
Chapter 3
Numerical Integration

3.1 Introduction

Numerical integration is certainly one of the most important concepts in
computational analysis since it plays a major role in the numerical treatment of
differential equations. Given a function f (x) which is continuous on the interval
[a, b], one wishes to approximate the integral by a discrete sum of the form

b∫

a

dx f (x) ≈
N∑

i=1

ωi f (xi ), (3.1)

where theωi are referred to asweights and xi are the grid-points at which the function
needs to be evaluated. Such methods are commonly referred to as quadrature.

We will mainly discuss two different approaches to the numerical integration of
arbitrary functions. We start with a rather simple approach, the rectangular rule. The
search of an improvement of this method will lead us first to the trapezoidal rule,
then to the Simpson rule and, finally, to a general formulation of the method, the
Newton-Cotes quadrature. This will be followed by a more advanced technique,
the Gauss-Legendre quadrature. At the end of the chapter we will discuss an
elucidating example and briefly sketch extensions of all methods to more general
problems, such as integration of non-differentiable functions or the evaluation of
multiple integrals.

Another very important approach, which is based on random sampling methods,
is the so called Monte-Carlo integration. This method will be presented in Sect. 14.2.
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30 3 Numerical Integration

3.2 Rectangular Rule

The straight forward approach to numerical integration is to employ the concept of
finite differences developed in Sect. 2.2. We regard a smooth function f (x) within
the interval [a, b], i.e. f (x) ∈ C∞[a, b]. The Riemann definition of the proper
integral of f (x) from a to b states that:

b∫

a

dx f (x) = lim
N→∞

b − a

N

N∑
i=0

f

(
a + i

b − a

N

)
. (3.2)

We approximate the right hand side of this relation using equally spaced grid-points
xi ∈ [a, b] according to Eq. ( 2.1) and find

b∫

a

dx f (x) ≈ h
N−1∑
i=1

fi . (3.3)

However, it is clear that the quality of this approach strongly depends on the
discretization chosen, i.e. on the values of xi as illustrated schematically in Fig. 3.1.
Again, a non-uniform grid may be of advantage. We can estimate the error of this
approximation by expanding f (x) into a Taylor series.

We note that
b∫

a

dx f (x) =
N−1∑
i=1

xi+1∫

xi

dx f (x), (3.4)

hence, the approximation (3.3) is equivalent to the approximation

Fig. 3.1 Illustration of the
numerical approximation of a
proper integral according to
Eq. (3.3)

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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xi+1∫

xi

dx f (x) ≈ h fi , (3.5)

with
xi+1∫
xi

dx f (x) the elemental area. According to (2.9a) we have

xi+1∫

xi

dx f (x) =
xi+1∫

xi

dx
[

fi + (x − xi ) f ′
i + (x − xi )

2 f ′′
i+εζ

]

= fi h + h2

2
f ′
i + O(h3). (3.6)

In the last step we applied the first mean value theorem for integration which states
that if f (x) is continuous in [a, b], then there exists a ζ ∈ [a, b] such that

b∫

a

dx f (x) = (b − a) f (ζ ). (3.7)

(We shall come back to the mean value theorem in the course of our discussion of
Monte-Carlo integration in Chap.14.) According to (3.6) the error we make with
approximation (3.3) is of order O(h2).

This procedure corresponds to a forward difference approach and in a similar
fashion a backward difference approach can be chosen. It results in:

b∫

a

dx f (x) = h
N∑

i=2

fi + O(h2). (3.8)

Let us now define the forward and backward rectangular rule by

i I +
i+1 = h fi , (3.9)

and
i I −

i+1 = h fi+1, (3.10)

respectively. Thus we have

http://dx.doi.org/10.1007/978-3-319-02435-6_2.9a
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32 3 Numerical Integration

xi+1∫

xi

dx f (x) = i I +
i+1 + h2

2
f ′
i + h3

3! f ′′
i + · · ·

= i I −
i+1 − h2

2
f ′
i+1 + h3

3! f ′′
i+1 ∓ · · · . (3.11)

