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Preface

Traditionally physics was divided into two fields of activities: theoretical and
experimental. As a consequence of the stunning increase in computer power and of
the development of more powerful numerical techniques, a new branch of physics
was established over the last decades: Computational Physics. This new branch
introduced as a spin-off what nowadays is commonly called computer simulations,
which play an increasingly important role in physics and in related sciences as well
as in industrial applications. They serve two purposes

• Direct simulation of physical processes (theoretical-experimental-physics) such
as for instance

– molecular dynamics or
– Monte Carlo simulation of physical processes.

• Solution of complex mathematical problems such as

– differential equations,
– minimization problems as well as
– high dimensional integrals or sums.

This book addresses all these scenarios on a very basic level. It is addressed to
lecturers who will have to teach a basic course/basic courses in Computational
Physics or Numerical Methods and to students as a companion in their first steps
into the realm of this fascinating field of modern research. Following these
intentions, this book was divided into two parts. Part I deals with deterministic
methods in Computational Physics. We discuss, in particular, numerical differ-
entiation and integration, the treatment of ordinary differential equations, and we
present some notes on the numerics of partial differential equations. Each chapter
within this part of the book is complemented by numerous applications. Part II of
this book provides an introduction to stochastic methods in Computational
Physics. In particular, we will examine how to generate random numbers fol-
lowing a given distribution, summarize the basics of stochastics in order to
establish the necessary background to understand techniques like MARKOV-Chain
Monte Carlo. Finally, algorithms of stochastic optimization are discussed. Again,
numerous examples out of physics like diffusion processes or the POTTS model are
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investigated exhaustively. Finally, this book contains an Appendix that augments
the main parts of the book with a detailed discussion of supplementary topics.

This book is not meant to be just a collection of algorithms which can
immediately be applied to various problems which may arise in Computational
Physics. On the contrary, the scope of this book is to provide the reader with a
mathematically well founded glance behind the scene of Computational Physics.
Thus, particular emphasis is on a clear mathematical analysis of the various topics
and to even provide, in some cases, the necessary mathematical means to under-
stand the very background of these methods. Although there is a barely compre-
hensible amount of excellent literature on Computational Physics, most of these
books seem to concentrate either on deterministic methods or on stochastic
methods. It is not our goal to compete with these rather specific works. On the
contrary, it is the particular focus of this book to discuss deterministic methods on
a par with stochastic methods.

Nevertheless, a certain overlap with existing literature was unavoidable and we
apologize if we were not able to cite appropriately all existing works which are of
importance and which influenced this book. However, we believe that by putting
the emphasis on an exact mathematical analysis of both the deterministic as well as
the stochastic methods we created a stimulating presentation of the basic concepts
applied in Computational Physics.

If we assume two basic courses in Computational Physics to be part of the
curriculum, nick-named here: Computational Physics 101 and Computational
Physics 102, then we would like to suggest to present/study the various topics of
this book according to the following syllabus:

• Computational Physics 101:

– Chapter 1: Some Basic Remarks.
– Chapter 2: Numerical Differentiation.
– Chapter 3: Numerical Integration.
– Chapter 4: The KEPLER Problem.
– Chapter 5: Ordinary Differential Equations: Initial Value Problems.
– (Chapter 6: The Double Pendulum).
– Chapter 7: Molecular Dynamics.
– Chapter 8: Numerics of Ordinary Differential Equations: Boundary Value

Problems.
– (Chapter 9: The One-Dimensional Stationary Heat Equation).
– Chapter 10: The One-Dimensional Stationary SCHRÖDINGER Equation.
– Chapter 12: Pseudo Random Number Generators.

• Computational Physics 102:

– Chapter 11: Partial Differential Equations.
– Chapter 13: Random Sampling Methods.
– Chapter 14: A Brief Introduction to Monte-Carlo Methods.
– Chapter 15: The ISING Model.
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– Chapter 16: Some Basics of Stochastic Processes.
– Chapter 17: The Random Walk and Diffusion Theory.
– Chapter 18: MARKOV-Chain Monte Carlo and the POTTS Model.
– Chapter 19: Data Analysis.
– Chapter 20: Stochastic Optimization.

The various chapters are augmented by problems of medium complexity which
help to understand better the numerical part of the topics discussed within this
book.

Although the manuscript has been carefully checked several times, we cannot
exclude that some errors escaped our scrutiny. We apologize in advance and would
highly appreciate reports of potential mistakes or typos to Benjamin A. Stickler
(benjamin.stickler@uni-due.de).

Throughout the book SI-units are used except stated otherwise.

Graz, July 2013 Benjamin A. Stickler
Ewald Schachinger
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Chapter 1
Some Basic Remarks

1.1 Motivation

Let us introduce the basic concepts and notations: Computational physics aims at
solving physical problems by means of numerical methods developed in the field of
numerical analysis. According to I. Jacques and C. Judd [1], numerical analysis
is defined as, quote: “Numerical analysis is concerned with the development and
analysis of methods for the numerical solution of practical problems.” Although
the term practical problems remained unspecified in this definition, it is certainly
necessary to reflect on ways to find approximate solutions to complex problems
which occur regularly in natural sciences. In fact, in most cases it is not possible to
find analytic solutions and one must rely on good approximations. Let us give some
examples.

Consider the definite integral

b∫

a

dx exp
(
−x2

)
, (1.1)

which, for instance, may occur when it is required to calculate the probability that
an event following a normal distribution takes on a value within the interval [a, b],
where a, b ∈ R. In contrast to the much simpler integral

b∫

a

dx exp (x) = exp (b) − exp (a), (1.2)

the integral (1.1) cannot be solved analytically because there is no elementary func-
tionwhich differentiates to exp

(−x2
)
. Hence, we have to approximate this integral in

such a way that the approximation is accurate enough for our purpose. This example
illustrates that even mathematical expressions which appear quite simple at the first

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 1
DOI: 10.1007/978-3-319-02435-6_1, © Springer International Publishing Switzerland 2014
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Fig. 1.1 Schematic illustra-
tion of the pendulum

glance may need a closer inspection when a numerical estimate for the expression is
required. In fact, most numerical methods we will encounter within this book have
been designed before the invention of modern computers or calculators. However,
the applicability of these methods has increased and is still increasing drastically
with the development of even more powerful machines. We give another example,
namely the oscillation of a pendulum. From basic mechanics [2] we know that the
time evolution of a frictionless pendulum of mass m and length ξ in a gravitational
field is defined by the differential equation

θ̈ + g

ξ
sin (θ) = 0. (1.3)

The solution of this equation describes the oscillatory motion of the pendulum
around the origin O within a two-dimensional plane (Fig. 1.1). Here θ is the angular
displacement and g is the acceleration due to gravity. Furthermore, we restrict the
discussion to initial conditions of the form

{
θ(0) = θ0,

θ̇ (0) = 0.
(1.4)

In the small angle approximation Eq. (1.3) is readily solved: For θ ∀ 1, in
particular, θ0 ∀ 1, we set sin (θ) ≈ θ and obtain the differential equation of the
harmonic oscillator:

θ̈ + g

ξ
θ = 0. (1.5)

Together with the initial conditions (1.4) we arrive at the solution

θ(t) = θ0 cos(ωt), (1.6)
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with

ω =
√

g

ξ
. (1.7)

The period τ of the pendulum follows immediately:

τ = 2π

√
g

ξ
. (1.8)

However, if the approximation of a small angular displacement θ0 ∀ 1 is not
applicable, expressions (1.6) and (1.8) will not be valid. Thus, it is advisable to
apply energy conservation in order to arrive at analytic results. The energy is given
by:

E = 1

2
mv2 + mgξ [1 − cos (θ)] = 1

2
mv20 + mgξ [1 − cos (θ0)]. (1.9)

Here v is the velocity of the point mass m and v0 and θ0 are defined by the initial
conditions (1.4). Since θ̇ (0) = 0 we have

E = mgξ [1 − cos (θ0)]

= 2mgξ sin2
(

θ0

2

)
, (1.10)

where we made use of:
1 − cos(x) = 2 sin2

( x

2

)
. (1.11)

We use this result in Eq. (1.9) and arrive at:

1

2
v2 = 2gξ

[
sin2

(
θ0

2

)
− sin2

(
θ

2

)]
. (1.12)

Since v2 = ξ2θ̇2 we have

θ̇ = 2

√
g

ξ

√
sin2

(
θ0

2

)
− sin2

(
θ

2

)
. (1.13)

Separation of variables yields

√
g

ξ
t = 1

2k

θ∫

0

dϕ√
1 − 1

k2
sin2

(
ϕ
2

) , (1.14)

with k = sin (θ0/2). For t = τ we have θ = θ0 and we obtain for the period
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τ = 2

k

√
ξ

g

θ0∫

0

dϕ√
1 − 1

k2
sin2

(
ϕ
2

) , (1.15)

where we defined the limits of integration as θ ∈ [−θ0, θ0]. Let us
transform the above integral into amore convenient formwith help of the substitution
k sin(α) = sin (ϕ/2). Thus, α ∈ [0, π/2] and a straightforward calculation yields:

τ = 4

√
ξ

g

π
2∫

0

dα√
1 − k2 sin2 (α)

= 4

√
ξ

g
K1(k). (1.16)

The function K1(k) introduced in (1.16) for k ∈ R is referred to as the complete

elliptic integral of the first kind. All these manipulations did not really result in a
simplification of the problem at hand because we are still confronted with the integral
in Eq. (1.16) which cannot be evaluated without the use of additional approximations
which will, in the end, result in a numerical solution of the problem. A natural way
to proceed would be to expand the complete elliptic integral in a power series up to
order N , where N is chosen in such a way that the truncation error RN (k) becomes
negligible. We can find the desired expression in any text on special functions [3–5].
It reads

K1(k) = π

2

∞∑
n=0

[
(2n)!

22n(n!)2
]2

k2n

= π

2

N∑
n=0

[
(2n)!

22n(n!)2
]2

k2n + RN (k). (1.17)

Furthermore, imagine the inverse problem: the period τ is given and the initial
angle θ0 is unknown. Again, we could expand the integrand in a power series and
solve the corresponding polynomial for θ0. However, such an approachwould be very
inefficient due to two reasons: first of all, we are confronted with the impossibility
of finding analytically the roots of a polynomial of order N > 4 and, secondly, at
which value of N should we truncate the power series if θ0 is unknown? A glance in
a book on special functions might give us a better, i.e. more convenient, alternative.
Indeed, the inverse functions of the incomplete elliptic integral F(a, b) with respect
to a are referred to as Jacobi elliptic functions [3–5]. Given the equation

u = F(a, b), (1.18)
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the quantity of interest b can be expressed in terms of the Jacobi amplitude am(u, b),
where

am(u, a) = b. (1.19)

Series expansions of am(u, a) have been developed, such that we can approximate
θ0 by truncating the respective series. These two examples illustrated that we have to
depend on numerical approximations of definite expressions in a multitude of cases.
Even if an approximate solution has been found for a particular problem it will be
adamant to check quite carefully if the approach was (i) justified within the required
accuracy, and (ii) if it allowed to improve the induced error of the result. The second
point is known as the stability of a routine. We will discuss this topic in more detail
in Sect. 1.4.

Throughout this book we will be confronted with numerous methods which will
allow approximate solutions of problems similar to the two examples illustrated
above. First of all, we would like to specify the properties we expect these methods
to have. Primarily, the method is to be formulated as an unambiguous mathematical
recipewhich can be applied to the set of problems it was designed for. Its applicability
should be well defined and it should allow to determine an estimate for the error.
Moreover, infinite repetition of the procedure should approximate the exact result
to arbitrary accuracy. In other words, we want the method to be well defined in
algorithmic form. Consequently, let us define an algorithm as a sequence of logical
and arithmetic operations (addition, subtraction, multiplication or division) which
allows to approximate the solution of the problem under consideration within any
accuracy desired. This implies, of course, that numerical errors will be unavoidable.

Let us classify the occurring errors based on the structure every numerical rou-
tine follows:We have input-errors, algorithmic-errors, and output-errors as indicated
schematically in Fig. 1.2. This structural classification can be refined: input-errors

Fig. 1.2 Schematic classifi-
cation of the errors occurring
within a numerical procedure
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are divided into rounding errors and measurement errors contained in the input data;
algorithmic-errors consist of rounding errors during evaluation and of methodolog-
ical errors due to mathematical approximations; finally, output errors are, in fact,
rounding errors. In Sects. 1.2 and 1.3 we will concentrate on rounding errors and
methodological errors. Since in most cases measurement errors cannot be influenced
by the theoretical physicist concerned with numerical modeling, this particular part
will not be discussed in this book. However, we will discuss the stability of numeri-
cal routines, i.e. the influence of slight modifications of the input parameters on the
outcome of a particular algorithm in Sect. 1.4.

1.2 Rounding Errors

In fact, since every number is stored in a computer using a finite number of digits, we
have to truncate every non-terminating number at some point. For instance, consider
2
3 = 0.666666666666 . . . which will be stored as 0.6666666667 if the machine
allows only ten digits. Actually, computers use binary arithmetic (for which even
0.110 = 0.000110011001100 . . .2 is problematic) but for themoment we shall ignore
this fact since the above example suffices to illustrate the crucial point. Let Fl(x)

denote the floating-point form of a number x within the numerical range of the
machine. For the above example, i.e. a ten digit storage, we have

Fl

(
2

3

)
= 0.6666666667. (1.20)

This has the consequence that, for instance, Fl(
√
3) · Fl(√3) ⇒= Fl(

√
3 · √

3) = 3.
However, Fl(

√
3) · Fl(√3) ≈ 3 within the defined range. Before we continue our

discussion on rounding errors we have to introduce the concepts of the absolute and
the relative error. We denote the true value of a quantity by y and its approximate
value by y. Then the absolute error εa is defined as

εa = |y − y|, (1.21)

while the relative error εr is given by

εr =
∣∣∣∣ y − y

y

∣∣∣∣ = εa

|y| , (1.22)

provided that y ⇒= 0. In most applications, the relative error is more significant. This
is illustrated in Table1.1, where it is intuitively obvious that in the second case the
approximate value is much better although the absolute error is the same for both
examples.
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Table 1.1 Illustration of the significance of the relative error

y y εa εr

(1) 0.1 0.09 0.01 0.1
(2) 1000.0 999.99 0.01 0.00001

Let us have a look at the relative error of an arbitrary number stored to the k-th
digit:We canwrite an arbitrary number y in the form y = 0.d1d2d3 . . . dkdk+1 . . . 10n

with d1 ⇒= 0 and n ∈ Z. Accordingly, we write its approximate value as
y = 0.d1d2d3 . . . dk10n , where k is the maximum number of digits stored by the
machine. Hence we obtain for the relative error

εr =
∣∣∣∣0.d1d2d3 . . . dkdk+1 . . . 10n − 0.d1d2d3 . . . dk10n

0.d1d2d3 . . . dkdk+1 . . . 10n

∣∣∣∣
=

∣∣∣∣0.dk+1dk+2 . . . 10n−k

0.d1d2d3 . . . 10n

∣∣∣∣
=

∣∣∣∣0.dk+1dk+2 . . .

0.d1d2d3 . . .

∣∣∣∣ 10−k

≤ 1

0.1
10−k

= 10−k+1. (1.23)

In the last steps we employed that, since d1 ⇒= 0, we have 0.d1d2d3 · · · ≥ 0.1 and
accordingly 0.dk+1dk+2 · · · < 1. If the last digit would have been rounded (for
dk+1 ≥ 5 we set dk = dk + 1 otherwise dk remains unchanged) instead of a simple
truncation, the relative error of a variable y would be εr = 0.5 · 10−k+1.

Whenever an arithmetic operation is performed, the errors of the variables
involved is transferred to the result. This can occur in an advantageous or disadvanta-
geous way, where we understand disadvantageous as an increase in the relative error.
Particular care is required when two nearly identical numbers are subtracted (sub-
tractive cancellation) or when a large number is divided by a, in comparison, small
number. In such cases the rounding error will increase dramatically. We note that it
might be necessary to avoid such operations in our aim to design an algorithm which
is required to produce reasonable results. An illustrative example and its remedy will
be discussed in Sect. 1.3. However, before proceeding to the next section we intro-
duce a lower bound to the accuracy which is achievable with a non-ideal computer,
the machine-number. The machine-number is smallest positive number η which can
be added to another number, such that a change in the result is observed. In particular,

η = min
δ

{
δ > 0

∣∣∣1 + δ > 1
}

. (1.24)
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For a (nonexistent) super-computer, which is capable of saving as much digits as
desired, η would be arbitrarily small. A typical value for double-precision in
Fortran or C is η ≈ 10−16.

1.3 Methodological Errors

A methodological error is introduced into the routine whenever a complex
mathematical expression is replaced by an approximate, simpler one. We already
came across an example when we regarded the series representation of the elliptic
integral (1.14) in Sect. 1.1. Although we could evaluate the series up to an arbitrary
order N , we are definitely not able to sum up the coefficients to order ∞. Hence,
it is not possible to get rid of methodological errors whenever we have to deal
with expressions we cannot evaluate analytically. Another intriguing example is the
numerical differentiation of a (analytically) given function. The standard approxi-
mation of a derivative reads

f ∓(x0) = d

dx
f (x)

∣∣∣∣
x=x0

≈ f (x0 + h) − f (x0)

h
. (1.25)

This approximation is referred to as finite difference and will be discussed in more
detail in Chap. 2. One would, in a first guess, expect that the obtained value gets
closer to the true value of the derivative f ∓(x0) with decreasing values of h. From a
calculus point of view, this is correct since by definition

d

dx
f (x)

∣∣∣∣
x=x0

= lim
h→0

f (x0 + h) − f (x0)

h
. (1.26)

However, this is not the case numerically. In particular, one can find a value ĥ for
which the relative error is minimal, while for values h < ĥ and h > ĥ the approxi-
mation obtained is worse in comparison. The reason is that for small values of h the
rounding errors dominate the result since f (x0 + h) and f (x0) almost cancel while
1/h is very small. For h > ĥ, the methodological error, i.e. the replacement of a
derivative by a finite difference, controls the result.

We give one further example [6] in order to illustrate the interplay between
methodological errors and rounding errors. We regard the, apparently nonhazardous,
numerical solution of a quadratic equation

ax2 + bx + c = 0, (1.27)

where a, b, c ∈ R, a ⇒= 0. The well known solutions read

x1 = −b + √
b2 − 4ac

2a
and x2 = −b − √

b2 − 4ac

2a
. (1.28)

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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Cautious because of the above examples, we immediately diagnose the danger of a
subtractive cancellation in the expression of x1 for b > 0 or in x2 for b < 0, and
rewrite the above expression for x1:

x1 = (−b + √
b2 − 4ac)

2a

(−b − √
b2 − 4ac)

(−b − √
b2 − 4ac)

= 2c

−b − √
b2 − 4ac

. (1.29)

For x2 we obtain

x2 = 2c

−b + √
b2 − 4ac

. (1.30)

Consequently, if b > 0 x1 should be calculated using Eq. (1.29) and if b < 0
Eq. (1.28) should be used to calculate x2. Moreover, the above expressions can be
cast into one expression by setting

x1 = q

a
and x2 = c

q
, (1.31)

with

q = −1

2

[
b + sgn(b)

√
b2 − 4ac

]
. (1.32)

Thus, Eqs. (1.31) and (1.32) can be used to calculate x1 and x2 for any sign of b.

1.4 Stability

When a new numerical method is designed stability is the third crucial point after
rounding errors and methodological errors. We give an introductory definition:

An algorithm, equation or, even more general, a problem is referred to as unstable
or ill-conditioned if small changes in the input cause a large change in the output.

It will be followed by a couple of elucidating examples [1].1 To be more specific,
let us now, for instance, consider the following system of equations

x + y = 2.0,

x + 1.01y = 2.01. (1.33)

The equations are easily solved and give x = 1.0 and y = 1.0. To make our point we
consider now the case in which the right hand side of the second equation of (1.33) is
subjected to a small perturbation, i.e. we consider in particular the following system
of equations

1 Although unstable behavior is not desirable in the first place the discovery of unstable systems
was the birth of a specific branch in physics called Chaos Theory. We will come back to this point
at the end of this section.
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x + y = 2.0,

x + 1.01y = 2.02. (1.34)

The corresponding solution is x = 0.0 and y = 2.0. We observe that a relative
change of 0.05 % on the right hand side of the second equation in (1.33) resulted
in a 100 % relative change of the solution. Moreover, if the coefficient of y in the
second equation of (1.33) were 1.0 instead of 1.01, which corresponds to a relative
change of 1%, the equations would be unsolvable. This is a behavior typical for
ill-conditioned problems which, for obvious reasons, should be avoided whenever
possible.

We give a second example: We consider the following initial value problem

{
ÿ − 10 ẏ − 11y = 0,

y(0) = 1, ẏ(0) = −1.
(1.35)

The general solution is readily obtained to be of the form

y = A exp (−x) + B exp (11x) , (1.36)

with numerical constants A and B. The initial conditions yield the unique solution

y = exp (−x) . (1.37)

The initial conditions are now changed by two small parameters δ, ε > 0 to give:

y(0) = 1 + δ and ẏ(0) = −1 + ε. (1.38)

The unique solution which satisfies these initial conditions is:

y =
(
1 + 11δ

12
− ε

12

)
exp(−x) +

(
δ

12
+ ε

12

)
exp (11x) . (1.39)

We calculate the relative error

εr =
∣∣∣∣ y − y

y

∣∣∣∣
=

(
11δ

12
− ε

12

)
+

(
δ

12
+ ε

12

)
exp (12x) , (1.40)

which indicates that the problem is ill-conditioned since for large values of x the
second term definitely overrules the first one.

Another, but not less serious kind of problem is induced instability:
A method is referred to as induced unstable if a small error at one point of the

calculation induces a large error at some subsequent point.
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Induced instability is particularly dangerous since small rounding errors are
unavoidable in most calculations. Hence, if some part of the whole algorithm is
ill-conditioned, the final output will be dominated by the error induced in such a
way. Again, an example will help to illustrate such behavior. The definite integral

In =
1∫

0

dx xn exp(x − 1), (1.41)

is considered. Integration by parts yields

In = 1 − nIn−1. (1.42)

This expression can be used to recursively calculate In from I0, where

I0 = 1 − exp (−1). (1.43)

Although the recursion formula (1.42) is exact we will run into massive problems
using it. The reason is easily illustrated:

In = 1 − nIn−1

= 1 − n + n(n − 1)In−2

= 1 − n + n(n − 1) − n(n − 1)(n − 2)In−3

...

= 1 +
n−1∑
k=1

(−1)k n!
(n − k)! + (−1)n−1n!I0. (1.44)

Thus, the initial rounding error included in the numerical value of I0 is multiplied
with n!. Note that for large n we have according to Stirling’s approximation

n! ≈ √
2πnn+ 1

2 exp (−n), (1.45)

i.e. an initial error increases almost as nn .
However, Equation (1.42) can be reformulated to give

In = 1

n + 1
(1 − In+1), (1.46)

and this opens an alternative method for a recursive calculation of In . We can start
with some value N � n and simply set IN = 0. The error introduced in such a way
may in the end not be acceptable, nevertheless, it decreases with every iteration step
due to the division by n in Eq. (1.46).
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Having discussed some basic features of stability in numerical algorithms we
would like to add a few remarks on Chaos Theory. Chaos theory investigates
dynamical processes which are very sensitive to initial conditions. One of the best
known examples for such a behavior is the weather prediction. Although, Poincaré
already observed chaotic behavior while working on the three body problem, one
of the pioneers of chaos theory was E. N. Lorenz [7] (not to be confused with
H. Lorentz, who introduced the Lorentz transformation). In 1961 he ran weather
simulations on a small computer. However, when he tried to reproduce one particular
result by restarting the calculationwith new parameters calculated the days before, he
observed that the outcome was completely different. The reason was that the equa-
tions he dealt with were ill-conditioned, and the rounding error he introduced by
simply typing in the numbers of the graphical output, increased drastically, and,
hence, produced a completely different result. Nowadays, various physical systems
are known which indeed behave in such a way. Further examples are turbulences in
fluids, oscillations in electrical circuits, oscillating chemical reactions, population
growth in ecology, the time evolution of the magnetic field of celestial bodies, ….

It is important to note, that chaotic behavior induced in such systems is
deterministic, yet unpredictable. This is due to the impossibility of an exact
knowledge of the initial conditions required to predict, for instance, the weather
over a reasonably long period. A feature which is referred to as the butterfly effect:
a hurricane can form because a butterfly flapped its wings several weeks before.
However, these effects have nothing to do with intrinsic in-determinism, which is
solely a feature of quantum mechanics. In contrast to this, in chaos theory, the future
is uniquely determined by initial conditions, however, still unpredictable. This is
often referred to as deterministic chaos.

It has to be emphasized that chaos in physical systems is a consequence of
deterministic equations describing the processes and not a consequence of the numer-
ical method one uses for modeling. Therefore, it is important to distinguish between
the stability of a numerical method and the stability of a physical system in general.

We will come across chaotic behavior again in Sect. 6.3 where we discuss chaotic
behavior in the dynamics of the double pendulum.

1.5 Concluding Remarks

In this chapter we dealt with the basic features of numerical errors one is always
confronted with when developing an algorithm. One point we neglected in our dis-
cussion is the computational cost, i.e. the time a program needs to be executed.
Although this is a very important point, it is beyond the scope of this book. However,
one has to find a balance between the need of achieving the most accurate result
and the computing time required to achieve it. The most accurate result is useless
if the programmer does not get the result within his lifetime. D. Adams [8] put in
a nutshell: the super-computer Deep Thought was asked to compute the answer to
“The Ultimate Question of Life, the Universe and Everything”, quote:

http://dx.doi.org/10.1007/978-3-319-02435-6_6
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“How long?” he said.
“Seven and a half million years.”

Another quite crucial point, which we neglected so far, is the error analysis of
a computational method which is based on random numbers (in fact it is pseudo-
random numbers, we will come back to this point in the second part of this book). In
this case, the situation changes completely, because, similar to experimental results,
the observed values are distributed around a mean with a certain variance. Such
results have to be interpreted in a statistical context, however it turns out that for
manyproblems the computational efficiency canbe significantly increased using such
methods. Typical applications are estimates of integrals or solutions to optimization
problems. Such topics will be treated in the second part of this book.
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Part I
Deterministic Methods



Chapter 2
Numerical Differentiation

2.1 Introduction

This chapter is the first of two systematic introductions to the numerical treatment of
differential equations. The importance of differential equations, and thus of deriva-
tives and integrals, cannot be underestimated in the modern formulation of natural
sciences and in particular of physics. Very often the complexity of the expressions
involved does not justify an analytical approach, be it because an analytical solution
simply does not exist or that the search for it is too expensive. It should be noted that
modern symbolic software, such as Maple or Mathematica can ease a physicists
life significantly. However, in many cases a numerical treatment is unavoidable and
one should be prepared.

We introduce here the notion of finite differences as a basic concept of numerical
differentiation. In contrast, the next chapter will deal with the concepts of numeri-
cal quadrature. Together, these two chapters will set the stage for a comprehensive
discussion of algorithms designed to solve numerically differential equations. In
particular, the solution of ordinary differential equations will always be based on an
integration of the equations.

This chapter is composed of four sections. The first repeats some basic con-
cepts of calculus and introduces formally finite differences. The second formulates
approximates to derivatives based on finite differences, while the third section
includes a more systematic approach based on an operator technique. It allows an
arbitrarily close approximation of derivatives with the advantage that the expressions
discussed in this section can immediately be applied to the problems at hand. The
chapter is concluded with a discussion of some additional aspects.

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 17
DOI: 10.1007/978-3-319-02435-6_2, © Springer International Publishing Switzerland 2014
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2.2 Finite Differences

Let us consider a smooth function f (x) on the finite interval [a, b] on the real axis
with x ∈ R. The interval [a, b] is divided intoN −1 ∈ N equally spaced sub-intervals
of the form [xi, xi+1] where x1 = a, xN = b. Obviously, xi is then given by

xi = a + (i − 1)
b − a

N − 1
, i = 1, . . . , N . (2.1)

We then introduce the distance h between two grid-points xi by:

h = xi+1 − xi = b − a

N − 1
, ∀i = 1, . . . , N − 1. (2.2)

For the sake of a more compact notation we restrict our discussion to equally spaced
grid-points keeping in mind that the extension to arbitrarily spaced grid-points by
replacing h by hi is straight forward and leaves the discussion essentially unchanged.

Note that the number of grid-points and, thus, their distance h, has to be chosen in
such away that the function f (x) can be sufficientlywell approximated by its function
values f (xi) as indicated in Fig. 2.1. We understand by sufficiently well approximated
that some interpolation scheme in the interval [xi, xi+1] will reproduce the function
f (x) within a given accuracy. In cases where the function is strongly varying within
some sub-interval [c, d] ≈ [a, b] and is slowly varying within [a, b] \ [c, d] it might
be advisable to use variable grid-spacing in order to reduce the computational cost
of the procedure.

We introduce the following notation: The function value of f (x) at the particular
grid-point xi will be denoted by fi ∞ f (xi) and we define its n-th derivative with
respect to x at the grid-point xi as

Fig. 2.1 We define equally
spacedgrid-points xi on afinite
interval on the real axis in such
a way that the function f (x) is
sufficiently well approximated
by its functional values f (xi)

at these grid-points
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dnf (x)

dxn

∣∣∣∣
x=xi

= f (n)(xi) ∞ f (n)
i . (2.3)

Furthermore, we define for arbitrary ξ ∈ [xi, xi+1)

f (n)
i+ε = f (n)(ξ), (2.4)

where f (0)
i+ε ∞ fi+ε and ε is chosen to give

ξ = xi + εh. (2.5)

Note that ε ∈ [0, 1).
Let us remember some basics from calculus. The first derivative, denoted f √(x)

of a function f (x) which is continuously differentiable within the interval [a, b], i.e.
f (x) ∈ C⇒[a, b], for arbitrary x ∈ [a, b] is defined as

f √(x) := lim
h≤0

f (x + h) − f (x)

h

= lim
h≤0

f (x) − f (x − h)

h

= lim
h≤0

f
(

x + h
2

)
− f

(
x − h

2

)

h
. (2.6)

We discussed this particular problem already in Sect. 1.3, Eq. (1.26) and learned that
it is impossible to draw numerically the limit h ≤ 0. This manifests itself in a
non-negligible error due to subtractive cancellation.

For the sake of a systematic treatment we remember Taylor’s theorem, which
states that if we have a function which is n-times continuously differentiable on
the interval [a, b] and if f (n+1)(x) exists we can express f (x) in terms of a series
expansion at point x0 ∈ [a, b]:

f (x) =
n∑

k=0

f (k)(x0)

k! (x − x0)
k + f (n+1)[ζ(x)]

(n + 1)! (x − x0)
n+1, ∀x ∈ [a, b]. (2.7)

Here, ζ(x) takes on a value between x and x0. The last term on the right hand side of
Eq. (2.7) is commonly referred to as truncation error. (A more general definition of
this error was given in Sect. 1.1.) For x0 = 0 the above series expansion is referred
to as Mclaurin series.

We introduce now the finite difference

Δfi = fi+1 − fi, (2.8a)

http://dx.doi.org/10.1007/978-3-319-02435-6_1
http://dx.doi.org/10.1007/978-3-319-02435-6_1
http://dx.doi.org/10.1007/978-3-319-02435-6_1
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as the forward difference,
≥fi = fi − fi−1, (2.8b)

as the backward difference, and

δfi = fi+ 1
2

− fi− 1
2
, (2.8c)

as the central difference.1 We can now estimate derivatives by finite differences with
the help of Taylor’s theorem (2.7). In a first step we consider (restricting to second
order in h) with fi+1 ∞ f (xi + h):

fi+1 = f (xi) + hf √(xi) + h2

2
f √√[ζ(xi + h)]

= fi + hf √
i + h2

2
f √√
i+εζ

. (2.9a)

Here εζ is the fractional part ε which has to be determined according to ζ(xi + h).
In analogue we find for fi−1

fi−1 = fi − hf √
i + h2

2
f √√
i+εζ

, (2.9b)

and for fi± 1
2
:

fi± 1
2

= fi ± h

2
f √
i + h2

8
f √√
i ± h3

48
f √√√
i+εζ

. (2.9c)

Here we expanded fi± 1
2
up to third order in h and the reason for this will become

obvious immediately.

2.3 Finite Difference Derivatives

We define the finite difference derivative or difference approximations

D+fi = Δfi
h

= fi+1 − fi
h

, (2.10a)

as the forward difference derivative,

D−fi = ≥fi
h

= fi − fi−1

h
, (2.10b)

1 Please note that the symbols Δ, ≥, and δ in Eqs. (2.8) can also be regarded as operators acting
on fi. For a basic introduction to the theory of linear operators see for instance [1, 2].
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Fig. 2.2 Graphical
illustration of different
finite difference derivatives.
The solid line labeled f √

i rep-
resents the real derivative for
comparison

as the backward difference derivative, and

Dcfi = δfi
h

=
fi+ 1

2
− fi− 1

2

h
, (2.10c)

as the central difference derivative. A graphical interpretation of these expressions
is given in Fig. 2.2.

Using the above definitions (2.10) together with the expansions (2.9) we obtain

f √
i = D+fi − h

2
f √√
i+εζ

= D−fi + h

2
f √√
i+εζ

= Dcfi − h2

24
f √√√
i+εζ

. (2.11)

We observe that in the central difference approximation of f √
i the truncation error

scales like h2 while it scales like h in the other two approximations; thus the central
difference approximation should have the smallest methodological error. Note that
the error cannot be dominated by the derivatives of f (x) since we assumed that f is
a smooth function within [a, b]. Furthermore we have to emphasize that the central
difference approximation is essentially a three point approximation, including fi−1,
fi and fi+1, although fi cancels. Thus, we can improve our approximation by taking
even more grid-points into account. For instance, we could combine the above finite
difference derivatives. Let us prepare this step by expanding Eqs. (2.9) to higher order
derivatives. We then obtain for the forward difference derivative

D+fi = f √
i + h

2
f √√
i + h2

6
f √√√
i + h3

24
f IV
i + h4

120
f V
i + · · · , (2.12)
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for the backward difference derivative

D−fi = f √
i − h

2
f √√
i + h2

6
f √√√
i − h3

24
f IV
i + h4

120
f V
i ∓ · · · , (2.13)

and, finally, for the central difference derivative

Dcfi = f √
i + h2

24
f √√√
i + h4

1920
f V
i + · · · . (2.14)

In order to improve themethodwe have to combineD+fi,D−fi andDcfi in such away
that at least the terms proportional to h2 cancel. This can be achieved by observing
that

8Dcfi − D+fi − D−fi = 6f √
i − h4

60
f V
i+εζ

, (2.15)

which gives

f √
i = 1

6
(8Dcfi − D+fi − D−fi) + h4

360
f V
i

= 1

6h

(
fi−1 + 8fi+ 1

2
− 8fi− 1

2
− fi+1

)
+ h4

360
f V
i+εζ

. (2.16)

Note that this simple combination yields an improvement of two orders in h! One
can even improve the approximation in a similar fashion by simply calculating the
derivative from even more points, for instance fi± 3

2
.

