitely often. Note that we cannot have a path in w that starts
from any state other than qn−1 and visits qn infinitely often. This is because a
visit to qn from any other state qj (�= qn−1) with rank k must necessarily be
followed by a visit to a state with rank < k. Hence, infinitely many visits to
qn will result in infinitely many rank reductions. This is an impossibility since
ranks cannot increase along a path. Hence, paths in w starting from every state
other than qn−1 can visit final states only finitely often.

Since qn−1 is not an initial state of An, the path π′ considered above is not an
accepting run of An. Hence, w �∈ L(An). Let a be the letter in Σn that represents
only the edge (q0, qn−1). Hence, the path q0π

′ is an accepting run of An, and
aw ∈ L(An).

Since L(En) = L(An), there must be an accepting run ρ of En on aw. Let k be
the smallest index such that ρ(k) ∈ inf (ρ) for all i ≥ k. Let T = (n−1)!−1, and

suppose |wi| = si for all i ∈ [T ], and s =
∑[T ]

i=1 si. For notational convenience,
let us also assume that s0 = 0. Let t be the smallest index such that t ≥ k
and t = p.s for some integer p > 0. Consider the sequence of indices t + n0.T +
s0, . . . t + nT .T + sT , where each ni ≥ 0 is such that ρ visits a final state of En

between consecutive indices in the sequence. If En has fewer than (n−1)! states,
there must be a state of En that repeats in ρ(t+n0.T + s0), . . . ρ(t+nT .T + sT ).
Let i, j ∈ {0, . . . T } be such that i < j and ρ(t+ni.T +si) = ρ(t+nj .T +sj) = z,
say. Clearly, the run ρ visits a final state of En between indices t+ni.T + si and
t + nj .T + sj . Let the segment of the word aw between these two occurrences
of z be v. Then, there is a path in En from z to itself along v that visits a final

state. It follows that vω ∈ L(E
{z}
n ).

We now show that vω is also in L(En). Consider the two Q-rankings ri and
rj mentioned above. Clearly, the word v is Q-compatible with (ri, rj). Since
ri �= rj and both are Q-rankings for An, there is a state qk for k ∈ [n − 2],
such that ri(qk) > rj(qk). By the construction outlined in the proof of Lemma 3,
there is a final run along v from state qk to itself. Since qk is an initial state of
An, there exists an accepting run of An on vω. Therefore, vω ∈ L(An); since
L(En) = L(An), v

ω ∈ L(En) as well.
Since ρ is an accepting run of En, it visits at least one final state of En

infinitely often. Therefore, there exists a strict suffix w′ of w starting from the
(t + ni.T + si)

th index such that the corresponding run of En starting at z sees

at least one final state infinitely often. Hence, w′ ∈ L(E
{z}
n ). However, the final
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run of An on w′ starts at qn−1 since this is the only state ranked ∞ in w. Since
qn−1 is not an initial state of An, w

′ /∈ L(An) and hence w′ /∈ L(En).

Thus, vω ∈ L(E
{z}
n ) and vω ∈ L(En), while w′ ∈ L(E

{z}
n ) and w′ /∈ L(En).

This contradicts the state-exclusivity property of EUBA. Hence, the number of
states of En is at least (n− 1)!. ��

Theorem 5. Every SUBA that is language equivalent to An has at least (n−1)!
states.

Proof. The proof follows from the observation that every SUBA is also a EUBA
by definition. ��

5 A New Lower Bound Proof for Disambiguation

We now show an exponential lower bound for the NBA-UBA state complexity
trade-off. This lower bound was already known from a result due to Schmidt [13].
However, the technique used by Schmidt involves computing ranks of specially
constructed matrices. In contrast, our proof uses the full automata technique.

Definition 3 (Trim UBA). Let A = (Σ,Q,Q0, δ, F ) be a UBA. A is trim if
L(A{q}) �= ∅ for every q ∈ Q.

Every UBA can be transformed to a language equivalent trim UBA simply by
removing states from which no word can be accepted. Let A be a full automaton
with alphabet Σ having 1 initial state, 1 final state, and n other (non-initial
and non-final) states. For each non-empty subset S of non-initial and non-final
states (there are 2n − 1 such subsets), let aS denote the letter (in Σ) on which
we have edges in A from the initial state to only the states in S. Similarly, let
bS denote the letter on which we have edges in A from only the states in S to
the final state, and also from the final state to itself. It is easy to see that aS1b

ω
S2

is accepted by A if and only if S1 ∩ S2 �= ∅. Let D be an unambiguous and trim
Büchi automaton accepting the same language as A.

Theorem 6. The number of states of D is at least 2n − 1.

Proof. For every state q of D, let L̂(D{q}) denote the set of words of the form bωS
accepted by D, starting from q. If s1 and s2 are initial states of D, by definition
of unambiguous automata, L̂(D{s1})∩ L̂(D{s2}) = ∅. Also if any state s in D has
paths to two distinct states r1 and r2 that are labeled by the same word l ∈ Σ∗,
then by definition of unambiguous and trim automata, L̂(D{r1}) and L̂(D{r2})
must be disjoint.

For a set T of states of D, define L̂(DT ) =
⋃

s∈T L̂(D{s}). If we also have

L̂(D{s1}) and L̂(D{s2}) disjoint for all distinct s1, s2 ∈ T , then L̂(DT ) equals
the symmetric difference (or xor) of the sets L̂(D{r}), where r ranges over T . Now
for each non-empty set K of the non-initial and non-final states of A, consider
the set KD of states in D that have an edge from an initial state of D on the
letter aK . Then L̂(DKD ) is the set of all words of the form bωS, where S is a
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subset of non-initial and non-final states of A such that S ∩ K �= ∅. Let this
set of words be called Λ(K). Since D is unambiguous, Λ(K) can be obtained as
the xor of languages L̂(D{t}), where t ranges over KD. We will now show that
for each non-empty subset S of non-initial and non-final states of A, the set
containing only the word bωS can be obtained by xoring appropriate languages

L̂(D{t}). Since there are 2n − 1 possible non-empty subsets S, this shows that
by xoring appropriate languages L̂(D{t}), we can get up to 22

n−1 different sets.
This, in turn, implies that the number of distinct values taken by t, i.e. number
of states in D, is at least 2n − 1.

We will prove the above claim by downward induction on the number of states
in S. Suppose S is the set of all n non-initial and non-final states of A. Then the
set containing only bωS can be obtained by xoring Λ(K), where K ranges over all
non-empty subsets of non-initial and non-final states of A. This is because bωS
occurs in all 2n − 1 (i.e, an odd number) languages Λ(K), where K ranges over
all non-empty subsets of non-initial and non-final states of A. However, for any
other non-empty subset S′ of non-initial and non-final states of A, bωS′ occurs
only in those Λ(K)s where K ∩ S′ �= ∅. The latter is precisely the set of all
subsets K excluding those that are disjoint from S′, and the number of such
subsets is even for |S′| < n.

Now suppose we can obtain singleton sets {bωS} for all S with |S| > t. Then we
can xor every Λ(K) suitably with singleton sets containing bωS for |S| > t, such
that the resulting modified languages Λ′(K) do not contain any bωS for |S| > t.
Now consider any set S of size t. Then take xor of the modified languages Λ′(K)
obtained above for all non-empty subsets K of S. By definition, bωS occurs in all
of these Λ′(K), which are odd in count (2t−1). For any other set S′ of cardinality
≤ t, its intersection with S is a strict subset of S. The word bωS′ doesn’t occur in
those Λ′(K)s where K is a non-empty subset of S \ S′; this, however, is odd in
count as S \ S′ is nonempty. So the sets containing bωS′ are even in number.

This proves that all singleton sets containing only bωS can be obtained for all
nonempty subset S of non-initial and non-final states of A. As argued above,
this implies that D must have at least 2n − 1 states. ��

Note that the above proof makes no use of the acceptance condition (i.e. Büchi,
Müller, Streett, Rabin, parity, etc.) of the automaton, nor requires the words
to be infinite. Hence it works for all acceptance conditions and even for finite
words.

6 Conclusion

We now summarize our results on the state complexity trade-off in transform-
ing an NBA to UBA and SUBA. Let SizeNBA:C(n) denote the worst-case state
complexity of an automaton in class C that accepts the same language as an
NBA with n states. Table 1 shows the bounds of obtained from this paper, and
compares them with previous best bounds. We propose to work towards closing
the complexity gaps further in future.
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Table 1. Comparison of state complexity trade-offs

Target SizeNBA:C(n) from this paper SizeNBA:C(n) from earlier work
class (C) Lower bound Upper bound Lower bound Upper bound

UBA 2n − 1 (Thm 6) O(n · (0.76n)n) (Thm 3) 2n − 1 [13] 4 · (3n)n [6]
SUBA Ω((n− 1)!) (Thm 5) - 2n − 1 [13] O((12n)n) [3]
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Abstract. We study the time-bounded reachability problem for monotonic hy-
brid automata (MHA), i.e., rectangular hybrid automata for which the rate of
each variable is either always non-negative or always non-positive. In this paper,
we revisit the decidability results presented in [5] and show that the problem is
NEXPTIME-complete. We also show that we can effectively compute fixed points
that characterise the sets of states that are reachable (resp. co-reachable) within
T time units from a given state.

1 Introduction

Hybrid systems form a general class of systems that mix continuous and discrete be-
haviors. Examples of hybrid systems abound in our everyday life, particularly in ap-
plications where an (inherently discrete) computer system interacts with a continuous
environment. The need for modeling and analysing hybrid systems is thus obvious.

Hybrid automata are arguably among the most prominent families of models for
hybrid systems [7]. Hybrid automata are finite automata (to model the discrete part of
the system) augmented with a finite set of real-valued variables (to model the continuous
part of the system). The variables evolve with time elapsing, at a rate which is given by
a flow that depends on the current location of the automaton. The theory of hybrid
automata has been well developed for about two decades, and tools to analyse them are
readily available, for instance HYTECH [8,9].

Hybrid automata are thus a class of powerful models, yet their high expressiveness
comes at a price, in the sense that the undecidability barrier is rapidly hit. Simple
reachability properties are undecidable even for the restricted subclass of stopwatch
automata, where the rate of growth of each variable stays constant in all locations and
is restricted to either 0 or 1 (see [10] for a survey).

On the other hand, a recent and successful line of research in the setting of timed
automata has outlined the benefits of investigating timed-bounded variants of classical
properties [12,14]. For instance, while language inclusion is, in general undecidable for
timed automata, it is decidable when considering only executions of bounded duration
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[14]. Following this line of research, we have recently investigated the decidability of
time-bounded reachability for rectangular hybrid automata, i.e., whether a given state
is reachable by an execution of duration at most T, for a given T [5]. We have shown
that time-bounded reachability is decidable for rectangular hybrid automata with non-
negative rates (RHA≥0), while it is well-known that (plain, time unbounded) reachabil-
ity is undecidable for this class [10]. We have also shown that the decidability frontier
is quite sharp: time-bounded reachability becomes undecidable once we allow either
diagonal constraints in the guards or a single variable to have both positive and nega-
tive rates. The decidability result relies on a so-called contraction operator that allows
to construct, from any run of duration at most T of an RHA≥0 H, an equivalent run
that reaches the same state, but whose length (in terms of number of discrete transi-
tions) is uniformly bounded by a function F of the size of the automaton H and the
bound T. Hence, deciding reachability within T time units reduces to exploring runs of
bounded lengths only, which is algorithmically feasible [5]. Yet, this yields only a non-
deterministic algorithm with doubly exponential time complexity for a strict subclass of
RHA≥0, and no lower bound is given.

In the present work, we revisit and extend the results from [5], both from the theo-
retical and the practical points of view. First, we consider the class of monotonic hybrid
automata (MHA for short) which are rectangular hybrid automata where the rate of
each variable is either always non-negative or always non-positive (thus, MHA gen-
eralise RHA≥0). Second, we provide a new contraction operator that allows to derive
a singly exponential upper bound on the lengths of the runs that need to be consid-
ered, thereby providing an NEXPTIME algorithm for the whole class of MHA. Third,
we show that this new algorithm is optimal, by establishing a matching lower bound.
Hence, time-bounded reachability for RHA≥0 is NEXPTIME-complete. Fourth, we ex-
tend those results towards practical applications, by showing that we can effectively
compute the set of states that are reachable (resp. co-reachable) within T time units,
from a given state. Finally, we apply those ideas to two examples of RHA≥0 for which
the classical (time-unbounded) forward and backward fixpoints do not terminate. We
manage to compute, using HYTECH, the set of states reachable within T time units for
values of T that are sufficient to prove non-trivial properties of those examples

Note that the missing proofs can be found in the companion technical report [6].

2 Definitions

Let I be the set of intervals of real numbers with endpoints in Z ∪ {−∞,+∞}. Let X
be a set of continuous variables, and let Ẋ = {ẋ | x ∈ X} be the set of dotted variables,
corresponding to the variables’ time derivatives. A rectangular constraint over X is an
expression of the form x ∈ I where x belongs to X and I to I. A diagonal constraint
over X is a constraint of the form x − y ∼ c where x, y belong to X , c to Z, and ∼
is in {<,≤,=,≥, >}. Finite conjunctions of diagonal and rectangular constraints over
X are called guards, and over Ẋ are called rate constraints. A guard or rate constraint
is rectangular if all its constraints are rectangular. We denote by G (X) and R (X)
respectively the sets of guards and rate constraints over X .
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Linear, Rectangular and Singular Hybrid Automata. A linear hybrid automaton (LHA)
is a tupleH = (X,Loc,Edges,Rates, Inv, Init) where X = {x1, . . . , x|X|} is a finite
set of continuous variables ; Loc is a finite set of locations; Edges ⊆ Loc× G (X) ×
2X × Loc is a finite set of edges; Rates : Loc �→ R (X) assigns to each location a
constraint on the possible variable rates; Inv : Loc �→ G (X) assigns an invariant to
each location; and Init ⊆ Loc is a set of initial locations. For an edge e = (�, g, Y, �′),
we denote by src (e) and trg (e) the locations � and �′ respectively, g is called the guard
of e and Y is the reset set of e. In the sequel, we denote by rmax and cmax the maximal
constants occurring respectively in the constraints of {Rates(�) | � ∈ Loc} and of
{Rates(�) | � ∈ Loc} ∪ {g | ∃(�, g, Y, �′) ∈ Edges}.

An LHA has non-negative rates if for all variables x, for all locations �, the constraint
Rates(�) implies that ẋ must be non-negative. A rectangular hybrid automaton (RHA)
is a linear hybrid automaton in which all guards, rates, and invariants are rectangular. In
the case of RHA, we view rate constraints as functions Rates : Loc×X → I that asso-
ciate with each location � and each variable x an interval of possible rates Rates(�)(x).
A monotonic hybrid automaton (MHA) is an RHA such that, for all variable x: either
Rates(�, x) ⊆ [0,+∞) in all locations �; or Rates(�, x) ⊆ (−∞, 0] in all locations
�. A singular hybrid automaton (SHA) is an RHA such that for all locations � and for
all variables x: Rates(�)(x) is a singleton. We note SMHA and RHA≥0 for singular
MHA, non-negative rates RHA resp. Note that MHA generalises RHA≥0.

LHA Semantics. A valuation of a set of variables X is a function ν : X �→ R.
We denote by 0 the valuation that assigns 0 to each variable. For a valuation x of
X and a guard g ∈ G (X), we write v |= g iff v satisfies g. Given an LHA H =
(X,Loc,Edges,Rates, Inv, Init, X), a state of H is a pair (�, ν), where � ∈ Loc and
ν is a valuation of X . The semantics of H is defined as follows. For a state s = (�, ν)

of H, an edge step (�, ν)
e−→ (�′, ν′) can occur and change the state to (�′, ν′) if

e = (�, g, Y, �′) ∈ Edges, ν |= g, ν′(x) = ν(x) for all x �∈ Y , and ν′(x) = 0 for all

x ∈ Y ; for a time delay t ∈ R+, a continuous time step (�, ν)
t−→ (�, ν′) can occur and

change the state to (�, ν′) if there is a vector r = (r1, . . . r|X|) such that r |= Rates(�),
ν′ = ν + (r · t), and ν + (r · t′) |= Inv(�) for all 0 ≤ t′ ≤ t.

A path inH is a finite sequence e1, e2, . . . , en of edges such that trg (ei) = src (ei+1)
for all 1 ≤ i ≤ n − 1. A timed path of H is a finite sequence of the form π =
(t1, e1), (t2, e2), . . . , (tn, en), such that e1, . . . , en is a path in H and ti ∈ R+ for all
0 ≤ i ≤ n. For all k, �, we denote by π[k : �] the maximal portion (ti, ei), (ti+1, ei+1),
. . . , (tj , ej) of π such that {i, i + 1, . . . , j} ⊆ [k, �] (note that the interval [k, �] could
be empty, in which case π[k : �] would be empty too). Given a timed path π =
(t1, e1), (t2, e2), . . . , (tn, en) of an SHA, we let Effect (π) =

∑n
i=1 Rates(�i−1) · ti

be the effect of π (where �i = src (ei) for all 1 ≤ i ≤ n).
A run in H is a sequence s0, (t1, e1), s1, (t2, e2), . . . , (tn, en), sn s.t. (i) (t1, e1),

(t2, e2), . . . , (tn, en) is a timed path in H, and (ii) for all 0 ≤ i < n, there exists

a state s′i of H with si
ti+1−−→ s′i

ei+1−−−→ si+1. Given a run ρ = s0, (t1, e1), . . . , sn,
let first (ρ) = s0, last (ρ) = sn, duration (ρ) =

∑n
i=1 ti, and |ρ| = n + 1. We

say that ρ is T-time-bounded (for T ∈ N) if duration (ρ) ≤ T. Given two runs
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ρ = s0, (t1, e1), . . . , (tn, en), sn and ρ′ = s′0, (t
′
1, e

′
1), . . . , (t

′
k, e

′
k), s

′
k with sn = s′0,

we let ρ · ρ′ denote the run s0, (t1, e1), . . . , (tn, en), sn, (t
′
1, e

′
1), . . . , (t

′
k, e

′
k), s

′
k.

Note that a unique timed path TPath (ρ) = (t1, e1), (t2, e2), . . . , (tn, en), is asso-
ciated with each run ρ = s0, (t1, e1), s1, . . . , (tn, en), sn. Hence, we sometimes abuse
notation and denote a run ρ with first (ρ) = s0, last (ρ) = s and TPath (ρ) = π by
s0

π−→ s. The converse however is not true: given a timed path π and an initial state s0,
it could be impossible to build a run starting from s0 and following π because some
guards or invariants along π might be violated. However, when the automaton is singu-
lar, such a run is necessarily unique if it exists, and we denote by Run (s0, π) the func-
tion that returns the unique run ρ such that first (ρ) = s0 and TPath (ρ) = π if it exists,
and ⊥ otherwise. Note that, when considering an SHA: if ρ = (�0, ν0)

π−→ (�n, νn) is a
run, then for all x that is not reset along ρ: νn(x) = ν0(x) + Effect (π) (x).

Time-Bounded Reachability Problem. While the reachability problem asks whether
there is a run reaching a given goal location, we consider only runs with bounded dura-
tion.

Problem 1 (Time-bounded reachability problem).Given an LHAH = (X,Loc,Edges,
Rates, Inv, Init), a location Goal ∈ Loc and a time bound T ∈ N, the time-bounded
reachability problem is to decide whether there exists a finite run ρ = (�0,0)

π−→
(Goal, ·) ofH with �0 ∈ Init and duration (ρ) ≤ T.

This problem is decidable [5] for RHA≥0, but its exact complexity was left open until
now. We prove in Section 4 that it is NEXPTIME-complete for MHA . This problem
is known to become undecidable either when diagonal constraints are allowed in the
guards, or when non-monotonic RHA are considered [5]. In Section 5, we extend these
results by showing how to compute a finite and algorithmically manipulable represen-
tation of the set of states that are reachable within T time units.

Let us illustrate, by means of the MHA (actually an RHA≥0) H in Fig. 1 (left),
the difficulties encountered when computing the reachable states. In this example, one
can show that the set of reachable states is not a finite union of polyhedra, see Fig. 1
(right). Moreover, one can observe that the number of bits necessary to encode the states
reachable from (�0, 0, 0) grows linearly with the length of the run. This example shows
that finding an adequate, compact and effective representation (such as regions in the
case of Timed Automata [2]) for the set of reachable states of an MHA is not trivial
(and, in full generality, impossible because reachability is undecidable for this class).
Nevertheless, in Section 5, we show that, for MHA, an effective representation of the
set of states that are reachable within T time units can be computed.

3 Bounding the Length of Time-Bounded Runs

In this section, we prove the main technical result of the paper. For the sake of clarity,
we consider a singular MHA H = (X,Loc,Edges,Rates, Inv, Init) and explain later
why the results extend to general MHA. The result we prove is that ‘H can reach a
state s within T time unit iff it can reach s within T time unit by a run of bounded
length, where the bound is uniform: it depends only on T and on the number |H| of bits
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(0, 0)

y = 1

x = 1

�1 :

Fig. 1. An MHA with its set of reachable states

necessary to encode H (with standard encoding for the constants). More precisely, let
F (H,T) = 24× (T× rmax + 1)× |X |2 × |Loc|2 × (2 × cmax + 3)2×|X|. Then:

Theorem 2. LetH be an SMHA, T be a time bound and let s1 and s2 be two states of
H. Then H admits a T-time-bounded run ρ with first (ρ) = s1 and last (ρ) = s2 iff it
admits aT-time-bounded run ρ′ s.t. |ρ′| ≤ F (H,T), first (ρ′) = s1 and last (ρ′) = s2.

This theorem will be used in the next sections to obtain optimal algorithms for deciding
time-bounded reachability. Observe that F (H,T) = O

(
T× 2|H|

)
. Thus, Theorem 2

says that, to decide T-time-bounded reachability, we only need to consider runs whose
length is exponential in the size of the instance (H,T).

We establish this result in two steps. First, we show that each time-bounded run
can be split into a bounded number of so-called type-2 (sub-)runs (see hereunder
for the definitions of type-0, type-1 and type-2 runs). Because of the density of time, we
cannot bound the length of those type-2 runs, yet we show that they enjoy properties
that allow us to replace each type-2 run by an equivalent run of bounded length.
By equivalent we mean a run that starts and ends in the same states, and has the same
duration. Combining the bounds on the number of type-2 runs and on the length of the
runs we substitute to the original type-2 runs, we obtain Theorem 2.

Contraction Operator. To obtain the bounded length runs that we substitute to the
original type-2 runs, we rely on a contraction operator. As this operator is central to
our proof we start by describing it intuitively1. Let ρ = (�0, ν0), (t1, e1), (�1, ν1), . . . ,
(tn, en), (�n, νn) be a run, and let π = TPath (ρ). We contract π by looking for a pair
of positions i < j s.t. �i = �j (i.e., π[i+ 1 : j] forms a loop) and s.t. all locations
�i+1, �i+2, . . . , �j occur in the prefix π[1 : i]. An example is the timed path of the run
ρ in the top of Fig. 2. Then, the contraction consists, roughly speaking, in deleting the
portion π[i + 1 : j] from π, and in reporting the delays ti+1,. . . , tj−1 to the other
occurrences of �i, . . . , �j−1 in π (that exist by hypothesis), see Fig. 2. Obviously, this
contraction returns a timed path with shorter length. We show (Lemma 7 hereunder)
that, by repeatedly applying this contraction, we obtain a timed path Cnt∗ (π) whose
length is bounded by |Loc|2 + 1, i.e. a value that does not depend on the length of π.

Now, we can lift the definition of the contraction operator to runs: for a run ρ,
Cnt (ρ) = Run (first (ρ) ,Cnt∗ (TPath (ρ))). Clearly, there is, in general, no guarantee

1 The definition of this operator is crucial to obtain the NEXPTIME algorithm in Section 4. It
differs from the one introduced in [5], which does not allow to obtain an NEXPTIME algo-
rithm.
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ρ = (�0, ν0) (�1, ν1) (�0, ν2) (�1, ν3) (�2, ν4)
t1, e1 t2, e2 t3, e3 t4, e4

Cnt (TPath (ρ)) = �0 �1 �2
t1 + t3, e1 t2 + t4, e4

cycle

Fig. 2. Illustrating the contraction operator

that this contracted run exists, i.e. that Cnt (ρ) �= ⊥ (see examples hereunder). How-
ever, we will show that, when correctly applied to so-called type-2 runs (see hereunder
for the precise definition), Cnt (ρ) produces a genuine run of bounded length that starts
and ends in the same states as the original run.

Let us now discuss several concrete examples of this contraction procedure. In all
these examples, we assume an MHA with a single variable x whose rate is 1 in all lo-
cations, and we consider the run ρ depicted in Fig. 2. We also let π′ = Cnt (TPath (ρ))
and ρ′ = Run ((�0, ν0), π

′) – thus, ρ′ could be equal to ⊥. First assume that ν0(x) = 0,
that t1 = t2 = t3 = t4 = .1 and that all edges e1, . . . , e4 dot not reset x. In this case,
ρ′ is a genuine run that reaches (�2, .4). However, as remarked above, there are many
cases where either ρ′ = ⊥ or ρ′ �= ⊥ but does not reach the same state as ρ. Let us
observe four of these cases, as they will be used later to justify our constructions.
Case 1. Assume x is never reset along ρ, ν0(x) = 0, t1 = t3 = 1 and the guard of e1
is x = 1. Then, ρ′ = ⊥ as ν0(x) + t1 + t3 = 2 and does not satisfy the guard of e1.
Intuitively, the problem occurs because x crosses value 1 along ρ, and the compression
reports the delay t3, occurring after x crosses 1 in the original run, to a part where x ≤ 1
in the original run. To avoid this, we split the run once a variable changes its region,
where the regions are [0, 1) and all [a, a], (a, a+ 1) for a ≥ 1. Since we consider time-
bounded runs, we obtain a bounded number of sub-runs. Note that we do not split when
a variable moves from [0, 0] to (0, 1) or vice-versa, because the density of time allows
a variable to be reset and to increase strictly an unbounded number of times in any time
interval. Hence, this splitting strategy is not sufficient to guarantee that Cnt (ρ) �= ⊥
and is equivalent to ρ, as shown by the next three cases, where x is in [0, 1) along ρ.
Case 2. Assume ρ′ �= ⊥, e1 resets x, e2, e3 and e4 do not reset x and t1 = t2 = t3 =
t4 = .1. Then, ν4(x) = t2 + t3 + t4 = .3. Observe that ν4(x) depends only on the run
portion that occurs after e1 because e1 is the last edge to reset x. On the other hand,
ρ′ reaches a state (�2, ν) with ν(x) = t2 + t4 = .2 �= ν4(x), because the contraction
reports, before the last reset (e1), the delay t3 that occurs after the last reset in ρ.
Case 3. Assume ν0(x) = .8, t1 = t3 = .1, the guard of e1 is x < 1 and e1 resets x.
Then, ρ′ = ⊥, as ν0(x)+t1+t3 = 1, which does not satisfy the guard of e1. Intuitively,
the problem occurs because the time delay t3 that takes place after the first reset of x in
ρ has been reported before the first reset of x.
Case 4. Assume ν0(x) = 0, t1 = 0, t2 = t3 = t4 = .1, e2, e3 and e4 reset x, and
the guard of e1 is x = 0. Further assume that that x has just been reset when entering
�0. Then, ρ′ = ⊥, as ν0(x) + t1 + t3 = .1, which does not satisfy the guard of e1.
Intuitively, the problem occurs because, x is null when entering and leaving the first
occurrence of �0, while it is null when entering and non-null when leaving the second
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occurrence of �0. Thus, the time delay t3 should not be reported to the first occurrence
of �0. To avoid this, we label locations with special regions telling us whether x is null
when leaving the location (region 0=) or not (0+), and we will forbid the contraction
operator to report delay from one location to another with different regions.

The actual splitting into type-2 runs proceeds stepwise: we split a run into type-1
runs, then each type-1 in type-2 runs, so that we avoid the pitfalls described above. As
explained in the discussion of case 1 above, we first need to track the regions of the
variables, thanks to the following construction.

Region Labelling. Let Reg (cmax) =
(
{[a, a], (a − 1, a) | a ∈ {1, . . . , cmax}} ∪

{0=,0+, (cmax,+∞)}
)

be the set of regions, and further let Reg (cmax, X) denote
the set of all functions r : X �→ Reg (cmax) that assign a region to each variable. By
abuse of language, we sometimes call regions elements of Reg (cmax, X) too. Remark
that the definition of Reg (cmax, X) differs from the classical regions [2] by the ab-
sence of [0, 0] which is replaced by two symbols: 0= and 0+, and by the fact that no
information is retained about the relative values of the fractional parts of the variables.
The reason of the introduction of the two regions 0= and 0+ is to avoid the problem
occurring in Case 4 above. When testing for membership to a region, 0+ and 0= should
be interpreted as [0, 0], i.e., v ∈ 0+ and v ∈ 0= hold iff v = 0. Given a valuation ν of
the set of variable X , and r ∈ Reg (cmax, X), we let ν ∈ r iff ν(x) ∈ r(x) for all x,
and, provided that ν > 0, we denote by [ν] the (unique) element from Reg (cmax, X)
s.t. ν ∈ [ν]. Remark that for all sets of variable X and all maximal constants cmax:
|Reg (cmax, X) | ≤ (2×cmax+3)|X|. Let r1 and r2 be two regions in Reg (cmax, X),
and let v : X �→ R be a function assigning a rate v(x) to each variable x. Then, we
say that r2 is a time successor of r1 under v (written r1 ≤v

ts r2) iff there are ν1 ∈ r1,
ν2 ∈ r2 and a time delay t s.t. ν2 = ν1 + t · v. Remark that, by this definition, we
can have r1 ≤v

ts r2, r1(x) = 0= and r2(x) = 0+ for some variable x (for instance, if
v(x) = 0).

Let us now explain how we label the locations of H by regions. We let R (H) =
(X,Loc′,Edges′,Rates′, Inv′, Init′) be the SMHA where:

– Loc′ = Loc× Reg (cmax, X) and Init′ = Init× {0=,0+}X
– for all (�, r) ∈ Loc′: Rates′(�, r) = Rates(�); Inv(�, r) = Inv(�)∧

∧
x:r(x)=0=

x = 0

– There is an edge e′ =
(
(�, r), g ∧ x ∈ r′′ ∧ g0, Y, (�′, r′)

)
in Edges′ iff there are an

edge e = (�, g, Y, �′) in Edges and a region r′′ s.t.: r ≤Rates(�)
ts r′′, for all x �∈ Y :

r′(x) = r′′(x), for all x ∈ Y : r′(x) ∈ {0=,0+} and g0 =
∧

x∈X g0(x) where
for all x ∈ X : g0(x) = (x = 0) if r(x) = 0=; g0(x) = (x > 0) if r(x) = 0+;
and g0(x) = true otherwise. In this case, we say that e is the (unique) edge of H
corresponding to e′. Symmetrically, e′ is the only edge corresponding to e between
locations (�, r) and (�′, r′).

It is easy to see that this construction incurs an exponential blow up in the number
of locations, but preserves reachability of states. More precisely, |Loc′| ≤ |Loc| ×
|Reg (cmax, X) | = |Loc| × (2× cmax + 3)|X| and:
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Lemma 3. H admits a run ρ with first (ρ) = (�, ν) and last (ρ) = (�′, ν′) iff there are
r and r′ s.t. R (H) admits a run ρ′ with first (ρ′) = ((�, r), ν), last (ρ′) = ((�′, r′), ν′),
duration (ρ) = duration (ρ′) and |ρ| = |ρ′|.

Intuitively, the regions that label locations in R (H) track the region to which each
variable belongs when entering the location. However, in the case where a variable x
enters a location with value 0, we also need to remember whether x is still null when
crossing the next edge, to avoid the issue with the contraction operator described in case
4 above. This explains the two regions, 0= and 0+, corresponding to 0. They encode
the fact that the variable is null (resp. strictly positive) when leaving the location.

Type-0 and Type-1 Runs. Without loss of generality, we assume that, if a state is reach-
able, then it is reachable by a run of the same duration which can be split into at most
T× rmax+ 1 portions of duration < 1

rmax . In practice, this can be achieved by adding
one self-loop on all locations of R (H), which does not impact time-bounded reachabil-
ity. Such runs of ρ of R (H) are called type-0 runs and are of the form ρ = ρ0 · ρ1 · · · ρk
s.t. for all 0 ≤ i ≤ k: duration (ρi) < 1

rmax . Each ρi is called a type-1 run. Intuitively,
each variable will cross at most one integer value different from 0 in each type 1 run,
because the automaton is monotonic. For instance, if x ∈ (2, 3) at the beginning of a
type-1 run, then x can reach (3, 4) along the run, but will never cross 4. However, x
could be reset and cross 0 an unbounded number of times because of time density.

Type-2 Runs. Let ρ = (�0, ν0), (t1, e1), (�1, ν1), . . . , (tn, en), (�n, νn) be a type-1 run
s.t. duration (ρ) ≤ T. Let Sρ be the set of all 0 < i ≤ n s.t:

∃x ∈ X :
(
�νi−1(x)� �= �νi(x)�

)
or
(
�νi−1(x)� > 0 and 0 = 〈νi−1(x)〉 < 〈νi(x)〉

)
where �x� and 〈x〉 denote respectively the integral and fractional parts of x. Roughly
speaking, each transition (ti, ei) with i ∈ Sρ corresponds to the fact that a variable
changes its region, except in the case where the variable moves from 0 to (0, 1) or from
(0, 1) to 0: such transitions are not recorded in Sρ. Since each variable crosses a strictly
positive integer value at most once along the type-1 run ρ, |Sρ| can be bounded:

Lemma 4. For all type-1 run ρ: |Sρ| ≤ 3× |X |.

Had we recorded in Sρ the indices of the transitions from (�, ν) to (�′, ν′) s.t. ν(x) = 0
and ν(x) ∈ (0, 1) for some variable x, Lemma 4 would not hold, and we could not
bound the size of Sρ by a value independent from |ρ|. Indeed, in any time interval, the
density of time allows a variable to be reset and increase an arbitrary number of times.

Let us now explain how we split type-1 runs into type-2 runs. We first consider an
example. Consider an RHA with two variables x, y (with rate 1) and one of its runs

ρ = (�0, 2.1, .7)
.4,e1−−−→ (�1, 2.5, 1.1)

.1,e2−−−→ (�2, 2.6, 1.2)
.1,e3−−−→ (�3, 0, 1.3)

.1,e4−−−→
(�4, .1, 1.4)

.1,e5−−−→ (�3, 0, 1.5), and where e3 and e5 reset x. Then Sρ = {1, 3} because y
changes its integral part from (�0, 2.1, .7) to (�1, 2.5, 1.1) andx is reset by e3 and changes
its integral part. Also, {4, 5} ∩ Sρ = ∅ as x and y stay resp. in [0, 1) and (1, 2). Then,

ρ is split in 5 parts: first ρ0 = (�0, 2.1, .7); then ρ′1 = (�0, 2.1, .7)
.4,e1−−−→ (�1, 2.5, 1.1);
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then ρ1 = (�1, 2.5, 1.1)
.1,e2−−−→ (�2, 2.6, 1.2); then ρ′2 = (�2, 2.6, 1.2)

.1,e3−−−→ (�3, 0, 1.3)

and ρ2 = (�3, 0, 1.3)
.1,e4−−−→ (�4, .1, 1.4)

.1,e5−−−→ (�3, 0, 1.5).
Formally, assume ρ = s0, (t1, e1), s1, . . . , (tn, en), sn, and Sρ = {p1, . . . , pk},

with p1 ≤ p2 ≤ · · · ≤ pk. Then, we let ρ0, ρ1, . . . , ρk be the sub-runs s.t.: ρ =
ρ0 ·sp1−1, (tp1 , ep1), sp1 ·ρ1 ·sp2−1, (tp2 , ep2), sp2 , . . . , spk−1, (tpk

, epk
), spk

·ρk. Each
ρi is called a type-2 run, and can be empty. In the example above, ρ1 and ρ2 are type-2
runs. The next lemma summarises the properties of this construction:

Lemma 5. Let ρ be a type-1 run of R (H) with duration (ρ) ≤ T. Then, ρ is split into:
ρ0 ·ρ′1 ·ρ1 ·ρ′2 ·ρ2 · · · ρ′k ·ρk where each ρi is a type-2 run; k ≤ 3×|X |; |ρ′i| = 1 for all
1 ≤ i ≤ k; and for all 1 ≤ i ≤ k: ρi = (�0, ν0), (t1, e1), . . . , (tn, en), (�n, νn) implies
that, for all x ∈ X: (i) either there is a ∈ N>0 s.t. for all 0 ≤ j ≤ n: νj(x) = a and x
is not reset along ρi; (ii) or for all 0 ≤ j ≤ n: νj(x) ∈ (a, a+ 1) with a ∈ N>0 and x
is not reset along ρi; (iii) or for all 0 ≤ j ≤ n: νj(x) ∈ [0, 1).

Observe that in the last case (i.e., x ∈ [0, 1)), the number of resets cannot be bounded a
priori. For the sake of clarity, let us summarise the construction so far:

Lemma 6. Each type-0 run of R (H) can be decomposed into k type-2 runs with k ≤
3× (T × rmax + 1)× |X |.

Contraction of Type-2 Runs. We finish the construction by defining formally the con-
traction operator and establishing its properties. The formal definition follows the intu-
ition sketched at the beginning of the section (see Fig. 2). Let π = (t1, e1), (t2, e2), . . . ,
(tn, en) be a timed path, let �0 = src (e1), and, for all 1 ≤ i ≤ n: �i = trg (ei). Assume
there are 0 ≤ i < j < n and a function h : {i + 1, . . . , j − 1} �→ {0, . . . , i − 1}
s.t. (i) �i = �j and (ii) for all i < p < j: �p = �h(p). Then, we let Cnt (π) =
�′0, (t

′
1, e

′
1), . . . , �

′
m where: (i) m = n − (j − i); (ii) for all 0 ≤ p ≤ i: �′p = �p;

(iii) for all 1 ≤ p ≤ i: e′p = ep and t′p = tp +
∑

k∈h−1(p−1) tk+1; (iv) e′i+1 = ej+1;
(v) t′i+1 = ti+1 + tj+1; and (vi) for all i + 1 < p ≤ m: �′p = �p+j−i and (t′p, e

′
p) =

(tp+j−i, ep+j−i).
Then, given a timed path π, we let Cnt0 (π) = π, Cnti (π) = Cnt

(
Cnti−1 (π)

)
for

any i ≥ 1, and Cnt∗ (π) = Cntk (π) where k is the least value such that Cntk (π) =
Cntk+1 (π). Note that Cnt∗ (π) always exists since π is finite, and since, for all π: either
|Cnt (π)| < |π| or Cnt (π) = π. Moreover, the length of Cnt∗ (π) is always bounded
by a value that does not depend on |π|.

Lemma 7. For all timed path π: |Cnt∗ (π)| ≤ |Loc|2 + 1.

Let us now lift the definition of the contraction operator to runs of type-2. To this
end, we first need to further split type-2 runs into type-3 runs by splitting type-2
runs according to the first and last resets (if they exist) of each variable. Formally,
let s0, (t1, e1), s1, . . . , (tn, en), sn be a type-2 run. Assume Yi is the reset set of ei,
for all 1 ≤ i ≤ n. We let FRρ = {i | ∃x ∈ Yi and ∀0 ≤ j < i : x �∈ Yj} and
LRρ = {i | ∃x ∈ Yi and ∀i < j ≤ n : x �∈ Yj} be respectively the set of edge
indices where a variable is reset for the first (last) in ρ. Let Rρ = FRρ ∪ LRρ and
assume Rρ = {p(1), p(2), . . . , p(k)} with p(1) ≤ p(2) ≤ · · · ≤ p(k). Then, we let
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ρ0, ρ1, . . . , ρk be the type-3 runs making up ρ s.t. ρ = ρ0 · sp(1)−1, (tp(1), ep(1)), sp(1) ·
ρ1 · · · sp(k)−1, (tp(k), ep(k)), sp(k) · ρk. Note that each type-2 is split into at most
2 × |X | + 1 type-3 runs (i.e., k ≤ 2 × |X |). We can now define the contraction of ρ:
Cnt (ρ) = Run

(
first (ρ) , πCnt(ρ)

)
, where: πCnt(ρ) = Cnt∗ (TPath (ρ0)) , (tp(1), ep(1)),

Cnt∗ (TPath (ρ1)) , (tp(2), ep(2)), . . . , (tp(k), ep(k)),Cnt
∗ (TPath (ρk)). Equipped with

this definition, we can show that Cnt (ρ) is not only of bounded length, but is also
equivalent to the original type-2 run ρ, in the following sense:

Proposition 8. For all type-2 runs ρ, Cnt (ρ) �= ⊥, first (Cnt (ρ)) = first (ρ),
last (Cnt (ρ)) = last (ρ) and |Cnt (ρ)| ≤ 8× |Loc|2 × |X |.

Proof (sketch). We sketch the proof assuming H has only one variable x with

non-negative rate (the arguments generalise easily). Let ρ = (�0, ν0)
t1,e1−−−→

(�1, ν1) · · ·
tn,en−−−→ (�n, νn) be a type-2 run, π = TPath (ρ), π′ = Cnt∗ (π) and

ρ′ = Cnt (ρ). Observe that duration (π′) = duration (ρ), and that Effect (π′) =
Effect (π). Assume first that x is never reset along ρ, and that ν0(x) �∈ [0, 1). Then,
all valuations of x along ρ are in the same interval [a, a] or (a, a + 1) for a ≥ 1,
by Lemma 5 (thus the issue of case 1 above is ruled out). In this case, all the guards
are still satisfied in π′, and ρ′ �= ⊥. Finally, assuming last (ρ′) = (�n, ν

′
n), we have

ν′n(x) = ν0(x) + Effect (π′) (x) = ν0(x) + Effect (π) (x) = νn(x) because x is
not reset along ρ. Second, assume x is never reset along ρ and that ν0(x) ∈ [0, 1).
In this case, we have to rule out an additional difficulty. Let k, j be s.t. k < j,.
νj(x) = 0, tj+1 = 0, ej+1 has guard ‘x = 0’ and tk > 0: we must show that
�k �= �j (otherwise the delay tk > 0 could be ‘reported’ on �j , and the guard of ej
would not be satisfied, this is the problem identified in case 4). �k �= �j holds be-
cause, by construction of Reg (H), �k = (�,0=) and �j = (�′,0+) for some �, �′,
because x is null when leaving �k, but not when leaving �j . Third, assume x is re-
set along ρ, hence x takes values in [0, 1) only along ρ, by Lemma 5. Let j, k be s.t.
j < k and ej (resp. ek) is the first (last) edge to reset x along ρ. Then, by definition,
π′ = Cnt∗ (π[0 : j − 1]) , (tj , ej),Cnt

∗ (π[j + 1, k − 1]) (tk, ek)Cnt
∗ (π[k + 1, n]). In

Cnt∗ (π[0 : j − 1]) and Cnt∗ (π[k + 1, n]), x is not reset and takes values in [0, 1),
thus Cnt∗ (π[0 : j − 1]) and Cnt∗ (π[k + 1, n]) yield genuine runs, by the same ar-
guments as above. If x is reset in π[j + 1, k − 1], this is not the first reset along
π, so we avoid the issue of case 2. Thanks to the 0+ and 0= regions, we are
sure that the ‘x = 0’ guards are still satisfied in Cnt∗ (π[j + 1, k − 1]), so it
yields a genuine run. Thus, ρ′ �= ⊥. Note however that the value of x after firing
Cnt∗ (π[0 : j − 1]) , (tj , ej),Cnt

∗ (π[j + 1, k − 1]) might not be the same as when fir-
ing π[0 : k − 1]. Yet, this does not prevent from firing ek. Moreover, the value of x at
the end of the run is preserved (i.e., we avoid the issue of case 3 above): if last (ρ′) =
(�n, ν

′
n), then ν′n(x) = Effect (Cnt∗ (π[k + 1, n])) (x) (again because x is not reset

along π[k + 1, n]) with Effect (Cnt∗ (π[k + 1, n])) (x) = Effect (π[k + 1, n]) (x) =
νn(x). ��

We obtain Theorem 1 thanks to Proposition 8, Lemma 6 and the definition of Reg (H).

Rectangular Rates. Let us now briefly explain how we can adapt the previous construc-
tion to cope with non-singular rates. Let us first notice that for all MHA H, R (H) is
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still well-defined. Then, we adapt the definition of timed path as follows. A timed path
is a sequence (t1, R1, e1) · · · (tn, Rn, en), where each Ri : X �→ R gives the actual rate
that was chosen for each variable at the i-th continuous step. It is then straightforward
to extend the definitions of Cnt and Effect to take those rates into account and retain
the properties needed to prove Theorem 2. More precisely, the contraction of a set of
transitions (t1, R1, e1), . . . , (tn, Rn, en) yields a transition (t, R, e) with t =

∑n
i=1 ti

and, R =
∑n

i=1 ti×Ri

t . Note that we rely on the convexity of the invariants and rates in
an RHA to ensure that this construction is correct.

4 Time-Bounded Reachability Is NEXPTIME-Complete

In this section, we establish our main result:

Theorem 9. Time-bounded reachability for MHA is NEXPTIME complete.

An NEXPTIME Algorithm. Recall that an instance of the time-bounded reachability
problem is of the form (H, �,T), where H is an MHA, � is a location, and T is a
time bound (expressed in binary). We establish membership in NEXPTIME by giving a
non-deterministic algorithm that runs in time exponential in the size of (H, �,T) in the
worst case. The algorithm guesses a sequence of edges E = e0e1 . . . en of H such that
n+1 ≤ F (H,T) and trg (en) = � and builds a linear constraint Φ(E), that expresses all
the properties that must be satisfied by a run following the sequence of edges E (see [13]
for a detailed explanation on how to build such a constraint). This constraint uses n+1
copies of the variables in X and n+ 1 variables ti to model the time elapsing between
two consecutive edges, and imposes that the valuations of the variables along the run are
consistent with the rates, guards and resets ofH. Finally, the algorithm checks whether
Φ(E) is satisfiable and returns ‘yes’ iff it is the case.

The number of computation steps necessary to build Φ(E) is, in the worst case, ex-
ponential in the size of the instance (H,T). Moreover, checking satisfiability of Φ(E)
can be done in polynomial time (in the size of the constraint) using classical algorithms
to solve linear programs. Clearly this procedure is an NEXPTIME algorithm for solving
the time-bounded reachability problem for MHA.

NEXPTIME-Hardness. To establish the NEXPTIME-hardness, we encode the mem-
bership problem of non-deterministic exponential time Turing machines (NExpTM
for short) to time-bounded reachability for SMHA. An NExpTM is a tuple M =
(Q,Σ, Γ, q0, δ, F, ξ) where Q is the (nonempty and finite) set of control states, Σ =
{0, 1} is the (finite) input alphabet2, Γ = {�, 0, 1} is the (finite) alphabet of the tape,
where � is the blank symbol, q0 ∈ Q is the initial control state, δ ⊆ Q×Γ×Γ×{L,R}×
Q is the transition relation, F ⊆ Q is the set of accepting states, and ξ = O

(
2p(n)

)
(for

some polynomial p), is an exponential function to bound the execution length.
A state of M is a triple (q, w1, w2), where q ∈ Q, and w1, w2 ∈ Γ ∗ are resp.

the content to the left (to the right and below) of the reading head, excluding the
trailing sequence of �. We rely on the standard semantics for NExpTM: for example,

2 Having Σ = {0, 1} and Γ = Σ ∪ {�} is without loss of generality.



66 T. Brihaye et al.

(q1, a, b, L, q2) means ‘when in q1 and a is below the head, replace a by b, move the
head to the left (L) and go to q2’. We write (q, w1, w2) 
 (q′, w′1, w

′
2) when there is a

transition from (q, w1, w2) to (q′, w′1, w
′
2). An execution of M on input w is a finite se-

quence of states c0c1 . . . cn such that: (i) n ≤ ξ(|w|); (ii) c0 = (q0, ε, w · �ξ(|w|)−|w|);
and (iii) for all 0 ≤ i < n: ci 
 ci+1. It is accepting iff cn = (q, w1, w2) with q ∈ F .

Let us show how to encode all executions of M into the executions of an SMHA
HM . We encode the words w1 and w2 as pairs of rational values (l1, c1) and (l2, c2)
where li =

1
2|wi| encodes the length of the word wi by a rational number in [0, 1], and

ci encodes wi as follows. Assume w1 = σ0σ1 . . . σn. Then, we let c1 = Val←(w1) =
σn · 12 + σn−1 · 14 + · · · + σ0 · 1

2n+1 . Intuitively, c1 is the value which is represented
in binary by 0.σnσn−1 · · ·σ0, i.e., w1 is the binary encoding of the fractional part of
c1 with the most significant bit in the rightmost position. For instance, if w1 = 001010
then Val←(w1) = 0 · 12 + 1 · 14 + 0 · 18 + 1 · 1

16 + 0 · 1
32 + 0 · 1

64 = 0.3125, and so w1

is encoded as the pair ( 1
64 , 0.3125). Note that we need to remember the actual length

of the word w1 because the function Val←(·) ignores the leading 0’s (for instance,
Val←(001010) = Val←(1010)). Symmetrically, if w2 = σ0σ1 . . . σn, we let c2 =
Val→(w2) = σ0 · 12 + σ1 · 14 + · · ·+ σn · 1

2n+1 (i.e., σ0 is now the most significant bit).
Then a state (q, w1, w2) of the NExpTM is encoded as follows: the control state q is
remembered in the locations of the automaton, and the words w1, w2 are stored, using
the encoding described above using four variables for the values (l1, c1) and (l2, c2).

With this encoding in mind, let us list the operations that we must be able to perform
to simulate the transitions of the NExpTM. Assume w1 = w1

0w
1
2 · · ·w1

n and w2 =
w2

0w
2
2 · · ·w2

k . To read the letter under the head we need to test the value of the bit w2
0 .

Clearly, w2
0 = 1 iff l2 ≤ 1/2, and c2 ≥ 1

2 ; w2
0 = 0 iff l2 ≤ 1/2, and c2 < 1

2 and w2
0 = �

iff l2 = 1 (which corresponds to w2 = ε). To test whether the head is in the leftmost
cell of the tape we must check whether w1 = ε, i.e. l1 = 1. To read the letter at the
left of the head (assuming that w1 �= ε) we must test the value of the bit w1

n. Clearly,
w1

n = 1 iff c1 ≥ 1
2 and w1

n = 0 iff c1 < 1
2 .

Then, let us describe the operations that are necessary to update the values on the
tape. Clearly, they can be carried out by appending and removing 0’s or 1’s to the
right of w1 or to the left of w2. Let us describe how we update c1 and l1 to simulate
these operations on w1 (the operations on w2 can be deduced from this description).
We denote by c′1 (resp. l′1) the value of c1 (l1) after the simulation of the NExpTM
transition. To append a 1 to the right of w1, we let l′1 = 1

2 × l1. We let c′1 = 1
2 if l1 = 1

(i.e. w1 was empty) and c′1 = 1
2 × c1 +

1
2 otherwise. To append a 0 to the right of w1,

we let l′1 = 1
2 × l1 and c′1 = 1

2 × c1. To delete a 0 from the rightmost position of w1,
we let l′1 = 2 × l1, c′1 = 2 × c1. To delete a 1 from the rightmost position of w1, we
let l′1 = 2 × l1, and c′1 = (c1 − 1

2 ) × 2. In addition, note that we can flip the leftmost
bit of w2 by adding or subtracting 1/2 from c2 (this is necessary when updating the
value under the head). Thus, the operations that we need to be able to perform on c1,
l1, c2 and l2 are: to multiply by 2, divide by 2, increase by 1

2 and decrease by 1
2 , while

keeping untouched the value of all the other variables. Fig. 3 exhibits four gadgets to
perform these operations. Note that these gadgets can be constructed in polynomial
time, execute in 1 time unit time and bear only singular rates.
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(i)

ẋ = 1
ż = 1

x ≤ 1

ẋ = 2
ż = 1

z ≤ 1

z := 0
x = 1
x := 0 z = 1

When crossing
this edge, z =
1− x0.

(ii)

ẋ = 1
ż = 2

z ≤ 1

z := 0 z = 1 ẋ = 1
ż = 1

x ≤ 1(iii)

ẋ = 1
ż = 1

z ≤ 1

z := 1/2
x = 1
x := 0 z = 1

z = 1/2+(1−x0)
when crossing this
edge

Fig. 3. Gadgets (i) for multiplication by 2, (ii) adding 1
2

and (iii) subtracting 1
2

. The rates of the
y �∈ {x, z} is 0. Gadget (i) can be modified to divide by 2, by swapping the rates of x and z in
the second location. x0 is the value of x when entering the gadget.

We claim that all transitions of M can be simulated by combining the gad-
gets in Fig. 3 and the tests described above. For instance, consider the transition:
(q1, 1, 0, L, q2). It is simulated as follows. First, we check that the reading head is not
at the leftmost position of the tape by checking that l1 < 1. Second, we check that the
value below the reading head is equal to 1 by testing that l2 < 1 and c2 ≥ 1

2 . Third,
we change the value below the reading head from 1 to 0 by subtracting 1

2 from c2 using
an instance of gadget (iii) in Fig. 3. And finally, we move the head one cell to the left.
This is performed by testing the bit on the left of the head, deleting it from w1 and
appending it to the left of w2, by the operations described above. All other transitions
can be simulated similarly. Note that, to simulate one NExpTM transition, we need to
perform several tests (that carry out in 0 time units) and to: (i) update the bit under the
reading head, which takes 1 time unit with our gadgets; (ii) remove one bit from the
right of w1 (resp. left of w2), which takes at most 3 time units and (iii) append this bit
to the left of w2 (right of w1), which takes at most 3 time units. We conclude that each
NExpTM transition can be simulate in at most 7 time units. Thus M has an accepting
execution on word w (of length at most ξ(|w|) iff HM has an execution of duration at
most T = 7 · ξ(|w|) that reaches a location encoding an accepting control state of M .
This sets the reduction.

5 Computing All the States Reachable within T Time Units

Let us now show that Theorem 2 (lifted to MHA) implies that, in an MHA, we can
compute a symbolic representation of the set of states reachable within T time units. We
show, by means of two examples, that this information can be used to verify meaningful
properties of MHA, in particular when time-unbounded fixed points do not terminate.

Post and Pre. Let s be a state of an MHA with set of edges Edges. We let Post(s) =

{s′ | ∃e ∈ Edges, t ∈ R+ : s
t,e−−→ s′} and Pre(s) = {s′ | ∃e ∈ Edges, t ∈ R+ :

s′
t,e−−→ s}. We further let Reach≤T(s) = {s′ | ∃π : s

π−→ s′ ∧ duration (π) ≤ T}, and
coReach≤T(s) = {s′ | ∃π : s′

π−→ s ∧ duration (π) ≤ T} be respectively the set of
states that are reachable from s (that can reach s) within T time units. We extend all
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those operators to sets of states in the obvious way. Our aim in this section is to compute
effective representations of Reach≤T(s) and coReach≤T(s), using fixed points.

Symbolic States. To manipulate potentially infinite sets of MHA states, we need a sym-
bolic representation that is manipulable algorithmically. We rely on the notion of sym-
bolic states introduced as an algebra of regions in [11]. To manipulate sets of valu-
ations, we use formulas of (R, 0, 1,+,≤), i.e. the first-order logic of the reals3, with
the constants 0 and 1, the usual order ≤ and addition + [11]. Recall that the satis-
fiability problem for that logic is decidable [4] and that it admits effective quantifier
elimination. Furthermore, all guards of an MHA can be represented by a formula from
(R, 0, 1,+,≤) ranging over X . Let Ψ be a formula of (R, 0, 1,+,≤), and let ν be a
valuation of the free variables of Ψ . Then we write ν |= Ψ iff ν satisfies Ψ , and we let
[[Ψ ]] be the set off all valuations ν such that ν |= Ψ . To emphasise the fact that a formula
Ψ ranges over the set of variables X , we sometimes denote it by Ψ(X).

Then a symbolic state of an MHAH with set of variables X is a function R mapping
each location � ofH to a quantifier free formula of (R, 0, 1,+,≤) with free variables in
X , representing sets of valuations for the variables in �. Formally, R represents the set
of MHA states [[R]] = {(�, ν) | ν ∈ [[R(�)]]}. By abuse of notation, we assume that any
formula Φ of (R, 0, 1,+,≤) denotes the function f such that f(�) = Φ for all �. Clearly,
given symbolic states R1 and R2, one can compute symbolic states R1∨R2 and R1∧R2

representing resp. [[R1]] ∪ [[R2]] and [[R1]] ∩ [[R2]]; and one can test whether [[R1]] =
[[R2]] [11]. It is also possible (see details in the appendix) to compute Post and Pre
symbolically: we let post� and pre� be effective operators, returning symbolic states,
s.t. for all symbolic states R: [[post�(R)]] = Post([[R]]) and [[pre�(R)]] = Pre([[R]]).

Time-Bounded Forward and Backward Fixpoints. Let H be an MHA with set of vari-
ables X , and let T ∈ N be a time bound. Let us augment H with a fresh variable t to
measure time (hence the rate of t is 1 in all locations, and t is never reset). Let S be
a set of states of H. Then the sets Reach≤T(S) and coReach≤T(S) can be defined by
means of fixed point equations: Reach≤T(S) = μY · ((S ∪ Post(Y )) ∩ [[0 ≤ t ≤ T]])
and coReach≤T(S) = μY · ((S ∪ Pre(Y )) ∩ [[0 ≤ t ≤ T]]). This observation forms
the basis of our algorithm for computing symbolic states representing Reach≤T([[R]])
and coReach≤T([[R]]) for some symbolic state R(X). Let (Fi)i≥0 and (Bi)i≥0 be the
sequences of symbolic states defined as follows: F0 = B0 = R(X)∧(0 ≤ t ≤ T); and
for all i ≥ 1: Fi = post�(Fi−1)∧(0 ≤ t ≤ T)∨Fi−1 and Bi = pre�(Bi−1)∧(0 ≤ t ≤
T) ∨Bi−1. Note that, for all i ≥ 1, Fi (resp. Bi) can be computed from Fi−1 (Bi−1).

Proposition 10. For all MHA H, all symbolic states R and all time bound T, there
are k and � such that 0 ≤ k, � ≤ F (H,T), [[Fk]] = [[Fk+1]] = Reach≤T([[R]]) and
[[B�]] = [[B�+1]] = coReach≤T([[R]]). Computing Fk and B� takes at most doubly
exponential time.

By Theorem 9, this deterministic algorithm can be considered optimal (unless NEXP-
TIME=EXPTIME). Let us show, by two examples, the usefulness of our approach.

3 In practice, those formulas can be manipulated as finite unions of convex polyhedra for which
there exist efficient implementations, see [3] for example.
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not leaking
ẋ = 1
ẏ = 1
ṫ = 1

0 ≤ x ≤ 1

leaking
ẋ = 1
ẏ = 0
ṫ = 1

x ≥ 0
x := 0

x ≥ 30

x := 0

Fig. 4. The leaking gas burner

Example 1: Leaking gas burner With this
example, the time-unbounded forward fixed-
point computation does not terminate, in
contrast to the time-bounded fixed-point
computation. The gas burner in the example
can be either leaking or not leaking. Leakages
are repaired within 1 second, and no leakage
can happen in the next 30 seconds after a re-
pair. An MHA modeling this gas burner [1] is
given in Fig. 4. Stopwatch y and clock t are
used resp. to measure the leakage time and the total elapsed time. One can show using
backward analysis that, in any time interval of at least 60 seconds, the leakage time is
at most 5% of the elapsed time [8]. The backward fixpoint is obtained after 7 iterations
but the forward does not terminate.

Using forward time-bounded reachability analysis we can prove that, in all time in-
tervals of fixed length T ≥ 60, the leakage time is at most T

20 . To prove that this property
holds in all time intervals, we first compute, using the algorithm described above (see
Proposition 10), Reach≤60([[R]]), where [[R]] = {(�, v) | � = leaking implies 0 ≤
v(x) ≤ 1}, i.e. R represents all possible states of the system. HYTECH computes
Reach≤60([[R]]) after 5 iterations of the forward time-bounded fixpoint. Then, we check
that ‘t = 60 implies y ≤ 60

20 = 3’ holds, in all states of Reach≤60([[R]]).

Example 2: bounded invariant Let us come back to the RHA≥0 of Fig. 1 (left). Notice
that all variables have a bounded invariant [0, 1]. The forward reachability analysis of
HyTech does not terminate here because the set of reachable states is not a finite union
of polyhedra, see Fig. 1 (right). Yet, the time-bounded forward fixpoint terminates for
all T by Proposition 10. This example shows that bounding the variables is not sufficient
to obtain termination while performing time-bounded analysis is.
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Abstract. In this paper, we suggest an automatic technique for check-
ing the timed weak simulation between timed transition systems. The
technique is an observation-based method in which two timed transition
systems are composed with a timed observer. A μ-calculus property that
captures the timed weak simulation is then verified on the result of the
composition. An interesting feature of the suggested technique is that
it only relies on an untimed μ-calculus model-checker without any spe-
cific algorithm needed to analyze the result of the composition. We also
show that our simulation relation supports interesting results concerning
the trace inclusion and the preservation of linear properties. Finally, the
technique is validated using the FIACRE/TINA toolset.

1 Introduction

The verification of real-time systems plays a major role in the design of highly
trusted systems. Yet, the more complex the system in terms of space and time
is, the less tractable its verification tends to be. Thus, new techniques have been
suggested in order to minimize the verification cost in terms of both space and
time [16,13,4]. Among these techniques, refinement is one of the most valuable
concepts. Roughly speaking, we say that a concrete system C is a proven refine-
ment of an abstract one A, if each time A is used, C can be used instead.

A wide range of refinement relations and sufficient conditions for refinement
exist in the literature [31]. Accordingly, one of the most intuitive relations is trace
inclusion. However, the problem of timed trace inclusion for non-deterministic
systems has been proven to be undecidable if the timed automata model con-
tains at least two clocks [27]. Since abstract specifications often involve non-
determinism, this solution is clearly not appropriate. Therefore, the need for a
condition that implies the trace inclusion has emerged. Timed simulation rela-
tions have been introduced as a sufficient condition for trace inclusion [29]. This
class of relations is also decidable [29].

In this paper, we study the problem of automatically proving the timed weak
simulation between timed transition systems. First, we start by giving a def-
inition of the timed weak simulation and showing that it implies finite trace
inclusion which preserves linear safety properties. We also show that the par-
allel operator of our constrained timed systems (CTTS see Section 2.2) is also
monotonic w.r.t our timed simulation. Second, in order to automatically check
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the timed simulation between systems, we follow a standard technique in model
checking which is mostly used in the verification of timed properties. The idea is
in fact an observation-based method in which A and C are composed with an ob-
server. The result of their composition is then tested using a μ-calculus property
that captures the timed weak simulation definition. We show in this paper that
for a given class of systems, the μ-calculus criterion is sound and complete. Fur-
thermore, the approach is validated using the FIACRE/TINA toolset [10,7]. We
also show that our technique can be used in real life applications by illustrating
it on an industrial-inspired example.

To the best of our knowledge, the use of a μ-calculus property in order to
verify the simulation in the timed context is new. Furthermore, following our
technique, some of the restrictions that exist in the verification of timed weak
simulation are relaxed (see Related Work). Another advantage of our approach
is that it is self-contained and relies exclusively on existing model checking tools,
which means that no specific algorithm for the simulation verification is given.

The paper is organized as follows. In Section 2, we define our behavioral
framework which is based on timed transition systems. In Section 3, we briefly
recall the syntax and the semantics of the μ-calculus logic. In Section 4, we give
our simulation definition along with its properties. We present in Section 5 the
core of our verification technique in which we present the observers along with
the μ-calculus property. Afterwards, in Section 6, we discuss the experimental
results and give an example of the application of the technique before presenting
the related work and concluding the paper in Section 7 and Section 8 respectively.

2 Concrete/Abstract Systems

In this section, we present our considered systems. We start by defining the
semantic model (Section 2.1) along with the properties it needs to fulfill for the
sake of our simulation verification technique. We then give a finite representation
of the semantic model (Section 2.2) and some sufficient conditions that imply
the properties given at the semantic level.

2.1 Semantic Model

Definition 1 (Timed Transition System TTS ). LetΔ be a time domain [21],
e.g., R+, L a label set containing the silent action τ , a Timed Transition System
TTS [9] is a tuple 〈Q,Q0,→〉 where Q is a set of states, Q0 ⊆ Q is the set of ini-

tial states, and → is a transition relation ⊆ Q × (L ∪ Δ) × Q. We write q
l→ q′

for (q, l, q′) ∈→. We require standard properties for→, namely time determinism,
reflexivity, additivity, and continuity as defined in [15].

We define q
a∗
→ q′ � q

a→ q1
a→ q2 · · · a→ q′ and write q

ab→ q′′ if there exists q’

such that q
a→ q′

b→ q′′ and q
b⇒ q′′ for q

τ∗b→ q′. We define as well q
d

=⇒∗ q′ �
∃q0

δ0→ q′0
τ→ q1

δ1→ q′1
τ→ q2 · · ·

δn→ q′n such that Σn
i=0δi = d ∧ q = q0 ∧ q′ = q′n and

write q
d

=⇒+ q′ when n > 0 (there exists at least one τ).
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Definition 2 (Timed Trace). For αi ∈ L − {τ} and δi ∈ Δ, a timed trace
is either a finite sequence ((δiαi)i<n) or an infinite sequence ((δiαi)i∈N). We
denote Tr the set of such traces.

Definition 3 (TTS Timed Trace). Given a TTS and I a (finite or infinite)
initial segment of N, a timed trace ((δiαi)i∈I) is accepted by the TTS if there

exists an initial (starting with q0 ∈ Q0) TTS execution ((qi
δiei→ qi+1)i∈I′) where

I ′ is an initial segment of N, ei ∈ L, and every step in the timed execution
corresponds to a transition in the TTS and if I ′ is finite, the last state has no
outgoing transition. The trace is then the sequence of labels of the execution
after the elimination of τ events and combination of consecutive δ. We denote
by Traces(T ) the set of traces of T and Tracesfin(T ) the set of finite prefixes
of elements of Traces(T ).

Definition 4 (τ-Divergence). Given a set of labels L, a TTS 〈Q,Q0,→〉 is

τ-divergent if for all q ∈ Q and for all δ ∈ Δ, there exists q′ such that q
δ

=⇒∗ q′.

This means that we require that time can always diverge via τ events. Namely,
for all d, there always exists a τδ execution that advances to the date d.

Definition 5 (τ Non-Zeno path). A TTS is said to have a τ Zeno path if it
has an infinite time-convergent execution sequence (Σ∞i=0δi <∞) in which only
τ events are executed. A TTS is τ non-Zeno if it does not have such execution
sequence, that is all infinite execution sequences of τ actions are time divergent
(Σ∞i=0δi =∞).

The hypothesis of τ non-Zeno will be used to show inductively that a property
is preserved through the elapsing of time interleaved with τ transitions.

Lemma 1 (τ Non-Zenoness Characterization). We give an induction-based
definition of the τ non-Zenoness of a TTS [28]. We denote as Pδ(s) a property P
that holds in a state s at time δ. The TTS is τ non-Zeno iff it satisfies :

(1)︷ ︸︸ ︷
P0(q0)∧

⎛
⎜⎜⎝

∀q ∈ Q ∀δ2 < δ1, q0
δ2→ q ∧ Pδ2(q) ⇒

(2)︷ ︸︸ ︷
∃q′, q δ1−δ2→ q′ ∧ Pδ1(q

′) ∨

(3)︷ ︸︸ ︷
∃δ3 ∈ [δ2, δ1],∃q′, q

δ3−δ2

=⇒+ q′ ∧ Pδ3(q
′)

⎞
⎟⎟⎠

∃q′, q0
δ1

=⇒∗ q′ ∧ Pδ1(q
′)

The τ non-Zenoness property leads to an induction principle. Here, we say that
for a property P to be true in δ, then it is sufficient to show that :

1. P is true at the current instant (1) and,
2. if P is true at a given time, then P must be made true after either a time

transition reaching δ (2) or a τ transition (possibly preceded by a delay) (3).

This characterization relies on the fact that time is unbounded (∀x ∈ Δ, ∃y > x).
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2.2 Constrained Time Transition System (CTTS)

We give the definition of a CTTS which is a syntactic finite representation for
the TTS. We also give the properties that need to be satisfied by this finite
representation in order to satisfy the assumptions made at the semantic level. A
CTTS is close to the abstract model of [20] which introduces the notion of time
using time intervals associated to ports.

Definition 6 (Constrained Time Transition System). Given a set of labels
L and the set of intervals I over the time domain Δ, a CTTS is defined as
〈Q,Q0, T, L, ρ : T → 2Q×Q, λ : T → L, ι : T � I, 
 ⊆ T×T 〉 where Q denotes the
set of states, Q0 ⊆ Q is the set of initial states, T denotes the set of transitions,
ρ maps each transition to a set of state couples (source,target), λ associates each
transition with its label, ι associates a time interval to each transition labeled with
a τ (the visible events are not constrained) and 
 denotes a time reset relation

between two transitions. We write t : q
l→ q′ for (q, q′) ∈ ρ(t) ∧ l = λ(t).

We comment on the reset relation 
. Each transition of a CTTS is associated
to a clock at the semantic level. An enabled transition can be fired when the clock
belongs to the time interval of the transition. Whether the firing of a transition
resets the clocks of the enabled transitions or not is governed by 
 : if t 
 t′, then
the firing of t resets the clock of t′. The intuition behind the reset relation stems
from the semantics of Time Petri Nets [9]. Based on the intermediary semantics
of Time Petri Nets, t 
 t′ would hold for any pair of transitions sharing an input
place. Conversely, based on the atomic semantics, t 
 t′ only holds for t = t′. In
our model, we explicitly define the 
 relation for each transition.

Fig. 1. Example of CTTS

CTTS Example. In Fig 1, we
show how a CTTS is made
out of a FIACRE system (High
level). The example shows the
intuition behind our choice of
representing a transition as set
of state pairs. We note in the
example that t0 does not reset
the clock of t1. Otherwise, t1
would never be fired since its
lower bound would never be reached.

CTTS Semantics. This semantics is defined through three rules: DIS for discrete
events, 0-DLY and DLY for time elapse events.

For (v + δ)(t) = v(t) + δ,
←−
I � {x ∈ Δ | ∃y ∈ Δ, x + y ∈ I} being the

downward closure of the interval I and (q, q′) ↪→ t′ � q /∈ dom(ρ(t′)) ∧ q′ ∈
dom(ρ(t′)) denoting that the transition t′ is newly enabled by the transition
q → q′, the semantics of a CTTS T = 〈Q,Q0, T, L, ρ, λ, ι, 
〉 is defined as a TTS
[[T ]] = 〈Q × (T → Δ), (Q0 × {t : T �→ 0}),→〉 such that → is defined as :
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t : q
l→ q′, v(t) ∈ ι(t) ∧ ∀t′, v′(t′) =

{
0 if (q, q′) ↪→ t′ ∨ t � t′

v(t′) else

(q, v)
l→ (q′, v′)

DiS

(q, v)
0→ (q, v)

0-Dly

∀t ∈ T, q ∈ dom(ρ(t)) ⇒ v(t) + δ ∈
←−
ι(t)

(q, v)
δ→ (q, v + δ)

Dly

Note that the time properties of the TTS are satisfied by the CTTS semantics.

Definition 7 (CTTS Property Satisfaction). Given a linear temporal for-
mula ϕ and a CTTS T , we say that T satisfies ϕ, denoted by T |= ϕ, if
∀tr, (tr ∈ Traces([[T ]])⇒ tr |= ϕ).

Thus, a CTTS satisfies the property ϕ if all its traces satisfy ϕ.

Definition 8 (CTTS Composition). Given CTTS1 =
〈Q1, Q

0
1, T1, L, ρ1, λ1, ι1, 
1〉, CTTS2 = 〈Q2, Q

0
2, T2, L, ρ2, λ2, ι2, 
2〉 and a

set of labels S ⊆ L, their composition 1 CTTS1‖
S

CTTS2 is defined as

〈Q1 ×Q2, Q
0
1 ×Q0

2, T, L, ρ, λ, ι, 
〉 where T 2 is defined as :

t1 : q1
l1→ q′1 , l1 /∈ S

t1 ↑1: (q1, q2)
l1→ (q′1, q2)

InterleavingL

t2 : q2
l2→ q′2 , l2 /∈ S

t2 ↑2: (q1, q2)
l2→ (q1, q

′
2)

InterleavingR

t1:q1
l→ q′1, t2:q2

l→ q′2, l ∈ S

t1 � t2 : (q1, q2)
l→ (q′1, q

′
2)

Synchronous

The visible events are not time constrained. Thus, only the τ events may be
associated to time intervals. ι is only defined on τ transitions. The transitions
of the resulting CTTS are associated to the same time intervals they had before
the application of the composition operation. Formally, this is defined as :

ι(t ↑1) = ι(t) if λ(t) = τ T imeL ι(t ↑2) = ι(t) if λ(t) = τ T imeR

For ti, t
′
i ∈ Ti and i = {1,2}, the composition of the clock-reset relation 
 is

defined as :

ti � t′i

ti ↑i � t′i ↑i
(1)

ti � t′i

t1 � t2 � t′i ↑i
(2)

ti � t′i

ti ↑i � t′1 � t′2
(3)

t1 � t′1

t1 � t2 � t′1 � t′2

t2 � t′2

t1 � t2 � t′1 � t′2
(4)

The reset-clock rules mean that if before the composition a transition t resets
the clock of another transition t′, then after the composition the resulting tran-
sition made out of t (either by the SY NCHRONOUS rule or by either one of
the INTERLEAV ING rules) will reset the clock of the t′ transition.

1 We write ‖ when S=L and ||| when S = ∅.
2 T is a disjoint union of T1 × T2 � T1 � T2 with � ↑1↑2 as constructors.
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Fig. 2. Reset Composition Rule (4)

The intuition of the rule (4) is again based
on semantics of Time Petri Nets and is illus-
trated in Fig 2. Consider that the transitions
t1 and t′1 synchronize with t2 and t′2. In this
example, t1 consumes a resource used by t′1,
thus consuming the resource of the compo-
sition of t′1 and t′2. Consuming a resource in
the context of Time Petri Nets is translated to a reset.

Property 1 (Bisimilar States). Given a CTTS T, two states (q, v) and (q, v′) in
[[T ]] that associate the same valuations (w.r.t v and v′) to enabled τ transitions
are bisimilar.

This means that the states (q, v) and (q, v′) can only differ in the valuation
associated to τ transitions that are not enabled in q. However the valuations of
clocks associated to transitions labeled by visible events can differ because they
are unconstrained. The proof of this property is given in [18].

Definition 9 (1-τ). A CTTS is called 1-τ if it does not have two successive τ

actions. Formally, ∀t, t′ t : q τ→ q′ ∧ t′ : q′
l→ q′′ ⇒ l �= τ .

Definition 10 (Upper Closure). A CTTS is called upper bounded closed if
its upper bounded intervals are closed .

Property 2 (Upper Closure Preservation). Given two upper bounded closed
CTTS1 and CTTS2 and a set of synchronization labels S, their composition
CTTS1‖

S

CTTS2 is also upper bounded closed.

3 μ-Calculus

In this section, we present the μ-Calculus logic. The use of this logic is motivated
by its ability to naturally express the definition of various notions of untimed
simulations [19]. This cannot be done in other logics containing similar operators
and quantifiers like CTL [17].

μ-Calculus Syntax. Let Var be a set of variable names, denoted by Z, Y, ...;
let Prop be a set of atomic propositions, typically denoted by P, Q,...; and
let L be a set of labels, typically denoted by a, b, ... . The set of μ-calculus
(Lμ) [11] formulas (w.r.t. Var, Prop,L) is defined as ϕ ::= " | P | Z | ϕ1 ∧ ϕ2 |
[a]ϕ | ¬ϕ | νZ.ϕ. Dual operators are derived, mainly : 〈a〉ϕ ≡ ¬[a]¬ϕ and
μZ.ϕ(Z) ≡ ¬νZ.¬ϕ(Z). The meaning of [a]ϕ is that ϕ holds after all a-actions.

μ-Calculus Semantics. The models for the μ-calculus are defined over a structure
S of the form 〈S,L, T, v〉 where 〈S,L, T 〉 is a labeled transition system and v :
Prop→ 2S is a valuation function that maps each atomic proposition P ∈ Prop
to sets of states where P holds. Given a structureS and a functionV : V ar → 2S

that maps the variables to sets of states in the transition system, the set ‖ϕ‖SV
of states satisfying a formula ϕ is defined as follows :
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– ‖"‖SV = S, ‖P‖SV = v(P ), ‖X‖SV = V(X), ‖¬ϕ‖SV = S - ‖ϕ‖SV.
– ‖ϕ1 ∧ ϕ2‖SV = ‖ϕ1‖SV ∩ ‖ϕ2‖SV.
– ‖[a]ϕ‖SV = {s | ∀t, s

a→ t⇒ t ∈ ‖ϕ‖SV}.
– ‖νX.ϕ‖SV =

⋃
{Q ∈ 2S | Q ⊆ ‖ϕ‖SV[X →Q]} where V[X �→ Q] is the valuation

which maps X to Q and otherwise agrees with V.

We define the notation EFLP = μZ.P ∨
∨

l∈L〈l〉Z. This is read as there exists
(expressed by 〈l〉) a finite path labeled by elements of L after which a state is
reached where P holds.

4 Timed Weak Simulation and Its Properties

Definition 11 (Timed Weak Simulation). Given the set of labels L and two
TTS A = 〈Qa, Q

0
a,→a〉 and C = 〈Qc, Q

0
c,→c〉 defined over L, a timed weak

simulation between them � is the largest relation such that :

∀qc qa, qc � qa ⇒

E. ∀q′c e, qc
e→c q′c ⇒ ∃q′a, qa

e⇒a q′a ∧ q′c � q′a (V isible Events)

T. ∀q′c, qc
τ→c q′c ⇒ q′c � qa (τ Events)

D. ∀q′c δ, qc
δ→c q′c ⇒ ∃q′a, qa

δ

=⇒∗a q′a ∧ q′c � q′a (Delay)

We say that C � A if ∀q0C ∈ Q0
C , ∃q0A ∈ Q0

A such that (q0C , q0A) ∈�. We say
that a simulation holds between two CTTSs if it holds for their semantics.

Theorem 1 (Trace Inclusion). Given two CTTSs, A and C, if C � A then
Tracesfin([[C]]) ⊆ Tracesfin([[A]]).

The trace inclusion proof is a standard one in the untimed context. Due to the
lack of space here, an extension of this proof is given in [18].

Definition 12 (Safety Properties). A safety property P is defined as a linear
time property such that any trace σ where P does not hold contains a bad prefix.
Formally, this is defined as follows [8] :

safety(P ) � ∀σ ∈ Tr, σ �|= P ⇒ ∃i such that ∀σ′ ∈ Tr, σi = σ′i ⇒ σ′ �|= P

where σi is the prefix of size i of σ.

Theorem 2 (Property Preservation). Given two CTTSs A and C, if C � A
then any safety linear time property of A is also a property of C.

Proof. Let P be a safety property such that A |= P . We need to prove that
C |= P . Let tc ∈ Traces([[C]]). Suppose that tc �|= P . As P is a safety property,
there exists a finite prefix t of tc such that for all t′ ∈ Tr, if t is a prefix of t′

then t′ �|= P . As t is a prefix of tc, t ∈ Tracesfin([[C]]). As C � A, we have
t ∈ Tracesfin([[A]]). Thus, there exists a ta ∈ Traces([[A]]) having t as prefix. By
choosing t′ = ta we contradict A |= P .
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The parallel operator is monotonic w.r.t our simulation. Given a component
C inside of a composition C ‖ C1 ‖ C2...Cn the monotony of ‖ is informally
described as : if C is replaced by a component C ′ such that C ′ simulates C, then
C′ ‖ C1 ‖ C2...Cn simulates C ‖ C1 ‖ C2...Cn. This is described as follows :

Theorem 3 (Simulation Compositionality). Given the CTTSs A1, A2, C1

and C2 and the set of labels S, we have C1 � A1∧C2 � A2 ⇒ C1‖
S

C2 � A1‖
S

A2.

This proof is made by showing that each transition of C1‖
S

C2 has a corresponding

transition in A1‖
S

A2. A complete proof is given in [18].

5 Weak Simulation Verification

5.1 Composing the Abstract/Concrete Systems

Our technique shares its grounds and features with model-checking techniques.
Indeed, the first step consists in composing the abstract with the concrete system.

Fig. 3. Systems

Given an abstract CTTS A = 〈Qa, Q
0
a, Ta, L, ρa, λa, ιa, 
a〉

and a concrete one C = 〈Qc, Q
0
c , Tc, L, ρc, λc, ιc, 
c〉, the

two systems are composed after having renamed the events
of the two systems by indexing the abstract(resp. concrete)
ones by a (resp. c). The composition is thus made asyn-
chronous (Fig. 3) in order to be able to observe all the
transitions of the concrete system and verify whether they
are simulated by the abstract system. The synchronous
composition is not applicable because unmatched concrete transitions may dis-
appear in the product.

5.2 Untimed Weak Simulation Verification

The composition result is analyzed to check the weak simulation between A and
C. To do so, the following Weak Simulation criterion [19] which corresponds
intuitively to the first two rules of the relation � is verified on A ||| C :

∀q0a ∈ Q0
a∃q0c ∈ Q0

c , (q
0
a, q

0
c ) |= νX.

1︷ ︸︸ ︷∧
i

[eic](EFτa〈eia〉X)∧

2︷ ︸︸ ︷∧
j

[τ j
c ]X

(1) means that for each concrete event eic and for each transition labeled by this
concrete event eic, there exists a path of a number of abstract local events τa
that leads eventually to a transition labeled by the abstract event eia such
that the target verifies recursively (1) and (2).

(2) means that after each transition labeled with a concrete local event τ j
c the

simulation is maintained.



An Automatic Technique for Checking the Simulation of Timed Systems 79

5.3 Extension to the Timed Context

The already seen property could not be used directly in the timed context since
it assumes that concrete and abstract events are composed asynchronously, while
the composition of time transitions is necessarily synchronous because time ad-
vances at the same rate at the two sides of the composition. Two alternatives
are possible. The first is to specify these timing constraints in a timed variant
of μ-calculus. The second is to specify the timing aspects with timed observers,
to compose the analyzed system with these observers, and to make use of an
untimed logic. We follow the second technique. For this purpose, we define two
observers (Fig. 4 and 5) :

1. The Control Observer consists in observing the control aspects of the two
systems. Namely, for each concrete event, the control observer tries to find
a matching abstract event that happens at the same time.

2. The Time Observer models the elapsing of time in the two systems.

In the two observers, the reset relations are empty. This way, the observers never
impact the reset relations defined in the abstract and the concrete systems.

Fig. 4. Control Observer

Control Observer. The Control Ob-
server is depicted in Fig 4. At the ini-
tial state ok, the observer synchronizes
with either one of the events eia, τ

i
c or

eic. When synchronizing with any of
eai the observer signals an error (err
state) since a concrete event is not yet
found. When synchronizing with any
of τ i

c the observer maintains the state
ok. Finally, when synchronizing with
the concrete events eic, it tries to match
them with the abstract events eia. Af-
ter a concrete event eic is received, the
observer transits to the state waiti meaning that it now awaits for a matching
abstract event eia. At this point, the following scenarios may happen :

– A matching abstract event is found and the observer transits back to ok.
– The abstract system violates the timing of the concrete system and the

observer transits to the state err. That is, a matching abstract event is
not possible at the same time as the corresponding concrete event. This is
modeled by signaling an error in 0 units of time (u.t.). Hence, in case a
matching event is found in 0 u.t., we would reach a non-deterministic choice
between transiting back to ok or also to err. The two transitions would then
be present in the composition process. This choice is later resolved in the
μ-calculus property by searching for a path that satisfies the simulation and
thus ignoring the error transition.
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Fig. 5. Time Observer

Time Observer. The control ob-
server only checks whether two
corresponding events could happen
simultaneously. However, it men-
tions nothing about when an elaps-
ing of time occurs. This leads to the
definition of an additional observer
Time Observer (Fig. 5) in which
two aspects are modeled. First, at
the initial state evt0, only the tran-
sitions that are firable in 0 time can
occur. This is done by specifying a
concurrent choice between a timed event τ 0 constrained with [0, 0] and all the
events of the abstract and concrete systems. Second, it makes visible the implicit
elapsing of time. At the state evtDly, on each elapsing of time, a timed event
delay associated with the constraint ]0,∞[ is signaled. This event is later used
by the μ-calculus property as an time elapsing marker.

Assumption 1 (Concrete/Abstract). A concrete system is any upper
bounded closed CTTS (Definition 10). An abstract system is any τ non-Zeno
(Definition 5), τ divergent (Definition 4), 1-τ (Definition 9), upper bounded
closed CTTS.

The hypothesis 1-τ is a sufficient condition for the τ − δ permutation property.

Definition 13 (τ − δ Permutation). Given a TTS, for all q q′ q1 q2 ∈ Q, δ ∈
Δ, q

δ→ q′ ∧ q
τ→ q1

δ→ q2 ⇒ ∃q′′, q′ τ→ q′′ ∧ q2 ∼ q′′ where ∼ denotes the timed
strong bisimulation.

This means that from a state q, transitions τ and δ may be exchanged leading
to bisimilar states q2 and q′′. This property is close to the persistency of [26]
that says that time cannot suppress the ability to do an action. However, our
requirement that q2 ∼ q′′ is stronger. This property is not true in general since
the clocks newly reset at the state q′′ have different values at q2. The 1-τ hy-
pothesis is a sufficient condition on the CTTSs so that the clock differences at
q2 and q′′ would not affect the overall execution of the system.

Theorem 4 (1-τ is a sufficient condition for τ − δ permutation). Given
a 1-τ CTTS T , its semantics [[T ]] verifies the τ − δ permutation.

The proof of this theorem is given in [18].

Timed Weak Simulation Verification. The check of timed weak simulation
consists in a property verified on the composition of the abstract, the concrete
and the observers (A ||| C) ‖ (Obs ‖ Obsδ) where Obs is the control observer
and Obsδ is the time observer. The simulation of time transitions consists in
verifying whether each delay made by the concrete system can also be made
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by the abstract one. But unlike the asynchronous composition in the untimed
context with which we were able to alternate between the occurrence of the
concrete and the abstract events, time is always synchronous in each of A, C
and the two observers. Alternating concrete and abstract events does not apply
to time transitions. The T imedWeakSimulation(ec, ea, τc, τa) criterion is :

∀q0a ∈ Q0
a∃q0c ∈ Q0

c , (q
0
a, q

0
c , ok, evt0) |= νX.

(1)︷ ︸︸ ︷
Obs in ok ∧Obsδ in evt0∧

(2)Weak Simulation︷ ︸︸ ︷∧
i

[eic](EFτa〈eia〉X) ∧
∧
j

[τ j
c ]X ∧

(3)︷ ︸︸ ︷
(EFτa〈delay〉�) ⇒ EFτa(〈delay〉� ∧ [delay]X)

This property characterizes a set of product states to which the initial state must
belong. This set of states is defined over the composition of states of A,C and
the two observers. We comment on the Timed Weak Simulation criterion :

– (1) denotes the acceptance of a concrete event at current time.
– (2) is the untimed weak simulation criterion.
– (3) denotes that if time can elapse (delay event) in the product via a sequence

of τ abstract events -meaning that time can also elapse in the concrete system
since the abstract is τ divergent- then time may elapse and for all possible
delay events the simulation holds after a number of τ abstract events. In this
part of the formula, 〈delay〉" means that in the current state, it is possible
to do a transition labeled with the delay event.

The proof of the correctness of the μ-calculus criterion w.r.t the mathematical
definition of the timed weak simulation is based on the comparison between two
relations defined as the largest relations which can also be seen as the greatest
fixed points of monotone set functions. The timed weak simulation criterion
is correct without the hypothesis 1 − τ . This is why we observe τ sequences.
However it is not complete. Due to the lack of space, this proof is given in [18].
It has been also formalized and validated in the proof assistant Coq [30]. The
complete Coq proof is found at [3].

Discussion on the Assumptions. We discuss our major restrictions :

1. τ non-Zenoness and τ divergence: these two are standard assumptions made
on timed systems. In our context, they guarantee the progress of time in the
abstract system. This is necessary in our composition-based method because
time is always synchronous. Blocking time in the abstract system could result
in blocking time in the whole composition and hide concrete delays.

2. No successive τ transitions : permitting τ transitions in A complicates the
verification of the timed weak simulation, because in this case, any delay in
C can be matched by a series of delays in A separated by τ transitions [12].
Moreover, with our 1-τ restriction, general modeling techniques of real time
systems are still permitted. For instance, specifying an upper bound of a
global event e is made by a choice between a timed local event τ and the
event e. Specifying a lower bound of a global event e is made by a sequential
execution of a timed local event τ and e.
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6 Experimental Results

Fig. 6. Approach

The technique is validated using
the FIACRE/TINA toolset (Fig 6).
The systems and the observers are
written in FIACRE (captured here
by a CTTS) and the μ-calculus
property is verified on the FIACRE
model using the model checker
TINA. The FIACRE systems are
adapted to the input language of
TINA thanks to a translation to TTS. TINA generates a time abstracted au-
tomaton, that preserves branching properties, on which the μ-calculus property
is verified.

6.1 Example of Application

The example is a simplification of an industrial use case that is used to illustrate
the BPEL web-services composition language [6].

Fig. 7. Specification

Abstract and Concrete Modeling. The abstract specifica-
tion Fig. 7 describes that upon the reception of the pur-
chase request, the process initiates the treatment of the
command which takes at most 8 u.t.. Afterwards, either
a successful response is sent or the command is simply
dropped. A potential refinement of this specification is a
composition of three entities (Fig. 8).

Fig. 8. Purchase Treatment

Upon receiving a
purchase order, the man-
agement consults the
inventory where the
stock is checked in 0 to 4
u.t.. In case of availabil-
ity of the products, the
inventory department
sends the shipping price
to the financial depart-
ment before sending the
result to management.
Management then sends
the products price to the financial department where the final price is computed
in 2 u.t.. This price is then given to the management and an immediate response
is sent to the customer. The transitions of the abstract/concrete system reset
the clocks of all the others.



An Automatic Technique for Checking the Simulation of Timed Systems 83

Simulation Verification. After renaming the events of the systems (PurOa,
ReplyOa, PurOc, ReplyOc, . . .), they are composed with the two observers. The
composition process results in 184 states and 694 transitions. This process is then
model checked by an instantiation of the timed weak simulation criterion 5.3
with ea = {PurOa, ReplyOa}, ec = {PurOc, ReplyOc}, τa = {treata} and τc =
{ShipPrice, ProPrice, InvAns, compute, StoCall, AnsPos,AnsNeg, check,
noDel}.

The set of states returned by the property contains the initial state of the
process. The simulation is then verified. Now suppose that the time interval
of compute is changed to [3, 3]. In this case, the verification of the μ-calculus
property does not hold. This is because the concrete system violates the time
allowed by the specification. Finally, the example may be found at [2].

7 Related Work

Even though the study of simulation relations have reached a mature level,
timed simulation verification is still an open research subject. Interesting re-
sults have been elaborated for different timed formalisms ranging from timed
transition systems, to timed automata [5,25], and timed input output automata
TIOA [23,14]. However, a less tackled aspect of this research is the automatic
verification of timed simulations and especially timed weak simulations. A work
which resembles ours appears in [22] in the context of the Uppaal [24] tool. A
timed simulation for fully observable and deterministic abstract models is re-
duced to a reachability problem. This is done via a composition with a testing
automaton monitoring whether the behavior of the concrete system is within
the bounds of the abstract system and then by checking whether an undesired
state is never reached. Compared to this result, we do not restrict our abstract
systems to deterministic ones. Furthermore, our abstract systems are not fully
observable.

Probably the most complete work is the one of [12,14] which led to the ECDAR
tool [1]. In this tool, a timed (weak) simulation verification between two TIOAs
is supported. The verification is done via a game-based algorithm between the
abstract and the concrete systems [12]. Clearly, a TIOA is different in nature
from timed transitions systems regarding its input/output semantics. However,
their restriction that the abstract systems does not have any τ actions is relaxed
in our technique to no successive τ actions. Moreover, our restriction to upper
bounded closed CTTSs can be found in their formalism in the form of restricting
the TIOAs states invariants constraints to clock ≤ constant. Finally, unlike
theirs, in our technique no specific algorithm is written to analyze the result of
the abstract/concrete composition.

Finally, μ-calculus properties were used as a mechanism to capture and to
check simulation relations in the untimed context [19]. The Mec 5 model checker,
which handles specifications written in Altarica, embeds the μ-calculus logic as
a support for properties verifications on Altarica models. This allows users to
check weak/strong simulation and bisimulation relations.



84 E. Fares et al.

8 Conclusion

We have presented an automatic technique for checking the timed weak simu-
lation between timed transition systems originating from CTTS systems. The
technique is based on the idea of composing the analyzed systems with observers
and then model check their result using a μ-calculus property which captures
the timed weak simulation definition. To the best of our knowledge, this is an
original approach. Our criterion is sound and complete for a subclass of timed
systems. This, along with all the paper results, have been proven using Coq.

Due to the lack of space and for clarification purposes, we applied our tech-
nique on a rather simple, but yet a complete example. For the interested readers,
an illustration of the technique is made on a more elaborated example in [18]
where the technique is adopted to prove the simulation between FIACRE sys-
tems translated from BPEL. The initial process consists of around 7K states and
15K transitions with an execution time of 7 seconds while the product process
results in around 290K states and 874K transitions with an execution time of 70
seconds. The verification time of the μ-calculus property is 27 seconds.

On another matter, the specification of the observers and the property is
manual for now. However, an automatic generation of these two is obtained
directly from the alphabet of the processes..

For our future work, we are currently looking into eliminating the 1-τ re-
striction. Another complementary work pertains to extending our simulation so
that it preserves all linear time properties. Finally, it would be insightful to in-
vestigate whether the theoretical results for timed automata can be applied to
FIACRE systems (CTTS), or whether our simulation verification technique can
be applied to timed automata. Such a study is promising since both CTTS and
Timed Automata rely on the same semantical framework.
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Abstract. We deal with a parametric version of timed game automata
(PGA), where clocks can be compared to parameters, and parameter
synthesis. As usual, parametrization leads to undecidability of the most
interesting problems, such as reachability game. It is not surprising then
that the symbolic exploration of the state-space often does not termi-
nate. It is known that the undecidability remains even when severely re-
stricting the form of the parametric constraints. Since in classical timed
automata, real-valued clocks are always compared to integers for all prac-
tical purposes, we solve undecidability and termination issues by com-
puting parameters as bounded integers. We give a symbolic algorithm
that computes the set of winning states for a given PGA and the corre-
sponding set of bounded integer parameter valuations as symbolic con-
straints between parameters. We argue the relevance of this approach
and demonstrate its practical usability with a small case-study.

1 Introduction

Timed game automata (TGA) [4,15] have become a widely accepted formalism
for modeling and analyzing control problems on timed systems. They are es-
sentially timed automata (TA) with the set of actions divided into controllable
(used by the controller) and uncontrollable (used by the environment) actions.
Reachability game for TGA is the problem of determining the strategy for the
controller such that, no matter what the environment does, the system ends up
in the desired location. Such games are known to be decidable [15]. Introduction
of this model is followed by the development of the tool support [5] successfully
applied to numerous industrial case studies [9].

This model, however, requires complete knowledge of the systems. Thus, it is
difficult to use it in the early design stages when the whole system is not fully
characterized. Even when all timing constraints are known, if the environment
changes or the system is proven wrong, the whole verification process must be
carried out again. Additionally, considering a wide range of values for constants
allows for a more flexible and robust design.

Parametric reasoning is, therefore, particularly relevant for timed models,
since it allows to the designers to use parameters instead of concrete timing
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values. This approach, however, leads to the undecidability of the most important
questions, such as reachability.

Related Work

Parametric Timed Automata [2], have been introduced as an extension of TA
[1], to overcome the limit of checking the correctness of the systems with respect
to concrete timing constraints. The central problem for verification purposes,
reachability-emptiness, which asks whether there exists a parameter valuation
such that the automaton has an accepting run, is undecidable. This naturally
lead to the search for a subclasses of the model for which some problems would
be decidable. In [11], L/U automata, which use each parameter as either a lower
bound or an upper bound on clocks, is proposed. Reachability-emptiness prob-
lem is decidable for this model, but the state-space exploration still might not
terminate. Decidability of L/U automata is further studied in [6]. The authors
give the explicit representation of the set of parameters, when all parameters are
integers and of the same type (L-automata and U-automata). In [7], the authors
allow parameters both in the model and the property (PTCTL), and they show
that the model-checking problem is decidable, in discrete time over a PTA with
one parametric clock, if the equality is not allowed in the formulae. A different
approach is taken in [3] where the exploration starts from the initial set of pa-
rameter values, for which the system is correct, and enlarges the set ensuring
that the behaviors of PTA are time-abstract equivalent. They give a conjecture
for the termination of the algorithm, being true on the studied examples.

Parametric Timed Game Automata (PGA): In [12], we have introduced an ex-
tension of TGA, called parametric timed game automata (PGA) and its subclass
for which the reachability-emptiness game, which asks whether there exist a pa-
rameter valuation such that a winning strategy exists, is decidable. The subclass
is, however, severely restricted in the use of parameters and the symbolic com-
putation [12] of the set of winning states still might not terminate.

Our Contribution. In this paper, we propose an orthogonal restriction scheme
that we have introduced in [13] for PTA: since in classical timed game automata,
real-valued clocks are always compared to integers for all practical purposes, we
solve undecidability and termination issues by computing parameters as bounded
integers. We give a symbolic algorithm that computes the set of winning states
and the winning strategy for the controller for a given PGA and the correspond-
ing set of parameter valuations as bounded integers. Due to the boundedness of
parameters, the termination is ensured, and the resulting set of parameter valu-
ations is given as symbolic constraints between parameters. The symbolic algo-
rithm is based on the computation of the integer hull of the bounded parametric
symbolic states. It first computes forward the whole reachable state-space, then
propagates backwards the winning states. In order to find the winning states,
we extend the well known fixed-point backwards algorithm for solving timed
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reachability games [15], for the parametric domain. Surprisingly, we do not have
to apply an integer hull in the backwards computation, in order to obtain the
correct integer solution.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 provides definitions about PGA, the problems we are considering, and
recalls some negative decidability results. In Section 3 we first present the algo-
rithm for solving timed games, then we motivate a restriction scheme, introduced
in [13] for PTA, and extend the algorithm for the parametric approach and com-
putation of parameters as bounded integers. The practical use of our method is
shown with a small case study in Section 4. We conclude with Section 5.

2 Parametric Timed Games

Preliminaries. R is the set of real numbers (R≥0 is the set of non-negative real
numbers), Q the set of rational numbers, and Z the set of integers. Let V ⊆ R.
A V -valuation on some finite set X is a function from X to V . We denote by
V X the set of V -valuations on X .

Let X be a finite set of variables modeling clocks and let P be a finite set
of parameters. A parametric clock constraint γ is an expression of the form
γ ::= xi−xj � p | xi � p | γ ∧γ, where xi, xj ∈ X , �∈ {≤, <}, and p is a linear
expression of the form k0 + k1p1 + ...+ knpn with k0, ...kn ∈ Z and p1, ...pn ∈ P .

For any parametric clock constraint γ and any parameter valuation v, we note
v(γ) the constraint obtained by replacing each parameter pi by its valuation
v(pi). We denote by G(X,P ) the set of parametric constraints over X , and
G′(X,P ) a set of parametric constraints over X of the form γ′ ::= xi � p | γ′∧γ′.

For a valuation v on X and t ∈ R≥0, we write v+ t for the valuation assigning
v(x)+ t to each x ∈ X . For R ⊆ X , v[R] denotes a valuation assigning 0 to each
x ∈ R and v(x) to each x ∈ X\R. Further, we define the null valuation 0X on
X by ∀x ∈ X,0X(x) = 0.

2.1 Parametric Timed Games

Definition 1. A Parametric Timed Automaton (PTA) is a tuple A = (L, l0, X,
Σ, P,E, Inv), where L is a finite set of locations, l0 ∈ L is the initial location,
X is a finite set of clocks, Σ is a finite alphabet of actions, P is a finite set of
parameters, E ⊆ L×Σ×G(X,P )×2X×L is a finite set of edges: if (l, a, γ, R, l′) ∈
E then there is an edge from l to l′ with action a, (parametric) guard γ and
set of clocks to reset R, and Inv : L �→ G′(X,P ) is a function that assigns a
(parametric) invariant to each location.

For any Q-valuation v on P , the structure v(A) obtained from A by replacing
each constraint γ by v(γ) is a timed automaton with invariants [1,10]. The be-
havior of a PTA A is described by the behavior of all timed automata obtained
by considering all possible valuations of parameters.
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Definition 2 (Semantics of a PTA). The concrete semantics of a PTA A
under a parameter valuation v, notation v(A), is the labelled transition system
(Q, q0,→) over Σ ∪R≥0 where:

– Q = {(l, w) ∈ L×RX
≥0 | w(v(Inv(l))) is true }

– q0 = {(l0,0X) ∈ Q}
– delay transition: (l, w)

t−→ (l, w + t) with t ≥ 0, iff ∀t′ ∈ [0, t], (l, w + t′) ∈ Q

– action transition: (l, w)
a−→ (l′, w′) with a ∈ Σ, iff (l, w), (l′, w′) ∈ Q,

there exists an edge (l, a, γ, R, l′) ∈ E,w′ = w[R] and w(v(γ)) is true.

A finite run of PTA A, under a parameter valuation v, is a sequence of alter-
nating delay and action transition in the semantics of v(A), ρ = q1a1q2...an−1qn,

where ∀i, qi ∈ Q, ai ∈ Σ ∪R≥0, and qi
a−→ qi+1. The last state of ρ is denoted by

last(ρ). We denote by Runs(v(A)) the set of runs starting in the initial state of
v(A), and by Runs(q, v(A)) the set of runs starting in q. A run is maximal if it
is either infinite or cannot be extended. A state q is said to be reachable in A if
there exists a finite run ρ ∈ Runs(v(A)), such that last(ρ) = q.

In [12], we have extended the previous definitions, to obtain a more power-
ful formalism that allows us to express parametric control problems on timed
systems.

Definition 3. A Parametric (Timed) Game Automaton (PGA) G is a paramet-
ric timed automaton with its set of actions Σ partitioned into controllable (Σc)
and uncontrollable (Σu) actions.

As for PTA, for any PGA G and any rational valuation on parameters v, the
structure v(G), obtained by replacing each constraint γ by v(γ), is a timed game
automaton.

In a TGA, two players, a controller and an environment, choose at every
instant one of the available actions from their own sets, according to a strategy,
and the game progresses. Since the game is symmetric, we give only the definition
for the controller playing with actions from Σc. At each step, a strategy tells
controller to either delay in a location (delay), or to take a particular controllable
action.

Definition 4 (Strategy). A strategy F over v(G) is a partial function from
Runs(v(G)) to Σc ∪ {delay} such that for every finite run ρ, if F(ρ) ∈ Σc then

last(ρ)
F(ρ)−−−→ q for some state q = (l, w), and if F(ρ) = delay, then there exists

some d > 0 such that for all 0 ≤ d′ ≤ d, there exists some state q such that

last(ρ)
d′
−−→ q.

We consider only memory-less strategies, where F(ρ) only depends on the
current last(ρ). Note that the uncontrollable actions cannot be used to reach
the desired location, the controller has to be able to reach it by itself.

Outcome defines the restricted behavior of v(G), when the controller plays
some strategy F .
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Definition 5 (Outcome). Let G be a PGA, v be a parameter valuation, and
F be a strategy over v(G). The outcome Outcome(q,F) of F from state q is the
subset of runs in Runs(q, v(G)) defined inductively as:

– the run with no action q ∈ Outcome(q,F)
– if ρ ∈ Outcome(q,F) then ρ′ = ρ

δ−−→ q′ ∈ Outcome(q,F) if ρ′ ∈ Runs(q, v(G))
and one of the following three condition holds:
1. δ ∈ Σu,
2. δ ∈ Σc and δ = F(ρ),
3. δ ∈ R≥0 and ∀0 ≤ δ′ < δ, ∃q′′ ∈ S s.t. last(ρ)

δ′−−→ q′′ ∧ F(ρ δ′−−→ q′′) =
delay.

– for an infinite run ρ, ρ ∈ Outcome(q,F), if all the finite prefixes of ρ are in
Outcome(q,F).

As we are interested in reachability games, we consider only the runs in the
outcome that are “long enough” to have a chance to reach the goal location: a
run ρ ∈ Outcome(q,F) is maximal if it is either infinite or there is no delay d and

no state q′ such that ρ′ = ρ
d−−→ q′ ∈ Outcome(q,F) and F(ρ′) ∈ Σc (the only

possible actions from last(ρ) are uncontrollable actions). MaxOut(q,F) notes
the set of maximal runs for a state q and a strategy F .

Definition 6 (Winning strategy). Let G = (L, l0, X,Σc ∪Σu, P, E, Inv) be a
PGA and lgoal ∈ L. A strategy F is winning for the location lgoal if for all runs
ρ ∈MaxOut(q0,F), where q0 = (l0,0X), there is some state (lgoal, w) in ρ.

Similarly, a state q is winning (for the controller) if it belongs to a run in the
outcome of a winning strategy.

We study the problem of reachability-emptiness game for PGA, which is the
problem of determining whether the set of parameter valuations, such that there
exists a strategy for the controller to enforce the system into the desired location,
is empty. We are also interested in the corresponding reachability-synthesis game
for PGA, which is to compute all parameter valuations such that there exists a
winning strategy for the controller.

Reachability-emptiness problem for PTA is undecidable, [1]. As PGA extend
PTA, the reachability-emptiness game for PGA is also undecidable [12].

3 Integer Parameter Synthesis

Parametrization leads to undecidability of the most important problems. There
exist subclasses of PTA [11,6] (resp. PGA [12]) for which the reachability-
emptiness (resp. reachability-emptiness game) is decidable, however, they are
severely restricted and their practical usability is unclear.

We advocated in [13] for a different restriction scheme for PTA, to search for
parameter values as bounded integers. This makes all the problems decidable,
since we can enumerate all the possible valuations. Lifting either one of the two
assumptions (boundedness or integer) leads to undecidability [13]. The explicit
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enumeration is not practical, and thus we proposed an efficient symbolic method
to find the solution. This has the advantage of giving the set of parameter valu-
ations as symbolic constraints between parameters.

3.1 Computing the Winning States in Parametric Timed Games

We first recall an algorithm from [12] to compute the parameter valuations per-
mitting the existence of a winning strategy for the controller. Due to the asso-
ciated decidability results, its termination is obviously not guaranteed. For the
sake of readability, we present it in a simplified version, closer to an extension
of the classical algorithm of [15], in which we first compute forward the whole
reachable state-space, then propagate backwards the winning states, instead of
interleaving the forward and backward computations as done in [12] as an ex-
tension of [8]. There would be no problem in restoring that interleaving in the
setting proposed here.

The computation consists of two fixed-points on the state-space of the PGA.
To handle these sets of states, we define the notion of parametric symbolic state:

Definition 7 (Parametric symbolic state). A symbolic state of a paramet-
ric timed (game) automaton G, with set of clocks X and set of parameters P , is
a pair (l, Z) where l is a location of A and Z is a set of valuations v on X ∪P .

For the state-space exploration in the parametric domain, we extend the clas-
sical operations on valuation sets:

– projection: for any set of states Z, and any set R ⊆ P ∪ X , Z|R is the
projection of Z on R;

– future: Z↗ = {v′ | ∃v ∈ Z s.t. v′(x) = v(x) + d, d ≥ 0 if x ∈ X ; v′(x) =
v(x) if x ∈ P}

– reset of clocks in set R ⊆ X : Z[R] = {v[R] | v ∈ Z}
We also need the following operators on symbolic states.

– initial symbolic state of the PTA A = (L, l0, Σ,X, P,E, Inv): Init(A) =
(l0, {v ∈ RX∪P | v|X ∈ 0X ∩ v|P (Inv(l0))|X})

– successor by edge e = (l, a, γ, R, l′): Succ((l, Z), e) = (l′, (Z∩γ)[R]↗∩Inv(l′)).
We can extend the Succ operator to arbitrary sets of states by defining, for

any set of states S and any location l, the subset Sl of S containing the states
with location l. Sl is therefore a symbolic state (l, Z) for some set of valuations
Z. Then we define Succ(S, e) as Succ(Sl, e), with l being the source location of
edge e. The reachable state-space of the PGA can be computed by the following
fixed-point (when it exists) [13]:

Sn+1 = Init(A)↗ ∪
⋃
e∈E

Succ(Sn, e), with S0 = ∅

The final fixed-point set is noted S∗. It follows from [11] that all Z are finite
unions of convex polyhedra.

In order to compute the winning states, we need a few additional operators:
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– past: v↙ = {v′ | ∃v ∈ Z s.t. v′(x) = v(x) − d, d ≥ 0 if x ∈ X ; v′(x) =
v(x) if x ∈ P}

– inverse reset of clocks in set R ⊆ X : Z[R]−1 = {v′, v′(x) = 0 if v′ ∈
Z[R] | ∃v ∈ Z s.t. v′(x) = v(x) if x �∈ R}

– predecessor by edge e = (l, a, γ, R, l′): Pred((l′, Z), e) = (l, Z[R]−1 ∩ γ).
– controllable (resp. uncontrollable) action predecessors: cPred((l′, Z)) (resp.

uPred((l′, Z))) is the union of all the predecessors of (l′, Z) by some edge
with target location l′ and labelled by a controllable (resp. an uncontrollable)
action.

As before, we extend all these predecessor operators to arbitrary sets of
states. We can now define a safe-timed predecessors operator Predt(S1, S2) =

{(l, v) | ∃d ≥ 0 s.t. (l, v)
d−→ (l, v′), (l, v′) ∈ S1 and Post[0,d](l, v) ⊆ S∗\S2},

where Post[0,d](l, v) = {(l, v′) ∈ S∗ | ∃t ∈ [0, d] s.t. (l, v)
t−→ (l, v′)}.

This corresponds intuitively to the states that can reach S1 by delay, without
going through any state in S2 along the path.

If we denote by Sgoal = {lgoal} × RX
≥0, then the backwards algorithm for

solving reachability games is the fixed-point computation of:

Wn+1 = S∗ ∩ (Predt(Wn ∪ cPred(Wn), uPred(S
∗\Wn)) ∪ Sgoal), with W0 = ∅

When it exists, the final fixed-point set is noted W ∗. We recall the following
result from [12]:

Theorem 1 ([12]). When W ∗ exists, for any PGA G and any location lgoal,
there exists a winning strategy for the controller in v(G), for a parameter valu-
ation v iff v ∈ (W ∗ ∩ Init(G))|P .

The obvious problem with the above approach is that the fixed-point compu-
tation of W ∗ might not terminate. And indeed, already, the fixed-point compu-
tation of S∗, the reachable state-space, might not terminate either.

In [13], to solve this problem without restricting the expressiveness of the
model too much, we have restricted the problem of parameter synthesis to the
search for bounded integer parameters. We wanted to avoid an explicit enu-
meration of all the possible values of parameters and have therefore proposed
a modification of the symbolic computation of S∗ that preserves the integer
parameter valuations.

The approach is based on the notion of integer hull. The integer hull IntHull(Z)
of a convex polyhedron Z in Rn is the smallest convex subset of Z containing
all the elements of Z with integer coordinates. If Conv(Z) is the smallest convex
set containing Z, and IntVects(Z) the subset of all elements of Z with integer
coordinates, then the integer hull of Z is IntHull(Z) = Conv(IntVects(Z)). IntHull
is extended to symbolic states as: IntHull((l, Z)) = (l, IntHull(Z)).

In [13], we have proved that to solve integer parameter synthesis problem it
is sufficient to consider the integer hulls of the symbolic states. Therefore, in
the standard algorithm for the reachability-synthesis for PTA, we replace all
occurrences of the operator Succ with ISucc((l, Z), e) = IntHull(Succ((l, Z), e)).
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By using the ISucc instead of Succ in the computation of the whole state-space
S∗ we ensure termination and obtain a subset IS∗ of S∗ such that IntVects(IS∗) =
IntVects(S∗), provided we know a bound on the possible values for the parameters
and the following assumption holds:

Assumption 1. Any non-empty symbolic state computed through the Succ op-
erator contains at least one integer point.

From now on we place ourselves in this setting, and like in [13] we can assume
w.l.o.g. that all clocks are bounded by some constant.

3.2 Bounded Integer Parameter Synthesis

In [13], in order to prove the correctness of the algorithm that uses the inte-
ger hull, we have relied on the convexity of the symbolic states in the forward
computation. However, even if S1 and S2 are convex, Predt(S1, S2) is not in
general. By taking the integer hull of a non-convex set, we could include some
integer points that do not belong to the original set. Since we want to pre-
serve the integer points, we define a new operator, an integer shape, IntShape.
As stated before, any set S produced by the backward computation can be ex-
pressed as finite unions of convex polyhedra

⋃
i Zi. For such a finite union; we

define IntShape(S) =
⋃

i IntHull(Zi). We can now extend the needed backwards
operators using the notion of integer shape.

We first extend a predecessor by edge operator (Pred) for the computation
of integer parameter valuations, similarly to the extension of Succ operator. For
a symbolic state (l, Z) and an edge e, an integer predecessor by an edge e is
defined as: IPred((l, Z), e) = IntShape(Pred((l, Z), e)).

The following lemma states that the computation of the integer shape of
a predecessor of a symbolic state (l, Z), results in the same set as if we would
compute the integer shape of a symbolic state (l, Z) at first, and then the integer
shape of its predecessor by edge.

Lemma 1. For any symbolic state (l, Z) and any edge e:
IPred(IntShape((l, Z), e)) = IntShape(Pred((l, Z), e))

Proof. We will prove both inclusions:
1. IPred(IntShape((l, Z)), e) ⊆ IntShape(Pred((l, Z), e)).

Since IntShape((l, Z)) ⊆ (l, Z) and IntShape and Pred are non-decreasing, the
first inclusion holds.

2. IPred(IntShape((l, Z)), e) ⊇ IntShape(Pred((l, Z), e)).
Let v ∈ IntVects(Pred((l, Z), e)). Then ∃v′ ∈ Z s.t. v ∈ IntVects(Pred((l, {v′}), e)).
By definition of Pred we have that v|P = v′|P , and therefore v′ ∈ v|P (Z). v|P is an

integer vector (since v is) and v|P (Z) is a zone of a classical TA and thus with
integer vertices. Therefore v|P (Z) = IntShape(v|P (Z)). Since IntShape is non-
decreasing and v|P (Z) ⊆ Z we have IntShape(v|P (Z)) ⊆ IntShape(Z), and so v′ ∈
IntShape(Z) and v ∈ IntVects(Pred((l, IntShape(Z)), e)). Again, since IntShape is
non-decreasing, we obtain IPred(IntShape((l, Z)), e) ⊇ IntShape(Pred((l, Z), e)).
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We define, in a similar way, an integer controllable (resp. uncontrollable) ac-
tion predecessors IcPred((l, Z)) = IntShape(cPred((l, Z))) (resp. IuPred((l, Z)) =
IntShape(uPred((l, Z))).

Lemma 2. For any symbolic state (l, Z):
IcPred(IntShape((l, Z))) = IntShape(cPred((l, Z)))

Proof. Immediate with Lemma 1 from the facts that: cPred((l, Z)) =⋃
c∈Σc Pred(IntShape((l, Z), c))) and IntShape(S1, S2) =

IntShape(S1) ∪ IntShape(S2) when S1 and S2 are finite unions of convex sets.

The same result obviously holds for uPred and we can finally extend this to
the safe-timed predecessor operator by IPredt(Z1, Z2) = IntShape(Predt(Z1, Z2)).

Lemma 3. For any two sets of states S1 and S2:
IPredt(IntShape(S1), IntShape(S2)) = IntShape(Predt(S1, S2))

Proof. Recall that S1 and S2 are finite unions of convex polyhedra: S1 =
⋃

i Z1i

and S2 =
⋃

j Z2j . By using a result from [8], we then have Predt(
⋃

i Z1i,
⋃

j Z2j) =⋃
i

⋂
j Predt(Z1i, Z2j). Then for any i, j, with another result from [8], we have:

Predt(Z1i, Z2j) = (Z↙1i \Z
↙
2j )∪ ((Z1i ∩Z↙2j )\Z2j)

↙, because Z2j is convex. What
we need to show then is that:
-IntShape(Z1 ∩ Z2) = IntShape(IntShape(Z1) ∩ IntShape(Z2))
-IntShape(Z1 ∪ Z2) = IntShape(IntShape(Z1) ∪ IntShape(Z2))

-IntShape(Z↙1 ) = IntShape(IntShape(Z1)
↙)

-IntShape(Z1\Z2) = IntShape(IntShape(Z1)\IntShape(Z2))
These four results are quite straightforward. Let us just prove the first, the

rest being similar.
First remark that Z1 and Z2 being convex, integer shapes are actually integer

hulls. Second IntHull(S) ⊆ S, for any S and since IntHull is non-decreasing,
IntHull(Z1 ∩ Z2) ⊇ IntHull(IntHull(Z1) ∩ IntHull(Z2)).

Now let v ∈ IntVects(IntHull(Z1)) then, by definition, v ∈ IntVects(Z1) and if
it also belongs to IntVects(IntHull(Z1)) then it is in IntVects(Z1) ∩ IntVects(Z2)
or equivalently in IntVects(Z1 ∩ Z2) and by taking the convex hull, we have the
result.

Now consider the following fixed-point computation:

IWn+1 = IS∗∩(IPredt(IWn∪IcPred(IWn), IuPred(IS
∗\IWn))∪Sgoal), IW0 = ∅

Lemma 4. For a PGA G, location lgoal, and a state (l, v) such that v is an
integer valuation, it holds that for ∀i, there exist a winning strategy in at most
i controllable steps from (l, v|X) in v|P (G) iff (l, v) ∈ IWi.

Proof. We proceed by induction. The property obviously holds for IW0. Now,
suppose it holds for some n ≥ 0. We first prove the left to right implication.
Let (l, v) be a state in IWn+1 such that v is an integer point. then (l, v) ∈
IS∗∩ (IPredt(IntShape(IWn ∪ cPred(IWn)), IntShape(uPr(IS∗ \ IWn)))∪Sgoal).
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If (l, v) ∈ Sgoal we are done, else, by Lemma 3, we know that (l, v) ∈ IS∗ ∩
IntShape(Predt(IWn)∪cPred(IWn), uPred(IS

∗\IWn)) and then in Predt(IWn)∪
cPred(IWn), uPred(IS

∗ \ IWn) and we get the result using the correctness of the
Predt operator and the induction hypothesis.

Now, we prove the right to left implication. If there is a strategy to win
in at most n + 1 steps, there is one to reach some state (l′, v′) in one step
and win in at most n steps. Then by the induction hypothesis, (l′, v′) ∈ IWn

and by the correctness of the Predt operator, (l, v) belongs to Predt(IWn) ∪
cPred(IWn), uPred(IS

∗ \ IWn). Since v is an integer valuation, (l, v) belongs to
IntShape(Predt(IWn) ∪ cPred(IWn), uPred(IS

∗ \ IWn)) and we can conclude by
Lemma 3.

We now prove that the fixed-point computation IWn terminates and that its
result IW ∗ is correct and complete.

Theorem 2 (Termination). For any PGA G and any desired location lgoal,
the algorithm terminates.

Proof. We proved, in [13], that the forward computation of IS∗ terminates.
When going backwards, each time we apply IPredt we know that we have added
to the winning set of states at least one integer point (otherwise we can termi-
nate). Since there is only a finite number of integer points to add (due to the
boundedness of clocks and parameters), the computation terminates.

Theorem 3 (Correctness and completeness). Let v be an integer parameter
valuation. For any PGA G and any location lgoal, upon termination, there exists
a winning strategy for the controller in v(G) iff v ∈ (IW ∗ ∩ Init(G))|P .
Proof. We start by proving the right to left implication. Suppose v ∈ (IW ∗ ∩
Init(G))|P . Then there exists a state (l0, v0) in IW ∗ ∩ Init(G) such that v0|P = v
and v0|X has all coordinates equal to 0. So v0 is an integer valuation on X∪P and
since it belongs IW ∗, it belongs to IWn for some n. So we can apply Lemma 4
to conclude.

Now, we prove the left to right implication. If there exists a winning strategy
for the controller to win in v(G) then it means that it can win within a finite
number of controllable steps. Then, by Lemma 4, it means that the state (l0, v0)
such that v0|P = v and v0|X has all coordinates equal to 0 belongs to IWn for
some n, and therefore to IW ∗, which concludes the proof.

3.3 Avoiding Integer Hulls in the Backward Computation

We have shown how we can symbolically compute the bounded integer parameter
valuations that permit the controller to win. We will now prove that, surprisingly,
we actually do not have to apply an integer hull in the backwards computation,
in order to obtain the correct integer solution and ensure termination.

Consider the fixed-point computation corresponding to this setting:

IW ′
n+1 = IS∗ ∩ (Predt(IW ′

n ∪ cPred(IW ′
n), uPred(IS

∗\IW ′
n)) ∪ Sgoal), IW ′

0 = ∅

Let us first show that if this procedure terminates, it is sound and complete.
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Theorem 4 (Correctness and completeness). For any PGA G, a desired
location lgoal, and an integer parameter valuation v, upon the termination, there
exists a winning strategy for the controller in v(G) iff v ∈ (IW ′∗ ∩ Init(G))|P .

Proof. First remark that, for all n, we have IWn ⊆ IW ′
n ⊆Wn, because integer

hulls and shapes only remove points. Now, IntVects is a non-decreasing operator
so IntVects(IWn) ⊆ IntVects(IW ′

n) ⊆ IntVects(Wn). By Lemma 3 and correctness
of the Wn computation, we know that IntVects(IWn) = IntVects(Wn). So all
three sets are equal.

Now, as seen in the proof of Theorem 3, any initial state in v(G) for an
integer parameter valuation v certainly has an integer valuation of both clocks
and parameters, which permits us to conclude.

Proving the termination is much trickier: we shall construct a new object, that
we call parametric region graph, that refines the standard region graph for timed
automata of [1] with parametric constraints. We therefore further divide the
region graph with all the guards from the model and all the constraints defining
integer hulls (of the symbolic states) obtained in the forward computation.

A constraint of an integer hull may create a non-integer vertex when intersect-
ing the region graph. For each such vertex, we add constraints that go though
the vertex and are parallel to the diagonal constraints of the region graph (added
constraints are of the form xi − xj + k = 0 for all clocks xi, xj and k ∈ Z).

Note that if a constraint of an integer hull intersects a diagonal constraint cre-
ating a non-integer vertex, there is already a diagonal constraint going through
that vertex. We now give a formal definition of the parametric region graph.

Definition 8 (Parametric regions). Let m be the maximal value of paramet-
ric expressions occurring in the constraints of the PGA (recall that parameters
are bounded so it is possible to compute that value). The parametric region graph
is constructed in the following way:

– the variable-space RX∪P is partitioned along the constraints x ∼ k and x−
y ∼ k for all clocks x, y ∈ X, �∈ {<,=, >} and 0 ≤ k ≤ m (this gives the
standard region graph);

– for any guard of the automaton and any constraint appearing in the (finite
number of) convex polyhedra defining IS∗, γ � 0, we further partition the
variable-space, with the constraints γ �′ 0 for every �′∈ {<,=, >};

– for any (non-integer) vertex of the “pre-regions” defined by the above parti-
tion, we further refine the variable-space by constraints of the form x−y+k �
0, with �∈ {<,=, >} for all clocks x �= y and k ∈ Z, going through that ver-
tex.

Informally, these constraints partition the variable-space RX∪P into a finite
number of a parametric regions, which are either a vertex, a line fragment be-
tween two vertices, or a sub-space between line fragments and vertices that does
not contain either a line fragment nor a vertex.

Fig. 1 shows a two-dimensional example of the variable-space partitioned into
parametric regions. An integer hull obtained in a forward computation is drawn
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x1

x2

Fig. 1. Parametric region partition

in red. Its side (that does not overlap with the region graph) is extended (in
green) as long as it cuts the state-space. Additionally, each non-integer vertex
obtained in the intersection of the constraints defining the integer hull and the
region graph, has a diagonal constraint that goes through it (in blue). An exam-
ple of a parametric region is given in gray.

In order to prove the termination when going backwards, we have to show
that all the operators preserve the parametric regions.

Lemma 5. If (ai)i and (bj)j are finite families of parametric regions then the
following sets are a finite union of parametric regions:

1.
⋃

i ai ∪
⋃

j bj;
2.
⋃

i ai ∩
⋃

j bj;
3. the complement of

⋃
i ai;

4. (
⋃

i ai)
↙;

5. Pred((l,
⋃

i ai), e), for any location l and edge e;
6. Predt(

⋃
i ai,

⋃
j bj).

Proof. The first three are straightforward using the fact that parametric regions
are taken from a finite set. The fourth uses the fact that these regions are defined
using the diagonal constraints x− y− k � 0 going through any vertex. The fifth
is immediate. For Predt we need to use once again the two results from [8]:

Predt(
⋃

i ai,
⋃

j bj) =
⋃

i

⋂
j Predt(ai, bj) and Predt(ai, bj) = (a↙i \b

↙
j ) ∪ ((ai ∩

b↙j )\bj)↙ (if bj is convex, which is true by definition of the parametric region),

which can equivalently be written as: Predt(ai, bj) = (a↙i ∩b↙j )∪(ai∩b↙j ∩bj)
↙.

We can then conclude by using the first four results.

We can now get back to the termination of the IW ′
n fixed-point computation:

Theorem 5 (Termination). For any PGA G and any desired location lgoal
the fixed-point computation of IW ′∗ terminates.

Proof. Again we know, from [13], that the forward computation of IS∗, using
ISucc and for bounded parameters, terminates. By definition of parametric re-
gions, IS∗ can be written as a finite union of symbolic states whose associated
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Fig. 2. A Parametric Timed
Game Automaton

�0
Z0

�0
Z1

. . . �0
Zn

�1
x ≥ 0

�5
x > a

�2
x ≥ 0

Goal
x ≥ 2

�3
x ≥ 0

�4
x ≥ 0

u0 u0 u0

u0

c0
c0 c0 c0

u1

u2

c1

c2

u3

c3

c4

Fig. 3. Symbolic state graph of PGA
of Figure 2

valuations can be represented as finite unions of parametric region. When going
backwards using Predt, by Lemma 5 we know that parametric regions are pre-
served. Therefore at each step at least one region is added to the set of winning
states (otherwise the fixed-point is reached and we can terminate). Since there
is a finite number of parametric regions, the computation must terminate.

3.4 Complexity

As remarked in [13], all of the possible valuations of parameters, that are in-
teger and bounded, can be enumerated in exponential time. Therefore, a prob-
lem that is EXPTIME for TGA, the corresponding bounded integer version for
PGA is also EXPTIME. The reachability game is EXPTIME-complete for TGA
[14], and it is a special case of the reachability-emptiness game for PGA. We
can thus conclude that the reachability-emptiness (synthesis) game for PGA is
EXPTIME-complete for bounded integer parameters.

4 Example

We consider an extension of the example proposed in [8]. The model has two
clocks x and y, controllable (ci) and uncontrollable (ui) actions and two pa-
rameters a and b. The reachability game consists in finding a strategy for the
controller that will eventually end up in the location Goal. We will now explain
how the algorithm works.

A PGA is given in Figure 2 and its symbolic state graph (graph with nodes
(l, Z)) in Figure 3. The initial symbolic state is: (�0, Z0) with Z0 = {x = y, x ≥
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0, y ≥ 0}. After n loops u0, we have : (�0, Zn) with Zn = {x ≥ 0, a ≤ b + 1, 0 ≤
na ≤ y − x ≤ n(b+ 1)}.
We now ensure the termination in the bounded case. For example, assume all

parameters and clocks are less than or equal to 3 (i.e. in each symbolic state we
implicitly have x ≤ 3, y ≤ 3, a ≤ 3, b ≤ 3) then:
-After one loop: Z1 = {a ≤ 3, a ≤ b+ 1, a ≤ y − x ≤ b+ 1}
-After three loops: Z3 = {a ≤ 1, a ≤ b+ 1, 3a ≤ y − x ≤ 3(b+ 1)}
-After n > 3 loops: Zn = Zn+1 = {a = 0, a ≤ b+ 1, y − x ≤ 3}
After the transition c0, the reset of the clock x removes the diagonal constraint

involving y − x in Z0. . .Zn and the new constraints y ≥ 2 and y − x ≥ 2 are
added . All theses zones obtained from Z0. . .Zn are included in (x ≥ 0) ∧ (y ≥
2) ∧ (y − x ≥ 2). For the sake of conciseness, in the sequel, we omit y ≥ 2 and
y − x ≥ 2 in the symbolic states associated with locations �1 and its successors.

After the computation of the symbolic states, shown in Figure 3, the backward
algorithm starts from the symbolic winning subset (Goal, x ≥ 2). By a control-
lable action (c2) predecessor, we obtain (�2, x ≥ 2). Computing the (timed) past
removes the constraint x ≥ 2, and computing the safe-timed predecessor adds
x ≥ b in order not to end-up in �3 by u3. The resulting state is (�2, x ≥ b).
One of the controllable transitions taking us to �2 is c4. A controllable action
predecessor (c4) adds a constraint x ≤ a. A constraint on the parameters derived
in this state is a ≥ b. This contraint is back-propagated to the preceding states.
The safe-timed predecessors give us the state (�4, x ≥ 0 ∧ a ≥ b).

We obtain successively the following sets of winning states: (�3, x ≥ 0∧a ≥ b),
(�2, (x ≥ b)∨ (x ≥ 0∧a ≥ b)) and (�1, (x ≤ a)∧

(
(x < 1∧a ≥ b)∨x ≥ 1

)
∧
(
(x ≥

b) ∨ (x ≥ 0 ∧ a ≥ b)
)
. The last one simplifies to (�1, (x ≤ a ∧ a ≥ b)). The

constraints are now back-propagated to the states associated with �0. The con-
straint a > 0 is added in order not to end-up in the symbolic state (�0, Zn) by u0

then the winning states obtained from (�0, Zn) is (�0, (a ≤ b+ 1) ∧ (a = 0)), from
(�0, Z3) is (�0, (a ≤ b+ 1) ∧ (a ≤ 1)) . . . and from (�0, Z0) is (�0, (a ≤ b+ 1)). We

finally obtain (�0, (a ≥ b)∧
(
(a > b+1)∨

(
(a ≤ b+ 1)∧ (a > 0)

))
). Thus, there

exists a winning strategy if and only if (a ≥ b) ∧
(
(a > b + 1) ∨ (a > 0)

)
.

It is now easy to extract the memory-less winning strategy from the set of winning
states as follows: a controllable action predecessor gives us the state from which
a corresponding controllable action should be taken, while safe-timed predecessor
further gives us the state where we should delay. Thus, a whole winning strategy
consists in: delaying in all states (�0, {y < 2}), doing c0 in all states (�0, {y ≥ 2}),
doing c1 in all states (�1, {x ≤ a}), delaying in all states (�2, {x < 2}), doing c2 in
all states (�2, {x ≥ 2}), doing c3 in all states (�3, {x ≥ 0}), delaying in all states
(�4, {x < b}), doing c4 in all states (�4, {x ≥ b ∧ x ≤ a}).

5 Conclusion

In this paper we have proposed an extension of a method introduced in [13], for
the computation of winning states and synthesis of bounded integer parameters
for parametric timed game automata. The method is symbolic and it is based on



Synthesis of Bounded Integer Parameters 101

the computation of the integer hull of the bounded parametric symbolic states.
In order to find the winning states, we have extended the standard fixed-point
backwards algorithm for solving timed reachability games, for the parametric
domain. Surprisingly, we do not have to apply an integer hull in the backwards
computation, in order to obtain the correct integer solution. In future, we plan
to extend this work to other timed models, such as PTA with stopwatches, as
well as to look for less restrictive codomains for parameter valuations.
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Abstract. With the purpose of unifying a number of approaches to en-
ergy problems found in the literature, we introduce generalized energy
automata. These are finite automata whose edges are labeled with energy
functions that define how energy levels evolve during transitions. Uncov-
ering a close connection between energy problems and reachability and
Büchi acceptance for semiring-weighted automata, we show that these
generalized energy problems are decidable. We also provide complexity
results for important special cases.

1 Introduction

Energy and resource management problems are important in areas such as em-
bedded systems or autonomous systems. They are concerned with the question
whether a given system admits infinite schedules during which (1) certain tasks
can be repeatedly accomplished and (2) the system never runs out of energy
(or other specified resources). Starting with [8], formal modeling and analysis of
such problems has recently attracted some attention [7, 9, 13, 16, 21, 28].

As an example, the left part of Fig. 1 shows a simple model of an electric car,
modeled as a weighted timed automaton [4,5]. In the working state W , energy is
consumed at a rate of 10 energy units per time unit; in the two recharging states
R1, R2, the battery is charged at a rate of 20, respectively 10, energy units per
time unit. As the clock c is reset (c← 0) when entering state W and has guard
c ≥ 1 on outgoing transitions, we ensure that the car always has to be in state
W for at least one time unit. Similarly, the system can only transition back from
states R1, R2 to W if it has spent at most one time unit in these states.

Passing between states W and R1 requires 4 energy units, while transitioning
between W and R2, and between R2 to R1, requires 2 energy units. Altogether,
this is intended to model the fact that there are two recharge stations available,
one close to work but less powerful, and a more powerful one further away. Now
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Fig. 1. Simple model of an electric car as a weighted timed automaton (left); the
corresponding energy automaton (right)

assume that the initial state W is entered with a given initial energy x0, then
the energy problem of this model is as follows: Does there exist an infinite trace
which (1) visits W infinitely often and (2) never has an energy level below 0?

This type of energy problems for weighted timed automata is treated in [7],
and using a reduction like in [7], our model can be transformed to the energy
automaton in the right part of Fig. 1. (The reduction is quite complicated and
only works for one-clock timed automata; see [7] for details.) It can be shown
that the energy problem for the original automaton is equivalent to the following
problem in the energy automaton: Given an initial energy x0, and updating the
energy according to the transition label whenever taking a transition, does there
exist an infinite run which visits W infinitely often? Remark that the energy
update on the transition from R to W is rather complex (in the general case of
n recharge stations, the definition of fRW can have up to n branches), and that
we need to impose a Büchi condition to enforce visiting W infinitely often.

In this paper we propose a generalization of the energy automata of [7] which
also encompasses most other approaches to energy problems. Abstracting the
properties of the transition update functions in our example, we define a general
notion of energy functions which specify how weights change from one system
state to another. Noticing that our functional energy automata are semiring-
weighted automata in the sense of [17], we uncover a close connection between
energy problems and reachability and Büchi problems for weighted automata.
More precisely, we show that one-dimensional energy problems can be naturally
solved using matrix operations in semirings and semimodules [6, 17, 19, 20].

For reachability, we use only standard results [17], but for Büchi acceptance
we have to extend previous work [19,20] as our semiring is not complete. We thus
show that reachability and Büchi acceptance are decidable for energy automata.
For the class of piecewise affine energy functions, which generalize the functions
of Fig. 1 and are important in applications, they are decidable in exponential
time.

Structure of the Paper. We introduce our general model of energy automata
in Section 2. In Section 3 we show that the set of energy functions forms a
star-continuous Kleene algebra, a fact which allows us to give an elegant char-
acterization of reachability in energy automata. We also expose a structure of
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Conway semiring-semimodule pair over energy functions which permits to char-
acterize Büchi acceptance. In Section 4 we use these characterizations to prove
that reachability and Büchi acceptance are decidable for energy automata. We
also show that this result is applicable to most of the above-mentioned examples
and give complexity bounds. To put our results in perspective, we generalize
energy automata along several axes in Section 5 and analyze these generalized
reachability and Büchi acceptance problems. Owing to space limitations, most of
the proofs had to be omitted from this paper; these can be found in the extended
version [18].

Related Work. A simple class of energy automata is the one of integer-weighted
automata, where all energy functions are updates of the form x �→ x + k for
some (positive or negative) integer k. Energy problems on these automata, and
their extensions to multiple weights (also called vector addition systems with
states (VASS)) and games, have been considered e.g. in [8,10–14,21]. Our energy
automata may hence be considered as a generalization of one-dimensional VASS
to arbitrary updates; in the final section of this paper we will also be concerned
with multi-dimensional energy automata and games.

Energy problems on timed automata [3] have been considered in [7–9,28]. Here
timed automata are enriched with integer weights in locations and on transitions
(the weighted timed automata of [4, 5], cf. Fig. 1), with the semantics that the
weight of a delay in a location is computed by multiplying the length of the
delay by the location weight. In [8] it is shown that energy problems for one-
clock weighted timed automata without updates on transitions (hence only with
weights in locations) can be reduced to energy problems on integer-weighted
automata with additive updates.

For one-clock weighted timed automata with transition updates, energy prob-
lems are shown decidable in [7], using a reduction to energy automata as we
use them here. More precisely, each path in the timed automaton in which the
clock is not reset is converted to an edge in an energy automaton, labeled with
a piecewise affine energy function (cf. Definition 4). Decidability of the energy
problem is then shown using ad-hoc arguments, but can easily be inferred from
our general results in the present paper.

Also another class of energy problems on weighted timed automata is consid-
ered in [7], in which weights during delays are increasing exponentially rather
than linearly. These are shown decidable using a reduction to energy automata
with piecewise polynomial energy functions; again our present framework applies.

We also remark that semigroups acting on a set, or more generally, semiring-
semimodule pairs, have been used to describe the infinitary behavior of automata
for a long time, see [6,27,31]. In this framework, the infinitary product or omega
operation is defined on the semiring and takes its values in the semimodule.
Another approach is studied e.g. in [26], where the omega operation maps the
semiring into itself. It seems to the authors that there is no reasonable definition
of an infinitary product or omega operation on energy functions that would again
result in an energy function, hence we chose to use the framework of semiring-
semimodule pairs.
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x �→ x+ 2;x ≥ 2

x �→ x+ 3;x > 1

x �→ 2x− 2; x ≥ 1
x �→ x− 1;x > 1

x �→ x+ 1;x ≥ 0

Fig. 2. A simple energy automaton

2 Energy Automata

The transition labels on the energy automata which we consider in the paper,
will be functions which model transformations of energy levels between system
states. Such transformations have the (natural) properties that below a certain
energy level, the transition might be disabled (not enough energy is available to
perform the transition), and an increase in input energy always yields at least
the same increase in output energy. Thus the following definition.

Definition 1. An energy function is a partial function f : �≥0 −→ �≥0 which
is defined on a closed interval [lf ,∞[ or on an open interval ]lf ,∞[, for some
lower bound lf ≥ 0, and such that for all x1 ≤ x2 for which f is defined,

f(x2) ≥ f(x1) + x2 − x1 . (∗)

The class of all energy functions is denoted by F .

Thus energy functions are strictly increasing, and in points where they are dif-
ferentiable, the derivative is at least 1.1 The inverse functions to energy functions
exist, but are generally not energy functions. Energy functions can be composed,
where it is understood that for a composition g ◦ f (to be read from right to
left), the interval of definition is {x ∈ �≥0 | f(x) and g(f(x)) defined}. We will
generally omit the symbol ◦ and write composition simply as gf .

Definition 2. An energy automaton (S, T ) consists of finite sets S of states
and T ⊆ S ×F × S of transitions labeled with energy functions.

We show an example of a simple energy automaton in Fig. 2. Here we use
inequalities to give the definition intervals of energy functions.

A finite path in an energy automaton is a finite sequence of transitions π =
(s0, f1, s1), (s1, f2, s2), . . . , (sn−1, fn, sn). We use fπ to denote the combined en-
ergy function fn · · · f2f1 of such a finite path. We will also use infinite paths,
but note that these generally do not allow for combined energy functions.

A global state of an energy automaton is a pair q = (s, x) with s ∈ S and
x ∈ �≥0. A transition between global states is of the form ((s, x), f, (s′, x′)) such
that (s, f, s′) ∈ T and x′ = f(x). A (finite or infinite) run of (S, T ) is a path in
the graph of global states and transitions.

1 Remark that, in relation to the example in the introduction, the derivative is taken
with respect to energy input, not time. Hence the mapping from input to output
energy in state W is indeed an energy function in our sense.
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We are ready to state the decision problems with which our main concern will
lie. As the input to a decision problemmust be in some way finitely representable,
we will state them for subclasses F ′ ⊆ F of computable energy functions; an F ′-
automaton is an energy automaton (S, T ) with T ⊆ S ×F ′ × S.

Problem 1 (Reachability). Given a subset F ′ of computable functions, an F ′-
automaton (S, T ), an initial state s0 ∈ S, a set of accepting states F ⊆ S, and a
computable initial energy x0 ∈ �≥0: does there exist a finite run of (S, T ) from
(s0, x0) which ends in a state in F?

Problem 2 (Büchi acceptance). Given a subset F ′ of computable functions, an
F ′-automaton (S, T ), an initial state s0 ∈ S, a set of accepting states F ⊆ S,
and a computable initial energy x0 ∈ �≥0: does there exist an infinite run of
(S, T ) from (s0, x0) which visits F infinitely often?

As customary, a run such as in the statements above is said to be accepting.
We let ReachF ′ denote the function which maps an F ′-automaton together with
an initial state, a set of final states, and an initial energy to the Boolean values
ff or tt depending on whether the answer to the concrete reachability problem
is negative or positive. BüchiF ′ denotes the similar mapping for Büchi problems.

The special case of Problem 2 with F = S is the question whether there exists
an infinite run in the given energy automaton. This is what is usually referred to
as energy problems in the literature; our extension to general Büchi conditions
has not been treated before.

3 The Algebra of Energy Functions

In this section we develop an algebraic framework of star-continuous Kleene
algebra around energy functions which will allow us to solve reachability and
Büchi acceptance problems in a generic way. Let [0,∞]⊥ = {⊥} ∪ [0,∞] denote
the non-negative real numbers together with extra elements ⊥, ∞, with the
standard order on �≥0 extended by ⊥ < x <∞ for all x ∈ �≥0. Also, ⊥+ x =
⊥− x = ⊥ for all x ∈ �≥0 ∪ {∞} and ∞+ x =∞− x for all x ∈ �≥0.

Definition 3. An extended energy function is a mapping f : [0,∞]⊥ −→ [0,∞]⊥,
for which f(⊥) = ⊥ and f(x2) ≥ f(x1) + x2 − x1 for all x1 ≤ x2, as in (∗).
Moreover, f(∞) = ∞, unless f(x) = ⊥ for all x ∈ [0,∞]⊥. The class of all
extended energy functions is denoted E.

This means, in particular, that f(x) = ⊥ implies f(x′) = ⊥ for all x′ ≤ x,
and f(x) =∞ implies f(x′) =∞ for all x′ ≥ x. Hence, except for the extension
to ∞, these functions are indeed the same as our energy functions from the
previous section. Composition of extended energy functions is defined as before,
but needs no more special consideration about its definition interval.

