
Chapter 5
Ordinary Differential Equations: Initial Value
Problems

5.1 Introduction

In this chapter we will introduce common numeric methods designed to solve initial
value problems.Within our discussion of theKepler problem in the previous chapter
we introduced four concepts, namely the implicit Eulermethod, the explicit Euler
method, the implicit midpoint rule, andwementioned the symplectic Eulermethod.
In this chapter we plan to put thesemethods into amore general context and to discuss
more advanced techniques.

Let us define the problem: We consider initial value problems of the form

{
ẏ(t) = f (y, t),
y(0) = y0,

(5.1)

where y(t) ≡ y is an n-dimensional vector and y0 is referred to as the initial value
of y. Let us make some remarks about the form of Eq. (5.1).

(i) We note that by posing Eq. (5.1), we assume that the differential equation is
explicit in ẏ; i.e. initial value problems of the form

{
G(ẏ) = f (y, t),
y(0) = y0,

(5.2)

are only considered if G(ẏ) is analytically invertible. For instance, we will not deal
with differential equations of the form

ẏ + log (ẏ) = 1. (5.3)

(ii) We note that Eq. (5.1) is a first order differential equation in y. However, this
is in fact not a restriction since we can transform every explicit differential equation
of order n into a coupled set of explicit first order differential equations. Let us
demonstrate this. We regard an explicit differential equation of the form
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62 5 Ordinary Differential Equations

y(n) = f (t; y, ẏ, ÿ, . . . , y(n−1)), (5.4)

where we defined y(k) ≡ dk

dtk y. This equation is equivalent to the set

ẏ1 = y2,

ẏ2 = y3,
...

...

ẏn−1 = yn,

ẏn = f (t, y1, y2, . . . , yn), (5.5)

which can be written as Eq. (5.1). Hence, we can attenuate the criterion discussed
in point (i), i.e. that the differential equation has to be explicit in ẏ, to the criterion
that the differential equation of order n has to be explicit in the n-th derivative of y,
namely y(n).

There is another point required to be discussed before moving on. The numerical
treatment of initial value problems is of inestimable value in physics because many
differential equations, which appear unspectacular at first glance, cannot be solved
analytically. For instance, consider a first order differential equation:

ẏ = t2 + y2. (5.6)

Although this equation appears to be simple, one has to rely on numerical methods
in order to obtain a solution. However, Eq. (5.6) is not well posed since the solution
is ambiguous as long as no initial values are given. A numerical solution is only
possible if the problem is completely defined. In many cases, one uses numerical
methods although the problem is solvable with the help of analytic methods, simply
because the solution would be too complicated. A numerical approach might be
justified, however, one should always remember that [1], quote:

“Numerical methods are no excuse for poor analysis.”

This chapter is augmented by a chapter on the double pendulum, which will serve
as a demonstration of the applicability of Runge-Kutta methods and by a chapter
on molecular dynamics which will demonstrate the applicability of the leap-frog
algorithm.

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn = t0 + nΔt and define
fn ≡ f (tn) accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:
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ẏn = f (yn, tn). (5.7)

Integrating both sides of (5.7) over the interval [tn, tn+1] gives

yn+1 = yn +
tn+1∫
tn

dt′f [y(t′), t′]. (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of several
paths to a numeric solution of initial value problems. These solutions will be based
on an approximation of the integral on the right hand side of Eq. (5.8) with the help
of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1)

Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

yn+1 = yn + f (yn, tn)Δt + O(Δt2), (5.9)

which is the explicitEulermethodwe encountered already in Sect. 4.3. Thismethod
is also referred to as the forward Euler method . In accordance to the forward
rectangular rule, the leading term of the error of this method is proportional to Δt2

as was pointed out in Sect. 3.2.

(2)

We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

yn+1 = yn + f (yn+1, tn+1)Δt + O(Δt2), (5.10)

which is the implicit Eulermethod, also referred to as backward Euler method. As
already highlighted in Sect. 4.3, it may be necessary to solve Eq. (5.10) numerically
for yn+1 (Some notes on the numeric solution of non-linear equations can be found
in Appendix B).