2.4 A Systematic Approach: The Operator Technique

We would like to obtain a general expression which will allow to calculate the finite
difference derivatives of arbitrary order up to arbitrary order of h in the truncation
error. First of all, we redefine our grid in order to get rid of the expressions including
function values between grid-points, such as fi+ 1

2
. This can easily be achieved by

redefining the grid in such a way that we have in total 2N grid-points. However,
an even more convenient method can be found by the introduction of the average
operator μ

μfi =
fi+ 1

2
+ fi− 1

2

2
. (2.17)

This operator ensures that there will no functional values be required between
two grid-points.2 This enables us to redefine the central difference derivative Dcfi
(2.10c) as

2 From now on, all symbols like Dc, Δ, etc. are interpreted as operators.
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Dcfi = μδfi
h

= fi+1 − fi−1

2h
. (2.18)

Furthermore, we introduce the shift operator E and its inverse E−1, where
EE−1 = 1, the unity operator, by3

Efi = fi+1, (2.20)

and
E−1fi = fi−1. (2.21)

Note that we can write these operators in terms of the forward and backward
difference operators Δ and ≥ of Eqs. (2.8), in particular

E = Δ + 1, (2.22)

and
E−1 = 1 − ≥. (2.23)

Moreover, if D ∞ d
dx denotes the derivative operator and if the n-th power of this

operator D is understood as the n-th successive application of it, we can rewrite the
Taylor expansions (2.9) as

fi+1 =
[
1 + hD + 1

2
h2D2 + 1

3!h3D3 + · · ·
]

fi

∞ exp (hD) fi, (2.24)

and

fi−1 =
[
1 − hD + 1

2
h2D2 − 1

3!h3D3 ± · · ·
]

fi

∞ exp (−hD) fi, (2.25)

3 We note in passing that the shift operators form the discrete translational group, a very important
group in theoretical physics. Let E(n) = En denote the shift by n ∈ N grid-points. We then have

E(n)E(m) = E(n + m), (2.19a)

E(0) = 1, (2.19b)

and
E(n)−1 = E(−n), (2.19c)

which are the properties required to form a group. Here 1 denotes the unity element. Moreover, we
have

E(n)E(m) = E(m)E(n), (2.19d)

i.e. it is an Abelian group. The group of discrete translations is usually denoted by T
d .
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Hence, we find that
E = 1 + Δ ∞ exp (hD) , (2.26)

and, accordingly, that
E−1 = 1 − ≥ ∞ exp (−hD) . (2.27)

In a next step we obtain from (2.9c)

fi± 1
2

= E± 1
2 fi = exp

(
±hD

2

⎛
, (2.28)

which gives

δ = E
1
2 − E− 1

2 = exp

(
hD

2

⎛
− exp

(
−hD

2

⎛
∞ 2 sinh

(
hD

2

⎛
. (2.29)

Equations (2.26), (2.27) and (2.29) canbe inverted forhDbecause the inverse operator
E−1 exists. This yields

hD =

⎧⎪⎨
⎪⎩
ln (1 + Δ) = Δ − 1

2Δ
2 + 1

3Δ
3 ∓ · · · ,

− ln (1 − ≥) = ≥ + 1
2≥2 + 1

3≥3 + · · · ,

2 sinh−1
(

δ
2

⎜ = δ − 1
223!δ

3 + 32

245!δ
5 ∓ · · · .

(2.30)

Again, the n-th power of the operator K (with K = Δ,≥, δ) Knfi is understood as
the n-th successive action of the operator K on fi, i.e. Kn−1 (Kfi). Expression (2.30)
allows to approximate the derivatives up to arbitrary order using finite differences.
Furthermore, we can take the k-th power of Eq. (2.30) in order to get an approximate
k-th derivative, (hD)k [3]. A rather involved calculation results in the following
relations for f √

i and f √√
i :

f √
i = 1

h

⎧⎪⎨
⎪⎩

[
Δ − 1

2Δ
2 + 1

3Δ
3 ∓ · · · ] fi,[≥ + 1

2≥2 + 1
3≥3 + · · · ] fi,[

μδ − 1
3!μδ3 + 1

30μδ5 ∓ · · · ] fi,

(2.31)

and

f √√
i = 1

h2

⎧⎪⎨
⎪⎩

[
Δ2 − Δ3 + 11

12Δ
4 ∓ · · · ] fi,[≥2 + ≥3 + 11

12≥4 + · · · ] fi,[
δ2 − 1

12δ
4 + 1

90δ
6 ∓ · · · ] fi.

(2.32)

In particular, for the central difference derivative we obtain

f √
i = fi+1 − fi−1

2h
+ O(h2), (2.33)
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and

f √√
i = fi+1 − 2fi + fi−1

h2
+ O(h2). (2.34)

Here, O(h2) indicates that this term is of the order of h2, i.e., we get the important
result that in this case the truncation error is of the order O(h2).

2.5 Concluding Discussion

First of all, although Eq. (2.30) allows to approximate a derivative of any order k
arbitrarily close, it is still an infinite series which leaves us with the decision at
which order to truncate. This choice will highly depend on the choice of h, which
in turn depends on the function we would like to differentiate. Let us discuss an
illustrative example: Consider the function

f (x) = exp (iωx) , (2.35)

where ω, x ∈ R and i is the imaginary number with i2 = −1. Its first derivative is

f √(x) = iω exp (iωx) . (2.36)

We now introduce grid-points by

xk = x0 + kh, (2.37)

where h is the grid-spacing and x0 is some finite starting point on the real axis.
Accordingly,

fk = exp (iωx0) exp (iωkh), (2.38)

and the exact value of the first derivative is

f √
k = iω exp (iωx0) exp (iωkh) = iωfk . (2.39)

We calculate the forward, backward, and central difference derivatives according to
Eq. (2.10) and obtain

D+fk = exp (iωx0) exp (iωkh)
exp (iωh) − 1

h

= fk
exp (iωh) − 1

h
, (2.40a)
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D−fk = exp (iωx0) exp (iωkh)
1 − exp (−iωh)

h

= fk
1 − exp (−iωh)

h
, (2.40b)

and

Dcfk = exp (iωx0) exp (iωkh)
exp (iωh) − exp (−iωh)

2h

= fk
exp (iωh) − exp (−iωh)

2h
. (2.40c)

We divide the approximate derivatives by the true value (2.39) and take the modulus.
We get ∣∣∣∣D+fk

f √
k

∣∣∣∣ =
∣∣∣∣D−fk

f √
k

∣∣∣∣ =
∣∣∣∣∣
2 sin

( 1
2hω

⎜
hω

∣∣∣∣∣ , (2.41)

and ∣∣∣∣Dcfk
f √
k

∣∣∣∣ =
∣∣∣∣ sin (hω)

hω

∣∣∣∣ . (2.42)

Since | sin(x)| → |x|, ∀x ∈ R we obtain that in all three cases this ratio is less than
one independent of h, unless ω = 0 (Please keep in mind that sin(x)

x ≤ 1 as x ≤ 0).
Hence, the first order finite difference approximations underestimate the true value of
the derivative. The reason is easily found: f (x) oscillates with frequency ω while the
finite difference derivatives applied here approximate the derivative linearly. Higher
order corrections will, of course, improve the approximation significantly.

We consider now the case that the function f (x) is not strongly varying. Too small
values of h, i.e. a very dense grid of grid-points, will definitely increase the danger
of a subtractive cancellation while values of h too large, i.e. a rather coarse grid of
grid-points, will decrease the rate of convergence of the series (2.30). Furthermore, it
is obvious that we should prefer the method of central differences whenever possible
because it converges faster.

Finally, we would like to discuss how to approximate partial derivatives of
functions which depend on more than one variable. Basically this can be achieved
by independently discretisizing the function of interest in each particular variable
and then by defining the corresponding finite difference derivatives. We will briefly
discuss the case of two variables, the extension to even more variables is straight
forward. We regard a function g(x, y) where (x, y) ∈ [a, b] × [c, d]. We denote the
grid-spacing in x-direction by h and in y-direction by k. The evaluation of derivatives
of the form ∂n

∂xn g(x, y) or ∂n

∂yn g(x, y) for arbitrary n are approximated with the help of
the schemes discussed above, only the respective grid-spacing has to be accounted
for. We will now briefly discuss mixed partial derivatives, in particular the derivative
∂2

∂x∂y g(x, y). Higher orders can be easily obtained in the same fashion. Here, we will
restrict to the case of the central difference derivative. Again, the extension to the
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other two forms of derivatives is straight forward. We would like to approximate the
derivative at the point (a + ih, c + jk), which will be abbreviated by (i, j). Hence, we
compute

∂

∂y

∂

∂x
g(x, y)

∣∣∣∣
(i,j)

= 1

2h

⎟
∂

∂y
g(x, y)

∣∣∣∣
(i+1,j)

− ∂

∂y
g(x, y)

∣∣∣∣
(i−1,j)

]
+ O(h2)

= 1

2h

⎟
gi+1,j+1 − gi+1,j−1

2k
+ O(k2)

∣∣∣∣
(i+1,j)

− gi−1,j+1 − gi−1,j−1

2k
− O(k2)

∣∣∣∣
(i−1,j)

]
+ O(h2), (2.43)

where we made use of the notation gi,j ∞ g(xi, yj). Neglecting higher order
contributions yields

∂

∂y

∂

∂x
g(x, y)

∣∣∣∣
(i,j)

≈ 1

2h

gi+1,j+1 − gi+1,j−1 − gi−1,j+1 + gi−1,j−1

2k
. (2.44)

This simple approximation is easily improvedwith the help of themethods developed
in the previous sections.

Finally, it should be noted that there are also other methods to approximate
derivatives. One of the most powerful methods, is the method of finite elements
[4]. The conceptual difference to the method of finite differences is that one divides
the domain in finite sub-domains (elements) rather than replacing it by sets of dis-
crete grid-points. The function of interest, say g(x, y), is then replaced within each
element by an interpolating polynomial. However, this method is quite complex and
definitely beyond the scope of this book. Another interesting method, which is par-
ticularly useful for the solution of hyperbolic differential equations, is the method of
finite volumes. The interested reader is referred to the book by R. J. LeVeque [5].

Summary

In a first step the notion of finite differences was introduced: even analytical
functions are approximated only by their functional values at discrete grid-points
and by interpolation schemes between these points. This served as a basis for the
definition of finite difference derivatives. Three different kinds were discussed: the
forward, the backward, and the central difference derivative. A more systematic
approach to finite difference derivatives was then offered by the operator technique.
It provided ready to use equations which allowed to approximate a particular deriv-
ative of arbitrary order to arbitrary order of grid-spacing. The two methodological
errors introduced by this method, namely the subtractive cancellation error due to
too dense a grid and the truncation error due to too coarse a grid were discussed in
detail.
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Problems

Consider the finite interval I = [−5, 5] on the real axis. Define N equally spaced
grid-points xi = x1 + (i − 1)h, i = 1, . . . , N . Investigate the functions

g(x) = exp
(
−x2

)
and h(x) = sin(x).

1. Plot these functions within the interval I by defining these functions on the grid-
points xi.

2. Plot the first derivative of these functions by analytical differentiation.
3. Calculate and plot the first derivatives of these functions by employing the first

order backward, forward, and central difference derivatives. For the central dif-
ference derivative use an algorithm which is based on the grid-points xi−1 and
xi+1 rather than the method based on intermediate grid-points xi± 1

2
.

4. Calculate and plot the first central difference derivatives of these functions
by employing second order corrections. These corrections can be obtained by
applying the sum representation of the derivative operator defined in Sect. 2.4,
last line of Eq. (2.31), i.e. take the term proportional to δ3 into account!

5. Calculate the absolute and the relative error of the above methods. Note that the
exact values are known analytically.

6. Repeat the above steps for the second derivative of the function h(x). For the sec-
ond order correction of the central difference derivative take the term proportional
to δ4 in Eq. (2.32) into account.

7. Try different values of N!
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Chapter 3
Numerical Integration

3.1 Introduction

Numerical integration is certainly one of the most important concepts in
computational analysis since it plays a major role in the numerical treatment of
differential equations. Given a function f (x) which is continuous on the interval
[a, b], one wishes to approximate the integral by a discrete sum of the form

b∫

a

dx f (x) ∈
N∑

i=1

ξi f (xi ), (3.1)

where theξi are referred to asweights and xi are the grid-points at which the function
needs to be evaluated. Such methods are commonly referred to as quadrature.

We will mainly discuss two different approaches to the numerical integration of
arbitrary functions. We start with a rather simple approach, the rectangular rule. The
search of an improvement of this method will lead us first to the trapezoidal rule,
then to the Simpson rule and, finally, to a general formulation of the method, the
Newton-Cotes quadrature. This will be followed by a more advanced technique,
the Gauss-Legendre quadrature. At the end of the chapter we will discuss an
elucidating example and briefly sketch extensions of all methods to more general
problems, such as integration of non-differentiable functions or the evaluation of
multiple integrals.

Another very important approach, which is based on random sampling methods,
is the so called Monte-Carlo integration. This method will be presented in Sect. 14.2.
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3.2 Rectangular Rule

The straight forward approach to numerical integration is to employ the concept of
finite differences developed in Sect. 2.2. We regard a smooth function f (x) within
the interval [a, b], i.e. f (x) ∀ C≈[a, b]. The Riemann definition of the proper
integral of f (x) from a to b states that:

b∫

a

dx f (x) = lim
N∞≈

b − a

N

N∑
i=0

f

(
a + i

b − a

N

)
. (3.2)

We approximate the right hand side of this relation using equally spaced grid-points
xi ∀ [a, b] according to Eq. ( 2.1) and find

b∫

a

dx f (x) ∈ h
N−1∑
i=1

fi . (3.3)

However, it is clear that the quality of this approach strongly depends on the
discretization chosen, i.e. on the values of xi as illustrated schematically in Fig. 3.1.
Again, a non-uniform grid may be of advantage. We can estimate the error of this
approximation by expanding f (x) into a Taylor series.

We note that
b∫

a

dx f (x) =
N−1∑
i=1

xi+1∫

xi

dx f (x), (3.4)

hence, the approximation (3.3) is equivalent to the approximation

Fig. 3.1 Illustration of the
numerical approximation of a
proper integral according to
Eq. (3.3)

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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xi+1∫

xi

dx f (x) ∈ h fi , (3.5)

with
xi+1∫
xi

dx f (x) the elemental area. According to (2.9a) we have

xi+1∫

xi

dx f (x) =
xi+1∫

xi

dx
[

fi + (x − xi ) f √
i + (x − xi )

2 f √√
i+θω

]

= fi h + h2

2
f √
i + O(h3). (3.6)

In the last step we applied the first mean value theorem for integration which states
that if f (x) is continuous in [a, b], then there exists a ω ∀ [a, b] such that

b∫

a

dx f (x) = (b − a) f (ω ). (3.7)

(We shall come back to the mean value theorem in the course of our discussion of
Monte-Carlo integration in Chap.14.) According to (3.6) the error we make with
approximation (3.3) is of order O(h2).

This procedure corresponds to a forward difference approach and in a similar
fashion a backward difference approach can be chosen. It results in:

b∫

a

dx f (x) = h
N∑

i=2

fi + O(h2). (3.8)

Let us now define the forward and backward rectangular rule by

i I +
i+1 = h fi , (3.9)

and
i I −

i+1 = h fi+1, (3.10)

respectively. Thus we have

http://dx.doi.org/10.1007/978-3-319-02435-6_2.9a
http://dx.doi.org/10.1007/978-3-319-02435-6_14
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xi+1∫

xi

dx f (x) = i I +
i+1 + h2

2
f √
i + h3

3! f √√
i + · · ·

= i I −
i+1 − h2

2
f √
i+1 + h3

3! f √√
i+1 ⇒ · · · . (3.11)

However, an even more accurate way to proceed is to make use of the central
difference approximation. We consider the integral

xi+1∫

xi

dx f (x), (3.12)

expand f (x) in a Taylor series around the midpoint xi+ 1
2
, and obtain:

xi+1∫

xi

dx f (x) =
xi+1∫

xi

dx

{
fi+ 1

2
+

(
x − xi+ 1

2

)
f √
i+ 1

2

+
(

x − xi+ 1
2

)2
2

f √√
i+ 1

2
+ O

[(
x − xi+ 1

2

)3] }

= h fi+ 1
2

+ h3

24
f √√
i+θω

= i Ii+1 + h3

24
f √√
i+θω

. (3.13)

Thus, the error generated by this method, the central rectangular rule, scales asO(h3)

which is a significant improvement in comparison to Eqs. (3.3) and (3.8). We obtain

b∫

a

dx f (x) = h
N−1∑
i=1

fi+ 1
2

+ O(h3). (3.14)

This approximation is known as the rectangular rule. It is illustrated in Fig. 3.2.
Note that the boundary points x1 = a and xN = b do not enter Eq. (3.14). Such a
procedure is commonly referred to as an open integration rule. On the other hand,
if the end-points are taken into account by the method it is referred to as a closed
integration rule.
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Fig. 3.2 Scheme of the
rectangular integration rule
according to Eq. (3.14). Note
that boundary points do not
enter the evaluation of the
elemental areas

Fig. 3.3 Sketch of how the
elemental areas under the
curve f (x) are approximated
by trapezoids

3.3 Trapezoidal Rule

An elegant alternative to the rectangular rule is found when the area between two
grid-points is approximated by a trapezoid as is shown schematically in Fig. 3.3. The
elemental area is calculated from

xi+1∫

xi

dx f (x) ∈ h

2
( fi + fi+1) . (3.15)

Hence, we obtain
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b∫

a

dx f (x) ∈ h

2

N−1∑
i=1

( fi + fi+1)

= h

(
f1
2

+ f2 + · · · + fN−1 + fN

2

)

= h

2
( f1 + fN ) + h

N−1∑
i=2

fi

= 1 I T
N . (3.16)

Note that this integration rule is closed, although the boundary points f1 and
fN enter the summation (3.16) only with half the weight in comparison to all other
function values fi which is a quite reasonable result because the boundary points
contribute only to one elemental area, the first and the last one. Another noticeable
feature of the trapezoidal rule is that, in contrast to the rectangular rule (3.14), only
function values at grid-points enter the summation, which can be desirable in some
cases.

The error of this method can be estimated by inserting expansion (2.9a) into
Eq. (3.16). One obtains for an elemental area:

i I T
i+1 = h

2
( fi + fi+1)

= h fi + h2

2
f √
i + h3

4
f √√
i + · · · . (3.17)

On the other hand, we know from Eq. (3.6) that

h fi =
xi+1∫

xi

dx f (x) − h2

2
f √
i − h3

3! f √√
i − · · · , (3.18)

which, when inserted into (3.17), yields

i I T
i+1 =

xi+1∫

xi

dx f (x) + h3

12
f √√
i + O(h4). (3.19)

Hence, we observe that the error induced by the trapezoidal rule is comparable to
the error of the rectangular rule, namely O(h3). However, since we do not have to
compute function values at intermediate grid-points, this rulemay be advantageous in
many cases. We remember from Chap.2 that a more accurate estimate of a derivative
was achieved by increasing the number of grid-points which in the case of integration
leads us to the Simpson rule.

http://dx.doi.org/10.1007/978-3-319-02435-6_2.9a
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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3.4 The SIMPSON Rule

The basic idea of the Simpson rule is to include higher order derivatives into the
expansion of the integrand. These higher order derivatives, which are primarily
unknown, are then approximated by expressions we obtained within the context
of finite difference derivatives. Let us discuss this procedure in greater detail. To
this purpose we will study the integral of f (x) within the interval [xi−1, xi+1] and
expand the integrand around the midpoint xi :

xi+1∫

xi−1

dx f (x) =
xi+1∫

xi−1

dx

[
fi + (x − xi ) f √

i + (x − xi )
2

2! f √√
i

+ (x − xi )
3

3! f √√√
i + · · ·

]

= 2h fi + h3

3
f √√
i + O(h5). (3.20)

Inserting Eq. (2.34) for f √√
i yields

xi+1∫

xi−1

dx f (x) = 2h fi + h

3
( fi+1 − 2 fi + fi−1) + O(h5)

= h

(
1

3
fi−1 + 4

3
fi + 1

3
fi+1

)
+ O(h5). (3.21)

Note that in contrast to the trapezoidal rule, the procedure described here is a three
point method since the function values at three different points enter the expression.
We can immediately write down the resulting integral from a ∞ b. Since,

b∫

a

dx f (x) =
x2∫

x0

dx f (x) +
x4∫

x2

dx f (x) + · · · +
xN∫

xN−2

dx f (x), (3.22)

where we assumed that N is even and employed the discretization xi = x0 + ih with
x0 = a and xN = b. We obtain:

b∫

a

dx f (x) = h

3
( f0 + 4 f1 + 2 f2 + 4 f3 + · · · + 2 fN−2 + 4 fN−1 + fN ) + O(h5).

(3.23)
This expression is exact for polynomials of order n ≤ 3 since the first term in the
error expansion involves the fourth derivative. Hence, whenever the integrand is

http://dx.doi.org/10.1007/978-3-319-02435-6_2


36 3 Numerical Integration

satisfactorily reproduceable by a polynomial of degree three or less, the Simpson
rule might give almost exact estimates, independent of the discretization h.

The arguments applied above allow for a straightforward extension to four- or
even more-point rules. We find, for instance,

xi+3∫

xi

dx f (x) = 3h

8
( fi + 3 fi+1 + 3 fi+2 + fi+3) + O(h5), (3.24)

which is usually called Simpson’s three-eight rule.
It is important to note that all the methods discussed so far are special cases of a

more general formulation, the Newton-Cotes rules which will be discussed in the
next section.

3.5 General Formulation: The NEWTON-COTES Rules

Wedefine theLagrange interpolatingpolynomial P(x)of ordern [1, 2] to a function
f (x) as

P(x) =
n∑

j=1

Pj (x), (3.25)

where

Pj (x) = f j

n∏
k=1
k ≥= j

x − xk

x j − xk
. (3.26)

An arbitrary smooth function f (x) can then be expressed with the help of an n-th
order Lagrange polynomial by

f (x) = P(x) + f (n)[ω(x)]
n! (x − x1)(x − x2) . . . (x − xn). (3.27)

If we neglect the second term on the right hand side of this equation and integrate the
Lagrange polynomial of order n over the n grid-points from x1 ∞ xN we obtain
the closed n-point Newton-Cotes formulas. For instance, if we set n = 2, then

P(x) = P1(x) + P2(x)

= f1
x − x2
x1 − x2

+ f2
x − x1
x2 − x1

= 1

h
[x( f2 − f1) − x1 f2 + x2 f1] , (3.28)
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with f1 ∓ f (x1) and f2 ∓ f (x2). Integration over the respective interval yields

x2∫

x1

dx P(x) = 1

h

[
x2

2
( f2 − f1) + x(x2 f1 − x1 f2)

]∣∣∣∣
x2

x1

= 1

h

[
x22 − x21

2
( f2 − f1) + (x2 − x1)(x2 f1 − x1 f2)

]

= 1

2
[(x2 + x1)( f2 − f1) + 2x2 f1 − 2x1 f2]

= h

2
[ f2 + f1] + O(h3), (3.29)

which is exactly the trapezoidal rule. By setting n = 3 one obtains Simpson’s rule
and setting n = 4 gives the Simpson’s three-eight rule.

The open Newton-Cotes rule can be obtained by integrating the polynomial
P(x) of order n which includes the grid-points x1, . . . , xn from x0 ∞ xn+1. The
fact that these relations are open means that the function values at the boundary
points x0 = x1 − h and xn+1 = xn + h do not enter the final expressions. The
simplest open Newton-Cotes formula is the central integral approximation, which
we encountered as the rectangular rule (3.14). A second order approximation is easily
found with help of the two-point Lagrange polynomial (3.28)

x3∫

x0

dx P(x) = 1

h

[
x2

2
( f2 − f1) + x(x2 f1 − x1 f2)

]∣∣∣∣
x3

x0

= 1

h

[
x23 − x20

2
( f2 − f1) + (x3 − x0)(x2 f1 − x1 f2)

]

= x3 − x0
h

[
1

2
(x3 + x0)( f2 − f1) + (x2 f1 − x1 f2)

]

= 3

2
[(x3 + x0 − 2x1) f2 + (2x2 − x3 − x0) f1]

= 3h

2
[ f2 + f1] + O(h3). (3.30)

Higher order approximations can be obtained in a similar fashion. To conclude
this section let us briefly discuss an idea which is referred to as Romberg’s method.
So far, we approximated all integrals by expressions of the form

I = I N + O(hm), (3.31)

where I is the exact, unknown, value of the integral, I N is the estimate obtained
from an integration scheme using N grid-points and m is the leading order of the
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error. Let us review the error of the trapezoidal approximation: we learned that the
error for the integral over the interval [xi , xi+1] scales like h3. Since we have N such
intervals, we conclude that the total error behaves like (b −a)h2. Similarly, the error
of the three-point Simpson rule is for each sub-interval proportional to h5 and this
gives in total (b − a)h4. We assume that this trend can be generalized and conclude
that the error of an n-point method with the estimate In behaves like h2n−2. Since,
h → N−1 we have

I = I N
n + CN

N 2n−2 , (3.32)

where CN depends on the number of grid-points N . Let us double the amount of
grid-points and we obtain:

I = I 2N
n + C2N

(2N )2n−2 . (3.33)

Obviously, Eqs. (3.32) and (3.33) can be regarded as a linear system of equations in
I and C if CN ∈ C2N ∈ C . Solving Eqs. (3.32) and (3.33) for I yields

I ∈ 1

4n−1 − 1

(
4n−1I 2N

n − I N
n

)
. (3.34)

It has to be emphasized that in the above expression I is no longer the exact value
because of the approximationCN ∈ C . However, it is an improvement of the solution
and it is possible to demonstrate that this new estimate is exactly the value one would
have obtained with an integral approximation of order n + 1 and 2N grid-points!
Thus

I 2N
n+1 = 1

4n−1 − 1

(
4n−1I 2N

n − I N
n

)
. (3.35)

This suggests a very elegant and rapid procedure: We simply calculate the integrals
using two point rules and add the results according to Eq. (3.35) to obtain more-point
results. For instance, calculateI 2

2 andI 4
2 , add these according to Eq. (3.35) and get

I 4
3 . Now calculate I 8

2 , add I 4
2 , get I

8
3 , add I 4

3 and get I 8
4 . This pyramid-like

procedure can be continued until convergence is achieved, that is |I N
m −I N

m+1| < θ

where θ > 0 can be chosen arbitrarily. An illustration of this elegant method is given
in Fig. 3.4.

3.6 GAUSS-LEGENDRE Quadrature

In order to prepare for theGauss-Legendre quadrature we define the function F(x)

as

F(x) = b − a

2
f

(
b − a

2
x + b + a

2

)
, (3.36)
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such that
b∫

a

dx f (x) =
1∫

−1

dx F(x). (3.37)

Furthermore, let us introduce a set of orthogonalLegendre polynomials Pτ(x) [1–3]
which are solutions of the Legendre differential equation

(
1 − x2

)
P √√

τ (x) − 2x P √
τ(x) + τ(τ + 1)Pτ(x) = 0. (3.38)

This equation is, for instance, the result of a transformation of the Laplace equation
to spherical coordinates. Here, we will introduce only the most important properties
of Legendre polynomials which will be useful for our purpose.

Legendre polynomials are defined as

Pτ(x) =
≈∑

k=0

ak,τxk, (3.39)

where the coefficients ak,τ can be determined recursively:

ak+2,τ = k(k + 1) − τ(τ + 1)

(k + 1)(k + 2)
ak,τ. (3.40)

Hence, for even values of τ the Legendre polynomial involves only even powers
of x and for odd τ only odd powers of x . Note also that according to Eq. (3.40)
for k ≥ τ the coefficients are equal to zero and, thus, the Pτ(x) are according to
Eq. (3.39) polynomials of order τ. Furthermore, the Legendre polynomials fulfill

I(2,2)

I(2,4)

I(2,8)

I(3,4)

I(4,8)I(3,8)

Fig. 3.4 Illustration of the Romberg method. Here, the I (m, n) are synonyms for integrals I n
m

where the first index m refers to the order of the quadrature while the second index n refers to the
number of grid-points used. Note that we only have to use a second order integration scheme (left
row, inside the box), all other values are determined via Eq. (3.35) as indicated by the arrows
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the normalization condition

1∫

−1

dx Pτ(x)Pτ√(x) = 2

2τ√ + 1
πττ√ , (3.41)

where πi j is Kronecker’s delta. One obtains

P0(x) = 1, (3.42)

and
P1(x) = x . (3.43)

Another convenient description of the Legendre polynomials is based on
Rodrigues’ formula

Pτ(x) = 1

2ττ!
dτ

dxτ

(
x2 − 1

)τ

. (3.44)

We now assume that the function F(x) can be well approximated by some
polynomial of order 2n − 1, i.e.

F(x) ∈ p2n−1(x). (3.45)

Please note that this means that according to Eq. ( 2.7) the error introduced is
proportional to F (2n)(x).

We write the integral (3.37) as

1∫

−1

dx F(x) =
n∑

i=1

ξi F(xi ), (3.46)

with weights ξi and grid-points xi , i = 1, . . . , n which are yet undetermined!
Therefore, we will determine the weightsξi and grid-points xi in such a way, that the
integral is well approximated even if the polynomial p2n−1 in Eq. (3.45) is unknown.
For this purpose we decompose p2n−1(x) into

p2n−1(x) = pn−1(x)Pn(x) + qn−1(x), (3.47)

where Pn(x) is the Legendre polynomial of order n and pn−1(x) and qn−1(x) are
polynomials of order n − 1. Since pn−1(x) itself is a polynomial of order n − 1, it
can also be expanded in Legendre polynomials of orders up to n − 1 by

pn−1(x) =
n−1∑
i=0

ai Pi (x). (3.48)

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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Using Eq. (3.48) in (3.47) we obtain together with normalization relation (3.41)

1∫

−1

dx p2n−1(x) =
n−1∑
i=0

ai

1∫

−1

dx Pi (x)Pn(x) +
1∫

−1

dx qn−1(x) =
1∫

−1

dx qn−1(x).

(3.49)
Moreover, since Pn(x) is a Legendre polynomial of order n it has n-zeros in the
interval [−1, 1] and Eq. (3.47) results in

p2n−1(xi ) = qn−1(xi ), (3.50)

where x1, x2, . . . , xn denote the zeros of Pn(x) and these zeros determine the
grid-points of our integration routine. It is interesting to note, that these zeros are
independent of the function F(x) we want to integrate. We also expand qn−1(x) in
terms of Legendre polynomials

qn−1(x) =
n−1∑
i=0

bi Pi (x), (3.51)

and use it in Eq. (3.50) to obtain

p2n−1(xi ) =
n−1∑
k=0

bk Pk(xi ), i = 1, . . . , n, (3.52)

which can be written in a more compact form by defining pi ∓ p2n−1(xi ) and
Pki ∓ Pk(xi ):

pi =
n−1∑
k=0

bk Pki , i = 1, . . . , n. (3.53)

It has to be emphasized again that the grid-points xi are independent of the poly-
nomial p2n−1(x) and, therefore, independent of F(x). Furthermore, we can replace
pi ∈ F(xi ) ∓ Fi according to Eq. (3.45). We recognize that Eq. (3.53) corresponds
to a system of linear equations which can be solved for the weights bk . We obtain

bk =
n∑

i=1

Fi

[
P−1

]
ik

, (3.54)

where P is the matrix P = {Pi j }, which is known to be non-singular. We can now
rewrite the integral (3.37) with the help of Eqs. (3.45), (3.49), and (3.51) together
with the properties of the zeros of Legendre polynomials [3] as
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1∫

−1

dx F(x) ∈
1∫

−1

dxp2n−1(x) =
n−1∑
k=0

bk

1∫

−1

dx Pk(x). (3.55)

Since P0(x) = 1 according to Eq. (3.42), we deduce from Eq. (3.41)

1∫

−1

dx Pk(x) =
1∫

−1

dx Pk(x)P0(x) = 2

2k + 1
πk0 = 2πk0. (3.56)

Hence, Eq. (3.55) reads

1∫

−1

dx F(x) ∈ 2b0 = 2
n∑

i=1

Fi

[
P−1

]
i0

. (3.57)

By defining

ξi = 2
[
P−1

]
i0

, (3.58)

we arrive at the desired expansion

1∫

−1

dx F(x) ∈
n∑

i=1

ξi Fi . (3.59)

Moreover, since we approximated F(x) by a polynomial of order 2n −1, theGauss-
Legendre quadrature is exact for polynomials of order 2n − 1, i.e., the error is
proportional to a derivative of F(x) of order 2n. Furthermore, expression (3.58) can
be put in a more convenient form. One can show that

ξi = 2

(1 − x2i )
[
P √

n(xi )
]2 , (3.60)

where

P √
n(xi ) = d

dx
Pn(x)

∣∣∣∣
x=xi

. (3.61)

Let us make some concluding remarks. The grid-points xi as well as the weights
ξi are independent of the actual function F(x)wewant to integrate. This means, that
one can table these values once and for all [3] and use them for different types of prob-
lems. The grid-points xi are symmetrically distributed around the point x = 0, i.e. for
every x j there is a−x j . Furthermore, these two grid-points have the same weightξ j .
The density of grid-points increases approaching the boundary, however, the bound-
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Table 3.1 Summary of the quadrature methods discussed in this chapter applied to the integral∫ b
a dx f (x)

n h I Method Comment

1 b−a
2 h f1 Rectangular Open

2 b − a h
2 ( f0 + f1) Trapezoidal Closed

3 b−a
2

h
3 ( f0 + 4 f1 + f2) Simpson Closed

4 b−a
3

3h
8 ( f0 + 3 f1 + 3 f2 + f3) Simpson 3

8 Closed

m b−a
m−1

∫ xm−1
x0

dx P(m)(x) Newton-Cotes Closed

m b−a
m+1

∫ xm+1
x0

dx P(m)(x) Newton-Cotes Open

m Pm(x j ) = 0 b−a
2

∑m
j=1 ξ j f

(
z j

)
Gauss-Legendre Open

z j = a+b
2 + a−b

2 x j

ξ j = 2
(1−x j )

2[P √
m (x j )]2

For a detailed description consult the corresponding sections. Equal grid-spacing is assumed for all
methods except for the Gauss-Legendre quadrature. The explicit values of h depend on the order
of the method and are listed in the table. Furthermore, we use xi = a + ih and denote f (xi ) = fi .
The function P(m)(x) which appears in the description of the Newton-Cotes rules denotes the
m-th orderLagrange interpolating polynomial and Pm(x) is them-th orderLegendre polynomial

ary points themselves are not included, which means that the Gauss-Legendre
quadrature is an open method. Furthermore, it has to be emphasized that low order
Gauss-Legendre parameters can easily be calculated by employing relation (3.44).
This makes the Gauss-Legendre quadrature the predominant integration method.
In comparison to the trapezoidal rule or even theRombergmethod, it needs in many
cases a smaller number of grid-points, is simpler to implement, converges faster and
yields more accurate results. One drawback of this method is that one has to compute
the reduced function F(x) at the zeros of the Legendre polynomial xi . This can be
a problem if the integrand at hand is not known analytically.

It is important to note at this point that comparable procedures exist which use
other types of orthogonal polynomials, such asHermitepolynomials. This procedure
is known as the Gauss-Hermite quadrature.

Table 3.1 lists the methods, discussed in the previous sections, which allow to
calculate numerically an estimate of integrals of the form:

b∫

a

dx f (x). (3.62)
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Equal grid-spacing h is assumed, with the Gauss-Legendre method as the only
exception. The particular value of h depends on the order of the method employed
and is given in Table 3.1.

3.7 An Example

Let us discuss as an example the following proper integral

I =
1∫

−1

dx

x + 2
= ln(3) − ln(1) ∈ 1.09861. (3.63)

The numerical value was obtained with a TI- 30XIIB pocket calculator. We will now
apply the variousmethods of Table 3.1 to solve this problem. Note that thesemethods
could give better results if a finer grid had been chosen. However, since this is only
an illustrative example, we wanted to keep it as simple as possible. The rectangular
rule gives

IR = 1 · 1
2

= 0.5, (3.64)

the trapezoidal rule

IT = 2

2

(
1

1
+ 1

3

)
= 4

3
= 1.333 . . . , (3.65)

and an application of the Simpson rule yields

IS = 1

3

(
1

1
+ 4

2
+ 1

3

)
= 10

9
= 1.111 . . . . (3.66)

Finally, we apply theGauss-Legendre quadrature in a second order approximation.
We could look up the parameters in Ref. [3], however, for illustrative reasons we will
calculate those in this simple case. For a second order approximation we need the
Legendre polynomial of second order. It can be obtained fromRodrigues’ formula
(3.44):

P2(x) = 1

222!
d2

dx2

(
x2 − 1

)2

= 1

8

d

dx
4x(x2 − 1)

= 1

2

[
(x2 − 1) + 2x2

]

= 1

2

(
3x2 − 1

)
. (3.67)
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In a next step the zeros x1 and x2 of P2(x) are determined from Eq. (3.67) which
results immediately in:

x1,2 = ± 1⇐
3

∈ ±0.57735. (3.68)

The weights ξ1 and ξ2 can now be evaluated according to Eq. (3.60):

ξi = 2

(1 − x2i )
[
P √
2(xi )

]2 . (3.69)

It follows from Eq. (3.67) that
P √
2(x) = 3x, (3.70)

and, thus,
P √
2(x1) = −⇐

3 and P √
2(x2) = ⇐

3. (3.71)

This is used to calculate the weights from Eq. (3.69):

ξ1 = ξ2 = 2(
1 − 1

3

) · 3 = 1. (3.72)

We combine the results (3.68) and (3.72) to arrive at the Gauss-Legendre estimate
of the integral (3.63):

IGL = 1

− 1⇐
3

+ 2
+ 1

1⇐
3

+ 2
= 1.090909 . . . . (3.73)

Obviously, a second order Gauss-Legendre approximation results already in a
much better estimate of the integral (3.63) than the trapezoidal rule which is also
of second order. It is also better than the estimate by the Simpson rule which is of
third order. Another point which makes the Gauss-Legendre quadrature so attrac-
tive from the numerical point of view is the fact that all coefficients in the Gauss-
Legendre quadrature are independent of the function one wishes to integrate.