We also define an ordering on E , by f ≤ g iff f(x) ≤ g(x) for all x ∈ [0,∞]⊥.
We will need three special energy functions, ⊥, id and "; these are given by
⊥(x) = ⊥, id(x) = x for x ∈ [0,∞]⊥, and "(⊥) = ⊥, "(x) =∞ for x ∈ [0,∞].
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Lemma 1. With the ordering ≤, E is a complete lattice with bottom element
⊥ and top element ". The supremum on E is pointwise, i.e. (supi∈I fi)(x) =
supi∈I fi(x) for any set I, all fi ∈ E and x ∈ [0,∞]⊥. Also, (supi∈I fi)h =
supi∈I(fih) for all h ∈ E.

We denote binary suprema using the symbol ∨; hence f ∨ g, for f, g ∈ E , is
the function (f ∨ g)(x) = max(f(x), g(x)).

Lemma 2. (E ,∨, ◦,⊥, id) is an idempotent semiring with natural order ≤.

Recall [17] that ≤ being natural refers to the fact that f ≤ g iff f ∨ g = g.
For iterating energy functions, we define a unary star operation on E by

f∗(x) =

{
x if f(x) ≤ x ,
∞ if f(x) > x .

Lemma 3. For any f ∈ E, we have f∗ ∈ E. Also, for any g ∈ E, there exists
f ∈ E such that g = f∗ if, and only if, there is k ∈ [0,∞]⊥ such that g(x) = x
for all x < k, g(x) =∞ for all x > k, and g(k) = k or g(k) =∞.

By Lemma 1, composition right-distributes over arbitrary suprema in E . The
following example shows that a similar left distributivity does not hold in general,
hence E is not a complete semiring the sense of [17]. Let fn, g ∈ E be defined by
fn(x) = x+1− 1

n for x ≥ 0, n ∈ �+ and g(x) = x for x ≥ 1. Then g(supn fn)(0) =
g(supn fn(0)) = g(1) = 1, whereas (supn gfn)(0) = supn g(fn(0)) = supn g(1 −
1
n ) = ⊥.

The next lemma shows a restricted form of left distributivity which holds only
for function powers fn. Note that it implies that f∗ = supn fn for all f ∈ E ,
which justifies the definition of f∗ above.

Lemma 4. For any f, g ∈ E, gf∗ = supn∈�(gf
n).

Proposition 1. For any f, g, h ∈ E, gf∗h = supn∈�(gf
nh). Hence E is a star-

continuous Kleene algebra [24].

We call a subsemiring E ′ ⊆ E a subalgebra if f∗ ∈ E ′ for all f ∈ E ′.
It is known [6, 15, 17, 25] that when S is a star-continuous Kleene algebra,

then so is any matrix semiring Sn×n, for all n ≥ 1, with the usual sum and
product operations. The natural order on Sn×n is pointwise, so that for all n×n
matrices A,B over S, A ≤ B iff Ai,j ≤ Bi,j for all i, j. Now a star-continuous
Kleene algebra is also a Conway semiring, hence the Conway identities

(g ∨ f)∗ = (g∗f)∗g∗ and (gf)∗ = g(fg)∗f ∨ id (1)

are satisfied for all f, g ∈ E . Also, this implies that the matrix semiring En×n

is again a Conway semiring, for any n ≥ 1, with the star operation defined
inductively for a matrix

M =

[
a b
c d

]
∈ En×n , (2)
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where a is k × k and d is m×m with k +m = n, by

M∗ =

[
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗

]
∈ En×n . (3)

The definition of M∗ does not depend on how M is split into parts, and star-
continuity implies that for all matrices M,N,O,

NM∗O = sup
n∈�

(NMnO) . (4)

Note again that this implies that M∗ = supn Mn for all matrices M . In a
sense, this gives another, inductive definition of the star operation on the matrix
semiring; the important property of star-continuous Kleene algebras is, then,
that this inductive definition and the one in (3) give rise to the same operation.

We introduce a semimodule V over E . Let B = {ff , tt} be the Boolean algebra,
with order ff < tt, and V = {u : [0,∞]⊥ −→ B | u(⊥) = ff , x1 ≤ x2 ⇒ u(x1) ≤
u(x2)}. Identifying ff with ⊥ and tt with ∞, we have an embedding of V into E ;
note that ⊥," ∈ V .

Lemma 5. With action (u, f) �→ uf : V×E −→ V, V is a right E-semimodule [20].
Moreover, (supi∈I ui)f = supi∈I(uif) for any set I, all ui ∈ V and f ∈ E, and
uf∗ = supn∈� ufn for all u ∈ V.

So like the situation for E (cf. Lemmas 1 and 4), the action of E on V right-
distributes over arbitrary suprema and left-distributes over function powers.

We define an infinitary product operation Eω −→ V . Let f0, f1, . . . be an infinite
sequence of energy functions and x0 ∈ [0,∞]⊥, and put xn+1 = fn(xn) for n ∈ �.
Then we define

( ∞∏
i=0

fi)(x0) =

{
ff if ∃n ∈ � : xn = ⊥ ,

tt if ∀n ∈ � : xn �= ⊥ .

Note that this product is order-preserving. By the next lemma, it is a conserva-
tive extension of the finite product. As E is not a complete semiring, it follows
that (E ,V) is not a complete semiring-semimodule pair in the sense of [20].

Lemma 6. For all f0, f1, . . . ∈ E, (
∏∞

i=1 fi)f0 =
∏∞

i=0 fi. For all indices 0 =
n0 ≤ n1 ≤ . . . ,

∏∞
i=0 fi =

∏∞
i=0(fni+1−1 · · · fni).

To deal with infinite iterations of energy functions, we define a unary omega
operation E −→ V by

fω(x) =

{
ff if x = ⊥ or f(x) < x ,
tt if x �= ⊥ and f(x) ≥ x .

Note that fω =
∏∞

i=0 f for all f ∈ E .

Proposition 2. (E ,V) is a Conway semiring-semimodule pair.
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Recall [6] that this means that additionally to the identities (1),

(gf)ω = (fg)ωf and (f ∨ g)ω = fω(gf∗)∗ ∨ (gf∗)ω

for all f, g ∈ E . Like for Conway semirings, it implies that the pair (En×n,Vn)
is again a Conway semiring-semimodule pair, for any n ≥ 1, with the action of
En×n on Vn similar to matrix-vector multiplication using the action of E on V ,
and the omega operation En×n −→ Vn given inductively as follows: for M ∈ En×n

with blocks as in (2), define

Mω =
[
(a ∨ bd∗c)ω ∨ dωc(a ∨ bd∗c)∗ (d ∨ ca∗b)ω ∨ aωb(d ∨ ca∗b)∗

]
, (5)

Mωk =
[
(a ∨ bd∗c)ω (a ∨ bd∗c)ωbd∗

]
.

The definition of Mω does not depend on how M is split into parts, but the one
of Mωk does (recall that a is a k × k matrix). It can be shown [6] that (5), and
also (3), follow directly from certain general properties of fixed point operations.

4 Decidability

We are now ready to apply the Kleene algebra framework to reachability and
Büchi acceptance for energy automata. We first show that it is sufficient to
consider energy automata (S, T ) with precisely one transition (s, f, s′) ∈ T for
each pair of states s, s′ ∈ S. This will allow us to consider T as a matrix S×S −→ E
(as is standard in weighted-automata theory [17]).

Lemma 7. Let E ′ ⊆ E be a subalgebra and (S, T ) an E ′-automaton. There
exists an E ′-automaton (S, T ′) for which ReachE′(S, T ) = ReachE′(S, T ′) and
BüchiE′(S, T ) = BüchiE′(S, T ′), and in which there is precisely one transition
(s, f, s′) ∈ T ′ for all s, s′ ∈ S.

Hence we may, without loss of generality, view the transitions T of an energy
automaton as a matrix T : S×S −→ E . We can also let S = {1, . . . , n} and assume
that the set of accepting states is F = {1, . . . , k} for k ≤ n. Further, we can
represent an initial state s0 ∈ S by the s0th unit (column) vector Is0 ∈ {⊥, id}n,
defined by Is0i = id iff i = s0, and F by the (column) vector F≤k ∈ {⊥, id}n
given by F≤k

i = id iff i ≤ k. Note that T ∈ En×n is an n × n-matrix of energy
functions; as composition of energy functions is written right-to-left, Tij ∈ E is
the function on the transition from sj to si.

Theorem 1. Let E ′ ⊆ E be a subalgebra. For any E ′-automaton (S, T ) with
S = {1, . . . , n}, F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ �≥0, we have
ReachE′(S, T )(F, s0, x0) = tt if, and only if, tF

≤kT ∗Is0(x0) �= ⊥.

Proof. Here tF
≤k denotes the transpose of F≤k. By (4), we have tF

≤kT ∗Is0 =
supn(tF

≤kT nIs0), so that tF
≤kT ∗Is0(x0) �= ⊥ iff tF

≤kT nIs0(x0) �= ⊥ for some
n ∈ �, i.e. iff there is a finite run from (s0, x0) which ends in a state in F . ��
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f11

f12

f13

f22
f23

f32

f33

f11(x) = x; x ≥ 0

f12(x) = ∞; x > 1

f22(x) =

{
x; x ≤ 2

∞; x > 2

f23(x) =

{
x− 1; 1 < x ≤ 2

∞; x > 2

f32(x) =

{
x+ 1; x ≤ 1

∞; x > 1

f33(x) =

{
x; x ≤ 1

∞; x > 1

f13(x) = ∞; x > 1

Fig. 3. The closure of the automaton from Fig. 2

Referring back to the example automaton (S, T ) from Fig. 2, we display in
Fig. 3 the automaton with transition matrix T ∗.

Theorem 2. Let E ′ ⊆ E be a subalgebra. For any E ′-automaton (S, T ) with
S = {1, . . . , n}, F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ �≥0, we have
BüchiE′(S, T )(F, s0, x0) = T ωkIs0(x0).

Proof. This is a standard result for complete semiring-semimodule pairs, cf. [20].
Now (E ,V) is not complete, but the properties developed in the previous section
allow us to show the result nevertheless. We need to see that for all M ∈ En×n

and 1 ≤ i ≤ n,

(Mω)i = sup{· · ·Mk3,k2Mk2,k1Mk1,i : 1 ≤ k1, k2, . . . ≤ n} ,

which we shall deduce inductively from (5).
Let a ∈ E�×�, d ∈ Em×m, for � + m = n, and let i ∈ {1, . . . , �}. Then the

ith component of Mω is the ith component of (a ∨ bd∗c)ω ∨ dωc(a ∨ bd∗c)∗. By
induction hypothesis, the ith component of (a ∨ bd∗c)ω is the supremum of all
infinite products (· · ·Mk2,k1Mk1,i) such that 1 ≤ kj ≤ m for an infinite number
of indices j, and similarly, the ith component of dωc(a∨bd∗c)∗ is the supremum of
all infinite products (· · ·Mk2,k1Mk1,i) such that 1 ≤ kj ≤ m for a finite number
of indices j. Thus, the ith component of (a ∨ bd∗c)ω ∨ dωc(a ∨ bd∗c)∗ is the
supremum of all infinite products (· · ·Mk2,k1Mk1,i). ��

We remark that our decision algorithms are static in the sense that the matrix
expressions can be pre-computed and then re-used to decide reachability and
Büchi acceptance for different values x0 of initial energies.

Using elementary reasoning on infinite paths, we can provide an alternative
characterization of Büchi acceptance which does not use the omega operations:

Theorem 3. Let E ′ ⊆ E be a subalgebra. For any E ′-automaton (S, T ) with
S = {1, . . . , n}, F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ �≥0, we have
BüchiE′(S, T )(F, s0, x0) = tt if, and only if, there exists j ≤ k for which

tI
jTT ∗Ij tI

jT ∗Is0(x0) ≥ tI
jT ∗Is0(x0) �= ⊥.
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Corollary 1. For subalgebras E ′ ⊆ E of computable functions in which it is
decidable for each f ∈ E ′ whether f(x) ≤ x, Problems 1 and 2 are decidable. For
an energy automaton with n states and m transitions, the decision procedures
use O(m + n3), respectively O(m + n4), algebra operations.

Proof. Maxima and compositions of computable functions are again computable,
and if it is decidable for each f ∈ E ′ whether f(x) ≤ x, then also f∗ is computable
for each f ∈ E ′. Hence all matrix operations used in Lemma 7 and Theorems 1
and 3 are computable. The number of operations necessary in the construction
in the proof of Lemma 7 is O(m), and, using e.g. the Floyd-Warshall algorithm
to compute T ∗, O(n3) operations are necessary to compute tI

≤kT ∗Is0 . ��

We proceed to identify two important subclasses of computable energy func-
tions, which cover most of the related work mentioned in the introduction, and
to give complexity results on their reachability and Büchi acceptance problems.

The integer update functions in E are the functions fk, for k ∈ �, given by

fk(x) =

{
x+ k if x ≥ max(0,−k) ,
⊥ otherwise ,

together with f∞ := ". These are the update functions usually considered in
integer-weighted automata and VASS [8, 10–14, 21]. We have f�fk = fk+� and
fk ∨ f� = fmax(k,�), and f∗k = f0 for k ≤ 0 and f∗k = f∞ for k > 0, whence
the class Eint of integer update functions forms a subalgebra of E . A function
fk ∈ Eint can be represented by the integer k, and algebra operations can then
be performed in constant time. Hence Corollary 1 implies the following result.

Theorem 4. For Eint-automata, Problems 1 and 2 are decidable in PTIME.

Next we turn our attention to piecewise affine functions as used in Fig. 1.

Definition 4. A function f ∈ E is said to be (rational) piecewise affine if there
exist x0 < x1 < · · · < xk ∈ � such that f(x) �= ⊥ iff x ≥ x0 or x > x0,
f(xj) ∈ � ∪ {⊥} for all j, and all restrictions f�]xj,xj+1[ and f�]xk,∞[ are affine
functions x �→ ajx+ bj with aj, bj ∈ �, aj ≥ 1.

Note that the definition does not make any assertion about continuity at
the xj , but (∗) implies that limx↗xj f(x) ≤ f(xj) ≤ limx↘xj f(x). A piecewise
affine function as above can be represented by its break points x0, . . . , xk, the
values f(x0), . . . , f(xk), and the numbers a0, b0, . . . , ak, bk. These functions arise
in the reduction used in [7] to show decidability of energy problems for one-clock
timed automata with transition updates. The notion of integer piecewise affine
functions is defined similarly, with all occurrences of � above replaced by �.
Fig. 4 shows an example of a piecewise affine function.

The class Epw of piecewise affine energy functions forms a subsemiring of E :
if f, g ∈ Epw with break points x0, . . . , xk, y0, . . . , y�, respectively, then f ∨ g is
piecewise affine with break points a subset of {x0, . . . , xk, y0, . . . , y�}, and gf is
piecewise affine with break points a subset of {x0, . . . , xk, f

−1(y0), . . . , f
−1(y�)}.
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1 2 3 4 5

1

2

3

4

5

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

.5 (x = 2)

1.5 x− 2.5 (2 < x < 3)

2.3 (x = 3)

x− .3 (3 < x < 4.5)

4.5 (x = 4.5)

2x− 4.5 (x > 4.5)

Fig. 4. A piecewise affine energy function

Let, for any k ∈ �, g−k , g+k : [0,∞]⊥ −→ [0,∞]⊥ be the functions defined by

g−k (x) =

{
x for x < k ,
∞ for x ≥ k ,

g+k (x) =

{
x for x ≤ k ,
∞ for x > k .

By Lemma 3 (and noticing that for all f ∈ Epw, sup{x | f(x) ≤ x} is rational),
Epw completed with the functions g−k , g

+
k forms a subalgebra of E .

Remark that, unlike Epw, the class Epwi of integer piecewise affine functions
does not form a subsemiring of E , as composites of Epwi-functions are not neces-
sarily integer piecewise affine. As an example, for the functions f, g ∈ Epwi given
by

f(x) = 2x , g(x) =

{
x+ 1; x < 3 ,

x+ 2; x ≥ 3 ,

we have

g(f(x)) =

{
2x+ 1; x < 1.5 ,

2x+ 2; x ≥ 1.5 .

which is not integer piecewise affine. Similarly, the class of rational affine func-
tions x �→ ax+ b (without break points) is not closed under maximum, and Epw
is the semiring generated by rational affine functions.

Theorem 5. For Epw-automata, Problems 1 and 2 are decidable in EXPTIME.

Proof. We need to show that it is decidable for each f ∈ Epw whether f(x) ≤ x.
Let thus f be a piecewise affine function, with representation (x0, . . . , xk, f(x0),
. . . , f(xk), a0, . . . , ak, b0, . . . , bk). If x < x0, then f(x) = ⊥ ≤ x. If x = xj for
some j, we can simply compare xj with f(xj).
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(−1, 1)

(0,−2)

Fig. 5. A simple two-dimensional VASS

Assume now that x ∈ ]xj , xj+1[ for some j. If ajxj+bj ≤ xj and ajxj+1+bj ≤
xj+1, then also f(x) ≤ x by (∗). Likewise, if ajxj + bj > xj and ajxj+1 + bj >
xj+1, then also f(x) > x. The case ajxj + bj > xj , ajxj+1 + bj ≤ xj+1 cannot
occur because of (∗), and if ajxj + bj ≤ xj and ajxj+1 + bj > xj+1, then aj > 1,

and f(x) ≤ x iff x ≤ bj
1−aj

.

For the case x ∈ ]xk,∞[, the arguments are similar: if akxk + bk > xk, then
also f(x) > x; if akxk + bk ≤ xk and ak = 1, then also f(x) ≤ x, and if ak > 1
in this case, then f(x) ≤ x iff x ≤ bk

1−ak
.

Using Corollary 1, we have hence shown decidability. For the complexity claim,
we note that all algebra operations in Epw can be performed in time linear in
the size of the representations of the involved functions. However, the maximum
and composition operations may double the size of the representations, hence
our procedure may take time O(2m+n3

p) for reachability, and O(2m+n4

p) for
Büchi acceptance, for an Epw-automaton with n states, m transitions, and energy
functions of representation length at most p. ��

In the setting of Epw-automata and their application to one-clock weighted
timed automata with transition updates, our Theorem 3 is a generalization of [7,
Lemmas 24, 25]. Complexity of the decision procedure was left open in [7]; as the
conversion of a one-clock weighted timed automaton to an Epw-automaton incurs
an exponential blowup, we now see that their procedure is doubly-exponential.

Considerations similar to the above show that also the setting of piecewise
polynomial energy functions allows an application of Theorem 3 to show energy
problems on the exponentially weighted timed automata from [7] decidable.

5 Multi-dimensional Energy Automata and Games

Next we turn our attention to several variants of energy automata. We will
generally stick to the set Epwi of integer piecewise affine energy functions; the
fact that Epwi is not a subsemiring of E will not bother us here.

An n-dimensional integer piecewise affine energy automaton, or Enpwi-auto-
maton for short, (S, T ), for n ∈ �+, consists of finite sets S of states and
T ⊆ S × Enpwi × S of transitions. A global state in such an automaton is a pair

(s,x) ∈ S × �n, and transitions are of the form (s,x)
f−→ (s′,x′) such that

(s,f , s′) ∈ T and x′(i) = f (i)(x(i)) for each i ∈ {1, . . . , n}.
For reachability in Enpwi-automata (with n ≥ 2), our algebraic results do not

apply. To see this, we refer to the reachability problem in Fig. 5: with initial
energy (1, 1), the loop needs to be taken precisely once, but with initial energy
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(2, 0), one needs to loop twice. Hence there is no static algorithm which can
decide reachability for this VASS.

However, we remark that Enpwi-automata are well-structured transition sys-
tems [23], with ordering on global states defined by (s,x) % (s′,x′) iff s = s′

and x(i) ≤ x′(i) for each i = 1, . . . , n (here we also have to assume x0 ∈ �).
Also, the reachability problem for energy automata is a control state reacha-
bility problem in the sense of [2]. Decidability of the reachability problem for
Enpwi-automata thus follows from the decidability of the control state reachability
problem for well-structured transition systems [2]. Note that Büchi acceptance is
not generally decidable for well-structured transition systems (it is undecidable
for lossy counter machines [30]), so our reduction proof does not imply a similar
result for Büchi acceptance.

Theorem 6. The reachability problem for Enpwi-automata with x0 ∈ � is decid-
able.

Next we show that if the requirement (∗) on energy functions, that f(x2) ≥
f(x1)+x2−x1 for each x1 ≤ x2, is lifted, then reachability becomes undecidable
from dimension 4. We call such functions flat energy functions; remark that we
still require them to be strictly increasing, but the derivative, where it exists,
may be less than 1. The class of all flat energy functions is denoted Ē and its
restrictions by Ēpw, Ēpwi.

Theorem 7. The reachability problem for Ē4pw-automata is undecidable.

Next we extend our energy automata formalism to (turn based) reachability
games. Let (S, T ) be an n-dimensional energy automaton such that S = SA∪SB

forms a partition of S and T ⊆ (SA × Enpwi × SB) ∪ (SB × Enpwi × SA). Then
(S, SA, SB, T ) induces an n-dimensional energy game G. The intuition of the
reachability game is that the two players A and B take turns to move along the
game graph (S, T ), updating energy values at each turn. The goal of player A is
to reach a state in F , the goal of player B is to prevent this from happening.

The reachability game is a coverability game in the sense of [29]. In general,
the reachability game on well-structured transition systems is undecidable [1].
Indeed, the games on VASS considered in [10] are a special case of reachability
games on energy automata with integer update functions; their undecidability is
shown in [1,10]. It is hence clear that it is undecidable whether player A wins the
reachability game in 2-dimensional Eint-automata. As a corollary, we can show
that for flat energy functions, already one-dimensional reachability games are
undecidable.

Theorem 8. Whether player A wins the reachability game in E2int-automata is
undecidable.

Theorem 9. It is undecidable for Ēpw-automata whether player A wins the
reachability game.

Proof (sketch). The proof is by reduction from reachability games on 2-dimen-
sional Eint-automata to reachability games on 1-dimensional Ēpwi-automata. The
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intuition is that the new energy variable x encodes the two old ones as x =
2x13x2, and then transitions in the 2-dimensional game are encoded using gadgets
in which the other player may interrupt to demand proof that the required in-
equalities for x1 and x2 were satisfied. The energy functions in the so-constructed
1-dimensional automaton are piecewise affine because the original ones were in-
teger updates. The details of the proof are in [18]. ��

6 Conclusion

We have in this paper introduced a functional framework for modeling and an-
alyzing energy problems. We have seen that our framework encompasses most
existing formal approaches to energy problems, and that it allows an application
of the theory of automata over semirings and semimodules to solve reachabil-
ity and Büchi acceptance problems in a generic way. For the important class
of piecewise affine energy functions, we have shown that reachability and Büchi
acceptance are PSPACE-hard and decidable in EXPTIME. As our algorithm
is static, computations do not have to be repeated in case the initial energy
changes. Also, decidability of Büchi acceptance implies that LTL model check-
ing is decidable for energy automata.

In the last part of this paper, we have seen that one quickly comes into trouble
with undecidability if the class of energy functions is extended or if two-player
games are considered. This can be remedied by considering approximate solutions
instead, using notions of distances for energy automata akin to the ones in [22]
to provide quantitative measures for similar energy behavior.

Another issue that remains to be investigated is reachability and Büchi prob-
lems for one-dimensional energy automata with flat energy functions; we plan
to do this in future work.
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Abstract. We consider two-player games played on weighted directed graphs
with mean-payoff and total-payoff objectives, two classical quantitative objec-
tives. While for single-dimensional games the complexity and memory bounds
for both objectives coincide, we show that in contrast to multi-dimensional mean-
payoff games that are known to be coNP-complete, multi-dimensional total-pay-
off games are undecidable. We introduce conservative approximations of these
objectives, where the payoff is considered over a local finite window sliding
along a play, instead of the whole play. For single dimension, we show that (i) if
the window size is polynomial, deciding the winner takes polynomial time, and
(ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at
least as hard as solving mean-payoff games. For multiple dimensions, we show
that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there
is no primitive-recursive algorithm to decide the existence of a bounded window.

1 Introduction

Mean-Payoff and Total-Payoff Games. Two-player mean-payoff and total-payoff ga-
mes are played on finite weighted directed graphs (in which every edge has an integer
weight) with two types of vertices: in player-1 vertices, player 1 chooses the succes-
sor vertex from the set of outgoing edges; in player-2 vertices, player 2 does likewise.
The game results in an infinite path through the graph, called a play. The mean-payoff
(resp. total-payoff) value of a play is the long-run average (resp. sum) of the edge-
weights along the path. While traditionally games on graphs with ω-regular objectives
have been studied for system analysis, research efforts have recently focused on quan-
titative extensions to model resource constraints of embedded systems, such as power
consumption, or buffer size [2]. Quantitative games, such as mean-payoff games, are
crucial for the formal analysis of resource-constrained reactive systems. For the analy-
sis of systems with multiple resources, multi-dimension games, where edge weights are
integer vectors, provide the appropriate framework.
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Decision Problems. The decision problem for mean-payoff and total-payoff games
asks, given a starting vertex, whether player 1 has a strategy that against all strategies
of the opponent ensures a play with value at least 0. For both objectives, memoryless
winning strategies exist for both players (where a memoryless strategy is independent
of the past and depends only on the current state) [9,12]. This ensures that the decision
problems belong to NP ∩ coNP; and they belong to the intriguing class of problems that
are in NP ∩ coNP but whether they are in P (deterministic polynomial time) are long-
standing open questions. The study of mean-payoff games has also been extended to
multiple dimensions where the problem is shown to be coNP-complete [21,4]. While for
one dimension all the results for mean-payoff and total-payoff coincide, our first con-
tribution shows that quite unexpectedly (in contrast to multi-dimensional mean-payoff
games) the multi-dimensional total-payoff games are undecidable.

Window Objectives. On the one hand, the complexity of single-dimensional mean-
payoff and total-payoff games is a long-standing open problem, and on the other hand,
the multi-dimensional problem is undecidable for total-payoff games. In this work, we
propose to study variants of these objectives, namely, bounded window mean-payoff
and fixed window mean-payoff objectives. In a bounded window mean-payoff objective
instead of the long-run average along the whole play we consider payoffs over a local
bounded window sliding along a play, and the objective is that the average weight must
be at least zero over every bounded window from some point on. This objective can be
seen as a strengthening of the mean-payoff objective (resp. of the total-payoff objective
if we require that the window objective is satisfied from the beginning of the play rather
than from some point on), i.e., winning for the bounded window mean-payoff objective
implies winning for the mean-payoff objective. In the fixed window mean-payoff ob-
jective the window length is fixed and given as a parameter. Observe that winning for
the fixed window objective implies winning for the bounded window objective.

Attractive Features for Window Objectives. First, they are a strengthening of the
mean-payoffobjectives and hence provide conservative approximations for mean-payoff
objectives. Second, the window variant is very natural to study in system analysis. Mean-
payoff objectives require average to satisfy certain threshold in the long-run (or in the
limit of the infinite path), whereas the window objectives require to provide guarantee
on the average, not in the limit, but within a bounded time, and thus provide better time
guarantee than the mean-payoff objectives. Third, the window parameter provides flex-
ibility, as it can be adjusted specific to applications requirement of strong or weak time
guarantee for system behaviors. Finally, we will establish that our variant in the single
dimension is more computationally tractable, which makes it an attractive alternative to
mean-payoff objectives.

Our Contributions. The main contributions of this work (along with the undecidability
of multi-dimensional total-payoff games) are as follows:

1. Single dimension. For the single-dimensional case we present an algorithm for the
fixed window problem that is polynomial in the size of the game graph times the
length of the binary encoding of weights times the size of the fixed window. Thus
if the window size is polynomial, we have a polynomial-time algorithm. For the
bounded window problem we show that the decision problem is in NP ∩ coNP, and
at least as hard as solving mean-payoff games. However, winning for mean-payoff
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Table 1. Complexity of deciding the winner and memory required, with |S| the number of states
of the game (vertices in the graph), V the length of the binary encoding of weights, and lmax the
window size. New results in bold (h. for hard and c. for complete).

one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP∩ coNP mem-less coNP-c. / NP∩ coNP infinite mem-less

TP / TP NP∩ coNP mem-less undec. (Thm. 1) - -

WMP: fixed
P-c. (Thm. 2) mem. req.

≤ linear(|S| · lmax )
(Thm. 2)

PSPACE-h. (Thm. 4)
polynomial window EXP-easy (Thm. 4) exponential

WMP: fixed
P(|S|,V, lmax ) (Thm. 2) EXP-c. (Thm. 4)

(Thm. 4)
arbitrary window

WMP: bounded
NP∩ coNP (Thm. 3)

mem-less infinite
NPR-h. (Thm. 5) - -

window problem (Thm. 3) (Thm. 3)

games does not imply winning for the bounded window mean-payoff objective, i.e.,
the winning sets for mean-payoff games and bounded window mean-payoff games
do not coincide. Moreover, the structure of winning strategies is also very different,
e.g., in mean-payoff games both players have memoryless winning strategies, but
in bounded window mean-payoff games we show that player 2 requires infinite
memory. We also show that if player 1 wins the bounded window mean-payoff
objective, then a window of size (|S|− 1) · (|S| ·W +1) is sufficient where S is the
state space (the set of vertices of the graph), and W is the largest absolute weight
value. Finally, we show that (i) a winning strategy for the bounded window mean-
payoff objective ensures that the mean-payoff is at least 0 regardless of the strategy
of the opponent, and (ii) a strategy that ensures that the mean-payoff is strictly
greater than 0 is winning for the bounded window mean-payoff objective.

2. Multiple dimensions. For multiple dimensions, we show that the fixed window
problem is EXPTIME-complete (both for arbitrary dimensions with weights in
{−1,0,1} and for two dimensions with arbitrary weights); and if the window size is
polynomial, then the problem is PSPACE-hard. For the bounded window problem
we show that the problem is non-primitive recursive hard (i.e., there is no primitive
recursive algorithm to decide the problem).

3. Memory requirements. For all the problems for which we prove decidability we
also characterize the memory required by winning strategies.

The relevant results are summarized in Table 1: our results are in bold fonts. In
summary, the fixed window problem provides an attractive approximation of the mean-
payoff and total-payoff games that we show have better algorithmic complexity. In con-
trast to the long-standing open problem of mean-payoff games, the one-dimension fixed
window problem with polynomial window size can be solved in polynomial time; and
in contrast to the undecidability of multi-dimensional total-payoff games, the multi-
dimension fixed window problem is EXPTIME-complete.

Related Works. An extended version of this work, including proofs, can be found in
[5]. Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [9]
where it is shown that memoryless winning strategies exist for both players. This result
entails that the decision problem lies in NP ∩ coNP [17,22], and it was later shown to
belong to UP ∩ coUP [15]. Despite many efforts [13,22,19,18,14], no polynomial-time
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algorithm for the mean-payoff games problem is known so far. Gurvich, Karzanov,
Khachivan and Lebedev [13,17] provided the first (exponential) algorithm for mean-
payoff games, later extended by Pisaruk [19]. The first pseudo-polynomial-time algo-
rithm for mean-payoff games was given in [22] and was improved in [1]. Lifshits and
Pavlov [18] propose an algorithm which is polynomial in the encoding of weights but
exponential in the number of vertices of the graph: it is based on a graph decomposi-
tion procedure. Bjorklund and Vorobyov [14] present a randomized algorithm which
is both subexponential and pseudo-polynomial. While all the above works are for sin-
gle dimension, multi-dimensional mean-payoff games have been studied in [21,4,7].
One-dimension total-payoff games have been studied in [11] where it is shown that
memoryless winning strategies exist for both players and the decision problem is in
UP ∩ coUP.

2 Multi-dimensional Mean-Payoff and Total-Payoff Objectives

We consider two-player turn-based games and denote the two players by P1 and P2.

Multi-weighted Two-Player Game Structures. Multi-weighted two-player game
structures are weighted graphs G = (S1,S2,E,k,w) where (i) S1 and S2 resp. denote
the finite sets of vertices, called states, belonging to P1 and P2, with S1 ∩ S2 = /0 and
S = S1∪S2; (ii) E ⊆ S× S is the set of edges such that for all s ∈ S, there exists s′ ∈ S
with (s,s′) ∈ E; (iii) k ∈ N is the dimension of the weight vectors; and (iv) w : E → Zk

is the multi-weight labeling function. When it is clear from the context that a game
G is one-dimensional (k = 1), we omit k and write it as G = (S1,S2,E,w). The game
structure G is one-player if S2 = /0. We denote by W the largest absolute weight that
appears in the game. For complexity issues, we assume that weights are encoded in
binary. Hence we differentiate between pseudo-polynomial algorithms (polynomial in
W ) and truly polynomial algorithms (polynomial in V = 'log2W(, the number of bits
needed to encode the weights).

A play in G from an initial state sinit ∈ S is an infinite sequence of states π = s0s1s2 . . .
such that s0 = sinit and (si,si+1) ∈ E for all i≥ 0. The prefix up to the n-th state of π is
the finite sequence π(n) = s0s1 . . . sn. Let Last(π(n)) = sn denote the last state of π(n).
A prefix π(n) belongs to Pi, i ∈ {1,2}, if Last(π(n)) ∈ Si. The set of plays of G is
denoted by Plays(G) and the corresponding set of prefixes is denoted by Prefs(G). The
set of prefixes that belong to Pi is denoted by Prefsi(G). The infinite suffix of a play
starting in sn is denoted π(n,∞).

The total-payoff of a prefix ρ = s0s1 . . . sn is TP(ρ) = ∑i=n−1
i=0 w(si,si+1), and its

mean-payoff is MP(ρ) = 1
nTP(ρ). This is naturally extended to plays by consider-

ing the componentwise limit behavior (i.e., limit taken on each dimension). The infi-
mum (resp. supremum) total-payoff of a play π is TP(π) = liminfn→∞TP(π(n)) (resp.
TP(π) = limsupn→∞TP(π(n))). The infimum (resp. supremum) mean-payoff of π is
MP(π) = liminfn→∞MP(π(n)) (resp. MP(π) = limsupn→∞MP(π(n))).
Strategies. A strategy for Pi, i ∈ {1,2}, in G is a function λi : Prefsi(G)→ S such that
(Last(ρ),λi(ρ)) ∈ E for all ρ ∈ Prefsi(G). A strategy λi for Pi has finite-memory if it
can be encoded by a deterministic finite state machine with outputs (Moore machine).
It is memoryless if it does not depend on history but only on the current state of the
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game. A play π is said to be consistent with a strategy λi of Pi if for all n≥ 0 such that
Last(π(n))∈ Si, we have Last(π(n+1)) = λi(π(n)). Given an initial state sinit ∈ S, and
two strategies, λ1 for P1 and λ2 for P2, the unique play from sinit consistent with both
strategies is the outcome of the game, denoted by OutcomeG(sinit,λ1,λ2).

Attractors. The attractor for P1 of a set A⊆ S in G is denoted by AttrP1
G (A) and com-

puted as the fixed point of the sequenceAttrP1,n+1
G (A) =AttrP1,n

G (A)∪{s∈ S1 |∃(s, t)∈
E, t ∈ AttrP1,n

G (A)}∪{s ∈ S2 |∀(s, t) ∈ E, t ∈ AttrP1,n
G (A)}, with AttrP1,0

G (A) = A. The

attractor AttrP1
G (A) is exactly the set of states from which P1 can ensure to reach A no

matter what P2 does. The attractor AttrP2
G (A) for P2 is defined symmetrically.

Objectives. An objective for P1 in G is a set of plays φ ⊆ Plays(G). A play π ∈
Plays(G) is winning for an objective φ if π ∈ φ . Given a game G and an initial state
sinit ∈ S, a strategy λ1 of P1 is winning if OutcomeG(sinit,λ1,λ2) ∈ φ for all strate-
gies λ2 of P2. Given a rational threshold vector v ∈ Qk, we define the infimum (resp.
supremum) total-payoff (resp. mean-payoff) objectives as follows:

– TotalInfG(v) = {π ∈ Plays(G) | TP(π)≥ v}
– TotalSupG(v) =

{
π ∈ Plays(G) | TP(π)≥ v

}
– MeanInfG(v) = {π ∈ Plays(G) |MP(π)≥ v}
– MeanSupG(v) =

{
π ∈ Plays(G) |MP(π)≥ v

}
Decision Problem. Given a game structure G, an initial state sinit ∈ S, and an inf./sup.
total-payoff/mean-payoff objective φ ⊆ Plays(G), the threshold problem asks to decide
if P1 has a winning strategy for this objective. In one-dimension games, both mean-
payoff and total-payoff threshold problems lie in NP∩ coNP [11]. In multi-dimension,
the mean-payoff threshold problem lies in coNP [21]. In contrast, we show that multi-
dimension total-payoff games are undecidable.

Theorem 1. The threshold problem for infimum and supremum total-payoff objectives
is undecidable in multi-dimension games, for five dimensions.

We reduce the halting problem for two-counter machines to the threshold problem for
two-player total-payoff games with five dimensions. Counters take values (v1,v2) ∈N2

along an execution, and can be incremented or decremented (if positive). A counter can
be tested for equality to zero, and the machine can branch accordingly. We build a game
with a sup. (resp. inf.) total-payoff objective of threshold (0,0,0,0,0) for P1, in which
P1 has to faithfully simulate an execution of the machine, and P2 can retaliate if he
does not. We present gadgets by which P2 checks that (a) the counters are always non-
negative, and that (b) a zero test is only passed if the value of the counter is really zero.
The current value of counters (v1,v2) along an execution is encoded as the total sum of
weights since the start of the game, (v1,−v1,v2,−v2,−v3), with v3 being the number of
steps of the computation. Hence, along a faithful execution, the 1st and 3rd dimensions
are always non-negative, while the 2nd, 4th and 5th are always non-positive. To check
that counters never go below zero, P2 is always able to go to an absorbing state with
a self-loop of weight (0,1,1,1,1) (resp. (1,1,0,1,1)). To check that all zero tests on
counter 1 (resp. 2) are faithful, P2 can branch after a test to an absorbing state with a
self-loop of weight (1,0,1,1,1) (resp. (1,1,1,0,1)). Using these gadgets,P2 can punish
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an unfaithful simulation as he ensures that the sum in the dimension on which P1 has
cheated always stays strictly negative and the outcome is thus losing (it is only the case
if P1 cheats, otherwise all dimensions become non-negative). When an execution halts
(with counters equal to zero w.l.o.g.) after a faithful execution, it goes to an absorbing
state with weight (0,0,0,0,1), ensuring a winning outcome for P1 for the total-payoff
objective. If an execution does not halt, the 5th dimension stays strictly negative and the
outcome is losing.

In multi-weighted total-payoff games, P1 may need infinite memory. Consider a
game with only one state and two self-loops of weights (1,−2) and (−2,1). For any
threshold v∈Q2, P1 has an infinite-memory strategy to win the sup. total-payoff objec-
tive: alternating between the two loops for longer and longer periods, each time waiting
to get back above the threshold in the considered dimension before switching. There
exists no finite-memory one as the negative amount to compensate grows boundlessly
with each alternation.

3 Window Mean-Payoff: Definition

In one dimension, no polynomial algorithm is known for mean-payoff and total-payoff,
and in multi dimensions, total-payoff is undecidable. We introduce the window mean-
payoff objective, a conservative approximation for which local deviations from the
threshold must be compensated in a parametrized number of steps. We consider a win-
dow, sliding along a play, within which the compensation must happen. Our approach
can be applied to mean-payoff and total-payoff objectives. Since we consider finite
windows, both versions coincide for threshold zero. Hence we present our results for
mean-payoff.

Objectives and Decision Problems. Given a multi-weighted two-player game G =
(S1,S2,E,k,w) and a rational threshold v ∈Qk, we define the following objectives.1

– Given lmax ∈ N0, the good window objective

GWG(v, lmax) =
{
π | ∀ t, 1≤ t ≤ k, ∃ l ≤ lmax,

1
l

l−1

∑
p=0

w
(
eπ (p, p+1)

)
(t)≥ v(t)

}
, (1)

where eπ(p, p+ 1) is the edge (Last(π(p)),Last(π(p+ 1))), requires that for all
dimensions, there exists a window starting in the first position and bounded by lmax

over which the mean-payoff is at least equal to the threshold.
– Given lmax ∈ N0, the fixed window mean-payoff objective

FixWMPG(v, lmax) =
{
π | ∃ i≥ 0, ∀ j ≥ i, π( j,∞) ∈ GWG(v, lmax)

}
(2)

requires that there exists a position i such that in all subsequent positions, good
windows bounded by lmax exist.

– The bounded window mean-payoff objective

BndWMPG(v) =
{
π | ∃ lmax > 0, π ∈ FixWMPG(v, lmax)

}
(3)

asks that there exists a bound lmax such that the play satisfies the fixed objective.

1 For brevity, we omit that π ∈ Plays(G).
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We define direct versions of the objectives by fixing i = 0 rather than quantifying it
existentially. For any v ∈Qk and lmax ∈ N0, the following inclusions are true:

DirFixWMPG(v, lmax)⊆ FixWMPG(v, lmax)⊆ BndWMPG(v), (4)

DirFixWMPG(v, lmax)⊆ DirBndWMPG(v)⊆ BndWMPG(v). (5)

The threshold v can be taken equal to {0}k (where {0}k denotes the k-dimension zero
vector) w.l.o.g. as we can transform the weight function w to b ·w−a for any threshold
a
b , a ∈ Zk, b ∈ N0 = N \ {0}. Hence, given any variant of the objective, the associated
decision problem is to decide the existence of a winning strategy for P1 for threshold
{0}k. Lastly, for complexity purposes, we make a difference between polynomial (in
the size of the game) and arbitrary (i.e., non-polynomial) window sizes.

Let π = s0s1s2 . . . be a play. Fix any dimension t,1 ≤ t ≤ k. The window from po-
sition j to j′, 0 ≤ j < j′, is closed iff there exists j′′, j < j′′ ≤ j′ such that the sum
of weights in dimension t over the sequence s j . . . s j′′ is non-negative. Otherwise the
window is open. Given a position j′ in π , a window is still open in j′ iff there exists
a position 0 ≤ j < j′ such that the window from j to j′ is open. Consider any edge
(si,si+1) appearing along π . If the edge is non-negative in dimension t, the window
starting in i immediately closes. If not, a window opens that must be closed within lmax

steps. Consider the first position i′ such that this window closes, then we have that all
intermediary opened windows also get closed by i′, that is, for any i′′, i < i′′ ≤ i′, the
window starting in i′′ is closed before or when reaching position i′. Indeed, the sum of
weights over the window from i′′ to i′ is strictly greater than the sum over the window
from i to i′, which is non-negative. We call this fact the inductive property of windows.

Illustration. Consider the game depicted in Fig. 1. It has a unique outcome, and it
is winning for the classical mean-payoff objective of threshold 0, as well as for the
infimum (resp. supremum) total-payoff objective of threshold −1 (resp. 0). Consider
the fixed window mean-payoff objective for threshold 0. If the size of the window is
bounded by 1, the play is losing.2 However, if the window size is at least 2, the play is
winning, as in s3 we close the window in two steps and in s4 in one step. Notice that
by definition of the objective, it is clear that it is also satisfied for all larger sizes.3 As
the fixed window objective is satisfied for size 2, the bounded window objective is also
satisfied. On the other hand, if we restrict the objectives to their direct variants, then
none is satisfied, as from s2, no window, no matter how large it is, gets closed.

Consider the game of Fig. 2. Again, the unique strategy of P1 satisfies the mean-
payoff objective for threshold 0. It also ensures value−1 for the infimum and supremum
total-payoffs. Consider the strategy of P2 that takes the self-loop once on the first visit
of s2, twice on the second, and so on. Clearly, it ensures that windows starting in s1

stay open for longer and longer numbers of steps (we say that P2 delays the closing of
the window), hence making the outcome losing for the bounded window objective (and
thus the fixed window objective for any lmax ∈N0). This illustrates the added guarantee

2 A window size of one actually requires that all infinitely often visited edges are of non-
negative weights.

3 The existential quantification on the window size l, bounded by lmax, is indeed crucial in eq.
(1) to ensure monotonicity with increasing maximal window sizes, a desired behavior of the
definition for theoretical properties and intuitive use in specifications.
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s1 s2 s3 s4
1 −1

−1

1

Fig. 1. Fixed window is satisfied for lmax ≥ 2,
whereas even direct bounded window is not

s1 s2 0

−1

1

Fig. 2. Mean-payoff is satisfied but none
of the window objectives is

(compared to mean-payoff) asked by the window objective: in this case, no upper bound
can be given on the time needed for a window to close, i.e., on the time needed to get
the local sum back to non-negative. Note that P2 has to go back to s1 at some point:
otherwise, the prefix-independence of the objectives4 allows P1 to wait for P2 to settle
on cycling and win. For the direct variants,P2 has a simpler winning strategy consisting
in looping forever, as enforcing one permanently open window is sufficient.

Relation with Classical Objectives. We introduce the bounded window objectives as
conservative approximations of mean-payoff and total-payoff in one-dimension games.
Indeed, in Lemma 1, we show that winning the bounded window (resp. direct bounded
window) objective implies winning the mean-payoff (resp. total-payoff) objective while
the reverse implication is only true if a strictly positive mean-payoff (resp. arbitrary high
total-payoff) can be ensured.

Lemma 1. Given a one-dimension game G = (S1,S2,E,w), the following assertions
hold.

(a) If the answer to the bounded window mean-payoff problem is YES, then the answer
to the mean-payoff threshold problem for threshold zero is also YES.

(b) If there exists ε > 0 such that the answer to the mean-payoff threshold problem for
threshold ε is YES, then the answer to the bounded window mean-payoff problem
is also YES.

(c) If the answer to the direct bounded window mean-payoff problem is YES, then the
answer to the supremum total-payoff threshold problem for threshold zero is also
YES.

(d) If the answer to the supremum total-payoff threshold problem is YES for all integer
thresholds (i.e., the total-payoff value is ∞), then the answer to the direct bounded
window mean-payoff problem is also YES.

Assertions (a) and (c) follow from the decomposition of winning plays into bounded
windows of non-negative weights. The key idea for assertions (b) and (d) is that mean-
payoff and total-payoff objectives always admit memoryless winning strategies, for
which the consistent outcomes can be decomposed into simple cycles (i.e., with no
repeated edge) over which the mean-payoff is at least equal to the threshold and which
length is bounded. Hence they correspond to closing windows. Note that strict equiva-
lence with the classical objectives is not verified, as witnessed before (Fig. 2).

4 Fixed and bounded window mean-payoff objectives are prefix-independent: for all ρ ∈
Prefs(G), π ∈ Plays(G), we have that ρ ·π is winning if and only if π is winning.
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4 Window Mean-Payoff: One-Dimension Games

Fixed Window. Given a game G = (S1,S2,E,w) and a window size lmax ∈ N0, we
present an iterative algorithm FWMP (Alg. 1) to compute the winning states of P1 for
the objective FixWMPG(0, lmax). Initially, all states are potentially losing for P1. The
algorithm iteratively declares states to be winning, removes them, and continues the
computation on the remaining subgame as follows. In every iteration, i) DirectFWMP
computes the set Wd of states from which P1 can win the direct fixed window objec-
tive; ii) it computes the attractor to Wd ; and then proceeds to the next iteration on the
remaining subgame (the restriction of G to a subset of states A ⊆ S is denoted G � A).
In every iteration, the states of the computed setWd are obviously winning for the fixed
window objective. Thanks to the prefix-independence of the fixed window objective,
the attractor to Wd is also winning. Since P2 must avoid entering this attractor, P2 must
restrict his choices to stay in the subgame, and hence we iterate on the remaining sub-
game. Thus states removed over all iterations are winning for P1. The key argument to
establish correctness is as follows: when the algorithm stops, the remaining set of states
W is such that P2 can ensure to stay in W and falsify the direct fixed window objec-
tive by forcing the appearance of one open window larger than lmax. Since he stays in
W , he can repeatedly use this strategy to falsify the fixed window objective. Thus the
remaining set W is winning for P2, and the correctness of the algorithm follows.

Algorithm 1. FWMP(G, lmax)

Require: G= (S1,S2 ,E,w) and lmax ∈N0
Ensure: W is the set of winning states for P1 for

FixWMPG(0, lmax)
n := 0 ; W := /0
repeat

Wn
d :=DirectFWMP(G, lmax)

Wn
attr := Attr

P1
G (Wn

d ) {attractor for P1}
W :=W ∪Wn

attr ; G := G � (S \W) ; n := n+1
untilW = S or Wn−1

attr = /0
return W

Algorithm 2. DirectFWMP(G, lmax)

Require: G= (S1,S2,E,w) and lmax ∈ N0
Ensure: Wd is the set of winning states for P1 for

DirFixWMPG(0, lmax)
Wgw := GoodWin(G, lmax)
ifWgw = S or Wgw = /0 then

Wd :=Wgw
else

Wd :=DirectFWMP(G �Wgw, lmax)
return Wd

Algorithm 3. GoodWin(G, lmax)

Require: G= (S1,S2 ,E,w) and lmax ∈N0
Ensure: Wgw is the set of winning states for GWG(0, lmax)

for all s ∈ S do
C0(s) := 0

for all i ∈ {1, . . . , lmax} do
for all s ∈ S1 do

Ci(s) := max(s,s′)∈E{w((s,s′))+Ci−1(s′)}
for all s ∈ S2 do

Ci(s) := min(s,s′)∈E{w((s,s′))+Ci−1(s′)}
return Wgw := {s ∈ S |∃ i, 1≤ i≤ lmax ,Ci(s)≥ 0}

The main idea of algorithm DirectFWMP (Alg. 2) is that to win the direct fixed
window objective,P1 must be able to repeatedly win the good window objective, which
consists in ensuring a non-negative sum in at most lmax steps. A winning strategy of P1

in a state s is thus a strategy that enforces a non-negative sum and, as soon as the sum
turns non-negative (in some state s′), starts doing the same from s′. It is important to
start again immediately as it ensures that all suffixes along the path from s to s′ also
have a non-negative sum thanks to the inductive property. The states from which P1
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can win the good window objective are computed by subroutine GoodWin (Alg. 3):
given a state s ∈ S and a number of steps i ≥ 1, the value Ci(s) is computed iteratively
(fromCi−1(s)) and represents the best sum that P1 can ensure from s in exactly i steps.
Hence, the set of winning states for P1 is the set of states for which there exists some i,
1≤ i≤ lmax such thatCi(s)≥ 0. The construction implies linear bounds (in |S| · lmax) on
the memory needed for both players. We show that the fixed window problem is P-hard
even for lmax = 1 and weights {−1,1} via a simple reduction from reachability games.

Theorem 2. In two-player one-dimension games, (a) the fixed arbitrary window mean-
payoff problem is decidable in timeO

(
|S|3 · |E| · lmax ·V

)
, with V = 'log2W(, the length

of the binary encoding of weights, and (b) the fixed polynomial window mean-payoff
problem is P-complete. In general, both players require memory, and memory of size
linear in |S| · lmax is sufficient.

Bounded Window. We establish a NP∩ coNP algorithm for bounded window mean-
payoff objective using two intermediate results. First, ifP1 has a strategy to win the sup.
total-payoff objective, then he wins the good window objective for lmax =(|S|−1) ·(|S| ·
W +1). Second, if P2 has a memoryless strategy to ensure that the sup. total-payoff is
strictly negative, then all consistent outcomes violate the direct bounded window mean-
payoff objective. As a corollary, we obtain that the sets of winning states coincide for
objectives FixWMPG(0, lmax = (|S|− 1) · (|S| ·W+ 1)) and BndWMPG(0).

Algorithm 4. BoundedProblem(G)

Require: Game G= (S1,S2 ,E,w)
Ensure: Wbp is the set of winning states forP1 for the

bounded window mean-payoff problem
Wbp := /0
L := UnbOpenWindow(G)
while L �= S \Wbp do

Wbp := Attr
P1
G (S \L)

L := UnbOpenWindow
(
G � (S \Wbp)

)
return Wbp

Algorithm 5. UnbOpenWindow(G)

Require: Game G= (S1,S2 ,E,w)
Ensure: L is the set of states from which P2 can force a po-

sition for which the window never closes
p := 0 ; L0 := /0
repeat

Lp+1 := Lp∪Attr
P2
G�(S\Lp)

(
NegSupTP

(
G � (S\Lp)

))
p := p+1

until Lp = Lp−1

return L := Lp

Algorithm BoundedProblem (Alg. 4) computes via subroutine UnbOpenWindow
the states from which P2 can force the visit of a position such that the window opening
in this position never closes. To preventP1 from winning the bounded window problem,
P2 must be able to do so repeatedly as the prefix-independence of the objective other-
wise gives the possibility to wait that all such bad positions are encountered before tak-
ing the windows into account. Thus, the states that are not in UnbOpenWindow(G),
as well as their attractor, are winning for P1. Since the choices of P2 are reduced
because of the attractor of P1 being declared winning, we compute in several steps,
adding new states to the set of winning states for P1 up to stabilization. Subroutine
UnbOpenWindow (Alg. 5) computes the attractor for P2 of the set of states from which
P2 can enforce a strictly negative supremum total-payoff. Routine NegSupTP returns
this set in NP∩ coNP complexity [11]. Again, we compute the fixed point of the se-
quence as at each iteration, the choices of P1 are reduced. The main idea of the correct-
ness proof is that from all states in Wbp, P2 has an infinite-memory winning strategy
which is played in rounds, and in round n ensures an open window of size at least n
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by playing the total-payoff strategy of P2 for at most n · |S| steps, and then proceeds to
round (n+ 1) to ensure an open window of size (n+ 1), and so on. Hence, windows
stay open for arbitrary large periods and the bounded window objective is falsified.

The algorithm gives memoryless winning strategies forP1. The game of Fig. 2 shows
that infinite memory is necessary for P2: he needs to cycle in the zero loop for longer
and longer. Mean-payoff games reduce polynomially to bounded window games by
simply modifying the weight structure.

Theorem 3. In two-player one-dimension games, the bounded window mean-payoff
problem is in NP∩coNP and at least as hard as mean-payoff games. Memoryless strate-
gies suffice for P1 and infinite-memory strategies are required for P2 in general.

5 Window Mean-Payoff: Multi-dimension Games

Fixed window. Given G= (S1,S2,E,k,w) and lmax ∈ N0, the fixed window problem is
solved in timeO(|S|2 ·(lmax)

4·k ·W 2·k) via reduction to an exponentially larger co-Büchi
game (where the objective of P1 is to avoid visiting a set of bad states infinitely often).
Co-Büchi games are solvable in quadratic time [6]. A winning play is such that, starting
in some position i≥ 0, in all dimensions, all opening windows are closed in at most lmax

steps. We keep a counter of the sum over the sequence of edges and as soon as it turns
non-negative, we reset the sum counter and start a new sequence. Hence, the reduction
is based on accounting for each dimension the current negative sum of weights since
the last reset, and the number of steps that remain to achieve a non-negative sum. This
accounting is encoded in the states of Gc = (Sc1,S

c
2,E

c), as from the original state space
S, we go to S×({−lmax ·W, . . . ,0}×{1, . . . , lmax})k: states of Gc are tuples representing
a state of G and the current status of open windows in all dimensions (sum and remain-
ing steps). We add states reached whenever a window reaches its maximum size lmax

without closing. We label those as bad states. We have one bad state for every state of G.
Transitions in Gc are built in order to accurately model the effect of transitions of G on
open windows: each time a transition (s,s′) in the original game G is taken, the gameGc

is updated to a state (s′,(σ1,τ1), . . . ,(σ k,τk)) such that (a) if the current sum becomes
positive in some dimension, the corresponding sum counter is reset to zero and the step
counter is reset to its maximum value, lmax, (b) if the sum is still strictly negative in
some dimension and the window for this dimension is not at its maximal size, the sum
is updated and the step counter is decreased, and (c) if the sum stays strictly negative
and the maximal size is reached in any dimension, the game visits the corresponding
bad state and then, all counters are reset for all dimensions and the game continues
from the corresponding state (s′,(0, lmax), . . . ,(0, lmax)). Clearly, a play is winning for
the fixed window problem if and only if the corresponding play in Gc is winning for the
co-Büchi objective that asks that the set of bad states is not visited infinitely often, as
that means that from some point on, all windows close in the required number of steps.

We prove that the fixed arbitrary window problem is EXPTIME-hard for {−1,0,1}
weights and arbitrary dimensions via a reduction from the membership problem for al-
ternating polynomial space Turing machines (APTMs) [3]. Given an APTMM and a
word ζ ∈ {0,1}∗, such that the tape contains at most p(|ζ |) cells, where p is a polyno-
mial function, the membership problem asks to decide ifM accepts ζ . We build a fixed
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arbitrary window game G so that P1 has to simulate the run ofM on ζ , and P1 has a
winning strategy in G iff the word is accepted. For each tape cell h ∈ {1,2, . . . , p(|ζ |)},
we have two dimensions, (h,0) and (h,1) such that a sum of weights of value −1 (i.e.,
an open window) in dimension (h, i), i∈ {0,1} encodes that in the current configuration
ofM, tape cell h contains a bit of value i. In each step of the simulation (Fig. 3), P1 has
to disclose the symbol under the tape head: if in position h, P1 discloses a 0 (resp. a 1),
he obtains a reward 1 in dimension (h,0) (resp. (h,1)). To ensure that P1 was faithful,
P2 is then given the choice to either let the simulation continue, or assign a reward 1 in
all dimensions except (h,0) and (h,1) and then restart the game after looping in a zero
self-loop for an arbitrary long time. If P1 cheats by not disclosing the correct symbol
under tape cell h, P2 can punish him by branching to the restart state and ensuring a
sufficiently long open window in the corresponding dimension before restarting (as in
Fig. 2). But if P1 discloses the correct symbol and P2 still branches, all windows close.
In the accepting state, all windows are closed and the game is restarted. The window
size lmax of the game is function of the existing bound on the length of an accepting run.
To force P1 to go to the accepting state, we add an additional dimension, with weight
−1 on the initial edge of the game and weight 1 on reaching the accepting state.

We also prove EXPTIME-hardness for two dimensions and arbitrary weights by es-
tablishing a reduction from countdown games [16]. A countdown game C consists of
a weighted graph (S,T ), with S the set of states and T ⊆ S ×N0×S the transition
relation. Configurations are of the form (s,c), s ∈ S, c ∈ N. The game starts in an ini-
tial configuration (sinit,c0) and transitions from a configuration (s,c) are performed as
follows: first P1 chooses a duration d, 0 < d ≤ c such that there exists t = (s,d,s′) ∈ T
for some s′ ∈ S, second P2 chooses a state s′ ∈ S such that t = (s,d,s′) ∈ T . Then, the
game advances to (s′,c− d). Terminal configurations are reached whenever no legiti-
mate move is available. If such a configuration is of the form (s,0), P1 wins the play.
Otherwise, P2 wins the play. Deciding the winner in countdown games given an initial
configuration (sinit,c0) is EXPTIME-complete [16]. Given a countdown game C and an
initial configuration (sinit,c0), we create a game G = (S1,S2,E,k,w) with k = 2 and a
fixed window objective for lmax = 2 · c0 + 2. The two dimensions are used to store the
value of the countdown counter and its opposite. Each time a duration d is chosen, an
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edge of value of value (−d,d) is taken. The game simulates the moves available in C:
a strict alternation between states of P1 (representing states of S) and states of P2 (rep-
resenting transitions available from a state of S once a duration has been chosen). On
states of P1, we add the possibility to branch to a state srestart of P2, in which P2 can
either take a zero cycle, or go back to the initial state and force a restart of the game. By
placing weights (0,−c0) on the initial edge, and (c0,0) on the edge branching to srestart,
we ensure that the only way to win for P1 is to accumulate a value exactly equal to c0

in the game before switching to srestart. This is possible if and only if P1 can reach a
configuration of value zero in C.

For the case of polynomial windows, we prove PSPACE-hardness via a reduction
from generalized reachability games [10]. Filling the gap with the EXPTIME mem-
bership is an open problem. The generalized reachability objective is a conjunction
of reachability objectives: a winning play has to visit a state of each of a series of
k reachability sets. If P1 has a winning strategy in a generalized reachability game
Gr = (Sr1,S

r
2,E

r), then he has one that guarantees visit of all sets within k · |Sr| steps.
We create a modified weighted version of the game, G= (S1,S2,E,k,w), such that the
weights are k-dimension vectors. The game starts by opening a window in all dimen-
sions and the only way for P1 to close the window in dimension t, 1≤ t ≤ k is to reach
a state of the t-th reachability set. We modify the game by giving P2 the ability to close
all open windows and restart the game such that the prefix-independence of the fixed
window objective cannot help P1 to win without reaching the target sets. Then, a play
is winning in G for the fixed window objective of size lmax = 2 · k · |Sr| if and only if it
is winning for the generalized reachability objective in Gr. This reduction also provides
exponential lower bounds on memory for both players, while exponential upper bounds
follow from the reduction to co-Büchi games.
Theorem 4. In two-player multi-dimension games, the fixed arbitrary window mean-
payoff problem is EXPTIME-complete, and the fixed polynomial window mean-payoff
problem is PSPACE-hard. For both players, exponential memory is sufficient and is
required in general.

Bounded Window. We show non-primitive recursive hardness through a reduction
from the problem of deciding the existence of an infinite execution in a marked re-
set net, also known as the termination problem. Hence, there is no hope for efficient
algorithms on the complete class of two-player multi-weighted games. A marked reset
net [8] is a Petri net with reset arcs together with an initial marking of its places. Reset
arcs are special arcs that reset a place (i.e., empty it of all its tokens). The termination
problem for reset nets is decidable but non-primitive recursive hard (as follows from
[20]).

Given a reset net N with an initial marking m0 ∈ N|P| (where P is the set of places
of the net), we build a two-player multi-weighted game G with k = |P|+3 dimensions
such that P1 wins the bounded window objective for threshold {0}k if and only if N
does not have an infinite execution from m0. A high level description of our reduction
is as follows. The structure of the game (Fig. 5) is based on the alternance between two
gadgets simulating the net (Fig. 4).5 Edges are labeled by k-dimension weight vectors

5 1= (1, . . . ,1), 0 = (0, . . . ,0), and, for a,b ∈ Z, p ∈ P, the vector ap→b represents the vector
(a, . . . ,a,b,a, . . . ,a) which has value b in dimension p and a in the other dimensions.
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Fig. 5. Careful alternation between gadgets is needed in order for P1 to win

such that the first |P| dimensions are used to encode the number of tokens in each place.
In each gadget, P2 chooses transitions to simulate an execution of the net. During a
faithful simulation, there is always a running open window in all the first |P| dimen-
sions: if place p contains n tokens then the negative sum from the start of the simulation
is −(n+1). This is achieved as follows: if a transition t consumes I(t)(p) tokens from
p, then this value is added on the corresponding dimension, and if t produces O(t)(p)
tokens in p, then O(t)(p) is removed from the corresponding dimension. When a place
p is reset, a gadget ensures that dimension p reaches value −1 (the coding of zero to-
kens). This is thanks to the monotonicity property of reset nets: if P1 does not simulate
a full reset, then the situation gets easier for P2 as it leaves him more tokens available.
If all executions terminate, P2 has to choose an unfireable transition at some point,
consuming unavailable tokens from some place p ∈ P. If so, the window in dimension
p closes. After each transition choice of P2, P1 can either continue the simulation or
branch out of the gadget to close all windows, except in some dimension p of his choice.
Then P2 can arbitrarily extend any still open window in the first (|P|+ 1) dimensions
and restart the game afterwards. Dimension (|P|+ 1) prevents P1 from staying forever
in a gadget. If an infinite execution exists, P2 simulates it and never has to choose an
unfireable transition. Hence, when P1 branches out, the window in some dimension p
stays open. The last two dimensions force him to alternate between gadgets so that he
cannot take profit of the prefix-independence to win after a faithful simulation. So, P2

can delay the closing of the open window for longer and longer, thus winning the game.

Theorem 5. In two-player multi-dimension games, the bounded window mean-payoff
problem is non-primitive recursive hard.

The decidability of the bounded window mean-payoff problem remains open.

6 Conclusion

The strong relation between mean-payoff and total-payoff breaks in multi-weighted
games as the total-payoff threshold problem becomes undecidable. Window objectives
provide conservative approximations with timing guarantees. Some variants prove to be
more computationally tractable than the corresponding classical objectives.
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Abstract. Safety properties, which assert that the system always stays within
some allowed region, have been extensively studied and used. In the last years,
we see more and more research on quantitative formal methods, where systems
and specifications are weighted. We introduce and study safety in the weighted
setting. For a value v ∈ Q, we say that a weighted language L : Σ∗ → Q is
v-safe if every word with cost at least v has a prefix all whose extensions have
cost at least v. The language L is then weighted safe if L is v-safe for some v.

Given a regular weighted language L, we study the set of values v ∈ Q for
which L is v-safe. We show that this set need not be closed upwards or down-
wards and we relate the v-safety of L with the safety of the (Boolean) language
of words whose cost in L is at most v. We show that the latter need not be regu-
lar but is always context free. Given a deterministic weighted automaton A, we
relate the safety of L(A) with the structure of A, and we study the problem of
deciding whether L(A) is v-safe for a given v. We also study the weighted safety
of L(A) and provide bounds on the minimal value |v| for which a weighted lan-
guage L(A) is v-safe.

1 Introduction

Of special interest in formal verification are safety properties, which assert that the
system always stays within some allowed region. The interest in safety started with
the quest for natural classes of specifications. The theoretical aspects of safety have
been extensively studied [3,18,19,23]. With the growing success and use of formal ver-
ification, safety has turned out to be interesting also from a practical point of view
[12,14,16]. Indeed, the ability to reason about finite prefixes significantly simplifies
both enumerative and symbolic algorithms. In the first, safety circumvents the need to
reason about complex ω-regular acceptance conditions. For example, methods for tem-
poral synthesis, program repair, or parametric reasoning are much simpler for safety
properties [13,17,22]. In the second, it circumvents the need to reason about cycles,
which is significant in both BDD-based and SAT-based methods [6,7]. In addition to
a rich literature on safety, researchers have studied additional classes, such as liveness
and co-safety properties [3,18].

Traditional formal methods are based on a Boolean satisfaction notion: a reactive
system satisfies, or not, a given specification. In the last years, we see more and more
research on quantitative formal methods, where specifications are multi-valued. Indeed,
it is desired to reason about quantitative properties (that is, no longer “is every request
eventually acknowledged?” but rather “what is the average waiting time between a re-
quest and an acknowledge?”) [8,9] and to refine the binary outcome of satisfaction

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 133–147, 2013.
c© Springer International Publishing Switzerland 2013



134 S. Weiner et al.

(that is, no longer “is the property satisfied?” but rather “what is the quality, in some
predefined scale, in which the specification is satisfied?”) [2]. A natural quest that arises
is a weighted counterpart to the classes of specifications in the Boolean setting.

In this paper we introduce and study safety in the weighted setting. We focus on finite
words and weights in Q. Accordingly, a weighted language is a function L : Σ∗ → Q

that assigns to each finite word over the alphabet Σ a cost in Q. We note that weighted
languages are defined also with respect to infinite words [9] and our results can be
extended to that setting. The study there, however, involves limit behavior, which brings
to the picture difficulties that are orthogonal to these we face in the study of safety.
We thus focus on finite words. Recall that in the Boolean setting, a language over an
alphabet Σ is a set L ⊆ Σ∗, and L is a safety language if every word not in L has a
bad prefix – one that cannot be extended to a word in L. Consider a weighted language
L : Σ∗ → Q. For v ∈ Q, we say that L is v-safe if every word whose cost is above v
has a bad prefix – one all whose extensions result in words with cost above v. Formally,
for all w ∈ Σ∗, if L(w) ≥ v, then w has a prefix x such that for all y ∈ Σ∗, we have
that L(x · y) ≥ v. We say that L is weighted safe if it is v-safe for some v ∈ Q.

We describe weighted languages by weighted automata: each transition of the au-
tomaton has a cost in Q, the cost of a run is the sum of the costs of the transitions
taken along the run, and the cost assigned to a word is the cost of the cheapest run on
it. 1 We use WFA and DWFA to abbreviate weighted finite automata and deterministic
weighted finite automata, respectively. WFAs and DWFA have been used for the verifi-
cation of quantitative properties [9], for reasoning about probabilistic systems [5], and
for reasoning about the competitive ratio of on-line algorithms [4]. They are also useful
in text, speech, and image processing, where the weights of the WFA are used in order
to account for the variability of the data and to rank alternative hypotheses [10,20,21].

Recall that a weighted language L is v-safe if each word with cost above v has a
prefix that cannot be extended to a word whose cost is below v. The first question we
study is a characterization of the safety zones of a weighted language. That is, the set
VL ⊆ Q of values v for which L is v-safe. We show that the safety zones need not be
closed upwards or downwards. We relate the safety zones of a weighted language with
the structure of a DWFA for it. We use the relation in order to characterize cases in
which VL is empty, namely L is not weighted safe.

For v ∈ Z, we define the Boolean v-language of L, denoted L↓v, as the set of all
words w for which L(w) < v. We show that L and L↓v share the same set of bad
prefixes and conclude that L is v-safe iff L↓v is (Boolean) safe. We further show that
even when L is given by a DWFA, the language L↓v need not be regular, yet it can
always be defined by a pushdown automaton. We show that the regularity of L↓v is
independent of v and give a structure-based characterization of bumpy DWFAs – these
DWFAs A for which L(A)↓v is regular for all v ∈ Q. We describe a construction of a
DFA for L(A)↓v from a non-bumpy DWFA A, and a PDA for it in cases A is bumpy.
Both constructions involve a polynomial blow-up when the costs in A are given in

1 In general, weighted automata are defined with respect to an algebraic semiring. We focus on
the tropical semiring 〈Q∪{∞},min,+,∞, 0〉, where the sum operator is min (with ∞ being
the identity element) and the product operator is + (with 0 being the identity element).
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unary. When either v or the costs in A are given in binary, the construction becomes
exponential, and we show matching lower bounds.

We then turn to study the problem of deciding whether the language of a given
DWFA is v-safe. While the problem is easy for non-bumpy automata or when v ≤ 0,
the general case for v > 0 is very challenging and is our main technical contribution.
By definition, a weighted language L is not v-safe if it has a v-refuter: a word with cost
above v that can be extended to a word whose cost is below v. We show a bound on
the length of a shortest v-refuter for a non v-safe language L. For this we show that it
is possible to decompose refuters to a base path on which simple cycles are “hanged”,
where the base path has polynomial length. By carefully reasoning about this decom-
position, we are able to use the theory of Frobenius numbers in order to bound the
number of used cycles by a polynomial in the DWFA2. This enables us to prove that
the problem of deciding whetherA is v-safe is co-NP-complete (and is NLOGSPACE-
complete when the costs and value are given in unary). We also show that the problem
is undecidable for nondeterministic WFAs.

Finally, we study the problem of bounding the minimal value |v| for which the lan-
guage of a given DWFA is v-safe. We show that if L(A) is weighted safe, then it is
v-safe or (−v)-safe for v ≥ 0 that is exponential in A, and we show that the exponen-
tial bound is tight. We use this bound to show that the problem of deciding whether a
DWFA with costs given in unary is weighted safe is in PSPACE.

Due to the lack of space, some examples and proofs are omitted from this version
and can be found in the full version, in the authors’ URLs.

2 Preliminaries

2.1 Weighted Finite Automata

A nondeterministic automaton (NFA, for short) is A = 〈Σ,Q, δ,Q0, α〉, where Σ is
an alphabet, Q is a set of states, δ : Q × Σ → 2Q is a transition relation, Q0 ⊆ Q
is a set of initial states, and α ⊆ Q is a set of accepting states. If for all q ∈ Q and
σ ∈ Σ we have that |δ(q, σ)| ≤ 1, then A is a deterministic automaton (DFA, for
short). Given a finite word w = σ1 · σ2 · · ·σl ∈ Σ∗, a run r of A on w is a sequence
q0, q1, . . . , ql ∈ Ql+1 such that q0 ∈ Q0 and for all 0 ≤ i ≤ l, we have qi+1 ∈ δ(qi, σi).
The run r is accepting if ql ∈ α. A word w is accepted byA if there is an accepting run
of A on w. Note that a deterministic automaton has at most one run on an input word.
The language of A, denoted L(A) is the set of words accepted by A.

The transition function δ induces a relation Δ ⊆ Q × Σ × Q such that Δ(q, σ, q′)
iff q′ ∈ δ(q, σ). A weighted finite automaton (WFA, for short) is an NFA augmented
with a cost function c : Δ→ Q that assigns to each transition a cost, which is a rational
number. Formally,A = 〈Σ,Q, δ, c,Q0, α〉, where Σ,Q, δ,Q0, and α are as in an NFA
and c is a cost function. The cost of a run r on a word w = σ1 · σ2 · · ·σl ∈ Σ∗ is the
cost of the transitions taken along the run. That is, cost(r, w) =

∑l−1
i=0 c(qi, σi, qi+1).

When clear from the context, we drop the word parameter and refer to cost(r). The

2 For a given set of mutually prime positive integers, their Frobenius number is the greatest
integer that cannot be expressed as a linear combination (with nonnegative integer coefficients)
of its elements.
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cost of a word in A is the cost of a cheapest accepting run on it. That is, cost(A, w) =
min{cost(r, w) : r is an accepting run of A on w}. If there is no accepting run ofA on
w, then cost(A, w) = ∞. We view the language of a WFA A as a mapping L(A) :
Σ∗ → Q, with L(A)(w) = cost(A, w). We denote by LBool(A) the Boolean language
of all words that have an accepting run in A. When the underlying automaton A is
deterministic, we say that A is a deterministic WFA (DWFA, for short). Throughout
the paper we assume that all WFAs contain only reachable and nonempty states (that is,
states from which some word is accepted).

2.2 Boolean and Weighted Safety Languages

Boolean Safety. Consider a Boolean language L ⊆ Σ∗ over the alphabet Σ. A finite
word x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σ∗, we have x · y �∈ L. Thus, a
bad prefix is a word that cannot be extended to a word in L. A language L is a safety
language iff every w �∈ L has a finite bad prefix. For a safety language L, we denote by
bad pref (L) the set of all bad prefixes for L.

For a language L ⊆ Σ∗, let pref (L) denote the set of all prefixes of words in L. It is
not hard to prove that L is safe iff pref (L) = L. Recall that we assume that DFAs have
no empty states. Thus, a DFA Apref that recognizes pref (L(A)) can be obtained from
A by making all its states accepting. By checking whether L(Apref ) ⊆ L(A), we can
thus decide, in NLOGSPACE, whether L(A) is safe.

Weighted Safety. In Boolean safety, once something bad has happened, it cannot be
recovered. Lifting the safety definition to weighted languages, we consider “something
bad” as a “too high” cost, and the definition is parameterized by a threshold v ∈ Q spec-
ifying what “too high” is. Thus, a weighted language is v-safe if once a word reaches a
cost of v or above, it cannot be extended to a word that costs less than v. Formally, we
have the following.

Definition 1. Consider a weighted language L : Σ∗ → Q and a value v ∈ Q. We say
that L is v-safe if for every w ∈ Σ∗, if L(w) ≥ v then there is a prefix x of w such that
for all y ∈ Σ∗, we have that L(x · y) ≥ v. We call such a prefix a v-bad prefix for L.

We say that a weighted language L is weighted safe iff L is v-safe for some value
v ∈ Q. Given a DWFA A, we say that A is v-safe iff L(A) is v-safe. We denote the set
of v-bad prefixes of L as bad pref v(L). For all values c, v ∈ Q, where c > 0, we have
that a weighted language L is v-safe iff c ·L is (c · v)-safe, where c ·L is obtained from
L by multiplying the costs of all words by c. Given a WFA for L, multiplying the costs
of all its transitions by c results in a WFA for c · L. Accordingly, we assume wlog that
our WFAs and weighted languages are over Z.

We define the safety zones of L as the set VL ⊆ Z that consists of all values v ∈ Z
for which L is v-safe. Note that once all costs are in Z, we have that L is v-safe for
some v ∈ IR iff it is also 'v(-safe. Thus, while we only study threshold values in Z, all
our results applies also to thresholds in IR. Note also that L is weighted-safe iff VL �= ∅.

Remark 1. In the Boolean setting, a language L is co-safe if every word in L has a
good prefix – one all whose extensions are words in L. Equivalently, the complement
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of L, namely Σ∗ \ L is safe. Following the same lines (or, equivalently, dualizing our
definition of v-safety), we say that a weighted language L is v-co-safe if for every word
w ∈ Σ∗, if L(w) ≤ v, then w has a prefix x such that L(x · y) ≤ v for all y ∈ Σ∗.
Equivalently, a weighted language L is v-co-safe iff (−L) is v-safe, where (−L) is
obtained from L by negating all costs. For a DWFAA, let (−A) be the DWFA obtained
by negating all transition costs in A. It is not hard to see that L(−A) = (−L)(A), thus
A is v-co-safe iff (−A) is (−v)-safe. Consequently, our results on weighted safety are
easily extended to weighted co-safety.

3 Observations on Weighted Safety

In this section we study some theoretical aspects of weighted safety. In Sections 4 and 5
we are going to use these observations for deciding v-safety and weighted safety.

3.1 Properties of Weighted Safety

We start by showing that even simple DWFAs may have a complex set of safety zones.

Example 1. Consider the DWFA A appearing in Figure 1. We show that VL(A) =
(−∞,−4] ∪ {v : v = 1 mod 5}. To see this, we consider several cases. First, since
all costs in A are at least −4 then clearly, for v ≤ −4, we have that A is v-safe. For
every −3 ≤ v ≤ 0, we have that A is not v-safe, as the word ε has cost 0 ≥ v, but
it has no v-bad prefix since it can be extended to the word b, with cost −4 < v. For
v ≥ 1, consider first the case where v = 5k + i for 1 < i ≤ 5 and some k ∈ IN.
Consider the word x = a(k+1). We have that L(A)(x) = 5(k + 1) ≥ v, and that
L(A)(x · b) = 5(k + 1) − 4 = 5k + 1 < v. Thus x can be extended to a word that
costs less than v and so has no v-bad prefix. Therefore A is not v-safe. Now, consider
v = 5k + 1 for some k ∈ IN. We show that every word x such that L(A)(x) ≥ v is a
v-bad prefix of itself. If x contains the letter b, then the run on x ends in state q1, from
which there are no reachable negative edges. Thus the cost of any extension of x can
only be higher, and so x is a v-bad prefix. Otherwise, x is of the form am for some
m ∈ IN such that L(A)(x) = 5m ≥ v = 5k+1. Therefore L(A)(x) ≥ v+4. But then
for any extension y ∈ Σ∗ we have that L(A)(x · y) ≥ v + 4− 4 = v, thus x is a v-bad
prefix. Therefore,A is v-safe for every v ≥ 1 of the form v = 5k + 1 for some k ∈ IN.

Fig. 1. Simple structure may have complex safety zones

Note that in Example 1 we have seen that VL(A) contains all values smaller than
−4. This is no coincidence. If a weighted language L is v1-safe for a value v1 ≤ 0, then
for every v2 < v1 we have that L is also v2-safe. Indeed, since L(ε) = 0 ≥ v1, then L
being v1-safe implies that all words have cost at least v1. But then, all words also have
cost at least v2, making L also v2-safe.
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We now relate some properties of a DWFA with its safety zones. We start with relat-
ing VL(A) with the Boolean-safety of A.

Proposition 1. Consider a DWFA A.

1. If A is not Boolean-safe, then there exists a threshold value t ∈ Z such that for
every value v such that v > t, we have that A is not v-safe.

2. If A is Boolean-safe, then A is v-safe for every v ∈ Z iff A has no transition with
a negative cost.

We continue with relating structural properties of A with its weighted safety.

Proposition 2. Consider a DWFA A.

1. If A has a negative cycle reachable from a positive reachable cycle or from a non-
accepting state, then A is not weighted-safe.

2. If A is not weighted-safe, then A contains a negative cycle, and either a positive
cycle or a non-accepting state.

Note that the lack of a negative cycle reachable from a positive cycle or a non-
accepting state does not necessarily indicate that the language is weighted-safe. An
example for this can be found in the full version.

3.2 FromWeighted Safety to Boolean Safety

Given a weighted language L : Σ∗ → Z and a value v ∈ Z, we define the Boolean
v-language of L, denoted L↓v, as the set of all words w for which L(w) < v.

We consider the relation between the v-safety of a weighted language L and the
(Boolean) safety of L↓v.

Theorem 1. Given a weighted language L : Σ∗ → Z and a value v ∈ Z, we have that
L is v-safe iff L↓v is safe.

Proof: We first show that bad pref v(L) = bad pref (L↓v). By definition, for every
x ∈ Σ∗ we have that x ∈ bad pref v(L) iff L(x · y) ≥ v for every y ∈ Σ∗. This is
valid iff x · y /∈ L↓v for every y ∈ Σ∗, which holds iff x ∈ bad pref (L↓v). Thus,
bad pref v(L) = bad pref (L↓v).

Now, by definition, a weighted language L is v-safe iff for every w ∈ Σ∗, if
L(w) ≥ v then w has a prefix x ∈ bad pref v(L). By the definition of L↓v and since
bad pref v(L) = bad pref (L↓v), this is valid iff every w /∈ L↓v has a prefix x such
that x ∈ bad pref (L↓v). The latter holds iff L↓v is (Boolean) safe.

3.3 Regularity of v-Languages

In this section we study the Boolean v-language L(A)↓v of a DWFA A. We show that
L(A)↓v need not be regular, characterize the cases where it is regular, and construct a
DFA for a regular v-language. We also show that L(A)↓v is context-free and construct
a pushdown automaton for it.

We start with two examples showing that L↓v need not be regular.
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Example 2. Consider the DWFA A appearing in Figure 2. One can check that L(A)
is not weighted safe. Let v = 1. It is easy to see that the cost of every word is less
than 1 iff the letter b appears at least as many times as the letter a in it. Therefore,
L(A)↓1 = {w ∈ Σ∗ : �a(w) ≤ �b(w)}, which is irregular.

Example 3. Consider the DWFAB appearing in Figure 3, and let v = 1. One can check
L(B) is v-safe for all v > 0. It is easy to see that L(B)↓1 = {anbm : 1 ≤ m ≤ n}.
Clearly L(B)↓1 is not regular.

Fig. 2. A non-regular v-language, with v = 1,
for a not weighted safe language

Fig. 3. A non-regular v-language, with v = 1,
for a weighted safe language

We say an DWFA is bumpy if it has a positive cycle reachable from a reachable
negative cycle or a negative cycle reachable from a reachable positive cycle.

Note that both A and B above are bumpy. This is no coincidence. Once positive
and negative cycles are reachable from each other, it is possible to accumulate a cost
that is unbounded from above and then reduce it below v or, dually, accumulate an
unboundedly low cost and then increase it above v. In such cases, a memory element is
required in order to know when the cost is below a value v.

We first show that whenA is not bumpy, we can construct a DFA for L(A)↓v .

Theorem 2. Consider a non-bumpy DWFA A. Let n be the number of states in A and
let M be the maximal absolute cost of a transition in A. Then, for every v ∈ Z, we can
construct a DFA for L(A)↓v with O(n(nM + v)) states, and the blow up is tight.

Proof: Given a DWFA A = 〈Σ,Q, q0, δ, c, α〉 and a value v ∈ Z, we construct the
DFA A′ = 〈Σ,Q′, q′0, δ

′, α′〉 as follows.
We define the set of relevant values of a non-bumpy DWFA to be Val = {u :

−nM − |v| ≤ u ≤ nM + |v|} ∪ {",⊥}. To constructA′, we unwindA, augmenting
each state with the cost that has been accumulated along the path traversed in order to
reach it. Once the cost is not in the relevant values set Val , we use " or ⊥ according to
the sign of the cost.

Formally, the set of states of A′ is Q′ = Q × Val . The initial state is q′0 = 〈q0, 0〉,
and the accepting states are α′ = {〈s, t〉 : s ∈ α and t < v}. Given a state 〈s, t〉
and a letter σ ∈ Σ, with q′ = δ(s, σ), we define δ′(〈s, t〉, σ) = 〈q′, t′〉, where if
t+ c(q, σ, q′) > nM + |v| we set t′ = ", if t+ c(q, σ, q′) < −nM −|v| we set t′ = ⊥,
otherwise t′ = t + c(q, σ, q′).

In order to prove the correctness of the construction, we argue that since A is not
bumpy, then once the cost of a run of A goes beyond nM + |v| or below −nM − |v|,
there is no need to maintain it. Note that, by construction, |Q′| = O(n(nM + v)) and
|δ′| = O(|δ|(nM + v)).
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We now proceed to the lower bound. The number of states in A′ depends on the
values M and v. Accordingly, when M or v are given in binary, the construction is
exponential. We now show that it is indeed sufficient for one of these two components
to be given in binary in order for a DFA that recognizes the v-language to need expo-
nentially many states.

We first show the dependency in v. Consider the family 〈A, 2n〉, for Σ = {a},
where the DWFA A is the automaton appearing in Figure 4. For every n we have that
L(A)↓2n = {ak : k < 2n}. This requires exponential memory and therefore a DFA
that recognizes L(A)↓vn is of size at least 2n.

We now show the dependency in M . Consider the family 〈Bn, 0〉, for Σ = {a, b},
where the DWFA Bn is the automaton appearing in Figure 5. For every n we have that
L(Bn)↓0 = {ak · b+ : k < 2n}. Again, this requires exponential memory and therefore
a DFA that recognizes L(Bn)↓un is of size at least 2n.

Fig. 4. Lower bound for a binary value Fig. 5. Lower bound for binary costs

We now show that bumpiness characterizes the irregularity of the Boolean v-language.

Theorem 3. A DWFA A is bumpy iff L(A)↓v is irregular, for all values v ∈ Z.

Proof: By Theorem 2, if A is not bumpy then L(A)↓v is regular. For the other direc-
tion, we assume that L(A)↓v is regular and show that A is not bumpy. Let D be a DFA
that recognizes L(A)↓v , and let n be the number of states in D. Assume by way of
contradiction that A is bumpy. Consider the case where there is a path from a positive
cycle Cpos to a negative cycle Cneg (the other case is similar).

The idea is to consider a run over a word that repeats the positive cycle n+ 1 times,
and then repeats the negative cycle enough times for the cost to be less than v. Since the
positive cycle is repeated n + 1 times, we can pump the positive cycle, increasing the
cost of the word while maintaining its acceptance in D, eventually reaching a word that
costs more than v and is yet accepted byD, contradicting the fact it recognizes L(A)↓v .

Note that the regularity of L(A)↓v does not depend on the value v and depends only
on the structure of A.

Finally, even though L(A)↓v is not necessarily a regular language, it is always a
context-free language, which can be recognized by a PDA. Intuitively, a stack is suffi-
cient as the memory element we previously found lacking. The construction details can
be found in the full version.
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4 Deciding v-Safety

In this section we solve the problem of deciding, given a DWFA A and a value v ∈ Z,
whether A is v-safe. We start with special cases in which the problem is easy. We
then show that for nondeterministic WFAs the problem is undecidable, and that when
v and the costs of A are given in binary it is co-NP-hard. We conclude with tight upper
bounds, showing the problem is NLOGSPACE-complete (co-NP-complete) when v and
the costs in A are given in unary (respectively, binary).

4.1 Easy Special Cases

In Section 3 we related bumpiness and regularity. We now show that for non-bumpy
DWFAs, regularity of the v-language enables an easy v-safety decision procedure.

Theorem 4. Given a non-bumpy DWFAA and a value v ∈ Z, where v and the costs of
A are given in unary, the problem of deciding if A is v-safe is NLOGSPACE-complete.

Proof: We start with membership in NLOGSPACE. By Theorem 2, we construct
a DFA that recognizes L(A)↓v . We then check if L(A)↓v is safe, which holds, by
Lemma 1, iff L(A) is v-safe. Since the construction can be done on the fly, and safety
checking is in NLOGSPACE, the problem is in NLOGSPACE. Note that since the size
of the suggested construction is O(|A|(|A|M + v)), this can also be done in time
O(|A|(|A|M+v)), where M is the maximal absolute cost of a transition inA. Hardness
in NLOGSPACE is easy to prove by a reduction from reachability.

We continue with the case v is non-positive.

Theorem 5. Consider a DWFA A and value v ≤ 0. Assume that v and the costs in A
are given in unary. The problem of deciding if A is v-safe is NLOGSPACE-complete.

Proof: Since L(A)(ε) = 0 and v ≤ 0, we have that A is v-safe iff the costs of all
simple paths (that end in an accepting state) are at least v, and there is no negative
reachable cycle. Searching for a simple path with cost less than v or for a reachable
negative cycle can clearly be done in NLOGSPACE. Hardness in NLOGSPACE is easy
to prove by a reduction from reachability.

Note that this check can also be performed by the Bellman-Ford algorithm for calculat-
ing distances in a graph in time O(n3), which works for both binary and unary inputs.

4.2 Hardness of the General Case

In this section we show that deciding if a language is v-safe can be hard. Specifically,
we show that deciding if a (nondeterministic) WFA is v-safe is undecidable, and that
deciding if a DWFA is v-safe when v and the costs are given in binary is co-NP-hard.

Theorem 6. Let v ∈ Z. Deciding v-safety for (nondeterministic) WFAs is undecidable.
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Proof: We show a reduction from WFA universality, which is known to be undecidable
[1]. The universality problem for WFAs asks, given a WFA B and a threshold v, whether
B assigns a value that is smaller than v to all words in Σ∗, that is, if L(B)↓v is universal.
Given a WFA B over an alphabet Σ, we construct a WFA B′ over the alphabet Σ′ =
Σ ∪ {σ}, for σ /∈ Σ. The WFA B′ is obtained from B by adding a new state q′, with
a (τ,−1) self-loop for all τ ∈ Σ′, and adding a (σ, 0)-transition from every state to q′.
Thus, for every x ∈ Σ∗ and y ∈ Σ′

∗, we have that L(B′)(x · σ · y) = L(B)(x) − |y|.
We claim that L(B) is universal for threshold v iff L(B′) is v-safe. If L(B) is universal
for threshold v then for every word w ∈ Σ′∗ we have that L(B′)(w) < v, thus L(B′) is
clearly v-safe. On the other hand, if L(B′) is not v-safe, there must be a word w ∈ Σ∗

for which v ≤ L(B′)(w) = L(B)(w), thus w /∈ L(B)↓v and L(B) is not universal.

Theorem 7. Consider a DWFA A and v ∈ Z. Assume that v and the costs in A are
given in binary. The problem of deciding whetherA is v-safe is co-NP-hard.

Proof: We show that the complementary problem, of deciding whetherA is not v-safe
is NP-hard, using a reduction from the (unbounded) knapsack-problem. The input to the
problem consists of weights w1 . . . wk ≥ 0, a required minimal value v, and an allowed
total weight W ≥ v. The goal is decide whether there is an assignment c1 . . . ck ∈ IN
such that v ≤ Σ0≤i≤l(ciwi) ≤ W . The knapsack-problem is NP-complete when the
weights are given in binary.

Given an input w1 . . . wk, v,W to the knapsack-problem, we construct the DWFAA
described in Figure 6. In the full version, we prove that there is a legal assignment for
this input iff A is not v-safe.

Fig. 6. Lower bound construction for knapsack reduction

4.3 Upper Bound for General Case

In this section we give upper bounds for the general problem of deciding whether a
DWFA A is v-safe for v > 0. We show that the problem is NLOGSPACE-complete
when the costs in A and v are given in unary, and co-NP-complete when they are given
in binary. Our algorithms are independent of L(A)↓v being regular.

From now on we fix a DWFA A = 〈Σ,Q, q0, δ, c, α〉 and a value v ∈ Z.

The Small Refuter Property. We say that a word x ∈ Σ∗ is a v-refuter for a weighted
language L : Σ∗ → Z if it witnesses the fact that L is not v-safe. Formally, L(x) ≥ v
and there exists a finite word y ∈ Σ∗ such that L(x · y) < v. We refer to y as an
incriminating tail for x.

Lemma 1. Given a weighted language L : Σ∗ → Z and a value v ∈ Z, we have that
L is not v-safe iff L has a v-refuter.
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In order to check whether a language is not v-safe we look for a v-refuter. We show
that if A is not v-safe, it must have a “small” v-refuter, one of polynomial length. The
polynomial depends on |Q|, v, and the costs of the transitions in A. We first show the
existence of a refuter of a certain restricted form, and continue by bounding its length.

Recall that a path in a graph is simple if all the states in it are different. Consider
a run r. If the run is simple, then it contains no cycles. Otherwise, r contains cycles.
These cycles may be simple or have other cycles “hanged” on them. We decompose
the run r into a base-path p = p1, p2 . . . pk, which need not be simple, and sim-
ple cycles that may be hanged on p. That is, r is of the form p1 . . . pi1c

1
1c

2
1 . . . cn1

1

pi1+1 . . . pi2c
1
2 . . . cn2

2 pi2+1 . . . pi3 . . . pim , with im = k, where each of the cji is a sim-
ple cycle. Note that the base-path need not be simple, so r itself may serve as its own
base-path. Our goal, however, is to decompose r in a way that would generate base
paths of a polynomial length. We refer to the length of the base-path as the size of
the decomposition. Lemma 2 below shows how we can, by performing a sequence of
rotations on a given refuter, obtain a refuter with a short decomposition.

Lemma 2. Given a v-refuter x for L(A), there is a v-refuter x′ for L(A) with the same
incriminating tail as x, such that x′ has a decomposition of size O(|Q|2).

Assume we are given a refuter with a polynomial base-path. In order to bound its
length, it is still required to bound the number of repetitions of the simple cycles in
the refuter. Intuitively, a v-refuter tries to reach a cost above v in a way that enables
the concatenation of an incriminating tail that reduces the cost below v. As Example 4
below shows, it is sometimes necessary for the intermediate costs of the refuter to go
far below v in order to later be able to get closer to v; that is, to get a better granularity.
Hence, a refuter may need to repeat cycles in a way that may seem redundant.

Example 4. Consider the DWFA A appearing in Figure 7, and let v = 1. One can see
that since v > 0, the only way for a word to be a 1-refuter forA is by reaching state q1
with cost of exactly v. This can be achieved by repeating the −5 transition four times,
reaching an intermediate cost of −20, and then repeating the 7 transition three times,
reaching an intermediate cost of 1 = v. Thus, we have to go way below v in order to
construct this 1-refuter. It can be verified that there is no shorter refuter.

Fig. 7. A 1-refuter should go far below 1

We need to find a bound on how far from v it may be required to go in order to achieve
the needed granularity. The cases where all the cycles are positive or negative are easily
handled, since they do not stray far from v. The case where the refuter ends in a non-
accepting state is simple, since in this case the only target of the refuter is to minimize
the cost, thus there is no need to make an effort to get good granularity. The case where
there are both negative and positive cycles is more challenging. In this case, as we have
seen, the intermediate costs of the refuter may be far below v, indicating cycles are
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repeated many times. As we now show, the existence of the Frobenius number, and
the fact the Frobenius number is bounded by a polynomial, enables us to bound the
repetitions of cycles by a polynomial.

Given a set of mutually prime numbers, their Frobenius number is the minimal num-
ber N such that every m > N can be generated using a linear combination of the given
numbers. That is, if x1 . . . xn are mutually prime, and N is their Frobenius number,
every number m > N has a set of coefficients a1 . . . an such that a1x1 + a2x2 + · · ·+
anxn = m. It is known that N ≤ 2T 2 where T is the maximal number in the given set
[11].

So how does the Frobenius number help us? For intuition, we give the simpler case
where the gcd (greatest common deviser) of the positive cycles costs used by r is 1. We
denote by N their Frobenius number. We use the base path of r to construct a possibly
different run r′, which induces a v-refuter, by determining how many times to repeat the
cycles of r in r′. We start with the negative cycles, and repeat them until we reach a cost
of t < −N − b, where b is the cost of the base-path of r. Note that the number of used
negative cycles (repetitions included) is at most |t|, as each repetition of a negative cycle
reduces cost by at least 1. We now repeat the positive cycles until their cost is exactly
|t| + v − b. By the definition of Frobenius number, the fact |t| + v − b > N implies
that we can reach this exact cost. Thus, when reaching the last state of the refuter, the
accumulated cost is exactly b+ t+(−t) + v− b = v. Since each positive cycle adds at
least 1 to the cost, we use at most ||t|+v−b| positive cycles (including repetitions). We
started with a v-refuter, and reached the best possible granularity, ending in the same
state as the original refuter. Thus, the constructed run must have an incriminating tail,
and so it induces a v-refuter.

Let us consider the length of the generated v-refuter. Let M be the maximal absolute
cost of a transition in A, and let W be the maximal absolute cost of a simple cycle in
A. Clearly, W = O(M |Q|). Note that N is at most 2W 2 since we use the Frobenius
number on cycle costs, and the maximal absolute cost of a simple cycle is at most W .
Also note that |b| is at most O(M |Q|2), as its cost is the sum of at most O(|Q|2) edges
(indeed, we assume a decomposition of size O(|Q|2)), and edge costs are bounded by
M . Hence, we use a polynomial number of negative and positive cycles, and so the
generated v-refuter is of a polynomial length.

Lemma 3. IfA is not v-safe then it has a v-refuter x of length bounded by a polynomial
P (A, v,M), where M is the maximal absolute cost of a transition in A. In addition, x
has an incriminating tail of size 1.

Note that a refuter with a polynomial bounded length also has a polynomial bound
on all its intermediate costs.

v-Safety Detection. We now use the short refuter found above in order to solve the
problem of deciding whether a DWFA A is v-safe for a value v ∈ Z. We show this
problem is NLOGSPACE-complete when both the costs of A and the value v are given
in unary, and is co-NP-complete in the binary case.

Theorem 8. Consider a DWFA A and v ∈ Z. The complexity of the problem of decid-
ing whetherA is v-safe is as follows.
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(i) If v and the costs in A are given in unary, the problem is NLOGSPACE-complete.
(ii) If v and the costs in A are given in binary, the problem is co-NP-complete.

Proof: (i) For the upper bound, we describe an algorithm that can be implemented in
NLOGSPACE. Let P̃ (A, v,M) denote the polynomial bound on all the intermediate
costs of the short v-refuter from Lemma 3.

The idea of the algorithm is to use the same construction we have previously used to
get a DFA that recognizes L(A)↓v , but on the costs range of Valref = [−P̃ (A, v,M),
P̃ (A, v,M)] ∪ {",⊥}, and to check if it is safe. The constructed DFA A′ does not
necessarily recognize L(A)↓v , butA is v-safe iffA′ is safe. Intuitively, a v-refuter with
intermediate costs in the range of [−P̃ (A, v,M), P̃ (A, v,M)] clearly induces a witness
for the non-safety of L(A′). On the other hand, a minimal witness for the non-safety
of A′ must remain in the range [−P̃ (A, v,M), P̃ (A, v,M)], thus inducing a v-refuter
and showingA is not v-safe.

Given a DWFAA, our algorithm constructs the DFAA′ described above, and accepts
iff A′ is safe. Membership in NLOGSPACE follows from an analysis of the size ofA′,
the fact we can construct it on the fly, and the fact it is possible to check safety of
DFAs in NLOGSPACE. Hardness in NLOGSPACE is easy to prove by a reduction
from reachability.

(ii) For the lower bound see Theorem 7. For the upper bound, since v and the costs
are given in binary, by Lemma 3 we have that A is not v-safe iff A has a v-refuter
of exponential length with an incriminating tail of size 1. We show that such a refuter
has a representation of polynomial length, which can be verified in polynomial time.
Therefore, an NP algorithm can guess such a representation, and conclude thatA is not
v-safe iff the guessed representation indicates the existence of a v-refuter.

The number of times an exponential sized refuter traverses each transition of A is at
most exponential, and thus can be represented in polynomial space when using binary
encoding. We represent a v-refuter as a vector t of size |δ| that associates with each
transition in A the number of times it is traversed in the refuter (in binary), and a single
transition e = (q, σ, q′) with cost c, which is the incriminating tail. To check that (t,e)
represents a v-refuter we need to verify that t represents a legal run r that ends in
state q for which cost(r) ≥ v and cost(r) + c < v. To calculate cost(r) we multiply
the weight of each transition with the number of times it was used. To verify that t
represents a legal run, we check it describes a path from q0 to q. That is, we verify for
every state s �= q0, q that the number of s’s incoming edges is equal to the number of
s’s outgoing edges, and that the number of incoming (outgoing, respectively) edges in
q (q0) is bigger (smaller) than the number of outgoing (incoming) edges by 1. It is easy
to see the vector t represents a legal run from q0 to q iff these conditions hold.

5 Deciding Weighted Safety

In this section we consider the problem of deciding whether a given DWFA A is
weighted safe; that is, whether there exists v ∈ Z for which A is v-safe. We first ask,
given a DWFA A that is weighted safe, how large can the minimal value |v| for which
A is v-safe be (in other words, what is the minimal c ≥ 0 such thatA is c-safe or (−c)-
safe). We answer this question with a tight exponential bound for the case the costs in
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A are given in unary. We then use the results of Section 4 to conclude that deciding
weighted safety is in PSPACE.

Lemma 4. Given a DWFA A with costs given in unary, the minimal value |v| such
that A is v-safe is at most exponential in the number of states of A and the maximal
absolute cost in A. This bound is tight: there is a family of DWFAs with O(n) states
where absolute costs are at most n, for which the minimal such value |v| is exponential
in n.

Proof: For the upper bound, assumeA is weighted safe. Let n be the number of states
ofA and M the maximal absolute cost of a transition inA. We first consider the simpler
case, whenA is v-safe for some non-positive value v ≤ 0. Since L(A)(ε) = 0, the fact
A is v-safe for some non-positive value v implies thatA contains no negative reachable
cycle, otherwise ε is a v-refuter for every v ≤ 0. Therefore, the minimal possible cost
of a word in A is at least −nM , and so A is −nM -safe.

We now bound from above the minimal positive value v > 0 for which A is v-safe.
Let γ be the lcm (least common multiplier) of all the positive simple cycles in A. We
have that γ ≤ Π{c:A has a simple cycle of cost c}c ≤ (nM)! = O(nMnM ).

Assume that A is v-safe for some v > 0, and let v be the minimal such value. We
show that v = O(nMnM ). If v ≤ γ, we are done. Otherwise, consider v = v−γ. From
the minimality of v, it must be the case that A is not v-safe. Let x ∈ Σ∗ be a v-refuter,
and y ∈ Σ∗ be an incriminating tail for x. That is, L(A)(x) ≥ v but L(A)(x · y) < v.
Let r be the run of A on x. We consider several cases. First, consider the case where
L(A)(x) ≥ v. By the choice of x and y we have that L(A)(x ·y) < v < v. Therefore, x
is also a v-refuter, and soA is not v-safe, and we have reached a contradiction. Second,
consider the case where L(A)(x) < v and r dose not contain a positive cycle. The fact
L(A)(x) < v implies that r ends in an accepting state. Thus, since r does not contain
a positive cycle, nM ≥ L(A)(x) ≥ v. Therefore, nM ≥ v − γ, which implies that
v ≤ nM+γ = O(nMnM ). Last, consider the case where L(A)(x) < v and r contains
a positive cycle. Let c be a cost of a positive cycle in r, and choose k ∈ IN such that
ck = γ (such a k exists by the definition of γ). Consider the run r′, which is obtained
from r by adding k repetitions of the c cycle to r, and let x′ be the word traversed
along r′. We have that L(A)(x′) = L(A)(x) + γ ≥ v + γ = v, but on the other hand
L(A)(x′ · y) = L(A)(x · y) + γ < v + γ = v. Therefore x′ is a v-refuter, with y
as an incriminating tail, in contradiction to the fact that A is v-safe. Thus, the minimal
positive value v such that A is v-safe is at most O(nMnM ).

The lower-bound proof can be found in the full version.

Using Lemma 4 we can decide whether a DWFA A is weighted safe by going over
all values from −nM to the upper bound, which is O(nMnM ), and checking for each
value v whether A is v-safe. Since encoding of the values is in binary, Theorem 8 (ii)
implies the following.

Theorem 9. Consider a DWFA A with costs given in unary. The problem of deciding
whetherA is weighted safe can be solved in PSPACE.

Acknowledgment. We thank Nati Linial for his help in proving the upper bound in
Theorem 8 (ii).
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A Framework for Ranking Vacuity Results
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Abstract. Vacuity detection is a method for finding errors in the model-
checking process when the specification is found to hold in the model.
Most vacuity algorithms are based on checking the effect of applying
mutations on the specification. It has been recognized that vacuity results
differ in their significance. While in many cases such results are valued as
highly informative, there are also cases where a vacuity result is viewed
by users as “interesting to know” at the most, or even as meaningless. As
of today, no attempt has been made to formally justify this phenomenon.

We suggest and study a framework for ranking vacuity results, based
on the probability of the mutated specification to hold on a random
computation. For example, two natural mutations of the specification
G(req → F ready) are G(¬req) and GF ready . It is agreed that vacuity
information about satisfying the first mutation is more alarming than
information about satisfying the second. Our methodology formally ex-
plains this, as the probability of G(¬req) to hold in a random compu-
tation is 0, whereas the probability of GF ready is 1. From a theoretical
point of view, we study of the problem of finding the probability of LTL
formulas to be satisfied in a random computation and the existence and
use of 0/1-laws for fragments of LTL. From a practical point of view, we
propose an efficient algorithm for approximating the probability of LTL
formulas and provide experimental results demonstrating the usefulness
of our approach as well as the suggested algorithm.

1 Introduction

In temporal logic model checking, we verify the correctness of a system with
respect to a desired behavior by checking whether a mathematical model of the
system satisfies a temporal-logic formula that specifies this behavior [9]. When
the formula fails to hold in the model, the model checker returns a counterex-
ample — some erroneous execution of the system [10]. When the formula holds
in the system on the other hand, most model-checking tools provide no addi-
tional information. While this might seem like a reasonable policy, there has
been growing awareness to the need of suspecting the result in the case model
checking succeeds, since errors may hide in the modeling of the system or the
behavior [19].
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As an example, consider the specification ϕ = G(req → F ready) (“every re-
quest is eventually followed by a ready signal”). One should distinguish between
satisfaction of ϕ in a model in which requests are never sent, and satisfaction in
which ϕ’s precondition is sometimes satisfied. Evidently, the first, vacuous, type
of satisfaction suggests a suspicious behavior of the model.

In [2], Beer et al. suggested a first formal treatment of vacuity. The definition
of vacuity according to [2] is based on mutations applied to the specification,
checking whether the model actually satisfies a specification that is stronger than
the original one. In the last decade, vacuity detection has attracted significant
attention (see [1,4,5,6,8,15,17,18,20] for a partial list).

Different definitions for vacuity exist in the literature and are used in practice.
The most commonly used ones are based on the “mutation approach” of [2].
We focus here on its generalization, as defined in [21]. Consider a model M
satisfying a specification ϕ. A subformula ψ of ϕ does not affect (the satisfaction
of) ϕ in M if M satisfies also the (stronger) formula ϕ[ψ ← ⊥], obtained from
ϕ by changing ψ in the most challenging way. Thus, if ψ appears positively in
ϕ, the symbol ⊥ stands for false, and if ψ is negative, then ⊥ is true1. We say
that M satisfies ϕ vacuously if ϕ has a subformula that does not affect ϕ in
M . Consider for example the formula ϕ = G(req → F ready) described above.
In order to check whether the subformula ready affects the satisfaction of ϕ, we
model check ϕ[ready ← false], which is equivalent to G¬req . That is, a model
with no requests satisfies ϕ vacuously. In order to check whether the subformula
req affects the satisfaction of ϕ, we model check ϕ[req ← true]. This is equivalent
to GF ready , thus a model with infinitely many ready signals satisfies ϕ vacuously.

In [5], Chechik et al. observe that in many cases, vacuities detected accord-
ing to the above definition are not considered a problem by the verifier of the
system. A similar observation was reported later in [3]. For example consider
a specification similar to ϕ discussed above, describing the desired behavior
of a traffic light [5]: ψ = G(car → Fgreen), stating that whenever a car ap-
proaches the traffic light, it will eventually be granted a green light. In many
traffic light systems however, a green light is given in a “round robin” manner,
granting a green light periodically, whether a car is waiting or not. The muta-
tion ψ[car ← ⊥] = GFgreen is thus satisfied in such a system, causing ψ to be
wrongly declared as vacuous. One may argue that ψ is indeed too weak for the
traffic light above; we note however, that it is common to have a set of generic
formulas which are applied to a variety of systems. A set of formulas for traffic
light systems should include ψ and not its mutation GFgreen, to accommodate
different types of systems.

In this paper we suggest and study a formal framework for ranking vacuity
results according to their level of importance. Our goal is to distinguishing be-
tween alarming vacuity results that must get the full attention of the verifier,

1 The above definition assumes that ψ appears once in ϕ, or at least that all its occur-
rences are of the same polarity; a definition that is independent of this assumption
replaces ψ by a universally quantified proposition [1]. Our methodology here applies
also to this definition.
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and “interesting to know” results that are less important. Earlier work on identi-
fying false alarms in vacuity includes two approaches: In [5], the authors suggest
to identify as vacuous only specifications whose satisfaction depend solely on
the environment of the system. While such cases should definitely be considered
vacuous, we believe that there exist real vacuities that do not fulfill the condition
of [5]. In [3], the authors focus on detecting vacuities that are due to temporal
antecedent failure, claiming that those are never debatable. In fact, already in
the original definition of vacuity in [2], not all subformulas of the specification
are checked for affecting the satisfaction, as the authors claim that some possi-
bilities do not result in interesting vacuities. No attempt has been made in [2,3]
to formally justify this claim or to argue that the classification is exhaustive.

Our framework for ranking vacuity results is based on the probability of the
mutated specification to hold on a random computation. To see the idea behind
the framework, let us consider the mutations G(¬req) and GF ready of the speci-
fication ϕ discussed above. Consider a random computation π. The probabilistic
model we assume is that for each atomic proposition p and for each state in
π, the probability of p to hold in the state is 1

2 . In this model, the probability
of G(¬req) to hold in a random computation is 0, whereas the probability of
GF ready to hold is 1. We argue that the lower is the probability of the mutation
to hold in a random computation, the higher the vacuity rank should be. In
particular, vacuities in which the probability of the mutation is 0, as is the case
with G(¬req), should get the highest rank and vacuities in which the probability
is 1, as is the case with GF (ready), should get the lowest rank. Note that we
do not claim that low-rank vacuities are not important. In particular, satisfying
GF (ready) suggests that the system satisfies some fairness condition that the
designer is not aware of.

In Section 4, we give further examples and evidences that our probability-
based criteria indeed corresponds to our intuition about the level of importance.
In particular, our ranking agrees with, unifies and generalizes the approaches
in all earlier work. We also suggest a refinement of the criteria that takes into
account the probability of the original specifications, and a refinement of the
analysis for the case of invariants. In order to evaluate our ranking framework,
we conduct a survey among model-checking users. We describe and discuss the
results, which support our framework, in Section 4.

Let us elaborate on our framework and the theoretical and practical challenges
it involves. For a specification ϕ, let Pr(ϕ) denote the probability for ϕ to be
satisfied in a random computation, as formalized above. Glebskii et al. in [16],
and later Fagin in [14], proved a 0/1-law for first order logic. That is, for ϕ in
first order logic, the probability of ϕ to be satisfied in a random model is either
0 or 1. It is not hard to see that a 0/1-law does not hold for LTL. For example,
for an atomic proposition p, we have that Pr(p) = 1

2 . We study the problem of
finding Pr(ϕ), for ϕ in LTL, and show that it is PSPACE-complete. The upper
bound follows easily from the probabilistic model-checking algorithm of [11]. The
algorithm in [11] is complicated. For the case we only want to find out whether
Pr(ϕ) = 0 or whether Pr(ϕ) = 1, we suggest a much simpler algorithm, which
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analyzes the connected components of a nondeterministic Büchi automaton for
ϕ. The details of the algorithm can be found in the full version of this paper. We
also show that large fragments of LTL do respect the 0/1-law. In particular, all
invariants (formulas for the form Gψ) respect it. Note that for these fragments,
our simpler algorithm solves the problem of finding Pr(ϕ).

The high complexity of finding Pr(ϕ) leads us to suggest a heuristic for esti-
mating it in a simple syntax-based bottom-up algorithm. We argue that not only
our heuristic often calculates Pr(ϕ) precisely, but that its errors are sometimes
welcome. Specifically, we distinguish between two cases in which our heuristic
errs. The first is when it returns a probability that is lower than Pr(ϕ). In this
case, the error is a result of a peculiar structure of the specification, like sub-
formulas that are valid. We are thus happy to declare the specification as one
that requires a check, which is indeed the fate of mutations with low probability.
The second is when our heuristic returns a probability that is higher than Pr(ϕ).
Here, the heuristic may cause real vacuities to get a low rank. We show, however,
that these cases are rare. As discussed in Section 4.3, we believe that a frame-
work for ranking vacuity results, and in particular the one suggested here, offers
a useful and simple-to-implement upgrade of existing vacuity-checking tools.

The full version of this paper, with more details, can be found in the authors’
URLs.

2 Preliminaries

2.1 LTL and Vacuity

For a finite alphabet Σ, an infinite word w = σ0 · σ1 · · · is an infinite sequence
of letters from Σ. We use Σω to denote the set of all infinite words over the
alphabet Σ. A language L ⊆ Σω is a set of words. When Σ = 2AP , for a set
AP of atomic propositions, each infinite word corresponds to a computation over
AP , usually denoted by π.

The logic LTL is a linear temporal logic [22]. LTL formulas describe languages
over the alphabet 2AP , and are constructed from a set AP of atomic proposi-
tions using the Boolean operators ¬ and ∧, and the temporal operators X (“next
time”) and U (“until”). The semantics of LTL is defined with respect to com-
putations over AP . Typically, computations are given by means of a Kripke
structure – a state-transition graph in which each state is labeled by a set of
atomic propositions true in this state. The Kripke structure models a system,
and we also refer to it as “the model”. For an LTL formula ϕ, we use L(ϕ) to
denote the language of ϕ, namely the set of computations that satisfy ϕ.

Given a model M and an LTL formula ϕ, the model-checking problem is to
decide whether all the computations of M satisfy ϕ, denoted M |= ϕ. Describing
formulas, we use the standard abbreviations ∨ and→ for Boolean operators and
F (“eventually”) and G (“always”) for temporal operators.

Let ϕ be an LTL formula and ψ an occurrence of a subformula of ϕ. We say
that ψ has a positive polarity in ϕ if ψ is in the scope of an even number of
negations in ϕ. Dually, ψ has a negative polarity in ϕ if ψ is in the scope of an
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odd number of negations in ϕ. Note that the definition assumes a syntax of LTL
with only ¬,∧, X and U . In particular, since α→ β is equivalent to ¬α∨ β, the
polarity of α there is negative.

Consider a model M and an LTL formula ϕ. Vacuity is a sanity check applied
when M |= ϕ, aiming to find errors in the modeling of the system or the behavior
by M and ϕ. Most vacuity algorithms proceed by checking whether M also
satisfies formulas obtained by strengthening ϕ.

For a formula ϕ and an occurrence ψ of a subformula of ϕ, let ϕ[ψ ← ⊥] denote
the formula obtained by replacing ψ by⊥ in ϕ, where⊥ = false if ψ has a positive
polarity in ϕ, and ⊥ = true otherwise. Consider a model M such that M |= ϕ.
We say that ψ does not affect the satisfaction of ϕ in M if M |= ϕ[ψ ← ⊥]. We
use the definition of vacuity given in [21]: the formula ϕ is vacuous in M if there
exists a subformula ψ of ϕ that does not affect the satisfaction of ϕ in M . Note
that the definition of [21] refers to a single occurrence of ψ in ϕ, and it can be
easily extended to multiple occurrences all with the same polarity. A definition
that is independent of this assumption replaces ψ by a universally quantified
proposition [1]. As we demonstrate in Example 6, our framework here can be
extended to the definition in [1].

2.2 The Probabilistic Setting

Given a set of elements S, a probability distribution on S is a function μ : S →
[0, 1] such that Σs∈S μ(s) = 1. The support set of μ, denoted supp(μ), is the set
of all elements s for which μ(s) > 0.

A finite Markov chain is a tuple M = 〈V, p〉, where V is a finite set of states
and p : V × V → [0, 1] is a function. For v ∈ V , let pv : V → [0, 1] be such
that pv(u) = p(v, u) for all u ∈ V . We require that for all v ∈ V , the function
pv is a probability distribution on V . A probabilistic labeled structure is S =
〈Σ, V, p, pinit , τ〉, where 〈V, p〉 is a Markov chain, pinit : V → [0, 1] is a probability
distribution on V that describes the probability of a computation to start in the
state, and τ : V → Σ maps each state to a letter in Σ.

A path in a Markov chain M is an infinite sequence π = v0, v1, v2, . . . of
vertices. An event is a measurable set of paths. Once we add a probability
distribution on the starting state of paths, the probabilities of events are uniquely
defined.

3 Probability of LTL Properties

3.1 Calculating the Probability

Consider an alphabet Σ. A random word over Σ is a word in which for all
indices i, the i-th letter is drown uniformly at random. In particular, when
Σ = 2AP , then a random computation π is such that for each atomic proposi-
tion q and for each position in π, the probability of q to hold in the position is
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1
2 . An alternative definition of our probabilistic model is by means of the prob-
abilistic labeled structure UΣ , which generates computations in a uniform dis-
tribution. Formally, UΣ = 〈Σ,Σ, p, pinit , τ〉, where for every σ, σ′ ∈ Σ, we have
p(σ, σ′) = pinit (σ) =

1
|Σ| , and τ(σ) = σ. Thus, UΣ is a clique with a uniform dis-

tribution. We define the probability of a language L ⊆ Σω, denoted Pr(L), as the
probability of the event {π : π is a path in UΣ that is labeled by a word in L}.
Similarly, for an LTL formula ϕ, we define Pr(ϕ) as the probability of the
event {π : π is a path in U2AP that satisfies ϕ}. For example, the probabilities
of Xp,Gp, and Fp are 1

2 , 0, and 1, respectively.
Using UΣ we can reduce the problem of finding Pr(ϕ) to ϕ’s model checking.

Results on probabilistic LTL model checking [11] then imply the upper bound in
the theorem below. For the lower bound, we do a generic reduction, and prove
hardness already for the easier problem, of deciding whether the probability is
0 or 1.

Theorem 1. The problem of finding the probability of LTL formulas is PSPACE-
complete.

Proof. Consider an LTL formula ϕ. The problem of finding Pr(ϕ) can be reduced
to LTL probabilistic model checking. In this problem, we are given a probabilis-
tic labeled structure S and an LTL formula ϕ, and we find the probability of
paths that satisfy ϕ in S. By definition, model checking ϕ in U2AP amounts
to finding Pr(ϕ). In [11], Courcoubetis and Yannakakis describe an algorithm
for solving LTL probabilistic model checking. The algorithm requires space that
is polynomial in the formula and polylogarithmic in the structure, implying a
PSPACE complexity for our problem.

For the lower bound, we prove that already the problem of deciding whether
the probability of a formula is 0 or 1 is PSPACE-hard. Recall the generic re-
duction used in the PSPACE-hardness proof for the validity problem of LTL.
Given a polynomial space Turing machine and an input x for it, the reduction
constructs an LTL formula ϕT,x that is valid iff T rejects x. The formula ϕT,x

is satisfied in a computation iff the computation does not encode a legal com-
putation of T on x or it encodes a legal yet rejecting computation of T on x.
The reduction can be defined so that the encoding of computations of T on x
concerns only the prefix of the computation in which a final configuration is
reached. Thus, after T reaches a final configuration, all suffixes are considered
as legal encodings. We claim that Pr(ϕT,x) ∈ {0, 1} iff T rejects x. First, if T
rejects x, then ϕT,x is valid, so Pr(ϕT,x) = 1. Also, if T accepts x, then the
event {w : w encodes a legal accepting computation of T on x} has a positive
probability – it contains all the words that have the accepting computation of
T on x as their prefix. ��

First order logic respects the 0/1-law: the probability of a formula to be
satisfied in a random model is either 0 or 1 [16,14]. It is not hard to see that
a 0/1-law does not hold for LTL. For example, for an atomic proposition p, we
have that Pr(p) = 1

2 . We now show that invariants do satisfy the 0/1-law. On the
other hand, trigger formulas, which can be viewed as “conditional invariants” do
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not respect it, even when the condition holds infinitely often. A trigger formula
is of the form r �→ ϕ, where r is a regular expression and ϕ is an LTL formula.
A computation π satisfies the formula r �→ ϕ if for every index i, if the prefix
π[0, i] is in the language of r, then the suffix πi satisfies ϕ. We use L(r) to denote
the language of r. For the full definition of trigger formulas and their vacuity
see [4].

Theorem 2. Formulas of the form Gϕ satisfy the 0/1-law. On the other hand,
formulas of the form r �→ ϕ need not satisfy the 0/1-law even when L(r) is
infinite.

Proof. We start with invariants. Consider a formula Gϕ, and let π be a random
computation. If Pr(ϕ) = 1, then for all suffixes πi of π, the probability of ϕ to
hold in πi is 1, thus so is the probability of Gϕ to hold in π. Hence, Pr(ϕ) = 1
implies that Pr(Gϕ) = 1. Now, if Pr(ϕ) < 1, then with probability 1 we have
a suffix πi such that the probability of ϕ to hold in πi is strictly less than 1,
making the probability of Gϕ to hold in π 0. Hence, Pr(ϕ) < 1 implies that
Pr(Gϕ) = 0.

For triggers, consider the specification ϕ = req[∗]; ack �→ Xready, stating
that whenever we have a computation where req is active all the way (from the
initial state), followed by ack, then ready must follow one cycle after ack. We
show that 0 < Pr(ϕ) < 1. Note that if both req and ack do not hold in the
initial state, then ϕ holds (since the prefix is false). The probability of this is
1
4 , thus 0 < Pr(ϕ). Note further that if req holds on the first state, ack on the
second, and ready does not hold on the third state, then ϕ fails to hold on the
computation path. The probability of this is 1

8 ; thus Pr(ϕ) < 1. ��

Recall that the PSPACE algorithm for calculating Pr(ϕ) involves the proba-
bilistic model-checking algorithm of [11], which is complicated. In the full version
we describe a much simpler algorithm for the case we only want to find whether
Pr(ϕ) = 0 or Pr(ϕ) = 1. By the lower-bound proof of Theorem 1, this problem
is PSPACE-hard too. As we show, however, it can be solved by a simple analysis
of the connected components of a nondeterministic automaton for ϕ.

3.2 A Practical Approach

By Theorem 1, calculating the exact probability of an LTL formula, and even
only deciding whether it is 0 or 1, is PSPACE-complete. Moreover, the algorithm
of [11] iteratively eliminates the temporal operators in ϕ, while preserving the
probability of its satisfaction, and is complicated to implement. In this section
we describe a simple linear-time method for approximating Pr(ϕ). It is based
on the syntax of the formula and thus ignores possible dependencies between
subformulas. However, it is very easy to calculate, and experiments suggest that
the results are accurate in most cases.

Definition 3 (Approximated Probability). The approximated probability of
an LTL formula ϕ, denoted Apr(ϕ), is defined by induction on the structure of
ϕ as follows.
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– Apr(false) = 0
– Apr(true) = 1
– Apr(p) = 1

2
– Apr(¬ϕ) = 1−Apr(ϕ)
– Apr(ϕ ∧ ψ) = Apr(ϕ) ·Apr(ψ)
– Apr(Xϕ) = Apr(ϕ)

– Apr(ϕUψ) =

{
0 if Apr(ψ) = 0 and Apr(ϕ) = 1

Apr(ψ)
1−(1−Apr(ψ))·Apr(ϕ) otherwise

The calculation of Apr(ϕUψ) needs some explanation. We use the fixed-point
characterization ϕUψ = ψ ∨ [ϕ∧X(ϕUψ)]. For calculating probability, we have
to make the two disjuncts disjoint, resulting in ϕUψ = ψ∨ [(¬ψ)∧ϕ∧X(ϕUψ)].
Accordingly, Apr(ϕUψ) = Apr(ψ)+[(1−Apr(ψ))·Apr(ϕ)·Apr(ϕUψ)]. Isolating

Apr(ϕUψ) results in Apr(ϕUψ) = Apr(ψ)
1−(1−Apr(ψ))·Apr(ϕ) as stated in Definition 3.

We should be careful with the case the denominator is 0. This happens when 1 =
(1−Apr(ψ)) ·Apr(ϕ), which can only happen if Apr(ψ) = 0 and Apr(ϕ) = 1. In
such a case we define Apr(ϕUψ) to be 0. To see why, note that if the probability
of ψ to hold in each state is 0, then its probability to hold on an infinite path is
the sum of a countable number of events that each goes to 0, which is 0.

Note that when Apr(ψ) = 1 we have Apr(ϕUψ) = 1 as well. The probability
of ϕUψ is 1 also in the case where Apr(ϕ) = 1 and Apr(ψ) �= 0. This is the
case in the abbreviation Fψ = (true Uψ), where Apr(Fψ) is 0 if Apr(ψ) = 0
and is 1 otherwise. Accordingly, as Gψ = ¬F¬ψ, we have that Apr(Gψ) is 1 if
Apr(ψ) = 1 and is 0 otherwise. Finally, by applying De-Morgan rules, we have
that Apr(ϕ ∨ ψ) = Apr(ϕ) +Apr(ψ)−Apr(ϕ) ·Apr(ψ).

To see why the approximated probability is not precise, consider for example
the specification p∧¬p. By definition, Apr(p∧¬p) = Apr(p) ·Apr(¬p) = 1

2 · (1−
1
2 ) =

1
4 . On the other hand, p∧¬p is unsatisfiable and thus Pr(p∧¬p) = 0. Note

that indeed the approximated probability errs only in steps associated with a
binary operator where the two subformulas are not independent. In particular, no
errors are introduced in steps associated with unary operators. For example, if
Apr(ψ) = Pr(ψ), then also Apr(Fψ) = Pr(Fψ). Indeed, if Pr(ψ) = 0, then
Pr(Fψ) is 0 too, and if Pr(ψ) > 0, then ψ eventually holds on a random
computation, thus Pr(Fψ) is 1.

Note that if we want to find Apr(ϕ[ψ ← ⊥]) for several different subformulas
ψ of ϕ, we can reuse information already calculated for common parts of the
formula, as mutations differ from each other only by some subformulas.

3.3 Analyzing the Approximated Probability

The table in Fig. 1 analyzes the different possible relations between the approx-
imated and the precise probabilities. We use γ to stand for a value 0 < γ < 1.
For example, Line 3 in the table refers to cases in which the approximated cal-
culation returns the value 0, whereas the precise probability is some 0 < γ < 1.
The table also includes examples corresponding to the different cases and some
observation about the cases. We elaborate on these observations below.
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Apr(ϕ) Pr(ϕ) Example Observation

1 0 0 Gq The approximated probability is precise

2 0 1 G(p ∨ ¬p) The approximated probability is helpful

3 0 γ — This case is impossible

4 1 0 F (p ∧ ¬p) ∨Gq This case is rare

5 1 1 Fq The approximated probability is precise

6 1 γ — This case is impossible

7 γ 0 qU(p ∧ ¬p) This case is rare

8 γ 1 (p ∨ ¬p)Uq The approximated probability is helpful

9 γ γ pUq

Fig. 1. Comparing the approximated probability with the precise probability

We first observe that the approximated probability has only a one-sided er-
ror: the approximating algorithm may decide that the probability is γ whereas
the precise probability is 0 or 1, but never the other way round. Indeed, γ is
introduced to Apr(ϕ) only if some of the subformulas have probability that is
not 0 or 1. It follows that the cases described in Lines 3 and 6 are impossible.
Other favorable cases are those described in Lines 1 and 5, where the precise
and approximated probabilities coincide.

When the approximated probability is not precise, it is due to some relation-
ship between different parts of the formula. As described above, the definition of
Apr ignores such a relationship. Consider for example the invariant G(p ∨ ¬p).
While Pr(p ∨ ¬p) = 1, we have that Apr(p ∨ ¬p) = 3

4 . As a result, while
Pr(G(p ∨ ¬p)) = 1, our approximated algorithm returns Apr(G(p ∨ ¬p)) = 0.
When the approximated probability is lower than the precise probability, as is
the case in Lines 2 and 8, we are going to report the vacuity result with a higher
rank than it seemingly “deserves”. Note that this would rightfully draw the at-
tention of the user to the peculiar structure of the formula. We conclude that
when the approximated probability is lower than the precise one, the result we
get is more helpful than calculating the precise probability.

The cases where the approximated probability is higher than the real prob-
ability, as is the case in Lines 4 and 7, are the least favorable ones, since here
too, there is some problem in the formula, but the vacuity result might get
a lower ranking than it should. For example, Pr(F (p ∧ ¬p) ∨ Gq) = 0 but
Apr(F (p ∧ ¬p) ∨ Gq) = 1. Note however, that the subformula causing the dis-
crepancy, F (p ∧ ¬p) in our example, is not the cause of vacuity – the formula
holds in the model in spite of this odd subformula. Typically, another mutation
of the formula, which refers to the odd subformula, would be checked. This latter
check would reveal the real problem and would be estimated correctly by our
algorithm. In our example, the other check replaces (p∧¬p) with ⊥, leaving the
rest of the formula untouched.



A Framework for Ranking Vacuity Results 157

4 Ranking of Vacuity Results

In Section 3 we studied the probability of LTL formulas to hold in a random
computation. We suggested algorithms for calculating the probability and esti-
mating it. In this section we suggest several applications of a probability-based
criteria for ranking of vacuity results. We focus on three approaches. In all of
them, the idea is that the lower the probability of the mutation is, the more
alarmed the user should be when it is satisfied.

1. Simple analysis. For each mutation ϕ′ that is satisfied in the system, po-
tentially pointing to real vacuity, we find Pr(ϕ′) (or an estimation of it). We
report to the user only mutations whose probability is below some threshold,
given by the user, or we order the mutations according to the probability of
their satisfaction, with mutations of low probability being first.

2. Drop analysis. For each specification ϕ and mutation ϕ′ that holds in the
system, we find Pr(ϕ) − Pr(ϕ′). Note that the mutation is always stronger
than the original specification, thus Pr(ϕ) ≥ Pr(ϕ′) and the drop Pr(ϕ) −
Pr(ϕ′) ≥ 0. We proceed as in the simple analysis, with respect to this drop.

3. Invariants. Recall that the probability of an invariant to hold on a random
computation is equal to 0 or 1. The mutations of invariants are invariants
too. Thus, for invariants, which are the vast majority of specifications written
in practice, our framework is two-valued and it does not use the full range of
values between 0 and 1. We suggest a refinement to our ranking procedure
that leads to more accurate results. In the refined procedure, we perform
a simple or drop analysis with respect to the invariant itself; that is, the
specification without the outermost G. The invariant itself need not have
probability 0 or 1.

4.1 Evaluation: Users’ Feedback

In order to evaluate our ranking framework, we conducted a survey among
model-checking users. The participants, 14 in total, included people from
academia that are familiar with LTL model checking, as well as users from
industry, mainly from the IBM Haifa laboratory. The participants were asked to
rank the vacuity results of 4 typical formulas (we kept the questionnaire short
on purpose, to encourage participation). While academic people were hesitant
regarding the entire question of a ranking procedure, practical people seemed to
have very strong views about the subject. The survey can be found in the full
version.

We demonstrate the three approaches described above, and compare our rank-
ings to those given by users.

Example 1. Consider the specification ϕ1 = G(a → Fb). We examine two mu-
tations for it, as detailed below.

ϕ′1 = ϕ1[a← true] = GFb, ϕ′′1 = ϕ1[b← false] = G¬a
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We start with the simple analysis. The probability of each mutation is:

Pr(ϕ′1) = 1, P r(ϕ′′1 ) = 0

Hence, if we choose to return only mutations whose probability is below some
threshold, we return only G¬a. We proceed to drop analysis. We first calculate
Pr(ϕ1) = 1

Pr(ϕ1)− Pr(ϕ′1) = 1− 1 = 0, P r(ϕ1)− Pr(ϕ′′1 ) = 1− 0 = 1

It follows that the biggest drop is in the mutation G¬a of ϕ1, as before.
We proceed to examine the behavior of the invariant. Note that ϕ1 = Gθ1 for

θ1 = (a→ Fb) Applying the corresponding mutations of the invariant, we have
the following.

θ′1 = θ1[a← true] = Fb, θ′′1 = θ1[b← false] = ¬a

Calculating probabilities, we get that Pr(θ′1) = 1 and Pr(θ′′1 ) =
1
2 . This shows

again, in a more refined way, that the mutation GFb is the least interesting one.
Combining the invariants with the drop analysis, we take into account the fact
that Pr(θ1) = 1. Accordingly,

Pr(θ1)− Pr(θ′1) = 1− 1 = 0, P r(θ1)− Pr(θ′′1 ) = 1− 1
2 = 1

2

This agrees with the order above, with no drop for ϕ′1 and a drop of 1
2 for ϕ′′1 .

For this example, all three ranking methods agree on the result. In our survey,
all practitioners, and a total of 11 out of 14 said that G¬a was more alarming
than GFb. The rest claimed that there was no difference.

Example 2. Consider the specification ϕ2 = G(a → X(c1 ∨ c2 ∨ · · · ∨ cm)). We
consider two types of mutations.

– ϕ′2 = ϕ2[a← true] = GX(c1 ∨ · · · ∨ cm), and
– ϕ′′2 = ϕ2[c1 ← false] = G(a → X(c2 ∨ · · · ∨ cm)), and similarly for the other

ci’s, with 1 < i ≤ m.

Since the probability of ϕ2 is 0, the probability of the mutations is 0 too, sug-
gesting that the simple and drop analysis are not informative. We examine the
invariants themselves. Let θ2 = a→ X(c1∨· · ·∨cm), and consider the mutations

– θ′2 = θ2[a← true] = X(c1 ∨ · · · ∨ cm), and
– θ′′2 = θ2[c1 ← false] = a→ X(c2 ∨ · · · ∨ cm).

We have that Pr(θ2) = 2m+1−1
2m+1 , whereas Pr(θ′2) = Pr(θ′′2 ) = 2m−1

2m . Thus,
the larger m is, the smaller is the drop. This example demonstrates that the
probability-based criteria are useful also for the analysis of responsibility and
blame studied in the context of coverage in [7].

While we were interested in the probability with respect to m, users presented
with the mutations above, commented that the most important mutation is
missing. That is, ϕ′′′2 = ϕ2[(c2 ∨ · · · ∨ cm)← false] = G(¬a). As before, if we set
θ′′′2 = ¬a, we get that Pr(θ′′′2 ) = 1

2 , which is significantly less than the other two.
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Example 3. Consider the specification ϕ3 = G(a → (bRc)). The operator R
(release) is dual to the Until operator: a computation satisfies bRc if c holds
until b∧ c holds, where possibly b ∧ c never holds, in which case c holds forever.
Let θ5 = a→ (bRc).

We first note that Pr(ϕ3) = 0. To see this, observe that Pr(θ3) =
5
6 . In fact,

in this case also Apr(θ3) =
5
6 . Indeed, Apr(a→ (bRc)) = Apr(¬(a ∧¬(bRc))) =

1−Apr(a) ·Apr((¬b)U(¬c)) = 1− 1
2 ·

2
3

1−(1− 1
2 )

1
2

= 1− 1
2 ·

2
3 = 5

6 . It follows that

probabilities of all mutations ϕ′3 of ϕ3 are also 0, and we proceed to analyze the
invariants themselves. We consider the following mutations.

– θ′3 = θ3[a← true] = bRc, so Pr(θ′3) =
2
3 ,

– θ′′3 = θ3[b← false] = a→ Gc, so Pr(θ′′3 ) =
1
2 ,

– θ′′′3 = θ3[c← false] = ¬a, so Pr(θ′′′3 ) = 1
2 .

When presented to the users, the answers were mixed, with no single mutation
preferred over the other. This matches again our method, since the difference
between the probabilities is not big enough to select one over the other.

Example 4. Consider the specification ϕ4 = G(b→ X [1..5](c)) (where X[1..5](c)
stands for Xc∨XXc∨XXXc∨XXXXc∨XXXXXc). Here too, we have that
Pr(ϕ4) = 0, and we thus analyze the invariants.

– θ′4 = θ4[c← false] = ¬a, so Pr(θ′4) =
1
2 ,

– θ′′4 = θ4[a← true] = X [1..5](c), so Pr(θ′′4 ) =
31
32 ,

– θ′′′4 = θ4[XXXXXc← false] = (b→ X [1..4](c)), so Pr(θ′′′4 ) = 31
32

Our method clearly prefer the first mutation over the other two. The users all
agreed with this result.

The following two examples were not part of the survey given to users.

Example 5. Consider the specification ϕ5 = GFb1 ∨ GFb2 ∨ ... ∨ GFbm. For
each mutation of the form ϕ′5 = ϕ5[bi ← false] with 1 ≤ i ≤ m, we have that
Pr(ϕ′5) = Pr(ϕ5) = 1. Also, while ϕ5 is not an invariant, it is equivalent to
Gθ5, for θ5 = Fb1 ∨ Fb2 ∨ ... ∨ Fbm. Here too, for each mutation of the form
θ′4 = θ5[bi ← false], we have that Pr(θ′5) = Pr(θ5) = 1. Thus, all approaches
lead to the conclusion that mutations of this form are not of big interest.

Example 6. In this example we demonstrate the extension of our framework to
the definition of vacuity studied in [1], which handles also subformulas ψ with
multiple occurrences, possibly of different polarity. As suggested in [1], such
mutations replace ψ by a universally quantified proposition. We also demonstrate
how errors in the estimated algorithm may actually be helpful.

Consider the specification ϕ6 = idleU(¬idle ∨ err). The specification states
that eventually we get to a position that is not idle or in which the error signal
is active, and until then, all positions are idle. We consider two mutations.

– ϕ′6 = ϕ6[err ← false] = idleU(¬idle),
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– ϕ′′6 = ∀x.ϕ6[idle ← x] = ∀x.(xU((¬x) ∨ err)).

The probability of ϕ6 as well as the probability of both mutations is 1. Indeed,
ϕ′6 is equivalent to F (¬idle) and ϕ′′6 is equivalent to F (err ). This suggests that
vacuity detection in this case is not too interesting. Nevertheless, if we examine
the approximated analysis of the mutation, we reveal that while Apr(ϕ6) =

3
4

1−(1− 3
4 )

1
2

= 6
7 , we have that Apr(ϕ′6) =

1
2

1−(1− 1
2 )

1
2

= 2
3 . Thus, the approximated

analysis, which ignores the relation between idle and ¬idle shows a drop in the
probability. Reporting this to the user is helpful, as ϕ6 is inherently vacuous [15]:
it is equivalent to its mutation F (¬idle ∨ err), obtained by replacing the first
occurrence of idle by true.

4.2 Evaluation: Statistics

We implemented our approximated probability algorithm and ran it on the for-
mulas listed in the LTL part of the “Property Patterns” project [13]. For each of
the 55 formulas (see [12]), we ran our algorithm on the formula itself as well as
on all the mutations resulting from replacing one of its subformulas by ⊥. The
number of such mutations ranged between 1 to 20 per formula, totaling over
400 mutations altogether. Note that for formulas from [12], the approximated
probability and the precise one agree.

In cases where the formula had an outermost G operation (that is, ϕ = G(ψ)),
which caused all mutations to have the probability 0, we followed the “Invari-
ants” analysis and omitted the outermost G. Since the analysis of the formula
was approximated the runtime of the probability calculations was negligible.

The full list of formulas and mutations along with their probabilities can be
found in the full version. In many cases the probability of the mutated formula
is not significantly lower than that of the original formula. However, examining
those results where the probability decreased significantly or decreased to 0
(while the formula was not equivalent to false), we find that many of them
correspond to formulas where the left side of an implication is false. Thus, our
probabilistic-based approach nicely supports the “antecedent failure” approach.

4.3 Evaluation: Discussion

As discussed in Section 4.1, our probability-based approach usually agrees with
the intuition of model-checking users. The main point that came up in the sur-
vey and in discussions thereafter is the relation between our probability-based
approach and an alternative “antecedent failure” approach, where mutations are
considered interesting if they are obtained by replacing right-hand sides of im-
plications by false, thus checking whether the implication has been vacuously
satisfied. Note that already in the pioneering work about vacuity, which came
from the industry [2], the authors suggest to focus on such mutations.

We believe that the two approaches complement each other, and that, as the
results in Section 4.2 show, when specifications are cleanly written (note that the
antecedent-failure approach is syntax-sensitive), they do coincide. To see this,
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let us consider the two specifications ψ1 = Gp → Gq and ψ2 = Fp → Fq. In
the antecedent-failure approach, the interesting mutations would be θ1 = F¬p
for ψ1 and θ2 = G¬p for ψ2. In our approach, the interesting mutations would
be θ′1 = Gq for ψ1 and θ2 = G¬p for ψ2. Even users that find the antecedent-
failure approach satisfying, agree that the ranking of the two mutations in ψ2,
where both approaches coincide, is definite, whereas the ranking for ψ1, where
the approaches do not agree, is debatable.

5 Future Work

We find the probability of LTL formulas to be an interesting question on its
own, beyond the application to vacuity ranking. The definition of Pr(ϕ) in the
paper, assumes that for each atomic proposition p and for each state in the
computation, the probability of p to hold in the state is 1

2 . This corresponds to
computations in an infinite-state system and is the standard approach taken in
studies of 0/1-laws. Alternatively, one can also study the probability of formulas
to hold in computations of finite-state systems. Formally, for integers k ≥ 0 and
l ≥ 1, let Prk,l(ϕ) denote the probability that ϕ holds in a random lasso-shape
computation with a prefix of length k and a loop of length l. Here too, the
probability of each atomic proposition to hold in a state is 1

2 , yet we have only
k+ l states to fix an assignment to. So, for example, while Pr(Gp) = 0, we have
that Pr0,1(Gp) = 1

2 and Pr0,2(Gp) = 1
4 .

There are several interesting issues in the finite-state approach. First, it may
seem obvious that the bigger k and l are, the closer Prk,l(ϕ) gets to Pr(ϕ). This
is, however, not so simple. For example, issues like cycles in ϕ can cause Prk,l(ϕ)
to be non-monotonic. For example, when ϕ requires p to hold in exactly all even
positions, then Pr0,1(ϕ) = 0, P r0,2(ϕ) = 1

4 , P r0,3(ϕ) = 0, P r0,1(ϕ) = 1
16 , and

so on. It may also seem that, after cleaning the cycle-based issue (for example
by restricting attention to formulas without Xs), one can characterize safety
and liveness properties by means of the asymptotic behavior of Prk,l(ϕ). For
example, clearly Prk,l(Gp) goes to 0 as k and l increase, whereas Prk,l(Fp) goes
to 1. Here too, however, the picture is not clean. For example, FGp is a liveness
formula, but Prk,l(FGp) decreases as k and l increase. Finding a characterization
of properties that is based on the analysis of Prk,l is a very interesting question,
and we are currently studying it. It should also be noted that, unlike Pr(ϕ), it
is possible to estimate Prk,l(ϕ) using model checking of ϕ in (sufficiently many)
randomly generated lassos.