However, an even more accurate way to proceed is to make use of the central
difference approximation. We consider the integral

xi+1∫

xi

dx f (x), (3.12)

expand f (x) in a Taylor series around the midpoint xi+ 1
2
, and obtain:

xi+1∫

xi

dx f (x) =
xi+1∫

xi

dx

{
fi+ 1

2
+

(
x − xi+ 1

2

)
f ′
i+ 1

2

+
(

x − xi+ 1
2

)2
2

f ′′
i+ 1

2
+ O

[(
x − xi+ 1

2

)3] }

= h fi+ 1
2

+ h3

24
f ′′
i+εζ

= i Ii+1 + h3

24
f ′′
i+εζ

. (3.13)

Thus, the error generated by this method, the central rectangular rule, scales asO(h3)

which is a significant improvement in comparison to Eqs. (3.3) and (3.8). We obtain

b∫

a

dx f (x) = h
N−1∑
i=1

fi+ 1
2

+ O(h3). (3.14)

This approximation is known as the rectangular rule. It is illustrated in Fig. 3.2.
Note that the boundary points x1 = a and xN = b do not enter Eq. (3.14). Such a
procedure is commonly referred to as an open integration rule. On the other hand,
if the end-points are taken into account by the method it is referred to as a closed
integration rule.
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Fig. 3.2 Scheme of the
rectangular integration rule
according to Eq. (3.14). Note
that boundary points do not
enter the evaluation of the
elemental areas

Fig. 3.3 Sketch of how the
elemental areas under the
curve f (x) are approximated
by trapezoids

3.3 Trapezoidal Rule

An elegant alternative to the rectangular rule is found when the area between two
grid-points is approximated by a trapezoid as is shown schematically in Fig. 3.3. The
elemental area is calculated from

xi+1∫

xi

dx f (x) ≈ h

2
( fi + fi+1) . (3.15)

Hence, we obtain
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b∫

a

dx f (x) ≈ h

2

N−1∑
i=1

( fi + fi+1)

= h

(
f1
2

+ f2 + · · · + fN−1 + fN

2

)

= h

2
( f1 + fN ) + h

N−1∑
i=2

fi

= 1 I T
N . (3.16)

Note that this integration rule is closed, although the boundary points f1 and
fN enter the summation (3.16) only with half the weight in comparison to all other
function values fi which is a quite reasonable result because the boundary points
contribute only to one elemental area, the first and the last one. Another noticeable
feature of the trapezoidal rule is that, in contrast to the rectangular rule (3.14), only
function values at grid-points enter the summation, which can be desirable in some
cases.

The error of this method can be estimated by inserting expansion (2.9a) into
Eq. (3.16). One obtains for an elemental area:

i I T
i+1 = h

2
( fi + fi+1)

= h fi + h2

2
f ′
i + h3

4
f ′′
i + · · · . (3.17)

On the other hand, we know from Eq. (3.6) that

h fi =
xi+1∫

xi

dx f (x) − h2

2
f ′
i − h3

3! f ′′
i − · · · , (3.18)

which, when inserted into (3.17), yields

i I T
i+1 =

xi+1∫

xi

dx f (x) + h3

12
f ′′
i + O(h4). (3.19)

Hence, we observe that the error induced by the trapezoidal rule is comparable to
the error of the rectangular rule, namely O(h3). However, since we do not have to
compute function values at intermediate grid-points, this rulemay be advantageous in
many cases. We remember from Chap.2 that a more accurate estimate of a derivative
was achieved by increasing the number of grid-points which in the case of integration
leads us to the Simpson rule.

http://dx.doi.org/10.1007/978-3-319-02435-6_2.9a
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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3.4 The SIMPSON Rule

The basic idea of the Simpson rule is to include higher order derivatives into the
expansion of the integrand. These higher order derivatives, which are primarily
unknown, are then approximated by expressions we obtained within the context
of finite difference derivatives. Let us discuss this procedure in greater detail. To
this purpose we will study the integral of f (x) within the interval [xi−1, xi+1] and
expand the integrand around the midpoint xi :

xi+1∫

xi−1

dx f (x) =
xi+1∫

xi−1

dx

[
fi + (x − xi ) f ′

i + (x − xi )
2

2! f ′′
i

+ (x − xi )
3

3! f ′′′
i + · · ·

]

= 2h fi + h3

3
f ′′
i + O(h5). (3.20)

Inserting Eq. (2.34) for f ′′
i yields

xi+1∫

xi−1

dx f (x) = 2h fi + h

3
( fi+1 − 2 fi + fi−1) + O(h5)