There is a drawback though: it is not easy to apply the Gauss-Legendre
algorithm to calculate numerically estimates of integrals over functions f (x) not
defined analytically. All other methods listed in Table 3.1 are not restricted at all to
an analytic representation of the integrand.

3.8 Concluding Discussion

Let us briefly discuss some further aspects of numerical integration. In many cases
one is confronted with improper integrals of the form
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≈∫

a

dx f (x),

a∫

−≈
dx f (x), or

≈∫

−≈
dx f (x). (3.74)

The question arises whether or not we can treat such an integral with the methods
discussed so far. The answer is yes, it is possible as we will demonstrate using the
integral

I =
≈∫

a

dx f (x). (3.75)

as an example; other integrals can be treated in a similar fashion. We rewrite
Eq. (3.75) as

I = lim
b∞≈

b∫

a

dx f (x) = lim
b∞≈ I (b). (3.76)

One now calculates I (b1) for some b1 > a and I (b2) for some b2 > b1. If
|I (b2) − I (b1)| < θ, where θ > 0 is the required accuracy, the resulting value
I (b2) can be regarded as the appropriate estimate to I .1 However, in many cases it
is easier to perform an integral transform in order to map the infinite interval onto a
finite interval. For instance, consider [4]

I =
≈∫

0

dx
1(

1 + x2
) 4
3

. (3.77)

The transformation

t = 1

1 + x
(3.78)

gives

I =
1∫

0

dt
t
2
3

[
t2 + (1 − t)2

] 4
3

. (3.79)

Thus, we mapped the interval [0,≈) ∞ [0, 1]. Integral (3.79) can now be
approximated with help of the methods discussed in the previous sections. These
can also be applied to approximate convergent integrals whose integrand shows sin-
gular behavior within [a, b].

An interesting situation arises when the integrand f (x) is not smooth within the
interval I : x ∀ [a, b]. Nevertheless, it will be safe to assume that f (x) will at least
be piecewise smooth within this interval. In this case the total integral is split into a

1 Particular care is required when dealing with periodic functions!



3.8 Concluding Discussion 47

sum over sub-intervals within which f (x) is smooth. Let us, for instance, regard the
function

f (x) =
{

x cos(x), x < 0,
x sin(x), x ≥ 0,

and calculate the integral over the interval I : x ∀ [−10, 10] as
10∫

−10

dx f (x) =
0∫

−10

dx x cos(x) +
10∫

0

dx x sin(x).

We generalize this result and write

∫

I

dx f (x) =
∑

k

∫

Ik

dx f (x), (3.80)

with sub-intervals Ik ∀ I,∀k and the integrand f (x) is assumed to be smooth within
each sub-interval Ik but not necessarily within the interval I . We can then apply one
of the methods discussed in this chapter to calculate an estimate of the integral over
any of the sub-intervals Ik .

Another interesting question is whether or not we can also evaluate multiple
integrals with the help of the above formalisms. Again, the answer is yes. Similar
to the discussion in Sect. 2.5 about the approximation of partial derivatives on the
basis of finite differences, one can apply the rules of quadrature developed here
for different dimensions to obtain an estimate of the desired integral. However, the
complexity of the problem is significantly increased if the integration boundaries are
functions of the variables rather than constants. For instance,

b∫

a

dx

ϕ2(x)∫

ϕ1(x)

dy f (x, y). (3.81)

Such cases are rather difficult to handle and the method to choose depends highly on
the form of the functions ϕ1(x), ϕ2(x) and f (x, y). We will not deal with integrals
of this kind because this is beyond the scope of this book. The interested reader is
referred to books by Dahlquist and Björk [5] and by Press et al. [6].

Summary

The starting point was the concept of finite differences (Sect. 2.2). Based on this
concept proper integrals over smooth functions f (x) have been approximated by
a sum over elemental areas with the elemental area defined as the area under

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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f (x) between two consecutive grid-points. The simplest method, the rectangu-
lar rule, was based on forward/backward differences. It is a closed method, i.e.
the functional values at the boundaries are included. On the other hand, a rec-
tangular rule based on central differences is an open method, i.e. the functional
values at the boundaries are not included. Using the Taylor expansion (2.7)
revealed that the methodological error of the rectangular rule was of order O(h2).
With the elemental area approximated by a trapezoid we arrived at the trapezoidal
rule. It is a closed method and the methodological error is of order O(h3). If higher
order derivatives of f (x) are included the Simpson rules of quadrature are derived.
They allowed a remarkable reduction of the methodological error. A more general
formulation of all these methods was based on the interpolation of the function f (x)

using Lagrange interpolating polynomials of order n and resulted in the class of
Newton-Cotes rules. For various orders of n of the interpolating polynomial all
the above rules have been derived. Within this context a particularly useful method,
the Rombergmethod, was discussed. By adding diligently only two-point rules the
error of the numerical estimate of the integral has been made arbitrarily small. An
even more general approach was offered by theGauss-Legendre quadrature which
used Legendre polynomials of order τ to approximate the function f (x). The grid-
points were defined by the zeros of the τ-th order polynomial and the weights ξi in
Eq. (3.1) were proportional to the square of the inverse first derivative of the poly-
nomial. This method had the enormous advantage that the grid-points and weights
were independent of the function f (x) and, thus, can be determined once and for all
for any polynomial order τ. Error analysis proved that this method had the smallest
methodological error.

Problems

We consider the interval I = [−5, 5] together with the functions g(x) and h(x):

g(x) = exp
(
−x2

)
and h(x) = sin(x).

We discretize the interval I by introducing N equally spaced grid-points. The
corresponding N − 1 sub-intervals are denoted by I j , j = 1, . . . N − 1. In the
following we wish to calculate estimates of the integrals

I1 =
∫

I

dx g(x) and I2 =
∫

I

dx h(x).

Furthermore, we add a third integral of the form

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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I3 =
∫

I

dx h2(x) =
∫

I

dx sin2(x),

to our discussion.

1. EvaluateI1 with the help of the error function erf(x), which should be supplied
by the environment you use as an intrinsic function. Note that the error function
is defined as

erf(x) = 2⇐
α

x∫

0

dz exp(−z2). (3.82)

Hence you should be able to express I1 in terms of erf(x).
2. Calculate I2 and I3 analytically.
3. In order to approximate I1, I2 and I3 with the help of the two second order

methods we discussed in this chapter, employ the following strategy: First the
integrals are rewritten as ∫

I

dx · =
∑

i

∫

Ii

dx · ,

where · is a placeholder for g(x), h(x) and h2(x). In a second step the integrals
are approximated by ∫

Ii

dx ·, i = 1, . . . , N − 1 ,

with (i) the central rectangular rule and (ii) the trapezoidal rule.
4. In addition, we approximate the integralsI1,I2 andI3 by employingSimpson’s

rule for odd N . Here
∫

I

dx · =
∫

I1∪I2

dx · +
∫

I3∪I4

dx · + · · · +
∫

IN−2∪IN−1

dx · ,

is used as it was discussed in Sect. 3.4.
5. Compare the results obtained with different algorithms and different numbers of

grid-points, N . Plot the absolute- and the relative error as a function of N .
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Chapter 4
The KEPLER Problem

4.1 Introduction

The Kepler problem is certainly one of the most important problems in the history
of physics and natural sciences in general. We will study this problem for several
reasons: (i) it is a nice demonstration of the applicability of themethods introduced in
the previous chapters, (ii) important concepts of the numerical treatment of ordinary
differential equations can be introduced quite naturally, and (iii) it allows to revisit
some of the most important aspects of classical mechanics.

TheKepler problem is a special case of the two-body problem,which is discussed
in Appendix A. Let us summarize the main results. The symmetries of the two
body problem allow several simplifications: (i) one can reduce the problem to a two
dimensional one body problem in a central potential, (ii) they guarantee conservation
of the energy E, and (iii) the angular momentum ξ is conserved. Due to the reduction
to a two dimensional problem in a central potential, one usually regards the problem
in polar coordinates (θ, ω).

The final differential equations, which have to be solved are of the form

ω̇ = |ξ|
μθ2 , (4.1)

and

θ̇ = ±
√

2

μ

(
E − U(θ) − |ξ|2

2μθ2

)
, (4.2)

which gives an implicit equation for θ

t = t0 +
θ∫

θ0

dθ∈ μθ∈√
μθ∈2 [E − U(θ∈)] − |ξ|2 , (4.3)

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 51
DOI: 10.1007/978-3-319-02435-6_4, © Springer International Publishing Switzerland 2014
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Fig. 4.1 Schematic illustra-
tion of the effective potential
Ueff (θ) versus θ (solid line,
right hand scale). The axis
annotations are in arbitrary
units,Ugrav(θ) (dashed-dotted
line) denotes the gravitational
contribution while Umom(θ)

(dashed line) denotes the
contribution due to the conser-
vation of angular momentum
(Left hand scale applies)

Furthermore, one can show that the angle ω is related to the radius θ by

ω = ω0 ± |ξ|
θ∫

θ0

dθ∈

θ∈√2μθ∈2 [E − U(θ∈)] − |ξ|2 , (4.4)

whereω0 = ω(t0) and t0 is some starting point on the time scale. Here, one commonly
defines the effective potential Ueff (θ) as

Ueff (θ) = U(θ) + |ξ|2
2μθ2 , (4.5)

which is shown schematically in Fig. 4.1 (solid black line) together with the grav-
itational contribution Ugrav(θ) = U(θ) (dashed-dotted line) and the contribution
Umom = |ξ|2/(2μθ2) (dashed line), the potential due to conservation of angular
momentum.

In case of the Kepler problem a gravitational potential of the form

U(θ) = −τ

θ
, τ > 0 (4.6)

is applied.

4.2 The Problem

Let us investigate the particular case of a gravitational potential of the form (4.6).
Hence, we rewrite Eq. (4.4) as
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ω = ω0 ±
θ∫

θ0

dθ∈ |ξ|
μθ∈2

[
2

μ

(
E + τ

θ∈ − |ξ|2
2μθ∈2

)]− 1
2

. (4.7)

The substitution

u = 1

θ
, du = −dθ

θ2 , (4.8)

simplifies (4.7) to

ω = ω0 ∀
u2∫

u1

du
|ξ|
μ

[
2

μ

(
E + τu − |ξ|2u2

2μ

)]− 1
2

= ω0 ∀
u2∫

u1

du

[
2μE

|ξ|2 + 2μτ

|ξ|2 u − u2
]− 1

2

, (4.9)

where the integration boundaries u1 and u2 are given by 1/θ0 and 1/θ, respectively.
Let us evaluate this integral. We recognize that

2μE

|ξ|2 + 2μτ

|ξ|2 u − u2 = 2μE

|ξ|2 + μ2τ2

|ξ|4 −
(

u − μτ

|ξ|2
)2

. (4.10)

Therefore, the substitution
v = u − μτ

|ξ|2 , (4.11)

gives

∫
du

[
2μE

|ξ|2 + 2μτ

|ξ|2 u − u2
]− 1

2 =
∫

dv

[
2μE

|ξ|2 + μ2τ2

|ξ|4 − v2
]− 1

2

=
∫

dw≈
1 − w2

, (4.12)

where we employed one more substitution, namely:

w =
(
2μE

|ξ|2 + μ2τ2

|ξ|4
)− 1

2

v. (4.13)

Equation (4.12) is easily integrated with the help of the substitution w = cos(z):
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∫
dw≈
1 − w2

= − cos−1 (w)

= − cos−1

⎛
⎧

|ξ|
θ

− μτ
|ξ|⎪

2μE + μ2τ2

|ξ|2

⎨
⎩ . (4.14)

Hence, Eq. (4.7) yields for a gravitational potential of the form (4.6) the equation:

ω = ω0 ± cos−1

⎛
⎧

|ξ|
θ

− μτ
|ξ|⎪

2μE + μ2τ2

|ξ|2

⎨
⎩+ const. (4.15)

In order to characterize the solution (4.15), we introduce the parameters

a = |ξ|2
μτ

(4.16)

and the eccentricity π

π =
√
1 + 2E|ξ|2

μτ2 . (4.17)

Hence, neglecting the integration constant and setting ω0 = 0, Eq. (4.15) reads

a

θ
= 1 + π cos (ω). (4.18)

This equation describes for π > 1 a hyperbola, for π = 1 a parabola and for π < 1
an ellipse. The case π = 0 is a special case of the ellipse and describes a circle with
radius θ = a. A more detailed discussion of this result, in particular the derivation of
Kepler’s laws can be found in any textbook on classical mechanics [1]. We discuss
now some numerical aspects.

4.3 Numerical Treatment

In the previous section we solved the Kepler problem by evaluating the integrand
Eq. (4.7) expressing the angle ω as a function of the radius θ. However, in this section
we aim at solving the integral equation Eq. (4.3) numerically with the help of the
methods discussed in the previous chapter. Remember that Eq. (4.3) expresses the
time t as a function of the radius θ. This implicit equation has to be inverted, in
order to obtain θ(t), which, in turn, is then inserted into Eq. (4.1) which allows to
obtain the angle ω(t) as a function of time. This discussion will lead us in a natural
way to the most common techniques applied to solve ordinary differential equations,
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which is of no surprise since we remember that Eq. (4.3) is nothing but the integral
representation of Eq. (4.2).

We give a short outline ofwhatwe plan to do.We discretize the time axis in equally
spaced time steps ϕt, i.e. tn = t0 + nϕt. Accordingly, we define the radius θ at time
t = tn as θ(tn) = θn. We can use the methods introduced in Chap.3 to approximate
the integral Eq. (4.3) from some θn to θn+1. According to Chap.3, the absolute error
introduced will behave like α = |θn − θn+1|ε , where the explicit value of ε depends
on themethod used. However, since the radius θ changes continuously with time t we
know that for sufficiently small values of ϕt the error α will also become arbitrarily
small. If we start from some initial values t0 and θ0, we can successively calculate
the values θ1, θ2, …, by applying a small time step ϕt.

Let us start by rewriting Eq. (4.3) as:

t − t0 =
θ∫

θ0

dθ∈f (θ∈). (4.19)

As we discretized the time axis in equally spaced increments tn = t0 + nϕt and
defined θn = θ(tn), we can rewrite Eq. (4.19) as

ϕt = tn − tn−1 =
∫ θn+1

θn

dθ∈f (θ∈). (4.20)

The forward rectangular rule, (3.9) results in the approximation

ϕt = (θn+1 − θn) f (θn). (4.21)

We solve this equation for θn+1 and and obtain the expression

θn+1 = h(θn)ϕt + θn, (4.22)

where we defined

h(θ) = 1

f (θ)
=
√

2

μ

[
E − Ueff (θ)

⎜
, (4.23)

following Eqs. (4.2) and (4.5). As (4.3) is the integral representation of the ordinary
differential equation (4.2), approximation (4.22) corresponds to the approximation

D+θn = h(θn), (4.24)

where D+θn is the forward difference derivative (2.10a), given by

D+θn = θn+1 − θn

ϕt
. (4.25)

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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The left hand side of the discretized differential equation (4.24) is independent of
θn+1, this method is referred to as an explicit method. In particular, consider an
ordinary differential equation of the form

ẏ = F(y). (4.26)

Then the approximation method is referred to as an explicit Euler method if it is of
the form

yn+1 = yn + F(yn)ϕt. (4.27)

Note that y might be a vector.
Let us use the backward rectangular rule (3.10) to solve Eq. (4.20). We obtain

tn+1 − tn = (θn+1 − θn) f (θn+1), (4.28)

or equivalently
θn+1 = θn + h(θn+1)ϕt. (4.29)

Again, this corresponds to an approximation of the differential equation (4.2) by

D−θn+1 = h(θn+1), (4.30)

where D−(θn+1) is the backward difference derivative (2.10b) given by

D−θn+1 = θn+1 − θn

ϕt
. (4.31)

Note, that on the left hand side of Eq. (4.29) the quantity of interest θn+1 still appears
in the argument of the function h (4.23). Therefore, (4.29) is an implicit equation for
θn+1 which has to be solved. In general, if the problem (4.26) is approximated by an
algorithm of the form

yn+1 = yn + F(yn+1)ϕt, (4.32)

it is referred to as an implicit Euler method. Note that the implicit equation
(4.32) might be be analytically unsolvable. Hence, one has to employ a numerical
method to solve (4.32) which will also imply a numerical error. However, in case of
Eq. (4.29) we can solve the equation analytically since it is a fourth order polynomial
in θn+1 of the form

θ4
n+1 − 2θnθ

3
n+1 + θ2

nθ2
n+1 − 2τϕt2

μ
θn+1 +

(
|ξ|2 + 2E

μ

)
ϕt2 = 0. (4.33)

The solution of the above Eq. (4.33) is quite tedious and will not be discussed here,
however, the method one employs is referred to as Ferrari’s method [2].

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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A natural way to proceed is to regard the central rectangular rule (3.13) in a next
step. Within this approximation we obtain for Eq. (4.19)

ϕt = (θn+1 − θn)f

(
θn+1 + θn

2

)
, (4.34)

which is equivalent to the implicit equation

θn+1 = θn + h

(
θn+1 + θn

2

)
ϕt. (4.35)

It can be written as an approximation to Eq. (4.2) with help of the central difference
derivative Dcθn+ 1

2
:

Dcθn+ 1
2

= h

(
θn+1 + θn

2

)
. (4.36)

In general, for a problem of the form (4.26) a method of the form

yn+1 = yn + F

(
yn+1 + yn

2

)
ϕt, (4.37)

is referred to as the implicit midpoint rule. We note that this method might be more
accurate since the error of the rectangular rule scales like O(h2) while the error of
the forward and backward rectangular rules scale like O(h). Nevertheless, in case
of the Kepler problem, one can solve the implicit equation (4.35) analytically for
θn+1 which is certainly of advantage.

In summarywediscussed threemethodswhichwe can employ to solve an ordinary
differential equation of the form (4.26). Thesemethodswere introducedwith the help
of the particular case of the Kepler problem. More general and advanced methods
to solve ordinary differential equations and a more systematic description of these
methods will be offered in the next chapter.

However, let us discuss another point before proceeding to the chapter on the
numerics of ordinary differential equations. As demonstrated in Sect. 1.3 the approx-
imation of the integral (4.3) involves a numerical error.What will be the consequence
of this error? Since we demonstrated that the approximations we discussed result in a
differential equation in finite difference form, i.e. Eqs. (4.24), (4.30), and (4.35), we
know that the derivative θ̇ will exhibit an error. Consequently, energy conservation,
as discussed in Appendix A, Eq. (A.27) will be violated.

This is definitely not desirable. There is a special class of methods, known as
symplectic integrators which were specifically designed for such cases. They are
based on a formulation of the problem using Hamilton’s equations of motion. Let
us regard the particular case of the Kepler problem. In this case the Hamilton
function reads (in some scaled units)

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_1
http://dx.doi.org/10.1007/978-3-319-02435-6_A
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H(p, q) = 1

2

(
p21 + p22

)
− 1⎪

q21 + q22

. (4.38)

Here p = (p1, p2) are the generalizedmomentum coordinates of themass point in the
two-dimensional plane and (q1, q2) are the generalized position coordinates. From
this Hamilton’s equations of motion

(
q̇
ṗ

)
=
( ∞pH(p, q)

−∞qH(p, q)

)
=
(

a(q, p)

b(q, p)

)
, (4.39)

follow. Here the functions a(q, p) and b(q, p) have been introduced for a more con-
venient notation. Note that these functions are two dimensional objects in the case
of Kepler’s problem. In this case the so called symplectic Euler method is given
by

qn+1 = qn + a(qn, pn+1)ϕt,

pn+1 = pn + b(qn, pn+1)ϕt. (4.40)

Obviously, the first equation is explicit while the second is implicit. An alternative
formulation reads

qn+1 = qn + a(qn+1, pn)ϕt,

pn+1 = pn + b(qn+1, pn)ϕt, (4.41)

where the first equation is implicit and the second equation is explicit. Of course,
(4.39) may be solved with the help of the explicit Eulermethod (4.27), the implicit
Euler method (4.32) or the implicit midpoint rule (4.37). The solution should be
equivalent to solving Eq. (4.3) with the respective method and then calculating (4.1)
successively. Again, a more systematic discussion of symplectic integrators can be
found in the following chapters.

Let us conclude this chapter with a final remark. We decided to solve Eqs. (4.3)
and (4.1) because wewanted to reproduce the dynamics of the system, i.e. wewanted
to obtain θ(t) and ω(t). This directed us to the numerical solution of two integrals.
If we wanted to employ symplectic methods, which provide several advantages, we
would have to solve four differential equations Eq. (4.39) instead of two integrals.
Moreover, if we are not interested in the time evolution of the system but in the form
of the trajectory in general, we could simply evaluate the integral (4.4) analytically
or, if an analytical solution is not feasible for the potential U(θ) one is interested in,
numerically. Methods to approximate such an integral were extensively discussed in
Chap.3.

http://dx.doi.org/10.1007/978-3-319-02435-6_3
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Summary

Kepler’s two-body problemwas used as an incentive to introduce intuitively numer-
ical methods to solve ordinary first order differential equations. To serve this purpose
the basic differential equations were transformed into integral form. These integrals
were then solved with the help of the rules discussed in Sect. 3.2. Three basic meth-
ods have been identified, namely the explicit Euler method (based on the forward
difference derivative), the implicit Eulermethod (based on the backward difference
derivative), and the explicit midpoint rule (based on the central rectangular rule).
Shortcomings of these methods have been discussed briefly as were remedies to
overcome those shortcomings.
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Chapter 5
Ordinary Differential Equations: Initial Value
Problems

5.1 Introduction

In this chapter we will introduce common numeric methods designed to solve initial
value problems.Within our discussion of theKepler problem in the previous chapter
we introduced four concepts, namely the implicit Eulermethod, the explicit Euler
method, the implicit midpoint rule, andwementioned the symplectic Eulermethod.
In this chapter we plan to put thesemethods into amore general context and to discuss
more advanced techniques.

Let us define the problem: We consider initial value problems of the form

{
ẏ(t) = f (y, t),
y(0) = y0,

(5.1)

where y(t) ∈ y is an n-dimensional vector and y0 is referred to as the initial value
of y. Let us make some remarks about the form of Eq. (5.1).

(i) We note that by posing Eq. (5.1), we assume that the differential equation is
explicit in ẏ; i.e. initial value problems of the form

{
G(ẏ) = f (y, t),
y(0) = y0,

(5.2)

are only considered if G(ẏ) is analytically invertible. For instance, we will not deal
with differential equations of the form

ẏ + log (ẏ) = 1. (5.3)

(ii) We note that Eq. (5.1) is a first order differential equation in y. However, this
is in fact not a restriction since we can transform every explicit differential equation
of order n into a coupled set of explicit first order differential equations. Let us
demonstrate this. We regard an explicit differential equation of the form

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 61
DOI: 10.1007/978-3-319-02435-6_5, © Springer International Publishing Switzerland 2014
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y(n) = f (t; y, ẏ, ÿ, . . . , y(n−1)), (5.4)

where we defined y(k) ∈ dk

dtk y. This equation is equivalent to the set

ẏ1 = y2,

ẏ2 = y3,
...

...

ẏn−1 = yn,

ẏn = f (t, y1, y2, . . . , yn), (5.5)

which can be written as Eq. (5.1). Hence, we can attenuate the criterion discussed
in point (i), i.e. that the differential equation has to be explicit in ẏ, to the criterion
that the differential equation of order n has to be explicit in the n-th derivative of y,
namely y(n).

There is another point required to be discussed before moving on. The numerical
treatment of initial value problems is of inestimable value in physics because many
differential equations, which appear unspectacular at first glance, cannot be solved
analytically. For instance, consider a first order differential equation:

ẏ = t2 + y2. (5.6)

Although this equation appears to be simple, one has to rely on numerical methods
in order to obtain a solution. However, Eq. (5.6) is not well posed since the solution
is ambiguous as long as no initial values are given. A numerical solution is only
possible if the problem is completely defined. In many cases, one uses numerical
methods although the problem is solvable with the help of analytic methods, simply
because the solution would be too complicated. A numerical approach might be
justified, however, one should always remember that [1], quote:

“Numerical methods are no excuse for poor analysis.”

This chapter is augmented by a chapter on the double pendulum, which will serve
as a demonstration of the applicability of Runge-Kutta methods and by a chapter
on molecular dynamics which will demonstrate the applicability of the leap-frog
algorithm.

5.2 Simple Integrators

We start by reintroducing the methods already discussed in the previous chapter.
Again, we discretize the time coordinate t via the relation tn = t0 + nΔt and define
fn ∈ f (tn) accordingly. In the following we will refrain from noting the initial
condition explicitly for a more compact notation. We investigate Eq. (5.1) at some
particular time tn:
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ẏn = f (yn, tn). (5.7)

Integrating both sides of (5.7) over the interval [tn, tn+1] gives

yn+1 = yn +
tn+1∫

tn

dt∀f [y(t∀), t∀]. (5.8)

Note that Eq. (5.8) is exact and it will be our starting point in the discussion of several
paths to a numeric solution of initial value problems. These solutions will be based
on an approximation of the integral on the right hand side of Eq. (5.8) with the help
of the methods already discussed in Chap. 3.

In the following we list four of the best known simple integration methods for
initial value problems:

(1)

Applying the forward rectangular rule (3.9) to Eq. (5.8) yields

yn+1 = yn + f (yn, tn)Δt + O(Δt2), (5.9)

which is the explicitEulermethodwe encountered already in Sect. 4.3. Thismethod
is also referred to as the forward Euler method . In accordance to the forward
rectangular rule, the leading term of the error of this method is proportional to Δt2

as was pointed out in Sect. 3.2.

(2)

We use the backward rectangular rule (3.10) in Eq. (5.8) and obtain

yn+1 = yn + f (yn+1, tn+1)Δt + O(Δt2), (5.10)

which is the implicit Eulermethod, also referred to as backward Euler method. As
already highlighted in Sect. 4.3, it may be necessary to solve Eq. (5.10) numerically
for yn+1 (Some notes on the numeric solution of non-linear equations can be found
in Appendix B).

(3)

The central rectangular rule (3.13) approximates Eq. (5.8) by

yn+1 = yn + f (yn+ 1
2
, tn+ 1

2
)Δt + O(Δt3), (5.11)

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
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and we rewrite this equation in the form:

yn+1 = yn−1 + 2f (yn, tn)Δt + O(Δt3). (5.12)

This method is sometimes referred to as the leap-frog routine or Störmer-Verlet
method. We will come back to this point in Chap. 7. Note that the approximation

yn+ 1
2

≈ yn + yn+1

2
, (5.13)

gives the implicit midpoint rule as it was introduced in Sect. 4.3.

(4)

Employing the trapezoidal rule (3.15) in an approximation to Eq. (5.8) yields

yn+1 = yn + Δt

2

[
f (yn, tn) + f (yn+1, tn+1)

] + O(Δt3). (5.14)

This is an implicit method which has to be solved for yn+1. It is generally known as
the Crank-Nicolson method or simply as trapezoidal method.

Methods (1), (2), and (4) are also known as one-step methods, since only function
values at times tn and tn+1 are used to propagate in time. In contrast, the leap-
frog method is already a multi-step method since three different times appear in
the expression. Basically, there are three different strategies to improve these rather
simple methods:

• Taylor series methods: Use more terms in the Taylor expansion of yn+1.
• Linear Multi-Step methods: Use data from previous time steps yk , k < n in order
to cancel terms in the truncation error.

• Runge-Kutta method: Use intermediate points within one time step.

We will briefly discuss the first two alternatives and then turn our attention to the
Runge- Kutta methods in the next section.

Taylor Series Methods

FromChap. 2we are already familiarwith theTaylor expansion (2.7) of the function
yn+1 around the point yn,

yn+1 = yn + Δtẏn + Δt2

2
ÿn + O(Δt3). (5.15)

We insert Eq. (5.7) into Eq. (5.15) and obtain

http://dx.doi.org/10.1007/978-3-319-02435-6_7
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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yn+1 = yn + Δt f (yn, tn) + Δt2

2
ÿn + O(Δt3). (5.16)

So far nothing has been gained since the truncation error is still proportional to Δt2.
However, calculating ÿn with the help of Eq. (5.7) gives

ÿn = d

dt
f (yn, tn) = ḟ (yn, tn) + f ∀(yn, tn)ẏn = ḟ (yn, tn) + f ∀(yn, tn)f (yn, tn), (5.17)

and this results together with Eq. (5.16) in:

yn+1 = yn + Δt f (yn, tn) + Δt2

2

[
ḟ (yn, tn) + f ∀(yn, tn)f (yn, tn)

] + O(Δt3). (5.18)

This manipulation reduced the local truncation error to orders ofΔt3. The derivatives
of f (yn, tn), f ∀(yn, tn) and ḟ (yn, tn) can be approximated with the help of the methods
discussed in Chap. 2, if an analytic differentiation is not feasible.

The above procedure can be repeated up to arbitrary order in the Taylor expan-
sion (5.15).

Linear Multi-Step Methods

A k-th order linear multi-step method is defined by the approximation

yn+1 =
k∑

j=0

ajyn−j + Δt
k+1∑
j=0

bi f (yn+1−j, tn+1−j), (5.19)

of Eq. (5.8). The coefficients aj and bj have to be determined in such a way that
the truncation error is reduced. Two of the best known techniques are the so called
second order Adams–Bashford methods

yn+1 = yn + Δt

2

[
3f (yn, tn) − f (yn−1, tn−1)

]
(5.20)

and the second order rule (backward differentiation formula)

yn+1 = 1

3

[
4yn − yn−1 + Δt

2
f (yn+1, tn+1)

]
. (5.21)

We note in passing that the backward differentiation formula of arbitrary order
can easily be obtained with the help of the operator technique introduced in Sect. 2.4,
Eq. (2.30).One simply replaces the first derivative on the left hand side by the function
f (yn, tn) according to Eq. (5.7) and calculates the backward difference series on the
right hand side to arbitrary order.

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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In many cases, multi-step methods are based on the interpolation of previously
computed values yk by Lagrange polynomials. This interpolation is then inserted
into Eq. (5.8) and integrated. However, a detailed discussion of such procedures is
beyond the scope of this book. The interested reader is referred to Refs. [2, 3].

Nevertheless, let us make one last point. We note that Eq. (5.19) is explicit for
b0 = 0 and implicit for b0 ∞= 0. Inmany numerical realizations one combines implicit
and explicit multi-step methods in such a way that the explicit result (solve Eq. (5.19)
with b0 = 0) is used as a guess to solve the implicit equation (solve Eq. (5.19) with
b0 ∞= 0). Hence, the explicit method predicts the value yn+1 and the implicit method
corrects it. Such methods yield very good results and are commonly referred to as
predictor–corrector methods [4].

5.3 RUNGE-KUTTA Methods

In contrast to linear multi-step methods, the idea in Runge-Kutta methods is to
improve the accuracy by calculating intermediate grid-points within the interval
[tn, tn+1].Wenote that the approximation (5.11) resulting from the central rectangular
rule is already such a method since the function value yn+ 1

2
at the grid-point tn+ 1

2
=

tn+ Δt
2 is taken into account.We investigate this inmore detail and rewrite Eq. (5.11):

yn+1 = yn + f (yn+ 1
2
, tn+ 1

2
)Δt + O(Δt3). (5.22)

We now have to find appropriate approximations to yn+ 1
2
which will increase the

accuracy of Eq. (5.11). Our first choice is to replace yn+ 1
2
with the help of the explicit

Euler method, Eq. (5.9),

yn+ 1
2

= yn + Δt

2
ẏn = yn + Δt

2
f (yn, tn), (5.23)

which, inserted into Eq. (5.22) yields

yn+1 = yn + f

[
yn + Δt

2
f (yn, tn), tn + Δt

2

]
Δt + O(Δt2). (5.24)

We note that Eq. (5.24) is referred to as the explicit midpoint rule. In analogy we
could have approximated yn+ 1

2
with the help of the implicit Euler method (5.10)

which yields

yn+1 = yn + f

[
yn + Δt

2
f (yn+1, tn+1), tn + Δt

2

]
Δt + O(Δt2). (5.25)
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This equation is referred to as the implicit midpoint rule. Let us explain how we
obtain an estimate for the error in Eqs. (5.24) and (5.25). In case of Eq. (5.24) we
investigate the term

yn+1 − yn − f

[
yn + Δt

2
f (yn, tn), tn + Δt

2

]
Δt.

The Taylor expansion of yn+1 and f (·) around the point Δt = 0 yields

Δt
[
ẏn − f (yn, tn)

] + Δt2

2

[
ÿ − ḟ (yn, tn) − f ∀(yn, tn)ẏn

] + · · · . (5.26)

We observe that the first term cancels because of Eq. (5.7). Consequently, the error
is of order Δt2. A similar argument holds for Eq. (5.25).

Let us introduce a more convenient notation for the above examples before we
concentrate on a more general topic. It is presented in algorithmic form, i.e. it defines
the sequence in which one should calculate the various terms. This is convenient for
two reasons, first of all it increases the readability of complex methods such as
Eq. (5.25) and, secondly, it can be easily identified which part of the method involves
an implicit step which has to be solved separately for the corresponding variable. For
this purpose let us introduce variables Yi of some index i √ 1 and we use a simple
example to illustrate this notation. Consider the explicit Eulermethod (5.9). It can
be written as

Y1 = yn,

yn+1 = yn + f (Y1, tn)Δt. (5.27)

In a similar fashion we write the implicit Euler method (5.10) as

Y1 = yn + f (Y1, tn+1)Δt,

yn+1 = yn + f (Y1, tn+1)Δt. (5.28)

It is understood that the first equation of (5.28) has to be solved for Y1 first and this
result is then plugged into the second equation in order to obtain yn+1. One further
example: the Crank–Nicolson (5.14) method can be rewritten as

Y1 = yn,

Y2 = yn + Δt

2

[
f (Y1, tn) + f (Y2, tn+1)

]
,

yn+1 = yn + Δt

2

[
f (Y1, tn) + f (Y2, tn+1)

]
, (5.29)

where the second equation is to be solved for Y2 in the second step.
In analogy, the algorithmic form of the explicit midpoint rule (5.24) is defined as
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Y1 = yn,

Y2 = yn + Δt

2
f

(
Y1, tn + Δt

2

)
,

yn+1 = yn + Δt

2
f

(
Y2, tn + Δt

2

)
, (5.30)

and we find for the implicit midpoint rule (5.25):

Y1 = yn + Δt

2
f

(
Y1, tn + Δt

2

)
,

yn+1 = yn + Δt f

(
Y1, tn + Δt

2

)
. (5.31)

The above algorithms are all examples of the so called Runge-Kutta methods.
We introduce the general representation of a d-stage Runge-Kutta method:

Yi = yn + Δt
d∑

j=1

aij f
(
Yj, tn + cjΔt

)
, i = 1, . . . , d,

yn+1 = yn + Δt
d∑

j=1

bi f
(
Yj, tn + cjΔt

)
. (5.32)

We note that Eq. (5.32) it is completely determined by the coefficients aij, bj and
cj. In particular a = {aij} is a d × d matrix, while b = {bj} and c = {cj} are d
dimensional vectors.

Butcher tableaus are a very useful tool to characterize such methods. They
provide a structured representation of the coefficient matrix a and the coefficient
vectors b and c:

c1 a11 a12 . . . a1d
c2 a21 a22 . . . a2d
...

...
...