(3)

The central rectangular rule (3.13) approximates Eq. (5.8) by

yn+1 = yn + f (yn+ 1
2
, tn+ 1

2
)Δt + O(Δt3), (5.11)

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
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and we rewrite this equation in the form:

yn+1 = yn−1 + 2f (yn, tn)Δt + O(Δt3). (5.12)

This method is sometimes referred to as the leap-frog routine or Störmer-Verlet
method. We will come back to this point in Chap. 7. Note that the approximation

yn+ 1
2

≈ yn + yn+1

2
, (5.13)

gives the implicit midpoint rule as it was introduced in Sect. 4.3.

(4)

Employing the trapezoidal rule (3.15) in an approximation to Eq. (5.8) yields

yn+1 = yn + Δt

2

[
f (yn, tn) + f (yn+1, tn+1)

] + O(Δt3). (5.14)

This is an implicit method which has to be solved for yn+1. It is generally known as
the Crank-Nicolson method or simply as trapezoidal method.

Methods (1), (2), and (4) are also known as one-step methods, since only function
values at times tn and tn+1 are used to propagate in time. In contrast, the leap-
frog method is already a multi-step method since three different times appear in
the expression. Basically, there are three different strategies to improve these rather
simple methods:

• Taylor series methods: Use more terms in the Taylor expansion of yn+1.
• Linear Multi-Step methods: Use data from previous time steps yk , k < n in order
to cancel terms in the truncation error.

• Runge-Kutta method: Use intermediate points within one time step.

We will briefly discuss the first two alternatives and then turn our attention to the
Runge- Kutta methods in the next section.

Taylor Series Methods

FromChap. 2we are already familiarwith theTaylor expansion (2.7) of the function
yn+1 around the point yn,

yn+1 = yn + Δtẏn + Δt2

2
ÿn + O(Δt3). (5.15)

We insert Eq. (5.7) into Eq. (5.15) and obtain

http://dx.doi.org/10.1007/978-3-319-02435-6_7
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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yn+1 = yn + Δt f (yn, tn) + Δt2

2
ÿn + O(Δt3). (5.16)

So far nothing has been gained since the truncation error is still proportional to Δt2.
However, calculating ÿn with the help of Eq. (5.7) gives

ÿn = d

dt
f (yn, tn) = ḟ (yn, tn) + f ′(yn, tn)ẏn = ḟ (yn, tn) + f ′(yn, tn)f (yn, tn), (5.17)

and this results together with Eq. (5.16) in:

yn+1 = yn + Δt f (yn, tn) + Δt2

2

[
ḟ (yn, tn) + f ′(yn, tn)f (yn, tn)

] + O(Δt3). (5.18)

This manipulation reduced the local truncation error to orders ofΔt3. The derivatives
of f (yn, tn), f ′(yn, tn) and ḟ (yn, tn) can be approximated with the help of the methods
discussed in Chap. 2, if an analytic differentiation is not feasible.

The above procedure can be repeated up to arbitrary order in the Taylor expan-
sion (5.15).

Linear Multi-Step Methods

A k-th order linear multi-step method is defined by the approximation

yn+1 =
k∑

j=0

ajyn−j + Δt
k+1∑
j=0

bi f (yn+1−j, tn+1−j), (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that
the truncation error is reduced. Two of the best known techniques are the so called
second order Adams–Bashford methods

yn+1 = yn + Δt

2

[
3f (yn, tn) − f (yn−1, tn−1)

]
(5.20)

and the second order rule (backward differentiation formula)

yn+1 = 1

3

[
4yn − yn−1 + Δt

2
f (yn+1, tn+1)

]
. (5.21)

We note in passing that the backward differentiation formula of arbitrary order
can easily be obtained with the help of the operator technique introduced in Sect. 2.4,
Eq. (2.30).One simply replaces the first derivative on the left hand side by the function
f (yn, tn) according to Eq. (5.7) and calculates the backward difference series on the
right hand side to arbitrary order.

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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In many cases, multi-step methods are based on the interpolation of previously
computed values yk by Lagrange polynomials. This interpolation is then inserted
into Eq. (5.8) and integrated. However, a detailed discussion of such procedures is
beyond the scope of this book. The interested reader is referred to Refs. [2, 3].