= h

(
1

3
fi−1 + 4

3
fi + 1

3
fi+1

)
+ O(h5). (3.21)

Note that in contrast to the trapezoidal rule, the procedure described here is a three
point method since the function values at three different points enter the expression.
We can immediately write down the resulting integral from a → b. Since,

b∫

a

dx f (x) =
x2∫

x0

dx f (x) +
x4∫

x2

dx f (x) + · · · +
xN∫

xN−2

dx f (x), (3.22)

where we assumed that N is even and employed the discretization xi = x0 + ih with
x0 = a and xN = b. We obtain:

b∫

a

dx f (x) = h

3
( f0 + 4 f1 + 2 f2 + 4 f3 + · · · + 2 fN−2 + 4 fN−1 + fN ) + O(h5).

(3.23)
This expression is exact for polynomials of order n ≤ 3 since the first term in the
error expansion involves the fourth derivative. Hence, whenever the integrand is

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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satisfactorily reproduceable by a polynomial of degree three or less, the Simpson

rule might give almost exact estimates, independent of the discretization h.
The arguments applied above allow for a straightforward extension to four- or

even more-point rules. We find, for instance,

xi+3∫

xi

dx f (x) = 3h

8
( fi + 3 fi+1 + 3 fi+2 + fi+3) + O(h5), (3.24)

which is usually called Simpson’s three-eight rule.
It is important to note that all the methods discussed so far are special cases of a

more general formulation, the Newton-Cotes rules which will be discussed in the
next section.

3.5 General Formulation: The NEWTON-COTES Rules

Wedefine theLagrange interpolatingpolynomial P(x)of ordern [1, 2] to a function
f (x) as

P(x) =
n∑

j=1

Pj (x), (3.25)

where

Pj (x) = f j

n∏
k=1
k 	= j

x − xk

x j − xk
. (3.26)

An arbitrary smooth function f (x) can then be expressed with the help of an n-th
order Lagrange polynomial by

f (x) = P(x) + f (n)[ζ(x)]
n! (x − x1)(x − x2) . . . (x − xn). (3.27)

If we neglect the second term on the right hand side of this equation and integrate the
Lagrange polynomial of order n over the n grid-points from x1 → xN we obtain
the closed n-point Newton-Cotes formulas. For instance, if we set n = 2, then

P(x) = P1(x) + P2(x)

= f1
x − x2
x1 − x2

+ f2
x − x1
x2 − x1

= 1

h
[x( f2 − f1) − x1 f2 + x2 f1] , (3.28)
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with f1 ≡ f (x1) and f2 ≡ f (x2). Integration over the respective interval yields

x2∫

x1

dx P(x) = 1

h

[
x2

2
( f2 − f1) + x(x2 f1 − x1 f2)

]∣∣∣∣
x2

x1

= 1

h

[
x22 − x21

2
( f2 − f1) + (x2 − x1)(x2 f1 − x1 f2)

]

= 1

2
[(x2 + x1)( f2 − f1) + 2x2 f1 − 2x1 f2]

= h

2
[ f2 + f1] + O(h3), (3.29)

which is exactly the trapezoidal rule. By setting n = 3 one obtains Simpson’s rule
and setting n = 4 gives the Simpson’s three-eight rule.

The open Newton-Cotes rule can be obtained by integrating the polynomial
P(x) of order n which includes the grid-points x1, . . . , xn from x0 → xn+1. The
fact that these relations are open means that the function values at the boundary
points x0 = x1 − h and xn+1 = xn + h do not enter the final expressions. The
simplest open Newton-Cotes formula is the central integral approximation, which
we encountered as the rectangular rule (3.14). A second order approximation is easily
found with help of the two-point Lagrange polynomial (3.28)

x3∫

x0

dx P(x) = 1

h

[
x2

2
( f2 − f1) + x(x2 f1 − x1 f2)

]∣∣∣∣
x3

x0

= 1

h

[
x23 − x20

2
( f2 − f1) + (x3 − x0)(x2 f1 − x1 f2)

]

= x3 − x0
h

[
1

2
(x3 + x0)( f2 − f1) + (x2 f1 − x1 f2)

]

= 3

2
[(x3 + x0 − 2x1) f2 + (2x2 − x3 − x0) f1]

= 3h

2
[ f2 + f1] + O(h3). (3.30)