. . .
...

cd ad1 ad2 . . . add

b1 b2 . . . bd

(5.33)

We note that the Runge-Kutta method (5.32) or (5.33) is explicit if the matrix a is
zero on and above the diagonal, i.e. aij = 0 for j √ i. Let us rewrite all the methods
described here in the form of Butcher tableaus:
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Explicit EULER:

0 0
1

(5.34)

Implicit EULER:

1 1
1

(5.35)

Crank- Nicolson:

0 0 0
1 1

2
1
2

1
2

1
2

(5.36)

Explicit Midpoint:

0 0 0
1
2

1
2 0

1
2

1
2

(5.37)

Implicit Midpoint:

1
2

1
2

1
(5.38)

With the help of Runge–Kutta methods of the general form (5.32) one can
develop methods of arbitrary accuracy. One of the most popular methods is the
explicit four stage method (we will call it e-RK-4) which is defined by the algorithm:

Y1 = yn,

Y2 = yn + Δt

2
f (Y1, tn),

Y3 = yn + Δt

2
f

(
Y2, tn + Δt

2

)
,

Y4 = yn + Δt f

(
Y3, tn + Δt

2

)
,

yn+1 = yn + Δt

6

[
f (Y1, tn) + 2f

(
Y2, tn + Δt

2

)
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+ 2f

(
Y3, tn + Δt

2

)
+ f (Y4, tn)

]
. (5.39)

This method is an analogue to the Simpson rule of numerical integration as discussed
in Sect. 3.4. However, a detailed compilation of the coefficient array a and coefficient
vectors b, and c is quite complicated. A closer inspection reveals that the method-
ological error of this method behaves as Δt5. The algorithm e-RK-4, Eq. (5.39), is
represented by a Butcher tableau of the form

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

(5.40)

Another quite popular method is given by the Butcher tableau

1
2 −

⇒
3
6

1
4

1
4 −

⇒
3
6

1
2 +

⇒
3
6

1
4 +

⇒
3
6

1
4

1
2

1
2

(5.41)

We note that this method is implicit and mention that it corresponds to the two point
Gauss-Legendre quadrature of Sect. 3.6.

A further improvement of implicit Runge-Kutta methods can be achieved by
choosing the Yi in such a way that they correspond to solutions of the differential
equation (5.7) at intermediate time steps. The intermediate time steps at which one
wants to reproduce the function are referred to as collocation points. At these points
the functions are approximated by interpolation on the basis of Lagrange polyno-
mials, which can easily be integrated analytically. However, the discussion of such
collocation methods [4] is far beyond the scope of this book.

In general Runge-Kutta methods are very useful. However one always has to
keep in mind that there could be better methods for the problem at hand. Let us close
this section with a quote from the book by Press et al. [5]:

“For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive step-size algorithm. Keep in
mind, however, that the old workhorse’s last trip may well take you to the poorhouse:
Bulirsch-Stoer or predictor-corrector methods can be very much more efficient for
problems where high accuracy is a requirement. Those methods are the high-strung
racehorses. Runge-Kutta is for ploughing the fields.”

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3
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5.4 Hamiltonian Systems: Symplectic Integrators

Let us define a symplectic integrator as a numerical integration in which the mapping

ΦΔt : yn ≤≥ yn+1, (5.42)

is symplectic. Here ΦΔt is referred to as the numerical flow of the method. If we
regard the initial value problem (5.1) we can define in an analogous way the flow
of the system ϕt as

ϕt(y0) = y(t). (5.43)

For instance, if we consider the initial value problem

{
ẏ = Ay,
y(0) = y0,

(5.44)

where y ∓ R
n and A ∓ R

n×n, then the flow of the system ϕt is given by:

ϕt(y0) = exp(At)y0. (5.45)

On the other hand, if we regard two vectors v, w ∓ R
2, we can express the area ω

of the parallelogram spanned by these vectors as

ω(v, w) = det(vw) = v

(
0 1

−1 0

)
w = ad − bc, (5.46)

where we put v = (a, b)T and w = (c, d)T . More generally, if v, w ∓ R
2d , we have

ω(v, w) = v

(
0 I

−I 0

)
w ∈ vJw, (5.47)

where I is the d × d dimensional unity matrix. Hence (5.47) represents the sum of
the projected areas of the form

det

(
vi wi

vi+d wi+d

)
. (5.48)

If we regard a mapping M : R2d ≤≥ R
2d and require that

ω(Mv, Mw) = ω(v, w), (5.49)

i.e. the area is preserved, we obtain the condition that

MT JM = J, (5.50)
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which is equivalent to det(M) = 1. Finally, a differentiable mapping f : R2d ≤≥ R
2d

is referred to as symplectic if the linear mapping f ∀(x) (Jacobi matrix) conserves ω

for all x ∓ R
2d . One can easily prove that the flow of Hamiltonian systems (energy

conserving) is symplectic, i.e. area preserving in phase space. Every Hamiltonian
system is characterized by its Hamilton function H(p, q) and the corresponding
Hamilton equations of motion:

ṗ = −→qH(p, q) and q̇ = →pH(p, q). (5.51)

We define the flow of the system via

ϕt(x0) = x(t), (5.52)

where

x0 =
(

p0
q0

)
and x(t) =

(
p(t)
q(t)

)
. (5.53)

Hence we rewrite (5.51) as
ẋ = J−1→xH(x), (5.54)

and note that x ∈ x(t, x0) is a function of time and initial conditions. In a next step
we define the Jacobian of the flow via

Pt(x0) = →x0φt(x0), (5.55)

and calculate

Ṗt(x0) = →x0 ẋ

= J−1→x0→xH(x)

= J−1ΔxH(x)→x0x

= J−1ΔxH(x)Pt(x0)

=
(−→qpH(p, q) −→qqH(p, q)

→ppH(p, q) →pqH(p, q)

)
Pt(x0). (5.56)

Hence, Pt is given by the solution of the equation

Ṗt = J−1ΔxH(x)Pt . (5.57)

Symplecticity ensures that the area

PT
t JPt = const, (5.58)

which canbe verifiedby calculating d
dt

(
PT

t JPt
)
wherewekeep inmind that JT = −J .

Hence,
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d

dt
PT

t JPt = ṖT
t JPt + PT

t JṖt

= PT
t ΔxH(x)(J−1)T JPt + PT

t JJ−1ΔxH(x)Pt

= 0, (5.59)

if the Hamilton function is conserved, i.e.

∂

∂t
H(p, q)

!= 0. (5.60)

This means that the flow of a Hamiltonian system is symplectic, i.e. area preserving
in phase space.

Since this conservation law is violated by methods like e-RK-4 or explicit
Euler, one introduces so called symplectic integrators, which have been particu-
larly designed as a remedy to this shortcoming. A detailed investigation of these
techniques is far too engaged for this book. The interested reader is referred to Refs.
[6–9].

However, we provide a list of the most important integrators.

Symplectic Euler

qn+1 = qn + a(qn, pn+1)Δt, (5.61a)

pn+1 = pn + b(qn, pn+1)Δt. (5.61b)

Here a(p, q) = →pH(p, q) and b(p, q) = −→qH(p, q) have already been defined in
Sect. 4.3.

Symplectic Runge–Kutta

It can be demonstrated that a Runge-Kuttamethod is symplectic if the coefficients
fulfill

biaij + bjaji = bibj, (5.62)

for all i, j [7]. This is a property of the collocation methods based on Gauss points ci.

5.5 An Example: The KEPLER Problem, Revisited

It has already been discussed in Sect. 4.3 that the Hamilton function of this system
takes on the form

H(p, q) = 1

2

(
p21 + p22

)
− 1√

q21 + q22

, (5.63)

and Hamilton’s equations of motion read

http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_4
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ṗ1 = −→q1H(p, q) = − q1

(q21 + q22)
3
2

, (5.64a)

ṗ2 = −→q2H(p, q) = − q2

(q21 + q22)
3
2

, (5.64b)

q̇1 = →p1H(p, q) = p1, (5.64c)

q̇2 = →p2H(p, q) = p2. (5.64d)

We now introduce the time instances tn = t0 + nΔt and define qn
i ∈ qi(tn) and

pn
i ∈ pi(tn) for i = 1, 2. In the following we give the discretized recursion relation
for three different methods, namely explicit Euler, implicit Euler, and symplectic
Euler.

Explicit EULER

In case of the explicit Euler method we have simple recursion relations

pn+1
1 = pn

1 − qn
1Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.65a)

pn+1
2 = pn

2 − qn
2Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.65b)

qn+1
1 = qn

1 + pn
1Δt, (5.65c)

qn+1
2 = qn

2 + pn
2Δt. (5.65d)

Implicit EULER

We obtain the implicit equations

pn+1
1 = pn

1 − qn+1
1 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.66a)

pn+1
2 = pn

2 − qn+1
2 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.66b)

qn+1
1 = qn

1 + pn+1
1 Δt, (5.66c)

qn+1
2 = qn

2 + pn+1
2 Δt. (5.66d)

These implicit equations can be solved, for instance, by the use of the Newton
method discussed in Appendix B.
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Symplectic Euler

Employing Eqs. (5.61) gives

pn+1
1 = pn

1 − qn
1Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.67a)

pn+1
2 = pn

2 − qn
2Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.67b)

qn+1
1 = qn

1 + pn+1
1 Δt, (5.67c)

qn+1
2 = qn

2 + pn+1
2 Δt. (5.67d)

These implicit equations can be solved analytically and we obtain

pn+1
1 = pn

1 − qn
1Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.68a)

pn+1
2 = pn

2 − qn
2Δt

[(qn
1)

2 + (qn
2)

2] 32
, (5.68b)

qn+1
1 = qn

1 + pn
1Δt − qn

1Δt2

[(qn
1)

2 + (qn
2)

2] 32
, (5.68c)

qn+1
2 = qn

2 + pn
2Δt − qn

2Δt2

[(qn
1)

2 + (qn
2)

2] 32
. (5.68d)

A second possibility of the symplectic Euler is given by Eq. (4.41). It reads

pn+1
1 = pn

1 − qn+1
1 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.69a)

pn+1
2 = pn

2 − qn+1
2 Δt

[(qn+1
1 )2 + (qn+1

2 )2] 32
, (5.69b)

qn+1
1 = qn

1 + pn
1Δt, (5.69c)

qn+1
2 = qn

2 + pn
2Δt. (5.69d)

The trajectories calculated using these four methods are presented in Figs. 5.1 and
5.2, the time evolution of the total energy of the system is plotted in Fig. 5.3. The
initial conditions were [7]

p1(0) = 0, q1(0) = 1 − e, (5.70)

and

http://dx.doi.org/10.1007/978-3-319-02435-6_4
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(a) (b)

(c) (d)

Fig. 5.1 Kepler trajectories in position space for the initial values defined in Eqs. (5.70) and (5.71).
They are indicated by a solid square. Solutions have been generated (a) by the explicit Eulermethod
(5.65), (b) by the implicit Euler method (5.66), (c) by the symplectic Euler method (5.68), and
(d) by the symplectic Euler method (5.69)

p2(0) =
√
1 + e

1 − e
, q2(0) = 0, (5.71)

with e = 0.6 which gives H = −1/2. Furthermore, we set Δt = 0.01 for the
symplectic Euler methods and Δt = 0.005 for the forward and backward Euler
methods in order to reduce the methodological error. The implicit equations were
solved with help of the Newton method as discussed in Appendix B. The Jacobi
matrix was calculated analytically, hence no methodological error enters because
approximations of derivatives were unnecessary.

According to theory the q-space and p-space projections of the phase space trajec-
tory are ellipses. Furthermore, energy and angular momentum are conserved. Thus,
the numerical solutions of Hamilton’s equations of motion (5.64) should reflect
these properties. Figures5.1a, b and 5.2a, b present the results of the explicit Euler
method, Eq. (5.65), and the implicit Euler method, Eq. (5.66), respectively. Obvi-
ously, the result does not agree with the theoretical expectation and the trajectories
are open instead of closed. The reason for this behavior is the methodological error
of the method which is accumulative and, thus, causes a violation of energy con-
servation. This violation becomes apparent in Fig. 5.3 where the total energy H(t)
is plotted versus time t. Neither the explicit Euler method (dashed line) nor the
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(a) (b)

(c) (d)

Fig. 5.2 Kepler trajectories in momentum space for the initial values defined in Eqs. (5.70) and
(5.71). They are indicated by a solid square. Solutions have been generated (a) by the explicit Euler
method (5.65), (b) by the implicit Eulermethod (5.66), (c) by the symplectic Eulermethod (5.68),
and (d) by the symplectic Euler method (5.69)

implicit Euler method (short dashed line) conform to the requirement of energy
conservation. We also see step-like structures of H(t). At the center of these steps an
open diamond symbol and in the case of the implicit Euler method an additional
open circle indicate the position in time of the perihelion of the point-mass (point of
closest approach to the center of attraction). It is indicated by the same symbols in
Fig. 5.1a, b. At this point the point-mass reaches its maximum velocity, the pericenter
velocity, and it covers the biggest distances along its trajectory per time interval Δt.
Consequently, the methodological error is biggest in this part of the trajectory which
manifests itself in those steps in H(t). As the point-mass moves ‘faster’ when the
implicit Euler method is applied, again, the distances covered per time interval are
greater than those covered by the point-mass in the explicit Euler method. Thus, it
is not surprising that the error of the implicit Euler method is bigger as well when
H(t) is determined.

These results are in strong contrast to the numerical solutions of Eqs. (5.64)
obtained with the help of symplectic Euler methods which are presented in
Figs. 5.1c, d and 5.2c, d. The trajectories are almost perfect ellipses for both sym-
plectic methods Eqs. (5.68) and (5.69). Moreover, the total energy H(t) (solid and
dashed-dotted lines in Fig. 5.3) varies very little as a function of t. Deviations from
the mean value can only be observed around the perihelion which is indicated by
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Fig. 5.3 Time evolution of the total energyH calculatedwith the help of the fourmethods discussed
in the text. The initial values are given by Eqs. (5.70) and (5.71). Solutions have been generated
(a) by the explicit Euler method (5.65) (dashed line), (b) by the implicit Euler method (5.66)
(dotted line), (c) by the symplectic Euler method (5.68) (solid line), and (d) by the symplectic
Euler method (5.69) (dashed-dotted line)

a solid square. Moreover, these deviations compensate because of the symplectic
nature of the method. This proves that symplectic integrators are the appropriate
technique to solve the equations of motion of Hamiltonian systems.

Summary

We concentrated on numerical methods to solve the initial value problem. The meth-
ods discussed here rely heavily on the various methods developed for numerical
integration because we can always find an integral representation of this kind of
ordinary differential equations. The simple integrators known from Chap. 4 were
augmented by the more general Crank-Nicholson method which was based on
the trapezoidal rule introduced in Sect. 3.3. The simple single-step methods were
improved in their methodological error by Taylor series methods, linear multi-step
methods, and by the Runge-Kutta method. The latter took intermediate points
within the time interval [tn, tn+1] into account. In principle, it is possible to achieve
almost arbitrary accuracy with such a method. Nevertheless, all those methods had
the disadvantage that because of their methodological error energy conservation was
violated when applied to Hamiltonian systems. As this problem can be remedied
by symplectic integrators a short introduction into this topic was provided and the
most important symplectic integrators have been presented. The final discussion of
Kepler’s two-body problem elucidated the various points discussed throughout this
chapter.

http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_3
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Problems

1. Write a program to solve numerically the Kepler problem. The Hamilton func-
tion of the problem is defined as

H(p, q) = 1

2

(
p21 + p22

)
− 1√

q21 + q22

,

and the initial conditions are given by

p1(0) = 0, q1(0) = 1 − e, p2(0) =
√
1 + e

1 − e
, q2(0) = 0,

where e = 0.6. Derive Hamilton’s equations of motion and implement an
algorithm which solves these equations based on the following methods

(a) Explicit Euler,
(b) Symplectic Euler.

2. Plot the trajectories and the total energy as a function of time. You can use the
results presented in Figs. 5.1 and 5.2 to check your code. Modify the initial condi-
tions and discuss the results! Try to confirm Kepler’s laws of planetary motion
with the help of your algorithm.
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Chapter 6
The Double Pendulum

6.1 Hamilton’s Equations

We investigate the dynamics of a double pendulum illustrated schematically in
Fig. 6.1 in two spatial dimensions. It is the aim of this section to derive Hamil-
ton’s equations of motion for this system. In a first step we introduce generalized
coordinates and determine the Lagrange function of the system [1].

Wedetermine the kinetic andpotential energy, introduce generalizedmomenta and
derive theHamilton function from whichHamilton’s equations of motion follow.
These equations will serve as a starting point for the formulation of a numerical
method.

From Fig. 6.1 we find the coordinates of the two masses:

x1 = ξ sin(θ1), z1 = 2ξ − ξ cos(θ1), (6.1)

and

x2 = ξ [sin(θ1) + sin(θ2)] , z2 = 2ξ − ξ [cos(θ1) + cos(θ2)] . (6.2)

Here, 2ξ is the pendulum’s total length. The angles θi , i = 1, 2 are defined in Fig. 6.1.
We note that ξ = const and obtain the time derivatives of the coordinates (6.1)

and (6.2):

ẋ1 = ξθ̇1 cos(θ1), (6.3)

ż1 = ξθ̇1 sin(θ1), (6.4)

ẋ2 = ξ [θ̇1 cos(θ1) + θ̇2 cos(θ2)] , (6.5)

ż2 = ξ [θ̇1 sin(θ1) + θ̇2 sin(θ2)] . (6.6)

The Lagrange function of the system is defined by

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 81
DOI: 10.1007/978-3-319-02435-6_6, © Springer International Publishing Switzerland 2014



82 6 The Double Pendulum

Fig. 6.1 Schematic illustra-
tion of the double pendulum.
m are the point-masses, 2ξ is
the total length of the pen-
dulum and θ1, θ2 are the
corresponding angles

L = T − U, (6.7)

with the kinetic energy T and the potential U . The kinetic energy T is given by1

T = m

2

(
ẋ21 + ż21 + ẋ22 + ż22

)

= mξ2

2

{
2θ̇2

1 + θ̇2
2 + 2 [sin(θ1) sin(θ2) + cos(θ1) cos(θ2)] θ̇1θ̇2

}

= mξ2

2

[
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)

]
. (6.8)

The potential energy U is determined by the gravitational force

U = mgz1 + mgz2
= mgξ [4 − 2 cos(θ1) − cos(θ2)] , (6.9)

where g is the acceleration due to gravity. Hence, the Lagrange function L is
determined by:

L = mξ2

2

[
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)

]
− mgξ [4 − 2 cos(θ1) − cos(θ2)] .

(6.10)
Let us introduce generalized momenta pi , i = 1, 2 as

1 We make use of the relation:

sin(x) sin(y) + cos(x) cos(y) = cos(x − y).
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p1 = ω

ωθ̇1
L = mξ2 [2θ̇1 + θ̇2 cos(θ1 − θ2)] , (6.11)

and

p2 = ω

ωθ̇2
L = mξ2 [θ̇2 + θ̇1 cos(θ1 − θ2)] . (6.12)

In the following we solve Eqs. (6.11) and (6.12) for θ̇1 and θ̇2. This will allow to
express the kinetic energy (6.8) in terms of generalized momenta p1 and p2.

In a first step we solve Eq. (6.12) for θ̇2 and obtain

θ̇2 = p2
mξ2

− θ̇1 cos(θ1 − θ2). (6.13)

This result is used to rewrite Eq. (6.11) and we find

p1
mξ2

= 2θ̇1 +
[ p2

mξ2
− θ̇1 cos(θ1 − θ2)

]
cos(θ1 − θ2). (6.14)

Solving for θ̇1 gives

θ̇1 =
[
2 − cos2(θ1 − θ2)

]−1 [ p1
mξ2

− p2
mξ2

cos(θ1 − θ2)
]
. (6.15)

The trigonometric identity

cos2(x) + sin2(x) = 1, (6.16)

changes Eq. (6.15) into

θ̇1 = 1

mξ2

p1 − p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
. (6.17)

This is then used to transform Eq. (6.13) into

θ̇2 = 1

mξ2

[
p2 − p1 cos(θ1 − θ2) − p2 cos2(θ1 − θ2)

1 + sin2(θ1 − θ2)

⎛

= 1

mξ2

p2 + p2 sin2(θ1 − θ2) − p1 cos(θ1 − θ2) + p2 cos2(θ1 − θ2)

1 + sin2(θ1 − θ2)

= 1

mξ2

2p2 − p1 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
. (6.18)

Hence, with help of Eqs. (6.17) and (6.18) we can reevaluate the kinetic energy
(6.8) to give
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T = mξ2

2

[
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)

]

= mξ2

2

⎧
1

mξ2

1

1 + sin2(θ1 − θ2)

⎪2 {
2 [p1 − p2 cos(θ1 − θ2)]

2

+ [2p2 − p1 cos(θ1 − θ2)]
2

+ 2 [p1 − p2 cos(θ1 − θ2)] [2p2 − p1 cos(θ1 − θ2)] cos(θ1 − θ2)
}

= 1

2mξ2

1⎨
1 + sin2(θ1 − θ2)

⎩2
{

p21

[
2 − cos2(θ1 − θ2)

]

+ 2p22

[
2 − cos2(θ1 − θ2)

]
− 2p1 p2 cos(θ1 − θ2)

[
2 − cos2(θ1 − θ2)

]}

= 1

2mξ2

2 − cos2(θ1 − θ2)⎨
1 + sin2(θ1 − θ2)

⎩2
{

p21 + 2p22 − 2p1 p2 cos(θ1 − θ2)
}

= 1

2mξ2

p21 + 2p22 − 2p1 p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
. (6.19)

In the very last step we made, again, use of the trigonometric property (6.16).
With the help of the kinetic energy (6.19) and the potential energy (6.9) we can

write the Hamilton function H(p1, p2, θ1, θ2) as

H = T + U

= 1

2mξ2

p21 + 2p22 − 2p1 p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)

+ mgξ [4 − 2 cos(θ1) − cos(θ2)] , (6.20)

and this allows to formulate, finally, Hamilton’s equations of motion:

θ̇i = ω

ωpi
H, ṗi = − ω

ωθi
H, i = 1, 2. (6.21)

Hence, we have to solve the following set of equations

θ̇1 = 1

mξ2

p1 − p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
, (6.22a)

θ̇2 = 1

mξ2

2p2 − p1 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
, (6.22b)
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ṗ1 = 1

mξ2

1

1 + sin2(θ1 − θ2)

[
−p1 p2 sin(θ1 − θ2)

+ p21 + 2p22 − 2p1 p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
cos(θ1 − θ2) sin(θ1 − θ2)

⎛

− 2mgξ sin(θ1), (6.22c)

and

ṗ2 = 1

mξ2

1

1 + sin2(θ1 − θ2)

[
p1 p2 sin(θ1 − θ2)

− p21 + 2p22 − 2p1 p2 cos(θ1 − θ2)

1 + sin2(θ1 − θ2)
sin(θ1 − θ2) cos(θ1 − θ2)

⎛

− mgξ sin(θ2). (6.22d)

In the following section we will discuss the numerical solution of Eqs. (6.22) with
the help of the explicit Runge-Kutta algorithm e-RK-4 introduced in Sect. 5.3.

6.2 Numerical Solution

In a first step we recognize that Eqs. (6.22) are of the form

ẏ = F(y), (6.23)

where y ∈ R
4. Let us define

y =


⎜⎜

y1
y2
y3
y4


⎟⎟ =


⎜⎜

θ1
θ2
p1
p2


⎟⎟ , (6.24)

and consequently

F(y) =


⎜⎜

f1(y)

f2(y)

f3(y)

f4(y)


⎟⎟ =


⎜⎜

θ̇1
θ̇2
ṗ1
ṗ2


⎟⎟ , (6.25)

as defined in Eq. (6.22).Wewill, furthermore, introduce the time instances tn = nτt ,
n ∈ N and denote by yn = y(tn) = (yn

1 , yn
2 , yn

3 , yn
4 )T . Since the function F(y) of

Eq. (6.25) does not depend explicitly on time t we reformulate the e-RK-4 algorithm
of Eq. (5.39) as

http://dx.doi.org/10.1007/978-3-319-02435-6_5
http://dx.doi.org/10.1007/978-3-319-02435-6_5


86 6 The Double Pendulum

Y1 = yn,

Y2 = yn + τt

2
F(Y1),

Y3 = yn + τt

2
F(Y2),

Y4 = yn + τt F(Y3),

yn+1 = yn + τt

6
[F(Y1) + 2F(Y2) + 2F(Y3) + F(Y4)] . (6.26)

Hence, the remaining challenge is to correctly implement the function F(y) =
[ f1(y), f2(y), f3(y), f4(y)]T according to Eqs. (6.22).

The following graphs discuss the dynamics (trajectories in θ- and p-space, as
well as in configuration space) of the pendulum and for this purpose we defined the
parameters m = ξ = 1 and g = 9.8067. The time step was chosen to be τt = 0.001
and we calculated N = 60000 time steps.

We start with Fig. 6.2. The two masses numbered 1 and 2 are initially in the
equilibrium position (solid circles). Both masses are pushed to the right but the push
on mass 1 [p1(0) = 4.0] is much stronger than the one mass 2 experiences [p2(0) =
2.0]. Thus, mass 2 is ‘dragged’ along in the process. This is made transparent by two
‘snapshots’ indicated by solid light gray circles and solid gray circles. The motion
of the whole system is quite regular.

We proceed with Fig. 6.3. In this case mass 1 is displaced from its position by
the initial angular displacement θ1 = 1.0. This initial configuration is indicated by
the solid circles numbered 1 and 2 representing the two point-masses. Mass 2 is
then pushed to the right with p2(0) = 3.0. In contrast to the previous situation mass
1 is now following mass 2 and the requirement that mass 1 remains on a circular
trajectory centered around the point (0,2) in configuration space, Fig. 6.3c, results in
a very lively trajectory of mass 2. Again two snapshots indicated by solid light gray
circles and solid gray circles illustrate configurations of particular interest.

The situation illustrated by Fig. 6.4 is quite similar to the one already discussed
in Fig. 6.2. Initially both masses are in the equilibrium position and then mass 2 is
pushed to the right [p2(0) = 4.0]. Thus, mass 1 is trailing behind. In contrast to the
previous figure the trajectory of mass 2 will now be symmetric around the z-axis
given enough time. Again, snapshots indicated by solid light gray circles and solid
gray circles indicate interesting configurations.

The situation which resulted in Fig. 6.5 was quite similar to the one discussed in
Fig. 6.4. The only difference is that mass 2 is now pushed more strongly to the right
[p2(0) = 5.0]. Of course, mass 1 is again dragging behind mass 2. In contrast to
Fig. 6.4 the initial momentum of mass 2 is now sufficient to allow mass 2 to pass
through the center of the inner mass’ circular trajectory. Snapshots indicated by light
gray solid circles and solid gray circles emphasize interesting configurations.

The situation shown in Fig. 6.6 differs from the one of Fig. 6.5 only by the initial
condition for mass 2. It is now pushed even more strongly to the right [p2(0) = 6.5]
and this initial momentum is sufficient to cause mass 1 to rotate around the point
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(a)

(b)

(c)

Fig. 6.2 Numerical solution of the double pendulum with initial conditions θ1(0) = θ2(0) = 0.0,
p1(0) = 4.0 and p2(0) = 2.0. (a) Trajectory in θ-space, (b) trajectory in p-space, and (c) trajectory
in local (x, z)-space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration

(0,2). Nevertheless, mass 1 is permanently dragging behind mass 2. Two interesting
configurations are depicted by snapshots (solid light gray circles and solid gray
circles).

A comparison between trajectories as a result of different initial conditions reveals
that the physical system is highly sensitive to the choice of the initial conditions
y0 = [θ1(0), θ2(0), p1(0), p2(0)]T . For instance, consider Figs. 6.4, 6.5 and 6.6. In
all three cases we chose y0 in such a way that the initial angles θ1(0) = θ2(0) = 0
and the generalized momentum coordinate p1(0) = 0. The only difference is that
we used different values for the initial value of the second momentum coordinate p2.
However, the resulting dynamics of θ1 versus θ2 as well as p1 versus p2 are entirely
different and so are the local (x, z)-space trajectories. Hence, the system is chaotic.
In the following section we will briefly discuss a method designed to characterize
chaotic behavior of physical systems [2, 3].
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(a)

(b)

(c)

Fig. 6.3 Numerical solution of the double pendulum with initial conditions θ1(0) = 1.0, θ2(0) =
0.0, p1(0) = 0.0 and p2(0) = 3.0. (a) Trajectory in θ-space, (b) trajectory in p-space, and
(c) trajectory in local (x, z)-space. The solid circles numbered 1 and 2 represent the two masses in
their initial configuration

6.3 Numerical Analysis of Chaos

Let us introduce some basic notations.We consider a physical systemwith f degrees
of freedom. Furthermore, let q1(t), . . . , q f (t) denote the generalized coordinates
and p1(t), . . . , p f (t) denote the corresponding generalized momenta which allow
a full characterization of the system. Consequently, the f -dimensional vector q(t) =
[q1(t), q2(t), . . . , q f (t)]T describes a point in configuration space of the physical
system. In case of a pendulum consisting of f point-masses connected in a similar
fashion as the double pendulum discussed above, which corresponds to the particular
case f = 2, the configuration space is constrained to values θi ∈ (−π, π ], i =
1, . . . , f . This resembles an f -dimensional torus.

The 2 f -dimensional vector x(t) = [q1(t), . . . , q f (t), p1(t), . . . , p f (t)]T

describes a point within the phase space of the physical system at some particu-
lar time t . The time evolution of a physical system is represented by its phase space
trajectory. Note that the phase space trajectories x(t) are differentiable with respect
to t .
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(a)

(b)

(c)

Fig. 6.4 Numerical solution of the double pendulum with initial conditions θ1(0) = θ2(0) = 0.0,
p1(0) = 0.0 and p2(0) = 4.0. (a) Trajectory in θ-space, (b) trajectory in p-space, and (c) trajectory
in local (x, z)-space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration

We define an autonomous system as a system which is time-invariant, i.e. the
Hamilton function H(x, t) does not depend explicitly on time t , H(x, t) ∀ H(x).
Hence, a physical system is referred to as autonomous if the Hamilton function
H(x, t) of the system obeys the relation

ω

ωt
H(x, t) = ω

ωt
H(x) = 0 . (6.27)

In other words, energy is conserved.
An autonomous system is referred to as integrable if it has f independent invari-

ants I1, . . . , I f

I j (x) = I j = const, j = 1, . . . , f . (6.28)

One of these is the energy. Each particular invariant I j reduces the dimension of the
manifold on which the phase space trajectories can propagate. Hence, an integrable
systempropagates on an f -dimensional subspace of the 2 f -dimensional phase space.
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(a)

(b)

(c)

Fig. 6.5 Numerical solution of the double pendulum with initial conditions θ1(0) = θ2(0) = 0.0,
p1(0) = 0.0 and p2(0) = 5.0. (a) Trajectory in θ-space, (b) trajectory in p-space, and (c) trajectory
in local (x, z)-space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration

We note that a one-dimensional autonomous system is integrable since the con-
servation of energy delivers the required invariant.

Non-integrable systems can show chaotic behavior. In such a case one can only
obtain special solutions of the system by means of analytical methods. On the other
hand, the formulation of a general solution is only possible with the aid of numerical
methods. From all this the question arises whether or not these solutions are stable.
In order to study this stability problem let us introduce the concept of Lyapunov
stability [4].

Given the initial conditions x0 and x ≈
0 we obtain at time t the phase space coor-

dinates x(t) = θt (x0) and x ≈(t) = θt (x ≈
0) as a solution of Hamilton’s equations

of motion. Here θt (x0) denotes the flow of the Hamiltonian system as defined in
Sect. 5.4. A solution is referred to as Lyapunov stable if

∞ϕ > 0 √α(ϕ) > 0 : ∞x ≈
0 : |x0−x ≈

0| < α ⇒ |θt (x0)−θt (x ≈
0)| < ϕ, ∞t > 0 . (6.29)

http://dx.doi.org/10.1007/978-3-319-02435-6_5


6.3 Numerical Analysis of Chaos 91

(a)

(b)

(c)

Fig. 6.6 Numerical solution of the double pendulum with initial conditions θ1(0) = θ2(0) = 0.0,
p1(0) = 0.0 and p2(0) = 6.5. (a) Trajectory in θ-space, (b) trajectory in p-space, and (c) trajectory
in configuration space. The solid circles numbered 1 and 2 represent the two masses in their initial
configuration

In words: The trajectory which corresponds to the perturbed initial condition x ≈
0 stays

within a tube of radius ϕ around the unperturbed trajectory θt (x0) for all t > 0 if the
solution is Lyapunov stable.

This definition suggests the introduction of the so called Lyapunov length d(t).
It is defined as the distance given by the Euclidean norm ≤θt (x0) − θt (x ≈

0)≤ in phase
space between two trajectories θt (x0) and θt (x ≈

0) corresponding to different initial
conditions x0 and x ≈

0.
Asymptotically stable solutions tend to attract trajectories from their neighbor-

hood. Hence they are referred to as attractors.
Furthermore, let us define a periodic orbit as a trajectory for which one can find

a time t such that

θt (x) = x, (6.30)

for all x .
In order to find an answer to the question whether or not the solutions of non-

integrable systems are stable we introduce the method of Poincarémaps. The idea
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is to reduce the investigation of the complete 2 f -dimensional phase space trajectory
x(t) = θt (x0) to the investigation of its intersection points through a planeε which is
transverse to the flow of the system. This plane is a subspace of dimension 2 f −1 and
is commonly referred to as Poincaré section [1]. The transversality of the Poincaré
section ε means that periodic flows intersect this section and do not flow parallel to
or within it.

Consider a trajectory which is bound to a finite domain, i.e. it does not tend
to infinity in some phase space coordinate. In this case it is possible to define the
Poincaré section in such a way that the trajectory will intersect this section not only
once but several times. A Poincarémap is the mapping of one intersection point P
onto the next intersection point P ≈.

Let us substantiate this idea: we consider the initial condition x0 for which the
trajectory is periodic. We choose the initial time t = 0 in such a way that x0 ∈ ε ,
where ε is the Poincaré section. We suppose that after a time η(x0) the trajectory
intersects the Poincaré section again. Note that we denoted η ∀ η(x0) in order to
emphasize that the recurrence time will depend on the initial condition x0. Since
we demanded that the trajectory which starts in x0 is periodic, we deduce that it
intersects the Poincaré section at some point θη(x0)(x0) = x0. We consider now
a slightly perturbed initial condition x ≈ ∈ U (x0), where U (x0) is referred to as the
neighborhood of x0. In this case the trajectory will in general not be periodic, and
the next intersection point θη(x ≈)(x ≈) ≥= x ≈. The mapping from one intersection point
x ≈ onto the next intersection point θη(x ≈)(x ≈) is called the Poincaré map P(x ≈) =
θη(x ≈)(x ≈). We note that the particular point x0 is a fixed point of this mapping,
P(x0) = x0. Furthermore, we note that if x ≈ ∈ U (x0) we will have P(x ≈) ∈ U1(x0),
where U1(x0) is the neighborhood of first return, see Fig. 6.7.

Let us give an example: in case of the double pendulum we have four general-
ized coordinates which, with the help of conservation of energy, are constrained to

Fig. 6.7 Schematic illus-
tration of the neighborhood
U0(x0) and the neighborhood
of first return U1(x0)
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(a) (b)

(c)

Fig. 6.8 Schematic illustration of the three types of Poincaré plots as discussed in the text. (a)
Finite number of intersection points, (b) infinite number of intersection points which, however,
form closed lines, (c) space-filling and, consequently, chaotic behavior

a three-dimensional manifold within the four-dimensional phase space. Since the
investigation of these three dimensional trajectories is very complex we consider a
two-dimensional section. For instance, the coordinates [θ1(t), p1(t)]T can be ‘mea-
sured’ whenever θ2(t) = 0 and p2 > 0. Thus, the system’s state is registered
whenever the second pendulum crosses the vertical plane from the left hand side.
In the particular case that the acceleration g = 0 we note that the system is inte-
grable:We deduce from Eq. (6.9) that the potential energyU = 0 and the Lagrange
function is independent of the actual positions x1, z1, x2, z2 and depends only on the
respective velocities. This means that the angular momentum is conserved which
gives us, together with the conservation of energy, a second invariant. Hence the
system moves on a two-dimensional manifold in the four dimensional phase space.