Nevertheless, let us make one last point. We note that Eq. (5.19) is explicit for
b0 = 0 and implicit for b0 �= 0. Inmany numerical realizations one combines implicit
and explicit multi-step methods in such a way that the explicit result (solve Eq. (5.19)
with b0 = 0) is used as a guess to solve the implicit equation (solve Eq. (5.19) with
b0 �= 0). Hence, the explicit method predicts the value yn+1 and the implicit method
corrects it. Such methods yield very good results and are commonly referred to as
predictor–corrector methods [4].

5.3 RUNGE-KUTTA Methods

In contrast to linear multi-step methods, the idea in Runge-Kutta methods is to
improve the accuracy by calculating intermediate grid-points within the interval
[tn, tn+1].Wenote that the approximation (5.11) resulting from the central rectangular
rule is already such a method since the function value yn+ 1

2
at the grid-point tn+ 1

2
=

tn+ Δt
2 is taken into account.We investigate this inmore detail and rewrite Eq. (5.11):

yn+1 = yn + f (yn+ 1
2
, tn+ 1

2
)Δt + O(Δt3). (5.22)

We now have to find appropriate approximations to yn+ 1
2
which will increase the

accuracy of Eq. (5.11). Our first choice is to replace yn+ 1
2
with the help of the explicit

Euler method, Eq. (5.9),

yn+ 1
2

= yn + Δt

2
ẏn = yn + Δt

2
f (yn, tn), (5.23)

which, inserted into Eq. (5.22) yields

yn+1 = yn + f

[
yn + Δt

2
f (yn, tn), tn + Δt

2

]
Δt + O(Δt2). (5.24)

We note that Eq. (5.24) is referred to as the explicit midpoint rule. In analogy we
could have approximated yn+ 1

2
with the help of the implicit Euler method (5.10)

which yields

yn+1 = yn + f

[
yn + Δt

2
f (yn+1, tn+1), tn + Δt

2

]
Δt + O(Δt2). (5.25)
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This equation is referred to as the implicit midpoint rule. Let us explain how we
obtain an estimate for the error in Eqs. (5.24) and (5.25). In case of Eq. (5.24) we
investigate the term

yn+1 − yn − f

[
yn + Δt

2
f (yn, tn), tn + Δt

2

]
Δt.

The Taylor expansion of yn+1 and f (·) around the point Δt = 0 yields

Δt
[
ẏn − f (yn, tn)

] + Δt2

2

[
ÿ − ḟ (yn, tn) − f ′(yn, tn)ẏn

] + · · · . (5.26)

We observe that the first term cancels because of Eq. (5.7). Consequently, the error
is of order Δt2. A similar argument holds for Eq. (5.25).

Let us introduce a more convenient notation for the above examples before we
concentrate on a more general topic. It is presented in algorithmic form, i.e. it defines
the sequence in which one should calculate the various terms. This is convenient for
two reasons, first of all it increases the readability of complex methods such as
Eq. (5.25) and, secondly, it can be easily identified which part of the method involves
an implicit step which has to be solved separately for the corresponding variable. For
this purpose let us introduce variables Yi of some index i ≥ 1 and we use a simple
example to illustrate this notation. Consider the explicit Eulermethod (5.9). It can
be written as

Y1 = yn,

yn+1 = yn + f (Y1, tn)Δt. (5.27)

In a similar fashion we write the implicit Euler method (5.10) as

Y1 = yn + f (Y1, tn+1)Δt,

yn+1 = yn + f (Y1, tn+1)Δt. (5.28)

It is understood that the first equation of (5.28) has to be solved for Y1 first and this
result is then plugged into the second equation in order to obtain yn+1. One further
example: the Crank–Nicolson (5.14) method can be rewritten as

Y1 = yn,

Y2 = yn + Δt

2

[
f (Y1, tn) + f (Y2, tn+1)

]
,

yn+1 = yn + Δt

2

[
f (Y1, tn) + f (Y2, tn+1)

]
, (5.29)

where the second equation is to be solved for Y2 in the second step.
In analogy, the algorithmic form of the explicit midpoint rule (5.24) is defined as
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Y1 = yn,

Y2 = yn + Δt

2
f

(
Y1, tn + Δt

2

)
,

yn+1 = yn + Δt

2
f

(
Y2, tn + Δt

2

)
, (5.30)

and we find for the implicit midpoint rule (5.25):

Y1 = yn + Δt

2
f

(
Y1, tn + Δt

2

)
,

yn+1 = yn + Δt f

(
Y1, tn + Δt

2

)
. (5.31)

The above algorithms are all examples of the so called Runge-Kutta methods.
We introduce the general representation of a d-stage Runge-Kutta method:

Yi = yn + Δt
d∑

j=1

aij f
(
Yj, tn + cjΔt

)
, i = 1, . . . , d,

yn+1 = yn + Δt
d∑

j=1

bi f
(
Yj, tn + cjΔt

)
. (5.32)

We note that Eq. (5.32) it is completely determined by the coefficients aij, bj and
cj. In particular a = {aij} is a d × d matrix, while b = {bj} and c = {cj} are d
dimensional vectors.