Higher order approximations can be obtained in a similar fashion. To conclude
this section let us briefly discuss an idea which is referred to as Romberg’s method.
So far, we approximated all integrals by expressions of the form

I = I N + O(hm), (3.31)

where I is the exact, unknown, value of the integral, I N is the estimate obtained
from an integration scheme using N grid-points and m is the leading order of the
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error. Let us review the error of the trapezoidal approximation: we learned that the
error for the integral over the interval [xi , xi+1] scales like h3. Since we have N such
intervals, we conclude that the total error behaves like (b −a)h2. Similarly, the error
of the three-point Simpson rule is for each sub-interval proportional to h5 and this
gives in total (b − a)h4. We assume that this trend can be generalized and conclude
that the error of an n-point method with the estimate In behaves like h2n−2. Since,
h ∝ N−1 we have

I = I N
n + CN

N 2n−2 , (3.32)

where CN depends on the number of grid-points N . Let us double the amount of
grid-points and we obtain:

I = I 2N
n + C2N

(2N )2n−2 . (3.33)

Obviously, Eqs. (3.32) and (3.33) can be regarded as a linear system of equations in
I and C if CN ≈ C2N ≈ C . Solving Eqs. (3.32) and (3.33) for I yields

I ≈ 1

4n−1 − 1

(
4n−1I 2N

n − I N
n

)
. (3.34)

It has to be emphasized that in the above expression I is no longer the exact value
because of the approximationCN ≈ C . However, it is an improvement of the solution
and it is possible to demonstrate that this new estimate is exactly the value one would
have obtained with an integral approximation of order n + 1 and 2N grid-points!
Thus

I 2N
n+1 = 1

4n−1 − 1

(
4n−1I 2N

n − I N
n

)
. (3.35)

This suggests a very elegant and rapid procedure: We simply calculate the integrals
using two point rules and add the results according to Eq. (3.35) to obtain more-point
results. For instance, calculateI 2

2 andI 4
2 , add these according to Eq. (3.35) and get

I 4
3 . Now calculate I 8

2 , add I 4
2 , get I

8
3 , add I 4

3 and get I 8
4 . This pyramid-like

procedure can be continued until convergence is achieved, that is |I N
m −I N

m+1| < ε

where ε > 0 can be chosen arbitrarily. An illustration of this elegant method is given
in Fig. 3.4.

3.6 GAUSS-LEGENDRE Quadrature

In order to prepare for theGauss-Legendre quadrature we define the function F(x)

as

F(x) = b − a

2
f

(
b − a

2
x + b + a

2

)
, (3.36)
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such that
b∫

a

dx f (x) =
1∫

−1

dx F(x). (3.37)

Furthermore, let us introduce a set of orthogonalLegendre polynomials P�(x) [1–3]
which are solutions of the Legendre differential equation

(
1 − x2

)
P ′′

� (x) − 2x P ′
�(x) + �(� + 1)P�(x) = 0. (3.38)

This equation is, for instance, the result of a transformation of the Laplace equation
to spherical coordinates. Here, we will introduce only the most important properties
of Legendre polynomials which will be useful for our purpose.

Legendre polynomials are defined as

P�(x) =
∞∑

k=0

ak,�xk, (3.39)

where the coefficients ak,� can be determined recursively:

ak+2,� = k(k + 1) − �(� + 1)

(k + 1)(k + 2)
ak,�. (3.40)

Hence, for even values of � the Legendre polynomial involves only even powers
of x and for odd � only odd powers of x . Note also that according to Eq. (3.40)
for k ≥ � the coefficients are equal to zero and, thus, the P�(x) are according to
Eq. (3.39) polynomials of order �. Furthermore, the Legendre polynomials fulfill

I(2,2)

I(2,4)

I(2,8)

I(3,4)

I(4,8)I(3,8)

Fig. 3.4 Illustration of the Romberg method. Here, the I (m, n) are synonyms for integrals I n
m

where the first index m refers to the order of the quadrature while the second index n refers to the
number of grid-points used. Note that we only have to use a second order integration scheme (left
row, inside the box), all other values are determined via Eq. (3.35) as indicated by the arrows
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the normalization condition

1∫

−1

dx P�(x)P�′(x) = 2

2�′ + 1
δ��′ , (3.41)

where δi j is Kronecker’s delta. One obtains

P0(x) = 1, (3.42)

and
P1(x) = x . (3.43)

Another convenient description of the Legendre polynomials is based on
Rodrigues’ formula

P�(x) = 1

2��!
d�

dx�

(
x2 − 1

)�

. (3.44)

We now assume that the function F(x) can be well approximated by some
polynomial of order 2n − 1, i.e.