We discuss now some of the most typical scenarios for Poincaré plots. Note
that this discussion is not restricted to the case of the double pendulum. In case
of integrable systems one distinguishes between two different scenarios: first, the
set of intersection points (δ1, δ2, . . . , δN ) is finite. In the second, more general
case, the dimension N of the set of intersection points is infinite. In both cases the
intersection points form one-dimensional lines which do not have to be connected.
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Fig. 6.9 Poincaré plot of
the double pendulum with
initial conditions θ1(0) =
θ2(0) = 0.0, p1(0) = 4.0 and
p2(0) = 2.0. It corresponds
to the situation discussed in
Fig. 6.2

Fig. 6.10 Poincaré plot of
the double pendulum with
initial conditions θ1(0) =
1.0, θ2(0) = 0.0, p1(0) =
0.0 and p2(0) = 3.0. It
corresponds to the situation
discussed in Fig. 6.3

Figure6.8 discusses this schematically. However, if the system is non-integrable,
a third scenario is possible: chaotic behavior. In this case the intersection points
seem to be randomly distributed on the two dimensional plane and one observes
space-filling behavior. This is illustrated schematically in Fig. 6.8c. Whether one
observes chaotic behavior or not depends on the choice of the initial conditions.

In Figs. 6.9, 6.10 and 6.11 we present Poincaré plots of the double pendulum.
The plots were obtained with help of the method discussed above, i.e. θ2 = 0 and
p2 > 0. Again, we set m = ξ = 1 and g = 9.8067. The time step was chosen to be
τt = 0.001 and we calculated N = 36 × 104 time steps. In Figs. 6.9 and 6.11 we
observe regular behavior as it was illustrated in Fig. 6.8b. In Fig. 6.10 the points are
space filling and, consequently, chaotic behavior is observed in this particular case.
Keeping in mind that this particular Poincaré plot refers to the initial value problem
of Fig. 6.4 we conclude that all problems of this series, i.e. Figs. 6.4, 6.5 and 6.6, are
non-integrable and chaotic.
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Fig. 6.11 Poincaré plot of
the double pendulum with
initial conditions θ1(0) =
θ2(0) = 0.0, p1(0) = 0.0 and
p2(0) = 4.0. It corresponds
to the situation discussed in
Fig. 6.4

Summary

The dynamics of the double pendulum is described by a system of four ordinary
first order differential equations. It is a typical initial value problem and, thus, the
methods introduced in Chap.5 are all candidates to find a numerical solution. Here
we concentrated on the explicit Runge-Kutta algorithm e-RK-4 of Sect. 5.3. Solu-
tions were studied in detail for several classes of initial conditions. One of the results
was that rather small changes of the initial conditions could result in rather strong,
chaotic reactions of the outer mass. This triggered the obvious question about the
stability of a numerical analysis and of physical dynamics in general. While the sta-
bility of numerical methods has already been discussed in Chap.1 we focused here
on the chaotic behavior of Hamiltonian systems. Consequently, a short section on
the numerical analysis of chaos was added. It contained the most important con-
cepts and in particular the concept of the Lyapunov stability which allowed to
classify the stability of a phase space trajectory. Finally, the importance of Poincaré
plots in recognizing whether a system is integrable or non-integrable was explained.
Non-integrable systems can develop chaotic behavior. Thus, Poincaré plots are an
important tool to study chaos in mechanics.

Problems

1. Verify Hamilton’s equations of motion derived in Sect. 6.1. Implement the
e-RK-4 algorithm discussed in Sects. 5.3 and 6.2 to integrate the equations of
motion. Plot the trajectories for various initial conditions. Use the examples illus-
trated in Sect. 6.2 to check the code.

http://dx.doi.org/10.1007/978-3-319-02435-6_5
http://dx.doi.org/10.1007/978-3-319-02435-6_5
http://dx.doi.org/10.1007/978-3-319-02435-6_1
http://dx.doi.org/10.1007/978-3-319-02435-6_5
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2. Produce Poincaré plots by plotting (θ1, p1) whenever θ2 = 0 and p2 > 0.
The condition θ2 = 0 is substituted by |θ2| < ϕ in the numerically realization.
Note that if the points are space filling the dynamics are chaotic, as discussed in
Sect. 6.3. Try to find different initial conditions which result in regular behavior
and different initial conditions which produce chaotic dynamics.

3. Let x(t) = [θ1(t), θ2(t), p1(t), p2(t)]T and x ≈(t) = [θ≈
1(t), θ

≈
2(t), p≈

1(t), p≈
2(t)]T

be two trajectories which correspond to different initial conditions x0 and x ≈
0. In

this case the Lyapunov distance is defined as

d(t) =
√

[θ1(t) − θ≈
1(t)]2 + [θ2(t) − θ≈

2(t)]2 + [p1(t) − p≈
1(t)]2 + [p2(t) − p≈

2(t)]2.

Plot the Lyapunov distance d(t) as a function of time t for two different initial
conditions.
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Chapter 7
Molecular Dynamics

7.1 Introduction

It is the aim of many branches of research in physics to describe macroscopic
observable properties of matter on the basis of microscopic dynamics. However,
a description of the simultaneous motion of a large number of interacting particles is
in most cases not feasible by analytic methods. Moreover, if the interaction between
the particles is strong a description is particularly difficult. Within the framework
of statistical mechanics one tries to remedy these difficulties by employing some
simplifying assumptions and by treating the system from a statistical point of view.
However, most of these simplifying assumptions are only justified within certain
limits, such as the weak coupling limit or the low density limit. Nevertheless, it is
not easy to establish how the solutions acquired are influenced by these limits and
how the physics beyond these limits can be perceived. This makes the necessity of
numerical solutions quite apparent. There are essentially two methods to determine
physical quantities over a restricted set of states, namely molecular dynamics [1–3]
and Monte Carlo methods. The technique of molecular dynamics will be discussed
within this chapter while an introduction into some basic features of Monte Carlo
algorithms is postponed to the second part of this book.

We strictly focus on a particular sub-field of molecular dynamics, namely on
classical molecular dynamics, i.e. the treatment of classical physical systems. Exten-
sions to quantum mechanical systems, which are commonly referred to as quantum
molecular dynamics, will not be discussed here.

7.2 Classical Molecular Dynamics

We consider N particles with positions ri ∈ ri (t), velocities vi ∈ vi (t) = ṙi (t) and
masses mi , where i = 1, 2, . . . , N . We note that ri and vi are vectors of the same
dimension. We can write Newton’s equations of motion as

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 97
DOI: 10.1007/978-3-319-02435-6_7, © Springer International Publishing Switzerland 2014
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mi r̈i = fi (r1, r2, . . . , rN ), (7.1)

where we introduced the forces fi ∈ fi (r1, r2, . . . , rN ). Again, we note that the
forces fi are vectors of the same dimension as ri and vi . We specify the forces fi by
demanding them to be conservative. Thus, we write

fi (r1, r2, . . . , rN ) = −∀iU (r1, r2, . . . , rN ), (7.2)

where we note that ∀i is the gradient pertaining to the spatial components of the
i-th particle and U (r1, r2, . . . , rN ) is some potential which we will abbreviate with
U ∈ U (r1, r2, . . . rN ). We then specify this potential U as the sum of two-particle
interactions Ui j and some external potential Uext as, for instance, the gravitational
field or a constant electric potential applied to the system:

U = 1

2

∑
i

∑
j ≈=i

Ui j + Uext . (7.3)

In our discussion of the two-body problem (Appendix A) and, in particular, of the
Kepler problem in Chap. 4 we considered a central force, which was proportional to
−1/r . Due to the conservation of angular momentum, it was convenient to introduce
an effective potential Ueff as the sum of an attractive and repulsive part as it was
defined in Eq. (4.5) and illustrated in Fig. 4.1. In contrast, in molecular dynamics
the most prominent two-body interaction potential is known as the Lennard-Jones
potential. It is of the form

U (|r |) = 4σ

[(
ε

|r |
)12

−
(

ε

|r |
)6
]

, (7.4)

where ε and σ are real parameters and |r | is the distance between two particles.
The significance of the parameters ε and σ as well as the form of U (|r |) defined
by Eq. (7.4) is illustrated in Fig. 7.1. The Lennard-Jones potential was particularly
developed to model the interaction between neutral atoms or molecules. The repul-
sive term, which is proportional to |r |−12, describes the Pauli repulsion while the
attractive |r |−6 term accounts for attractive van der Waals forces.

We introduce the distance between particles i and j via

ri j = |ri − r j | = |r j − ri | = r ji , (7.5)

and define the two-body potential

Ui j = U (ri j ), (7.6)

where U is approximated by the Lennard-Jones potential (7.4). Furthermore, we
deduce from Eq. (7.4) that

http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_4
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Fig. 7.1 Illustration of the
Lennard-Jones potential,
Eq. (7.4). σ describes the
depth of the potential well and
ε is the position of the root of
the Lennard-Jones potential

f (|r |) = −∀r U (|r |) = 24σ

|r |2
[
2

(
ε

|r |
)12

−
(

ε

|r |
)6
]

r, (7.7)

where we keep in mind that r is a vector. Hence, we write the forces fi which appear
in Newton’s equations of motion (7.1) with the help of (7.3) in the form

fi = −∀iU

= −∀i


1

2

∑
k

∑
l ≈=k

Ukl + Uext

⎛
⎧

= −
∑
j ≈=i

∀iUi j − ∀iUext

=
∑
j ≈=i

f (ri j ) + f i
ext

=
∑
j ≈=i

fi j + f i
ext , (7.8)

where we implicitly defined the external force f i
ext acting on particle i and the two

particle forces fi j acting between particle i and j . Let us introduce the vectors
R = (r1, r2, . . . , rN )T , V = (v1, v2, . . . , vN )T = Ṙ and F = ( f1/m1, f2/m2,

. . . , fN /m N )T in order to rewrite (7.1) as

R̈ = F, (7.9)
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which is equivalent to two first order ordinary differential equations

(
Ṙ
V̇

)
=
(

V
F

)
. (7.10)

Note that (7.10) is of the form (5.1). Let us introduce now amore convenient notation
which will help in the discussion of some numerical methods which have been
developed to solve this initial value problem. We regard discrete time instances
tk = kΔt , where k ∞ N0 and function values at these discrete time instances tk are
denoted by a subscript k, as for instance Rk ∈ R(tk).

(i) In a first approximation we apply the symplectic Eulermethod [see Eq. (4.41)]
to Eq. (7.10) and obtain

(
Rk+1
Vk+1

)
=
(

Rk

Vk

)
+
(

Vk+1
Fk

)
Δt. (7.11)

Inserting the second into the first equation results in

Rk+1 = Rk + VkΔt + FkΔt2. (7.12)

The velocity Vk at time tk is then approximated by the backward difference
derivative (2.10b) and we find the recursion relation:

Rk+1 = 2Rk − Rk−1 + FkΔt2. (7.13)

We note that it is only valid for k √ 1. The initialization step necessary to
complete the analysis is found by expanding R1 in a Taylor series up to second
order:

R1 = R0 + ΔtV0 + 1

2
F0Δt2. (7.14)

This method is referred to as the Strömer-Verlet algorithm. Note that
Eq. (7.14) serves as the initialization of the sequence of time steps. Further-
more, we remark that Eq. (7.13) could have also been obtained using the central
difference derivative to approximate the second time derivative in Eq. (7.1):

R̈k ⇒ Rk+1 − 2Rk + Rk−1

Δt2
= Fk . (7.15)

In summary, the Verlet or Störmer–Verlet algorithm is defined by the
following set of equations:

Rk+1 = 2Rk − Rk−1 + FkΔt2, k √ 1,

R1 = R0 + ΔtV0 + 1

2
F0Δt2. (7.16)

http://dx.doi.org/10.1007/978-3-319-02435-6_5
http://dx.doi.org/10.1007/978-3-319-02435-6_4
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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(ii) We employ the central rectangular rule of integration (Sect. 3.2) in order to obtain
approximations which are formally equivalent to Eq. (5.11). In particular, we
obtain from Eq. (7.10):

Rk+1 = Rk + Vk+ 1
2
Δt. (7.17)

We note that the value of Vk+ 1
2
is yet undetermined. However, it can be deter-

mined in a similar fashion via

Vk+ 1
2

= Vk− 1
2

+ FkΔt. (7.18)

This method which is referred to as the leap-frog algorithm is initialized by the
relation

V 1
2

= V0 + Δt

2
F0. (7.19)

Equation (7.19) can also be obtained by expanding V 1
2
in a Taylor series up to

first order around the point t0 = 0 and by noting that V̇k = Fk . In summary we
write the leap-frog algorithm as

Rk+1 = Rk + Vk+ 1
2
Δt,

Vk+ 1
2

= Vk− 1
2

+ FkΔt,

V 1
2

= V0 + 1

2
F0Δt. (7.20)

(iii) A third, very elegant alternative is the so-called velocity Verlet algorithm. We
expand Rk+1:

Rk+1 = Rk + VkΔt + 1

2
FkΔt2. (7.21)

This equation allows to calculate the spatial coordinates at time tk+1 if Rk and Vk

are given. Note that Fk = F(Rk) is completely determined by the positions Rk .
Nevertheless, we need one more relation in order to determine the velocities at
times tk+1. Again,we expand Vk+1 in aTaylor series, however,we approximate
the remainder by the arithmetic mean between tk and tk+1:

Vk+1 = Vk + 1

2
(Fk + Fk+1)Δt. (7.22)

The strategy is clear: we calculate the positions Rk+1 from Eq. (7.21) for given
values of Rk and Vk . With the help of Rk+1 we compute Fk+1, which is then
inserted into Eq. (7.22) which determines Vk+1. In summary, the complete algo-
rithm of the velocity Verlet method is defined by the steps:

http://dx.doi.org/10.1007/978-3-319-02435-6_.
http://dx.doi.org/10.1007/978-3-319-02435-6_5


102 7 Molecular Dynamics

Rk+1 = Rk + VkΔt + 1

2
FkΔt2,

Vk+1 = Vk + 1

2
(Fk + Fk+1) Δt. (7.23)

We note some properties of these methods. The Verlet algorithm of Eq. (7.16)
is time invariant (symmetry under the transformation Δt ≤ −Δt), hence
reversible. This is a direct consequence of its relation to the symplectic Euler
method. Moreover, the positions Rk obtained with this method are highly accu-
rate, however, the procedure suffers under an inaccurate approximation of the
velocities Vk . This shortcoming is clearly remedied by the leap-frog algorithm
(7.20) or the velocityVerlet algorithm (7.23). However, these methods are not
time invariant. Hence, one has to decide whether or not very accurate values for
the velocities are required for the problem at hand. In many cases the velocity
Verlet algorithm is the most popular choice.

In the following section we discuss some numerical details to be considered when
implementing the routine.

7.3 Numerical Implementation

The rough structure of a molecular dynamics code consists of three crucial steps,
namely

• Initialization,
• start simulation and equilibrate,
• continue simulation and store results.

In the following we discuss some of the most important subtleties associated with
these three parts. In particular we will focus on the choice of appropriate boundary
conditions and on the choice of the scales of characteristic quantities.

Boundary Conditions

Basically, there are two possibilities: (i) The system is of finite size and the
implementation of boundary conditions might be straightforward. For instance, let
us assume that we regard N particles within a finite box of reflecting boundaries, we
simply propagate the particle-coordinates in time and if a particle tries to leave the
box, we correct its trajectory according to a reflection law. The velocity is adjusted
accordingly. This is illustrated in Fig. 7.2 for a two-dimensional case and the partic-
ular situation that the particle is reflected from the right hand boundary of the box.
The corresponding equations read
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Fig. 7.2 Illustration of the
reflection principle for a
box of finite dimension with
reflecting boundaries

rk+1 =
(

xk+1
yk+1

)
=
(

L − (x̃k+1 − L)

ỹk+1

)
, (7.24)

and

vk+1 =
(

vk+1,x
vk+1,y

)
=
(−ṽk+1,x

ṽk+1,y

)
. (7.25)

Here L denotes the length of the box and x̃k+1, ỹk+1, ṽk+1,x and ṽk+1,y are the
positions and velocities one would have obtained in the absence of the boundary, see
Fig. 7.2.

(ii) The system is not confined. Then the situation is entirely different. Of course,
one could approximate the infinite volume by a large but finite volume. In such a case
the influence of a constraint to finite size is usually not negligible. The induced errors
are referred to as finite volume effects. A very popular choice are so called periodic
boundary conditions which means that a finite system is surrounded by an infinite
number of completely identical replicas of the system, where the forces are allowed
to act across the boundaries. Because of this, calculating the force on one particle
requires the evaluation of an infinite sum. This is numerically not manageable andwe
have to find ways to truncate the sum. For instance, it might be a good approximation
to restrict the sum to nearest-neighbor cells. However, the applicability of such an
approach highly depends on the properties of the system under investigation and,
in particular, on the range of the interaction potential. In case of a Lennard-Jones
potential the quantity defining the range of the interaction potential is ε, see Fig. 7.1.

If a particle leaves the box, it enters the box at the same time on the opposite
side. More generally, due to the requirement of identical replicas, we have for all
observables O(r) that O(r + nK ) = O(r), where r lies within the central box, K is
a lattice vector pointing to one of the neighboring cells and n ∞ N0.

There is another crucial point concerning periodic boundary conditions. In case
of a closed system, the system is definitely at rest. However, if periodic boundary
conditions are imposed it is possible that the particles move with constant velocity
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from one cell to another, which, in our case, resembles circling trajectories. This is
definitely not desirable since the total velocity is a measure of the kinetic energy and
therefore of the temperature of the system. However, one can shift the total velocity
in order to remedy this problem. In particular, if

vtot =
N∑

i=1

vi ≈= 0, (7.26)

the shift

v≥
i = vi − 1

N
vtot , (7.27)

yields the desired result. We note that in case that all masses are identical, i.e.
m1 = m2 = · · · = m N ∈ m, this is equivalent to ptot = mvtot = 0.

In conclusion, we remark that the choice of boundary conditions is not the only
item to be considered in the definition of the system. Another quite crucial point
might be the size of the box. If an infinite system is modeled using finite systems, the
dimensionof the boxmust fairly exceed themean free path of the particles.Otherwise,
the influence of the boundaries is going to perturb significantly the outcome of our
numerical experiment.

Initialization and Equilibration

We remember from statistical physics [4] that every degree of freedom in a classical
system contributes kB T/2 to the total kinetic energy. Here kB is Boltzmann’s
constant and T is the temperature. If we regard N particles, which move in a
d-dimensional space, we have d(N − 1) degrees of freedom, if we demand that
vtot = 0. Hence, we have

Ekin = 1

2

N∑
i=1

mi v
2
i = d(N − 1)

2
kB T, (7.28)

which gives a relation from which we can determine the temperature of the system:

kB T = 1

d(N − 1)

N∑
i=1

mi v
2
i . (7.29)

However, in many applications the system is supposed to be simulated at a given
temperature, i.e. the temperature T is an input rather than an output parameter and
is supposed to stay constant during the simulation. We can control the temperature
by rescaling the velocities and this might be necessary at several times during the
simulation in order to guarantee a constant temperature. We define
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v≥
i = λvi , (7.30)

where λ is a rescaling parameter. The temperature associated with the velocities v≥
i

is given by

kB T ≥ = λ2

d(N − 1)

N∑
i = 1

mi v
2
i . (7.31)

This allows to determine how to choose λ in order to obtain a certain temperature T ≥:

λ =
⎪

d(N − 1)kB T ≥
2Ekin

. (7.32)

We note that if the total velocity, which is the sum of all velocities vi , is zero, the
total velocity corresponding to the rescaled velocities v≥

i is also equal to zero since

N∑
i = 1

v≥
i = λ

N∑
i = 1

vi = 0. (7.33)

This ensures that rescaling of the velocities does not induce a bias.
The choice of the initial conditions highly influences the time the system needs

to reach thermal equilibrium. For instance, if a gas is to be simulated at a given
temperature T it might be advantageous to choose the initial velocities accord-
ing to aMaxwell-Boltzmann distribution. TheMaxwell-Boltzmann distribu-
tion states that the probability [more precisely: the pdf (probability density function
describing the probability, see Appendix D)] that a particle with mass m has velocity
v is proportional to

p(|v|) ∓ |v|2 exp
(

− m|v|2
2kB T

)
. (7.34)

Another intriguing question is how to check whether or not thermal equilibrium
has been reached. In statistical mechanics one is usually confronted with expectation
values of observables O(t) as a function of time. The expectation value →O〉 is defined
as

→O〉 = lim
τ≤⇐

1

τ

τ⎨

0

dt O(t). (7.35)

Since O(t) is not known analytically one replaces the mean value by its arithmetic
mean

→O〉 ⇒ O = 1

n

k+n∑
j = k

O(t j ). (7.36)
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If n and k are sufficiently large, the average value can be regarded as converged.
In particular, one has to choose n reasonably large and then find k in such a way,
that for all values k≥ √ k the same result for O is obtained. Hence, equilibrium has
been reached after k time-steps and it is now possible to ‘measure’ the observables
by calculating their mean values. A more detailed discussion of such a procedure,
as, for instance, the influence of time correlations or a discussion of more advanced
techniques is postponed to Chap. 19.

There is one last point: In many cases the natural units of the physical system
might be disadvantageous because they are likely to induce numerical instabilities. In
such cases a common technique is to switch to rescaled variables by introducing new
units, which are characteristic quantities for the system and all physical quantities
are expressed in these new units. For instance one might introduce the length L of
the box as the unit of space. The new spatial coordinates would then be given by

r ≥ = r

L
. (7.37)

Hence all coordinates take on values within the interval r ≥ ∞ [0, 1]. However, one
cannot introduce an arbitrary set of characteristic quantities due to the physical rela-
tions they have to obey. For instance, one might introduce a characteristic energy ε0,
a characteristic length λ, and a characteristic mass m. In this case the characteristic
temperature T̃ is determined via

T̃ = ε0

kB
. (7.38)

Moreover the characteristic time τ is fixed to the value

τ =
⎪

mλ2

ε0
, (7.39)

which results from the relation between the kinetic energy and the velocity.
To illustrate a molecular dynamics simulation we study a set of N = 100 particles

of mass m = 1 which are subject to a Lennard-Jones potential (7.4) characterized
by ε = σ = 1 and to a gravitational force mg, g = 9.81. At initialization the
particles are placed in a 10 × 10 lattice starting with the lower left hand edge at
x = 10.5 and y = 10. The particles are equally spaced with Δx = Δy = ε. This
initial configuration is shown in Fig. 7.3a. Furthermore, the left hand side, the right
hand side, and the bottom of the confinement (L = 30) are described by reflecting
boundary conditions, Eqs. (7.24) and (7.25). The confinement is open at the top, i.e. it
extends to infinity. The time step is given by Δt = 10−3. Figure 7.3b–d demonstrate
how the system developed after 1200, 1800, and 3000 time steps, respectively.

http://dx.doi.org/10.1007/978-3-319-02435-6_19
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(a) (b)

(c) (d)

Fig. 7.3 (a) Initial configuration: the particles are placed in a 10×10 equally spaced lattice starting
with x = 10.5 and y = 10.0; g = 9.81. The initial velocities are equal to zero. (b) Configuration
after 1200 time steps. (c) Configuration after 1800 time steps. (d) Configuration after 3000 time
steps

This chapter closes our discussion of the numerics of initial value problems. In
the following chapters we will introduce some of the basic concepts developed to
solve boundary value problems with numerical methods.

Summary

This chapter dealt with the classical dynamics of many particles (not necessarily
identical particles) which are confined in a box of finite dimension or which are
allowed to roam freely in infinite space. The particles are subject to a particle-particle
interaction and to an external force. The discussion was restricted to classical mole-
cular dynamics. From Hamilton’s equations of motion for N interacting particles
numerical methods were developed which allowed the simulation of the particles’
dynamics. Based on the symplectic Eulermethod the Strömer-Verlet algorithm
was derived. Another approach was based on the central rectangular rule and resulted
in the leap-frog algorithm. Finally, the velocity Verlet algorithm was introduced.
All three methods do have their merits. The first gives very accurate results for the
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particles’ positions but calculates inaccurate velocities. It has the advantage that it is
time reversible. The other two methods lack this property but give very accurate esti-
mates of the particles’ velocities. The final part of this chapter was dedicated to the
discussion of various subtleties of the numerical implementation of these algorithms
as there are: (i) definition of boundary conditions, (ii) initialization of the algo-
rithm, (iii) equilibration to a given temperature, (iv) ensuring constant temperature
throughout the simulation, and (v) transformation to rescaled variables.

Problems

1. We investigate the pendulum of Chap. 1 and write its equation of motion as

ẍ + ω2x = 0,

with ω defined in Eq. (1.7). The Strömer–Verlet algorithm is applied to sim-
ulate the pendulum’s motion and to compare the numerical results with the exact
solution. Demonstrate that the result is very sensitive to the choice of the time
step Δt and, in particular, of the product ωΔt . Note that in this particular case
the Strömer–Verlet algorithm can also be studied analytically! What happens
for the choice ωΔt = 1 or ωΔt √ 2? Which conclusions can be drawn from this
example for a proper choice of the time discretization?
Try the other two methods to simulate the pendulums dynamics.

2. Write a molecular dynamics code with the help of the following instructions. You
can use either the leap-frog or the velocity Verlet algorithm. We consider the
following system:

• There are N = 100 particles in a two-dimensional box with side length
L = 30. The boundaries at the bottom, at the left- and at right-hand side
are considered as reflecting, as in Fig. 7.2. The top of the box is regarded as
open (no periodic boundary condition or reflecting boundary is imposed).

• The particles interact through a Lennard-Jones potential of the form (7.4)
where ε and σ define the interaction.

• Furthermore, a gravitational force Fext = −mgey acts on each particle, where
m is the particle’s mass, g is the acceleration due to gravity, and ey denotes
the unit vector in y-direction.

• As an initial condition, the particles can be placed within the box on a regular
lattice, where the distance between the particles is the characteristic distance
according to the Lennard-Jones potential, i.e. ε. The form and position of
this lattice is arbitrary. This is illustrated in Fig. 7.3.

We measure the velocities and the positions of all particles. Since the particle’s
velocities and positions are to be analyzed with the help of an extra program, the
data are written to external files (it is not necessary to save all time steps!).

http://dx.doi.org/10.1007/978-3-319-02435-6_1
http://dx.doi.org/10.1007/978-3-319-02435-6_1
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Perform the following analysis:

• Determine the temperature T from the kinetic energy as discussed in in this chapter.
Note that in this particular case we do not demand that vtot = 0!

• Trydifferent initial conditions. For instance, set the initial velocity equal to zero and
stack the particles in different geometric configurations (rectangle, triangle,…, one
can also use more than one configurations at the same time!). The nearest neighbor
distance between the particles can be set equal to ε. Choose one configuration and
place it at different positions in the box. What happens?

• Set ε = σ = m = 1 (we change the units) and set in the initial condition

to the inter-atomic distance of 2
1
6 ε. (Why?) Vary the gravitational acceleration

g (different systems of units) in order to simulate different states of matter. The
reference program developed solid behavior for g ⇒ 0, liquid behavior for g ⇒ 0.1
and gaseous behavior for g > 1. Explain this behavior!

• Measure the particle density ρ(h) as a function of the height h. You should be able
to reproduce the barometric formula:

ρ ∓ ρ0 exp{−γ h/T }, γ > 0.

• Determine themomentumdistribution (pi = mvi ) of the particles and demonstrate
that it follows aMaxwell-Boltzmann distribution

p(|v|) ∓ |v|2 exp{−γ |v|2/T }, γ > 0,

with |v| =
⎩

v2x + v2y , the Euclidean norm.

• Illustrate the results of the simulation graphically.
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Chapter 8
Numerics of Ordinary Differential
Equations: Boundary Value Problems

8.1 Introduction

It is the aim of this chapter to introduce some of the basics methods developed to
solve boundary value problems. Since a treatment of all available concepts is far
too extensive, we will concentrate on two approaches, namely the finite difference
approach and the shooting methods [1–3]. Furthermore, we will strictly focus on
linear boundary value problems defined on a finite interval [a, b] ∈ R. A boundary
value problem is referred to as linear if both the differential equation and the boundary
conditions are linear. Such a problem of order n is of the form

{
L[y] = f (x) x ∀ [a, b],

Uν[y] = λν ν = 1, . . . , n.
(8.1)

Here, L[y] is a linear operator

L[y] =
n∑

k=0

ak(x)y(k)(x), (8.2)

where y(k)(x) denotes the k-th spatial derivative of y(x), i.e. y(k) = dk y(x)

dxk and
f (x) as well as the ak(x) are given functions which we assume to be continuous.
Accordingly, linear boundary conditions Uν[y] can be formulated as

Uν[y] =
n−1∑
k=0

[
ανk y(k)(a) + βνk y(k)(b)

]
= λν, (8.3)

where the ανk , βνk and λν are given constants. The question in which cases a solution
to the boundary value problem (8.1) exists and whether or not this solution will be
unique, will not be discussed here.

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 111
DOI: 10.1007/978-3-319-02435-6_8, © Springer International Publishing Switzerland 2014
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Let us introduce some further notations. If the function f (x) = 0 for all x ∀ [a, b]
the differential equation in the first line of Eq. (8.1) is referred to as homogeneous.
In analogy, if the constants λν = 0 for all ν = 1, . . . , n, the boundary conditions
are referred to as homogeneous. If the differential equation is homogeneous and the
boundary conditions are homogeneous as well, the boundary value problem (8.1) is
referred to as homogeneous. In all other cases it is referred to as inhomogeneous.

The boundary conditions are said to be decoupled if the function values at the
two different boundaries do not mix.

One of the most important types of boundary value problems in physics are linear
second order boundary value problems with decoupled boundary conditions. It is of
the form:

a2(x)y≈≈(x) + a1(x)y≈(x) + a0(x)y(x) = f (x), x ∀ [a, b], (8.4a)

α0y(a) + α1y≈(a) = λ1, |α0| + |α1| ∞= 0, (8.4b)

β0y(b) + β1y≈(b) = λ2, |β0| + |β1| ∞= 0. (8.4c)

This chapter focuses mainly on problems of this kind.
In particular, for second order differential equations, boundary conditions of the

form
y(a) = α, y(b) = β, (8.5)

are referred to as boundary conditions of the first kind or Dirichlet boundary con-
ditions, on the other hand boundary conditions of the form

y≈(a) = α, y≈(b) = β, (8.6)

are referred to as boundary conditions of the second kind or Neumann boundary
conditions and boundary conditions of the form (8.4) are referred to as boundary
conditions of the third kind or Sturm boundary conditions.

We note, that the particular case of decoupled boundary conditions does not
include problems like

y(a) = y(b) ∞= 0. (8.7)

We encountered such a condition in Sect. 7.3 where we introduced boundary
conditions of this form as periodic boundary conditions.

In the following section the method of finite differences will be applied to solve
boundary value problems of the form (8.4). On the other hand, shooting methods, in
particular the method developed by Numerov, will be the topic of the third section.

http://dx.doi.org/10.1007/978-3-319-02435-6_7
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8.2 Finite Difference Approach

For illustrative purposes, we regard a boundary value problem of the form (8.4).
The extension to more complex problems might be tedious but follows the same
procedure. We discretize the interval [a, b] according to the recipe introduced in
Chap. 2: the positions xk are given by xk = a + (k − 1)h, where the grid-spacing h
is determined via the maximum number of grid-points N as h = (b − a)/(N − 1).
Hence, we have x1 = a and xN = b. Furthermore, we use the notation yk √ y(xk)

for all k = 1, . . . , N . It will be used for all functions which appear in Eqs. (8.4). Let
us employ the central difference derivative (2.10c) in order to approximate

y≈≈(xk) = y≈≈
k ⇒ yk+1 − 2yk + yk−1

h2 , (8.8)

for k = 2, . . . , N − 1 and

y≈(xk) = y≈
k ⇒ yk+1 − yk−1

2h
. (8.9)

The boundary points x1 and xN will be treated in a separate step. In order to abbreviate
the notation we will rewrite the differential equation (8.4) as

a(x)y≈≈(x) + b(x)y≈(x) + c(x)y(x) = f (x). (8.10)

Equations (8.8) and (8.9) are then applied and we arrive at the difference equation

ak
yk+1 − 2yk + yk−1

h2 + bk
yk+1 − yk−1

2h
+ ck yk = fk, (8.11)

where k = 2, . . . , N − 1. Sorting the yk yields furthermore:

(
ak

h2 − bk

2h

)
yk−1 +

(
ck − 2ak

h2

)
yk +

(
ak

h2 + bk

2h

)
yk+1 = fk . (8.12)

This equation is only valid for k = 2, . . . , N − 1 because we defined N grid-points
within the interval [a, b].

In a final step it is necessary to incorporate the boundary conditions and this will
enable us to reduce the whole problem to a system of linear equations. Decoupled
boundary conditions of a second order differential equation for the left hand boundary
(8.4b) are of the form:

α0y(a) + α1y≈(a) = λ1, |α0| + |α1| ∞= 0, (8.13)

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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and we find for the right hand boundary (8.4c):

β0y(b) + β1y≈(b) = λ2, |β0| + |β1| ∞= 0. (8.14)

We discretize y≈(a) as

y≈(a) = y≈
1 ⇒ y2 − y0

2h
, (8.15)

and set y1 √ y(a). Note that the function value y0 in Eq. (8.15) is unknown since
x0 = a − h is not a point within our interval [a, b]. Nevertheless, we use Eq. (8.15)
in Eq. (8.13) and obtain:

α0y1 + α1
y2 − y0
2h

= λ1. (8.16)

In a next step we solve Eq. (8.16) for y0 under the premise that α1 ∞= 0,

y0 = y2 − 2h

α1
(λ1 − α0y1) , (8.17)

rewrite (8.12) for k = 1,

(
a1
h2 − b1

2h

)
y0 +

(
c1 − 2a1

h2

)
y1 +

(
a1
h2 + b1

2h

)
y2 = f1, (8.18)

and insert (8.17) into (8.18):

[
c1 − 2a1

h2 + α0

α1

(
2a1
h

− b1

)⎛
y1 + 2a1

h2 y2 = f1 − λ1

α1

(
b1 − 2a1

h

)
. (8.19)

In the specific case that α1 = 0 we obtain immediately from Eq. (8.16) that

y1 = λ1

α0
. (8.20)

We follow the same strategy and incorporate the boundary condition at the right hand
boundary, Eq. (8.14), i.e. we discretize (8.14) by introducing a grid-point yN+1 via

β0yN + β1
yN+1 − yN−1

2h
= λ2, (8.21)

solve this equation for yN+1 under the premise that β1 ∞= 0

yN+1 = yN−1 + 2h

β1
(λ2 − β0yN ) , (8.22)



8.2 Finite Difference Approach 115

and insert this into Eq. (8.12) for k = N . This results in:

2aN

h2 yN−1 +
[

cN − 2aN

h2 − β0

β1

(
bN + 2aN

h

)⎛
yN = fN − λ2

β1

(
bN + 2aN

h

)
.

(8.23)

In the specific case β1 = 0, the value yN is fixed at the boundary and one obtains
from (8.14) that

yN = λ2

β0
. (8.24)

We note that as a result of this procedure the boundary value problemwas reduced
to a systemof inhomogeneous linear equations, namelyEqs. (8.12), (8.19) and (8.23).
It can be written as

Ay = F, (8.25)

where we introduced the vectors y = (y1, y2, . . . , yN )T , F as

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

f1 − λ1
α1

⎩
b1 − 2a1

h

)
f2
f3
...

fN−1

fN − λ2
β1

⎩
bN + 2aN

h

)

⎜


, (8.26)

and the tridiagonal matrix A as

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

B1 C1 0 · · · 0

A2 B2 C2 · · · ...

0
. . .

. . .
. . .

...
. . .

. . .
. . . 0

AN−1 BN−1 CN−1
0 · · · 0 AN BN

⎜


. (8.27)

Here we defined,

Ak =
⎟

⎩

ak
h2

− bk
2h

)
k = 2, . . . , N − 1,

2aN
h2

k = N ,
(8.28)
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Bk =

⎟


[
c1 − 2a1

h2
+ α0

α1

⎩
2a1
h − b1

)]
k = 1,⎩

ck − 2ak
h2

)
k = 2, . . . N − 1,[

cN − 2aN
h2

− β0
β1

⎩
bN + 2aN

h

)]
k = N ,

(8.29)

and, finally,

Ck =
⎟


2a1
h2

k = 1,⎩
ak
h2

+ bk
2h

)
k = 2, . . . , N − 1.