Butcher tableaus are a very useful tool to characterize such methods. They
provide a structured representation of the coefficient matrix a and the coefficient
vectors b and c:

c1 a11 a12 . . . a1d
c2 a21 a22 . . . a2d
...

...
...

. . .
...

cd ad1 ad2 . . . add

b1 b2 . . . bd

(5.33)

We note that the Runge-Kutta method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij = 0 for j ≥ i. Let us rewrite all the methods
described here in the form of Butcher tableaus:
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Explicit EULER:

0 0
1

(5.34)

Implicit EULER:

1 1
1

(5.35)

Crank- Nicolson:

0 0 0
1 1

2
1
2

1
2

1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2

1
2 0

1
2

1
2

(5.37)

Implicit Midpoint:

1
2

1
2

1
(5.38)

With the help of Runge–Kutta methods of the general form (5.32) one can
develop methods of arbitrary accuracy. One of the most popular methods is the
explicit four stage method (we will call it e-RK-4) which is defined by the algorithm:

Y1 = yn,

Y2 = yn + Δt

2
f (Y1, tn),

Y3 = yn + Δt

2
f

(
Y2, tn + Δt

2

)
,

Y4 = yn + Δt f

(
Y3, tn + Δt

2

)
,

yn+1 = yn + Δt

6

[
f (Y1, tn) + 2f

(
Y2, tn + Δt

2

)
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+ 2f

(
Y3, tn + Δt

2

)
+ f (Y4, tn)

]
. (5.39)

This method is an analogue to the Simpson rule of numerical integration as discussed
in Sect. 3.4. However, a detailed compilation of the coefficient array a and coefficient
vectors b, and c is quite complicated. A closer inspection reveals that the method-
ological error of this method behaves as Δt5. The algorithm e-RK-4, Eq. (5.39), is
represented by a Butcher tableau of the form

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

(5.40)

Another quite popular method is given by the Butcher tableau

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

(5.41)

We note that this method is implicit and mention that it corresponds to the two point
Gauss-Legendre quadrature of Sect. 3.6.

A further improvement of implicit Runge-Kutta methods can be achieved by
choosing the Yi in such a way that they correspond to solutions of the differential
equation (5.7) at intermediate time steps. The intermediate time steps at which one
wants to reproduce the function are referred to as collocation points. At these points
the functions are approximated by interpolation on the basis of Lagrange polyno-
mials, which can easily be integrated analytically. However, the discussion of such
collocation methods [4] is far beyond the scope of this book.

In general Runge-Kutta methods are very useful. However one always has to
keep in mind that there could be better methods for the problem at hand. Let us close
this section with a quote from the book by Press et al. [5]:

“For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive step-size algorithm. Keep in
mind, however, that the old workhorse’s last trip may well take you to the poorhouse:
Bulirsch-Stoer or predictor-corrector methods can be very much more efficient for
problems where high accuracy is a requirement. Those methods are the high-strung
racehorses. Runge-Kutta is for ploughing the fields.”

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3


5.4 Hamiltonian Systems: Symplectic Integrators 71

5.4 Hamiltonian Systems: Symplectic Integrators

Let us define a symplectic integrator as a numerical integration in which the mapping

ΦΔt : yn �→ yn+1, (5.42)

is symplectic. Here ΦΔt is referred to as the numerical flow of the method. If we
regard the initial value problem (5.1) we can define in an analogous way the flow
of the system ϕt as

ϕt(y0) = y(t). (5.43)

For instance, if we consider the initial value problem

{
ẏ = Ay,
y(0) = y0,

(5.44)

where y ∈ R
n and A ∈ R

n×n, then the flow of the system ϕt is given by:

ϕt(y0) = exp(At)y0. (5.45)

On the other hand, if we regard two vectors v, w ∈ R
2, we can express the area ω

of the parallelogram spanned by these vectors as

ω(v, w) = det(vw) = v

(
0 1

−1 0

)
w = ad − bc, (5.46)

where we put v = (a, b)T and w = (c, d)T . More generally, if v, w ∈ R
2d , we have

ω(v, w) = v

(
0 I

−I 0

)
w ≡ vJw, (5.47)

where I is the d × d dimensional unity matrix. Hence (5.47) represents the sum of
the projected areas of the form

det

(
vi wi

vi+d wi+d

)
. (5.48)

If we regard a mapping M : R2d �→ R
2d and require that

ω(Mv, Mw) = ω(v, w), (5.49)

i.e. the area is preserved, we obtain the condition that

MT JM = J, (5.50)
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which is equivalent to det(M) = 1. Finally, a differentiable mapping f : R2d �→ R
2d

is referred to as symplectic if the linear mapping f ′(x) (Jacobi matrix) conserves ω

for all x ∈ R
2d . One can easily prove that the flow of Hamiltonian systems (energy

conserving) is symplectic, i.e. area preserving in phase space. Every Hamiltonian
system is characterized by its Hamilton function H(p, q) and the corresponding
Hamilton equations of motion:

ṗ = −∇qH(p, q) and q̇ = ∇pH(p, q). (5.51)

We define the flow of the system via

ϕt(x0) = x(t), (5.52)

where

x0 =
(

p0
q0

)
and x(t) =

(
p(t)
q(t)

)
. (5.53)

Hence we rewrite (5.51) as
ẋ = J−1∇xH(x), (5.54)

and note that x ≡ x(t, x0) is a function of time and initial conditions. In a next step
we define the Jacobian of the flow via

Pt(x0) = ∇x0φt(x0), (5.55)

and calculate

Ṗt(x0) = ∇x0 ẋ

= J−1∇x0∇xH(x)

= J−1ΔxH(x)∇x0x

= J−1ΔxH(x)Pt(x0)

=
(−∇qpH(p, q) −∇qqH(p, q)

∇ppH(p, q) ∇pqH(p, q)

)
Pt(x0). (5.56)

Hence, Pt is given by the solution of the equation

Ṗt = J−1ΔxH(x)Pt . (5.57)

Symplecticity ensures that the area

PT
t JPt = const, (5.58)

which canbe verifiedby calculating d
dt

(
PT

t JPt
)
wherewekeep inmind that JT = −J .

Hence,



5.4 Hamiltonian Systems: Symplectic Integrators 73

d

dt
PT

t JPt = ṖT
t JPt + PT

t JṖt

= PT
t ΔxH(x)(J−1)T JPt + PT

t JJ−1ΔxH(x)Pt

= 0, (5.59)

if the Hamilton function is conserved, i.e.

∂

∂t
H(p, q)

!= 0. (5.60)

This means that the flow of a Hamiltonian system is symplectic, i.e. area preserving
in phase space.

Since this conservation law is violated by methods like e-RK-4 or explicit
Euler, one introduces so called symplectic integrators, which have been particu-
larly designed as a remedy to this shortcoming. A detailed investigation of these
techniques is far too engaged for this book. The interested reader is referred to Refs.
[6–9].

However, we provide a list of the most important integrators.

Symplectic Euler

qn+1 = qn + a(qn, pn+1)Δt, (5.61a)

pn+1 = pn + b(qn, pn+1)Δt. (5.61b)

Here a(p, q) = ∇pH(p, q) and b(p, q) = −∇qH(p, q) have already been defined in
Sect. 4.3.

Symplectic Runge–Kutta

It can be demonstrated that a Runge-Kuttamethod is symplectic if the coefficients
fulfill

biaij + bjaji = bibj, (5.62)

for all i, j [7]. This is a property of the collocation methods based on Gauss points ci.