Acknowledgment. We thank our survey participants, Gadiel Auerbach, Ilan
Beer, Hana Chockler, Shahram Esmaeilsabzali, Dana Fisman, Elena Guralnik,
Arie Gurfinkel, Tamir Heyman, Alma Juarez-Dominguez, Zarrin Langari, Katia
Patkin, Baruch Sterin, Sitvanit Ruah and Julia Rubin, for their time and for
their invaluable comments. We thank Moshe Vardi for helpful discussions, and
reviewers of an earlier version of this paper for helpful comments and suggestions.



162 S. Ben-David and O. Kupferman

References

1. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi,
M.Y.: Enhanced vacuity detection in linear temporal logic. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg
(2003)

2. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. Formal Methods in System Design 18(2), 141–162 (2001)

3. Ben-David, S., Fisman, D., Ruah, S.: Temporal antecedent failure: Refining vacu-
ity. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
492–506. Springer, Heidelberg (2007)

4. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular
vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
191–206. Springer, Heidelberg (2005)

5. Chechik, M., Gheorghiu, M., Gurfinkel, A.: Finding environment guarantees. In:
Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 352–367. Springer,
Heidelberg (2007)

6. Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: Towards the strongest
passing formula. In: FMCAD, pp. 1–8 (2008)

7. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model ap-
proach. In: Proc. 19th IJCAI, pp. 147–153 (2003)

8. Chockler, H., Strichman, O.: Easier and more informative vacuity checks. In: Proc.
5th MEMOCODE, pp. 189–198 (2007)

9. Clarke, E.M., Grumberg, O., Long, D.: Verification tools for finite-state concurrent
systems. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 124–175. Springer, Heidelberg (1994)

10. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proc. 32st DAC,
pp. 427–432. IEEE Computer Society (1995)

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42, 857–907 (1995)

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property pattern mappings for LTL,
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15 (1998)

14. Fagin, R.: Probabilities in finite models. JSL 41(1), 50–58 (1976)
15. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for

inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp.
7–22. Springer, Heidelberg (2009)

16. Glebskii, Y.V., Kogan, D.I., Liogonkii, M.I., Talanov, V.A.: Range and degree of real-
izability of formulas in the restricted predicate calculus. Kibernetika 2, 17–28 (1969)

17. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K.
(eds.) FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004)

18. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)

19. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006)

20. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: FMCAD 2008, pp. 1–9 (2008)

21. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking.
STTT 4(2), 224–233 (2003)

22. Pnueli, A.: The temporal logic of programs. In: Proc. 18th FOCS, pp. 46–57 (1977)

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml


Synthesizing Masking Fault-Tolerant Systems

from Deontic Specifications

Ramiro Demasi1, Pablo F. Castro2,3, Thomas S.E. Maibaum1,
and Nazareno Aguirre2,3

1 Department of Computing and Software, McMaster University,
Hamilton, Ontario, Canada

demasira@mcmaster.ca,tom@maibaum.org
2 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,

Ŕıo Cuarto, Córdoba, Argentina
{pcastro,naguirre}@dc.exa.unrc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. In this paper, we study the problem of synthesizing fault-
tolerant components from specifications, i.e., the problem of automat-
ically constructing a fault-tolerant component implementation from a
logical specification of the component, and the system’s required level of
fault-tolerance. We study a specific level of fault-tolerance: masking tol-
erance. A system exhibits masking tolerance when both the liveness and
the safety properties of the behaviors of the system are preserved under
the occurrence of faults. In our approach, the logical specification of com-
ponents is given in dCTL, a branching time temporal logic with deontic
operators, especially designed for fault-tolerant component specification.
The synthesis algorithm takes the component specification, and auto-
matically determines whether a component with masking fault-tolerance
is realizable, and the maximal set of faults supported for this level of
tolerance. Our technique for synthesis is based on capturing masking
fault-tolerance via a simulation relation. Furthermore, a combination of
an extension of a synthesis algorithm for CTL to cope with dCTL spec-
ifications, with simulation algorithms, is defined in order to synthesize
masking fault-tolerant implementations.

Keywords: Formal specification, Fault-tolerance, Program synthesis,
Temporal logics, Deontic logics, Correctness by construction.

1 Introduction

The increasing demand for highly dependable and constantly available systems
has focused attention on providing strong guarantees for software correctness, in
particular, for safety critical systems. In this context, a problem that deserves
attention is that of capturing faults, understood as unexpected events that affect
a system, as well as expressing and reasoning about the properties of systems
in the presence of faults. Indeed, various researchers have been concerned with
formally expressing and reasoning about fault-tolerant behavior, and some for-
malisms and tools have been proposed for this task [13,4]. Moreover, in formal
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approaches to fault-tolerance (and in general in formal approaches to software
development), it is generally recognized that powerful (semi-)automated analy-
sis techniques are essential for a method to be effectively applicable in practice.
Therefore, tools for automated or semi-automated reasoning, such as those based
on model checking or automated theorem proving, have been central in many of
the above cited works. In this direction, but with less emphasis, approaches for
automatically synthesizing programs, in particular fault-tolerant ones, have also
been studied [1,12,2,5].

In this paper, we study the problem of automatically synthesizing fault-
tolerant systems from logical specifications. This work concentrates on a par-
ticular kind of fault-tolerance, namely masking tolerance. As stated in [10], the
fault tolerance that a system may exhibit can be classified using the liveness
and safety properties that the designers want the system to preserve. In mask-
ing fault-tolerance, the system must preserve, in the presence of faults, both
the safety and the liveness properties of the “fault free” system. More precisely,
masking fault-tolerance is usually stated with respect to an observable part of
the system or component, its so called interface. Essentially, a masking fault-
tolerant system ensures that faults are not observable at the system’s interface
level, and both liveness and safety properties of the system are preserved even
when subject to the occurrence of faults.

Our work is strongly related to the approach presented in [2]. The main differ-
ence between our approach and that introduced in [2] is that, to specify systems,
we use dCTL-, a branching time temporal logic with deontic operators (see Sec-
tion 2), as opposed to the well established branching time temporal logic CTL
used in [2]. More precisely, the logic dCTL- features, besides the CTL tempo-
ral operators, deontic operators that allow us to declaratively distinguish the
normative (correct, without faults) part of the system from its non-normative
(faulty) part. In particular, in our approach faults are declaratively embedded
in the logical specification. In our approach, faults are understood as violations
to the deontic obligations on the behavior of the system, in contrast with the
case of [2] and related works (e.g., [1,12,9]), where faults are given explicitly as
part of the behavior model of the system. This leads to some differences in the
way in which programs are synthesized. While in [2] a satisfiability algorithm for
CTL based on tableau is employed, with faults corresponding to adding states in
the tableau, we use instead the deontic specification to produce the faulty states
combined with a characterization of masking fault tolerance by means of a sim-
ulation relation, in order to “cut out” inappropriate parts of the tableau. Our
algorithm then combines a simulation algorithm with an adaptation of tableau
based CTL satisfiability to deal with dCTL- specifications. The algorithm is pre-
sented in detail in Section 3.

There are some interesting properties that our proposed algorithm enjoys. If
the algorithm is able to compute a masking fault tolerant implementation from
the system specification, then the implementation produced is maximal in the
sense that it “removes” the least number of states necessary to achieve the re-
quired tolerance. If the algorithm does not compute an implementation, then
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there are no feasible masking fault tolerant implementations for the specified
system. We show that our algorithm is sound, and that it holds the above men-
tioned kind of strong completeness (it returns a program that is maximal with
respect to masking similarity, which as explained later on, implies completeness).

The remainder of the paper is structured as follows. In Section 2 we introduce
some notions used throughout the paper. In Section 3, we describe our synthesis
method. A practical case study is shown in Section 4. Section 5 reviews some
related work. Finally, we discuss some conclusions and directions for further
work.

2 Preliminaries

In this section we introduce some concepts that will be necessary throughout
the paper. For the sake of brevity, we assume some basic knowledge of model
checking; the interested reader may consult [3]. We model fault-tolerant sys-
tems by means of colored Kripke structures, as introduced in [6]. Given a set of
propositional letters AP = {p, q, s, . . .}, a colored Kripke structure is a 5-tuple
〈S, I, R, L,N〉, where S is a set of states, I ⊆ S is a set of initial states, R ⊆ S×S
is a transition relation, L : S → ℘(AP ) is a labeling function indicating which
propositions are true in each state, and N ⊆ S is a set of normal, or “green”
states. The complement of N is the set of “red”, abnormal or faulty states. Arcs
leading to abnormal states (i.e., states not in N ) can be thought of as faulty
transitions, or simply faults. Then, normal executions are those transiting only
through green states. The set of normal executions is denoted by NT . We as-
sume that in every colored Kripke structure, and for every normal state, there
exists at least one successor state that is also normal, and that at least one ini-
tial state is green. This guarantees that every system has at least one normal
execution, i.e., that NT �= ∅.

As is usual in the definition of temporal operators, we employ the notion of
trace. Given a colored Kripke structure M = 〈S, I, R, L,N〉, a trace is a maximal
sequence of states, whose consecutive pairs of states are adjacent with respect
to R. When a trace of M starts in an initial state, it is called an execution of
M , with partial executions corresponding to non-maximal sequences of adja-
cent states starting in an initial state. Given a trace σ = s0, s1, s2, s3, . . . , the
ith state of σ is denoted by σ[i], and the final segment of σ starting in posi-
tion i is denoted by σ[i..]. Moreover, we distinguish among the different kinds
of outgoing transitions from a state. We denote by ��	 the restriction of R to
faulty transitions, and→ the restriction of R to non-faulty transitions. We define
PostN (s) = {s ∈ S| s→ s′} as the set of (immediate) successors of s reachable
via non-faulty (or good) transitions; similarly, PostF (s) = {s ∈ S| s ��	 s′} rep-
resents the set of successors of s reachable via faulty arcs. Analogously, we define
PreN (s′) and PreF (s

′) as the set of (immediate) predecessors of s′ via normal
and faulty transitions, respectively. Moreover, Post∗(s) denotes the states which
are reachable from s. Without loss of generality, we assume that every state has
a successor [3]. We denote by ⇒∗ the transitive closure of ��	 ∪ →.
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In order to state properties of systems, we use a fragment of dCTL [6], a
branching time temporal logic with deontic operators designed for fault-tolerant
system verification. Formulas in this fragment, that we call dCTL-, refer to prop-
erties of behaviors of colored Kripke structures, in which a distinction between
normal and abnormal states (and therefore also a distinction between normal
and abnormal traces) is made. The logic dCTL is defined over the Computation
Tree Logic CTL, with its novel part being the deontic operators O(ψ) (obliga-
tion) and P(ψ) (permission), which are applied to a certain kind of path formula
ψ. The intention of these operators is to capture the notion of obligation and
permission over traces. Intuitively, these operators have the following meaning:

– O(ψ): property ψ is obliged in every future state, reachable via non-faulty
transitions.

– P(ψ): there exists a normal execution, i.e., not involving faults, starting from
the current state and along which ψ holds.

Obligation and permission will enable us to express intended properties which
should hold in all normal behaviors and some normal behaviors, respectively.
These deontic operators have an implicit temporal character, since ψ is a path
formula. Let us present the syntax of dCTL-. Let AP = {p0, p1, . . . } be a set
of atomic propositions. The sets Φ and Ψ of state formulas and path formulas,
respectively, are mutually recursively defined as follows:

Φ ::= pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)
Ψ ::= XΦ | Φ U Φ | ΦW Φ

Other boolean connectives (here, state operators), such as ∧, ∨, etc., are de-
fined as usual. Also, traditional temporal operators G and F can be expressed
as G(φ) ≡ φ W ⊥, and F(φ) ≡ " U φ. The standard boolean operators and
the CTL quantifiers A and E have the usual semantics. Now, we formally state
the semantics of the logic. We start by defining the relation 
, formalizing the
satisfaction of dCTL- state formulas in colored Kripke structures. For the deontic
operators, the definition of 
 is as follows:

– M, s 
 O(ψ) ⇔ for every σ ∈ NT such that σ[0] = s, we have that, for
every i ≥ 0, M,σ[i..] 
 ψ.

– M, s 
 P(ψ)⇔ for some σ ∈ NT such that σ[0] = s, we have that, for every
i ≥ 0, M,σ[i..] 
 ψ.

For the standard CTL operators, the definition of 
 is as usual (cf. [3]). We
denote by M 
 ϕ the fact that M, s 
 ϕ holds for every state s of M , and by

 ϕ the fact that M 
 ϕ for every colored Kripke structure M . Furthermore,
the α and β classification of formulas given in [2] for tableau can be extended to
our setting. For CTL operators, this is done as in [2]. For the deontic operators
we proceed as follows:

– O(ϕ U ψ) is classified as a β formula. In this case: β1 = Oψ and β2 = Oϕ ∧
AXO(ϕ U ψ), where Oϕ is obtained by substituting in ϕ any propositional
variable p by a fresh variable Op, and similarly for Oψ .
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– P(ϕ U ψ) is classified as a β formula. In this case: β1 = Oψ and β2 =
Oϕ ∧ EXO(ϕ U ψ), where Oϕ and Oψ are defined as before.

– O(ϕ W ψ) is classified as a β formula. In this case: β1 = Oψ and β2 =
Oϕ ∧ AXO(ϕW ψ), where Oϕ and Oψ are defined as before.

– P(ϕ W ψ) is classified as a β formula. In this case: β1 = Oψ and β2 =
Oϕ ∧ EXO(ϕW ψ), where Oϕ and Oψ are defined as before.

This classification of formulas will be essential for the tableau proofs and syn-
thesis algorithm, presented later on in this paper.

Fault-tolerance in characterized in our work via simulation relations. Various
detailed notions of fault-tolerance, namely masking, nonmasking and failsafe tol-
erances, are all defined via appropriate simulation relations, relating a specifica-
tion of the system (i.e., its fault-free expected behavior) with the fault-tolerant
implementation [8]. In this paper, we concentrate on masking fault-tolerance,
although synthesis mechanisms for other kinds of fault-tolerance, definable via
appropriate simulation relations, are relatively direct. In order to make the paper
self contained, let us reproduce here the definition of masking simulation.

Definition 1. (Masking fault-tolerance) Given two colored Kripke structures
M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relationship
≺Mask⊆ S × S′ is masking fault-tolerant for sublabelings L0 ⊆ L and L′0 ⊆ L′

iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Mask s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Mask s2).
(B) for all s1 ≺Mask s2 the following holds:

(1) L0(s1) = L′0(s2).
(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ Post(s2) with s′1 ≺Mask s′2.
(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 ≺Mask s′2.
(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with

s′1 ≺Mask s′2 or s1 ≺Mask s′2.

Notice that Definition 1 makes use of a sublabeling L0 ⊆ L, whose intention is
to capture the observable part of the state, that visible from the component’s
interface. Our approach is in this sense state based, as opposed to event based
approaches where the interface is captured via observable actions/events. Mask-
ing fault-tolerance corresponds to the kind of fault-tolerance that completely
“masks” faults, not allowing them or their consequences to be observable. Mask-
ing fault-tolerance must then preserve both safety and liveness properties of the
“fault free” system. For further details, we refer the interested reader to [8].

In the next section, we use the fault-tolerance simulation relation in combi-
nation with a CTL synthesis algorithm (extended to cope with dCTL-) in order
to automatically construct, from a logical system description, a masking fault-
tolerant system. The resulting system is maximal with respect to masking toler-
ance, in the sense that it “cuts out” the minimal part of the system augmented
with faults, to make the resulting program masking tolerant. The synthesized
program may not support all original faults, or support faults only when they
occur in certain situations, but it is in a sense the most general solution: the “re-
moved” transitions are those that would lead to nonmasking system conditions.
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3 The Synthesis Approach

Given a dCTL- specification of a component and a desired level of fault-tolerance
(in this case, masking), our goal is to automatically obtain a fault-tolerant com-
ponent, with the required level of fault-tolerance. Masking fault-tolerance re-
quires the system augmented with faults to preserve the observable behavior of
the fault-free system, in what concerns both safety and liveness properties. The
interface, in our case, is captured by a subset of the state variables (i.e., a state
sublabeling L0). The dCTL- system specification involves the use of CTL to de-
scribe the system declaratively (including safety and liveness properties of the
system), while the deontic operators of dCTL- allow us to capture obligations,
and to indirectly characterize faults as events violating these obligations. Notice
that the deontic specification states what the expected behavior of the system is,
and, indirectly, what the possible faults are. In other words, the possible faults
are not explicitly given, as in other approaches, but stated at the specification
level. We compare our approach with related work in Section 5.

The synthesis process is based on the extraction of a finite behavior model
from a dCTL- specification. This is achieved by constructing a behavior model
that captures the system augmented with faults, and then combining a synthesis
algorithm for dCTL- with a simulation relation that captures masking tolerance,
in order to remove from this model those states and faults that lie outside the
required level of tolerance, i.e., that cannot be masked. The synthesis algorithm
aims at detecting themaximal set of faults that can be tolerated (for the required
level of fault-tolerance), and returning a (maximal) program that provides re-
covery from these faults. Of course, if the resulting system can only deal with
the empty set of faults, then no masking fault-tolerant program is possible, from
the provided specification.

In this paper, we are concerned with the synthesis of a single component.
The approach can be extended to extract several concurrent components from a
specification, by using indexes as done in [2]. We leave this as further work. More
precisely, the problem of synthesis of a fault-tolerant component has as input a
problem specification, a dCTL- formula problem-spec of the form init-spec ∧
normal-spec, where init-spec and normal-spec can be any dCTL- formula.
From this description, we want to automatically obtain a system that satisfies
init-spec ∧ normal-spec, while being masking tolerant with respect to the
maximal set of faults obtained from violations of the system obligations.

3.1 The Synthesis Algorithm for Masking Tolerance

Our synthesis algorithm has three phases. The pseudocode of the algorithm
is shown in Figures 1, 2, 3, and 4. It starts by building a tableau (Figure 1),
following the tableau based algorithm for CTL satisfiability. We employ the rules
α and β both for CTL and deontic formulas. That is, we construct a graph TN =
(d, VC , VD, ACD, VDC , L), where VC are called And-nodes and VD are called Or-
nodes. The rules used for building the graph (involving also deontic formulas)
allow us to obtain the sub-formulas of the original specification. We stop when all
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Algorithm 1. Construction of tableau TN = (d, VC , VD, ACD, VDC , L)

Require: deontic specification dSpec: init-spec and normal-spec

Ensure: Tableau TN

1: Let d be an Or-node with label {dSpec}
2: TN := d
3: repeat
4: Select a node e ∈ frontier(TN)
5: if ∃ e′ ∈ VD with L(e) = L(e′) then
6: merge e and e′

7: else
8: for all e′ ∈ Succ(e) being an And-node do
9: if e′ is non-faulty then
10: Norm := Norm ∪ {e′}
11: else
12: if ∃e′′ ∈ Succ(e) faulty such that NForm(e′) = NForm(e′′) then
13: delete(e”)
14: end if
15: end if
16: end for
17: attach all e′ ∈ Succ(e) as successors of e and mark e as expanded
18: end if
19: update VC , VD, ACD, VDC appropriately
20: until frontier(TN ) = ∅
21: Apply the deletion rules to TN

22: Apply Algorithm 2 to check nodes in Norm
23: Apply Algorithm 3 to remove and create faulty nodes
24: Apply Algorithm 4 to check the relation of masking and remove nodes.
25: return TN

the frontier nodes are generated (nodes where no rules can be applied). We then
start applying the deletion rules explained in [2], in order to remove inconsistent
nodes and nodes containing eventuality formulas that cannot be satisfied. When
this process finishes, we obtain a graph similar to that obtained by the tableau
method for CTL satisfiability. Regarding deontic operations, we modified the
CTL algorithm to cope with these (recall our classification of deontic operators
as α and β). Or-nodes are expanded following the traditional rules. On the
other hand, when a new And-node (say x) is created, we check if there is some
violation, i.e., if either Op ∈ x and p /∈ x, or O¬p ∈ x and p ∈ x, belong to
the node. If this is the case, the node is considered faulty (proposition Op is
undestood as: p should be true, and when p is false we get a state in which the
normal or desirable behavior is not fulfilled). Otherwise, the node is added to
Norm, the set of normal (non-faulty) states (line 10 of Alg. 1). If there is a faulty
node (say e′) such that it has the same CTL formulas as a non-faulty node (say
e′′), e′ is deleted, since it is masked by e′′ (line 13).

Secondly, the algorithm enters a phase where nodes originating from the spec-
ification of the system, that cannot fulfil deontic eventualities, are searched for.
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Algorithm 2. Alg. for computing faulty states

Require: Tableau generated by alg. 1
Ensure: All faulty states are identified and removed from Norm
1: repeat
2: if ∃x ∈ Vc s.t. O(p U q) and ∃v : v ∈ Norm ∧ q /∈ v ∧ x →∗ v then
3: Norm := Norm\{x}
4: end if
5: if ∃x ∈ Vc s.t. P(p U q) and ∀v : v ∈ Norm ∧ q /∈ v ∧ x →∗ v then
6: Norm := Norm\{x}
7: end if
8: until Norm does not change

These nodes are marked as faulty, and their treatment is shown in Alg. 2. Thirdly,
we inject faults. We take each non-faulty state (i.e., each And-node) and produce
a copy of it which is an Or-node. But in order to distinguish it from the other
kinds of nodes, we call these FOr-nodes (faulty Or-nodes). The process for deal-
ing with these states is in Alg. 3. This algorithm consists of an adaptation of the
backward simulation algorithm shown in [3]. We use it in order to only generate
the nodes that can be masked, and cut out the remaining ones. The generation
is performed by applying the indicated operations. If a faulty node that is not
masked by any normal state is created, then we move “upwards” in the graph,
to appropriately prune the graph to get rid of this unmasked state. After that,
since all the faulty nodes that can be masked were generated, we check condition
B.2 of the masking simulation relation. This step may also lead to cutting out
further faulty nodes, namely those which exhibit normal behavior, but that are
not part of the correct behavior of the system. Finally, the synthesized program
is extracted from the generated tableau. The extraction is as follows. First, a
Kripke structure M is obtained from the tableau by unfolding the tableau as
explained in [2]. Then, we delete the non propositional formulas from the nodes,
and we add new propositional variables to distinguish nodes that have the same
formulas, to avoid erroneously collapsing nodes (these extra variables can be seen
as variables that indicate different phases of the algorithm; they play the same
same role as the shared variables of the algorithm for synthesis introduced in
[2]). Then, each transition s→ t is labeled with the command A→ B iff A is the
conjunction of all variables occurring in s and the negation of those variables
that do not appear in s (we assume that the finite alphabet of propositional
variables is given). We add b := ¬b if b changes its value from s to t. An example
of this is shown in the next section.

Let us state two important properties of the synthesis algorithm, whose proofs
are sketched following the proofs of correctness given for the algorithms for CTL
satisfiability based on tableau [7,2], and for checking (bi)simulations [3,11].

Theorem 1. Given a specification S over a set AP of propositional letters, if
we obtain a program P by applying the synthesis algorithm over the sublabeling
obtained from AP ′ ⊆ AP , then P is a masking tolerant implementation of S,
i.e., P ≺Mask P (with respect to AP ′) and P 
 S.



Synthesizing Masking Fault-Tolerant Systems from Deontic Specifications 171

Algorithm 3. Computes relations satisfying B.3 and B.4 of Def. 1

Require: Tableau Generated by SAT
Ensure: Masks and RemoveL satisfy conditions B.3 and B.4.
1: for all s2 do
2: Masks(s2) := {s1 ∈ Norm | L0(s1) = L0(s2)}
3: RemoveL(s2) := Norm\PreN(Masks(s2)) {Note that all the nodes in Norm

are already generated}
4: end for
5: while ∃ s′2 ∈ S\Norm with RemoveL(s′2) �= ∅ or there is a unexpanded v Or-node

do
6: select s′2 such that RemoveL(s′2) �= ∅ or s′2 in faultySucc(v)
7: for all s1 ∈ RemoveL(s′2) do
8: for all s2 ∈ PreN(s′2) do
9: if s1 ∈Masks(s2) then
10: Masks(s2) := Masks(s2)\{s1}
11: for all s ∈ PreN(s1) with PostN(s) ∩ Masks(s2) = ∅∧ s /∈ Masks(s2)

do
12: RemoveL(s2) := RemoveL(s2) ∪ {s}
13: end for
14: end if
15: end for(* this takes care of the faulty transitions*)
16: for all s2 ∈ PreF (s

′
2) do

17: if s1 ∈Masks(s2) ∧ s1 /∈ Masks(s′2) then
18: Masks(s2) := Masks(s2)\{s1}
19: if Masks(s2) = ∅ then
20: delete DAG[s2]
21: removeL(s2) := ∅
22: else
23: for all s ∈ PreN(s1) with PostN(s) ∩ Masks(s2) = ∅ do
24: RemoveL(s2) := RemoveL(s2) ∪ {s}
25: end for
26: end if
27: end if
28: end for
29: end for
30: RemoveL(s′2) := ∅ and all the FOr-nodes are expanded
31: end while

Sketch of Proof. First, we prove that Alg. 3 ensures conditions B.3 and B.4 of
Def. 1. Then we prove that Alg. 4 ensures condition B.2. Notice that, when Alg. 2
starts, all the normative nodes (Norm) have been computed. Then, we have the
following invariant of Alg. 3: (i) RemoveL(s2) = Norm\PreN (Masks(s2)); (ii)
for any relation ≺Mask: {s1 ∈ Norm | s1 ≺Mask s2} ⊆ Masks(s2) ⊆ {s2 ∈
Norm | L(s1) = L(s2)}; and (iii) ∀s2 ∈Masks(s1), either:

– ∃s′1 ∈ Post(s1) with PostN (s2) ∩Masks(s′1) = ∅ ∧ s′1 /∈ Masks(s1) and
s2 ∈ RemoveL(s1),

– ∀s′1 ∈ Post(s1) : PostN (s2) ∩Masks(s′1) = ∅
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From the last item we obtain that, when RemoveL(s′1) = ∅ for every s′1, then:
∀s1 ∈ S : ∀s2 ∈Masks(s1) : ∀s′1 ∈ Post(s1) : PostN (s2)∩Masks(s′1) �= ∅∨s2 ∈
Masks(s′1). That is, the relation defined as s1 ≺Mask s2 holds item B.3 and B.4
of Def. 1.

On the other hand, notice that before executing Alg. 3, all the faulty nodes
have been calculated. For this algorithm we have the following invariant: (i)
RemoveR(s2) = S\Pre(Masked(s2)); (ii) for any relation ≺Mask: {s2 ∈ VC |
s1 ≺Mask s2} ⊆ Masked(s1) ⊆ {s2 ∈ Vc | L(s1) = L(s2)}; and (iii) ∀s2 ∈
Masked(s1), either:

– ∃s′1 ∈ Post(s1) with Post(s2) ∩Masked(s′1) = ∅ and s2 ∈ RemoveL(s2),
– ∀s′1 ∈ PostN (s1) : Post(s2) ∩Masked(s′1) = ∅

That is, when RemoveR(s1) = ∅, then we have ∀s1 ∈ S : ∀s2 ∈ Masked(s1) :
∀s′1 ∈ PostN (s1) : Post(s2) ∩Masked(s′1) �= ∅. Thus, the relation defined as:
s1 ≺Mask s2 iff s1 ∈ Masks(s2) ∧ s2 ∈ Masked(s1) satisfies condition B.2 of
Def. 1. Since it also satisfies B.3 and B.4, it is a masking relation. The proof that
the obtained structure satisfies the specification can be obtained, for CTL opera-
tors, following the proof given in [2]. For the deontic operators notice that all the
nodes that do not satisfy the deontic operators are marked as faulty, ensuring
that the safety deontic formulas are preserved. We treat deontic eventualities
by marking as faulty all the nodes that have unfulfilled deontic eventualities.
Thus, both CTL and deontic formulas are satisfied. Termination can be proved
by resorting to the approach for proving termination of simulation algorithms
(cf. [3]). The only point to note is that the injection of faults finishes at some
point since states start repeating.

The definition of masking similarity ensures that the safety and liveness prop-
erties of the normal behavior of P are preserved in the presence of faults. If the
synthesized program P contains no faults, we conclude that is not possible to
synthesize a masking tolerant program supporting faults, from the specification.
Moreover, we can prove that the synthesized program is the most general.

Theorem 2. Given a specification S, if a structure M is obtained by the syn-
thesis algorithm, then for any other structure M ′ 
 S such that it is masking
and the non-faulty part of M ′ coincides with that of M , then we have M ′ ≺M ,
where ≺ is the usual notion of simulation with respect to L0.

Sketch of Proof. The simulation relation is defined as: (i) if s ∈ Norm, s′ ≺ s
iff s′ ≺Mask s; (ii) if s /∈ Norm, s′ ≺ s iff Masked(s′) ⊆Masked(s), i.e., the M ′

nodes masked for s′ are a subset of those masked by s in M . In order to prove
that this relation is a simulation, assume s ≺ t. If s → s′ and s′ ∈ PostN (s),
by condition B.3 of Def. 1 we obtain that there is a t → t′ such that s′ ≺ t′.
Otherwise, if s → s′ and s′ ∈ PostF (S) and s is normative, then the transition
matches some part of the specification. Thus, a similar transition is in M and
therefore we have t → t′. Now if s′ masks any node, the same node has to be
masked by t′ (otherwise M ′ would not be masking). Thus, s′ ≺ t′. A similar
reasoning can be used when s is faulty.
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Algorithm 4. Computes relations that satisfy condition B.2 of Def. 1

Require: Colored Kripke structure M
Ensure: Relations Masked and RemoveR satisfy condition B.2 of Def. 1
1: for all s2 ∈ F do
2: Masked(s2) := {s1 | s2 ∈Masks(s1)}
3: RemoveR(s2) := S\Pre(Masked(s2)) {Note that all the faulty and normal

states are already generated}
4: end for
5: while ∃ s′2 ∈ F with RemoveR(s′2) �= ∅ do
6: select s′2 such that RemoveR(s′2) �= ∅
7: for all s1 ∈ RemoveR(s′2) do
8: for all s2 ∈ Pre(s′2) do
9: if s1 ∈Masked(s2) then
10: Masked(s2) := Masked(s2)\{s1}
11: if Masks(s1)\{s2} = ∅ then
12: delete DAGG(s2)
13: else
14: for all s ∈ Pre(s1) with Post(s) ∩ Masked(s2) = ∅ do
15: RemoveR(s2) := RemoveR(s2) ∪ {s}
16: end for
17: end if
18: end if
19: end for
20: end for
21: RemoveR(s′2) := ∅
22: end while

Since the CTL algorithm is complete, if some structure that satisfies the CTL
specification exists, then the algorithm produces it, and by Theorem 2 we obtain
a program that is masking, and preserves as many faulty states as possible. That
is, as a corollary of Theorem 2, the synthesis algorithm is complete.

4 An Example: A Memory Cell

Let us consider a memory cell that stores a bit of information and supports
reading and writing. A state in this system maintains the current value of the
cell (m = i, for i = 0, 1), writing allows one to change this value, and reading
returns the stored value. Evidently, in this system the result of a read operation
depends on the value stored in the cell. Some potential faults occur when a bit’s
value (say 1) unexpectedly loses its charge and it turns into another value (say
0). Redundancy can be employed to deal with this situation, using for instance
three memory bits instead of one. Also, a variable v, that indicates the value
that the user wants to write (i.e., v = 0, v = 1 or v = ⊥, the latter being the
case in which the system is “idle” with respect to writing) is added to the model.

Writing operations are performed simultaneously on the three bits, whereas
a reading returns the value that is repeated at least twice in the memory bits.
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Each state in the model is described by variables ri and wi which record the last
writing operation performed and the actual reading in the state. Each state also
has three bits, described by boolean variables c0, c1 and c2. The requirements on
this system (init-spec ∧ normal-spec) can be specified in dCTL-, as follows:

(1) c0 ↔ c1∧c0 ↔ c2. In the initial state the three bits contain the same value.
(2) O((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2)). A safety property of the system: the

three bits should coincide.
(3) O((r0 → w0) ∧ (r1 → w1)). The value read from the cell ought to coincide

with the last writing performed.
(4) AG(w0 ≡ ¬w1). If a zero has been written, then w1 is false and vice versa.
(5) AG(w0 U w1) ∧ (w1 U w0). Variable w1 only changes when w0 becomes

true, and vice versa.
(6) AG(r0 ≡ (¬c0 ∧ ¬c1) ∨ (¬c0 ∧ ¬c2) ∨ (¬c1 ∧ ¬c2)). The reading of a 0

corresponds to the value read in the majority.
(7) AG(r1 ≡ (c0 ∧ c1)∨ (c0 ∧ c2)∨ (c1 ∧ c2)). The reading of a 1 corresponds to

the value read in the majority.
(8) AG(v = 1 → AX(w1 ∧ v = ⊥ ∧ c0 ∧ c1 ∧ c2)). If the user wants to write 1,

then in the next step the memory will be setup to one.
(9) AG(v = 0 → AX(w0 ∧ v = ⊥ ∧ ¬c0 ∧ ¬c1 ∧ ¬c2)). Similar to the previous,

but for 0.
(10) AG(v = ⊥ → AX(v = 1 ∨ v = 0 ∨ v = ⊥)). At any moment the user may

decide to write a value.

Besides these formulas, one may add additional constraints, e.g., indicating that
atomic steps (including faults) change bits by one. These constraints are straight-
forward to capture in CTL.

Let us now illustrate how our synthesis approach works on this example.
Fig. 1 shows the partial tableau generated by Alg. 1 for this problem. And-
nodes and Or-nodes are shown as rectangles and rounded corner rectangles,
respectively. For the sake of brevity, we put only the relevant information inside
each box. Initially, a tableau is built using Alg. 1, employing the rules α and
β for CTL and dCTL- formulas until every node in the tableau has at least one
successor. The tableau contains a fault injection part, generated from the And-
node in the second level of the tableau. This FOr-node is labeled identically as
its And-node predecessor. From this FOr-node we generate all possible faults
from deontic formula violations. Particularly, this node has Oc0 , Oc1 , and Oc2 ,
deontic propositional variables, expressing that c0, c1, and c2 should be true
there, which is the case in this node. Now, we start to consider those cases in
which an obligation might be violated. Following Alg. 2, we negate one-by-one
these deontic propositional variables and check on-the-fly whether it is possible to
mask these faulty states using Alg. 3. We generated three faulty And-nodes (for
the sake of brevity, just two of them are drawn) from the FOr-node with similar
information to it except for the new negated propositional variable. The first
FAnd-node successor introduces ¬c0 violating Oc0 . The second and third FAnd-
nodes introduce ¬c1 and ¬c2 violating Oc1 and Oc2 , respectively. Every time a
new faulty FAnd-node is created, we check whether it can be masked. For the
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Nodes And

c0 ≡ c1 ∧ c0 ≡ c2
O((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2))
O((r0 → w0) ∧ (r1 → w1))
v = ⊥

c0 c1 c2
Oc0 Oc1 Oc2

v = ⊥
O¬r1∨w1

¬c0 ¬c1 ¬c2
OC0 OC1

OC2

O¬r1∨w1

v = ⊥

O((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2))
O((r0 → w0) ∧ (r1 → w1))
v = 1

c0 c1 c2

c0 c1 c2
Oc0 Oc1 Oc2

AXO(¬r1 ∨ w1)O¬r1∨w1

v = 1

Fault Injection

c0 c1 c2
Oc0 Oc1 Oc2

v = ⊥
O¬r1∨w1

FOR

Oc0 Oc1 Oc2

v = ⊥
O¬r1∨w1

¬c0 c1 c2

Cut Nodes

Oc0 Oc1 Oc2

v = ⊥
O¬r1∨w1

c0 ¬c1 c2

Cut Nodes

AXO((r0 → w0) ∧ (r1 → w1)) AXO((r0 → w0) ∧ (r1 → w1))

AXO((r0 → w0) ∧ (r1 → w1)) AXO((r0 → w0) ∧ (r1 → w1))

AXO((r0 → w0) ∧ (r1 → w1))

Deleted

Same CTL
Formulae

FAND FAND

OR

AND

AND

OR

Fig. 1. Partial tableau for a Memory Cell

case of the FAnd-node which contains ¬c0 (say f0), Alg. 3 checks whether this
FAnd-node can be masked. Similarly for the other FAnd-nodes. We continue the
process of negating deontic propositional variables from these faulty And-nodes.
As a successor of f0, we obtain the same information of f0 with ¬c1. Thus, we
have that Oc0 and Oc1 are violated. Our algorithm cuts out these nodes because
they cannot be masked. Similar results are obtained for the other combinations.
Moreover, for each masked FAnd-node f , a (recovery) transition is added from
it to each successor of Masks(f) in case that we can reach a normal successor
using the rules of the tableau. Notice that faults introduced change a bit and
keep the bits unchanged during the recovery process. After that, since all the
faulty nodes that can be masked were generated, we check condition B.2 of the
simulation relation by using Alg. 4. This process may also cut out other faulty
nodes: those which exhibit normal behavior which is not the behavior of the
correct part of the system. Finally, we are ready to extract the fault-tolerant
program from the tableau using the unfolding process (see Section 3). Fig. 2
shows the transition diagram of the program extracted from the structure in
Fig. 1. For the sake of simplicity, the program does not include all the masked
faults (these are similar to those shown in the program).

This program was generated considering that faults are computed from deon-
tic operators automatically, only considering some basic operations on the data
structures of the states (in this case bits). Other approaches [1,12,2] require
faults to be given as input of the synthesis, e.g., as special actions specified as
guarded commands. Our synthesis method can be straightforwardly adapted to
consider fault specifications given by the user, capturing these as CTL formulas.
For example, we can add the following formula in the memory cell example:
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1 1 1
v = ⊥

0 1 1
v = ⊥

1 1 1
v = 0

0 0 0
v = ⊥

v = 1
0 0 0

1 1 1
v = 1

0 0 0
v = 0

0 1 1
v = 0

0 1 1
v = 0

Fig. 2. Part of the fault-tolerant program extracted from the structure in figure 1

(11) AG(ci ∧ v = ⊥ → AX(v = ⊥ ∧ ¬ci)), for i = {0, 1, 2}, at some point a bit
may lose its charge.

Notice that sentence (11) is covered in our synthesis process.

5 Related Work

Various approaches have been proposed for synthesis of reactive systems from
temporal logic specifications. The initial work was presented by Emerson and
Clarke [7]. Their synthesis method was based on a decision procedure for check-
ing the satisfiability of a CTL temporal logic specification. With respect to
automated synthesis of fault-tolerant systems, Attie, Arora, and Emerson [2]
presented an algorithm for synthesizing fault-tolerant programs from CTL speci-
fications, based on a tableau method defined by Emerson and Clarke in [7]. One
main difference with our work is that we use deontic operators to distinguish
between good and bad system’s behavior, while in [2] the abnormal behavior is
captured by means of faulty actions. Another difference with our work is that
in [2] safety properties only need to hold after faults or through fail-free paths,
which implies that the semantics of CTL has to be adapted to cope with this
condition. Another important stream of work is presented in [5]. Therein, Unity
style programs are developed, the Unity logic is used to specify programs and
to state fault-tolerant properties. Moreover, only a finite number of faults are
allowed. It is important to notice that a main difference between that work and
our approach is that our synthesized programs preserve all safety and liveness
properties of the non-faulty part of the obtained program, while both [5] and [2]
preserve only the properties explicitly stated in the specification.

6 Conclusions

We have presented an approach to synthesizing fault-tolerant components from
dCTL- specifications. dCTL- is a branching time temporal logic equipped with
deontic operators, which is especially designed for fault-tolerant component spec-
ification. We believe this logic is better suited for fault-tolerance specification,
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and therefore synthesizing fault-tolerant implementations from dCTL- specifica-
tions is relevant. In order to capture fault-tolerance, we use an approach based
on defining appropriate (bi)simulation relations, describing the relationship that
must hold between a system specification and its fault-tolerant implementation.
Our mechanism for synthesis is then based on combining decision procedures for
the satisfiability of dCTL- temporal formulas, with (bi)simulation algorithms for
checking a user required level of fault-tolerance. Here, we have dealt with mask-
ing tolerance, but our approach can be extended to other kinds of fault-tolerance,
if these are captured via simulation relations.
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Abstract. Cloud applications are composed of a set of interconnected
software components distributed over several virtual machines. There is
a need for protocols that can dynamically reconfigure such distributed
applications. In this paper, we present a novel protocol, which is able
to resolve dependencies in these applications, by (dis)connecting and
starting/stopping components in a specific order. These virtual machines
interact through a publish-subscribe communication media and reconfig-
ure themselves upon demand in a decentralised fashion. Designing such
protocols is an error-prone task. Therefore, we decided to specify the
protocol with the LNT value-passing process algebra and to verify it us-
ing the model checking tools available in the CADP toolbox. As a result,
the introduction of formal techniques and tools help to deeply revise the
protocol, and these improvements have been taken into account in the
corresponding Java implementation.

1 Introduction

Cloud computing is a new programming paradigm that emerged a few years
ago, which aims at delivering resources and software applications over a network
(such as the Internet). Cloud computing leverages hosting platforms based on
virtualization and promotes a new software licensing and billing model based
on the pay-per-use concept. For service providers, this means the opportunity
to develop, deploy, and sell cloud applications worldwide without having to in-
vest upfront in expensive IT infrastructure. Cloud applications are distributed
applications that run on different virtual machines (a.k.a., Infrastructure as a
Service, IaaS). Therefore, to deploy their applications, cloud users need first to
instantiate several virtual machines. Moreover, during the application time life,
some management operations may be required, such as instantiating new virtual
machines, replicating some of them for load balancing purposes, destroying or
replacing virtual machines, etc.

Existing protocols [6, 8, 19] mainly focus on self-deployment issues where a
model of the application (virtual machines, components, ports, and bindings) to
be deployed exists and guides the configuration process. This approach works fine
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only with specific applications where the application does not need to be changed
after deployment. Unfortunately, this is not the case in the cloud, where most
applications need to be reconfigured for integrating new requirements, scaling
on-demand, or performing failure recovery. Therefore, cloud users need protocols
that are not limited to deploying applications but can also work, as automatically
as possible, in all the situations where changes have to be applied on to a running
application. Such reconfiguration tasks are far from trivial, particularly when
some architectural invariants (e.g., a started component cannot be connected to
a stopped component) must be preserved at each step of the protocol application.

In this paper, we first present a novel protocol which aims at (re)configuring
distributed applications in cloud environments. These applications consist of
interconnected software components hosted on several virtual machines (VMs).
A deployment manager guides the reconfiguration tasks by instantiating new
VMs or destroying existing ones. After instantiation, each VM tries to satisfy
its required services (ports) by binding its components to other components
providing these services. When a VM receives a destruction request from the
deployment manager, that VM unbinds and stops its components. In order to
(un)bind/start/stop components, VMs communicate together through a publish-
subscribe communication media. As an example, for connecting one component
hosted on a VM to another component hosted on another VM, the second VM
must send its IP address to the first one for binding purposes.

Designing such protocols is a complicated task because they involve a high
degree of parallelism and it is very difficult to anticipate all execution scenarios,
which is necessary to avoid unexpected erroneous behaviours in the protocol.
Hence, we decided to use formal techniques and tools for ensuring that the pro-
tocol satisfies certain key properties. More precisely, we specified the protocol in
LOTOS NT (LNT) [4], which is an improved version of LOTOS [11]. The main
difference between LOTOS and LNT is that LNT relies on an imperative-like
specification language that makes its writing and understanding much simpler.
For verification purposes, we used more than 600 hand-crafted examples (appli-
cation model and reconfiguration scenario) and checked on them 35 identified
temporal properties that the protocol must respect during its application. For
each example, we generated the Labelled Transition System (LTS) model from
the LNT specification and verified all the properties on it using model checking
tools available in the CADP toolbox [9].

These verification techniques helped us to improve the protocol. For instance,
in an initial version of the protocol, the component start-up/shutdown was
guided by a centralised deployment manager. We observed an explosion in terms
of states/transitions in the corresponding LTSs, even for simple examples involv-
ing few VMs. This was due to an overhead of messages transmitted to and from
the deployment manager, which was supposed to keep track of all modifications
in each VM to possibly start/stop components. We proposed a decentralised
version of the protocol for avoiding this problem, where each VM is in charge of
starting and stopping its own components. We also detected a major bug in the
VM destruction process. Originally, when it was required to stop a component,
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it was stopped before the components bound to it. This typically violates some
architectural invariants (e.g., a started component cannot be connected to a
stopped component) and impedes the robustness level expected from the proto-
col. We corrected this issue by stopping properly components, which required a
deep revision of the protocol. Thus, in the current version of the protocol, when
a component must be stopped, it requests to all the components connected to it
to unbind and once it is done, it can finally stop.

The rest of this paper is structured as follows. In Section 2, we present the
reconfiguration protocol and show how it works on some concrete applications.
In Section 3, we present the LNT specification of the protocol and its verification
using CADP. We also comment on some experimental results and problems
found. We discuss related work in Section 4 and we conclude in Section 5.

2 Dynamic Management Protocol

2.1 Application Model

Distributed applications in the cloud are composed of interconnected software
components hosted on virtual machines. A component exports services that it
is willing to provide and imports required services. Ports are typed and match
when they share the same type, i.e., an import for being satisfied requires an
export with the same type. For effectively using a service, a component has
to bind its import to an export with the same type. A component can import
a service from a component hosted on the same machine (local binding) or
hosted on another machine (remote binding). An import can be either mandatory
or optional. Unlike optional imports, mandatory imports represent the services
required by the component to be functional. A component has two states, started
and stopped. Initially a component is in a stopped state. A component can
be started when all its mandatory imports are bound to started components.
Reversely, a started component must stop when at least one partner component
connected to a mandatory import is required to stop.

An example of application model is given in Figure 1. This application con-
sists of two VMs, both hosting two components. We can also see on this figure
how imports and exports as well as their optional/mandatory parameter are
described, and how bindings can be achieved on ports with the same type.

2.2 Protocol Participants

The management protocol involves three kinds of participants as presented in
Figure 2. The deployment manager (DM) guides the application reconfiguration
by successively instantiating and destroying VMs. Each VM in the distributed
application is equipped with a configuration agent (agent for short in the rest of
this paper) that is in charge of (dis)connecting bindings and starting/stopping
components upon reception of VM instantiation/destruction reconfiguration op-
erations from the DM. Communications between VMs are carried out thanks
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Fig. 1. Example of application model

to a publish-subscribe communication media (PS). The PS is equipped with
two topics1: (i) an export topic where a component subscribes its imports and
publishes its exports, and (ii) an import topic where a component subscribes
its exports and publishes its imports (we show in Section 2.3 why this double
subscription/publication is required). The PS also contains a list of buffers used
to store messages exchanged between agents. When a new VM is instantiated, a
buffer for that VM is added to the PS. When an existing machine is destroyed,
its buffer is removed from the PS.

2.3 Protocol Description

We now explain how the protocol works and we illustrate with several simple
scenarios. Once a VM is instantiated, the agent is in charge of starting all the
local components. When a component does not have any import or only optional
ones, it can start immediately. Otherwise, each mandatory import requires an
export (local or remote) with the same type. The PS is used to resolve compatible
dependencies. When an import is bound to an available compatible export, it
can be started only after the partner component has been started. The PS is
also used to exchange this start-up information between the two VMs involved
in a same binding.

Let us focus on two concrete scenarios (Fig. 3) for deploying an application
composed of two VMs: in the first scenario we instantiate VM1 and then VM2,
whereas they are instantiated in the other way round in the second scenario.
These scenarios help to understand how the PS is used for resolving port depen-
dencies and start/stop components.

In the first scenario, when VM1 is instantiated, the Apache component re-
quires a mandatory service whose type is Workers. Therefore, it subscribes to
the export topic (1) and then publishes its import to the import topic (2). The
PS receives that message from the VM1 agent, checks the import topic, and does
not find a provider for the Workers service: the publication message is deleted.

1 A topic is a logical channel where messages are published and subscribers to a topic
receive messages published on that topic.
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Fig. 2. Protocol participants

VM2 is then instantiated. The Tomcat component does not have any import
and can therefore be started immediately (3). It provides an export with type
Workers, so it subscribes this export to the import topic (4) and publishes it to
the export topic (5). The start-up information is also sent to the PS. The PS
receives that message from the VM2 agent, checks and finds that the Apache
component hosted on VM1 has required this service (it has subscribed to the
export topic). Hence, a message with binding details and Tomcat’s state is added
to VM1 buffer (6). Upon reception of this message, the Apache component is
bound to the Tomcat component (7) and the VM1 agent starts the Apache
component (8). The application is fully operational.

In the second scenario, when VM2 is instantiated, the Tomcat component
does not have any import and is therefore started immediately (1). It provides
an export with type Workers, so it subscribes this export to the import topic (2)
and publishes it to the export topic (3). The PS receives that message from the
VM2 agent, checks and does not find any component that requires Workers: the
publication message is deleted. When VM1 is instantiated, the Apache compo-
nent requires a mandatory service whose type is Workers. Therefore, it subscribes
to the export topic (4) and publishes its import to the import topic (5). The
PS receives that message from the VM1 agent, checks the import topic, and
finds that Tomcat has provided the Workers service (it has subscribed to the
import topic). The PS notifies VM2 that there is an Apache hosted on VM1
that needs Workers (6). VM2 receives the notification message, so it publishes
Tomcat’s export and state, that is started (7). The PS forwards this information
to the VM1 agent (8), and the Apache component can be bound to the Tomcat
component (9) and started (10).

Another goal of this protocol is to properly stop components when a VM is de-
stroyed. In that case, all the components hosted on that VM need to be stopped
as well as all components bound to them on mandatory imports (components
bound on optional imports just need to unbind themselves). If a component does
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Fig. 3. Examples of VM instantiation scenario

not provide any service (there is no component connected to it), it can immedi-
ately stop. Otherwise, it cannot stop before all partner components connected to
it have unbound themselves. To do so, the component is unsubscribed from the
import topic and then for each export, messages are sent to all components sub-
scribed to that export requiring them to unbind (hence stop if they are bound on
mandatory imports). Then the component waits until all components bound to
it disconnect and inform the component through the PS. When the component
is notified that all components connected to it have effectively unbound, it can
stop itself. The component shutdown implies a backward propagation of “ask to
unbind” messages and, when this first propagation ends (on components with
no exports or only optional imports), a second forward propagation “unbind
confirmed” starts to let the components know that the disconnection has been
actually achieved.

We present in Figure 4 an example of application containing three VMs where
VM3 receives a destruction request from the DM. VM3 hosts the MySQL com-
ponent that provides a service imported by the Tomcat component, and thus
cannot be stopped before Tomcat. Therefore, it unsubscribes from the import
topic and sends a message to the PS asking to unbind the Tomcat component.
The PS receives this message, transmits it to VM2 hosting Tomcat, that is sub-
scribed to the import topic (1). Once VM2 receives this message, it cannot stop
Tomcat because Apache is bound to it. VM2 sends a message to the PS ask-
ing to unbind Apache (2). Once VM1 receives the message, Apache does not
provide any service so it is immediately stopped and unbound (3). VM2 then
receives a message from the PS informing it that Apache has been unbound (4).
Tomcat has no component bound to it now, so it is stopped and unbound from
MySQL (5). VM3 receives a message from the PS informing it that Tomcat is
no longer bound to it (6) and MySQL is finally stopped (7).
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Fig. 4. Example of VM destruction scenario

3 Specification and Verification

We specified the protocol in LNT [4], one of the input languages of CADP [9].
LNT is an improved version of LOTOS. We chose this language because it has
the adequate expressiveness for the problem at hand and its user-friendly no-
tation simplifies the specification writing. Moreover, we rely on the state-of-
the-art verification tools provided by CADP to check that the protocol works
correctly and as expected. CADP is a verification toolbox dedicated to the de-
sign, analysis, and verification of asynchronous systems consisting of concurrent
processes interacting via message passing. The toolbox contains many tools that
can be used to make different analysis such as simulation, model checking, equiv-
alence checking, compositional verification, test case generation, or performance
evaluation.

In the rest of this section, we present the specification of the protocol in LNT,
its verification using the CADP model checker (Evaluator), some experimental
results, and problems detected and corrected during the verification process. It
is worth noting that since these techniques and tools work on finite state spaces
only, although dynamic reconfiguration may apply infinitely, we use only finite
models and scenarios for verification purposes in this section.

3.1 Specification in LNT

The specification can be divided into three parts: data types (200 lines), functions
(800 lines), and processes (1,200 lines). Most processes are generated for each
input application model2, because a part of the LNT code depends on the number
of VMs and on their identifiers. Therefore, the number of lines for processes

2 We developed an LNT code generator in Python for automating this task.
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grows with the number of VMs in the application model. We have given above
the number of lines for an example with three VMs.

Data types are used to describe the application model (VMs, components, ports)
and the communication model (messages, buffers, and topics). We show below a
few examples of data types. An application model (TModel) consists of a set of
virtual machines (TVM). Each VM has an identifier (TID) and a set of components
(TSoftware).

type TModel is set of TVM end type
type TVM is tvm (idvm: TID, cs: TSoftware) end type
type TSoftware is set of TComponent end type

Functions apply on to data expressions and define all the computations nec-
essary for reconfiguration purposes (e.g., changing the state of a component,
extracting/checking information in import/export topics, adding/retrieving mes-
sages from buffers, etc.). Let us show an example of function that aims at re-
moving the oldest message from a FIFO buffer. This function takes as input a
buffer (TBuffer) that is composed of an identifier (TID) and a list of messages
(TMessage). If the buffer is empty, nothing happens. When the buffer is not
empty, the first message is removed.

function remove (q: TBUFFER): TBUFFER is
case q in

var name:TID, hd: TMessage, tl: TQueue in
| tbuffer(name,nil) -> return tbuffer(name,nil)

| tbuffer(name,cons(hd,tl)) -> return tbuffer(name,tl)

end case
end function

Processes are used to specify the different participants of the protocol (a de-
ployment manager, a publish-subscribe communication media, and an agent per
VM). Each participant is specified as an LNT process and involves two kinds of
actions, that are either interactions with other processes or actions to tag specific
moments of the protocol execution such as the VM instantiation, the effective
binding/unbinding of an import to an export, the component start-up/shutdown,
the destruction of a VM, etc.

For illustration purposes, we give an example of main process involving three
VMs. This process describes the parallel composition (par in LNT followed by
a set of synchronization messages) of the protocol participants. We can see that
all the agents do not interact directly together and evolve independently from
one another. VM agents interact together through the PS. The DM is aware
of the VMs existing in the system (parameter appli). Each agent is identified
using the VM name, and the PS is initialised with a buffer per VM and two
topics for imports/exports (ListBuffers). Each process also comes with an
alphabet corresponding to the actions belonging to its behaviour. For instance,
the DM defines actions for VM creation and destruction (INSTANTIATEVMi and
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DESTROYVM, resp.). Each agent defines actions for port binding (BINDCOMPO), for
starting a component (STARTCOMPO), for stopping a component (STOPCOMPO),
etc., as well as interactions with the PS (AGENTtoPSi when sending a message
to the PS and PStoAGENTi when receiving a message from it). All these actions
are used for analysing the protocol as we will see in the next subsection.

process MAIN [INSTANTIATEVM1:any, DESTROYVM:any, STARTCOMPO:any,..] is
par INSTANTIATEVM1, ..., INSTANTIATEVM3, DESTROYVM in

DM [INSTANTIATEVM1, ..., INSTANTIATEVM3, DESTROYVM] (appli)

||

par AGENTtoPS1, PStoAGENT3, ... in
par

Agent[INSTANTIATEVM1, AGENTtoPS1, PStoAGENT1,

DESTROYVM, STARTCOMPO, BINDCOMPO, STOPCOMPO,

UNBINDCOMPO] (vm1)

||

Agent[...] (vm2)

||

Agent[...] (vm3)

end par
||

PS[AGENTtoPS1, ..., PStoAGENT3] (!?ListBuffers)

end par
end par

end process

3.2 Verification Using CADP

To verify the protocol, we have first identified and specified 35 properties in
MCL [15], the temporal logic used in CADP. MCL is an extension of alternation-
free μ-calculus with regular expressions, data-based constructs, and fairness
operators. We distinguish properties dedicated to start-up scenarios (Prop. 1
and 2 below for instance), destruction scenarios (Prop. 4), and mixed scenarios
(Prop. 3). All these properties aim at verifying different parts of the protocol.
Some of them focus on the protocol behaviour for checking for example that final
objectives are fulfilled (Prop. 1 below) or progress/ordering constraints respected
(Prop. 3 and 4). Other properties guarantee that architectural invariants for the
application being reconfigured are always satisfied (Prop. 2).

For each applicationmodel and reconfiguration scenario taken from our dataset
of examples, we generate an LTS by applying the LNT specification to this exam-
ple and generating all the possible executions using CADP exploration tools. Fi-
nally, we use the Evaluator model checker that automatically says whether these
properties are verified or not on that LTS.When a bug is detected by model check-
ing tools, it is identified with a counterexample (a sequence of actions violating
the property). Let us present some concrete properties verified on the application
model presented in Figure 4:
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1. All components are eventually started.

( μX . ( < true > true and [ not "STARTCOMPO !Apache !VM1" ] X ) )
and
. . .
and

( μX . ( < true > true and [ not "STARTCOMPO !MySQL !VM3" ] X ) )

This property is automatically generated from the application model because
it depends on the name of all VMs and components hosted on each VM.

2. A component cannot be started before the component it depends on for
mandatory imports.

[
true* . "STARTCOMPO !Apache !VM1" .
true* . "STARTCOMPO !Tomcat !VM2"

] false

The Apache component is connected to the Tomcat component on a manda-
tory import, therefore we will never find a sequence where Apache is started
before Tomcat. This property is automatically generated from the applica-
tion model because it depends on the component and VM names in the
application model.

3. There is no sequence where an import (mandatory or optional) is bound
twice without an unbind in between.

[ true* .
"BINDCOMPO !Apache !WORKERS" .
( not "UNBINDCOMPO !Apache !VM1" )* .
"BINDCOMPO !Apache !WORKERS"

] false

When a component is connected to another component through an import,
it cannot be bound again except if it is stopped and unbound before.

4. A component hosted on a VM eventually stops after that VM receives a
destruction request from the DM.

( < true* . {DESTROYVM ?vm:String} .
true* . {STOPCOMPO ?cid:String !vm} > true )

This property does not depend on the application. Parameters can be related
in MCL by using variables in action parameters (e.g., vm for the virtual
machine identifier). This property shows the data-based features that are
available in MCL.

3.3 Experiments

Experiments were conducted on more than 600 hand-crafted examples on a Pen-
tium 4 (2.5GHz, 8GB RAM) running Linux. For each example, the reconfigura-
tion protocol takes as input the application and a specific scenario (a sequence
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of instantiate/destroy VM operations). The corresponding LTS is generated us-
ing CADP exploration tools by enumerating all the possible executions of the
system. Finally, the verification tools of the CADP toolbox are called, providing
as result a set of diagnostics (true or false) as well as counterexamples if some
verifications fail. Let us note that for validating the protocol we used a large va-
riety of examples, ranging from simple ones to pathological models and scenarios
in order to check boundary cases.

Table 1 summarizes some of the numbers obtained on illustrative examples of
our dataset. The application model used as input to our protocol is characterised
using the number of virtual machines (vm), components (co), imports (imp),
exports (exp), and reconfiguration operations (op). Then we give the size of the
LTS before and after minimization (wrt. a strong bisimulation relation). The
last column gives the time to execute the whole process (LTS generation and
minimization on the one hand, and properties checking on the other).

It is worth observing that the size of LTSs and the time required for generating
those LTSs increase with the size of the application, particularly with the number
of VMs and the number of ports that can be connected: the more VMs and ports,
the more parallelism in the system. Increasing the number of reconfiguration
operations yields more complicated scenarios, and this also increases the LTS size
and generation time. Let us look at examples 0219, 0222, and 0227 in Table 1
for instance. When we slightly increase the number of components and ports
in the application, we see how LTS sizes and analysis time (generation and
verification) gradually grow. We can make a similar statement when comparing
examples 0227 and 0228. These two examples are exactly the same, but one
more reconfiguration is achieved in 0228, resulting in a noticeable grow in the
corresponding LTS size and analysis time. Example 0453 shows how this time can
take up to several hours. Fortunately, analysing huge systems (with potentially
many VMs) is not the most important criterion during the verification of the
protocol. Indeed, most issues are usually found on small applications describing
pathological reconfiguration cases.

Table 1. Experimental results

Size LTS (states/transitions) Time (m:s)
vm co imp exp op raw minimized LTS gen. Verif.

0047 2 3 1 2 4 3,489/6,956 836/1,472 0:23 0:15

0219 3 3 2 2 5 28,237/68,255 2,775/6,948 0:35 0:48

0222 3 4 4 4 5 622,592 /1,416,167 10,855/32,901 12:15 2:40

0227 3 6 9 7 5 783,784/1,484,508 15,334/45,812 21:21 3:45

0228 3 6 9 7 6 802,816 / 1,629,118 17,923/54,143 29:25 4:10

0453 4 8 7 5 8 1,643,248 /2,498,564 68,468/227,142 153:12 28:22
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3.4 Problems Found

The specification and verification of the protocol using model checking tech-
niques enabled us to revise and improve several parts of the protocol. Beyond
correcting several very specific issues in the protocol (e.g., adding some acknowl-
edgement messages after effectively binding ports), we will comment in this sec-
tion on two important issues we found out during the verification steps and that
were corrected in the latest version of the protocol (the one presented in this
paper), both in the specification and implementation.

In the initial version of the protocol, the component start-up/shutdown was
guided by a centralised DM. More precisely, the DM kept track of the current
state (bindings and component states) for each VM. To do so, each VM sends
messages to the DM whenever a change is made in its VM, e.g., a stopped
component is started. As a consequence, the DM has an overall view of the
current state of the system and can send messages to VMs in order to trigger a
component start-up/shutdown (when dependencies and other component states
permit that). An important drawback of this centralised version is that it induces
an overhead of messages transmitted to and from the DM. This was observed
during our experiments analysing the size of the corresponding state spaces: some
quite simple examples resulted in huge LTSs. This issue was solved by proposing
a decentralised version of the protocol, where the DM is not in charge of starting
and stopping components any more. This task is delegated to the VM agents.
This avoids additional, unnecessary messages exchanged between agents and
the DM. The decentralised version of the protocol presents several advantages:
more parallelism, better performance in the corresponding implementation of
the protocol, and simplification in terms of number of communications (smaller
LTSs).

We also detected a major bug in the way VMs are destroyed. Originally, when
it was required to stop a component, it was stopped before the components bound
to it. Stopping components in this order typically violates the consistency of the
component composition and well-formedness architectural invariants. This may
result for instance in started components connected to and therefore submitting
requests to stopped components. This problem was detected thanks to a property
stating that “a component cannot be started and connected through an import
(mandatory or optional) to another component, if that component is not started”.
In many cases, we observe that this property was not satisfied, particularly for
application models and reconfiguration scenarios requiring to stop components
in sequence across several VMs after reception of a VM destruction request.
We corrected this issue by stopping properly components. This required a deep
revision of the protocol. Thus, in the current version of the protocol, when a
component must stop, it requests to all components connected to it to unbind and
once it is done, it can finally stop. This implies first a backward propagation along
components bound on mandatory imports. Once this first propagation stops,
we start a forward propagation during which components are actually stopped
and indicate to their partners that they have just stopped and unbound. This
double propagation, as presented in Section 2.3, is necessary for preserving the
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component architecture consistency and for avoiding that started components
can keep on using stopped components.

4 Related Work

First of all, let us mention some related papers [10, 5, 16] where are presented
languages and configuration protocols for distributed applications in the cloud.
[5] adopts a model driven approach with extensions of the Essential Meta-Object
Facility (EMOF) abstract syntax to describe a distributed application, its re-
quirements towards the underlying execution platforms, and its architectural
constraints (e.g., concerning placement and collocation). The deployment works
in a centralised fashion. [16] suggests an extension of SmartFrog [10] that enables
an automated and optimised allocation of cloud resources for application deploy-
ment. It is based on a declarative description of the available resources and of the
components building up a distributed application. Descriptions of architectures
and resources are defined using the Distributed Application Description Lan-
guage. This paper does not give any details concerning the deployment process.

A recent related work [8] presents a system that manages application stack
configuration. It provides techniques to configure services across machines ac-
cording to their dependencies, to deploy components, and to manage the life cycle
of installed resources. This work presents some similarities with ours, but [8] does
not care about composition consistency issues, that is, their framework does not
preserve architectural invariants ensuring for instance that a started component
is never connected to a stopped component.

In [12–14, 1, 20, 3, 17], the authors proposed various formal models (Darwin,
Wright, etc.) in order to specify dynamic reconfiguration of component-based
systems whose architectures can evolve (adding or removing components and
connections) at run-time. These techniques are adequate for formally designing
dynamic applications. In [12, 14] for instance, the authors show how to formally
analyse behavioural models of components using the Labeled Transition System
Analyser. Our focus is quite different here, because we work on a protocol whose
goal is to automatically achieve these reconfiguration tasks, and to assure that
this protocol respects some key properties during its application.

In [6, 7, 19], the authors present a protocol that automates the configuration
of distributed applications in cloud environments. In these applications, all el-
ements are known from the beginning (e.g., numbers of VMs and components,
bindings among components, etc.). Moreover, this protocol allows one to auto-
mate the application deployment, but not to modify the application at run-time.
Another related work is [2], where the authors propose a robust reconfiguration
protocol for an architectural assembly of software components. This work does
not consider the distribution of components across several VMs, but assume they
are located on a single VM.
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5 Conclusion

We have presented in this paper a protocol for dynamically reconfiguring dis-
tributed cloud applications. This protocol enables one to instantiate new VMs
and destroy existing VMs. Upon reception of these reconfiguration operations,
VM agents connect/disconnect and start/stop components in a defined order
for preserving the application consistency, which is quite complicated due to the
high parallelism degree of the protocol. Therefore, we have specified and veri-
fied this protocol using the LNT specification language and the CADP toolbox,
which turned out to be very convenient for modelling and analysing such pro-
tocols, see [18] for a discussion about this subject. Model checking techniques
were used to verify 35 properties of interest on a large number of application
models and reconfiguration scenarios. This helped to improve several parts of
the protocol and to detect subtle bugs. In particular, we deeply revise the part of
the protocol dedicated to the VM destruction and component shutdown. These
issues have also been corrected in the corresponding Java implementation.

As far as future work is concerned, we first plan to add finer-grained recon-
figuration operations in order to enable the deployment manager to not only
add and remove virtual machines, but also to add and remove components on
already deployed VMs. Another perspective aims at extending our protocol for
handling VM failures.
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Abstract. We present a generalisation of King’s symbolic execution
technique called compact symbolic execution. It proceeds in two steps.
First, we analyse cyclic paths in the control flow graph of a given pro-
gram, independently from the rest of the program. Our goal is to compute
a so called template for each such a cyclic path. A template is a declar-
ative parametric description of all possible program states, which may
leave the analysed cyclic path after any number of iterations along it. In
the second step, we execute the program symbolically with the templates
in hand. The result is a compact symbolic execution tree. A compact tree
always carry the same information in all its leaves as the corresponding
classic symbolic execution tree. Nevertheless, a compact tree is typically
substantially smaller than the corresponding classic tree. There are even
programs for which compact symbolic execution trees are finite while
classic symbolic execution trees are infinite.

1 Introduction

Symbolic execution [16,13] is a program analysis method originally suggested
for enhanced testing. While testing runs a program on selected input values,
symbolic execution runs the program on symbols that represent arbitrary input
values. As a result, symbolic execution explores all execution paths. On one
hand-side, this means that symbolic execution does not miss any error. On the
other hand-side, symbolic execution applied to real programs hardly ever finishes
as programs typically have a huge (or even infinite) number of execution paths.
This weakness of symbolic execution is known as path explosion problem. The
second weakness of symbolic execution comes from the fact that it calls SMT
solvers to decide which program paths are feasible and which are not. The SMT
queries are often formulae of theories that are hard to decide or even undecidable.
Despite the two weaknesses, there are several successful bug-finding tools based
on symbolic execution, for example Klee [7], Exe [8], Pex [22], or Sage [11].

This paper introduces the compact symbolic execution that partly solves the
path explosion problem. We build on the observation that one of the main sources
of the problem are program cycles. Indeed, many execution paths differ just in
numbers of iterations along program cycles. Hence, before we start symbolic
execution, we detect cyclic paths in the control flow graph of a given program
and we try to find a template for each such a cyclic path. A template is a
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declarative parametric description (with a single parameter κ) of all possible
program states produced by κ ≥ 0 iterations along the cyclic path followed by
any execution step leading outside the cyclic path. The target program locations
of such execution steps are called exits of the cyclic path.

The compact symbolic execution proceeds just like the classic symbolic ex-
ecution until we enter a cyclic path for which we have a template. Instead of
executing the cyclic path, we can apply the template to jump directly to exits
of the cyclic path. At each exit, we obtain a program state with a parameter
κ. This parametric program state represents all program states reached by ex-
ecution paths composed of a particular path to the cycle, κ iterations along
the cycle, and the execution step leading to the exit. Symbolic execution then
continues from these program states in the classic way again.

Hence, compact symbolic execution reduces the path explosion problem as
it explores at once all execution paths that differ only in numbers of iterations
along the cyclic paths for which we have templates. As we will see later, a price
for this reduction comes in deepening the other weakness of symbolic execution:
while SMT queries of standard symbolic execution are always quantifier-free,
each application of a template adds one universal quantifier to the SMT queries
of compact symbolic execution. Although SMT solvers fail to decide quantified
queries significantly more often than queries without quantifiers, our experimen-
tal results show that this trade-off is acceptable as compact symbolic execution
is able to detect more errors in programs than the classic one. Moreover, fu-
ture advances in SMT solving can make the disadvantage of compact symbolic
execution even smaller.

2 Basic Idea

This section presents basic ideas of compact symbolic execution. To illustrate
the ideas, we use a simple program represented by the flowgraph of Figure 1(a).
The program implements a standard linear search algorithm. It returns the least
index i in the array A such that A[i]=x. If x is not in A at all, then the result
is -1. In both cases the result is saved in the variable r. Before we describe the
compact symbolic execution, we briefly recall the classic symbolic execution [16].

Classic Symbolic Execution. Symbolic execution runs a program over sym-
bols representing arbitrary input values. For each input variable v, we denote
a symbol passed to it as v. A program state is a triple (l, θ, ϕ) consisting of a
current program location l in the flowgraph, a symbolic memory θ, and a path
condition ϕ. θ assigns to each program variable its current symbolic value, i.e. an
expression over the symbols. For example, if the first instruction of a program
is the assignment i:=2*n+x, then θ(i) = 2n + x after its execution. The path
condition ϕ is a quantifier-free first order logic formula representing a necessary
and sufficient condition on symbols to drive the execution along the currently
executed path. ϕ is initially true and it can be updated at program branchings.
For example, in a location with two out-edges labelled by x>n+5 and x<=n+5, we
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Fig. 1. (a) A flowgraph linSrch(A,n,x). (b) Classic symbolic execution tree of
linSrch. (c) Compact symbolic execution tree of linSrch.

instantiate the conditions with use of the current θ and we check whether the
current path condition φ implies their validity. Namely, we ask for validity of
implications φ → θ(x) > θ(n)+5 and φ → θ(x) ≤ θ(n)+5. If the first implication
is valid, the symbolic execution continues along the first branch. If the second
implication is valid, the symbolic execution continues along the second branch.
If none of them is valid, it means that we can follow either of the two branches.
Hence, the symbolic execution forks in order to execute both branches. In this
case, we update the path condition on the first branch to φ ∧ θ(x) > θ(n) + 5
and the one on the second branch to φ ∧ θ(x) ≤ θ(n) + 5. Note that the whole
program state is forked into two states in this case.

Due to the forks, symbolic execution is traditionally represented by a tree
called classic symbolic execution tree. Nodes of the tree are labelled by program
states computed during the execution. Edges of the tree correspond to transitions
between program states labelling their end nodes. In Figure 1(b), there is a classic
symbolic execution tree of the flowgraph from Figure 1(a). For readability of
symbolic execution tree figures, nodes are marked only with current program
locations instead of full program states. In addition, we label branching edges
by instances of the corresponding branching conditions in the flowgraph. These
labels allow us to reconstruct the path condition for each node in the tree: it is
the conjunction of labels of all edges along the path from the root to the node.
Note that contents of symbolic memories are not depicted in the figure.

Fig. 1. (a) A flowgraph linSrch(A,n,x). (b) Classic symbolic execution tree of
linSrch. (c) Compact symbolic execution tree of linSrch.

instantiate the conditions with use of the current θ and we check whether the
current path condition ϕ implies their validity. Namely, we ask for validity of
implications ϕ→ θ(x) > θ(n)+5 and ϕ→ θ(x) ≤ θ(n)+5. If the first implication
is valid, the symbolic execution continues along the first branch. If the second
implication is valid, the symbolic execution continues along the second branch.
If none of them is valid, it means that we can follow either of the two branches.
Hence, the symbolic execution forks in order to execute both branches. In this
case, we update the path condition on the first branch to ϕ ∧ θ(x) > θ(n) + 5
and the one on the second branch to ϕ ∧ θ(x) ≤ θ(n) + 5. Note that the whole
program state is forked into two states in this case.

Due to the forks, symbolic execution is traditionally represented by a tree
called classic symbolic execution tree. Nodes of the tree are labelled by program
states computed during the execution. Edges of the tree correspond to transitions
between program states labelling their end nodes. In Figure 1(b), there is a classic
symbolic execution tree of the flowgraph from Figure 1(a). For readability of
symbolic execution tree figures, nodes are marked only with current program
locations instead of full program states. In addition, we label branching edges
by instances of the corresponding branching conditions in the flowgraph. These
labels allow us to reconstruct the path condition for each node in the tree: it is
the conjunction of labels of all edges along the path from the root to the node.
Note that contents of symbolic memories are not depicted in the figure.
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Overall Effect of Cyclic Paths. If we look at the flowgraph of Figure 1(a),
we immediately see that locations b, c, d and edges between them form a cyclic
path highlighted by a grey region. All executions entering the path (at location
b) proceed in the same way: each execution performs κ iterations along the cyclic
path (for some κ ≥ 0) and continues either along the edge (b, f) or along the edges
(b, c) and (c, e) to leave it. Compact symbolic execution aims to effectively exploit
the uniformity of all executions along this cyclic path. To do so, we need to find
a unified declarative description of the effect of all executions along the cyclic
path on a symbolic memory and a path condition. We analyse the cyclic path,
together with all the edges allowing to leave it, separately from the rest of the
flowgraph. First we introduce symbols for all variables in the isolated part of the
program, since they all are now input variables to the part. In our example, we
introduce symbols n, x, i, A representing the values of the corresponding variables
n, x, i, A at the entry location b, before the first iteration. We emphasise that the
introduced symbols do not represent inputs to the whole flowgraph, but rather
symbolic values of the corresponding variables at the moment of entering the
cyclic path at the location b via the edge (a, b).

Now we study the effect of κ iterations along the cyclic path. One can see that
each iteration increases the value of i by one while values of the other variables
keep unchanged. Hence, after κ iterations, the value of i is i+ κ. Formally, the
effect of κ iterations of the cycle on values of all variables is described by the
following parametric symbolic memory θ∗JκK with the parameter κ:

θ∗JκK(n) = n, θ∗JκK(x) = x,
θ∗JκK(i) = i+ κ, θ∗JκK(A) = A.

Further, we formulate a parametric path condition ϕ∗JκK representing the
path condition after κ iterations along the cyclic path. To perform all these κ
iterations along the cyclic path, both conditions i<n and A[i]!=x along the path
have to be valid in each of κ iterations. Therefore, the path condition after κ
iterations has the form

i < n ∧ A(i) 6= x ∧
∧ i+ 1 < n ∧ A(i+ 1) 6= x ∧

...

∧ i+ (κ− 1) < n ∧ A(i+ (κ− 1)) 6= x,

where τ -th line, τ ∈ {0, 1, . . . , κ − 1}, consists of two predicates which are in-
stances of the conditions i<n and A[i]!=x respectively after τ iterations of the
cyclic path, i.e. during the (τ + 1)-st iteration. Unfortunately, the conjunction
above is not a first order formula as its length depends on the parameter κ,
whose value can be arbitrary. The conjunction can be equivalently expressed by
the following universally quantified formula:

∀τ(0 ≤ τ < κ→ (i+ τ < n ∧ A(i+ τ) 6= x)).
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If we now add to the formula above the obvious fact that we cannot iterate the
cyclic path negative number of times (i.e. κ ≥ 0), we get the resulting parametric
path condition ϕ∗JκK as

ϕ∗JκK = κ ≥ 0 ∧ ∀τ(0 ≤ τ < κ→ (i+ τ < n ∧ A(i+ τ) 6= x)).

Finally, we use θ∗JκK and ϕ∗JκK to define symbolic memory θbf JκK and path
condition ϕbf JκK describing the effect of κ iterations of the cyclic path fol-
lowed by leaving it through the edge (b, f), and similarly θceJκK, ϕceJκK with
the analogous information for leaving the cyclic path through the edge (c, e).
As the edges (b, f), (b, c), (c, e) do not modify any variable, we immediately get
θbf JκK = θceJκK = θ∗JκK. Further, ϕbf JκK and ϕceJκK are conjunctions of ϕ∗JκK
with the instances of the conditions on the edge (b, f) or on the edges (b, c), (c, e),
respectively. Hence, the path conditions ϕbf JκK, ϕceJκK are defined as follows:

ϕbf JκK = ϕ∗JκK ∧ i+ κ ≥ n
ϕceJκK = ϕ∗JκK ∧ i+ κ < n ∧ A(i+ κ) = x

The overall effect of the considered cyclic path with its exit edges is now fully
described by a so-called template consisting of the entry location b to the cyclic
path and two triples (f, θbf JκK, ϕbf JκK) and (e, θceJκK, ϕceJκK), one for each exit
edge from the cyclic path. Note that the triples have the same structure and
meaning as program states in classic symbolic execution. The only difference is
that the triples are parametrised by the parameter κ.

Compact Symbolic Execution. The template is used during compact sym-
bolic execution of the program. The execution starts at the location a of the
flowgraph. The compact symbolic execution tree initially consists of a single node
labelled by the initial state (a, θI , true), where θI is the initial symbolic memory
assigning to each input variable v the corresponding symbol v. Now we execute
the instruction i:=0 of the flowgraph edge (a, b) using the classic symbolic ex-
ecution. The tree is extended with a single successor node, say u, labelled with
a program state (b, θ′, ϕ′). As we have a template for the location b, we can
instantiate it instead of executing the original program. The node u gets one
successor for each triple of the template. The triple (f, θbf JκK, ϕbf JκK) generates
a successor node labelled by a program state (f, θ′bf JκK, ϕ′bf JκK). Note that we
cannot use (f, θbf JκK, ϕbf JκK) directly as θbf JκK, ϕbf JκK describe executions start-
ing just at the entry location b, while θ′bf JκK, ϕ′bf JκK have to reflect the effect of
the executions starting at a. We create θ′bf JκK, ϕ′bf JκK by composing θbf JκK, ϕbf JκK
with θ′, ϕ′. The composition is precisely described in the following section. In
our simple program, θ′, ϕ′ reflect only the effect of assignment i:=0. Thus, θ′bf JκK
and ϕ′bf JκK equal to θbf JκK and ϕbf JκK respectively, where i is replaced by 0. The
second triple (e, θceJκK, ϕceJκK) of the template generates the successor node la-
belled with a program state (e, θ′ceJκK, ϕ′ceJκK) computed analogously using the
composition. The symbolic execution then continues from the locations f and e
in parallel using the classic symbolic execution. The resulting compact symbolic
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execution tree is depicted in Figure 1(c). Observe that the two nodes introduced
during template instantiation are drawn with different shape than the others.
Moreover, labels of these nodes immediately indicate all paths in the flowgraph
whose execution is replaced by the application of the template.

If we compare trees at Figures 1(b) and 1(c), we immediately see that the
compact tree is much smaller than the classic one. In particular, the infinite
path in the classic tree (highlighted by the grey region) does not appear in the
compact one. However, both trees keep the same information in all their leaves.
For example, the program state of the left leaf of the compact tree contains the
following path condition

ϕJκK = κ ≥ 0 ∧ ∀τ(0 ≤ τ < κ → (τ < n ∧ A(τ) 6= x)) ∧ κ < n ∧ A(κ) = x.

Let us mark all leaves on the left-hand side of the classic tree as g0, g1, g2, . . . and
let ϕ0, ϕ1, ϕ2, . . . be the corresponding path conditions (remember, that each ϕi

is the conjunction of labels along the corresponding paths in the tree) and check
that ϕi is equivalent to ϕJiK for each i ≥ 0. For example, for i = 1 we have

ϕ1 = 0 < n ∧ A(0) 6= x ∧ 1 < n ∧ A(1) = x,

ϕJ1K = 1 ≥ 0 ∧ ∀τ(0 ≤ τ < 1 → (τ < n ∧ A(τ) 6= x)) ∧ 1 < n ∧ A(1) = x,

and hence ϕ1 ≡ ϕJ1K. Similarly, each symbolic memory of a node gi is an instance
θJiK of the parametrized symbolic memory in the left leaf of the compact tree.
Analogous relations hold for leafs on the right-hand sides of the compact and
the classic symbolic execution trees.

3 Description of the Technique

This section describes the compact symbolic execution in details. For simplicity,
we consider only programs represented by a single flowgraph manipulating in-
teger variables and read-only integer arrays. The technique can be extended to
handle mutable integer arrays, other data types, and function calls.

3.1 Preliminaries

Besides the terms and notation introduced in the previous section, we use also
the following terms and notation.

We write θJκK to emphasise that κ is the set of parameters appearing in the
symbolic memory θ. Similarly, we write ϕJκK to emphasise that κ is the set
of parameters with free occurrences in the formula ϕ. We also write sJκK or
(l, θ, ϕ)JκK, if s = (l, θJκK, ϕJκK).

A valuation of parameters is a function ν from a finite set of parameters to
non-negative integers. By θJνK, ϕJνK, and sJνK we denote a symbolic memory
θJκK, a formula ϕJκK, and a program state sJκK respectively, where all free
occurrences of each κ ∈ κ are replaced by ν(κ). If κ = {κ} is a singleton
and ν(κ) = ν, we simply write θJκK, ϕJκK, sJκK instead of θJκK, ϕJκK, sJκK and
θJνK, ϕJνK, sJνK instead of θJνK, ϕJνK, sJνK.
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If θ is a symbolic memory and ϕ is a formula or a symbolic expression, then
θ〈ϕ〉 denotes ϕ where all occurrences of all symbols a are simultaneously replaced
by θ(a), i.e. by the value of the corresponding variable stored in θ.

When θ1 and θ2 are two symbolic memories, then θ1�θ2 is a composed symbolic
memory satisfying (θ1 � θ2)(a) = θ1〈θ2(a)〉 for each variable a. Intuitively, the
symbolic memory θ1 � θ2 represents an overall effect of a code with effect θ1
followed by a code with effect θ2.

We define composition of states s1 = (l1, θ1, ϕ1) and s2 = (l2, θ2, ϕ2) to be
the state s1 � s2 = (l2, θ1 � θ2, ϕ1 ∧ θ1〈ϕ2〉). The composed state corresponds to
the symbolic state resulting from symbolic execution of the code that produced
s1 immediately followed by the code that produced s2.

We often use a dot-notation to denote elements of a program state s: s.l
denotes its current location, s.θ denotes its symbolic memory, and s.ϕ denotes
its path condition. Further, if u is a node of a symbolic execution tree, then u.s
denotes the program state labelling u and we write u.l, u.θ, and u.ϕ instead of
(u.s).l, (u.s).θ, and (u.s).ϕ.

Two program states s1, s2 are equivalent, written s1 ≡ s2, if s1.l = s2.l, the
formula s1.θ(a) = s2.θ(a) holds for each variable a, and the formulae s1.ϕ and
s2.ϕ are equivalent in the logical sense.

Considered integer programs operate in undecidable theories (like Peano arith-
metic). We assume that there is a function satisfiable(ϕ) that returns SAT if
it can prove satisfiability of ϕ, UNSAT if it can prove unsatisfiability of ϕ, and
UNKNOWN otherwise.

3.2 Templates and Their Computation

We start with a formal definition of cycle, i.e. a cyclic path with a specified entry
location and exit edges.

Definition 1 (Cycle) Let (u, e) be an edge of a flowgraph P , π = eωe be a
cyclic path in P such that ue is not a suffix of π and all nodes in ωe are pairwise
distinct, and let X = {(u1, x1), . . . , (un, xn)} be the set of all edges of P that
do not belong to the path π, but their start nodes u1, . . . , un lie on π. Then
C = (π, e,X) is a cycle in P , the path π is a core of C, e is an entry location
of C, all edges in X are exit edges of C, and each location xi is called an exit
location of C.

We emphasise that the core of a cycle is a cyclic path in a graph sense.
Note that a program loop can generate more independent cycles, e.g. if the loop
contains interal branching or loop nesting (see [20] for more details).

A template for a cycle (π, e,X) is a pair (e,M), where M is a set containing
one parametric program state for each exit edge of the cycle. A template for
a given cycle can be computed by Algorithm 1. The algorithm uses a function
executePath(P, ρ) which applies classic symbolic execution to instructions on
the path ρ in the program P and returns the resulting symbolic state (u, θ, ϕ),
where u is the last location in ρ.
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Algorithm 1. computeTemplate

Input: a program P and a cycle (π, e,X)
Output: a template (e,M) or null (if the computation fails)

1 (e, θ, ϕ)←− executePath(P, π)
2 if satisfiable(ϕ) 6= SAT then return null
3 Set θ∗JκK(a) = a for each array variable a

4 Set θ∗JκK(a) = ⊥ for each integer variable a

5 repeat
6 change←− false
7 foreach integer variable a do
8 if θ∗JκK(a) = ⊥ then
9 if θ(a) = a+ c for some constant c then

10 θ∗JκK(a)←− a+ κ · c
11 change←− true

12 if θ(a) = a · c for some constant c then
13 θ∗JκK(a)←− a · cκ
14 change←− true

15 if θ(a) = g for some symbolic expression g such
that θ∗JκK(b) 6= ⊥ for each symbol b in g then

16 θ∗JκK(a)←− ite(κ > 0, θ∗Jκ− 1K〈g〉, a)
17 change←− true

18 until change = false
19 if θ∗JκK(a) = ⊥ for some variable a then return null
20 ϕ∗JκK←− κ ≥ 0 ∧ ∀τ(0 ≤ τ < κ =⇒ θ∗JτK〈ϕ〉)
21 M ←− ∅
22 foreach (u, x) ∈ X do
23 Let ρ be the prefix of π from e to u
24 (x, θ, ϕ)←− executePath(P, ρx)
25 if satisfiable(ϕ) = UNKNOWN then return null
26 if satisfiable(ϕ) = SAT then
27 M ←−M ∪ {(x, θ∗JκK � θ, ϕ∗JκK ∧ θ∗JκK〈ϕ〉)}
28 return (e,M)

The first part of the algorithm (lines 1–20) tries to derive a parametric sym-
bolic memory θ∗JκK and a parametric path condition ϕ∗JκK, which together
describe the symbolic state after κ iterations over the core π of the cycle C, for
any κ ≥ 0. Initially, at line 1, we compute the effect of a single iteration of the
core π and then we check whether the iteration is feasible. If we cannot prove
its feasibility, we stop the template computation and return null.1 Otherwise,
we get a symbolic state (e, θ, ϕ), whose elements θ and ϕ form a basis for the
computation of θ∗JκK and ϕ∗JκK.

1 It is possible that the iteration is feasible and the chosen SMT solver failed to prove
it. However, as parametric path conditions of the resulting template are derived from
ϕ, it is highly probable that any application of the template in compact symbolic
execution would lead to failures of the SMT solver. Such a template is useless.



Compact Symbolic Execution 201

We compute θ∗JκK first. As arrays are read-only, we directly set θ∗JκK(a)
to a for each array variable a. For integer variables, we initialise θ∗JκK to an
undefined value ⊥. Then, in the loop at lines 5–18, we try to define θ∗JκK for
as many variables as possible. For each variable a, θ∗JκK(a) is defined at most
once. Hence, the loop terminates after finite number of iterations. The value of
θ∗JκK(a) is defined according to the content of θ(a) and known values of θ∗JκK.
In particular, the conditions at lines 9 and 12 check if the values of a follow an
arithmetic or a geometric progression during the iterations. If they do, we can
easily express the exact value of a after any κ iterations. Note that the case
when the value of a variable is not changed along π at all is a special case of an
arithmetic progression (c = 0). Obviously, one can add support for other kinds of
progression. The condition at line 15 covers the case when each iteration assigns
to a an expression containing only variables with known values of θ∗JκK. The
if-then-else expression ite(κ > 0, θ∗Jκ− 1K〈g〉, a) assigned to θ∗JκK(a) says that
the value of a after κ > 0 iterations is given by the value of expression g where
each symbol b represents the value of b at the beginning of the last iteration
and thus it must be replaced by θ∗Jκ− 1K(b). The value of a after 0 iterations is
obviously unchanged, i.e. a.

Once we get to line 19, we check whether we succeeded to define θ∗JκK for all
variables. If we failed for at least one variable, then we fail to compute a template
for C and we return null. Otherwise, at line 20 we compute the formula ϕ∗JκK
in accordance with the intuition provided in Section 2.

The second part of the algorithm (lines 21–28) computes the set M of the
resulting template. As we already know from Section 2, we try to compute one
element of M for each exit edge (u, x) ∈ X. At line 23 we compute a path ρ from
the entry location e to u (along π), where we escape from π to the location x. The
path ρx is then symbolically executed. If we fail to decide feasibility of the path,
we fail to compute a template. If the path is feasible, we can escape π by taking
the exit edge (u, x). Therefore, only in this case we add a new element to M at
line 27. The structure of the element follows the intuition given in Section 2.

One can immediately see that the algorithm always terminates. Now we for-
mulate a theorem describing properties of the computed template (e,M). The
theorem is crucial for proving soundness and completeness of compact symbolic
execution. Roughly speaking, the theorem says that whenever a node u of the
symbolic execution tree of a program P satisfies u.l = e, then the subtree rooted
in u has the property that each branch to a leaf contains a node w such that w.s
corresponds to the composition of u.s and a suitable instance of some program
state of the template (L1), and vice versa (L2). A proof of the theorem can be
found in the full version of this paper [20].

Theorem 1 (Template Properties). Let T be a classic symbolic execution
tree of P and let

(
e, {(l1, θ1JκK, ϕ1JκK), . . . , (ln, θnJκK, ϕnJκK)}

)
be a template for

a cycle (π, e,X) in P produced by Algorithm 1. Then the following two properties
hold:
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(L1) For each path π = uω in T leading from a node u satisfying u.l = e to a
leaf, there is a node w of ω, an index i ∈ {1, . . . , n}, and an integer ν ≥ 0
such that w.s ≡ u.s � (li, θiJνK, ϕiJνK).

(L2) For each node u of T , an index i ∈ {1, . . . , n}, and an integer ν ≥ 0 such
that u.l = e and (u.ϕ ∧ u.θ〈ϕiJνK〉) is satisfiable, there is a successor w of
u in T such that w.s ≡ u.s � (li, θiJνK, ϕiJνK).

3.3 Compact Symbolic Execution

The compact symbolic execution is formally defined by Algorithm 2. If we ignore
the lines marked by �, then we get the classic symbolic execution. As we focus
on compact symbolic execution, we describe the algorithm with � lines included.
The algorithm gets a program P and a finite set p of templates resulting from
analyses of some cycles in P . Lines 1–3 create an initial program state, insert it
into a queue Q, and create the root of a symbolic execution tree T labelled by
the state.

The queue Q keeps all the program states waiting for their processing in the
repeat-until loop (lines 4–26). The key part of the loop’s body begins at line 9,
where we select at most one template of p with entry location matching the
actual program location s.l. Note that there can be more than one template
available at s.l as more cyclic paths can go through the location. We do not put
any constraints in the selection strategy. We may for example choose randomly.
Also note that we may choose none of the templates (i.e. we select null), if
there is no template in p for location s.l or even if there are such templates in
p. If a template t = (s.l,M) is selected, then we get a fresh parameter (line 12)
and replace the original parameter in all tuples of M by the fresh one. This
replacement prevents collisions of parameters of already applied templates. The
foreach loop at lines 14–16 creates a successor state s′ for each program state
in M . If the template selection at line 9 returns null, we proceed to line 18 and
compute successor states of the state s by the classic symbolic execution. The
successor states with provably satisfiable path conditions are inserted into the
queue Q and into the compact symbolic execution tree T in the foreach loop at
lines 20–22. The successor states with provably unsatisfiable path conditions are
ignored as they correspond to infeasible paths. The foreach loop at lines 23–
25 handles the successor states with path conditions for which we are unable
to decide satisfiability; these states are inserted into the resulting tree T as so-
called failed leaves. A presence of a failed leaf in the resulting tree indicates
that applied symbolic execution has failed to explore whole path-space of the
executed program. We do not continue computation from these states as there
is usually a plethora of other states with provably satisfiable path conditions.

We finish this section by soundness and completeness theorems for compact
symbolic execution. We assume that T and T ′ are classic and compact symbolic
execution trees of the program P computed by Algorithm 2 without and with
�-lines respectively. The theorems hold on assumption that our satisfiable(ϕ)
function never returns UNKNOWN, i.e. neither T nor T ′ contains failed leaves.
Proofs of both theorems can be found in the full version of this paper [20].
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Algorithm 2. executeSymbolically

Input: a program P to be executed
and a finite set p of templates computed for cycles in P

Output: a symbolic execution tree T of P (compact tree in �–version)

1 s0 ←− (the starting location of P, θI , true)
2 Let Q be a queue of states initially containing only s0
3 Insert the root node labelled by s0 to the empty tree T
4 repeat
5 Extract the first state s from Q
6 if s.l is either an exit from P or an error location then
7 continue
8 S ←− ∅
9 t←− chooseTemplate(s.l, p)

10 if t 6= null then
11 Let M be the second element of t, i.e. t = (s.l,M)
12 κ←− getFreshParam()

13 Replace all occurrences of the former parameter in M by κ
14 foreach (l, θJκK, ϕJκK) ∈M do
15 s′ ←− s � (l, θJκK, ϕJκK)
16 Insert s′ into S

17 else /* apply classic symbolic execution step */
18 S ←− computeClassicSuccessors(P, s)

19 Let u be the leaf of T whose label is s
20 foreach state s′ ∈ S such that satisfiable(s′.ϕ) = SAT do
21 Insert s′ at the end of Q
22 Insert a new node v labelled with s′ and a new edge (u, v) into T

23 foreach state s′ ∈ S such that satisfiable(s′.ϕ) = UNKNOWN do
24 Insert a new node v labelled with s′ and a new edge (u, v) into T
25 Mark the node v in T as a failed leaf

26 until Q becomes empty
27 return T

Theorem 2 (Soundness). For each leaf node e ∈ T there is a leaf node e′ ∈ T ′
and a valuation ν of parameters in e′.s such that e.s ≡ e′.sJνK.

Theorem 3 (Completeness). For each leaf node e′ ∈ T ′ there is a leaf node
e ∈ T and a valuation ν of parameters in e′.s such that e.s ≡ e′.sJνK.

Note that in both theorems we discuss only the relation between all finite
branches of the trees T and T ′. Some infinite branches of T (like the one in
Figure 1(b)) corresponding to infinite iterations along a cyclic path need not be
present in T ′. As symbolic execution is typically used to cover as many reachable
program locations as possible, missing infinite iterations along cyclic paths can
be seen as a feature rather than a drawback.
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4 Experimental Results

Implementation. We have implemented both classic and compact symbolic
execution in an experimental tool called rudla. The tool uses our “library of
libraries” called bugst available at SourceForge [3]. The sources of Rudla
and all benchmarks mentioned below are available in the same repository. The
implementation also uses clang 2.9 [4], LLVM 3.1 [5], and Z3 4.3.0 [6].

Evaluation Criteria. We would like to empirically evaluate and compare the
effectiveness of the classic and compact symbolic execution in exploration of pro-
gram paths. Unfortunately, we cannot directly compare explored program paths
or nodes in the constructed trees as a path or a node in a compact symbolic exe-
cution tree have a different meaning than a path or a node in a classic symbolic
execution tree. To compare the techniques, we fix an exploration method of the
trees, namely we choose the breadth-first search as indicated in Algorithm 2,
and we measure the time needed by each of the techniques to reach a particu-
lar location in an analysed program. Note that for compact symbolic execution
we also have to fix a strategy for template selection since there can generally
be more than one template related to one program location. We always choose
randomly between candidate templates.

Benchmarks and Results. We use two collections of benchmarks. The first
collection contains 13 programs with a marked target location. As our technique
is focused on path explosion caused by loops, all the benchmarks contain typical
program loop constructions. There are sequences of loops, nested loops and also
loops with internal branching. They are designed to produce a huge number of
execution paths. Thus they are challenging for symbolic execution. The target
location is chosen to be difficult to reach. The first ten benchmarks have reach-
able target locations, while the last three do not. For these three benchmarks,
all the execution paths must be explored to give an answer.

Experimental results are presented in Table 1. The high numbers of (often
infeasible) cycles are due to our translation from LLVM (see [20] for details). We
want to highlight the following observations. First, classic symbolic execution
was faster only for benchmarks Hello and decode packets. Second, the number
of states visited by the compact symbolic execution is often several orders of
magnitude lower than the number of states visited by the classic one. At the
same time we recall that the semantics of a state in classic and compact symbolic
execution are different. Finally, presence of quantifiers in path conditions of
compact symbolic executions puts high requirements on skills of the SMT solver.
This leads to SMT failures, which are not seen in classic symbolic execution.

Algorithm 2 saves SMT failures in the form of failed leaves in the resulting
compact symbolic execution tree. Therefore, we may think about subsequent
analyses for these leaves. For example, in a failed leaf we may instantiate param-
eters κ by concrete numbers. The resulting formulae will become quantifier-free
and therefore potentially easier for an SMT solver. This way we might be able
to explore paths below the failed leaves. But basically, analyses of failed leaves
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Table 1. Experimental results of compact and classic symbolic executions. The com-
pact symbolic execution approach is divided into computation of templates and building
of compact symbolic execution tree. All the times are in seconds, where ’T/O’ identifies
exceeding 5 minutes timeout. ’Count’ represents the number of computed templates,
’Cycles’ shows the number of detected cycles. ’SMTFail’ represents the number of failed
SMT queries. There was no SMT failure during classic SE of our benchmarks.

Templates Compact SE SE

Benchmark Time Count Cycles Time States SMTFail Time States

hello 12.3 2 126 2.3 187 0 4.5 2262

HW 31.9 4 252 45.4 1048 4 T/O 223823

HWM 48.1 5 336 T/O 5125 24 T/O 162535

matrIR 4.2 4 28 82.9 1234 6 T/O 270737

matrIR dyn 14.8 5 30 240.5 2472 13 T/O 267636

VM 8.6 6 64 T/O 2274 64 T/O 205577

VMS 4.2 3 32 5.4 466 0 99.8 281263

decode packets 18.3 5 26 39.9 1276 0 16.3 8992

WinDriver 17.8 5 26 59.2 1370 1 T/O 206903

EQCNT 12.2 3 12 10.6 345 0 T/O 179803

EQCNTex 5.8 4 24 T/O 10581 0 T/O 251061

OneLoop 0.1 1 2 0.1 41 0 T/O 38230

TwoLoops 0.3 2 4 0.1 25 0 T/O 917343

Total time 240 1800 3900

Table 2. Experimental results of compact and classic symbolic executions on 79 SV-
COMP 2013 benchmarks in the category ’loops’. Time is in seconds. For compact SE
we provide template computation time plus execution time. ’safe’ and ’unsafe’ report
the numbers of programs where the tool decides unreachability and reachability of a
marked error location, respectively (all these answers are correct). ’timeout’ presents
the number of symbolic executions exceeding 5 minutes. ’unsupported’ represents the
number of compilation failures plus failures during an analysis. ’points’ shows the
number of points the tools would get according to the SV-COMP 2013 rules.

Time safe unsafe timeout unsupported points

Compact SE 300+4920 21 25 15 13+5 67

SE 8700 10 27 28 13+1 47

are a topic for our further research. Moreover, as SMT solvers are improving
quickly, we may expect that counts of the failures will decrease over time.

The second collection of benchmarks is the whole category ’loops’ taken from
SV-COMP 2013 (revision 229) [2]. The results are depicted in Table 2.

All the presented experiments were done on a laptop Acer Aspire 5920G (2
× 2GHz, 2GB) running Windows 7 SP1 64-bit.

5 Related Work

The symbolic execution was introduced by King in 1976 [16]. The original con-
cept was generalised in [14] for programs with heap by introducing lazy initialisa-
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tion of dynamically allocated data structures. The lazy initialisation algorithm
was further improved and formally defined in [9]. Another generalisation step
was done in [15], where the authors attempt to avoid symbolic execution of li-
brary code (called from an analysed program), since such code can be assumed
as well defined and properly tested.

In [19,12], the path explosion problem is tackled by focusing on program loops.
The information inferred from a loop allows to talk about multiple program paths
through that loop. But the goal is to explore classic symbolic execution tree in
some effective manner: more interesting paths sooner. Approaches [10,1] share
the same goal as the previous ones, but they focus on a computation of function
summaries rather than on program loops.

Our goal is completely different: instead of guiding exploration of paths in a
classic symbolic execution tree, we build a tree that keeps the same information
and contains less nodes. In particular, templates of compact symbolic execution
have a different objective than summarisation used in [10,1,12]. While summari-
sation basically caches results of some finite part of symbolic execution for later
fast reuse, our templates are supposed to replace potentially infinite parts of
symbolic executions by a single node.

Techniques [17,18] group paths of classic symbolic execution tree according
to their effect on symbolic values of a priori given output variables, and explore
only one path per group. We consider all program variables and we explore all
program paths (some of them are explored simultaneously using templates).

Finally, in our previous work [21] we compute a non-trivial necessary condi-
tion for reaching a given target location in a given program. In other words, the
result of the analysis is a first order logic formula. In the current paper, we fo-
cus on a fast exploration of as many execution paths as possible. The technique
produces a compact symbolic execution tree. Note that, we do not require any
target location, since we do not focus on a program location reachability here.
Nevertheless, to achieve our goal, we adopted a part of a technical stuff intro-
duced in [21]. Namely, lines 4–18 of Algorithm 1 are similar to the computation
of a so-called iterated memory, which is in [21] an over-approximation of the
memory content after several iterations in a program loop. In the current tech-
nique, the memory content must always be absolutely precise. Moreover, here
we analyse flowgraph cycles while [21] summarises program loops.

6 Conclusion

We have introduced a generalisation of classic symbolic execution, called com-
pact symbolic execution. Before building symbolic execution tree, the compact
symbolic execution computes templates for cycles of an analysed program. A
template is a parametric and declarative description of the overall effect of a
related cycle. Our experimental results indicate that the use of templates during
the analysis leads to faster exploration of program paths in comparison with
the exploration speed of classic symbolic execution. Also a number of symbolic
states computed during the program analysis is considerably smaller. On the
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other hand, compact symbolic execution constructs path conditions with quan-
tifiers, which leads to more failures of SMT queries.
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99, av. J.-B. Clément, 93430 Villetaneuse, France

2 Department of Computing, Mathematics, and Physics, Bergen University College,
Nygaardsgaten 112, Postbox 7030, 5020 Bergen, Norway

Abstract. This article introduces a parallel state space exploration algorithm for
shared memory multi-core architectures using state compression and state recon-
struction to reduce memory consumption. The algorithm proceeds in rounds each
consisting of three phases: concurrent expansion of open states, concurrent re-
duction of potentially new states, and concurrent duplicate detection. An impor-
tant feature of the algorithm is that it requires little inter-thread synchronisation
making it highly scalable. This is confirmed by an experimental evaluation that
demonstrates good speed up at a low overhead in workload and with little waiting
time caused by synchronisation.

1 Introduction

We consider in this article the problem of explicitly constructing the state space of a
system implicitly given through an initial state and a successor function that maps each
state to a set of successor states. This is the core operation performed by explicit state
model checkers in order to, e.g., verify safety properties and deadlock freedom, and
conduct temporal logic model checking. The large number of states combined with
the size of each state is a limiting factor for the practical use of standard explicit state
space exploration. For complex systems, like software or communication protocols, it
is not uncommon that the state vector (the data structure that unambiguously represents
a state) consumes up to the order of 100 bytes. One way to overcome this problem is to
store only a hash value for each state. This technique is known as hash compaction [15]
which is an incomplete method in that parts of the state space may not be explored if two
states have the same hash value. To guarantee full state space coverage in presence of
hash compaction, techniques based on state reconstruction [6,14] have been proposed.
These techniques reconstruct states from their compressed representation on-demand
when comparison of states is required in order to determine whether a newly generated
state has been already encountered, i.e. is a duplicate of an already explored state.
Clearly, the reconstruction of states implies an increase in exploration time.

One approach [7] to reducing the exploration time in presence of state reconstruction
is to delay the duplicate detection and thereby reduce the number of states that needs to
be reconstructed. The contribution of this paper is an orthogonal approach in the form
of an algorithm that reduces the exploration time by exploiting multiple threads (and
multi-core architectures) to perform the reconstruction of states in parallel. In addition,
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our algorithm processes open states in parallel. The algorithm maintains a state recon-
struction tree based on which all encountered states can be reconstructed and it proceeds
breadth-first in rounds each consisting of three phases. In the first phase, the threads tra-
verse the reconstruction tree in order to generate a frontier set consisting (in its basic
form) of the next breadth-first layer of states. In the second phase, duplicate states in the
frontier set are eliminated resulting in a candidate set of potentially new states. Finally,
in the third phase, threads perform state reconstruction to determine which candidate
states are new and such states are then added to the reconstruction tree.

The article is organised as follows. Sect. 2 introduces the basic notations and con-
cepts of transition systems used in order to make our presentation independent of a
particular modelling formalism. Sect. 3 gives a high-level overview of the operation of
our algorithm by means of a small example, and Sect. 4 provides the formal algorith-
mic details. An implementation of our algorithm is presented in Sect. 5 together with
the findings from an experimental evaluation. Finally, Sect. 6 concludes and discusses
further related and future work. The reader is assumed to be familiar with the basic
ideas of explicit state space exploration and associated model checking techniques.

2 Background

Let S be a universe of syntactic states and E a set of events. The system is given
through an initial state s0 ∈ S , a mapping enab : S → 2E associating with each state
a set of enabled events, and a mapping succ : S ×E → S used to generate a successor
state from a state and one of its enabled events. State space exploration is concerned
with computing the set of states reachable from s0, i.e. states s such that there exist
e0, . . . ,en−1 ∈ E , s1, . . . ,sn ∈ S with s = sn and, for all i ∈ {0, . . . ,n−1}: ei ∈ enab(si)
and succ(si,ei) = si+1. For simplicity, we use a function succ to obtain a successor
state from a given state and an event. This implies that events are assumed to be de-
terministic in order to reconstruct a unique state from a sequence of events in the state
reconstruction. Many modelling formalisms (including Petri nets) have deterministic
transitions (events). As shown in [14], state reconstruction can be extended to handle
non-deterministic events.

Algorithm 1(left) gives the basic algorithm for explicit state space exploration. It
maintains a set R of reached states and a set O of currently open states. The algorithm
iterates until there are no open states. In each iteration, an open state s is selected and
state expansion is performed by exploring all events enabled in s. Successor states that
have not been reached earlier are inserted into R and O.

State Reconstruction. Earlier [6,14], we have proposed to implement the reachability
set R as a hash table where full state vectors are not stored but each state is instead
represented by an integer (hash value) identifying it. The hash table now represents an
inverse spanning tree (a state reconstruction tree) rooted in the initial state, and where
nodes have references to one parent, each labelled with an event used to generate the
full state vector for the node. Figure 1 illustrates state reconstruction. The top of Fig. 1
shows the state space where the upper part of each node is the state vector, the bottom
part is its hash value, and the thick edges are edges represented by references in the
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Algorithm 1. A basic state space exploration algorithm (left) and a state space explo-
ration algorithm based on delayed duplicate detection (right)
1: R := {s0}
2: O := {s0}
3: while O �= /0 do
4: pick s in O ; O := O \{s}
5: for e ∈ enab(s),s′ = succ(s,e) do
6: if s′ /∈ R then
7: R := R ∪{s′}
8: O := O ∪{s′}

1: R := {s0} ; O := {s0} ; C := /0
2: while O �= /0 do
3: pick s in O ; O := O \{s}
4: for e ∈ enab(s),s′ = succ(s,e) do
5: C := C ∪{s′}
6: if O = /0 or doDuplicateDetection() then
7: N := C \R ; C := /0
8: R := R ∪N ; O := O ∪N

spanning tree. The lower part of Fig. 1 is a linearised graphical representation of the
hash table implementing R where dashed arcs represent references to parents in the
reconstruction tree and are labelled by generating events. Note that state vectors appear
in the table for the sake of clarity, but they are not stored in memory.
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Fig. 1. State reconstruction

When required, the state vector for a node can be re-
constructed by backtracking up to the root (initial)
node for which we have the full state vector, and
then forward execute the reconstructing sequence
of events on the path leading from the initial node
(state) to the node in question. This is performed
each time the algorithm generates a successor state s′

from an open state s. As an example, consider Fig. 1
and assume that the algorithm has explored states s0

to s3 and is expanding s4 corresponding to the ex-
ploration of the two dotted edges. The expansion of
s4 generates s2 and s5 both hashed to 7. To decide
whether s2 is new, we reconstruct all nodes of the re-
construction tree that are also hashed to 7 as these
could potentially have the same state vector. These correspond to the grey cells of the
hash table. For the first cell (s2), we have to follow references labelled b, a to the ini-
tial node (state) and finally execute the reconstruction sequence a.b starting from the
initial state. Since this execution produces state s2, we conclude that executing e from
s4 does not generate a new state. For state s5, we have to reconstruct s2 using again
a.b as reconstructing sequence, and s4 using the reconstructing sequence a.c. Since
succ(succ(s0,a),b) �= s5 and succ(succ(s0,a),c) �= s5, then s5 is new and is inserted in
the hash table with a reference to its parent s4 labelled with event f .

Delayed Duplicate Detection. Duplicate detection refers to the the process of check-
ing if a generated state already belongs to the reachability set R (l. 6 of Alg.1 (left))
and is often the most expensive operation performed by the algorithm in particular in
combination with state reconstruction. The principle of delayed duplicate detection is
that the number of state reconstructions can be reduced if these checks were grouped
and performed once. Duplicate detection is delayed because each generated state is not
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directly looked for in R but put in a candidate set C , and only occasionally is this set
compared to R . Algorithm 1 (right) also performs state space exploration but relies on
the principle of delayed duplicate detection. New successor states are put in the can-
didate set C . When the open set is empty or if, for example, the candidate set reaches
a specific threshold (l. 6), the algorithm will identify new candidate states (set N ) by
comparing sets C and R . The resulting set will then be inserted in R and O as the basic
algorithm would have done for individual states. When applied in the context of state
reconstruction, delayed duplicate detection allows to group the reconstruction of states
and, hence, execute only once the common prefixes of reconstructing sequences [7] and
also reduce the number of reconstructions performed. On our example of Fig. 1, the
candidate set would contain, after the expansion of s4, the states s2 and s5. Duplicate
detection reconstructs s2 and s4 together and grouping the execution of reconstructing
sequences a.b and a.c allow to execute event a once rather than twice and only recon-
struct s2 once.

3 Algorithm Overview and Example

The primary data structure maintained by our new parallel algorithm is a reconstruc-
tion tree as introduced in the previous section representing all encountered states. As
a further extension compared to earlier work [6,7,14], we do not use a separate data
structure to store open states. Instead, we use the reconstruction tree to also on-the-fly
reconstruct open states during exploration which further reduces memory consumption.

Our algorithm proceeds breadth-first in rounds where each round explores the next
breadth-first search (BFS) level. As depicted in Fig. 2, then each round consists of
three phases. The first phase uses the current reconstruction tree T to construct lists
of successor states for the currently open states. The second phase merges the lists of
successor states to obtain a candidate set C of potentially new states. The third step per-
forms duplicate detection to find new states, i.e. states in C that are not represented in
T . Within each phase, all threads cooperate and must synchronise before the algorithm
proceeds to the next phase (and hence round). Within each phase, additional synchro-
nisation barriers are employed and represent the only form of synchronisation used by
our algorithm. The algorithm proceeds into the next round as long as duplicate detection
results in states that are not yet represented by the reconstruction tree.

Below we illustrate the three phases of our algorithm in more detail starting from the
partial state space shown in Fig. 3 where the initial state s0 is assumed to have already
been expanded, leading to four new successors s1, s2, s3, and s4, as shown in Fig. 3.
States are stored in the reconstruction tree as a hash value with a reference to their

(1) Expand
open states

(2) Merge (3) Duplicate
detection

C \T

Candidate set C
Successor states NReconstruction tree T

Fig. 2. A round exploring one BFS level in three phases
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parent node and the event that was used to generated the state from the parent state. We
do not explicitly show this in the figures to improve readability. In the example, two
states with the same hash value carry the same name, but are distinguished with primes,
e.g. s4 and s′4 have different state vectors but are mapped to the same hash value. We
denote by W the number of threads taking part in the exploration of the state space,
and assume that each worker is identified by an integer in the range from 0 to W −1.

s0

s2

s1
s3

s4

Fig. 3. Initial reconstruction tree

Phase 1: Expand Open States. Threads traverse
the reconstruction tree using random depth-first
search. Randomisation is used in order to break the
symmetry between threads and ensure that they can
work on different parts of the reconstruction tree.
Open states (i.e. leafs at the bottom of the tree) are expanded and their successors put
in a successor lists structure N consisting of W state lists (one per thread). Since each
thread w inserts states in the list of the wth slot only, no synchronisation is required.
When inserting new states in N , no duplicate detection is performed: each successor
state of an open state is inserted at the end of the appropriate list of the structure N and
a state may hence be present in different slots of the array. Considering the example in
Fig. 3, then this first step of the algorithm expands the nodes s1 to s4 by generating their
successors, as depicted by the dotted elements in Fig. 4(left). This phase ends when leaf
states have all been expanded (i.e. the current BFS level has been explored) or when the
size of structure N reaches a specific threshold. In the case of four threads, we obtain
the successor lists shown in Fig. 4(right). In general, the expansion can be performed
concurrently by any number of threads.

Phase 2: Merge. The second phase consists of merging the successor lists of N into
a single set C , hence removing the duplicate successors present in these lists. Merging
the states present in the successor lists in Fig. 4(right) results in the candidate states:
s′4,s5,s4,s6,s7,s′3,s2. This second phase can be realised using a parallel sort and merge
algorithm [9] or hashing on a matrix structure as in our implementation (see Sect. 5).

Phase 3: Duplicate Detection. The last phase removes from C the states already rep-
resented in compressed form in the reconstruction tree. Phase 3 first performs bottom-
up tagging (marking) of the nodes to be reconstructed (tagged R) and their ancestors
(tagged A). Considering the example in Fig. 5(a) and the list of candidates from phase

s0

s2

s1
s3

s4

s5s4 s′4
s6 s′4

s7 s7s2 s′3

s′4 s5 s4

s′4 s6

s7

s′3 s7 s2

Fig. 4. Phase 1: Expansion of open states (left) and array of successor lists (right)
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s0

s2

s1
s3

s4

A

R R R

s′4 s5 s4 s6 s7 s′3 s2

(a) Step 3: Tagged tree and candidates

s0

s2

s1
s3

s4

A

R R

s′4 s5 s4 s6 s7 s′3

(b) After reconstruction of s2

s0

s2

s1
s3

s4

A

R

s′4 s5 s6 s7 s′3

(c) After reconstruction of s4

s0

s2

s1
s3

s4

s′4 s5 s6 s7 s′3

(d) After reconstruction of s3

Fig. 5. Phase 3: Tagging following by state reconstruction and duplicate detection

2: since s′4 is a candidate, and has the same hash value as s4, s4 is marked R and its only
ancestor, s0 marked A. This is achieved using the references to parent nodes. There is
no node in the reconstruction tree with the same hash value as state s5. Then s4 is a
candidate, and it is already marked in the tree. As soon as a state is encountered already
having an identical tag, then tagging stops, and the next candidate is processed. The
resulting tagged reconstruction tree is depicted in Fig. 5(a).

Each of the nodes marked R must be reconstructed, and each node marked A is the
ancestor of such a node. Starting from the initial state, the threads perform a random for-
ward traversal of the tree via tagged nodes. Let us assume that from s0, the branch of s2

is explored. This latter state is reconstructed from s0 and the event to s2. The actual value
of state s2 is compared to the candidate states. Since it is found, s2 already exists and
can be removed from the candidates set. Moreover, the R tag is removed from s2. The
resulting tree and candidates set are shown in Fig. 5(b). Next, backtracking is performed
since s0 still has tagged successor states, so, e.g. the branch with s4 may be explored.
When s4 is reconstructed, the reconstructing thread finds that the state is in the candi-
dates set, so it is removed from it, but s′4 is kept since, even though it has the same hash

s0

s2

s1
s3

s4

s5 s′4
s6 s7 s′3

Fig. 6. Updated state tree

value, the actual state is different. The result in
shown in Fig. 5(c). Then the process continues, e.g.
with state s3. Finally, as shown in Fig. 5(d), state s0

has no more tagged successors, and can be untagged,
finishing the reconstruction phase. At the end of the
exploration, states remaining in C are guaranteed to
be new and can thus be inserted in the reconstruction
tree. The resulting reconstruction tree for the exam-
ple is shown in Fig. 6. A new round is now initiated
on the updated reconstruction tree. To maintain a strict breadth-first search order, the
expansion of the new states will occur only when all states of the current BFS level
have been expanded. This constraint can be relaxed, but we have chosen to maintain
this search order as it guarantees the minimality of reconstruction sequence lengths.
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4 Algorithmic Details

Reconstruction Tree T . The central data structure is the reconstruction tree. For spec-
ification of the algorithm, we assume that its nodes are identifiers of some set ID (e.g.
set of integers) and that from one node identifier its children and its parent in the tree
can be obtained using: parent(id) that maps a node identifier id to the identifier of its
parent (or to ⊥ if the node is the root); and children(id) that maps a node identifier id
to the set of pairs (id′,e) such that parent(id′) = id and the arc from node id to id′ is la-
belled with the event e. The only operation that modifies the tree structure is newNode.
newNode(id,e) inserts a new node and creates a reference from the new node to the
node id labelled by event e. newNode(⊥) inserts a root in the tree. In both cases, the
operation returns the identifier of the new node that is not labelled by any tag.

Node Tagging. As discussed earlier, nodes are labelled by a set of tags used to prune
the traversal of the reconstruction tree. Three operations are used to manipulate tags:
tagged (checks whether a node has a specific tag), tag (sets a tag on a node), and untag
(removes a tag from a node). Our example from the previous section introduced two
tags (R and A) used during duplicate detection (phase 3). Two additional tags (E0 and
E1) are used during the expansion phase (phase 1) to tag nodes to expand. The E0 and
E1 are used in an alternating manner between rounds such that in odd numbered rounds
E0 marks nodes to be expanded and E1 marks nodes to be expanded in the next (even
numbered) round. In an odd numbered round, a node has the E0 tag if it has children
with this same tag or if it corresponds to an open state (in which case it can not have any
children yet). Furthermore, the expansion of open states will then create new nodes in
the tree having the E1 tag and also tag nodes on the way up from these new nodes to the
root node with E1. Traversing nodes with the E0 (resp. E1) thus leads to open states of
the current (next) expansion phase. When a round is completed E0 and E1 swap roles.
One E tag is not sufficient because nodes can be independently marked for expansion
in the current and in the next phase. Note that a node may be simultaneously labelled
by several tags.

Successor Lists N and Candidate Set C . The elements of N and C are triples of the
form S× ID×E . A triple (s, id,e) represents that state s has been reached from the node
id by executing event e on the state corresponding to id. The first item is used during
duplicate detection while the second and third items are used in case the candidate state
is actually new and must be inserted in the tree using the newNode operation. After
merging elements of N in C (phase 2 of Fig. 2) there cannot be two elements (s, id,e)
in (s′, id′,e′) in C with s= s′.

In addition to the data structures described above, three shared data structures are re-
quired by the algorithm. The array done contains W booleans indicating which threads
have finished their exploration of the current BFS level. It is used to decide when the
current BFS level has been completely expanded and threads can move to the next level.
An alternating bit r initialised to 0 identifies which tag among E0 and E1 is used to in-
dicate nodes that must be explored during the current expansion phase.

Algorithms 2, 3 and 4 contain the pseudo-code of our algorithm. The w subscript
of the procedures identify the working thread executing the procedure. Apart from the



Multi-threaded Explicit State Space Exploration with State Reconstruction 215

Algorithm 2. ParReconstruction, Initialisation and main worker procedure
1: algorithm ParReconstruction is
2: done := [false, . . . , false] ; r := 0
3: id0 := newNode(⊥) ; tag(id0,E0)
4: spawn worker0() || . . . || workerW−1()
5: procedure workerw() is
6: while tagged(id0 ,Er) do
7: expandLevelw()
8: if w= 0 then r := ¬r
9: barrier()

Shared Data
T the state tree initially empty
C the candidate set initially empty
N the successor lists initially empty

done array of W booleans
r bit
id0 identifier of the initial state in T

shared data specified in Alg. 2, all other variables are thread local. We have underlined
the different barriers that must be executed simultaneously by the W threads so as to
highlight synchronisation points. The variable id0 is used to store the root node. Thread
0 is the only thread that modifies the values of r and id0.

Initialisation and Main Worker Procedure (Alg. 2). The main procedure ParRecon-
struction inserts the initial state in the reconstruction tree and records its node identifier
in the shared variable id0. This node is then tagged for expansion and the procedure
spawns W instances of the main worker procedure workerw. The loop at l. 6 iterates
over all BFS levels expanded using the expandLevelw procedure introduced below. We
use the Er tag to decide when a thread can terminate. For any node, the tagging proce-
dure guarantees that if a node is tagged with Er, then so is its parent in the tree. Thus,
an untagged root guarantees that no state is tagged for expansion. The barrier at l. 9
is related to duplicate detection as will be discussed shortly. It is the responsibility of
thread 0 to swap the r bit before all threads can start processing the next BFS level.

Phase 1: State Expansion (Alg. 3). The expansion procedure expandLevelw expands
open states of a BFS level. The working thread w first launches a DFS exploration from
the root of the tree using procedure dfsExpandw that is parameterised by the identifier
of the visited node in the tree (id) and the corresponding full state vector (s). In case
the visited node is a leaf (ll. 12–15), the worker puts all its successors in list N [w]
and enters the duplicate detection phase if this structure reaches a specified threshold.
Otherwise (ll. 16–19), the thread picks all children of the node one by one in the random
order obtained using the random function, and explores those that have the Er tag set
as these nodes may lead to open states. To maintain the correspondence between nodes
and states, procedure dfsExpandw is recursively called (l. 19) with the identifier of the
child id′ and the state obtained by executing on s the event e labelling the arc from id to
id′, i.e. the state s′ such that succ(s,e) = s′. When node id has been processed, the Er

tag can be removed from it to signal to other threads that this node has been processed.
After the threads have finished exploring the tree, a last duplicate detection is re-

quired since successor lists might not be empty (l. 6). Moreover, after exploration, a
thread also has to be ready to perform duplicate detection as long as some workers have
not yet finished their exploration. These threads may still be feeding successor lists and
hence call the duplicate detection procedure (l. 15) that must be executed by all threads.
This is where the shared array done is used. A thread will keep performing duplicate
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Algorithm 3. Procedures used during the state expansion phase
1: procedure expandLevelw() is
2: done[w] := false
3: dfsExpandw(id0,s0)
4: done[w] := true
5: do
6: allDone := duplicateDetectionw()
7: while ¬allDone
8: procedure expandStatew(id,s) is
9: for e ∈enab(s) do

10: append(N [w],(id,succ(s,e),e))

11: procedure dfsExpandw(id,s) is
12: if children(id) = /0 then
13: expandStatew(id,s)
14: if |∑xN [x]|> MemoryLimit then
15: duplicateDetectionw()
16: else
17: for (id′,e) ∈random(children(id)) do
18: if tagged(id′,Er) then
19: dfsExpandw(id′,succ(s,e))
20: untag(id,Er)

detection until all threads have finished their exploration and executed the assignment
at l. 4. Procedure duplicateDetectionw introduced below returns a boolean value speci-
fying if all threads have finished expanding the current level. This check is performed
between two barriers (l. 3 of Alg. 4) in a block of statements that does not modify the
content of array done to ensure that its outcome will be the same for all threads.

Phases 2 and 3: Merge and Duplicate Detection (Alg. 4). Procedure duplicate
Detectionw corresponds to phases 2 and 3 and can be decomposed into four sub-steps.
The entry in each sub-step is protected by a barrier. A thread first awaits all its peers
to have called the procedure and be waiting at the barrier at l. 2. The parallel merge of
successor lists N in the candidate set C (Phase 2 of Fig. 2) can then take place (l. 2).

Before exploring the reconstruction tree to remove duplicate states from C , all
threads first start to mark (with R and A tags) the appropriate branches using proce-
dure tagNodesforDDw (l. 4) in order to avoid reconstructing all states. For efficiency
reasons, we assume that the data structure implementing the candidate set can be par-
titioned in W classes and that a thread can recover the class it is responsible for using
the function ownedCandidates (l. 17). For a candidate state c, the nodes that must be
reconstructed are all nodes that have the same hash value as c (ll. 18–21) because these
might, after reconstruction, match with c. It is the purpose of the conflict function used
at l. 19 to return the identifiers of these nodes. The tagPathw procedure is used to put a
specific tag on a node and all its ancestors. It stops as soon as it reaches the root or a
node that already has this tag (in which case all its ancestors also have it).

The reconstruction begins when all threads have finished tagging the branches that
need to be explored. The exploration procedure dfsDDw used to reconstruct states fol-
lows the same pattern as procedure dfsExpandw of Alg. 3. Reconstructed states removed
from the candidate set C are those with the R tag (ll. 23–25) and nodes explored are
those with the A tag (ll. 26–31). In both cases, a processed node is untagged.

All threads must have finished their exploration in order to decide which candidate
states are actually new. Thread 0 is then responsible (l. 6) for inserting the new states
(those that are still present in C ) in the tree using the procedure insertNodesw. Only the
last two components of the candidates are required for insertion: the identifier (parentId)
of the node of which the expansion generated the candidate and the event used to gen-
erate it. A new node is then inserted in the tree and the tag E¬r is put on all nodes
on the path from the initial node to this new node to signify that this node must be
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Algorithm 4. Procedures used during merge and duplicate detection phases

1: procedure duplicateDetectionw() is
2: barrier(); parallelMerge(N ,C )
3: allDone := ∧x∈{0,...,W−1}done[x]
4: barrier(); tagNodesForDDw()
5: barrier(); dfsDDw(s0, id0)
6: barrier(); if w= 0 then insertNodesw()
7: return allDone
8: procedure tagPathw(id, tag) is
9: while id �=⊥ ∧¬tagged(id, tag) do

10: tag(id, tag)
11: id := parent(id)
12: procedure insertNodesw() is
13: for ( ,parentId,e) ∈ C do
14: id := newNode(parentId,e)
15: tagPathw(id,E¬r)

16: procedure tagNodesForDDw() is
17: for (s, , ) ∈ ownedCandidates(w) do
18: h := hash(s)
19: for id ∈ conflict(h) do
20: tag(id,R)
21: tagPathw(parent(id),A)
22: procedure dfsDDw(id,s) is
23: if tagged(id,R) then
24: removeCandidate(s)
25: untag(id,R)
26: if tagged(id,A) then
27: for (id′,e) ∈random(children(id)) do
28: if tagged(id′,A)
29: or tagged(id′,R) then
30: dfsDDw(id′,succ(s,e))
31: untag(id,A)

expanded. This insertion step is performed only by thread 0 because the data structure
we have chosen for the reconstruction tree does not easily support concurrent insertions
although it allows for multiple concurrent read accesses (or node tagging/untagging).
Therefore, other threads may proceed to the next expansion step as thread 0 inserts new
nodes in the tree. As an extension, this insertion step could also be parallelised. The
only situation where other threads have to wait for thread 0 to finish this insertion is
when a BFS level has been completely processed, i.e. duplicate detection and insertion
was not triggered by a threshold in l. 13 of procedure dfsExpand. They will then be
waiting at the barrier of procedure expandLevelw (l. 7 of Alg. 3).

5 Implementation and Experimental Evaluation

We have integrated our algorithm in the Helena tool [4]. We discuss below the most im-
portant implementation aspects and present the results from an experimental evaluation
of our algorithm based on the Helena implementation.

Implementation. The implementation uses the pthread library that provides synchro-
nisation barriers. The reconstruction tree T is implemented as a fixed size hash table
using open addressing with linear probing. This allows to support multiple read ac-
cesses with a single insertion as performed when thread 0 inserts new nodes in the
reconstruction tree while other threads continue their expansion of open states. A main
requirement is the possibility to get the parent and children of a node. To reduce the
number of pointers and save memory, we represent kinships as linked lists where the
parent node stores the identifier (i.e. the slot of the hash table) of its first child in field
fstChild and each child stores the identifier of the next child in field next. Only the last
child of the list (identified using a last bit set to 1 while the previous children have it
set to 0) points with next to the parent node. Fig. 7 provides an illustration of this for an
example tree. To enumerate the children of a node, we first follow its fstChild pointer
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Fig. 7. Implementation of the re-
construnction tree. Dashed lines
represent the fstChild pointers. Dot-
ted lines represent the next point-
ers. Gray cells identify nodes with
last = 1.

and then the next pointers of its children until the last
child with last = 1 is met. Recovering the parent of
a node is done by following the next pointers until
the last child is met and then by following the next
pointer to reach the parent. This means that we can-
not get the parent of a node in constant time but this
is not a practical problem as the number of children
is usually low.

This representation requires 2 · log2(|ID|)+1 bits
per node for the fstChild and next pointers and the
last bit. Four more bits are required for tags (R, A,
E0 and E1) and log2(|E |) bits for the event gener-
ating the node from its parent. Hence, a node can
be encoded in 2 · log2(|ID|)+ 5+ log2(|E |) bits. To
have a representation that is model independent, we
encode in each node an event number (the number
in the list of enabled events of the parent) rather than the event itself. This requires to
recompute enabled events when exploring the tree but leads to significant savings for
models such as high-level Petri nets, where events are often complex data structures. We
also implemented the fresh successor heuristic [10] that, in our context, forces threads
to engage in part of the state tree that no thread is currently visiting. Implementing this
heuristic requires two bits per node (one for the expansion step and one for the duplicate
detection step) to tag branches where threads are currently engaged.

To avoid concurrent accesses in the successor lists of N , we implemented this data
structure as a matrix of size |W ×W | where each cell stores a list and using a hash
function hash on states. During the expansion step, a worker w inserts any new succes-
sor state s in the list of cell (w,hash(s) mod W ). During the merging step performed
to merge states of successor lists N into table C , a worker thread w ∈ {0, . . . ,W − 1}
is responsible for moving from N to C all states s with hash(s) mod W = w. Thus,
during the merging step, it only needs to merge states contained in the list of cells (x,w)
for x ∈ {0, . . . ,W − 1} and because of the use of the hash function no such states can
be in a hash conflict with states processed by other threads. Since the expansion and
merging steps cannot overlap due to the use of barriers, there cannot be any concurrent
insertions or deletions on the lists in N . The candidate set C is also implemented as a
fixed size hash table, and a state can only be inserted (if not already present) in a slot l
of C such that l mod W = w. Hence, there cannot be concurrent accesses on a same
slot of C during the merging step. During the duplicate detection step occurring right
after, the deletion of a state is simply made by swapping a bit in the slot of the deleted
state. These choices imply that C can be implemented without locks.

Experimental Setup and Results. We have conducted our experiments on the mod-
els of Table 1. The Time reported (in seconds) are those obtained with a sequential
algorithm, i.e., with a single worker. Helena has its own modelling language for high-
level Petri nets and can also analyse automata written in the DVE language, the input
language of the DiVinE model checker [1]. We have selected a set of 10 models having
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Table 1. Models used for experimental evaluation

Helena models
Model States Arcs Time

eratosthene 195.3 M 1.252 G 9,689
leader 188.9 M 2.530 G 24,086

neo-election 406.1 M 3.796 G 40,943
peterson 172.1 M 860.7 M 5,105
slotted 189.1 M 1.742 G 12,018

DVE models
Model States Arcs Time

collision.5 431.9 M 1.644 G 7,570
firewire-link.3 425.3 M 1.621 G 8,782

iprotocol.8 447.5 M 1.501 G 7,505
pub-sub.5 1.153 G 5.447 G 49,395
synapse.9 1.675 G 3.291 G 64,842

a set of reachable states ranging from 172 millions (M) to 1.675 billions (G) of states.
The memory limit, measured as the maximal number of state vectors the algorithm can
keep in memory (in the successor lists and, hence, in the candidate set) was set, for all
runs, to one thousandth of the reachable states of the model. We performed our experi-
ments on a 12-core computer with 64 GB of RAM and evaluated our algorithm on each
model with 1 to 12 worker threads. Note that, when using a single thread, our algorithm
becomes identical to the sequential algorithm of [7] that uses state compression, state
reconstruction, and delayed duplicate detection, except for some minor differences on
the data structures used, and the implicit representation of the open set.

Our experimental results have been plotted in Fig 8. On the horizontal axis of the
three plots is the number of working threads used ranging from 1 to 12. The top plot,
entitled Speed-up, gives execution times as the ratio of the execution time for 1 thread
over the execution time for n threads. The middle plot, entitled Event execution, gives
the total number of events executed (at any step of the algorithm and by any thread) for
n threads relatively to the same number for 1 thread. This measure provides a means to
evaluate how good the work is balanced among threads. The bottom plot, Barrier time,
gives, as a percentage of the total execution time, the time spent by threads at barriers
waiting for other threads to join them. It is computed as the average over all threads of
the individual barrier times and is reported in percentage of the overall execution time.

Interpretation of Results. The Speed-up plot shows a stable speed-up as the number
of threads involved increases. As a general trend, Helena models (see Table 1(left)) have
better speed-ups than DVE models (see Table 1(right)) considering that Helena mod-
els are penalised by a larger redundant work factor (see the Event execution plot). We
conjecture that this is due to the cost of model operations (computing enabled events,
executing events) that are much more costly for high-level Petri nets than for DVE
models. Since these operations are purely local and do not need to access shared data
structures (the reconstruction tree or the candidate set) they can be more efficiently par-
allelised. Also note that the algorithm is resilient with respect to the random function
we used. We do not provide these results here due to lack of space, but we observed that
performance never significantly differed between two runs on the same model.

As expected, the workloads shown by the Event execution plot increase with the
number of threads but usually following a logarithmic progression. For the four models
standing out with a larger amount of redundant work (eratosthene, leader, neo-election
and slotted), we see a correlation with the high proportion of arcs of the state space with
an average number of arcs per state ranging from 6 up to 13 (see Table 1); and with their
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state spaces that have diamond like structures. Due to the way nodes are inserted in the
reconstruction tree, this automatically increases the proportion of nodes that have no
(or few) children nodes in the tree which in turn decreases the potential parallelism. For
instance, if two states at the same BFS level have the same successors states, the first
state visited among the two will have some successors in the tree whereas the second
one will not have any. This situation often occurred for the models mentioned. For these
four models we observed that once the exploration completed, the proportion of leaves
in the tree reached 65%–70%. For other models, this proportion is around 40%–50%.

The Barrier time plot shows that the waiting times remain low with an average (over
all runs involving more than 1 thread) of less than 2% of the total exploration time. In
the worst case, this time represented around 2.5% of the exploration time (for model
synapse.9). Moreover, unlike for event executions, there is no real correlation between
the number of working threads and waiting times observed and increasing the number
of threads does not seem to have any negative effects in that respect.
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6 Conclusion and Perspectives

This paper is the logical continuation of previous work based on the principle of state
reconstruction that can significantly reduce the memory usage in state space exploration
by avoiding the storage of full state vectors of states while maintaining a full coverage
of the state space. The foundations of this method have been established in [6,14] and
then extended in [7] with the principle of delayed duplicate detection that allows group-
ing state reconstructions and, hence, saves the redundant executions of shared recon-
structing sequences. We also conjectured in [7] that parallelisation could further reduce
the cost of duplicate detection. Following this intuition, we developed in this paper an
algorithm designed for multi-core processors that preserves previous characteristics in
terms of state reconstruction [6,14] and delayed duplicate detection [7].

A main feature of our algorithm is that locks can be avoided by the use of synchro-
nisation barriers separating the different steps of the algorithm. A key property of the
algorithm is also that the size of the frontier set can be bounded by a predefined thresh-
old making the memory consumption predictable. A series of experiments done with
Helena on a 12-core computer has shown good speed-up with negligible waiting times
and a low amount of redundant work (threads that simultaneously engage in the same
branch of the tree). The low barrier times show that synchronisation represents a very
small overhead which leaves little room for further improvement in that respect. Our
observations rather lead us to pursue two directions to further improve the speed-up of
our algorithm. First, despite its low memory usage, the data structure we have chosen
for the reconstruction tree does not show enough locality. Since the children of a node
can be anywhere in the state table due to the hashing mechanism, traversing the tree
requires accessing multiple memory areas which in turn means frequent cache misses.
It is then relevant to design and experiment with a different data structure that takes
better advantage of caching. Second, redundant explorations are still problematic for
some models even if the fresh successor heuristic turned out to be quite efficient in that
it allowed to reduce the overall workload by a factor of 10–20%. Besides the use of ap-
propriate heuristics, it is also important to address the unbalanced distribution of child
nodes (i.e. situations where two states have similar successor states but only one has
children in the state tree) that we observed for a few models.

Related Works. Several data structures have been designed for multi-core model check-
ing or reachability analysis: [11,12,13]. All have in common to avoid the use of locks.
The approach that seems the closest to ours is the tree database proposed in [12] as it
is designed for high scalability while making use of state compression. Speed-ups re-
ported in [12] are clearly better with this tree database structure: the average speed-up
on all models of the BEEM database is almost optimal. Nevertheless our algorithm still
has some advantages over [12]. First, its memory usage is model independent which is
not true for the tree database although, on the average, compression ratios are excel-
lent for BEEM models (around 8 bytes per state [12]). Second, the algorithm of [12]
assumes fixed width state vectors, an assumption that does not hold for specification
languages such as high-level Petri nets. Last, the support of a delete operation does not
seem straightforward in the tree database and hence it is not obvious how to combine it
with reduction techniques based on on-the-fly state deletions.
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Perspectives. To further assess the scalability of our algorithm a direct practical per-
spective is to experiment with it with larger models and on massively parallel architec-
tures (e.g. 256-core machines).

The reconstruction tree can be used to check basic properties such as system invari-
ants or to perform offline LTL or CTL model checking. It is relevant to study how our
algorithm could serve as a basis for the implementation of on-the-fly LTL algorithms
that are compliant with the breadth-first search order, e.g. [3,8]. A last perspective is to
study how our algorithm combines with other reduction techniques. The state caching
reduction we proposed in [5] maintains a termination detection tree (TD-tree) to keep
track of open states. Termination is guaranteed if all states of the TD-tree are kept in
memory and these consists of all nodes tagged with E0 or E1 in our parallel algorithm.
Hence, all other nodes can be safely discarded. For partial order reduction, a breadth-
first search compatible solution has been proposed in [2]. For both reductions [2,5] it
remains to be investigated how they can be efficiently combined with our algorithm.
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1. Barnat, J., Brim, L., Češka, M., Ročkai, P.: DiVinE: Parallel Distributed Model Checker. In:
HiBi/PDMC 2010, pp. 4–7. IEEE (2010)
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3. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors Are Better than Back
Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

4. Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Darondeau, P.
(eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg (2005)

5. Evangelista, S., Kristensen, L.M.: Search-Order Independent State Caching. In: Jensen,
K., Donatelli, S., Koutny, M. (eds.) ToPNoC IV. LNCS, vol. 6550, pp. 21–41. Springer,
Heidelberg (2010)

6. Evangelista, S., Pradat-Peyre, J.-F.: Memory Efficient State Space Storage in Explicit Soft-
ware Model Checking. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 43–57.
Springer, Heidelberg (2005)

7. Evangelista, S., Westergaard, M., Kristensen, L.M.: The ComBack Method Revisited:
Caching Strategies and Extension with Delayed Duplicate Detection. In: Jensen, K., Billing-
ton, J., Koutny, M. (eds.) ToPNoC III. LNCS, vol. 5800, pp. 189–215. Springer, Heidelberg
(2009)

8. Holzmann, G.J.: Parallelizing the Spin Model Checker. In: Donaldson, A., Parker, D. (eds.)
SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)

9. Jaja, J.: Parallel Algorithms. Addisson-Wesley (2002)
10. Laarman, A., van de Pol, J.: Variations on Multi-Core Nested Depth-First Search. In: PDMC

2011, pp. 13–28 (2011), http://arxiv.org/abs/1111.0064v1
11. Laarman, A., van de Pol, J., Weber, M.: Boosting Multi-Core Reachability Performance with

Shared Hash Tables. In: FMCAD 2010, pp. 247–255. IEEE (2010)
12. Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for Free.

In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823, pp. 38–56.
Springer, Heidelberg (2011)

http://arxiv.org/abs/1111.0064v1


Multi-threaded Explicit State Space Exploration with State Reconstruction 223

13. Saad, R.T., Dal-Zilio, S., Berthomieu, B.: Mixed Shared-Distributed Hash Tables Ap-
proaches for Parallel State Space Construction. In: ISPDC, pp. 9–16. IEEE (2011)

14. Westergaard, M., Kristensen, L.M., Brodal, G.S., Arge, L.: The ComBack Method – Extend-
ing Hash Compaction with Backtracking. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 445–464. Springer, Heidelberg (2007)

15. Wolper, P., Leroy, D.: Reliable Hashing without Collision Detection. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)



Verification of Heap Manipulating Programs
with Ordered Data by Extended Forest Automata
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Abstract. We present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on ordering relations
between stored data values. The underlying formalism of our framework is that
of forest automata (FA), which has previously been developed for verification
of heap-manipulating programs. We extend FA by constraints between data el-
ements associated with nodes of the heaps represented by FA, and we present
extended versions of all operations needed for using the extended FA in a fully-
automated verification approach, based on abstract interpretation. We have imple-
mented our approach as an extension of the Forester tool and successfully applied
it to a number of programs dealing with data structures such as various forms of
singly- and doubly-linked lists, binary search trees, as well as skip lists.

1 Introduction

Automated verification of programs that manipulate complex dynamic linked data struc-
tures is one of the most challenging problems in software verification. The problem
becomes even more challenging when program correctness depends on relationships
between data values that are stored in the dynamically allocated structures. Such order-
ing relations on data are central for the operation of many data structures such as search
trees, priority queues (based, e.g., on skip lists), key-value stores, or for the correctness
of programs that perform sorting and searching, etc. The challenge for automated verifi-
cation of such programs is to handle both infinite sets of reachable heap configurations
that have a form of complex graphs and the different possible relationships between
data values embedded in such graphs, needed, e.g., to establish sortedness properties.