(8.30)

We remark in conclusion that the remaining task is to solve this linear system of
equations (8.25) (A brief introduction to the numerical treatment of linear systems
of equations can be found in Appendix C). Very effective methods exist for cases
where the matrix A is tridiagonal [4] as it is the case here. Although we discussed
the method of finite differences for the particular case of a second order differential
equation with decoupled boundary conditions, the same strategy can be employed
to derive similar methods for higher order boundary value problems. However, these
methods will in general be more complex. Furthermore, we note that in cases where
α1 = β1 = 0 the function values at the boundaries y1 and yN are fixed and the
corresponding system of linear equations reduces to (N − 2)-dimensions.

Let us briefly investigate the differential equation which corresponds to the
problem (8.4) together with periodic boundary conditions of the form (8.7). In this
case we have to consider that

y1 = yN , (8.31)

and, in order to a solution to exist, we have necessarily

a1 = aN , b1 = bN , and c1 = cN . (8.32)

The approximation (8.12) is again employed to transform the differential equation
(8.4) for k = 2, . . . , N − 1. For instance, for k = 2 it changes into

(
a2
h2 − b2

2h

)
y1 +

(
c2 − 2a2

h2

)
y2 +

(
a2
h2 + b2

2h

)
y3 = f2, (8.33)

and we obtain for k = N − 1

(
aN−1

h2 − bN−1

2h

)
yN−2 +

(
cN−1 − 2aN−1

h2

)
yN−1

+
(

aN−1

h2 + bN−1

2h

)
yN = fN−1. (8.34)

Since y1 = yN Eq. (8.34) can be rewritten as
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(
aN−1

h2 − bN−1

2h

)
yN−2 +

(
cN−1 − 2aN−1

h2

)
yN−1

+
(

aN−1

h2 + bN−1

2h

)
y1 = fN−1. (8.35)

Finally, Eq. (8.12) results for k = 1 in

(
a1
h2 − b1

2h

)
yN−1 +

(
c1 − 2a1

h2

)
y1 +

(
a1
h2 + b1

2h

)
y2 = f1, (8.36)

where we identified y0 = y(x1 − h) √ y(xN − h) = yN−1. All this results in a
closed system of N − 1 equations, which is of the form (8.25)

Ay = F, (8.37)

where y = (y1, y2, . . . , yN−1)
T ,

F =

⎧
⎪⎪⎪⎨

f1
f2
...

fN−1

⎜
 , (8.38)

and the (N − 1) × (N − 1) matrix A is given by

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

B1 C1 0 · · · 0 A1
A2 B2 C2 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 AN−2 BN−2 CN−2

CN−1 0 · · · 0 AN−1 BN−1

⎜


. (8.39)

Here, we defined

Ak =
(

ak

h2 − bk

2h

)
, k = 1, . . . , N − 1, (8.40)

Bk =
(

ck − 2ak

h2

)
, k = 1, . . . , N − 1, (8.41)

and

Ck =
(

ak

h2 + bk

2h

)
, k = 1, . . . , N − 1. (8.42)



118 8 Numerics of Ordinary Differential Equations: Boundary Value Problems

In contrast to the matrix (8.27) matrix (8.39) is not tridiagonal since the
matrix elements (A)1,N−1 and (A)N−1,1 are non-zero.Nevertheless, itwas possible to
reduce the boundary value problem to a system of linear equations which can be
solved iteratively.

8.3 Shooting Methods

Again, for illustrative purposes, we restrict the discussion to a second order boundary
value problem with decoupled boundary conditions of the form (8.4). The essential
idea of shooting methods is to treat the boundary value problem as an initial value
problem. The resulting equations can then be solved with the help of methods dis-
cussed in Chap. 5. Of course, such an approach can, in general, not be exact. The trick
is, that one modifies the initial conditions iteratively in such a way that the boundary
conditions are fulfilled. Let us put this train of thoughts into a mathematical form:
We rewrite the second order differential equation (8.4a) as

y≈≈ = f (y, y≈, x), (8.43)

which can be reduced to a set of first order differential equations as was demonstrated
in Chap. 5. We note that Eq. (8.43) is not yet well posed since the initial conditions
have not been defined. The boundary condition on the left hand side reads:

α0y(a) + α1y≈(a) = λ1. (8.44)

We now assume that y≈(a) = z, where z is some number. This gives the well posed
initial value problem ⎟


y≈≈ = f (y, y≈, x),

y(a) = λ1
α0

− α1
α0

z,
y≈(a) = z,

(8.45)

under the assumption that α0 ∞= 0. The solution of this problem will be written as
y(x; z) in order to indicate its dependence on the particular choice y≈(a) = z. We
remember, that the boundary condition at the right hand boundary reads:

β0y(b) + β1y≈(b) = λ2. (8.46)

Let us define the function

F(z) = β0y(b; z) + β1y≈(b; z) − λ2, (8.47)

and we observe that the solution of the equation

http://dx.doi.org/10.1007/978-3-319-02435-6_5
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F(z) = 0, (8.48)

gives the desired solution to the boundary value problem (8.4), because in this case
the second boundary condition (8.46) is fulfilled. In practice, one tries several values
of z until relation (8.48) is fulfilled. However, from a numerical point of view this
method is very inefficient since usually several initial value problems have to be
solved until the correct value of z is found. Nevertheless, in some cases shooting
methods proved to be very useful.

For instance, shooting methods are particularly effective if a solution to an
eigenvalue problem of the form

a(x)y≈≈(x) + b(x)y≈(x) + c(x)y(x) = λy(x), (8.49a)

in combination with homogeneous boundary conditions,

α0y(a) + α1y≈(a) = 0, (8.49b)

and
β0y(b) + β1y≈(b) = 0. (8.49c)

is to be found. We note that Eq. (8.49a) has the trivial solution y(x) √ 0 for all
values of λ. However a non-trivial solution will only exist for particular values of λ.
These particular values will be indexed by λn and are referred to as eigenvalues of
Eq. (8.49a). The corresponding functions yn(x) are referred to as eigenfunctions.
We note that the differential equation (8.49a) in combination with the boundary
conditions (8.49b) and (8.49c) define a homogeneous boundary value problem. Such
a problem is commonly referred to as an eigenvalue problem. Furthermore, we note
the following property of homogeneous boundary value problems: Suppose that y(x)

is a solution of the boundary value problem (8.49). Then ỹ(x) = γ y(x), with γ =
constwill also be a solutionof (8.49).Hence, the solutionof a homogeneousboundary
value problem is not unique but invariant under multiplication by a constant γ .
Typically, the multiplicative factor γ is fixed by some additional condition, such as
a normalization condition of the form

b∫

a

dx |y(x)|2 = 1. (8.50)

We now employ this property and choose y(a) = 1. Inserting this choice into
(8.49b) yields

y≈(a) = −α0

α1
. (8.51)

Note that for α0 = 0 or α1 = 0, we are restricted to the choices y≈(a) = 0 and y(a) is
arbitrary or y(a) = 0 and y≈(a) is arbitrary, respectively. If we assume that a(x) ∞= 0
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for all x ∀ [a, b], we can solve the initial value problem

⎟


y≈≈(x) = − b(x)
a(x)

y≈(x) − c(x)−λ
a(x)

y(x),

y(a) = 1,
y≈(a) = −α0

α1
.

(8.52)

The solutions are denoted by y(x; λ) in order to emphasize that they will highly
depend on the choice of the parameter λ. The strategy is to solve the initial value
problem (8.52) for several values of λ and whenever one finds that

F(λ) = β0y(b; λ) + β1y≈(b; λ) = 0, (8.53)

an eigenvalue λn and the corresponding eigenfunction yn(x) = y(x; λn) to the
eigenvalue problem (8.49) have been found.

However, this strategy is also very time consuming. Themost common application
of the shooting method is its combination with a very fast and accurate solution
of initial value problems. This method is known as the Numerov method. It is
applicable whenever one is confronted with a differential equation of the form

y≈≈(x) + k(x)y(x) = 0, (8.54)

in combination with homogeneous boundary conditions. Here k(x) is some
function. If we are particularly interested in eigenvalue problems then k(x) has the
form k(x) = q(x) − λ, where q(x) is some function and λ is the eigenvalue [see
the discussion after equation (8.49)]. For instance, consider the one-dimensional
stationary Schrödinger equation,

ψ ≈≈(x) + 2m

�2
[E − V (x)]ψ(x) = 0, (8.55)

where ψ(x) is the wave-function, m is the mass, � denotes the reduced Planck
constant, E is the energy, and V (x) is some potential. In this case we identify

k(x) = 2m

�2
[E − V (x)] . (8.56)

We note that Eq. (8.55) together with its boundary conditions defines an eigenvalue
problem with eigenvalues En , the possible energies of the system. We remember
from Chap. 2, Eq. (2.34), that

y≈≈
j = y j+1 − 2y j + y j−1

h2 − h2

12
y(4)

j − · · · = −k j y j . (8.57)

In the last step we made use of Eq. (8.54) and introduced k j √ k(x j ). Furthermore,
we write the fourth derivative of y(x) at point x = x j as

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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y(4)
j ⇒ y≈≈

j+1 − 2y≈≈
j + y≈≈

j−1

h2 = −k j+1y j+1 + 2k j y j − k j−1y j−1

h2 , (8.58)

where we employed Eq. (8.54). Truncating (8.57) after the fourth order derivative
y(4)

j , inserting relation (8.58), and solving for y j+1 yields

y j+1 =
2
⎩
1 − 5h2

12 k j

)
y j −

⎩
1 + h2

12k j−1

)
y j−1

1 + h2
12k j+1

. (8.59)

This gives a very fast algorithm to solve the differential equation (8.54) with some
initial values of the form (8.52). The remaining strategy is the same as discussed
above, i.e. one screens the parameter λ in order to find the eigenvalues λn and
eigenfunctions yn(x). In case of the Schrödinger equation, one can screen the
energy E in order to obtain the energy eigenvalues En which satisfy a condition of
the form (8.53).

Let us conclude this section with two important remarks on theNumerovmethod
before we present two illustrating examples in the next chapters. We note from
Eq. (8.59) that in order to compute y3 one already needs the function values y1 and y2.
Usually, one obtains these values from the boundary conditions in combination with
some additional condition for the problem at hand. Such an additional condition
might be, for instance, the normalization of the function y(x), like Eq. (8.50). Let
us make a second comment. As already emphasized, one has to run the Numerov
algorithm several times for different trial values of the parameter λ. In order to reduce
the computational cost of the method it is in many cases advantageous to store the
function values qi , where ki = qi −λ, in an array, which is then regarded as an input
argument of the Numerov algorithm.

Summary

We focused on linear boundary value problems defined on a finite interval [a, b] ∈ R.
Most important for physics are second order boundary value problems with decou-
pled boundary conditions, i.e. the boundary conditions at the two different bound-
aries do not mix. The numerical treatment of the second order differential equation
together with its boundary conditions concentrated either on the application of finite
differences or on shooting methods. In the finite difference approach the methods
developed in Chap. 2 were applied and the boundary conditions were incorporated
directly. This resulted in a set of linear algebraic equations which is to be solved for
each grid-point of the discretisized interval [a, b]. The case of periodic boundary
conditions was also discussed in detail.

The shootingmethods, on the other hand, try to link the decoupled boundary value
problem to an initial value problem. This allowed the application of the methods
discussed in Chap. 5. The idea was to start with some initial value at one of the two

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_5
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boundaries, solve the differential equation numerically and tomodify the initial value
iteratively until it agreedwith the original boundary conditionwithin somepredefined
error. Such a procedure is rather time consuming. Nevertheless, shooting methods,
in particular its Numerov variation, are very useful in the numerical solution of
eigenvalue problems, as was demonstrated by the homogeneous boundary value
problem of the one-dimensional stationary Schrödinger equation.
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Chapter 9
The One-Dimensional Stationary Heat Equation

9.1 Introduction

This is the first of two chapters which illustrate the applicability of the methods
introduced in Chap.8. Within this chapter the finite difference approach is employed
to solve the stationary heat equation. Let us motivate briefly this particular problem.
We consider a rod of length L which is supposed to be kept at constant temperatures
T0 and TN at its ends as illustrated in Fig. 9.1. The homogeneous heat equation is a
linear partial differential equation of the form

∂

∂t
T = κξT. (9.1)

Here T = T (x, t) is the temperature as a function of space x ∈ R
3 and time t ∈ R,

ξ = ∇2 = ∂2
x + ∂2

y + ∂2
z is the Laplace operator, and κ = const is the thermal

diffusivity.
We remark, that Eq. (9.1) is a partial differential equation together with initial

and boundary conditions. Moreover, we note in passing that the heat equation is
equivalent to the diffusion equation

∂

∂t
ρ(x, t) = Dξρ(x, t), (9.2)

with particle density ρ(x, t) and the diffusion coefficient D = const. Here we restrict
ourselves to a simplified situation in order to test the validity of the finite difference
approach discussed in Sect. 8.2. The general solution of the heat or diffusion equation
will be discussed in Sect. 11.3.

If we assume that the cylindrical surface of the rod is perfectly isolated, we can
restrict the problem to a one-dimensional problem. Furthermore, we assume that the
steady-state has been reached, i.e. ∂

∂t T (x, t) = 0. Hence, the remaining boundary
value problem is of the form

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 123
DOI: 10.1007/978-3-319-02435-6_9, © Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-02435-6_8
http://dx.doi.org/10.1007/978-3-319-02435-6_8
http://dx.doi.org/10.1007/978-3-319-02435-6_11


124 9 The One-Dimensional Stationary Heat Equation

Fig. 9.1 We consider a rod of
length L . Its ends are kept at
constant temperatures T0 and
TN , respectively




d2

dx2
T = 0, x ∈ [0, L],

T (0) = T0,
T (L) = TN .

(9.3)

The solution can easily be found analytically and one obtains

T (x) = T0 + (TN − T0)
x

L
. (9.4)

In the following section wewill apply the approach of finite differences to the bound-
ary value problem (9.3) as discussed in Sect. 8.2.

9.2 Finite Differences

We discretize the interval [0, L] according Chap.2 by the introduction of N grid-
points xn = nh, with h = L/N , x0 = 0, and xN = L . Furthermore, Tn ≡ T (xn) and,
in particular, we refer to the boundary conditions (9.3) as T0 and TN , respectively.

On the basis of this discretization, we approximate Eq. (9.3) by

Tn+1 − 2Tn + Tn−1

h2 = 0, (9.5)

or equivalently
Tn+1 − 2Tn + Tn−1 = 0. (9.6)

We can rewrite this as a matrix equation,

AT = F, (9.7)

where the boundary conditions have already been included. In Eq. (9.7) the vector
T = (T1, T2, . . . , TN−1)

T , the tridiagonal matrix A is given by

http://dx.doi.org/10.1007/978-3-319-02435-6_8
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A =




−2 1 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1
...

. . .
. . .

. . .

0 . . . 1 −2


⎛⎛⎛⎛⎛⎧

, (9.8)

and the vector F is given by

F =




−T0
0
...

0
−TN


⎛⎛⎛⎛⎛⎧

. (9.9)

It is an easy task to solve Eq. (9.7) analytically. It follows from Eq. (9.6) that

Tn+1 = 2Tn − Tn−1, n = 1, . . . , N − 1. (9.10)

We insert n = 1, 2, 3 in order to obtain

T2 = 2T1 − T0, (9.11)

T3 = 2T2 − T1,

= 3T1 − 2T0, (9.12)

T4 = 2T3 − T2,

= 4T1 − 3T0. (9.13)

We recognize the pattern and conclude that Tn has the general form

Tn = nT1 − (n − 1)T0, (9.14)

which we prove by complete induction:

Tn+1 = 2Tn − Tn−1

= 2(nT1 − (n − 1)T0) − [(n − 1)T1 − (n − 2)T0]

= (n + 1)T1 − nT0. (9.15)

Hence, expression (9.14) is valid for all n = 1, . . . , N . However, since TN is kept
constant according to the boundary condition, we can determine T1 from

TN = N T1 − N T0 + T0, (9.16)

which yields

T1 = TN − T0
N

+ T0. (9.17)
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Inserting (9.17) into (9.14) gives

Tn = T0 + (TN − T0)
n

N

= T0 + (TN − T0)
nh

L
, (9.18)

which is exactly the discretized version of Eq. (9.4). Hence the finite difference
approach to the boundary value problem (9.3) is exact and independent of the grid-
spacing h. This is not surprising since we proved already in Chap.2 that finite dif-
ference derivatives are exact for linear functions.

9.3 A Second Scenario

We consider the inhomogeneous heat equation

∂

∂t
T = κξT − θ (x, t). (9.19)

Here θ (x, t) ≡ θ (x) is some heat source or heat drain, which is assumed to be
independent of time t . Again, we consider the one dimensional, stationary case, i.e.

d2

dx2
T = 1

κ
θ (x), (9.20)

with the same boundary conditions as in Eq. (9.4). Furthermore, we assume θ (x) to
be of the form

θ (x) = ω

τ
exp

⎪
−
⎨
x − L

2

⎩2
τ2

]
, (9.21)

i.e. θ (x) has the form of a Gauss peak which is centered at x = L/2 and has a
width determined by the parameter τ and a maximum height given by the constant
ω . Such a situation might occur, for instance, when the rod is heated with some kind
of a heat gun or cooled by a cold spot. (In the case of the diffusion equation one
could imagine, that the density of electrons ρ is constant at the contacts at x = 0
and x = L . The source/drain term θ (x) then accounts for a constant generation
or recombination rate of electrons, for instance, through incoming light or intrinsic
traps, respectively.)

Furthermore, we note that in the limiting case τ → 0 we have

lim
τ→0

θ (x) = ωδ

⎜
x − L

2

)
, (9.22)
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where δ(·) is the Dirac δ-distribution; in this case the spatial extension of the
source/drain term θ (x) is infinitesimal.

We now employ the results of Sect. 8.2 and rewrite the system of equations in the
familiar form

AT = F, (9.23)

where A has already been given in Eq. (9.8), T = (T1, T2, . . . , TN−1)
T and F is

given by

F = h2

κ




θ1 − κ
h2

T0
θ2
...

θN−2
θN−1 − κ

h2
TN


⎛⎛⎛⎛⎛⎧

. (9.24)

Here we used the notation θn ≡ θ (xn).
The system is solved numerically quite easily using methods discussed by Press

et al. [1] for the solution of sets of algebraic equations of the kind (9.24) with
tridiagonal matrix A. We chose L = 10, κ = 1, ω = −0.4, τ = 1, T0 = 0 and
TN = 2. The resulting temperature profiles T (x) (solid line) for different values of
N can be found in Figs. 9.2, 9.3 and 9.4 as well as the respective form of the function
θ (x) (dashed line). With increasing number of steps we see, as it was to be expected,
a refinement of the temperature profile. Its maximum does not quite agree with the
minimum of θ (x), it is shifted slightly towards the end of the rod because of the
boundary conditions, i.e. T0 < TN .

Fig. 9.2 Temperature profile
T (x) (solid line, left hand
scale) and the source function
θ (x) (dashed line, right hand
scale) for N = 5

http://dx.doi.org/10.1007/978-3-319-02435-6_8
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Fig. 9.3 Temperature profile
T (x) (solid line, left hand
scale) and the source function
θ (x) (dashed line, right hand
scale) for N = 10

Fig. 9.4 Temperature profile
T (x) (solid line, left hand
scale) and the source function
θ (x) (dashed line, right hand
scale) for N = 100

Summary

The methods of Sect. 8.2 were applied to find the numerical solution of the stationary
heat equation withDirichlet boundary conditions.We studied the particular case of
an isolated rod of length L . This reduced the dimensionality of the differential equa-
tion to one. The length of the rod was then divided into N discrete grid-points. Using
finite differences the one-dimensional ordinary second order differential equation
which described this particular problem was transformed into a set of linear alge-
braic equations which determined the temperatures at each grid-point. This set of
algebraic equations was characterized by a tridiagonal coefficient matrix. Solutions
have been studied with and without a heat source which was described as a ‘point’
source characterized by a Gaussian of given width and amplitude. In the first case
analytic solutions were easily derived. They described a linear temperature profile
increasing (decreasing) from T0 to TN . In the latter case solutions were generated
numerically using specific algorithms designed for sets of algebraic equations with
a tridiagonal coefficient matrix A.

http://dx.doi.org/10.1007/978-3-319-02435-6_8
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Problems

1. Calculate the stationary temperature profile across the cylindrical rod of Fig. 9.1
which is exposed to a heat sink centered around x = L/2. This heat sink is
described by a functionθ (x)which is of rectangular shape ofwidth a and depth θ.
Both ends of the rod are kept at constant temperatures T0 and TN , respectively.

2. Investigate the three cases T0 > TN , T0 < TN , T0 = TN > 0, and study the
influence of the width a of the heat sink on the temperature profile.
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Chapter 10
The One-Dimensional Stationary
Schrödinger Equation

10.1 Introduction

The numerical solution of the stationary Schrödinger equation is discussed to
illustrate the application of Numerov’s shooting method as it was described in
Sect. 8.3.

We start the discussion with a brief survey of basic quantum mechanics (see for
instance the books by G. Baym [1], by C. Cohen-Tannoudji et al. [2], or by
J.J. Sakurai [3]). Of course, this chapter is not supposed to give a self-contained
introduction to quantummechanics and the reader not familiarwith quantummechan-
ics should, therefore, regard the following discussion from a purely mathematical
point of view.

A quantum-mechanical wave-function ξ ∈ ξ (x, t) ∀ C as a function of time
t ∀ R

+ and space x ∀ R
3, obeys the Schrödinger equation

i�
d

dt
ξ = Hξ, (10.1)

where � = h/(2θ) is the reduced Planck constant, i is the imaginary unit, and H
is the Hamilton operator or Hamiltonian. If H ≈= H(t), i.e. the Hamiltonian is
independent of time t , we can employ a product ansatz

ξ (x, t) = exp

(
− i

�
Et

)
ω(x), (10.2)

where E is the energy and ω(x) is the time-independent part of the wave-function.
This ansatz transforms Eq. (10.1) into

i�
d

dt

[
exp

(
− i

�
Et

)
ω(x)

]
= i�

(
− i

�
E

)
exp

(
− i

�
Et

)
ω(x)

= exp

(
− i

�
Et

)
Hω(x), (10.3)
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and ω(x) is determined by the eigenvalue problem

Hω = Eω, (10.4)

augmented by appropriate boundary conditions. We already came across Eq. (10.4)
when we discussed shooting methods in Sect. 8.3. The one-particle Hamiltonian is
of the general form

H = T + V = P2

2m
+ V, (10.5)

where T is the kinetic energy operator,V is the potential operator, P is themomentum
operator and m is the particle’s mass. If the system is not exposed to an external
magnetic field, P can be expressed in position space by

P = −i�∞x , (10.6)

and the potential operator V by V (x). Thus we get for Eq. (10.5):

H = − �
2

2m
τ + V (x). (10.7)

Hence, we have to solve the linear, second order partial differential equation:

− �
2

2m
τω(x) + V (x)ω(x) = Eω(x). (10.8)

Equation (10.8) will certainly not have solutions for arbitrary values of the
energy E . The particular values E = En for which (10.7) has a solution are referred
to as eigenenergies and the corresponding solutionωn(x) is referred to as eigenfunc-
tion to the eigenenergy En . We rewrite Eq. (10.8) in order to emphasize this point
as

− �
2

2m
τωn(x) + V (x)ωn(x) = Enωn(x) , n = 1, 2, 3, . . . . (10.9)

We define the scalar product between two functions π(x) and ϕ(x)

√π |ϕ⇒ =
∫

dxπ≤(x)ϕ(x), (10.10)

where π≤(x) denotes the complex conjugate of π(x). The corresponding L2-norm
reads

|π | = √√π |π⇒ =
√∫

dx |π(x)|2. (10.11)
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The expectation value of an operator O in the quantum mechanical state ξ is given
by

√O⇒ = √ξ |Oξ ⇒
√ξ |ξ ⇒ =

⎛
dxξ ≤(x)Oξ (x)⎛

dx |ξ (x)|2 . (10.12)

We note from Eq. (10.4) that the energy is the expectation value of the Hamilton
operator H

√H⇒ =
⎛
dxξ ≤(x)Hξ (x)⎛

dx |ξ (x)|2 = E . (10.13)

In the following we quote some important properties. A detailed discussion can
be found in any textbook on quantum mechanics.

• The expectation value √O⇒ of a Hermitian operator O , O† = O , is real, i.e.
√O⇒ = √O⇒≤. Here O† denotes the adjoint of O , i.e. O† = (O≤)T .

• Every real expectation value can be described by a Hermitian operator.
• All observables can be described by Hermitian operators, in particular, the
Hamiltonian has to be a Hermitian operator to ensure that the eigenenergies En

are real, En ∀ R.
• It follows from the hermiticity of H that the eigenfunctionsωn(x) form a complete,
orthogonal basis in Hilbert space. Furthermore, the functions can be normalized
and the relation

√ωn|ωm⇒ = αnm, (10.14)

holds, with αnm the Kronecker-α.

The expectation value of a Hermitian operator O (10.12) can be rewritten with
the help of (10.14) as

√O⇒ =
∫

dxξ ≤(x)Oξ (x). (10.15)

Furthermore, the total wave-functionξ (x, t) (10.2) consists of contributions from
different eigenenergies. We define

ξn(x, t) = exp

(
− i

�
Ent

)
ωn(x), (10.16)

and write the total wave-function ξ (x, t) as a superposition of wave-functions
ξn(x, t)

ξ (x, t) =
⎧

n

cnξn(x, t), (10.17)

because theξn(x, t) constitute a complete, orthogonal basis.We note that this is only
possible because the Schrödinger equation is linear. Again, we demand ξ (x, t) to
be normalized for all t . Employing Eq. (10.14) in Eq. (10.17) yields
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∫
dx |ξ (x, t)|2 =

⎧
n

|cn|2 = 1. (10.18)

We give the following interpretation of the squared modulus of the wave-function
without going into detail:

|ξ (x, t)|2dx = The probability that the particle described by

the wave-functionξ (x, t) can be found at time

t within a volume dx around the point x . (10.19)

This interpretation justifies the requirement of a normalization of the wave-function
ξ (x, t) ∫

dx |ξ (x, t)|2 != 1, (10.20)

because, by definition the particle has to be found somewhere anytime.
Suppose we start with an initial state π(x) = ξ (x, t = 0). Since the functions

ωn(x) form a complete basis in Hilbert space, π(x) may be written with the help
of (10.17) as

π(x) =
⎧

n

cnωn(x). (10.21)

We deduce from (10.14) that

√ωm |π⇒ =
⎧

n

cn

∫
dxω≤

m(x)ωn(x) = cm . (10.22)

We note that |cm |2 is the probability that the particle was initially in state m. This
allows us to interpret Eq. (10.17) in the following way: The coefficients cm determine
the composition of the initial state. The exponential factor describes an oscillation and
we note that different eigenfunctions, which correspond to different eigenenergies,
oscillate with different frequencies. This can, for instance, induce the diffluence of
a wave packet.

In what follows, we will concentrate on the one-dimensional Schrödinger
equation, that is x ∀ R. We give a simple example, which will then be solved
numerically in Sect. 10.3

10.2 A Simple Example: The Particle in a Box

Since x ∀ R we rewrite (10.7) as

− �
2

2m

d2

dx2
ωn(x) + V (x)ωn(x) = Enωn(x), (10.23)
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and specify

V (x) =
⎪
0 0 ≥ x ≥ L ,

∓ elsewhere,
(10.24)

together with the boundary conditions

ωn(0) = ωn(L) = 0, n = 1, 2, 3, . . . , (10.25)

and the normalization condition

∫
dx |ωn(x)|2 =

L∫

0

dx |ωn(x)|2 = 1, n = 1, 2, 3, . . . . (10.26)

We note that the boundary conditions are dictated by the particular form of the
potential (10.24) which requires that ωn(x) = 0 for x /∀ [0, L]. This problem is
commonly referred to as the particle in a one-dimensional box.

Let us introduce dimensionless variables in order to simplify the numerics of
Eq. (10.23). We define new variables

s = x

L
, εn = En

E
, (10.27)

where L is the length scale and E is the energy scale. The energy scale E is fully
determined by the relation

E = �
2

mL2 . (10.28)

We note that s ∀ [0, 1], hence the rescaled wave-function is given by

ϕn(s) = →
Lωn(x), (10.29)

which satisfies the normalization condition

L∫

0

dx |ωn(x)|2 =
1∫

0

ds|ϕn(s)|2 = 1. (10.30)

The rescaled Schrödinger equation can be obtained by multiplying Eq. (10.23)
with 1/E :
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− �
2

2m E

d2

dx2
ωn(x) + V (x)

E
ωn(x) = − L2

2

d2

dx2
ωn(x) + v(s)ωn(x)

= −1

2

d2

ds2
ωn(x) + v(s)ωn(x)

= En

E
ωn(x)

= εnωn(x) . (10.31)

Here we introduced the rescaled potential v(s)

v(s) =
⎪
0 0 ≥ s ≥ 1,

∓ elsewhere.
(10.32)

Hence, the rescaled wave-function (10.29) is a solution of the differential equation:

− 1

2

d2

ds2
ϕn(s) + v(s)ϕn(s) = εnϕn(s). (10.33)

We already stated that the form of the potential implies that ϕn(s) = 0 for all
s /∀ [0, 1]. Therefore, the complete boundary value problem can be written for
n = 1, 2, 3, . . . as

⎨⎩
⎩⎜

− 1
2

d2

ds2
ϕn(s) = εnϕn(s), s ∀ [0, 1],

ϕn(0) = 0,
ϕn(1) = 0.

(10.34)

It is an easy task to solve this boundary value problem analytically. For s ∀ [0, 1]
we choose the ansatz

ϕn(s) = An sin(kns) + Bn cos(kns), (10.35)

where An and Bn are some constants and kn is given by

kn = √
2εn . (10.36)

From the boundary conditions we obtain

ϕn(0) = Bn = 0, (10.37)

and
ϕn(1) = An sin(kn) = 0. (10.38)
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It follows from Eq. (10.38) that

kn = nθ, n = 1, 2, 3, . . . , (10.39)

and, therefore, that the eigenenergies εn are quantized

εn = n2θ2

2
, (10.40)

and the corresponding eigenfunctions ϕn(s) are of the form

ϕn(s) =
⎪

An sin(nθs) s ∀ [0, 1],
0 elsewhere.

(10.41)

The constants An are determined from the normalization condition (10.30)1

1∫

0

ds|ϕn(s)|2 = A2
n

1∫

0

ds sin2(nθs)

= A2
n

nθ

nθ∫

0

du sin2(u)

= A2
n

θ

θ∫

0

du sin2(u)

= A2
n

θ

θ

2

= A2
n

2
!= 1, (10.44)

and:
An = →

2 . (10.45)

1 Here we make use of
∫

du sin2(u) = − cos(u) sin(u) +
∫

du cos2(u)

= − cos(u) sin(u) +
∫

du
[
1 − sin2(u)

]
, (10.42)

and, therefore ∫
du sin2(u) = 1

2
[u − cos(u) sin(u)] . (10.43)
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Finally, we employ relations (10.27), (10.28) and (10.29) to obtain

ωn(x) = 1→
L

ϕn

⎟ x

L

)
=
{√

2
L sin

( nθx
L

⎢
x ∀ [0, L],

0 elsewhere,
(10.46)

and

En = εn E = �
2θ2n2

2mL2 . (10.47)

In most cases it is required to calculate expectation values of some observables.
We might, for instance, be interested in the expectation value √x⇒ of the position
operator x or its variance var (x) = 〈

(x − √x⇒)2〉. It follows from Eq. (10.27) that

√x⇒ = L √s⇒ , and
⎥
(x − √x⇒)2

〉
= L2

⎥
(s − √s⇒)2

〉
= L2var (s) . (10.48)

Employing definition (10.15) together with the solution (10.41) gives √s⇒:

√s⇒ = 2

1∫

0

ds sin2(nθs)s

= 2

n2θ2

nθ∫

0

du sin2(u)u

= 2

nθ2

⎨
⎜
1

2

[
u2 − u cos(u) sin(u)

]nθ

0
− 1

2

nθ∫

0

du [u − cos(u) sin(u)]

⎫⎬
⎭

= 2

nθ2

(
n2θ2

2
− n2θ2

4
+ sin2(u)

4

∣∣∣nθ

0

)

= 1

2
. (10.49)

Here we made again use of relation (10.43). Furthermore, we obtain for
〈
s2
〉
:

⎥
s2
〉
= 2

1∫

0

ds sin2(nθs)s2

= 2

n3θ3

nθ∫

0

du sin2(u)u2
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= 2

n3θ3

⎨
⎜
1

2

[
u3 − u2 cos(u) sin(u)

]nθ

0
−

nθ∫

0

du
[
u2 − u cos(u) sin(u)

]⎫⎬
⎭

= 2

n3θ3

⎡
⎣n3θ3

2
− n3θ3

3
+

nθ∫

0

duu cos(u) sin(u)

⎤
⎦

= 2

n3θ3

⎨
⎜

n3θ3

6
+
[

u
sin2(u)

2

]nθ

0
− 1

2

nθ∫

0

du sin2(u)

⎫⎬
⎭

= 2

n3θ3

(
n3θ3

6
− nθ

4

)

= 1

3
− 1

2n2θ2 . (10.50)

Hence, the variance var (s) is determined by

⎥
(s − √s⇒)2

〉
=
⎥
s2
〉
− √s⇒2 = 1

3
− 1

2n2θ2 − 1

4
= 1

12

(
1 − 6

n2θ2

)
. (10.51)

We note that the variance increases with increasing n. In the following we shall
reproduce the above results with help of the shooting Numerov method. Further-
more, the numerical formulation will allow us to find solutions for more complex
potentials.

10.3 Numerical Solution

The following discussion is based on the scaled Schrödinger equation (10.33).
However, we consider a more general potential of the form

v(s) =
⎪

ṽ(s) 0 ≥ s ≥ 1,
∓ elsewhere.

(10.52)

Hence, the boundary value problem (10.34) takes on the form

⎨⎩
⎩⎜

− 1
2

d2

ds2
ϕn(s) + ṽ(s)ϕn(s) = εnϕn(s) s ∀ [0, 1],

ϕn(0) = 0,
ϕn(1) = 0.

(10.53)

Moreover, our numerical treatment will be based on shooting methods, discussed
inSect. 8.3. Therefore,we rewrite the secondorder differential equation inEq. (10.53)
in a form which corresponds to Eq. (8.54), namely:

http://dx.doi.org/10.1007/978-3-319-02435-6_8
http://dx.doi.org/10.1007/978-3-319-02435-6_8
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ϕ′′
n (s) + 2

[
εn − ṽ(s)

]
ϕn(s) = 0. (10.54)

The interval [0, 1] is discretized using N + 1 grid-points sη = η/N , η =
0, 1, 2, . . . , N (h = 1/N ) and we denote with ϕn(sη) and ṽ(sη) ∈ vη the values
of ϕn(s) and ṽ(s) at those grid-points. This allows to rewrite Eq. (8.59) as

ϕn(sη+1) =
2
[
1 − 5

6N2 (εn − ṽη)
]
ϕn(sη) −

[
1 + 1

6N2 (εn − ṽη−1)
]
ϕn(sη−1)

1 + 1
6N2 (εn − ṽη+1)

.

(10.55)
Again, we will denote solutions of this equation by ϕn(sη; ε) to emphasize their
dependence on the eigenvalue ε.