F(x) ≈ p2n−1(x). (3.45)

Please note that this means that according to Eq. ( 2.7) the error introduced is
proportional to F (2n)(x).

We write the integral (3.37) as

1∫

−1

dx F(x) =
n∑

i=1

ωi F(xi ), (3.46)

with weights ωi and grid-points xi , i = 1, . . . , n which are yet undetermined!
Therefore, we will determine the weightsωi and grid-points xi in such a way, that the
integral is well approximated even if the polynomial p2n−1 in Eq. (3.45) is unknown.
For this purpose we decompose p2n−1(x) into

p2n−1(x) = pn−1(x)Pn(x) + qn−1(x), (3.47)

where Pn(x) is the Legendre polynomial of order n and pn−1(x) and qn−1(x) are
polynomials of order n − 1. Since pn−1(x) itself is a polynomial of order n − 1, it
can also be expanded in Legendre polynomials of orders up to n − 1 by

pn−1(x) =
n−1∑
i=0

ai Pi (x). (3.48)

http://dx.doi.org/10.1007/978-3-319-02435-6_2


3.6 GAUSS-LEGENDRE Quadrature 41

Using Eq. (3.48) in (3.47) we obtain together with normalization relation (3.41)

1∫

−1

dx p2n−1(x) =
n−1∑
i=0

ai

1∫

−1

dx Pi (x)Pn(x) +
1∫

−1

dx qn−1(x) =
1∫

−1

dx qn−1(x).

(3.49)
Moreover, since Pn(x) is a Legendre polynomial of order n it has n-zeros in the
interval [−1, 1] and Eq. (3.47) results in

p2n−1(xi ) = qn−1(xi ), (3.50)

where x1, x2, . . . , xn denote the zeros of Pn(x) and these zeros determine the
grid-points of our integration routine. It is interesting to note, that these zeros are
independent of the function F(x) we want to integrate. We also expand qn−1(x) in
terms of Legendre polynomials

qn−1(x) =
n−1∑
i=0

bi Pi (x), (3.51)

and use it in Eq. (3.50) to obtain

p2n−1(xi ) =
n−1∑
k=0

bk Pk(xi ), i = 1, . . . , n, (3.52)

which can be written in a more compact form by defining pi ≡ p2n−1(xi ) and
Pki ≡ Pk(xi ):

pi =
n−1∑
k=0

bk Pki , i = 1, . . . , n. (3.53)

It has to be emphasized again that the grid-points xi are independent of the poly-
nomial p2n−1(x) and, therefore, independent of F(x). Furthermore, we can replace
pi ≈ F(xi ) ≡ Fi according to Eq. (3.45). We recognize that Eq. (3.53) corresponds
to a system of linear equations which can be solved for the weights bk . We obtain

bk =
n∑

i=1

Fi

[
P−1

]
ik

, (3.54)

where P is the matrix P = {Pi j }, which is known to be non-singular. We can now
rewrite the integral (3.37) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of Legendre polynomials [3] as
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1∫

−1

dx F(x) ≈
1∫

−1

dxp2n−1(x) =
n−1∑
k=0

bk

1∫

−1

dx Pk(x). (3.55)

Since P0(x) = 1 according to Eq. (3.42), we deduce from Eq. (3.41)

1∫

−1

dx Pk(x) =
1∫

−1

dx Pk(x)P0(x) = 2

2k + 1
δk0 = 2δk0. (3.56)

Hence, Eq. (3.55) reads

1∫

−1

dx F(x) ≈ 2b0 = 2
n∑

i=1

Fi

[
P−1

]
i0

. (3.57)

By defining

ωi = 2
[
P−1

]
i0

, (3.58)

we arrive at the desired expansion

1∫

−1

dx F(x) ≈
n∑

i=1

ωi Fi . (3.59)

Moreover, since we approximated F(x) by a polynomial of order 2n −1, theGauss-
Legendre quadrature is exact for polynomials of order 2n − 1, i.e., the error is
proportional to a derivative of F(x) of order 2n. Furthermore, expression (3.58) can
be put in a more convenient form. One can show that