As discussed below in the section on related work, there exist many automated veri-
fication techniques, based on different kinds of logics, automata, graphs, or grammars,
that handle dynamically allocated pointer structures. Most of these approaches abstract
from properties of data stored in dynamically allocated memory cells. The few ap-
proaches that can automatically reason about data properties are often limited to specific
classes of structures, mostly singly-linked lists (SLLs), and/or are not fully automated
(as also discussed in the related work paragraph).

In this paper, we present a general framework for verifying programs with complex
dynamic linked data structures whose correctness depends on relations between the
stored data values. Our framework is based on the notion of forest automata (FA) which
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has previously been developed for representing sets of reachable configurations of pro-
grams with complex dynamic linked data structures [11]. In the FA framework, a heap
graph is represented as a composition of tree components. Sets of heap graphs can then
be represented by tuples of tree automata (TA). A fully-automated shape analysis frame-
work based on FA, employing the framework of abstract regular tree model checking
(ARTMC) [7], has been implemented in the Forester tool [13]. This approach has been
shown to handle a wide variety of different dynamically allocated data structures with
a performance that compares favourably to other state-of-the-art fully-automated tools.

Our extension of the FA framework allows us to represent relationships between data
elements stored inside heap structures. This makes it possible to automatically verify
programs that depend on relationships between data, such as various search trees, lists,
and skip lists [17], and to also verify, e.g., different sorting algorithms. Technically, we
express relationships between data elements associated with nodes of the heap graph by
two classes of constraints. Local data constraints are associated with transitions of TA
and capture relationships between data of neighbouring nodes in a heap graph; they can
be used, e.g., to represent ordering internal to some structure such as a binary search
tree. Global data constraints are associated with states of TA and capture relationships
between data in distant parts of the heap. In order to obtain a powerful analysis based on
such extended FA, the entire analysis machinery must have been redesigned, including
a need to develop mechanisms for propagating data constraints through FA, to adapt
the abstraction mechanisms of ARTMC, to develop a new inclusion check between
extended FAs, and to define extended abstract transformers.

Our verification method analyzes sequential, non-recursive C programs, and auto-
matically discovers memory safety errors, such as invalid dereferences or memory
leaks, and provides an over-approximation of the set of reachable program configu-
rations. Functional properties, such as sortedness, can be checked by adding code that
checks pre- and post-conditions. Functional properties can also be checked by querying
the computed over-approximation of the set of reachable configurations.

We have implemented our approach as an extension of the Forester tool, which is
a gcc plug-in analyzing the intermediate representation generated from C programs. We
have applied the tool to verification of data properties, notably sortedness, of sequential
programs with data structures, such as various forms of singly- and doubly-linked lists
(DLLs), possibly cyclic or shared, binary search trees (BSTs), and even 2-level and
3-level skip lists. The verified programs include operations like insertion, deletion, or
reversal, and also bubble-sort and insert-sort both on SLLs and DLLs. The experiments
confirm that our approach is not only fully automated and rather general, but also quite
efficient, outperforming many previously known approaches even though they are not
of the same level of automation or generality. In the case of skip lists, our analysis is
the first fully-automated shape analysis which is able to handle skip lists. Our previous
fully-automated shape analysis, which did not handle ordering relations, could also
handle skip lists automatically [13], but only after modifying the code in such a way
that the preservation of the shape invariant does not depend on ordering relations.

Related Work. As discussed previously, our approach builds on the fully automated
FA-based approach for shape analysis of programs with complex dynamic linked data



226 P.A. Abdulla et al.

structures [11,13]. We significantly extend this approach by allowing it to track ordering
relations between data values stored inside dynamic linked data structures.

For shape analysis, many other formalisms than FA have been used, including, e.g.,
separation logic and various related graph formalisms [21,16,8,10], other logics [19,14],
automata [7], or graph grammars [12]. Compared with FA, these approaches typically
handle less general heap structures (often restricted to various classes of lists) [21,10],
they are less automated (requiring the user to specify loop invariants or at least inductive
definitions of the involved data structures) [16,8,10,12], or less scalable [7].

Verification of properties depending on the ordering of data stored in SLLs was con-
sidered in [5], which translates programs with SLLs to counter automata. A subsequent
analysis of these automata allows one to prove memory safety, sortedness, and termi-
nation for the original programs. The work is, however, strongly limited to SLLs. In
this paper, we get inspired by the way that [5] uses for dealing with ordering relations
on data, but we significantly redesign it to be able to track not only ordering between
simple list segments but rather general heap shapes described by FA. In order to achieve
this, we had to not only propose a suitable way of combining ordering relations with
FA, but we also had to significantly modify many of the operations used over FA.

In [1], another approach for verifying data-dependent properties of programs with
lists was proposed. However, even this approach is strongly limited to SLLs, and it is
also much less efficient than our current approach. In [2], concurrent programs operat-
ing on SLLs are analyzed using an adaptation of a transitive closure logic [4], which
also tracks simple sortedness properties between data elements.

Verification of properties of programs depending on the data stored in dynamic
linked data structures was considered in the context of the TVLA tool [15] as well.
Unlike our approach, [15] assumes a fixed set of shape predicates and uses inductive
logic programming to learn predicates needed for tracking non-pointer data. The experi-
ments presented in [15] involve verification of sorting and stability properties of several
programs on SLLs (merging, reversal, bubble-sort, insert-sort) as well as insertion and
deletion in BSTs. We do not handle stability, but for the other properties, our approach
is much faster. Moreover, for BSTs, we verify that a node is greater/smaller than all the
nodes in its left/right subtrees (not just than the immediate successors as in [15]).

An approach based on separation logic extended with constraints on the data stored
inside dynamic linked data structures and capable of handling size, ordering, as well as
bag properties was presented in [9]. Using the approach, various programs with SLLs,
DLLs, and also AVL trees and red-black trees were verified. The approach, however,
requires the user to manually provide inductive shape predicates as well as loop in-
variants. Later, the need to provide loop invariants was avoided in [18], but a need to
manually provide inductive shape predicates remains.

Another work that targets verification of programs with dynamic linked data struc-
tures, including properties depending on the data stored in them, is [22]. It generates
verification conditions in an undecidable fragment of higher-order logic and discharges
them using decision procedures, first-order theorem proving, and interactive theorem
proving. To generate the verification conditions, loop invariants are needed. These can
either be provided manually or sometimes synthesized semi-automatically using the ap-
proach of [20]. The latter approach was successfully applied to several programs with
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SLLs, DLLs, trees, trees with parent pointers, and 2-level skip lists. However, for some
of them, the user still had to provide some of the needed abstraction predicates.

Several works, including [6], define frameworks for reasoning about pre- and post-
conditions of programs with SLLs and data. Decidable fragments, which can express
more complex properties on data than we consider, are identified, but the approach does
not perform fully automated verification, only checking of pre-post condition pairs.

2 Programs, Graphs, and Forests

We consider sequential non-recursive C programs, operating on a set of variables and
the heap, using standard commands and control flow constructs. Variables are either
data variables or pointer variables. Heap cells contain zero or several selector fields and
a data field (our framework and implementation extends easily to several data fields).
Atomic commands include tests between data variables or fields of heap cells, as well
as assignments between data variables, pointer variables, or fields of heap cells. We also
support commands for allocation and deallocation of dynamically allocated memory.

0 Node *insert(Node *root, Data d){
1 Node* newNode = calloc(sizeof(Node));
2 if (!newNode) return NULL;
3 newNode→data = d;
4 if (!root) return newNode;
5 Node *x = root;
6 while (x→data != newNode→data)
7 if (x→data < newNode→data)
8 if (x→right) x = x→right;
9 else x→right = newNode;

10 else
11 if (x→left) x = x→left;
12 else x→left = newNode;
13 if (x != newNode) free(newNode);
14 return root;
15 }

Fig. 1. Insertion into a BST

Fig. 1 shows an example of a C function insert-
ing a new node into a BST (recall that in BSTs, the
data value in a node is larger than all the values of
its left subtree and smaller than all the values of
its right subtree). Variable x descends the BST to
find the position at which the node newNode with
a new data value d should be inserted.

Configurations of the considered programs
consist to a large extent of heap-allocated data.
A heap can be viewed as a (directed) graph whose
nodes correspond to allocated memory cells. Each
node contains a set of selectors and a data field.
Each selector either points to another node, to the
value null, or is undefined. The same holds for pointer variables of the program.

We represent graphs as a composition of trees as follows. We first identify the cut-
points of the graph, i.e., nodes that are either referenced by a pointer variable or by
several selectors. We then split the graph into tree components such that each cut-
point becomes the root of a tree component. To represent the interconnection of tree
components, we introduce a set of root references, one for each tree component. After
decomposition of the graph, selector fields that point to cut-points in the graph are redi-
rected to point to the corresponding root references. Such a tuple of tree components is
called a forest. The decomposition of a graph into tree components can be performed
canonically as described at the end of Section 3.

Fig. 2(a) shows a possible heap of the program in Fig. 1. Nodes are shown as circles,
labeled by their data values. Selectors are shown as edges. Each selector points either to
a node or to⊥ (denoting null). Some nodes are labeled by a pointer variable that points
to them. The node with data value 15 is a cut-point since it is referenced by variable x.
Fig. 2(b) shows a tree decomposition of the graph into two trees, one rooted at the node
referenced by root, and the other rooted at the node pointed by x. The right selector
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of the root node in the first tree points to root reference 2 (i denotes a reference to the
i-th tree ti) to indicate that in the graph, it points to the corresponding cut-point.
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Fig. 2. Decomposition of a graph into trees

Let us now formalize these
ideas. We will define graphs
as parameterized by a set Γ
of selectors and a set Ω of
references. Intuitively, the ref-
erences are the objects that se-
lectors can point to, in addition
to other nodes. E.g., when rep-
resenting heaps, Ω will con-
tain the special value null; in
tree components, Ω will also
include root references.

We use f : A ⇀ B to denote a partial function from A to B (also viewed as a total
function f : A → (B∪ {⊥}), assuming that ⊥ �∈ B). We assume an unbounded data
domain D with a total ordering relation %.

Graphs. Let Γ be a finite set of selectors and Ω be a finite set of references. A graph g
over 〈Γ,Ω〉 is a tuple 〈Vg,nextg,λg〉whereVg is a finite set of nodes (assumingVg∩Ω=
/0), nextg : Γ→ (Vg ⇀ (Vg∪Ω)) maps each selector a ∈ Γ to a partial mapping nextg(a)
from nodes to nodes and references, and λg : (Vg∪Ω)⇀D is a partial data labelling of
nodes and references. For a selector a ∈ Γ, we use ag to denote the mapping nextg(a).

Program Semantics. A heap over Γ is a graph over 〈Γ,{null}〉where null denotes the
null value. A configuration of a program with selectors Γ consists of a program control
location, a heap g over Γ, and a partial valuation, which maps pointer variables to Vg∪
{null} and data variables to D. For uniformity, data variables will be represented as
pointer variables (pointing to nodes that hold the respective data values) so we can
further consider pointer variables only. The dynamic behaviour of a program is given
by a standard mapping from configurations to their successors, which we omit here.

Forest Representation of Graphs. A graph t is a tree if its nodes and selectors (i.e., not
references) form a tree with a unique root node, denoted root(t). A forest over 〈Γ,Ω〉
is a sequence t1 · · · tn of trees over 〈Γ,(Ω-{1, . . . ,n})〉. The element in {1, . . . ,n} are
called root references (note that n must be the number of trees in the forest). A forest
t1 · · · tn is composable if λtk( j) = λt j (root(t j)) for any k, j, i.e., the data labeling of root
references agrees with that of roots. A composable forest t1 · · · tn over 〈Γ,Ω〉 represents
a graph over 〈Γ,{null}〉, denoted⊗t1 · · · tn, obtained by taking the union of the trees of
t1 · · · tn (assuming w.l.o.g. that the sets of nodes of the trees are disjoint), and connecting
root references with the corresponding roots. Formally, ⊗t1 · · · tn is the graph g defined
by (i) Vg = ∪ni=1Vti , and (ii) for a ∈ Γ and v ∈ Vtk , if atk (v) ∈ {1, . . . ,n} then ag(v) =
root(tatk (v)) else ag(v) = atk(v), and finally (iii) λg(v) = λtk(v) for v ∈Vtk .

3 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of tuples of
trees that represents a set of graphs via their forest decomposition.
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Tree Automata. A (finite, non-deterministic, top-down) tree automaton (TA) over 〈Γ,Ω〉
extended with data constraints is a triple A= (Q,q0,Δ) where Q is a finite set of states,
q0 ∈ Q is the root state (or initial state), denoted root(A), and Δ is a set of transitions.
Each transition is of the form q→ a(q1, . . . ,qm) : c where m ≥ 0, q ∈ Q, q1, . . . ,qm ∈
(Q∪Ω), a= a1 · · ·am is a sequence of different symbols from Γ, and c is a set of local
constraints. Each local constraint is of the form 0∼rx i where ∼ ∈ {≺,%,.,/,=, �=},
i∈ {1, . . . ,m}, and x∈ {r,a}. Intuitively, a local constraint of the form 0∼rr i states that
the data value of the root of every tree t accepted at q is related by∼ with the data value
of the root of the ith subtree of t accepted at qi. A local constraint of the form 0 ∼ra i
states that the data value of the root of every tree t accepted at q is related by ∼ to the
data values of all nodes of the i-th subtree of t accepted at qi.

Let t be a tree over 〈Γ,Ω〉, and let A = (Q,q0,Δ) be a TA over 〈Γ,Ω〉. A run of A
over t is a total map ρ :Vt → Q where ρ(root(t)) = q0 and for each node v ∈Vt there is
a transition q→ a(q1, . . . ,qm) : c in Δ with a = a1 · · ·am such that (1) ρ(v) = q, (2) for
all 1≤ i≤m, we have (i) if qi ∈Q, then ait(v) ∈Vt and ρ(ait(v)) = qi, and (ii) if qi ∈Ω,
then ait(v) = qi, and (3) for each constraint in c, the following holds:

– if the constraint is of the form 0∼rr i, then λt(v)∼ λt(ait(v)), and
– if the constraint is of the form 0∼ra i, then λt(v)∼ λt(w) for all nodes w in Vt that

are in the subtree of t rooted at ait(v).

We define the language of A as L(A) = {t | there is a run of A over t}.
Example 1. BSTs, like the tree labeled by x in Fig. 2, are accepted by the TA with one
state q1, which is also the root state, and the following four transitions:

q1→ left,right(q1,q1) : 0.ra 1,0 ≺ra 2
q1→ left,right(null,q1) : 0≺ra 2

q1→ left,right(q1,null) : 0.ra 1
q1→ left,right(null,null)

The local constraints of the transitions express that the data value in a node is always
greater than the data values of all nodes in its left subtree and less than the data values
of all nodes in its right subtree.

A TA that accepts BSTs in which the right selector of the root node points to
a root reference, like that labeled by root in Fig. 2, can be obtained from the above
TA by adding one more state q0, which then becomes the root state, and the additional
transition q0→ left,right(q1,2) : 0.ra 1,0≺rr 2 (note that the occurrence of 2
in the root reference 2 is not related with the occurrence of 2 in the local constraint). ��

Forest Automata. A forest automaton with data constraints (or simply a forest automa-
ton, FA) over 〈Γ,Ω〉 is a tuple of the form F = 〈A1 · · ·An,ϕ〉 where:

– A1 · · ·An, with n ≥ 0, is a sequence of TA over 〈Γ,Ω-{1, . . . ,n}〉 whose sets of
states Q1, . . . , Qn are mutually disjoint.

– ϕ is a set of global data constraints between the states of A1 · · ·An, each of the form
q ∼rr q′ or q ∼ra q′ where q,q′ ∈ ∪ni=1Qi, at least one of q, q′ is a root state which
does not appear on the right-hand side of any transition (i.e., it can accept only the
root of a tree), and ∼ ∈ {≺,%,.,/,=, �=}. Intuitively, q ∼rr q′ says that the data
value of any tree node accepted at q is related by∼ to the data value of any tree node
accepted at q′. Similarly, q∼ra q′ says that the data value of any tree node accepted
at q is related by ∼ to the data values of all nodes of the trees accepted at q′.
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A forest t1 · · · tn over 〈Γ,Ω〉 is accepted by F iff there are runs ρ1, . . . ,ρn such that ρi is
a run of Ai over ti for every 1≤ i≤ n, and for each global constraint of the form q∼rx q′

where q is a state of some Ai and q′ is a state of some Aj, we have

– if rx= rr, then λti(v)∼ λt j (v′) whenever ρi(v) = q and ρ j(v′) = q′,
– if rx = ra, then λti(v) ∼ λt j (w) whenever ρi(v) = q and w is in a subtree rooted at

some v′ with ρ j(v′) = q′.

The language of F , denoted as L(F), is the set of graphs over 〈Γ,Ω〉 obtained by
applying⊗ on composable forests accepted by F . An FA F over 〈Γ,{null}〉 represents
a set of heaps H over Γ.

Note that global constraints can imply some local ones, but they cannot in general
be replaced by local constraints only. Indeed, global constraints can relate states of
different automata as well as states that do not appear in a single transition and hence
accept nodes which can be arbitrarily far from each other and unrelated by any sequence
of local constraints.

Canonicity. In our analysis, we will represent only garbage-free heaps in which all
nodes are reachable from some pointer variable by following some sequence of selec-
tors. In practice, this is not a restriction since emergence of garbage is checked for each
statement in our analysis; if some garbage arises, an error message can be issued, or
the garbage removed. The representation of a garbage-free heap H as t1 · · · tn can be
made canonical by assuming a total order on variables and on selectors. Such an order-
ing induces a canonical ordering of cut-points using a depth-first traversal of H starting
from pointer variables, taken in their order, and exploring H according to the order of
selectors. The representation of H as t1 · · · tn is called canonical iff the roots of the trees
in t1 · · · tn are the cut-points of H, and the trees are ordered according to their canonical
ordering. An FA F = 〈A1 · · ·An,ϕ〉 is canonicity respecting iff for all H ∈ L(F), formed
as H =⊗t1 · · · tn, the representation t1 · · · tn is canonical. The canonicity respecting form
allows us to check inclusion on the sets of heaps represented by FA by checking inclu-
sion component-wise on the languages of the component TA.

4 FA-Based Shape Analysis with Data

Our verification procedure performs a standard abstract interpretation. The concrete
domain in our case assigns to each program location a set of pairs 〈σ,H〉 where the
valuation σ maps every variable to null, a node in H, or to an undefined value, and H
is a heap representing a memory configuration. On the other hand, the abstract domain
maps each program location to a finite set of abstract configurations. Each abstract
configuration is a pair 〈σ,F〉 where σ maps every variable to null, an index of a TA in
F , or to an undefined value, and F is an FA representing a set of heaps.

Example 2.Example 2. The example illustrates an abstract configuration 〈σ,F〉 encoding a single
concrete configuration 〈σ,H〉 of the program in Fig. 1. A memory node referenced
by newNode is going to be added as the left child of the leaf referenced by x, which
is reachable from the root by the sequence of selectors left right. The data values



Verification of Heap Manipulating Programs with Ordered Data by Extended FA 231

along the path from root to x must be in the proper relations with the data value of
newNode, in order for the tree to stay sorted also after the addition. The data value of
newNode must be smaller than that of the root (i.e., qr .ra qnN), larger than that of its
left child (i.e., q ≺ra qnN), and smaller than that of x (i.e., qx .ra qnN). These relations
and also q≺ra qx have been accumulated during the tree traversal. ��

F = 〈A1A2A3,ϕ〉
σ(root) = 1,σ(x) = 2,σ(newNode) = 3

A1 :

{
qr→ left,right(q,null) : 0.ra 1
q→ left,right(null,2) : 0≺ra 2

A2 : qx→ left,right(null,null)
A3 : qnN→ left,right(null,null)
ϕ= {qr .ra qnN,q≺ra qnN,qx .ra qnN,q≺ra qx}

The verification starts from an
element in the abstract domain that
represents the initial program con-
figuration (i.e., it maps the ini-
tial program location to an abstract
configuration where the heap is
empty and the values of all vari-
ables are undefined, and maps
non-initial program locations to an empty set of abstract configurations). The verifi-
cation then iteratively updates the sets of abstract configurations at each program point
until a fixpoint is reached. Each iteration consists of the following steps:

1. The sets of abstract configurations at each program point are updated by abstract
transformers corresponding to program statements. At junctions of program paths,
we take the unions of the sets produced by the abstract transformers.

2. At junctions that correspond to loop points, the union is followed by a widening
operation and a check for language inclusion between sets of FA in order to deter-
mine whether a fixpoint has been reached. Prior to checking language inclusion, we
normalize the FA, thereby transforming them into the canonicity respecting form.

Our widening operation bounds the size of the TA that occur in abstract configura-
tions. It is based on the framework of abstract regular (tree) model checking [7]. The
widening is applied to individual TA inside each FA and collapses states which are
equivalent w.r.t. certain criteria. More precisely, we collapse TA states q,q′ which are
equivalent in the sense that they (1) accept trees with the same sets of prefixes of height
at most k and (2) occur in isomorphic global data constraints (i.e., q ∼rx p occurs as
a global constraint if and only if q′ ∼rx p occurs as a global constraint, for any p and x).
We use a refinement of this criterion by certain FA-specific requirements, by adapting
the refinement described in [13]. Collapsing states may increase the set of trees accepted
by a TA, thereby introducing overapproximation into our analysis.

At the beginning of each iteration, the FA to be manipulated are in the saturated
form, meaning that they explicitly include all (local and global) data constraints that are
consequences of the existing ones. FA can be put into a saturated form by a saturation
procedure, which is performed before the normalization procedure. The saturation pro-
cedure must also be performed before applying abstract transformers that may remove
root states from an FA, such as memory deallocation.

In the following subsections, we provide more detail on some of the major steps of
our analysis. Section 4.1 describes the constraint saturation procedure, Section 4.2 de-
scribes some representative abstract transformers, Section 4.3 describes normalization,
and Section 4.4 describes our check for inclusion.
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4.1 Constraint Saturation

In the analysis, we work with FA that are saturated by explicitly adding into them vari-
ous (local and global) data constraints that are implied by the existing ones. The satura-
tion is based on applying several saturation rules, each of which infers new constraints
from the existing ones, until no more rules can be applied. Because of space limita-
tions, we present here only a representative sample of the rules. A complete description
of our saturation rules can be found in [3]. Our saturation rules can be structured into
the following classes.

– New global constraints can be inferred from existing global constraints by using
properties of relations, such as transitivity, reflexivity, or symmetry (when applica-
ble). For instance, from q%rr q′ and q′ ≺ra q′′, we infer q≺ra q′′ by transitivity.

– New global or local constraints can be inferred by weakening the existing ones. For
instance, from q≺ra q′, we infer the weaker constraint q%rr q′.

– Each local constraint 0 ≺rr i where qi ∈ Ω or qi has nullary outgoing transitions
only can be strengthened to 0≺ra i. The latter applies to global transitions too.

– New local constraints can be inferred from global ones by simply transforming
a global constraint into a local constraint whenever the states in a transition are
related by a global constraint. For instance, if q→ a(q1, . . . ,qm) : c is a transition,
then from q%rr qi, we infer the local constraint 0%rr i and add it to c.

– If q is a state of a TA A and p is a state of A or another TA of the given FA such that
in each sequence of states through which q can be reached from the root state of A
there is a state q′ such that p∼ra q′, then a constraint p∼ra q is added as well.

– Whenever there is a TA A1 with a root state q0 and a state q such that (i) q0 /rr q,
(ii) q has an outgoing transition in whose right-hand side a state qi appears where
qi is a reference to a TA A2, and (iii) c includes a constraint 0 /rr i, then a global
constraint q0/rr p0 can be added for the root state p0 of A2 (likewise for other kinds
of relations than /rr). Conversely, from q0 /rr p0 and q0 /rr q, one can derive the
local constrain 0/rr i.

– Finally, global constraints can be inferred from existing ones by propagating them
over local constraints of transitions in which the states of the global constraints
occur. Let us illustrate this on a small example. Assume we are given a TA A that has
states {q0,q1,q2} with q0 being the root state and the following transitions: q0→
a(q1,q2) : {0≺rr 1,0≺rr 2}, q1→ a(null,null) : /0, and q2→ a(null,null) : /0.
Let p be a root state of some TA in an FA in which A appears. There are two ways
to propagate global constraints between the states of A, either downwards from the
root towards leaves or upwards from leaves towards the root.
• In downwards propagation, we can infer q2.ra p from q0/ra p, using the local

constraint 0≺rr 2.
• In upwards propagation, we can infer q0 ≺rr p from q2 ≺rr p, using the local

constraint 0≺rr 2.
In more complex situations, a single state may be reached in several different ways.
In such cases, propagation of global constraints through local constraints on all
transitions arriving to the given state must be considered. If some of the ways how
to get to the state does not allow the propagation, it cannot be done. Moreover, since
one propagation can enable another one, the propagation must be done iteratively
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until a fixpoint is reached (for more details, see [3]). Note that the iterative propa-
gation must terminate since the number of constraints that can be used is finite.

4.2 Abstract Transformers

For each operation op in the intermediate representation of the analysed program cor-
responding to the function fop on concrete configurations 〈σ,H〉, we define an abstract
transformer τop on abstract configurations 〈σ,F〉 such that the result of τop(〈σ,F〉) de-
notes the set { fop(〈σ,H〉) | H ∈ L(F)}. The abstract transformer τop is applied sep-
arately for each pair 〈σ,F〉 in an abstract configuration. Note that all our abstract
transformers τop are exact.

Let us present the abstract transformers corresponding to some operations on abstract
states of form 〈σ,F〉. For simplicity of presentation, we assume that for all TA Ai in F ,
(a) the root state of Ai does not appear in the right-hand side of any transition, and (b)
it occurs on the left-hand side of exactly one transition. It is easy to see that any TA can
be transformed into this form (see [3] for details).

Let us introduce some common notation and operations for the below transformers.
We use Aσ(x) and Aσ(y) to denote the TA pointed by variables x and y, respectively, and
qx and qy to denote the root states of these TA. Let qy → a(q1, . . . ,qi, . . . ,qm) : c be
the unique transition from qy. We assume that sel is represented by ai in the sequence
a= a1 · · ·am so that qi corresponds to the target of sel. By splitting a TA Aσ(y) at a state
qi for 1 ≤ i≤ m, we mean appending a new TA Ak to F such that Ak is a copy of Aσ(y)
but with qi as the root state, followed by changing the root transition in Aσ(y) to qy→
a(q1, . . . ,k, . . . ,qm) : c′ where c′ is obtained from c by replacing any local constraint of
the form 0 ∼rx i by the global constraint qy ∼rx root(Ak). Global data constraints are
adapted as follows: For each constraint q ∼rx p where q is in Aσ(y) such that q �= qy,
a new constraint q′ ∼rx p is added. Likewise, for each constraint q ∼rx p where p is in
Aσ(y) such that p �= qy, a new constraint q ∼rx p′ is added. Finally, for each constraint
of the form p∼ra qy, a new constraint p ∼ra root(Ak) is added.

Before performing the actual update, we check whether the operation to be per-
formed tries to dereference a pointer to null or to an undefined value, in which case
we stop the analysis and report an error. Otherwise, we continue by performing one of
the following actions, depending on the particular statement:

x= malloc() We extend F with a new TA Anew containing one state and one transition
where all selector values are undefined and assign σ(x) to the index of Anew in F .

x= y->sel If qi is a root reference (say, j), it is sufficient to change the value of σ(x)
to j. Otherwise, we split Aσ(y) at qi (creating Ak) and assign k to σ(x).

y->sel= x If qi is a state, then we split Aσ(y) at qi. Then we put σ(x) to the i-th
position in the right-hand side of the root transition of Aσ(y); this is done both if qi
is a state and if qi is a root reference. Any local constraint in c of the form 0 ∼rx i
which concerns the removed root reference qi is then removed from c.

y->data= x->data First, we remove any local constraint that involves qy or a root
reference to Aσ(y).Then, we add a new global constraint qy =rr qx, and we also keep
all global constraints of the form q′ ∼rx qy if q′ ∼rr qx is implied by the constraints
obtained after the update.
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y->data∼ x->data (where∼∈ {≺,%,.,/,=, �=}) First, we execute the saturation
procedure in order to infer the strongest constraints between qy and qx. Then, if
there exists a global constraint qy ∼′ qx that implies qy ∼ qx (or its negation), we
return true (or false). Otherwise, we copy 〈σ,F〉 into two abstract configurations:
〈σ,Ftrue〉 for the true branch and 〈σ,Ffalse〉 for the false branch. Moreover, we ex-
tend Ftrue with the global constraint qy ∼ qx and Ffalse with its negation.

x= y or x= NULL We simply update σ accordingly.
free(y) First, we split Aσ(y) at all states q j, 1≤ j≤m, that appear in its root transition,

then we remove Aσ(y) from F and set σ(y) to undefined. However, to keep all pos-
sible data constraints, before removing Aσ(y), the saturation procedure is executed.
After the action is done, every global constraint involving qy is removed.

x== y This operation is evaluated simply by checking whether σ(x) = σ(y). If σ(x)
or σ(y) is undefined, we assume both possibilities.

After the update, we check that all TA in F are referenced, either by a variable or from
a root reference, otherwise we report emergence of garbage.

4.3 Normalization

Normalization transforms an FA F = (A1 · · ·An,ϕ) into a canonicity respecting FA in
three major steps:

1. First, we transform F into a form in which roots of trees of accepted forests corre-
spond to cut-points in a uniform way. In particular, for all 1≤ i≤ n and all accepted
forests t1 · · · tn, one of the following holds: (a) If the root of ti is the j-th cut-point
in the canonical ordering of an accepted forest, then it is the j-th cut-point in the
canonical ordering of all accepted forests. (b) Otherwise the root of ti is not a cut-
point of any of the accepted forests.

2. Then we merge TA so that the roots of trees of accepted forests are cut-points only,
which is described in detail below.

3. Finally, we reorder the TA according to the canonical ordering of cut-points (which
are roots of the accepted trees).

Our procedure is an augmentation of that in [11] used to normalize FA without data
constraints. The difference, which we describe below, is an update of data constraints
while performing Step 2.

In order to minimize a possible loss of information encoded by data constraints, Step
2 is preceded by saturation (Section 4.1). Then, for all 1≤ i≤ n such that roots of trees
accepted by Ai = (QA,qA,ΔA) are not cut-points of the graphs in L(F) and such that
there is a TA B= (QB,qB,ΔB) that contains a root reference to Ai, Step 2 performs the
following. The TA Ai is removed from F , data constraints between qA and non-root
states of F are removed from ϕ, and Ai is connected to B at the places where B refers
to it. In detail, B is replaced by the TA (QA∪QB,qB,ΔA+B) where ΔA+B is constructed
from ΔA∪ΔB by modifying every transition q→ a(q1, . . . ,qm) : c ∈ ΔB as follows:

1. all occurrences of i among q1, . . . ,qm are replaced by qA, and
2. for all 1≤ k≤m s.t. qk can reach i by following top-down a sequence of the original

rules of ΔB, the constraint 0∼ra k is removed from c unless qk ∼ra qA ∈ ϕ.
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4.4 Checking Language Inclusion

In this section, we describe a reduction of checking language inclusion of FAs with
data constraints to checking language inclusion of FAs without data constraints, which
can be then performed by the techniques of [11]. We note that “ordinary FAs” corre-
spond to FAs with no global and no local data constraints. Intuitively, an encoding of
an FA F = (A1 · · ·An,ϕ) with data constraints is an ordinary FA FE = (AE

1 · · ·AE
n , /0)

where the data constraints are written into symbols of transitions. In detail, each tran-
sition q→ a(q1, . . . ,qm) : c of Ai,1 ≤ i ≤ n, is in AE

i replaced by the transition q→
〈(a1,c1,cg) · · · (am,cm,cg)〉(q1, . . . ,qm) : /0 where for 1 ≤ j ≤ m, c j is the subset of c
involving j, and cg encodes the global constraints involving q as follows: for a global
constraint q ∼rx r or r ∼rx q where r is the root state of Ak,1 ≤ k ≤ n, that does not
appear within any right-hand side of a rule, cg contains 0∼rx k or k ∼rx 0, respectively.
The language of AE

i thus consists of trees over the alphabet ΓE = Γ×C×C where C is
the set of constraints of the form j ∼rx k for j,k ∈ N0.

Dually, a decoding of a forest t1 · · · tn over ΓE is the set of forests t ′1 · · · t ′n over Γ
which arise from t1 · · · tn by (1) removing encoded constraints from the symbols, and
(2) choosing data labeling that satisfies the constraints encoded within the symbols of
t1 · · · tn. Formally, for all 1 ≤ i ≤ n, Vt′i = Vti , and for all a ∈ Γ, u,v ∈Vt′i , and c,cg ⊆ C,
we have (a,c,cg)ti(u) = v iff: (1) at′i (u) = v and (2) for all 1 ≤ j ≤ n: if 0 ∼rx j ∈ c,
then u ∼rx v, and if 0 ∼rx j ∈ cg, then u ∼rx root(t j) (symmetrically for j ∼rx 0). The
notation u ∼rx v for u,v ∈ Vt′ used here has the expected meaning that λt′i (u) ∼ λt′i (v)
and, in case of x= a, λt′i (u)∼ λt′i (w) for all nodes w in the subtree rooted by v.

The following lemma (proved in [3])assures that encodings of FA are related in the
expected way with decodings of forests they accept.

Lemma 1. The set of forests accepted by an FA F is equal to the union of decodings of
forests accepted by FE.

A direct consequence of Lemma 1 is that if L(FE
A ) ⊆ L(FE

B ), then L(FA) ⊆ L(FB).
We can thus use the language inclusion checking procedure of [11] for ordinary FA to
safely approximate language inclusion of FA with data constraints.

However, the above implication of inclusions does not hold in the opposite direction,
for two reasons. First, constraints of FB that are strictly weaker than constraints of FA
will be translated into different labels. The labels will then be treated as incomparable
by the inclusion checking algorithm of [11]. For instance, let FA = (A1, /0) where A1

contains only one transition δA = q → a(1) : {0 ≺rr 1} and FB = (B1, /0) where B1

contains only one transition δB = r→ a(1) : /0. We have that L(FA) ⊆ L(FB) (indeed,
L(FA) = /0 due to the strict inequality on the root), but L(FE

A ) is incomparable with
L(FE

B ). The reason is that δA and δB are encoded as transitions the symbols of which
differ due to different data constraints. The fact that the constraint /0 is weaker than
the constraint of 0 ≺rr 1 plays no role. The second source of incompleteness of our
inclusion checking procedure is that decodings of some forests accepted by FE

A and FE
B

may be empty due to inconsistent data constraints. If the set of such inconsistent forests
of FE

A is not included in that of FE
B , then L(FE

A ) cannot be included in L(FE
B ), but the

inclusion L(FA) ⊆ L(FB) can still hold since the forests with the empty decodings do
not contribute to L(FA) and L(FB) (in the sense of Lemma 1).
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We do not attempt to resolve the second difficulty since ruling out forests with in-
consistent data constraints seems to be complicated, and according to our experiments,
it does not seem necessary. On the other hand, we resolve the first difficulty by a quite
simple transformation of FE

B : we pump up the TAs of FE
B by variants of their transitions

which encode stronger data constraints than originals and match the data constraints on
transitions of FE

A . For instance, in our previous example, we wish to add the transition
r→ a(1) : {0 ≺rr 1} to B1. Notice that this does not change the language of FB, but
makes checking of L(FE

A )⊆ L(FE
B ) pass.

Particularly, we call a sequence α= (a1,c1,cg) · · · (am,cm,cg)∈ (ΓE)m stronger than
a sequence β = (a1,c′1,c

′
g) · · · (am,c′m,c′g) iff

∧
cg =⇒ ∧

c′g and for all 1 ≤ i ≤ m,∧
ci =⇒ ∧

c′i. Intuitively, α encodes the same sequence of symbols a = a1 · · ·am as
β and stronger local and global data constraints than β. We modify FE

B in such a way
that for each transition r→ α(r1, . . . ,rm) of FE

B and each transition of FE
A of the form

q→ β(q1, . . . ,qm) where β is stronger than α, we add the transition q→ β(q1, . . . ,qm).
The modified FA, denoted by FE+

B , accepts the same or more forests than FE
B (since

its TA have more transitions), but the sets of decodings of the accepted forests are the
same (since the added transitions encode stronger constraints than the existing transi-
tions). FA FE+

B can thus be used within language inclusion checking in the place of FE
B .

The checking is still sound, and the chance of missing inclusion is smaller. The follow-
ing lemma (proved in [3]) summarises soundness of the (approximation of) inclusion
check which is implemented in our tool.

Lemma 2. Given two FAs FA and FB, L(FE
A )⊆ L(FE+

B ) =⇒ L(FA)⊆ L(FB)

We note that the same construction is used when checking language inclusion between
sets of FAs with data constraints in a combination with the construction of [11] for
checking inclusion of sets of ordinary FAs. We also note that for the purpose of checking
language inclusion, we need to work with TAs where the tuples a of symbols (selectors)
on all rules are ordered according to a fixed total ordering of selectors (we use the one
from Section 3, used to define canonical forests).

5 Boxes

Forest automata, as defined in Section 3, cannot be used to represent sets of graphs with
an unbounded number of cut-points since this would require an unbounded number of
TAs within FAs. An example of such a set of graphs is the set of all DLLs of an arbitrary
length where each internal node is a cut-point. The solution provided in [11] is to allow
FAs to use other nested FAs, called boxes, as symbols to “hide” recurring subgraphs
and in this way eliminate cut-points. Here, we give only an informal description of
a simplified version of boxes from [11] and of their combination with data constraints.
See [3] for details.

A box�= 〈F�, i,o〉 consists of an FA F� = 〈A1 · · ·An,ϕ〉 accompanied with an input
port index i and an output port index o, 1 ≤ i,o ≤ n. Boxes can be used as symbols in
the alphabet of another FA F . A graph g from L(F) over an alphabet Γ enriched with
boxes then represents a set of graphs over Γ obtained by the operation of unfolding.
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Table 1. Results of the experiments

Example time

SLL insert 0.06
SLL delete 0.08
SLL reverse 0.07
SLL bubblesort 0.13
SLL insertsort 0.10

Example time

DLL insert 0.14
DLL delete 0.38
DLL reverse 0.16
DLL bubblesort 0.39
DLL insertsort 0.43

Example time

BST insert 6.87
BST delete 114.00
BST left rotate 7.35
BST right rotate 6.25

Example time

SL2 insert 9.65
SL2 delete 10.14
SL3 insert 56.99
SL3 delete 57.35

Unfolding replaces an edge with a box label � by a graph g� ∈ L(F�). The node of g�
which is the root of a tree accepted by Ai is identified with the source of the replaced
edge, and the node of g� which is the root of a tree accepted by Ao is mapped to the
target of the edge. The semantics of F then consists of all fully unfolded graphs from
the language of F . The alphabet of a box itself may also include boxes, however, these
boxes are required to form a hierarchy, they cannot be recursively nested.

In a verification run, boxes are automatically inferred using the techniques presented
in [13]. Abstraction is combined with folding, which substitutes substructures of FAs
by TA transitions which use boxes as labels. On the other hand, unfolding is required
by abstract transformers that refer to nodes or selectors encoded within a box to expose
the content of the box by making it a part of the top-level FA.

In order not to loose information stored within data constraints, folding and unfold-
ing require some additional calls of the saturation procedure. When folding, saturation
is used to transform global constraints into local ones. Namely, global constraints be-
tween the root state of the TA which is to become the input port of a box and the state
of the TA which is to become the output port of the box is transformed into a local
constraint of the newly introduced transition which uses the box as a label. When un-
folding, saturation is used to transform local constraints into global ones. Namely, local
constraints between the left-hand side of the transition with the unfolded box and the
right-hand side position attached to the unfolded box is transformed to a global con-
straint between the root states of the TA within the box which correspond to its input
and output port.

6 Experimental Results

We have implemented the above presented techniques as an extension of the Forester
tool and tested their generality and efficiency on a number of case studies. We consid-
ered programs dealing with SLLs, DLLs, BSTs, and skip lists. We verified the original
implementation of skip lists that uses the data ordering relation to detect the end of
the operated window (as opposed to the implementation handled in [13] which was
modified to remove the dependency of the algorithm on sortedness).

Table 1 gives running times in seconds (the average of 10 executions) of the extension
of Forester on our case studies. The names of the examples in the table contain the
name of the data structure manipulated in the program, which is “SLL” for singly-
linked lists, “DLL” for doubly-linked lists, and “BST” for binary search trees. “SL”
stands for skip lists where the subscript denotes their level (the total number of next
pointers in each cell). All experiments start with a random creation of an instance of the
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specified structure and end with its disposal. The indicated procedure is performed in
between. The “insert” procedure inserts a node into an ordered instance of the structure,
at the position given by the data value of the node, “delete” removes the first node with a
particular data value, and “reverse” reverses the structure. “Bubblesort” and “insertsort”
perform the given sorting algorithm on an unordered instance of the list. “Left rotate”
and “right rotate” rotate the BST in the specified direction. Before the disposal of the
data structure, we further check that it remained ordered after execution of the operation.
Source code of the case studies can be found in [3]. The experiments were run on
a machine with the Intel i5 M 480 (2.67 GHz) CPU and 5 GB of RAM.

Compared with works [15,20,5,18], which we consider the closest to our approach,
the running times show that our approach is significantly faster. We, however, note that
a precise comparison is not easy even with the mentioned works since as discussed in
the related work paragraph, they can handle more complex properties on data, but on the
other hand, they are less automated or handle less general classes of pointer structures.

7 Conclusion

We have extended the FA-based analysis of heap manipulating programs with a support
for reasoning about data stored in dynamic memory. The resulting method allows for
verification of pointer programs where the needed inductive invariants combine com-
plex shape properties with constraints over stored data, such as sortedness. The method
is fully automatic, quite general, and its efficiency is comparable with other state-of-the-
art analyses even though they handle less general classes of programs and/or are less
automated. We presented experimental results from verifying programs dealing with
variants of (ordered) lists and trees. To the best of our knowledge, our method is the
first one to cope fully automatically with a full C implementation of a 3-level skip list.

We conjecture that our method generalises to handle other types of properties in the
data domain (e.g., comparing sets of stored values) or other types of constraints (e.g.,
constraints over lengths of lists or branches in a tree needed to express, e.g., balanced-
ness of a tree). We are currently working on an extension of FA that can express more
general classes of shapes (e.g., B+ trees) by allowing recursive nesting of boxes, and
employing the CEGAR loop of ARTMC. We also plan to combine the method with
techniques to handle concurrency.
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fication of Heap Manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

12. Heinen, J., Noll, T., Rieger, S.: Juggrnaut: Graph Grammar Abstraction for Unbounded Heap
Structures. ENTCS, vol. 266 (2010)

13. Holı́k, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully Automated Shape
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Abstract. Among precise abstract interpretation methods developed
during the last decade, policy iterations is one of the most promising.
Despite its efficiency, it has not yet seen a broad usage in static analyzers.
We believe the main explanation to this restrictive use, beside the novelty
of the technique, lies in its lack of integration in the classic abstract
domain framework. This prevents an easy integration in existing static
analyzers and collaboration with other, already implemented, abstract
domains through reduced product. This paper aims at providing a classic
abstract domain interface to policy iterations.

Usage of semidefinite programming to infer quadratic invariants on
linear systems is one of the most appealing use of policy iteration. Combi-
nation with a template generation heuristic, inspired from existing meth-
ods from control theory, gives a fully automatic abstract domain to infer
quadratic invariants on linear systems with guards. Those systems often
constitute the core of embedded control systems and are hard, when not
impossible, to analyze with linear abstract domains. The method has
been implemented and applied to some benchmark systems, giving good
results.

Keywords: abstract interpretation, policy iteration, linear systems
with guards, quadratic invariants, ellipsoids, semidefinite programming.

1 Introduction

Classic abstract interpretation based static analysis [8] heavily relies on the so
called widening. This operator discards some information in order to enforce ter-
mination of the analysis. A narrowing can then partly recover this lost informa-
tion. These heuristics often enable a good trade-off between cost and precision
of analyses. However, even if impressive improvements were made in the last
decade to widening [3,11,21,28, and references therein] and narrowing [22], they
do not always guarantee precise results.

Another approach, that appeared in the last decade in the software verifica-
tion community [7, for instance], is the use of dedicated mathematical solvers
like linear or semidefinite programming as a way to solve some kind of prob-
lems in a verification setting. This led to the definition of so-called policy itera-
tions [1,6,14,15,18,19], as another way to perform overapproximation but trying
to achieve better precision than widening-based analyses.
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However, even if promising, policy iterations have had very little impact on
existing tools yet: their use seems orthogonal to the classic use of abstract do-
mains in a Kleene setting, where reduced products allow domains to exchange
knowledge about the system during computation.

An explanation to the lack of integration of policy iterations with Kleene-
based analyses is that they need to work on a global view of the analyzed system,
typically a control flow graph representation of it, while Kleene-based analyzers
iterate through program points without providing a global view of the program
to the abstract domains. Our solution is mainly to compute this graph while
iterating through the program points with a Kleene-based analysis. Once the
graph is obtained it can easily be used by policy iterations to compute numerical
properties about the program. Those properties can then be exported to other
domains through a reduced product. Moreover this new abstract domain can
be applied on a strict subset of program variables abstracting other variables
by information obtained through reduced product from other domains1, thus
allowing a true interplay between policy iterations and existing abstract domains.

Our proposal has been instantiated on the analysis of linear systems with
guards admitting quadratic inductive invariants. These linear systems are widely
present in critical embedded systems like aerospace control-command software
but are hard to analyze with most abstract domains since they usually do not
admit simple linear inductive invariants. The use of our framework enables a fully
automatic analysis of such systems, relying on policy iterations with semidefinite
programming, while other approaches either impose stronger restrictions on the
class of analyzable programs or require more parameters to enable the analysis.
It has been implemented and gave significant results.

After a brief policy iteration primer, the paper is organized as follows:

– Section 3 offers an abstract domain rebuilding the control flow graph through
classic Kleene-based analysis;

– Section 4 enables the embedding of policy iteration in an abstract domain
based on this computed graph and on template domains;

– in Section 5, we automatically synthesize meaningful templates for a specific
class of programs: guarded linear systems admitting quadratic invariants.

The paper also provides, in Section 6, experimental results computed using our
implementation of the analysis.

2 State of the Art – A Policy Iteration Primer

2.1 A Toy Imperative Language

Throughout this paper, a very classic toy imperative language will be used to
illustrate our abstract domains. Figure 1 presents a program in this language.

Syntax. A program of the language is a statement stm in the following
grammar:

1 As done with expensive relational domains in the abstract interpreter Astrée [9].
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stm ::= stm; stm | v := expr | v := ?(r, r) | while expr ≤ r do stm od
| if expr ≤ r then stm else stm fi

expr ::= v | r | expr + expr | expr − expr | expr × expr

with v ∈ V, a set of variables, and r ∈ R. ?(r1, r2) represents a random choice
of a real number between r1 and r2 (useful to simulate inputs).

x0 := 0; x1 := 0; x2 := 0;
while −1 ≤ 0 do

in := ?(−1, 1);
x0’ := x0; x1’ := x1; x2’ := x2;
x0 := 0.9379 x0’−0.0381 x1’−0.0414 x2’+0.0237 in;
x1 := −0.0404 x0’+0.968 x1’−0.0179 x2’+0.0143 in;
x2 := 0.0142 x0’−0.0197 x1’+0.9823 x2’+0.0077 in;

od

Fig. 1. Example of program

Collecting Semantics. In
the later, we denote by
�e�(ρ) ∈ R, the usual col-
lecting semantics of an ex-
pression e in an environ-
ment ρ : V → R; and by
�s�(R) ⊆ (V→ R) the col-
lecting semantics of a state-
ment s for a set of environ-
ments R ⊆ (V→ R).

It is worth noting that this semantics is given with operations over real num-
bers R whereas an actual program would compute using floating point values.
This issue will not be addressed in this paper and is left as future work.

2.2 Kleene Iterations with Widening and Narrowing

The previous concrete semantics being non computable, the basic idea of ab-
stract interpretation is to compute a so called abstract semantics. This abstract
semantics is designed as a computable overapproximation of the concrete one.

Abstract domains constitute the basic bricks of abstract interpreters. They
are given by a complete lattice D, a concretization function γD : D → 2V→R and
computable abstract operators �v := e��, �v := ?(r1, r2)�

� and �e ≤ r�� : D → D.
The concretization function gives a concrete meaning to each abstract value in
D by mapping it to the set of environments it abstracts. The abstract semantics
�.�� is then defined by replacing semantics of assignments and guards with the
corresponding abstract operator in the equations of the previous section. This
abstract semantics can thus be computed, provided fixpoints are reachable after
finitely many iterations of loop bodies’ semantics. Assuming some soundness
hypotheses on the abstract operators, the abstract semantics of a program p can
be proved to be an overapproximation of the concrete one, that is �p�⊆ γD(�p�

�).
An operator called widening is used to ensure convergence in finitely many

iterations by giving up some precision. Some of this lost precision can then be
retrieved by descending iterations with a so called narrowing. However, this does
not always regain all of it.

Example 1. Analyzing the program of Figure 1 with the intervals domain, we get
after a first iteration of the loop x0 ∈ [−0.0237, 0.0237]∧x1 ∈ [−0.0143, 0.0143]∧
x2 ∈ [−0.0077, 0.0077]. After a second iteration x0 ∈ [−0.0467, 0.0467] ∧ x1 ∈
[−0.0292, 0.0292]∧ x2 ∈ [−0.0158, 0.0158],. . . This does not converge, simply be-
cause the program does not admit any invariant in the intervals domain. Unlike
the intervals domain, invariants exist in the polyhedra domain. However, classic
Kleene iterations with this domain are in practice unable to compute any.
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2.3 Policy Iterations

The basic idea of policy2 iteration is to use numerical optimization tools to
compute those bounds that are hard to guess for the widening or to retrieve via
narrowing.

Another advantage of the method is to abstract sequences of program instruc-
tions like loop bodies “en bloc”, avoiding intermediate abstractions which can
cause irreversible losses of precision3.

Template Domains. Policy iteration is performed on so called template do-
mains. Given a finite set { t1, . . . , tn } of expressions on variables V, the tem-

plate domain T is defined as R
n

= (R ∪ {−∞,+∞})n and the meaning of
an abstract value (b1, . . . , bn) ∈ T is the set of environments γT (b1, . . . , bn) =
{ρ ∈ (V→ R) | �t1�(ρ) ≤ b1, . . . , �tn�(ρ) ≤ bn}. In other words, the abstract value
(b1, . . . , bn) represents all the environments satisfying all the constraints ti ≤ bi.

Indeed, many common abstract domains are template domains. For instance
the intervals domain is obtained with templates xi and −xi for all variables
xi ∈ V and the octagon domain [24] by adding all the ±xi ± xj . The shape of
the templates to be considered for policy iteration depends on the optimization
tools used. For instance, linear programming [14,16] allows any linear templates
whereas quadratic templates can be handled thanks to semidefinite programming
and an appropriate relaxation [1,18,19].

Example 2. To bound the variables of the program of Figure 1, we use the
quadratic template4: t1 := 6.2547x2

0 + 12.1868x2
1 + 3.8775x2

2 − 10.61x0x1 −
2.4306x1x2 + 2.4182x1x2. Templates t2 := x2

0, t3 := x2
1 and t4 := x2

2 are added
in order to get bounds on each variable.

System of Equations. While Kleene iterations iterate locally through each
construct of the program, policy iterations require a global view on the analyzed
program. For that purpose, the whole program is first translated into a system
of equations which is later solved.

A first step in deriving those equations from the program is to build its control
flow graph.

st 2

true ,
x0 := 0
x1 := 0
x2 := 0 −1 ≤ in ≤ 1 ,

x′
0 := x0 x′

1 := x1 x′
2 := x2

x0 := 0.9379 x0 − 0.0381 x1 − 0.0414 x2 + 0.0237 in
x1 := −0.0404 x0 + 0.968 x1 − 0.0179 x2 + 0.0143 in
x2 := 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in

Fig. 2. Control flow graph for our running example

Example 3. Figure 2 represents the control flow graph for our running example.
Vertex “st” corresponds to the starting point of the program and vertex “2” to the
head of the loop. The edge between “st” and “2” reflects the three assignments
before the loop and the looping edge on vertex “2” represents the loop body.

2 The word strategy is also used in the literature, with equivalent meaning.
3 This is not illustrated here, one can refer for instance to [17] for more details.
4 How this template was chosen will be explained later in Section 5.
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It is worth noting that, unlike the usual notion of control flow graph with
vertices between each single instruction of the program, sequences of instructions
are here considered “en bloc” with graph vertices only for starting point and loop
heads of the program. This will both improve the precision of the analysis and
decrease its cost by avoiding useless intermediate abstractions.

A system of equations is then defined with a variable bi,j for each vertex i of
the graph and each template tj .

Example 4. Here is the system of equations for our running example:⎧⎪⎪⎨⎪⎪⎩
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{0 | be(1)} ∨ max{a(t1) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,2 = max{0 | be(1)} ∨ max{a(t2) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,3 = max{0 | be(1)} ∨ max{a(t3) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,4 = max{0 | be(1)} ∨ max{a(t4) | −1 ≤ in ≤ 1 ∧ be(2)}

where be(i) is a shortcut for t1 ≤ bi,1 ∧ t2 ≤ bi,2 ∧ t3 ≤ bi,3 ∧ t4 ≤ bi,4 and a(t) is the
template t in which variable x0 is replaced by 0.9379 x0 − 0.0381 x1 − 0.0414 x2 +

0.0237 in, variable x1 is replaced by −0.0404 x0+0.968 x1−0.0179 x2+0.0143 in and
variable x2 is replaced by 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in. The usual
maximum on R is denoted ∨.

Fig. 3. Invariant for running example

Each bi,j bounds the template tj at
program point i and is defined in one
equation as a maximum over as many
terms as incoming edges in i. More
precisely, each edge between two ver-
tices v and v′ translates to a term
in each equation bv′,j on the pattern:

max
{
a(tj)

∣∣∣ c ∧∧j tj ≤ bv,j

}
where c

and a are respectively the constraints and
the assignments associated to this edge.
This expresses the maximum value the template tj can reach in destination ver-
tex v′ when applying the assignments a on values satisfying both the constraints
c of the edge and the constraints tj ≤ bv,j of the initial vertex v. Finally, the
program starting point is initialized to (+∞, . . . ,+∞), meaning all equations for
bi0,j , where i0 is the starting point, become bi0,j = +∞. Thus, for any solution
(b1,1, . . . , b1,n, . . .) of the equations, γT (bi,1, . . . , bi,n) is an overapproximation of
reachable states of the program at point i.

Iterating on Policies. Two different techniques can be found in the literature
to compute an overapproximation of the least solution of the previous system of
equations (which existence is proved thanks to Knaster-Tarski theorem):

Min-Policy Iteration [1,19] performs descending iterations towards some fix-
point, working in a way similar to the Newton-Raphson method. Iterations
are not guaranteed to reach a fixpoint but can be stopped at any time leaving
an overapproximation thereof. Moreover, convergence is usually fast.
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Max-Policy Iteration [18,19] works in the opposite direction, starting from
bottom and iterating computations of greatest fixpoints on so called max-
policies until a global fixpoint is reached. The algorithm terminates with a
— at least theoretically — precise fixpoint but the user has to wait until the
end since intermediate results are not overapproximations of a fixpoint.

In practice, both algorithms compute the same invariant. Min-policies are
nonetheless expected to be able to cope with larger systems [19, conclusion].

Example 5. On our running example, policy iterations compute the loop in-
variant (1.0029, 0.1795, 0.1136, 0.2757) ∈ T , meaning: t1 ≤ 1.0029 ∧ t2 ≤
0.1795 ∧ t3 ≤ 0.1136 ∧ t4 ≤ 0.2757 or equivalently: t1 ≤ 1.0029 ∧ |x0| ≤
0.4236 ∧ |x1| ≤ 0.3371 ∧ |x2| ≤ 0.5251 (all figures are rounded to the fourth
digit). This is a cropped ellipsoid as displayed on Figure 3.

3 An Abstract Control Flow Graph Domain

The previous section stated that policy iterations are able to compute precise
fixpoints but require to extract a system of equations from the analyzed program.
This fundamentally differs from the classic abstract domain paradigm. Although
simply running both kind of analyses in parallel is easy, that would hinder the
chances of a tight cooperation between them. The contribution of our work is to
define an abstract domain which will gracefully interface both worlds.

This section describes a symbolic abstract domain reconstructing control flow
graphs similar to Figure 2. This domain will basically “record” assignments and
guards (of if-then-elses conditionals and while loops) in graph edges thanks to
the corresponding abstract operators and close loops during widenings.

This will finally be used in the next section to provide an embedding of policy
iterations in a classic abstract domain for Kleene iterations.

3.1 Lattice Structure

Definition 1. Given a set Vex of additional variables (Vex∩V = ∅), we define:
– A := V→ expr, functions from variables to expressions on V ∪ Vex;
– C := expr → R.

Variables Vex will be used for modeling random inputs, A for assignments and
C for constraints (mostly coming from guards). We will later write x := 2y, y :=
y+1 for instance, to denote the function in A mapping x to the expression 2×y,
y to y+1 and every other variable z ∈ V to the expression z. Furthermore id will
denote the identity function, mapping every variable x ∈ V to the expression x.
Regarding constraints, 1 ≤ x ≤ 2 ∧ y ≤ 42 will represent the function in C
mapping expression x to 2, −x to −1, y to 42 and anything else to +∞. Finally
⊥C is the function in C mapping every expression to −∞.

Definition 2. Given a set V , st ∈ V and fi ∈ V (fi �= st) and denoting E the
functions V ×A× V → C, we define the set of graphs G as:

G := {"G } ∪
{
(e, t) ∈ E × V

∣∣∣∣ t �= st ∧ ∀v ∈ V, ∀a ∈ A, e(fi, a, v) = ⊥C
∧∀v ∈ V, ∀a ∈ A, t �= fi⇒ e(v, a, fi) = ⊥C

}
.
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An element of G (other than "G) is a pair (e, t) with e edges of a graph and t a
vertex of this graph. t indicates the point of program currently considered by the
Kleene iterations, acting like a kind of code pointer on e. The graph e associates
to each pair of points v and v′ and assignment a the constraint e(v, a, v′) to
satisfy in order to take this transition and apply assignment a. Among the graph
vertices V we distinguish two special vertices: st is the starting point of the
program whereas fi will be used as temporary final point. We require two things
about fi: that it has no outcoming edge (∀v ∈ V, ∀a ∈ A, e(fi, a, v) = ⊥C) and
that it is used only as current point (if t �= fi then fi does not appear in the
graph: ∀v ∈ V, ∀a ∈ A, t �= fi⇒ e(v, a, fi) = ⊥C).

st 2

true ,
x0 := 0
x1 := 0
x2 := 0 −1 ≤ in ≤ 1 ,

x′
0 := x0 x′

1 := x1 x′
2 := x2

x0 := 0.9379 x0 − 0.0381 x1 − 0.0414 x2 + 0.0237 in
x1 := −0.0404 x0 + 0.968 x1 − 0.0179 x2 + 0.0143 in
x2 := 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in

Fig. 4. Example of value in G

Example 6. For our running example, the result of Kleene iterations at loop head
can be represented as on Figure 4. We chose a graphical representation for edges
e, drawing only edges different from ⊥C , while current point t is represented by
a doubly circled vertex. More precisely, we draw an edge labeled (c, a) between
v1 and v2 when e(v1, a, v2) = c �= ⊥C.

An order 0�
G on G is basically5 defined as the pointwise extension on E of

0�
C (itself a pointwise extension of usual order on R) for values with the same

current point t. A least upper bound
⊔�
G is defined likewise, based on the usual

max on R. This makes G a complete lattice.

Definition 3 (concretization γG). Given a template domain T , the concretiza-
tion function γG : G → 2(V→R) is then defined as γG("G) = RV and γG(e, t) =
γT (bt,1, . . . , bt,n) with (bv,i)v∈V,i∈�1,n� the least solution of the system of equations
previously defined in Section 2.3.

This concretization function gives a meaning to abstract values. It can be

shown to be monotone (∀g, g′∈G, g 0�
G g′ ⇒ γG(g) ⊆ γG(g

′)). It is also worth
noting that, like with any abstract domain, an abstract value (e, t) ∈ G overap-
proximates the reachable state space at some program point. The code pointer t
is then used to locate this program point in the graph e.

3.2 Abstract Operators

Guards. To compute �p ≤ r��(g) for an expression p, a real r ∈ R and an
abstract value g ∈ G, we have to distinguish three cases as illustrated on Figure 5:

(a) when g = "G , typically at starting point, we return a graph with the code
pointer at fi and a unique edge between st and fi labeled with (p ≤ r, id);

(b) when g = (e, fi), we add the constraint p ≤ r to all incoming edges of fi;

5 Up to some details later required for the widening.
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(c) finally, when g = (e, t) with t �= fi. we add an edge labeled with (p ≤ r, id)
between t and fi.

Definition 4. For any expression p, any real number r ∈ R and any abstract
value g ∈ G, �p ≤ r��(g) is defined by case analysis on g:

�p ≤ r��("G) = (e, fi) where e is the following function:

v, a, v′ �→ p′ �→

⎧⎨⎩ r if (v, a, v′) = (st, id, fi), p′ = p
+∞ if (v, a, v′) = (st, id, fi), p′ �= p
−∞ otherwise

;

�p ≤ r��(e, fi) = (e′, fi) where e′ is the following function:

v, a, v′ �→ p′ �→
{
min (r, e(v, a, v′)(p′)) if v′ = fi, p′ = a(p)
e(v, a, v′)(p′) otherwise

;

�p ≤ r��(e, t) = (e′, fi) where e′ is the following function:

v, a, v′ �→ p′ �→

⎧⎨⎩ r if (v, a, v′) = (t, id, fi), p′ = p
+∞ if (v, a, v′) = (t, id, fi), p′ �= p
e(v, a, v′)(p′) otherwise

.

Property 1 (soundness). This abstract operator is sound with respect to the
concrete semantics of guards: for all expression p, all real r ∈ R and all g ∈ G,
�p ≤ r�(γG(g)) ⊆ γG

(
�p ≤ r��(g)

)
.

�x ≤ 0��("G) = st fi
x ≤ 0, id

(a) case g = �G

�x ≤ 0��
(

st fi
y ≤ 0, r

)
= st fi

r(x) ≤ 0
y ≤ 0

, r

(b) case g = (e, fi)

�x ≤ 0��
(

st t
y ≤ 0, r

)
= st t

fi

y ≤ 0, r

x ≤ 0, id

(c) case g = (e, t), t �= fi

Fig. 5. Examples of abstract guards

Assignments. This is very similar
to guards, modifying assignments
instead of constraints on edges.
Soundness property is similar.

Random Assignments. This is a
kind of merge between the two pre-
vious ones. The variable randomly
assigned in range [r1, r2] is first as-
signed to a fresh new variable6 x ∈
Vex which is then constrained by
−x ≤ −r1 and x ≤ r2. A similar
soundness property holds.

3.3 Widening

On numerical domains, widening discards information in order to enforce ter-
mination of the analysis. This is a source of imprecision. On the contrary, the
graphs we are computing are finite objects which can be obtained without intro-
ducing imprecision. Thus, the following widening operator only aims at closing
loops in graphs.

6 Any variable not appearing in any incoming edge of fi.
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⊥G ∇G st fi st 2=
c, r c, r

(a) both code pointers equal to fi (⊥G = (⊥̇C , fi)),
typical case before entering a loop

st 2 st 2 fi st

2

∇G =
c, r c, r c′, r′

c, r

c′, r′
(b) one code pointer not equal to fi,
typical case after a first loop iteration

Fig. 6. Widening: introducing new nodes and
loops in the control flow graph

None of the abstract operators
we have seen up to now introduces
new nodes in the graph (other
than st and fi). This is done by the
widening which plays a key role by
introducing new nodes and clos-
ing loops on those nodes. Widen-
ing is actually the best place to
create loops in our abstract con-
trol flow graphs since it is usually
called at loop heads of programs
during analyses7. Moreover, in
most abstract interpreters, widen-
ing is the only indication an ab-
stract domain gets from the presence of loops in the analyzed program.

To compute the widening (e, t)∇(e′, t′) of two graphs, there are basically three
cases to consider:

– both t and t′ are equal to fi: in this case, we create a new point t′′ and
redirect all incoming edges of fi to t′′ in both e and e′ before computing their
join, this is illustrated on Figure 6 (a);

– either t or t′ is not fi (or t = t′ �= fi), say t �= fi: in this case all incoming
edges of fi are redirected to t in e′ and a pointwise widening is done on each
edge, Figure 6 (b);

– both t and t′ are not fi and are different: in this case we return "G .

4 Embedding Policy Iterations into an Abstract Domain

This section finally describes how to use the control flow graph domain of the
previous section to embed policy iterations into a classic abstract domain.

The basic idea is to build a product of the control flow graph domain with
a template domain. Policy iterations are then performed during widenings to
reduce the template part according to the graph part.

4.1 Reduced Product between Graph and Template Domains

First, the template domain T introduced in Section 2.3 is equipped with dummy
abstract operators �.��T for guards, assignments and random assignments that
always return "T = (+∞, . . . ,+∞). While perfectly useless, those operators
are trivially sound.

Definition 5 (policy iterations domain). We define the domain Pi as the
product G×T of the domain of previous section with the above template domain.

This means all operations on Pi are performed component by component.

For instance, for (g, β) and (g′, β′) ∈ Pi, the join (g, β)��Pi
(g′, β′) is defined as8

7 It evenmust be called at least once per loop to ensure convergence of the analyses [4].
8 The join �


T on T = R
n
is simply the pointwise extension of the usual max on R.
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(g��G g′, β�
�
T β′). The concretization function γPi : Pi → 2V→R is the intersection

of the concretizations of each component: γPi(g, β) = γG(g) ∩ γT (β).
At this point, this domain still looks completely useless. But all the policy

iteration work will take place during its widening.

Definition 6 (widening of Pi). We define ∇Pi : Pi × Pi → Pi as:

(g, β)∇Pi (g
′, β′) =

{
(g∇G g′,PI (g∇G g′)) if g′0�

G g
(g∇G g′,"T ) otherwise

where PI(g) is the result of policy iterations applied on graph9 g.

The test g′0�
G g is used to perform policy iterations only when the graph

domain has stabilized, thus avoiding potentially costly, and rather useless, com-
putations on yet incomplete graphs.

As usual with reduced products [10], ∇Pi is not a widening in the strict
acceptation of the term, since it is not greater than the join of Pi. However, it
still satisfies the two fundamental following properties:

– it does not break the soundness of the analysis since for all p, p′ ∈ Pi:

γPi(p �
�
Pi

p′) ⊆ γPi(p∇Pi p
′);

– it ensures termination of the analysis: for all sequences x ∈ Pi
N, the sequence

yi = xi, yi+1 = yi∇Pixi is ultimately stationary.

Equipped with ∇Pi as widening operator, Pi finally offers a classic abstract
domain interface to policy iterations.

4.2 Remarks on This Embedding

One may find the previous construction quite complicated and ask why not
simply perform policy iterations aside classic Kleene iterations at each loop head.
This seemingly simpler approach would however suffer from following drawbacks:

– it is not confined to an abstract domain, breaking the usual abstract inter-
preter framework [23];

– this would prevent the use of reduced products to exchange information with
other domains, since a more static approach would be unable to record those
informations on the fly as our graph domain can.

Finally, due to first point, implementation could rapidly become more intricate.

5 Application to Quadratic Invariants on Guarded Linear
Systems

Semi-definite programming is a numerical optimization technique allowing by
policy iterations to efficiently compute quadratic invariants on linear guarded
systems. This short section discusses the interest of such invariants and how to
generate adequate templates.

A wide range of today’s real-time embedded systems, especially their most
critical parts, rely on a control-command computation core. Much, if not most,

9 More precisely on the system of equations introduced in Section 2.3.
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of those systems are based on a linear law (lead-lag, LQR or PID controllers, low-
pass filters,. . . ). They periodically update their internal state following a matrix
expression of the form xk+1 = Axk + Buk in which xk represents the state of
the system at a given time k, matrix A models the system update according to
its previous state while matrix B expresses the effect of the bounded input uk.

On the one hand, analyzing such systems with linear abstract domains often
leads at best to a rather costly analysis or at worst to no result at all. For
instance, they often do not admit any invariant in the interval domain. On
the other hand, control theorists have known for long that such systems are
stable if and only if they admit a quadratic invariant (they call them Lyapunov
functions [5]). Those invariants take the shape of an ellipsoid as seen on the
running example of Section 2. We demonstrated in previous work [26] how good
quadratic templates can be computed by adding appropriate constraints to the
previous equation.

Actual programs often contain a number of saturations or resets around the
linear core. Those guards are well handled by policy iterations.

6 Experimental Results

All the elements presented in this paper have been implemented as a new abstract
domain in our static analyzer for Lustre synchronous programs10.

For the sake of efficiency, policy iterations are performed with floating point
computations using the semidefinite programming library CSDP [2]. This usually
yields good results but without any formal guarantee about their correctness11.
Checking that a result is an actual postfixpoint basically amounts, for each
term of the equation system, to prove that a given matrix is actually positive
definite. This is done by carefully bounding the rounding error on a floating point
Cholesky decomposition [27]. Proof of positive definiteness of an n × n matrix
can then be achieved with O

(
n3
)
floating point operations, which in practice

induces only a very small overhead to the whole analysis.
Experiments were conducted on a set of stable linear systems. These systems

were extracted from [1,13,26]. We have to recall to the reader that those sys-
tems, despite their apparent simplicity, do not admit simple linear invariants.
Table 1 sums up analysis times for various versions of them, with or without
saturations or resets. All computations were performed on an Intel Core2 @
2.66GHz. It is interesting to notice that we nearly always get better results
than [1,26] either thanks to the better templates obtained by solving Lyapunov
equations (compared to [1]) or thanks to the extra templates bounding each
variable (compared to [26]). Moreover, those quadratic invariants are fully au-
tomatically inferred from the analyzed program, while [1] requires the user to
supply them. Although [12] may infer better bounds for the first two examples
thanks to a kind of unrolling mechanism, Fluctuat [20] and its zonotopes is, to
the best of authors’ knowledge, the only abstract interpreter that may be able
to automatically bound the other examples. This would however be a lot more
expensive.

10 Because we had it at hand. This only advocates the versatility of the approach.
11 Again, we speak here about the soundness of the result (the fixpoint computed)

w.r.t. the real semantics of the program and not its floating point one.
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Table 1. Result of the experiments: quadratic invariants inference. Column n gives the
number of program variables considered for policy iteration. The remaining columns
detail the computation time: templates corresponds to the quadratic template compu-
tation, iterations to the actual policy iterations and check to the soundness checking.
For each example, except the last one, the first line is for the bare linear system, the
second for the same system with an added saturation and the third with a reset. ⊥
indicates failure of the soundness checking.

n total (s) templates (s) iterations (s) check (s)

Ex. 1
From [13, slides]

3 0.47 0.38 0.05 0.01
4 1.26 0.70 0.37 ⊥ (0.00)
3 0.56 0.41 0.09 0.02

Ex. 2
From [13, slides]

5 0.70 0.56 0.05 0.02
6 1.18 0.57 0.37 0.12
5 0.82 0.59 0.10 0.04

Ex. 3
Discretized lead-lag
controller

3 0.53 0.35 0.13 0.02
4 1.06 0.36 0.54 0.08
3 0.64 0.35 0.23 0.03

Ex. 4
Linear quadratic gaussian
regulator

4 0.66 0.38 0.19 0.03
5 1.33 0.39 0.63 0.14
4 0.90 0.38 0.38 0.06

Ex. 5
Observer based controller
for a coupled mass system

6 1.12 0.66 0.24 0.06
7 2.59 0.65 1.34 0.26
6 1.39 0.67 0.42 0.11

Ex. 6
Butterworth
low-pass filter

6 1.39 0.99 0.17 0.07
7 2.64 1.01 1.05 0.22
6 1.63 1.00 0.31 0.12

Ex. 7
Dampened oscillator
from [1]

2 0.35 0.21 0.07 0.01
3 1.25 0.24 0.28 0.09
2 0.44 0.23 0.14 0.03

Ex. 8
Harmonic oscillator
from [1]

2 0.36 0.22 0.07 0.01
3 0.82 0.20 0.44 0.10
2 0.44 0.22 0.13 0.03

Ex. 5 and 6 chained
6 + 6 2.53 0.67 + 1.00 0.24 + 0.17 0.06 + 0.06
12 7.92 4.06 2.00 0.52

The analyzer is released under a GPL license and available along with all
examples and results at http://cavale.enseeiht.fr/policy2013/.

Example 7. The last line of Table 1 considers two linear systems chained, the
output of the first one being used as input by the second one. This program
is first analyzed with two policy iteration domains communicating together via
reduced product to and from the intervals domain (the two domains do not share
any variable). It is worth noting that total analyses time is just the sum of the
times needed for the two separate analyses. In comparison, the second analysis
with one single domain for the whole program is much more expensive.

7 Related Work

Multiple approaches try to tackle the loss of precision of Kleene iterations. A
first line of work concerns recent developments to improve widening [21] and

http://cavale.enseeiht.fr/policy2013/
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narrowing [22]. However those approaches cannot guarantee to reach the least
fixpoint. Furthermore the authors are not aware of any numerical domain able
to compute quadratic invariants based on such advanced widening. We recall
that the examples presented in the Section 6 do not admit any simple inductive
linear invariant.

Policy iteration techniques are another approach. We address the interested
reader – beyond our policy iteration primer of Section 2 – to the seminal papers
using semidefinite programming: [1,19] for the Min-Policy and [18,19] for the
Max-Policy. All those works require appropriate templates for the use of policy
iteration, while our instantiation of the framework is fully automatic. Further-
more, they make use of floating point semidefinite programming, but without
addressing the soundness issue as we do. They do however acknowledge this fact.

About the integration of policy iterations and classic abstract interpretation,
the opposite approach of the current paper has been proposed in [30]. The au-
thors introduced additional transformers in order to extend a numerical abstract
domain to its use with policy iterations. Due to this modification of the abstract
domain interface, it does not give an embedding of policy iterations in a classic
abstract domain as offered in the current paper.

We should also mention alternatives to classic widening, other than policy
iterations. These are called acceleration techniques [3,11,28]. They compete with
policy iterations but hardly extend to non linear properties.

About the analysis of guarded linear systems, the work [12,13,25] addresses a
strict subclass of the programs handled by our tool. However since they rely on
some kind of unrolling, they could be more precise for such specific problems.
Maximum reachable values (our bounds are usually a few percents larger) can be
computed via support functions [29]. However, due to heavy unrolling, only pure
linear systems, without guards, are handled and the result is not an inductive
invariant.

The generation of quadratic ellipsoid templates was already presented in [26]
but this paper did not make use of policy iterations and the approach was only
applicable to models of linear systems without if-then-else statements, not on
actual program sources.

Last, as already mentioned at the end of Section 3, the work [17] relies on an
SMT solver to optimize the policy choice when computing Max-policy iterations.
In fact an important system with multiple if-then-else construct will lead to an
exponential number of policies. Having an implicit representation and a means
to make an efficient choice is then essential. Although this work has only been
applied for linear templates, its extension to our framework should be of interest.

8 Conclusion and Future Work

To the author’s knowledge this paper presents the first integration of policy
iteration as a fully usable relational abstract domain. This integration in a Kleene
fixpoint is enabled thanks to (i) an abstract domain that rebuilds the control flow
graph and allows the policy iteration algorithm to access a global view of the
program as a system of equations; (ii) a method, based on [26], to synthetize
meaningful ellipsoid templates for a specific class of programs: stable guarded
linear systems. This provides a powerful abstract domain able to compute non
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linear invariants in a fully automatic way, in a manner similar to relational
abstractions such as polyhedra.

Reduction between classic domains and our allows both to precisely represent
this control flow graph and to inject the result of policy iterations within classic
domains. It also enables the use of multiple policy iteration domains; for example
when considering sequences of such guarded linear filters as in Example 7.

The experimental results showed that this approach really extends the applica-
bility of Kleene-based abstract interperter to a wider class of systems admitting
non linear invariants. When computing our analyzes we only provided the set
of variables that have to be analyzed with policy iterations, without any other
information like templates.

Finally the issue of floating point semantics should not be forgotten. The
introduction of error terms has to be addressed.

Acknowledgments. We deeply thank ÉricGoubault, Peter Schrammel and
the anonymous reviewers for useful comments regarding this paper.
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5. Boyd, S., El Ghaoui, L., Féron, É., Balakrishnan, V.: Linear Matrix Inequalities
in System and Control Theory, vol. 15. SIAM, Philadelphia (1994)

6. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005)

7. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
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30. Sotin, P., Jeannet, B., Védrine, F., Goubault, E.: Policy iteration within logico-
numerical abstract domains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 290–305. Springer, Heidelberg (2011)



Interpolation Properties
and SAT-Based Model Checking�

Arie Gurfinkel1, Simone Fulvio Rollini2, and Natasha Sharygina2

1 Software Engineering Institute, CMU
arie@cmu.edu

2 Formal Verification Lab, University of Lugano
{simone.fulvio.rollini,natasha.sharygina}@usi.ch

Abstract. Craig interpolation is a widespread method in verification,
with important applications such as Predicate Abstraction, CounterEx-
ample Guided Abstraction Refinement and Lazy Abstraction With In-
terpolants. Most state-of-the-art model checking techniques based on
interpolation require collections of interpolants to satisfy particular prop-
erties, to which we refer as “collectives”; they do not hold in general
for all interpolation systems and have to be established for each par-
ticular system and verification environment. Nevertheless, no systematic
approach exists that correlates the individual interpolation systems and
compares the necessary collectives. This paper proposes a uniform frame-
work, which encompasses (and generalizes) the most common collectives
exploited in verification. We use it for a systematic study of the col-
lectives and of the constraints they pose on propositional interpolation
systems used in SAT-based model checking.

1 Introduction

Craig interpolation is a popular approach in verification [14,13] with notable
applications such as Predicate Abstraction [10], CounterExample Guided Ab-
straction Refinement (CEGAR) [7], and Lazy Abstraction With Interpolants
(LAWI) [15].

Formally, given two formulae A and B such that A∧B is unsatisfiable, a Craig
interpolant is a formula I such that A implies I, I is inconsistent with B and
I is defined over the atoms (i.e., propositional variables) common to A and B.
It can be seen as an over-approximation of A that is still inconsistent with B1.
In model checking applications, A typically encodes some finite program traces,
� This material is based upon work funded and supported by the Department of De-

fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0000469.

1 We write Itp(A | B) for an interpolant of A and B, and IA when B is clear from the
context.
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and B denotes error locations. In this case, an interpolant I represents a set of
safe states that over-approximate the states reachable in A.

In most verification tasks, a single interpolant, i.e., a single subdivision of
constraints into two groups A and B, is not sufficient. For example, consider
the refinement problem in CEGAR: given a spurious error trace π = τ1, . . . , τn,
where τi is a program statement, find a set of formulae X0, . . . , Xn such that
X0 = �, Xn = ⊥, and for 1 ≤ i ≤ n, the Hoare triples {Xi−1} τi {Xi} are
valid. The sequence {Xi} justifies that the error trace is infeasible and is used
to refine the abstraction. The solution is a sequence of interpolants {Ii}n

i=1 such
that: Ii = Itp(τ1 . . . τi | τi+1 . . . τn) and Ii−1 ∧ τi =⇒ Ii. That is, in addition
to requiring that each Ii is an interpolant between the prefix (statements up
to position i in the trace) and the suffix (statements following position i), the
sequence {Ii} of interpolants must be inductive: this property is known as the
path interpolation property [18].

Other properties (e.g., simultaneous abstraction, interpolation sequence, path-
, symmetric-, and tree-interpolation) are used in existing verification frameworks
such as IMPACT [15], Whale [1], FunFrog [20] and eVolCheck [21], which im-
plement instances of Predicate Abstraction [9], Lazy Abstraction with Inter-
polation [15], Interpolation-based Function Summarization [20] and Upgrade
Checking [21]. These properties, to which we refer as collectives since they con-
cern collections of interpolants, are not satisfied by arbitrary sequences of Craig
interpolants and must be established for each interpolation algorithm and veri-
fication technique.

This paper performs a systematic study of collectives in verification and iden-
tifies the particular constraints they pose on propositional interpolation systems
used in SAT-based model checking. The SAT-based approach provides bit-precise
reasoning which is essential both in software and hardware applications, e.g.,
when dealing with pointer arithmetic and overflow. To-date, there exist success-
ful tools which perform SAT-based model checking (such as CBMC2 and SA-
TABS3), and which integrate it with interpolation (for example, eVolCheck and
FunFrog). However, there is no a framework which would correlate the existing
interpolation systems and compare the various collectives. This work addresses
the problem and contributes as follows:

Contribution 1: This paper, for the first time, collects, identifies, and uniformly
presents the most common collectives imposed on interpolation by existing ver-
ification approaches (see §2).

In addition to the issues related to a diversity of interpolation properties, it is
often desirable to have flexibility in choosing different algorithms for computing
different interpolants in a sequence {Ii}, rather than using a single interpolation
algorithm (or interpolation system) ItpS , as assumed in the path interpolation
example above. To guarantee such a flexibility, this paper presents a framework
which generalizes the traditional setting consisting of a single interpolation sys-
tem to allow for sequences, or families, of interpolation systems. For example,

2 http://www.cprover.org/cbmc
3 http://www.cprover.org/satabs

http://www.cprover.org/cbmc
http://www.cprover.org/satabs
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given a family of systems F = {ItpSi}n
i=1, let Ii = ItpSi(τ1, . . . τi | τi+1 . . . τn).

If the resulting sequence of interpolants {Ii} satisfies the condition of path in-
terpolation, we say that the family F has the path interpolation property.

Families find practical applicability in several contexts4. One example is LAWI-
style verification, where it is desirable to obtain a path interpolant {Ii} with weak
interpolants at the beginning (i.e., I1, I2, . . .) and strong interpolants at the end
(i.e., . . . , In−1, In). This would increase the likelihood of the sequence to be in-
ductive and can be achieved by using a family of systems of different strength.
Another example is software Upgrade Checking, where function summaries are
computed by interpolation. Different functions in a program could require dif-
ferent levels of abstraction by means of interpolation. A system that generates
stronger interpolants can yield a tighter abstraction, more closely reflecting the
behavior of the corresponding function. On the other hand, a system that gen-
erates weaker interpolants would give an abstraction which is more “tolerant”
and is more likely to remain valid when the function is updated.

Contribution 2: This paper systematically studies the collectives and the re-
lationships among them; in particular, it shows that for families of interpolation
systems the collectives form a hierarchy, whereas for a single system all but two
(i.e., path interpolation and simultaneous abstraction) are equivalent (see §3).

Another issue which this paper deals with is the fact that there exist different
approaches for generating interpolants. One is to use specialized algorithms:
examples are procedures based on constraint solving (e.g., [19]), machine learning
(e.g., [22]), and, even, pure verification algorithms like IC3 [2] and PDR [4]
that can be viewed as computing a path interpolation sequence. A second, well-
known approach is to extract an interpolant of A ∧ B from a resolution proof
of unsatisfiability of A ∧ B. Examples are the algorithm by Pudlák [17] (also
independently proposed by Huang [8] and by Krajíček [11]), the algorithm by
McMillan [12], and the Labeled Interpolation Systems (LISs) of D’Silva et al. [3],
the latter being the most general version of this approach.

The variety of interpolation algorithms makes it difficult to reason about their
properties in a systematic manner. At a low level of representation, the challenge
is determined by the complexity of individual algorithms and by the diversity
among them, which makes it hard to study them uniformly. On the other hand,
at a high level, where the details are hidden, not many interesting results can be
obtained. For this reason, this paper adopts a twofold approach, working both
at a high and at a low level of representation: at the high level, we give a global
view of the entire collection of properties and of their relationships and hierarchy;
at the low level, we obtain additional stronger results for concrete interpolation
systems. In particular, we first investigate the properties of interpolation systems
treating them as black boxes, and then focus on the propositional LISs. In the
paper, the results of §3 apply to arbitrary interpolation algorithms, while those
of §4 apply to LISs.

4 The notion of families is additionally a useful technical tool to make the discussion
and the results more general and easier to compare with the prior work of CAV’12
[18] (which formally defined families for the first time).
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Contribution 3: For the first time, this paper gives both sufficient and nec-
essary conditions for a family of LISs and for a single LIS to enjoy each of the
collectives. In particular, we show that in case of a single system path interpo-
lation is common to all LISs, while simultaneous abstraction is as strong as all
other properties. Concrete applications of our results are also discussed (see §4).

Contribution 4. We developed an interpolating prover, PeRIPLO, implement-
ing the proposed framework as discussed in §5; PeRIPLO is currently employed
for solving and interpolation by the FunFrog and eVolcheck tools.

Related Work. To our knowledge, despite interpolation being an important
component of verification, no systematic investigation of verification-related re-
quirements for interpolants has been done prior to this paper. One exception is
the work by the first two authors [18], that studies a subset of the properties in
the context of LISs. This paper significantly extends the results of that work by
considering the most common collectives used in verification, at the same time
addressing a wider class of interpolation systems. Moreover, for LISs, it provides
both the necessary and sufficient conditions for each property.

2 Interpolation Systems

In this section we introduce the basic notions of interpolation, and then proceed
to discuss the collectives. Among several possible styles of presentation, we chose
the one that highlights te use of collectives in the context of model checking. We
employ the standard convention of identifying conjunctions of formulae with
sets of formulae and concatenation with conjunction, whenever convenient. For
example, we interchangeably use {φ1, . . . , φn} and φ1 · · · φn for φ1 ∧ . . . ∧ φn.

Interpolation System. An interpolation system ItpS is a function that, given
an inconsistent Φ = {φ1, φ2}, returns a Craig’s interpolant, that is a formula
Iφ1,S = ItpS(φ1 | φ2) such that:

φ1 =⇒ Iφ1,S Iφ1,S ∧ φ2 =⇒ ⊥ LIφ1,S
⊆ Lφ1 ∩ Lφ2

where Lφ denotes the atoms of a formula φ. That is, Iφ1,S is implied by φ1, is
inconsistent with φ2 and is defined over the common language of φ1 and φ2.

For Φ = {φ1, . . . , φn}, we write Iφ1···φi,S to denote ItpS(φ1 · · · φi | φi+1 · · · φn).
W.l.o.g., we assume that, for any ItpS and any formula φ, ItpS(� | φ) = � and
ItpS(φ | �) = ⊥, where we equate the constant true � with the empty formula.
We omit S whenever clear from the context.

An interpolation system Itp is called symmetric if for any inconsistent
Φ = {φ1, φ2}: Itp(φ1 | φ2) ⇐⇒ Itp(φ2 | φ1) (we use the notation φ for the
negation of a formula φ).

A sequence F = {ItpS1 , . . . , ItpSn} of interpolation systems is called a family.

Collectives. In the following, we formulate the properties of interpolation sys-
tems that are required by existing verification algorithms. Furthermore, we gen-
eralize the collectives by presenting them over families of interpolation systems
(i.e., we allow the use different systems to generate different interpolants in a
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sequence). Later, we restrict the properties to the more traditional setting of the
singleton families.

n-Path Interpolation (PI) was first defined in [9], where it is employed in the
refinement phase of CEGAR-based predicate abstraction. It has also appeared
in [23] under the name interpolation-sequence, where it is used for a specialized
interpolation-based hardware verification algorithm.

Formally, a family of n + 1 interpolation systems {ItpS0, . . . , ItpSn} has the
n-path interpolation property (n-PI) iff for any inconsistent Φ = {φ1, . . . , φn}
and for 0 ≤ i ≤ n − 1 (recall that I� = � and IΦ = ⊥):

(Iφ1...φi,Si ∧ φi+1) =⇒ Iφ1...φi+1,Si+1

n-Generalized Simultaneous Abstraction (GSA) is the generalization of
simultaneous abstraction, a property that first appeared, under the name sym-
metric interpolation, in [10], where it is used for approximation of a transition
relation for predicate abstraction. We changed the name to avoid confusion with
the notion of symmetric interpolation system (see above). The reason for gener-
alizing the property will be apparent later.

Formally, a family of n + 1 interpolation systems {ItpS1, . . . , ItpSn+1} has the
n-generalized simultaneous abstraction property (n-GSA) iff for any inconsistent
Φ = {φ1, . . . , φn+1}:

n∧

i=1
Iφi,Si =⇒ Iφ1...φn,Sn+1

The case n = 2 is called Binary GSA (BGSA): Iφ1,S1 ∧ Iφ2,S2 =⇒ Iφ1φ2,S3 .
If φn+1 = �, the property is called n-simultaneous abstraction (n-SA):∧n

i=1 Iφi,Si =⇒ ⊥(= Iφ1...φn,Sn+1) and, if n = 2, binary SA (BSA). In n-SA
ItpSn+1 is irrelevant and is often omitted.

n-State-Transition Interpolation (STI) is defined as a combination of PI
and SA in a single family of systems. It was introduced in [1] as part of the inter-
procedural verification algorithm Whale. Intuitively, the “state” interpolants
over-approximate the set of reachable states, and the “transition” interpolants
summarize the transition relations (or function bodies). The STI requirement
ensures that state over-approximation is “compatible” with the summarization.
That is, {Iφ1···φi,Si}Iφi+1,Ti+1{Iφ1···φi+1,Si+1} is a valid Hoare triple for each i.

Formally, a family of interpolation systems {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn}
has the n-state-transition interpolation property (n-STI) iff for any inconsistent
Φ = {φ1, . . . , φn} and for 0 ≤ i ≤ n − 1:

(Iφ1...φi,Si ∧ Iφi+1,Ti+1) =⇒ Iφ1...φi+1,Si+1

T -Tree Interpolation (TI) is a generalization of classical interpolation used
in model checking applications, in which partitions of an unsatisfiable formula
naturally correspond to a tree structure such as call tree or program unwinding.
The collective was first introduced by McMillan and Rybalchenko for computing
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post-fixpoints of a system of Horn clauses (e.g., used in analysis of recursive
programs) [16], and is equivalent to the nested-interpolants of [6].

Formally, let T = (V, E) be a tree with n nodes V = [1, . . . , n]. A family of
n interpolation systems {ItpS1 , . . . , ItpSn} has the T -tree interpolation property
(T -TI) iff for any inconsistent Φ = {φ1, . . . , φn}:

∧

(i,j)∈E

IFj ,Sj ∧ φi =⇒ IFi,Si

where Fi = {φj | i 
 j}, and i 
 j iff node j is a descendant of node i in T .
Notice that for the root i of T , Fi = Φ and IFi,Si = ⊥.

An interpolation system ItpS is said to have a property P (or, simply, to
have P ), where P is one of the properties defined above, if every family in-
duced by ItpS has P . For example, ItpS has GSA iff for every k the family
{ItpS1, . . . , ItpSk

}, where ItpSi = ItpS for all i, has k-GSA.

3 Collectives of Interpolation Systems
In this section, we study collectives of general interpolation systems, that is, we
treat interpolation systems as black-boxes. In section §4 we will extend the study
to the implementation-level details of the LISs.

Collectives of Single Systems. We begin by studying the relationships among
the various collectives of single interpolation systems.

Theorem 1. Let ItpS be an interpolation system. The following are equivalent:
ItpS has BGSA (1), ItpS has GSA (2), ItpS has TI (3), ItpS has STI (4).

Proof. We show that 1 → 2, 2 → 3, 3 → 4, 4 → 1.
(1 → 2) Assume ItpS has BGSA. Take any inconsistent Φ = {φ1, . . . , φn+1}.

Then, for 2 ≤ i ≤ n: (Iφ1···φi−1∧Iφi ) ⇒ Iφ1···φi , which together yield (
∧n

i=1 Iφi ) ⇒
Iφ1...φn . Hence, ItpS has GSA.

(2 → 3) Let T = ([1, . . . , n], E), take any inconsistent Φ = {φ1, . . . , φn}. Since
ItpS has GSA: (

∧
(i,j)∈E IFj ∧ Iφi) ⇒ IFi , and, from the definition of Craig

interpolation, φi ⇒ Iφi . Hence, ItpS has T -TI.
(3 → 4) Take any inconsistent Φ = {φ1, . . . , φn} and extend it to a Φ′ by

adding n copies of � at the end. Define a tree TST I = ([1, . . . , 2n], E) s.t.:
E = {(n + i, i) | 1 ≤ i ≤ n} ∪ {(n + i, n + i − 1) | 1 ≤ i ≤ n}. Then, for 1 ≤ i ≤ n,
Fi = {φi} and Fn+i = {φ1, . . . , φi}, where Fi is as in the definition of T -TI. By
the T -TI property: (IFn+i ∧ IFi+1 ∧ �) ⇒ IFn+i+1 , which is equivalent to STI.

(4 → 1) Follows from STI being syntactically equivalent to BGSA for i = 1.

Theorem 1 has a few simple extensions. First, GSA implies SA directly from
the definitions. Similarly, since φ ⇒ Iφ, STI implies PI. Finally, we conjecture
that both SA and PI are strictly weaker than the rest. In §4 (Theorem 16), we
show that for LISs, PI is strictly weaker than SA. As for SA, it is equivalent
to BGSA in symmetric interpolation systems (Proposition 1 in [5]). But, in the
general case, the conjecture remains open.



Interpolation Properties and SAT-Based Model Checking 261

These results define a hierarchy of collectives which is summarized in Fig. 1,
where the edges indicate implications among the collectives. Note that SA →
GSA holds only for symmetric systems.

In summary, the main contribution in the setting of a single system is the proof
that almost all collectives are equivalent and the hierarchy of the collectives col-
lapses. From a practical perspective, this means that McMillan’s interpolation
system (implemented by most interpolating SMT-solvers) has all of the collec-
tive properties, including the recently introduced TI.

Collectives of Families of Systems. Here, we study collectives of families
of interpolation systems. We first show that the collectives introduced in §2
directly extend from families to sub-families. Second, we examine the hierarchy
of the relationships among the properties. Finally, we conclude by discussing the
practical implications of these results.

Collectives of Sub-families. If a family of interpolation systems F has a
property P , then sub-families of F have P as well. We state this formally for
k-STI (since we use it in the proof of Theorem 11); similar statements for the
other collectives are discussed in [5] (where all proofs can be found).

Theorem 2. A family {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI iff for all
k ≤ n the sub-family {ItpS0, . . . , ItpSk

} ∪ {ItpT1 , . . . , ItpTk
} has k-STI.

Relationships among Collectives. We now show the relationships among col-
lectives. First, we note that n-SA and BGSA are equivalent for symmetric inter-
polation systems. Whenever a family F = {ItpS1 , . . . , ItpSn+1} has (n + 1)-SA
and ItpSn+1 is symmetric, then F has n-GSA (Proposition 2 in [5], which is the
analogue of Proposition 1 for single systems).

In the rest of the section, we delineate the hierarchy of collectives. In partic-
ular, we show that T -TI is the most general collective, immediately followed by
n-GSA, which is followed by BGSA and n-STI, which are equivalent, and at
last by n-SA and n-PI. The first result is that the n-STI property implies both
the n-PI and n-SA properties separately:

Theorem 3. If a family F = {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI
then (1) {ItpS0 , . . . , ItpSn} has n-PI and (2) {ItpT1 , . . . , ItpTn} has n-SA.

A natural question to ask is whether the converse of Theorem 3 is true. That
is, whether the family F1 ∪ F2 that combines two arbitrary families F1 and F2
that independently enjoy n-PI and n-SA, respectively, has n-STI. We show in
§4, Theorem 11, that this is not the case.

As for BGSA, the n-STI property is closely related to it: deciding whether
a family F has n-STI is in fact reducible to deciding whether a collection of
sub-families of F has BGSA.

Theorem 4. A family F = {ItpS0 , . . . , ItpSn , ItpT1 , . . . , ItpTn} has n-STI iff
{ItpSi, ItpTi+1 , ItpSi+1} has BGSA for all 0 ≤ i ≤ n − 1.
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From Theorem 4 and Theorem 3 we derive:
Corollary 1. If there exists a family {ItpS0 , . . . , ItpSn} ∪ {ItpT1 , . . . , ItpTn}
s.t. {ItpSi , ItpTi+1 , ItpSi+1} has BGSA for all 0 ≤ i ≤ n − 1, then {ItpT1 , . . . ,
ItpTn} has n-SA.
We now relate T -TI and n-GSA. Note that the need for two theorems with
different statements arises from the asymmetry between the two properties: all
φi are abstracted by interpolation in n-GSA, whereas in T -TI a formula is not
abstracted, when considering the correspondent parent together with its children.

Theorem 5. Given a tree T = (V, E) if a family F = {ItpSi}i∈V has T -TI,
then, for every parent ik+1 and its children i1, . . . , ik:
1. If ik+1 is the root, {ItpSi1

, . . . , ItpSik
} has k-SA.

2. Otherwise, {ItpSi1
, . . . , ItpSik

, ItpSik+1
} has k-GSA.

Theorem 6. Given a tree T = (V, E), a family F = {ItpSi}i∈V has T -TI if,
for every node ik+1 and its children i1, . . . , ik, there exists Tik+1 such that:
1. If ik+1 is the root, {ItpSi1

, . . . , ItpSik
, ItpTik+1

} has (k + 1)-SA.
2. Otherwise, {ItpSi1

, . . . , ItpTik+1
, ItpSik+1

} has (k + 1)-GSA.

An important observation is that the T -TI property is the most general, in the
sense that it realizes any of the other properties, given an appropriate choice
of the tree T . We state here (and prove in [5]) that n-GSA and n-STI can
be implemented by T -TI for some T n

GSA and T n
ST I ; the remaining cases can

be derived in a similar manner. Note that the converse implications are not
necessarily true in general, since the tree interpolation requirement is stronger.
Theorem 7. If a family F = {ItpSn+1, ItpS1, . . . , ItpSn+1} has T n

GSA-TI, then
{ItpS1, . . . , ItpSn+1} has n-GSA.

Theorem 8. If a family F = {ItpS0 , . . . , ItpSn}∪ {ItpT1 , . . . , ItpTn} has T n
ST I-

TI, then it has n-STI.

The results of so far (including Theorem 11 of §4) define a hierarchy of collec-
tives which is summarized in Fig. 2. The solid edges indicate direct implication
between properties; SA → GSA requires symmetry, while GSA → T I requires
the existence of an additional set of interpolation systems. The dashed edges
represent the ability of T I to realize all the other properties for an appropriate
tree; only the edges to ST I and GSA are shown, the other ones are implicit.
The dash-dotted edges represent the sub-family properties.

An immediate application of our results is that they show how to overcome
limitations of existing implementations. For example, they enable the trivial
construction of tree interpolants in MathSat5 (currently only available in iZ3)
– thus enabling its usability for Upgrade Checking [21] – by reusing existing
BGSA-interpolation implementation of MathSat. Similarly, our results enable
construction of BGSA and GSA interpolants in iZ3 (currently only available in
MathSat) – thus enabling the use of iZ3 in Whale.
5 http://mathsat.fbk.eu/

http://mathsat.fbk.eu/
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Fig. 1. Single systems collectives
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Fig. 2. Families of systems collectives

4 Collectives of Labeled Interpolation Systems
In this section, we move from the abstract level of general interpolation systems
to the implementation level of the propositional Labeled Interpolation Systems.
After introducing and defining LISs, we study collectives of families, then sum-
marize the results for single LISs, also answering the questions left open in §3.
The key results are in Lemmas 1 − 4. Unfortunately, the proofs are quite techni-
cal. For readability, we focus on the main results and their significance and refer
the reader to [5] for full details.

There are several state-of-the art approaches for automatically computing in-
terpolants. The most successful techniques derive an interpolant for A ∧ B from
a resolution proof of the unsatisfiability of the conjunction. Noteworthy exam-
ples are the algorithm independently developed by Pudlák [17], Huang [8] and
Krajíček [11], and the one by McMillan [12]. These algorithms are implemented
recursively by initially computing partial interpolants for the axioms (leaves of
the proof), and, then, following the proof structure, by computing a partial in-
terpolant for each conclusion from those of the premises. The partial interpolant
of the root of the proof is the interpolant for the formula. In this section, we
review these algorithms following the framework of D’Silva et al. [3].

Resolution Proofs. We assume a countable set of propositional variables. A
literal is a variable, either with positive (p) or negative (p) polarity. A clause
C is a finite disjunction of literals; a formula Φ in conjunctive normal form
(CNF) is a finite conjunction of clauses. A resolution proof of unsatisfiability (or
refutation) of a formula Φ in CNF is a tree such that the leaves are the clauses of
Φ, the root is the empty clause ⊥ and the inner nodes are clauses generated via
the resolution rule (where C+ ∨ p and C− ∨ p are the antecedents, C+ ∨ C− the
resolvent, and p is the pivot):

C+ ∨ p C− ∨ p

C+ ∨ C−

Labelings and Interpolant Strength. D’Silva et al. [3] generalize the algo-
rithms by Pudlák [17] and McMillan [12] for propositional resolution systems by
introducing the notion of Labeled Interpolation System (LIS), focusing on the
concept of interpolant strength (a formula φ is stronger than ψ when φ=⇒ψ).

Given a refutation of a formula A ∧ B, a variable p can appear as a literal
only in A, only in B or in both; p is respectively said to have class A, B or AB.
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Leaf: C [I ] Inner node: C+ ∨ p : α [I+] C− ∨ p : β [I−]
C+ ∨ C− [I ]

I =
{

C� b if C ∈ A
¬(C� a) if C ∈ B

I =

{
I+ ∨ I− if α � β = a
I+ ∧ I− if α � β = b
(I+ ∨ p) ∧ (I− ∨ p) if α � β = ab

Fig. 3. Labeled Interpolation System ItpL

A labeling L is a mapping that assigns a label among {a, b, ab} independently
to each variable in each clause; we assume that no clause has both a literal and
its negation, so assigning a label to variables or literals is equivalent. The set
of possible labelings is restricted by ensuring that class A variables have label a
and class B variables label b; AB variables can be labeled either a, b or ab.

In [3], a Labeled Interpolation System (LIS) is defined as a procedure ItpL

(shown in Fig. 3) that, given A, B, a refutation R of A ∧ B and a labeling L,
outputs a partial interpolant IA,L(C) = ItpL(A | B)(C) for any clause C in
R; this depends on the clause being in A or B (if leaf) and on the label of the
pivot associated with the resolution step (if inner node). IA,L = ItpL(A | B)
represents the interpolant for A ∧ B, that is ItpL(A | B)(⊥). We omit the
parameters whenever clear from the context.

In Fig. 3, C � α denotes the restriction of a clause C to the variables with
label α. p : α indicates that variable p has label α ∈ {a, b, ab}. By C[I] we
represent that clause C has a partial interpolant I. I+, I− and I are the partial
interpolants respectively associated with the two antecedents and the resolvent
of a resolution step: I+ = ItpL(C+∨p), I− = ItpL(C− ∨p), I = ItpL(C+∨C−).

A join operator � allows to determine the label of a pivot p, taking into
account that p might have different labels α and β in the two antecedents: � is
defined by a � b = ab, a � ab = ab, b � ab = ab.

The systems corresponding to McMillan and Pudlák’s interpolation algo-
rithms are referred to as ItpM and ItpP ; the system dual to McMillan’s is ItpM ′ .
ItpM , ItpP and ItpM ′ are obtained as special cases of ItpL by labeling all the
occurrences of AB variables with b, ab and a, respectively (see [3] and [18]).

A total order � is defined over labels as b � ab � a, and pointwise extended
to a partial order over labelings: L � L′ if, for every clause C and variable p
in C, L(p, C) � L′(p, C). This allows to directly compare the logical strength
of the interpolants produced by two systems. In fact, for any refutation R of a
formula A ∧ B and labelings L, L′ such that L � L′, we have ItpL(A, B, R) =⇒
ItpL′(A, B, R) and we say that ItpL is stronger than ItpL′ [3].

Since a labeled system ItpL is uniquely determined by the labeling L, when
discussing a family of LISs {ItpL1 , . . . , ItpLn} we will refer to the correspondent
family of labelings as {L1, . . . , Ln}.

Labeling Notation. In the previous sections, we saw how the various collectives
involve the generation of multiple interpolants from a single inconsistent formula
Φ = {φ1, . . . , φn} for different subdivisions of Φ into an A and a B parts; we
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Table 1. 3-SA

p in ? Variable class, label
φ1 | φ2φ3 φ2 | φ1φ3 φ3 | φ1φ2

φ1 A, a B, b B, b
φ2 B, b A, a B, b
φ3 B, b B, b A, a
φ1φ2 AB, α1 AB, α2 B, b
φ2φ3 B, b AB, β2 AB, β3
φ1φ3 AB, γ1 B, b AB, γ3
φ1φ2φ3 AB, δ1 AB, δ2 AB, δ3

Table 2. BGSA

p in ? Variable class, label
φ1 | φ2φ3 φ2 | φ1φ3 φ1φ2|φ3

φ1 A, a B, b A, a
φ2 B, b A, a A, a
φ3 B, b B, b B, b
φ1φ2 AB, α1 AB, α2 A, a
φ2φ3 B, b AB, β2 AB, β3
φ1φ3 AB, γ1 B, b AB, γ3
φ1φ2φ3 AB, δ1 AB, δ2 AB, δ3

refer to these ways of splitting Φ as configurations. Remember that a labeling
L has freedom in assigning labels only to occurrences of variables of class AB;
each configuration identifies these variables.

Since we deal with several configurations at a time, it is useful to separate the
variables into partitions of Φ depending on whether the variables are local to a
φi or shared, taking into account all possible combinations. For example, Table 1
is the labeling table that characterizes 3-SA. Recall that in 3-SA we are given an
inconsistent Φ = {φ1, φ2, φ3} and a family of labelings {L1, L2, L3} and generate
three interpolants Iφ1,L1, Iφ2,L2 , Iφ3,L3 . The labeling Li is associated with the
ith configuration. For example, the table shows that L1 can independently assign
a label from {a, b, ab} to each occurrence of each variable shared between φ1 and
φ2, φ1 and φ3 or φ1, φ2 and φ3 (as indicated by the presence of α1, γ1, δ1).

When talking about an occurrence of a variable p in a certain partition
φi1 · · · φik

, it is convenient to associate to p and the partition a labeling vector
(ηi1 , . . . , ηik

), representing the labels assigned to p by Li1 , . . . , Lik
in configura-

tion i1, . . . , ik (all other labels are fixed). Strength of labeling vectors is compared
pointwise, extending the linear order b � ab � a as described earlier.

We reduce the problem of deciding whether a family F = {ItpL1 , . . . , ItpLn}
has an interpolation property P to showing that all labeling vectors of {L1, . . . ,
Ln} satisfy a certain set of labeling constraints. For simplicity of presentation,
in the rest of the paper we assume that all occurrences of a variable are labeled
uniformly. The extension to differently labeled occurrences is straightforward.

Collectives of LISs Families. We derive in the following both necessary and
sufficient conditions for the collectives to hold in the context of LISs families.
The practical significance of our results is to identify which LISs satisfy which
collectives. In particular, for the first time, we show that not all LISs identified
by D’Silva et al. satisfy all collectives. This work provides an essential guide
for using interpolant strength results when collectives are required (such as in
Upgrade Checking).

We proceed as follows. First, we identify necessary and sufficient labeling
constraints to characterize BGSA. Second, we extend them to n-GSA and to
n-SA. Third, we exploit the connections between BGSA and n-GSA on one side,
and n-STI and T -TI on the other (Theorem 4, Lemma 5, Lemma 6) to derive
the labeling constraints both for n-STI and T -TI, thus completing the picture.
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BGSA. Let Φ = {φ1, φ2, φ3} be an unsatisfiable formula in CNF, and F =
{ItpL1, ItpL2 , ItpL3} a family of LISs. We want to identify the restrictions on the
labeling vectors of {L1, L2, L3} for which F has BGSA, i.e., Iφ1,L1 ∧ Iφ2,L2 =⇒
Iφ1φ2,L3 . We define a set of BGSA constraints CCBGSA on labelings as follows.
A family of labelings {L1, L2, L3} satisfies CCBGSA iff:

(α1, α2), (δ1, δ2) � {(ab, ab), (b, a), (a, b)}, β2 � β3, γ1 � γ3, δ1 � δ3, δ2 � δ3

hold for all variables, where αi, βi, γi and δi are as shown in Table 2, the labeling
table for BGSA. ∗ � {∗1, ∗2} denotes that ∗ � ∗1 or ∗ � ∗2 (both can be true).

We aim to prove that CCBGSA is necessary and sufficient for a family of LISs
to have BGSA. On one hand, we claim that, if {L1, L2, L3} satisfies CCBGSA,
then {ItpL1 , ItpL2 , ItpL3} has BGSA. It is sufficient to prove the thesis for a set
of restricted BGSA constraints CC∗

BGSA, defined as follows:

(α1, α2), (δ1, δ2) ∈ {(ab, ab), (b, a), (a, b)}, β2 = β3, γ1 = γ3, δ3 = max{δ1, δ2}

Lemma 1. If {L1, L2, L3} satisfies CC∗
BGSA, then {ItpL1, ItpL2 , ItpL3} has

BGSA.
The CC∗

BGSA constraints can be relaxed to CCBGSA as shown in [18] (Theo-
rem 2, Lemma 3), due to the connection between partial order on labelings and
LISs and strength of the generated interpolants. For example, the constraint
δ3 = max(δ1, δ2) can be relaxed to δ3 � δ1, δ3 � δ2. This leads to:

Corollary 2. If {L1, L2, L3} satisfies CCBGSA, then {ItpL1, ItpL2 , ItpL3} has
BGSA.
On the other hand, it holds that the satisfaction of the CCBGSA constraints is
necessary for BGSA:

Lemma 2. If {ItpL1, ItpL2 , ItpL3} has BGSA, then {L1, L2, L3} satisfies
CCBGSA.
Having proved that CCBGSA is both sufficient and necessary, we conclude:

Theorem 9. A family {ItpL1, ItpL2 , ItpL3} has BGSA if and only if {L1, L2, L3}
satisfies CCBGSA.

n-GSA. After addressing the binary case, we move to defining necessary and
sufficient conditions for n-GSA. A family of LISs {ItpL1, . . . , ItpLn+1} has n-GSA
if, for any Φ = {φ1, . . . , φn+1}, IΦ1,L1 ∧ · · · ∧ Iφn,Ln =⇒ Iφ1...φn,Ln+1, provided
Φ is inconsistent. As we defined a set of labeling constraints for BGSA, we now
introduce n-GSA constraints (CCnGSA) on a family of labelings {L1, . . . , Ln+1};
for every variable with labeling vector (αi1 , . . . , αik+1), 1 ≤ k ≤ n, letting m =
ik+1 if ik+1 �= n + 1, m = ik otherwise:

(1) (∃j ∈ {i1, . . . , im} αj = a) =⇒ (∀h ∈ {i1, . . . , im} h �= j =⇒ αh = b)
(2) Moreover, if ik+1 = n + 1 : ∀j ∈ {i1, . . . , ik}, αj � αik+1

That is, if a variable is not shared with φn+1, then, if one of the labels is a,
all the others must be b; if the variable is shared with φn+1, condition (1) still
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holds for (αi1 , . . . , αik−1), and all these labels must be stronger or equal than
αik+1 = αn+1. We can prove that these constraints are necessary and sufficient
for a family of LIS to have n-GSA:

Theorem 10. A family F = {ItpL1, . . . , ItpLn+1} has n-GSA if and only if
{L1, . . . , Ln+1} satisfies CCnGSA.

In [18] (see Setting 1) it is proved that n-SA holds for any family of LISs stronger
than Pudlák. Theorem 10 is strictly more general, since it allows for tuples of
labels (e.g., (α1, α2) = (a, b) or (δ1, δ3, δ2) = (a, b, b)) that were not considered
in [18]. The constraints for n-SA follow as a special case of CCnGSA:

Corollary 3. A family F = {ItpL1, . . . , ItpLn} has n-SA if and only if
{L1, . . . , Ln} satisfies the following constraints: for every
variable with labeling vector (αi1 , . . . , αik

), for 2 ≤ k ≤ n:
(∃j ∈ {i1, . . . , ik} αj = a) =⇒ (∀h ∈ {i1, . . . , ik} h �= j =⇒ αh = b).

Moreover, a family that has (n+1)-SA also has n-GSA if the last member of the
family is Pudlák’s system. In fact, from Proposition 2 and Pudlák’s system being
symmetric (as shown in [8]), it follows that if a family {ItpL1 , . . . , ItpLn , ItpP }
has (n + 1)-SA, then it has n-GSA.

After investigating n-GSA and n-SA, we address two questions which were
left open in §3: do n-SA and n-PI imply n-STI? Is the requirement of additional
interpolation systems necessary to obtain T -TI from n-GSA? We show here that
n-SA and n-PI do not necessarily imply n-STI, and that, for LISs, n-GSA and
T -TI are equivalent.

n-STI. Theorem 3 shows that if a family has n-STI, then it has both n-SA and
n-PI. We prove that the converse is not necessarily true. First, it is not difficult
to show that any family {ItpL0, ItpL1 , ItpL2} has 2-PI (Proposition 3 in [5]); a
second result is that:
Lemma 5. There exists a family {ItpL0 , ItpL1, ItpL2} that has 2-PI and a fam-
ily {ItpL′

1
, ItpL′

2
} that has 2-SA, but the family {ItpL0 , ItpL1 , ItpL2, ItpL′

1
, ItpL′

2
}

does not have 2-STI.
We obtain the main result applying the STI sub-family property (Theorem 2):
Theorem 11. There exists a family {ItpS0 , . . . , ItpSn} that has n-PI, and a
family {ItpT1 , . . . , ItpTn} that has n-SA, but the family {ItpS0 , . . . , ItpSn}∪
{ItpT1 , . . . , ItpTn} does not have n-STI.

T-TI. The last collective to be studied is T -TI. Theorem 6 shows how T -TI
can be obtained by multiple applications of GSA at the level of each parent
and its children, provided that we can find an appropriate labeling to generate
an interpolant for the parent. We prove here that, in the case of LISs, this
requirement is not needed, and derive explicit constraints on labelings for T -TI.

Let us define n-GSA strengthening any property derived from n-GSA by not
abstracting any of the subformulae φi, for example Iφ1,L1 ∧ . . . ∧ Iφn−1,Ln−1 ∧
φn =⇒ Iφ1...φn,Ln+1; it can be proved that:
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Lemma 6. The set of labeling constraints of any n-GSA strengthening is a sub-
set of constraints of n-GSA.

From Theorem 6 and Lemma 6, it follows that:
Lemma 7. Given a tree T = (V, E) a family {ItpSi}i∈V has T -TI if, for every
parent ik+1 and its children i1, . . . , ik, the family of labelings of the (k + 1)-GSA
strengthening obtained by non abstracting the parent satisfies the correspondent
subset of (k + 1)-GSA constraints.

Note that, in contrast to Theorem 6, in the case of LISs we do not need to
ensure the existence of an additional set of interpolation systems to abstract the
parents. The symmetry between the necessary and sufficient conditions given by
Theorem 6 and Theorem 5 is restored, and we establish:
Theorem 12. Given a tree T = (V, E) a family {ItpSi}i∈V has T -TI if and
only if for every parent ik+1 and its children i1, . . . , ik, the family of labelings of
the (k + 1)-GSA strengthening obtained by non abstracting the parent satisfies
the correspondent subset of (k + 1)-GSA constraints.

Alternatively, in the case of LISs, the additional interpolation systems can be
constructed explicitly:
Theorem 13. Any F = {ItpLi1

, . . . , ItpLik
, ItpLn+1} s.t. k < n that has an

n-GSA strengthening property can be extended to a family that has n-GSA.

Collectives of Single LISs. In the following, we highlight the fundamental re-
sults in the context of single LISs, which represent the most common application
of the framework of D’Silva et al. to SAT-based model checking.

First, importantly for practical applications, any LIS satisfies PI:

Theorem 14. PI holds for all single LISs.

Second, recall that in §3 we proved that BGSA, STI, TI, GSA are equivalent
for single interpolation systems, and that SA → BGSA for symmetric ones. We
now show that for a single LIS, SA is equivalent to BGSA and that PI is not.

Theorem 15. If a LIS has SA, then it has BGSA.

Proof. We show that, for any L, the labeling constraints of SA imply those of
BGSA. Refer to Table 2, Table 1, Theorem 10 and Corollary 3. In case of a
family {L1, L2, L3}, the constraints for 3-SA are:

(α1, α2), (β2, β3), (γ1, γ3) � {(ab, ab), (b, a), (a, b)}
(δ1, δ2, δ3) � {(ab, ab, ab), (a, b, b), (b, a, b), (b, b, a)}

When L1 = L2 = L3, they simplify to α, β, γ, δ ∈ {ab, b}; this means that, in
case of a single LIS, only Pudlák’s or stronger systems are allowed. In case of a
family {L1, L2, L3}, the constraints for BGSA are:

(α1, α2), (δ1, δ2) � {(ab, ab), (b, a), (a, b)}, β2 � β3, γ1 � γ3, δ1 � δ3, δ2 � δ3

When L1 = L2 = L3, they simplify to α, δ ∈ {ab, b}; clearly, the constraints for
3-SA imply those for BGSA, but not vice versa.
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Finally, Theorem 14 and Theorem 15 yield:

Theorem 16. The system ItpM ′ has PI but does not have BGSA.

Proof. From the proof of Theorem 15: a LIS has the BGSA property iff it is
stronger or equal than Pudlák’s system. ItpM ′ is strictly weaker than ItpP .
Thus, it does not have BGSA.

Note that the necessary and sufficient conditions for LISs to support each
of the collectives simplify implementing procedures with a given property, or,
more importantly from a practical perspective, determine which implementation
supports which property.

5 Implementation

We developed an interpolating prover, PeRIPLO6, which implements the pro-
posed framework. PeRIPLO is, to the best of our knowledge, the first SAT-solver
built on MiniSAT 2.2.0 that realizes the Labeled Interpolation Systems of [3] and
allows to perform interpolation, path interpolation, generalized simultaneous ab-
straction, state-transition interpolation and tree interpolation; it also offers proof
logging and manipulation routines. The tool has been integrated within the Fun-
Frog and eVolCheck verification frameworks, which make use of its solving and
interpolation features for SAT-based model checking. In theory, using different
partitions of the same formula and different labelings with each partition does
not change the algorithmic complexity of LISs (see appendix C in [5]). In our
experience, there is no overhead in practice as well.

6 Conclusions

Craig interpolation is a widely used approach in abstraction-based model check-
ing. This paper conducts a systematic investigation of the most common interpo-
lation properties exploited in verification, focusing on the constraints they pose
on propositional interpolation systems used in SAT-based model checking.

The paper makes the following contributions. It systematizes and unifies var-
ious properties imposed on interpolation by existing verification approaches and
proves that for families of interpolation systems the properties form a hierarchy,
whereas for a single system all properties except path interpolation and simulta-
neous abstraction are in fact equivalent. Additionally, it defines and proves both
sufficient and necessary conditions for a family of Labeled Interpolation Systems.
In particular, it demonstrates that in case of a single system path interpolation
is common to all LISs, while simultaneous abstraction is as strong as all other
more complex properties. Extending our framework to address interpolation in
first order theories is an interesting open problem, and is part of our future work.
6 PeRIPLO is available at http://verify.inf.usi.ch/periplo.html

http://verify.inf.usi.ch/periplo.html
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Using SMT-Solvers
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Abstract. We consider message passing programs where processes communi-
cate asynchronously over unbounded channels. The reachability problem for such
systems are either undecidable or have very high complexity. In order to achieve
efficiency, we consider the phase-bounded reachability problem, where each
process is allowed to perform a bounded number of phases during a run of the
system. In a given phase, the process is allowed to perform send or receive tran-
sitions (but not both). We present a uniform framework where the channels are
assigned different types of semantics such as lossy, stuttering, or unordered. We
show that the framework allows a uniform translation of bounded-phase reacha-
bility for each of the above mentioned semantics to the satisfiability of quantifier-
free Presburger formulas. This means that we can use the full power of modern
SMT-solvers for efficient analysis of our systems. Furthermore, we show that the
translation implies that bounded-phase reachability is NP-COMPLETE. Finally,
we prove that the problem becomes undecidable if we allow perfect channels or
push-down processes communicating through (stuttering) lossy channels. We re-
port on the result of applying the prototype on a number of non-trivial examples.

1 Introduction

Programs modeled as message passing processes have a wide range of applications in-
cluding communication protocols [13,5], programs operating on weak memory models
[3,7], WEB service protocols [26], and as semantic models for modern languages such
as ERLANG [30] and SCALA [31]. Typically, the processes exchange information asyn-
chronously through a shared unbounded data structure, e.g., counters, multisets, and
channels. Despite the increasing popularity of such program models, precise algorith-
mic analysis is still a major challenge. This is perhaps not without a good reason: it is
well known that basic analysis problems (e.g., state reachability) are undecidable for
processes communicating via perfect FIFO channels [13], even under the assumption
that each process is finite-state. Although, checking state reachability becomes decid-
able for (important) special cases such as lossy FIFO channels [1], or unordered chan-
nels [25], the algorithms have very high complexity (non-primitive recursive for lossy
channels [28] and EXPSPACE-HARD for unordered channels [20]).

Given the importance of concurrent software, much research has been devoted in
recent years to developing practically useful algorithms. The undecidability and high
complexity obstacles are usually addressed by considering different types of over- or
under-approximations of system behavior (e.g., [16,4,9,12,26,8,11,10,32,17,15]).

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 272–286, 2013.
c© Springer International Publishing Switzerland 2013
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One useful approach that has recently been proposed is context-bounding [24]. The
idea is to only consider computations performing at most some fixed number of con-
text switches between processes. This provides a trade-off between computational com-
plexity and verification coverage: on the one hand, context-bounded verification can be
more efficient than unbounded verification; and on the other hand, many concurrency
errors, such as data races and atomicity violations, are manifested in executions with
few context switches [22].

In this paper, we present a new approach to model checking of concurrent processes
that communicate through channels. We introduce a new bounding parameter in the
behavior of such systems, namely the number of alternations between send operations
and receive operations performed by each processes. We consider the bounded-phase
reachability problem, where each process is restricted to performing at most k phases
(for some natural number k). A phase is a run where the process performs either send
or receive operations (but not both). Notice that the bounded-phase restriction does not
limit the number of sends or receives, and in particular it does not put any restriction
on the length of the run. Also, the number of context switches is not limited. We will
present a framework and instantiate it for several variants of channel semantics, such
as lossy, stuttering, and multiset that allow the messages inside the channels to be lost,
duplicated, and re-ordered respectively. One main contribution of this paper is to show
that our framework allows to translate (in polynomial time) the bounded-phase reach-
ability problem to the satisfiability of quantifier-free Presburger formulas. This opens
the way to leveraging the full power of state-of-the-art SMT-solvers for obtaining a very
efficient solution to the bounded-phase reachability problem for all above mentioned
models. We perform the translation in two steps. First, we show that bounded-phase
reachability can be reduced to (general) reachability under a new restriction, namely
that we only consider simple computations. A computation is simple if any (local) state
of a process appears at most once along the computation. In the second step, we show
that simple reachability can be captured by satisfiability of a quantifier-free Presburger
formula (that we can then feed to an SMT-solver).

In order to simplify the presentation, we first describe our framework for lossy
channel systems LCS. Then, we describe how the method can be modified (in a
straightforward manner) to the other channel semantics. Also, as consequence of our
translation, we show that bounded-phase reachability for LCS (and the other models)
is NP-COMPLETE. This is to be contrasted with the fact that the general reachability
problem is not primitive recursive.

Finally, we show undecidability of bounded-phase reachability for several cases, e.g.,
under the perfect channel semantics, or under the (stuttering) lossy semantics when one
of the processes is allowed to have a (single) stack.

We have implemented our method in a prototype that we have applied on a number
of examples with promising results. The examples span several application areas, such
as WEB service protocols, communication protocols, and multithreaded programs coun-
ters. The prototype and the details of the examples and experimentation are available
online (see Section 11).
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Related Work. Our work can be seen as a non-trivial extension of bounded-context
switches for concurrent shared-memory programs [24] and reversal-bounded analysis
for programs manipulating counters [18,16] to the class of message-passing programs.

La Torre et al. [32] propose context-bounded analysis for pushdown processes com-
municating through perfect channels, where in each context a process is allowed to re-
ceive from only one channel (but is allowed to send to all other channels). This implies
that, in a context, a process can have an unbounded number of alternations between
send and receive modes (which is not allowed in our bounded-phase analysis). How-
ever, our bounded-phase analysis allows multiple processes to be active at the same
time and each one of them can send or receive to/from all the channels (which is not
permitted by context-bounded analysis of [32]).

In [9,4,12] symbolic representations of the contents of the channels have been pro-
posed for analysis of message-passing programs. Our technique does not restrict the
content of channels to a class of representable descriptions. Moreover, our reduction
to the satisfiability of quantifier-free Presburger formulas allows us to use highly-
developed and optimized SMT-solvers.

In [10], the authors consider a different model where the communication is done
via Perfect FIFO channels and where ”messages/tasks” can be consumed only when
the process stack is empty. Although, their proposed bounding scheme is more general
than bounding the number of alternations between receive and send operations, their
notion leads to undecidability. To obtain decidability, they restrict the number of pro-
cessor interleavings. We do not do this since we would like to allow any possible shuffle
between two processes.

2 Preliminaries

We let N denote the set of natural numbers. For a natural number n, we define [n] :=
{1,2, . . . ,n}. For a set A, we use |A| to denote its cardinality. For a function f : A �→ B
from a set A to a set B we use f [a← b] to denote the function f ′ such that f (a) =
b and f ′(a′) = f (a′) if a′ �= a. We use [A �→ B] to denote the set of (total) functions
from A to B. For a set A, we let A∗ denote the set of finite words over A. We let |w|
denote the length of w. We use w[i] to denote the ith element of w, and write a ∈ w to
denote that w[i] = a for some i. For words w1 = a1a2 · · ·am and w2 = b1b2 · · ·bn, we
write w1 % w2 to denote that there is an injection h : [m] �→ [n] such that i < j implies
h(i)< h( j) and ai = bh(i), i.e., w1 is a (not necessarily contiguous) subword of w2. We
use w1 ·w2 to denote the concatenation of w1 and w2, and ε to denote the empty word.
For a word w = a1a2 · · ·am, we use Stuttering(w) to denote the set of words defined as
{ai11 a

i2
2 · · ·aimm |1≤ i1, i2, . . . , im}.

3 Communicating Finite-State Processes

In this section, we introduce finite-state processes communicating through lossy chan-
nels. We introduce the notion of processes and the transition system induced by com-
municating processes, and then consider bounded-phase computations. In the rest of the
section, we fix a finite set M of messages and a finite set C of channels.



Analysis of Message Passing Programs Using SMT-Solvers 275

Processes. A process p is a tuple
〈
Qp,qinitp ,Δp

〉
where Qp is a finite set of states,

qinitp ∈ Qp is the initial state, and Δp is a finite set of transitions. A transition t ∈ Δp

is a triple 〈q1,op,q2〉 where q1,q2 ∈ Qp are states, and op is an operation of one of
the following three forms: (i) c!m sends the message m ∈ M to channel c ∈ C (m is
appended to the tail of c), (ii) c?m receives the message m ∈ M from channel c ∈ C
(only enabled if m is at the head of c, and if performed, m is removed from the head of
c), (iii) nop is the dummy operation (it does not affect the contents of the channels). We
define source(t) := q1, target (t) := q2, and operation(t) := op. For a state q ∈ Qp, we
define source−1 (q) := {t|source(t) = q} and define target−1 (q) and operation−1 (op)
similarly. We define Δsnd

p to be the set of transitions in Δp whose operations are send.
We define Δrcv

p and Δnop similarly. A sequence δ = t1t2 · · · tn is said to be a cycle if (i)
target (ti) = source(ti+1) for i : 1≤ i< n, (ii) target (tn) = source(t1), and (iii) ti �= t j if
i �= j. We say that δ is a q-loop if source(t1) = q.

Transition System. We define the transition system induced by processes communicat-
ing through lossy channels. A Lossy Channel System (LCS for short) consists of a set
P of processes. Let process p ∈ P be of the form

〈
Qp,qinitp ,Δp

〉
. Define Q := ∪p∈PQp,

Δ := ∪p∈PΔp, Δsnd := ∪p∈PΔsnd
p , and define Δrcv, Δnop similarly. A state map is a func-

tion s : P �→ Q such that s(p) ∈ Qp, and a channel map is a function ω : C �→ M∗.
We extend the subword ordering % to channel maps as follows: Given two channel
maps ω1 : C �→M∗ and ω2 : C �→M∗, we write ω1 % ω2 if and only if ω1(c) % ω2(c)
for all c ∈ C. A configuration γ is of the form 〈s,ω〉 where s is a state map and ω is
a channel map. Intuitively, s defines the states of the processes, while ω defines the
contents of the channels. We define a transition relation −→ on the set of configura-
tions as follows. Consider configurations γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition

t = 〈q1,op,q2〉 ∈ Δp for some p ∈ P. We write γ1
t−→ γ2 to denote that s1(p) = q1,

s2 = s1[p← q2], and one of the following three properties is satisfied: (i) op= c!m and
ω2 % ω1[c← m ·ω1(c)], (ii) op = c?m and ω2 % ω1[c← w] where ω1(c) = w ·m, and
(iii) op= nop and ω2 % ω1. A computation π (from a configuration γ to a configuration

γ′) is a sequence γ0
t1−→ γ1 · · ·

tn−→ γn such that γ0 = γ and γn = γ′. In such a case we say
that γ′ is reachable from γ by π. We define the initial configuration γinit :=

〈
sinit,ωinit

〉
,

where sinit(p) = qinitp for all p ∈ P, and ωinit(c) = ε for c ∈C. In other words, the system
starts from a configuration where all the processes are in their initial states and where
all the channels are empty. A configuration γ is said to be reachable if it is reachable
from γinit. A state map s ∈ [P �→ Q] is reachable, if there is a channel map ω such that
〈s,ω〉 is reachable. In the reachability problem for the LCS P, we are given a state map
starget ∈ [P �→ Q], and we are asked whether starget is reachable.

Bounded-Phase Computations. We introduce bounded-phase computations. From the
point of view of any process p, the computation consists of a number of phases where,
during a given phase, process p either only performs send operations, or only performs
receive operations (in addition to the dummy operation). Consider a computation π =

γ0
t1−→ γ1

t2−→ ·· · tn−→ γn. We define π↑:= t1t2 · · · tn, i.e., it is the sequence of transitions
that occur in π. For a process p∈ P, we define π↑ p to be the maximal subword t ′1t

′
2 · · · t ′m

of π↑ such that t ′i ∈ Δp for i : 1≤ i≤ m, i.e., it is the sequence of transitions performed
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by p in π. Given a sequence of transitions δ = t1t2 · · · tn ∈ Δ∗p, we say that δ is a phase
if either ti ∈ Δsnd

p ∪Δ
nop
p for all i : 1 ≤ i ≤ n, or ti ∈ Δrcv

p ∪Δ
nop
p for all i : 1 ≤ i ≤ n. We

define ∼ snd := rcv, and ∼ rcv := snd.
A computation π is said to be k-bounded with respect to a process p if π ↑ p =

δ1 · δ2 · · ·δ j where j ≤ k and δi is a phase for all i : 1 ≤ i ≤ j. In other words, the
transitions performed by p in π form at most k phases. We say that π is k-bounded if it
is k-bounded with respect to all process p ∈ P. For configurations γ and γ′, we say that
γ′ is k-reachable from γ if γ′ is reachable from γ by a k-bounded computation. (State
map) k-reachability is defined in a similar manner to state map reachability (see above).
In the bounded-phase reachability problem, we are also given a natural number k ∈ N,
and we are asked whether starget is k-reachable. The following theorem follows from the
definitions. It shows that k-reachability is an under-approximation of reachability.

Theorem 1. A state map s : P �→ Q is reachable iff s is k-reachable for some k ∈ N.

4 Simple Reachability

In this section, we introduce simple reachability, i.e., reachability by computations
in which a state may occur at most once along the computation. We show that k-
reachability is polynomially reducible to simple reachability. We do that in two steps.
First, we define pure LCS and show that the k-reachability problem for general LCS can
be reduced to the reachability problem for pure LCS. Second, for a pure LCS, we derive
a new LCS and show that the reachability problem for the former coincides with the
simple reachability problem for the latter.

Simple Computations. Consider a set of processes P. Let p=
〈
Qp,qinitp ,Δp

〉
for p ∈ P.

A sequence of transitions δ= t1t2 · · · tn ∈ Δ∗p is said to be simple if there are no δ1,δ2,δ3

such that δ = δ1 · δ2 · δ3 and δ2 is a q-cycle for some state q ∈ Qp. In other words, the
states appearing along the sequence are all different. A computation π is simple if π↑ p
is simple for all p ∈ P. A simple computation then does not visit any state more than
once. For configurations γ,γ′, we say that γ′ is simply reachable from γ if γ′ is reachable
from γ by a simple computation. The simple reachability problem is defined in a similar
manner to the reachability problem (see Section 3) except that we replace computations
in the definition by simple computations.

Pure LCS. Consider a process p =
〈
Qp,qinitp ,Δp

〉
. We say that p is pure if there is no

cycle t1t1 · · · tn such that ti ∈ Δsnd
p and t j ∈ Δrcv

p for some i �= j. In other words, p is pure if
there is no cycle (equivalently there is no strongly connected component) in the graph
of p that contains both a send and a receive transition. Notice that this is a syntactic
property of the process and it does not depend on the operational semantics. An LCS

consisting of a set P of processes is pure if all processes p ∈ P are pure. We will now
reduce the k-reachability problem for general LCS to the reachability problem for pure
LCS. Suppose that we are given an instance of the k-reachability problem, defined by a
set P of processes and a target state map starget. We will derive an equivalent instance of
the reachability problem where the given LCS is pure. We do this by transforming each
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process to a pure one. The idea of the transformation is to make a number of copies
of (parts of) the graph of p where each copy contains either transitions in Δsnd

p ∪Δ
nop
p

or transitions in Δrcv
p ∪Δ

nop
p . Each copy will represent one phase of the computation

from the point of view of p. If the next transition of p is consistent with the current
“mode” of the phase (i.e., send or receive) then p will continue in states belonging to
the current copy; otherwise it moves to the next one. Let p =

〈
Qp,qinitp ,Δp

〉
. Define

pure(p) :=
〈
Rp,rinitp ,ΔR

p

〉
, where:

– Rp :=
{
rinitp ,rtargetp

}
∪ {〈q,m, i〉|q ∈ Qp∧m ∈ {snd,rcv}∧1≤ i≤ k}. In other

words, pure(p) has an initial state rinitp , a target state rtargetp , together with a set
of states each of which is triple. A triple consists of a state q of p, a mode m, and
a natural number i ≤ k. Intuitively, triples containing i are used to simulate the ith

phase performed by the process, and the mode m describes whether the process is
sending or receiving during the current phase.

– ΔR
p contains the following transitions:
•
〈
rinitp ,nop,

〈
qinitp ,m,1

〉〉
for m∈ {snd,rcv}. This corresponds to a transition from

the initial state of pure(p) to the initial state of p in its first phase. In the first
mode, the process may be either sending or receiving.
• 〈〈q1,m, i〉 ,op,〈q2,m, i〉〉 if t = 〈q1,op,q2〉 ∈ Δm

p ∪ Δ
nop
p for m ∈ {snd,rcv} and

1 ≤ i ≤ k. The process performs another transition in the same mode m and
therefore it stays in the same phase i.
• 〈〈q1,m, i〉 ,op,〈q2,∼ m, i+ 1〉〉 if t = 〈q1,op,q2〉 ∈ Δ∼mp for m ∈ {snd,rcv} and

1 ≤ i < k. The process performs a transition that violates the current mode m,
and hence it moves to the next phase i+ 1.
•
〈
〈starget(p),m, i〉 ,nop,rtargetp

〉
for m ∈ {snd,rcv} and i : 1 ≤ i ≤ k. In its final

phase, the process moves from the target state of p to the target state of pure(p).
The mode of the final phase may be snd or rcv.

Define pure(P) := {pure(p)|p ∈ P}, and define the state map stargetR (p) := rtargetp for
all p ∈ P. It follows that stargetR is reachable in (the pure LCS) pure(P) iff starget is k-
reachable in P, which leads to the following lemma.

Lemma 2. k-Reachability for LCS is polynomially reducible to reachability for pure
LCS.

Saturation. Consider an LCS consisting of a set P of processes. Let p =
〈
Qp,qinitp ,Δp

〉
and q ∈ Qp. We define qsnd to be the set of operations of the form c!m such that there
is a q-cycle δ and a transition t ∈ δ with operation(t) = c!m. In other words, it is
the set of all send operations that appear in cycles visiting q. For a given k ∈ N, we
derive a new LCS through “k-saturating” P as follows. For a process p ∈ P, we de-
rive sat (p,k) from p by adding a number of states and transitions. For each transi-
tion 〈q,op,q′〉 ∈ Δp, with qsnd �= /0, we add k+ 1 new states qtmp0 ,qtmp1 , . . . ,qtmpk . Fur-
thermore, for each operation c!m ∈ qsnd and each i : 0 ≤ i < k we add the transition〈
qtmpi ,c!m,qtmpi+1

〉
. Finally, we add the transitions

〈
q,nop,qtmp0

〉
and

〈
qtmpk ,op,q′

〉
. We

define sat (P,k) := {sat (p,k)|p ∈ P}, i.e., we k-saturate all the processes in the set P.
From the definitions, we notice that sat (P,k) satisfies the following properties. (i) The
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size |sat (P,k)| of sat (P,k) is polynomial in k and in the size |P| of P (for any appro-
priate definition of the size |P|). This holds since we add at most k+ 1 new states per
state of p (more precisely, either k+ 1 states if qsnd �= /0, or no states if qsnd = /0). Also,
for each new state the number of added transitions is bounded by ∑p∈P |Δp|. (ii) If P is
pure then sat (P,k) is pure. This follows from the fact that we only add send transitions
and we add such transitions only from states that are on cycles not containing receive
transitions. This implies that we will not create any cycles involving both send and re-
ceive transitions. (iii) If P is pure then, for any configurations γ,γ′, we have that γ′ is
reachable from γ in P iff γ′ is reachable from γ in sat (P,k). This follows from the fact
that for any added sequence of transitions, the send operations are already present in
existing cycles. Therefore, the effect of the added cycles can be simulated by iterating
the existing cycles (possibly) combined with the loss of messages. (iv) For any state
mapping starget, we have that starget is reachable in P iff starget is simply reachable in
sat
(
P,∑p∈P |Qp|

)
. The reason is that effect of performing all the receive transitions be-

tween the two occurrences of a state q can be simulated by losing messages (by purity
of P, none of these transitions can perform a send operation). This implies that we need
only to consider computations where the number of receive transitions is bounded by
∑p∈P |Qp|. In turn, this implies that each cycle involving send transitions need not be
iterated more than ∑p∈P |Qp| times. The result follows from the fact that we add the
(∑p∈P |Qp|)-unfolding of all such cycles in the construction of sat

(
P,∑p∈P |Qp|

)
. This

gives the following lemma.

Lemma 3. Reachability for pure LCS is polynomially reducible to simple reachability
for (pure) LCS.

5 Translation

In this section, we reduce the simple reachability problem for LCS to the problem of
checking satisfiability of existential Presburger formulas. Suppose that we are given an
instance of the simple reachability problem defined by an LCS consisting of a set P of
processes, and a state map starget. We will derive a quantifier-free Presburger formula
φ such that φ is satisfiable iff starget is reachable. For each state and transition in P, we
introduce a number of variables that we use to build φ. We define φ as a conjunction
where the conjuncts are divided into four sets, called indexing, traversal, simplicity,
and matching respectively. Each set of conjuncts is used to describe one aspect of a
potential computation reaching starget. For p ∈ P, let p =

〈
Qp,qinitp ,Δp

〉
. Define Q and

Δ as in Section 3.

Indexing. For a state q ∈Q, we use an “index variable” index(q). For all pair of states
q,q′ ∈Q, φ contains index(q) �= index(q′), i.e., we assign to each state a unique index.

Traversal. This set of conjuncts ensures that each computation corresponds to a traver-
sal of the graphs of the processes. This is inspired by the construction of an existential
Presburger formula for the Parikh image of the language of finite-state automata [29].
To define this group we use the following variables. For each t ∈ Δ we use an “oc-
currence variable” occ(t) that encodes whether the transition t is executed during the
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computation or not (1 if yes and 0 if no). For each state q ∈ Q, we use an “in-flow”
variable in(q) and an “out-flow” variable out(q) that encode whether state q is en-
tered resp. left during the computation (1 if yes and 0 if no). The formula φ contains the
following conjuncts: (i) For each q ∈ Q, φ contains in(q) = ∑t∈target−1(q) occ(t), i.e.,
q is entered iff exactly one of its ingoing transitions is executed. (ii) For each q ∈ Q, φ
contains out(q) =∑t∈source−1(q) occ(t), i.e., q is left iff exactly one of its outgoing tran-

sitions is executed. (iii) For each process p ∈ P, φ contains out
(
qinitp

)
= in

(
qinitp

)
+1,

i.e., the initial state of a process is left once but not entered. (iv) For each pro-
cess p ∈ P, φ contains in(starget(p)) = out(starget(p)) + 1, i.e., the target state in
a process is entered once but not left. (v) For each process p ∈ P and each state
q ∈ Qp −

{
qinitp ,starget(p)

}
, φ contains in(q) = out(q), i.e., all other states are ei-

ther not visited or both entered once and left once. (vi) For each q ∈ Q, φ contains

(in(q) = 1) =⇒
(∨

t∈target−1(q)(occ(t) = 1)∧index(source(t)) < index(q)
)

. The

indexing on the states guarantees that the computation corresponds to executing suc-
cessive edges in the graph of each process p. Each visited state is indexed higher than
its (unique) predecessor in the computation. Notice that this means that the order in
which states occur in the computation is consistent with the indexing (if q appears be-
fore q′ then index(q)< index(q′)).

Simplicity. For each q∈Q, φ contains in(q)≤ 1. Since the computation is simple, each
state is visited at most once.

Matching. This set of conjuncts ensures that each receive transition is matched by a
preceding send transitions. More precisely, we will match the occurrence of a receive
transition by the target state of a corresponding send transition as follows. For each
transition t ∈ Δrcv, we use a “matching” variable match(t). For each transition t =
〈q1,c?m,q2〉 ∈ Δrcv, φ contains

(occ(t) = 1) =⇒

⎛⎜⎜⎜⎜⎝
∨

t′∈operation−1(c!m)

⎛⎜⎜⎜⎜⎝
match(t) = index(target (t ′))

∧
occ(t ′) = 1

∧
index(target (t ′)) < index(q2)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

Intuitively, if the receive transition t occurs in the computation (i.e., occ(t) = 1), then
a matching transition t ′ occurs (i.e., occ(t ′) = 1). The matching of t with t ′ is achieved
by requiring that the “matching” variable of t is equal to the index of the target state of
t ′. Furthermore, t ′ should occur before t. The latter condition requires that the index of
the target state of t (state q2) is larger than the index of the target state of t ′.