We use the initial conditionsϕn(s0) = 0 andϕ′
n(s0) = 1,which is always possible,

since (10.53) is a homogeneous boundary value problem. This gives

ϕ′
n(s0) ⇐ ϕn(s1) − ϕn(s−1)

2h
= 1 ⇒ ϕn(s1) = 2

N
. (10.56)

The normalization of the wave-function (10.30) is then approximated with the help
of the forward rectangular rule (3.9):

1∫

0

ds|ϕn(s)|2 ⇐ h
N⎧

η=0

[ϕn(sη)]
2 != 1. (10.57)

Consistently, we approximate the expectation value √s⇒ via

Table 10.1 Comparison between analytic and numerical eigenenergies for the particle in a box for
N = 100

n εn-analytic εn-numeric

1 4.934802 4.934802
2 19.739209 19.739208
3 44.413219 44.413205
4 78.956835 78.956753
5 123.370055 123.369742
6 177.652879 177.651943
7 241.805308 241.802947
8 315.827341 315.822077
9 399.718978 399.708300
10 493.480220 493.460113

http://dx.doi.org/10.1007/978-3-319-02435-6_8
http://dx.doi.org/10.1007/978-3-319-02435-6_3
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Fig. 10.1 The first five numerically determined eigenvalues εn of Table 10.1 are presented has hor-
izontal lines (left hand scale). Aligned with these eigenvalues are the corresponding eigenfunctions
ϕn(s) versus s for N = 100 (right hand scales)

1∫

0

ds s|ϕn(s)|2 ⇐ h
N⎧

η=0

[ϕn(sη)]
2 sη . (10.58)

The Numerov shooting algorithm is then defined by the following steps:

1. Choose two trial energies εa and εb and define the required accuracy δ.
2. Calculate ϕ(sN ; εa) ∈ ϕa and ϕ(sN ; εb) ∈ ϕb using Eq. (10.55).
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3. If ϕaϕb > 0, choose new values for εa or εb and go to step 1.
4. If ϕaϕb < 0, calculate εc = (εa + εb) /2 and determine ϕ(sN ; εc) ∈ ϕc using

Eq. (10.55).
5. If ϕaϕc < 0, set εb = εc and go to step 4.
6. If ϕcϕb < 0, set εa = εc and go to step 4.
7. Terminate the loop when |εa − εb| < δ.

These steps have been carried out for 100 grid-points, a potential ṽ = 0, and a
required accuracy of δ = 10−10. The first ten eigenenergies are given in Table10.1
and are compared with the analytic results (10.40).

In addition, Fig. 10.1 presents the first five eigenvalues εn (right hand scale) as
horizontal straight lines.Alignedwith these eigenvalueswefind on the right hand side
of this figure the corresponding normalized eigenfunctions calculated using N = 100
grid-points. The agreement with the analytic result of Eq. (10.41) is excellent.

10.4 Another Case

Here we discuss briefly some results achieved with the help ofNumerov’s shooting
algorithm. In particular, we discuss the particle in the box for three different potentials
ṽ(s) [see Eq. (10.52)],

ṽ1(s) = 50 cos(θs), ṽ2(s) = 50 exp

[
−
(
s − 1

2

⎢2
0.08

]
, ṽ3(s) = 50s. (10.59)

The potentials are illustrated in Fig. 10.2. All calculations were carried out with
N = 100 grid-points and an accuracy δ = 10−10. The first five eigenenergies εn are
shown in Figs. 10.3, 10.4 and 10.5, respectively, as horizontal lines (left hand scale).

Fig. 10.2 The three different
potentials ṽ(s) introduced by
Eq. (10.59)
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Fig. 10.3 Numerically determined eigenvalues εn (left hand scale) and eigenfunctions ϕn(s) versus
s (right hand scales) for the potential ṽ1(s). The first five eigenvalues are presented as straight
horizontal lines. Aligned with these lines the eigenfunctions are shown on the right hand side of
this figure. The dotted lines indicate the eigenfunctions of the particle in the box with ṽ(s) = 0 (see
Fig. 10.1)

The numerically determined normalized eigenfunctions ϕn(s) versus s (solid lines)
are presented on the right hand side of these figures and are aligned with their
respective eigenvalues. They are also comparedwith the eigenfunctions (dotted lines)
of the particle in a box, i.e. ṽ(s) = 0. In all cases the eigenfunctions reflect the
symmetry of the various potentials ṽ(s) which becomes particularly transparent in
Fig. 10.3 for the potential ṽ1(s). The eigenfunctions develop an additional node in
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Fig. 10.4 Numerically determined eigenvalues εn (left hand scale) and eigenfunctions ϕn(s) versus
s (right hand scales) for the potential ṽ2(s). The first five eigenvalues are presented as straight
horizontal lines. Aligned with these lines the eigenfunctions are shown on the right hand side of
this figure. The dotted lines indicate the eigenfunctions of the particle in the box with ṽ(s) = 0 (see
Fig. 10.1)

comparison to the eigenfunctions calculated for ṽ(s) = 0. In the other two cases only
the very first eigenfunctions n ∪ 3 appear to be affected by the potential. Moreover,
in all three cases, the respective eigenvalues are shifted towards higher values which
is consistent with a general result of quantum mechanical perturbation theory.
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Fig. 10.5 Numerically determined eigenvalues εn (left hand scale) and eigenfunctions ϕn(s) versus
s (right hand scales) for the potential ṽ3(s). The first five eigenvalues are presented as straight
horizontal lines. Aligned with these lines the eigenfunctions are shown on the right hand side of
this figure. The dotted lines indicate the eigenfunctions of the particle in the box with ṽ(s) = 0 (see
Fig. 10.1)

Summary

The quantum-mechanical problem of a particle in a box was described by a
homogeneous boundary value problem which could be solved analytically if the
box’ potential ṽ(s) = 0. On the other hand, Numerov’s shooting algorithm was
particularly designed to treat effectively homogeneous boundary value problems.
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Consequently, the problem of the particle in the box was used to design a Numerov
shooting algorithmwhich was then tested against the analytic results. The agreement
between numerics and analytical results turned out to be excellent and proved the
quality of the method. For illustrative purposes the problem of the particle in the box
was then solved numerically for three different, more complex, box-potentials ṽ(s).

Problems

1. Solve the one-dimensional stationarySchrödinger equation in an infinitely deep
potential well by employing the shooting method according to Numerov of
Sect. 8.3. The total potential v(s) is assumed to be of the form (10.52). Choose
different potentials ṽ(s) within the well.
You can check your code by reproducing the results presented in Sects. 10.3
and 10.4. In addition, determine numerically the expectation value √x⇒ and the
variance var (x) of the position operator x for the first five eigenfunctions. This
can be achieved by employing the rectangular rule of Chap. 3, as illustrated in
Eq. (10.58).

2. Solve the Schrödinger equation for some potential ṽ(s) of your choice and
plot the first five eigenfunctions. This potential should not be equal to one of the
potentials discussed in this chapter. Again, calculate √x⇒ and var (x) for the first
five eigenfunctions.
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Chapter 11
Partial Differential Equations

11.1 Introduction

This section discusses some fundamental aspects of the numerics of partial differ-
ential equations and this discussion will be based on methods already encountered
in previous chapters, i.e. on finite difference methods. More advanced techniques,
such as finite element methods or finite volume methods for conservation laws, are
beyond the scope of this book. A detailed discussion of these methods can be found
in any textbook on numerics of partial differential equations [1].

Sincewe already introduced the concepts of finite difference derivatives inChap.2
and their application to boundary value problems of ordinary differential equations in
Sect. 8.2, we concentrate mainly on the application of these methods to specific types
of partial differential equations. In detail, we investigate the Poisson equation as an
example for elliptic partial differential equations, the time dependent heat equation
as an example for parabolic partial differential equations, and the wave equation
as an example for hyperbolic partial differential equations. The concepts presented
here are, of course, also applicable to other problems. However, in contrast to the
numerics of ordinary differential equations, there exists no general recipe for the
solution of partial differential equations.

We remark that the method of finite differences for partial differential equations
is particularly useful to find solutions of linear partial differential equations. In case
of nonlinear equations, such as the Navier-Stokes equations, more advanced tech-
niques have to be employed. However, as in our discussion of ordinary differential
equations we strictly restrict to linear partial differential equations. The interested
reader is referred to textbooks on advanced computational methods [2, 3].

Another important point to note is that, as in the theory of ordinary differential
equations, the problem is only fully determined when initial and/or boundary con-
ditions have been defined. For instance, in the case of the Poisson equation only
boundary conditions are required, while for the time-dependent heat equation initial
conditions are required as well. In general, pure boundary value problems are easier
from a numerical point of view because the question whether or not the algorithm

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 147
DOI: 10.1007/978-3-319-02435-6_11, © Springer International Publishing Switzerland 2014
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is stable does not play such an important role. For combined boundary and initial
value problems it is essential to check carefully that the discretization of the time
axis is not in conflict with the discretization of the space domain. This is of particular
importance in the numerical treatment of hyperbolic partial differential equations,
where the so called Courant-Friedrichs-Lewy (CFL) condition determines the
stability of the algorithm. We shall come back to this point in Sects. 11.3 and 11.4.

This chapter will be concluded by a discussion of the numerical solution of the
time-dependent Schrödinger equation in Sect. 11.5.

11.2 The Poisson Equation

We consider the Poisson equation as a model for an elliptic partial differential
equation. Nevertheless, we review briefly some basics of electrodynamics. The force
F(r, t) as a function of position r and time t acting on a particle with charge q, which
moves with velocity ξ within an electromagnetic field described by the electric field
E(r, t) and the magnetic field B(r, t), is determined from1:

F(r, t) = q
[

E(r, t) + ξ

c
∈ B(r, t)

]
. (11.1)

In the following we shall consider the static, i.e. time-independent case, and, more-
over, B(r, t) = 0. The electric field E itself is described by the equation

∀ · E(r) = 1

θ
ω(r), (11.2)

where the charge density ω(r, t) acts as the source of the electric field E(r, t). Here
θ is the dielectric function and is assumed to be constant inwhat follows. Furthermore,
the electric field E is connected to the electrostatic potential τ(r) via

E(r) = −∀τ(r). (11.3)

Thus, Eq. (11.2) is reformulated as:

πτ(r) = −ω(r)

θ
. (11.4)

This equation is referred to as the Poisson equation and in the particular case of
ω(r) = 0 it is referred to as the Laplace equation.

In what follows we focus on the numerical solution of the two dimensional
Poisson equation (11.4) on a square domain ϕ = [0, Lx ] × [0, L y] together with
boundary conditions τ(x, y) = g(x, y) on αϕ . In detail, we want to solve the two-
dimensional boundary value problem

1 a ∈ b denotes the vector product of the two vectors a and b.
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{
α2

αx2
τ(x, y) + α2

αy2
τ(x, y) = −ω(x, y), (x, y) ≈ ϕ,

τ(x, y) = g(x, y), (x, y) ≈ αϕ,
(11.5)

where we absorbed θ into the charge density ω(x, y). Note that a treatment of the
three dimensional case can be carried out in analogue.

We employ a finite difference approximation to the derivatives which appear in
Eq. (11.5) (see Chap.2). Thus, we define grid-points in x and y direction via

xi = x0 + ih, i = 0, 1, 2, . . . , n, (11.6a)

y j = y0 + jk, j = 0, 1, 2, . . . , m, (11.6b)

where h and k denote the grid-spacing in x- and y-direction, respectively. As in our
discussion in Chap.2 we will consider only equally spaced grid-points. An extension
to non-uniform grids is straightforward.

We define the function values on the grid-points as

τi, j ∞ τ(xi , y j ), (11.7)

and similarly ωi, j ∞ ω(xi , y j ). Consequently, we find the finite difference approxi-
mation of Eq. (11.5):

τi−1, j − 2τi, j + τi+1, j

h2 + τi, j−1 − 2τi, j + τi, j+1

k2
= −ωi, j . (11.8)

The boundary conditions (11.5) can be written as

τ0, j = g0, j , j = 0, 1, . . . , m, (11.9a)

τn, j = gn, j , j = 0, 1, . . . , m, (11.9b)

τi,0 = gi,0, i = 1, 2, . . . , n − 1, (11.9c)

τi,m = gi,m, i = 1, 2, . . . , n − 1. (11.9d)

Equation (11.8) is multiplied by −k2h2/2 and after rearranging terms we obtain

(
h2 + k2

)
τi, j − 1

2

[
k2
(
τi−1, j + τi+1, j

)+ h2 (τi, j−1 + τi, j+1
)] = (hk)2

2
ωi, j ,

(11.10)

for i = 1, . . . , n and j = 1, . . . , m. There are different strategies how the set
of equations (11.10) might be solved. The common strategy is to employ the
assignments

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_2
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τ1,1 √ τ1,

τ1,2 √ τ2,

...
...

τn,m √ τε, (11.11)

where ε = nm. Equation (11.10) is then rewritten as a matrix equation with a vector
of unknowns τ = (τ1, τ2, . . . , τε)

T according to Eq. (11.11), where the boundary
conditions have to be included in the matrix. This matrix equation is then solved
either by direct or iterative methods discussed in Appendix C.

We solveEq. (11.10) iteratively. For this purposewe introduce the iteration index t ,
where τt

i, j is the function value at the grid-point (xi , y j ) after t-iteration steps. There
are two different implementations of an iterative solution of Eq. (11.10), namely the
Gauss-Seidel or the Jacobimethod (Appendix C) which differ only in the update
procedure of the function valuesτt

i, j at the grid-points. The basic idea is to develop an
update algorithm which expresses the function values τt

i, j with the help of function

values at already updated grid-points and of function values τt−1
i, j determined in the

preceding iteration step [Eq. (C.27)].
We formulate this iteration rule as

τt+1
i, j = (hk)2

2(h2 + k2)
ωi, j

+ 1

2(h2 + k2)

[
k2
(
τt+1

i−1, j + τt
i+1, j

)
+ h2

(
τt+1

i, j−1 + τt
i, j+1

)]
,

(11.12)

where we abstained from incorporating a relaxation parameter (see Appendix C).
Note that by using the iteration rule (11.12) the boundary conditions have to be
accounted for in an additional step.

Let us specify the boundary conditions in order to define a concrete example: We
imposeDirichlet boundary conditions in x-direction, i.e. τ(0, y) = τ(Lx , y) = 0.
In this case the boundary conditions are included into Eq. (11.12) by restricting the
loop over the x-grid from i = 2, . . . , N − 1, which leaves the boundary points
τ(0, y) and τ(Lx , y) unchanged. In y-direction we impose Dirichlet boundary
conditions as well. They are given by τ(x, 0) = τ(x, L y) = 0. Furthermore we set,
to be distinct, Lx = L y = 10 and set the number of grid-points on both axes to
n = m = 100. Furthermore we define the domains:
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ϕ1 =
(

x n
2−10, x n

2

]
×
(

y m
2 −10, y m

2

]
, (11.13a)

ϕ2 =
(

x n
2
, x n

2+10

]
×
(

y m
2 −10, y m

2

]
, (11.13b)

ϕ3 =
(

x n
2−10, x n

2

]
×
(

y m
2
, y m

2 +10

]
, (11.13c)

ϕ4 =
(

x n
2
, x n

2+10

]
×
(

y m
2
, y m

2 +10

]
. (11.13d)

The charge density ω(x, y) is described by three different scenarios, i.e.

ω1(x, y) =
{
50 (x, y) ≈ ϕ1 ⇒ ϕ2 ⇒ ϕ3 ⇒ ϕ4,

0 elsewhere,
(11.14a)

ω2(x, y) =

⎛⎧⎪
⎧⎨

50 (x, y) ≈ ϕ1 ⇒ ϕ2,

−50 (x, y) ≈ ϕ3 ⇒ ϕ4,

0 elsewhere,

(11.14b)

ω3(x, y) =

⎛⎧⎪
⎧⎨

50 (x, y) ≈ ϕ1 ⇒ ϕ4,

−50 (x, y) ≈ ϕ2 ⇒ ϕ3,

0 elsewhere.

(11.14c)

Here ω1(x, y), ω2(x, y), and ω3(x, y) describe an electric monopole, dipole, and
quadrupole, respectively. The charge densities are shown in Fig. 11.1.

The solution of Eq. (11.12) is regarded to be converged if the potential τ(x, y)

does not change significantly between two consecutive iteration steps, i.e.

max
i, j

(
|τt

i, j − τt−1
i, j |

)
< η, (11.15)

where η = 10−4 is the required accuracy. A criterion to check the relative change
can be formulated in a similar fashion.

The resulting potential profiles are illustrated in Fig. 11.2a–c. They reflect per-
fectly the symmetries of the charge densities ω1(x, y), ω2(x, y), and ω3(x, y), respec-
tively. Finally, the electric field E(x, y) can be calculated from τ(x, y) with the help
of Eq. (11.3) using standard finite difference methods.

11.3 The Time-Dependent Heat Equation

Here we discuss the numerical solution of the time-dependent heat equation which is
a representative of parabolic partial differential equations. This equation has already
been introduced in Sect. 9.1, Eq. (9.1), and is, reduced to the one-dimensional case,
of the form

http://dx.doi.org/10.1007/978-3-319-02435-6_9
http://dx.doi.org/10.1007/978-3-319-02435-6_9
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Fig. 11.1 Charge densities. (a) ω1(x, y), (b) ω2(x, y), and (c) ω3(x, y) as defined in Eqs. (11.14)

α

αt
T (x, t) = δ

α2

αx2
T (x, t). (11.16)

It is augmented by appropriate boundary and initial conditions.Again,wewill not dis-
cuss the extension to higher dimensions since it is straightforward, however, maybe
tedious.We approximate the right hand side of Eq. (11.16) with the help of the central
finite difference approximation (Sect. 2.2) and obtain

α

αt
Tk(t) = δ

Tk−1(t) − 2Tk(t) + Tk+1(t)

h2 . (11.17)

Here we imposed the usual discretization, i.e. xk = x0 + kh, k = 1, . . . , N , in
combination with the notation Tk(t) ∞ T (xk, t).

The time derivative in Eq. (11.17) can be approximated with the help of methods
already discussed in Chap. 5. In particular, one has to decide whether Eq. (11.17)
should be approximated by an explicit or implicit integrator. In what follows we shall
apply both, the explicit Euler and the implicit Euler method to solve Eq. (11.17).

http://dx.doi.org/10.1007/978-3-319-02435-6_2
http://dx.doi.org/10.1007/978-3-319-02435-6_5
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Fig. 11.2 Potential profile obtained for charge density. (a) ω1(x, y), (b) ω2(x, y), and (c) ω3(x, y)

However, more complex integrators may be applied as well. In particular, the method
according to Crank-Nicolson proved to be very useful in the theory of parabolic
differential equations. The extensions are straightforward and will therefore not be
discussed here.

We define tn = t0 + nπt and T n
k ∞ Tk(tn) and employ, furthermore, the explicit

Euler scheme (5.9) in Eq. (11.17) to get

T n+1
k − T n

k

πt
= δ

T n
k−1 − 2T n

k + T n
k+1

h2 , (11.18)

with the solution:

T n+1
k = T n

k + δπt
T n

k−1 − 2T n
k + T n

k+1

h2 . (11.19)

http://dx.doi.org/10.1007/978-3-319-02435-6_5
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We note that the right hand side of this equation depends only on temperatures
of the previous time step, since we used an explicit method. Although this might
seem advantageous on a first glance, it turns out that the above scheme is not stable
for arbitrary choices of πt and h. In particular, it is possible prove that the above
discretization is stable only for

δπt

h2 ≤ 1

2
. (11.20)

A detailed discussion and proof of this property can be found in any advanced
textbook on numerics of partial differential equations [1].

On the other hand, if we apply the implicit Euler method (5.10) to solve
Eq. (11.17) we obtain

T n+1
k − T n

k

πt
= δ

T n+1
k−1 − 2T n+1

k + T n+1
k+1

h2 , (11.21)

which is unconditionally stable. However, Eq. (11.21) is an implicit equation, i.e.
the function values T n+1

k+1 and T n+1
k−1 are required in order to evaluate T n+1

k . Hence,
Eq. (11.21) has to be solved as a system of linear equations. This system may be
written as

AT n+1 = T n + F, (11.22)

where the vector T ε = (T ε
0 , T ε

1 , . . . , T ε
N )T , the tridiagonal matrix A is given by

A =

⎩
⎜

. . .
. . .

. . .

− δπt
h2

1 + 2δπt
h2

− δπt
h2

. . .
. . .

. . .


⎟

, (11.23)

and the boundary conditions are incorporated in the matrix A and in the vector F ,
see Sects. 9.2 and 9.3. The linear system (11.22) can be solved numerically using a
direct or an iterative method. Employing an iterative method, imposes a third index
t on the function values of the temperature T , which accounts for the iteration step.

In a similar fashion, other integrators can be applied to solve Eq. (11.17). Such
integrators have been discussed in Chap.5.

Let us give a brief numerical example. We consider the time-dependent homo-
geneous heat equation (11.16) on a finite interval ϕ = [0, L] together with the
boundary conditions of Sect. 9.1, i.e.

T (0) = T0, T (L) = TN . (11.24)

In addition we regard the initial condition

http://dx.doi.org/10.1007/978-3-319-02435-6_5
http://dx.doi.org/10.1007/978-3-319-02435-6_9
http://dx.doi.org/10.1007/978-3-319-02435-6_9
http://dx.doi.org/10.1007/978-3-319-02435-6_5
http://dx.doi.org/10.1007/978-3-319-02435-6_9
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Fig. 11.3 Solutions of the time-dependent heat equation achieved with the explicit Eulermethod.
The stability criterion (11.20) is fulfilled. Results after n = 25, 50, 100, 150, and 300 time steps
are presented. n = 0 represents the initial conditions

T (x, 0) = 0, x ≈ [0, L]. (11.25)

In Fig. 11.3 we show the time evolution of T (x, t) at six different times as obtained
with the explicit Euler method (11.19). Here we chose T0 = 0, TN = 2, N = 20,
L = 10, δ = 1 as well as πt ≥ 0.5. Note that for this choice of parameters, the
condition (11.20) is fulfilled since h ≥ 1.05 and therefore

δπt

h2 ≥ 0.45 ≤ 1

2
. (11.26)

In Fig. 11.4 we show the results obtained with the same procedure, however πt was
chosen to be approximately 0.7, such that

δπt

h2 ≥ 0.63 >
1

2
. (11.27)

Moreover, in Fig. 11.5 we show the results obtained with the same parameters as for
Fig. 11.4 but with the help of the implicit Euler method (11.21).
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Fig. 11.4 Solutions of the time-dependent heat equation achieved with the explicit Eulermethod.
The stability criterion (11.20) is not fulfilled and, therefore, the solution is apparently unstable.
Results after n = 25, 50, 100, 150, and 200 time steps are presented. n = 0 represents the initial
conditions

Fig. 11.5 Solutions of the time-dependent heat equation achieved with the implicit Eulermethod.
Results after n = 25, 50, 100, 150, and 300 time steps are presented. n = 0 represents the initial
conditions



11.4 The Wave Equation 157

11.4 The Wave Equation

As a model hyperbolic partial differential equation we consider briefly the wave
equation. Again, we regard only the one-dimensional case, i.e.

α2

αt2
u(x, t) = c2

α2

αx2
u(x, t), (11.28)

where c is the speed at which the wave propagates. Again, Eq. (11.28) is to be
augmented by appropriate boundary and initial conditions. We shall employ a finite
difference approach similar to the one discussed in Sect. 11.3. Furthermore, we will
restrict the discussion to the explicitEuler approximation.Consequently,Eq. (11.28)
is replaced by

un−1
k − 2un

k + un+1
k

πt2
= c2

un
k−1 − 2un

k + un
k+1

h2 . (11.29)

We define the parameter λ = cπt
h and solve Eq. (11.29) for un+1

k :

un+1
k = 2(1 − λ2)un

k − un−1
k + λ2(un

k−1 + un
k+1). (11.30)

We note two important points. (i) To calculate the solution for time step n + 1 we
need to know the solutions for the time steps n and n − 1. In particular, we need
n = 0 and n = 1 in order to obtain n = 2. The function values for n = 1 can be
obtained from the initial conditions, which must include a first order time derivative
of u(x, t) since (11.28) is a second order differential equation with respect to time t .
(ii) As in the case of parabolic problems, the explicit Euler approximation (11.30)
will not be stable for arbitrary values of λ. It is only stable for

λ = cπt

h
≤ 1. (11.31)

This condition is referred to as the Courant-Friedrichs-Lewy or CFL condi-
tion. Its importance stems from the fact, that this condition is not limited to the
wave equation but holds for hyperbolic problems in general. In particular, since
the wave equation can always be viewed as a combination of a right- and a left-going
advection equation, i.e.

α

αt
u(x, t) = ±c

α

αx
u(x, t), (11.32)

we have the very important property that explicit time integrators applied to solve
(11.32) are only stable if relation (11.31) is obeyed.

Let us return to the discretization (11.30). Suppose we have initial conditions of
the form

u(x, 0) = f (x),
α

αt
u(x, 0) = g(x). (11.33)
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They can be approximated by

u0
k = fk,

u1
k − u0

k

πt
= gk, (11.34)

and the solution of the second relation in (11.34) yields the desired function values
for n = 1, i.e.

u1
k = u0

k + πtgk . (11.35)

However, in many cases it is beneficial to take higher order terms into account. This
can be achieved by employing a Taylor expansion of the form (Chap.2):

u1
k − u0

k

πt
= α

αt
u(x, 0) + πt

2

α2

αt2
u(x, 0) + O(πt2). (11.36)

Wemake now use of the initial conditions (11.33), employ thewave equation (11.28),
and solve for u1

k . This gives

u1
k = u0

k + πtgk + πt2c2

2
f ∓∓
k + O(πt3). (11.37)

Here we assumed that the second spatial derivative f ∓∓
k = α2

αx2
f (xk) of the initial

condition f (x) exists. It may then be approximated by a finite difference approach.
To be specific we consider a vibrating string of length L , which is fixed at its ends,

i.e. u(0, t) = u(L , t) = 0. Furthermore, we assume that the string was initially at
rest, i.e.

α

αt
u(x, 0) = 0, (11.38)

and impose initial conditions

u(x, 0) =
{
sin
( 2Λx

L

)
x ≈ ( L

2 , L
]
,

0 elsewhere.
(11.39)

In Fig. 11.6 we show the results obtained with L = 1, c = 2, N = 100. πt was
chosen in such a way that λ = 0.5. In Fig. 11.7 we show the results obtained using
the same parameter set, however λ = 1.01.

Let us conclude this section with a final remark. In general, the numerical solution
of hyperbolic partial differential equationsmight be very difficult since inmany cases
these equations represent conservation laws. A very popular class of methods in this
context is referred to as finite volume methods. A detailed discussion of thesemethods
can be found in the book by R. J. LeVeque [2].

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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Fig. 11.6 Solutions of the wave equation generated by the explicit Euler method with λ = 0.5.
Results after n = 25, 50, 100, 150, and 200 time steps are presented. n = 0 represents the initial
conditions

Fig. 11.7 Solutions of the wave equation generated by the explicit Euler method with λ = 1.01.
Results after n = 25, 50, 100, 150, and 200 time steps are presented. n = 0 represents the initial
conditions
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11.5 The Time-Dependent SCHRÖDINGER Equation

We already came across the time-dependent Schrödinger equation in Chap.10. It
reads

i�
α

αt
Ψ (x, t) = HΨ (x, t), (11.40)

where � is the reduced Planck constant, Ψ (x, t) is the wave-function and H is the
Hamilton operator. Since the Schrödinger equation contains a complex coeffi-
cient, it cannot be categorized as a differential equationof oneof the familiar types, i.e.
elliptic, parabolic or hyperbolic. In fact, the Schrödinger equation shows parabolic
aswell as hyperbolic behavior (it is of the formof the diffusion equation but allows for
wave solutions). In what follows we discuss briefly a very elegant method developed
to numerically approximate solutions of the time-dependent Schrödinger equation.

We note that Eq. (11.40) has the formal solution

Ψ (x, t) = exp

(
− i t

�
H

)
Ψ (x, 0) = U (t)Ψ (x, 0), (11.41)

wherewe assumed that H is independent of t and introduced the initial wave-function
Ψ (x, 0) = Ψ (x, t = 0). We note that the prefactor U (t) on the right hand side of
Eq. (11.41) propagates the solution in time. Furthermore, it is a unitary operator and
therefore preserves the norm of the wave-function Ψ (x, t). U (t) is usually referred
to as the unitary time-evolution operator. We remember that unitary means that
UU † = U †U = 1.

We employ relation (11.41) in order to obtain

Ψ (x, t + πt) = exp

(
− i(t + πt)

�
H

)
Ψ (x, 0) = exp

(
− iπt

�
H

)
Ψ (x, t).

(11.42)
Expanding the exponential in this equation in its series representation and truncating
the series after the second term results in the approximation

Ψ (x, t + πt) ≥
(
1 − iπt

�
H

)
Ψ (x, t). (11.43)

Again, we introduce grid-spacing and the correspondingly indexed functions in order
to obtain

Ψ n+1
k =

(
1 − iπt

�
H

)
Ψ n

k . (11.44)

In the following we will denote the position grid-spacing by πx instead of h in
order to avoid confusion with the reduced Planck constant �. Using Eq. (10.23)
for the Hamiltonian in its local space representation in the one-dimensional case
and by approximating the second derivative with the help of the central difference

http://dx.doi.org/10.1007/978-3-319-02435-6_10
http://dx.doi.org/10.1007/978-3-319-02435-6_10
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approximation we arrive at

Ψ n+1
k = Ψ n

k − iπt

�

(
− �

2

2m

Ψ n
k−1 − 2Ψ n

k + Ψ n
k+1

πx2
+ VkΨ

n
k

)
, (11.45)

where we defined Vk ∞ V (xk).
We note that this equation is equivalent to the explicit Euler approximation

(11.18) of the heat equation, with the exception that an imaginary coefficient appears
in Eq. (11.45). An implicit procedure for the time-dependent Schrödinger equation
(11.40) can be obtained by inversion of Eq. (11.42):

Ψ (x, t) = U †(πt)Ψ (x, t + πt) = exp

(
iπt

�
H

)
Ψ (x, t + πt). (11.46)

A series expansion of the exponential results in the desired relation:

Ψ n
k =

(
1 + iπt

�
H

)
Ψ n+1

k . (11.47)

We emphasize that the unitarity of the time-evolution operator is of fundamental
importance, since it preserves the norm of the wave-function. However, in truncating
the series representation of the unitary time evolution operator U (πt) we certainly
violate the unitarity ofU (πt). This problem can be remedied by imposing unitarity of
the time evolution as an additional requirement. This requirement can be incorporated
by normalizing the wave-function after each time step.

In what follows we shall employ a Crank-Nicolson scheme in order to solve
Eq. (11.40) numerically for a particular potential. The Crank-Nicolson scheme
can be obtained by realizing that

U (πt) = exp

(
− iπt

�
H

)

= exp

(
− iπt

2�
H

)
exp

(
− iπt

2�
H

)

= exp

(
iπt

2�
H

)−1

exp

(
− iπt

2�
H

)

=
⎢

U †
(

πt

2

)]−1

U

(
πt

2

)
. (11.48)

Hence, we obtain from Eq. (11.45)

U †
(

πt

2

)
Ψ n+1

k = U

(
πt

2

)
Ψ n

k , (11.49)

or by expanding U in a series and truncating after the second term
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(
1 + iπt

2�
H

)
Ψ n+1

k =
(
1 − iπt

2�
H

)
Ψ n

k . (11.50)

Again, inserting the finite difference approximation of the Hamiltonian H and rear-
ranging terms yields

⎢
1 + iπt

2�

(
�
2

mπx2
+ Vk

)]
Ψ n+1

k − iπt�

4mπx2

(
Ψ n+1

k−1 + Ψ n+1
k+1

)
= ϕ̂n

k , (11.51)

where we defined ϕ̂n
k as

ϕ̂n
k =

⎢
1 − iπt

2�

(
�
2

mπx2
+ Vk

)]
Ψ n

k + iπt�

4mπx2
(
Ψ n

k−1 + Ψ n
k+1

)
. (11.52)

Both sides of Eq. (11.51) are now multiplied by i4mπx2/(�πt) and this gives

Ψ n+1
k−1 + 2

(
i2mπx2

πt�
− 1 − mπx2

�2
Vk

)
Ψ n+1

k + Ψ n+1
k+1 = ϕn

k , (11.53)

where

ϕn
k = −Ψ n

k−1 + 2

(
i2mπx2

πt�
+ 1 + mπx2

�2
Vk

)
Ψ n

k − Ψ n
k+1. (11.54)

We recognize that Eq. (11.53) establishes a system of linear equations and rewrite
it in matrix form as

AΨ n+1 = ϕn, (11.55)

where we defined the vectors Ψ n+1 = (
Ψ n
0 , Ψ n

1 , . . . , Ψ n
N

)T , ϕn = (
ϕn

0 ,ϕn
1 , . . . ,

ϕn
N

)T and the tridiagonal matrix

A =

⎩
⎜

. . .
. . .

. . .

1 Γk 1
. . .

. . .
. . .


⎟

, (11.56)

with Γk for k = 1, 2, . . . , N given by

Γk = 2

(
i2mπx2

πt�
− 1 − mπx2

�2
Vk

)
, (11.57)

according to Eq. (11.53).
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Again, we solve the system (11.56) iteratively. However, in this case we employ
a more elegant ansatz which is allowed for tridiagonal matrices. We set in particular

Ψ n+1
k+1 = akΨ

n+1
k + bn

k , (11.58)

and apply it to Eq. (11.53). After rearranging terms we arrive at:

2

(
1 + mπx2

�2
Vk − i2mπx2

πt�
− ak

2

)
Ψ n+1

k = Ψ n+1
k−1 + bn

k − ϕn
k . (11.59)

We define furthermore

αk = 2

(
1 + mπx2

�2
Vk − i2mπx2

πt�
− ak

2

)
, (11.60)

and obtain from Eq. (11.59)

Ψ n+1
k = 1

αk
Ψ n+1

k−1 + bn
k − ϕn

k

αk
. (11.61)

However, due to the ansatz (11.58) we also have

Ψ n+1
k = ak−1Ψ

n+1
k−1 + bn

k−1, (11.62)

which results in the relations

ak−1 = 1

αk
, (11.63)

and

bn
k−1 = bn

k − ϕn
k

αk
= (

bn
k − ϕn

k

)
ak−1. (11.64)

Equation (11.63) results in the recursion relation

ak = 2

(
1 + mπx2

�2
Vk − i2mπx2

πt�

)
− 1

ak−1
, (11.65)

and from Eq. (11.64) we find

bn
k = bn

k−1

ak−1
+ ϕn

k . (11.66)

The remaining question is how to choose a0 and bn
0 . We impose the boundary

conditions Ψ n
0 = 0 and Ψ n

N = 0 and from Eq. (11.53) we find
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ϕn
1 = 2

(
i2mπx2

πt�
− 1 − mπx2

�2
V1

)
Ψ n+1
1 + Ψ n+1

2 . (11.67)

A comparison of this equation with the ansatz (11.58), i.e. Ψ n+1
2 = a1Ψ

n+1
1 + bn

1 ,
reveals that

a1 = 2

(
1 + mπx2

�2
Vk − i2mπx2

πt�

)
, (11.68)

and
bn
1 = ϕn

1 . (11.69)

These expressions are equivalent to a0 = → and it is, thus, impossible to calculate
Ψ n+1
1 from Ψ n+1

0 . However, this is not really a problem because we can determine
the function values Ψ n+1

k via a backward recursion

Ψ n+1
k = 1

ak

(
Ψ n+1

k+1 − bn
k

)
, (11.70)

which is initialized with the boundary condition Ψ n+1
N = 0. We can summarize the

algorithm:

1. Choose the initial conditions Ψ 0
k , k = 0, 1, . . . , N which satisfy the boundary

conditions Ψ 0
0 = 0 and Ψ 0

N = 0.
2. Set

a1 = 2

(
1 + mπx2

�2
Vk − i2mπx2

πt�

)
, (11.71)

and calculate for k = 2, . . . , N − 1

ak = 2

(
1 + mπx2

�2
Vk − i2mπx2

πt�

)
− 1

ak−1
. (11.72)

3. Start the time loop: n = 1, 2, . . . , M .
4. Calculate for k = 1, 2, . . . , N − 1

ϕn
k = −Ψ n

k−1 + 2

(
i2mπx2

πt�
+ 1 + mπx2

�2
Vk

)
Ψ n

k − Ψ n
k+1. (11.73)

5. Set
bn
1 = ϕn

1 , (11.74)

and calculate for k = 2, . . . , N − 1

bn
k = bn

k−1

ak−1
+ ϕn

k . (11.75)
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6. Calculate for k = N − 1, N − 2, . . . , 1

Ψ n+1
k = 1

ak

(
Ψ n+1

k+1 − bn
k

)
, (11.76)

where the boundary conditions Ψ n
0 = Ψ n

N = 0 are to be considered.
7. Set n = n + 1 and go to step 4.