ωi = 2

(1 − x2i )
[
P ′

n(xi )
]2 , (3.60)

where

P ′
n(xi ) = d

dx
Pn(x)

∣∣∣∣
x=xi

. (3.61)

Let us make some concluding remarks. The grid-points xi as well as the weights
ωi are independent of the actual function F(x)wewant to integrate. This means, that
one can table these values once and for all [3] and use them for different types of prob-
lems. The grid-points xi are symmetrically distributed around the point x = 0, i.e. for
every x j there is a−x j . Furthermore, these two grid-points have the same weightω j .
The density of grid-points increases approaching the boundary, however, the bound-
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Table 3.1 Summary of the quadrature methods discussed in this chapter applied to the integral∫ b
a dx f (x)

n h I Method Comment

1 b−a
2 h f1 Rectangular Open

2 b − a h
2 ( f0 + f1) Trapezoidal Closed

3 b−a
2

h
3 ( f0 + 4 f1 + f2) Simpson Closed

4 b−a
3

3h
8 ( f0 + 3 f1 + 3 f2 + f3) Simpson

3
8 Closed

m b−a
m−1

∫ xm−1
x0

dx P(m)(x) Newton-Cotes Closed

m b−a
m+1

∫ xm+1
x0

dx P(m)(x) Newton-Cotes Open

m Pm(x j ) = 0 b−a
2

∑m
j=1 ω j f

(
z j

)
Gauss-Legendre Open

z j = a+b
2 + a−b

2 x j

ω j = 2
(1−x j )

2[P ′
m (x j )]2

For a detailed description consult the corresponding sections. Equal grid-spacing is assumed for all
methods except for the Gauss-Legendre quadrature. The explicit values of h depend on the order
of the method and are listed in the table. Furthermore, we use xi = a + ih and denote f (xi ) = fi .
The function P(m)(x) which appears in the description of the Newton-Cotes rules denotes the
m-th orderLagrange interpolating polynomial and Pm(x) is them-th orderLegendre polynomial

ary points themselves are not included, which means that the Gauss-Legendre
quadrature is an open method. Furthermore, it has to be emphasized that low order
Gauss-Legendre parameters can easily be calculated by employing relation (3.44).
This makes the Gauss-Legendre quadrature the predominant integration method.
In comparison to the trapezoidal rule or even theRombergmethod, it needs in many
cases a smaller number of grid-points, is simpler to implement, converges faster and
yields more accurate results. One drawback of this method is that one has to compute
the reduced function F(x) at the zeros of the Legendre polynomial xi . This can be
a problem if the integrand at hand is not known analytically.

It is important to note at this point that comparable procedures exist which use
other types of orthogonal polynomials, such asHermitepolynomials. This procedure
is known as the Gauss-Hermite quadrature.

Table 3.1 lists the methods, discussed in the previous sections, which allow to
calculate numerically an estimate of integrals of the form:

b∫

a

dx f (x). (3.62)
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Equal grid-spacing h is assumed, with the Gauss-Legendre method as the only
exception. The particular value of h depends on the order of the method employed
and is given in Table 3.1.

3.7 An Example

Let us discuss as an example the following proper integral

I =
1∫

−1

dx

x + 2
= ln(3) − ln(1) ≈ 1.09861. (3.63)

The numerical value was obtained with a TI- 30XIIB pocket calculator. We will now
apply the variousmethods of Table 3.1 to solve this problem. Note that thesemethods
could give better results if a finer grid had been chosen. However, since this is only
an illustrative example, we wanted to keep it as simple as possible. The rectangular
rule gives

IR = 1 · 1
2

= 0.5, (3.64)

the trapezoidal rule

IT = 2

2

(
1

1
+ 1

3

)
= 4

3
= 1.333 . . . , (3.65)

and an application of the Simpson rule yields

IS = 1

3

(
1

1
+ 4

2
+ 1

3

)
= 10

9
= 1.111 . . . . (3.66)

Finally, we apply theGauss-Legendre quadrature in a second order approximation.
We could look up the parameters in Ref. [3], however, for illustrative reasons we will
calculate those in this simple case. For a second order approximation we need the
Legendre polynomial of second order. It can be obtained fromRodrigues’ formula
(3.44):

P2(x) = 1

222!
d2

dx2

(
x2 − 1

)2

= 1

8

d

dx
4x(x2 − 1)