Finally, for any pair of receive transitions t, t ′ ∈ Δrcv the formula φ con-
tains (occ(t) = 1) ∧ (occ(t ′) = 1) ∧ (index(target (t)) < index(target (t ′))) =⇒
(match(t)< match(t ′)). This means that if both t and t ′ occur (i.e., occ(t) = 1 and
occ(t ′) = 1) and t occurs before t ′ (the index of the target state of t occurs before
the one of t ′) then the matching send transition of t occurs before the matching send
transition of t ′.

The above construction gives the following lemma.
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Lemma 4. Simple reachability for LCS is polynomially reducible to the satisfiability of
quantifier-free Presburger formulas.

6 Bounded-Phase Reachability

In this section, we collect the results of the previous sections to prove that k-reachability
for LCS is polynomially reducible to the satisfiability of quantifier-free Presburger for-
mulas. The main consequence of this is that it allows the use of advanced tools for
SMT-solving for efficient analysis of LCS (see Section 11). Furthermore, we use this
result to show an upper bound on the complexity of the k-reachability problem for LCS,
namely inclusion in NP. We complete the picture by giving a lower bound which shows
that the problem is NP-COMPLETE.

Upper Bound. From Lemma 2, Lemma 3, Lemma 4, we get the following theorem.

Theorem 5. k-reachability for LCS is polynomially reducible to the satisfiability of
quantifier-free Presburger formulas.

Since the latter problem is known to be NP-COMPLETE, we get the following corollary.

Corollary 6. k-reachability for LCS is in NP.

Lower Bound. We show NP-hardness by a reduction from the Boolean Satisfiability
Problem (SAT) (which is known to be NP-COMPLETE [14]). Consider a propositional
formula φ in conjunctive normal form. We will construct an LCS consisting of a set
of processes P. The set P contains (i) one process px for each variable x appearing in
φ, and (ii) one process p� for each clause � in φ. Furthermore, for each variable x, we
associate a channel cx, and two messages mx,mx̄. The finite-state automaton describing
the behavior of the process px generates traces in the language (cx!mx)

∗ ∪(cx!mx̄)
∗ from

its initial state qinitpx to its unique target state qtargetpx . Intuitively, the process px guesses
the assigned value to the variable x by sending a number of copies of the message mx

to the channel cx if the value assigned to x is true, and sending mx̄ otherwise. For a
clause �, the process p� contains two states, namely an initial state qinitp� and a target

state qtargetp� . For any positive (resp. negative) literal x (resp. x̄) in �, the process p� has
a transition of the form

〈
qinitp� ,cx?mx,q

target
p�

〉
(resp.

〈
qinitp� ,cx?mx̄,q

target
p�

〉
). The transition

checks if the assigned value to x is true (resp. false). Define the state map starget such
that starget(p) := qtargetp for each p ∈ P. It is easy to see that φ is satisfiable if and only
if starget is 2-reachable. This shows that the k-reachability problem for LCS is NP-HARD

for k ≥ 2. From this and Corollary 6 we get the following theorem.

Theorem 7. k-reachability for LCS is NP-COMPLETE.

7 Communicating Pushdown Processes

In this section, we define pushdown processes communicating through lossy channels
and we show the undecidability of its k-reachability problem. Let M be a finite set of
messages andC be a finite set of channels.
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Pushdown Processes. A pushdown process p is a tuple
〈
Qp,qinitp ,Γp,Δp

〉
where Qp

is finite set of states, qinitp ∈ Qp is the initial state, Γp is the stack alphabet, and Δp is
the set of pushdown transitions. A transition t ∈ Δp is a tuple 〈q1,a,op,a′,q2〉 where
q1,q2 ∈ Qp are states, a,a′ ∈ Γp∪{ε} are stack symbols, and op is an operation of the
form c!m, c?m, or nop with m ∈M and c ∈C.

Transition System. We define the transition system induced by pushdown processes
communicating through lossy channels. A Lossy Channel Pushdown System (LCPS for
short) consists of a set P of pushdown processes. Let process p ∈ P be of the form〈
Qp,qinitp ,Γp,Δp

〉
. Define Q := ∪p∈PQp and Γ := ∪p∈PΓp. A configuration γ is of the

form 〈s,α,ω〉, where s : P �→Q is a state map such that s(p) ∈Qp, α : P �→ Γ∗ is a stack
map such that α(p) ∈ Γp

∗, and ω : C �→ M∗ is a channel map. Intuitively, α defines
the contents of the stacks of the processes, while s and ω have the same meaning as
for the case of LCS. We define the initial configuration γinit :=

〈
sinit,αinit,ωinit

〉
where

sinit(p) = qinitp and αinit(p) = ε for all p ∈ P, and ωinit(c) = ε for all c ∈ C (i.e., the
system starts from a configuration where all the processes are in their initial states and
where all the stacks and channels are empty).

We define a transition relation −→ on the set of configurations as follows.
Consider configurations γ1 = 〈s1,α1,ω1〉, γ2 = 〈s2,α2,ω2〉, and a transition t =

〈q1,a1,op,a2,q2〉 ∈ Δp for some p ∈ P. We write γ1
t−→ γ2 to denote that s1(p) = q1,

s2 = s1[p← q2], α1(p) = a1 · u for some u ∈ Γp
∗, α2 = α1[p← a2 · u] and one of the

following properties is satisfied: (i) op= c!m and ω2 %ω1[c←m ·ω1(c)], (ii) op= c?m
and ω2 % ω1[c← w] where ω1(c) = w ·m, (iii) op = nop and ω2 % ω1. The notions of
computations and bounded phase computations are defined in the similar way as for the
case of LCS.

Bounded-Phase Reachability Problem. In the following, we show that the (bounded-
phase) reachability problem for LCPS is undecidable. The undecidability holds even for
the 2-reachability problem for an LCPS that contains only one pushdown process with
two lossy channels.

Theorem 8. k-reachability for LCPS is undecidable.

8 Stuttering Lossy Channels

In this section, we consider processes communicating through stuttering lossy channels
where messages can be both lost and duplicated.

Communicating Finite-State Processes. In the following, we give the model definition
for finite-state processes communicating through stuttering lossy channels and show
that the bounded-phase reachability problem is NP-COMPLETE. The syntax of the con-
sidered system is exactly the same as the one of LCS (described in Section 3). Next,
we define the induced transition system. A Stuttering Lossy Channel System (SLCS

for short) consists of a set P of finite-state processes. Let process p ∈ P be of the
form

〈
Qp,qinitp ,Δp

〉
. Configurations are defined as for the case of LCS. We define a



282 P.A. Abdulla, M.F. Atig, and J. Cederberg

transition relation −→ on the set of configurations as follows. Consider configurations
γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition t = 〈q1,op,q2〉 ∈ Δp for some p ∈ P. We

write γ1
t−→ γ2 to denote that s1(p) = q1, s2 = s1[p← q2], and that there is ω :C �→M∗

such that ω2(c′) ∈ Stuttering(ω(c′)) for all c′ ∈ C and one of the following properties
is satisfied: (i) op= c!m and ω% ω1[c← m ·ω1(c)], (ii) op = c?m and ω% ω1[c← w]
where ω1(c) = w ·m, (iii) op = nop and ω % ω1. The notions of computations and
bounded phase computations are defined in the similar way as for the case of LCS.
Then, we can show the following theorem.

Theorem 9. k-reachability for SLCS is NP-COMPLETE.

Communicating Pushdown Processes. We can extend the definition of SLCS to the case
where each process is a pushdown as for the case of LCPS (Section 7). This leads to the
class of Stuttering Lossy Channel Pushdown System (SLCPS).

Theorem 10. k-reachability problem for SLCPS is undecidable.

9 Unordered Channels

In this section, we consider finite-state processes communicating through unordered
lossy channels where messages can be re-ordered.

Communicating Finite-State Processes. In the following, we give the model when the
processes are finite-state. finite-state processes. The syntax of the system is the same as
the one of LCS (Section 3). Next, we define the induced transition system. An Unordered
Channel System (UCS for short) consists of a set P of finite-state processes. Let process
p ∈ P be of the form

〈
Qp,qinitp ,Δp

〉
. Define Q := ∪p∈PQp. A configuration γ is of the

form 〈s,ω〉, where s : P �→ Q is a state map such that s(p) ∈ Qp, and ω : C×M �→ N
is a channel map. Intuitively, ω defines the contents of the channels (i.e., we associate
to each message its number of occurrences in each channel). We define the initial con-
figuration γinit :=

〈
sinit,ωinit

〉
where sinit(p) = qinitp for all p ∈ P, and ωinit(c,m) = 0 for

all c ∈C and m ∈M (i.e., the system starts from a configuration where all the processes
are in their initial states and where all the channels are empty).

We define a transition relation −→ on the set of configurations as follows. Consider
configurations γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition t = 〈q1,op,q2〉 ∈Δp for some

p ∈ P. We write γ1
t−→ γ2 to denote that s1(p) = q1, s2 = s1[p← q2], and one of the

following three properties is satisfied: (i) op= c!m and ω2 = ω1[(c,m)← (ω1(c,m)+
1)], (ii) op= c?m, ω1(c,m)≥ 1 and ω2 = ω1[(c,m)← (ω1(c,m)−1)], or (iii) op= nop
andω2 =ω1. The notions of computations and bounded phase computations are defined
in the similar way as in the case of LCS. Then, we can show the following theorem.

Theorem 11. k-reachability for UCS is NP-COMPLETE.

Communicating Pushdown Processes. We can extend the definition of UCS to the case
where each process is a pushdown as for the case of LCPS (Section 7). This leads to the
class of Unordered Channel Pushdown System (UCPS for short).

Theorem 12. k-reachability problem for UCPS is NP-COMPLETE.
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10 Perfect Channels

In this section, we consider finite-state processes communicating through perfect chan-
nels, and show that the bounded-phase reachability problem is undecidable.

The syntax of the considered system is the same as the one of LCS (described in
Section 3). We define the induced transition system. A Perfect Channel System (PCS

for short) consists of a set P of finite-state processes. Let process p ∈ P be of the
form

〈
Qp,qinitp ,Δp

〉
. Configurations are defined as for the case of LCS. We define a

transition relation −→ on the set of configurations as follows. Consider configurations
γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition t = 〈q1,op,q2〉 ∈ Δp for some p ∈ P. We

write γ1
t−→ γ2 to denote that s1(p) = q1, s2 = s1[p← q2], and one of the following

properties is satisfied: (i) op = c!m and ω2 = ω1[c← m ·ω1(c)], (ii) op = c?m and
ω2 = ω1[c← w] where ω1(c) = w ·m, (iii) op= nop and ω2 = ω1. The notions of com-
putations and bounded phase computations are defined in the similar way as for the
case of LCS. Then, we can show the following theorem.

Theorem 13. k-reachability problem for PCS is undecidable.

11 Experimental Data

We have implemented our technique in a prototype tool called Alternator. The tool is
available on GitHub [2], where we also supply the source of all experiments listed be-
low. The tool uses the frontend of the implementation provided by Marques et al in [19],
to get XML representations of the protocols from spreadsheets. We have implemented a
Python application that, given such an XML representation, builds an SMT-LIB [6] for-
mula as described in Section 5. This SMT-LIB formula can then be given to any SMT

solver supporting the SMT-LIB version 2 standard. In our case we use the Z3 solver [21].
We have applied our prototype to a number of different protocols. The results

demonstrate the efficiency of our framework. We analyze the web service protocols
Subservice Termination Protocol (STP) and Business Agreement with Coordinator
Completion (CC). The purpose of these protocols is to ensure that two (or three in the
case of STP) processes agree on the global state of the system, as is commonly needed in
SOA (Service-Oriented Architecture) frameworks. For more information on these pro-
tocols, see [23,19]. By CCv2, we mean the augmented version of the CC protocols that
can be found in [23]. Furthermore, we have applied our tool to modified versions of
the well-known Alternating Bit Protocol (ABP f ) and Sliding Window protocol (SW f )
where we have intentionally introduced some errors. The SYNC protocol is a simple
protocol requiring perfect channels. The Jingle example [27] is a multimedia session
establishment protocol that is used by applications such as Google Talk, Coccinella and
Miranda IM.

The results of our analyses can be seen in Table 1. The column “Gen. Time” gives
the time that our tool takes to build an SMT-LIB formula. The column “SMT” shows
the time that the SMT-solver takes to decide the satisfiability of the generated formula.
All times are in seconds. The column “Sem” shows under which channel semantics we
have run the examples. Finally the columns “Ph.” and “Res” show the number of phases
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Table 1. Experimental Results

P Sem Gen. Time SMT Ph. Res P Sem Gen. Time SMT Ph. Res

STP UCS 0.1 0.1 12 U CC UCS 0.8 0.2 6 U
STP SLCS 2.8 38.4 8 S CC SLCS 70.8 10.7 2 S
STP LCS 2.8 13.0 8 S CC LCS 70.2 10.1 2 S

CCv2 UCS 1.8 0.8 8 U ABP f SLCS 0.5 3.7 4 U
CCv2 SLCS 163.8 26.2 2 S ABP f LCS 0.5 5.9 4 U
CCv2 LCS 159.3 24.3 2 S ABP f UCS 0.1 0.0 4 U
SW f SLCS 0.4 0.6 2 U SYNC SLCS 0.2 1.3 14 U
SW f LCS 0.4 0.4 2 U SYNC LCS 0.2 2.1 14 U
SW f UCS 0.0 0.0 2 U SYNC UCS 0.2 0.1 14 U

JINGLE SLCS 18.4 10.8 8 U JINGLE LCS 21.2 21.1 8 U

and the result of our analysis. If the result of the analysis is “U” (Unsafe), the number
in the “Ph.” column is the bound required to prove the result. If the result is “S” (Safe),
meaning we did not reach the bad state within the given bound, the number in the “Ph.”
column is the greatest number of phases that we are able to use without the SMT-solver
needing more than 30 s to return an answer. The sizes of the generated automata and
the number of assertions fed to the SMT-solver are reported in [2]. More examples and
results are also available in [2]. All experiments were performed on a 3.1 GHz Intel
Core i5 with 4 GB of RAM.

12 Conclusions and Future Work

We have introduced a new concept for under-approximating the behavior of commu-
nicating processes, namely phase-bounded computations. We have shown that phase-
bounded reachability can be reduced to the satisfiability of logical formulas whose sat-
isfiability can be checked by SMT-solvers, thus yielding an efficient analysis of system
behavior. The framework can be instantiated to several classes of channel semantics
such as lossy, stuttering, and unordered. The strength of the method is confirmed by
results form the application of our prototype on examples from several different ap-
plication areas. Using the translation, we have also established complexity results for
checking bounded reachability on the above classes of systems. Finally, we give un-
decidability results for the case where the channels are perfect and for the case where

Table 2. Decidability/Complexity Results for the Bounded-Reachability

Semantics Finite-state process Pushdown process

Lossy NP-COMPLETE undecidable
Stuttering Lossy NP-COMPLETE undecidable
Unordered NP-COMPLETE NP-COMPLETE

Perfect undecidable undecidable
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the processes are not finite-state with (stuttering) lossy channels. A summary of these
results is given in Table 2. While our prototype is already efficient on the considered
examples, there is room for several improvements such as minimizing the graphs of
processes and the size of the unfolding of processes obtained in the purification step
(Section 4) in order to reduce the time that our prototype takes to build an SMT-LIB for-
mula. Also, we are planning to consider systems where the message alphabet is infinite,
e.g., ranging over numerical domains.
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Abstract. This paper presents an expressive specification and verifica-
tion framework for ensuring deadlock freedom of shared-memory con-
current programs that manipulate locks. We introduce a novel delayed
lockset checking technique to guarantee deadlock freedom of programs
with interactions between thread and lock operations. With disjunctive
formulae, we highlight how an abstraction based on precise lockset can be
supported in our framework. By combining our technique with locklevels,
we form a unified formalism for ensuring deadlock freedom from (1) dou-
ble lock acquisition, (2) interactions between thread and lock operations,
and (3) unordered locking. The proposed framework is general, and can
be integrated with existing specification logics such as separation logic.
Specifically, we have implemented this framework into a prototype tool,
called ParaHIP, to automatically verify deadlock freedom and correct-
ness of concurrent programs against user-supplied specifications.

Keywords: Concurrency, Deadlock, Specification, Verification.

1 Introduction

Concurrent software systems are often complex, error-prone, and require tremen-
dous efforts from programmers to make them work correctly [25]. Over the past
decade, verification has been viewed as one of the solutions to this challeng-
ing research problem on increasing the quality and reliability of (concurrent)
programs, as advocated by Tony Hoare [13]. However, understanding and rea-
soning about the correctness of concurrent programs is rather complicated due
to non-deterministic interleavings of concurrent threads [22]. These interleav-
ings may result in deadlocks [6], i.e. states in which each thread in a set blocks
waiting for another thread in the set to release a lock or complete its execution.
Deadlocks are common defects in software systems. Specifically, in Sun’s bug
report database at http://bugs.sun.com/, there are approximately 6,500 bug
reports out of 198,000 (∼ 3%) containing the keyword “deadlock” [28]. In this
paper, we propose an expressive framework for reasoning about the correctness
of concurrent programs with a focus on eliminating deadlocks.

Existing verification systems [11,14,23,24] often use abstract predicates to rep-
resent states of locks. For example, Gotsman et al. [11] use abstract predicate
Locked(x) to specify that the lock x is owned by the current thread. Hobor

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 287–302, 2013.
c© Springer International Publishing Switzerland 2013
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et al. [14] use the predicate hold x R and Chalice [23,24] uses holds(x) for the
same purpose. Intuitively, a lock is owned by a thread if it is in the set of locks
already acquired by the thread, i.e. the thread’s lockset. Interestingly, although
using predicates, previous works [11,14,23,24] formulate their soundness proof
using the notion of lockset. Additionally, Haack et al. [12] show that lockset (or
rather lockbag) is necessary to reason about Java recursive locks. In retrospect,
one can say that lockset has proven to be an important abstraction for verifying
concurrent programs that manipulate locks.1 In this paper, we advocate the use
of precise locksets for explicitly reasoning about the presence or absence of locks,
empowering a more expressive framework for verifying deadlock freedom even
in the presence of interactions between thread operations (e.g. fork/join) and
lock operations (e.g. acquire/release). Due to the non-deterministic nature of
threads, sound reasoning of the interactions between thread and lock operations
is non-trivial.

int running;1

pthread t thread;2

mutex t mutex;3

4

void* timer(){5

int state;6

do{7

mutex lock(&mutex);8

state=running;9

mutex unlock(&mutex);10

.../*timing*/11

}while(state);12

}13

void main(){14

running = 0;/*init timer*/15

mutex lock(&mutex);16

running = 1;/*start timer*/17

pthread create(&thread,&timer);18

mutex unlock(&mutex);19

/*begin timed computation*/20

...21

/*end computation*/22

mutex lock(&mutex);23

running = 0;/*stop timer*/24

mutex unlock(&mutex);25

pthread join(thread);26

}27

Fig. 1. A program with interactions between thread and lock operations

Fig. 1 outlines a simplified2 C implementation of a timer used in NetBSD
operating system’s report database [1]. Though rather intricate due to the in-
teractions between lock and thread operations, the program is deadlock-free
because the two threads never wait for each other. However, if the programmer
does not release the lock before joining (e.g. line 25 is missing or line 25 and
26 are swapped), the interactions will cause a deadlock when the main thread
blocks waiting to join the child thread and the child thread also blocks wait-
ing to acquire the mutex being held by the main thread. For larger programs
with many (possibly non-deterministic) execution branches, these interactions
are not easy to follow [22]. With concurrent programs becoming mainstream in

1 See [21] for detailed comparison between abstract predicates and locksets.
2 In the original implementation, there is a conditional variable associated with the
mutex to more efficiently signal the timer thread to start and stop timing. As verify-
ing conditional variables is an orthogonal issue, we have omitted them for simplicity.
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this multicore era, we will increasingly require a more comprehensive solution
for constructing and verifying these intricate interactions.

In this paper, we propose an expressive verification framework to guarantee
deadlock freedom in the presence of such interactions. Our framework has the
following innovations:

– Delayed lockset checking to help reason about the interactions between
thread and lock operations. Unlike the traditional verification approaches
[11,12,14,15,23] that check pre-conditions of procedures entirely at fork
points, this technique allows lockset constraints in the pre-conditions to
be delayed and checked at join points instead. This prevents deadlocks
due to the interactions and also permits more programs to be declared as
deadlock-free.

– Precise lockset reasoning, as opposed to ones based on abstract predicates
or approximated locksets, to ensure that deadlock-free pre-conditions on lock
acquisition and release can be guaranteed. Any uncertainty, if any, from static
program analysis is simply captured through the use of explicit disjunction.

– Combining lockset with the concept of locklevels in the literature [3,23,34]
to form an expressive framework for ensuring deadlock freedom, covering
various scenarios such as double lock acquisition, interactions between thread
and lock operations, and unordered locking.

– A prototype specification and verification system, called ParaHIP, to show
that the proposed framework has been successfully integrated with separa-
tion logic [32] for reasoning about concurrent programs.

The rest of this paper is organized as follows. Section 2 gives concrete exam-
ples that motivate our delayed lockset checking technique and show how precise
lockset reasoning can be systematically supported. Section 3 presents our speci-
fication logic for verification. Section 4 shows our verification rules and presents
our soundness guarantee on deadlock freedom. Section 5 discusses the imple-
mentation and experimental results of our prototype tool. Section 6 summarizes
related work. Section 7 concludes our paper.

2 Motivation and Proposed Approach

2.1 Precise Lockset Reasoning

As our proposal is language-independent, we have developed a core language
(described in Section 3) to capture the basic ideas. In the rest of the paper, we
shall express our examples using this core language. In our verification frame-
work, LS is a thread-local ghost variable3 capturing the set of locks held by a
thread. Lockset is a verification concept rather than a programming language
concept. Using lockset, verification rules for acquire and release operations on
non-recursive (mutex) locks4 can be defined as follows:
3 Ghost variables are variables used for verification purpose. They do not affect pro-
gram correctness.

4 Cannot be acquired more than once; also called non-reentrant locks.
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void thread()

requires LS={} ensures LS′={};
{

lock l1 = new lock();

//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
func(l1); /*Error*/
release(l1);

}

void func(lock l1)

requires l1/∈LS ensures LS′=LS;
{

//{ l1/∈LS ∧ LS′=LS }
acquire(l1);

//{ l1/∈LS ∧ LS′=LS∪{l1} }
release(l1);

//{ l1/∈LS ∧ LS′=LS∪{l1}−{l1} }
//{ l1/∈LS ∧ LS′=LS }

}

Fig. 2. Deadlock due to double acquisition of a non-recursive lock

acquire(lock x)

requires x/∈LS
ensures LS′=LS∪{x};

release(lock x)

requires x∈LS
ensures LS′=LS−{x};

Note that we use primed notation to denote updates to variables. The primed
version LS′ of the variable LS denotes its latest value; the unprimed version LS
denotes its old value at the start of the respective procedure call. Using lockset,
it is straightforward to prevent the deadlock due to acquiring a non-recursive
lock twice in the thread code of Fig. 2. In this sequential setting, our verification
reports an error because the pre-condition of the callee func (l1/∈LS) cannot
be satisfied by the current lockset of the caller (LS′={l1}). Additionally, the
release rule excludes the possibility of releasing a lock more than once.

In each given program, there can be many locking scenarios across different
execution branches. Each branch could potentially have a different lockset. The
following code fragment shows a simple example where locksets at two branches
are LS′={x} and LS′={}, which are clearly different:

//{ LS′={} }
if (b) { acquire(x);//{ LS′={x} } } else { //{ LS′={} } }
For static analysis, we often perform some approximation. For example, one

may over-approximate on the lockset, by using LS′={x} as the post-state of the
above code fragment. However, this approach would fail to detect the definite
presence of the lock x for safe release. Another approach is to under-approximate
on the lockset by using LS′={}, but this approach fails to detect the definite ab-
sence of the lock for safe acquisition. Thus, one plausible solution is to combine
the two approximations by capturing both may-hold and must-hold locksets, si-
multaneously. However, this approach would be more complex due to the use of
two locksets. In this paper, we propose a simpler solution that would mandate
the use of precise locksets in our verification/analysis. For approximation, we
propose to use disjunctive formulae to capture uncertainty and also allow pro-
gram states, other than lockset, to be over-approximated. In the above example,
we can ensure precise lockset by using either b∧LS′={x} ∨ ¬b∧LS′={} or even
LS′={x}∨LS′={} as its post-state, but never LS′={x}, since we always ensure
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void func(lock l1)

requires l1/∈LS ensures LS′=LS;
{ acquire(l1); release(l1); }

void main()

requires LS={} ensures LS′={};
{
lock l1 = new lock();

//{ LS′={} }
int id = fork(func,l1);/*DELAY*/
//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
/*Potentially deadlocked when join*/
join(id); /*CHECK, error*/
release(l1);

}

(a) Potentially deadlocked

void func(lock l1)

requires l1/∈LS ensures LS′=LS;
{ acquire(l1); release(l1); }

void main()

requires LS={} ensures LS′={};
{lock l1 = new lock();

//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
int id = fork(func,l1);/*DELAY*/
//{ LS′={l1} }
release(l1);

//{ LS′={} }
join(id);/*CHECK, ok*/
//{ LS′={} }

}

(b) Deadlock-free

Fig. 3. Examples of programs exposing interactions between thread and lock operations

that each lockset is precisely captured and never approximated. This principle
allows us to support precise reasoning on locksets for verifying deadlock freedom.

2.2 Delayed Lockset Checking

Fig. 3 shows two programs that pose challenges for existing verification systems.
The programs are challenging because they express rich interactions between
fork/join concurrency and lock operations. The traditional way of verification
[11,12,14,15,23] cannot sufficiently handle these scenarios because it performs the
check for the pre-condition of the forkee only at the fork point. This could incor-
rectly verify the program in Fig. 3a as deadlock-free and reject the deadlock-free
program in Fig. 3b. The well-known technique [3,23,34] which requires threads
to acquire multiple locks in a specific order to avoid deadlocks could not directly
handle complications due to fork/join concurrency. In this paper, we propose de-
layed lockset checking technique that is capable of preventing deadlock scenarios
(such as that presented in Fig. 3a) and proving more programs (such as that
described in Fig. 3b) to be deadlock-free.

This technique is based on the following observation. At a fork point, a verifier
is unaware of future operations performed by a main (or parent) thread; the only
information it knows of is future locking operations executed by a child thread
thanks to the use of lockset. For example, a constraint l1/∈LS in the pre-condition
of a child thread implies that the child thread is going to acquire the lock l1.
Therefore, in order to ensure that the child thread will finally be able to acquire
the lock (and thus avoid deadlocks), the main thread should not be holding the
lock while waiting for the child thread at its join point. In other words, when
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forking a child thread, lockset constraints in its pre-condition are not checked at
the fork point but are delayed to be checked at its join point instead.

The deadlock in Fig. 3a can be prevented by deferring the lockset constraint
l1/∈LS of the child thread to its join point. At the join point, the constraint is
checked and the verification reports an error because the constraint is unsatisfi-
able (LS′={l1} at the join point). Similarly, the program in Fig. 3b is ensured
as being deadlock free because the lockset constraint l1/∈LS is delayed from the
fork point and is satisfiable at the join point (LS′={}). Note that, although main
and child threads have different locksets, a constraint l1/∈LS in pre-conditions
of a child thread indicates its intention to acquire the lock l1, hence this con-
straint can be soundly checked against the lockset of the main thread to prevent
deadlocks. Besides, it is unsound to check lockset constraints at any satisfiable
points in the middle of the fork point and the join point. For example, in a
scenario similar to Fig. 3b, after forking a child thread, the main thread releases
the lock. At this point, the lockset constraint is satisfiable. However, the main
thread could later acquire the lock again and wait for the child thread to join.
This scenario still suffers a potential deadlock. As a result, it is only sound to
check delayed lockset constraints at just the join points.

In summary, the main benefit of our delayed lockset checking technique is to
facilitate more expressive deadlock verification in the presence of interactions
between parent/child threads and lock operations.

2.3 Combining Lockset and Locklevel

Another type of deadlocks occurs when threads attempt to acquire the same set
of locks in different orders (unordered locking). An example of such a scenario is
shown in Fig. 4. Locklevel is a well-known handle to prevent deadlocks due to

void main()

requires LS={} ensures . . . ;
{lock l1,l2 = new lock();

assume(l1.mu <l2.mu);

//

{
LS′={}∧l1.mu<l2.mu
∧waitlevel′=0

}
int id = fork(func,l1,l2);

//

{
LS′={}∧l1.mu<l2.mu
∧waitlevel′=0

}
acquire(l1);

//

{
LS′={l1}∧l1.mu<l2.mu
∧waitlevel′=l1.mu

}
acquire(l2);

//

{
LS′={l1, l2}∧l1.mu<l2.mu
∧waitlevel′=l2.mu

}
...}

void func(lock l1,lock l2)

requires [waitlevel<l1.mu # l1/∈LS∧l2/∈LS]
∧ l1.mu<l2.mu

ensures . . . ;
{

//

{
waitlevel′<l1.mu ∧ l1.mu<l2.mu
∧ LS′=LS }

}
acquire(l2);

//

{
waitlevel′=l2.mu ∧ l1.mu<l2.mu
∧ LS′=LS ∪ {l2} }

}
acquire(l1); /*Error*/
. . .

}

Fig. 4. A potential deadlock due to unordered locking
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unordered locking [3,23,34]. Intuitively, each lock in a program is associated with
a ghost field mu representing the lock’s level. For example, l1.mu denotes the
locklevel of lock l1. With it, deadlocks can be prevented indirectly by ensuring
that locks are acquired in a strictly increasing order of locklevels. To check that
locks are acquired in the specified order, a ghost variable waitlevel is used to
capture the maximum level currently acquired by a thread, i.e. waitlevel is the
maximum level among locklevels of all locks in current thread’s lockset LS. A
thread can acquire a lock only if its current waitlevel waitlevel′ is lower than
the lock’s level. Using locklevels, the deadlock in Fig. 4 can be prevented. The
verification system reports an error when the child thread attempts to acquire
lock l1 whose locklevel is lower than the current waitlevel of the child thread.

In the pre-condition of the func procedure (Fig. 4), we use the specification
[ω#ψ] to capture the fact that the waitlevel constraint ω and the lockset con-
straint ψ are mutually exclusive, i.e. the former is checked in sequential settings,
while the latter is a check needed to be delayed in concurrent settings. This
provides a single mechanism for procedure declarations so that each procedure
could be either forked as a child thread or invoked as a normal procedure call.

In summary, precise lockset, delayed lockset checking, and locklevel are com-
plementary and combining them is essential to form an expressive framework
for verifying various deadlock scenarios such as double acquisition, interactions
between fork/join and acquire/release, and unordered locking.

3 A Specification Logic for Deadlock Freedom

In this section, we present a specification logic that can be used to verify deadlock
freedom. We show how our approach, based on precise lockset abstraction, can
be integrated with the locklevel idea from Chalice [23]. We also present a
specification formalism to unify constraints on lockset, locklevel and waitlevel
into a single specification and to allow each procedure to be used internally or
as the entry point of a newly-forked thread.

P ::= proc∗ Program
proc ::= pn(([ref] t v)∗) spec∗ { s } Procedure declaration
spec ::= requires Φpr ensures Φpo; Pre/Post-conditions

t ::= int | bool | void | lock Type

s ::=

v = fork(pn,v∗) | join(v)
| lock v = new lock(v)
| acquire(v) | release(v)
| s1; s2 | pn(v∗) | if e then s1 else s2
| . . .

Statement

Fig. 5. Programming Language with Annotations and Concurrency
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Programming Language. We consider an imperative core language (Fig. 5)
with fork/join concurrency for dynamic thread creation and non-recursive locks.
The language is relative straightforward; its details are described in [21].

3.1 Integrating Specification with LockLevels

In our specification logic, a lockset variable LS captures a set of locks held by
the current thread. Like Chalice [23], each lock in a program has an immutable
ghost field mu representing the lock’s level. Locklevels are implemented as nat-
ural numbers and operators =, < and > are used over locklevels. The lowest
(bottom) locklevel is denoted as 0. A waitlevel variable can be derived from
the lockset and locklevels. As a reminder, waitlevel is the maximum level among
locklevels of all locks in current thread’s lockset LS. Levels of locks in a program
are strictly positive while a bottom locklevel denotes the waitlevel in case of
empty lockset. Using lockset as an abstraction, constraints on waitlevel can be
expressed in terms of constraints on lockset and locklevels as follows:

waitlevel<x
def
= (LS={} ⇒ 0<x) ∧ (LS �={} ⇒ ∀v∈LS · v.mu<x)

waitlevel>x
def
= (LS={} ⇒ 0>x) ∧ (LS �={} ⇒ ∃v∈LS · v.mu>x)

waitlevel=x
def
= (LS={} ⇒ 0=x)∧

(LS �={} ⇒ ∀v∈LS · v.mu≤x ∧ ∃u∈LS · u.mu=x)

3.2 Specification Formalism

Fig. 6 shows our specification logic. In the specification, Φ is a logic formula
in disjunctive normal form. Each disjunct in Φ consists of a thread formula μ
for a main (or parent) thread and a list of thread formulae τ (separated by
the and keyword) to represent child threads. Each disjunct expresses the state

Logic formula Φ ::=
∨
(∃v∗ · μ[(and τ )∗])

Main thread formula μ ::= � ∧ π
Child thread formula τ ::= thread=v ∧ γ �{w∗} π

Lock formula � ::= [
∧
ω #

∧
ψ]

Delayed formula γ ::=
∨
(
∧
ψ ∧ π)

Waitlevel formula ω ::= waitlevel=αt | waitlevel<αt | waitlevel>αt

Lockset formula ψ ::= v ∈ LS | v /∈ LS
Pure formula π ::= α | β | π1 ∧ π2 | π1 ∨ π2 | ¬π | ∃v · π | ∀v · π | true

Set term βt ::= LS | {} | {v} | βt
1 ∪ βt

2 | βt
1 ∩ βt

2 | βt
1−βt

2

Set formula β ::= βt
1 � βt

2 | βt
1 = βt

2

Arithmetic term αt ::= k | v | v.mu | k× αt | αt
1 + αt

2 | −αt

Arithmetic formula α ::= αt
1 = αt

2 | αt
1 �= αt

2 | αt
1 < αt

2 | αt
1 ≤ αt

2

v,w ∈ Variables k ∈ Integer constants

Fig. 6. Grammar for Specification Language
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of the main executing thread μ at a program point and the final states of its
child threads τ . A main thread formula μ consists of a lock formula � and a
pure formula π. A lock formula � consists of waitlevel formulae ω, and lockset
formulae ψ. ω and ψ are self-explanatory.

A lock formula [
∧

ω #
∧

ψ] presents our mechanism for each procedure’s
dual use, namely for both sequential and concurrent execution. The formula
captures both waitlevel formula

∧
ω and lockset formula

∧
ψ that are mutually

exclusive. The former is checked for sequential procedural calls, while the latter
must be delayed and checked at join points of forked threads. We provide both
specifications in a unified format to cater to the differences in semantics for
both sequential and concurrent computations. In sequential settings, e.g. when
invoking a normal procedure call, the pre-condition of a procedure is an assertion
that has to be fulfilled by the caller. If one or more constraints about lockset
and waitlevel in the pre-condition are not met, verification fails. In concurrent
settings and due to the ownership semantics of locks (see §10.1.2 of [4]), each
new child thread does not inherit any locks from its parent thread. Hence, it has
empty lockset and bottom waitlevel. Thus, constraints on waitlevel need not be
checked here. Nevertheless, the constraints on lockset indicate the intention of
the child thread and must be “delayed for checking” at its join point instead.

A child thread formula τ represents the final state of a child thread. It consists
of a constraint thread = v capturing the thread’s identifier v, a delayed formula
γ, and a pure formula π capturing the thread’s post-state (i.e. its effects after
finishing its execution). The formula τ denotes the fact that when a child thread
with identifier v is joined and its delayed formula γ is satisfied, then its effects π
will be visible to the calling thread. The annotation �{w∗} also captures a list
of variables w∗ that must be passed to the child thread when it is forked.

The formula γ illustrates our support for delayed lockset checking. Each dis-
junct in γ consists of delayed lockset constraints

∧
ψ and a pure formula π to

more precisely capture additional constraints for the corresponding delayed lock-
set constraints to hold. At each join point, only disjuncts whose pure formula is
satisfied are candidates for delayed lockset checking.

Lastly, a pure formula π consists of standard equality/inequality, Presburger
arithmetic and set constraints. Additionally, it is straightforward to enhance
our specification logic with permissions to ensure data-race freedom by using
separation logic [32] and variables as resource [31]. However, for simplicity of
presentation, this paper shall focus on just the framework for deadlock freedom
and ignore all issues pertaining to data-races.

For illustration, consider the following logic formula:

∃v1, v2, tid · l1 �=null∧ l1.mu=v1 ∧ v1>0 ∧ l2 �=null ∧ l2.mu=v2 ∧ v2>0
∧ id=tid ∧ LS′={l2} ∧ b

and thread=tid∧ ((l1/∈LS′ ∧ b∧ l1�=null)∨ (l2/∈LS′ ∧¬b∧ l2�=null))�{l1,l2,b}true

The formula represents a program state where there are two concurrent threads:
a main thread currently holding the lock l2 and a child thread with identifier
tid. The child thread has a disjunctive delayed formula which precisely captures
two locking scenarios: the child thread either acquires the lock l1 if the boolean
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condition on variable b holds or acquires the lock l2 if the condition does not
hold. Suppose that the main thread is going to join the child thread. The main
thread, knowing that b holds, can exclude the deadlock scenario that the child
thread potentially attempts to acquire the lock l2. Hence it is deadlock-free to
join the child thread. Note that due to our assumption on data-race freedom,
the boolean condition on variable b is consistent in both threads.

4 Verification Rules

Proof rules for forward verification are presented in Fig. 7. They are formalized
using Hoare’s triples of the form {Φpr}P{Φpo}: given a program P beginning in a
state satisfying the pre-condition Φpr , if it terminates, it will do so in a state sat-
isfying the post-condition Φpo. In the figure, we only focus on key statements that
are related to concurrency and lockset: procedure call, fork/join, conditional, and
lock operations. In our framework, each program state Δμ[(and Δτ )

∗] consists
of the current state Δμ of a main (or parent) thread and a list of final states Δτ

of child threads. Here final states of child threads refer to post-states of child
threads after they finish execution and their delayed formulae that need to be
checked at join points. When joined, the post-state of a child thread will be
visible and merged into the state of the main thread if its delayed formula is
satisfied. For simplicity of presentation, when discussing the rules for fork/join,
we present a program state Δμ and Δτ consisting of two threads (a thread
main Δμ and a child thread Δτ ). Additionally, because other rules only affect
the main thread, it is sufficient to present only state of the main thread Δμ.

In order to invoke a procedure call (CALL) in a sequential setting, a main
thread should be in a state Δμ that can entail the pre-condition Φpr of the
procedure pn. For brevity, we omit the substitutions that link actual and formal
parameters of the procedure prior to the entailment. We also omit the treatment
of pass-by-ref parameters which can be handled by applying permissions on vari-
ables [20,31]. After the entailment, the main thread subsumes the post-condition
Φpo of the procedure into its state. Note that the operator ∧{w∗,LS,waitlevel} is
a “composition with update” operator [29] to capture effects of executing the
procedure on its parameters w∗, LS, and waitlevel.

The auxiliary function partLS is used in concurrent settings to partition a
formula into a delayed formula γ (which will be “delayed for checking”) and
a pure formula π. In case of a disjunctive formula, the corresponding delayed
formula is also in a disjunctive form. This is to ensure that deadlock-free pre-
conditions on lock acquisition can be more precisely guaranteed when “delayed
checking”. The auxiliary function removeLS removes constraints that are related
to lockset and waitlevel because they are irrelevant in concurrent settings. The
semantics of removeLS is straightforward, hence it is not presented.

The rules for fork and join demonstrate the delayed lockset checking technique.
A fork creates a new thread executing concurrently with the main thread. When
forking a new child thread (FORK), because lockset and waitlevel are local to
each thread, the state of the main thread needs not entail constraints related to
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waitlevel and lockset in the pre-condition Φpr of the child thread. However, the
main thread should be in a state that can entail the formula πpr . The delayed
formula γpr is delayed for checking at a join point. Afterwards, a new thread
Δτ with a fresh identifier id carrying the delayed formula γpr and the post-state
πpo of the corresponding forked procedure is created. The main thread keeps the
identifier of the child thread in its new state Δ1

μ via the return value v of the fork
call. Note that constraints related to lockset and waitlevel in the post-condition
Φpo are also omitted (resulted in πpo) because they are only local to the child
thread and are irrelevant to the context of the main thread after the child thread
is joined. Lastly, to guarantee the ownership semantics of locks, the FORK rule
checks if the forked procedure with an empty lockset in its pre-condition will
finally end up with an empty lockset in its post-condition. Alternatively, this
check could be done during the verification of each forkable procedure without
breaking information hiding at call sites.

Joining a child thread with an identifier v (JOIN) requires that the state Δμ

of the main thread must entail the child thread’s delayed formula γpr. The main

partLS([
∧
ω #

∧
ψ] ∧ π)

def
= (

∧
ψ ∧ π1, π1) where π1 := removeLS(π)

partLS(Φ1 ∨ Φ2)
def
= (γ1 ∨ γ2, π1 ∨ π2)

where (γ1, π1) := partLS(Φ1) and (γ2, π2) := partLS(Φ2)

partLS(μ and τ )
def
= (π and τ, γ) where (γ, π) := partLS(μ)

AUX

def(pn) := pn(w∗) requires Φpr ensures Φpo; { s } Δμ � Φpr

{Δμ} pn(w∗) {Δμ ∧{w∗,LS,waitlevel} Φpo}
CALL

def(pn) := pn(w∗) requires Φpr ensures Φpo; { s }
(γpr, πpr) := partLS(Φpr) ( , πpo) := partLS(Φpo)
Δμ � πpr fresh(id) Δ1

μ := Δμ ∧{v} v
′=id

Δτ := thread=id ∧ γpr �{w∗} πpo

{Φpr ∧ LS={}} s {Φpo ∧ LS′={}}
{Δμ} v := fork(pn,w∗) {Δ1

μ and Δτ}

FORK

Δμ � γpr
{Δμ and thread=v ∧ γpr �{w∗} πpo} join(v) {Δμ ∧{w∗} πpo}

JOIN

{Δμ ∧ b} s1 {Δ1
μ} {Δμ ∧ ¬b} s2 {Δ2

μ}
{Δμ} if b then s1 else s2 {Δ1

μ ∨Δ2
μ}

COND

fresh(l)

{Δμ} lock l = new lock(v) {Δ1
μ ∧ l �=null ∧ l.mu=v ∧ l /∈ LS′} NEWLOCK

Δμ � waitlevel<l.mu

{Δμ} acquire(l) {Δμ ∧{LS} LS′=LS ∪ {l}} ACQUIRE

Δμ � l ∈ LS

{Δμ} release(l) {Δμ ∧{LS} LS′=LS−{l}} RELEASE

Fig. 7. Forward Verification Rules for Concurrency
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thread then merges the post-state of the child thread πpo into its state and the
child thread disappears from the program state after joined.

The rule for conditionals (COND) illustrates our support for precise lockset
reasoning. We capture precise lockset by using disjunction in the post-state of
the conditional statement. Together with disjunctive delayed formulae supported
by the function partLS in FORK rule, the use of explicit disjunction in this rule
enables more precise reasoning on locksets to ensure deadlock freedom.

Other verification rules are relatively straightforward. The NEWLOCK rule
creates a new lock l with a locklevel v. Without specifying a locklevel, a lock
is assumed to have an arbitrary non-zero locklevel. We assume that locklevel is
immutable during a lock’s lifetime. The ACQUIRE rule ensures that locks are
acquired in an increasing oder of locklevels (waitlevel<l.mu). This additionally
implies that l/∈LS (but not vice versa). After acquiring the lock l, it is added to
the thread’s lockset LS. Reversely, a thread must hold a lock (l∈LS) in order to
release it (RELEASE). After releasing the lock l, it is removed from the thread’s
lockset LS. The ACQUIRE and RELEASE rules respectively ensure that a lock is
not acquired or released more than once. The rest of verification rules used in
our framework only operate in sequential settings, therefore they are standard
as described in [29].

Theorem 1 (Soundness) Given a program with a set of procedures P i and
their corresponding pre/post-conditions (Φi

pr/Φ
i
po), if our verifier derives a proof

for every procedure P i, i.e. {Φi
pr}P i{Φi

po} is valid, the program is deadlock-free.

Proof. Intuitively, for each program state, there is a wait-for graph correspond-
ing to it. We prove that a program that has been successfully verified by our
framework will never get stuck due to deadlocks, i.e. there does not exist a state
whose wait-for graph contains a cycle. The full proof is given in [21]. ��

5 Implementation and Preliminary Comparison

We have implemented our framework into a prototype tool, called ParaHIP
5.

Currently, ParaHIP can automatically verify different deadlock scenarios and
several motivating concurrent programs presented in the literature [11,14,15].
In addition, our tool can handle programs with forking of recursive procedures
(such as the well-known parallel Fibonacci program) and unbounded number
of locks by using shape predicates. We also support intricate nested and non-
lexical fork/join concurrency by allowing thread identifiers to be passed between
threads. Such a program is outlined in [21].

To demonstrate the expressiveness of our framework, we did a comparison
with Chalice [23,24], a well-known framework for verifying deadlock freedom,
in terms of deadlock/deadlock-freedom scenarios that can be proven by the re-
spective frameworks. The benchmark programs cover various scenarios such as

5 The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/parahip/
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Table 1. A comparison between Chalice and ParaHIP. A tick (✓) indicates that the
corresponding scenario can be verified correctly by the respective verification frame-
work. A cross (✗) indicates otherwise. A prefix “disj” indicates that the corresponding
scenario requires disjunctive formulae to precisely capture different execution branches.

No Scenario Chalice ParaHIP Comments

1 no-deadlock1 ✗ ✓ Chalice cannot prove that this program
is deadlock-free

2 no-deadlock2 ✓ ✓

3 no-deadlock3 ✗ ✓ Chalice cannot prove that this program
is deadlock-free

4 deadlock1 ✗ ✓ Chalice verifies this deadlock scenario as
deadlock-free

5 deadlock2 ✓ ✓

6 deadlock3 ✓ ✓

7 disj-no-deadlock ✓ ✓

8 disj-deadlock ✗ ✓ Chalice verifies this deadlock scenario as
deadlock-free

9 ordered-locking ✓ ✓

10 unordered-locking ✓ ✓

double lock acquisition, interactions between thread and lock operations, and
unordered locking. One scenario (e.g. double acquisition) is representative of
many real-world programs. Therefore, although the scenarios are small, they
can be considered as a core benchmark for evaluating expressiveness of deadlock
verification systems. The sets of benchmark programs written for both Chalice

and ParaHIP are available for online testing in our project website.
The comparison results are presented in Table 1. Compared with Chalice,

ParaHIP allows more deadlocks to be prevented and also permits more pro-
grams to be declared as deadlock-free. The experimental results were very sur-
prising because Chalice appears unsound. We communicated this issue with
Chalice’ developers and confirmed that Chalice’s technical framework is in-
deed sound but its implementation does not properly consider programs with
interactions between thread and lock operations [27]. Due to space limitations,
we refer interested readers to [21] and project website for detailed comparison
and benchmark programs.

6 Related Work

This section presents related works on specification and verification of deadlock
freedom in shared-memory concurrency. Note that our framework currently sup-
ports only partial correctness. Hence, we do not consider non-termination due to
infinite loops or recursion. Proving (non-)termination [2,7] and livelock freedom
[30] is orthogonal to our framework, and could be separately extended.

In the context of concurrency verification, several recent frameworks have been
proposed to reason about programs with non-recursive locks and dynamically-
created threads [11,14], recursive locks [12], and low-level languages [8], all based
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on separation logic [32]. However, they focus on verifying partial correctness and
ignore the presence of deadlocks. Haack et al. [12] use locksets (but not pre-
cise locksets) when verifying partial correctness of concurrent programs manip-
ulating Java recursive locks. However, their approach does not ensure deadlock
freedom. Verifast [15], a state-of-the-art verifier, also ignores deadlocks when
verifying correctness of concurrent programs. Chalice [23,24], a verification
framework based on implicit dynamic frames [33], is capable of preventing dead-
locks. Initially, Chalice uses locklevels and is able to prevent deadlocks due to
double acquisition and unordered locking [23]. Later development on Chalice

[24] has proposed a technique to prevent deadlocks in programs that use both
message passing via channels, and locking. Although it could encode join oper-
ations as send/receive over channels, there are programs (such as the program
fork-join-as-send-recv in our website) where it is impossible for the encoding
to find proper levels assigned to the channels for proving deadlock freedom [27].
Our delayed lockset checking technique can enable proving deadlock freedom in
the presence of interactions between fork/join and acquire/release based on pre-
cise lockset as an abstraction. Using the technique, we are able to prove more
programs deadlock-free than previous work. We also showed how to incorporate
locklevels into our technique to form an expressive framework for specifying and
verifying deadlock freedom of concurrent programs.

Besides verification frameworks, there are other approaches to detect or pre-
vent deadlocks in concurrent programs. They can be classified into dynamic and
static approaches. There are many systems that detect deadlocks dynamically
- see [5,16,26] to name just a few recent works on this topic. Dynamic sys-
tems have the advantage that they can check unannotated programs. However,
they cannot guarantee the absence of deadlocks due to insufficient test cover-
age. Static approaches such as those based on static analysis [28,35] and type
systems [3,9,10,34] can ensure the absence of certain types of deadlocks. These
systems have the advantage that fewer annotations are required. However, they
tend to be less expressive than specification logics. Type systems such as [3,34]
use locklevels to enforce a locking order while others use lock capabilities [10]
and continuation effects [9] to verify programs with no natural ordering on the
locks acquired. Nevertheless, existing systems [3,9,10,34] do not ensure the ab-
sence of deadlocks due to interactions between thread and lock operations. It
is interesting to apply our delayed lockset checking technique to enhance the
capability of these type systems.

Deadlock-freedom has also been studied in other contexts, and notably in the
setting of message-passing process algebra [17,18,19]. The notion of locklevels in
our approach is similar to obligation and capability levels in these type systems
[17,18,19]. However, they have only been applied in the context of π-calculus
while our framework ensures deadlock freedom for a shared-memory concurrent
language with dynamic creation of threads and locks. Although fork/join/ac-
quire/release operations and shared variables could be encoded as send/receive
operations over channels, such an encoding would be non-trivial [17,36].
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7 Conclusion

In this paper, we presented an expressive deadlock-freedomverification framework
for concurrent programs. A novel delayed lockset checking technique is introduced
to cover deadlock scenarios due to interactions between thread and lock opera-
tions. We described an abstraction based on precise lockset to support verifica-
tion for deadlock freedom. We then showed how our technique can be integrated
with locklevels to form a formalism for verifying different deadlock scenarios such
as those due to double acquisition, interactions between thread and lock opera-
tions, and unordered locking. Lastly,we implemented the proposed framework into
ParaHIP, a prototype verifier based on separation logic reasoning, for specifying
and verifying deadlock freedom and partial correctness of concurrent programs.

Acknowledgement. We thank Peter Müller for his insightful discussions about
Chalice, and the anonymous reviewers for comments. This work is supported
by MOE Project 2009-T2-1-063.

References

1. NetBSD Problem Report 42900, http://gnats.netbsd.org/42900
2. Atig, M.F., Bouajjani, A., Emmi, M., Lal, A.: Detecting Fair Non-termination

in Multithreaded Programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 210–226. Springer, Heidelberg (2012)

3. Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: OOPSLA, pp. 211–230 (2002)

4. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley (1997)
5. Cai, Y., Chan, W.K.: MagicFuzzer: Scalable Deadlock Detection for Large-scale

Applications. In: ICSE, pp. 606–616 (2012)
6. Coffman, E.G., Elphick, M.J., Shoshani, A.: System Deadlocks. ACM Computing

Surveys 3(2), 67–78 (1971)
7. Cook, B., Podelski, A., Rybalchenko, A.: Proving Program Termination.

CACM 54(5), 88–98 (2011)
8. Fu, M., Zhang, Y., Li, Y.: Formal Reasoning about Concurrent Assembly Code

with Reentrant Locks. In: TASE, pp. 233–240 (2009)
9. Gerakios, P., Papaspyrou, N., Sagonas, K.F.: A Type and Effect System for Dead-

lock Avoidance in Low-level Languages. In: TLDI, pp. 15–28 (2011)
10. Gordon, C.S., Ernst, M.D., Grossman, D.: Static Lock Capabilities for Deadlock

Freedom. In: TLDI, pp. 67–78 (2012)
11. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local Reasoning for

Storable Locks and Threads. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807,
pp. 19–37. Springer, Heidelberg (2007)

12. Haack, C., Huisman, M., Hurlin, C.: Reasoning about Java’s Reentrant Locks.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 171–187. Springer,
Heidelberg (2008)

13. Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research.
JACM 50, 63–69 (2003)

14. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle Semantics for Concurrent Separa-
tion Logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008)

http://gnats.netbsd.org/42900


302 D.-K. Le, W.-N. Chin, and Y.-M. Teo

15. Jacobs, B., Piessens, F.: Expressive Modular Fine-grained Concurrency Specifica-
tion. In: POPL, New York, NY, USA, pp. 271–282 (2011)

16. Joshi, P., Naik, M., Sen, K., Gay, D.: An Effective Dynamic Analysis for Detecting
Generalized Deadlocks. In: FSE, pp. 327–336 (2010)

17. Kobayashi, N.: Type-based Information Flow Analysis for the Pi-calculus. Acta
Informatica 42(4-5), 291–347 (2005)

18. Kobayashi, N.: A New Type System for Deadlock-Free Processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006)

19. Kobayashi, N., Sangiorgi, D.: A Hybrid Type System for Lock-Freedom of Mobile
Processes. TOPLAS 32(5) (2010)

20. Le, D.-K., Chin, W.-N., Teo, Y.-M.: Variable Permissions for Concurrency Verifi-
cation. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 5–21.
Springer, Heidelberg (2012)

21. Le, D.K., Chin, W.N., Teo, Y.M.: An Expressive Framework for Verifying Dead-
lock Freedom. Technical report, National University of Singapore (June 2013),
http://loris-7.ddns.comp.nus.edu.sg/~project/parahip/parahip-tr.pdf

22. Lee, E.A.: The Problem with Threads. Computer 39, 33–42 (2006)
23. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-threaded Programs. In:

Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

24. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-Free Channels and Locks. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 407–426. Springer, Heidelberg
(2010)

25. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from Mistakes: A Comprehensive
Study on Real World Concurrency Bug Characteristics. In: ASPLOS, New York,
NY, USA, pp. 329–339 (2008)

26. Luo, Z.D., Das, R., Qi, Y.: Multicore SDK: A Practical and Efficient Deadlock
Detector for Real-World Applications. In: ICST, pp. 309–318 (2011)

27. Müller, P.: Personal communication (March 2013)
28. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective Static Deadlock Detection. In:

ICSE, pp. 386–396 (2009)
29. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated Verification of Shape

and Size Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

30. Ouaknine, J., Palikareva, H., Roscoe, A.W., Worrell, J.: Static Livelock Analysis
in CSP. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 389–403. Springer, Heidelberg (2011)

31. Parkinson, M., Bornat, R., Calcagno, C.: Variables as Resource in Hoare Logics.
In: LICS, Washington, DC, USA, pp. 137–146 (2006)

32. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
LICS, Copenhagen, Denmark (July 2002)

33. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames. In: TOPLAS (2012)
34. Suenaga, K.: Type-Based Deadlock-Freedom Verification for Non-Block-Structured

Lock Primitives and Mutable References. In: Ramalingam, G. (ed.) APLAS 2008.
LNCS, vol. 5356, pp. 155–170. Springer, Heidelberg (2008)

35. Williams, A., Thies, W., Awasthi, P.: Static Deadlock Detection for Java Li-
braries. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer,
Heidelberg (2005)

36. Wing, J.M.: FAQ on Pi-calculus. In: Microsoft Internal Memo (2002)

http://loris-7.ddns.comp.nus.edu.sg/~project/parahip/parahip-tr.pdf


Expected Termination Time in BPA Games

Dominik Wojtczak

University of Liverpool, UK
d.wojtczak@liverpool.ac.uk

Abstract. We consider the problem of computing the value and finding the
epsilon-optimal strategies for concurrent Basic Process Algebra games, which
is a subclass of two-player infinite-state stochastic games with imperfect infor-
mation. These games are played on the transition graph of stateless pushdown
systems, or equivalently 1-exit recursive state machines, and can model recur-
sive procedural program execution with probabilistic transitions. The objective
of one player in these games is to minimise the expected termination time of such
a program, while the objective of the other is to maximise it. We show that the
quantitative decision questions regarding the value of the game as well as check-
ing whether this value is infinite can be answered in PSPACE. We also show the
latter problem to be as hard as the square root sum, whose containment even in
the polynomial hierarchy is an open problem since the 1970s. Furthermore, an
optimal strategy may require an infinite amount of memory in general, but we
show that both player have epsilon-optimal stackless&memoryless strategies (i.e.
strategies that do not use memory nor depend on the stack content). Finally, we
show how to find such strategies using a strategy improvement algorithm.

1 Introduction

Concurrent games are useful for modelling an interaction of a system with its environ-
ment in a distributed setting (see e.g. [25, 22]). At each step of the execution of the
system, the controller has to make a decision how it should proceed without the full
knowledge about the state of the environment. An optimal strategy for the controller
can be used to synthesise a robust system which behaves correctly no matter how the
environment changes. This interaction can be modelled as a two-player zero-sum con-
current game where the controller and the environment play against each other. The
classical objectives used in this context are qualitative such as a reachability objective
[6], i.e. whether the system can reach (almost surely) a particular good state (e.g. termi-
nate the program), a safety objective, i.e. whether the system can (almost surely) stay
forever within a particular set of good states, or even more expressive like ω-regular
objectives [5]. There is a growing interest in studying quantitative objectives, i.e. trying
to find the optimum probability of satisfying a given objective (e.g. [7]) instead of just
asking whether it can be done almost surely.

In this paper we study (concurrent) Basic Process Algebra games which can model
recursive procedural programs with probabilistic transitions and consider the optimi-
sation problem of their expected total execution time. These games correspond to a
subclass of infinite-state zero-sum stochastic games with imperfect information. In pre-
vious work we have studied recursive simple stochastic games with positive rewards [9],
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which are games with perfect-information (also known as turn-based games). These
games are essentially played on transition systems of probabilistic pushdown automata.
We showed that the problem of deciding whether the optimal expected execution time
of a given program equals ∞ is undecidable, but becomes decidable for a 1-exit sub-
class of that model. This subclass corresponds directly to stateless pushdown systems,
a model called Basic Process Algebra for historical reasons. Since we extend the re-
cursive simple stochastic games to an imperfect-information setting, the problems we
study in this paper still remain undecidable for concurrent pushdown games, but we
show them to be decidable in the BPA setting. The BPA model corresponds directly to
stochastic context-free grammars (with leftmost derivation), used in natural language
processing (see, e.g. [20]), and branching processes models, which have wide applica-
bility in modelling various physical phenomena, such as nuclear chain reactions, red
blood cell formation, population genetics, population migration, epidemic outbreaks
and molecular biology (see, e.g. [1] for many examples of branching processes models
used in biological systems).

In [10] a monotone system of polynomial equations with the V al(A) operator, which
returns the value of a one-shot zero-sum game with payoff matrix A, was used for solv-
ing the termination probability game in 1-exit recursive concurrent stochastic games. It
was showed there that the least fixed point solution of that equation system yields the
desired probabilities. We study an equivalent model but with the expected termination
time objective like in [9]. Here, we show that the value of a BPA game corresponds to
the least fixed point solution (over the extended reals) of an associated system of linear
equations with the V al operator. Just like in [9] we assume that all the rewards in our
model are strictly positive; an assumption which is essential for our results to work. In
this paper we carefully adapt the techniques developed in both of these papers and have
to find new techniques to deal with troublesome case of the value of the game being
∞ in order to answer the fundamental quantitative decision questions about our BPA
game model. Specifically, we can check in PSPACE whether there exists a strategy of
the controller for which no matter what the environment does the expected termination
time of the game is ≤ c. At the same time we show that even the qualitative questions
regarding the value of our game, i.e. whether it is = ∞, are harder than solving the
square root sum problem. It is a long standing open problem since the 1970s whether
this problem is contained in the polynomial hierarchy.

Finally, our most technical result shows that a (simultaneous) strategy improvement
algorithm can be used to find ε-optimal strategies in BPA games. In fact we show that
both players have stackless&memoryless ε-optimal strategies: randomised strategies
that do not depend on the history of the play nor the content of the stack apart from
the top stack symbol. It is known that for finite-state concurrent games, explicit proba-
bilistic transitions do not add any power to these games, because the stochastic nature
of the games can be simulated by concurrency alone. As we show, this also true in our
setting and to simplify the proofs our standard definition of BPA games will not include
probabilistic transitions.

Let us now motive our model further by showing how to model and solve the follow-
ing optimisation problem. Suppose we have a patient infected by bacteria and we have
two different antibiotics A1 and A2 which we can use to treat him. A bacterium can
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be of type T1 or T2 and we assume that it can freely mutate between these two types.
The antibiotic Ai kills bacteria of type Ti. If we use A1 against T2 then the bacterium
splits into two, and if we use A2 against T1 then the bacterium does not split nor die.
We would like to find such a treatment strategy against the disease that no matter how
the bacteria mutate the expected time of recovery (i.e. when all bacteria die), which is
measured in the number of times the antibiotics are applied, is minimal. We can repre-
sent this model using the following BPA game where we set the cost of each pushdown
rule to be 1. Player 1 will control the malicious disease and player 2 will be the doctor
trying to treat the patient by eradicating all the bacteria.

BACTERIUM(antibiotic 1, type 1)→ ε

BACTERIUM(antibiotic 1, type 2)→ BACTERIUM BACTERIUM

BACTERIUM(antibiotic 2, type 1)→ BACTERIUM

BACTERIUM(antibiotic 2, type 2)→ ε

As we will see later, we can calculate the best possible time to recovery by formulating
the following fixed point equation system.

xBACTERIUM = V al

([
0 2 · xBACTERIUM

xBACTERIUM 0

])
+ 1

We then compute its least fixed point to be xBACTERIUM = 3, which means the expected
number of times we have to apply an antibiotic is 3. The optimal treatment is to choose
two-thirds of the time antibiotic A1 and one-third of the time choose A2.

Related Work. Stochastic games go back to Shapley [27], who considered finite con-
current stochastic games with (discounted) rewards. See, e.g., [16] for a recent book on
stochastic games. Finite-state stochastic games with perfect information were studied
by Condon [4]. The qualitative decision problem (“is the game value exactly 1?”) was
shown to be in P, and the quantitive one (”is this value ≤ c?”) in NP ∩ coNP. Two
equivalent purely probabilistic recursive models, Recursive Markov chains and prob-
abilistic Pushdown Systems (pPDSs) were introduced in [11] and [8]. These models
were extended to the optimization and game setting of (1-exit) recursive Markov de-
cision processes (RMDPs) and (1-exit) recursive simple stochastic games (RSSGs) in
[12, 13], and studied further in [2]. The qualitative termination decision problem for
1-exit RMDPs was shown to be in P, and for 1-exit RSSGs in NP ∩ coNP ([13]). The
quantitative version was shown to be in PSPACE and square root sum hard ([12]).

Concurrent finite-state stochastic games with reachability objectives where studied
in [6] and their qualitative decision problems were shown to be in P. The best upper
bound on their quantitative questions is PSPACE just like for the more general model of
1-exit RSSGs. Our (simultaneous) strategy improvement algorithms for BPA games is
based on the classic Hoffman-Karp algorithm [19]. It was shown in [18] that the same
algorithm for the concurrent finite-state games with reachability objectives may require
doubly exponential number of steps even to approximate the value of the game within
a single bit of precision.

Models related to BPA games have been studied in the operations research under the
name of branching Markov decision chains (a controlled version of multi-type branch-
ing processes). These are closely related to stochastic context-free grammar model, with
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non-negative rewards, but simultaneous derivation law. They were studied by Pliska
[24] and extensively by Rothblum and co-authors (e.g., [26]). These models are typi-
cally restricted to one player setting and require the transition graph to be “transient” to
simplify the analysis. We extend the results about these models to the imperfect infor-
mation setting without making any such auxiliary assumptions.

In [3], the problem of finding a strategy that minimizes the expected number of
transitions taken before termination for a given one-counter Markov decision process
(OC-MDP) was studied. That model is a special subclass of pushdown systems, but is
incomparable with BPAs. It was shown there that an ε-optimal strategy for the objec-
tive of minimizing the expected number of transitions taken before termination can be
computed in time linear in 1/ε and exponential in the encoding size of the OC-MDP.

Due to the space constraints the details of some of the proofs can only be found in
the technical report [28] along with some more examples of BPA games.

2 Background

We will set the notation first. By Γ≤k, Γ ∗, and Γω, we will denote (respectively) the
set of all sequences of letters from some fixed alphabet Γ of length at most k; arbitrary
finite length; and infinite length. We represent stacks as such finite sequences and the
top stack symbols is the left most symbol in such a sequence.

Let Zn = {0, . . . , n − 1}. Also, R>0
def
= (0,∞) denotes the positive real numbers,

R∞>0
def
= (0,∞] extends this set with ∞ value, and R∞≥0

def
= [0,∞] adds further the 0

element. We assume the usual natural total ordering on the extended reals R∞≥0 and
the following usual arithmetic conventions on them: a · ∞ = ∞, for any a ∈ R∞>0;
0 · ∞ = 0; a +∞ =∞, for any a ∈ R∞≥0. This extends naturally to vector and matrix
arithmetic over R∞≥0. We will use capital letter, e.g. A,B, to denote matrices, bold small
letters to denote vectors, e.g. x, r, and non-bold small letter to denote one-dimension
variables, e.g. x, y. For a matrix A by A[i, j] we denote the i-th row and j-th column
entry of A. Similarly for a vector x (a string α) by x[i] (α[i]) we denote its i-th entry
(letter, respectively). Alternatively, to refer to the i-th element of a vector x we will
also sometimes use xi. For two vectors x,y ∈ Rn, we write x ≤ y if x[i] ≤ y[i] for
all i = 1, . . . , n. Similarly for two matrices A,B ∈ (R∞≥0)

n×m we write A ≤ B if
A[i, j] ≤ B[i, j] for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

For a countable set S, we denote byD(S) the set of probability distributions over S,
i.e. the set of functions f : S → [0, 1] such that

∑
s∈S f(s) = 1. We say that a

probability distribution f ∈ D(S) is deterministic if there exists x ∈ S such that
f(x) = 1. Let A ∈ (R∞≥0)

n×m be a payoff matrix defining a one-shot zero-sum game
between the row player and the column player. In such a game the row player picks
any distribution a ∈ D(Zn) over the rows and the column player picks any distribution
over the columns b ∈ D(Zm). The payoff to player 1 is defined as aAbT , which is the
same as the cost incurred by player 2. John von Neumann showed that for any A such
a game has a value, i.e. supa infb aAbT = infb supa aAbT , which we will denote by
V al(A). The optimal maximin strategy of player 1 and the optimal minimax strategy of
player 2 can be computed in poly-time using linear programming (see, e.g. [23]). We
are now ready to define our model.
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Definition 1. A (concurrent zero-sum) BPA game G is a tuple (Γ,Σ, δ, r) where
– Γ is a finite nonempty stack alphabet and its elements are called stack symbols,
– Σ is a finite nonempty action alphabet and we assume that for every X ∈ Γ we are

given two nonempty sets Σ1(X), Σ2(X) ⊆ Σ of possible legal actions available
to player 1 and 2, respectively, when the top stack symbol is X ,

– δ : Γ ×Σ2 → Γ≤2 is a transition function,
– r : Γ → R>0 is a reward function mapping each stack symbol to a strictly positive

reward to player 1.

Notice that this model naturally captures recursive procedural programs where the tran-
sition function corresponds to calling or returning from the execution of a procedure and
the reward can be set to the execution time of such a procedure. For computational pur-
poses, we assume that all rewards are rational numbers with numerator and denominator
given in binary. When the BPA game G is clear from the context, for any X ∈ Γ and
a1, a2 ∈ Σ, we will write X(a1, a2) to represent δ(X, (a1, a2)). We write X(a1, ·) = α
if X(a1, a2) = α for all a2 ∈ Σ2(X); analogously we define X(·, a2) and X(·, ·).
For a given BPA G let Γ+ ⊆ Γ be the set of all stack symbols that can increase the
stack size, i.e. Γ+ = {X : |X(a1, a2)| ≥ 2 for some a1 ∈ Σ1(X), a2 ∈ Σ2(X)}.
To simplify some of the proofs, we will require that for all X ∈ Γ+ we have
|Σ1(X)| = |Σ2(X)| = 1, i.e. the players have a trivial choice for the stack sym-
bols which can increase the size of the stack and each such a symbol increases the stack
size by exactly 1. In other words, for all X ∈ Γ+ we effectively have δ(X) = Y Z for
some Y, Z ∈ Γ . This assumption is without loss of generality, and one can formally
show that any BPA game G has an “essentially equivalent” BPA G′ that satisfies this
condition. In fact, we will show in Proposition 3 that even more general models can be
effectively reduced to the just given BPA game model.

In the special case |X(a1, a2)| ≤ 1 for all X ∈ Γ and a1 ∈ Σ1(X), a2 ∈ Σ2(X),
a BPA game G is essentially a finite-state concurrent zero-sum game ([6]) with the
expected termination objective. This is because the stack in such a case would always
have size 1 until the game terminates when the stack becomes empty and the top stack
symbol can be used to simulate the control state of the finite-state game.

Each BPA game G = (Γ,Σ, δ, r) gives rise to SG , a concurrent game with a count-
able number of states. We have that SG = (VG , ΣG , δG , rG), where VG = Γ ∗ is the
countable set of states, ΣG = Σ is the set of actions, δG : VG × Σ2

G → VG is the
transition function such that for any pair of actions of the players (a, b) ∈ Σ2

G we have
δG(ε, (a, b)) = ε, rG(ε) = 0, and for any stack content α = X ·β where X ∈ Γ, β ∈ Γ ∗,
we have δG(α, (a, b)) = δ(X(a, b))·β, and finally rG(α) = r(X) is the reward function
specifying the reward (cost) to player 1 (to player 2) for visiting the state α.

A play, π, of the game SG is an infinite sequence s0(a0, b0)s1(a1, b1) . . . ∈
(VG ·Σ2

G)
ω

such that δG(sj , (aj , bj)) = sj+1, aj ∈ Σ1(top(sj)) and bj ∈ Σ2(top(sj))
for all j ∈ N. Any finite prefix of a play is called a history. The play π gives rise to an
infinite sequence of rewards to player 1 (and an equal infinite sequence of costs to player
2). There are many possible ways of mapping this sequence to player 1’s payoff. In this
paper, we consider the total accumulated reward criterion, where the payoff of Player 1
is defined as

∑∞
j=0 rG(sj), and Player 2’s payoff is the negation of this value. Clearly,

this sum may diverge and because of the assumption that the rewards of all the stack
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symbols are positive, the sum will be finite if and only if the play π terminates by reach-
ing the state ε. It is often convenient to designate an initial state. An initialised game is a
tuple (G, α) where G is a BPA game and α is an arbitrary sequence of its stack symbols.

Strategies and Strategy Profiles. A (randomised) strategy for player i in SG is a
mapping σ : (VG ×Σ2)∗ × VG → D(ΣG) assigning to each possible nonempty history
h·s ∈ (VG×Σ2)∗ ·VG a probability distribution σ(h·s) over the set of allowed actions to
player i for the stack symbol top(s), i.e. σ(h ·s) ∈ D(Σi(top(s)). We write σ(a | h ·s)
for the probability assigned to a ∈ Σ1(top(s)) by the distribution σ(h · s). Let Ψi de-
note the set of strategies of player i. A (randomised) strategy profile of SG is a pair
(σ1, σ2) ∈ Ψ1 × Ψ2 of strategies in SG , one for each player. A strategy profile induces
in a straightforward way a discrete-time Markov chain Mσ1,σ2

G = (V ′G , Δ
σ1,σ2

G , rG),
where V ′G = (VG ×Σ2)∗×VG is the set of all histories in SG and the probabilistic tran-
sition relation Δσ1,σ2

G consists only of the tuples of the form (h · s, p, h · s(a1, a2) · s′)
where p is the probability of moving from state s to state s′ in SG using action pro-
file (a1, a2) when the history of the play so far is h. That is s′ = δG(s, (a1, a2)) and
p = σ1(a1|hs)σ2(a2|hs). Finally, the reward function rG is the same as in SG . Any
initialised Markov chain (Mσ1,σ2

G , α) induces a unique probability measure, denoted
by Prσ1,σ2

G,α , assigning a probability to every Borel subset of (VG ×Σ2)
ω

(technically
a subset of V ′G

ω but we can use projection) and also induces the corresponding expec-
tation operator Eσ1,σ2

G,α such that Eσ1,σ2

G,α (f) =
∫
f dPrσ1,σ2

G,α for all Borel measurable

functions f : (VG ×Σ2)
ω → R ∪ {±∞}. We omit writing G in the subscript if G is

clear from the context.
A strategy σ is called stackless&memoryless (S&M) if for each h·s ∈ (VG×Σ2)∗ ·VG

we have σ(h · s) = σ(top(s)), i.e. the strategy does not depend on the history h, nor
the content of the stack apart from the top stack symbol. Such strategies can be spec-
ified by a function σ : Γ �→ D(ΣG). Moreover, a strategy σ is called deterministic if
it assigns to every history a deterministic distribution. In other words, it can be repre-
sented as σ : (VG ×Σ2)∗ · VG → ΣG . A strategy is deterministic stackless&memory-
less (DS&M) if it is both S&M and deterministic. Such strategies can be specified by a
function σ : Γ �→ ΣG . For a fixed G, there are only finitely many DS&M strategies.

Let qk,σ,τ
α denote the expected reward in k steps in the initialised Markov chain

(Mσ,τ
G , α). Formally, we could define this at the expectation of the following measur-

able function on (infinite) paths f(s1(a1, a2)s2 . . .) =
∑k

i=1 rG(si). When k = 0 then
of course q0,σ,τ

α = 0 for all α. Clearly the sequence (qk,σ,τ
α )k=0,1,... is monotonic and

so it converges to some value in [0,∞]. Let q∗,σ,τα = limk→∞ qk,σ,τ
α be that limit,

which we will call the total expected payoff to player 1 inMσ,τ
α starting at initial state

α. In our BPA games, the aim of player 1 is to maximise this value and the aim of
player 2 is to minimise it. Let us define q∗α

def
= supσ∈Ψ1

infτ∈Ψ2 q
∗,σ,τ
α . Also, define

q∗,σX
def
= infτ∈Ψ2 q

∗,σ,τ
X for all X ∈ Γ and player 1’s strategy σ. A game is said to be de-

termined if q∗α = infτ∈Ψ2 supσ∈Ψ1
q∗,σ,τα holds. In such a case we would call q∗,σ,τα the

value of the initialised BPA game (G, α). Intuitively determinacy means that player 1
has a strategy to achieve a payoff arbitrarily “close to” the value of the game no matter
what player 2 does, and player 2 has a strategy to prevent him from achieving a “much”
higher payoff, which we formalise in the next paragraph. Unlike for the concurrent
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reachability games [6] or 1-exit recursive concurrent stochastic games with reachability
objectives [14], it does not follow directly from general determinacy results of Martin’s
Blackwell determinacy ([21]) that BPA games are determined, because those results
require a Borel payoff function to be bounded, whereas the payoff function in our case
is unbounded. Nevertheless, we will show that any BPA game is determined, but also
S&M-determined which means that the value of the game is the same if a player uses
S&M strategy and the other player is allowed to use an arbitrary strategy against it.

If the value q∗α is finite, then player 1’s strategy σ is called ε-optimal if infτ q∗,σ,τα ≥
q∗α − ε; on the other hand, player 2’s strategy τ is ε-optimal if supσ q

∗,σ,τ
α ≤ q∗α + ε.

However, if the value q∗α = ∞ then player 1’s strategy σ is ε-optimal if infτ q∗,σ,τα ≥
1/ε (this is a pretty arbitrary choice as we could pick as the r.h.s. any expression which
converges to∞ as ε converges to 0). On the other hand, an arbitrary strategy of player
2 is ε-optimal if q∗α = ∞. Finally, a strategy is said to be optimal if it is 0-optimal
(assuming here that 1/0 = ∞). Straight from the definition, if a game is determined
then both players have ε-optimal strategies. There are BPA games where player 1 has
no S&M optimal strategy, but has an optimal strategy which uses infinite amount of
memory (see [28] for such an example).

We would like to solve the following quantitative decision problem for BPA games:
Given a BPA game G, an initial state α, and constant c, decide whether q∗α ≥ c. The
qualitative decision problem would be to check whether q∗α = ∞. Finally, we would
like to find an ε-optimal strategy for each player, which we call the strategy problem.
The following proposition shows that it suffices to solve the decision problem for initial
states X ∈ Γ only as q∗α for arbitrary α ∈ Γ ∗ can be expressed using them.

Proposition 2. q∗α =
∑|α|

i=1 q
∗
α[i].

Proof. Proof is by induction on the length of α. For α = ε the empty sum on the
r.h.s. is = 0 and so is the expected reward q∗ε as the game has already terminated.
For α = X the statement is trivial. Now let α = Xβ, where β ∈ Γ≥1. First,
for any pair of strategies σ and τ of player 1 and 2, respectively, for the initialised
Markov Chain Mσ,τ

α we define two random variables and two events. Let T be the
event that the state β is eventually reached, i.e. the set of all plays from α consis-
tent with (σ, τ) which reach β. Also, let T ′ be the complement of T . Random vari-
able K is defined as the total accumulated reward of all the states until the β state is
reached for the first time, i.e. the stack symbol X is finally removed from the top of
the stack, and the value of random variable L is the total accumulated reward thereafter
(if the state β is never reached the value of L is assumed to be 0). Straight from this
definitions we get q∗α = supσ infτ E

σ,τ
α (K + L) = supσ infτ (E

σ,τ
α K + Eσ,τ

α L) =
supσ infτ (E

σ,τ
α (K|T ) ·Prσ,τα (T ) +Eσ,τ

α (K|T ′) ·Prσ,τα (T ′) +Eσ,τ
α (L|T ) ·Prσ,τα (T )+

Eσ,τ
α (L|T ′) · Prσ,τα (T ′)). Now, the event T ′ consists of all infinite paths ofMσ,τ

α that
never reach β so Eσ,τ

α (L|T ′) = 0 and also from the assumption that all rewards are
strictly positive we get that Eσ,τ

α (K|T ′) =∞. Therefore, q∗α = supσ infτ (E
σ,τ
α (K|T ) ·

Prσ,τα (T ) +∞ · Prσ,τα (T ′) + Eσ,τ
α (L|T ) · Prσ,τα (T ) + 0 · Prσ,τα (T ′)). We now claim

that the last expression is in fact equal to supσ infτ (E
σ,τ
α (K) + Eσ,τ

α (L|T )). This is
because the equality holds when Prσ,τα (T ) = 1 and when it is not the case, then
Prσ,τα (T ′) = 1 − Prσ,τα (T ) > 0 which would imply both of these expressions to be
∞ and again equal.
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Now, supσ infτ (E
σ,τ
α K + Eσ,τ

α (L|T )) = supσ infτ E
σ,τ
α K + supσ infτ E

σ,τ
α (L|T ),

because any pair of player 1’s strategies σ1 and σ2 that are (ε-)optimal for infτ Eσ,τ
α K

and infτ Eσ,τ
α (L|T ), respectively, can be easily composed into a single strategy σ that is

(ε-)optimal for infτ (Eσ,τ
α K + Eσ,τ

α (L|T )) and vice versa. Finally, supσ infτ E
σ,τ
α K =

q∗X , because K only accumulates reward from the moment the game reaches β, and the
structure of the game between these two moments is isomorphic to a game starting at
X . Similarly, supσ infτ E

σ,τ
α (L|T ) = q∗β , because the event T implies that the game

reaches β at some point, L accumulates reward only from that moment on and the
structure of the game from that point on is isomorphic to a game starting at β. Therefore,
we showed q∗α = q∗X + q∗β for any α = Xβ, and by induction q∗α =

∑|α|
i=1 q

∗
α[i]. ��

Finally, let us examine an extension of BPA games where any given action pair may
lead to many possible outcomes each with some fixed probability and the rewards to
player 1 not only can depend on the top stack symbol, but also on the action pair.

Proposition 3. For any extended BPA game model G in which δ : Γ × Σ2 → D(Γ ∗),
r : Γ×Σ2 → R>0, there is a BPA game G′ of size polynomial in the size of G consistent
with Definition 1 such that the value of the initialised game (G, X) for any stack symbol
X ∈ Γ is the same as the value of the initialised game (G′, X).

Let us remark that in the special case of the extended BPA games for which |Σ1(X)| =
1 or |Σ2(X)| = 1 holds for all X ∈ Γ , i.e. only one of the players have a choice for
every top stack symbol, the model is essentially the same as 1-exit recursive simple
stochastic games with positive rewards [9].

3 Characterisation of the Optimal Values

We now formulate an equation system that will allow us to compute the value q∗α of
the BPA game G. For each stack symbol X ∈ Γ we have a variable qX which all
together form a vector q ∈ (R∞≥0)

Γ . The equation for each variable is given as qX =
V al(AX(q)) + r(X), where the matrix AX(q) of dimensions Σ1(X) × Σ2(X) is
defined as follows. For every (a1, a2) ∈ Σ1(X)×Σ2(X):
– AX(q)[a1, a2] = 0 if X(a1, a2) = ε
– AX(q)[a1, a2] = qY if X(a1, a2) = Y
– AX(q)[a1, a2] = qY + qZ if X(a1, a2) = Y Z (Recall that in this case X ∈ Γ+

and so this matrix has size 1× 1.)
Now, we denote the whole system of equations in a vector form as q = P (q), where
P : (R∞≥0)

Γ → (R∞≥0)
Γ . Notice that given q we can compute P (q) in polynomial time

by computing all AX(q)-s first and then using one of the polynomial time algorithms
for linear programming to solve these one-shot matrix games. Let 0 denote the vector
whose all entries are equal to 0, and let us define a sequence of vectors (xi)i∈N such
that x0 = 0, xk+1 = P (xk) = P k+1(0), for all k ≥ 0.

Theorem 4. 1. For all x′ ≥ 0, if x′ ≥ P (x′), then q∗ ≤ x′.
2. q∗ ≥ P (q∗).
3. For all stack symbols X

q∗X
def
= sup

σ∈Ψ1

inf
τ∈Ψ2

q∗,σ,τX = inf
τ∈Ψ2

sup
σ∈Ψ1

q∗,σ,τX .

(In other words, these games are determined.)
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4. q∗ = P (q∗).
5. P is monotone and xk ≤ xk+1 for all k.
6. For all k ≥ 0, xk ≤ q∗.
7. q∗ = limk→∞ xk.

Proof. 1. Let us denote by τ∗ an S&M strategy for player 2 which at any state α = Xβ
uses the optimal mixed minimax strategy in the one-shot zero-sum game AX(x′).

Lemma 5. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, qk,σ,τ∗ ≤ x′.

Let X ∈ Γ be any stack symbol. From Lemma 5 for any strategy σ of player 1 we
get q∗,σ,τ

∗
X = limk→∞ qk,σ,τ∗

X ≤ x′X , so supσ∈Ψ1
q∗,σ,τ

∗
X ≤ x′X as well. Therefore

q∗X = sup
σ∈Ψ1

inf
τ∈Ψ2

q∗,σ,τX ≤ inf
τ∈Ψ2

sup
σ∈Ψ1

q∗,σ,τX ≤ sup
σ∈Ψ1

q∗,σ,τ
∗

X ≤ x′X (1)

2. For X ∈ Γ+ such that δ(X) = Y Z for some Y, Z ∈ Γ , we get q∗X =
q∗Y Z + r(X) = q∗Y + q∗Z + r(X) by using Proposition 2. For all other
X ∈ Γ \ Γ+, if q∗X < V al(AX(q∗)) + r(X), then let us pick any ε <
V al(AX(q∗)) + r(X) − q∗X and such that 1/ε ≥ maxR∈Γ :q∗

R �=∞ q∗R. Let
player 1 play in the first step its optimal minimax strategy in the one-shot
game AX(q∗) and if the action pair (a1, a2) is chosen in the first step, player
1 plays any ε-optimal strategy from X(a1, a2) after that; denote this strat-
egy by σ. Therefore, when player 1 uses strategy σ the value of the game
when starting at X is at least infτ∈Ψ2

∑
(a,b)∈Σ2 σ(a|X)τ(b|X)(q∗X(a,b) − ε) +

r(X) = infτ∈Ψ2

∑
(a,b)∈Σ2 σ(a|X)τ(b|X)q∗X(a,b) + r(X) − ε, which is equal to

V al(AX(q∗)) + r(X)− ε, because σ is optimal in the one-shot game with payoff
matrix AX(q∗). But from the definition of ε the last expression is larger than q∗X ;
a contradiction.

3. In the equation (1) above, choose x′ = q∗. Then for all stack symbols X we get

q∗X = sup
σ∈Ψ1

inf
τ∈Ψ2

q∗,σ,τX ≤ inf
τ∈Ψ2

sup
σ∈Ψ1

q∗,σ,τX ≤ q∗X

4. For X ∈ Γ+ such that δ(X) = Y Z for some Y, Z ∈ Γ , we get q∗X = q∗Y Z +
r(X) = q∗Y + q∗Z + r(X) by using Proposition 2. For all other X ∈ Γ \ Γ+, if
q∗X > V al(AX(q∗))+r(X), then let us pick any ε < q∗X−V al(AX(q∗))−r(X).
Notice, that in the case q∗X = ∞ the condition q∗X > V al(AX(q∗)) + r(X)
implies that V al(AX(q∗)) is finite. From (3.) we know that player 2 has an ε-
optimal strategy from any initial state, because these games are determined. Re-
call that in the case of a game with ∞ value an ε-optimal strategy for player 2
is a completely arbitrary strategy. Let player 2 play in the first step its optimal
minimax strategy in the one-shot game AX(q∗) and if the action pair (a1, a2)
is chosen in the first step, player 2 plays any ε-optimal strategy from X(a1, a2)
after that; denote this strategy by τ . Notice that in the case q∗X is finite, the
strategy τ cannot use with positive probability any action b for which there ex-
ists an action a of player 1 such that q∗X(a,b) = ∞, because this would im-
ply that V al(AX(q∗)) = ∞. In other words, τ(b|X) = 0 if q∗X(a,b) = ∞.
Therefore, when player 2 uses strategy τ the value of the game when start-
ing at X is at most supσ∈Ψ1

∑
(a,b)∈Σ2:τ(b|X)>0 σ(a|X)τ(b|X)(q∗X(a,b) + ε) +
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r(X) = supσ∈Ψ1

∑
(a,b)∈Σ2 σ(a|X)τ(b|X)q∗X(a,b) + r(X) + ε, which is equal to

V al(AX(q∗)) + r(X) + ε, because τ is optimal in the one-shot game with payoff
matrix AX(q∗). But from the definition of ε the last expression is smaller than q∗X ;
a contradiction.

5. Notice that V al(A) ≤ V al(B) for A ≤ B, because player 1 reusing the optimal
strategy for the zero-sum game with payoff matrix A in the zero-sum game with
payoff matrix B guarantees himself a payoff at least as high as for matrix A. More-
over, straight from the definition for every x ≤ x′ we have AX(x) ≤ AX(x′),
hence we also get in the end P (x) ≤ P (x′). Now, of course x0 = 0 ≤ x1 so
P (x0) ≤ P (x1) and by an easy induction we get P (xk) ≤ P (xk+1).

6. P is monotonic and x0 = 0 ≤ q∗, so x1 = P (x0) ≤ P (q∗) = q∗, because as we
have just shown q∗ is a fixed point of P . By an easy induction on k we get xk ≤ q∗

for all k.
7. We know that x∗

def
= limk→∞ xk exists in [0,∞]Γ , because thanks to (5.) it is a

monotonically non-decreasing sequence and so it has to converge although some
of the entries may converge to ∞. In fact we have x∗ = limk→∞ P k+1(0) =
P (limk→∞ P k(0)), because P is a continuous function. Therefore x∗ is a fixed
point of the equation x = P (x) and so from (1.) we have q∗ ≤ x∗. Since from (6.)
xk ≤ q∗ for all k ≥ 0, we also have limk→∞ xk ≤ q∗. Thus q∗ ≤ x∗ ≤ q∗.

��

From the proof we can derive the following useful fact.

Corollary 6. In every BPA game, player 2 has an optimal S&M strategy.

Proof. It is enough to consider the strategy τ∗, in part (1.) of Theorem 4, where we
let x′ = q∗. Then for any stack symbol X ∈ Γ from equation (1) we get q∗X =
supσ∈Ψ1

q∗,σ,τ
∗
= infτ∈Ψ2 supσ∈Ψ1

q∗,σ,τX .

Notice that Theorem 4 gives us a simple iterative algorithm for computing the value
of a BPA game. It simply requires to apply P iteratively starting at the 0 vector until we
reach a solution which does not change much with a further application of P . Of course
this is not enough to decide whether a particular value is ≥ c or even approximate that
value, because it does not allow us to check how close the solution is to the actual value.

4 Decision Procedure

In this section we show how to use the system of equations characterisation of the
values of the BPA games to answer the qualitative as well as the quantitative questions
regarding their values in PSPACE.

Theorem 7. Checking whether the value of an initialised BPA game (G, α) is≤ c,= c,
≥ c, where c is an arbitrary rational number, or=∞ can be all performed in PSPACE.

Note that in [9] we showed all of these problems to be in NP∩coNP for turned-based
BPA games, and even that they are in P for the one-player case. We now show that these
upper bounds are unlikely to hold in the concurrent BPA games setting. Namely, even the
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qualitative decision problem, i.e. whether the value is =∞, is as hard as the square root
sum problem (SQRTSUM), an interesting decision problem in numerical computations.
Formally, SQRTSUM is defined as follows: Given numbers d1, . . . , dn, k ∈ N, decide
whether

∑n
i=1

√
di ≥ k. In [1] it was shown that SQRTSUM belongs to the fourth level

of the counting hierarchy, an improvement over the previously known PSPACE upper
bound. However, it has been an open question since the 1970s as to whether SQRTSUM

falls into the polynomial hierarchy [17, 15]. Hence, showing that the qualitative deci-
sion problem for BPA game to be inside the polynomial hierarchy would imply a major
breakthrough in understanding the complexity of numerical computations.

Theorem 8. SQRTSUM is polynomial-time reducible to the quantitative expected ter-
mination time decision problem for finite-state concurrent games and the qualitative
expected termination time decision problem for BPA games.

5 Strategy Improvement and SM Determinacy

We now prove S&M-determinacy for BPA games, and we also show that (simultaneous)
strategy improvement can be used to compute their values and ε-optimal strategies.

Theorem 9. We can compute a sequence of S&M strategies σ0, σ1, . . . for player 1 such
that σk+1 can be computed based on σk in polynomial time, q∗,σk ≤ q∗,σk+1 for all k,
and limk→∞ q∗,σk = q∗. This implies that BPA games are S&M-determined, ε-optimal
strategy for player 1 exists for any ε > 0 and can be effectively computed.

Proof. Recall that q∗,σX
def
= infτ∈Ψ2 q

∗,σ,τ
X . Define ΨDSM

i to be the set of all deterministic
S&M strategies for player i and pick any S&M strategy, σ ∈ ΨSM

1 , for player 1. First,
note that if q∗,σ = P (q∗,σ) then q∗,σ = q∗. This is because, by Theorem 4(1.), q∗ ≤
q∗,σ , and on the other hand, σ is just one strategy for player 1, and hence for every
stack symbol X ∈ Γ , q∗X = supσ′∈Ψ1

q∗,σ
′

X ≥ q∗,σX . Now for all X ∈ Γ+ we claim
that q∗,σX satisfies its equation in x = P (x). In other words, q∗,σX = q∗,σY + q∗,σZ , where
δ(X) = Y Z . This is because once we fix an S&M strategy σ for player 1, the BPA
game becomes an extended BPA game, Gσ , where only player 2 has no trivial choices
and so q∗,σ

′′
Gσ = q∗Gσ for any strategy σ′′ of player 1. We can then reduce this game to a

BPA game G′′ while preserving the expected payoffs from each stack symbol. Finally,
applying Proposition 2 to G′′ will give us what we need.

Therefore, the equality can fail only for X ∈ Γ \ Γ+. Notice that q∗,σX ≤
V al(AX(q∗,σ)) + r(X), because player 2 can play in his first step starting at ver-
tex X an optimal strategy in the matrix game AX(q∗,σ), incurring one-step cost
r(X), and thereafter, if some action pair (a1, a2) was chosen, play his optimal strat-
egy when starting at X(a1, a2), which we showed to exists in Corollary 6. Now, let
Γ�= = (X1, X2, . . . , Xn) be the set of all stack symbols (in some fixed order) for which
q∗,σX < V al(AX(q∗,σ)) + r(X); and so for any X �∈ Γ �= the equality has to hold. Note
that obviously q∗,σXi

�= ∞ for all Xi ∈ Γ�=. Now, let r = [r(X1), r(X2), . . . , r(Xn)]
T ,

r∗ = [q∗,σX1
, . . . ,q∗,σXn

]T and r′ = [q∗,σ
′

X1
, . . . ,q∗,σ

′
Xn

]T .
Consider a revised S&M strategy for player 1, σ′, which is identical to σ, except that

for each stack symbol Xi ∈ Γ�= the strategy is changed so that σ′(Xi) ∈ D(Σ1(Xi))



314 D. Wojtczak

becomes an optimal mixed minimax strategy for player 1 in the one-shot matrix game
AX(q∗,σ). We will show that switching from σ to σ′ will strictly improve player 1’s
payoff for all stack symbols Xi ∈ Γ�=, and will not reduce its payoff for any other stack
symbol.

Now, consider a parametrized BPA game, G(t) where t = [t1, t2, . . . , tn]
T , which is

identical to G, except that we replace the transition function δ for Xi to be δ(Xi, a, b) =
ε for any a, b ∈ Σ and assign r(Xi) = ti. Fixing the value of t ∈ [0,∞]n determines a
BPA game, G(t). Note that σ and σ′ are still well-defined for G(t) and define the same
strategy, because they differ only for stack symbols Xi ∈ Γ�= for which the outcome in
G(t) does not depend on the strategy choice. Now, we keep q∗,σ,τX to denote q∗,σ,τG,X and
use q∗,σ,τt,X to denote q∗,σ,τG(t),X . Similarly we define q∗,σt,X = infτ∈Ψ2 q

∗,σ,τ
G(t),X , which is the

infimum of the expected rewards, over all strategies of player 2, when starting at X in
G(t). Observe that q∗,σr∗,X = q∗,σX for any X ∈ Γ . This is because G and G(t) differ
only for Xi ∈ Γ�=, the expected payoff for removing Xi ∈ Γ�= from the top of the stack
using σ (against the best strategy of player 2) equalsq∗,σXi

in G and r∗Xi
in G(t), and these

values are the same by the definition of r∗. Also, generalising Proposition 2 we can then
get q∗,σt,Xiβ

= q∗,σt,Xi
+ q∗,σt,β for any β ∈ Γ ∗ so the expected payoffs in both of these

games do not change if it does not change for any Xi ∈ Γ�=. Similarly we can show

q∗,σ
′

r′,X = q∗,σ
′

X . Furthermore, for any σ ∈ Ψ1, τ ∈ Ψ2 if t′ ≥ t then q∗,σ,τt′,X ≥ q∗,σ,τt,X ,
because increasing the reward for removing the the stack symbols Xi ∈ Γ�= from the

top of the stack can only increase the expected payoff. Lastly, q∗,σ,τt,X = q∗,σ
′,τ

t,X , because
σ and σ′ differ only for Xi ∈ Γ�= and in G(t) these symbols are immediately removed
from the top of the stack and have the same reward ti.

Now, note that for any S&M strategies σ and τ the value of q∗,σ,τt,X is equal to the
expected reward in a BPA process starting at X where neither of the players have
nontrivial choices. This can easily be expressed as linear equation system with non-
negative coefficients as follows: xXi = ti for Xi ∈ Γ�=, xX = xY + xZ + r(X) for
δ(X) = Y Z and xX =

∑
(a,b)∈Σ2 σ(a|X)τ(b|X)xX(a,b) + r(X) for X ∈ Γ \ Γ+.

We can write it down as x = Rt(x) and observe that it follows from Theorem 4 that
q∗,σ,τt,X = (limk→∞ Rk

t (0))X . Since operator Rt is linear in x and variables in t appear
as constants, we can express it as Rt(x) = Aσ,τx+ c(t), for some nonnegative matrix
Aσ,τ , and vector c(t) such that c(t)Xi = ti and c(t)X = r(X) otherwise. (Notice that
for Xi ∈ Γ�= the Xi-th row vector of Aσ,τ has only zero entries.) Simple iteration then
shows q∗,σ,τt,X = limk→∞(Rk

t (0))X = ((
∑∞

k=0 Ak
σ,τ )c(t))X . This implies that q∗,σ,τt,X

is a linear function of t ∈ [0,∞]n and can be represented as q∗,σ,τt,X = αX,τ t + βX,τ ,

where αX,τ = (αX,τ
1 , αX,τ

2 , . . . , αX,τ
n ) for some αX,τ

1 , . . . , αX,τ
n , βX,τ ∈ [0,∞].

For any τ ∈ ΨDSM
2 , b = (b1, . . . , bn) ∈ ΣΓ�= and t ≥ −r, let gτ

b(t) ∈ [0,∞]Γ�= be a
vector such that

gτ
b(t)Xi

def
=

∑
a∈Σ

σ′(a|Xi)q
∗,σ,τ
t+r,Xi(a,bi)

=
∑
a∈Σ

σ′(a|Xi)(α
Xi(a,bi),τ (t+ r) + βXi(a,bi),τ )

=
∑
a

σ′(a|Xi)α
Xi(a,bi),τ · t+

∑
a

σ′(a|Xi)(α
Xi(a,bi),τr+ βXi(a,bi),τ )

We can write the last expression as γXi,τ
b t+ dXi,τ

b , for some γXi,τ
b ∈ [0,∞]n, dXi,τ

b ∈
[0,∞]. Note that if dXi,τ

b = 0 then for all a ∈ Σ such that σ′(a|Xi) > 0 it has



Expected Termination Time in BPA Games 315

to be βXi,τ
b = 0 and α

Xi(a,b),τ
b = 0, because r(Xi) > 0 for all i; which also im-

plies γXi,τ
b = 0. We can now represent gτ (t)b as Dτ

bt + dτ
b, where Dτ

b is the ma-
trix [γX1,τ

b ;γX2,τ
b ; . . . ;γXn,τ

b ] with its Xi-th row equal to γXi,τ
b and dτ

b ∈ [0,∞]Γ�=

consists of all dXi,τ
b -s. As just shown, the Xi-th row of Dτ

b consists of only zeroes if
(dτ

b)Xi = 0.
Now consider the function f(t) = minb∈ΣΓ �= minτ∈ΨDSM

2
gτ
b(t), where the minimum

is only over deterministic S&M strategies of player 2. This function is well-defined,
because for Gσ(t+ r) where strategy of player 1 is fixed to S&M strategy σ, it follows
from Corollary 6 that not only player 2 has a S&M strategy τ∗ optimal against σ for
every initial state, but also a deterministic one τ∗ ∈ ΨDSM

2 . In other words, for any
other τ ∈ Ψ2 we have q∗,σ,τt+r ≥ q∗,σ,τ

∗
t+r , and so also for any b ∈ Σ2(Xi) we have∑

a∈Σ σ′(a|Xi)q
∗,σ,τ
t+r,Xi(a,b)

≥
∑

a∈Σ σ′(a|Xi)q
∗,σ,τ∗

t+r,Xi(a,b)
. Finally, notice that the

value of gτ
b(t)Xi depends only on bi, so it suffices for each Xi to find an action bi ∈

Σ2(Xi) for which gτ
b(bi)Xi is minimal. (In fact it suffices to set bi = τ∗(Xi)).

Lemma 10. If f(t) ≥ t for some finite vector t, then for any fixed point t∗ of f , t∗ ≥ t.

Now notice that for every Xi ∈ Γ�= we have

f(r∗ − r)Xi =(min
b

min
τ∈ΨDSM

2

gτ
b(r

∗ − r))Xi =min
b

∑
a∈Σ

σ′(a|Xi) min
τ∈ΨDSM

2

q∗,σ,τr∗,Xi(a,bi)

= min
bi∈Σ

∑
a∈Σ

σ′(a|Xi)q
∗,σ
r∗,Xi(a,bi)

= min
bi∈Σ

∑
a∈Σ

σ′(a|Xi)q
∗,σ
Xi(a,bi)

≥(1) V al(AXi(q
∗,σ)) > q∗,σXi

− r(Xi) = (r∗ − r)Xi

where inequality (1) holds because σ′ is an optimal strategy against any strategy of
player 2, including the one which picks action bi with probability 1 as here, in the one-
shot game with payoff matrix AXi(q

∗,σ). Therefore, by Lemma 10, any fixed point of
f has to be greater or equal to r∗ − r. On the other hand

f(r′ − r)Xi = (min
b

min
τ∈ΨDSM

2

gτ
b(r

′ − r))Xi = min
b

∑
a∈Σ

σ′(a|Xi)min
τ

q∗,σ,τr′,Xi(a,bi)

=(2) min
b

∑
a∈Σ

σ′(a|Xi)q
∗,σ′

r′,Xi(a,bi)
= min

b

∑
a∈Σ

σ′(a|Xi)q
∗,σ′

Xi(a,bi)

=(3) min
τ∈ΨDSM

2

∑
(a,b)

σ′(a|Xi)τ(b|Xi)q
∗,σ′,τ
Xi(a,b)

= q∗,σ
′

Xi
− r(Xi) = (r′ − r)Xi

where (2) holds, because q∗,σX,t = q∗,σ
′

X,t and (3) holds, because there is an DS&M
strategy, τ∗, optimal against σ′ in G and we can map it to an optimal b by setting
bi := τ∗(Xi) for all i. Therefore we showed that r′ − r ≥ r∗ − r, i.e. q∗,σXi

≥ q∗,σ
′

Xi
for

all Xi ∈ Γ�=. On the other hand, for all X ∈ Γ we now have q∗,σ
′

X = q∗,σ
′

r′,X ≥ q∗,σ
′

r∗,X =

q∗,σr∗,X = q∗,σX so switching to σ′ does not decrease player 1’s expected payoff for any
initial stack symbol. At the same time

q∗,σXi
− r(Xi) < V al(AXi(q

∗,σ)) = min
τ∈ΨDSM

2

∑
a,b

σ′(a|Xi)τ(b|Xi)q
∗,σ
Xi(a,b)
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≤ min
τ∈ΨDSM

2

∑
a,b

σ′(a|Xi)τ(b|Xi)q
∗,σ′

Xi(a,b)
≤(4) min

τ∈ΨDSM
2

∑
a,b

σ′(a|Xi)τ(b|Xi)q
∗,σ′,τ
Xi(a,b)

= min
τ∈ΨDSM

2

q∗,σ
′,τ

Xi
− r(Xi) = q∗,σ

′
Xi
− r(Xi)

where (4) holds because for a fixed τ the value of q∗,σ
′,τ

Xi(a,b)
is higher than the minimum

over all possible τ . This means that σ′ is strictly better than σ for all Xi ∈ Γ�=. Notice
that we essentially just showed that for all X ∈ Γ �= we have V al(AX(q∗,σ))+ r(X) ≤
q∗,σ

′
X , which can be generalised to all X ∈ Γ . Therefore starting at any player 1’s

S&M strategy σ0 ∈ Ψ1, we can generate a sequence σ1, σ2, . . . of S&M strategies with
monotonic game values, i.e. q∗,k ≤ q∗,k+1 for all k, which converges to q∗ at least
as fast as the sequence xk := P k(0), i.e. xk ≤ q∗,σk for all k. The sequence q∗,σk

converges to q∗, because limk→∞ xk = q∗ and clearly q∗,σ ≤ q∗ for any σ ∈ Ψ1. Now,
for any ε > 0 and X ∈ Γ there has to exist some k(X) > 0 such that xk(x)

X ≥ 1/ε if

q∗X = ∞ and
∣∣∣xk(X)

X − q∗X

∣∣∣ ≤ ε if q∗X �= ∞. It follows that after k = maxX∈Γ k(X)

iterations of the strategy improvement we get an S&M strategy σk for player 1 which is
ε-optimal. This concludes the proof that for any ε > 0 player 1 has an ε-optimal S&M
strategy and BPA games are S&M determined. ��

Although we do not provide any bound on the number of steps of the strategy improve-
ment in order to compute an ε-optimal strategy, it is still more likely to compute the
value of the game faster in practise than the PSPACE decision procedure given in Sec-
tion 4. This is because the constants defining the running time of the PSPACE algorithm
for deciding the existential theory of the reals are really large. Recently a class of ex-
amples was given in [18] of finite-state concurrent games with a reachability objective
which shows that the strategy improvement may require doubly exponential number of
steps in order to compute the game value with one bit of precision and the usual repre-
sentation of the strategy which achieves that value requires an exponential number of
bits. These examples do not transfer into our total accumulated positive reward model,
because the total accumulated reward of all the states in these example games is∞. In
fact, we conjecture that the biggest possible total payoff in our games apart from value
∞ is exponential in the size of the game and so can be represented using polynomial
number of bits. This would also imply a PSPACE algorithm for approximating their
values using the decision procedure from Section 4.

Acknowledgments. We would like to thank the anonymous reviewers whose com-
ments helped to improve this paper.
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Abstract. The classical approach to static cost analysis is based on first
transforming a given program into a set of cost relations, and then solving
them into closed-form upper-bounds. The quality of the upper-bounds
and the scalability of such cost analysis highly depend on the precision
and efficiency of the solving phase. Several techniques for solving cost
relations exist, some are efficient but not precise enough, and some are
very precise but do not scale to large cost relations. In this paper we
explore the gap between these techniques, seeking for ones that are both
precise and efficient. In particular, we propose a novel technique that first
splits the cost relation into several atomic ones, and then uses precise
local reasoning for some and less precise but efficient reasoning for others.
For the precise local reasoning, we propose several methods that define
the cost as a solution of a universally quantified formula. Preliminary
experiments demonstrate the effectiveness of our approach.

1 Introduction

Static Cost analysis (a.k.a. resource usage analysis) aims at statically deter-
mining the amount of resources (e.g., memory, execution steps, etc.) required
to execute a given program safely, i.e., without running out of resources. Ap-
plications of cost analysis range from detecting performance bottlenecks at the
development stage, to providing resource consumption guarantees at runtime.

Several cost analysis frameworks exist [4,13,15,10]. Although different in their
underlying techniques, they all report the cost as a closed-form upper-bound
function (UB for short) in terms of the input parameters. This paper uses the
classical approach of Wegbreit [18], in particular its extension for Java byte-
code [4], where the analysis is carried out in two phases: (1) the input program
is transformed into a set of cost relations (CRs for short) that define its cost;
and (2) the CRs are solved into UBs . While the first phase depends on the pro-
gramming language in which the program is written [4,11,12,9,17], the second
phase is common to all analyses that are based on this approach. In this paper
we focus on the second phase, i.e., on developing techniques for solving CRs .
However, we provide enough details to clarify how CRs are related to programs.

Example 1. The Java class depicted in Fig. 1 implements a dynamic array, where
field data is used to store its elements, and field size represents the number of
such elements. Method add adds the elements of the array elems to the dynamic
array. When the array data is full (L6), it is replaced by a new one of double

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 319–333, 2013.
c© Springer International Publishing Switzerland 2013
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1class DynamicArray {
2 int[ ] data;
3 int size;
4 void add(int[ ] elems) {
5 for (int i=0; i<elems.length; i++) {
6 if (data.length == size) {
7 int[ ] tmp = new int[2∗data.length];
8 copy(tmp,size,data);
9 data = tmp;

10 }
11 data[size] = elems[i];
12 size++;
13 }
14 }

15 int r;
16 void qsort() {
17 qs(0, size−1);
18 }
19 void qs(int from, int to) {
20 if (to − from < r)
21 insertionSort(from,to);
22 else {
23 int m=partition(from,to);
24 qs(from,m−1);
25 qs(m+1,to);
26 }
27 }
28}

add(e, d, s) = for(e, d, s, i) ϕ0={e≥0, d≥0, s≥0, i=0}
for(e, d, s, i) = 0 ϕ1={i≥e}
for(e, d, s, i) = 2·nat(s) + 2 + for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i) = 2 + for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}
qsort(s, r) = qs(f, t, r) ψ0 = {s≥0, f=0, t=s−1}
qs(f, t, r) = nat(t−f)2 ψ1 = {t−f<r, r≥0}
qs(f, t, r) = nat(t−f) + qs(f,m′, r)+ ψ2 = {t−f≥r, r≥0, f≤m≤t,

qs(m′′, t, r) m′=m−1,m′′=m+1}

Fig. 1. Above, Java code of a DynamicArray class. Below, the CRs of the methods

size (L7-9). Methods qsort and qs sort the array using a variation of Quick Sort,
which resorts to Insertion Sort when the segment to be sorted is shorter than a
threshold defined by field r. Methods copy, partition, and insertionSort are omitted.

Below the Java code we show the corresponding CRs , generated using a cost
model that counts array accesses. Let us explain the CR of method add. Variables
e, d, s, and i stand for the lengths of arrays elems and data and the values of size
and i. Expression nat(e) is an abbreviation for max{e, 0}. The first equation
states that the cost of add(e, d, s) is as that of for (e, d, s, i). The constraints on
the right impose conditions and relations on the variables. The second equation
is for the case of exiting the loop (i ≥ e). The third one is for the case in
which the array is resized. In such case the cost is 2·nat(s) (the cost assumed
for copy), plus 2 (the accesses at L11), plus the cost of the remaining iterations
for (e, d′, s′, i′). Note that d′=2·d states that the size of array data is doubled.
The fourth equation describes the case in which the array is not resized. The
equations of qsort are defined similarly. We note that nat(t−f)2 and nat(t−f)
correspond to the cost of insertionSort and partition respectively. The constraint
f≤m≤t in ψ2 is an input-output summary inferred for the value m returned by
method partition. Methods add and qsort, respectively, have linear and quadratic
worst-case complexity. �

Early works on cost analysis [11,9] relied on Computer Algebra Systems (CAS)
for solving CRs . They can only handle cases in which the CRs can be trans-
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formed into recurrence equations (the only valid input for CAS). This, however,
is a very limited subset because CRs allow using constraints to define complex
applicability conditions and relations between the variables. To overcome this
limitation, recent works [3,6] have developed dedicated tools for solving CRs into
UBs . They are mostly based on the use of program analysis techniques. These
works are our starting point.

The techniques of [3] are based on assuming worst-case behaviour for all loop
iterations. It is very efficient and can handle a wide class of CRs . To solve the
CR for , this technique infers that 2+2·nat(e+s−1) is an UB on the cost of any
iteration of for , and it infers that there is at most nat(e−i) iterations of for ,
from which it concludes that nat(e−i)·(2+2·nat(e+s−1)) is an UB for CR for .
Note that this is a quadratic UB while the actual cost is linear. In the case of
qsort, the loss of precision is even bigger. It first infers that nat(t−f)2 is an UB
on the cost of each call to qs, and that there are at most 2nat(t−f) of such calls.
Then, it concludes that (t−f)2·2nat(t−f) is an UB for CR qs , while the actual
cost is quadratic.

The above imprecision issue, among others, was addressed in [6] where precise
and novel techniques for solving CRs were proposed. They are based on defin-
ing the cost as a solution of a corresponding first-order universally quantified
formula. This method, as expected, would obtain the most precise UBs for the
CRs for and qs , however, it has two major limitations: (1) a template UB has
to be provided by the user; and (2) the use of a quantifier elimination procedure
for real numbers renders the technique impractical.

In this paper we explore the gap between [3] and [6], seeking for solving
techniques with efficiency close to [3] and precision close to [6]. Concretely, we
develop a novel technique that breaks down the input CR into atomic CRs of
simpler form, solves each of them separately, and then combines the results into
an UB for the original CR. Our main observation is that it is enough to solve
few atomic CRs precisely, while solving the others as in [3], without affecting the
overall precision. We also propose several methods for precisely solving atomic
CRs , which are based on the idea of specifying the cost using universally quan-
tified formulas as in [6]. However, we do not require the user to provide any
template, and, importantly, the generated formulas have almost a linear form
for which quantifier elimination can be done efficiently. Our prototype imple-
mentation and experiments [1] demonstrate the effectiveness of this approach.

This paper is organised as follows. Sec. 2 provides the required background
on CRs . Sec. 3 is the technical core of the paper. Sec. 4 describes a prototype
implementation and preliminary experiments. Finally, in Sec. 5 we conclude and
discuss related work.

2 Cost Relations: Syntax and Semantics

In this section we recall some basic notions related to CRs [3]. The sets of real,
rational, and integer values are denoted by R, Q, and Z, respectively. R+, Q+,
and Z+ denote their non-negative subsets. Variables are denoted by x, y, z, and
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w, possibly subscripted. Values from R, Q, and Z are denoted, respectively, by
r, q, and v. A sequence of elements of type t is denoted by t̄. The set of variables
of t is denoted by vars(t). An assignment σ : V �→ D maps variables from V to
values from D and σ(t̄) denotes the replacement of any x ∈ vars(t̄) by σ(x).

A linear expression has the form q0+q1·x1+ · · ·+qn·xn. A linear constraint
has the form l1≤l2, l1=l2, or l1≥l2, where l1 and l2 are linear expressions and
vars(l1)∪vars(l2) ⊆ Z. The constraints l1>l2 and l1<l2 abbreviate l1≥l2+1 and
l1+1≤l2, respectively. We use ϕ, φ, and ψ, possibly subscripted, to denote con-
junctions (often written as sets) of linear constraints. We say that ϕ is satisfiable
if there is an assignment σ for vars(ϕ) such that σ(ϕ) is true, denoted as σ |= ϕ.
If σ |= ϕ for every assignment σ for vars(ϕ) then ϕ is a valid formula.

Definition 1 (cost expression). A cost expression e is defined as:

e ::= q | nat(l) | loga(1+nat(l)) | anat(l)−1 | e+e | e·e
where q ∈ Q+, nat(l) = max{l, 0}, a > 1 ∈ Z+, and l is a linear expression.

Note that we use anat(l)−1, instead of simply anat(l), for the sake of simplifying
the formal presentation (we explain this after Lemma 3).

Definition 2 (cost relation). A cost relation is a set of cost equations of the

form 〈C(x̄) = e+
∑k

j=1 Dj(ȳj), ϕ〉, where C and Dj are cost relation symbols.

Intuitively, a cost equation 〈C(x̄) = e+
∑k

j=1 Dj(ȳj), ϕ〉 states that the cost of
C(x̄) is e plus the sum of the costs of D1(ȳ1), . . . , Dk(ȳk). The linear constraint ϕ
specifies the values of x̄ for which the equation is applicable, and defines relations
among the different variables. Since CRs usually originate from programs, it is
often helpful to think of each CR symbol as a (non-deterministic) procedure, in
which case we say that C calls D1, . . . , Dk.

Without loss of generality, in what follows we assume that the input CR
includes a single CR symbol. Namely, in Def. 2 we have Dj=C. We call such
CRs stand-alone. To handle CRs with more than one CR symbol, we rely on
the compositional approach of [3] which we briefly explain next. In a first step,
the input CR is transformed into a form in which all recursions are direct, i.e.
an equation that defines C can either call itself directly, or other CR symbols
that do not call C (directly or indirectly). In a second step, the CRs are solved
iteratively, where in each iteration we solve those that do not depend on any
other symbols (there must be at least one), and then substitute the result in the
calling contexts. In the rest of the paper CR refers to a stand-alone CR.

To define the cost assigned by C to a concrete input v̄, we use evaluation
trees. A (possibly infinite) tree will be denoted by node(r, 〈T1, . . . , Tk〉), where
r ∈ R+ is the value of the root and T1, . . . , Tk are sub-trees.

Definition 3 (evaluation tree). Given a CR C and an input v̄, we say that
node(r, 〈T1, . . . , Tk〉) is an evaluation tree for C(v̄) iff there exists an equation

E ≡ 〈C(x̄) = e+
∑k

j=1 C(ȳj), ϕ〉 and σ : vars(E) �→ Z such that: (1) σ(xi)=vi
and σ|=ϕ; (2) r = σ(e); and (3) each Ti is an evaluation tree for C(σ(ȳi)).
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Intuitively, when viewing C as a procedure, an evaluation tree can be seen as
a recursion tree where the call C(v̄) is evaluated as follows: we pick an equation
that defines C and an assignment σ that satisfies the equation’s constraints;
we evaluate σ(e) into r, and we recursively call each C(σ(ȳi)). Note that an
evaluation tree can be infinite. Note also that C(v̄) might have several evalua-
tion trees, due to the nondeterminism induced by choosing an equation for C
and a satisfying assignment σ for ϕ. The set of all evaluation trees for C(v̄) is
denoted by Trees(C(v̄)). The set of all possible costs for C(v̄) is then defined
as Answers(C(v̄))={Sum(T ) | T∈Trees(C(v̄))}, where Sum(T ) is the sum of all
nodes of T . Our interest is to approximate CRs by mean of closed-form UBs
functions, i.e., functions of the form f(x̄)=e, where vars(e) ⊆ x̄.

Definition 4 (upper bound). A function C+ : Zn �→ R+ is an UB for a CR
C, iff for any input v̄ ∈ Zn and cost r ∈ Answers(C(v̄)) we have C+(v̄) ≥ r.

Next we overview the approach of [3] for solving a CR into an UB. Suppose we
have two functions h(x̄)=e1 and g(x̄)=e2, where e1 and e2 are cost expressions,
such that for any T∈Trees(C(v̄)) the following holds (i) h(v̄) is an UB on the
depth of T ; and (ii) g(v̄) is an UB on the value of any node of T . Now assuming
that d is the maximum number of recursive calls in any equation of C, i.e., the
maximum branching factor of its evaluation trees, then C+(x̄)=g(x̄)·N where
N=h(x̄) if d = 1, and N=dh(x̄) if d>1. Technically, in [3], h(x̄) is computed by
inferring a linear ranking function [8] that bounds the recursion depth of C, and
g(x̄) is computed by relying on linear invariants.

Example 2. Consider the CR for in Fig. 1. The technique of [3] infers
h(e, d, s, i) = nat(e−i) and g(e, d, s, i) = 2+2·nat(e+s−1). Then, since the branch-
ing factor is d=1, it reports the UB for+(e, d, s, i)=nat(e−i)·(2+2·nat(e+s−1)).
For CR qs , it infers h(f, t, r)=nat(t−f) and g(f, t, r)=nat(t−f)2. Then, since the
branching factor is d=2, it reports the UB qs+(f, t, r)=nat(t−f)2·2nat(t−f). �

Maximisation procedure. We rely on the technique of [3] that generates g(x̄) as
we explain next. Let e be the cost expression that is contributed by an equation
of C, and let b be a cost sub-expression of e. As explained in Def. 3, when
generating the nodes of an evaluation tree T∈Trees(C(v̄)), we evaluate σ(e)
to r. This evaluation requires computing σ(b). We call σ(b) an instance of b.

We reuse the techniques of [3] to infer a cost expression b̂(x̄) that satisfies the
following: for any input v̄, T∈Trees(C(v̄)) and any instance σ(b) of b in T , we

have b̂(v̄) ≥ σ(b). Intuitively, b̂(x̄) is a function that bounds each contribution of b

to the total cost. We call b̂(x̄) the maximisation of b, and, in our implementation,
we compute it reusing the components of [3].

3 Solving Cost Relations in Closed-Form Upper-Bounds

In this section we present our approach for solving a CR C into an UB . We as-
sume that C is defined by m equations of the form 〈C(x̄) = ei+

∑ki

j=1 C(ȳij), ϕi〉,
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for1

⎧⎨
⎩
for(e, d, s, i)= 0 ϕ1={i≥e}
for(e, d, s, i)= 2·nat(s)+for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i)= for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}

for2

⎧⎨
⎩
for(e, d, s, i)= 0 ϕ1={i≥e}
for(e, d, s, i)= 2 + for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i)= for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}

for3

⎧⎨
⎩
for(e, d, s, i)= 0 ϕ1={i≥e}
for(e, d, s, i)= for(e, d′, s′, i′) ϕ2={i<e, s=d, d′=2·d, s′=s+1, i′=i+1}
for(e, d, s, i)= 2 + for(e, d, s′, i′) ϕ3={i<e, d>s, s′=s+1, i′=i+1}

qs1

⎧⎨
⎩
qs(f, t, r) = nat(t−f)2 ψ1={t−f<r, r≥0}
qs(f, t, r) = qs(f,m′, r) + qs(m′′, t, r) ψ2={t−f≥r, r≥0, f≤m≤t,

m′=m−1,m′′=m+1}

qs2

⎧⎨
⎩
qs(f, t, r) = 0 ψ1={t−f<r, r≥0}
qs(f, t, r) = nat(t−f) + qs(f,m′, r)+ ψ2={t−f≥r, r≥0, f≤m≤t,

qs(m′′, t, r) m′=m−1, m′′=m+1}

Fig. 2. The sparse CRs of for and qs of Fig. 1

1 ≤ i ≤ m. Our approach is presented in two steps: we reduce the problem of
solving C to solving atomic CRs , and then we focus on solving atomic CRs .

Observe that cost expressions, as in Def. 1, can be normalised into the form
P1 + · · · + Ph, where each Pi is a product of cost expressions bi1, . . . , bipi with
bij ∈ {q, nat(l), loga(1+nat(l)), anat(l)−1}. For simplicity, since q is non-negative,
we assume it is given as nat(q). We assume that each ei in C is given in this form.
Let PC = {P1, . . . , Pt} be the multiset of all non-zero product cost expressions
that appear in C (i.e., the products of e1, . . . , em). We define Ci as the CR
obtained from C by removing all Pj ∈ PC with j �= i. Namely, in Ci there is
exactly one equation that contributes Pi, the others contribute 0. We call such
CRs sparse and the equation that includes Pi is called the main equation.

Example 3. Consider the CRs for and qs in Fig. 1. Their products are respec-
tively Pfor={2·nat(s), 2, 2} and Pqs={nat(t−f)·nat(t−f), nat(t−f)}. Their cor-
responding sparse CRs are depicted in Fig. 2. �

Observation 1 If C+
i (x̄) is an UB for the sparse CR Ci, for all 1 ≤ i ≤ t, then

C+(x̄) = C+
1 (x̄) + · · ·+ C+

t (x̄) is an UB for C.

The above observation explains how an UB for C can be obtained from UBs
for its sparse CRs C1, . . . , Ct. Thus, we can focus on solving sparse CRs. We
first explain the idea intuitively. Assume that bi1·bi2 is the product in the main
equation of Ci. Given an arbitrary T∈Trees(Ci(v̄)), the cost of each of its nodes is
either 0 or an instance of bi1·bi2. Let σ1(bi1·bi2), . . . , σh(bi1·bi2) be the instances of
bi1·bi2 in T∈Trees(Ci(v̄)), then the cost of T is S=

∑h
j=1 σj(bi1·bi2). As explained

in Sec. 2, we can compute a function b̂i1(x̄) such that b̂i1(v̄)≥σj(bi1) for each

1 ≤ j ≤ h. Using b̂i1(v̄) we bound S as follows:
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S =
∑h

j=1 σj(bi1·bi2) ≤
∑h

j=1 b̂i1(v̄)·σj(bi2) = b̂i1(v̄)·
∑h

j=1 σj(bi2)

Now assume that we have a function f+(x̄) such that f+(v̄)≥
∑h

j=1 σj(bi2), then

S≤b̂i1(v̄)·f+(v̄). Thus, since the above reasoning is done for an arbitrary T , we

can conclude that b̂i1(x̄)·f+(x̄) is an UB for Ci. Now to compute f+(x̄), we
consider a CR Ci2 that is obtained from Ci by replacing bi1·bi2 by bi2. Clearly,
Ci2(v̄)=

∑h
j=1 σj(bi2), and thus any UB for Ci2 defines a valid f+(x̄). This re-

duces the problem of solving Ci to that of solving Ci2, which is simpler since its
main equation includes a basic cost expression. Note that, in a similar way, we
could build Ci1 using b̂i2(x̄) and then use it to find an UB for Ci.

Formally, given a sparse CR Ci with a product bi1· · · · ·bipi in its main equa-
tion, we define the atomic CR Cij as the one obtained from Ci by replacing its
product by bij (i.e., removing all bik with k �= j).

Example 4. Consider the sparse CRs depicted in Fig. 2. The following are pos-
sible atomic CRs for for1 and qs1

for12 qs11
for(e, d, s, i)=0 ϕ1 qs(f, t, r)=nat(t−f) ψ1

for(e, d, s, i)=nat(s)+for(e, d′, s′, i′) ϕ2 qs(f, t, r)=qs(f,m′, r)+qs(m′′, t, r) ψ2

for(e, d, s, i)=for(e, d, s′, i′) ϕ3

in which nat(s) and nat(t−f) are selected as basic cost expressions. CRs for2 ,
for3 and qs2 are already atomic. They correspond to for21 , for31 and qs21 . �

Lemma 1. Let Ci be a sparse CR, bi1· · · · ·bipi the product in its main equation,
and Cij an atomic CR of Ci. If C+

ij (x̄) is an UB for Cij(x̄), then C+
i (x̄) =

C+
ij (x̄)·

∏
k �=j b̂ik(x̄) is an UB for Ci.

The above lemma allows focusing on finding an UB for a single atomic Cij

and then combine the result into an UB for Ci. To put this into practice we
need to address the following issues: (1) how to select the basic cost expression
j from the products in order to build Cij ; and (2) how to compute an UB for
Cij . In secs. 3.1 and 3.2 we discuss several methods for addressing the second
issue. The first issue is discussed later in Sec. 3.4.

Let us first position our approach in the spectrum of related approaches [3,6].

Solving Ci using the techniques of [3] we obtain the UB (
∏pi

k=1 b̂ik(x̄))·N . Inter-
estingly, this UB can be explained using our novel view of Lemma 1, which is
different from that of [3], as follows: we can consider b̂ij(x̄)·N as an UB for Cij ,

and then use it as in Lemma 1 to obtain (
∏pi

k=1 b̂ik(x̄))·N . Since, unlike [3], we
focus on solving atomic CRs , we develop dedicated techniques (i.e., techniques
that work only for atomic CRs) that are able to obtain an UB far more precise

than b̂ij(x̄)·N (we will usually eliminate the N factor). Solving Ci using the
techniques of [6] requires defining an UB template to be used during the solv-
ing process. If Ci does not admit an UB that matches the supplied templates,
then this technique will fail. Moreover, using arbitrary templates renders this
approach impractical since it is based on the use of quantifier elimination pro-
cedure. Our techniques for solving atomic CRs are actually inspired by those
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of [6]. However, since we focus on a simpler form of CRs , we always use linear
templates for which the quantifier elimination procedure is efficient. In summary,
our approach uses [6] to precisely reason on the local cost of a single simple cost
expression bij , and then uses [3] to combine this local cost into an UB for Ci.

To simplify our notation, in what follows, we assume a given atomic CR D
with m equations of the form 〈D(x̄) = ei+

∑ki

j=1 D(ȳij), ϕi〉, where e1 = b is a
basic cost expression, and ei = 0 for all 2 ≤ i ≤ m. Note that the main equation
of D is the first one. We denote by w̄i the set of variables in the i-th equation.

3.1 The Tree-Sum Method

We first explain this method for the case in which b = nat(l), and then we
show how to extend it to handle any basic cost expression b. In many cases, in
particular in examples that require amortised analysis, the sum of all instances
of b in any T ∈ Trees(D(v̄)) can be bounded by a linear expression. Thus, we
seek an UB for D of the form α(x̄) = q0+q1·x1+ · · ·+ qn·xn, where qi ∈ Q. The
way we search for α(x̄) is based on the use of universally quantified formulas as
in [6]. We first define a verification condition which ensures that a given α(x̄) is
a valid UB for D. Then, using a quantifier elimination procedure, we turn this
verification condition into a synthesis procedure that actually infers α(x̄).

Lemma 2. Let α(x̄)=q0+q1·x1+ · · ·+qn·xn, and define:

Ψ1 � ∀w̄1 : ϕ1 → nat(α(x̄)) ≥ nat(l) +
∑k1

j=1 nat(α(ȳ1j))

Ψ2 �
∧m

i=2 ∀w̄i : ϕi → nat(α(x̄)) ≥
∑ki

j=1 nat(α(ȳij))

If Ψ1 ∧ Ψ2 is valid, then nat(α(x̄)) is an UB for the atomic CR D.

Intuitively, Ψ1 requires that nat(α(x̄)) covers the cost of the main equation,
i.e., it covers the local cost nat(l) and the cost of the recursive calls. Similarly,
Ψ2 requires that nat(α(x̄)) covers the cost of the other equations (in this case the
local cost is 0). Our main interest is in inferring such α(x̄) rather than verifying
the correctness of a given one. Turning the verification condition into an inference
procedure can be done, using a quantifier elimination procedure, as follows:

1. we generate Ψ1 ∧ Ψ2 using a template function α(x̄) in which q0, . . . , qn are
variables, i.e., unknown;

2. we eliminate the universal quantifiers from Ψ1 ∧ Ψ2. This results in a set of
constraints Θ over the variables q0, . . . , qn; and

3. any solution of Θ (i.e., values for q0, . . . , qn that satisfy Θ) defines a valid
UB nat(α(x̄)). We simply pick a solution.

Note that if Θ is not satisfiable then there is no α(x̄) satisfying Ψ1 ∧ Ψ2. In
such case we say that the Tree-Sum method is not applicable for D. The main
subtle point in the above inference procedure is how to eliminate the universal
quantifiers, which is computationally expensive in general. However, since the
formula Ψ1∧Ψ2 have a very specific form (almost linear), in Sec. 3.3 we show how
this can be done efficiently. For now we just assume the existence of a procedure
that implements steps (2) and (3) above.
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Example 5. Consider the CR for 12, as defined in Ex. 4, and let α(e, d, s, i) = q0+
q1·e+q2·d+q3·s+q4·i. The corresponding Ψ1 and Ψ2 are:

Ψ1 � ∀w̄2 : ϕ2→nat(q0+q1·e+q2·d+q3·s+q4·i)≥nat(s)+nat(q0+q1·e+q2·d′+q3·s′+q4·i′)
Ψ2 � ∀w̄3 : ϕ3→nat(q0+q1·e+q2·d+q3·s+q4·i)≥nat(q0+q1·e+q2·d+q3·s′+q4·i′)

Solving Ψ1∧Ψ2, i.e finding values for q0, . . . , q4, gets q0=−2, q1=2, q2=−1, q3=2,
and q4=−2, which means that for+12(e, d, s, i)=nat(2·s+2·e−2·i−d−2) is an UB
for CR for 12. Then, to get an UB for CR for 1 we apply Lemma 1 which results in
for+1 (e, d, s, i)=2·nat(2·s+2·e−2·i−d−2). Similarly, generating the formulas for
for 21 and for 31 and solving them, we get the UBs for+2 (e, d, s, i)=nat(2·e−2·i)
and for+3 (e, d, s, i)=nat(2·e−2·i). Finally, we can use Obs. 1 to add them in
for+(e, d, s, i)=2·nat(2·s+2·e−2·i−d−2)+2·nat(2·e−2·i) as UB for for . Substi-
tuting this UB in the equation of add in Fig. 1, we get the expected linear
bound add+(e, d, s) = 2·nat(2·s+2·e−d−2)+2·nat(2·e) for method add. �

Now we turn to the general case in which b is an arbitrary basic cost ex-
pression, not necessarily nat(l). In such cases, in addition to nat(l), b can be
of the form loga(1 + nat(l)) or anat(l) − 1. Recall that when it is q ∈ Q+, we
have implicitly assumed it was written as nat(q). Note that in all cases b has
an embedded nat(l) expression. Let E be the CR obtained from D by replacing
b by its embedded nat(l). Then the following lemma explains how to obtain an
UB for D from that of E. Computing an UB for E is done as above.

Lemma 3. Let nat(α(x̄)) be an UB for E, and let

D+(x̄) =

⎧⎪⎨⎪⎩
nat(α(x̄)) b = nat(l)

1.5·nat(α(x̄)) b = loga(1 + nat(l))

anat(α(x̄)) − 1 b = anat(l) − 1

Then, D+(x̄) is an UB for D.

It is worth mentioning here the reason for which we use anat(l) − 1 as a basic
cost expression, instead of anat(l). This allows precisely lifting the UB of E to an
UB of D (in the last case of D+), which is not possible when using anat(l).

Example 6. Let us finish this section by trying to analyse the CR qs using the
Tree-Sum method. For qs11, we first generate:

Ψ1 � ∀w̄1 : ψ1→nat(q0+q1·f+q2·t+q3·r) ≥ nat(t−f)
Ψ2 � ∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ nat(q0+q1·f+q2·m′+q3·r)+

nat(q0+q1·m′′+q2·t+q3·r)

Solving Ψ1∧Ψ2 results in q0 = 0, q1 = −1, q2 = 1, and q3 = 0. Thus, nat(t−f) is
an UB for qs11. Using Lemma 1, we get qs+1 (f, t, r)=nat(t−f)2. Solving qs21 with
the Tree-Sum method does not yield any result because the generated formula
is not valid. This is expected since qs21 does not have a linear bound. In Sec. 3.2
we develop further methods to handle such cases. �
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3.2 The Level-Sum Method

In this section we describe our method for solving atomic CRs that exhibit a
divide and conquer like behaviour. As we have seen in Ex. 6, the Tree-Sum
method fails to handle such examples. We first explain it for the case of b =
nat(l), and then extend it to an arbitrary basic cost expression.

We start with some notation. Given an evaluation tree T∈Trees(D(v̄)), a node
in T is called primary if it is generated by the main equation. Note that the cost
of all other nodes in T is 0. The primary-depth of a primary node is the number
of primary nodes on the path from the root to that node (both included). The
primary-depth of T , denoted by pdepth(T ), is the maximum among the primary
depths of all its primary nodes. The sum of (the cost of) all primary nodes of
primary-depth i is denoted by SumLevel(T, i).

We say that nat(α(x̄)) is an UB on the primary-depth of D, if for any input v̄
and T∈Trees(D(v̄)) we have nat(α(v̄)) ≥ pdepth(T ). We say that it is an UB on
the Level-Sum of D, if for any input v̄, T∈Trees(D(v̄)), and 1 ≤ i ≤ pdepth(T )
we have nat(α(v̄)) ≥ SumLevel(T, i).

Lemma 4. Let nat(α1(x̄)) and nat(α2(x̄)) be UBs on the primary-depth and
Level-Sum of D, respectively. Then, nat(α1(x̄))·nat(α2(x̄)) is an UB for D.

The correctness of the above lemma follows from the fact that only primary
nodes can have non-zero cost. Intuitively, the above lemma handles divide and
conquer examples since, in such examples, the input is distributed between the
recursive calls. Thus, the cost of all levels is similar and can be expressed as a
linear function on the initial input. Moreover, using the primary-depth, instead
of depth, allows ignoring those levels that do not contribute to the cost. Note
that the above lemma also reduces the problem of solving D, to that of finding
nat(α1(x̄)) and nat(α2(x̄)) that bound its primary-depth and Level-Sum. We
start with bounding the primary-depth.

Lemma 5. Let α(x̄) = q0+q1·x1+ · · ·+qn·xn, and define:

Φ1 �
{∀w̄1 : ϕ1 → nat(α(x̄)) ≥ 1 if k1 = 0∧k1

j=1 ∀w̄1 : ϕ1 → nat(α(x̄)) ≥ 1 + nat(α(ȳ1j)) if k1 ≥ 1

Φ2 �
∧m

i=2

∧ki

j=1 ∀w̄i : ϕi → nat(α(x̄)) ≥ nat(α(ȳij))

If Φ1 ∧ Φ2 is valid, then nat(α(x̄)) is an UB on the primary-depth of D.

Intuitively, the primary-depth corresponds to the number of applications of
the main equation, in a sequence of recursive calls. This is reflected in Φ1 and
Φ2 as follows. In Φ1, we treat applications of the main equation. If the main
equation is non-recursive, i.e., k1 = 0, then we require that nat(α(x̄)) covers
that single application. In case it is recursive, i.e., k1 ≥ 1, then we require that
nat(α(x̄)) covers that application and further ones that might arise through each
recursive call. In Φ2, we treat applications of other equations. In such case we
require that nat(α(x̄)) covers applications of the main equation that might arise
through each recursive call. Note that each recursive call is considered separately,
since we count primary nodes in each path rather than the whole tree.
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It is worth noting that if we apply Φ1 to all equations instead of only the
main one, then nat(α(x̄)) bounds the depth of any evaluation tree rather than
the primary-depth. Similar techniques, based on inference of (linear) ranking
functions, were used in [3] to bound the depth of the evaluation trees.

Example 7. Applying Lemma 5 to bound the primary-depth of qs21 (of Ex. 4)
results in Φ2 = true and Φ1 as the conjunction of the following formulas:

∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ 1+nat(q0+q1·f+q2·m′+q3·r)
∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ 1+nat(q0+q1·m′′+q2·t+q3·r)

Both originate from the recursive equation of qs2. They respectively correspond
to the first and second calls. Solving Φ1 ∧ Φ2 results in q0 = 1, q1 = −1, q2 = 1,
q3 = 0, which induces the UB nat(t−f+1) on the primary-depth of qs21. �

Now we turn to bounding the Level-Sum of D.

Lemma 6. Let α(x̄) = q0+q1·x1+ · · ·+qn·xn, and define:

Π1 � ∀w̄1 : ϕ1 → nat(α(x̄)) ≥ nat(l)

Π2 �
∧m

i=1 ∀w̄i : ϕi → nat(α(x̄)) ≥
∑ki

j=1 nat(α(ȳij))

If Π1 ∧Π2 is valid, then nat(α(x̄)) is an UB on the Level-Sum of D.

Intuitively, Π1 requires that nat(α(x̄)) covers the local cost of the main equa-
tion at any level, and Π2 requires that it also covers the next level. Combin-
ing these conditions, and applying inductive reasoning, one can conclude that
nat(α(x̄)) is actually an UB on the Level-Sum of D.

Example 8. Consider again qs21 (of Ex. 4). Its corresponding formulas are:

Π1 � ∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ nat(t−f)
Π2 � ∀w̄2 : ψ2→nat(q0+q1·f+q2·t+q3·r) ≥ nat(q0+q1·f+q2·m′+q3·r)+

nat(q0+q1·m′′+q2·t+q3·r)
Solving Π1 ∧Π2 results in q0=0, q1=− 1, q2=1, q3=0. This induces the bound
nat(t−f) on the Level-Sum. Combining this bound with that in Ex. 7, on the
primary depth, we obtain nat(t−f)·nat(t−f+1) as an UB for qs21, which is also
an UB for qs2. Combining this, using Obs. 1, with the bound of qs1 computed in
Ex. 6, we get qs+(f, t, r)=nat(t−f)·nat(t−f+1)+nat(t−f)·nat(t−f). Substitut-
ing this UB in the equation of qsort in Fig. 1 we obtain qsort+(s, r)=nat(s−1)·
nat(s)+nat(s−1)·nat(s−1), which is the expected bound for method qsort. �

Turning the verification condition to inference procedure, both in Lemma 5
and Lemma 6, is done as we explained in Sec. 3.1. Handling the general case
in which b is an arbitrary basic cost expression, is done exactly as the case of
Tree-Sum (see Lemma 3). Note that this affects only the UB on the Level-Sum.

Finally, we note that [3] proposed a technique for solving CRs with a divide
and conquer behaviour, however, it is limited to cases in which: (1) the cost of
all levels is non-increasing; and (2) the cost expression of each equation is linear.
Note that, CR qs1, for example, does not satisfy both conditions.
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3.3 Solving the Universally Quantified Formulas

In this section we describe how we solve the universally quantified formulas of
Lemma 2, Lemma 5, and Lemma 6. Namely, starting from a template linear
function α(x̄) = q0+q1·x1+ . . .+qn·xn, we find rational values for q0, . . . , qn for
which the corresponding formula is valid. Note that our formulas are conjunc-
tions of universally quantified formulas of the following form:

∀w̄ : ϕ→ nat(l0) ≥ q + nat(l1) + . . .+ nat(ln) (1)

where ϕ defines a closed polyhedron, q ∈ {0, 1}, and each li is either a linear
function over w̄, or a template function α(x̄) = q0+q1·x1+ · · ·+qn·xn such that
x̄ ⊆ w̄ and qi �∈ w̄ (i.e., each qi is existentially quantified). Our goal is to solve
these formulas using linear programming (LP) techniques.

Consider a formula as in (1), but without the nat-expressions, i.e., of the form
∀w̄ : ϕ → l0 ≥ q+l1+ . . .+ln. It is known that there is a complete algorithm,
based on the use of LP [8], able to solve such a formula. Our aim is to transform
formulas as (1) to a nat-free as above, and then solve them using this algorithm.
Recall that nat(li) = max{li, 0}. This means that nat(li) can be eliminated by
explicitly considering the cases for li ≥ 0 and li ≤ 0 (we use li ≥ 0 and not li > 0
since in LP constraints must be non-strict). For example, eliminating nat(l0) can
be done by rewriting (1) as:

∀w̄ : ϕ ∧ l0 ≥ 0→ l0 ≥ q + nat(l1) + . . .+ nat(ln)
∧

∀w̄ : ϕ ∧ l0 ≤ 0→ 0 ≥ q + nat(l1) + . . .+ nat(ln)

This process can be applied iteratively to eliminate each nat(li). There is still
one problem that prevents us from directly applying the LP techniques: when
li is a template function, the constraints l0 ≥ 0 and l0 ≤ 0 are not linear. To
overcome this problem, assuming that eliminating the nat-expression results in a
formula ξ, we generated ξ′ be the by simply removing all non-linear constraints
from ξ. Since all non-linear constraints in ξ appear in the left-hand sides of the
implications, we observe that ξ′ → ξ. This means that we can solve ξ′, using
the LP based algorithm, instead of ξ. Although we scarify completeness, this
approach performs well in practice as demonstrated by our experiments.

3.4 Concluding Remarks

Let us conclude this section describing how all pieces, that have been described
so far, connects together to infer an UB for C.

Solving CR C. This is as done according to the following steps: (1) generating
the sparse CRs C1, . . . , Ct of C; (2) solving each Ci into an UB as described
below; and (3) combining these UBs , as in Obs. 1, into an UB for C.