5.5 An Example: The KEPLER Problem, Revisited

It has already been discussed in Sect. 4.3 that the Hamilton function of this system
takes on the form

H(p, q) = 1

2

(
p21 + p22

)
− 1√

q21 + q22

, (5.63)

and Hamilton’s equations of motion read

http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_4
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ṗ1 = −∇q1H(p, q) = − q1

(q21 + q22)
3
2

, (5.64a)

ṗ2 = −∇q2H(p, q) = − q2

(q21 + q22)
3
2

, (5.64b)

q̇1 = ∇p1H(p, q) = p1, (5.64c)

q̇2 = ∇p2H(p, q) = p2. (5.64d)

We now introduce the time instances tn = t0 + nΔt and define qn
i ≡ qi(tn) and

pn
i ≡ pi(tn) for i = 1, 2. In the following we give the discretized recursion relation
for three different methods, namely explicit Euler, implicit Euler, and symplectic
Euler.

Explicit EULER

In case of the explicit Euler method we have simple recursion relations

pn+1
1 = pn

1 − qn
1Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.65a)

pn+1
2 = pn

2 − qn
2Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.65b)

qn+1
1 = qn

1 + pn
1Δt, (5.65c)

qn+1
2 = qn

2 + pn
2Δt. (5.65d)

Implicit EULER

We obtain the implicit equations

pn+1
1 = pn

1 − qn+1
1 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.66a)

pn+1
2 = pn

2 − qn+1
2 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.66b)

qn+1
1 = qn

1 + pn+1
1 Δt, (5.66c)

qn+1
2 = qn

2 + pn+1
2 Δt. (5.66d)

These implicit equations can be solved, for instance, by the use of the Newton

method discussed in Appendix B.
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Symplectic Euler

Employing Eqs. (5.61) gives

pn+1
1 = pn

1 − qn
1Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.67a)

pn+1
2 = pn

2 − qn
2Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.67b)

qn+1
1 = qn

1 + pn+1
1 Δt, (5.67c)

qn+1
2 = qn

2 + pn+1
2 Δt. (5.67d)

These implicit equations can be solved analytically and we obtain

pn+1
1 = pn

1 − qn
1Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.68a)

pn+1
2 = pn

2 − qn
2Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.68b)

qn+1
1 = qn

1 + pn
1Δt − qn

1Δt2

[(qn
1)

2 + (qn
2)

2] 32
, (5.68c)

qn+1
2 = qn

2 + pn
2Δt − qn

2Δt2

[(qn
1)

2 + (qn
2)

2] 32
. (5.68d)

A second possibility of the symplectic Euler is given by Eq. (4.41). It reads

pn+1
1 = pn

1 − qn+1
1 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.69a)

pn+1
2 = pn

2 − qn+1
2 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.69b)

qn+1
1 = qn

1 + pn
1Δt, (5.69c)

qn+1
2 = qn

2 + pn
2Δt. (5.69d)

The trajectories calculated using these four methods are presented in Figs. 5.1 and
5.2, the time evolution of the total energy of the system is plotted in Fig. 5.3. The
initial conditions were [7]

p1(0) = 0, q1(0) = 1 − e, (5.70)

and

http://dx.doi.org/10.1007/978-3-319-02435-6_4
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(a) (b)

(c) (d)

Fig. 5.1 Kepler trajectories in position space for the initial values defined in Eqs. (5.70) and (5.71).
They are indicated by a solid square. Solutions have been generated (a) by the explicit Eulermethod
(5.65), (b) by the implicit Euler method (5.66), (c) by the symplectic Euler method (5.68), and
(d) by the symplectic Euler method (5.69)

p2(0) =
√
1 + e

1 − e
, q2(0) = 0, (5.71)

with e = 0.6 which gives H = −1/2. Furthermore, we set Δt = 0.01 for the
symplectic Euler methods and Δt = 0.005 for the forward and backward Euler
methods in order to reduce the methodological error. The implicit equations were
solved with help of the Newton method as discussed in Appendix B. The Jacobi
matrix was calculated analytically, hence no methodological error enters because
approximations of derivatives were unnecessary.