= 1

2

[
(x2 − 1) + 2x2

]

= 1

2

(
3x2 − 1

)
. (3.67)
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In a next step the zeros x1 and x2 of P2(x) are determined from Eq. (3.67) which
results immediately in:

x1,2 = ± 1√
3

≈ ±0.57735. (3.68)

The weights ω1 and ω2 can now be evaluated according to Eq. (3.60):

ωi = 2

(1 − x2i )
[
P ′
2(xi )

]2 . (3.69)

It follows from Eq. (3.67) that
P ′
2(x) = 3x, (3.70)

and, thus,
P ′
2(x1) = −√

3 and P ′
2(x2) = √

3. (3.71)

This is used to calculate the weights from Eq. (3.69):

ω1 = ω2 = 2(
1 − 1

3

) · 3 = 1. (3.72)

We combine the results (3.68) and (3.72) to arrive at the Gauss-Legendre estimate
of the integral (3.63):

IGL = 1

− 1√
3

+ 2
+ 1

1√
3

+ 2
= 1.090909 . . . . (3.73)

Obviously, a second order Gauss-Legendre approximation results already in a
much better estimate of the integral (3.63) than the trapezoidal rule which is also
of second order. It is also better than the estimate by the Simpson rule which is of
third order. Another point which makes the Gauss-Legendre quadrature so attrac-
tive from the numerical point of view is the fact that all coefficients in the Gauss-
Legendre quadrature are independent of the function one wishes to integrate.

There is a drawback though: it is not easy to apply the Gauss-Legendre
algorithm to calculate numerically estimates of integrals over functions f (x) not
defined analytically. All other methods listed in Table 3.1 are not restricted at all to
an analytic representation of the integrand.

3.8 Concluding Discussion

Let us briefly discuss some further aspects of numerical integration. In many cases
one is confronted with improper integrals of the form
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∞∫

a

dx f (x),

a∫

−∞
dx f (x), or

∞∫

−∞
dx f (x). (3.74)

The question arises whether or not we can treat such an integral with the methods
discussed so far. The answer is yes, it is possible as we will demonstrate using the
integral

I =
∞∫

a

dx f (x). (3.75)

as an example; other integrals can be treated in a similar fashion. We rewrite
Eq. (3.75) as

I = lim
b→∞

b∫

a

dx f (x) = lim
b→∞ I (b). (3.76)

One now calculates I (b1) for some b1 > a and I (b2) for some b2 > b1. If
|I (b2) − I (b1)| < ε, where ε > 0 is the required accuracy, the resulting value
I (b2) can be regarded as the appropriate estimate to I .1 However, in many cases it
is easier to perform an integral transform in order to map the infinite interval onto a
finite interval. For instance, consider [4]

I =
∞∫

0

dx
1(

1 + x2
) 4
3

. (3.77)

The transformation

t = 1

1 + x
(3.78)

gives

I =
1∫

0

dt
t
2
3

[
t2 + (1 − t)2

] 4
3

. (3.79)

Thus, we mapped the interval [0,∞) → [0, 1]. Integral (3.79) can now be
approximated with help of the methods discussed in the previous sections. These
can also be applied to approximate convergent integrals whose integrand shows sin-
gular behavior within [a, b].

An interesting situation arises when the integrand f (x) is not smooth within the
interval I : x ∈ [a, b]. Nevertheless, it will be safe to assume that f (x) will at least
be piecewise smooth within this interval. In this case the total integral is split into a

1 Particular care is required when dealing with periodic functions!
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sum over sub-intervals within which f (x) is smooth. Let us, for instance, regard the
function

f (x) =
{

x cos(x), x < 0,
x sin(x), x ≥ 0,

and calculate the integral over the interval I : x ∈ [−10, 10] as
10∫

−10

dx f (x) =
0∫

−10

dx x cos(x) +
10∫

0

dx x sin(x).

We generalize this result and write

∫

I

dx f (x) =
∑

k

∫

Ik

dx f (x), (3.80)

with sub-intervals Ik ∈ I,∀k and the integrand f (x) is assumed to be smooth within
each sub-interval Ik but not necessarily within the interval I . We can then apply one
of the methods discussed in this chapter to calculate an estimate of the integral over
any of the sub-intervals Ik .