Solving a sparse CR Ci. This step requires solving, using the methods described
in secs. 3.1 and 3.2, one Cij of the corresponding atomic CR which might fail
for some j and succeed for some others. We iterate over all possible j=1, . . . , pi,
and if all fail then we solve Ci using the approach of [3].

Solving an atomic CR Cij . This is done by trying the methods of secs. 3.1 and
3.2, in this order. Note that in [1] we describe some additional methods.
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Table 1. Experimental comparison with pubs [3]. The times on the right (in secs)
correspond to analysing a CR that connects all benchmarks together (see Sec. 4).

Entry O(ub) – new O(ub) – pubs Eq Tn Tp Ov
add(a,b,c) nat(a)+nat(2a−b+2c) nat(a)·nat(a+c) 11 0.15 0.11 1.34

qsort(a,b,c) nat(a)2 2nat(a)·(nat(a)+nat(b)) 28 0.61 0.27 2.26

sum(a) nat(a) 2nat(a)·nat(a) 36 0.88 0.33 2.63

dac(a,b) nat(a)2+nat(a−b) 2nat(b)·nat(a) 45 1.24 0.40 3.13
log(a,b) nat(b)+nat(a)·log(nat(b)) nat(b)·nat(a) 54 1.71 0.47 3.63
once(a,b) nat(a)+nat(b) nat(b)·nat(a) 62 1.98 0.57 3.47
twice(a,b) nat(a)+nat(b) nat(b)·nat(a) 70 2.29 0.69 3.33

full(a,b) nat(a)·nat(b) nat(a)·nat(b)2 78 2.74 0.84 3.26

eratos(a) nat(a) nat(a)2 91 3.16 0.94 3.37
peak(a) nat(a) nat(a)·log(nat(a)) 96 3.43 1.01 3.38

stack(a,b,c) nat(b)·nat(c)+nat(b)2 nat(c)·nat(b)2 107 3.95 1.19 3.32
rotate(a,b) nat(a)+nat(b)+nat(a−b) nat(a)·nat(a−b) 120 4.84 1.62 2.99

maxsum(a,b) nat(b)·log(nat(b)) nat(b)2 138 7.67 2.12 3.62
mayor(a) nat(a)·log(nat(a)) nat(a)·log(nat(a)) 163 13.21 3.20 4.13

msort(a,b,c,d) nat(d−c)·log(nat(d−c)) nat(d−c)2 173 13.72 3.81 3.60
mergexp(a) nat(a) nat(a)·log(nat(a)) 187 14.65 4.02 3.65
enque(a,b,c,d) nat(c+d)+nat(a+c) nat(c+d)·nat(a+c) 199 16.34 4.68 3.49
deque(a,b,c) nat(a)+nat(c) nat(c)·nat(a) 208 17.40 4.91 3.55
infinity(a) nat(a) Failed: No RF 219 18.38 5.07 3.63

4 Implementation and Experiments

We have implemented our techniques as an extension of pubs [3], the solver used
in Costa [4] for solving CRs generated from Java programs. This allows us to
evaluate our approach directly on Java programs. We evaluate accuracy and
scalability on a set of benchmarks that we collected from related literature, or
were written to demonstrate some powerful features of our approach. Although
the programs are not large, they exhibit challenging behaviour for cost analysis.
The benchmarks and the implementation are available online [1].

In Table 1 we evaluate the accuracy of our approach by comparing it to
pubs [3]. We applied both approaches on each benchmark using a cost model that
measure memory consumption or visits to an specific program point (depending
on what was more interesting for each benchmark). Each line includes (from left
to right) the entry method and its parameters, the UB inferred by our approach
and the UB inferred by pubs. For readability, bounds are given in asymptotic
form [2]. In all examples our approach obtains UBs that are asymptotically more
accurate than those obtained by pubs. Moreover, our UBs approach obtains
precise asymptotic UBs , i.e., they exactly reflect the actual cost.

To analyse scalability, we have merged all our benchmarks into a single pro-
gram as follows: the benchmark in row i was modified to include a call (in one
of its loops) to the program at row i−1. This means that the i-th benchmark
executes at least i nested loops. The runtime (in seconds) of analysing each
such (modifed) benchmark is depicted in columns Tn (current approach) and
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Tp (pubs) of Table 1. Columns Eq and Ov are, respectively, the total number
of equations and the overhead (Tn/Tp) introduced by our approach.

We have also compared our approach to [6]. For all benchmarks of Table 1, it
did not obtain an UB within the one minute time limit. This is expected since
it is based on a general procedure for real quantifier elimination.

5 Conclusions and Related Work

In this paper we have developed a novel approach for solving CRs into precise
closed-form UBs . It is based on the idea of dividing the basic cost expressions
of a given CR C into two parts: (a) those for which we employ precise reasoning
to track their behaviour along the execution; and (b) those for which we simply
use their worst case behavior. Then, we show how such different bounds can be
combined into an UB for C. For part (b) we rely on existing techniques [4] to
maximise cost expressions. For part (a) we first model the contribution of the
corresponding cost expressions using universally quantified formulas, and then, a
precise UB on their costs can be obtain by eliminating the universal quantifiers.
Note that while quantifier elimination is a very expensive procedure in general,
in our case, since the formulas are of a very specific form, they can be solved
efficiently. Our method has been implemented within Costa [4], and preliminary
experiments demonstrate its superiority on previous methods for solving CRs .

Related work. The most related works to ours are [4,6] which aim at solving CRs
into closed-form UBs . In Sec. 4 we have seen that, in practice, our approach is
more precise than [4] and more efficient than [6]. Detailed discussion on simi-
larities and differences is provided along Sec. 3. Note that although the method
described so far is usually more precise than [3], as we have seen in Sec. 4, there
are some examples for which the use of the last case of Lemma 3 causes a loss
of precision. E.g., replacing nat(s) by 2nat(s) in for12 of Ex. 4, the approach
of [3] obtains nat(e−i)·2nat(s+e−1) while we obtain 2nat(2(s+e−i−1)−d). In [5], the
techniques of [4] were improved to handle cases in which the cost can be mod-
eled with arithmetic or geometric sequences. This approach is complementary to
ours, in the sense that it cannot handle our benchmarks and we cannot handle
some of their examples (when basic cost expressions require non-linear bounds).

There are some works that aim at inferring loop bounds on the visits to a
given program point [14,19]. They are mostly related to our Lemma 5. These
approaches are not limited to linear bounds, however, they cannot handle re-
cursive programs with more than one recursive call. Our techniques can benefit
from these approaches when each cost equation has at most one recursive call.
Cost analysis techniques that are based on amortised analysis [15,16], could, in
principle, handle some of our examples when the bounds are polynomial, and the
data are over the non-negative integers. Solving CRs using template functions
and real quantifier elimination has been considered before in [7]. Finally, several
cost analysis frameworks [9,11] that are based on generating CRs can benefit
from our advances in solving CRs .
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Abstract. This paper presents a new technique for refining the complex
control structure of loops that occur in imperative programs. We first
introduce a new way of describing program execution patterns – (+, ·)-
path expressions, which is a subset of conventional path expressions with
the operators ∨ and ∗ eliminated. The programs induced by (+, ·)-path
expressions have no path interleaving or skipping-over inner loops, which
are the two main issues that cause impreciseness in program analysis. Our
refinement process starts from a conventional path expression E obtained
from the control flow graph, and aims to calculate a finite set of (+, ·)-
path expressions {e1, ..., en} such that the language generated by path
expression E is equivalent to the union of the languages generated by each
(+, ·)-path expressions ei. In theory, a conventional path expression can
potentially generate an infinite set of (+, ·)-path expressions. To remedy
that, we use abstract interpretation techniques to prune the infeasible
paths. In practice, the refinement process usually converges very quickly.

We have applied our method to symbolic computation of average case
bound for running time of programs. To our best knowledge it is the first
tool that automatically computes average case bounds. Experiments on
a set of complex loop benchmarks clearly demonstrate the utility of our
tool.

1 Introduction

1.1 Motivation

Automatic analysis of source code has become increasingly common. Formal
techniques, such as static analysis using abstract interpretation, are used for
verifying termination property and computing running time bounds. Several
existing techniques [6,7,17,18,15,12,14] can compute worst case bounds. However,
the computation of average case bounds is largely left open.

One of the factors that makes a program difficult to analyze for average case
bound is that in different executions of a nested loop the control can skip over
different inner loops; in addition different “execution patterns” can interleave
with each other to create complex ones.
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This paper is aimed at developing control flow refinement techniques for au-
tomatically computing average case running time bound computation. Given a
program P and a joint probability distribution on the program input space, our
goal is to compute a symbolic average case bound, i.e., the average running time
of the program on the input space. One important question to answer in average
case performance analysis is how to reasonably partition the input space into
different cases such that the program, roughly, has the “same” behavior within
each partition. An important observation is that when there are no interleaving
of branches or skipping-over of inner loops, existing worst case bound generators
can usually get a very precise bound. Thus we assume that for simple loops the
average case performance equals the worst case performance. For complex loops,
we can divide the input space using different execution patterns such that there
is no interleaving and skipping-over.

Conventional path expressions [26] induced by the control flow graph of a
program contain operators ∨ and ∗. Consider the example program in Figure 1.

assume (x > 0 ∧ x < n)

while (x > 0 ∧ x < n)

if (m % 2 == 0) x := x - 1;

else x := x + 1;

Fig. 1. Example 1: Interleaving

assume (x > 0 ∧ n > 0 ∧ m > 0)

while (x > n)

while (x > m ) m := m + 1;

x := x - 1;

Fig. 2. Example 2: Skipping-over

Let ρ1 be the statement in the ‘if’ branch, ρ2 be that in the ‘else’ branch; then
the conventional path expression for this loop is (ρ1∨ρ2)

+. If we could partition
the input space according to the program behavior in different parts of the input
space (or different execution patterns), then we will get (ρ1)

+ and (ρ2)
+. Notice

that in order to remove the possibility of interleaving, we use two expressions
and without the operator ∨. And if we could compute the weakest precondition
for each execution pattern, i.e., m%2 = 0 and m%2 �= 0, respectively, existing
worst case bound techniques can generate precise bounds for both cases. Thus
we get the following bound.

B =

{
x, m%2 = 0

n− x, m%2 �= 0

Given an input (joint) probability distribution, we will be able to compute an
average case bound.

Similarly let us look at Example 2 in Figure 2. Let ρ1 � m := m + 1, ρ2 �
x := x− 1, conventional path expression will be (ρ∗1ρ2)

∗. If we could express the
execution patterns without the ∗ operator, i.e., ε, ρ+2 , and ρ+1 ρ+2 , and assuming
that we could compute the weakest preconditions, i.e., x ≤ n, x > n ∧ x < m,
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and x > n ∧ x > m, respectively, existing techniques [5] can generate precise
bounds for all the three cases below. Thus we get the following bound.

B =

⎧⎪⎨⎪⎩
0 x ≤ n

x− n x > n ∧ x < m

2x−m− n x > n ∧ x > m

From the above two examples, we see that

1. the path expressions without operators ∨ and ∗ induce loops without inter-
leaving or skipping over, and such loops are easier to analyze

2. if we can also compute weakest precondition for each (+, ·)-path expressions,
we can then utilize the techniques for computing worst case performance to
compute average case performance.

Formally, our refinement process starts from a conventional path expression
E obtained from the control flow graph, and aims to calculate a finite set of
(+, ·)-path expressions {e1, ..., en} such that the language generated by the path
expression E is equivalent to the union of the languages generated by each of the
(+, ·)-path expressions ei.

In theory, a conventional path expression can potentially generate an infinite
set of (+, ·)-path expressions. To remedy that, we use abstract interpretation
techniques to prune the infeasible paths. In practice, the refinement process
usually converges very quickly. We have applied our method to symbolic compu-
tation of “partitions” for average case bound. Experiments on a set of complex
loop benchmarks clearly demonstrate the utility of our method.

1.2 Related Work

Control Flow Refinement. The differences between our approach and Gul-
wani et. al.’s and Balakrishnan et. al.’s control flow refinement approach [6,1]
are two-fold. First, their approaches aim at attacking the problem of interleav-
ing for loops of multiple paths, but leaves the issue of skipping-over with nested
loops open. Second, our refinement approach generates more abstract execu-
tion patterns, which are expressive enough for refinement purpose yet converge
easily. Consider the following program snippet for instance, where ∗ denotes a
nondeterministic condition.

while (∗){ if (∗)S1 else S2}
Gulwani et. al.’s path expression will expand as follows:

(S1 ∨ S2)
∗ →

{ε, S+
1 , S+

2 , S+
1 S2(S1 ∨ S2)

∗, S+
2 S1(S1 ∨ S2)

∗} →
{ε, S+

1 , S+
2 , S+

1 S2, S
+
1 S2S

+
1 , S+

1 S2S
+
2 , S+

1 S2S
+
1 S2(S1 ∨ S2)

∗,

S+
1 S2S

+
2 S1(S1 ∨ S2)

∗, S+
2 S1, S

+
2 S1S

+
1 , S+

2 S1S
+
2 , S+

2 S1S
+
1 S2(S1 ∨ S2)

∗,

S+
2 S1S

+
2 S1(S1 ∨ S2)

∗} →
. . .
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As one can see, the expansion may never end. However, using our method, there
are only 6 (+, ·)-path expressions we can possibly generate, i.e.,

{ε, S+
1 , S+

2 , (S+
1 S+

2 )+, (S+
2 S+

1 )
+, ((S+

1 S+
2 )+S+

1 )+, ((S+
2 S+

1 )+S+
2 )+}

Worst Case Performance Analysis. Symbolic Bound Computation using
Recurrence Relation Solving: Worst case computational complexity [10] of a
program or an algorithm is calculated by expressing the complexity function
as a system of recurrence relations; combinatorial techniques are then used to
solve these relations. Automatic techniques for computing closed-form solutions
of recurrence relations are based on rewriting rules [12,14], solving difference
equations [15], or symbolic algebra manipulation systems [19].

WCET Analysis: Techniques for worst case execution time (WCET) analysis
[17,18] are dependent on the low-level details of the underlying machine; as has
been frequently observed, the worst case only occurs on a few pathological inputs.
In most practical situation execution time is usually much less.

SPEED: SPEED [4,7,6,5,8] provides a framework for (symbolically) comput-
ing the worst case (running time) bounds for structured programs. The key idea
is to instrument a program with counters whose values (after the program termi-
nates) encode the bound. Invariant generation techniques are used for statically
computing these values symbolically. Gulwani et. al. [6] use control-flow refine-
ment and progress invariants, to compute precise worst case bounds for programs
with nested loops. We have already compared our approach with their control
flow refinement approach above.

Average Case Performance Analysis. Wegbreit [16] first proposed using
static analysis for determining the average case performance of a program. He
provided an inductive approach to verify average case performance. In this ap-
proach, one has to manually annotate the program with inductive assertions.
Hence, it is difficult to fully automate this approach.

2 Path Expressions and Abstract Interpretation

Programs are represented by their control flow graphs (CFG). We assume that the
CFG is built from a structured imperative program (without goto-statements).
Specifically, each loop is assumed to be reducible, consisting of a single loop head,
which dominates all the nodes inside the loop. Edges from the loop nodes back to
the head are called back edges. Edges from nodes inside a loop to a node outside
are called exit edges. We assume that all exit edges from a loop have a single tar-
get. For simplicity of presentation, we consider loops that do not contain function
calls. Non-recursive function calls can be handled using standard techniques such
as inlining or loop summarization. We start by representations of paths in a CFG
using restricted regular expressions.



338 H. Yi Chen, S. Mukhopadhyay, and Z. Lu

2.1 Path Expressions

Definition 1 (Regular Expression). Let Σ be a finite alphabet, a regular
expression over Σ is any expression built by applying the following rules.

1. ε and ∅ are regular expressions;
2. ∀α ∈ Σ, α is a regular expression;
3. If R1 and R2 are regular expressions, then (R1 ∨R2), (R1 ·R2), (R1)

+, and
(R1)

∗ are also regular expressions.

Definition 2 (Path Expression). Let Σ be a finite set of transitions, path
expressions are a subset of regular expressions over the alphabet Σ such that

1. ε is a path expression;
2. ∀α ∈ Σ, α is a path expression;
3. If R1 and R2 are path expressions, then (R1 ∨ R2), (R1 · R2), (R1)

+, and
(R1)

∗ are also path expressions.

Definition 3 ((+, ·)-Path Expression). Let Σ be a finite set of transitions,
(+, ·)-path expressions are a subset of path expressions over the alphabet Σ such
that

1. ε is a (+, ·)-path expression;
2. ∀α ∈ Σ, α is a (·,+)-path expression;
3. If R1 and R2 are (+, ·)-path expressions, then (R1 · R2) is a (+, ·)-path ex-

pression;
4. If R is (+, ·)-path expressions, then R+ is a (+, ·)-path expression.

It is conventional to abbreviate R1 ·R2 as R1R2.

2.2 Predicate Transformers

Let S represent the set of all possible states of a program P . The semantics of
a transition τ is specified by means of its concrete postcondition, which maps a
set S ⊆ S of states to its concrete postcondition S′ = postτ (S) representing the
set consisting of all states that are reachable starting from some state s ∈ S and
executing the transition τ .

Given a first order predicate ψ on program states, the set of states satisfying
ψ is denoted [[ψ]].

Definition 4 (predicate entailment). Given two first order predicates ϕ and
ψ over the program states, we say that ϕ entails ψ, denoted by ϕ |= ψ,
if [[ϕ]] ⊆ [[ψ]]

Definition 5 (Precondition). Let S be the set of program states, ψ be a first
order predicate over the program states, τ be a transition, then the first order
predicate ψ′ = preτψ denotes the pre-condition of ψ with respect to τ defined as

[[ψ′]]={s ∈ S | ∃s′∈ [[ψ]] such that s′ is a state obtained after executing τ from s}



Control Flow Refinement and Symbolic Computation 339

Definition 6 (Weakest Precondition). Let S be the set of program states,
ψ be a first order predicate over the program states, τ be a transition, then the
predicate ψ′ = ˜preτψ denotes the weakest pre-condition of ψ with respect to τ
defined as

[[ψ′]] = {s ∈ S | ∀s′ such that s′ is the state after executing τ on s, s′ ∈ [[ψ]]}

Definition 7 (Strongest Postcondition). Let S be the set of program states,
ψ be a first order predicate over the program states, τ be a transition, then
the predicate ψ′ = postτψ denotes the post-condition of ψ with respect to τ
defined as

[[ψ′]] = {s ∈ S | ∃s′ ∈ [[ψ]] such that s is the state after executing τ on s′}

3 Methodology Overview

We start with a few definitions.

Definition 8. A (+, ·) algebra A over a finite nonempty set of generators G is
the smallest set closed under the following rules:

1. ε ∈ A
2. for each a ∈ G, a ∈ A
3. if s1, s2 ∈ A, then (s1 · s2) ∈ A
4. if s ∈ A then s+ ∈ A

Definition 9. A (+, ·) quotient algebra A/∼ is the congruence closure of a (+, ·)
algebra A under the following congruences where α, s ∈ A:

1. s++ ∼ s+

2. s · s+ ∼ s+ · s ∼ s+

3. (α · s)+ · s ∼ (α · s)+
4. s · (α · s)+ ∼ (s · α)+s

Example 1: G = {a},A/∼ = {ε, a+} ⇒ finite
Example 2: G = {a, b},A/∼ = {ε, a+, b+, (a+b+)+, (b+a+)+, ((a+b+)+a+)+,
((b+a+)+b+)+} ⇒ finite
Example 3: G = {a, b, c},A/∼ = {ε, a+, b+, c+, (a+b+)+, (a+c+)+, (b+a+)+,
(b+c+)+, (c+a+)+, (c+b+)+, . . .} ⇒ infinite

Given a transition system corresponding to a program P , we consider the set
of generators G to be the set of labels on the transitions. Let A/ ∼ be the (+, ·)-
quotient algebra generated by G. We say that P is the program corresponding
to A/ ∼. Given a generator a corresponding to a transition with guard given by
the constraint ga (over the variables −→x ) and update given by the constraint ua

(over the variables −→x and −→x ′), we define the transition constraint corresponding
to a to be φa = ga ∧ ua.

For a ∈ G, [[a]] = φa is the transition constraint corresponding to a, where the

only occurring variables are −→x and
−→
x′ .
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For a constraint φ as a pre condition, the strongest post condition with re-
spect to a, posta(φ) = ∃−−→x ′φ ∧ [[a]] where the existential quantifier is over all
variables but x′ (we use this convention whenever we use an existential quan-
tifier). Similarly, for a constraint φ as a post condition, the precondition and
weakest precondition with respect to a are defined as prea(φ) = ∃−−→x φ∧ [[a]] and
˜prea(φ) = ¬prea(¬φ) respectively. We now extend the definitions of weakest
precondition and strongest postcondition to (+, ·)-quotient algebras.

Definition 10 (Weakest Precondition over a (+, ·)-quotient algebra).
˜preα(φ) for α ∈ A/∼ and a predicate φ is defined by induction as follows:

1. if α = ε, ˜preε(φ) = φ

2. if α = a, where a ∈ G, ˜prea(φ) is the weakest pre condition for the transition
a with φ as the post condition

3. if α = (s1s2), where s1, s2 ∈ A/∼, ˜pre(s1s2)(φ) = ˜pres1( ˜pres2(φ))

4. if α = s+ for s ∈ A/∼, ˜pres+(φ) = μX. ˜pres(X)∨ ˜pres(φ) where μX denotes
the least fixpoint of the functional F (X) = ˜pres(X) ∨ ˜pres(φ)

Definition 11 (Strongest Postcondition over a (+, ·)-quotient algebra).
postα(φ) for α ∈ A/∼ is defined by induction as follows:

1. if α = ε, postε(φ) = φ
2. if α = a, where a ∈ G, posta(φ) is the strongest post condition for the

transition a with φ as the pre condition

3. if α = (s1s2), where s1, s2 ∈ A/∼ post(s1s2)(φ) = posts2(posts1(φ))
4. if α = s+ for s ∈ A/∼, posts+(φ) = μX.posts(X) ∨ posts(φ) where μX

denotes the least fixpoint of the functional F (X) = posts(X) ∨ posts(φ)

Definition 12. For a constraint φ and a quotient algebra A/∼, postA/∼(φ) is
the set of logical formulas postα(φ) such that postα(φ) � False for α ∈ A/∼.

Definition 13 (Symbolic Bound over a (+, ·)-quotient algebra). Given an
element α of a quotient algebra A/∼, we define the symbolic bound as follows:

1. if α = ε, bound(ε) = 0
2. if α = a for a ∈ G, bound(a) = 1

3. if α = (s1s2) for s1, s2 ∈ A/∼, bound(s1s2) = bound(s1) + bound(s2)
4. if α = s+ for s ∈ A/∼, bound(s

+) = worst case bound computed by standard
bound computation tool [7] for the loop with body s

Let P be a program with input variables x1, . . . xm with variable xi ranging over
domain Di, we define the input space I of P as Πm

i=1Di

Definition 14 (Basis of a (+, ·)-quotient algebra). Given a quotient algebra
A/∼, we define its basis as the largest subset max(A/∼) of A/∼, such that for
each element α ∈ max(A/∼), [[ ˜preα(φ)]] for any post condition φ is a subset of
the input space I of the program corresponding to A
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Definition 15 (Attributed Algebra). Given the basis max(A/∼) of a quo-
tient algebra, we define an attributed algebra maxAtt(A/∼) corresponding to
max(A/∼) to be the pair 〈max(A/∼),M〉 where M is a mapping that maps
each α ∈ maxA/∼ to the pair 〈 ˜preα, bound(α)〉.

For maxAtt(A/∼) = 〈max(A/∼),M〉, α ∈ max(A/∼), and M(α) = 〈 ˜preα,
bound(α)〉, [[ ˜preα(φ)]] for any φ is a subset of the input space of the program cor-
responding to A. In particular, given the input space true, [[ ˜preα(postα(true))]]
is a subset of the input space of the program corresponding to A.

Given the basis max(A/∼) corresponding to a program, the input space true
is partitioned by ˜preα(postα(true)) for each α ∈ max(A/∼)

Definition 16 (Average Case Bound). Given an attributed algebra
maxAtt(A/∼) = 〈max(A/∼),M〉 and an input joint probability distribution Pr
on the input space of a program, we define the average case bound as follows:

BAVG =
∑

α∈max(A/∼)

bound(α)× Pr( ˜preα(postα(true)))

where for α ∈ max(A/∼), M(α) = 〈 ˜preα, bound(α)〉

4 Algorithm

We explain the algorithm for control flow refinement with an example. The
main procedure is given in Figure 4. We will consider a more complex example
in Figure 3a. This program takes 4 integer variables x, y,m, n. If the initial value
x ≤ 0, the outer loop is not executed. If x > 0∧n ≤ 1, then outer loop is entered
but not the inner loop. If x > 0 ∧ n > 1 ∧m < 1, then the inner loop is entered
every iteration of the outer loop, and the inner loop always takes the if branch.
If x > 0 ∧ n > 1 ∧m ≥ 1 ∧ x ≤ n, then the inner loop is entered on the first
iteration of the outer loop, the inner loop first takes the else branch a few times
until m = 0, then the inner loop takes if branch until y ≥ n, after that x gets
decreased below 0 and the outer loop terminates. If x > 0∧n > 1∧m ≥ 1∧x > n,
at the first iteration of the outer loop, the inner loop first takes the else branch
till m = 0 then takes the if branch till y ≥ n, after that x gets decreased but
still greater than 0. At the following iterations of the outer loop, inner loop is
still entered but only takes the if branch until y is big enough and x ≤ 0.

To explain the working of the algorithm, we need a few definitions.

Definition 17 (Set concatenation). Let S1, S2 be two sets of regular expres-
sions. We define S1 · S2 = {(R1 ·R2) | R1 ∈ S1 and R2 ∈ S2}.

Definition 18 (Guard).
Given a function Guard that assigns a constraint to each element of an

alphabet Σ we define the function Gd inductively.

– Gd(ε) � ".
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(a) Program Code (b) Control Flow Graph

Fig. 3. Example

– If R ∈ Σ then Gd(R) � Guard(R).
– If R = (R1 ·R2) then Gd(R) � Gd(R1).
– If R = (R1)

+ then Gd(R) � Gd(R1).

From the CFG in Fig. 3(b) we get the following conventional path expression.

R = ρ1 ∨ (ρ2(ρ4(ρ5 ∨ ρ6))
∗ρ3ρ7)

+

Notice that there is more than one way to generate CFG’s and path expressions.
Any semantics preserving CFG and path expressions is acceptable for our pur-
pose. Now we execute our algorithm over this input R. The main procedure is
Computing Path (see Figure 4). It initiates by computing a conventional path
expression with the same semantics as the input program. It then calls Proce-
dure Closure (Figure 6) and Procedure Gen (Figure 5) to calculate a closure for
the breakdown of the expression. Procedure Gen computes the generator set for
Procedure Closure to compute a closure upon. It breaks down regular expres-
sions by removing “or” and expressing it as different elements in the generator
set. Procedure Closure gradually adds more possible compositions of previously
calculated expressions. It recursively builds a set of all possible expressions while
considering the constraints imposed by the program. Procedure SAT (Figure 7)
helps Procedure Closure to determine when two expressions can be composed.
Procedure Reduce (Figure 8) eliminates redundant expressions while we gen-
erate them. Procedure ReduceTermination (Figure 9) removes expressions that
do not belong to the basis as we defined in Def. 14. Procedure Gen and Pro-
cedure Closure help to expand the set by adding more elements to the genera-
tor set or composing existing expressions to from new expression, while Proce-
dure SAT, Reduce, and ReduceTermination help to prune the set by eliminating
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infeasible expressions. These procedures work together help us reach a closure.
The correctness of the above procedures is given by the following results

Lemma 1. If procedure Computing Path (Figure 4) terminates, it returns a set
of (+, ·) expressions

Theorem 1. Given a program P with input space I, let S be the set of (+, ·)
expressions returned by the procedure Computing Path (Figure 4) when it termi-
nates. Then

1. S is the basis for the quotient algebra A/ ∼ corresponding to P
2. For α, β ∈ S, [[ ˜preα(postα(true))]] ∩ [[ ˜preβ(postα(true))]] = ∅ and⋃

α∈S [[ ˜preα(postα(true))]] = I

procedure Computing Path
input: a program P
output: a set of path expressions S
begin

compute a regular expression R from the
Control Flow Graph of P ;
Return Closure(Gen(R));

end.

Fig. 4. Procedure Computing Path

procedure Gen
input: regular expression R
output: set of path expressions
begin

if R = ∅ return ∅
if R = ε return {ε}
if R ∈ Σ return {R}
if R = (R1 ∨ R2) return Gen(R1) ∪Gen(R2)
if R = (R1 · R2) return Gen(R1) ·Gen(R2)
if R = (R1)

∗ return Closure(Gen(R1)) ∪ {ε}
if R = (R1)

+ return Closure(Gen(R1))
end.

Fig. 5. Procedure Gen

procedure Closure
input: set of path expressions S
output: set of path expressions
begin

S′ ← S
do
S′′ ← ∅
for each R′ ∈ S′ and R ∈ S
if SAT(R′, R)
if R = R′

S′′ ← S′′ ∪ {(R)+}
S ← S \ {R}

else
S′′ ← S′′ ∪ {((R′)+ · (R)+)}

S′′ ← Reduce(S′′, S)
S ← S ∪ S′′

S′ ← S′′

while S′ not empty
ReduceTermination(S)
return S

end.

Fig. 6. Procedure Closure

procedure SAT
input: path expressions R1, R2

output: bool
begin

Return postR1(Gd(R1)) |= Gd(R2)
end.

Fig. 7. Procedure SAT
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procedure Reduce
input: two sets of regular expressions S1, S2

output: set of regular expressions
begin

T ← ∅
S′
2 ← ∅

for each R ∈ S2

compute the minimal DFA for R and store
it in A

add A to S′
2

for each R ∈ S1

compute the minimal DFA for R and store
it in A

if A /∈ S′
2 then add R to T

return T
end.

Fig. 8. Procedure Reduce

procedure ReduceTermination
input: sets of regular expressions S
output: set of regular expressions
begin

return S without the expressions for which the
last edge is not an “ending” edge
end.

Fig. 9. Procedure ReduceTermination

After executing the algorithm, we generate a set of 5 (+, ·)-path expressions.
They are

ρ1

ρ2(ρ4ρ6)
+(ρ4ρ5)

+ρ3ρ7

(ρ2(ρ4ρ5)
+ρ3ρ7)

+

(ρ2ρ3ρ7)
+

(ρ2(ρ4ρ6)
+(ρ4ρ5)

+ρ3ρ7)
+(ρ2(ρ4ρ5)

+ρ3ρ7)
+

A closer examination tell us, the 5 expressions match our intuition of different
execution patterns when we first analyze the program. These 5 expressions will
become 5 cases in our bound computation. Assuming precondition true, we
generate the post conditions for each of the expressions, then we go backwards
to generate the weakest precondition. Post conditions and preconditions are
computed using the approach outlined in Section 4. By feeding each expression
along with the corresponding weakest precondition to a standard worst case
bound tool [7], we get a bound in the following:

B =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 x ≤ 0

x x > 0 ∧ n ≤ 1

x log(n1/n) x > 0 ∧ n > 1 ∧m < 1

m + logn x > 0 ∧ n > 1 ∧m ≥ 1 ∧ x ≤ n

m + x
n logn x > 0 ∧ n > 1 ∧m ≥ 1 ∧ x > n

Given an joint probability distribution over the input space, we will be able to
compute an average case bound.

5 Experimental Results

In this section we apply our control flow refinement approach to average case
bound computation. There are several existing techniques that can compute
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Table 1. Experiment results 1

Example LOC case # BAV G

dma example spu.c 252 3 B =

⎧⎪⎨
⎪⎩

1, !(tag = MFC TAG INV ALID)

num chunks, i < num chunks ∧ control block.out addr > 0

1, control block.num elements per spe = 0

spe-sum.c 168 20 B =

{
1, 5 expressions

nbufs, 15 expressions

cpaudio.c 277 2 B =

{
n frames, (i < n frames − 1) ∧ size&15 = 1

1, (i < n frames − 1) ∧ size > 0

normalize.c 692 4 B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (size&15 = 1) ∧ size < 32

1, size > 32 ∧ src > 0

n frames − 2, (size&15 = 1) ∧ size < 32∧
(foralln frames, n frames > size × (214))∧
i < n frames − 2)

n frames − 2, (foralln frames, n frames > size × (214))∧
i < n frames − 2) ∧ size > 32

simple dma spu.c 83 4 B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, tagid = MFC TAG INV ALID

1, tagid �= MFC TAG INV ALID

DATA BUFFER ENTRIES − 2, DATA BUFFER ENTRIES > 2∧
error = 0∧
data[i] = data[i − 1] + data[i − 2]

DATA BUFFER ENTRIES − 2, DATA BUFFER ENTRIES > 2∧
error = 0∧
data[i]! = data[i − 1] + data[i − 2]

atomic add return test.c 111 3 B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, argp > 1

RETURN COUNT − argp, (argp < RETURN COUNT ) ∧ argp > 0

(RETURN COUNT − argp)× (argp < RETURN COUNT ) ∧ argp > 0∧
RETURN SZ, RETURN SZ > 0

mutex spu example.c 112 5 B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, LOOP COUNT = 0 ∧ mutex > 0

LOOP COUNT, spu argv.mutex ea > 0 ∧ i < LOOP COUNT∧
mutex unlock(mutex) > 1∧
(mutex trylock(mutex) = 0

LOOP COUNT, spu argv.mutex ea > 0 ∧ i < LOOP COUNT∧
mutex unlock(mutex) > 1∧
(mutex trylock(mutex) = 1

LOOP COUNT, spuargv.mutexea > 0 ∧ i < LOOP COUNT∧
(mutextrylock(mutex) = 0

LOOP COUNT, spuargv.mutexea > 0 ∧ i < LOOP COUNT∧
(mutextrylock(mutex) = 1

particle.c 330 4 B =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, cnt ≤ 0 ∧ time ≥ END OF TIME

END OF TIME/dt, cnt > 0 ∧ time ≥ END OF TIME

END OF TIME/dt, cnt ≤ 0 ∧ time < END OF TIME

(ctx.particles/PARTICLES PER BLOCK)×
(END OF TIME/dt), cnt > 0 ∧ time < END OF TIME

race condition1.c 78 1 B = 1 (NO LOOPS)

ray.c 524 ∞ non-terminating

worst case complexity or worst case bound for programs [4] [7] [9] [17] [3]. In our
application we use the approach of [4], which develops a counter instrumentation
which adds new counter variables at the back edges of loops and computes
invariants on each counter variable. A worst case bound is then synthesized in
terms of these invariants.

To symbolically compute the average case bound, we take the following two
steps:

1. Run the control flow refinement method of Section 4, and return a finite set
of (+, ·)-path expressions, each accompanied with its precondition;

2. Run any method of computing worst case bound on each of the (+, ·)-path
expressions with its preconditions.

Assume that we are provided with a (joint) probability distribution on the
set of initial values of the program variables, we are able to compute the average
case bound for the program. We provide two sets of experimental results. We
first run our method on several benchmarks of C programs [11]. The results are
presented in Table 1. Column “Example file” gives the example names; column
“LOC” shows the number of lines of code of the corresponding example; column
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Table 2. Experiment results 2

Example BWORST case # BAV G
assume(0 <= id < maxId);

int tmp := id+1;

while(tmp != id)

if (tmp <= maxId)

tmp := tmp+1;

else

tmp := 0;

maxId + 1 2 B =

{
maxId + 1 id �= 0

maxId + 1 id = 0

assume(0 <= n && 0 <= m && 0 <= N);

i := 0;

while(i < n)

j := 0;

while(j < m)

j := j+1;

k := i;

while(k < N)

k := K+1;

i := k;

i := i+1;

n + (m × n) + N 5 B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 n < 1

n n ≥ 1 ∧ m < 1

n × m n ≥ 1 ∧ m ≥ 1 ∧ N < 1

N + m n ≥ 1 ∧ m ≥ 1 ∧ N ≥ 1 ∧ N ≥ n − 1

N + m+ n ≥ 1 ∧ m ≥ 1 ∧ N ≥ 1 ∧ N < n − 1

(n − N) × (m − 1)

assume (n > 0 && m > 0);

v1 := n; v2 := 0;

while (v1 > 0)

if (v2 < m)

v2++; v1--;

else

v2 := 0;

n
m

+ n 2 B =

{
n v1 ≤ m − v2
n
m

+ n v1 > m − v2

assume (0 < m < n);

i := 0; j := 0;

while (i < n)

if (j < m)

j++;

else

j :=0; i++;

n × m 1 B =
{
m × n true

assume (0 < m < n);

i := n;

while (i > 0)

if (i < m)

i--;

else

i := i - m;

n
m

+ m 1 B =
{

n
m

+ m true

assume (0 < m < n);

i := m;

while (0 < i < n)

if (dir = fwd)

i++;

else

i--;

max(m,n − m) 2 B =

{
n − m dir = fwd

m dir �= fwd

“#” indicates how many (+, ·)-path expressions we obtain when we calculate
the bound; column “Bound” gives the end result of our computation. Notice
that except for the last example where the program is not terminating, we are
able to find finitely many (+, ·)-path expressions for all the rest examples. The
second set of benchmarks is taken from literature [20,1,7,22,25,23,21]. The results
are presented in Table 2. The column titled BWORST shows the worst case
complexity for these examples. It can be seen that for all the examples in Table
2, the average case bound is smaller than or equal to the worst one (assuming
an arbitrary joint probability distribution).

6 Conclusions

Our first contribution is that we introduced a new concept, (+, ·)-path expres-
sions, to describe the behavior of execution patterns. Programs induced by (+, ·)-
path expressions have no branch interleaving or inner loop skipping-over. Two
main factors that cause impreciseness in control flow analysis.

The second contribution of this paper is that we developed a practical algo-
rithm that takes a conventional path expression and generates a set of equiv-
alent (+, ·)-path expressions. In theory, the conversion may lead to an infinite
set. We leverage the abstract interpretation approach to calculate the weakest
precondition and post condition, thus by checking satisfiability, we can prune
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the infeasible expressions while we generate them. Therefore the algorithm is
more likely to converge.

Lastly, we implemented the first automatic prototype that computes average
case bounds for C programs. The experiments are clear indication of the utility
of our tool. The results are inline with our claim that for most programs in
practice we only need finitely many (+, ·)-path expressions to express different
execution patterns and the computation converges very quickly. Also from Table
2, it can be seen that for reasonable joint probability distributions, the average
case bound can be less than the worst case one (see the second, third, and the
sixth examples in Table 2).
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Abstract. By following a rely-guarantee style of reasoning, we present
a novel termination analysis for concurrent programs that, in order to
prove termination of a considered loop, makes the assumption that the
“shared-data that is involved in the termination proof of the loop is mod-
ified a finite number of times”. In a subsequent step, it proves that this
assumption holds in all code whose execution might interleave with such
loop. At the core of the analysis, we use a may-happen-in-parallel anal-
ysis to restrict the set of program points whose execution can interleave
with the considered loop. Interestingly, the same kind of reasoning can
be applied to infer upper bounds on the number of iterations of loops
with concurrent interleavings. To the best of our knowledge, this is the
first method to automatically bound the cost of such kind of loops.

1 Introduction

We develop new techniques for cost and termination analyses of concurrent ob-
jects. The actor -based paradigm [1] on which concurrent objects are based has
evolved as a powerful computational model for defining distributed and concur-
rent systems. In this paradigm, actors are the universal primitives of concurrent
computation: in response to a message, an actor can make local decisions, create
more actors, send more messages, and determine how to respond to the next
message received. Concurrent objects (a.k.a. active objects) [18,19] are actors
which communicate via asynchronous method calls. Each concurrent object is a
monitor and allows at most one active task to execute within the object. Schedul-
ing among the tasks of an object is cooperative (or non-preemptive) such that
a task has to release the object lock explicitly. Each object has an unbounded
set of pending tasks. When the lock of an object is free, any task in the set
of pending tasks can grab the lock and start to execute. The synchronization
between the caller and the callee methods can be performed when the result is
necessary by means of future variables [11]. The underlying concurrency model
of actor languages forms the basis of the programming languages Erlang [7] and
Scala [14] that have gained in popularity, in part due to their support for scalable
concurrency. There are also implementations of actor libraries for Java.
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Termination analysis of concurrent and distributed systems is receiving con-
siderable attention [17,2,9]. The main challenge is in handling shared-memory
concurrent programs. This is because, when execution interleaves from one task
to another, the shared-memory may be modified by the interleaved task. The
modifications will affect the behavior of the program and, in particular, can
change its termination behavior and its resource consumption. Inspired by the
rely-guarantee style of reasoning used for compositional verification [12] and
analysis [9] of thread-based concurrent programs, we present a novel termina-
tion analysis for concurrent objects which assumes a property on the global state
in order to prove termination of a loop and, then, proves that this property holds.
The property we propose to prove is the finiteness of the shared-data involved in
the termination proof, i.e., proving that such shared-memory is updated a finite
number of times. Our method is based on a circular style of reasoning since the
finiteness assumptions are proved by proving termination of the loops in which
that shared-memory is modified. Crucial for accuracy is the use of the informa-
tion inferred by a may-happen-in-parallel (MHP) analysis [4], which allows us
to restrict the set of program points on which the property has to be proved to
those that may actually interleave its execution with the considered loop.

Besides termination, we also are able to apply this style of reasoning in order
to infer the resource consumption (or cost) of executing the concurrent program.
The results of our termination analysis already provide useful information for
cost: if the program is terminating, we know that the size of all data is bounded.
Thus, we can give cost bounds in terms of the maximum and/or minimum values
that the involved data can reach. Still, we need novel techniques to infer upper
bounds on the number of iterations of loops whose execution might interleave
with instructions that update the shared memory. We provide a novel approach
which is based on the combination of local ranking functions (i.e., ranking func-
tions obtained by ignoring the concurrent interleaving behaviors) with upper
bounds on the number of visits to the instructions which update the shared
memory. As in the case of the termination analysis, an auxiliary MHP analysis
is used to restrict the set of points whose visits have to be counted to those that
indeed may interleave. To the best of our knowledge this is the first approach to
infer the cost of loops with concurrent interleavings.

Our analysis has been implemented, and its termination component is al-
ready fully integrated in COSTABS [2], a COSt and Termination analyzer for
concurrent objects. Experimental evaluation of the termination analysis has been
performed on a case study developed by Fredhopper R© and several other smaller
applications. Preliminary results are promising in both the accuracy and effi-
ciency of the analysis.

The rest of the paper is organized as follows. Sec. 2 contains preliminar-
ies about the language, termination and cost. Sec. 3 and 4 explains the rely-
guarantee termination and cost analysis, respectively. Sec. 5 contains the pre-
liminary evaluation of the analyses. Finally, Sec. 6 presents the conclusions and
related work.
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2 Concurrency Model, Termination and Cost

This section presents the syntax and concurrency model of the concurrent objects
language, which is basically the same as [15,2]. A program consists of a set
of classes, each of them can define a set of fields, and a set of methods. The
notation T̄ is used as a shorthand for T1, ...Tn, and similarly for other names.
The set of types includes the classes and the set of future variable types fut(T ).
Pure expressions pu (i.e., functional expressions that do not access the shared
memory) and primitive types are standard and omitted. The abstract syntax
of class declarations CL, method declarations M , types T , variables V , and
statements s is:

CL ::=class C {T̄ f̄ ; M̄} M ::=T m(T̄ x̄){s; return p; } V ::=x | this.f
s ::=s; s | x = e | V = x | await V ? | if p then s else s | while p do s
e ::=new C(V̄ ) | V !m(V̄ ) | pu T ::=C | fut(T )

As in the actor-model, the main idea is that control and data are encapsulated
within the notion of concurrent object. Thus each object encapsulates a local heap
which stores the data that is shared within the object. Fields are always accessed
using the this object, and any other object can only access such fields through
method calls. We assume that every method ends with a return instruction. The
concurrency model is as follows. Each object has a lock that is shared by all tasks
that belong to the object. Data synchronization is by means of future variables:
An await y? instruction is used to synchronize with the result of executing task
y=x!m(z̄) such that await y? is executed only when the future variable y is
available (i.e., the task is finished). In the meantime, the object’s lock can be
released and some other pending task on that object can take it. W.l.o.g, we
assume that all methods in a program have different names.

A program state St is a set St = Ob ∪ T where Ob is the set of all created
objects, and T is the set of all created tasks. An object is a term ob(o, a, lk)
where o is the object identifier, a is a mapping from the object fields to their
values, and lk the identifier of the active task that holds the object’s lock or ⊥
if the object’s lock is free. Only one task can be active (running) in each object
and has its lock. All other tasks are pending to be executed, or finished if they
terminated and released the lock. A task is a term tsk(t ,m, o, l, s) where t is a
unique task identifier, m is the method name executing in the task, o identifies
the object to which the task belongs, l is a mapping from local (possibly future)
variables to their values, and s is the sequence of instructions to be executed or
s = ε(v) if the task has terminated and the return value v is available. Created
objects and tasks never disappear from the state. Complete semantic rules can
be found in the extended version of this paper [5].

Example 1. Figure 1 shows some simple examples which will illustrate different
aspects of our analysis. We have an interface Task, and a class TaskQueue which
implements a queue of tasks to which one can add a single task using method
AddTask or a list of tasks using method AddTasks. The loop that adds the tasks
invokes asynchronously method AddTask and then awaits for its termination at
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1 Class TaskQueue{
2 List<Task> pending=Nil;
3 void AddTask(Task tk){
4 pending= appendright(pending,tk);
5 }
6 void AddTasks(List<Task> list){
7 while (list != Nil) {
8 Task tk = head(list);
9 pending = tail(list);

10 Fut f=this!AddTask(tk);
11 await f?;}
12 }
13 void ConsumeAsync(){
14 while (pending != Nil) {
15 Task tk = head(pending);
16 pending = tail(pending);
17 Fut f=tk!start();}
18 }
19 void ConsumeSync(){
20 while (pending != Nil) {
21 Task tk = head(pending);
22 pending = tail(pending);
23 Fut f=tk!start();
24 await f?;}
25 }} //end class TaskQueue
26 Interface Task {void start();}

27 //implementations of main methods
28 main1(List<Task> l){
29 TaskQueue q=new TaskQueue();
30 q!AddTasks(l);
31 q!ConsumeAsync();
32 }
33 main2(List<Task> l){
34 TaskQueue q= new TaskQueue();
35 Fut f=q!AddTasks(l);
36 await f?;
37 q!ConsumeSync();
38 }
39 main3(List<Task> l){
40 TaskQueue q= new TaskQueue();
41 q!AddTasks(l);
42 q!ConsumeSync();
43 }
44 main4(List<Task> l){
45 TaskQueue q= new TaskQueue();
46 while (true){
47 Fut x=q!AddTasks(l);
48 Fut y=q!ConsumeSync();
49 await x?;
50 await y?;}
51 }

Fig. 1. Simple examples for termination and cost

Line 11 (L11 for short). We use the predefined generic type List<E> with the
usual operations appendright to add an element of type <E> to the end of the
list, head to get the element in the head of the list and tail to get the remaining
elements. These operations are performed on pure data (i.e., data that possibly
contains references but does not access the shared memory) and are executed
sequentially. The class has two other methods, ConsumeAsync and ConsumeSync,
to consume the tasks inside the queue. The former method starts all tasks (L17)
concurrently. Instead, method ConsumeSync executes each task synchronously. It
releases the processor and waits until the task is finished at L24. In the right-
most column, there are four implementations of main methods which are defined
outside the classes. Here we show some execution steps from main3:
St1 ≡ {obj(0, f, 0) tsk(0,main3, 0, l, q=new TaskQueue();...)} new−−→
St2 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, q!AddTasks(l);...)} async−call−−−−−−−→
St3 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, q!ConsumeSync(1);...)

tsk(1,AddTasks, 1, l′′,while(list!= Nil);...)} async−call−−−−−−−→
St4 ≡ {obj(0, f, 0) obj(1, f1,⊥) tsk(0,main3, 0, l′, return;) tsk(1,AddTasks, 1, l′′, ...)

tsk(2,ConsumeSync, 1, l′′′,while(pending!= Nil);...)} return−−−−→ activate−−−−−→
St5 ≡ {obj(0, f,⊥) obj(1, f1, 2) tsk(0..) tsk(1..) tsk(2..)}
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Observe that the execution of new at St1 creates the object identified by 1. Then,
the executions of the asynchronous calls at St2 and St3 spawn new tasks on ob-
ject 1 identified by 1 and 2, respectively. In St4, we perform two steps, first the
execution of task 0 terminates (executes return) and object 0 becomes idle, next
object 1 (which was idle) selects task 2 for execution. Note that as scheduling is
non-deterministic any of both pending tasks (1 or 2) could have been selected.

2.1 Termination and Cost

Traces take the form t ≡ St0 →b0 · · · →bn−1 Stn, where St0 is an initial state
in which only the main method is available and the superscript bi is the instruc-
tion that is executed in the step. A trace is complete if it cannot continue from
Stn(not taking into account spurious cycles of take-release an object’s lock).
A trace is finished if every task in the configuration tsk(t ,m, o, l, s) ∈ T is
finished s = ε(v)). If a trace is complete but not finished, the trace must be
deadlocked. Deadlocks happen when several tasks are awaiting for each other to
terminate and remain blocked. Deadlock is different from non-termination, as
non-terminating traces keep on consuming instructions. As we have seen, since
we have no assumptions on scheduling, from a given state there may be several
possible non-deterministic execution steps that can be taken. We say that a
program is terminating if all possible traces from the initial state are complete.

When measuring the cost, different metrics can be considered. A cost model
is a function M : Ins �→ R+ which maps instructions built using the grammar
above to positive real numbers and, in this way, it defines the considered metrics.
The cost of an execution step is defined asM(St→b St′) =M(b), i.e., the cost
of the instruction applied in the step. The cost of a trace is the sum of the costs
of all its execution steps. The cost of executing a program is the maximum of the
costs of all possible traces from the initial state. We aim at inferring an upper
bound on the cost of executing a program P for the defined cost model, denoted
UBP , which is larger than or equal to that maximum.

Example 2. A cost model that counts the number of instructions is defined as
Minst(b) = 1 where b is any instruction of the grammar. A cost model that
counts the number of visits to a method m is defined as Mvisits m(b) = 1 if
b = x!m(z̄) and 0 otherwise. Consider the partial trace of Ex. 1. By applying
Minst we get 4 executed instructions (as the application of Activate does not
involve any instruction) and if we countMvisits ConsumSync we obtain 1.

3 Termination Analysis

This section gives first in Sec. 3.1 the intuition behind our method, then it
presents the termination algorithm in Sec. 3.2, and finally it provides the results
that we need for its application in cost analysis in Sec. 3.3.
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3.1 Basic Reasoning

Our starting point is an analysis [2] that infers the termination (and resource
consumption) of concurrent programs by losing all information on the shared-
memory at “processor release points” (i.e., at the points in which the processor
can switch the execution to another task because of an await instruction or a
method return). Alternatively, instead of losing all information, it can also use
monitor invariants (provided by the user) to force some assumptions on the
shared-memory. In the latter alternative, the correctness of the analysis depends
on the correctness of the provided invariants (the analysis does not infer nor
prove them correct). Let us show the kind of problems that [2] can and cannot
solve. Consider the first three implementations of main methods:

– main1 creates a TaskQueue q, adds the list of tasks received as input parameter
to it, and executes ConsumeAsync. It is not guaranteed that the tasks are
added to the queue when ConsumeAsync starts to execute because, as the
call at L30 is not synchronized, the processor can be released at L11 and
the call at L31 can start to execute. This is not a problem for termination,
since ConsumeAsync is executed without releasing the processor. Hence, the
method of [2] can prove all methods terminating.

– in main2 the addition of tasks (i.e., the call to AddTasks at L35) is guaranteed
to be terminated when ConsumeSync starts to execute due to the use of await
at L36. However, the difficulty is that ConsumeSync contains a release point.
The method of [2] fails to prove termination because at this release point
pending is lost. The key is to detect that there are no concurrent interleavings
at L24 in this loop by means of an auxiliary MHP analysis.

– main3 has a loop with concurrent interleavings since ConsumeSync is called
without waiting for completion of AddTasks. Thus, some tasks can be added
to the list of pending tasks in the middle of the execution of ConsumeSync,
resulting in a different ordering in which tasks are executed, or even can be
added when ConsumeSync has finished and hence start will not be executed
at all on them. Proving termination requires developing novel techniques.

Our reasoning is at the level of the strongly connected components (SCCs), de-
noted 〈S1, . . . , Sn〉, in which the code to be analyzed is split. For each method
m, we have an SCC named Sm and for each loop (in the methods) starting
at Lx we have an SCC named Sx. The analysis starting from main2 must con-
sider the SCCs: 〈Smain2, SAddTasks, S7, SAddTask, SConsumeSync, S20〉. For simplifying
the presentation, we assume that each recursive SCC has a single cut-point (in
the corresponding CFG). Moreover, the cut-point is assumed to be the entry of
the SCC. In such case, an SCC can be viewed as a simple while loop (i.e., without
nested loops) with several possible paths in its body. Nested loops can be trans-
formed into this form, by viewing the inner loops as separate procedures that are
called from the outer ones. This, however, cannot be done for complex mutual
recursions which are rare in our context. The purpose of this assumption is to
simplify the way we count the number of visits to a given program point in Sec. 4.

In order to use the techniques of [2] as a black-box, in what follows, we assume
that seq termin(S, F ) is a basic termination analysis procedure that receives an
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SCC S and a set of fields F , and works as follows: (1) given a function fields that
returns the set of fields accessed in the given scope, for any f ∈ fields(S) \ F ,
it adds the instruction f = ∗ at each release point of S; (2) it tries to proves
termination of the instrumented code using an off-the-shelf termination analyzer
for sequential code; and (3) it returns the result. We assume that seq termin

ignores calls to SCCs transitively invoked from the considered scope S, assumes
nothing about their return values, and ignores the instruction await.

Observation 1 (finiteness assumption). If S terminates under the assump-
tion that a set of fields F are not modified at the release points of S, then S also
terminates if they are modified a finite number of times.

The intuition behind our observation is as follows. Since the fields are modified
finitely, then we will eventually reach a state from which that state on they are
not modified. From that state, we cannot have non-termination since we know
that S terminates if the fields are not modified. Moreover, one can construct a
lexicographical ranking function [8] that witnesses the termination of S.

Example 3. Consider the following two loops:

S1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
52 while ( f > 0 ) {
53 x = g();
54 await x?;
55 f−−; }
56

S2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
57 while ( m > 0 ) {
58 x = g();
59 await x?;
60 f=∗;
61 m−−; }

and assume that S1 and S2 are the only running processes. Their execution
might interleave since both loops have a release point. We let f be a shared
variable, m a local variable, and we ignore the behavior of method g. It is easy
to see that (a) S1 terminates under the assumption that f does not change at
the release point (L54), and that RF 1(m, f) = f is a ranking function that
witnesses its termination; and (b) S2 terminates without any assumption and
RF 2(m, f) = m is a ranking function that witnesses its termination. Since S2

terminates, we know that f is modified a finite number of times at the release
point of S1 and thus, according to Observation 1, S1 terminates when running
in parallel with S2. The lexicographical ranking function RF3(f,m) = 〈m, f〉 is
a witness of the termination of S1.

3.2 Termination Algorithm

Algorithm 1 presents the main components of our termination algorithm, defined
by means of function TERMINATES. The first parameter S is an SCC that we
want to prove terminating, and the second one SSet includes the SCCs whose
termination requires the termination of S. The role of the second parameter is
to detect circular dependencies. In order to prove that a program P terminates,
we prove that all its SCCs terminate by calling terminates(S, ∅) on each one
of them. Let us explain the different lines of the algorithm:
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Algorithm 1. MHP-based Termination Analysis

1: function terminates(S,SSet)
2: if S ∈ SSet then return false

3: if seq termin(S, ∅) then return true

4: F = select fields(S)
5: if (not seq termin(S, F )) then return false

6: RP = release points(S)
7: MP = MHP pairs(RP)
8: I = field updates(MP , F )
9: DepSet = extract sccs(I)
10: for each S′ ∈ DepSet do
11: if (not terminates(S′,SSet ∪ {S}) then return false

12: return true

1. At Line 2, if S is in the set SSet , then a circular dependency has been
detected, i.e., the termination of S depends on the termination of S itself. In
such case the algorithm returns false (since we cannot handle such cases).

2. At Line 3, it first tries to prove termination of S without any assumption
on the fields, i.e., assuming that their values are lost at release points. If
it succeeds, then it returns true. Otherwise, in the next lines it will try to
prove termination w.r.t. some finiteness assumptions on the fields.

3. At Line 4, it selects a set of fields F and, at Line 5, it tries to prove that
S terminates when assuming that fields from F keep their values at the
release points. If it fails, then it returns false. Otherwise, in the next lines
it will try to prove that these fields are modified finitely in order to apply
Observation 1. The simplest strategy for constructing F (which is the one
implemented in our system) is to include all fields used in S. This can also
be refined to select only those that might affect the termination of S (using
some dependency analysis or heuristics).

4. At this point the algorithm identifies all instructions that might modify a
field from F while S is waiting at a release point. This is done as follows:
at Line 6 it constructs the set RP of all release points in S; at Line 7 it
constructs the set MP of all program points that may run in parallel with
program points in RP (this is provided by an auxiliary MHP analysis [4]);
and at Line 8 it remains with I ⊆ MP that actually update a field in F .

5. At Line 9, it constructs a set DepSet of all SCCs that can reach a program
point in I, i.e., those SCCs that include a program point from I or can reach
one by (transitively) calling a method that includes one. Proving termination
of these SCCs guarantees that each instruction in I is executed finitely, and
thus the fields in F are updated finitely and the finiteness assumption holds.

6. The loop at Line 10 tries to prove that each SCC in DepSet terminates. If it
finds one that might not terminate, it returns false. In the recursive call S
is added to the second parameter in order to detect circular dependencies.

7. If the algorithm reaches Line 12, then S is terminating and returns true.
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Essentially our approach translates the concurrent program into a sequential set-
ting using the assumptions. To define our proposal, we have focused exclusively
on the finiteness assumption because of its wide applicability for proving termi-
nation of different forms of loops. Being more general requires a more complex
reasoning than when handling other kinds of simpler assumptions. For instance,
simpler assumptions (like checking that a field always increases or decreases its
value when it is updated) can be easily handled by adding a corresponding test,
after Line 8, that checks the assumption holds on the instructions in I.

Example 4. We can now prove termination of both main2 and main3. For main2,
the challenge is to prove termination of ConsumeSync and namely of the loop
that forms S20. This loop depends on the field pending whose size is decreased at
each iteration. However, there is a release point in the loop’s body (L24). Thus,
we need to guarantee the finiteness assumption on pending at that point. The
MHP analysis infers that the only other instruction that updates pending at L4
cannot happen in parallel with the release point. This can be inferred thanks
to the use of await at L11 and L36. Therefore, the set I at Line 8 of Alg. 1
is empty and terminates returns true. In the analysis of main3, when proving
termination of SConsumeSync we have that L4 can happen in parallel with L24 so
we have to prove the finiteness assumption recursively. In particular, DepSet =
{SAddTask, S7, SAddTasks, Smain3}. Proving termination of S7 is done directly by
seq termin as termination of the loop depends only on the non-shared data list.
Also, SAddTask, SAddTasks and Smain3 are proved terminating by seq termin as they
do not contain loops. Thus, pending can only increase up to a certain limit and
the termination of SConsumeSync and all other scopes can be guaranteed.

We can achieve further precision by replacing extract sccs by a procedure
extract mhp sccs which returns all SCCs that can reach a program point in I
and that can happen in parallel with a release point in RP . A sufficient condition
for an SCC to happen in parallel with a point in RP is that its entry point (entry
point of while rule) might happen in parallel with a point in RP . The correctness
of this enhancement is proved in [5]. The point is that with extract sccs we
could find loops that contain I but cannot iterate at RP . These do not have to
be taken into account because during the execution of S they will be stopped in
a single iteration and therefore cannot cause unboundedness in S. This happens
in the next example.

Example 5. Using extract mhp sccs we can prove that ConsumeSync always ter-
minates in the context of main4. This is true because only one instance of AddTasks
is running in parallel with ConsumeSync (due to the awaits at L49 and L50), and
AddTasks is terminating. Using extract sccs, we would detect that L4 is reached
from S46 and thus, it cannot be proved bounded (due to the while (true)). How-
ever, the MHP analysis tells us that the await in L24 of ConsumeSync can run in
parallel with AddTasks but not with S46. This reduces the number of SCC we
have to consider (removing S46) and thus we can prove ConsumeSync terminating.

Proving termination of the SCCs given by extract mhp sccs guarantees that
each instruction in I is executed finitely during the release points RP , and thus
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the fields in F are updated finitely and the finiteness assumption holds. We
assume that extract mhp sccs is used in what follows. The following theorem
ensures the soundness of our approach (the proof is in [5]).

Theorem 1 (soundness). Given a program P and its set of recursive SCCs
SSet. If, ∀S ∈ SSet, terminates(S, ∅) returns true, then P is terminating.

3.3 Inferring Field-Boundedness

The termination procedure in Sec. 3 gives us an automatic technique to infer
field-boundedness, i.e., knowing that field f has upper and lower bounds on the
values that it can take. The upper (resp. lower) bound of a field f is denoted as
f+ (resp. f−), and we use f b to refer to the bounds [f−, f+] for f .

Corollary 1. Consider a field f . If all recursive SCCs that reach a point in
which f is updated are terminating, then f is bounded.

4 Cost Analysis

As for termination, the resource consumption (or cost) of executing a fragment
of code can be affected by concurrent interleavings in the loops. Previous work
[2] is not able to estimate the cost in these cases. This section proposes new
techniques to bound the number of iterations of such loops and thus the cost.
This requires to have first proved field-boundedness (Sec. 3.3).

4.1 Cost Analysis of Sequential Programs

Let us first provide an intuitive view of the process of inferring the cost of a
program divided in SCCs S1, . . . , Sn. As an example consider this code:

62 main (int n, int m)
63 { int i=0; while (i<n) { i++; s2; int j=i; while (j<m) {s1; j++; }}}

where s1 and s2 represent a sequence of instructions that do not call any other
SCC and do not modify the counters. This leads to one SCC for the inner loop
S1 and one SCC for the outer loop S2. We first consider the SCC which does
not call any other scope, S1. Given a fragment of sequential code s, we can
apply the cost model M to all instructions in s (see Sec. 2.1) and sum the
result, denoted as M(s). Now, an upper bound on the cost of executing the
SCC S1 is UBS1 = #iter∗M(body(S1)) where #iter is an upper bound on the
number of loop iterations. For sequential programs [3], a ranking function for the
loop soundly approximates #iter and can be automatically inferred. In this case,
UBS1 = nat(m−j+1)∗M(body(S1)), where function nat is defined as nat(n) = n
if n ≥ 0 and 0 otherwise (it is used to avoid having negative costs [3]).

We consider now the general case in which we need to compose the cost
of different SCCs. The point is that in order to plug the cost that we have
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already computed for S1 in its calling SCC S2, we need to maximize it (i.e.,
compute its worst case cost). Intuitively, the worst case cost is when j is 0 and
hence UBS1 becomes nat(m+1)∗M(body(S1)). Intuitively, maximization works
by first inferring an invariant that holds between the arguments at the initial
call (main method) and at each iteration during the execution. For instance, we
infer the invariant 0 ≤ j ≤ m0 which holds in S1 where m0 is the initial value
for m. Maximizing UBS1 using the invariant results in nat(m+1)∗M(body(S1)).
In what follows, we refer as max init(e) to the maximization of an expression
e using such procedure (see [3]) which we simply adopt in this paper. Thus,
the upper bound for S2 is UBS2 = #iter∗(M(body(S2)) +max init(UBS1)) ≡
nat(n)∗(M(body(S2))+nat(m+1)∗M(body(S1))).

Note that if the considered SCC is not recursive, then we simply apply M
to the sequential instructions and compose the SCCs as above. SCCs with mul-
tiple recursive calls (that lead to an exponential complexity) and loops with
logarithmic complexity are treated analogously, see [3].

4.2 Basic Reasoning

In order to explain the intuition of our approach, let us first consider the se-
quential loop in S1 whose termination behavior has been widely studied by the
termination community (we use ∗ to ignore irrelevant code):

S1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

64 while (f>0){
65 f−−;
66 if (∗ & m>0)
67 { m−−;
68 f=∗;
69 }}

S2

⎧⎪⎪⎨⎪⎪⎩
70 while (f>0){
71 f−−;
72 await ∗?
73 }

S3

⎧⎪⎪⎨⎪⎪⎩
74 while (m>0){
75 m−−;
76 f=∗;
77 }

Our method is inspired by the observation that, provided the if statement is
executed a finite number of times, an upper bound on the number of iterations
of S1 can be computed as: the maximum number of iterations of the loop ig-
noring the if statement, but assuming that such if statement updates the field
f with its maximum value, multiplied by the maximum number of times that
the if statement can be executed. Intuitively, we assume that every time the if

statement is executed the field can be put to its maximum value and thus the
loop can be executed the maximum number of times in the next iteration. Hence,
max init(f)∗m is an upper bound for the loop, and max init(f) = f+ results
in the maximum value for field f (see Sec. 3.3).

We propose to apply a similar reasoning to bound the number of iterations of
loops with concurrent interleavings. Assume that S2 and S3 are the only running
processes and that the execution of the instruction at L76 that updates the field
may interleave with the await in S2. We have a similar behavior to the leftmost
loop, though they are obviously not equivalent. Instead of having an interleaving
if, we have an interleaving process that updates the field. Our proposal is to first
bound the number of times that instruction 76 can be executed. A sound and
precise bound is m. Our main observation is that, the upper bound for S2 is
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the maximum number of iterations ignoring the await, but assuming that at this
point f can take its maximum value f+, multiplied by the maximum number
of visits to 76. Thus, f+∗m is a sound upper bound. If we have a loop like
while (f<0) {f++; await ∗?}, whose ranking function is −f , then the worst case
cost occurs when f is set to its minimum value f−, i.e., max init(−f) = f−.
Therefore, maximizing a ranking function that involves a field f is done by relying
on its field bound f b, and it may result, depending on the case, in f+ or f−.

Observation 2 (loop bounds). An upper bound on the number of iterations of
a loop l with interleaving instructions that update fields F is niter∗(nvisits+1):

1. where nvisits is the number of visits to the points in which fields in F are
updated and that might interleave their execution with the loop release points;

2. and niter is the number of iterations of the loop ignoring the interleavings
—maximized w.r.t. the bounds for the fields in F ;

Our analysis relies on the assumption that the number of visits (item 1) is
bounded, which has been proved in Corollary 1. Given a bound on the number
of loop iterations, the cost is obtained as in the sequential case, i.e., by applying
the cost model to the instructions in the loop body and multiplying it by our
loop bound. Thus, we only focus now on bounding the number of loop iterations.

4.3 Bounding the Number of Iterations for Loops with Interleavings

Alg. 2 presents two mutually recursive functions which allow us to infer the two
items of the observation above. For each SCC S, we assume that after executing
Alg. 1 we have the following information: the set RP computed at Line 6, denoted
as SRP ; the set I computed at Line 8, denoted as SI ; and a (linear) ranking
function computed by the seq termin at Lines 3 and 5, denoted as SRF . If S
was proved terminating at Line 3 (i.e., losing the fields), we assume that SI and
SRP are empty. Function niter receives an SCC S whose number of iterations
is to be bounded and a set of SCCs SSet which, as before, is initially empty
and allows us to detect cyclic dependencies (Line 2). As the number of SCCs is
finite, termination is guaranteed. If the SCC S is not recursive, it simply returns
one (Line 3). Otherwise, the number of iterations in the SCC can be bound
by the maximization of the local ranking function, multiplied by the maximum
number of visits to all the points that update the fields (Line 7) and that may
happen in parallel with SRP (to this end we pass SRP as parameter to nvisits).
As mentioned in Sec. 4.1, function max init maximizes the received expression
w.r.t. the input parameters of the entry method (often main), and the field bounds
f b are used for maximizing the fields.

Function nvisits receives a program point p, a set of release points RP , and
infers an upper bound on the number of visits to p while the program is waiting
at a point of RP . We first compute the multiset of reachable paths to p. Each
path is of the form 〈S1, . . . , Sn〉, i.e., it is a sequence of SCCs which reach the
program point p. For each of the paths (Line 11), we traverse all the SCCs in
the path (Line 13) and multiply the number of iterations of the corresponding
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Algorithm 2. Bounding the Number of Iterations for Loops with Interleavings

1: function niter(S,SSet)
2: if S ∈ SSet then return false

3: if S is not recursive then return 1
4: i = 1;
5: for each p ∈ SI do
6: i = i+nvisits(p, SRP ,SSet ∪ S)

7: return max init(SRF )∗i

8: function nvisits(p,RP,SSet)
9: Vp= 0;
10: P= mhp reachable paths(p,RP );
11: for each 〈S1, . . . , Sn〉 in P do
12: Vaux=1;
13: for i = 1 to n do
14: Vaux = Vaux∗niter(Si,SSet)

15: Vp = Vp+Vaux

16: return Vp

SCC by those of the SCCs already traversed if the SCC might happen in parallel
with the release points RP . We assume that mhp reachable paths gives us only
those SCC that may happen in parallel with the release points RP passed as
parameters. The number of visits from each of the paths is accumulated to the
paths that have been already accounted (Line 15).

Example 6. Let us consider method ConsumeSync invoked from main3. We want
to compute niter(S20, ∅). Alg. 1 gives us that the local ranking function is
RF = length(pending) and that the program point 4 may happen in parallel with
the release point 24 and update the field pending. Hence, we need to compute
nvisits(4, {24}, {S20}). We first compute the reachable paths to 4, which gives
us the only element 〈SAddTask, S7, SAddTasks〉. Note that Smain3 is not included in the
path because its entry point cannot happen in parallel with 24. We start by com-
puting niter(SAddTask, {S20}), since SAddTask is not recursive, we simply return 1
which is multiplied at Line 14 of Alg. 2 by the initial value for Vaux (which is 1).
The next iteration of the for loop at Line 13 invokes niter(S7, {S20, SAddTask}).
In this case, by Alg. 1, we have the local ranking function length(list) and that
the set of points at which list is updated is empty. The maximization of length(list
) returns it in terms of the initial parameters of main3, i.e., length(l). This value
is multiplied at Line 14 by 1 (previous value of Vaux). Finally, we compute
niter(SAddTasks, {S7, S20, SAddTask}) that, as it is not recursive, simply returns 1.
The execution of the for loop at Line 13 finishes and also the execution of the
for each loop at Line 11 and we have that nvisits(4, {S20})= length(l). Thus,
we can now finish the computation of niter(S20, ∅) returning length(pending+)
∗length(l). The upper bound for ConsumeSync when invoked from main4 can be
obtained in a similar way.

The following theorem ensures the soundness of our approach. The proof can be
found in [5].

Theorem 2 (soundness). Given a recursive SCC S, the execution of
niter(S, ∅) terminates and returns an upper bound on the number of iterations
in S.
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5 Implementation and Preliminary Evaluation

We have implemented the described cost and termination analyses, although cur-
rently only the termination component is integrated within COSTABS. Our anal-
ysis can be tried online at http://costa.ls.fi.upm.es/costabs by enabling
the option “rely-guarantee termination analysis”. The cost analysis component
will be available for its online use from the same site soon. Given a program and
a selection of an entry method from which the analysis will start, the output of
the analysis is a description of the SCCs (reachable from the entry) which are
terminating. This section aims at performing a preliminary experimental eval-
uation of the accuracy and performance of our implementation, by comparing
our results with those obtained by the previous version of the analyzer which
loses all information on the shared-memory. For this purpose, we have analyzed
a set of small and medium-sized programs, as well as one industrial case study,
the Replication System, developed by Fredhopper R©. The analyzed code for all
examples can be found and tried in the above site.

Regarding the small and medium-sized examples, their number of lines of code
ranges from 20 to 100 and the number of SCCs from 5 to 20. Both versions of the
analyzer need less than 1 sec. to analyze each program. All terminating loops
with concurrent interleavings are reported by our rely-guarantee method, im-
proving the results of the previous analyzer. Our largest experiment is performed
on the Replication System, a case study that provides search and merchandis-
ing IT services to e-Commerce companies, developed within the HATS project
(http://www.hats-project.eu/). It has 2100 lines of code and 426 SCCs that
need to be analyzed. The previous analyzer needs 2813 sec. and proves 420 SCCs
terminating, whereas the rely-guarantee method proves 423 SCCs terminating
in only 41 sec. Times are obtained as the arithmetic mean of five runs on a
Ubuntu 12.04 32-bit with Intel Core2 Quad CPU Q9550 2.83GHz and 3.4GiB of
memory. The efficiency of our rely-guarantee method can be explained because
it works modularly at the level the SCCs, instead of analyzing the program glob-
ally as the previous analyzer. An inspection of the three additional SCCs that
have been proved terminating confirms that they indeed correspond to loops
with concurrent interleavings. The reason why a simple analysis that loses the
shared-memory could achieve already good results is that the (experienced) de-
velopers of the case study were aware of the risks of having loops with concurrent
interleavings and they were very much avoided.

6 Conclusions and Related Work

Concurrency adds further difficulty when attempting to prove program termina-
tion and inferring resource consumption. The problem is that the analysis must
consider all possible interactions between concurrently executing objects. This is
challenging because processes interact in subtle ways through fields and future
variables. We have proposed novel techniques to prove termination and inferring

http://costa.ls.fi.upm.es/costabs
http://www.hats-project.eu/
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upper bounds on the number of iterations of loops with such concurrent inter-
leavings. Our analysis benefits from an existing MHP analysis to achieve further
precision [4].

Existing methods for proving termination of thread-based programs also apply
a rely-guarantee or assume-guarantee style of reasoning [9,17,10]. These methods
consider every thread in isolation under assumptions on its environment, thus
avoiding to reason about thread interactions directly. Applying this technique
to our concurrent setting could be done by assuming a property of the second
object while proving the property of the first object, and then assuming the
recently proved property of the first object when proving the assumed property
of the second object. Although we make assumptions and then prove them,
our assumptions are of a different kind, i.e., namely they are assumptions on
finiteness of data, no matter on which thread (or object) they are executed.
This point makes our work fundamentally different from [9]. We can still apply
our method in the presence of dynamically created objects and the number of
concurrency units does not need to be known a priori as in [9].

As regards the bounds on loop iterations, to the best of our knowledge, there
are no other works that have attempted to infer those bounds for loops with con-
current interleavings before. There are several techniques [13,6,20] for inferring
complex loop bounds for (sequential) transition systems. Our basic termination
component could benefit from these techniques. Moreover, in principle, a con-
current program could be translated to a transition system that simulates all
possible interleavings, which then would allow using these techniques for infer-
ring bounds on loops with concurrent interleaving. However, we expect such
translation to be far more complicated that our techniques.

Finally, as in other kinds of analyses, by making the analysis object-sensitive
(i.e., by distinguishing between different objects of the same class) we can achieve
further precision. For instance, if we add to main3 the following two instructions
TaskQueue q1=new TaskQueue(); q1!ConsumeSync();. The MHP analysis infers
that ConsumeSync can run in parallel with itself. When trying to solve the equa-
tions a cyclic dependency is created and both terminates and niter algorithms
terminate returning false.
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Abstract. The general setting of this work is the constraint-based
synthesis of termination arguments. We consider a restricted class of
programs called lasso programs. The termination argument for a lasso
program is a pair of a ranking function and an invariant. We present
the—to the best of our knowledge—first method to synthesize termina-
tion arguments for lasso programs that uses linear arithmetic. We prove a
completeness theorem. The completeness theorem establishes that, even
though we use only linear (as opposed to non-linear) constraint solv-
ing, we are able to compute termination arguments in several interesting
cases. The key to our method lies in a constraint transformation that
replaces a disjunction by a sum.

1 Introduction

Termination is arguably the single most interesting correctness property
of a program. Research on proving termination can be divided according
to three (interrelated) topics, namely: practical tools [1,9,13,17,18,19,21,22],
decidability questions [4,8,25], and constraint-based synthesis of termination
arguments [2,3,5,6,7,10,12,14,20,23]. The work in this paper falls under the re-
search on the third topic. The general goal of this research is to investigate how
one can derive a constraint from the program text and compute a termination
argument (of a restricted form) through the solution of the constraint, i.e., via
constraint solving.

In this paper, we present a method for the synthesis of termination arguments
for a specific class of programs that we call lasso programs. As the name indicates,
the control flow graph of a lasso program is of a restricted shape: a stem followed
by a loop.

Lasso programs do not appear as stand-alone programs. Lasso programs ap-
pear in practice whenever one needs a finite representation of an infinite path
in a control flow graph, for example in (potentially spurious) counterexam-
ples in a termination analysis[13,17,18,19], non-termination analysis[16], stability
analysis[11,22], or cost analysis[1,15].

Importantly, the termination argument for a lasso program is a pair of a
ranking function and an invariant (the rank must decrease only for states that
satisfy the invariant). Figure 1 shows an example of a lasso program.
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1: y := 23;

2: while( x >= 0 ) {

3: x := x - y;

4: y := y + 1;

5: }

1 2

τstem :
y′ = 23

τloop :
x ≥ 0

∧ x′ = x− y
∧ y′ = y + 1

Fig. 1. Example of a lasso program and its formal representation PyPositive = (τstem, τloop).
The ranking function defined by f(x, y) = x decreases in transitions from states that
satisfy the invariant y ≥ 1 (the ranking function does not decrease when y ≤ 0).

The class of lasso programs lies between two classes of programs for which
constraint-based methods have been studied extensively. For the first, more
specialized class, methods can be based on linear arithmetic constraint solv-
ing [2,3,10,12,20]. For the second, more general class, all known methods are
based on non-linear arithmetic constraint solving [5,7]. The contribution of our
method can be phrased, alternatively, as the generalization of the applicability of
the ‘linear methods’, or as the optimization of the ‘non-linear method’ to a ‘lin-
ear method’ for a subproblem. The step from ‘non-linear’ to ‘linear’ is interesting
for principled reasons (non-linear arithmetic constraint solving is undecidable in
the case of integers). As we will show the step is also practically interesting.

The reader may wonder how practical tools presently handle the situation
where one needs to compute termination arguments for lasso programs. One
possibility is to resort to heuristics. For example, instead of computing a ter-
mination argument for the lasso program in Figure 1, one would compute the
ranking function f(x) = x for the program while(x>=0){x:=x-23;}.

The key to our method is a constraint transformation that replaces a dis-
junction by a sum. We apply the ‘or-to-plus’ transformation in the context of
Farkas’ Lemma. Following [2,5,10,12,20], we apply Farkas’ Lemma in order to
eliminate the universal quantifiers in the arithmetic constraint whose solution
is the termination argument. If we apply Farkas’ Lemma to the constraint after
the ‘or-to-plus’ transformation, we obtain a linear arithmetic constraint.

The effect of the ‘or-to-plus’ transformation to the constraint is a restriction
of its solution space. The restriction seems strong; i.e., in some cases, the so-
lution space becomes empty. We can characterize those cases. In other words,
we can characterize when the ‘or-to-plus’ transformation leads to the loss of an
termination argument, and when it does not. The characterization is formulated
as a completeness theorem for which we will present the proof. This characteri-
zation allows us to establish that, even though we use only linear (as opposed to
non-linear) constraint solving, we are able to compute termination arguments in
several interesting cases. A possible explanation for this (perhaps initially sur-
prising) fact is that, for synthesis, we are interested in the mere existence of a
solution, and the loss of many solutions does not necessarily mean the loss of all
solutions of the constraint.

We have implemented our method and we have used our implementation to
illustrate the applicability and the efficiency of our method. Our implementation
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is available through a web interface, together with a number of example programs
(including the ones used in this paper).1

2 Preliminaries: Linear Arithmetic

We use x to denote the vector with entries x1, . . . , xn, and x
ᵀ
to denote the

transposed vector of x. As usual, the expressionA·x ≤ b denotes the conjunction

of linear constraints
m∧
j=0

(
n∑

i=0

aij · xi) ≤ bj .

We call a relation τ(x,x′) a linear relation if τ is defined by a conjunction of
linear constraints over the variables x and x′, i.e., if there is a matrix A with m
rows and 2n columns and a vector b of size m such that the following equation
holds.

τ(x,x′) = {(x,x′) | A · (xx′) ≤ b}
We call a function f(x) an (affine) linear function, if f(x) is defined by an

affine linear term, i.e., there is a vector r
ᵀ
and a number r0 such that the following

equation holds.
f(x) = r

ᵀ · x+ r0.

We call a predicate I(x) a linear predicate, if I(x) is defined by a linear in-
equality, i.e., there is a vector s

ᵀ
and a number s0 such that following equivalence

holds.
I(x) = {x | sᵀ · x+ s0 ≥ 0}.

Farkas’ Lemma. We use the affine version of Farkas’ Lemma [24] which is also
used in [2,5,12,23,20] and states the following. Given

– a satisfiable conjunction of linear constraints A · x ≤ b
– and a linear constraint c

ᵀ · x ≤ δ,

the following equivalence holds.

∀x (A · x ≤ b→ c
ᵀ · x ≤ δ) iff ∃λ (λ ≥ 0 ∧ λ

ᵀ ·A = c
ᵀ∧ λ

ᵀ · b ≤ δ)

3 Lasso Program

To abstract away from program syntax, we define a lasso program directly by
the two relations that generate its execution sequences.

Definition 1 (Lasso Program). Given a set of states Σ, a lasso program

P = (τstem, τloop)

is given by the two relations τstem ⊆ Σ ×Σ and τloop ⊆ Σ×Σ. We call τstem the
stem of P and τloop the loop of P .

An execution of the lasso program P is a possibly infinite sequence of states
σ0, σ1, . . . such that

1 http://ultimate.informatik.uni-freiburg.de/LassoRanker

http://ultimate.informatik.uni-freiburg.de/LassoRanker


368 M. Heizmann et al.

– the pair of the first two states is an element of the stem, i.e.,

(σ0, σ1) ∈ τstem

– and each other consecutive pair of states is an element of the loop, i.e.,

(σi, σi+1) ∈ τloop for i = 1, 2, . . .

We call the lasso program P terminating if P has no infinite execution.

We use constraints over primed and unprimed variables to denote a transition
relation (see Figure 1).

In order to avoid cumbersome technicalities, we consider only lasso programs
that have an execution that contains at least three states. This means we consider
only programs where the relational composition of τstem and τloop is non-empty,
i.e.,

τstem ◦ τloop �= ∅.
Since Turing, a termination argument is based on an ordering which does not

allow infinite decreasing chains (such as ordering on the natural numbers). Here,
we use the ordering over the set of positive reals which is defined by some value
δ > 0, namely

a ≺δ b iff a ≥ 0 ∧ a− b ≥ δ a, b ∈ R.

Ranking Function. We call a function f from the states of the lasso program P
into the reals R a ranking function for P if there is a positive number δ > 0 such
that for each consecutive pair of states (xi,xi+1) of a loop transition (i ≥ 1) in
every execution of P

– the value of f is decreasing by at least δ, i.e.,

f(xi)− f(xi+1) ≥ δ,

– and the value of f is non-negative, i.e.,

f(xi) ≥ 0.

If there is a ranking function for the lasso program P , then P is terminating.

Inductive Invariant. We call a state predicate I(x) an inductive invariant of the
lasso program P if

– the predicate holds after executing the stem, i.e.,

∀x ∀x′ τstem(x,x′)→ I(x′), (ϕinvStem)

– and if the predicate holds before executing the loop, then the predicate holds
afterwards, i.e.,

∀x ∀x′ I(x) ∧ τloop(x,x′)→ I(x′). (ϕinvLoop)
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Ranking Function with Supporting Invariant. We call a pair of a ranking function
f(x) and an inductive invariant I(x) of the lasso program P a ranking function
with supporting invariant if the following holds.

– There exists a positive real number δ > 0 such that, if the inductive invari-
ant holds then an execution of the loop decreases the value of the ranking
function by at least δ, i.e.,

∃δ > 0∀x ∀x′ I(x) ∧ τloop(x,x′)→ f(x)− f(x′) ≥ δ. (ϕrkDecr)

– In states in which the inductive invariant holds and the loop can be executed,
the value of the ranking function is non-negative, i.e.,

∀x ∀x′ I(x) ∧ τloop(x,x′)→ f(x) ≥ 0. (ϕrkBound)

For example, the lasso program depicted in Figure 1 has the ranking function
f(x, y) = x with supporting invariant y ≥ 1.

Linear Lasso Programs. Linear lasso programs. For the remainder of this paper
we consider only linear lasso programs, linear ranking functions, and linear in-
ductive invariants which we will define next. The variables of the programs will
range over the reals until we come to Section 9 where we turn to programs over
integers.

Definition 2 (Linear Lasso Program). A linear lasso program

P = (τstem, τloop)

is a lasso program whose states are vectors over the reals, i.e. Σ = Rn, and
whose relations τstem and τloop are linear relations.

We use the expression Astem · (xx′) ≤ bstem to denote the relation τstem of P . We
use the expression Aloop · (xx′) ≤ bloop to denote the relation τloop of P .

Linear Ranking Function. If a ranking function f : Rn → R is an (affine) linear
function, we call f a linear ranking function. We use r1, . . . , rn as coefficients of
a linear ranking function, r as their vector,

f : Rn → R f(x) = r
ᵀ · x+ r0.

Linear Invariant. If an inductive invariant I(x) is a linear predicate, we call I
a linear inductive invariant. We use s1, . . . , sn as coefficients of the term that
defines the linear predicate, s as their vector,

I(x) ≡ s
ᵀ · x+ s0 ≥ 0.
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4 The Or-to-Plus Method

Our constraint-based method for the synthesis of linear ranking functions for
linear lasso programs consists of three main steps:

Step 1. Set up four (universally quantified) constraints whose free variables are
the coefficients of a linear ranking function with linear supporting invariant.

Step 2. Apply Farkas’ Lemma to the four constraints to obtain equivalent con-
straints without universal quantification.

Step 3. Obtain solutions for the free variables by linear constraint solving.

The particularity of our four constraints in Step 1 is that the application of
Farkas’ Lemma in Step 2 yields constraints that are linear.

Instead of presenting our constraints immediately, we derive them in three
successive transformations of constraints. We start with the four constraints
(ϕinvStem), (ϕinvLoop), (ϕrkDecr), and (ϕrkBound). Below, we have rephrased the four
constraints for the setting where the ranking function is linear and the support-
ing invariant is linear. We marked them (ϕBMS

1 ), (ϕBMS

2 ), (ϕBMS

3 ), and (ϕBMS

4 ) in
reference to Bradley, Manna and Sipma [5] who were the first to use them in the
corresponding step of their method.

The Bradley–Manna–Sipma Constraints
for the special case of lasso programs and one linear supporting invariant2

∀x ∀x′ τstem(x,x′)→ s
ᵀ · x′ + s0 ≥ 0 (ϕBMS

1 )

∀x ∀x′ s
ᵀ · x+ s0 ≥ 0 ∧ τloop(x,x′)→ s

ᵀ · x′ + s0 ≥ 0 (ϕBMS

2 )

∃δ > 0 ∀x ∀x′ s
ᵀ · x+ s0 ≥ 0 ∧ τloop(x,x′)→ r

ᵀ · x− r
ᵀ · x′ ≥ δ (ϕBMS

3 )

∀x ∀x′ s
ᵀ · x+ s0 ≥ 0 ∧ τloop(x,x′)→ r

ᵀ · x+ r0 ≥ 0 (ϕBMS

4 )

The free variables of ϕBMS

1 ∧ ϕBMS

2 ∧ ϕBMS

3 ∧ ϕBMS

4 are r, r0, s, and s0.

Transformation 1: Move supporting invariant to right-hand side. We
bring the conjunct s

ᵀ · x+ s0 ≥ 0 in three of the four constraints (ϕBMS

1 ), (ϕBMS

2 ),
(ϕBMS

3 ), and (ϕBMS

4 ) to the right-hand side of the implication, according to the
following scheme.

φ1 ∧ φ2 → ψ ≡ φ2 → ψ ∨ ¬φ1

We obtain the following constraints.

∀x ∀x′ τstem(x,x′)→ s
ᵀ · x′ + s0 ≥ 0 (ψ1)

∀x ∀x′ τloop(x,x′)→ s
ᵀ · x′ + s0 ≥ 0 ∨ −sᵀ · x− s0 > 0 (ψ2)

∃δ > 0 ∀x ∀x′ τloop(x,x′)→ r
ᵀ · x− r

ᵀ · x′ ≥ δ ∨ −sᵀ · x− s0 > 0 (ψ3)

∀x ∀x′ τloop(x,x′)→ r
ᵀ · x+ r0 ≥ 0 ∨ −sᵀ · x− s0 > 0 (ψ4)

2 In [5] the authors use more general general constraints that can be used to syn-
thesize lexicographic linear ranking functions together with a conjunction of linear
supporting invariants for programs that can also contains disjunctions.
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Transformation 2: Drop supporting invariant in fourth constraint. We
strengthen the fourth constraint (ψ4) by removing the disjunct −sᵀ · x− s0 > 0.
A solution for the strengthened constraint defines a ranking function whose
value is bounded from below for all states (and not just those that satisfy the
supporting invariant).

Transformation 3: Replace disjunction by sum. We replace the disjunction
on the right-hand side of the implication in constraints (ψ2) and (ψ3) by a single
inequality, according to the scheme below. (It is the disjunction which prevents
us from applying Farkas’ Lemma to the constraints (ψ2) and (ψ3).)

m ≥ 0 ∨ n > 0 � m+ n ≥ 0

In the second constraint (ψ2), we replace the disjunction

−sᵀ · x− s0 > 0 ∨ s
ᵀ · x′ + s0 ≥ 0

by the inequality
s
ᵀ · x′ + s0 − s

ᵀ · x− s0 ≥ 0.

In the third constraint (ψ3), we replace the disjunction

−sᵀ · x− s0 > 0 ∨ r
ᵀ · x− r

ᵀ · x′ ≥ δ

by the inequality
r
ᵀ · x− r

ᵀ · x′−sᵀ · x− s0 ≥ δ.

We obtain the following four constraints.

The Or-to-Plus Constraints

∀x ∀x′ τstem(x,x′)→ s
ᵀ · x′ + s0 ≥ 0 (ϕ1)

∀x ∀x′ τloop(x,x′)→ s
ᵀ · x′ + s0 − s

ᵀ · x− s0 ≥ 0 (ϕ2)

∃δ > 0 ∀x ∀x′ τloop(x,x′)→ r
ᵀ · x− r

ᵀ · x′−sᵀ · x− s0 ≥ δ (ϕ3)

∀x ∀x′ τloop(x,x′)→ r
ᵀ · x+ r0 ≥ 0 (ϕ4)

The free variables of the conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 are r, r0, s, and s0.

Since we consider linear lasso programs, the relations τstem and τloop are given
as conjunctions of linear constraints.

τstem(x,x′) ≡ Astem · (xx′) ≤ bstem

τloop(x,x′) ≡ Aloop · (xx′) ≤ bloop

We have now finished the description for the three transformation steps that
lead us to the the or-to-plus constraints. We are now ready to introduce our
method.



372 M. Heizmann et al.

The Or-to-Plus Method

Input: linear lasso program P .
Output: coefficients r, r0, s, and s0 of a linear ranking function with

linear supporting invariant

1. Set up the or-to-Plus constraints ϕ1, ϕ2, ϕ3, and ϕ4 for P .
2. Apply Farkas’ Lemma to each constraint.
3. Obtain r, r0, s, and s0, by linear constraint solving.

After setting up the four or-to-plus constraints ϕ1, ϕ2, ϕ3, ϕ4 in Step 1, we
apply Farkas’ Lemma to each of the four constraints in Step 2. We obtain four
linear constraints. E.g., by applying Farkas’ Lemma to the constraint (ϕ3) we
obtain the following linear constraint.

∃δ > 0 ∃λ λ ≥ 0 ∧ λ
ᵀ · Aloop = (s−r

r )
ᵀ ∧ λ

ᵀ · bloop ≤ −δ − s0

We apply linear constraint solving in Step 3. We obtain a satisfying assignment
for the free variables in the resulting constraints. The values obtained for r, r0, s
and s0 are the coefficients of a linear ranking function f(x) with linear supporting
invariant I(x).

The or-to-plus method inherits its soundness from method of Bradley–Manna–
Sipma. Step 1 is an equivalence transformation on the Bradley–Manna–Sipma
constraints, Step 2 and Step 3 strengthen the constraints, and the application of
Farkas’ Lemma is an equivalence transformation. Thus, a satisfying assignment
of the or-to-plus constraints obtained after the application of Farkas’ Lemma is
also a satisfying assignment of the Bradley–Manna–Sipma constraints.

5 Completeness of the Or-to-Plus Method

In the tradition of constraint-based synthesis for verification, we will formulate
completeness according to the following scheme: the method X applied to a pro-
gram P in the class Y computes (the coefficients of) a correctness argument of
the form Z whenever one exists (i.e., whenever a correctness argument of the
form Z exists for the program P ). Here, X is the or-to-plus method, Y is the class
of lasso programs, and Z is a termination argument consisting of a linear ranking
function and an invariant of a form that we we define next.

Definition 3 (Non-decreasing linear inductive invariant). We call a lin-
ear inductive invariant s

ᵀ · x+ s0 ≥ 0 of the lasso program P non-decreasing if

the loop implies that the value of the term s
ᵀ · x+ s0 does not decrease when

executing the loop, i.e.,
τloop → s

ᵀ · x′ ≥ s
ᵀ · x.

In Section 6 we give examples which may help to convey some intuition about
the meaning of ‘non-decreasing’, examples of those terminating programs that do
have a linear ranking function with a non-decreasing linear supporting invariant,
and examples of those that don’t.



Linear Ranking for Linear Lasso Programs 373

x := y + 42;

while( x >= 0 ) {

y := 2*y - x;

x := (y + x) / 2;

}

τstem : x′ = y + 42 ∧ y′ = y

τloop : x ≥ 0 ∧ x′ = y ∧ y′ = 2y − x

Fig. 2. Linear lasso program Pdiff42 = (τstem, τloop) that has the linear ranking function
f(x, y) = x with linear supporting invariant x− y ≥ 42.

Theorem 1 (Completeness). The or-to-plus method applied to the linear
lasso program P succeeds and computes the coefficients of a linear ranking func-
tion with non-decreasing linear supporting invariant whenever one exists.

To prove this theorem we use the following lemma.

Lemma 1. Given are

(1) satisfiable linear inequalities A · x ≤ b,
(2) an inequality g

ᵀ · x+ g0 ≥ 0, and

(3) a strict inequality h
ᵀ · x+ h0 > 0.

If A · x ≤ b does not imply the strict inequality (3), but the disjunction of (2)
and (3), i.e.

∀x A · x ≤ b → g
ᵀ · x+ g0 ≥ 0 ∨ h

ᵀ · x+ h0 > 0,

then there exists a constant μ ≥ 0 such that

∀x A · x ≤ b → (g
ᵀ · x+ g0) + μ · (hᵀ · x+ h0) ≥ 0.

Proof (of Lemma 1).

∀x A · x ≤ b → (g
ᵀ · x+ g0 ≥ 0 ∨ h

ᵀ · x+ h0 > 0)

is equivalent to

∀x (A · x ≤ b ∧ h
ᵀ · x+ h0 ≤ 0) → g

ᵀ · x+ g0 ≥ 0.

By assumption, (1) does not imply (3), so A·x ≤ b ∧ h
ᵀ·x+h0 ≤ 0 is satisfiable,

and by Farkas’ Lemma this formula is equivalent to

∃μ ≥ 0 ∃λ ≥ 0 μ · hᵀ+ λ
ᵀ · A = −gᵀ ∧ λ

ᵀ · b+ μ · (−h0) ≤ g0,

and thus

∃μ ≥ 0 ∃λ ≥ 0 λ
ᵀ · A = −(μ · hᵀ+ g

ᵀ
) ∧ λ

ᵀ · b ≤ μ · h0 + g0.

Because A · x ≤ b is satisfiable by assumption, Farkas’ Lemma can be applied
again to yield

∃μ ≥ 0 ∀x A · x ≤ b → −(μ · hᵀ+ g
ᵀ
)x ≤ μ · h0 + g0. ��
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g
ᵀ · x+ g0 ≥ 0

h
ᵀ · x+ h0 > 0

Z

A · x ≤ b

Let H = {x | gᵀ · x + g0 ≥ 0}, and
H ′ = {x |hᵀ · x + h0 > 0} be half-
spaces defined by linear inequali-
ties. A half-space Hμ = {x | (gᵀ·x+

g0) + μ · (hᵀ · x + h0) ≥ 0} defined
by a weighted sum is a rotation of
H around the intersection Z of the
boundary of H and the boundary of
H ′.
If a polyhedron X is contained in
the union H ∪ H ′, then there is a
half-space Hμ defined by a weighted
sum that contains X.

Fig. 3. A geometrical interpretation of Lemma 1

Proof (of Theorem 1). Let f(x) = r̊
ᵀ · x + r̊0 be a ranking function with non-

decreasing supporting invariant I(x) ≡ s̊
ᵀ · x+ s̊0 ≥ 0 for the lasso program P .

Since executions of our lasso programs comprise at least three states, there can
be no supporting invariant that contradicts the loop, i.e.

Aloop · (xx′) ≤ bloop → −s̊ᵀ · x− s̊0 > 0 (1)

is not valid. From (ϕrkBound) it follows that

s̊
ᵀ · x+ s̊0 ≥ 0 ∧ Aloop · (xx′) ≤ bloop → r̊

ᵀ · x+ r̊0 ≥ 0,

and hence the implication

Aloop · (xx′) ≤ bloop → r̊
ᵀ · x+ r̊0 ≥ 0 ∨ −s̊ᵀ · x− s̊0 > 0

is valid. By (1) and Lemma 1 there is a μ1 ≥ 0 such that

Aloop · (xx′) ≤ bloop → (̊r
ᵀ · x+ r̊0) + μ1 · (−s̊

ᵀ · x− s̊0) ≥ 0

is valid. If we assign r �→ r̊ − μ1 · s̊, r0 �→ r̊0 − μ1 · s̊0, then (ϕ4) is satisfied.
Because I(x) ≡ s̊ · x+ s̊0 ≥ 0 is a non-decreasing invariant,

Aloop · (xx′) ≤ bloop → s̊
ᵀ · x′ − s̊

ᵀ · x ≥ 0,

and hence, since μ1 ≥ 0,

Aloop · (xx′) ≤ bloop → −μ1 · s̊
ᵀ · (x− x′) ≥ 0. (2)

From (ϕrkDecr) we know that

s̊
ᵀ · x+ s̊0 ≥ 0 ∧ Aloop · (xx′) ≤ bloop → r̊

ᵀ · x− r̊
ᵀ · x′ ≥ δ,

and hence equivalently

Aloop · (xx′) ≤ bloop → r̊
ᵀ · x− r̊

ᵀ · x′ ≥ δ ∨ −s̊ᵀ · x− s̊0 > 0.
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With (2) we obtain validity of the following formula.

Aloop · (xx′) ≤ bloop → (̊r
ᵀ− μ1 · s̊

ᵀ
) · (x− x′) ≥ δ ∨ −s̊ᵀ · x− s̊0 > 0

By (1) and Lemma 1 there exists a μ2 ≥ 0 such that

Aloop · (xx′) ≤ bloop → (̊r
ᵀ− μ1 · s̊

ᵀ
) · (x− x′) + μ2 · (−s̊

ᵀ · x− s̊0) > δ.

We pick the assignment r �→ r̊− μ1 · s̊, r0 �→ r̊0 −μ1 · s̊0, s �→ μ2 · s̊, s0 �→ μ2 · s̊0,
which hence satisfies (ϕ3). We already argued that it satisfies (ϕ4), and from
μ2 ≥ 0 and the fact that I(x) is a non-decreasing inductive invariant it follows
that the assignment also satisfies (ϕ1) and (ϕ2). Hence, the ranking function
(̊r − μ1 · s̊)

ᵀ · x+ r̊0 − μ1 · s̊0 with supporting invariant (μ2 · s̊)
ᵀ · x+ μ2 · s̊0 ≥ 0

can be found by the or-to-plus method. ��

6 Examples

y := 23;

while( x >= y ) {

x := x - 1;

}

Fig. 4. Lasso program Pbound

Our three transformations strengthened the
Bradley–Manna–Sipma constraints, hence the
solution space of the or-to-plus constraints
is smaller than the solution space of the
Bradley–Manna–Sipma constraints. This can
be seen e.g., in the example depicted in
Figure 4. The program Pbound has the linear
ranking function f(x, y) = x with linear supporting invariant y ≥ 23, but the
coefficients of this ranking function and supporting invariant are no solution of
the or-to-plus constraints; the constraint ϕ4 is violated. Does this mean that our
method will not succeed? No, it does not. By Theorem 1, in fact, we do know
that the method will succeed. I.e., since we know of some linear ranking function
with non-decreasing supporting invariant (in this case, f(x, y) = x and y ≥ 23),
even if it is not a solution, we know that there exists one which is a solution
(here, for example, f(x, y) = x− y with the (trivial) supporting invariant 0 ≥ 0).

y := 2;

while( x >= 0 ) {

x := x - y;

y := (y + 1) / 2;

}

Fig. 5. Lasso program Pzeno

The prerequisite of Theorem 1 is the existence
of a non-decreasing supporting invariant. There
are linear lasso programs that have a linear rank-
ing function with linear supporting invariant, but
do not have a linear ranking function with a
non-decreasing linear supporting invariant. E.g.,
for the lasso programs depicted in Figure 5 and
Figure 6 our or-to-plus method is not able to syn-
thesize a ranking function for these programs.

The linear lasso program Pzeno depicted in
Figure 5 has the linear ranking function f(x, y) = x with the linear supporting
invariant y ≥ 1. However this inductive invariant is not non-decreasing; while
executing the loop the value of the variable y converges to 1 in the following
sequence. 2, 1 + 1

2 , 1 +
1
4 , 1 +

1
8 , . . . .
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assume y >= 1;

while( x >=0 ) {

x := x - y;

havoc y;

assume (y >= 1);

}

Fig. 6. Lasso program Pwild

The statement havoc y; in the lasso program
Pwild is a nondeterministic assignment to the vari-
able y. The relations τstem and τloop of this lasso
program are given by the constraints y′ ≥ 1 and
x ≥ 0 ∧ x′ = x − y ∧ y′ ≥ 1. Pwild has the
ranking function f(x, y) = x with the supporting
invariant y ≥ 1, however this inductive invariant
is not non-decreasing in each execution of the loop
the variable y can get any value greater than or
equal to one.

The next example shows that nondeterministic updates are no general ob-
stacle for our or-to-plus method. In the linear lasso program Parray the loop
iterates over an array of positive integers. The index accessed in the next

offset := 1;

i := 0;

while(i<=a.length) {

assume a[i]>=0;

i := i + offset + a[i];

}

Fig. 7. Lasso program Parray

iteration is the sum of the current index,
the current entry of the array, and an off-
set. The relations τstem and τloop of this
lasso program are given by the constraints
offset ′ = 1 ∧ i′ = 0 and i ≤ a.length ∧
curVal ′ ≥ 0 ∧ i′ = i + offset + curVal ′.
The variable curVal which represents the
current entry of the array a[i] can get any
value greater than or equal to one in each
loop iteration. The or-to-plus method finds

the linear ranking function f(i, offset) = i− a.length with the linear supporting
invariant offset ≥ 1.

7 Lasso Programs over the Integers

In the preceding sections we considered lasso programs over the reals. In this
section we discuss the applicability of the or-to-plus method to linear lasso pro-
grams over the integers, i.e., programs where the set of states Σ is a subset of
Zn. We still use real-valued ranking functions. We obtain the constraints for
coefficients of a linear ranking function with linear supporting invariant by re-
stricting the range of the universal quantification in the constraints ϕ1, ϕ2, ϕ3,
and ϕ4 to the integers. E.g., the constraint ϕ3 for linear lasso programs over the
integers is

∃δ > 0 ∀x ∈ Zn ∀x′ ∈ Zn τloop(x,x′)→ r
ᵀ · x− r

ᵀ · x′−sᵀ · x− s0 ≥ δ

where the domain of the coefficients r, r0, s, and s0 and the quantified variable
δ are the reals. Now, Farkas’ lemma is not an equivalence transformation, its
application results in weaker formulas. This means the or-to-plus method is still
sound, but we loose the completeness result of Theorem 1. An example for this is
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assume 2*y >= 1;

while( x >= 0 ) {

x := x - 2*y + 1;

}

Fig. 8. Lasso program PnonIntegral1

the program PnonIntegral, depicted in Figure 8
that has the following transition relations.

τstem : 2y′ ≥ 1 ∧ x′ = x

τloop : x ≥ 0 ∧ x′ = x− 2y + 1 ∧ y′ = y;

Over integer variables, PnonIntegral1 has the lin-
ear ranking function f(x, y) = x with the linear supporting invariant y ≥ 1. Over
real-valued variables, PnonIntegral1 does not terminate. If we add the additional
constraint y′ ≥ 1 to τstem, the programs’ semantics over the integers is not
changed, but we are able to synthesize a linear ranking function with a linear
supporting invariant. Adding this additional constraint gives the constraints a
property that we formally define as follows.

Integral constraints. A conjunction of linear constraintsA·x ≤ b is called integral
if the set of satisfying assignments over the reals S := {r ∈ Rn | A · r ≤ b}
coincides with the integer hull of S (the convex hull of all integer vectors in S).

For each conjunction of m linear constraints there is an equivalent conjunction
of at most 2m linear constraints that is integral [24]. We add an additional step
to the or-to-plus method in which we make the constraints in the stem transition
τstem and loop transition τloop integral.

The Or-to-Plus Method (Int)

Input: linear lasso program P with integer variables
Output: coefficients r, r0, s, and s0 of linear ranking function with

linear supporting invariant

1. Replace τstem and τloop by equivalent integral linear constraints.
2. Set up constraints ϕ1, ϕ2, ϕ3, and ϕ4 for P .
3. Apply Farkas’ Lemma to each constraint.
4. Obtain r, r0, s, and s0, by linear constraint solving.

That we find more solutions after making the linear constraints τstem and τloop
integral is due to the following lemma which was stated in [12]. We present our
proof for the purpose of self-containment.

Lemma 2 (Integral version of Farkas’ Lemma). Given a conjunction of
linear constraints A · x ≤ b

∀x ∈ Zn (A · x ≤ b→ c
ᵀ · x ≤ δ) iff ∃λ (λ ≥ 0 ∧ λ

ᵀ · A = c
ᵀ∧ λ

ᵀ · b ≤ δ)

Proof. We write this statement as a linear programming problem.

(P) max{cᵀ · x | A · x ≤ b} ≤ δ

Because the constraints A ·x ≤ b are integral, there is an integral vector x ∈ Zn

such that c
ᵀ·x is the optimum solution to (P). Thus the optimum over integers

is ≤ δ if and only if the optimum of the reals is. The statement now follows from
the real version of Farkas’ Lemma. ��
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assume 2*y >= z;

while( x >= 0 && z == 1 ) {

x := x - 2*y + 1;

}

Fig. 9. Lasso program PnonIntegral2

However, even if τstem and τloop are inte-
gral, our method is not complete over the
integers. In the completeness proof for the
reals we applied Farkas’ Lemma to con-
junctions of a polyhedron A · x ≤ b and
an inequality h

ᵀ·x+h0 ≤ 0. This inequal-
ity contains free variables, namely the coefficients of the supporting invariant
s
ᵀ · x+ s0 ≥ 0. Even if τstem and τloop are integral, this conjunction might not be
integral and we cannot apply the integer version of Farkas’ lemma in this case.

A counterexample to completeness of our integer version of the or-to-plus
method is the linear lasso program PnonIntegral2 depicted in Figure 9.

8 Conclusion

We have presented a constraint-based synthesis method for a class of programs
that was not investigated before for the synthesis problem. The class is restricted
(though less restricted than the widely studied class of simple while programs)
but still requires the combined synthesis of not only a ranking function but also
an invariant. We have formulated and proven a completeness theorem that gives
us an indication on the extent of power of a method that does without nonlinear
constraint solving.

We implemented the or-to-plus method as plugin of the Ultimate software
analysis framework. A version that allows one to ‘play around’ with lasso pro-
grams is available via a web interface at the following URL.

http://ultimate.informatik.uni-freiburg.de/LassoRanker

As mentioned in the introduction, the class of lasso programs is motivated
by the fact that they are a natural way (and, it seems, the only way) to rep-
resent an (infinite) counterexample path in a control flow graph. It is a topic
of future research to explore the different scenarios in practical tools that use
a module to find a ranking function and a supporting invariant for a lasso
program (e.g., in [1,13,15,16,17,21,22]) and to compare the performance of our—
theoretically motivated—synthesis method in comparison with the existing—
heuristically motivated—approach used presently in the module.
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Abstract. Parameter synthesis for real-time systems aims at synthesiz-
ing dense sets of valuations for the timing requirements, guaranteeing
a good behavior. A popular formalism for modeling parameterized real-
time systems is parametric timed automata (PTAs). Compacting the
state space of PTAs as much as possible is fundamental. We present
here a state merging reduction based on convex union, that reduces the
state space, but yields an over-approximation of the executable paths.
However, we show that it preserves the sets of reachable locations and
executable actions. We also show that our merging technique associated
with the inverse method, an algorithm for parameter synthesis, preserves
locations as well, and outputs larger sets of parameter valuations.

Keywords: Parameter synthesis, state space reduction, real-time
systems.

1 Introduction

Ensuring the correctness of critical real-time systems, involving concurrent be-
haviors and timing requirements, is crucial. Formal verification methods may
not always be able to verify full size systems, but they provide designers with
an important help during the design phase, in order to detect otherwise costly
errors. Formalisms for modeling real-time systems, such as time Petri nets or
timed automata (TAs), have been extensively used in the past decades, and led
to useful and efficient implementations. Parameter synthesis for real-time sys-
tems is a set of techniques aiming at synthesizing dense sets of valuations for the
timing requirements of the system. We consider the delays as unknown constants,
or parameters, and synthesize constraints on these parameters guaranteeing the
system correctness; of course, the weaker the constraint (i.e., the larger the set
of parameter valuations), the more interesting the result. Parameterizing TAs
gives parametric timed automata (PTAs) [2].

A fundamental problem in the exploration of the reachability space in PTAs
is to compact as much as possible the generated space of symbolic states. Our
first contribution is to introduce a state merging technique based on convex
union. Roughly speaking, two states are merged when their discrete part is the
same, and the union of their respective continuous part (values of the clocks
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and parameters) is convex. On the one hand, this technique often considerably
reduces the state space. On the other hand, exploring the state space using this
technique does not reflect the standard semantics of PTAs: the set of possible
paths is an over-approximation of the set of paths in the original PTAs semantics.
However, we show that the state space computed using the merging reduction
preserves the set of reachable locations and executable actions. That is, the
sets of reachable locations and executable actions obtained using the merging
reduction are the same as those obtained using the classical semantics.

The inverse method IM [8] is an algorithm that takes advantage of a known
reference parameter valuation, and synthesizes a constraint around the refer-
ence valuation guaranteeing the same traces as for the reference valuation, i.e.,
the same time-abstract (or discrete) behavior. Our second contribution is to
show that IM equipped with our merging reduction (called IMMrg) does not
preserve traces anymore; however, it preserves locations (i.e., discrete reachabil-
ity), and outputs a weaker constraint. However, we show that actions are not
preserved in the general case. We exhibit a subclass of PTAs, namely backward-
deterministic PTA, for which action preservation is guaranteed. Furthermore,
we show that IMMrg outputs a weaker constraint (i.e., a larger set of parameter
valuations) than IM , which is interesting.

Our third contribution is to define a new version IM ′
Mrg of IMMrg that pre-

serves not only locations but actions too, at the cost of a more restrictive con-
straint than IMMrg , but still weaker than IM . Our work is implemented in
Imitator [4] and shows large state space reductions in many cases, especially
for scheduling problems. Finally, and more surprisingly, the time overhead in-
duced by the convexity test is often not significant in the few case studies where
the state space is not reduced.

Related Work. In [19], it is shown that, in a network of TAs, all the successor
states can be merged together when all the interleavings of actions are possible.
However, this result does not extend to the parametric case. In [13,14], it is pro-
posed to replace the union of two states by a unique state when the union of their
continuous part (viz., the symbolic clock values) is convex, and the discrete part
(viz., the location) is identical. This technique is applied to timed constraints
represented in the form of Difference Bound Matrices (DBMs). Our merging
technique can be seen as an extension of the technique in [13,14] to the para-
metric case. This extension is not trivial, and the implementation is necessarily
different, since DBMs (in their original form) do not allow the use of parameters.
Instead, we implemented our approach in Imitator using polyhedra [9].

Remark. This paper is an extension of a “work in progress” paper [5]. In con-
trast to [5], we formally define the merging operation, and characterize it in
the general setting of reachability analysis for PTAs. Furthermore, we rewrite
a result from [5] that erroneously stated that the inverse method with merging
preserves traces; we show here that it does not, but preserves (at least) the set of
locations. We also exhibit a subclass of PTAs for which IMMrg preserves actions
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too. We finally define a new version of the inverse method that preserves not
only locations but actions as well, for general PTAs.

Outline. We recall preliminaries in Section 2. We define and characterize the
merging reduction in Section 3. Section 4 is dedicated to IM combined with the
merging reduction. We give experiments in Section 5 and conclude in Section 6.

2 Preliminaries

We denote by N, Q+ and R+ the sets of non-negative integers, non-negative
rational and non-negative real numbers, respectively.

2.1 Clocks, Parameters and Constraints

Throughout this paper, we assume a fixed set X = {x1, . . . , xH} of clocks. A
clock is a variable xi with value in R+. All clocks evolve linearly at the same
rate. A clock valuation is a function w : X → RH

+ . We will often identify a
valuation w with the point (w(x1), . . . , w(xH)). Given a constant d ∈ R+, we
use X + d to denote the set {x1 + d, . . . , xH + d}. Similarly, we write w + d to
denote the valuation such that (w + d)(x) = w(x) + d for all x ∈ X .

Throughout this paper, we assume a fixed set P = {p1, . . . , pM} of parameters,
i.e., unknown constants. A parameter valuation π is a function π : P → RM

+ . We
will often identify a valuation π with the point (π(p1), . . . , π(pM )).

An inequality over X and P is e ≺ e′, where ≺∈ {<,≤}, and e, e′ are two
linear terms of the form

∑
1≤i≤N αizi + d where zi ∈ X ∪ P , αi ∈ Q+, for

1 ≤ i ≤ N , and d ∈ Q+. We define similarly inequalities over X (resp. P ).
A constraint is a conjunction of inequalities. Given an inequality J over the
parameters of the form e < e′ (respectively e ≤ e′), the negation of J , denoted
by ¬J , is the linear inequality e′ ≤ e (respectively e′ < e).

We denote by L(X), L(P ) and L(X ∪ P ) the set of all constraints over X ,
over P , and over X and P respectively. In the sequel, J denotes an inequality
over the parameters, D ∈ L(X), K ∈ L(P ), and C ∈ L(X ∪ P ). A constraint
over X and P can be interpreted as a set of points in the space RM+H , more
precisely as a convex polyhedron.

Given a clock valuation w, D[w] denotes the expression obtained by replacing
each clock x in D with w(x). A clock valuation w satisfies constraint D (denoted
by w |= D) ifD[w] evaluates to true. Given a parameter valuation π, C[π] denotes
the constraint over the clocks obtained by replacing each parameter p in C
with π(p). Likewise, given a clock valuation w, C[π][w] denotes the expression
obtained by replacing each clock x in C[π] with w(x). We say that a parameter
valuation π satisfies a constraint C, denoted by π |= C, if the set of clock
valuations that satisfy C[π] is nonempty. We use the notation <w, π> |= C to
indicate that C[π][w] evaluates to true.

Given two constraints C1 and C2, C1 is said to be included in C2, denoted by
C1 ⊆ C2, if ∀w, π : <w, π> |= C1 =⇒ <w, π> |= C2.
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A parameter valuation π satisfies a constraintK over the parameters, denoted
by π |= K, if the expression obtained by replacing each parameter p in K
with π(p) evaluates to true. Given K1 and K2, K1 is included in K2, denoted
by K1 ⊆ K2, if ∀π : π |= K1 =⇒ π |= K2. We consider true as a constraint over
the parameters, corresponding to the set of all possible values for P .

We denote by C↓P the constraint over the parameters obtained by projecting
C onto the set of parameters, that is after elimination of the clock variables.

Sometimes we will refer to a variable domain X ′, which is obtained by renam-
ing the variables in X . Explicit renaming of variables is denoted by the substi-
tution operation. Given a constraint C over the clocks and the parameters, we
denote by C[X←X′] the constraint obtained by replacing in C the variables of X
with the variables of X ′. We sometime write C(X) or C(X ′) to denote the set
of clocks used within C.

We define the time elapsing of C, denoted by C↑, as the constraint over X
and P obtained from C by delaying an arbitrary amount of time. Formally:

C↑ =
(
(C ∧X ′ = X + d)↓X′∪P

)
[X′←X]

where d is a new parameter with values in R+, and X ′ is a renamed set of
clocks. The inner part of the expression adds the same delay d to all clocks; the
projection onto X ′ ∪ P eliminates the original set of clocks X , as well as the
variable d; the outer part of the expression renames clocks X ′ with X .

2.2 Labeled Transition Systems

We introduce below labeled transition systems, which will be used later in this
section to define the semantics of PTAs.

Definition 1. A labeled transition system is a quadruple LT S = (Σ,S, S0,⇒),
with Σ a set of symbols, S a set of states, S0 ⊂ S a set of initial states, and
⇒ ∈ S×Σ×S a transition relation. We write s

a⇒ s′ for (s, a, s′) ∈ ⇒. A run (of
length m) of LT S is an alternating sequence of states si ∈ S and symbols ai ∈ Σ

of the form s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, where s0 ∈ S0. A state si is reachable if it
belongs to some run r.

2.3 Parametric Timed Automata

Parametric timed automata are an extension of the class of timed automata to
the parametric case, where parameters can be used within guards and invariants
in place of constants [2].

Definition 2 (Parametric Timed Automaton). A parametric timed au-
tomaton (PTA) A is a 8-tuple of the form A = (Σ,L, l0, X, P,K, I,→), where

– Σ is a finite set of actions,
– L is a finite set of locations, l0 ∈ L is the initial location,
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– X is a set of clocks, P is a set of parameters,
– K ∈ L(P ) is the initial constraint,
– I is the invariant, assigning to every l ∈ L a constraint I(l) ∈ L(X ∪ P ),
– → is a step relation consisting of elements of the form (l, g, a, ρ, l′) where

l, l′ ∈ L are the source and destination locations, a ∈ Σ, ρ ⊆ X is a set of
clocks to be reset by the step, and g ∈ L(X ∪ P ) is the step guard.

The constraint K corresponds to the initial constraint over the parameters,
i.e., a constraint that will be true in all the states of A. For example, in a PTA
with two parameters min and max, we may want to constrain min to be always
smaller or equal to max, in which case K is defined as min ≤ max.

Given a PTA A = (Σ,L, l0, X, P,K, I,→), for every parameter valuation π,

A[π] denotes the PTA (Σ,L, l0, X, P,Kπ, I,→), where Kπ = K ∧
∧M

i=1 pi =
π(pi). This corresponds to the PTA obtained from A by substituting every oc-
currence of a parameter pi by constant π(pi) in the guards and invariants. Note
that A[π] is a non-parametric timed automaton.

In the following, given a PTA A = (Σ,L, l0, X, P,K, I,→) and when clear
from the context, we will often denote this PTA by A(K), in order to emphasize
the value of K in A.

The (symbolic) semantics of PTAs relies on the notion of state, i.e., a pair
(l, C) where l ∈ L is a location, and C ∈ L(X ∪P ) its associated constraint. For
each valuation π of P , we may view a state s as the set of pairs (l, w) where w
is a clock valuation such that <w, π> |= C.

A state s = (l, C) of a PTA A is π-compatible if π |= C. We say that a
set of states S1 is included into a set of states S2, denoted by S1 0 S2, if
∀s : s ∈ S1 =⇒ s ∈ S2.

The initial state of A(K) is s0 = (l0, C0), where C0 = K ∧ I(l0) ∧
∧H−1

i=1 xi =
xi+1. In this expression, K is the initial constraint over the parameters, I(l0) is
the invariant of the initial state, and the rest of the expression lets clocks evolve
from the same initial value.

The semantics of PTAs is given in the following in the form of an LTS.

Definition 3 (Semantics of PTAs). Let A = (Σ,L, l0, X, P,K, I,→) be a
PTA. The semantics of A is LT S(A) = (Σ,S, S0,⇒) where

S = {(l, C) ∈ L× L(X ∪ P ) | C ⊆ I(l)},
S0 = {s0}

and a transition (l, C)
a⇒ (l′, C′) belongs to ⇒ if ∃C ′′ : (l, C)

a→ (l′, C′′)
d→

(l′, C′), with

– discrete transitions (l, C)
a→ (l′, C′) if there exists (l, g, a, ρ, l′) ∈ → and

C ′ =
((

C(X) ∧ g(X) ∧X ′ = ρ(X)
)
↓X′∪P ∧ I(l′)(X ′)

)
[X′←X]

and

– delay transitions (l, C)
d→ (l, C ′) with C′ = C↑ ∧ I(l)(X).
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Let LT S(A) = (Σ,S, S0,⇒). When clear from the context, given (s1, a, s2) ∈
⇒, we write (s1

a⇒ s2) ∈ ⇒(A).
A path of A is an alternating sequence of states and actions of the form

s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . ,m − 1, ai ∈ Σ and si
ai⇒

si+1 ∈ ⇒(A). The set of all paths of A is denoted by Paths(A). We define traces

as time-abstract paths. Given a path (l0, C0)
a0⇒ (l1, C1)

a1⇒ · · · am−1⇒ (lm, Cm),

the corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of all traces of A (or
trace set) is denoted by Traces(A).

The Post operation computes the successors of a state. Formally, PostA(s) =

{s′|∃a ∈ Σ : (s
a⇒ s′) ∈ ⇒(A)}. We define PostiA(s) as the set of states reachable

from a state s0 in exactly i steps. The Post operation extends to a set S of states:
PostA(S) =

⋃
s∈S PostA(s). And similarly for PostiA(S). We write Post∗A(S) =⋃

i≥0 Post
i
A(S).

Given a PTA A of initial state s0, we write Reachi(A) (resp. Reach∗(A)) for
PostiA({s0}) (resp. Post∗A({s0})). We also define Locations(A) (resp. Actions(A))
as the set of locations (resp. actions) reachable (resp. executable) from the initial
state of A. We will often use these notations with A(K) in place of A.

Remark 1. For sake of conciseness, we do not recall the concrete semantics of
PTAs here. Our symbolic semantics is commonly used (see, e.g., [17,8]), and it
is clear that the sets Locations(A) and Actions(A) are the same for both the
symbolic and concrete semantics. ��

2.4 The Inverse Method

The inverse method IM is a semi-algorithm (i.e., if it terminates, its result is
correct) that takes as input a PTA A and a reference parameter valuation π,
and synthesizes a constraint K over the parameters such that, for all π′ |= K,
A[π] and A[π′] have the same trace sets [8].

Algorithm 1. Inverse method IM (A, π)

input : PTA A of initial state s0, parameter valuation π
output: Constraint K over the parameters

1 i ← 0 ; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are π-incompatible states in Snew do
4 Select a π-incompatible state (l, C) of Snew (i.e., s.t. π �|= C) ;
5 Select a π-incompatible J in C↓P (i.e., s.t. π �|= J) ;

6 Kc ← Kc ∧ ¬J ; S ←
⋃i−1

j=0 Post
j
A(Kc)

({s0}) ; Snew ← PostA(Kc)(S) ;

7 if Snew ! S then return K ←
⋂

(l,C)∈S C↓P
8 i ← i+ 1 ; S ← S ∪ Snew ; Snew ← PostA(Kc)(S)
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IM , recalled in Algorithm 1, uses 4 variables: an integer i measuring the depth
of the state space exploration, the current constraint Kc, the set S of states ex-
plored at previous iterations, and a set Snew of states explored at the current
iteration i. Starting from the initial state s0, IM iteratively computes reach-
able states. When a π-incompatible state is found, an incompatible inequality
is non-deterministically selected within the projection onto P of the constraint
(line 5); its negation is then added to Kc (line 6). The set of reachable states is
then updated. When all successor states have already been reached (line 7), IM
returns the intersection K of the projection onto P of the constraints associated
with all the reachable states. Otherwise, the exploration goes one step further
(line 8). Recall from [8] that IM is non-deterministic, and hence its result may
be non-complete, i.e., the resulting constraint may not be the weakest constraint
guaranteeing the preservation of trace sets.

3 Merging States in Parametric Timed Automata

3.1 Principle

We extend here the notion of merging from [13] to the parametric case.

Definition 4. Two states s1 = (l1, C1) and (l2, C2) are mergeable if l1 = l2 and
C1 ∪C2 is convex; then, (l1, C1 ∪C2) is their merging denoted by merge(s1, s2).

Given a set S of states, Merge(S) denotes the result of applying iteratively
the merging of a pair of states of S until no further merging applies, as given in
Algorithm 2.

Algorithm 2. Merging a set of states

input : Set S of states
output: Merged set S of states

1 Q ← S ;
2 while ∃(l, C1), (l, C2) ∈ Q such that C1 �= C2 and C1 ∪ C2 is convex do
3 Q ← Q \ {(l, C1), (l, C2)} ∪ {merge((l, C1), (l, C2))} ;

4 return Q

C2

C3

C1

Fig. 1. Non-determinism

Remark. This process is not deterministic, i.e., the
result depends on the order of the iterative merging
operations of pairs of states. Consider three states
(l, C1), (l, C2), (l, C3) such that C1∪C2 and C2∪C3 are
convex, but C1 ∪C3 is not. This situation is depicted
in Fig. 1 with 2 parameter dimensions. In that case,
two possible sets of states can result from an applica-
tion of the merging to these 3 states. That is, either
{(l, C1), (l, C2 ∪ C3)} or {(l, C1 ∪ C2), (l, C3)}.
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3.2 Merging and Reachability

We define below the semantics of PTAs with merging.

Definition 5. Let A = (Σ,L, l0, X, P,K, I,→) be a PTA. The semantics of A
with merging is LT SMrg(A) = (Σ,S, S0,⇒Mrg) where

S = {(l, C) ∈ L× L(X ∪ P ) | C ⊆ I(l)},
S0 = {(l0,K ∧ I(l0) ∧

∧H−1
i=1 xi = xi+1)}

and a transition (l, C)
a⇒ (l′, C′) belongs to ⇒Mrg if there exists n ∈ N such that

(l, C) ∈ ReachMn, and (l′, C′) ∈ ReachMn+1, where ReachMn is inductively
defined as follows:

– ReachM0 = S0, and
– ReachM i+1 = Merge

(
PostA(ReachM

i)
)
for all i ∈ N.

Recall that Post is defined using the ⇒ relation of A without merging. Hence
the semantics of PTAs with merging iteratively computes states (using the stan-
dard transition relation), and merges the new states at each iteration.

Then we define ⇒i
Mrg , PostM , ReachM∗, PathsM , TracesM , LocationsM

and ActionsM the same way as ⇒i, Post, Reach∗, Paths, Traces, Locations
and Actions, respectively, by replacing within their respective definition⇒ with
⇒Mrg . Observe that, from the definition of⇒Mrg in Definition 5, PostM can be
defined as Post followed by Merge, i.e., PostM = Merge ◦ Post.

3.3 Characterization of the Merging Reduction

The following lemma states that the initial state of any path (hence, including
of length 0) of A without merging is the same for A with merging.

Lemma 1. Let A be a PTA. Then Reach0(A) = ReachM0(A).

Proof. From Definitions 3 and 5. 

The main property preserved by merging states while generating the reacha-
bility graph is the preservation of each time-abstract transition, i.e., taken one
by one. In other words, for each time-abstract transition l1

a⇒ l2 in the graph ob-
tained without merging, there is a corresponding time-abstract transition l1

a⇒ l2
in the graph obtained with merging. However, this does not extend to traces.

The characterization of merging will be stated in Theorem 1. This result
relies1 on the two forthcoming lemmas 2 and 3.

Lemma 2 (Merging and reachability (=⇒)). Let A be a PTA. Let

(l0, C0)
a0⇒ . . .

an−1⇒ (ln, Cn) ∈ Paths(A). Then there exist C ′1, . . . , C
′
n such that:

1. (l0, C0)
a0⇒Mrg (l0, C

′
1)

a1⇒Mrg . . .
an−1⇒ Mrg (ln, C

′
n) ∈ PathsM(A), and

1 The proofs of all results can be found in [6].
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2. Ci ⊆ C′i, for all 1 ≤ i ≤ n.

We show in Lemma 3 that the constraint associated to each state in the
merged graph is the union of several constraints in the non-merged graph.

Lemma 3 (Merging and reachability (⇐=)). Let A be a PTA. For all n ∈
N, for all (l, C) ∈ ReachMn(A), there exist m ∈ N and (l, C1), . . . , (l, Cm) ∈
Reach∗(A) such that

C =
⋃

1≤i≤m

Ci.

We can finally characterize the merging in the following theorem.

Theorem 1 (Merging states in PTAs). Let A be a PTA. Then:

1. For all (l0, C0)
a0⇒ . . .

an−1⇒ (ln, Cn) ∈ Paths(A), there exist C ′1, . . . , C
′
n such

that:
(a) (l0, C0)

a0⇒Mrg (l0, C
′
1)

a1⇒Mrg . . .
an−1⇒ Mrg (ln, C

′
n) ∈ PathsM(A), and

(b) Ci ⊆ C′i, for all 1 ≤ i ≤ n.
2. For all (l, C) ∈ ReachM∗(A) there exist m ∈ N and (l, C1), . . . , (l, Cm) ∈

Reach∗(A) such that C =
⋃

1≤i≤m Ci.

Proof. From Lemmas 2 and 3. 
We can derive several results from Theorem 1.
First, each trace in the non-merged graph exists in the merged graph. (Note

that the converse statement does not hold.) Hence, TracesM(A) is an over-
approximation of Traces(A).
Corollary 1 (Inclusion of traces). Traces(A) ⊆ TracesM(A).

We state below that each timed-abstract transition in the non-merged graph
exists in the merged graph, and vice versa. (Note that this cannot be generalized
to complete traces.)

Corollary 2 (Preservation of time-abstract transitions). Let A be a PTA.

1. Let l
a⇒ l′ ∈ Traces(A). Then l

a⇒Mrg l′ ∈ TracesM(A).
2. Let l

a⇒Mrg l′ ∈ TracesM(A). Then l
a⇒ l′ ∈ Traces(A).

Finally, locations and actions are preserved by the merging reduction.

Corollary 3 (Preservation of locations and actions). Let A be a PTA.
Then: Locations(A) = LocationsM(A) and Actions(A) = ActionsM(A).

To summarize, computing the set of reachable states using the merging reduc-
tion yields an over-approximation of the set of paths. In the original semantics,
each trace of A(K) exists in A[π] for at least one valuation π |= K; this is not
the case anymore with the use of merging, where some traces in A(K) may not
exist for any π |= K. Nevertheless, both the set of reachable locations and the
set of actions are identical to those computed using the original semantics. As a
consequence, the merging reduction can be safely used to verify the reachability
or the non-reachability of a (set of) location(s), but not to verify more complex
properties such as properties on traces (linear-time formulas).
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4 The Inverse Method with Merging

4.1 Principle

We extend IM with the merging operation, by merging states within the algo-
rithm, i.e., by replacing within Algorithm 1 all occurrences of Post with PostM .
(The extension IMMrg is given in [6].)

Remark 2. In IMMrg , states are merged before the π-compatibility test. Hence,
some π-incompatible states may possibly be merged, and hence become π-
compatible. As a consequence, less inequalities will be negated and added to Kc,
thus giving a weaker output constraint KMrg . Also note that the addition of
merging to IM adds a new reason for non-confluence since the merging process
is itself non-deterministic. ��

We will see that, in contrast to IM , IMMrg does not preserve traces. That is,
given π, π′ |= KMrg , a trace in A[π] may not exist in A[π′], and vice versa.

Example 1. We use here a jobshop example in the setting of parametric schedu-
lability [16], in order to show that the traces are no longer preserved with IMMrg .
This system (modeled by a PTA A) contains 2 machines on which 2 jobs should
be performed. The system parameters are di (for i = 1, 2) that encode the dura-
tion of each job. The system actions are js1 (job 1 starting), jf1 (job 1 finishing)
and similarly for job 2.

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3) (l3, C
′
3)

(l4, C4) (l4, C
′
4) (l5, C5)

(l6, C6) (l6, C
′
6) (l6, C

′′
6 )

js1 js2

js2 js1

jf1 jf1

jf2

jf2 jf2 jf1

(a) Trace set of A(π)
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(l4, C4) (l5, C5)

(l6, C6)
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jf1 jf2
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(b) For IMMrg(A, π)
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3)

(l4, C4) (l5, C5) (l5, C
′
5)

(l6, C6) (l6, C
′
6) (l6, C

′′
6 )

js1 js2

js2 js1

jf1 jf2 jf2

jf2 jf1 jf1

(c) Trace set of A(π)

Fig. 2. Trace sets of A

Consider π = {d1 := 1, d2 := 2}. The trace set of A[π] using the standard
semantics (Definition 3) is given in Fig. 2a (in the form of a graph). Applying
IM to A and π gives K = d2 > d1. From the correctness of IM [8], the trace
set of A[π′], for all π′ |= K, is the same as for A[π]. Now, applying IMMrg to A
and π gives KMrg = true; the merged trace set is given in Fig. 2b. Then, let
π′ = {d1 := 2, d2 := 1} be a valuation in KMrg but outside of K. The trace set
of A[π′] (using the standard semantics) is given in Fig. 2c. The trace sets of A[π]
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and A[π′] are different: the trace l0
js2⇒ l2

js1⇒ l3
jf1⇒ l4

jf2⇒ l6 exists in A[π] but
not in A[π′]; the trace l0

js1⇒ l1
js2⇒ l3

jf2⇒ l5
jf1⇒ l6 exists in A[π′] but not in A[π].

However, note that the reachable locations and executable actions are the same
in these two trace sets. ��

4.2 Preservation of Locations

We will show in Theorem 2 that IMMrg preserves locations. This result relies on
the forthcoming lemma.

Lemma 4. Suppose IMMrg(A, π) terminates with output KMrg . Then π |=
KMrg.

Proof. At the end of IMMrg , all merged states in S are π-compatible by construc-
tion. That is, for all (l, C) ∈ S, we have π |= C↓P . Since KMrg =

⋂
(l,C)∈S C↓P ,

then π |= KMrg . 

Theorem 2. Suppose IMMrg(A, π) terminates with output KMrg . Then, for all
π′ |= KMrg , Locations(A[π]) = Locations(A[π′]).

Hence, although the trace set is not preserved by IMMrg , the set of locations
is. As a consequence, the reachability and safety properties (based on locations)
that are true in A[π] are also true in A[π′].

4.3 Preserving Actions

General Case. Although the set of locations is preserved by IMMrg , the set
of actions is not preserved in the general case (in contrast to the reachability
analysis with merging). A counterexample is given in [6].

Proposition 1 (Non-preservation of actions). There exist A, π and π′ such
that (1) IMMrg(A, π) terminates with output KMrg, (2) π′ |= KMrg, and (3)
Actions(A[π]) �= Actions(A[π′]).

Not all properties are based on actions. Hence IMMrg is suitable for sys-
tems the correctness of which is expressed using the reachability or the non-
reachability of locations. Nevertheless, to be able to handle as well systems the
correctness of which is expressed using the (non-)reachability of actions, the rest
of this section will be devoted to identifying techniques to preserve actions too.

Backward-Deterministic Parametric Timed Automata. We identify here
a subclass of PTAs for which IMMrg preserves the set of actions. We restrict the
model so that, for any location, at most one action is used on its incoming edges.
This restriction can be checked syntactically.

Definition 6 (Backward-determinism). A PTA is backward-deterministic
if for all (l1, g, a, ρ, l2), (l

′
1, g

′, a′, ρ′, l′2) ∈ →, then l2 = l′2 =⇒ a = a′.
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In a backward-deterministic PTA, if a location is reachable, then its incoming
action is executed too. Hence the preservation of the locations by IMMrg implies
the preservation of the actions too.

Proposition 2 (Action preservation). Let A be a backward-deterministic
PTA. Suppose IMMrg(A, π) terminates with output KMrg. Then, for all π′ |=
KMrg, Actions(A[π]) = Actions(A[π′]).

Proof. From Theorem 2 and Definition 6. 

This restriction of backward-determinism may be seen as quite strong in prac-
tice. Hence, in the following, in order to preserve the set of actions, we propose
to modify the algorithm itself rather than restricting the model.

Improvement of the Inverse Method. The non-preservation of the actions
by IMMrg comes from the fact that the states are first merged, and then tested
against π-compatibility (see Remark 2). In order to guarantee the action preser-
vation, we propose to first test newly generated states against π-compatibility,
and then merge them. Although this modification is only a subtle inversion of
two operations in the algorithm, it has consequences on the properties preserved.

We introduce an improved version IM ′
Mrg of IMMrg in Algorithm 3, where

states are merged after the π-compatibility tests. Technically, the differences
with IMMrg (highlighted using a non-white background) are as follows: (1) the
operation to compute the states at the current deepest level i is Post instead
of PostM (lines 9 and 6), and (2) the states are merged after the end of the
π-incompatibility tests (addition of line 7).

Algorithm 3. Inverse method with merging (variant) IM ′
Mrg(A, π)

input : PTA A of initial state s0, parameter valuation π
output: Constraint K′

Mrg over the parameters

1 i ← 0 ; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are π-incompatible states in Snew do
4 Select a π-incompatible state (l, C) of Snew (i.e., s.t. π �|= C) ;
5 Select a π-incompatible J in C↓P (i.e., s.t. π �|= J) ;

6 Kc ← Kc ∧¬J ; S ←
⋃i−1

j=0 PostM
j
A(Kc)

({s0}) ; Snew ← PostA(Kc)(S) ;

7 Snew ← Merge(Snew )
8 if Snew ! S then return K′

Mrg ←
⋂

(l,C)∈S C↓P
9 i ← i+ 1 ; S ← S ∪ Snew ; Snew ← PostA(Kc)(S)

Proposition 3. Suppose IM (A, π), IMMrg(A, π) and IM ′
Mrg(A, π) terminate

in a deterministic manner with an output K, KMrg and K ′
Mrg , respectively.

Then, K ⊆ K ′
Mrg ⊆ KMrg
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Note that IM ′
Mrg still does not preserve traces; the situation in Fig. 2 is exactly

the same for IM ′
Mrg as for IMMrg .

Theorem 3. Suppose IM ′
Mrg(A, π) terminates with output K ′

Mrg . Then, for all
π′ |= K ′

Mrg :

1. Locations(A[π]) = Locations(A[π′]), and
2. Actions(A[π]) = Actions(A[π′]).

Proof. Preservation of locations follows the same reasoning as for Theorem 2.
Preservation of actions is guaranteed by construction of IM ′

Mrg together with
the preservation of locations. 

5 Experimental Validation

We implemented IM ′
Mrg in Imitator [4], in addition to the classical IM . In [13],

the main technique for merging two timed constraints C,C ′ consists in comparing
their convex hull H with their union. If the hull and the union are equal (or
alternatively, if (H \C) \C′ = ∅, where \ is the operation of convex difference),
then C and C′ are mergeable into H . In [13,14], this technique is specialized to
the case where the timed constraints are represented as DBMs. DBMs are not
suitable to represent the state space of PTAs; in Imitator, polyhedra are used.
We implemented the mergeability test using the (costly) operation of convex
merging from the Parma Polyhedra Library (PPL) [9].

Table 1 describes experiments comparing the performances and results of
IM and IM ′

Mrg . Column |X | (resp. |P |) denotes the number of clocks (resp.
parameters) of the PTA. For each algorithm, columns States, Trans., t and Cpl
denote the number of states, of transitions the computation time in seconds, and
whether the resulting constraint is complete2, respectively. In the last 3 columns,
we compare the results: first, we divide the number of states in IM by the number
of states in IM ′

Mrg and multiply by 100 (hence, a number smaller than 100

denotes an improvement of IM ′
Mrg); second, we perform the same comparison

for the computation time; the last column indicates whether K = K ′
Mrg or

K � K ′
Mrg . Experiments were performed on a KUbuntu 12.10 64 bits system

running on an Intel Core i7 CPU 2.67GHz with 4GiB of RAM.
The first 4 models are asynchronous circuits [11,8]. The SIMOP case study is

an industrial networked automation system [8]. The next 5 models are common
protocols [12,17,8]. The other models are scheduling problems (e.g., [1,10,18]).
All models are described and available (with sources and binaries of Imitator)
on Imitator’s Web page3.

From Table 1, we see that IM ′
Mrg has the following advantages. First, the state

space is often reduced (actually, in all but 4 models) compared to IM . This is

2 Whereas IM and IM ′
Mrg may be non-complete in general, Imitator exploits a suf-

ficient (but non-necessary) condition to detect completeness, when possible.
3 http://www.lsv.ens-cachan.fr/Software/imitator/merging/

http://www.lsv.ens-cachan.fr/Software/imitator/merging/
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Table 1. Comparison between IM and IM ′
Mrg

IM IM ′
Mrg Comparison

Example |X| |P | States Trans. t Cpl States Trans. t Cpl States t K
AndOr 4 12 11 11 0.052

√
9 9 0.056

√
82 108 =

Flip-Flop 5 12 11 10 0.060
√

9 9 0.057
√

82 108 =
Latch 8 13 18 17 0.083 ? 12 12 0.069 ? 67 83 =

SPSMALL 10 26 31 30 0.618 ? 31 30 0.613 ? 100 99 =
SIMOP 8 7 - - OoM - 172 262 2.52 ? 0 0 -
BRP 7 6 429 474 3.50

√
426 473 4.30

√
99 123 =

CSMA/CD 3 3 301 462 0.514
√

300 461 0.574
√

100 112 =
CSMA/CD’ 3 3 13,365 14,271 18.3

√
13,365 14,271 25.4

√
100 139 =

RCP 5 6 327 518 0.748
√

115 186 0.684
√

35 91 =
WLAN 2 8 - - OoM - 8,430 15,152 2,137

√
0 0 -

ABT 7 7 63 62 0.344 ? 63 62 0.335 ? 100 97 =
AM02 3 4 182 215 0.369

√
53 70 0.112

√
29 30 �

BB04 6 7 806 827 28.0 ? 141 145 3.15 ? 17 11 =
CTC 15 21 1,364 1,363 88.9

√
215 264 17.6

√
16 20 =

LA02 3 5 6,290 8,023 751 ? 383 533 17.7
√

6.0 2.4 �
LPPRC10 4 7 78 102 0.39 ? 31 40 0.251 ? 40 64 =

M2.4 3 8 1,497 1,844 8.89
√

119 181 0.374
√

7.9 4.2 �

particularly interesting for the scheduling problems, with a division of the num-
ber of states by a factor of up to 16 (LA02). Also note that two case studies
could not even be verified without the merging reduction, due to memory ex-
haustion (“OoM”). Second, the computation time is almost always reduced when
the merging reduction indeed reduces the state space, by a factor of up to 42
(LA02). Third, and more surprisingly (considering the cost of the mergeability
test), the overhead induced by the mergeability test often does not yield a signif-
icant augmentation of the computation time, even when the merging reduction
does not reduce the state space at all; the worst case is +39% (CSMA/CD’),
which remains reasonable. Finally, the constraint output by IM ′

Mrg is weaker
(i.e., corresponds to a larger set of valuations) than IM for some case studies.