According to theory the q-space and p-space projections of the phase space trajec-
tory are ellipses. Furthermore, energy and angular momentum are conserved. Thus,
the numerical solutions of Hamilton’s equations of motion (5.64) should reflect
these properties. Figures5.1a, b and 5.2a, b present the results of the explicit Euler
method, Eq. (5.65), and the implicit Euler method, Eq. (5.66), respectively. Obvi-
ously, the result does not agree with the theoretical expectation and the trajectories
are open instead of closed. The reason for this behavior is the methodological error
of the method which is accumulative and, thus, causes a violation of energy con-
servation. This violation becomes apparent in Fig. 5.3 where the total energy H(t)
is plotted versus time t. Neither the explicit Euler method (dashed line) nor the
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(a) (b)

(c) (d)

Fig. 5.2 Kepler trajectories in momentum space for the initial values defined in Eqs. (5.70) and
(5.71). They are indicated by a solid square. Solutions have been generated (a) by the explicit Euler
method (5.65), (b) by the implicit Eulermethod (5.66), (c) by the symplectic Eulermethod (5.68),
and (d) by the symplectic Euler method (5.69)

implicit Euler method (short dashed line) conform to the requirement of energy
conservation. We also see step-like structures of H(t). At the center of these steps an
open diamond symbol and in the case of the implicit Euler method an additional
open circle indicate the position in time of the perihelion of the point-mass (point of
closest approach to the center of attraction). It is indicated by the same symbols in
Fig. 5.1a, b. At this point the point-mass reaches its maximum velocity, the pericenter
velocity, and it covers the biggest distances along its trajectory per time interval Δt.
Consequently, the methodological error is biggest in this part of the trajectory which
manifests itself in those steps in H(t). As the point-mass moves ‘faster’ when the
implicit Euler method is applied, again, the distances covered per time interval are
greater than those covered by the point-mass in the explicit Euler method. Thus, it
is not surprising that the error of the implicit Euler method is bigger as well when
H(t) is determined.

These results are in strong contrast to the numerical solutions of Eqs. (5.64)
obtained with the help of symplectic Euler methods which are presented in
Figs. 5.1c, d and 5.2c, d. The trajectories are almost perfect ellipses for both sym-
plectic methods Eqs. (5.68) and (5.69). Moreover, the total energy H(t) (solid and
dashed-dotted lines in Fig. 5.3) varies very little as a function of t. Deviations from
the mean value can only be observed around the perihelion which is indicated by
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Fig. 5.3 Time evolution of the total energyH calculatedwith the help of the fourmethods discussed
in the text. The initial values are given by Eqs. (5.70) and (5.71). Solutions have been generated
(a) by the explicit Euler method (5.65) (dashed line), (b) by the implicit Euler method (5.66)
(dotted line), (c) by the symplectic Euler method (5.68) (solid line), and (d) by the symplectic
Euler method (5.69) (dashed-dotted line)

a solid square. Moreover, these deviations compensate because of the symplectic
nature of the method. This proves that symplectic integrators are the appropriate
technique to solve the equations of motion of Hamiltonian systems.

Summary

We concentrated on numerical methods to solve the initial value problem. The meth-
ods discussed here rely heavily on the various methods developed for numerical
integration because we can always find an integral representation of this kind of
ordinary differential equations. The simple integrators known from Chap. 4 were
augmented by the more general Crank-Nicholson method which was based on
the trapezoidal rule introduced in Sect. 3.3. The simple single-step methods were
improved in their methodological error by Taylor series methods, linear multi-step
methods, and by the Runge-Kutta method. The latter took intermediate points
within the time interval [tn, tn+1] into account. In principle, it is possible to achieve
almost arbitrary accuracy with such a method. Nevertheless, all those methods had
the disadvantage that because of their methodological error energy conservation was
violated when applied to Hamiltonian systems. As this problem can be remedied
by symplectic integrators a short introduction into this topic was provided and the
most important symplectic integrators have been presented. The final discussion of
Kepler’s two-body problem elucidated the various points discussed throughout this
chapter.

http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
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Problems

1. Write a program to solve numerically the Kepler problem. The Hamilton func-
tion of the problem is defined as

H(p, q) = 1

2

(
p21 + p22

)
− 1√

q21 + q22

,

and the initial conditions are given by

p1(0) = 0, q1(0) = 1 − e, p2(0) =
√
1 + e

1 − e
, q2(0) = 0,

where e = 0.6. Derive Hamilton’s equations of motion and implement an
algorithm which solves these equations based on the following methods

(a) Explicit Euler,
(b) Symplectic Euler.

2. Plot the trajectories and the total energy as a function of time. You can use the
results presented in Figs. 5.1 and 5.2 to check your code. Modify the initial condi-
tions and discuss the results! Try to confirm Kepler’s laws of planetary motion
with the help of your algorithm.
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