Another interesting question is whether or not we can also evaluate multiple
integrals with the help of the above formalisms. Again, the answer is yes. Similar
to the discussion in Sect. 2.5 about the approximation of partial derivatives on the
basis of finite differences, one can apply the rules of quadrature developed here
for different dimensions to obtain an estimate of the desired integral. However, the
complexity of the problem is significantly increased if the integration boundaries are
functions of the variables rather than constants. For instance,

b∫

a

dx

φ2(x)∫

φ1(x)

dy f (x, y). (3.81)

Such cases are rather difficult to handle and the method to choose depends highly on
the form of the functions φ1(x), φ2(x) and f (x, y). We will not deal with integrals
of this kind because this is beyond the scope of this book. The interested reader is
referred to books by Dahlquist and Björk [5] and by Press et al. [6].

Summary

The starting point was the concept of finite differences (Sect. 2.2). Based on this
concept proper integrals over smooth functions f (x) have been approximated by
a sum over elemental areas with the elemental area defined as the area under

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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f (x) between two consecutive grid-points. The simplest method, the rectangu-
lar rule, was based on forward/backward differences. It is a closed method, i.e.
the functional values at the boundaries are included. On the other hand, a rec-
tangular rule based on central differences is an open method, i.e. the functional
values at the boundaries are not included. Using the Taylor expansion (2.7)
revealed that the methodological error of the rectangular rule was of order O(h2).
With the elemental area approximated by a trapezoid we arrived at the trapezoidal
rule. It is a closed method and the methodological error is of order O(h3). If higher
order derivatives of f (x) are included the Simpson rules of quadrature are derived.
They allowed a remarkable reduction of the methodological error. A more general
formulation of all these methods was based on the interpolation of the function f (x)

using Lagrange interpolating polynomials of order n and resulted in the class of
Newton-Cotes rules. For various orders of n of the interpolating polynomial all
the above rules have been derived. Within this context a particularly useful method,
the Rombergmethod, was discussed. By adding diligently only two-point rules the
error of the numerical estimate of the integral has been made arbitrarily small. An
even more general approach was offered by theGauss-Legendre quadrature which
used Legendre polynomials of order � to approximate the function f (x). The grid-
points were defined by the zeros of the �-th order polynomial and the weights ωi in
Eq. (3.1) were proportional to the square of the inverse first derivative of the poly-
nomial. This method had the enormous advantage that the grid-points and weights
were independent of the function f (x) and, thus, can be determined once and for all
for any polynomial order �. Error analysis proved that this method had the smallest
methodological error.

Problems

We consider the interval I = [−5, 5] together with the functions g(x) and h(x):

g(x) = exp
(
−x2

)
and h(x) = sin(x).

We discretize the interval I by introducing N equally spaced grid-points. The
corresponding N − 1 sub-intervals are denoted by I j , j = 1, . . . N − 1. In the
following we wish to calculate estimates of the integrals

I1 =
∫

I

dx g(x) and I2 =
∫

I

dx h(x).

Furthermore, we add a third integral of the form

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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I3 =
∫

I

dx h2(x) =
∫

I

dx sin2(x),

to our discussion.

1. EvaluateI1 with the help of the error function erf(x), which should be supplied
by the environment you use as an intrinsic function. Note that the error function
is defined as

erf(x) = 2√
π

x∫

0

dz exp(−z2). (3.82)

Hence you should be able to express I1 in terms of erf(x).
2. Calculate I2 and I3 analytically.
3. In order to approximate I1, I2 and I3 with the help of the two second order

methods we discussed in this chapter, employ the following strategy: First the
integrals are rewritten as ∫

I

dx · =
∑

i

∫

Ii

dx · ,

where · is a placeholder for g(x), h(x) and h2(x). In a second step the integrals
are approximated by ∫

Ii

dx ·, i = 1, . . . , N − 1 ,

with (i) the central rectangular rule and (ii) the trapezoidal rule.
4. In addition, we approximate the integralsI1,I2 andI3 by employingSimpson’s

rule for odd N . Here
∫

I

dx · =
∫

I1∪I2

dx · +
∫

I3∪I4

dx · + · · · +
∫

IN−2∪IN−1

dx · ,

is used as it was discussed in Sect. 3.4.
5. Compare the results obtained with different algorithms and different numbers of

grid-points, N . Plot the absolute- and the relative error as a function of N .
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