6 Final Remarks

We have shown in this paper that (1) a general technique of state merging
in PTAs preserves both the reachability and the non-reachability of actions and
locations, (2) the integration of this technique into IM often synthesizes a weaker
(hence, better) constraint while reducing the computation space, and preserves
locations (but neither traces nor actions), and (3) an improved version of IMMrg

preserves not only locations but actions. Experiments with Imitator show that
the improved procedure IM ′

Mrg does not only reduce the state space, but is also
often faster than the original procedure IM .

As future work, we plan to study the combined integration into IM of the
general technique of state merging with variants [7] and optimizations [3] of IM .
Regarding the implementation in Imitator, we aim at studying the replacement
of polyhedra with parametric DBMs [17]; furthermore, the (costly) mergeability
test should be optimized so as to improve performance. Finally, we also plan to
generalize the merging technique to the hybrid setting [15].
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Abstract. We introduce generalized register automata (GRAs) and study their
properties and applications in reasoning about systems and specifications over
infinite domains. We show that GRAs can capture both VLTL – a logic that ex-
tends LTL with variables over infinite domains, and abstract systems – finite state
systems whose atomic propositions are parameterized by variable over infinite
domains. VLTL and abstract systems naturally model and specify infinite-state
systems in which the source of infinity is the data domain (c.f., range of pro-
cesses id, context of messages). Thus, GRAs suggest an automata-theoretic ap-
proach for reasoning about such systems. We demonstrate the usefulness of the
approach by pushing forward the known border of decidability for the model-
checking problem in this setting. From a theoretical point of view, GRAs extend
register automata and are related to other formalisms for defining languages over
infinite alphabets.

1 Introduction

In model checking, we verify that a system has a desired behavior by checking that
a mathematical model of the system satisfies a formal specification of the behavior.
Traditionally, the system is modeled by a Kripke structure – a finite-state system whose
states are labeled by a finite set of atomic propositions. The specification is a temporal-
logic formula over the same set of atomic propositions [3].

When the system is defined over a large data domain or contains many components,
its size becomes large or even infinite, and model checking may become intractable.
Moreover, standard temporal logic may not be sufficiently expressive for specifying
properties of such systems.

In [7], we introduced a novel approach for model checking systems and specifica-
tions that suffer from the size problem described above. Our approach extended both
the specification formalism and the system model with atomic propositions that are
parameterized by variables ranging over some (possibly infinite) domain. We studied
the model-checking problem in this setting. While we showed that model checking
in the general case is undecidable, we have managed to find interesting fragments of
our systems and specification formalisms for which model checking is decidable. Our
methods were based on reducing the problem to standard LTL model checking. The
reduction was found helpful in some cases, but lacks a rigorous theoretical treatment.
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In particular, [7] left open the challenge of developing an automata-theoretic approach
for this setting.

In this paper we introduce generalized register automata (GRAs), a new formalism
for defining languages over infinite alphabets. GRAs can naturally model both the sys-
tems and specifications of [7]. We define GRAs, study their properties, and show how
they not only provide a unified theoretical basis to the results in [7], but also enable
strengthening and extending the results there.

We first elaborate on the setting in [7]. In an abstract system, our extension of
a Kripke structure, every state is labeled by a set of atomic propositions. Some of
the atomic propositions may be parameterized by variables that range over an un-
bounded or an infinite domain. The system also contains constraints on the possible
assignments to the variables, and may reset their value during its execution. The con-
crete computations of an abstract system are induced by paths of the abstract system
in which variables are assigned concrete values in a way consistent with the con-
straints and the resets along the path. For instance, if a path of the abstract system
starts with {send .x}, {rec.x}, {send .x}, and x is a variable over N that is reset be-
tween the second and third state, then a concrete computation induced by the path may
start with {send .3}, {rec.3}, {send.5}. Evidently, abstract systems are capable of de-
scribing communication protocols with unboundedly many processes, systems with in-
terleaved transactions each carrying a unique id, buffers of messages with an infinite
domain, and many more.

Our specification formalism, Variable LTL (VLTLs), also uses atomic proposi-
tions parameterized by variables. For example, the VLTL formula ∀x.G (send.x →
F receive.x) states that for every value d in the domain, whenever a message with con-
tent d is sent, then a message with content d is eventually received. As another example,
the formula ∃x.GF¬idle .x ∧ GF¬idle .x states that in each computation, there exists
at least one process that is both idle and not idle infinitely often. Note that if the do-
main of messages or process id’s is infinite or unknown in advance, then there exist no
equivalent LTL formulas for these VLTL formulas.

As described above, in [7] we solved the VLTL model-checking problem for some
fragments of the (undecidable) general setting. Our goal here is to suggest an automata-
theoretic approach to the problem, hopefully pushing the boundaries of decidable
fragments. In the automata-theoretic approach to model checking [15], we represent
systems and their specifications by automata on infinite words. Questions such as model
checking and satisfiability are then reduced to questions about automata and their lan-
guages. Traditional automata are too weak for modeling abstract systems or VLTL for-
mulas, and a formalism that can handle infinite alphabets is needed.

A classical formalism for defining languages with an infinite alphabet is that of reg-
ister automata [8,9]. A nondeterministic register automaton comprises a state machine
and a finite set of registers that may store values of the infinite domain. In a transition,
the register automaton either guesses some value and stores it in one of the registers (an
ε-transition), or advances on the input word if the content of register in the transition
matches the next input letter.
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Our formalism of GRA extends register automata in a way that enables easy mod-
eling of abstract systems and VLTL formulas.1 Essentially, this involves features that
mimic the conjunctions and disjunctions in the logic (that is, the transition function of
GRAs is alternating), features that mimic the existential and universal quantification of
variables (that is, GRAs have two types of ε-transitions, one – ε∃, which guesses and
assigns a single value to a register, and one – ε∀, which assigns all possible values to a
register by splitting the run, creating a different copy for every such value), features that
mimic the constraints on the variable values (by adding constraints on the content of the
registers), and features that make it possible to complement a given GRA by dualization
(by closing the components of a transition, namely the branching mode and guards, to
dualization).

We formally define GRAs and study their theoretical properties. We show that GRAs
are closed under the Boolean operations. Unsurprisingly, their universality and empti-
ness problems are generally undecidable, yet we point to the fragment in which the
GRAs have only a single register, for which nonemptiness is decidable.

We compare GRAs with the formalisms of register automata and data automata [9,2].
We show that GRAs are strictly more expressive than register automata. We describe a
translation from deterministic data automata to GRAs and show that there are languages
that are accepted by GRAs and not by (nondeterministic) data automata.

We describe a translation of abstract systems and VLTL formulas to GRAs. The
translation of a VLTL formula to an equivalent GRA resembles the translation of LTL
formulas to nondeterministic Büchi automata [15]. The quantifiers in the formula are
handled by a sequence of ε∃ (for ∃ quantifiers) and ε∀ transitions (for ∀ quantifiers).

In [7], we showed that model checking is undecidable already for VLTL formu-
las with two ∃ quantifiers, and is decidable for formulas with only ∀ quantifiers. The
translation to GRA enables us to complete the picture and show that for the safe frag-
ment of VLTL, model checking of formulas of type ∀x1; ∀x2; . . .∀xk; ∃xϕ is decid-
able. This is a useful fragment, as it captures specifications of the form “for every
environment, there exists a value that satisfies ϕ”. As an example, consider the for-
mula ∀x1; ∃x2;G ((¬idle.x1) → X (¬idle.x2)), with x1 �= x2. This formula states
that if there exists some non-idle process, then it will be immediately followed by a
different non-idle process, thus ensuring that there is an infinite sequence of non-idle
processes. Another example is the formula ∀x1; ∃x2;G (((¬req.x1) ∧ X req.x1) →
Xnew process.x2), stating that whenever a request with new content is sent, a new
process with a new process id is envoked. Dually, the satisfiability of formulas of the
type ∃x1; ∃x2; . . .∃xk; ∀xϕ is also decidable. For formulas of the type ∃x1; ∀x2;ϕ,
model checking is again undecidable.

Our upper-bound proofs rely on a reduction to the nonemptiness problem for multi-
counter machines. The model-checking complexity in these cases is then non-
elementary. Finding a lower bound has the same flavor as finding a lower bound for the
nonemptiness of data automata [2], which also uses multi-counter machines to show
the decidability of nonemptiness, and is a problem that is still open.

1 We study GRA on finite words. Extending the definition to infinite words is easy and the
technical difficulties are orthogonal to these that the setting of infinite alphabets involves. Thus,
the results here are restricted to the safe fragment of VLTL.
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Related Work. There are quite a few different models and variants of automata over
infinite alphabets, differing in their expressive power and decidable properties. A major
motivation for such models origins from formal reasoning about XML [13].

Register automata were first introduced in [8]. These were extended in [9] to include
ε-transitions. In [6], we studied VFA, a sub-type of nondeterministic register automata
that can be represented by finite automata and has fragments that are closed under the
Boolean operations.

Several types of alternating register automata (ARA) have been studied, differing
in their expressive power. In [12], the state machine has universal and existential states.
The run on a universal state splits into all possible configurations that may follow the
current configuration. [12] also studies the two-way model. In [5], the automaton is
single-register, and is enriched with the actions guess (an ε-transition) and spread
(creating new threads of the run with all data values that appear with some state, starting
from another state). For this model, nonemptiness is decidable. In [4], the authors study
the relations between LTL with the freeze quantifier (an extension of LTL that is equiped
with a register) and single-register alternating register automata.

Another type of automata over infinite alphabets are data automata [2]. Data au-
tomata are defined over alphabets of the type Σ×D, where Σ is finite and D is infinite.
Intuitively, Σ is accessed directly, while D can only be tested for equality, and is used
for inducing an equivalence relation on the set of positions. Technically, a data automa-
ton consists of two components. The first is a letter-to-letter transducer that runs on the
projection of the input word on Σ and generates words over yet another alphabet Γ .
The second is a finite automaton that runs on subwords (determined by the equivalence
classes) of the word over Γ generated by the transducer. Data automata turn out to be a
very expressive model for which nonemptiness is decidable (albeit non-elementary).
[10] and [17] study weaker versions of data automata, for which nonemptiness is
elementary.

Data automata too have several extensions. Such an extension is class automata [1],
which were defined for the purpose of studying of XPath. A class automaton behaves
almost similarly to a data automaton, but the automaton component processes the entire
word that is produced by the transducer (as opposed to processing a subword of it), and
it takes special transitions when it reads letters of the class it handles. This modifica-
tion makes nonemptiness undecidable for this type. Other models limit the structure of
the automaton component of class automata [16], or add counters to the different data
values [11] to achieve decidable emptiness.

A third type are pebble automata and their variants. A pebble automaton [12] places
pebbles on the input word in a stack-like manner. The transitions of a pebble automaton
compare the letter in the input with the letters in positions marked by the pebbles.
Several variants of this model have been studied. For example, [12] studies alternating
and two-way pebble automata, and [14] introduces top-view weak pebble automata.

These formalisms are insufficient for our purposes of studying of VLTL and abstract
systems – both in terms of expressive power, and in terms of easiness of translation.
Our formalism of GRA is designed specifically to deal with this setting, and offers a
clean and natural translation and suitable decidable fragments.
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2 Preliminaries

Automata on Data Words. Data words are words over an infinite alphabet Σ × D,
where Σ is a finite set to which we refer to as labels, and D is an infinite set to which
we refer to as data.

A nondeterministic register automaton on data words (NRA) A comprises an al-
phabet Σ × D, a set r = {r1, r2, . . . rk} of registers that can contain a value of D
each, an initial register assignment r# ∈ (D ∪ {#})k where # /∈ D, a set of states
Q, an initial state q0 ∈ Q, a set of accepting states F ⊆ Q, and a transition relation
δ ⊆ Q× (Σ ∪ {ε})× [k]×Q, where [k] = {1, 2, . . . , k}.

A run on an input word w over Σ×D begins at state q0, and ri is assigned r#(i) for
1 ≤ i ≤ k. Intuitively, when A is in state q and the next input letter is 〈a, d〉, if it takes
a transition labeled 〈ε, i〉, then it nondeterministically stores some value in register ri
that is different from the contents of the rest of the registers, and does not advance on
the input word. A transition labeled 〈a, i〉 may be taken if the content of the register ri
is d, in which case A also advances to the next input letter.

The word w is accepted by A if there exists a run on w that advances along all of
w and reaches an accepting state. The language of A, denoted L(A), is the set of all
words accepted by A.

Data automata [2] are another formalism that handles data words. A data automaton
C is a tuple 〈Σ × D,Γ,A,B〉, where A is a letter-to-letter transducer whose input
alphabet is Σ and output alphabet is Γ , and B is an NFA over Γ .

To explain the way a data automaton operates, we begin with some terms and nota-
tions. Consider a word w = 〈a1, d1〉〈a2, d2〉 . . . 〈an, dn〉 over Σ ×D. The string pro-
jection of w is the word a1a2 . . . an. A class in w is a maximal set of indices for which
the letters in w in these indices share the same data value. For example, in the data word
〈a, 1〉〈b, 1〉〈b, 2〉〈c, 1〉〈a, 2〉, there are two different classes: {1, 2, 4} and {3, 5}. Every
class induces a class word, a word over Σ that is formed by concatenating the labels of
the matching letters of the class in the order in which they appear in w. In the example,
the two class words are abc and ba.

Consider a word w = 〈a1, d1〉〈a2, d2〉 . . . 〈an, dn〉 over Σ × D. A run of C on w
consists of two parts. First, the transducer A runs on the string projection of w and
outputs a word γ1γ2 . . . γn over Γ . If it rejects then the run is rejecting. Otherwise, the
automaton B runs on every class word of 〈γ1, d1〉〈γ2, d2〉 . . . 〈γn, dn〉. If B accepts all
the class words then the run is accepting, otherwise it is rejecting.

The class of data automata contains the class of register automata, and the emptiness
problem for data automata is decidable. However, data automata are not closed under
complementation [2].

Abstract Systems and VLTL. In [7], we introduced variable LTL (VLTL) and abstract
systems. For both, the standard formalism of Kripke structures and LTL formulas is
extended with a set of variables that enables the computations of the Kripke structure to
carry values over some infinite domain D, and the formulas to express properties with
respect to these values. More specifically, the standard finite set of atomic propositions
AP over which both the systems and the formulas are defined is extended by a finite
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set of parameterized atomic propositions T . The propositions of T are parameterized
by variables from a finite set X . These variables are assigned values from D.

An abstract system S is a finite Kripke structure over AP ∪ (T × X). In every
transition of S, a subset X ′ of X may be reset, meaning that the varibles of X ′ may
change their value in the next step. The system S also includes an inequality set E
over X . Having xi �= xj ∈ E means that in every point of the computation, the value
assigned to xi must be different from the value that is assigned to xj . It holds that for
every system S there exists an equivalent system S′ over the same set of variables such
that the inequality set S′ is the full inequality set {xi �= xj |xi, xj ∈ X}. A computation
π of S is then an infinite word over 2AP∪(T×D), induced by some infinite path w (over
2AP∪(T×X)) of S. The D values in πi are obtained by the assignment to the variables
in wi. These values comply both with E and with the resets that w traverses – the value
of a variable does not change as long as it has not been reset.

A VLTL formula is a pair 〈ϕ,E〉, where ϕ = Q1x1;Q2x2; . . . Qkxk;ψ, where Qi ∈
{∀, ∃} and xi is a variable in X for every 1 ≤ i ≤ k, where ψ is an LTL formula over
AP ∪ (T ×X), and E is an inequality set over the variables. The semantics of VLTL
is with respect to computations over 2AP∪(T×D) and assignments to the variables of
ϕ. Intuitively, a computation π satisfies a formula ∃x;ψ (denoted π |= ∃x;ψ) if there
exists some value d that may (w.r.t. E) be assigned to x such that π |= ψ[x← d] in the
LTL sense. Similarly, π satisfies ∀x;ψ if for every value d that may be assigned to x, it
holds that π |= ψ[x← d]. For the formal definition, see [7].

We say that a system S satisfies a VLTL formula 〈ϕ,E〉 (denoted S |= 〈ϕ,E〉), if
every computation of S satisfies 〈ϕ,E〉. The model-checking problem for VLTL and
abstract systems is then to decide, given S and 〈ϕ,E〉, whether S |= 〈ϕ,E〉. In [7],
we showed that this problem is generally undecidable, already for formulas of the type
∃x1; ∃x2;ψ, where ψ is quantifier free. We showed, however, that model checking is
decidable when there are no resets in the system. Further, model checking is decidable
also in the case where the VLTL formula contains only ∀ quantifiers.

3 Generalized Register Automata

We present a generalization of register automata, called generalized register automata
(GRA), that allows alternation and dualization of the conditions on the transition. The
following details are generalized.

– Recall that in an 〈ε, i〉 transition, if the automaton stores some value in register ri,
then it must be different from the values in all other registers. We generalize this
idea by labeling every ε-transition by a Boolean formula over inequalities between
the registers (to which we also refer as a guard). For the run to continue along an ε
transition, the register assignment must satisfy the guard condition.

– Recall that in an 〈ε, i〉 transition, the automaton nondeterministically stores some
value in register ri. We can view this as follows: The run is accepting if there
exists some value that is stored in ri, such that the rest of the run is accepting. We
generalize this notion by defining two types of ε-transitions: in an 〈ε∃, i〉-transition,
the run is accepting if there exists some legal (w.r.t. the guard condition) value that
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is stored in ri, such that the rest of the run is accepting. in an 〈ε∀, i〉 transition, the
run is accepting if for every value that is stored in ri, the rest of the run is accepting.

– In the definition of register automaton, the state machine component is nondeter-
ministic. We generalize this by allowing the state machine to be alternating.

Formally, a generalized register automaton (GRA) is a tuple

〈Σ ×D,#, r, r#, Q, q0, δ, F 〉,

where

– Σ ×D is the input alphabet, where Σ is finite and D is infinite,
– r = {r(1), r(2), . . . r(k)} is a finite set of registers,
– # /∈ Σ marks an empty register,
– r# ∈ (Σ ∪ {#})k is the initial register assignment,
– Q is a finite set of states,
– q0 is the initial state,
– F ⊆ Q is a set of accepting states, and
– δ ⊆ (Q×Σ×B+(Q× [k]))∪(Q×{ε∃, ε∀}×B+(Q×G(r)× [k])) where G(r) is

the set of guards over inequalities over {r(1), r(2), . . . , r(k)}, and B+ stands for
the set of positive Boolean formulas 2.

We describe a run of a GRA on an input word w. Since GRAs are alternating, a run
on w is a tree. Each node of the tree holds the following information: the current state,
the current register configuration, and the current position in the input word. The root
of the tree is labeled 〈q0, r#, 1〉.

The sons of a node x labeled 〈q, 〈d(1) . . . d(k)〉, i〉 are determined by the type of
transition that is taken from x: an ε-transition (an ε∃-transition or ε∀-transition), or a
transition that advances on the input word. We describe how the run continues from x
for each of these transitions.

In the case of an ε∃ transition, suppose that 〈q1, g1, k1〉, 〈q2, g2, k2〉, . . . 〈qp, gp, kp〉
is a satisfying set for δ(q, ε∃). Then from x, the run can continue by splitting into the
son nodes x1, x2, . . . xp. These sons are all located in position i in w (that is, they do
not advance on the input word). A branch that leads from x to a son xj assigns a value
to register kj in a way that agrees with gj , and moves to state qj . Therefore, xj is
labeled 〈qj , 〈dj(1), dj(2) . . . dj(k)〉, i〉, where 〈dj(1), dj(2) . . . dj(k)〉 satisfies gj , and
may differ from 〈d(1) . . . d(k)〉 only in the register kj .

In the case of an ε∀ transition, again suppose that 〈q1, g1, k1〉, . . . 〈qp, gp, kp〉 is a sat-
isfying set for δ(q, ε∀). Then from x, the run continues by splitting into infinitely many
son nodes, all located in position i on w. For every 〈qj , gj, kj〉, the run branches over
all values that can be stored in register kj and satisfy gj . Thus, for every 〈qj , gj, kj〉, for
every value d that can be stored in register kj in a way that satisfies gj , the node x has a
son labeled qj , in position i, whose register assignment is identical to that of x, except
for register kj , which stores the value d.

2 The full definition of GRA also includes the classification of the transitions to “may” and
“must” transitions, which allows easy dualization and complementation. For simplicity, and
since we do not use these features in our results, we omit them from the definition.
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Finally, for a transition that advances on the input word, suppose that 〈q1, k1〉, . . .
〈qp, kp〉 is a satisfying set for δ(q, σ), and that wi = 〈a, d〉. Then from x, the run can
continue by splitting into the son nodes x1, x2, . . . xp. These sons are all located in
position i+1 in w (that is, they advance one letter on the input word), and their register
configuration is identical to the register configuration of x. A branch that leads from x
to a son xj must hold the value d in its register kj .

In the representation of δ, the registers to be read or written to are paired with the
state the transition leads to. This is essential for alternation. However, to make δ more
convenient to read, for the rest of the paper we represent it similarly to the transition
of NRA whenever possible. Also, in most cases we discuss the guards are uniform
throughout the GRA, and so we omit the guards from the representation, noting them
elsewhere. For example, we represent a transition 〈q, ε∃, 〈s, r1 �= r2, 1〉 ∨ 〈t, r1 �=
r2, 2〉〉, as two transitions from q; one labeled 〈ε∃, 1〉 leading to s, and one labeled
〈ε∃, 2〉 leading to t. Similarly, we represent a transition 〈q, a, 〈s, 1〉〉 as a transition from
q labeled 〈a, 1〉, leading to s.

Example 1. Figure 1 displays the three types of transitions. In (a), an ε∃ transition
is followed from q with a satisfying set 〈s, 2〉, 〈t, 2〉, and 〈t, 3〉 (we omit the guard
conditions, that state that the assignment to all registers must be different). The tree
branches accordingly: the leftmost and middle sons are in states s and t, respectively,
reassigning the second register (the middle son reassigns it with the same value it held
before), and the rightmost son is in state t and reassigns the third register.

In (b), an ε∀ transition is followed from q with a satisfying set 〈s, 2〉, and again we
omit the guard condition. Then the run branches into all possible assignments to the
second register, in each path moving to state s.

In (c), the input letter 〈a, 4〉 is read on a transition from q with a satisfying set 〈s, 1〉
and 〈t, 2〉. Then the run splits to two son nodes s and t, where the path to s reads the
value 4 from the first register, and the path to t reads 4 from the second register.

For convenience, we label the edges by the transitions, represented as a transition for
NRA, as we have explained above.

Fig. 1. The three types of transitions (a), (b) and (c)
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The run tree is accepting if the leaves of all paths of the tree that have read all of w
are in an accepting state. Notice that the ε-transitions may result in infinite paths that do
not advance on the word. Since the definition of acceptance only considers the leaves,
these paths are ignored when deciding acceptance. A word w is accepted by a GRA A
if A has an accepting run tree on w 3.

Example 2. Consider the GRAA seen in Figure 2. In every transition ofA, the guard is
r1 �= r2, and we omit this detail from Figure 2 for the easiness of reading. The language
ofA is the set of all nonempty words over {a} ×D in which no data value is repeated.
Every run of A first splits over all values stored in r1. Then, in every copy, as long as
the next input value is different from r1, the run continues by storing and reading the
next value in r2. The value in r1 may only be read once and then cannot be read again
from state s. Notice that all copies that do not have a value of the input word in their r1
stay and accept from state r. Figure 2 also includes an accepting run tree on the word
〈a, 3〉〈a, 4〉.

Fig. 2. The GRA A and an accepting run on the word 〈a, 3〉〈a, 4〉

Since GRAs are a generalization of nondeterministic register automata, we have that
every NRA has an equivalent GRA.

Given two GRAs A and B with sets of registers rA and rB , respectively, we can
easily construct GRAsA∪B andA∩B for the languagesL(A)∪L(B) andL(A)∩L(B),
respectively, as follows. For both constructions, the set r of registers is a concatenation
of rA and rB, and the state machine is the union of the state machines ofA and B, with
the addition of a single new initial state q0. The transition for q0 in A∪B and in A∩B
is defined δ(q0) = δA(q

A
0 )∨δB(q

B
0 ) and δ(q0) = δA(q

A
0 )∧δB(q

B
0 ), respectively, where

3 We could define Büchi acceptance conditions for infinite words as well in the standard way,
in which a run tree is accepting if all of its paths that infinitely often advance on the input
word, infinitely often traverse some accepting state. As we have mentioned, in this paper we
concentrate on finite words.
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qA0 and δA are the initial state and transition function ofA, and similarly for qB0 and δB.
That is, the construction for the union and intersection is the standard construction for
alternating automata, and the set of registers is obtained by simply concatenating the
sets of registers for both automata.

We can reduce PCP (Post’s correspondence problem) to both the universality prob-
lem and the nonemptiness problem for GRA, and so they are both undecidable. How-
ever, given a word w and a GRA A, it is decidable whether A accepts w. To see why,
notice that the precise identity of the data values that do not appear in w and are as-
signed to the registers during a run does not matter. What matters are only the equality
relations between them. Then, we can show that a run tree of A on w can be simulated
by using a bounded number of values (that depends on the the number of different val-
ues in w and the number of registers in A), without using ε∀-transitions. Further, we
can also bound the number of consecutive ε-transitions in every path, and so it suffices
to check trees of bounded width and bounded length to decide whether w ∈ L(A).

Finally, we can show that for the single-register fragment of GRA, the nonemptiness
problem is decidable. The next theorem sums up the closure and decidability properties
of GRA.

Theorem 1. 1. GRAs are closed under union and intersection.
2. The membership problem for GRAs is decidable.
3. The nonemptiness and universality problems for GRAs are undecidable.
4. The nonemptiness problem for GRAs with a single register is decidable.

We now proceed to compare data automata to GRA. A deterministic data automaton
C can be translated to an equivalent GRA with two registers r1, r2 as follows. Using
an ε∀-transition on r1, the GRA splits into infinitely many copies. Each copy checks a
different class of the input word, where the class is determined by its content of r1, and
simulates a simultaneous run on both the transducer and the automaton components of
C; upon reading a letter, if the data is not the class it needs to check, then the copy only
advances on the transducer (using r2 to guess and advance on this data). If the data is
the content of r1, then the copy advances along both the transducer and the automaton.
The copy accepts if both the transducer and the automaton reach an accepting state.

In [2], the authors point to a language that cannot be accepted by a data automaton.
This language can be accepted by a GRA with three counters. Roughly speaking, a GRA
can accept languages of words of the form w#w, and data automata cannot. Therefore,
data automata are not stronger than GRA. We leave the precise comparison with data
automata open.

Theorem 2. 1. Every deterministic data automaton has an equivalent GRA.
2. Data automata are not more expressive than GRA.

4 From VLTL and Abstract Systems to GRA

In this section, we show how to translate VLTL formulas and abstract systems to GRAs.
Then, we use these constructions to find fragments of VLTL for which the satisfiability
and model checking problems are decidable.
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Since GRAs are capable of expressing a single value in every letter, we cannot di-
rectly express computations in which more than one value appears at a time, and we
first concentrate on a restricted type of computations that include a single value in ev-
ery state. Then, we show how to encode unrestricted computations with restricted ones.

A computation π over 2AP∪(T×D) is called restricted if πi contains at most one data
value for every i.

Let S be an abstract system with k variables and the full inequality set, in which
every state contains at most one variable. It is easy to see that this is a sufficient and
necessary condition for S to have only restricted computations. An equivalent GRA
AS is obtained from the structure of S by using k registers, where register ri holds
the data value assigned to the variable xi. Resets are translated to ε∃ transitions, and
the inequality set is reflected in the guard conditions. All states of AS are accepting.
Clearly, L(A) is exactly the set of all concrete computations of S.

Given a VLTL formula 〈ϕ = Q1x1;Q2x2; . . . Qkxk;ψ,E〉, where Qi ∈ {∃, ∀}
for every i, where E is an inequality set over the set of variables and where ψ is an
LTL formula over AP ∪ (T ×X), we construct a GRA Aϕ with k + 1 registers over
2(AP∪T ) ×D, whose language is exactly the set of restricted computations that satisfy
ϕ. A letter 〈s, d〉 represents a set of atomic propositions s ∈ 2AP∪T , such that the
parameterized atomic propositions in s all carry the same value d.

For simplicity, we assume that E states that the value of all variables must be differ-
ent. A general E can then be handled by the guards in the transitions, requiring that if a
set of variables appears in a transition, then they all must carry the same value.

Intuitively, the construction ofAϕ relies on the Vardi-Wolper construction for ψ. The
variables are handled by a set of k + 1 registers, and the quantifiers are translated to an
ε∃-transition for an ∃ quantifier, and to an ε∀-transition for a ∀ quantifier.

Thus, the run begins by following a sequence of states and transitions matching the
sequence of quantifiers in ϕ; for every 1 ≤ i ≤ k, an occurence of ∃xi is translated
to an 〈ε∃, i〉-transition, and an occurence of ∀xi is translated to an 〈ε∀, i〉-transition.
The inequality set is reflected in the transitions within this sequence, that makes sure
that the values stored in registers r1 through rk satisfy E. Since we assume that E is
the full inequality set, this means that in every copy, every register contains a different
value from the other registers. Once the values are stored, in every copy of the run, the
registers r1 through rk are fixed, while register rk+1 handles values in the computation
that do not appear in any of the registers.

The NRA component ofAϕ then behaves as the automaton for ψ with the following
changes.

– Every state may change the value of rk+1 to some value different from the values
in the rest of the registers, by following self loops labeled 〈ε∃, k + 1〉.

– Recall that we allow only a single value to appear in every step. However, in the
Vardi-Wolper construction the labeling is over 2AP∪(T×X). We therefore restrict
the labels to those that contain a single variable of X .
Now, consider a transition labeled by a set that contains no variables at all (that is,
its set of atomic propositions is A ⊆ AP ). This means that a.x is set to false for
every a ∈ T and x ∈ X . This can hold if either a does not hold in this step for any
value, or if a holds with a value that is different from the values that are assigned
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to the variables in X . The register rk+1 may hold this value. Therefore, for every
B ⊆ T , we add to this transition the label 〈A ∪B, k + 1〉.

The following theorem summarizes this discussion.

Theorem 3. 1. For every abstract system S with restricted computations there exists
a GRA AS such that L(AS) is the set of computations of S.

2. For every VLTL formula ϕ there exists a GRA Aϕ such that L(Aϕ) is the set of
restricted computations that satisfy ϕ.

We handle unrestricted computations by encoding the content of a single state by
a sequence of letters, each carrying a single value. The alphabet is 2AP ∪ (T × D)4.
Intuitively, a letter of type 〈t, d〉 represents t.d appearing in the state, and a letter in
2AP represents the set of unparameterized atomic propositions in the state. A sequence
that matches a state first lists the unparameterized atomic propositions, and then lists
the parameterized atomic propositions, one by one. Thus, when translating an abstract
system or a VLTL formula over X = {x1, x2, . . . xk} to a GRA, each label is translated
to a sequence of labels in 2AP ∪ (T × [k]) (or 2AP ∪ (T × [k+1]) for a VLTL formula).

For model checking purposes, we make sure that: (a) both the system GRA and the
VLTL GRA have a uniform representation of each label, which is done listing the con-
tent of each state according to some predefined order < on T , and (b) the VLTL GRA
is reverse-deterministic (a property that is essential for the decidability of the construc-
tion in Theorem 6 below). This is achieved by changing the alphabet of the VLTL GRA
to 2AP∪(T×X) × 2AP ∪ T × [k + 1], where a letter in 2AP∪(T×X), representing the
original label, follows every sequence. When applying the construction in the proof of
Theorem 6, we may ignore the letters in 2AP∪(T×X) for the purposes of the intersection
with the abstract system, but consider them for the transition relation.

Example 3. Let s = {a.x1, b.x1, c.x2, d} be a state in an abstract system, or a labeling
of a transition in the Vardi-Wolper construction for some LTL formula over a set of
atomic propositions. Then for the order a < b < c, for the case of the abstract system
the translation of s to a GRA leads to the sequence of transitions {d}〈a, 1〉〈b, 1〉〈c, 2〉.
In the case of a VLTL formula, this sequence is followed by the letter {a.x1, b.x1, c.x2}.

We now turn to use the translation of VLTL and abstract systems to GRAs in order
identify a new fragment of VLTL for which model checking is decidable. For this, we
turn to study a type of GRAs that is relevant for the translation. We define this type of
GRA, and show that for GRAs that are a translation of VLTL formulas, nonemptiness is
decidable. Further, we prove that this type is also decidable when considering an unary
alphabet.

Consider a GRAA = 〈Σ×D,#, 〈r1, r2, r3, . . . rk〉, 〈#,#, . . .#〉, Q, q0, δ, F 〉with
the following attributes:

– The guard condition is always the full inequality set.

4 We present the alphabet this way to emphasize that the value attached to the letter in 2AP does
not matter.
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– From q0 exits a sequence of states S that assign values to r3, r4, . . . rk with ε∃
transitions, followed by a state sk from which there is an ε∀ transition that splits
over all allowed values in r1.

– From sk, the GRAA behaves as an NRA without returning to the states of S, sk or
q0.

– The content of the registers r1 and r3 . . . rk does not change after the initial assign-
ment,

– Every state of the NRA component has a self loop labeled 〈ε∃, 2〉. So in each step
of a run, r2 may change its content.

We denote GRAs of this type single-split GRAs. Recall that both the translation of a
deterministic data automaton to a GRA and the GRA of Example 2 yield a single-split
GRA with two registers, that is, the ε∀ transition is taken from the intial state, and from
there on the different copies continue their runs as runs of NRA. Moreover, notice that
for VLTL formulas of the type ∃x1; ∃x2; . . .∃xk; ∀x;ϕ with a full inequality set, their
translation to GRA also yields a single-split GRA with k + 2 registers.

Theorem 4. The nonemptiness problem for single-split GRAs is undecidable.

Nevertheless, there are sub-types of single-split GRAs for which nonemptiness is
decidable. The first type are two-register single-split GRAs over an unary alphabet, that
is, when |Σ| = 1 .

A second type are reverse-deterministic single-split GRAs. An automaton is reverse-
deterministic if by reversing its transitions we get a determinisic automaton. A single-
split GRA is reverse-deterministic if its NRA component is reverse-deterministic with
respect to the labeling of its edges (neglecting 〈ε∃, 2〉-transitions, that are in self-loops).

A third type of GRAs whose nonemptiness is decidable are GRAs for the intersection
of a reverse-deterministic single-split GRA with an NRA.

For both reverse-deterministic single-split GRAs and for their intersection with
NRAs, their decidable nonemptiness is essential for our purpose of studying decision
problems for VLTL and abstract systems.

Theorem 5. The nonemptiness problems for single-split GRAs over an unary alphabet,
for reverse-deterministic single-split GRAs, and for the interesection of an NRA and a
reverse-deterministic single-split GRA are decidable.

Proof: (sketch) For all these types of GRA, we reduce their nonemptiness problem
to the nonemptiness problem for multi-counter machines, for which nonemptiness is
known to be decidable. Multi-counter machines comprise a state machine and a set
of counters. Upon reading a letter, the machine advances on the state machine and
increments or decrements some counter. The machine cannot perform zero-checks on
the counter, and the run is stuck when it attempts to decrement a counter whose value
is zero.

Given a GRAA of one of these types, the state machine of the multi-counter machine
M simulates simultaneous runs on all copies of A after the ε∀ split. Every state keeps
the set of states of A in which the various copies are located, and each such state q is
paired with a counter that keeps the number of copies that are currently in q. The runs
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that do not handle a value that is included in the input word all behave similarly, and
therefore it suffices to keep a single copy for all of them. Therefore, it suffices to track
a finite number of copies. The counters are updated according to the transition relation
of A. The run accepts iff all nonempty counters are paired with accepting states.

The challenge in these constructions is to correctly update the counters. In general,
since multi-counter machines do not allow zero checks on the counters, it is impossible
to unite the content of two counters if the value they hold is unknown. Therefore, if in
some transition of the GRA, two different states q and q′ may move to the same state
state s, updating the counters is impossible. However, we can show that for these three
types of GRA, updating the counters is possible.

A single-split GRA over an unary alphabet can be reconstructed in such a way that
in every step, the content of two counters is united only if the value of one of them is
1. In case of a reverse-deterministic GRA, no two counters have to be unified during
the run.

For the intersection of a reverse-deterministic single-split GRA with an NRA, the
challenge in the construction is to ensure that the progress of the single-split GRA
agrees with the register assignment in the NRA. To achieve this, some of the states in
the single-split GRA are paired with registers of the NRA. When a state q is paired
with ri, this means that one of the copies that is currently in q in the single-split GRA
handles the value that is assigned to register ri in the NRA. When the NRA reassigns
a register ri, a new state may be paired with ri. Thus, the run progresses legally along
both automata.

Consider a VLTL formula ψ = 〈α,E〉 where α = ∃x1; ∃x2; . . . ∃xk; ∀x;ϕ, and E
is the full inequality set. Recall from Theorem 3 that ψ can be translated to a single-
split GRAAψ. Since the Vardi-Wolper construction for ϕ yields a reverse-deterministic
automaton, we have that Aψ is a reverse-deterministic single-split GRA. We can check
the satisfiability of ψ for finite computations by checking the nonemptiness of Aψ.
According to Theorem 5, this is decidable.

Similarly, recall from Theorem 3 that an abstract system with restricted computa-
tions can be translated to an NRA. Given a system and a VLTL formula, we can then
decide the model checking problem by checking the nonemptiness of the intersection
of the two matching GRAs – for the system, and for the negation of the formula. Con-
sider a VLTL formula ψ′ = 〈β,E〉 where β = ∀x1; ∀x2; . . .∀xk; ∃x;ϕ and E is the
full inequality set. Then the negation of β is ∃x1; ∃x2; . . . ∃xk; ∀x;¬ϕ, again yield-
ing a reverse-deterministic single-split GRA A¬ψ′ for ¬ψ′. According to Theorem 5,
it is decidable whether the intersection of A¬ψ′ with an NRA representing the system
is nonempty, proving the decidability of the model-checking problem for this type of
VLTL formulas. Therefore, we have the following.

Theorem 6. Let ψ = 〈α,E〉, where α = ∃x1; ∃x2; . . . ∃xk; ∀x;ϕ, for a safety formula
ϕ, and where E is the full inequality set.

1. It is decidable whether ψ is satisfiable.
2. Let S be an abstract system with restricted computations. It is decidable whether S

satisfies ¬ψ.
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5 Discussion
GRAs offer an automata-theoretic approach to VLTL. By reasoning about GRAs, we
can work towards closing the gap between the decidable and undecidable fragments
and provide a full classification of the model-checking problem for VLTL. Indeed, the
proof of undecidability of model checking of VLTL formulas with two ∃ quantifiers [7]
can be altered to show the undecidability of satisfiability of VLTL formulas with two ∀
quantifiers, of satisfiability of VLTL formulas with a ∀ followed by an ∃ quantifier, and
of model checking of VLTL formulas with an ∃ followed by a ∀ quantifier. Thus, the
fragments considered in Theorem 6 complete the picture for the case of safety VLTL
formulas. Here, we proved them to be decidable for the safe fragment of LTL. We are
optimistic about an extension of our results here to the setting of infinite words and
computations, which would lead to further decidable fragments. Finally, GRAs could
also provide a framework for studying other formalisms that deal with infinite alphabets,
such as XML and its related languages.
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Abstract. Pushdown systems are a model of computation equipped
with one stack where only the top of the stack is inspected and mod-
ified in each step of transitions. Although this is a natural restriction,
some extensions of pushdown systems require more general operations
on stack: conditional pushdown systems inspect the whole stack contents
and discrete timed pushdown systems increment the ages of the whole
stack contents.

In this paper, we present a general framework called pushdown sys-
tems with transductions (TrPDS) for extending pushdown systems with
transitions that modify the whole stack contents with a transducer. Al-
though TrPDS is Turing complete, it is shown that if the closure of
transductions appearing in the transitions of a TrPDS is finite, it can
be simulated by an ordinary pushdown system and thus the reachability
problem is decidable. Both of conditional and discrete timed pushdown
systems can be considered as such subclasses of TrPDS.

1 Introduction

The theory of pushdown systems (PDS) has been successfully applied to the
verification of recursive programs such as Java programs [4]. The essential re-
sult is that the reachability problem of a PDS can be decided efficiently by
representing the rational (regular) set of configurations with automata [5,10,8].
Several extensions of PDS have been studied to widen the applications of PDS,
and their reachability problems can often be decided by translating them to
ordinary pushdown systems.

Esparza et al. introduced pushdown systems with checkpoints that can check
the whole stack contents against a rational language [9] to model runtime stack
inspection used for security checks. They showed that pushdown systems with
checkpoints can be translated into ordinary pushdown systems, and thus the
reachability problem is decidable. We call this extension conditional pushdown
systems in this paper [12].

Abdulla et al. introduced discrete timed pushdown systems [2] that combine
timed automata [3] and pushdown systems. Stack symbols of a timed pushdown
system are extended with the notion of ages, and timed pushdown systems have
a transition that increments the ages of all the symbols in the stack. Even with
this extension, timed pushdown systems can also be translated into pushdown
systems to decide the reachability problem.

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 412–426, 2013.
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In this paper, we generalize these extensions and present a general framework
called pushdown systems with transductions (TrPDS) for extending pushdown
systems with transitions that modify the whole stack contents with a finite-
state transducer. Transductions are the relations induced by transducers. Since
TrPDS is Turing complete in general, we are interested in a finite TrPDS where
we impose the restriction that the closure of transductions appearing in the
transitions of a TrPDS is finite. Both of conditional and timed pushdown systems
can be formulated as simple instances of finite TrPDS. We then show that a finite
TrPDS can be translated into an ordinary PDS by generalizing the construction
of Abdulla et al. for timed pushdown systems [2] and the reachability problem
of a finite TrPDS is decidable. As a nontrivial example of finite TrPDS, we
introduce conditional transformable pushdown systems that can check the whole
stack contents against a rational language and modify the whole stack contents
by a function from stack symbols to stack symbols.

We also show that the saturation procedure that calculates pre∗(C) for the
rational set of configurations C can be directly extended to finite TrPDS. This
is a generalization of the saturation procedure for conditional pushdown sys-
tems [14]. A rational set of configurations of finite TrPDS is represented with
automata that modify the rest of input by a transduction.

2 Preliminaries

2.1 Transducers

A transducer is a structure (Q,Γ,Δ, I, F ) where Q is a finite set of states, Γ is
a finite set of symbols, Δ ⊆ Q × Γ ∗ × Γ ∗ × Q is a finite set of transition rules,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states.

A computation of a transducer is a sequence of transitions of the following
form:

p0
w1/w

′
1−−−−→ p1

w2/w
′
2−−−−→ · · · wn/w

′
n−−−−→ pn

where 〈pi−1, wi, w
′
i, pi〉 ∈ Δ. When we have the computation above, we write

p0
w1···wn/w

′
1···w′

n−−−−−−−−−−→ pn. The language L(t) ⊆ Γ ∗ × Γ ∗ of a transducer t is defined
as follows:

L(t) = {〈w1, w2〉 | qI
w1/w2−−−−→ qf for some qI ∈ I and qF ∈ F}

A letter-to-letter transducer is a transducer where Δ is restricted to Δ ⊆
Q× Γ × Γ ×Q, i.e., a letter-to-letter transducer is an automaton over Γ × Γ .

2.2 Transductions

A transduction τ over Γ ∗ is a relation between Γ ∗ and Γ ∗, or a function from Γ ∗

to P(Γ ∗). A transduction τ is a rational transduction if there is a transducer t
such that τ = L(t). A transduction τ is a length-preserving rational transduction
if there is a letter-to-letter transducer t such that τ = L(t).
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We write TransdΓ for the set of all length-preserving rational transductions
and use a metavariable t to denote both a transducer and a transduction if there
is no danger of confusion. In the rest of this paper, we use the term transduction
for a length-preserving rational transduction.

The composition of transductions t1, t2 ∈ TransdΓ is defined as that for
relations:

t1 ◦ t2 = {〈w,w′′〉 | 〈w,w′〉 ∈ t1, 〈w′, w′′〉 ∈ t2}

TransdΓ is closed under composition and (TransdΓ , ◦,∪, �, �) is a semiring
where � = {〈w,w〉 | w ∈ Γ ∗} and � = ∅.

By considering t ∈ TransdΓ as a rational language over Γ × Γ , we introduce
(left) quotient and nullability ν(t) defined as follows:

〈·, ·〉−1 : ∀w1 ∈ Γ ∗, w2 ∈ Γ |w1|.TransdΓ → TransdΓ

〈ε, ε〉−1t = t

〈γ, γ′〉−1
t = {〈w,w′〉 | 〈γw, γ′w′〉 ∈ t}

〈γw, γ′w′〉−1
t = 〈w,w′〉−1

(〈γ, γ′〉−1
t)

ν(t) =

{
{ε} 〈ε, ε〉 ∈ t

∅ otherwise

where ε ∈ Γ ∗ is the empty string. TransdΓ is closed under quotient and quotient
distributes over composition in the following sense.

Proposition 1. 〈w1, w2〉−1(t1 ◦ t2) =
⋃

w3∈Γ |w1|

(
〈w1, w3〉−1t1 ◦ 〈w3, w2〉−1t2

)
A transduction t ∈ TransdΓ can be considered as a function from Γ ∗ to

P(Γ ∗). We call this function application action, use the postfix notation, and
write wt: wt = {w′ | w′ ∈ Γ ∗, 〈w,w′〉 ∈ t}.

The action is defined for a language L by Lt =
⋃

w∈L
wt.

We can also inductively define action by using quotient:

εt = ν(t) (γw)t =
⋃

γ′∈Γ

(
γ′ �

(
w 〈γ, γ′〉−1

t
))

where w �W = {ww′ | w′ ∈W}.

2.3 Pushdown Systems

A pushdown system (PDS) is a structure P = (Q,Γ,Δ) where Q is a finite set of
control locations, Γ is a finite set of stack symbols, and Δ ⊆ Q× (Γ+×Γ ∗)×Q
is a finite set of transition rules. For a transition rule 〈p, 〈w1, w2〉 , q〉 ∈ Δ, we

write p
w1/w2

↪−−−−→ q. A configuration of PDS P is a pair 〈q, w〉 of location q ∈ Q
and string w ∈ Γ ∗. We write Conf (P) for the set of all configurations Q × Γ ∗.
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We define transition relation ⇒ ⊆ Conf (P)× Conf (P): 〈p, w1w〉 ⇒ 〈q, w2w〉 if
p

w1/w2

↪−−−−→ q and w ∈ Γ ∗.

We say a PDS P = (Q,Γ,Δ) is a standard PDS if |w| = 1 for all p
w/w′
↪−−−→ q ∈ Δ.

It is clear that for a given PDS P we can construct a standard PDS equivalent
to P by introducing extra states. We use a nonstandard PDS to simplify the
construction of PDS for simulating TrPDS.

3 TrPDS : Pushdown Systems with Transductions

TrPDS is an extension of PDS that may modify the whole stack contents by
applying a transduction.

A TrPDS is a structure (Q,Γ, T,Δ) where Q is a finite set of control locations,
Γ is a finite set of stack symbols, Δ ⊆ Q × (Γ × Γ ∗ × T ) × Q is a finite set
of transition rules, and T ⊆ TransdΓ is a finite set of transductions. For a

transition rule 〈p, 〈γ, w, t〉 , q〉 ∈ Δ, we write p
γ/w|t
↪−−−→ q and call the triple “γ/w|t”

stack effect.
A configuration of TrPDS P is a pair 〈q, w〉 of location q ∈ Q and string

w ∈ Γ ∗. We write Conf (P) for the set of all configurations Q× Γ ∗.

Definition 1 (Labelled transition relation). We define a labelled transition

relation
δ
=⇒ ⊆ Conf (P) × Conf (P): 〈p, γw′〉 δ

=⇒ 〈q, ww′′〉 if δ is p
γ/w|t
↪−−−→ q and

w′′ ∈ w′t. We also write c1 ⇒ c2 if c1
δ
=⇒ c2 for some δ ∈ Δ.

Let us consider an example of a TrPDS and its transitions.

Example 1. Let t be 〈b, b〉∗ (〈a, a〉 ∪ 〈a, b〉)∗. TrPDS P = (Q,Σ, {t, �}, {δ1, δ2})
where Q = {q0, q1, q2}, Σ = {a, b}, δ1 = q0

a/ε|t
↪−−−→ q1 and δ2 = q1

b/ε|�
↪−−−→ q2. The

following are some examples of transitions.

〈q0, aaa〉
δ1=⇒ 〈q1, ba〉

δ2=⇒ 〈q2, a〉
〈q0, aaa〉

δ1=⇒ 〈q1, bb〉
δ2=⇒ 〈q2, b〉

The effect of transition rule δ = p
σ
↪−→ q with stack effect σ is captured by the

following function effectσ below: 〈p, w〉 δ
=⇒ 〈q, w′〉 iff w′ ∈ effectσ(w).

effectγ/w|t : Γ ∗ → P(Γ ∗)
effectγ/w|t(ε) = ∅

effectγ/w|t(γ
′w′) =

{
w � w′t if γ′ = γ

∅ otherwise

Definition 2. The closure 〈T 〉 of a transduction set T under composition and
quotient is inductively defined as follows.

– T ⊆ 〈T 〉 and �, � ∈ 〈T 〉.
– If t1, t2 ∈ 〈T 〉, then t1 ◦ t2 ∈ 〈T 〉.
– If t ∈ 〈T 〉, then 〈γ, γ′〉−1

t ∈ 〈T 〉 for all γ, γ′ ∈ Γ .
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Definition 3. A TrPDS P over T is called finite if 〈T 〉 is finite.

Example: Conditional Pushdown Systems. A conditional pushdown sys-
tem is a pushdown system extended with stack inspection [9,12]. A transition
rule has the form 〈p, 〈γ, w, L〉 , q〉 ∈ Δ where L is a rational language over stack
symbols1: it induces the transition relation 〈p, γw′〉 ⇒ 〈q, ww′〉 if w′ ∈ L. The
transition can be taken only when w′ ∈ L.

Let L be the finite set of rational languages appearing in transition rules.
Here, we define 〈L〉 inductively as follows:

– L ⊆ 〈L〉 and ∅, Γ ∗ ∈ 〈L〉.
– If L1, L2 ∈ 〈L〉, then L1 ∩ L2 ∈ 〈L〉.
– If L ∈ 〈L〉, then γ−1L ∈ 〈L〉 for all γ ∈ Γ .

The set 〈L〉 is finite since quotient distributes over intersection and there are
finitely many languages obtained from each rational language with quotient.

For a language L, we define L̃ = {〈w,w〉 | w ∈ L} and then L̃ is a length-
preserving rational transduction for a rational language L. For the composition
and the quotient on L̃, we have the following.

L̃ ◦ L̃′ = L̃ ∩ L′ 〈γ, γ′〉−1
L̃ =

{
γ̃−1L if γ = γ′

� otherwise

Then, a conditional pushdown system over L can be considered as a finite
TrPDS over the transduction set T = {L̃ | L ∈ L}. It is clear that 〈T 〉 is finite
since we have 〈T 〉 = {L̃ | L ∈ 〈L〉} from the properties above.

Example: Transformable Pushdown Systems. A transformable pushdown
system is a pushdown system that may modify stack by applying a function
over stack symbols. This generalizes the operation of discrete timed pushdown
systems [2] that increment the ages of stack symbols. A transition rule has the
form 〈p, 〈γ, w, f〉 , q〉 ∈ Δ where f is a function from Γ to Γ : it induces the
transition relation 〈p, γw′〉 ⇒ 〈q, wf(w′)〉.

For a given f ∈ Γ → Γ , we define a transduction f̂ = {〈w, f(w)〉 | w ∈ Γ ∗}.
It is clear that f̂ is a length-preserving rational transduction and the following
hold.

f̂1 ◦ f̂2 = f̂2 ◦ f1 〈γ, γ′〉−1
f̂ =

{
f̂ if γ′ = f(γ)

� otherwise

Note that ◦ in f2 ◦f1 is the composition of functions, i.e., f2 ◦f1 = λv.f2(f1(v)).
A transformable pushdown system over F = {f1, f2, . . . , fn} can be considered

as a finite TrPDS over T = {f̂1, f̂2, . . . , f̂n}. It is clear that 〈T 〉 is finite because

〈T 〉 ⊆ {f̂ | f ∈ Γ → Γ} ∪ {�}.
1 We use the definitions of transition rule and transition relation inspecting whole
stack without its top [12] rather than inspecting whole stack [9].
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Example: Two-counter Machines. Any two-counter machine without input
can be simulated by a TrPDS P = (Q, {0, 1, λ}, {d0, t0, d1, t1}, Δ). The transduc-
tion d0 decrements the number of 0’s in the stack by replacing the first 0 with λ
and the transduction t0 checks whether stack contains 0 or not. d1 and t1 have
the same behaviors for 1’s.

Since d0 �= d20 �= · · · �= dn0 �= · · · , P is not a finite TrPDS. The reachabil-
ity problem of two-counter machines is undecidable and thus the reachability
problem of TrPDS is undecidable in general. However, we will show that the
reachability problem of a finite TrPDS is decidable.

4 Construction of PDS from TrPDS

From a given finite TrPDS, we construct a finite PDS by lazily applying a trans-
duction to stack. It is a generalization of the construction introduced by Abdulla
et al. [2] for simulating discrete timed pushdown systems. By the construction,
we prove that the reachability problem of a finite TrPDS is decidable.

4.1 Construction

For a given TrPDS P = (Q,Γ, T,Δ), we construct a PDS P ′ = (Q,Γ ∪ 〈T 〉, Δ′).
Let δ be a transition rule p

γ/w|t
↪−−−→ q ∈ Δ. We have transition 〈p, γw′〉 δ

=⇒
〈q, ww′′〉 in P for w′′ ∈ w′t where the transduction t is applied to the rest of
stack w′. In ordinary pushdown systems, we can only modify the top of stack
at each transition. Thus, we delay the application of the transduction in P ′ by
keeping it on stack.

We construct three kinds of transition rules of P ′ as follows:

APPLY -transition : p
γ/w t
↪−−−→ q ∈ Δ′ if p

γ/w|t
↪−−−→ q ∈ Δ

COMPOSE -transition : p
t1t2/t2◦t1
↪−−−−−−→ p ∈ Δ′ if t1, t2 ∈ 〈T 〉

UNFOLD-transition : p
tγ/γ′ 〈γ,γ′〉−1

t

↪−−−−−−−−−→ p ∈ Δ′ if t ∈ 〈T 〉 and γ, γ′ ∈ Γ

With APPLY -transition rule, we have transition 〈p, γw′〉 ⇒ 〈q, wtw′〉 in P ′.
The application of transduction t is simulated lazily with COMPOSE -transition
rule and UNFOLD-transition rule.

For δ ∈ Δ, we have a corresponding APPLY -transition rule in Δ′ and we

write
δ
=⇒ for a transition relation obtained from δ. Similarly, we write

C
=⇒ and

U
=⇒

for transition relations induced by COMPOSE -transition rule and UNFOLD-

transition rule, respectively. We also write 〈p, w〉 ⇒ 〈q, w′〉 if 〈p, w〉 δ
=⇒ 〈q, w′〉 for

some δ, 〈p, w〉 C
=⇒ 〈q, w′〉, or 〈p, w〉 U

=⇒ 〈q, w′〉.
For δ ∈ Δ, we introduce many-steps transition relation

δ
� =

C
=⇒∗◦ U

=⇒?◦ δ
=⇒ in

P ′ (◦ is used as binary relation composition).
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Example 2. The following are the transitions of the constructed PDS that cor-
respond to those in Example 1.

〈q0, aaa〉
δ1=⇒ 〈q0, taa〉 U

=⇒ 〈q0, bt′a〉
δ2=⇒ 〈q1, �t′a〉 C

=⇒ 〈q1, t′a〉 U
=⇒ 〈q2, a 〈a, a〉−1t′〉

〈q0, aaa〉
δ1=⇒ 〈q0, taa〉 U

=⇒ 〈q0, bt′a〉
δ2=⇒ 〈q1, �t′a〉 C

=⇒ 〈q1, t′a〉 U
=⇒ 〈q2, b 〈a, b〉−1t′〉

(For the sake of simplicity, we abbreviate 〈a, b〉−1
t as t′.)

For δ = p
σ
↪−→ q ∈ Δ, we have 〈p, w〉

δ
� 〈q, w′〉 iff w′ ∈ Effectσ(w) where Effect

is inductively defined as follows.

Effectγ/w|t : (Γ ∪ 〈T 〉)∗ → P((Γ ∪ 〈T 〉)∗)
Effectγ/w|t(ε) = ∅
Effectγ/w|t(t

′) = ∅

Effectγ/w|t(γ
′w′) =

{
{w tw′} if γ = γ′

∅ otherwise

Effectγ/w|t(t
′γ′w′) = {w t (〈γ′, γ〉−1

t′)w′}
Effectγ/w|t(t1t2w

′) = Effectγ/w|t((t2 ◦ t1)w′)

4.2 Simulation

To reveal a relation between TrPDS and PDS, we consider the difference in
how a transduction is applied to stacks of a TrPDS and a PDS. For a TrPDS, a
transduction is applied to its stack immediately. On the other hand, for the PDS
constructed from the TrPDS, the corresponding transduction is lazily applied
to its stack when the PDS takes transitions that unfold transductions. This
difference is reflected in the definitions of effectσ(w) and Effectσ(w).

To relate stacks of a TrPDS and a PDS, we introduce concretization to obtain
the set of stacks of the TrPDS from a stack of the PDS.

Definition 4 (concretization of stack).

‖ · ‖ : (Γ ∪ 〈T 〉)∗ → P(Γ ∗)
‖ε‖ = {ε}
‖γw‖ = γ � ‖w‖
‖tw‖ = ‖w‖t

The gap between effectσ(w) and Effectσ(w) is filled by applying the con-
cretization of stack.

Lemma 1. For all stack effect σ, ‖Effectσ(w)‖ = effectσ(‖w‖)

To establish the simulation, we consider transitions of a set of configurations
and define postδ(C) for a TrPDS and Postδ(C) for a constructed PDS.

postδ(C) = {c′ | c ∈ C, c
δ
=⇒
P

c′} Postδ(C) = {c′ | c ∈ C, c
δ
�
P′

c′}



Pushdown Systems with Stack Manipulation 419

Transitions of a set of configurations can be related by extending concretization
for configurations.

‖ 〈p, w〉 ‖ = {〈p, w′〉 | w′ ∈ ‖w‖} ‖C‖ =
⋃
c∈C
‖c‖

Theorem 1. For any set C ⊆ Q× (Γ ∪ 〈T 〉)∗, postδ(‖C‖) = ‖Postδ(C)‖.

Proof. Let δ be a transition p
σ
↪−→ q.

‖Postδ(C)‖ = ‖{c′ | c ∈ C, c
δ
� c′}‖

= ‖{〈q, w′〉 | 〈p, w〉 ∈ C,w′ ∈ Effectσ(w)}‖
= {〈q, w′〉 | 〈p, w〉 ∈ C ,w′ ∈ ‖Effectσ(w)‖}
= {〈q, w′〉 | 〈p, w〉 ∈ C ,w′ ∈ effectσ(‖w‖)} (Lemma 1)
= {〈q, w′〉 | 〈p, w〉 ∈ ‖C‖, w′ ∈ effectσ(w)}
= {c′ | c ∈ ‖C‖, c δ

=⇒ c′} = postδ(‖C‖)
��

We then consider one-step transitions of a set of configurations that may apply
any transition rule.

post(C) =
⋃
δ∈Δ

postδ(C) Post(C) = {c′ | c ∈ C, c =⇒
P′

c′}

It should be noted that the definition of Post(C) does not directly correspond to
that of Postδ(C) because Post(C) captures one-step transitions while Postδ(C)
captures many-steps transitions. However, we have the following weaker corre-
spondence.

Postδ(C) ⊆ Post∗(C) ‖Post(C)‖ ⊆ ‖C ∪
⋃
δ∈Δ

Postδ(C)‖

From Theorem 1, for any set C ⊆ Q × Γ ∗, we have postδ(C) = ‖Postδ(C)‖
and obtain the following corollary.

Corollary 1. For any set C ⊆ Q× Γ ∗, post∗(C) = ‖Post∗(C)‖.

4.3 Computing Post∗

In this section, we show the forward reachable set post∗(C) for a rational set of
configurations C is rational and effectively computable. Thus, the reachability
problem of a finite TrPDS is decidable.

To compute post∗(C), we use Corollary 1 and apply usual (forward) reacha-
bility analysis to calculate Post∗(C) [8]. For calculating the concretized set of
configurations ‖Post∗(C)‖, we introduce a tail recursive version of ‖·‖ as follows:

‖ · ‖′ : (Γ ∪ 〈T 〉)∗ × 〈T 〉 → P(Γ ∗)
‖ε‖′a = ν(a)

‖γw‖′a =
⋃

γ′∈Γ

(
γ′ � ‖w‖′〈γ,γ′〉−1a

)
‖tw‖′a = ‖w‖′t◦a
‖w‖′ = ‖w‖′

�
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We prove the equivalence of the two versions by induction on w.

Proposition 2. ‖w‖t = ‖w‖′t.

It should be noted that the function ‖ · ‖′ is realized as a transducer 2. The key
of the construction is to consider accumulator a as a state of the transducer.

To be exact, we construct the transducer c = (〈T 〉, Γ,Δ, I, F ) where I = {�}
and F = {t | t ∈ 〈T 〉, ν(t) = {ε}}.

a
γ/γ′
−−−→ (〈γ, γ′〉−1

a) ∈ Δ for all γ′ ∈ Γ

a
t/ε−−→ (t ◦ a) ∈ Δ for all t ∈ 〈T 〉

Then, we have ‖w‖′ = wc.
For a rational set of configurations C, Post∗(C) is rational from forward reach-

ability analysis. Thus, we can effectively compute (Post∗(C))c since it is the
image under transducer c of rational set Post∗(C).

Finally, we obtain the following theorem.

Theorem 2. For a rational set of configurations C of a finite TrPDS, post∗(C)
is rational and effectively computable.

5 Conditional Transformable Pushdown Systems

We consider conditional transformable pushdown systems as a nontrivial sub-
class of finite TrPDS. Such pushdown systems may have both kinds of transition
rules of conditional and transformable pushdown systems.

A conditional transformable pushdown system is a TrPDS (Q,Γ, L̃ ∪ F̂ , Δ)
where L is a finite set of rational languages over Γ and F is a finite set of
functions over Γ . We show that

〈
L̃∪ F̂

〉
is finite and thus any conditional trans-

formable pushdown system is a finite TrPDS. Hence, the reachability problem
of conditional transformable pushdown systems is decidable.

In order to show that 〈L̃ ∪ F̂〉 is finite, we introduce a notion of implementa-

tion. We define an algebra (U, •, 〈·, ·〉−1
) which is closed under composition and

quotient as follows:

– • : U × U → U is a binary operator that corresponds to composition, and
– 〈·, ·〉−1

: Γ × Γ ×U → U is a ternary operator that corresponds to quotient.

Then, we define an implementation of a finite transduction set T .

Definition 5 (Implementation of T ). For a given finite transduction set T ,

we call an algebra (U, •, 〈·, ·〉−1
) equipped with functions F : T → U and G : U →

TransdΓ an implementation of T if the following hold:

– G ◦ F = id
– G(u1 • u2) = G(u1) ◦G(u2)

2 This transducer is not letter-to-letter.
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– G(〈γ, γ′〉−1u) = 〈γ, γ′〉−1G(u)

We use the following proposition to show that 〈T 〉 is finite.
Proposition 3. For a given finite transduction set T , 〈T 〉 is finite if there is a
finite implementation of T .

The following property is the key to the construction of a finite implementa-
tion of L̃ ∪ F̂ .
Proposition 4. Let L ⊆ Γ ∗ and h : Γ → Γ . Then, we have ĥ ◦ L̃ = h̃−1(L) ◦ ĥ.

This property implies any sequence ĥ1◦L̃1◦ĥ2◦L̃2◦· · ·◦ĥi◦L̃i can be normalized

as (L̃′1 ◦ L̃′2 ◦ · · · ◦ L̃′i) ◦ (ĥ1 ◦ ĥ2 ◦ · · · ◦ ĥi). It means that the inspection of the
stack can be done before modification.

Based on this property, we define an implementation IT = (C×〈F̂〉, •, 〈·, ·〉−1)
with F and G where C is inductively defined as follows:

– L ⊆ C and ∅, Γ ∗ ∈ C.
– If L1, L2 ∈ C, then L1 ∩ L2 ∈ C.
– If L ∈ C and γ ∈ Γ , then γ−1L ∈ C.
– If L ∈ C and h ∈ F , then h−1L ∈ C.

The set C is finite because γ−1(h−1L) = h−1((h(γ))−1L), h−1(g−1(L)) = (g ◦
h)−1(L), and h−1(L1 ∩ L2) = h−1L1 ∩ h−1L2.

We define the operators and functions of the implementation as follows:

〈L1, h1〉 • 〈L2, h2〉 =
〈
L1 ∩ h−1

1 (L2), h1 ◦ h2

〉
〈γ, γ′〉−1 〈L, h〉 =

〈
γ−1L, 〈γ, γ′〉−1

h
〉

F (t) =

{
〈L, �〉 if t ∈ L̃ and t = L̃

〈Γ ∗, t〉 otherwise

G(〈L, h〉) = L̃ ◦ h

With respect to F and G, we need to show that the three conditions of imple-
mentations hold: G ◦F = id and G(〈γ, γ′〉−1

u) = 〈γ, γ′〉−1
G(u) are easily proved

from the definition and we use Proposition 4 to prove G(u1 •u2) = G(u1)◦G(u2).
Finally, we obtain the following corollary of Theorem 2.

Corollary 2. For a rational set of configurations C of a conditional trans-
formable pushdown system, post∗(C) is rational and effectively computable.

6 Saturation Procedure of TrPDS

We extend the saturation procedure of PDS for finite TrPDS which computes the
set pre∗(C) backward reachable from a rational set of configurations C [5,10].

First, we review the saturation procedure for ordinary pushdown systems.
Then, we extend the saturation procedure for TrPDS based on that for condi-
tional pushdown systems where a rational set of configurations is represented by
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an automaton with regular lookahead [14]. In particular, we introduce automata
with transductions (TrNFA) that apply transductions to the rest of the input
and extend the saturation procedure so that it constructs a TrNFA from a given
finite TrPDS.

6.1 Saturation Procedure for PDS

We review the ordinary saturation procedure. To simplify our presentation, we
first consider the set of configurations backward reachable from a single config-
uration 〈qf , ε〉. For a given PDS P = (Q,Γ,Δ), we construct a finite automaton
Aω that accepts pre∗(〈qf , ε〉) where qf ∈ Q.

The saturation procedure starts from the initial P-automaton A0 and it-
eratively updates P-automaton Ai into Ai+1 until saturation. The saturation
procedure is described as follows:

1. Let the initial P-automaton A0 be (Q,Γ,∅, Q, {qf}).
2. If p

γ/w
↪−−→ q ∈ Δ and q

w−−→
Ai

p′, then we obtain Ai+1 by adding transition

〈p, γ, p′〉 to Ai.
3. Repeat 2 until saturation.

This procedure always terminates since Q × Γ × Q is finite, and we obtain a
fixed point P-automaton Aω .

The constructed P-automaton Aω has the following property and hence we
have L(Aω) = pre∗(〈qf , ε〉).

Theorem 3. p
w−−→
Aω

∗q iff 〈p, w〉 ⇒ 〈q, ε〉.

The saturation procedure above can be used to compute pre∗(C) for a rational
set of configurations C. Let C ⊆ Q × Γ ∗ be a rational set of configurations
accepted by P-automaton B = (P, Γ,Δ′, Q, F ). Without loss of generality, we
can assume B has no transition leading to an initial state. We construct new

PDS P ′ = (Q ∪ P, Γ,Δ′′) where Δ′′ = Δ ∪ {p
γ/ε
↪−−→ q | 〈p, γ, q〉 ∈ Δ′}.

Then, pre∗(F ×{ε}) in PDS P ′ is equal to pre∗(C) in PDS P . Hence, we only
consider the set of configurations backward reachable from a single configuration
with empty stack in the following sections.

6.2 TrNFA

To represent a rational set of configurations of finite TrPDS, we introduce au-
tomata with transductions (TrNFA) that apply transductions to the rest of the
input.

A TrNFA is a structure A = (Q,Σ,Δ, T, I, F ) where Q is a finite set of states,
Σ is a finite set of symbols, Δ ⊆ Q× (Σ → 〈〈T 〉〉)×Q is a finite set of transition
rules, T is a finite set of transductions, I ⊆ Q is a set of initial states, and F ⊆ Q
is a set of final states. 〈〈T 〉〉 is the smallest set S such that 〈T 〉 ⊆ S and S is
closed under union ∪.
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We write p
γ|t−−→ q if 〈p, σ, q〉 ∈ Δ and σ(γ) = t. Transition p

γ|t−−→ q means that
the automaton consumes γ from input, transforms the rest of input by t, and
changes its state from p to q.

Intuitively, the composition of two transitions could be defined as follows:

p
γγ′′|〈γ′′,γ′〉−1

t◦ t′
−−−−−−−−−−−−→ q if p

γ|t−−→ r, r
γ′|t′−−−→ q, and γ′′ ∈ Σ

With the above definition, finitely many transitions accrue by the composing the
two transitions, and then the associativity of the composition of transitions does
not hold. On the other hand, we obtain only one transition by composing two
transitions in usual automata and the associativity of the composition holds.

To deal with this problem, we define product ⊗ over Σ∗ → 〈〈T 〉〉 and introduce
pseudo formal power series semiring (S,⊗,⊕, 1, 0).

Definition 6 (Pseudo formal power series semiring).

S = Σ∗ → 〈〈T 〉〉, 1 = λw.

{
� if w = ε

� otherwise
, 0 = λw.�

(σ1 ⊗ σ2)(w) =
⋃

w=w1w3

|w3|=|w2|

(
〈w3, w2〉−1

σ1(w1) ◦ σ2(w2)
)

(σ1 ⊕ σ2)(w) = σ1(w) ∪ σ2(w)

We define inductively transition relations as follows:

p
1−→ p

p
σ−→ q if 〈p, σ, q〉 ∈ Δ

p
σ1⊗σ2−−−−→ r if p

σ1−→ q and q
σ2−→ r

The associativity of composition of transitions holds as a result of bundling
transitions.

We write p
w|t−−→ q if p

σ−→ q and σ(w) = t , and p
w−→ q if p

w|t−−→ q and

ν(t) = {ε}. Even if p
w|t−−→ q, we have a transition from p to q consuming w only

when the rest of input is successfully transformed by t. We define the language
of automaton : L(A) = {w | p w−→ q for some p ∈ I, q ∈ F}.

6.3 Computing pre∗ of TrPDS

To compute pre∗(〈qf , ε〉) of TrPDS P = (Q,Γ,Δ, T ), we start from the initial
TrNFA A0 = (Q,Γ,Δ′, T,Q, {qf}) where Δ′ = {〈p, λγ.�, q〉 | p, q ∈ Q}.

To construct a TrNFA that accepts pre∗(〈qf , ε〉), we extend the saturation
rule as follows:
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– If p
γ/w|t
↪−−−→ q ∈ Δ, q

w|t′−−→ p′ in the current automaton, and 〈p, σ, p′〉 ∈ Δ′,
then we replace 〈p, σ, p′〉 by 〈p, σ ⊕ σ′, p′〉 where σ′(γ) = t⊗ t′ and σ′(γ′) = �

if γ �= γ′.

The saturation procedure always terminates and calculates the fixed point au-
tomaton Aω because Σ → 〈〈T 〉〉 is finite.

We have the following two lemmas that bridge a computation of TrPDS and
a behavior of TrNFA.

Lemma 2. If 〈p, w〉 ⇒∗ 〈q, ε〉, then p
w−−→
Aω

q.

Lemma 3. If p
w|t−−→
Aω

q, then 〈p, ww′〉 ⇒∗ 〈q, w′′〉 for all w′′ ∈ w′t.

From these lemmas, we have the following theorem that implies L(Aω) =
pre∗(〈qf , ε〉).

Theorem 4. p
w−−→
Aω

q iff 〈p, w〉 ⇒∗ 〈q, ε〉.

6.4 Construction of Automata from TrNFA

We construct a finite automaton A′ from a finite TrNFA A = (S,Σ,Δ, T, I, F )
to show that pre∗ is rational and effectively computable.

The construction is very simple. We construct the finite automaton A′ =
(S × 〈〈T 〉〉, Σ,Δ′, I × {�}, F × {t | t ∈ 〈〈T 〉〉, ν(t) = {ε}}) where each state pt of

A′ means that we must apply t to the rest of input. For each p
γ|t−−→ q ∈ Δ, we

add transition
〈
pu, γ

′, q〈γ′,γ1〉−1u ◦ t

〉
into Δ′ for all γ′ ∈ Γ, u ∈ 〈〈T 〉〉.

To distinguish transitions of finite automata from those of TrNFA, we write
pt

w−⇀ p′t′ for transitions of A′. From the definition of A′, we have L(A′) = {w |
p�

w−⇀ qt and ν(t) = {ε} for some p ∈ I, q ∈ F , and t ∈ 〈〈T 〉〉}.
Then, we have the following two lemmas: Lemma 4 states that the constructed

automaton captures behaviors of TrNFA and Lemma 5 states the other direction.

Lemma 4. If p
w|t−−→ q, then there exist t1, t2, . . . , tn such that p�

w−⇀ qt1 , . . . ,

p�
w−⇀ qtn and t =

⋃
1≤i≤n

ti.

Lemma 5. If p�
w−⇀ qt, then p

w|t′−−→ q and t ⊆ t′ for some t′.

These lemmas imply the equivalence of TrNFA A and the constructed au-
tomaton A′ : L(A) = L(A′). Thus, pre∗ is rational and effectively computable.

7 Related Works

Conditional pushdown systems are introduced for the analysis of programs with
runtime inspection [9,12]. The second author of this paper recently applied them
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to formalize a subset of the HTML5 parser specification [14]. A similar extension
of pushdown systems is considered in [7] to formulate abstract garbage collection
in the control flow analysis of higher-order programs.

We should clarify the relation between discrete timed pushdown systems of
Abdulla et al. [2] and transformable pushdown systems in this paper. Stack
symbols of a discrete timed pushdown system are equipped with a natural
number representing its age, and thus stack is a string over Γ × N. However,
as the region construction of timed automata [3], it is sufficient to consider
N≤m = {x | 0 ≤ x ≤ m} ∪ {ω} where m is the maximum number appearing in
conditions of transitions. Then, a discrete timed pushdown system can be con-
sidered as a transformable pushdown system. Abdulla et al. [1] also introduced
dense timed pushdown systems and showed that the state reachability problem
is decidable through the translation to pushdown systems. The idea of the con-
struction is a combination of the region construction and the construction for
TrPDS. However, the construction is very involved and it is not clear whether
we can clarify the construction by using TrPDS.

We have extended the saturation procedure to compute pre∗ for finite TrPDS
by introducing TrNFA. This procedure is closely related to the generalized reach-
ability analysis of pushdown systems with indexed weighted domains [13]. It will
be possible to refine the pseudo formal power series semiring in this paper to
an indexed semiring and consider the saturation procedure as that for weighted
pushdown systems.

In regular model checking [6], transitions of a system are modeled by a length-
preserving rational transduction. The verification is conducted by computing the
transitive closure of a transduction. From a viewpoint of reachability analysis,
our approach and regular model checking are similar but we handle push and pop
operations that are not represented by length-preserving rational transductions.

8 Conclusion and Future Works

We have introduced a general framework TrPDS to extend pushdown systems
with transitions that modify the whole stack contents with a transducer. The
class of finite TrPDS generalizes conditional and transformable pushdown sys-
tems, and even a combination of the two systems. A finite TrPDS can be simu-
lated by an ordinary pushdown system, and the saturation procedure for com-
puting pre∗ can be extended for finite TrPDS.

We only consider manipulations of stack that can be represented with a length-
preserving rational transduction. We believe that the framework of TrPDS can
be extended for general rational transductions. However, it will be necessary to
revise the definition of the closure based on quotient and the representation of
transductions must be taken into account.

Most of our results on TrPDS depend on the finiteness of the closure of a
transduction set. Thus, it is natural to ask whether it is decidable to check the
closure of a transductions set is finite. As far as we know, this problem has not
been investigated yet. We have shown that the following problem is undecidable
by using undecidability of uniformly halting problem [11]:
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For a given set T of length-preserving rational transductions, decide
whether or not the semigroup generated from (T, ◦) is finite.

However, it seems that this result cannot easily be extended for the closure of a
set of transductions in this paper.
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Abstract. Many important functions over strings can be represented
as finite-state string transducers. In this paper, we present an automata-
theoretic technique for algorithmically verifying that such a function is
robust to uncertainty. A function encoded as a transducer is defined to
be robust if for each small (i.e., bounded) change to any input string, the
change in the transducer’s output is proportional to the change in the
input. Changes to input and output strings are quantified using weighted
generalizations of the Levenshtein and Manhattan distances over strings.
Our main technical contribution is a set of decision procedures based
on reducing the problem of robustness verification of a transducer to
the problem of checking the emptiness of a reversal-bounded counter
machine. The decision procedures under the generalized Manhattan and
Levenshtein distance metrics are in Pspace and Expspace, respectively.
For transducers that are Mealy machines, the decision procedures under
these metrics are in Nlogspace and Pspace, respectively.

1 Introduction

Many tasks in computing involve the evaluation of functions from strings to
strings. Such functions are often naturally represented as finite-state string trans-
ducers [12,17,2,21]. For example, inside every compiler is a transducer that maps
user-written text to a string over tokens, and authors of web applications rou-
tinely write transducers to sanitize user input. Systems for natural language
processing use transducers for executing morphological rules, correcting spelling,
and processing speech. Many of the string algorithms at the heart of computa-
tional biology or image processing are essentially functional transducers.

The transducer representation of functions has been studied thoroughly over
the decades, and many decision procedures and expressiveness results about
them are known [17,21]. Less well-studied, however, is the behavior of finite-state
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transducers under uncertain inputs. The data processed by real-world transduc-
ers often contains small amounts of error or uncertainty. The real-world im-
ages handled by image processing engines are frequently noisy, DNA strings
that transducers in computational biology process may be incomplete or incor-
rectly sequenced, and text processors must account for wrongly spelled keywords.
Clearly, it is desirable that such random noise in the input does not cause a
transducer to behave unpredictably. However, this is not mandated by tradi-
tional correctness properties: a transducer may have a “correct” execution trace
on every individual input, but its output may be highly sensitive to even the
minutest perturbation to these inputs.

One way to ensure that a transducer behaves reliably on uncertain inputs is to
show that it is robust, as formalized in [15,4,6]. Informally, robustness means that
small perturbations to the transducer’s inputs can only lead to small changes
in the corresponding outputs. In this paper, we present an automata-theoretic
technique for verifying that a given functional transducer is robust in this sense.

Our definition of robustness of (functional) transducers is inspired by the
analytic notion of Lipschitz continuity. Recall that a function f over a metric
space (let us say with distance metric d) is K-Lipschitz if for all x, y, we have
d(f(x), f(y)) ≤ Kd(x, y). Intuitively, a Lipschitz function responds proportion-
ally, and hence robustly, to changes in the input. In our model, a transducer is
robust if the function encoded by the transducer satisfies a property very similar
to Lipschitz-continuity. The one difference between the Lipschitz criterion and
ours is that the output of a Lipschitz-continuous function changes proportionally
to every change to the input, however large. From the modeling point of view,
this requirement seems too strong: if the input is noisy beyond a certain point, it
makes little sense to constrain the behavior of the output. Accordingly, we define
robustness of a transducer T with respect to a certain threshold B on the amount
of input perturbation—given constantsB,K and a distance metric d over strings,
T is (B,K)-robust if for all x, y: d(x, y) ≤ B ⇒ d(T (x), T (y)) ≤ Kd(x, y).

Our main technical contribution is a set of decision procedures based on reduc-
ing the problem of verifying (B,K)-robustness of a transducer to the problem
of checking the emptiness of a reversal-bounded counter machine. Naturally,
whether a transducer is robust or not depends on the distance metric used. We
present decision procedures to verify robustness under two distance metrics that
are weighted generalizations of the well-known Manhattan and Levenshtein dis-
tances over strings. Our decision procedures under these metrics are in Pspace

and Expspace, respectively. When the transducer in question is restricted to
be a Mealy machine, we present simpler decision procedures under these metrics
that are in Nlogspace and Pspace, respectively.

The rest of the paper is organized as follows. In Sec. 2, we present our formal
models and definitions. In Sec. 3, we present a class of distance-tracking automata
that are central to our decision procedures, presented in Sec. 4. We conclude with
a discussion of related work in Sec. 5.
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2 Preliminaries

In this section, we define our transducer models, distance metrics and our notion
of robustness. In what follows, we use the following notation. Input strings are
typically denoted by lowercase letters s, t etc. and output strings by s′, t′ etc.
We denote the concatenation of strings s and t by s.t, the ith character of string
s by s[i], the substring s[i].s[i + 1]. . . . .s[j] by s[i, j], the length of the string s
by |s|, and the empty string and empty symbol by ε.

Functional Transducers. The transducers considered in this paper may be
nondeterministic, but must define functions between regular sets of strings. For-
mally, a transduction R from a finite alphabet Σ to a finite alphabet Γ is an
arbitrary subset of Σ� × Γ �. We use R(s) to denote the set {t | (s, t) ∈ R}. We
say that a transduction is functional if ∀s ∈ Σ�, |R(s)| ≤ 1.

A finite transducer (ft) is a finite-state device with two tapes: a read-only
input tape and a write-only output tape. It scans the input tape from left to
right; in each step, it reads an input symbol, nondeterministically chooses its
next state, writes a corresponding finite string to the output tape, and advances
its reading head by one position to the right. The output of an ft is the string
on the output tape if the ft finishes scanning the input tape in some designated
final state. Formally, a finite transducer T is a tuple (Q,Σ, Γ, q0, E, F ) where Q
is a finite nonempty set of states, q0 is the initial state, E ⊆ Q×Σ × Γ � ×Q is
a set of transitions, and F is a set of final states1.

A run of T on a string s = s[0]s[1] . . . s[n] is defined in terms of the sequence:
(q0, w

′
0), (q1, w

′
1), . . . , (qn, w

′
n), (qn+1, ε) where for each i ∈ [0, n], (qi, s[i], w

′
i, qi+1)

is a transition in E. A run is called accepting if qn+1 ∈ F . The output of T along
a run is the string w′0.w

′
1. . . . .w

′
n if the run is accepting, and is undefined oth-

erwise. The transduction computed by an ft T is the relation �T � ⊆ Σ� × Γ �,
where (s, s′) ∈ �T � iff there is an accepting run of T on s with s′ as the output
along that run. T is called single-valued or functional if �T � is functional. Check-
ing if an arbitrary ft is functional can be done in polynomial time [10]. The
input language, L, of a functional transducer T is the set {s | �T �(s) is defined}.
When viewed as a relation over Σ�×Γ �, �T � defines a partial function; however,
when viewed as a relation over L× Γ �, �T � is a total function.

Mealy Machines. These are deterministic, symbol-to-symbol, functional trans-
ducers. The notion of determinism is the standard one, and a symbol-to-symbol
transduction means that for every transition of the form (q, a, w′, q′), |w′| = 1.
The input language L of a Mealy machine T is the set Σ� (i.e., every state is
accepting). Thus, the transduction �T � : Σ� → Γ � is a total function.

In what follows, we use the term finite transducers, or simply transducers, to
refer to both functional transducers and Mealy machines, and distinguish be-
tween them as necessary. As a technicality that simplifies our proofs, we assume

1 Some authors prefer to call this model a generalized sequential machine, and de-
fine transducers to allow ε-transitions, i.e., the transducer can change state without
moving the reading head. Note that we disallow ε-transitions.
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that for all i > |s|, s[i] = #, where # is a special end-of-string symbol not in Σ
or Γ .

Distance Metrics. A metric space is an ordered pair (M,d), where M is a set
and d : M ×M → R, the distance metric, is a function with the properties:
(1) d(x, y) ≥ 0, (2) d(x, y) = 0 iff x = y, (3) ∀x, y : d(x, y) = d(y, x), and (4)
∀x, y, z : d(x, z) ≤ d(x, y) + d(y, z).

The Hamming distance and Levenshtein distance metrics are often used to
measure distances (or similarity) between strings. The Hamming distance, de-
fined for two equal length strings, is the minimum number of symbol substi-
tutions required to transform one string into the other. For strings of unequal
length, the Hamming distance is replaced by the Manhattan distance or the
L1-norm that also accounts for the difference in the lengths. The Levenshtein
distance between two strings is the minimum number of symbol insertions, dele-
tions and substitutions required to transform one string into the other.

The Hamming/Manhattan and Levenshtein distances only track the number
of symbol mismatches, and not the degree of mismatch. For some applications,
these distance metrics can be too coarse. Hence, we use distance metrics equipped
with integer penalties - pairwise symbol mismatch penalties for substitutions and
a gap penalty for insertions/deletions. We denote by diff(a, b) the mismatch
penalty for substituting symbols a and b, with diff(a, b) = 0 if a = b. We
require diff(a, b) to be well-defined when either a or b is #. We denote by α the
fixed, non-zero gap penalty for insertion or deletion of a symbol. We now define
the weighted extensions of the Manhattan and Levenshtein distances formally.

The generalized Manhattan distance is defined by the following recurrence
relations, for i, j ≥ 1, and s[0] = t[0] = ε:

dM (s[0], t[0]) = 0 dM (s[0, j], t[0, j]) = dM (s[0, j-1], t[0, j-1]) + diff(s[j], t[j]). (1)

The generalized Levenshtein distance is defined by the following recurrence
relations, for i, j ≥ 1, and s[0] = t[0] = ε:

dL(s[0], t[0]) = 0, dL(s[0, i], t[0]) = iα, dL(s[0], t[0, j]) = jα
dL(s[0, i], t[0, j]) = min( dL (s[0, i-1], t[0, j-1]) + diff(s[i], t[j]),

dL (s[0, i-1], t[0, j]) + α,
dL (s[0, i], t[0, j-1]) + α).

(2)

The first three relations in (2), that involve empty strings, are obvious. The gen-
eralized Levenshtein distance between the nonempty prefixes, s[0, i] and t[0, j], is
the minimum over the distances corresponding to three possible transformations:
(1) optimal (generalized Levenshtein) transformation of s[0, i-1] into t[0, j-1] and
substitution of s[i] with t[j], with a mismatch penalty of diff(s[i], t[j]), (2) opti-
mal transformation of s[0, i-1] into t[0, j] and deletion of s[i], with a gap penalty
of α, and, (3) optimal transformation of s[0, i] into t[0, j-1] and insertion of t[j]
with a gap penalty of α.

Observe that if diff(a, b) is defined to be 1 for a �= b and 0 otherwise, the
above definitions correspond to the usual Manhattan and Levenshtein distances,
respectively. In our work, diff(a, b) and α are external parameters provided to
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the algorithm by the user, and we require that the resulting generalized Man-
hattan and Levenshtein distances are distance metrics.

Robustness. As explained in Sec. 1, our notion of robustness for finite trans-
ducers is an adaptation of the analytic notion of Lipschitz continuity, and is
defined with respect to a fixed bound on the amount of input perturbation.

Definition 2.1 (Robust String Transducers). Given an upper bound B on
the input perturbation, a constant K and a distance metric d : Σ∗ × Σ∗ ∪
Γ � × Γ � → N, a transducer T defined over a regular language L ⊆ Σ∗, with
�T � : L→ Γ �, is called (B,K)-robust if:

∀δ ≤ B, ∀s, t ∈ L : d(s, t) = δ ⇒ d(�T �(s), �T �(t)) ≤ Kδ.

3 Distance Tracking Automata

In Sec. 4, we show how to reduce the problem of verifying robustness of finite
transducers to the problem of checking emptiness of carefully constructed com-
posite machines. A key component of these constructions are machines that can
track the generalized Manhattan or Levenshtein distance between two strings.
Our earlier work [18] presents automata constructions for tracking the usual
Manhattan and Levenshtein distances. In this section, we first briefly review
reversal-bounded counter machines and then adapt our distance tracking au-
tomata constructions for the generalized versions of the distance metrics.

3.1 Review: Reversal-Bounded Counter Machines [13,14]

A (one-way, nondeterministic) h-counter machine A is a (one-way, nondetermin-
istic) finite automaton, augmented with h integer counters. Let G be a finite set
of integer constants (including 0). In each step, A may read an input symbol,
perform a test on the counter values, change state, and increment each counter
by some constant g ∈ G. A test on a set of integer counters Z = {z1, . . . , zh} is a
Boolean combination of tests of the form zθg, where z ∈ Z, θ ∈ {≤,≥,=, <,>}
and g ∈ G. Let TZ be the set of all such tests on counters in Z.

Formally, A is defined as a tuple (Σ,X, x0, Z,G,E, F ) where Σ, X , xo, F , are
the input alphabet, set of states, initial state, and final states respectively. Z is
a set of h integer counters, and E ⊆ X× (Σ ∪ ε)×TZ ×X×Gh is the transition
relation. Each transition (x, σ, t, x′, g1, . . . , gh) denotes a change of state from x
to x′ on symbol σ ∈ Σ ∪ ε, with t ∈ TZ being the enabling test on the counter
values, and gk ∈ G being the amount by which the kth counter is incremented.

A configuration μ of a one-way multi-counter machine is defined as the tuple
(x, σ, z1, . . . , zh), where x is the state of the automaton, σ is a symbol of the input
string being read by the automaton and z1, . . . , zh are the values of the coun-
ters. We define a move relation →A on the configurations: (x, σ, z1, . . . , zh) →A

(x′, σ′, z′1, . . . , z
′
h) iff (x, σ, t(z1, . . . , zh), x

′, g1, . . . , gh) ∈ E, where, t(z1, . . . , zh) is
true, ∀k: z′k = zk + gk, and σ′ is the next symbol in the input string being read.
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A path is an element of →�
A , i.e., a path is a finite sequence of configurations

μ1, . . . , μm where for all j : μj →A μj+1. A string s ∈ Σ� is accepted by A if
(x0, s[0], 0, . . .0)→�

A (x, s[j], z1, . . . , zh), for some x ∈ F and j ≤ |s| (we make no
assumptions about z1, . . . , zh in the accepting configuration). The set of strings
(language) accepted by A is denoted L(A).

In general, multi-counter machines can simulate actions of Turing machines
(even with just 2 counters). In [13], the author presents a class of counter ma-
chines - reversal-bounded counter machines - with efficiently decidable properties.
A counter is said to be in the increasing mode between two successive configura-
tions if the counter value is the same or increasing, and in the decreasing mode
if the counter value is strictly decreasing. We say that a counter is r-reversal
bounded if the maximum number of times it changes mode (from increasing to
decreasing and vice versa) along any path is r. We say that a multi-counter ma-
chine A is r-reversal bounded if each of its counters is at most r-reversal bounded.
We denote the class of h-counter, r-reversal-bounded machines by NCM(h, r).

Lemma 3.1. [11] The nonemptiness problem for A in class NCM(h, r) can be
solved in NLogspace in the size of A.

Recall that for all i > |s|, s[i] = #. In what follows, let Σ# = Σ ∪ {#}.

3.2 Automaton for Tracking Generalized Manhattan Distance

We now define automata D=δ
M , D>δ

M that accept pairs of strings (s, t) such
that dM (s, t) = δ, dM (s, t) > δ, respectively, where dM (s, t) is the Man-
hattan distance between s and t. The automata D=δ

M , D>δ
M are 1-reversal-

bounded 1-counter machines (i.e., in NCM(1,1)), and are each defined as a
tuple (Σ# × Σ#, X, x0, Z,G,E, {acc}), where (Σ# × Σ#) is the input alphabet,
X = {x0, x, acc}, is a set of three states, x0 is the initial state, Z = {z} is a
single 1-reversal-bounded counter, G = {δ, 0} ∪ ∪a,b∈Σ# {diff(a, b)} is a set of
integers, and {acc} is the singleton set of final states. The transition relations of
D=δ
M , D>δ

M both include the following transitions:

1. An initialization transition (x0, (ε, ε), true, x, δ) that sets the counter z to δ.
2. Transitions of the form (x, (a, a), z ≥ 0, x, 0), for a �= #, that read a pair of

identical, non-# symbols, and leave the state and counter unchanged.
3. Transitions of the form (x, (a, b), z ≥ 0, x,−diff(a, b)), for a �= b, which

read a pair (a, b) of distinct symbols, and decrement the counter z by the
corresponding mismatch penalty diff(a, b).

4. Transitions of the form (acc, (∗, ∗), ∗, acc, 0), which ensure that the machine
stays in its final state upon reaching it.

The only difference in the transition relations of D=δ
M , D>δ

M is in their tran-
sitions into accepting states. The accepting transitions of D=δ

M are of the form
(x, (#, #), z = 0, acc, 0), and move D=δ

M to an accepting state upon reading a
(#, #) pair when the counter value is zero, i.e., when the Manhattan distance
between the strings being read is exactly equal to δ. The accepting transitions of
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D>δ
M are of the form (x, (∗, ∗), z < 0, acc, 0), and move D>δ

M to an accepting state
whenever the counter value goes below zero, i.e., when the Manhattan distance
between the strings being read is greater than δ.

Lemma 3.2. D=δ
M , D>δ

M accept a pair of strings (s, t) iff dM (s, t) = δ, dM (s, t) >
δ, respectively.

Note: The size of D=δ
M or D>δ

M is O(δ + |Σ|2MAXdiffΣ ), where MAXdiffΣ is the
maximum mismatch penalty over Σ.

3.3 Automaton for Tracking Generalized Levenshtein Distance

The standard dynamic programming-based algorithm for computing the Leven-
shtein distance dL(s, t) can be extended naturally to compute the generalized
Levenshtein distance using the recurrence relations in (2). This algorithm orga-
nizes the bottom-up computation of the generalized Levenshtein distance with
the help of a table t of height |s| and width |t|. The 0th row and column of t
account for the base case of the recursion. The t(i, j) entry stores the generalized
Levenshtein distance of the strings s[0, i] and t[0, j]. In general, the entire table
has to be populated in order to compute dL(s, t). However, when one is only
interested in some bounded distance δ, then for every i, it suffices to compute
values for the cells from t(i, i − δ) to t(i, i + δ) [12]. We call this region the δ-
diagonal of t, and use this observation to construct dfa’s D=δ

L , D>δ
L that accept

pairs of strings (s, t) such that dL(s, t) = δ, dL(s, t) > δ, respectively2.
In each step, D=δ

L , D>δ
L read a pair of input symbols and change state to

mimic the bottom-up edit distance computation by the dynamic programming
algorithm. As in the case of Manhattan distance, D=δ

L , D>δ
L are identical, except

for their accepting transitions. Formally, D=δ
L , D>δ

L are each defined as a tuple
(Σ#×Σ#, Q, q0, Δ, {acc}), where (Σ#×Σ#), Q, q0, Δ, {acc} are the input alpha-
bet, the set of states, the initial state, the transition function and the singleton
set of final states respectively. A state is defined as the tuple (x, y, e), where x
and y are strings of length at most δ and e is a vector containing 2δ+1 entries,
with values from the set {0, 1, . . . , δ,⊥,"}). A state of D=δ

L , D>δ
L maintains the

invariant that if i symbol pairs have been read, then x, y store the last δ symbols
of s, t (i.e., x = s[i-δ+1, i], y = t[i-δ+1, i]), and the entries in e correspond to the
values stored in t(i, i) and the cells within the δ-diagonal, above and to the left
of t(i, i). The values in these cells greater than δ are replaced by ". The initial
state is q0 = (ε, ε, 〈⊥, . . . ,⊥, 0,⊥, . . . ,⊥〉), where ε denotes the empty string, ⊥
is a special symbol denoting an undefined value, and the value 0 corresponds
to entry t(0, 0). Upon reading the ith input symbol pair, say (a, b), D=δ

L , D>δ
L

transition from state qi-1 = (xi-1, yi-1, ei-1) to a state qi = (xi, yi, ei) such that
xi, yi are the δ-length suffices of xi-1.a, yi-1.b, respectively, and ei is the appro-
priate set of entries in the δ-diagonal of t computed from xi-1, yi-1, ei-1, the

2 The fact that there exists a dfa that accepts string pairs within bounded (gener-
alized) Levenshtein distance from each other follows from results in [8,9]. However,
these theorems do not provide a constructive procedure for such an automaton.
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(ε, ε, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 2, 1,⊥〉)

(ac, ca, 〈2, 1, 2, 1, 2〉)

(cc, ac, 〈2,�, 2, 1, 2〉)

(cc, ca, 〈�,�,�,�, 2〉)

(ca, a#, 〈�,�,�,�,�〉)

accept

(a, c)

(c, a)

(c, c)

(c, a)

(a,#)

(#, #)

Fig. 3.1. Dynamic programming table emulated by D>2
L . The table t filled by the

dynamic programming algorithm for δ = 2 is shown to the left, and a computation
of D>2

L on the strings s = accca, t = caca is shown to the right. Here, Σ = {a, b, c},
diff(a, b) = diff(b, c) = diff(a, #) = 1, diff(a, c) = diff(b, #) = 2, diff(c, #) = 3
and α = 1.

input symbol pair and the relevant mismatch/gap penalties (for more details,
see [18]).

Finally, upon reading the symbol (#, #) in state (x, y, e), we add transitions
to the single accepting state acc in D=δ

L (and in D>δ
L ) iff:

– |s| = |t|, i.e., x and y do not contain #, and the (δ + 1)th entry in e is δ ("
in the case of D>δ

L ), or,
– |s| = |t|+ �, i.e., y contains � #’s, x contains no #, and the (δ+1− �)th entry

in e is δ (" in the case of D>δ
L ), or,

– |t| = |s|+ �, i.e., x contains � #’s, y contains no #, and the (δ+1+ �)th entry
in e is δ (" in the case of D>δ

L ).

Upon reaching acc, D=δ
L , D>δ

L remains in it.

Example Run. A run of D>2
L on the string pair s = accca, t = caca that checks

if dL(s, t) > 2, is shown in Fig. 3.1. The mismatch and gap penalties are as
enumerated in the caption.

The following lemma states the correctness of these constructions. The proof
follows from the state-invariants maintained by D=δ

L , D>δ
L and their accepting

transitions.

Lemma 3.3. D=δ
L , D>δ

L accept a pair of strings (s, t) iff dL(s, t) = δ, dL(s, t) >
δ, respectively.

Note: The size of D=δ
L or D>δ

L is O((δ|Σ|)4δ).

4 Robustness Analysis

From Definition 2.1, it follows that checking (B,K)-robustness of a transducer
T is equivalent to checking if for each δ ≤ B, ∀s, t ∈ L : d(s, t) = δ =⇒
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d(�T �(s), �T �(t)) ≤ Kδ. Thus, we focus on the problem of checking robustness
of a transducer for some fixed input perturbation δ. We reduce this problem to
checking language emptiness of a product machine Aδ constructed from (1) an
input automaton Aδ

I that accepts a pair of strings (s, t) iff d(s, t) = δ, (2) a
pair-transducer P that transforms input string pairs (s, t) to output string pairs
(s′, t′) according to T , and (3) an output automaton Aδ

O that accepts (s′, t′) iff
d(s′, t′) > Kδ. We construct Aδ such that T is robust iff for all δ ≤ B, the
language of Aδ is empty.

Later in this section, we present specialized constructions for Aδ
I , A

δ
O for check-

ing robustness of Mealy machines and functional transducers, with respect to
the generalized Manhattan and Levenshtein distances. The definition of the pair-
transducer P is standard in all these scenarios, and hence we present it first. We
next define the product machine Aδ for two relevant scenarios. Scenario 1 is
when Aδ

I and Aδ
O are both dfas - as we will see, this scenario presents itself while

checking robustness of either type of transducer with respect to the generalized
Levenshtein distance. Scenario 2 is when Aδ

I and Aδ
O are both 1-reversal-bounded

counter machines - this scenario presents itself while checking robustness of ei-
ther type of transducer with respect to the generalized Manhattan distance.

Recall that Σ# = Σ ∪ {#}. Let Γ # = Γ ∪ {#}, Γ ε,# = Γ ∪ {ε, #}, Σ̃ = Σ#×Σ#

and Γ̃ = Γ ε,# × Γ ε,#.
Pair-Transducer, P . Given a transducer T , the pair-transducer P reads an
input string pair and produces an output string pair according to T . Formally,
given T = (Q,Σ, Γ, q0, E, F ), P is defined as the tuple (QP , Σ̃, Γ̃ , q0P , EP , FP )
where QP = Q×Q, q0P = (q0, q0), FP = F×F , and, EP is the set of all transitions
of the form ((q1, q2), (a, b), (w

′, v′), (q′1, q
′
2)) such that (q1, a, w′, q′1) ∈ E and

(q2, b, v
′, q′2) ∈ E. While for Mealy machines, in all transitions in EP , w′, v′ are

symbols in Γ ∪{#}, for arbitrary functional transducers, w′, v′ may be strings of
different lengths, and either or both could be ε. We define the function �P � such
that �P �(s, t) = (s′, t′) if �T �(s) = s′ and �T �(t) = t′.
Product Machine, Aδ. Given input automaton Aδ

I , pair transducer P and out-
put automaton Aδ

O , the product machine Aδ is constructed to accept all string
pairs (s, t) such that (s, t) is accepted by Aδ

I and there exists a string pair (s′, t′)
accepted by Aδ

O with (s′, t′) = �P �(s, t). Notice that while in each of its transi-
tions, Aδ

O can only read a pair of symbols at a time, each transition of P potentially
generates a pair of (possibly unequal length) output strings. Hence, Aδ cannot
be constructed as a simple synchronized product.
Scenario 1. Given a dfa input automaton Aδ

I = (QI , Σ̃, q0I , ΔI , FI ), pair trans-

ducer P = (QP , Σ̃, Γ̃ , q0P , EP , FP ) and a dfa output automaton Aδ
O = (QO , Γ̃ , q0O ,

ΔO , FO), Aδ is a dfa given by the tuple (Q, Σ̃, q0, Δ, F ), where Q ⊆ QI×QP×QO ,
q0 = (q0I , q0P , q0O ), F = FI × FP × FO , and E is defined as follows:
Δ((qI , qP , qO), (a, b)) = (q′I , q

′
P , q

′
O) iff

1. ΔI (qI , (a, b)) = q′I , and
2. there exist w′, v′ such that

(a) (qP , (a, b), (w
′, v′), q′P ) ∈ EP , and

(b) Δ∗O(qO , (w
′, v′)) = q′O .
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Scenario 2. For counter machines, one also needs to keep track of the counters.
Given input automaton Aδ

I in NCM(hI ,1), of the form (Σ̃,XI , x0I , ZI , GI , EI , FI ),

pair transducer P = (QP , Σ̃, Γ̃ , q0P , EP , FP ) and output automaton Aδ
O in class

NCM(hO ,1), of the form (Γ̃ , XO , x0O , ZO , GO , EO , FO), Aδ is in NCM(h,1), with

h = hI + hO , and is given by the tuple (Σ̃,X, x0, Z,G,E, F ), where X ⊆ XI ×
QP ×XO , x0 = (x0I , q0P , x0O ), Z = ZI ∪ ZO , G = GI ∪ GO , F = FI × FP × FO ,
and E is defined as follows:
((xI , qP , xO), (a, b), t, (x

′
I , q

′
P , x

′
O), gI1, . . . , gIhI , gO1, . . . , gOhO ) ∈ E iff

1. (xI , (a, b), tI , x
′
I , gI1, . . . , gIhI ) ∈ EI with t⇒ tI , and

2. there exist w′, v′ such that
(a) (qP , (a, b), (w

′, v′), q′P ) ∈ EP , and
(b) (xO , (w

′[0], v′[0]), zO1, . . . , zOhO )→�
Aδ
O
(x′O , (w

′[j], v′[�]), z′O1, . . . , z
′
OhO

), with

j = |w′|−1, � = |v′|−1, t⇒ tO where tO is the enabling test correspond-
ing to the first move along →�

Aδ
O
and ∀k: z′Ok = zOk + gOk.

4.1 Mealy Machines

Generalized Manhattan Distance. For a Mealy machine T , it is easy to see
from the descriptions of Aδ

I , A
δ
O and from the constructions in Sec. 3.2 that Aδ

I is
the same as D=δ

M and Aδ
O is essentially the same as D>Kδ

M , with the alphabet being

Γ̃ . Thus, Aδ
I and Aδ

O are both in NCM(1,1). Let Aδ be the product machine, as
defined in Scenario 2 using Aδ

I , P and Aδ
O . From Lemma 3.2 and the definition

of Aδ , it follows that Aδ accepts all input strings (s, t) such that dM (s, t) = δ,
and there exists (s′, t′) = �P �(s, t) with dM (s′, t′) > Kδ. Thus, any pair of input
strings accepted by Aδ is a witness to the non-robustness of T ; equivalently T is
robust iff Aδ is empty for all δ ≤ B.

The product machine Aδ is in NCM(2, 1) and its size is polynomial in size(T ),
δ, K, |Σ|, |Γ | and MAXdiff, where MAXdiff is the maximum mismatch penalty over
Σ and Γ . Since, we need to check nonemptiness of Aδ for all δ ≤ B, we have the
following theorem using Lemma 3.1.

Theorem 4.1. Robustness verification of a Mealy machine T with respect to the
generalized Manhattan distance can be accomplished in NLogspace in size(T ),
B, K, |Σ|, |Γ | and MAXdiff (maximum mismatch penalty).

Generalized Levenshtein Distance. For a Mealy machine T , Aδ
I is the same

as D=δ
L and Aδ

O is the same as D>Kδ
L , with alphabet Γ̃ . Thus, Aδ

I and Aδ
O are

both dfas. Let Aδ be a product machine, as defined in Scenario 1 using Aδ
I , P

and Aδ
O . As before, from Lemma 3.3 and the definition of Aδ, it follows that T

is robust iff Aδ is empty for all δ ≤ B.
The size of Aδ is O(size2(T )|Σ|4δ(|Γ |K)4Kδδ4δ(1+K)). Since the emptiness of

the dfa Aδ can be checked in NLogspace in the size of Aδ, and we need to
repeat this for all δ ≤ B, we have the following theorem.

Theorem 4.2. Robustness verification of a Mealy machine T with respect to the
generalized Levenshtein distance can be accomplished in PSpace in B
and K.
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4.2 Functional Transducers

Checking robustness of functional transducers is more involved than checking
robustness of Mealy machines. The main reason is that P may produce output
symbols for two strings in an unsynchronized fashion, i.e., the symbols read
by Aδ

O may be of the form (a, ε) or (ε, a). While this does not affect the input
automata constructions, the output automata for functional transducers differ
from the ones for Mealy machines.
Generalized Manhattan Distance. As stated above, Aδ

I is the same as D=δ
M .

The construction of Aδ
O is based on the observation that if s′, t′ are mismatched in

1+Kδ positions, dM (s′, t′) is guaranteed to be greater than Kδ. Let η = 1+Kδ.
We define Aδ

O to be in class NCM(1 + 2η, 1) with a distance counter z and two
sets of position counters c1, . . . , cη and d1, . . . , dη. The counter z is initialized
to Kδ and for all j, position counters cj , dj are initialized to hold guesses for
η mismatch positions in s′, t′, respectively. In particular, the position counters
are initialized such that for all j, cj = dj , cj ≥ 0, and cj < cj+1, thereby
ensuring that the counter pairs store η distinct position guesses 3. For notational
convenience, we denote the initial position guess stored in the position counter
cj (or dj) by pj .

Intuitively, for each j, Aδ
O uses its position counters to compare the symbols

at the pthj position of each string. For all j, Aδ
O decrements cj , dj upon reading

a nonempty symbol of s′, t′, respectively. Thus, Aδ
O reads the pthj symbol of s′,

t′ when cj = 0, dj = 0, respectively. If the pthj symbols are mismatched symbols

a, b, then Aδ
O decrements the distance counter z by diff(a, b). Now, recall that

the symbol at the pthj position for one string may arrive before that for the other
string. Thus, for instance, cj may be 0, while dj is still positive. In this case,
Aδ
O needs to remember the earlier symbol in its state till the delayed symbol

arrives. Fortunately, Aδ
O has to remember at most η symbols corresponding to

the η guessed positions. When the delayed symbol at position pj of the trailing
string arrives, i.e. dj finally becomes 0, Aδ

O compares it to the symbol stored in
its state and decrements z as needed.

Formally, a state of Aδ
O is a tuple of the form (pos, id, vec), where pos ∈ [1, η] is

a positive integer (initially 0) that keeps track of the earliest position for which
Aδ
O is waiting to read symbols of both strings, id ∈ {0, 1, 2} is used to track which

of the strings is leading the other, and vec is a η-length vector that stores the
symbols of the leading string. Initially, all entries of vec are ⊥. The invariant
maintained by the state is as follows: if pos = j, (a) id = 0 iff cj > 0, dj > 0
and vecj = ⊥, (b) id = 1 iff cj ≤ 0, dj > 0 and vecj = s′[pj ], and (c) id = 2 iff
cj > 0, dj ≤ 0 and vecj = t′[pj ]. Thus, if cj becomes zero while dj is non-zero,
id is set to 1, and vecj is set to the symbol read, i.e., s′[pj]; when dj eventually

3 Note that this can be done nondeterministically as follows. First all 2η counters are
incremented by 1, and at some nondeterministically chosen point, the machine stops
incrementing the c1, d1 counters, then at some further point stops incrementing the
c2, d2 counters, and so on. This ensures that for each j, cj = dj , and the higher index
counters have higher (distinct) values.
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becomes zero due to the pthj symbol of t′ being read, then vecj is set to ⊥, z is
decremented by diff(s′[pj ], t

′[pj]) and pos is incremented. The case when the
pthj symbol of t′ is output before that of s′ is handled symmetrically. Aδ

O moves to
an accepting state whenever the value in z goes below 0, i.e. dM (s′, t′) > Kδ, and
stays there. Aδ

O moves to a special rejecting state if the value in z is nonnegative
and either the string pairs or all position guesses are exhausted, i.e., if Aδ

O reads
a (#, #) symbol or if all position counters are negative.

In effect, the construction ensures that if Aδ
O accepts a pair of strings (s′, t′),

then dM (s′, t′) > Kδ. On the other hand, note that if dM (s′, t′) > Kδ, then there
exists a run of Aδ

O in which it correctly guesses some mismatch positions (whose
number is at most η) such that their cumulative mismatch penalty exceeds Kδ.

Lemma 4.1. The above Aδ
O accepts a pair of strings (s, t) iff dM (s, t) > Kδ.

Note that the size of Aδ
O is O(Γ 2Kδ). Let Aδ be a product machine, as defined in

Scenario 2 using Aδ
I , P and Aδ

O . From Lemma 3.2, Lemma 4.1 and the definition
of Aδ, it follows that T is robust iff Aδ is empty for all δ ≤ B. Aδ is in class
NCM(2+2η, 1), and its size is O(size2(T )(δ+ |Σ|2MAXdiffΣ )Γ 2Kδ), with MAXdiff
being the maximum mismatch penalty over Σ. Since we need to repeat this for
all δ ≤ B, we have the following theorem using Lemma 3.1.

Theorem 4.3. Robustness verification of a functional transducer T with respect
to the generalized Manhattan distance can be accomplished in PSpace in B, K.

Generalized Levenshtein Distance. The input automaton Aδ
I is the same as

D=δ
L . In order to track the generalized Levenshtein distance between the unsyn-

chronized output strings generated by P , Aδ
O needs to remember substrings of

the leading string in its state, and not simply the symbols at possible mismatch
positions. A natural question to ask is whether there exists a bound on the length
of the substrings that Aδ

O needs to remember in its state. We first address this
question before defining Aδ

O .
Consider Aδ

I ⊗ P , the synchronous product of the input automaton Aδ
I and

the pair transducer P . Let TI⊗P = (QI⊗P , Σ̃, Γ̃ , q0I⊗P , EI⊗P , FI⊗P ) be obtained
by trimming Aδ

I ⊗ P , i.e., by removing all states that are not reachable from the
initial state or from which no final state is reachable. The set EI⊗P of transitions
of TI⊗P can be extended in a natural way to the set E∗I⊗P of paths of TI⊗P . Note
that for any path (q0I⊗P , (w, v), (w′, v′), qfI⊗P ) from the initial state to some final
state qfI⊗P ∈ FI⊗P , dL(w, v) = δ and �P �(w, v) = (w′, v′).

We define the pairwise-delay of a path π of TI⊗P , denoted pd(π), as the
difference in lengths of its output string labels: for π = (q, (w, v), (w′, v′), q′),
pd(π) = abs (|w′| − |v′|). TI⊗P is said to have bounded pairwise-delay if the
pairwise-delay of all its paths is bounded. For TI⊗P with bounded pairwise-
delay, we denote the maximum pairwise-delay over all paths of TI⊗P by D(TI⊗P ).
Let �max be the length of the longest output string in any transition of T , i.e.,
�max = max{|w′| | (q, a, w′, q′) ∈ E}, and let QI , Q be the set of states of Aδ

I , T .

Lemma 4.2. TI⊗P has bounded pairwise-delay, with D(TI⊗P ) < |Q|2.|QI |�max,
iff the pairwise-delay of all cyclic paths in TI⊗P is 0.
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Proof. If there is a cyclic path c = (q, (w, v), (w′, v′), q) in TI⊗P with pd(c) �= 0,
then for n traversals through c, pd(cn) = n(pd(c)), and hence D(TI⊗P ) is not
bounded. If for all cycles c, pd(c) = 0, then for any path π, pd(π) = pd(πacy),
where πacy is the acyclic path obtained from π by iteratively removing all cycles
from π. Thus, D(TI⊗P ) is bounded by the maximum possible pairwise-delay
along any acyclic path of TI⊗P . This maximum delay is (|QI⊗P | − 1)�max and is
exhibited along an acyclic path of maximum length |QI⊗P | − 1, with the output
string pair along each transition being ε and a string of length �max. By definition
of TI⊗P , |QI⊗P | ≤ |Q|2.|QI |. The result follows. ��

Corollary 1. TI⊗P has bounded pairwise-delay iff each simple cycle of TI⊗P is
labeled with equal length output strings.

Lemma 4.3. If TI⊗P does not have bounded pairwise-delay, T is non-robust.

Proof. We exhibit a witness for non-robustness of T . If TI⊗P does not have
bounded pairwise-delay, then there is some simple cycle c : (q, (wc, vc), (w

′
c, v

′
c), q)

in TI⊗P with |w′c| �= |v′c|. Consider the paths π1 = (q0I⊗P , (w1, v1), (w
′
1, v

′
1), q)

and π2 = (q, (w2, v2), (w
′
2, v

′
2), qfI⊗P ), with qfI⊗P ∈ FI⊗P . Let us assume that

|w′1| > |v′1|, |w′c| > |v′c| and |w′2| > |v′2| (the other cases can be handled similarly).
Let |w′c| − |v′c| = lc and |w′1.w′2| − |v′1.v′2| = l.

Then, given δ, K, there exists n ∈ N such that l + nlc > Kδ. The witness
path π to non-robustness of T can now be constructed from π1, followed by n-
traversals of c, followed by π2. By definition of TI⊗P , the generalized Levenshtein
distance, dL(w1.(wc)

n.w2, v1.(vc)
n.v2), of the input string labels of π, equals δ,

and by construction of π, the difference in the lengths, and hence the generalized
Levenshtein distance, dL(w

′
1.(w

′
c)

n.w′2, v
′
1.(v

′
c)

n.v′2) of the output string labels of
π exceeds Kδ. ��

Lemma 4.2 is helpful in constructing an output automaton Aδ
O that accepts a

pair of output strings (s′, t′) iff dL(s
′, t′) > Kδ. The construction of Aδ

O is very

similar to that of D>Kδ
L , defined over alphabet Γ̃ , with one crucial difference.

Having read the jth symbol of s′, in order to compute all entries in the jth row
of the Kδ-diagonal in the dynamic programming table, we need to have seen the
(j + Kδ)th symbol of t′. However, the maximum delay between s′ and t′ could
be as much as D(TI⊗P ) (by Lemma 4.2). Hence, unlike D>Kδ

L , which only needs
to remember strings of length Kδ in its state, Aδ

O needs to remember strings of
length D(TI⊗P ) + Kδ in its state. Thus, a state of Aδ

O is a tuple (x, y, e), where
x and y are strings of length at most D(TI⊗P ) +Kδ, and e is a vector of length
2Kδ + 1.

Lemma 4.4. If TI⊗P has bounded pairwise-delay, Aδ
O as described above accepts

a pair of strings (s′, t′) iff dL(s
′, t′) > Kδ.

Note that Aδ
O is a dfa with size O(|Γ |4(Kδ+D(TI⊗P ))), where D(TI⊗P ) is the max-

imum pairwise-delay of T and is O(size2(T )|Σ|4δδ4δ�max). Summarizing our
robustness checking algorithm for a functional transducer T , we first check if
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TI⊗P does not have bounded pairwise-delay. To do this, we check if there exists a
simple cycle c in TI⊗P for which pd(c) �= 0. If yes, T is non-robust by Lemma 4.3.
If not, we construct the product machine Aδ, as defined in Scenario 1 using Aδ

I ,
P and Aδ

O . By Lemma 3.3, Lemma 4.4 and the definition of Aδ, it follows that
T , with bounded pairwise-delay, is robust iff Aδ is empty for all δ ≤ B.

Checking if there exists a simple cycle c in TI⊗P with pd(c) �= 0 can be done
in NLogspace in the size of TI⊗P

4, which is O(size2(T )|Σ|4δδ4δ). Also, the
nonemptiness of Aδ can be checked in NLogspace in its size, as given by the
product of size(TI⊗P) and size(Aδ

O). Repeating this for all δ ≤ B, we have the
following theorem.

Theorem 4.4. Robustness verification of a functional transducer T with respect
to the Levenshtein distance can be accomplished in ExpSpace in B.

5 Related Work

In prior work [15], [4,5,6] on continuity and robustness analysis, the focus is on
checking if the function computed by a program has desirable properties such as
Lipschitz continuity. While these papers reason about programs that manipulate
numbers, we focus on robustness analysis of programs manipulating strings. As
the underlying metric topologies are quite different, the results from prior work
and our current approach are complementary.

More recent papers have aimed to develop a notion of robustness for reactive
systems. In [19], the authors present polynomial-time algorithms for the anal-
ysis and synthesis of robust transducers. Their notion of robustness is one of
input-output stability, that bounds the output deviation from disturbance-free
behaviour under bounded disturbance, as well as the persistence of the effect
of a sporadic disturbance. Also, unlike our distance metrics, their distances are
measured using cost functions that map each string to a nonnegative integer. In
[16,3,1], the authors develop different notions of robustness for reactive systems,
with ω-regular specifications, interacting with uncertain environments. In [7],
the authors present a polynomial-time algorithm to decide robustness of sequen-
tial circuits modeled as Mealy machines, w.r.t. a common suffix distance metric.
Their notion of robustness also bounds the persistence of the effect of a sporadic
disturbance.

In recent work in [18], we studied robustness of networked systems in the
presence of channel perturbations. While the automata-theoretic framework em-
ployed in [18] is similar to the one proposed here, there are important differences
in the system model, robustness definitions and the distance metrics. In [18], we
tracked the deviation in the output of a synchronous network of Mealy machines,
in the presence of channel perturbations, w.r.t. the (non-weighted) Manhattan
and Levenshtein distances. As is evident in this paper, tracking distances and
checking robustness for arbitrary functional transducers w.r.t. generalized dis-
tance metrics present a new set of challenges.

4 This can be done using a technique similar to the one presented in [20] (Theorem
2.4) for checking nonemptiness of a Büchi automaton.
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Abstract. We present a collection of command-line tools designed to generate,
filter, convert, simplify, lists of Linear-time Temporal Logic formulas. These tools
were introduced in the release 1.0 of Spot, and we believe they should be of
interest to anybody who has to manipulate LTL formulas. We focus on two tools
in particular: ltlfilt, to filter and transform formulas, and ltlcross to cross-
check LTL-to-Büchi-Automata translators.

1 Introduction

Spot is a C++ library of model-checking algorithms that has been around for nearly
10 years [5]. It contains algorithms to perform the usual task in the automata-theoretic
approach to LTL model checking [13]. So far, and because it is a library, Spot did not
provide any convenient access to its features from the command-line. The adventurous
user would use some of the programs built for the test-suite of Spot, but these programs
were never designed to offer a user-friendly interface.

This situation has changed with the recent release of Spot 1.0: it now installs a col-
lection of command-line tools that give access to many of Spot’s features, and allows to
combine them with pipes, in the purest Unix tradition. The current tool set (which we
describe in this paper) is focused on the handling of linear-time temporal-logic formu-
lae and on its conversion to Büchi automata. The library also includes many algorithms
that work on automata, but which are not yet available from the command-line.

We invite the reader to download Spot from http://spot.lip6.fr/ and install it,
in order to play with the example commands provided in this paper. In addition to the
man pages that are installed along with Spot, a more detailed description of the tools
can be read at http://spot.lip6.fr/userdoc/tools.html.

2 Linear-Time Temporal Logic(s)

Spot supports the usual LTL operators: X (next), F (eventually), G (globally), U (until), R
(release), W (weak until), and M (strong release). These can be combined with Boolean
operators, Boolean constants, and identifiers that represent atomic propositions.

Although there are many tools using LTL, there is no standard syntax for the repre-
sentation of LTL formulas. For instance the formula G(request → F(grant)) could be
written as [](request => <>(grant)) by Spin [7], [](request --> <>(grant))

by Goal [12], G(request=1 -> F(grant=1) by Wring [10], G i "request" F

"grant" by ltl2dstar [8], or even G i p0 F p1 by tools like LBT1 or Scheck [9] that

1 http://www.tcs.hut.fi/Software/maria/tools/lbt/
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do not accept arbitrary identifiers as propositions. Spot’s tools will write G(request

-> F(grant)) by default, but they can read all the above syntaxes, and can write into
most of them (the only missing output is Goal, because Goal can already read Spin’s
syntax).

In addition to LTL operators, we support operators from the linear fragment of the
Property Specifications Language (PSL) [1]. These operators connect Semi-Extended
Regular Expressions with LTL. A SERE is built using the usual three regular opera-
tors, ‘;’ (concatenation), ∪ (union), and � (Kleene star), but extended with additional
operators such as ∩ (intersection), ‘:’ (fusion), and many other operators that are just
syntactic sugar over these.2 The main two PSL operators are:
– {e}� f : any finite prefix matching the SERE e must trigger the verification of f

(any formula using PSL or LTL operators) from the last letter of the prefix, and
– {e}� f : f must be verified from the last letter of some prefix matching e.

Again more syntactic sugar exists on top of these. For instance {e}! is syntactic sugar
for {e}� �: some finite prefix must match the SERE e.

As an example, the PSL formula {(�;�)�}� p states that p should hold every two
states, and has no equivalent LTL formula.

3 Tools

Spot installs six command-line tools: randltl is a random LTL/PSL formula generator;
ltlfilt is a multi-function LTL/PSL formula filter, able to convert formulas between
formats, filter formulas matching certain criteria, and perform some simple syntactic
transformations; genltl is a formula generator for various scalable families of LTL
formulas; ltl2tgba is a translator from LTL/PSL formulas to different kinds of Büchi
automata [4]; ltl2tgta is a translator from LTL/PSL formulas to different kinds of
testing automata [2]; and ltlcross is a test-bench for LTL/PSL translators. By lack of
space, we only illustrate three of these commands over a few command-line examples.

3.1 ltlfilt and randltl

% ltlfilt --safety --relabel=abc --uniq --spin formulas.ltl

Reads formulas from file formulas.ltl (one formula per line), retains only those that
represent safety properties, renames the atomic propositions occurring in each formula
using the letters ‘a’, ‘b’, ‘c’,... suppresses duplicate formulas, and outputs formulas us-
ing Spin’s syntax. The safety check is automaton-based [3], so “pathological formulas”
that represent safety properties without looking so syntactically are also captured.
% randltl -n -1 --tree-size=10..15 a b | ltlfilt --simplify --safety |

ltlfilt --invert-match --syntactic-safety --uniq | head -n 10

The randltl command generates an unbounded (-n -1) stream of LTL formulas with
a tree size between 10 and 15, and using atomic propositions ‘a’ and ‘b’. These formulas
are then simplified (using Spot’s LTL rewriting rules) and filtered to preserve only safety

2 A complete description of all the supported operators and their semantics can be found in
doc/tl/tl.pdf inside the Spot distribution.
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formulas; the result is then filtered again to remove all “syntactic safety” formulas, as
well as duplicate formulas. The result of these three commands is therefore a stream of
pathological safety formulas, from which we only display the first 10 using the standard
head command from Unix.

Chaining commands this way to generate random formulas has proven to be a very
useful way to generate sets of formulas matching a certain criterion. The following
example generates a list of 20 PSL formulas that are not LTL formulas (i.e., they must
use PSL operators) and that are equivalent to aU b.
% randltl --psl -n-1 --tree-size=5..10 a b |ltlfilt --invert-match --ltl|

ltlfilt --uniq --equivalent-to ’a U b’ | head -n 20

Simplification rules are able to transform some PSL formulas into LTL formulas.
For instance the PSL formula {a�; b�; c}! is equivalent to the LTL formula aU(bU c).
Similarly the PSL formulas {a[→ 2]}� b, which states that b should hold every time
a holds for the second time, can be transformed into aR(ā ∨ X(aR(ā ∨ b))).
% ltlfilt --simplify -f ’{a*;b*;c}!’ -f ’{a[->2]}[]->b’

a U (b U c)

a R (!a | X(a R (!a | b)))

Note that PSL is more expressive than LTL, so not all PSL formulas can be converted
into LTL. Currently, we only implements rewriting for some straightforward PSL pat-
terns, and these rewriting rules will certainly be improved in the future.

Occasional questions such as “Is F(ā ∧ Xa ∧ Xb) stutter-invariant?” can also be an-
swered by instructing ltlfilt to match only stutter-invariant formulas:
% ltlfilt --stutter-invariant -f ’F(!a & Xa & Xb)’

F(!a & Xa & Xb)

Since the formula was output, it is stuttering invariant. Another option, --remove-x,
can be used to rewrite this formula without the X operator.3 Other day-to-day questions
like “Is formula ϕ equivalent to formula ψ?” can be answered similarly.

3.2 ltlcross

Spot has used LBTT, the LTL-to-Büchi Translator Testbench [11] in its test-suite since
its early days. LBTT feeds randomly generated LTL formulae to the configured LTL-to-
Büchi translators, and then cross-compares the results of all tools, using several checks
to detect possible bugs in implementations, or simply to compare the results from a
statistical standpoint. Unfortunately, LBTT is no longer maintained, we have found it
quite hard to extend to gather new kinds of statistics, and most importantly it is restricted
to LTL. We therefore introduce ltlcross, a reimplementation of LBTT using Spot,
with support for PSL formulas.

ltlcross reads a list of formulas from its standard input (usually some output of
randltl) or from a file, runs these formulas through several (PSL or) LTL-to-Büchi
translators, read the output of these translators (as never claims or in LBTT’s syntax)
and then performs the same tests as LBTT on the resulting automata.

3 Stutter invariance is actually asserted using automata to test the language equivalence of the
input formula and its rewriting without X [6]. Currently this only works for LTL.
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The output of ltlcross is a CSV or JSON file that contains more statistics about
the produced automata. These files are easily post-processed to compute summary table
or graphics. A typical invocation would look as follows:
% randltl -n 100 a b c | ltlfilt --remove-wm |

ltlcross --csv=out.csv ’ltl2tgba -s %f >%N’ ’spin -f %s >%N’’lbt <%L >%T’

Here 100 random formulas over a, b, and c are produced, the operators W and M
are rewritten away by ltlfilt (because W and M are not supported by spin -f and
lbt), and finally ltlcross uses the resulting formulas with 3 different translators, and
gather statistics in out.csv.

The invocation of each tool is configured with %-sequences showing how the formula
to translate should be passed (e.g., %f, %s, %l are replaced respectively by the formula is
Spot’s, Spin’s, or LBT’s syntax, while %F, %S, %L are replaced by the name of a file that
contains the formula in these syntaxes) and how to read the result (%T for a filename
that will contain output in LBTT’s syntax, and %N for a filename that will contain a
neverclaim). If any error is detected while running these translators, or when comparing
their outputs (we perform the same checks as LBTT), ltlcross will report it.
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Abstract. We present a tool that generates automata for
LTL(X,F,G,U) where U does not occur in any G-formula (but
F still can). The tool generates deterministic generalized Rabin
automata (DGRA) significantly smaller than deterministic Rabin
automata (DRA) generated by state-of-the-art tools. For complex
properties such as fairness constraints, the difference is in orders of mag-
nitude. DGRA have been recently shown to be as useful in probabilistic
model checking as DRA, hence the difference in size directly translates
to a speed up of the model checking procedures.

1 Introduction

Linear temporal logic (LTL) is a very useful and appropriate language for speci-
fying properties of systems. In the verification process that follows the automata-
theoretic approach, an LTL formula is first translated to an ω-automaton and
then a product of the automaton and the system is constructed and analyzed.
The automata used here are typically non-deterministic Büchi automata (NBA)
as they recognize all ω-regular languages and thus also LTL languages. However,
for two important applications, deterministic ω-automata are important: proba-
bilistic model checking and synthesis of reactive modules for LTL specifications.
Here deterministic Rabin automata (DRA) are typically used as deterministic
Büchi automata are not as expressive as LTL. In order to transform an NBA
to a DRA, one needs to employ either Safra’s construction (or some other ex-
ponential construction). This approach is taken in PRISM [7] a leading proba-
bilistic model checker, which reimplements the optimized Safra’s construction of
ltl2dstar [4]. However, a straight application of this very general construction
often yields unnecessarily large automata and thus also large products, often too
large to be analyzed.

In order to circumvent this difficulty, one can focus on fragments of LTL.
The most prominent ones are GR(1)—a restricted, but useful fragment of
LTL(X,F,G) allowing for fast synthesis—and fragments of LTL(F,G) as investi-
gated in e.g. [1]. Recently [6], we showed how to construct DRA from LTL(F,G)
directly without NBA. As we argued there, this is an interesting fragment also

� The author is supported by the Czech Science Foundation, grant No. P202/12/G061.
�� The author is supported by the DFG Graduiertenkolleg 1480 (PUMA).
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because it can express all complex fairness constraints, which are widely used
in verification. We implemented our approach in a tool Rabinizer [3] and ob-
served significant improvements, especially for complex formulae: for example,
for a conjunction of three fairness constraints ltl2dstar produces a DRA with
more than a milion states, while Rabinizer produces 469 states. Moreover, we
introduced a new type of automaton a deterministic generalized Rabin automa-
ton (DGRA), which is an intermediate step in our construction, and only has 64
states in the fairness example and only 1 state if transition acceptance is used.
In [2], we then show that for probabilistic model checking DGRA are not more
difficult to handle than DRA. Hence, without tradeoff, we can use often much
smaller DGRA, which are only produced by our construction.

Here, we present a tool Rabinizer 2 that extends our method and imple-
ments it for LTL\GU a fragment of LTL(X,F,G,U) where U are not inside
G-formulae (but F still can) in negation normal form. This fragment is not only
substantially more complex, but also practically more useful. Indeed, with the
unrestricted X-operator, it covers GR(1) and can capture properties describing
local structure of systems and is necessary for description of precise sequences
of steps. Further, U-operator allows to distinguish paths depending on their
initial parts and then we can require different fairness constraints on different
paths such as in waitU(answer 1 ∧ φ1) ∨ waitU(answer 2 ∧ φ2) where φ1, φ2 are
two fairness constraints. As another example, consider patterns for “before”:
for “absence” we have Fr → (¬pUr), for “constrained chains” Fr → (p →
(¬rU(s ∧ ¬r ∧ ¬z ∧X((¬r ∧ ¬z)Ut))))Ur.

Furthermore, as opposed to other tools (including Rabinizer), Rabinizer 2

can also produce DGRA, which are smaller by orders of magnitude for complex
formulae. For instance, for a conjunction of four fairness constraints the con-
structed DGRA has 256 states, while the directly degeneralized DRA is 20736-
times bigger [2]. As a result, we not only obtain smaller DRA now for much
larger fragment (by degeneralizing the DGRA into DRA), but also the power of
DGRA is made available for this fragment allowing for the respective speed up
of probabilistic model checking.

The tool can be downloaded and additional materials and proofs found at
http://www.model.in.tum.de/�kretinsk/rabinizer2.html

2 Algorithm
b ∨ (a ∧X(aUb))

ttff

{b}, {a, b}∅

{a}

2{a,b}2{a,b}

Let us fix a formula ϕ of LTL\GU . We con-
struct an automaton A(ϕ) recognizing mod-
els of ϕ. Details can be found on the tool’s
webpage. In every step, A(ϕ) unfolds ϕ as
in [6], now we also define Unf(ψ1Uψ2) =
Unf(ψ2) ∨ (Unf(ψ1) ∧ X(ψ1Uψ2)). Then it
checks whether the letter currently read complies with thus generated require-
ments, see the example on the right for ϕ = aUb. E.g. reading {a} yields
requirement X(aUb) for the next step, thus in the next step we have Unf(aUb)
which is the same as in the initial state, hence we loop.
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Some requirements can be checked at a finite time by this unfolding, such as
bU(a ∧Xb), some cannot, such as GF(a ∧Xb). The state space has to monitor
the latter requirements (such as the repetitive satisfaction of a∧Xb) separately.
To this end, let Gϕ := {Gψ ∈ sf(ϕ)} and Fϕ := {Fψ ∈ sf(ω) | for some ω ∈
Gϕ} where sf(ϕ) denotes the set of all subformulae of ϕ. Then Rec := {ψ |
Gψ ∈ Gϕ or Fψ ∈ Fϕ} is the set of recurrent subformulae of ϕ, whose repeated
satisfaction we must check. (Note that no U occurs in formulae of Rec.) In the
case without the X operator [6,3], such as with GFa, it was sufficient to record
the currently read letter in the states of A(ϕ). Then the acceptance condition
checks whether e.g. a is visited infinitely often. Now we could extend this to keep
history of the last n letters read where n is the nesting depth of the X operator
in ϕ. In order to reduce the size of the state space, we rather store equivalence
classes thereof. This is realized by automata. For every ξ ∈ Rec, we have a finite
automaton B(ξ), and A(ϕ) will keep track of its current states.
Construction of B(ξ): We define a finite automaton B(ξ) = (Qξ, iξ, δξ, Fξ)
over 2Ap by

a ∨ b ∨X(b ∧Ga)

ttb ∧ (Ga)

ffGa

{a}, {b}, {a, b}∅

2{a,b}

{b}, {a, b} ∅, {a}

– the set of states Qξ = B+(sf(ξ)), where
B+(S) is the set of positive Boolean
functions over S and tt and ff ,

– the initial state iξ = ξ,
– the final states Fξ where each atomic

proposition has F or G as an ances-
tor in the syntactic tree (i.e. no atomic
propositions are guarded by only X’s
and Boolean connectives),

– transition relation δξ is defined by tran-
sitions

χ
ν−→ X−1(χ[ν]) for every ν ⊆ Ap and χ /∈ F

i
ν−→ i for every ν ⊆ Ap

where χ[ν] is the function χ with tt and ff plugged in for atomic propositions
according to ν and X−1χ strips away the initial X (whenever there is one) from
each formula in the Boolean combination χ. Note that we do not unfold inner
F- and G-formulae. See an example for ξ = a ∨ b ∨X(b ∧Ga) on the right.

Construction of A(ϕ): The state space has two components. Beside the com-
ponent keeping track of the input formula, we also keep track of the history
for every recurrent formula of Rec. The second component is then a vector of
length |Rec| keeping the current set of states of each B(ξ). Formally, we define
A(ϕ) = (Q, i, δ) to be a deterministic finite automaton over Σ = 2Ap given by

– set of states Q = B+(sf(ϕ)∪Xsf(ϕ))×
∏

ξ∈Rec

2Qξ where XS = {Xs | s ∈ S},

– the initial state i = 〈Unf(ϕ), (ξ �→ {iξ})ξ∈Rec〉;
– the transition function δ is defined by transitions

〈ψ, (Rξ)ξ∈Rec〉 ν−→ 〈Unf(X−1(ψ[ν])),
(
δξ(Rξ, ν)

)
ξ∈Rec

〉
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On A(ϕ) it is possible to define an acceptance condition such that A(ϕ)
recognizes models of ϕ. The approach is similar to [6], but now we have to take
the information of each B(ξ) into account. We use this information to get look-
ahead necessary for evaluating X-requirements in the first component of A(ϕ).
However, since storing complete future look-ahead would be costly, B(ξ) actually
stores the compressed information of past. The acceptance condition allows then
for deducing enough information about the future.

Further optimizations include not storing states of each B(ξ), but only the
currently relevant ones. E.g. after reading ∅ in GFa ∨ (b ∧GFc), it is no more
interesting to track if c occurs infinitely often. Further, since only the infinite
behaviour of B(ξ) is important and it has acyclic structure (except for the initial
states), instead of the initial state we can start in any subset of states. Therefore,
we start in a subset that will occur repetitively and we thus omit unnecessary
initial transient parts of A(ϕ).

3 Experimental Results

We compare our tool to ltl2dstar, which yields the same automata as its Java
reimplementation in PRISM. We consider some formulae on which ltl2dstar

was originally tested [5], some formulae used in a network monitoring project
Liberouter (https://www.liberouter.org/) showing the LTL\GU fragment is prac-
tically very relevant, and several other formulae with more involved structure
such as ones containing fairness constraints. For results on the LTL(F,G) sub-
fragment, we refer to [3]. Due to [2], it only makes sense to use DGRA and we
thus display the sizes of DGRA for Rabinizer 2 (except for the more complex
cases this, however, coincides with the degeneralized DRA). Here “?” denotes
time-out after 30 minutes. For more experiments, see the webpage.

Formula ltl2d* R.2

(Fp)U(Gq) 4 3
(Gp)Uq 5 5
¬(pUq) 4 3
G(p→ Fq) ∧ ((Xp)Uq) ∨ ¬X(pU(p ∧ q)) 19 8
G(q ∨XGp) ∧G(r ∨XG¬p) 5 14
((G(F(p1) ∧F(¬p1))))→ (G((p2 ∧Xp2 ∧ ¬p1 ∧Xp1 → ((p3)→ Xp4)))) 11 8
((p1 ∧XG(¬p1)) ∧ (G((Fp2) ∧ (F¬p2))) ∧ ((¬p2)))→ (((¬p2)U
G(¬((p3 ∧ p4) ∨ (p3 ∧ p5) ∨ (p3 ∧ p6) ∨ (p4 ∧ p5) ∨ (p4 ∧ p6) ∨ (p5 ∧ p6))))) 17 8

(Xp1 ∧G((¬p1 ∧Xp1)→ XXp1) ∧GF¬p1 ∧GFp2 ∧GF¬p2)→
(G(p3 ∧ p4∧!p2 ∧Xp2 → X(p1 ∨X(¬p4 ∨ p1)))) 9 7

Fr→ (p→ (¬rU(s ∧ ¬r ∧ ¬z ∧X((¬r ∧ ¬z)Ut))))Ur 6 5
((GF(a ∧XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧XXb))) 353 73
GF(XXXa ∧XXXXb) ∧GF(b ∨Xc) ∧GF(c ∧XXa) 2127 85
(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨Xe)) 18176 40
(GF(a ∧XXc) ∨ FGb) ∧ (GFc ∨FG(d ∨Xa ∧XXb)) ? 142
aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨FGd) ∨ aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb) ? 60



450 J. Křet́ınský and R.L. Garza

References

1. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM
Trans. Comput. Log. 5(1), 1–25 (2004)
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Abstract. We introduce neco-spot, an LTL model checker for Petri net models.
It builds upon Neco, a compiler turning Petri nets into native shared libraries that
allows fast on-the-fly exploration of the state-space, and upon Spot, a C++ library
of model-checking algorithms. We show the architecture of Neco and explain how
it was combined with Spot to build an LTL model checker.

1 Introduction

Neco is a suite of Unix tools to compile high-level Petri net models into shared libraries
that can then be used to check reachability properties (building only the set of reachable
states), or check any LTL property (synchronizing the reachability graph with a prop-
erty automaton). It is based on SNAKES, a general Petri net Python library [12], which
key feature is the use of arbitrary Python objects as tokens and Python expressions as
net annotations. This allows a great amount of expressivity at the cost of slow execution
times, Python being an interpreted language. Neco uses this library as a frontend allow-
ing this high degree of expressivity but also notably speeds up the execution, efficiently
compiling the models to native libraries. This compilation step allows Neco to compete
with state-of-the-art tools [7,10].

Originally, Neco did only reachability analysis. In this paper, we explain how we
connected it with the Spot library to perform LTL model checking. Beside presenting
Neco, this paper can therefore be seen as presenting a use-case of Spot, showing how
to build an LTL model checker for a custom formalism.

2 Architecture of Neco

To perform model-checking, Neco provides three tools: neco-compile, neco-check,
and neco-spot. Each of these tools handle a specific task and the whole tool set allows
for a simple workflow as presented in Figure 1.

First, neco-compile builds an exploration engine (net.so) from a high-level Petri
net model. The model can be programmatically specified in Python using the SNAKES
toolkit [12], specified in the ABCD formalism [11], or provided in PNML format [9].
This step uses model specific information (inferred or provided by the user) to generate
optimized data structures and exploration functions on a per-model basis [7,8].

Next, we set up an atomic proposition checker. Because Spot is a general model-
checking library, it does not provide a language for atomic propositions. So each tool
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Fig. 1. The architecture of Neco

using Spot has to provide its atomic proposition language, but also functions to check
these. This is the role of neco-check tool. It takes a LTL formula as an input, then de-
composes it in order to extract atomic propositions. During this step a simplified formula
where all atomic propositions were replaced by simple identifiers is produced (spot
formula). The tool keeps the track of these atoms using an identifier-atomic proposi-
tion map, which can also be used to understand the simplified formula. The exploration
engine being model-specific, neco-check cannot make any assumption about the Petri
net marking structure or memory layout. Fortunately net.so exports some metadata
(compilation trace) about the marking structure that is used by neco-check to gen-
erate check functions for each atomic proposition. The last function we produce is a main
check function that serves as an interface for the whole module. It returns the value of
atomic propositions based on their identifiers and a provided states. All functions gen-
erated, we can compile the code producing the shared library checker.so.

The model-checking procedure is performed by the third and last tool: neco-spot.
This tool takes as inputs: the LTL formula to check (spot formula), the exploration
engine library to build the reachability graph on demand (net.so), and the atomic
proposition checker module to check atomic proposition values (checker.so). Then
using the Spot library outputs a counterexample if one exists, and builds the whole state
space otherwise.

3 Bridge between Neco and Spot

We now describe how we built our LTL model-checking tool, neco-spot, combining
Neco’s exploration engine with the model-checking algorithms of Spot [4].
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Spot handles Transition-based Generalized Büchi Automata (TGBA), which, as the
name suggests are Büchi automata with transition-based generalized acceptance condi-
tions. TGBA allows for more compact representation of LTL properties [3], and can be
checked for emptiness efficiently [2]. The TGBA is also an abstract C++ class, tgba,
with an interface that allows on-the-fly exploration. Kripke structures are viewed as a
subclass of tgba without acceptance sets.

The automata-theoretic approach is implemented by neco-spot as follows:
1. A wrapper of net.so and checker.so that presents the reachability graph of the

model as a subclass of Spot’s kripke class. The interface boils down to three
functions: get init state() returns the initial state, succ iter(s) returns an
iterator on the successors of the state s, and state condition(s) returns the val-
uation of the atomic propositions for the state s. Note that this interface allows an
on-the-fly exploration of the state space, computing the results of succ iter(s)

and state condition(s) on demand, by simply calling the relevant functions
compiled in net.so and checker.so.

2. The LTL formula is simplified, converted into a TGBA, which is in turn also sim-
plified. All these operations are functions offered by Spot [3].

3. The previous two automata are synchronized using the class tgba product of Spot
(another subclass of tgba). This synchronous product object is actually constructed
in constant time, and delays its computation until it is actually explored.

4. The synchronous product is checked for emptiness using any of the emptiness
check algorithms implemented by Spot [4]. It is this emptiness check procedure
that will trigger the on-the-fly computation of the product, which will in turn con-
struct the part of the reachability graph that need to be explored.

5. If the product was empty, a counterexample is computed and displayed.
The most important part of the work for building neco-spot therefore consisted in

implementing the interface for Spot’s kripke class; the rest is just chaining calls to
various algorithms of Spot.

4 Possible Evolutions

There are a couple features of Spot that we do not use in neco-spot, and that will
constitute some easy extensions.

A first one is the support of the linear fragment of the Property Specification Lan-
guage [1] (PSL), a superset of LTL. Spot has built-in support for PSL, and all it would
require is an extension of Neco’s parser of formulas.

A second extension would be to support for weak fairness properties [5] in the
model. Currently, neco-spot presents its model as an instance of the kripke class,
which is just a TGBA without acceptance conditions, but it could present the model
as a fair kripke where states can be associated to acceptance sets representing weak
fairness constraints.

We also plan to add reductions by symmetries [6] which have been already proto-
typed in Python, but are not available for LTL model checking yet. This would improve
both exploration times and state-space sizes, leading to smaller product automata when
performing model checking with Spot.
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Furthermore, in order to easily debug models, we would like to implement fast
simulation within Neco. This would also allow to replay couterexamples provided by
neco-spot.

5 Availability

Neco is free software. Documentation and installation instructions can be found at

http://code.google.com/p/neco-net-compiler/.

A test-suite is also supplied.
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Abstract. We present our GPU-based implementations of three well-
known algorithms for solving parity games. Our implementations are in
general faster by a factor of at least two than the corresponding imple-
mentations found in the widely known PGSolver collection of solvers. For
benchmarking we use several of PGSolver’s benchmarks as well as arenas
obtained by means of the reduction of the language inclusion problem of
nondeterministic Büchi automata to parity games with only three colors
[3]. The benchmark suite of http://languageinclusion.org/CONCUR2011
was used in the latter case.

1 Introduction

The term “graphics processing units”, short GPUs, was introduced in 1999 by
Nvidia when they included hardware on the graphics chip specialized for process-
ing triangles and lighting computations. In the last years, GPUs have constantly
gained both computational power and versatility. In particular, GPUs excel at
“embarrassingly parallel problems” which can be easily split into a large number
of mostly independent parallel tasks, e.g. matrix-vector multiplication. Today,
the fastest supercomputers combine both traditional multi-core processors and
graphics processing units. Accordingly, there has been an ever growing amount
of research on how to take advantage of the computational power of GPUs in
general-purpose computing. Recently, Barnat et al. [1] have shown how to take
advantage of GPUs in LTL model checking.

In this paper we present GPU-enabled implementations for solving parity
games. Solving these games is a problem of great interest because if its appli-
cations in model checking as well as synthesis. The algorithms we use are the
small-progress-measure (SPM) algorithm by Jurdzinski [5], the recursive algo-
rithm due to Zielonka [9] and a variant of the strategy iteration (SI) algorithms
of [2,7,8] described in [6]. We use the GPU for solving, roughly spoken, weighted
min-max systems underlying all three algorithms. To our best knowledge, solving
parity games using the GPU was not previously studied in literature.

We implemented all three algorithms using the Nvidia specific CUDA tool
kit. Implementations using the vendor independent OpenCL framework will be

� This work was partially founded by the DFG project “Polynomial Systems on Semi-
rings: Foundations, Algorithms, Applications” and by the DFG Graduiertenkolleg
1480 (PUMA).
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released at a later point of time; so far we only have a first OpenCL-version of
the SI-algorithm. While the CUDA-based implementations make better use of
our hardware (but can only be run on Nvidia GPUs) and thus gives a better
impression of the attainable speed-up, the advantage of OpenCL, besides being
vendor independent, is that it can be executed both on GPUs and also on multi-
core CPUs commonly used in todays desktop PCs. This allows us to assess the
speedup obtained by moving from the CPU to the GPU.

Furthermore we compare our current implementation to the PGSolver by
Friedmann and Lange [4] in order to assess its absolute speed. PGSolver has
been in development for several years, therefore we deem it a reasonable choice
for evaluating the speed of our own implementation. As benchmarks we use
randomly generated arenas, arenas generated from LTL verification, and are-
nas obtained via the reduction by Etessami et. al. [3] of the language inclusion
problem of nondeterministic Büchi automata to parity games.

The current implementations and benchmarks are available at
www.model.in.tum.de/tools/gpupg.

2 GPU-Specific Implementation

Due to the page limit, we have to assume that the reader is familiar with parity
games and cannot discuss GPU programming in detail. For more informations
on the algorithms we refer the reader to the respective articles [5,9,6]; for a
general introduction to GPU programming, please see the respective material
made available by the Khronos group or by hardware vendors like AMD, Intel, or
Nvidia. Very roughly spoken, a modern GPU consists of several multi-processors
which act independently of each other; each multi-processor itself processes a
large number of “warps” of 32 threads in parallel; all threads of a warp execute
the same instruction (or do nothing).

We give a very brief sketch of how we use the GPU: For storing the arena, we
use separate arrays for storing attributes like owner, color, etc. The successors
are stored similar to the Yale format used for sparse matrices. At the heart of all
three algorithms lies the problem of computing the least or greatest solution of
min-max systems (over different algebraic structures) which are directly derived
from the graph structure underlying the arena (variables correspond to nodes,
equations to edges). For instance, computing the usual attractor means to solve
a min-max system where every variable takes only values in {0, 1}. In all three
cases the min-max systems can be solved using standard fixed-point iteration.
The basic idea common to all three implementations is to implement the fixed-
point iteration on the GPU by assigning to each node a thread which re-evaluates
its defining equation in each iteration. This approach is advantageous when a lot
of variables need to be updated in every iteration, but unprofitable if only a few
updates are required. For this reason, we have also experimented with a worklist
implementation on the GPU based on the stream compaction methods of the
thrust library; but in out experiments the added cost for handling the worklist
outranges the benefit of processing less nodes.

http://www2.tcs.ifi.lmu.de/pgsolver/
http://www2.tcs.ifi.lmu.de/pgsolver/
www.model.in.tum.de/tools/gpupg
http://thrust.github.io/
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3 Evaluation

We have benchmarked our current implementation on several instances of parity
games and compared the results to PGSolver (Version 3.3, released January,
19th, 2013). All tests have been run on an Intel Core i7-3820 Processor, currently
280 e, with 16 GB of RAM and a Nvidia GTX660, currently 180 e, with 2 GB
of RAM running Windows 7 64bit. To exclude device startup times from our
benchmarks, we ran all GPU benchmarks four times, discarded the first and
took the average of the remaining three runs.

We apply the following preprocessing steps to the arena before solving them
or handing them to PGSolver: We order the nodes in a topological ordering using
Tarjan’s SCC algorithm as a heuristic to optimize memory access on the GPU.
For each of the two players we remove all nodes which the player can win by
visiting only nodes controlled by him. For each SCC we further “compact” colors
in the obvious way, e.g. if no node uses the color 5, but the colors 4 and 6 are
used, we reduce all colors greater than 5 by 2.

We implemented the SI algorithm both in the Nvidia specific CUDA frame-
work and in the vendor independent OpenCL framework. The code is the same
up to those changes necessiated by the frameworks. As the CUDA version out-
performed the OpenCL version in all benchmarks, we implemented the SPM
and the recursive algorithm using only the CUDA framework. For comparison,
we ran PGSolver using the solvers corresponding to the SI, the SPM and the
recursive algorithm.1 PGSolver includes lots of (polynomial-time) optimizations
and preprocessing steps that already solve parts or in some cases all of the parity
game (in these cases all three solvers have nearly identical solving times) before
the actual solver is applied. For comparison we also ran the recursive algorithm
with disabled preprocessing/optimizations, labelled as “PG Rec (pure)”.

To get a rough estimate of the behaviour of the implementation in general
we used 100 randomly generated arenas of each of the following types: Steady
random arenas have 500,000 nodes, 16 colors and in- and outdegree between 2
and 32. Clustered random arenas also have 500,000 nodes and 16 colors.2 Using
a timeout of one minute, every solver either solved all arenas (Figure 1 lists the
average solving times) or none (denoted by a ∗). For more practical benchmarks,
we used the reduction by Etessami et al. [3] of the language inclusion problem
of nondeterministic Büchi automata (NBA) – which is at the heart of automata
theoretical approach for LTL model checking – to parity games and used the
NBAs found on http://languageinclusion.org/CONCUR2011 for benchmarking.
These arenas use three colors and their number of nodes ranges between 40,000
and 1,100,000. The benchmark results are summarized in Figure 1. Also included
in this table are two instances of PGSolver’s elevator (LTL) verification game.

The speedup obtained by our implementations is in most cases quite notice-
able: The SI algorithm is faster by a factor 1.5-4 when compared to PGSolver’s
recursive algorithm (note that PGSolver’s SI and SPM had multiple timeouts

1 The parameters for PGSolver are -global {optstratimprov, smallprog, recursive}.
2 Additional parameters: 2 32 4 4 4 10 20. PGSolver manual offers more information.
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http://www2.tcs.ifi.lmu.de/pgsolver/
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SI SPM recursive
cuda ocl (CPU) ocl (GPU) PG cuda PG cuda PG PG (pure)

clustered 5.84 5.81 5.87 ∗ ∗ ∗ 2.31 18.62 18.54
steady 5.40 8.11 5.58 ∗ ∗ ∗ 4.12 21.69 32.93

ele_6.txt 0.73 1.85 1.61 0.95 12.03 0.95 0.10 2.00 0.95
ele_7.txt 7.60 20.29 8.63 10.83 559.09 10.81 0.85 16.38 10.81

bakery.fs.pg 0.43 1.11 0.62 2.54 26.55 1.40 0.24 2.95 0.84
bakeryV2.fs.pg 0.22 0.81 0.37 0.69 14.61 0.70 0.13 1.53 0.47

fischer.fs.pg 0.90 1.73 0.96 > 30 min > 30 min 10.12 0.97 8.24 7.41
fischerV3.fs.pg 0.80 1.70 0.89 2.28 89.19 2.28 0.61 9.22 2.28
fischerV4.fs.pg 0.07 0.62 0.19 0.09 1.77 0.09 0.04 0.44 0.09

mcs.fs.pg 1.02 1.78 1.15 2.84 134.173 2.87 0.62 13.73 2.84
fischerV5.fs.pg 2.59 6.41 2.94 3.56 > 30 min 3.56 0.96 6.63 3.56
philsV4.fs.pg 0.02 0.56 0.06 0.03 2.22 0.03 0.02 0.11 0.03

Fig. 1. Benchmark results. All times in seconds if not stated otherwise.

on arenas which our implementation did solve), the recursive algorithm in some
cases reaches a speedup factor of 10. Although the SPM algorithm has the best
worst-case upper bound, it performed worst in all of our experiments.
Regarding the question of the advantage of the GPU, in most of our bench-
marks the OpenCL version of the SI algorithm performed perceivably better on
the GPU than on the quad-core CPU (all cores were used). Future optimizations
are certainly possible; an experimental version of our SPM solver containing a
better preprocessing including SCC-decomposition on the GPU yielded drasti-
cally improved times: for instance, the language inclusion problem “mcs” can
now be solved in 7 seconds instead of 134 seconds.
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Abstract. PYECDAR is an open source implementation for reasoning on timed
systems. PYECDAR’s main objective is not efficiency, but rather flexibility to test
and implement new results on timed systems.

1 Context

To solve complex problems such as scheduling tasks in embedded applications, the
ability to reason on real time is mandatory. It is thus not a surprise that, over the last
twenty years, the rigorous design of real-time systems has become a main research topic.
Among major successes in the area, one finds the UPPAAL toolset [1] that is promoted
by industries, and that has been used to verify complex properties of complex protocols
such as the Herschel-Planck, the root contention protocol, or Audio-Control Protocol
developed by Philips. Recently, timed tools have been extended to reason not only on
the properties of the system, but also on the effects of its interactions with a potentially
unknown environment. Tools such as UPPAAL-TIGA do this via game-theory [2]. The
code of UPPAAL and related toolsets is not available and their interfaces are fixed in
stone. Those choices shall not been seen as drawbacks, but rather as strategic choices
for an industrial dissemination. However, from a scientific point of view, this makes it
hard for researchers to reuse part of those toolsets to quickly implement and evaluate
their new results without sharing them with tool makers.

We present PYECDAR (https://project.inria.fr/pyecdar/) that is a new python imple-
mentation of well-known results on timed systems and games. We then show that the
tool can be used to implement new results in timed systems. Our main objective with
PYECDAR is to offer an open source platform to quickly test new results on timed sys-
tems. Of course, this implementation is not as competitive as well-established toolsets,
but it is very flexibility and easy to use and extend.

2 The PYECDAR Toolset in a Nutshell

As a foundation to develop new algorithms, PYECDAR offers an implementation of the
reachability analysis for timed automata as well as an implementation of the forward
algorithm from [2] that is used to solve reachability problem for timed games. Then,
the tool offers the implementation of a series of brand new results on timed systems.
The first is the timed specification theory from [3] that has been developed to reason
on complex systems described as a combination of components. The specifications of
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Fig. 1. Specifications of timed systems

those components are given by Timed Input/Output Automata (TIOA), where inputs
represent behaviors of the environment, and outputs those of the system. The tool is
able to 1. decide whether an implementation (e.g. Fig. 1b) conforms to a given specifi-
cation (e.g. Fig. 1a), decide whether a specification can be implemented (consistency),
3. compare specifications (refinement – timed game), 4. logically/structurally compose
two specifications, 5. synthesize a specification from a set of requirements (quotient),
and 6. prune states from which the environment has no strategy to avoid bad behaviors
(compatibility) – the operation requires the implementation of a timed game. The theory
has also been implemented in ECDAR [4]. An advantage of PYECDAR is that its inter-
nal data structures can be used to save (and reuse) the result of composing/synthesizing
specifications, while the one of ECDAR cannot. Also, PYECDAR can perform compati-
bility on combined systems while ECDAR cannot.

PYECDAR also offers the implementation of an extension of [5] to decide whether an
implementation automaton is robust: i.e. if it remains conform to a specification when
its output guards (resp. input) are exceeded (resp. restricted) by some Δ value. The tool
can also synthesize the maximal Δ for which the implementation remains robust. The
results extend to all the operations of the theory [6]. As an example, implementation of
Fig. 1b is robust with respect to specification of Fig. 1a up to Δ = 1. Beyond that point,
the perturbations of the output transitions, which is 5 −Δ ≤ y ≤ 5 + Δ, exceeds the
guard y ≥ 4 and the invariant y ≤ 6 of the specification. It is worth mentioning that
the internal structure of ECDAR does not permit to implement robustness on top of the
specification theory. So, albeit the work in [6] is an extension of the one in [3], using
ECDAR would require an entirely new implementation. Several robustness theories for
timed automata have been implemented in tools such as shrinktech [7], but PYECDAR

is the first to offer this feature for a complete specification theory.
Finally, PYECDAR offers the ability to reason on variability [8]. There, the model is

an extended timed automata that permits to represent features of both the system and its
environment – such features may appear or disappear at runtime. As an example, Fig. 1c
represents a specification of the system using two adaptive features for the environment
(out_of_tea and out_of_cof). These features may be enabled or disabled at run-
time during input transitions, which may restrict the possible behaviors of the system.
PYECDAR exploits an extension of timed game algorithms to synthesize e.g., the mini-
mal set of features that are needed by a system so that it verifies a timed CTL property,
whatever the environment does. To the best of our knowledge, PYECDAR is the first to
offer a timed implementation of such a complex problem in software engineering.
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3 Architecture of the Tool
PYECDAR works inside an interactive python shell, and offers a set of modules and
fonctions to load models and perform computations. In PYECDAR, models are written
by using the interface of UPPAAL or ECDAR, and uploaded via an XML file. Once the
models have been loaded, the user can perform one or several queries via the shell in an
on-demand manner.

Input Language. PYECDAR supports the main language elements from ECDAR. That
allows to design TIOAs with the syntax from [3], and additionaly to use extended syntax
elements, like constants and integer variables. See https://project.inria.fr/pyecdar/ for the
grammar. TIOAs are specified with the ECDAR interface that is freely available, and then
saved in XML. In case of features, Boolean variables are added to the model to witness
the presence or absence of each feature. For the internal representation, PYECDAR relies
on the UPPAAL DBMs library used to represent the timing constraints of the model and
a classical graph-based structure to represent its syntax. Contrary to ECDAR, PYECDAR

creates a dedicated structure for each component, including those that are obtained by
combining existing ones. ECDAR is rigid and can only represent a new component by
a pointer on states of the structures of those that participated to its creation. As a con-
sequence, ECDAR cannot perform composability that consists in removing “bad states”.
Indeed, since new components do not have their own structure, this operation would
eventually remove states of individual components that participated to its creation and
hence falsify the design. If features are present, then PYECDAR combines BDDs used
to logically represent sets of features on transitions with DBMs (see [8] for details). Fi-
nally, PYECDAR also uses polyhedra, with bindings to the Parma Polyhedra Library, to
encode parametric constraints in case the user wants to solve a robustness problem.

Queries. PYECDAR offers two types of queries. The first one comes as a set of operators
such as composition or quotient to build complex systems from small ones. The second
type concerns operational queries such as the one of checking consistency, refinement,
robustness, or properties of adaptive systems (see https://project.inria.fr/pyecdar/ for the
complete list of queries). Depending on the problem to be solved, PYECDAR outputs
different kinds of results. As an example, if the tool is used to synthesize the set of fea-
tures that allows to satisfy some temporal formula, this set is output as a binary expres-
sion. The tool can also be used to determine the winning states for a timed game, which
allows to determine if the consistency, compatibility or refinement problems have been
solved. Finally, using a counter-example refinement approach (CEGAR), it can com-
pute the maximum perturbation allowed by the system to solve a robustness problem.
PYECDAR offers some extra features such as saving TIOAs into a new XML file so that
they can be reused in other designs.

Algorithms. 1. PYECDAR implements the on-the-fly safety game algorithm from [2]
that is used e.g. to check consistency and refinement. The tool also uses a model trans-
formation to reduce robust consistency/compatibility to consistency/compatibility and
hence reuse the former algorithm. 2. The CEGAR algorithm is a parametric extension
of the first [9] that allows to compute the maximal delta for which an implementation
remains robust. 3. The last algorithms are backward propagation game algorithms [8]
that compute the set of features that satisfies a formula for an adaptive system.

 https://project.inria.fr/pyecdar/
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4 PYECDAR in Action

We quickly demonstrate how to use PYECDAR. Assume that the models presented in
Fig. 1 are saved in an XML file machine.xml. We first load the XML file of the first
two TIOAs:

In [1]: W = pyecdar.loadModel("machine.xml")
In [2]: MS = W.getSpecification("MachineSpec")
In [3]: MI = W.getSpecification("MachineImpl")

We check if the implementation of Fig. 1b satisfies the specification in Fig. 1a:

In [4]: MI <= MS
Out[4]: True

We can then compute the maximum perturbation allowed by the implementation.
This applies the CEGAR approach, starting with value 5, and with a confidence 0.1 for
the result. The result is computed after 2 iterations and Δ = 1 is returned.

In [5]: MI.maxRobSat(MS,5,0.1)
INFO:CEGAR: New game with value 5
INFO:REACH:2 states visited.
INFO:CEGAR: ...game is lost; refining...
INFO:CEGAR: ...refinement result: max=1 min=0 strict: False
INFO:CEGAR: New game with value 1
INFO:REACH:6 states visited.
INFO:CEGAR: ...game is won;
INFO:CEGAR: ...refinement result: max=1 min=1 strict: False
Out[5]: 1.0

Other examples, e.g. checking a temporal formula on the adaptive specification of
Fig. 1c, are described on https://project.inria.fr/pyecdar/
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Abstract. We present CCMC (Conditional CSL Model Checker), a model
checker for continuous-time Markov chains (CTMCs) with respect to proper-
ties specified in continuous-time stochastic logic (CSL). Existing CTMC model
checkers such as PRISM or MRMC handle only binary CSL until path formulas.
CCMC is the first tool that supports algorithms for analyzing multiple until path
formulas. Moreover, CCMC supports a recent extension of CSL – conditional
CSL – which makes it possible to verify a larger class of properties on CTMC
models. Our tool is based on our recent algorithmic advances for CSL, that con-
struct a stratified CTMC before performing transient probability analyses. The
stratified CTMC is a product obtained from the original CTMC and an automa-
ton extracted from a given formula, aiming to filter out the irrelevant paths and
make the computation more efficient.

1 Introduction

Continuous-time Markov chains (CTMCs) play an important role in performance
evaluation of networked, distributed and biological systems. The concept of formal veri-
fication for CTMCs was introduced by Aziz et al. [1]. In their seminal work, continuous-
time stochastic logic (CSL) was defined to specify properties of CTMCs. They showed
that the model checking problem of CSL over CTMCs, i.e., whether a CTMC satisfies
a given CSL property, is decidable. The approach has not yet been implemented, due
to the high theoretical complexity. Later, efficient approximation algorithms have been
studied by Baier et al. [2]. Based on this, several tools have been developed to support
CSL model checking, such as PRISM [3] and MRMC [4]. Both of them can only deal
with CSL properties with binary until path formulas.

Recently, we have extended the approximation algorithm in [2] to deal with multi-
ple until path formulas [5]. The main idea is to exploit the notion of stratified CTMCs,
which is a subclass of CTMCs that has the nice feature of allowing one to obtain the
desired probability using a sequence of transient probability analyses. First, a determin-
istic finite automaton (DFA) is constructed for the formula being considered. Then, the
product of the CTMC and the DFA is constructed, which is stratified by construction.
This product CTMC can then be analyzed efficiently, using standard numerical methods
for CTMCs.

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 464–468, 2013.
© Springer International Publishing Switzerland 2013
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Moreover, we have proposed an extension of CSL with conditional probabilistic op-
erators [6], and in addition, we allow disjunction and conjunction of path formulas. With
conditional CSL, one can for instance formulate the following property: ”The probabil-
ity is at least 0.1 that in the interval [10, 20) the number of proteins becomes more than
5 and the gene becomes inactive, under the condition that the proteins have increas-
ingly accumulated from 0 to k within the same time interval”, as P≥0.1(true U[10,20)

f ∧ g | f1 U[10,20) f2 U[10,20) · · · fk) where f, g, f1, . . . , fk are appropriate atomic
propositions.

In this paper, we present the probabilistic model checker CCMC, which is based on
the recent work in [5,6,7], and supports the multiple until and conditional probabilistic
formulas. These formulas allow one to express a richer class of properties for CTMCs,
and thus we consider our tool an important complementation of PRISM [3] and MRMC
[4].

2 Logic and Tool Architecture

The syntax of Conditional CSL (CCSL) is given by the following grammar:

Φ := f | ¬Φ | Φ∧Φ | P��p(ϕ) | P��p(ϕ | ϕ), ϕ := ϕ∧ϕ | ϕ∨ϕ | Φ1UI1Φ2UI2 · · ·UIK−1ΦK

where f is an atomic proposition, Ii are non-empty left-closed and right-open intervals
on R≥0, 
� ∈ {<,≤,≥, >}, 0 ≤ p ≤ 1, K > 1. Φ is called a state formula, while ϕ
is called a path formula. In particular, CCMC supports multiple until path formulas, in
contrast to existing model checkers (e.g. [3,4]) which are restricted to binary ones, i.e.,
K = 2.

For the sake of efficiency, CCMC was implemented in C/C++ and consists of ap-
proximately 5000 lines of code. It has been applied on a number of relevant case studies
from diverse areas (performance evaluation, biological models, etc.). CCMC is avail-
able for Linux with libc6 and GNU Scientific Library 1.15, and is distributed under the
GNU General Public License (GPL) Version 3. The binary code, source code and case
studies can be downloaded from:

http://lcs.ios.ac.cn/~gaoy/CCMC/homepage.xhtml.

Probability
Computation

Indicator
Filter

Forward
Computation

Model Analysis

Product Construction Parameterized Product
Construction

PreprocessingCSL CCSL

Model Storage Parser

Front End

Model Property

Results or Exported Files

Fig. 1. CCMC Architecture

The architecture and components of
CCMC are depicted in Fig. 1. The inputs
of CCMC include the model description
files and the property file. The model de-
scription files can be written manually or
generated by PRISM, including a state
file and a transition matrix file. They will
be loaded, where we use explicit sparse
matrix representations. The property file
keeps the CCSL properties of interest.

The preprocessing component con-
structs the stratified CTMC, which is
a product obtained from the original
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CTMC and an automaton extracted from the given formula [5]. For CCSL conjunc-
tive path formulas, we need an extended product construction which also takes sub path
formulas into account [6].

By the preprocessing procedure, the paths which are irrelevant to the given proper-
ties are filtered out and the model analysis component will carry out a forward transient
probability computation. The verification results and other information can be visual-
ized or exported into a file.

3 Experiments

In this section, we conduct experiments on some CTMC benchmarks from the PRISM
webpage (http://www.prismmodelchecker.org/) and other publications [8].
All experiments were performed on a Linux (Ubuntu 12.10) machine with an Intel(R)
Core(TM) i7-2600 processor at 3.40GHz equipped with 3 GB of RAM. Due to space
constraints, detailed information about the cases and comparison with MRMC are pro-
vided on the CCMC webpage.

PRISM Benchmark Suite. Firstly, we compare our model checker CCMC with
PRISM (sparse matrix engine) on verifying benchmark CTMC models. Here we use
three models which can be found on the PRISM homepage. The first one is a cyclic
server polling system [9], the second one is a workstation cluster [10], and the third
one is an embedded control system [11]. We consider binary CSL until formulas, which
can also be handled by PRISM. Results and executing time (in seconds) are listed in
Table 1. The meaning of parameter N is as on the PRISM homepage. Execution times
of CCMC and PRISM for the analyses considered are almost equal.

Table 1. Comparism with PRISM. N and MAX are model parameters influencing the number of
states.

Polling Cluster Embedded
N states PRISM CCMC N states PRISM CCMC MAX states PRISM CCMC
8 3,073 0.016 0.01 2 276 0.006 <0.01 5 6,013 0.319 0.16
9 6,913 0.047 0.03 4 820 0.011 <0.01 8 8,548 0.437 0.22

10 15,361 0.077 0.06 8 2,772 0.014 0.01 10 10,238 0.53 0.29
11 33,793 0.161 0.14 16 10,132 0.051 0.03 20 18,688 0.925 0.50
12 73,729 0.341 0.41 32 38,676 0.166 0.11 50 44,038 2.715 1.14
13 159,745 0.804 1.04 64 151,060 0.639 0.45 100 86,288 4.285 2.73
14 344,065 1.853 2.43 128 597,012 2.871 3.09 200 170,788 8.535 6.00
15 737,281 4.069 5.73 256 2,373,652 12.345 19.53 500 424,288 21.649 20.46

RandomRobot. We use this case study (revised from [8]) to show the ability of CCMC
to verify conditional formula, which describe a robot on a grid with N × N cells of
different land types. We focus on computing the probability that the robot goes across
the flatlands, cementlands and grasslands under the condition that it will get stuck
within time t. This property can easily be expressed by a CCSL formula, that is, P=?(ϕ |
ψ) where ϕ = flat U[a1,b1) cement U[a2,b2) grass and ψ = true U[0,t) trap. We generate
the grid randomly and the experimental results are listed in the left part of Table 2, where
a1 = 1, a2 = 1.5, b1 = 2, b2 = 3 and t = 10.
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Cyclic Server Polling System. We reconsider the Cyclic Server Polling System (CSP)
[9] and the CSL property:what is the probability of finding all the queues full in thewhole
roundwhen the server serves themwithinT seconds, which can be expressed using a mul-
tiple until formula: P=?(s = 1 ∧ s1 U[0,T ) s = 2 ∧ s2 U[0,T ) · · · U[0,T ) s = k ∧ sk),
where s = 1, · · · , k means the server is at the i-th station, and sk = 1 shows that the
k-th station is full. The right part of Table 2 shows the results by fixing T = 10.

Table 2. Experimental results

Random Robot Cyclic Server Polling System

N
Before Product After Product

time(s) result N
Before Product After Product

time(s) result
states transitions states transitions states transitions states transitions

70 4900 14463 4869 14373 0.07 0.02602991 7 1345 6273 993 3456 <0.01 0.01779250
100 10000 29513 9941 29399 0.14 0.00213756 8 3073 15873 2305 8960 0.02 0.00908245
120 14400 43094 14288 42761 0.22 0.00210038 9 6913 39169 5249 22528 0.03 0.00462759
150 22500 67288 22301 66707 0.39 0.00106487 10 15361 94721 11777 55296 0.11 0.00235415
200 40000 119397 39748 118656 0.98 0.00107120 11 33793 225281 26113 133120 0.33 0.00119605
300 90000 268560 89330 266591 2.42 0.00077518 12 73729 528385 57345 315392 1.22 0.00060700
350 122500 366852 121695 364570 3.36 0.01079894 13 159745 1224750 124929 737280 5.06 0.00030786

Table 2 gives the number of states and transitions of original CTMC and product
CTMC for each model. From this table, we can conclude that the product construction
decreases the size of CTMCs to be analyzed since it filters out the irrelevant paths
w.r.t. the properties to be verified. For Random Robot, the size of product CTMC does
not decrease so much, as this depends on the CCSL formula. However, the product
construction makes the original CTMC stratified and we need just perform the transient
probability analyses at each endpoint of the intervals which occur in the CCSL formula.
Thus, the execution time only depends on the size of product CTMC and the number of
endpoints.

Remark 1. More recently, Donatelli et al. [12] have extended CSL such that path prop-
erties can be expressed via a deterministic timed automaton (DTA) with a single clock.
Chen et al. [8,13] take this approach further and consider DTA specifications with mul-
tiple clocks as well. In the Cyclic Server Polling System case study, we compare our
approach with the DTA based approach. In [8], a DTA is used to specify the property:
What is the probability that after consulting all queues for one round, the server serves
each queue one after the other within T time units? This property can be separated
into two phases and formulated by multiple until formulas. (We remark that DTAs are
in general more expressive than CSL specifications.) At each phase, we construct the
corresponding product CTMC which reduces the computation work a lot. As a result,
we can handle larger models, and the running time is considerably improved.

4 Concluding Remarks

In this work, we have introduced CCMC, a probabilistic model checker for CTMC
models. Its effectiveness and efficiency have been demonstrated through the successful
analysis of several case studies. As future work, we will extend this work to Continuous-
Time Markov Decision Process (CTMDP) models which can model and analyze the
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systems with both probabilistic and nondeterministic behaviors. We also want to explore
the possibility to use symbolic data structures, such as MTBDDs or the one of the
PRISM hybrid engine.
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Abstract. We describe NLTOOLBOX, a library of data structures and
algorithms for reachability computation of nonlinear dynamical systems.
It provides the users with an easy way to ”program” their own analysis
procedures or to solve other problems beyond verification. We illustrate
the use of the library for the analysis of a biological model.

1 Introduction

Reachability analysis is a fundamental problem in model checking, program
analysis, controller synthesis. This problem was initially motivated by the in-
terest in extending model checking to hybrid systems (comprising both discrete
and continuous dynamics). In addition, the behaviors of these systems are of-
ten non-deterministic due to various uncertainties which could be inherent or
epistemic (such as unknown initial conditions, parameter values, multiple mode
switchings). Reachability analysis involves computing the set of all possible tra-
jectories under such uncertainties. There are numerous tools for reachable set
computation, such as Checkmate [5], d/dt [1], MPT tool [11], level set tool-
box [13] HySAT/iSAT [8], Ariadne [7], SpaceEx [9], Flow* [6]. Compared to the
scalability of the existing techniques on linear systems, their scalability on nonlin-
ear systems is much lower, not only because of their inherently higher complexity,
but also because they often require sophisticated fine tuning of computation pa-
rameters (such as time steps, error tolerance), choice of set representations and
exploration strategies. An automatic fine tuning can hardly be efficient for all
types of systems, since it cannot include a-priori knowledge that the user pos-
sesses and a-posterior knowledge that he could gain from the analysis. It is thus
important to provide the user with a possibility of ”programming” the analysis
process so that he can easily readjust the computation parameters or include
exploration intention. For this reason, NLTOOLBOX1 was designed as a C ++
library providing an algorithmic infrastructure for reachability computation with
which the user can write a simple C++ program to develop and explore different
exploration strategies or to solve specific analysis problems. Two major function-
alities of the library are: reachability analysis of polynomial systems (using the
Bernstein expansion technique) and reachability analysis of general nonlinear
systems (using hybridization). The latter can be applied directly to continuous-
time systems while the former only to discrete-time systems and thus its use

1 http://www-verimag.imag.fr/PEOPLE/Thao.Dang/nltoolboxlib
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for continuous-time systems requires a system time-discretization. The rest of
the paper is organized as follows. We first present the main data structures and
algorithms and then illustrate the use of the library on a biological model.

2 Data Structures and Reachability Algorithms

Polytopes defined by constraints are the main set representation, which con-
tains additional constructors for template polyhedra, hyper-rectangles and hyper-
octagons. The library contains a number of set operations needed by reachability
analysis, such as inclusion test, affine transformation, set splitting (used for re-
finement). In the following, we describe only two main reachability algorithms:
one is based on hybridization [3] and the other on the Bernstein expansion [4].
The library also includes an algorithm specialized for multi-affine systems [14].

Reachability Algorithm Using the Bernstein Expansion. This algorithm
computes the reachable set (represented by template polyhedra) of a discrete-
time polynomial systems x[k + 1] = π(x[k]) from an initial polyhedron P ⊂ Rn.
To handle continuous-time systems, the library offers a number of discretization
methods. For a given template matrix T , we need to find a vector b such that
the image π(P ) is included in the template polyhedron defined by Tx ≤ b. To
determine b, we formulate an polynomial optimization problems and replace it
by a linear program (which can be solved more efficiently) by using affine bound
functions. To compute affine bound functions for polynomials, the Bernstein ex-
pansion can be used. Indeed, an n-variate polynomial can be represented in the
Bernstein basis functions and the coefficients of this representation allow captur-
ing geometric properties of the polynomial and thus obtaining accurate function
approximations. However, the Bernstein expansion is valid only inside the unit
box [0, 1]n, and to address this problem, we use two methods: (1) oriented-box
approximation and (2) rewriting the polynomial using a change of variables.
Furthermore, two methods for handling templates are used: the template can be
static (the polyhedra share the same constant matrix T ) or dynamic (the matrix
T evolves according to a local approximation of the dynamics).

Reachability Algorithm Using Hybridization. The main idea of hybridiza-
tion is to approximate a nonlinear system ẋ = f(x) by a piecewise affine one.
We compute an approximation domain (that contains the current reachable set)
and an approximate vector field for that domain. When the system leaves the
current approximation domain, a new domain is created. Our hybridization al-
gorithm uses simplicial domains and piecewise affine approximate vector fields,
which is motivated by many available methods for piecewise affine systems (see
for instance [1,5,11,10,9]). In addition, we exploit the curvature of the vector
field f to determine large domains with good error bound. To handle resulting
piecewise affine systems, the library includes a basic reachability algorithm [1].
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Programming an Analysis Procedure. These algorithms were successfully
applied to many case studies (in particular a mitochondrial aging model with
9 variables and a model of ongiogenesis with 12 variables) and they were also
evaluated using randomly generated systems, which shows that they can handle
efficiently systems with up to 10 variables and are among the state-of-the-art
computational methods for nonlinear systems (see [3,2]). The goal of this section
is to demonstrate the usefulness of NLTOOLBOX by showing how to program
with the library to solve a reachability problem. As a working example, we use
the Laub-Loomis model [12] for spontaneous oscillations during the aggregation
stage of Dictyostelium [12]: ẋ = f(x), where the state variable x = (x0, . . . , x6)
represents the concentrations of seven proteins, and the derivatives are f0 =
k1x2−k2x0, f1 = k3x4−k4x1, f2 = k5x6−k6x2x1, f3 = k7−k8x3x2, f4 = k9x0−
k10x3x4, f5 = k11x0−k12x5, f6 = k13x5−k14x6x1. The model has 14 parameters
(k1, . . . , k14). The main steps of an analysis procedure using hybridization is
shown in the following (pseudo) C++ program.

void Dictyostelium_hybridization() {

1: createOctagonalSet(n, r, c, T, b); Hpolyhedron I(n, T, b);

2: PointerSystem Sp(n, fp, df, hp);

3: ReachHybridization reachHyb(Sp, I, err, dt);

4: reachHybridization.reach(nbIter);

5: vector<Hpolyhedron> res=reachHyb.getReachabilityResult();

6: exporter.save(res, color);

}

In line 1 we define the octogonal initial set I, centered at c, with circumradius
r. In line 2, we create a dynamical system Sp by specifying the pointers to the
functions computing f , the Jacobian matrix of f and the Hessian matrix of f
(used to define curvature). In line 3, an instance reachHyb of the class ReachHy-
bridization is created with a desired error bound err and a time step dt. Then,
the reachable set is computed for nbIter iterations and stored in res. The fi-
nal phase (line 6) involves saving the result in a matlab file for visualization

Fig. 1. The reachable sets computed by hybridization (left) and by the Bernstein tech-
nique (right). The grey areas in the left figure are the template projections of the
hybridization domains.
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purposes. It is possible to choose the templates for the viewing projection (by
default the box templates are used). To use the Bernstein technique, an instance
reachBern of the class ReachPolynomial can be created. Figure 1 shows the
reachability results for the initial octagonal set with circumradius 0.0001 cented
at (1.2, 1.105, 1.5, 2.4, 1.0, 0.1, 0.45). For the hybridization method, the time step
is 0.007 and the computation time for 4000 iterations is 346.43s (on a machine
with 2.2 GHz Intel Core 2 Duo Processor). For the Berstein technique, the time
step is 0.028, and the computation time for 1000 iterations is 283.46s. The hy-
bridization technique for this example is less time-efficient but more accurate
when the reachable set converges towards the attraction basin.

3 Conclusion

The advantage of the library is twofold. On one hand, it provides the users with
an easy way to ”program” their own analysis procedures or to use reachability
algorithms to solve other problems beyond verification. On the other hand, the
library can also be used by other existing tools to increase their scope in terms of
problems and methods. NLTOOLBOX is currently being integrated in SpaceEx
[9], to extend the applicability of SpaceEx to nonlinear hybrid systems. Our
future work includes using the library to for controller synthesis.
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Abstract. This paper presents CELL, a comprehensive and extensible frame-
work for compositional verification of concurrent and real-time systems based
on commonly used semantic models. For each semantic model, CELL offers
three libraries, i.e., compositional verification paradigms, learning algorithms and
model checking methods to support various state-of-the-art compositional veri-
fication approaches. With well-defined APIs, the framework could be applied to
build customized model checkers. In addition, each library could be used inde-
pendently for verification and program analysis purposes. We have built three
model checkers with CELL. The experimental results show that the performance
of these model checkers can offer similar or often better performance compared
to the state-of-the-art verification tools.

1 Introduction

Compositional verification technique presents a promising way to alleviate state explo-
sion problem associated with model checking via the “divide-and-conquer”
strategy. In recent years, a number of approaches have been proposed to conduct
compositional verification automatically which are categorized as learning based
assume-guarantee reasoning (LAGR) [4], symbolic learning based assume-guarantee
reasoning (SLAGR) [3], assume-guarantee reasoning by abstraction refinement
(AGAR) [5] and compositional abstraction refinement (CAR) [2]. Furthermore, dif-
ferent compositional verification paradigms may work with different learning (or ab-
straction refinement) algorithms and model checking methods (e.g., symbolic model
checking, explicit-state model checking). It is thus desirable to build a framework such
that different approaches can be systematically experimented, compared or applied.

In this work, we propose a comprehensive and extensible framework named CELL,
which contains various state-of-the-art compositional verification approaches for con-
current and real-time systems based on commonly used semantics models (i.e., labeled
transition system (LTS) for concurrent systems and timed transition system (TTS) [6]
for real-time systems). For each semantic model, CELL offers three libraries, i.e., com-
positional verification paradigms, learning algorithms and model checking methods.
Various state-of-the-art compositional verification approaches can be constructed by

* This project is supported by project ‘IDD11100102’ from Singapore University of Technology
and Design and by the NAP project in Nanyang Technological University.

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 474–477, 2013.
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Fig. 1. Design of CELL

combining items from each library. For instance, the compositional verification ap-
proach proposed in [4] can be achieved by combining LAGR compositional verifica-
tion paradigm, the L∗ learning algorithm and an explicit-based model checking method
respectively from the three libraries designed for models whose semantics are LTSs.
Currently, CELL provides seven compositional verification paradigms, seven learning
algorithms, four model checking methods and ten ways of combinations to perform
automatic compositional verifications. In addition, CELL can be extended in multiple
ways, e.g., with new semantic models (e.g., Markov Decision Process), new composi-
tional verification paradigms, learning algorithms or model checking methods. Figure 1
shows the overall architecture of CELL. Notice the light-color part shows how CELL
can be (and is being) extended to support probabilistic systems.

To the best of our knowledge, CELL is the only stable and publicly available compo-
sitional verification framework. CELL is an open source project under LGPL v3 license
in the format of dynamic linked library (DLL) with no GUI. We used PAT [7] frame-
work’s GUI to develop the three demonstrating model checkers. It is possible to build
new model checkers using CELL to conduct the verification tasks.

2 CELL Architecture

CELL’s architecture includes four layers. With the defined APIs from the semantic
model layer, domain experts are allowed to easily manufacture model checkers with
various compositional verification approaches to alleviate the state explosion problem.
Furthermore, the APIs of the lower layers are well defined so that they can be used
independently for various purposes.

Semantic Model Layer. In this layer, we support commonly used semantic models
(i.e., LTS for concurrent systems and TTS for real-time systems). Any modelling lan-
guage whose semantic model is LTS or TTS can be verified using our framework. In
CELL, we assume for systems, which have LTS/TTS semantics, both the system and
the property are represented in LTS/TTS1. The verification problem is thus reduced to
check the language inclusive of the model and whether the model defines a language
which is a subset of that of the property.

1 For real-time system, we assume the property is determinizable.
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Compositional Verification Paradigm Layer. This layer contains typical patterns
of compositional verification approaches that we have categorized. As shown in the
second layer of Figure 1, we provide LAGR, AGAR and CAR for both LTS and TTS
semantics models. In addition, we provide SLAGR for LTS model, which may reduce
the state space for some models by leveraging the symbolic model checking.

Learning Algorithm Layer. To construct the assumptions or model abstractions
needed by compositional verification, different learning or abstraction refinement algo-
rithms are supported in this layer. For consistency, we include the abstraction refinement
techniques (e.g., CEGAR and EAT [2]) in the set of learning algorithms. The current
implementation includes the following: L∗ learning algorithm, CDNF Boolean function
learning algorithm, CEGAR and EAT techniques for concurrent systems, TL∗ learning
algorithm and CEGAR for real-time systems. The basic idea of EAT [2] is to use evolu-
tionary algorithm to generate abstractions, which can increase the probability of finding
good abstractions.

Model Checking Method Layer. In this layer, we provide various model check-
ing methods. We provide explicit-state model checking and symbolic model checking
for LTS, and zone-based model checking for TTS. For symbolic model checking, we
provide both SAT-based bounded model checking and BDD-based model checking.

Under each semantic model, compositional verification paradigms, learning algo-
rithms and model checking methods can be mix-and-match to construct compositional
verification approaches. Notice that not every combination is effective. The arrows in
Fig. 1 show the relationship. Currently, CELL supports seven different verification ap-
proaches for LTS and three for TTS. All these combinations and their features are sum-
marized in our website [1]. A technical report that explains more details about each
component in CELL can be also found there.

3 Implementation and Evaluation

CELL is implemented on Microsoft .NET framework via C# language. Starting from
2011, the latest version 0.3 of CELL has 54K LOC. CELL is a stand-alone library in
the format of DLL and can be used by calling its APIs.

To prove the capability of CELL framework, we developed three compositional
model checkers adopting the GUI from PAT framework [7]. The model checkers in-
clude CLTS that is used to verify concurrent systems modelled by finite state machines,
CERA to verify real-time systems modelled by event-recording automata (ERAs) and
CTA to verify real-time systems modelled by timed automata (TAs). It is non-trivial to
measure how easy to use CELL. However, we have built those model checkers within
one month, which shows that our design is promising. The CELL DLL binary file to-
gether with the source code, complete APIs description document, user manual and
three aforementioned model checkers are available in [1].

With CLTS and CEAR, we modelled a bunch of concurrent and real-time systems
which include the AIP manufacturing system, Dinner Philosopher problems (DP) and
various versions of flexible manufacturing systems (FMSs) that differ by complex-
ities for both concurrent and real-time versions (FMS-4 is the most complex one).
We did not compare with other model checkers such as NuSMV or Uppaal because
ofthe different modelling languages and supported properties. In addition, it is unfair
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Table 1. Running time (in seconds), the number of highest visited locations in all the verification
rounds | L |, | P | means number of processes and ROM means running out of memory

LTS Monolithic AGAR LAGR CAR SLAGR
Case | P | Valid? | L | Time | L | Time | L | Time | L | Time Time
AIP 10 Yes 104,650 7.86 2,745 0.44 2,745 0.29 2,878 0.98 0.90
DP 30 Yes ROM ROM 20,824 11.95 20,824 7.03 1,500 3.32 11.19

FMS-3 11 Yes 312,064 12.77 1,920 0.11 1,260 0.08 20 0.17 0.12
FMS-4 14 Yes ROM ROM 24,744 6.93 26,320 2.61 530 0.22 0.14

TTS Monolithic AGAR LAGR CAR
FMS-1 6 Yes 212 0.13 36 0.02 36 0.01 36 0.02
FMS-2 10 Yes 97,136 7.49 1,260 0.29 1,260 0.13 1,260 0.02
FMS-3 11 Yes 312,064 23.39 1,920 0.35 1,528 0.19 3,936 1.42
FMS-4 14 Yes ROM ROM 24,744 30.93 26,320 5.13 24,744 12.81

to compare with these monolithic model checkers since CELL adopts compositional
technique, and NuSMV and Uppaal may have advanced reduction techniques that are
not available in CELL. Table 1 shows the verification results. For the concurrent sys-
tems, due to the limited space, we show results collected from subset of the verifica-
tion approaches, which are CEGAR-based AGAR, L∗-based LAGR, EAT-based CAR,
CDNF-based (with BDD) SLAGR. It can be obversed that all the compositional ver-
ification approaches outperform the monolithic approach. CDNF-based SLAGR has
better performance since it takes advantages of symbolic model checking. EAT-based
CAR outperforms CEGAR-based CAR as EAT can find better abstractions [2]. For the
real-time experiments, we show results from all the three approaches, which respec-
tively are CEGAR-based AGAR, TL∗-based LAGR and CEGAR-based CAR. Observe
that all the compositional verification approaches outperform the monolithic one. More
detailed results are available with our technical report [1].
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Abstract. This paper presents the VCS verification tool for the BIP
modeling language. The tool admits sophisticated interactions specified
in BIP models. Particularly, private variables in components can be up-
dated by user-defined interactions. On the verification back-end, the BIP
models are formulated as transition systems. Several efficient algorithms
are proposed for verification of transition systems on safety properties.
Experimental results show very promising performance of VCS. It runs
several magnitudes faster than NuSMV for a variety of examples.

1 Introduction

Component-based design has attracted significant interests from both industry
and academy. Recent modeling languages such as AADL [1] and BIP [2] offer
mechanisms for specifying sophisticated interactions among components. In the
BIP language, for instance, components expose their private variables through
ports, and the exposed private variables can be updated during user-specified
interactions. The feature allows users to specify intricate interactions among
components, but also complicates the semantics of the modeling language. Im-
plementing verification tools for the BIP language can be demanding.

VCS 1 is a verification tool for models specified in the BIP language. In
contrast to the existing BIP model checker DFinder [3], VCS allows to specify
interactions with data transfer among components. Users are able to fully exploit
features of the BIP language in their models. Additionally, the VCS tool verifies
properties specified in the Computation Tree Logic (CTL) as well as deadlock
freedom on BIP models.

To the best of our knowledge, the VCS tool is the first BIP model checker
which admits interactions with data transfer. An efficient SAT-based verification
engine is implemented. Experiments show very promising performance of the tool
in verification of component-based systems.

� This work was supported by the National 973 Plan (No. 2010CB328003), the NSF
of China (No. 61272001, 60903030, 91218302), the Chinese National Key Technol-
ogy R&D Program (No. SQ2012BAJY4052), the NSC 101-2221-E-001-007, and the
Tsinghua University Initiative Scientific Research Program.

1 http://code.google.com/p/bip-vcs/
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2 Model Representation

The BIP model is defined in a hierarchical way. The model behaviors are de-
scribed in atomic components. A compound component consists of a collection
of (atomic or compound) components and connectors. Each connector can have
temporary variables 2 to specify the interactions with data transfer among com-
ponents. The BIP model is the topmost compound component.

In VCS, each atomic component is encoded as a transition system (X, I, T ),
where X is a set of variables, I is the initial predicate and T is the transition
predicate. Let T I be the transition predicate related to the internal transitions
only. Given a hierarchical BIP model H , the tool first transforms the input model
into a flattened BIP model [4]. The flattened BIP model contains only atomic
components Ai = (Xi, Ii, Ti) (1 ≤ i ≤ N) and connectors Cj (1 ≤ j ≤ M).
Let Fj be the symbolic representation of the connector Cj . The hierarchical BIP
model H is thus a transition system (XH , IH , TH), where

– XH =
⋃N

i=1 Xi;

– IH =
∧N

i=1 Ii;

– TH =
∨N

i=1(T
I
i ∧
∧

k �=i(X
′
k = Xk))∨

∨M
j=1(Fj∧

∧
k �∈dom(Cj)

(X ′
k = Xk)), where

dom(Cj) gives the indices of atomic components in Cj .

3 Verification Algorithms

In traditional settings, the transition systems are interpreted as state machines,
and then verified by model checking algorithms (either explicit or symbolic).
However, during this interpretation, much useful information implied in the
transition system is lost. We propose several efficient techniques to utilize such
information to improve the model checking for transition systems.

Macro Step-Based Verification: Given a transition system, we distinguish
the set of transitions which may lead the property from true to false, called
property-sensitive transitions. Each search step of bounded model checking is
extended to a macro step, which consists of exactly one property-sensitive tran-
sition and any number of other transitions. Moreover, we employ an algorithm
to eliminate all loops among property-sensitive transitions in the model. Then
we are able to formulate the model checking problem as a Boolean SAT formula.
We call this technique macro step-based verification.

Variable Decision Heuristic: We propose in [5] to utilize the structure in-
formation hidden in a transition system during model checking. We define a
transition variable for each transition in the model. During the SAT solving, the
transition variable is assigned higher priority than other variables to be chosen
as the decision variable. Among the many transition variables, we follow the
structure of the transition system to assign their priorities. In such a way, the
structure information is utilized to guide the search process of a SAT solver.

2 The current version of DFinder does not support this feature.
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Incremental Verification: The proof for temporal induction [6] consists of
two parts: the base case and the induction step. Both parts generate a series
of SAT problems. We can exploit the symmetry and similarities in the series
for incremental SAT verification. We show that, under certain conditions: (1)
conflict clauses can be shared among SAT problems within each sequence; (2)
conflict clauses can be shared between these two sequences; (3) after shifting or
reversing the time steps, the transformed clauses can also be shared. Compared
to existing works, our algorithm explores much bigger degree of clause sharing.

4 Experimental Results

The VCS tool is implemented in C++. All experiments are conducted on a
computer with a 2.53GHz Intel Core2 Duo CPU with 2GB memory.

Experimental results for six examples are reported. Three examples are from
real systems in industry, including the data processing unit (DPU) used in a
space vehicle [7], the gate control system (GCS) used in the stage of LingShan
Buddhist Palace in Jiangsu, China [8], and the message transmission protocol
(MTP) used in the train communication network. Three examples are origi-
nated from public websites or literature, including the ATM system 3, the dining
philosophers problem (DPP) 3, and the automatic callback system (ACS) [9].

Note the industrial examples exploit sophisticated interactions among compo-
nents, they cannot be verified by DFinder [3]. We chose to use NuSMV(version
2.5.3) to perform the comparison. Two state-of-the-art SAT-based algorithms
(Een-sorensson and Zigzag [6]) implemented in NuSMVare tested. For each
model, we test both algorithms and report the better one for NuSMV.

Experimental results are listed in Table 1. In the table, step give the steps for
standard bounded model checking (including NuSMVand Std) to find a bug,
while stepm give the steps for our macro step-based verification to find a bug.
We observe in all cases the value of stepm is much less than that of step. This
is reasonable since a macro step may involve several transitions in the model.
The VCS tool can be configured with different settings, where Std stands for
the standard bounded model checking, Mco stands for the macro step-based
verification, Mco+ stands for Mco plus the incremental verification technique,
andMco++ stands forMco+ plus the variable decision heuristic. All runtimes are
reported in seconds. The label “-” indicates the checker cannot get a conclusive
answer in 900 seconds.

For all cases, Mco, Mco+ and Mco++ run several magnitudes faster than ei-
ther Std or NuSMV, especially when the problems scale up. For the industrial
examples DPU, GCS and MTP, which involve sophisticated behaviors and in-
teractions, Mco++ runs fastest. For other examples ACS, ATM and DPP, which
contain no local variables, the variable decision heuristic is useless, thus Mco+

runs fastest.

3 http://www-verimag.imag.fr/DFinder.html?lang=en

http://www-verimag.imag.fr/DFinder.html?lang=en
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Table 1. Experimental Results for Macro-Step Verification

Model Prop
NuSMV VCS

step time stepm Std Mco Mco+ Mco++

DPU P1 24 2.23 9 1.95 0.52 0.16 0.1
DPU P2 26 2.43 9 2.65 0.7 0.23 0.08
DPU P3 32 5.79 10 7.05 1.07 0.32 0.17

GCS P1 46 7.4 18 28.74 2.05 0.31 0.22
GCS P2 54 28.55 21 127.96 7.63 1.26 0.42

MTP P2 30 - 13 143.92 17.58 13.68 7.11
MTP P3 30 - 13 199.7 18.41 24.37 4.11
MTP P4 33 - 15 199.9 41.03 38.57 10.32
MTP P5 30 - 13 111.19 8.27 4.21 3.92

ATM6 P1 13 334.28 6 43.81 0.13 0.04 1.83
ATM8 P1 - - 8 - 1.46 0.97 -
ATM10 P1 - - 10 - 11.13 11.21 -

DPP10 P1 10 9.03 10 6.75 1.09 0.77 141.85
DPP11 P1 11 61.5 11 29.21 4.11 2.65 -
DPP12 P1 12 - 12 152.53 22.6 18.12 -

ACS3 P1 24 2.07 6 63.87 0.03 0.01 0.04
ACS5 P1 - - 10 - 0.56 0.13 55.85
ACS7 P1 - - 14 - 4.44 0.62 -
ACS9 P1 - - 18 - 29.9 9.61 -
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Abstract. SmacC is a symbolic execution engine for C programs. It can be used
for program verification, bounded model checking and generating SMT bench-
marks. More recently we also successfully applied SmacC for high-level timing
analysis of programs to infer exact loop bounds and safe over-approximations.
SmacC uses the logic for bit-vectors with arrays to construct a bit-precise
memory-model of a program for path-wise exploration.

1 Introduction

Symbolic execution executes a program by using symbolic instead of concrete data.
Typically, the program is analyzed path-wise, i.e. paths are analyzed one-by-one in iso-
lation. Splitting the analysis to focus on single paths can be exploited to track important
information about the path under analysis and allows to check properties where other
techniques fail, for example as illustrated in Fig. 2(c). However, for whole program
analysis the costs of path-wise symbolic execution are often prohibitive because of the
so-called path-explosion problem that the number of paths grows exponentially with
the number of conditionals in a program. Fortunately, even analyzing only parts of the
program, such as focusing on all paths within a certain function, still allows to infer
valuable properties and catch subtle errors.

In this paper we present SmacC, a retargetable symbolic execution engine. SmacC is
an acronym for SMT Memory-model and Assertion Checker for C. Retargebility, a term
borrowed form [4] inspired the front-end implementation of SmacC, and refers to its
capability of being retargetable to conceptually quite different applications in program
analysis. SmacC supports a relevant fragment of (ANSI) C analyzing such programs
by path-wise symbolic execution. It derives verification conditions for program state-
ments and expressions, expressed as satisfiability modulo theory (SMT) formulas in the
logic of bit-vectors with arrays. This allows bit-precise reasoning about the program,
including reasoning about memory accesses and arithmetic overflow. The generated
verification conditions precisely capture the memory-model of the program. Proving
them to hold guarantees that the supported runtime- and memory-errors cannot occur.
Violations in the symbolic representation constitute actual violations.

SmacC can be applied in a number of program analysis settings. The tool can prove
absence of runtime-errors if full symbolic coverage is achieved. Further, it allows to
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S11408-N23 and S11410-N23, the WWTF PROSEED grant ICT C-050, the FWF grant
T425-N23, and the CeTAT project of TU Vienna.
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Fig. 1. Architecture of SmacC: path-wise execution leads to partial symbolic coverage if there
are more paths to be executed. Exhaustive execution of all paths yields full symbolic coverage.

perform bounded model checking by exhaustive symbolic execution up to a provided
bound. Functional correctness, e.g. equivalence checking, is supported via assertions.
Generated verification conditions can be dumped to files and used as SMT benchmarks
for testing or performance evaluation of SMT solvers. A new application for SmacC is
the high-level worst-case execution time (WCET) analysis of programs. More specifi-
cally, the tool finds flow-facts, such as infeasible paths and safe loop bounds, required
for successful WCET analysis. We use SmacC in combination with the WCET analysis
toolchain r-TuBound [5].

SmacC is implemented in 10Klocs of C and is available at http://www.
complang.tuwien.ac.at/jakob/smacc/

2 Tool Architecture

Figure 1 shows the architecture of SmacC. SmacC reads a C program as input file,
which is then tokenized (Lexer) and parsed to abstract syntax trees according to the
C expression grammar (Parser). The abstract syntax trees are stored as elements of
a code-list. Paths through the program are extracted (PathGen) and symbolically ex-
ecuted (BtorGen), which consists of updating the symbolic representation of the ex-
ecuted path. This symbolic representation is used to generate verification conditions in
form of SMT formulas, which express runtime-safety of statements occurring on the
path. We use the SMT solver Boolector [2] for checking these SMT formulas in the
quantifier-free logic of bit-vectors with arrays. In the sequel, we overview the main
ingredients of SmacC, and refer to [6] and the url for further details.

PathGen. In the path-generation phase, in order to remove loops, the code-list is flat-
tened, by unwinding program loops up to a certain bound. This way, for each program
path, a code-list is constructed. Conditionals, which require to split the control-flow,
will produce two paths to explore both branches of the condition. Each fully extracted
path is then symbolically executed in BtorGen.

BtorGen, Memory-Model and Verification Conditions. This step constructs a sym-
bolic SMT representation of the memory used in the program, faithfully covering the
semantics of each statement on the program path. Additionally, verification conditions
are constructed as SMT formulas. The program memory is a collection of symbolic
values and modeled by a contiguous array. The memory layout, e.g. the set of declared
addresses, is represented by bit-vector variables indexing the memory array. Additional

http://www.complang.tuwien.ac.at/jakob/smacc/
http://www.complang.tuwien.ac.at/jakob/smacc/
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bit-vector variables symbolically track allocated memory regions. Unwritten memory
is treated as uninitialized. Verification conditions supported by SmacC include reason-
ing about return statements (check if the program can or returns a specified value),
path conditions (check satisfiability of conditionals), division by zero, and overflow of
arithmetic operations. Our bit-precise memory-model allows us to construct verification
conditions for memory accesses as follows: an access is considered out-of-allocated if
the address can evaluate to an unallocated array index, i.e. outside the region constrained
by global beg , global end , heap beg , heap end , stack beg and stack end .

Output Results. SmacC produces as output a textual report for each statement symbol-
ically executed along all analyzed paths. For each verification condition, the tool reports
whether the property is safe or violated on a specific path. If a verification condition is
violated on at least one path, then the corresponding property can be violated by an ac-
tual run. If the verification condition holds on all paths, then the corresponding program
property cannot be violated by any actual run.

3 Applications of SmacC

We have successfully applied SmacC to verify C programs and generate SMT bench-
marks using our precise memory-model [6]. We illustrate the bit-precise memory-model
and generation and proving of verification conditions using the examples in Fig. 2(a)
and (b) below. We also integrated SmacC with r-TuBound to support timing analysis,
and show its use on Fig. 2(c). For more details, we refer to the url of our tool.

1: int a[4];
2: int main () {
3: int i;
4: a[0] = 1;
5: for(i=0; i<4; i++)
6: if (a[i] > 0)
7: i = i + 1;
8: assert(i >= 4); }

int main () {
int x, y;
if (x > 0) {

y = x * x;
if (y == 0)

assert(0); }}

int main() { :1
int i, flag; :2
for(i=0; i<5; i++) :3
if(i==4 && flag){ :4
i = 0; :5
flag = 0; }} :6

:7
:8

(a) (b) (c)

Fig. 2. (a) a program with an assertion and a conditional update; (b) a program with a reachable,
failing, assertion; (c) SmacC finds the loop bound, CBMC keeps unwinding the loop

Example. The variable declarations in the program of Fig. 2(a) in lines 1 and 3
(a:1,3), result in the following SMT variable declarations, where variables that do
not occur in the source are used to track allocated memory: global beg, global end ,
heap beg , heap end , stack beg , stack end , mem, i, x, a, where mem is an ar-
ray and models memory. Symbolic execution of a path tracks declared mem-
ory constructing the formula (a = global beg)∧ (global end = global beg + 16) ∧
(heap end = heap beg) ∧ (i = stack beg)∧ (stack end = stack beg − 4), while
(read(mem [i]) < 0 . . . 100) is the verification condition for the assertion (a:8). The
assertion holds for any variable assignment valid on the current path if the conjunc-
tion of the formulas is unsatisfiable. Fig. 2(b), taken from [1], illustrates the need for
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a bit-precise memory-model: both conditions (b:3,5) must evaluate to true to reach
the failing assertion (b:6). When reasoning about unbounded integers the assertion is
unreachable due to unsatisfiable path conditions. SmacC infers overflow for the multi-
plication and thus a satisfiable path condition guarding the failing assertion, therefore
the failing assertion is reachable.

Experiments. We analyzed a memcopy and a stringcopy implementation for bounded
runtime-and memory-safety (with bounded array-size 50, respectively 40), verified the
functional correctness of a palindrome check and checked equality of two power-of-3
implementations. Path-wise verification of the memcopy implementation up to bound
50 takes approximately two hours. Functional correctness for the palindrome check
(bounded by word length 16) exhibits high run-times (4.5h), and complete equality
checking of two power-of-3 implementations (with 32bit int) times out (10h). Varying
the bound of the input problems and dumping a conjunction of the verification condi-
tions thus allows to generate SMT benchmarks with varying runtime.

We also integrated the memory-model of SmacC in r-TuBound and extended verifi-
cation conditions to express arithmetic properties about conditional updates to the loop
counter. This allows us to compute loop bounds in cases where the loop bound com-
putation step of r-TuBound would fail. For example, the loop counter i in Fig. 2(a) is
conditionally updated, therefore no safe loop bound can be computed initially. Verify-
ing that the conditional update can never decrease the loop counter allows us to use
the constant increment in the loop header to compute a safe over-approximation. For
the conditional update i′ = upd(i), e.g. i = i + 1 in Fig.2(a), (a:7), we verify that
executing it can only increase the loop counter for the next iteration i′, i.e. i′ < i must
be unsatisfiable for arbitrary values of i, as for example in Fig. 2(a) where a loop bound
of 4 can be computed using the update i++ (a:5) in the loop header.

Fig. 2(a) illustrates another usage of SmacC for loop bound detection. Here, SmacC
is called with an initial loop bound. If it reports that the negation of the loop condition is
satisfiable along a path, the bound is increased. Upon termination, no execution of the
program exhibits a higher loop bound. The loop counter i in Fig. 2(c) is reset in iteration
5 (c:5), therefore the loop is executed 4 more times. SmacC infers the exact loop bound
9, while a WCET analysis using the model checker CBMC [3] without SmacC does not
terminate and keeps unwinding the loop.

4 Conclusion

SmacC has successfully been used in a number of applications, ranging from program
verification to high-level WCET analysis. A key feature of SmacC is its bit-precise
symbolic execution which enables it to find a number of typical and important pro-
gram errors and to functionally verify programs via assertions. Verification conditions
that exhibit high solving time can be dumped and used as regression and performance
tests for SMT solvers. High-level WCET analysis turned out to be a another promising
application field of SmacC and we successfully retargeted SmacC and the underlying
memory-model towards integration into a WCET analysis toolchain, improving high-
level analysis results. Currently, we are working on implementing the memory-model
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for binaries and extending SmacC with generation of test-inputs guiding actual pro-
gram executions towards the WCET path. To improve the runtime of SmacC, we also
investigate techniques shown effective for symbolic execution, such as query caching.
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Abstract. We present a tool for modal transition systems (MTS),
disjunctive MTS and further extensions of MTS supporting also non-
deterministic systems. We provide the operations required from specifi-
cation theories as well as some additional support such as deterministic
hull, LTL model checking etc. The tool comes with both graphical and
command line interface.

1 Introduction

Due to the ever increasing complexity of software systems and their reuse,
component-based design and verification have become crucial. Therefore, hav-
ing a specification formalism that supports component-based development and
stepwise refinement is very useful. In such a framework, one can start from an
initial specification, proceed with a series of small and successive refinements
until eventually a specification is reached from which an implementation can be
extracted directly. Modal transition systems (MTS) [11] is a successful specifica-
tion formalism satisfying the above requirements.

The formalism of MTS has proven to be useful in practice. Industrial appli-
cations are as old as [5] where MTS have been used for an air-traffic system at
Heathrow airport. Besides, MTS are advocated as an appropriate base for inter-
face theories in [16] and for product line theories in [13]. Further, MTS based
software engineering methodology for design via merging partial descriptions of
behaviour has been established in [17].

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe which behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need not
be realized in the refinements. Over the years, many extensions of MTS have been
proposed. While MTS can only specify whether or not a particular transition
is required, some extensions equip MTS with more general abilities to describe
what combinations of transitions are possible. Disjunctive MTS (DMTS) [12,3]
can specify that at least one of a given set of transitions is present. One selecting
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MTS [8] allow to choose exactly one of them. Boolean MTS (BMTS) [4] and ex-
pressively equivalent acceptance automata [14] cover all Boolean combinations
of transitions. Parametric MTS (PMTS) [4] add parameters on top of it, so that
we can also express persistent choices of transitions and relate possible choices in
different parts of a system. This way, one can also model hardware dependencies
of transitions and systems with prices.

The tool support is so far limited to basic MTS and, moreover, partially
limited to deterministic systems. The currently available tools are MTSA (Modal
transition system analyzer) [7] and MIO (MIO Workbench) [1]. While MTSA is
a tool for MTS, MIO is a tool for modal I/O automata (MIOA) [10,15], which
combine MTS and interface automata based on I/O automata. Although MIOA
have three types of may and must transitions (input, output, and internal), if we
restrict to say only input transitions, the refinement works the same as for MTS,
and some other operations, too. Further, there are also tools for loosely related
formalisms of I/O automata (with no modalities) such as ECDAR (Environment for
Compositional Design and Analysis of Real Time Systems) [6], which supports
their timed extension.

In this paper, we present a tool for MTS and DMTS together with partial
support of BMTS and PMTS as described below. In the following sections, we
describe MoTraS and compare it to the existing tools both with respect to func-
tionality and experimentally. The tool can be downloaded and additional mate-
rials found at http://www.model.in.tum.de/�kretinsk/motras.html

2 Functionality

MoTraS comes not only with a graphical user interface, but as opposed to other
mentioned tools also with a command line interface, which allows for batch
processing. The Netbeans-based GUI offers all the standard components such as
a canvas for drawing systems, windows for editing their properties, algorithms
menu, possibility to view more systems at once etc. Both the GUI and the
independent algorithms package, which contains all data-structures, algorithms
and the CLI, are written in Java.

As to the available algorithms, MoTraS supports all operations required for
complete specification theories [2] and more. This includes modal refinement
checking, parallel composition (for quotient see below), conjunction (or merge)
and the related consistency checking and maximal implementation generation,
deterministic hull and generalized LTL model checking. This functionality comes
for MTS as well as more general DMTS and in all cases also non-deterministic
systems are supported (in particular, the algorithm for conjunction is now con-
siderably more complex [3]). In contrast, MTSA supports only modal refinement,
parallel composition and consistency. It also offers a model checking procedure,
which is, unfortunately, fundamentally flawed. This has been shown in [3] from
where we adopt the corrected implementation. MIO offers modal refinement, the
MIOA parallel composition and conjunction for deterministic systems. On the
top, it also offers quotient for deterministic systems. As there are no algorithms
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for the quotient of non-deterministic MTS, DMTS and BMTS and this question
is a subject of current research, we only implement the quotient for deterministic
systems as MIO does. Note that both MTSA and MIO can only handle modal sys-
tems, not their disjunctive extension. MoTraS supports DMTS as they have more
expressive power, and as opposed to (non-deterministic) MTS are rich enough
to express solutions to process equations [12] (hence a specification of a missing
component in a system can be computed) and are closed under all operations,
in particular conjunction (which is necessary for merging views on a system).

Further, on the top of this functionality for MTS and DMTS, we also provide
an implementation of a new method for modal refinement checking of BMTS
and PMTS [9]. While modal refinement on MTS and DMTS can be decided in
polynomial time, on BMTS and PMTS it is higher in the polynomial hierarchy
(Π2 and Π4, respectively). The new method, however, reduces the refinement
problem to a problem directly and efficiently solvable by a QBF solver. Already
the preliminary results of [9] show that this solution scales well in the size of the
system as well as in the number of parameters, while a direct naive solution is
infeasible.

Moreover, we also implement the deterministic hull and the parameter-free
hull for BMTS and PMTS, which we recently proposed [9]. This allows to both
over- and under-approximate the EXPTIME-complete thorough refinement us-
ing the fast modal refinement, now even for the most general class of PMTS.

In order to make the tool easily extensible, we introduced a file format xmts,
which facilitates textual representation of different extensions of modal transi-
tion systems. The description of the format can be found on the web page of the
tool. The table below summarizes the functionality: �indicates a MoTraS im-
plementation; for the other tools, the name indicates an implementation; “det.”
denotes a functionality limited to deterministic systems.

Operation MTS DMTS BMTS PMTS
Parallel composition MTSA MIO(MIAO) � �
Consistency MTSA(of 2 systems) MIO(det.) � �
Conjunction MIO(det.) � �
Quotient (det.) MIO � ×
Generalized LTL MTSA(incorrect) � �
Det./Par. hull � � � �
Refinement MTSA MIO � � � �

3 Experimental Results
Size Structure: MTSA MoTraS

Alphabet 2, Monolithic: 4.57 2.23
branching 5 Clustered: 0.34 0.04
Alphabet 2, Monolithic: 6.62 8.75
branching 10 Clustered: 5.99 6.73
Alphabet 10, Monolithic: 1.46 0.50
branching 5 Clustered: 1.54 0.01

We briefly compare the performance
of the MTS tools on the algorithm
that each of them implements, namely
modal refinement of MTS. We com-
pare MoTraS and MTSA on systems
with 500 states, see the table on the
right (computational times in seconds). We consider systems with different sizes
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of alphabet and branching degrees.We further consider monolithic systems where
the transitions are evenly distributed, and systems with several clusters mutu-
ally connected with only a few edges. We do not include results for MIO here as
there are stack overflows already for systems with <150 states, and for systems
with 100 states the time is—despite MIO statistics reporting 0 seconds—actually
more than 3 seconds. See the webpage for more details and more experiments.

Although our results are already more than competitive, there are several ways
how to further optimize them. The algorithms are implemented using fixed-point-
iteration and waiting-queue skeleton classes, which allows for an easy introduc-
tion of multi-threading to all algorithms. Due to the independence of elements
processing we conjecture the speed up factor will be very close to the number of
cores used.

For the QBF-based modal refinement some additional steps were taken to re-
duce the memory footprint, such as storing the generated formulae in negation-
normal-form and using the Tseitin encoding to limit the growth of the formulae
while transforming it into CNF, which is required for the QBF solver. An in-
teresting task for the future work is to introduce combined modal refinement
checker, which uses the standard modal refinement checker to prune the initial
relation before the QBF-based checker is called.
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Abstract. Cunf is a tool for building and analyzing unfoldings of Petri
nets with read arcs. An unfolding represents the behaviour of a net by
a partial order, effectively coping with the state-explosion problem stem-
ming from the interleaving of concurrent actions. C-net unfoldings can
be up to exponentially smaller than Petri net unfoldings, and recent work
proposed algorithms for their construction and verification. Cunf is the
first implementation of these techniques, it has been carefully engineered
and optimized to ensure that the theoretical gains are put into practice.

1 Overview

Petri nets are a model for concurrent, distributed systems. Unfoldings are a
well-established technique for verifying properties of Petri nets; their use for this
purpose was initially proposed by McMillan [6]. The unfolding of a (Petri) net is
another net of acyclic structure that fully represents the state-space (reachable
markings) of the first, see, e.g., fig. 1 (c). Because unfoldings represent behaviour
by acyclic structures rather than by interleaved actions, they are often exponen-
tially smaller than the state-space of N , and never larger than it.

Recently, the unfolding construction was extended to Petri nets with read arcs,
also called contextual nets (c-nets) [2]. This extension is partially motivated by
the fact that c-net unfoldings can yet again be exponentially smaller than Petri
net unfoldings. In this paper, we present Cunf the first tool for constructing
and analyzing c-net unfoldings, freely available from [8]. The theoretical basis of
the tool was presented in [2, 1, 9].

We assume the reader is familiar to Petri nets [7]. A c-net is a Petri net where
in addition to the ordinary arcs (arrows) between places and transitions, one
may use read arcs. Figure 1 (a) shows a c-net, read arcs are the undirected lines;
we say that t2 reads p4. A marking enables t2 if it puts tokens on places p1 and
p4; but firing t2 only consumes the token in p1, the token in p4 remains there.

Every c-net can be seen as the marking-equivalent Petri net that results from
replacing read arcs for pairs of arcs, as in fig. 1 (a) and (b). Although both nets
have the same markings, remark, however, that t1, t2 are concurrent in (a), both
read p4 at the same time, but not in (b), as they compete for the token in p4.

The unfolding of a bounded c-net N is another well-defined, finite, acyclic
c-net PN , where each place (resp. transition) of PN is labelled by a place
(resp. transition) of N and such that runs of PN are labelled by runs of N .
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Fig. 1. (a) a c-net; (b) its encoding into a Petri net; (c) unfolding of (b)

The crucial property of PN is that for every marking m of N , it contains a mark-
ing m′ labelled by m.1 Reachability on N is a PSPACE-complete problem which,
however, reduces to an NP-complete problem on PN . The decreased complexity
comes from PN being acyclic. Thus, PN can be seen as a symbolic representation
of the reachable markings of N , particularly compact for concurrent systems.

Abstractly, this explains why c-net unfoldings can be even smaller than plain
unfoldings. The unfolding of fig. 1 (a), which is isomorphic to (a), exploits that
t1, t2 are concurrent and leaves them unmodified. The unfolding of (b), however,
need to unfold the loops around p4, explicitly producing all interleavings of the
reading transitions t1, t2 — up to exponentially many of them for n readers.

2 Cunf and Cna’s Algorithms and Their Implementation

Our toolset mainly consists of two programs: Cunf constructs unfoldings of 1-
safe (places carry 0 or 1 tokens) c-nets, and Cna (Contextual Net Analyser)
carries out verification on them.

Unfoldings are built iteratively. Cunf starts with an unfolding prefix contain-
ing just a copy of the initial marking of N . This prefix is extended with one event
(transition), called possible extension, yielding a new prefix; this is repeated until
the unfolding prefix is big enough to represent all reachable markings of N . Com-
puting the possible extensions is NP-complete, and requires solving (a variant
of) the coverability problem for sets of places of the prefix.

Cunf achieves this by a concurrency relation on the (enriched) places of the
prefix [1]. This relation can be seen as a database that serves to both solve
coverability queries and update the relation itself. Cunf spends more than 80%
of the time computing the concurrency relation. Efficient computation of the
unfolding, thus, almost entirely relies on the efficient computation of this relation,
which Cunf implements with adjacency lists. The tool uses around a dozen
optimizations for handling these lists, some of them are reported in [1, Sec. 6].
1 The reader acquainted with the literature on unfoldings may have realized that

by unfolding, or PN , in this paper we mean the unique, finite, marking-complete
branching process one builds from the c-net after fixing a complete adequate order [1].
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To keep the unfolding finite, certain enriched events are marked as cut-offs,
they are the pruning points of the otherwise potentially infinite branches. Intu-
itively, those are events whose history reaches a marking already reached by (the
history of) an event previously added, cf. [1].

Cunf is a mature tool that comprises around 4000 lines of C code, carefully
profiled and optimized during its 3 years of existence. It is a command-line tool,
but comes with scripts to translate the output of graphical c-net editors such
as Coloane [5]. Cunf and Cna are integrated in the Cosyverif [3] environ-
ment, which facilitates its invocation and usage. Also, several c-net generators
(Conway’s game of life, Dekker’s algorithm) are distributed with the tool [8].

Cna inputs unfoldings generated with Cunf and searches for reachable mark-
ings of the original c-net that enable no transition (deadlocks) or mark a set
of given places (coverability). Cna generates, out of the unfolding, a proposi-
tional formula whose models coincide with the (offending) traces searched by
the tool. It relies on Minisat [4] to solve the formula, and displays the trace
if it is found. Notice that once the unfolding is built, it can serve to answer
multiple queries. Around 10 optimizations for reducing the solving time are im-
plemented. We highlight, e.g., the elimination of stubborn events [9], i.e., certain
events that negatively impact the performance of Minisat’s unit-propagation;
or the reductions of the asymmetric conflict graph, see [9]. In our benchmarks,
Cna has better accumulated solving time than previously existing verification
tools [9], which proves that Cna’s algorithms are practical.

3 Experiments and Applications for the Tool

Every c-net can be encoded into an equivalent Petri net. The c-net unfolding
can be smaller, but its construction algorithm is more involved. This posed
several questions: Are c-net unfoldings smaller than ordinary ones? Can they be
computed faster? Is reachability checking practical on c-net unfoldings?

These questions drove our experiments [1,9]. Considerable effort was invested
into assuring the efficiency and correctness of the unfolder and analyser. In [1],
we applied Cunf to a benchmark of around 100 nets gathered from the unfolding
literature, comparing the results to those obtained from other well established
Petri-net based tools. Contextual unfolding was significantly faster in almost all
examples, and smaller in roughly half of them. These unfoldings had between
102 and 105 events; among the larger ones, Cunf unfolded an average rate of
25000 events per second, running on a 2.67GHz CPU.

Table 1 shows some experimental results. For each example, Cunf is run on
the c-net and its Petri net encoding, and deadlocked-markings are searched with
Cna. Running times, number of events in the unfoldings, and histories [1] for
c-net unfoldings are shown. The numbers for the plain unfoldings are in fact
ratios over corresponding numbers in c-net unfolding. C-net unfolding is faster
than plain unfolding in 4 cases, and slower in 3. In this 3 cases, however, it is
between 14 and 58 times smaller. Cna running times are much smaller than
Cunf’s ones, so verification seems not to be the bottleneck.
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Table 1. Experimental results, see the text for more information

Net Contextual Unfoldings Plain Unfoldings
Cunf Cna Cunf Cna

Name Ddlk. Time Hist. Ev. Time Time Ev. Time
Bds(1) No 0.10 4210 1830 0.01 4.19 7.05 8.00
Byz No 2.36 8044 8044 1.68 1.35 1.83 0.23
Ftp No 16.30 50928 50928 0.06 2.26 1.80 4.19
Rw(1,2) No 0.924 49179 49179 0.01 1.42 1.00 1.50
Key(4) Yes 1.32 21742 4754 0.01 0.82 14.64 64.00
Dij(5) No 9.89 126240 10702 1.17 0.48 14.04 1.85
Dek(60) No 4.92 216120 3720 0.03 0.86 58.10 0.43

C-net unfoldings are smaller when the c-nets contain transitions that concur-
rently read common resources, as t1, t2 in fig. 1 (a). This happens naturally in
several applications. Last two examples of table 1 are models of the Dijkstra’s
and Dekker’s mutual exclusion algorithms where c-net unfoldings exhibit impor-
tant gains. Recall that in both algorithms, concurrent processes need to read
other processes’ state variables, hence the gain. Verification of mutual exclusion
protocols, we believe, could be an important application of c-net unfoldings.

Hazard checking in asynchronous circuits (ACs) [6] is another promising ap-
plication. A network of asynchronous boolean gates can be modelled by a c-net,
where each gadget encoding a boolean gate contains many read arcs [9]. Hazards
are undesirable behaviours of ACs, whose existence reduces to a coverability
question on the c-net [6]. In our experiments, we observed that signal changes in
the circuit could propagate in many different orders, which were distinguished by
Petri-net unfoldings but not by c-net unfoldings, reducing the unfolding size [9].
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Abstract. Formal verification has seen relatively less application in ver-
ifying computer networking infrastructure. This is in part due to the lack
of clean layers of abstraction that enable design modeling and specifica-
tion of correctness criteria. However, the recent move towards Software
Defined Networking (SDN) provides a clean separation between a cen-
tralized control plane and a distributed data plane. This provides an
opportunity to formally verify critical data plane properties. In this pa-
per, we present a Boolean Satisfiability (SAT) based framework for data
plane modeling and checking of key correctness criteria. This provides
greater efficiency and/or greater coverage of properties when compared
to other existing approaches.

1 Introduction

Network configuration and management are notoriously difficult due to the size
and complexity of the network and it has been shown that 62% of the net-
work downtime is caused by configuration errors [1]. Traditionally this has been
addressed through testing [2], however this is increasingly inadequate for the
properties of interest and the scale of modern networks. There has been some
recent interest in applying formal verification techniques such as model checking,
ternary symbolic simulation and SAT-based analysis (discussed in [3]), and this
paper takes this significantly forward.

The network is traditionally viewed in two parts: the Data Plane, responsible
for forwarding and/or modifying packets, and the Control Plane, responsible
for configuring the data plane. While these are conceptually separate, traditional
distributed implementations make it difficult to derive suitable abstractions of
these for verification. Recently, there has been a move towards Software Defined
Networking (SDN) that provides a clean separation between a centralized control
plane and a distributed data plane [4]. This enables deriving a clean abstraction
of the data plane and stating the correctness criteria for it.

In this paper we focus on the verification of a given configuration of the data
plane, and use the term network to refer to this static view of the data plane.
Thus, this verification deals with properties related to the outcome of individual
packets through the network. This is of particular interest since any network
fault must manifest itself as an undesirable outcome for some packet through
the network. We present a SAT-based framework to model this network and
verify a set of network properties of interest. Further, the data-plane properties
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Fig. 1. An illustrative Sketch of a Local Area Network

considered deal with functional correctness related to packets in the network and
not performance related such as meeting latency/throughput requirements.

This paper makes the following contributions: First, the SAT-based frame-
work can model diverse network components such as routers, firewalls etc. by
customizing a single propositional logic model of a generic switch component.
This provides for uniformity in modeling. Second, we show how to model a rich
set of network properties as Boolean formulas. This work is the first to cover a
broad range of correctness criteria in a single uniform framework. Third, we have
demonstrated the practical applicability of this framework through checking the
publicly available Stanford network [5] and large synthetic benchmarks.

2 Network Systems: Background

2.1 Network System State

The network components considered here span a variety of devices such as
routers, NATs and firewalls. We refer to these devices collectively as switches
(Figure 1). In this paper, we only focus on the packet header (and not pay-
load) since it captures information needed to process the packets. The header
may be modified during packet processing in a switch. The network states we
are interested in are the rules extracted from the switch data structures such
as routing/forwarding tables in routers/switches, Access Control List (ACL) in
firewalls, and Translation Table in NAT. Each switch can be modeled as a set of
these rules. These rules have two fields, one matching field which the incom-
ing packets should match against, and one action field which specifies what
actions will be taken on the matching packets. The matching field is composed
of the fields in the packet header, e.g. IP addresses, and is specified using 0, 1, ∗,
where wildcard ∗ matches both 0 and 1. The action field includes forwarding
actions such as: forwarding packets to specific ports, flooding packets (forward-
ing a copy to all but the incoming ports), and packet rewriting. The matching
chain consists of a list of strictly prioritized rules and the action for a packet
corresponds to the highest priority rule which matches that packet.

We define the switch state as the collection of all the extracted rules stored
in the switch. The network state is the collection of the switch states in all
switches. While the controller can change the rules in the switches, we consider
a snapshot of a dynamic network for verification. This snapshot has been tradi-
tionally difficult to obtain because of the distributed nature of the control and
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Table 1. Modeling Notation

S The set of switches {s1, s2, . . . , si, . . . , sm}
l(i) The number of ports for switch i (an even number)

P (si) The set of ports for switch si:
P (si) = {pi,1, pi,2, . . . , pi,j , . . . , pi,l(i)}

s0 The abstraction of the network interface: P (s0) are the network
ingress/egress ports

type(.) The type of port: type(pi,j) ∈ {IN,OUT} (input/output port)

hi,j The value of the packet at port pi,j :
hi,j = (hi,j,1, . . . , hi,j,k, . . . , hi,j,n), hi,j,k ∈ {0, 1}

valid(hi,j) The validity bit of a packet

flag(hi,j) The flag bit of a packet

Ti The switch formula relating the input and output port headers

N The network formula - this is a topology based composition of switch
formulas. N =

∧
i Ti

P The property violation formula

data planes. However, the move to SDN with a single centralized controller en-
ables a clean abstraction of the data plane. Gude argued that changes in the
network rules are on the order of tens of events per second for a decent sized
network while millions of packets arrive per second [6]. As network rule updates
are much slower than the packet arrival rate, the network can be largely regarded
as a static system. Consequently, we assume that the network is stateless as it
is fixed during verification and no packet can modify the network state.

3 Formal Modeling

3.1 Property Violation and Packet Path Trace Counterexample

A key observation of our approach is that property violation can be specified
through a counterexample consisting of a single packet and a path that it takes
through the network. (This packet and path is referred to as packet path for
short.) This path starts at a network ingress port and ends at some switch (if
the packet is dropped) or at some network egress port (if the packet exits). This
observation is key in developing a SAT-based network and property model that
constructs a Boolean formula for which a satisfying assignment is the packet path
counterexample. A SAT based solution can only provide for existential quantifi-
cation and it is convenient that universal or alternating quantification is not
needed for any of the properties of interest discussed in Section 3.4.

3.2 Network and Property Modeling

The network is composed of a set of switches and links. Each switch has a
set of bidirectional ports. However, for ease of modeling each port (and link)
is replaced by a pair of unidirectional ports (and links). The notation used in
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network modeling is listed in Table 1. A set of variables hi,j is used to represent
the packet at port pi,j . Since not all ports will have valid packets, valid(hi,j) ==
1 indicates that a valid packet is at pi,j and valid(hi,j) == 0 indicates the
absence of a valid packet. The flag bit is used for bookkeeping during packet
processing. L is the set of links, where a link connects two ports. (pi,j , pk,l) ∈
L indicates that pi,j is connected to port pk,l and type(pi,j) == OUT and
type(pk,l) == IN and further (hi,j == hk,l).
N represents the consistent assignments to the packet variables for a single

packet path through the network. Since N represents valid packet paths, the
packet at only one of the network ingress ports can have its validity bit be 1.
Thus, satisfiability of N ∧P indicates property failure and the satisfying assign-
ment provides a packet path counterexample. As part of packet processing, a
location may see multiple packets over time. This may happen when multiple
packets are created at a switch, e.g., in flooding, and these different packets
may arrive at a location at different times, or even when a packet loops through
the network and reaches a location twice. However, in N each network location
has only one set of variables representing the packet header. Two important
modeling characteristics overcome this inadequacy.
Characteristic 1: The network model ensures that packets do not loop by
detecting and blocking looping behavior.
Characteristic 2: The satisfying assignments to N represent a single packet
path through the network. Thus, different paths created by packet creation (e.g.
flooding) are represented through different satisfying assignments of N .

These modeling characteristics are key in our ability to use a single set of
packet variables at each network location to model signals that can take multiple
values over time. Section 3.3 describes how these characteristics are achieved.

3.3 Switch Modeling

The switch formula Ti relates the input and output packet variables at switch
i. Since N represents valid packet paths, each switch must place at most one
valid packet at its output ports . A switch has the architecture shown in the
Figure 2 consisting of three parts: an input selection module (Ii), amatching
chain(Mi), and a output selection module(Oi) and Ti = Ii({hi,j}, hi) ∧
Mi(hi, {h′i,k})∧Oi({h′i,k}, {hi,l}). The input selection module selects one of the
incoming packets and passes it on as hi. hi is then matched against the matching
chain, which processes hi and possibly produces a packet h′i,k for port pi,k. The
output selection module non-deterministically selects one of the valid packets
h′i,k and passes it on to port pi,k and drops all other packets.

Input Selection Module. Since there is only one packet that is allowed to
match against the matching table, there are two possibilities.
Case 1: There is at most one valid packet at the input ports. The input selection
passes this valid packet, if present, to the matching chain.
Case 2: There are two valid packets at the input ports (it can be shown that
there cannot be more than two valid packets at the input ports). Since each
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Fig. 2. Switch Overview Fig. 3. Forwarding Loop

switch can place at most one valid packet at its output ports and there is a
single valid packet at the network ingress ports, intuitively the only way this can
happen is if there is a forwarding loop in the network as illustrated in Figure 3.
(This is formally stated in Theorem 1.) In this figure the packet from the ingress
port arrives at p1 and after processing is placed on p2 and this traverses back
to p3 at the switch. In this case the switch model explicitly blocks this looping
packet from further processing. This is accomplished as follows. The flag bit,
flag(hi,j) indicates if a packet has not yet entered a loop. This bit is set to 1
for packets entering the network. If the input selection module sees two valid
packets at the input ports, then the packet entering the loop from outside must
have the flag bit 1 (packet at p1). It selects this packet and sets its flag bit
to 0. This packet is then processed by the switch, placed at p2 from where it
traverses to p3. Since the input selection module sees the flag bit as 0 for the
packet at p3, it recognizes that this packet has looped back and does not select it
for processing. Thus, effectively the loop is logically broken at p3. This is a key
component of the modeling that enables a structural loop to be logically broken
and thus satisfy Characteristic 1 highlighted earlier. This explicit blocking of the
looping behavior is justified because once it is detected, the expectation is that
this will be removed.

These two cases are reflected by the following formula for Ii: If there is only
one port i that has a valid packet, Ii =

∧
k(hi,k ==

∨
all input ports j(hi,j,k ∧

valid(hi,j))). If there are multiple ports with valid packets, choose the port with
flag bit equal to 1, Ii =

∧
k(hi,k ==

∨
j(hi,j,k ∧ valid(hi,j) ∧ flag(hi,j))).

Matching Chain. Mi is determined by the matching rules as follows. The
matching chain is composed of a chain of prioritized matching rules R(si) =
{ri,1, . . . , ri,q}. Each rule is composed of a matching field, a rewriting field, and
a forwarding field i.e., ri,j = (mi,j , ti,j , Fi,j) (ti,j and Fi,j combine to form
the action field). mi,j is a ternary array for the matching field and mi,j =
(mi,j,1, ...,mi,j,n), where mi,j,k ∈ {0, 1, ∗}. ti,j is the rewriting field used to spec-
ify how the rule transforms the packet. If the rule does not modify the packet,
ti,j(hi) = hi. Fi,j is the set of ports that the rules forwards the packet to.

The switch finds the highest priority rule that matches the packet selected by
the input selectionmodule and takes the corresponding action for this packet.Mi,j

indicates if the packetmatches rule j. This uses component-wise ternarymatching.
Mi,j = 1 iff (∀k, k ∈ [1, n] : ¬(mi,j,k �= hi,k))∧ (∀k, k < j : Mi,k == 0)∧valid(hi)
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and Mi,j = 0 otherwise. a �= b only when a == 1 ∧ b == 0 or a == 0 ∧ b == 1.
∗ matches both 0 and 1. Then if Mi,j == 1, ∀k ∈ Fi,j : h′i,k = ti,j(hi), else,
valid(h′i,k) = 0.

Output Selection Module. Oi is determined as follows. If more than one
output port is specified (e.g. packet flooding), one of h′i,k is non-deterministically
selected. This non-determinism is captured in the switch formula through a
choice variable Ci, C(i) ∈ {1, l(i)/2}. It is this non-determinism that maintains
the constraint that there is at most one packet at the switch outputs. This
combined with Characteristic 1, provides for Characteristic 2, i.e., the satisfying
assignments to N represent a single packet path through the network. Thus,
different paths such as those created by packet flooding are represented through
different satisfying assignments of N . The packet path is determined by the
packet header at the network ingress and the assignment to the choice variables.

The packet at the output ports is determined as follows: ∀j, type(pi,j) ==
OUT : hi,j = ( if (Ci == j) then h′i,j else 0), combined with a constraint
(
∨

j valid(hi,j)) == (
∨

j valid(h
′
i,j)), which specifies that if there is a valid packet

at some h′i,j , there must be a valid packet at some output port.

3.4 The Encoding of Properties

The following set of critical data plane properties are considered in this paper:

Reachability. Given a set of packets at network ingress port A (say h0,0), we
would like to check that every packet in this set reaches network egress port B
(say h0,1). In P , we constrain h0,0 to this set of packets and set valid(h0,0) to 1.
The validity bits at all other network ingress ports is set to 0, as is valid(h0,1).
If N ∧ P is satisfiable, then the satisfying assignment provides a packet path
counterexample of a packet from this set that either got dropped or stuck in a
forwarding loop or exited at some other egress port.

Forwarding Loop. The network has a forwarding loop if some packet re-
turns to a switch twice and that packet has to be reachable from one of the
network’s ingress port. From the definition of the input packet selection module
in Section 3.3, we intuitively see that for a forwarding loop to be present, there
must be two packets entering one switch. One of them must have a flag bit 1
and the other has a flag bit 0. Recall that there is only one packet injected into
the network through one of the network ingress ports and that packet has a flag
bit set to 1.

The following theorem formally states this condition. The detailed proof has
been omitted for brevity.

Theorem 1. (Forwarding Loop Theorem) There exists a loop if and only if
there is some switch i such that there are valid packets at two different input
ports pi,j and pi,k, i.e.

∃i, j, k(j �= k) : (valid(hi,j) == 1) ∧ (valid(hi,k) == 1) (Property P)
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Slice Isolation. Network systems partition resources into different slices. A
slice can be viewed as a collection of the tuples of packet header and packet
locations, such as ports. The slice isolation property checks that a packet from
one slice does not cross over to another slice. Let s be a switch and ps,1 be an
input port, ps,2 be an output port, and h1, h2 be two packets. Let (h1, ps,1) be in
Slice 1 and (h2, ps,2) in Slice 2. We need to ensure that h1 at ps,1 is not processed
by switch s into h2 at ps,2. While it may seem that this check can be done locally
at each switch, this can lead to false positives, i.e., a counterexample (h1, ps,1)
may not be reachable if h1 never presents itself at ps,1. Thus, in P we constrain
the valid input packet at a switch to be in a different slice from the valid output
packet at a switch. The validity of the input packet ensures that this packet can
reach s from some network ingress port.

4 Comparison with Related Work

There are several related efforts in the area of formal network/data plane veri-
fication. We briefly review them here and place our work relative to them.

There is a set of efforts based on using finite state systems. As in our work,
they consider the network state to be fixed, i.e., a snapshot of the dynamic
network. However, they consider transitions in the packet state. The packet
state is defined as (h, p). The state transitions are determined by the network
state, i.e., the rules in the switches. These efforts can further be partitioned
into two groups - one based on model checking this finite state system [7,8] and
one based on ternary symbolic simulation of this system [5]. The model checking
efforts use CTL to model the properties of reachability and absence of forwarding
loops and use standard model checkers to check them. In contrast, we avoid the
state space analysis involved in model checking through innovative propositional
logic network and property modeling.

A key advantage of our approach over ternary symbolic simulation (the Header
Space Analysis approach) is a uniform framework for checking properties. For
example, in order to check forwarding loops, their approach needs to tag each
packet with all the ports that it has visited. For large networks this overhead
can be substantial. Further, while we uniformly use propositional logic to specify
properties, there is no clean formalism for specifying properties in their approach.
Overall, the processing of ternary vectors inherits the limitations of a Disjunctive
Normal Form (DNF) representation including a possibly exponential growth of
packets in going through a prioritized matching chain. 1 While our method does
build a Conjunctive Normal Form (CNF) formula, it avoids any size explosion
through the standard technique of adding intermediate variables.

The effort that is closest to our work is the Anteater project that also encodes
the property check as a Boolean formula [9]. However, unlike our model, it does
not build a single formula for the network and then check different properties for
it. Rather, they build a custom formula for checking the reachability between

1 This is because each matching rule passes down to lower priority rules the set dif-
ference of the current set of packets in DNF with what is matched by this rule.
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two ports. They also show how a forwarding loop involving a specific switch
s can be checked by splitting this switch into two switches s and s′ and the
checking the reachability of s′ from s. Further, for checking loops for the complete
network this check needs to be done for each switch separately. Also, like us,
they consider single paths, but do so by limiting the method to only simple
forwarding, i.e., they do not consider packet creation, which is the difficult case.
Thus, the main strength of our approach compared to them is that we provide a
uniform framework for modeling the entire network and checking a wide range
of properties through a single SAT check per property.

5 Experimental Results

We have implemented a tool called NetSAT based on our approach and con-
ducted a series of experiments to test its efficacy. The first test benchmark used
is the publicly available Stanford backbone network [5]. The second set of bench-
marks are synthetically generated. In these benchmarks we use the Waxman
topology [10]. For each switch in the network, we connect an ingress/egress port
to it as the network’s input and output. We use depth-first-search on each pair of
the network ingress and egress ports to generate the matching rule set for packet
forwarding without any header modification. All experiments use Minisat as the
SAT solver and run on Ubuntu Linux with kernel 3.2.0 and Intel Xeon processor
running at 3.2GHz without using any parallelism.
Stanford Backbone Network: The Stanford network has 16 routers and in-
cludes full network complexity (VLAN tags, ACLs, etc.). This expands the rule
set to about 15,000 rules and results in a formula with about 6.2 million CNF
variables and 32 million CNF clauses. It takes about 100 seconds to return satisfi-
able for both forwarding loop and reachability checking. It takes about 5 seconds
for unsatisfiable cases for reachability checking as in this case the packet gets
dropped very quickly as it traverses through the network.
Synthetic Benchmarks: For the synthetic benchmarks, we ran four sets of
experiments to study the effect of the total number of rules, total number of
switches, and the header size of the packet on the execution time for property
checking. The property checked is absence of forwarding loops as this is the
more time consuming one (in Experiment 1 we check both forwarding loop and
reachability) and we report the run time for the unsatisfiable case as that is the
slower case for this benchmark set.

Experiment 1: We consider two different networks for property checking
(reachability and absence of forwarding loops): the first is composed of 50
switches (header width 64 bits) and the second is 100 switches (header width 64
and 160 bits). We increase the number of rules in the network from 100,000 to
2,000,000 with an increment of 100,000 for both networks (Figure 4).

Experiment 2: For a fixed number of rules (0.5 million and 1 million), we
increase the total number of switches from 10 to 200 with an increment of 10
and with a header size of 160 as shown in Figure 5.
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Fig. 4. Increasing the number of rules

Fig. 5. Increasing the number of
switches

Fig. 6. Increasing the size of
header

Experiment 3: For a fixed topology (50 and 100 switches) with 500,000 rules
stored in the network, we increase the header width from 64 bits to 320 bits as
shown in Figure 6.

Experiment 4: For a 200,000-rule-50-switch topology, we divide the network
into 50 slices and check if there exist any slices that overlap with each other.
The experiment took 47 minutes to finish.

Based on the results of these experiments we make the following observa-
tions. Our tool is capable of handling large-sized networks. The 50-switch case
in Figure 4 with <1 million rules completes within 10 minutes. The slowest
case is checking the 190-switch 1-million-rule 160-header-bit network which took
4.5 hours. Checking reachability is significantly faster than checking forwarding
loops (Figure 4) . This is likely because the property formula for reachability
checking requires only part of the network. The increase of execution time is
mainly caused by the increase in the number of switches and the total number
of rules with little effect of the header width (Figure 6). The effect of the num-
ber of rules/switches is relatively intuitive since the size of the formula increases
with the number of rules/switches. The limited effect of the header width may
be due to the fact that we share a lot of packet variables as the network does
not modify the header. This could change if this were not the case.

6 Conclusions

We present a propositional logic framework for network data plane modeling and
property checking. This framework provides the following advantages: it avoids
the state space traversal of model checking based methods, avoids the limitations
of a DNF representation inherent in ternary symbolic simulation and provides a
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clean formalism for stating network properties and constraints that can check a
richer set of properties compared to existing approaches. There are key challenges
that needed to be overcome in developing this framework. Specifically, networks
can have logical loops. This makes it hard to use a propositional logic model
as used in combinational networks which deal with a single stable value for
each signal. Overcoming these challenges required innovative modeling that took
advantage of the typical properties that need to be verified here. Empirically our
approach is applicable to real networks, such as the Stanford backbone network.
It also compares favorably to the alternate approaches while providing greater
property coverage with comparable or better performance.
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Abstract. Detection of infeasible code has recently been identified as
a scalable and automated technique to locate likely defects in software
programs. Given the (acyclic) control-flow graph of a procedure, infea-
sible code detection depends on an exhaustive search for feasible paths
through the graph. A number of encodings of control-flow graphs into
logic (understood by theorem provers) have been proposed in the past
for this application. In this paper, we compare the performance of these
different encodings in terms of runtime and the number of queries pro-
cessed by the prover. We present a theory of acyclic control-flow as an
alternative method of handling control-flow graphs. Such a theory can be
built into theorem provers by means of theory plug-ins. Our experiments
show that such native handling of control-flow can lead to significant
performance gains, compared to previous encodings.

1 Introduction

Recently, attempts are being made to use static verification to prove the presence
of infeasible code [7,3,14]. Infeasible code refers to statements that cannot occur
on any feasible (and complete) control-flow path in a program. Infeasible code
detection can be used to detect common coding mistakes like unreachable code,
insufficient error handling, or redundant checks whether pointers are well-defined
(see [3] for further examples). The benefit of using static verification to prove
the presence of bugs instead of their absence is that it can be implemented in
a modular and scalable way with a very low rate of false warnings. If a proof
exists that a certain statement cannot be executed, most likely this indicates
a coding mistake (not necessarily a bug), whereas, if the proof fails, infeasible
code detection simply remains silent. That is, while infeasible code detection can
miss occurrences of infeasible code (i.e., false negatives), it hardly causes false
alarms. Another benefit is that infeasible code detection can be implemented
in a modular fashion: if a statement does not have a feasible execution in its
containing procedure (regardless of the calling context), then it will not have an
execution in its containing program as a whole. Thus, infeasible code detection
can be implemented in a modular way on isolated code snippets without risking
false alarms (but possibly false negatives).

In order to show that a code fragment (basic block) within a given program is
feasible, an execution trace has to be found that contains the fragment. For each
code fragment, a formula is constructed whose satisfiability implies the existence
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of an execution for the considered code fragment. This formula is sent to a
theorem prover, which either proves that the fragment in fact has no execution
(the formula is unsatisfiable), or computes a model that witnesses the existence
of an execution. The construction of execution traces is the main bottleneck of
algorithms for checking feasibility.

We present a tighter integration of feasibility checking with the search pro-
cedure executed by theorem provers, by defining a theory of control flow that
is natively implemented and integrated into the prover in the form of a theory
plug-in. With the help of the theory, we implement a query-optimal algorithm
for feasibility checking, similar in spirit to the procedure presented in [3]. The
use of a theory plug-in eliminates the need for helper variables to implement
the query-optimal algorithm, and generally enables more efficient control-flow
exploration; in experiments on real-world Java applications, our new algorithm
is more than one order of magnitude faster than the one in [3], and significantly
faster than other (encoding-based) algorithms for infeasible code detection that
we compared to. We believe that our results make a convincing case for native
implementation of decision procedures reasoning about program structure, with
implications also for other forms of static analysis, including verification of safety
properties and white-box methods to generate test cases.

The contributions of this paper are: (i) the definition of a theory of acyclic
control flow, and an efficient implementation with the help of a theory plug-in;
(ii) a query-optimal algorithm for feasibility checking; and (iii) an experimental
evaluation on a set of large Java applications. Our implementation and bench-
marks are publicly available.1

Related Work. Different approaches have been presented to identify code that
does not occur on feasible executions within a given program, such as [6,8,14,3].
In this paper we focus on static verification based approaches to detect infeasible
code and on their strategies to explore all paths in a program. In [14] so called
wedges are identified as a suitable subset of statements that need to be check.
In [7] Boolean helper variables are used to render all executions that do not
pass a location infeasible. Both approaches are worst-case optimal but neither
proposes a strategy to explore the program efficiently.

In [3], integer-typed helper variables are used to enable queries that check
for the existence of a feasible path which covers at least n previously uncovered
statements. With that, a query-optimal algorithm is possible. We have reimple-
mented this approach for our experiments.

In [4] a different encoding of the weakest liberal precondition is proposed
that also encodes the backward reachability of statements. With this encoding,
counterexamples from the theorem prover can be used to identify feasible control-
flow paths in a program. Based on this, they present a covering algorithm that
uses enabling clauses. They argue that allowing to prover to find a covering
strategy is more efficient than forcing it towards a particular strategy. We will
also compare with this algorithm in our experiments.

1 http://www.joogie.org

http://www.joogie.org
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2 A Theory of Acyclic Control-Flow

2.1 Programs and Acyclic Control-Flow Graphs

Throughout this paper, we consider programs written in a simple unstructured
language. The language can be seen as a simplified version of Boogie [10]:

Program ::= Block∗

Block ::= label : Stmt∗ goto label∗;

Stmt ::= VarId := Expr; | assumeExpr;

The semantics of programs is as usual. We focus on the case of loop-free (or
acyclic) programs, and refer to related work for sound approaches to compute,
for an arbitrary program P , a loop-free program P# that over-approximates the
feasible executions of P (e.g., [7,5]). We also assume that programs are upfront
transformed to passive form [2], which means that assignments are replaced with
fresh program variables and assume statements. Without loss of generality, it
can further be assumed that every block in a program only consists of a single
assume statement.

Definition 1 (Acyclic Control-Flow Graph). An acyclic control-flow graph
(ACFG) is defined by a tuple (B,E, be, bx), where B is a set of propositional
variables representing basic blocks, E ⊆ B2 is an acyclic edge relation, and
{be, bx} ⊆ B are two nodes such that every node in B is reachable from be, and
bx is reachable from every node in B.

Every passive loop-free program can be represented by an ACFG (B,E, be, bx),
together with a function S : B → For that maps every block variable b ∈ B
(representing a block lb : assume φb; goto . . .) to the formula S(b) = φb.

Definition 2 (Feasible block). Suppose (B,E, be, bx) is an ACFG, and S a
labelling of the blocks as above. A block represented by block variable b ∈ B is
called feasible iff there is a set P = {b1, b2, . . . , bn} ⊆ B of nodes such that b ∈ P ,
b1 = be, bn = bx, for all i ∈ {1, . . . , n− 1} it is the case that (bi, bi+1) ∈ E, and∧n

i=1 S(bi) is satisfiable.

In order to systematically discover feasible blocks, we consider the models of
the formula WLP ∧ be, where:

WLP =
∧
b∈B

(
b =⇒ S(b) ∧ SuccConj (b)

)
(1)

SuccConj (b) =

{∨
(b,b′)∈E b′ if b �= bx

true otherwise

It is easy to see that a block b ∈ B is feasible iff WLP∧be has a model that maps
b to true, and in which the subset B′ ⊆ B of block variables that is mapped to
true is minimal [1]. Hence, a theorem prover can be used to enumerate feasible
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blocks by repeatedly computing models of the conjunction WLP ∧be. While this
encoding is correct and practical, for the application of infeasible code detection
it can be observed that it tends to provide insufficient guidance to a solver. In
particular, when forcing the prover to follow a particular cover strategy (like
in [3]), we claim that it is beneficial to assist the prover by providing domain-
specific knowledge about the structure of the control-flow graph to be explored;
otherwise, the implemented cover strategy can cause a slowdown rather than a
speedup, as the prover has to do significantly more internal backtracking [4] in
order to accommodate the cover strategy. We present a way of integrating CFG
exploration more deeply into the search algorithm used by solvers.

2.2 Acyclic Control-Flow Graphs as a Theory

We want to force a prover to discover paths with many previously uncovered
nodes first, and define a particular notion of control-flow path for this purpose:

Definition 3 (k-C-Path). Suppose (B,E, be, bx) is an ACFG, C ⊆ B is a set
of nodes, and k ∈ � is an integer. A k-C-path is a set P = {b1, b2, . . . , bn} ⊆ B
of nodes such that b1 = be, bn = bx, for all i ∈ {1, . . . , n− 1} it is the case that
(bi, bi+1) ∈ E, and |P ∩ C| ≥ k.

Since the nodes B of an ACFG are defined to be propositional variables, we
can regard an ACFG (together with a set C and an integer k) as a logical theory
that restricts the interpretation of B to k-C-paths:

Definition 4 (ACFG theory). The ACFG theory over (B,E, be, bx), a
set C ⊆ B, and k ∈ � is defined by the following axiom:∨

P⊆B
a k-C-path

(∧
P ∧ ¬

∨
(B \ P )

)
(2)

The ACFG theory can be used to discover feasible blocks in a program, by
choosing C ⊆ B as the set of blocks in a program that still have to be covered,
and k as some constant determining how many blocks are supposed to be covered
simultaneously. Every model of the formula WLP ∧be that also satisfies (2) (i.e.,
every model modulo the ACFG theory, with parameters k and C) represents a
feasible k-C-path through the given program.

Clearly, axiom (2) will in general be of exponential size (in the size of the
underlying ACFG), and is therefore not a practical way to implement the theory.
The next section discusses how an efficient implementation, in the context of a
DPLL-based solver, can be achieved by combining a set of smaller logical axioms
with a tailor-made constraint propagator.

2.3 Native Implementation of ACFG Theories

We implement a decision procedure for an ACFG theory in two parts:
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1. a set of axioms that ensure that at least one path from be to bx is selected
in every accepted model;

2. a propagator (or theory solver) that ensures that at most one path is selected
in a model, and that this path is a k-C-path.

In the rest of the section, we assume that an ACFG (B,E, be, bx), a set C ⊆ B,
and a threshold k ∈ � have been fixed.

Axioms. The required axioms are simple implications in forward direction, start-
ing at the initial node of the ACFG:{

be

}
∪
{(

b =⇒
∨

Succ(b)
)
| b ∈ B \ {bx}

}
(3)

where Succ(b) = {b′ | (b, b′) ∈ E} is the set of direct successors of b ∈ B.
In order to satisfy (3), a prover has to assign true to variable be, and whenever

some block variable b is selected (assigned true), also one of the successors of
b needs to be selected. Consequently, the axioms (3) are satisfied by interpre-
tations of the variables B in which at least one path from be to bx is selected;
it is left to the heuristics of the prover which path to pick. However, satisfying
interpretations might select multiple paths simultaneously, and they might also
contain paths that do not start in the initial node be (but end in bx). Selected
paths might moreover not be k-C-paths.

In our context, it can be observed that the axioms (3) are implied by the
formula WLP ∧ be constructed in Section 2.1. This means that a search for
models of WLP ∧ be (as done in Section 2.4 below) will automatically satisfy
also (3), and it is not necessary to explicitly assert (3) as well.

Propagator. DPLL-style solvers [11] construct models of a given formula (usually
modulo a set of background theories) by step-wise extension of partial interpre-
tations, with backtracking being carried out whenever conflicts occur (dead ends
in the search space are reached). In the context of an ACFG (B,E, be, bx), this
means that at any point during DPLL search there is a subset B+ ⊆ B of
variables that have been assumed to be true, and a subset B− ⊆ B \ B+ of
variables that have been assumed to be false. Other variables B \ (B+∪B−) are
unassigned. This means that the search has narrowed down the set of considered
k-C-paths to those paths P ⊆ B with B+ ⊆ P and B− ∩ P = ∅.

Given such a partial interpretation (B+, B−), a tailor-made propagator can
infer further information, and thus decide the value of further variables in the
remaining set B \ (B+ ∪B−):

1. most importantly, the propagator can check whether there is at all a k-C-
path P ⊆ B with B+ ⊆ P and B− ∩ P = ∅. If this is not the case, the
assignment (B+, B−) is inconsistent, and search has to backtrack.

2. it can be checked whether there are inevitable nodes

I =
⋂
{P ⊆ B | P a k-C-path with B+ ⊆ P, B− ∩ P = ∅}

that have to visited by every k-C-path that is consistent with the chosen
assignment (B+, B−). Variables in I can immediately be set to true.
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3. it can be checked whether there are unreachable nodes

U = B \
⋃
{P ⊆ B | P a k-C-path with B+ ⊆ P, B− ∩ P = ∅}

that are not visited by any k-C-path consistent with the assignment
(B+, B−). Variables in U can immediately be set to false .

Note that the first kind of inference ensures that only satisfying assignments
with at most one path are accepted, and only in case the path is a k-C-path.
In combination with the axioms (3), this implies that only models representing
single k-C-paths are produced. The second and third kind of propagation provide
input for further Boolean constraint propagation, and ensure that a theorem
prover does not spend time exploring parts of the ACFG in which no k-C-
paths can exist; in particular, a prover can immediately ignore any implication
b =⇒ S(b) ∧ SuccConj (b) (from (1)) with b ∈ U , and can immediately process
the succedent S(b) ∧ SuccConj (b) in case b ∈ I. In comparison with a direct
encoding into logic (as in [3]), this provides a degree of look-ahead that can
significantly speed up search.

All three types of inference can be performed in linear time in the size of the
ACFG (B,E, be, bx) by means of simple dynamic programming.

For our experiments, we implemented an ACFG constraint propagator in form
of a theory plug-in that is loaded into the Princess theorem prover [13] and
initialised with the ACFG (B,E, be, bx), the set C ⊆ B, and the threshold k ∈
�. The theory plug-in monitors the variable assignments made during search,
and if possible adds inferred information (about inconsistency of the assignment
(B+, B−), or the value of the variables in I and U) to the state of the search.

2.4 Infeasibility Checking with ACFG Theories

With the propagator from above, we can now implement a greedy path-cover
algorithm for an ACFG on top of an incremental prover, following the idea of [3]:
our algorithm InfCode , as shown in Algorithm 1, takes a loop-free program P
and the associated ACFG (B,E, be, bx), and then repeatedly computes models of
the formula WLP∧be representing terminating executions of P . Such models are
constructed modulo the ACFG theory for (B,E, be, bx), with the set C initially
set to the set of all nodes B, and k to a sufficiently large number (e.g., the length
of a path from be to bx); only models are accepted that represent k-C-paths.

We repeatedly check for the existence of ACFG-models of WLP ∧be using the
helper function checkSat (line 7). If a model exists, i.e., checkSat returns SAT ,
we remove all variables bi from C that were assigned true (line 9); such variables
represent blocks on the found k-C-path. We then re-initialize the theory plug-in
with the new reduced set C (line 10), and search for further models.

If no k-C-path exists, i.e., checkSat returns UNSAT , we restart the search
for models with k ← 'k/2( (line 15 and 16). The algorithm terminates if our
set C becomes empty and thus all nodes have been covered (line 4), or we do
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Algorithm 1. InfCode: an algorithm to detect infeasible code.

Input: Passive loop-free program P with ACFG (B,E, entry , exit)
Output: C: The set of block variables that do not have feasible executions.
begin

k ← average path length ;
C ← B ;

assert(WLP ∧ be);
restartModelSearch(k, C);

while C �= {} do
R ← checkSat ;
if R = SAT then

C ← {bi ∈ C | bi is assigned false in model} ;
reinitPlugin(C);

else
if k = 1 then

return C
end if
k ← "k/2# ;
restartModelSearch(k,C);

end if

end while

end

not find any k-C-path for k = 1 (line 10). In that case, all remaining nodes in
C cannot occur on a feasible path. A proof is given in [3].

Now let C be a so-called effectual subset of B [3]. That is, C ⊆ B is called
effectual if it is a minimal set of block variables such that a set of feasible paths
that covers all elements in C also covers all elements in B.

Theorem 1. Given an ACFG (B,E, be, bx) with an unknown set of feasible
paths. Let C ⊆ B be an effectual subset of B, and N(C) be the maximum number
of elements in C that can occur together on one control-flow path. If K is the
size of the smallest set of feasible paths that covers all coverable elements in C,
then Algorithm 1 performs at most O(K · log(N(C))) queries.

A proof is given in [3]. As shown in [9] and [12] this is a query-optimal solution
for the case that the set of feasible paths is unknown. However, the algorithm
queries a theorem prover to check for a feasible path with certain properties.
This is the most expensive part of the whole algorithm; in previous experiments,
which implemented the algorithm with the help of a purely logical encoding and
auxiliary variables, this led to the observation that the query-optimal algorithm
is in reality slower than theoretically sub-optimal solutions [4]. We hypothesise
that the implementation in form of a theory plug-in alleviates this bottleneck;
to check if our intuition holds, we compare our algorithm with other approaches
on several large-scale programs in the following section.
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Table 1. Name, size, and detected infeasible code for the six AUTs in our experiments

Program LOC # methods # inf code

Open eCard 456,220 15,654 26
ArgoUML 156,294 9,981 28
FreeMind 53,737 5,613 10
Joogie 11,401 973 0
Rachota 11,037 1,279 1
TerpWord 6,842 360 3

3 Experiments

We have implemented our approach in Joogie, http://www.joogie.org. The
Joogie tool takes a Java program as input and computes a loop-free abstrac-
tion of this program that can be translated into first-order logic (modulo the
theory of arrays, and linear integer arithmetic). Joogie then generates feasibility
checks, using four encoding schemes outlined in the next paragraph, and sends
the resulting constraints to the theorem prover Princess [13]. For details on this
translation and the inserted run-time assertions we refer to [3].

Experimental setup. For the loop-free program provided by Joogie, we compare
four ways of detecting infeasible code. (A) the method presented in Section 2,
implemented using a native theory plug-in, (B) an approach that uses enabling
clauses to cover at least one new block in each iteration [4], (C) an approach
that uses blocking clauses to never cover the same path twice [4], and (D) an
approach that is similar to ours, but uses the solver as a black box and asserts
linear inequalities to implement a query-optimal algorithm [3].

Note that all four approaches to detect infeasible code are complete for loop-
free Boogie programs. Hence the detection rate is the same for all approaches
(and only limited by the abstraction performed by Joogie), and we are only
interested in the computation time of each approach.

We evaluate our approach on six open-source applications (AUTs): Open-
eCard, a software to support the German eID, a CASE tool called ArgoUML,
the mind-mapping tool FreeMind, the time-keeping software Rachota, the word
processor TerpWord, and Joogie itself. Joogie applied each infeasible code detec-
tion algorithm to each procedure of an AUT individually. That is, Joogie does
not perform inter-procedural analysis. Calls to procedures are replaced by non-
deterministic assignments to all variables modified by the callee instead. For each
procedure, we stop the time spent in the theorem prover process. If the theorem
prover takes more than 30 seconds to analyze one procedure, we kill the process
with a timeout and continue with the next procedure. All experiments are run
on a workstation with 3 GHz CPU, 8 GB RAM, and 640 GB HDD.

Table 1 shows the details of the AUTs including the infeasible code that is
found by Joogie. Even though we picked stable releases of each AUT, we could
detect infeasible code in all of them besides Joogie. Most of the infeasible code

http://www.joogie.org
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Fig. 1. Total time needed by the four considered algorithms on the six AUTs

found is unreachable, some is caused by null checks of objects that have already
been accessed (which is actually unreachable), and few cases are reported due
to explicit contradictions (e.g., dereferencing a pointer known to be null).

Results. Figure 1 shows our experimental results. Our algorithm A computed a
total 133, 330 queries in 48.26 minutes. Algorithm B used 130, 059 queries and
206.20 minutes, algorithm C 250, 566 queries and 424.11 minutes, and algorithm
D 132, 976 queries and 646.21 minutes. The experiments show that our approach
is significantly faster on all AUTs than existing approaches. The greedy algo-
rithms A and D require a similar amount of queries. However, algorithm D is
significantly slower. This is because D forces the prover to restrict it’s search
to a particular subset of paths by adding linear inequalities which can only be
understood by the prover when using the corresponding theory. The algorithms
A, B, D require a similar number of queries. Algorithm C used significantly
more time than A and B. Apparently, the theorem prover tries to change as
few values as possible in each iteration, thus blocking clauses might cause the
prover to explore all possible control-flow paths. However, we can see that not
restricting the solver results in very fast queries (the smallest time per query).

Threats to validity. We report the expected threats to validity: our AUTs do
not represent a statistically significant sample. However, they are real programs,
not tailored towards the experiments, and of reasonable size. Another threat is
that theorem provers other than Princess might produce different results.

4 Conclusion

We have presented a new algorithm to detect infeasible code. In contrast to
previous work, our algorithm deeply integrates with the used theorem prover.
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Not treating the theorem prover as a block box not only allows us to avoid addi-
tional instrumentation variables, it also enables the theorem prover to search for
feasible control-flow paths significantly faster than in previous work. Since the
time needed to process individual procedures is comparable to the time required
for compilation (in particular type-checking), and since no false alarms are pro-
duced, we believe that infeasible code detection can be integrated in an IDE in
a non-obtrusive way. With this integration, we will be able to detect infeasible
code even before a program is executed. This is also the context in which we
expect most occurrences of infeasible code, and a setting in which a large audi-
ence of users can be reached, opening a back door to provide programmers with
a smooth learning curve towards the use of formal methods.
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Abstract. Low level data-races in multi-threaded software are hard to
detect, especially when requiring exhaustiveness, speed and precision. In
this work, we combine ideas from run-time verification, static analysis
and model checking to balance the above requirements. In particular, we
adopt a well-known dynamic race detection algorithm based on calculat-
ing lock sets to static program analysis for achieving exhaustiveness. The
resulting data race candidates are in a further step investigated by model
checking with respect to a formal threading model to achieve precision.
Moreover, we demonstrate the effectiveness of the combined approach by
a case study on the open-source TFTP server OpenTFTP, which shows
the trade-off between speed and precision in our two-stage analysis.

Keywords: Software verification, static analysis, concurrency, lock sets.

1 Introduction

Modern processors commonly feature multi-core architectures. To fully use such
hardware, software for multi-core processors often manages threads in the appli-
cation code. Such concurrency carries the risk of introducing subtle but serious
defects that might show up only sporadically and are extremely hard to debug.
Common programming languages such as C provide only basic primitives for
concurrency in terms of threading, while at the same time offering only limited
tool support for debugging and bug prevention.

In this work we present a new way of detecting data races in embedded source
code. We combine ideas from run-time verification, static analysis and software
model checking by balancing their strengths and weaknesses. Run-time verifi-
cation provides a good means to detect certain race conditions, but can only
reason over program executions that have actually been observed, limiting cov-
erage. Static analysis is strong in covering all potential execution paths, but is
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1 int shared var = 0; 7

2 8 void *writer() {
3 void *reader() { 9 for(;;) {
4 for(;;) { 10 shared var = compute();

5 t = shared var; 11 } }
6 } }

Fig. 1. Data Race Example

prone to (over-)approximations leading to false positives. On the other hand,
software model checking offers a precise analysis of the program semantics, but
with limitations regarding scalability to larger code bases.

We propose a layered approach: In a first step we use a path-sensitive static
implementation of the well-known Eraser algorithm [15]. Our static version is
able to detect data races in C programs with a complete path coverage.While the
algorithm is applicable to large-scale software, it is also prone to false positives.
Therefore, in a second step we take those data races as candidates for a deeper
model checking approach. The model checking phase abstracts from non-essential
data and instructions and takes the threading model into account.

In this way we avoid to apply traditional software model checking to the full
multi-threaded source code, but rather treat its application as a false-positive
elimination step on selected code parts only. As a result we obtain a solution
that can deal with real software systems, has a higher degree of coverage than
run-time verification, but is more precise than traditional static analysis.

This paper is organized as follows: In Section 2 introduces to data races and
the objectives of this work, together with related work. We present our two-
step analysis approach in Section 3, covering the Eraser lock set analysis and its
combination with software model checking. Experimental evaluation is presented
in Section 4, followed by our conclusions in Section 5.

2 Data Races in Multi-threaded Programs

Threads are concurrent streams of program execution that can be created,
merged and deleted at run-time. Threads might have access to shared resources.
A data race occurs if two or more threads can simultaneously and non-atomically
access a shared resource with at least one access being a write operation.

An example data race is given in Figure 1. A reader thread reads a shared
variable (lines 3–6); a writer thread writes to it (lines 8–11). If these accesses are
not synchronized using locks or other coordination mechanisms, then their effects
are not well-defined. The update of the writer thread may become visible to other
threads immediately or at any time after it has been issued, due to memory
caches and other optimizations in modern hardware. Reading shared var may
thus yield different results depending on thread scheduling and hardware, which
is why it is desirable to avoid data races in concurrent software.
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As threads can be created dynamically, the number of threads may be large.
The effect of data races may only be visible under a particular interleaving of
thread actions at run-time; this makes the detection of data races difficult.

2.1 Scope and Contribution

Like the Eraser algorithm [15] used in run-time verification, we detect low-level
data races by finding inconsistent or absent locking of variables shared across
threads. Eraser monitors the lock set that protects a shared variable during read
and write accesses to it. On every access, Eraser computes the intersection of the
lock set protecting that variable. If the intersection becomes empty, i. e., there
is no single lock consistently protecting a variable, a warning is issued.

Static Eraser Implementation. In this work we introduce a path-sensitive static
implementation of Eraser. Unlike run-time verification we consider all paths stat-
ically, possibly over-approximating the set of feasible interleavings, but ensuring
full coverage. This approach finds all data races but may issue spurious warnings.

Model-checking Thread-Interleaving. We also propose another analysis that is
more precise and can reduce false positives from the previous step. The sec-
ond analysis creates the thread-interleaving graph of the program (with limited
depth) that captures the call structure of the threads and their termination, as
well as the read and write accesses to shared variables. Since the interleaving
graph grows exponentially with the number of threads in the program, we re-
strict it to the data-race candidates as identified in the static Eraser approach.
We then model-check the thread-interleaving graph for feasible data races. This
approach is sound up for a bounded number of threads. Using abstraction we are
able to apply this methods to real code as shown in the evaluation in Section 4.

Our approach is based on a thread-interleaving semantics as defined in [12].
This semantics takes into account thread creation, join and cancellation as well as
the acquisition and releases of locks. Moreover, it includes the advanced concepts
of waiting and signaling that require a view of the global program state and is
thus not covered by Eraser or other thread-modular approaches.

2.2 Related Work

Eraser [15] is the classical lock-set based algorithm that approximates potential
data races very well, while not having the overhead of more precise but heavy-
weight approaches based on the happens-before relation [16].

Goldilocks is a newer algorithm that computes data races precisely [7]. To be
more accurate than Eraser, Goldilocks requires more elaborate data structures.
Furthermore, the precision of Goldilocks depends on its ability to recognize over-
lapping data of multiple software transactions. That data is readily available and
precise when using run-time verification, but is difficult to approximate precisely
enough in static analysis, which is why our analysis is based on Eraser.

Other concurrency errors may still exist even in the absence of data races
(called low-level data races to compare them with similar concurrency problems).
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High-level data races [3] and atomicity violations [2,9] are two types of such
problems. High-level data races cover non-atomic accesses to sets of dependent
variables (multiple memory locations). Atomicity violations concern the scope
during which a lock is held, and thus the use of the data rather than its direct
access. These two types of problems have recently been subsumed by the notion
of causality in data flow, which can cover both accesses to data and its use [6].

Static analysis of such concurrency properties has been attempted in other
work, in a static analyzer where the rules are hard-coded in the program [1], and
in a framework that is specialized for concurrency properties [11]. In contrast to
that tool, we build on top of a general static analysis framework, Goanna [8],
that allows flexible rules to express a wide range of different properties.

The second part of our work is closely related to other software model checkers,
e. g., Java PathFinder [18] for Java bytecode and Inspect for C source code [19].
The key difference is that these software model checkers execute the full software
at run time and explore alternative interleavings by rolling back the system to
a previously stored state. This dynamic analysis is much more expensive than
our approach, which works on an abstract model of the program.

Software model checkers working on a higher level of abstraction exist as
well, such as SLAM, which analyzes device drivers against a given environ-
ment model [4], or SATABS, which can analyze programs using a subset of the
Pthreads library [5]. In comparison, our work is not limited to certain domains
(such as device drivers) and covers the full Pthreads library.

3 A Layered Approach for Static Race Detection

Our layered approach to detect data races first applies static analysis to obtain
data race candidates and then applies model checking on those candidates.

3.1 Static Data Race Analysis

A common way to prevent data races is to impose a locking discipline that
requires any shared (write) variable to be protected by at least one distinct lock
among all threads. Since each lock can only be held by one thread, data races
are effectively prevented.

Eraser [15] monitors the dynamic execution paths of each tread and records
for each variable the lock set being held. If the intersection of those lock sets
across threads for the same variable is empty, we assume a potential data race.

To achieve the same statically, we propose to check all program paths for each
thread and then build the same intersection over all threads. Obviously, the
static approach is an over-approximation as not all paths might be executable.
We use the definition of a lock set [15,14] as the mapping of shared variables
to its potential set of locks, i. e., Lockset : Variables� → ℘(Locks�). In the
following, we show how to compute and check for emptiness of the Lockset.
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Algorithm 1. Static implementation of the lock set algorithm.

begin
Lockset(v) ← Locks�;
isReadOnlyv ← tt ;
foreach πi ∈ Threads� do

lockstate ←− MFP(Nodesπi , is locked);
foreach n ∈ Nodesπi do

if n accesses v then
LocalLocksetπi(v) ← LocalLocksetπi(v) ∩ lockstate(n) ;
isReadOnlyv ← isReadOnlyv ∨ (v is modified in n);

Lockset(v) ← Lockset(v) ∩ LocalLocksetπi(v);

Path-Sensitive Lock Set Computation. A thread (procedure) π is defined as
a procedure with name pn that occurs in a thread-creation action denoted
create(θ, pn). Nodes in the control flow graph of π are denoted by Nodesπ.
For a given thread π we define a function is locked : Nodesπ × Locks� → B
that returns for each node n in π and each lock l whether l is held along all
paths leading to n by

is locked(n, l) =

⎧⎨⎩
tt if n = Lock l,
ff if n = Unlock l,
∀m ∈ pred(n)

∧
is locked(m, l) otherwise.

Here pred denotes the predecessors of a node; the conjunction ensures cover-
age of all potential paths. This notion captures a standard path-sensitive static
program analysis to compute the must-hold locks for each node in a thread.1

Based on the information about the held locks, the thread-local lock set for each
shared variable v ∈ Variables� and thread πi ∈ Threads� is computed by

LocalLockset(v, πi) =

{⋂
n∈Nv

{l′ | is locked(n, l′)} if Nv �= ∅ in πi,
Locks� otherwise.

where Nv denotes the set of all nodes of πi which access variable v. The second
case accounts for variables which are not accessed in πi, mapping them to the
set of all locks. Finally, the lock set for a program is the intersection of the lock
sets for each thread occurring in a given program, i. e.,

Lockset(v) :=
⋂

πi∈Threads


LocalLockset(v, πi)

Our algorithm [12] calculates the lock set using the maximal-fix-point worklist
algorithm MFP [10] (see Algorithm 1). If Lockset(v) is non-empty for any
shared variable v, the program is free of data-races.

1 Modern programming languages like Java support synchronized blocks that acquire
(resp. release) a lock when entering (resp. exiting) the critical section, enabling path-
insensitive approaches [13].
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Fig. 2. A labeled transition system generated by applying the threading model. Colored
vertices designate states with an imminent data race.

Soundness and Completeness. Under the assumption that shared variables
(as well as locks and signals) do not alias, the static lock set algorithm for low-
level data race detection presented here is sound, hence false negatives (i. e.,
missed races) are not possible due to the locking discipline.

However, the analysis is incomplete as false positives (i. e., spurious warn-
ings) are possible, because the analysis does not consider the temporal (also
called happens-before) relation among events in different threads. Furthermore,
warnings may be spurious if data races are avoided by other synchronization
primitives like signals, or other more fine-grained accesses of variables [17].

3.2 Model-Checking of the Threading Semantics

While the approach presented in the previous section uses a fast thread-modular
analysis, it is also prone to potential false-positives. An alternative precise ap-
proach is to use formal semantics for the multi-threading constructs and variable
accesses and apply model-checking on the imposed model.

Semantics of Multi-threaded Programs. For model-checking we formalize
the essence of multi-threaded program constructs [12], e. g., thread management
and lock synchronization, according to structural operational semantics. This
results in a labeled transition system, in which a data race happens if for a
global state σ there are two threads θ1, θ2 and at least one of the threads is
write-enabled on a shared variable v, while the other one can read or write to v:

datarace(θ) = enabled(writev, θ1, σ) ∧ (enabled(writev, θ2, σ) ∨ enabled(readv, θ2, σ))

Using this predicate low-level data races can be detected by checking (on-the-
fly) whether there is a path such that a data race can be reached.

An example of such a transition system is shown in Figure 2. Global config-
urations are numbered nodes; the transition system considers program actions
relating to shared variablemyglobal . Procedure TERM denotes successful termi-
nation; the number in a label represents the global transition relation (see [12]).
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Algorithm 2. On-the-fly reachability checking using BFS.

begin
Σworklist ← {〈{θmain �→ Π(main)}, κ∅, λl.⊥〉};
Σvisited ← ∅;
while Σworklist �= ∅ do

σcurrent ← dequeue(Σworklist);
if σcurrent 
 φ then

WARN(σcurrent);
return true

foreach σ′ ∈ {σ′ | σcurrent
θ,a−−→G σ′ ∧ σ′ /∈ Σvisited} do

enqueue(σ′, Σworklist);

enqueue(σcurrent, Σvisited);

return false

Global states 8 and 9 represent locations at which data races happen, because
the two preceding actions in both states are unsynchronized write accesses.

On real systems, model construction potentially results in an exponential
blow-up both in the numbers of threads and the number of thread operations.
Moreover, thread creation in an (unbounded) loop may yield a possibly un-
bounded number of threads. In practice, model-checking would use a k-bound
to restrict the number of threads that a single thread can create per local state.

Our interleaving semantics is a faithful abstraction of the real program by
only considering thread-specific concepts and read/writes to shared variables.
Mapping a threaded program to this abstraction is a non-trivial task when con-
sidering function calls and some subtleties of the POSIX standard.

Implementation. Algorithm 2 checks whether a configuration satisfying a
given predicate φ : Σ → B is reachable, and warns if a configuration satisfy-
ing φ (σ 
 φ) is found. In this algorithm, the reachable states of the model are
not generated a priori but during the analysis itself, i. e., on the fly. This hap-
pens at the foreach-loop where solely the immediate successors of σcurrent are
explored.

Unlike Algorithm 1, model checking yields precise diagnostic information. Line
numbers shown by WARN substantially facilitate tracking down defects.

The use of a breadth-first-search was motivated by how thread interleaving
influences the model. Different interleavings for the termination of threads con-
stitute a large part of the model but are of less interest for race detection.

Soundness and Completeness. Under the assumptions given above, our ap-
proach is sound and complete up to the fixed thread bound k, i. e., if each pro-
gram instruction that instantiates a thread is successfully executed at most k
times. Imprecision is introduced whenever thread instantiation is nested within
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loops that exceed the thread bound during execution. In those cases the analysis
is neither sound nor complete. Fortunately, such bugs manifest rarely in practice.

3.3 Combining Both Analyses: The Layered Approach

The lock set algorithm is designed for performance, at the cost of possible spuri-
ous warnings. Since it is sound, each variable for which the analysis yields a non-
empty set of distinct locks protecting it, is regarded as safe. On the other hand,
model-checking yields precise results. However, the state-explosion problem often
renders (detailed) models of concurrent programs too large for model-checking.

A natural consequence is to use a combined layered approach:

1. The lock set algorithm yields a (global) lock set for each shared variable.
Variables with a non-empty lock set are safe.

2. We apply model-checking to the remaining shared variables in isolation. If a
data race is reachable, we report that data race.

Step 2 can be thought of as a false-positive elimination for step 1. Note that
the lock-set analysis does not worsen the precision of model-checking. It can be
formally shown that if a non-empty lock set is found, a data race cannot be
detected using the model-checking approach [12].

4 Case Study OpenTFTP

The core ideas of our layered approach have been implemented on top of the
industrial-strength analysis tool Goanna [8]. Goanna analyzes C/C++ code us-
ing static analysis and model checking to detect bugs in large scale code. For
our purposes we made use of the fact that the tool can readily produce con-
trol flow graphs, allows model generation with custom labels based on syntactic
abstraction, and supports a summary-based interprocedural analysis.

However, a number of simplifications were made: The maximum thread cre-
ation bound was set to two, a pre-processing heuristics was used to detect the
shared variables, and potential aliases as well as dynamic memory allocations
were ignored. Moreover, for handling the threading semantics we inlined function
calls, which is clearly not scalable, but sufficient for experiments.

The case study was executed on a Mobile Core2Duo Processor (clock freq.
1.83 Ghz, 4 GB of memory) running on Ubuntu Linux 9.10. We measured both
the runtime of the multi-threading analyses presented in this paper (TMTA) as
well as the complete tool runtime including computation by Goanna (Ttotal).

The TFTP server software OpenTFTP was used as a real-world software
example. The size of the program is about 2.5 KLOC, and it features high
functional complexity coupled with many multi-threading and synchronization-
related constructs. Worker threads handle incoming requests, and shared re-
sources like sockets are protected using mutexes. Furthermore, structured data
types (structs) are used, whose impact on the precision can be evaluated. Obvi-
ously, analysis required an interprocedural setting to obtain meaningful results.
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Table 1. Evaluation results on OpenTFTP

Analysis # Races Correct/Incorrect TMTA Ttotal
TMTA
Ttotal

TMTA
#V ars

TMTA
kLOC

Lock set 15 4/11 (27%) 7.58 s 38.63 s 19.6% 0.47 s 3.03 s
Combined 0 n.a. 131.49 s 153.86 s 85.4% 8.21 s 51.94 s
Combined* 4 4/0 (100%) 2176.85 s 2194.36 s 99.2% 136.05 s 869.69 s

Out of 23 globally defined variables, 16 were identified as potentially shared
and written to by at least on concurrent thread. Two distinct threads were
identified, one being the main thread while the other is the processRequest

worker-thread which is started for each incoming request; hence, thread creation
is nested inside a loop. The initial run reported a multi-threaded control-flow
graph with 2,339 distinct control-states and 3,766 transitions, and data races
on 15 out of 16 shared variables.2 Inspection revealed that the software was not
programmed with respect to the POSIX standard, but with respect to some
hidden assumptions on Linux, exploiting the fact that concurrently executing
threads can release any lock held by any thread. We adjusted our model for this;
the modified approach is denoted Combined*, yielding precise results. Table 1
shows the results for the data race analysis using the lock set algorithm, the
combined approach based on the POSIX standard, and the modified model based
on the specific implementation on Linux exploited by the software.

5 Conclusion and Future Work

We propose a static implementation of the Eraser lock-set algorithm to detect
possible data races in software. This analysis is sound but may result in false
warnings. We add a second analysis step that model checks if potential data races
detected by the lock-set analysis, can ever occur during program execution. Our
two-step analysis takes into account the semantics of the Pthreads library, and
is precise at the cost of a higher analysis overhead.

In future work, the performance of the second step could be improved further:
As we consider only reachability properties, we could apply a strong partial-order
reduction by abstracting from all concrete sequences of actions and considering
only all possible global states. Moreover, instead of inlining procedures, some
enriched summary information should be sufficient.

Other future work includes the analysis of other concurrency properties, such
as deadlocks or high-level data races. Finally, the layered approach presented in
this work may be applicable to other properties where fast over-approximations
exist, making it be possible to balance speed and precision in a similar way.

Acknowledgments. NICTA is funded by the Australian Government (De-
partment of Broadband, Communications and the Digital Economy) and the
Australian Research Council through the ICT Centre of Excellence program.

2 A multi-threaded control-flow graph embeds subgraphs of child threads into calls
to pthread create. The states and transitions thus correspond to local states; the
number of global states is exponential in the number of local states and threads.
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Garza, Ruslán Ledesma 446
Geeraerts, Gilles 55
Genaim, Samir 319, 349
Grumberg, Orna 397
Gurfinkel, Arie 255

Hahn, Ernst Moritz 464
Hasson, Matan 133
He, Fei 478
Heizmann, Matthias 365
Hoenicke, Jochen 365
Hoffmann, Philipp 455
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Křet́ınský, Jan 446, 487
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