In the following we discuss a specific example to illustrate the application of this
algorithm. We choose the initial condition

Ψ (x, 0) = exp (iqx) exp

⎢
− (x − x0)2

2σ 2

]
, (11.77)

a Gauss wave packet centered at x = x0 which propagates in positive x-direction
with momentum q. Note that this wave-function is not yet normalized. Furthermore,
we regard a potential barrier

V1(x) =
{

V0 x ≈ [a, b],
0 elsewhere,

(11.78)

or a double barrier

Fig. 11.8 Time evolution of the square modulus of the wave-function |ψ(x)|2 versus x (solid line,
left hand scale). The potential V (x) = V1(x) is also plotted versus x (dashed line, right hand
scale). We present the results for n = 500, 1,000, and 1,500 time steps. The graph labeled by n = 0
represents the initial configuration
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Fig. 11.9 Time evolution of the square modulus of the wave-function |ψ(x)|2 versus x (solid line,
left hand scale). The potential V (x) = V2(x) is also plotted versus x (dashed line, right hand scale).
We present the results for n = 500, 1,000, 1,500, 2,000, and 2,500 time steps. The graph labeled
by n = 0 represents the initial configuration

V2(x) =
{

V0 x ≈ [a, b] ⇒ [c, d],
0 elsewhere.

(11.79)

The scales and parameters are chosen in the following way: L = 500, πx = 1,
πt = 0.1, m = � = 1, x0 = 200, q = 2, σ = 20, V0 = 0.7, a = 250, b =
260, c = 300, and d = 310. Figures11.8 and 11.9 display the squared modulus
of the resulting wave-function, |Ψ (x, t)|2, versus x (solid line, left hand scale) at
different times steps n = 500, 1000, and 1500, and for the two potentials V1(x) and
V2(x) (dashed lines, right hand scale) for additional time steps n = 2000, and 2500,
respectively. n = 0 corresponds to the initial configuration.
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In both figures a typical quantummechanical effect which is referred to as tunnel-
ing can be observed. In particular, there exists a finite probability that the potential
barrier can be crossed, although, from a classical point of view, the particle’s energy is
not sufficient to overcome the barrier. A detailed discussion of this effect and its tech-
nological importance can be found in any standard textbook on quantum mechanics
[4–6].

Summary

This chapter was about linear partial differential equations and how to find solutions
numerically. The dominating theme was the application of the various finite differ-
ence methods. The two-dimensional Poisson equation served as an example of an
elliptic partial differential equation. The algorithm to solve this equation developed
here was based on the central difference derivative. Parabolic partial differential
equations were represented by the time-dependent one-dimensional heat equation.
The numerical solution proved to be possible by either using an explicit or an implicit
Euler scheme. For the explicit Euler scheme the appropriate choice of time and
space discretization proved to be essential for the stability of the algorithm. The
one-dimensional wave equation was introduced as an example of a hyperbolic par-
tial differential equation. The solution was found by employing an explicit Euler
approximation. Again time and space discretization had to follow a specific stability
criterion, the Courant-Friedrichs-Lewy condition. Finally, the one-dimensional
time-dependent Schrödinger equation was studied. It does not fit into any of the
above categories. The algorithm to find a numerical solution was developed here
on the basis of a Crank-Nicolson scheme and it was tested with the quantum
mechanical tunneling effect.

Problems

1. Write a program which solves the two-dimensional Poisson equation for an
arbitrary charge density distribution ω(x, y). Use the numericalmethod discussed
in Sect. 11.2.

(a) Impose Dirichlet boundary conditions τ(x, 0) = τ(x, L y) = τ(0, y) =
τ(Lx , y) = 0 as described in Sect. 11.2. Test the programbyfirst reproducing
Fig. 11.2.

(b) Solve the Poisson equation for different charge densities of your choice.
(c) Calculate the electric field E(x, y) with the help of Eq. (11.3).

2. Calculate the time evolution of the temperature distribution T (x, t) along a cylin-
drical rod described in Sect. 9.3. The rod is kept at constant temperatures T0 and
TN at its ends. The parameters used in Sect. 9.3 stay unchanged. Study also the
case of a heat sink as suggested in the Problems section of Chap.9.

http://dx.doi.org/10.1007/978-3-319-02435-6_9
http://dx.doi.org/10.1007/978-3-319-02435-6_9
http://dx.doi.org/10.1007/978-3-319-02435-6_9
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3. Calculate the time evolution of the square modulus of the wave-function |ψ(x)|2
versus x for a potential V1(x) according to Eq. (11.78) with V0 < 0 (quantum
well). Modify the potential according to

V (x) =
⎛⎪
⎨

V1 x ≈ [a, b] ⇒ [c, d]
V2 x ≈ [b, c]
0 elsewhere,

with V1 > 0, V2 < 0, and |V1| < |V2|.
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Stochastic Methods



Chapter 12
Pseudo Random Number Generators

12.1 Introduction

We shall discuss here briefly the most important methods available to generate
randomnumbers or, more precisely, pseudo randomnumbers. The reader not familiar
with the basic concepts of probability theory is highly encouraged to readAppendixD
before proceeding. Let us now motivate the problem and discuss some preliminary
points.

A first example of randomness in physical systems is certainly the outcome of
a dice-throw or the drawing of lotto numbers. Even though the outcome of a dice-
throw is completely determined by the initial conditions, it is effectively unpre-
dictable because the initial conditions cannot be determined accurately enough.
A probabilistic description, which assigns the random variables 1, 2, 3, 4, 5, and
6 a probability of 1/6, respectively, is much more convenient and promising. It has
to be kept in mind, ofcourse, that results obtained on the basis of such an approach
are also clearly probabilistic in their nature.

Wenote that quantummechanics is the only physical theory knownwhich includes
randomness intrinsically. However, even in the case of classical systems, a stochastic
description, that is a description based on randomnumbers, can be very advantageous.
For instance, consider the typical example of a classical interacting gas consisting of
N particles. The motion is fully determined by N Newton’s equations of motion or,
equivalently, by the Liouville equation. However, if N is large (for instance in the
range of one mol, that is N = 6.022 × 1023 particles) a full treatment or complete
solution of the system is not feasible and in most cases not desired. One possibility
is to employ the Boltzmann transport equation, which is an evolution equation of
the distribution function f (x, p, t). The distribution function gives the probability
of finding a particle at a particular time t within a particular phase space volume
dx dp.

Another interesting example is Brownian motion or diffusion, i.e. the random
motion of dust particles on afluid surface. The descriptionwith the help of a stochastic

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 171
DOI: 10.1007/978-3-319-02435-6_12, © Springer International Publishing Switzerland 2014
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differential equation, such as the Langevin equation, is completely sufficient and
much easier than a description of N interacting particles.

Further examples of stochastic descriptions can be found in various fields of
expertise, such as biology (e.g. the foraging behavior of animals), economics (e.g.
the prediction of market prize behaviors), medicine (e.g. genome mutation), and
many others. Another quite interesting and purely mathematical application can be
found in the evaluation of integrals as an alternative to the methods discussed in
Chap.3. This method is referred to as Monte-Carlo integration and will be discussed
in Chap.14 together with a basic introduction to stochastics and its applications in
physics.

All these methods have in common that the numerical treatment requires random
numbers and, therefore, generators of random numbers are a necessary item. This
justifies a closer inspection of randomness in general and the generation of random
numbers or sequences in particular. However, the clarification of some points is in
order before we introduce the basics of random number generators. In particular, we
have to explain, what we understand by randomness and how it can be measured.
Moreover, based on this discussion we have to formulate requirements to be imposed
on the random number generators required to deliver useful random numbers.

Let us begin with the question of how to define randomness in general. Although,
we might have an intuitive picture of randomness it is hard to put it into words
without mathematical tools. For instance, consider the sequence s1, which consists
of N elements:

s1 = 0, 0, 0, 0, 0, . . . , N elements. (12.1)

Is it random?The question cannot be answeredwithout further information. Suppose,
the numbers in the sequence s1 were drawn from a set S . Now, if the set is of the
form

S1 = {0}, (12.2)

the above sequence s1 is random. But even this additional information is insufficient.
Suppose the numbers of the sequence s1 were drawn from the set S2

S2 = {0, 1}, (12.3)

with the events 0 and 1 together with assigned probabilities P(0) and P(1). These
probabilities describe the probability that the outcome of a measurement on the set
S2 yields either the event 0 or 1, respectively. For instance, in the case of tossing a
coin the event 0 may correspond to heads while 1 stands for tails. (To register this
result is within this context a measurement.) In this case the probabilities are given
by P(0) = P(1) = 1/2, under the premise that the coin is perfectly ideal and has
not been manipulated.

Even, if we know that the coin has not been manipulated, sequence (12.1) is
still a possible outcome, although it is rather improbable for a large number N of
measurements (repeated tosses of the coin).

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_14
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We quote the literal definition of randomness within the context of a random
sequence. It goes back to Chaitin [1]:

[…] a series of numbers is random if the smallest algorithm capable of specifying
it to a computer has about the same number of bits of information as the series itself.

This definition seems to include themost important features of randomness, which
we are used to from our experience. Since, no universal trend is observable, repro-
ducing the sequence requires the knowledge of every single constituent. Hence, one
may employ the sloppy definition that randomness is the lack of an universal trend.

So far, we defined randomness of a sequence of numbers. However, what is a
randomnumber?Although the simplest answer is that it is a number drawn at random,
a more useful answer is found if we regard a random sequence drawn from the set

S3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (12.4)

If the random number is to be uniformly distributed, we assign probabilities P(k) =
1/10, k = 0, 1, . . . , 9 and if we would like to obtain a random number from the
interval

ξ1 = [0, 1), (12.5)

we may simply draw the sequence s2 = a1, a2, a3, . . . from S3 and compose the
random number r as

r = 0.a1a2a3 . . . . (12.6)

In what follows we shall restrict our discussion to random numbers, which are
uniformly distributed over a finite set, i.e. we assign to all possible outcomes the
same probability. Generation of non-uniformly distributed random numbers from
uniformly distributed random numbers is not a difficult task and will be discussed in
more detail in Chap.13.

We shall now focus briefly on the question of how one can test whether or not
a sequence together with a given set is truly a random sequence (again, under the
premise of a uniform distribution). From an intuitive point of view, one would simply
exploit the statistical definition of probability (D.4), i.e. one wouldmeasure the prob-
ability of a certain outcome by counting the particular results. This procedure can
be quite promising, however, it has to be kept in mind that the statistical definition
of probability is only valid in the limit m ∈ ∀, where m is the number of measure-
ments. Hence, it is fundamentally impossible to determine whether or not a sequence
is random because an infinite number of elements would have to be evaluated and
analyzed. More promising appears to be the calculation of moments or correlations
from the sequence and to compare such a result with known values for real random
numbers. These statistical tests will be discussed in Sect. 12.3. If we consider the
sequence (12.1) drawn from the setS3, (12.3) (uniform distribution), we can deduce
that it is a very improbable result for large N , although it is certainly a possible

http://dx.doi.org/10.1007/978-3-319-02435-6_13
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outcome. Methods based on this train of thoughts are known as hypothesis testings
and we discuss the θ2 test as a simple representative of such tests in Sect. 12.3.

Section12.2 is dedicated to the discussion of different methods of how to generate
so called pseudo random numbers. A pseudo random number is a number generated
with the help of a deterministic algorithm, however, it shows a behavior as if it were
random, i.e. its statistical properties are close to that of true random numbers. In
contrast to pseudo random numbers, real random numbers are truly random. A real
random number can be obtained from experiments. One could, for instance, simply
toss a coin and register the resulting sequence of zeros and ones. Amore sophisticated
method is to exploit the radioactive decay of a nucleus, which is believed to be purely
stochastic. There are also more exotic ideas, such as using higher digits of ω , which
are assumed to behave as if they were random. However, all these methods have
in common that they are far too slow for computational purposes. Moreover, an
experimental approach is obviously not reproducible in the sense, that a random
sequence cannot be reproduced on demand, but the reproducibility of a random
number sequence is essential for many applications.

Let us formulate several criteria, which we require from a random number gen-
erator: The algorithm should

• produce pseudo random numbers whose statistical properties are as close as pos-
sible to that of real random numbers.

• have a long period, i.e. it should generate a non-repeating sequence of random
numbers which is sufficiently long for computational purposes.

• be reproducible in the sense defined above, as well as restartable from an arbitrary
break-point.

• be fast and parallelizable, i.e. it should not be the limiting component in simula-
tions.

There is one last point: the division of this book into one part which discusses
deterministic methods and one which discusses stochastic methods may seem weird
in the light of the above discussion, since the numerically important random num-
ber generators are deterministic in nature. However, we will maintain this somehow
arbitrary separation since the concepts discussed within this second part are funda-
mentally different from the concepts discussed in the first part.

12.2 Different Approaches

In what follows, we discuss pseudo random number generators which generate a
pseudo random number r uniformly distributed within the interval [0, 1). Hence, its
probability density function (pdf) is given by

p(r) =
{
1 r ≈ [0, 1),
0 elsewhere,

(12.7)
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and from this follows the cumulative distribution function (cdf; see AppendixD):

P(r) =
r∫

0

dr ∞ p(r ∞) =



0 r < 0,

r 0 √ r < 1,

1 r ⇒ 1.

(12.8)

We shall now introduce briefly some of themost basic concepts for pseudo random
number generators.However, in huge simulations based on randomnumbers standard
pseudo random number generators provided by the various compilers may not be
sufficient due to their rather short period and bad statistical properties. In this case
it is, therefore, recommended to consult the literature [2] and use more advanced
techniques in order to obtain reliable results.

Linear Congruential Generators

Linear congruential generators are the simplest and most prominent random number
generators. They produce a sequence of integers {xn}, n ≈ N following the rule

xn+1 = (axn + c) mod m, (12.9)

where a, c and m are positive integers which obey 0 √ a, c < m. Furthermore, the
generator is initialized by its seed x0, which is also a positive (in most cases odd)
integer in the range 0 √ x0 < m. The seed is commonly taken from, for instance,
the system time in order to avoid repetition at a restart of the sequence. In many
environments it is therefore necessary to fix the seed artificially whenever one wants
to perform reproducible tests.

We note that the sequence resulting from Eq. (12.9) is bounded to the interval
xn = [0, m − 1] and, hence, its maximum period is m. However, the actual period
of the sequence highly depends on the choices of the parameters a, c and m as
well as on the seed x0. In general, linear congruential generators are very fast and
simple, however, they have rather short periods. Moreover, they are very susceptible
to correlations since the value xn+1 is calculated from xn only. (This is obviously
a property which does not apply to real random numbers and it should therefore
be eliminated!) In Sect. 12.3 we will discuss some simple methods which allow to
identify such correlations.

One of the most prominent choices for the parameters in Eq. (12.9) are the Park-
miller parameters:

a = 75, c = 0, m = 231 − 1. (12.10)

Note that one has to be particularly careful when choosing c = 0. It follows from
Eq. (12.9) that if c = 0 and if for any n, xn = 0 one obtains xk = 0 for all k > n.

The random numbers rn described by the pdf (12.7) are obtained via
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rn = xn

m
≈ [0, 1). (12.11)

Let us briefly discuss two famous improvements which concentrate on the
reduction of correlations and an elongation of the period: The first idea, which is
referred to as shuffling, includes a second pseudo random step. One calculates N
numbers rn from Eqs. (12.9) and (12.11) and stores these numbers in an array. If
a random number is needed by the executing program, a second random integer
k ≈ [1, N ] is drawn and the kth element is taken from this array. In order to avoid that
the same random number is used again, the kth element of the array is now replaced
by a new random number which, again, is calculated from (12.9) and (12.11).

The second idea to improve the linear congruential generator is simply to include
more previous elements of the sequence:

xn+1 =
(

τ⎛
k=0

ak xn−k

⎧
mod m, (12.12)

where τ > 0 and aτ ≤= 0. Again, the periodicity depends highly on the choice of the
parameters, as well as on the seed. In the following we will discuss a special type of
generators of the form (12.12), the Fibonacci generators.

Fibonacci Generators

The Fibonacci sequence is given by

xn+1 = xn + xn−1, x0 = 0, x1 = 1, (12.13)

which results for n ⇒ 1 in

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . . (12.14)

Choosing in Eq. (12.12) m = 10, τ = 1 and a0 = a1 = 1 simply leaves the last
digits of the sequence (12.14):

1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, . . . . (12.15)

This suggests the definition of a pseudo random number generator based on the
Fibonacci sequence. It is of the form

xn+1 = (xn + xn−1) mod m, (12.16)

which, according to our previous discussion, allows a periodicity exceeding m.
A straightforward generalization results in the so called lagged Fibonacci generators:
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xn+1 = (xn−p ≥ xn−q) mod m, (12.17)

where p, q ≈ N and the operator≥ stands for any binary operation, such as addition,
subtraction,multiplication or some logical operation. Two of themost popular lagged
Fibonacci generators are the shift register generator and the Marsaglia-Zaman
generator.

The shift register generator is based on the exclusive or (XOR; ∓) operation,
which acts on each bit of the numbers xn−p and xn−q . In particular, the recurrence
relation reads

xn = xn−p ∓ xn−q . (12.18)

The XOR operation ∓ is shown in the following multiplication table:

a b a ∓ b

0 0 0
1 0 1
0 1 1
1 1 0

Hence, suppose that the binary representation of xn−p is of the form 01001110 . . .

while for xn−q we have 11110011 . . .. This results in

xn−p 0 1 0 0 1 1 1 0 . . .

xn−q 1 1 1 1 0 0 1 1 . . .

xn+1 1 0 1 1 1 1 0 1 . . .

A very prominent choice is given by p = 250 and q = 103 which yields a superior
periodicity which is of order O(1075). The algorithm is initialized with the help of,
for instance, a linear congruential generator.

In contrast, theMarsaglia-Zaman generator, uses the subtraction operation and
may be written by introducing the so called carry bit π as

π = xn−p − xn−q − cn−1, (12.19)

where xi ≈ [0, m] for all i . Then,

xn =
⎪

π π ⇒ 0,
π + m π < 0.

(12.20)

and cn is obtained via

cn =
⎪
0 π ⇒ 0,
1 π < 0.

(12.21)
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For the particular choice p = 10, q = 24 and m = 224 one finds an amazingly large
periodicity which is of order O(10171). The random numbers xn are integers in the
interval xn ≈ [0, m], hence dividing the random numbers by m gives rn ≈ [0, 1].

12.3 Quality Tests

Here, we discuss some tests to check whether or not a given, finite sequence of
numbers xn consists of uniformly distributed random numbers out of the interval
xn ≈ [0, 1].1

Statistical Tests

These statistical tests are generally the most simple methods to achieve a first idea of
the quality of a pseudo random number generator. Statistical tests are typically based
on the calculation of moments or correlations. Since we regard the simplified case
of uniformly distributed, uncorrelated random numbers within the interval [0, 1], the
moments can be calculated immediately via (see AppendixD)

⎨
Xk
⎩
=
∫

dx xk p(x) =
1∫

0

dx xk = 1

k + 1
, (12.22)

for k ≈ N. These moments are only approximated by the generated finite sequence
of numbers {xn}n=1, ..., N via

⎨
Xk
⎩
→ xk = 1

N

N⎛
n=1

xk
n . (12.23)

As illustrated in AppendixD, the error of this approximation is of order O
(

1√
N

⎜
,

i.e. ⎨
Xk
⎩
= xk + O

(
1√
N

)
. (12.24)

In a similar fashion, we can calculate correlations from the values of the sequence
and compare it with the analytical result.We remember that if we regard uncorrelated
random numbers we obtain

1 From now on we define quite generally the interval out of which random numbers xn are drawn
by xn ≈ [0, 1] keeping in mind that this interval depends on the actual method applied. This method
determines whether zero or one is contained in the interval.
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Fig. 12.1 Spectral test for a linear congruential generator. We used the Park-Miller parameters,
(a) a = 75, c = 0, and m = 231 − 1, (b) a = 137, c = 0, and m = 211, and plotted N = 103

subsequent pairs (xn, xn+1) of random numbers. In frame (a) the random numbers evolve nicely
distributed within the unit square, showing no obvious correlations. On the other hand, in frame
(b) subsequent random numbers lie on hyperplanes and, thus, develop correlations, i.e. they do not
fill the unit square uniformly

⇐Xn Xn+k〉 = ⇐Xn〉2 = 1

4
. (12.25)

Another, quite evident test, is the analysis of the symmetry of the distribution. If
Xn ≈ [0, 1] is uniformly distributed then it follows that (1 − Xn) ≈ [0, 1] should
also be uniformly distributed.

Finally, we discuss a graphical test, known as the spectral test. The spectral test
consists of plotting subsequent randomnumbers, i.e. xn versus xn+1 and of inspecting
the resulting plot by eye. One expects that the randomnumbers uniformly fill the unit-
square, however, if correlations exist, particular patterns might evolve. We illustrate
this method in Fig. 12.1 where it is applied to a linear congruential generator with
two different sets of parameters, see Eq. (12.9).

Hypothesis Testing

Basically, one could employ different hypothesis tests, such as the Kolmogorov-
Smirnov test, to test random numbers. These tests are rather basic and are discussed
in numerous books on statistics. In what follows we shall briefly discuss the θ2-test;
for more advanced techniques we refer the reader to the literature [3, 4].

The θ2-test tests the pdf directly. One starts by sorting the N elements of the
sequence into a histogram. Suppose we would like to have M bins and, hence, the
width of every bin is given by 1

M . We now count the number of elements which
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Fig. 12.2 Histograms for
N = 105, N = 106 and
N = 107, M = 100 bins
as obtained with the Park-
Miller linear congruential
generator, a = 75, c = 0 and
m = 231 − 1

lie within bin k, i.e. within the interval
⎟ k−1

M , k
M

]
and denote this number by nk .

The histogram array h is given by h = c(n1, n2, . . . , nM )T where the constant
c = M

N normalizes the histogram. In Fig. 12.2 we show three different histograms
for N = 105, N = 106 and N = 107 uniformly distributed random numbers as
obtained with the Park-Miller linear congruential generator. In Fig. 12.3 we show
a histogram for N = 107 obtained with the bad linear congruential generator defined
in Fig. 12.1b.

Let us briefly remember some points from probability theory [5, 6]. One can show,
that if numbers Qn are normally distributed random variables, their sum
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Fig. 12.3 Histogram for
N = 107 and M = 100
bins as obtained with a linear
congruential generator with
parameters a = 137, c = 0
and m = 211

x =
v⎛

n=1

Q2
n, (12.26)

follows a θ2-distribution where v is the number of degrees of freedom. The pdf of
the θ2-distribution is given by

p(x; v) = x
v
2−1e− x

2

2
v
2 ϕ

( v
2

) , x ⇒ 0, (12.27)

where ϕ (·) denotes the ϕ -function. The probability of finding the variable x within
the interval [a, b] ∪ R

+ can be calculated as

P(x ≈ [a, b]; v) =
b∫

a

dx p(x; v), (12.28)

and in particular for a = 0 we obtain

P(x < b; v) =
b∫

0

dx p(x; v) = F(b; v). (12.29)

Here we introduced the cdf F(b; v). Let us consider the inverse problem: the proba-
bility that x √ b is equal to α, i.e. F(b; v) = α, then we calculate the upper bound
b by inverting Eq. (12.29) in order to obtain

b = F−1(α; v). (12.30)

These values are tabulated [7].
We return to our particular example: the hypothesis is that the sequence {xn}

generated by some pseudo random number generator follows a uniform distribution.
It then follows from the central limit theorem that the deviations from the theoretically
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expected values follow a normal distribution. We define the variable

x = θ2 =
M⎛

k=1

(nk − nth
k )2

nth
k

. (12.31)

If our hypothesis is true, θ2 follows a θ2-distribution with v = M − 1, since the
degrees of freedom are reduced by one because of the requirement that the sum of
all numbers nk is equal to N . We employ relation (12.30) for α = 0.85 and v = 99
in order to obtain b = 113. Hence, values θ2 < b are very likely if θ2 really follows
a θ2 distribution, while values θ2 > b are unlikely and therefore the hypothesis
may require a review. However, it has to be emphasized that it is fundamentally
impossible to verify a hypothesis. It can only be falsified or strengthened. We note
that the resulting value of θ2 will highly depend on the seed number of the generator
as long as the maximum period has not been reached.

Summary

We first concentrated on a possible definition of randomness and on a mathematical
definition of random numbers and sequences. As the generation of random numbers
is the main topic of this section we moved on to describe the requirements an ‘ideal’
random number generator will have to obey. On the other hand, the numerics of
computational physics demand reproducible sequences of random numbers and this
resulted in the notion of ‘pseudo’ random numbers which will be generated by
deterministic methods and, thus, cannot possibly be ‘ideal’. A number of rather
simple but quite effective pseudo random number generators was discussed before
the question of how to test the quality (randomness) of these numbers was raised.
We discussed statistical tests and demonstrated the simple spectral test using a linear
congruential generator. More sophisticated is the method of quality testing. The
histogram technique as a direct test for the probability density function from which
the random numbers are drawn is discussed in detail. Finally, some basics of the
θ2-test have been presented.

Problems

1. Write the computer code for a linear congruential generator. This generator is
described by

x j+1 = (ax j + c) mod m.

The random numbers r j ≈ [0, 1] can be obtained by normalizing x j as was
discussed in Sect. 12.2. Use the following parameters
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(a) a = 16807, c = 0, m = 231 − 1, x0 = 3141549,
(b) a = 5, c = 0, m = 27, x0 = 1.

2. Perform the following analysis:

(a) Compute themean ⇐r〉 and the variance var (r) for randomnumbers generated
in N steps. Plot the result.

(b) Plot two successive random numbers rk versus rk+1 for k = 1, 2, . . . , N −1
in a two dimensional plot.

(c) Repeat the above steps for random numbers generated by your system’s
software.

(d) Discuss the results!
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Chapter 13
Random Sampling Methods

13.1 Introduction

In most applications random numbers are required which follow a certain probability
density function (pdf) which is not a uniform distribution on the interval [0, 1]. Of
course, one could employ natural sources if available. However, we would like to
formulate methods which will allow us to obtain random numbers which follow
some arbitrary pdf from uniformly distributed random numbers which in turn can be
generated with the help of the methods we discussed in Chap.12.

Within this chapter we shall introduce two methods to obtain random numbers
from some arbitrary pdf, i.e. the inverse transformation method and the rejection
method. Furthermore, in Sect. 13.4 we shall discuss the generalization of these meth-
ods to piecewise defined pdfs and combined pdfs. It has to be emphasized that these
methods are in many cases not sufficient and a more powerful approach is required.
One of these approaches which is based on the idea of importance sampling and is
referred to as the Metropolis method. It will be discussed briefly in Chap.14.

Apart from these methods we are going to discuss in the following sections, it is
possible to obtain quite easily random numbers for special pdfs by an almost trivial
approach, namely the direct sampling. For instance, suppose x1, x2 are two uniformly
distributed random numbers. Hence, their pdf is given by

pu(x) =
{
1 x ∈ [0, 1],
0 elsewhere.

(13.1)

and the corresponding cumulative distribution function (cdf) follows:

Pu(x) =
x∫

0

dx ∀ pu(x ∀) =


0 x < 0,
x x ∈ [0, 1],
1 x > 1.

(13.2)
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One can show, that the new random number y

y = max(x1, x2), (13.3)

possesses the cdf
F(y) = y2, (13.4)

and, thus, the pdf
f (y) = 2y, (13.5)

follows. This results in a very elegant method of constructing random numbers z
which follow the pdf

g(z) = kzk−1, (13.6)

by defining
z = max(x1, x2, . . . , xk). (13.7)

Here, the random numbers xi are uniformly distributed and can be obtained with the
help of the methods introduced in Chap.12.

Another quite elegant method can be employed to calculate random numbers zi

according to a normal distribution. In this case, the pdf is of the form

p(z) = 1≈
2ξ

exp

(
− z2

2

)
. (13.8)

Again,we act on the assumption that the xi are uniformly distributed randomnumbers
taken from the unit interval [0, 1]. We take two random numbers (x1, x2) in order
to construct two random numbers (z1, z2), which follow the pdf (13.8). It is an easy
task to prove that the transformation

z1 = ⎛−2 ln x1 cos(2ξx2), z2 = ⎛−2 ln x1 sin(2ξx2), (13.9)

gives the desired result. We introduce the joint distribution pu(x1, x2) = pu(x1)
pu(x2) (i.e. no correlations). The transformation of probabilities gives

p(z1, z2)dz1 dz2 = pu(x1, x2)dx1 dx2 , (13.10)

or, equivalently, the Jacobian determinant

p(z1, z2) = θ(x1, x2)

θ(z1, z2)
, (13.11)

where we employed Eq. (13.1). We recognize that Eq. (13.9) is equivalent to

http://dx.doi.org/10.1007/978-3-319-02435-6_12
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x1 = exp

⎧
− z21 + z22

2

⎪
, x2 = 1

2ξ
cos−1

⎨
⎩ z1√

z21 + z22

⎜


= 1

2ξ
sin−1

⎨
⎩ z2√

z21 + z22

⎜
 . (13.12)

The Jacobian determinant is readily evaluated to give

θ(x1, x2)

θ(z1, z2)
=
∣∣∣∣∣

θx1
θz1

θx1
θz2

θx2
θz1

θx2
θz2

∣∣∣∣∣

=
∣∣∣∣∣∣

z1x1 z2x1
− z2

2ξ
√

z21+z22

z1

2ξ
√

z21+z22

∣∣∣∣∣∣
= x1

2ξ

= 1

2ξ
exp

⎧
− z21 + z22

2

⎪

= p(z1)p(z2), (13.13)

i.e. it is the product of two normal distributions. Here we employed, that

d

dx
sin−1(x) = − d

dx
cos−1(x) = 1≈

1 − x2
. (13.14)

Hence, z1 and z2 indeed follow a normal distribution.We shall now turn our attention
to methods which allow sampling from arbitrary pdfs.

13.2 Inverse Transformation Method

The inverse transformation method is one of the simplest and most useful methods
to sample random variables from an arbitrary pdf. Let p(x), x ∈ [xmin, xmax], denote
the pdf from which we want to obtain our random numbers. The corresponding cdf
will be denoted by

P(x) =
x∫

xmin

dx ∀ p(x ∀). (13.15)

It follows immediately from the positivity and the normalization condition of
pdfs (Appendix D) that P(x) is monotonically increasing and, furthermore, that
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P(xmin) = 0 and P(xmax) = 1. Let ω denote some random number uniformly
distributed within the interval [0, 1], i.e. pertaining to the pdf pu(ω). In the following
we shall demonstrate, that the number

x = P−1(ω), (13.16)

indeed follows the pdf p(x), i.e. x is indeed the random number we are interested
in. We employ the conservation of probability and obtain

pu(ω)dω = p(x)dx =∞ 1 = pu(ω) = p(x)

(
dω

dx

)−1

. (13.17)

The choice ω = P(x), finally, gives the desired result, since

d

dx
P(x) = p(x), (13.18)

and, hence, we have
x = P−1(ω), (13.19)

where P−1 denotes the inverse of P . This is an obvious caveat of this method, as it
requires the P−1(ω) to exist and that P(x) can be calculated and inverted analytically.
This is, for instance, not possible in the case of the normal distribution (13.8).

Let us give an illustrating example. Suppose we want to draw random numbers
which are uniformly distributed within the interval [a, b]. The corresponding pdf
reads

p(x) = 1

b − a
, (13.20)

and the cdf takes on the form
P(x) = x − a

b − a
, (13.21)

where we employed that in this particular example xmin = a. Hence, we have

ω = x − a

b − a
, (13.22)

which is uniformly distributed within [0, 1]. Consequently, we determine random
numbers x ∈ [a, b] uniformly distributed via

x = a + (b − a)ω. (13.23)

We give a second example. The pdf we are interested in is the exponential distri-
bution

p(x) = 1

τ
exp

⎟
− x

τ

)
, (13.24)
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where τ > 0 and x ∈ [0,√). This could, for instance, describe the free path x of a
particle between interactions, where the mean free path ⇒x≤ = τ. From Eq. (13.16)
we obtain

ω = 1

τ

x∫

0

dx ∀ exp
(

− x ∀

τ

)
= 1 − exp

⎟
− x

τ

)
, (13.25)

and consequently
x = −τ ln(1 − ω), (13.26)

gives random variables according to the exponential distribution (13.24) if ω follows
the pdf pu(ω) defined in Eq. (13.1). We note that it follows from the symmetry of the
uniform distribution that

x = −τ ln(ω), (13.27)

without affecting the resulting random numbers. In Fig. 13.1 we show a histogram
with random numbers drawn according to (13.27).

We pointed out already that it is certainly a caveat of this method that the cdf
P(x) has to be calculated and inverted analytically. However, even if P(x) is not
analytically invertible, it is possible to employ the inverse transformation method
by calculating P(x) for certain grid-points xi and then interpolating P(x) piecewise
between these points with the help of an invertible function. However, in many cases
it is advantageous to employ the rejection method, which will be discussed next.

(a) (b)

Fig. 13.1 The histogram representation of the pdf p(x) versus x generated by random numbers
drawn from an exponential distribution Eq. (13.24) with the help of the inverse transformation
sampling method. Two different values for τ have been considered, namely (a) τ = 1 and
(b) τ = 5. N = 105 random numbers have been sampled. The solid line corresponds to the
pdf p(x) according to Eq. (13.24)
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13.3 Rejection Method

The rejection method is particularly suitable if the inverse transformation method
fails. One of the most prominent versions of the rejection method is the Metropolis
algorithm, as it will be introduced in Sect. 14.3.

The basic idea of the rejection method is quickly formulated: we draw ran-
dom numbers x from another, preferably analytically invertible pdf h(x) and check
whether or not they lie within the desired pdf p(x). If this is the case the random
number x is accepted, otherwise it will be rejected. This is also the basic idea of the
hit and miss version ofMonte-Carlo integrationwhichwill be discussed in Sect. 14.2.

We specify the rejection method: Let p(x) denote the pdf from which we want
to draw random numbers. Furthermore, let h(x) be another pdf, which can easily be
sampled (for instance with the help of the inverse transformation method) and which
is chosen in a such a way that the inequality

p(x) ≥ c h(x), (13.28)

holds for all x ∈ [xmin, xmax], where c is some constant. The function ch(x) is
referred to as the envelope of p(x) within the interval [xmin, xmax]. The strategy
is clear: we sample a random variable xt (trial state) from h(x) and accept it with
probability p(x)/[c h(x)]. This procedure is sketched in Fig. 13.2. Let p(A|x) denote
the probability that a given value x is accepted and g(x) denotes the probability that
we produce a variable x with this algorithm. Furthermore, P(x = xt ) stands for the
probability that a trial state xt is generated. We have

g(x) ∓ P(x = xt )p(A|xt )

= h(xt )
p(xt )

c h(xt )

∓ p(xt ). (13.29)

Hence, we indeed generate random numbers according to p(x). We may also calcu-
late the probability P(A) that an arbitrary trial state xt is accepted. This is done with
the help of the marginalization rule (see Appendix D):

Fig. 13.2 Schematic illustra-
tion of the rejection method.
The trial state xt is accepted
with probability p(x)/[ch(x)]

http://dx.doi.org/10.1007/978-3-319-02435-6_14
http://dx.doi.org/10.1007/978-3-319-02435-6_14
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P(A) =
∫

dxt p(A → xt )

=
∫

dxt p(A|xt )P(x = xt )

=
∫

dxt p(xt )

c h(xt )
h(xt )

= 1

c

∫
dxt p(xt )

= 1

c
. (13.30)

In a similar fashion, we obtain for a d-dimensional random variable that

P(A) = 1

cd
. (13.31)

We deduce that the bigger c the worse is the acceptance probability of the rejection
method. It is therefore advisable to choose the envelope h(x) very carefully.

We give an illustrating example: We aim at sampling the normal distribution for
x ∈ R

p(x) = 1≈
2ξπ 2

exp

(
− x2

2π 2

)
, (13.32)

with expectation value ⇒x≤ = 0 and variance π 2. In a first step we restrict our
investigation to x ∈ [0,√) due to the symmetry of the pdf. The slightly modified
pdf for the right-half axis reads

q(x) =
√

2

ξπ 2 exp

(
− x2

2π 2

)
, x ∈ [0,√), (13.33)

where we adjusted the normalization. The complete normal distribution (13.32) is
re-obtained by sampling the sign of x in an additional step.We choose as the envelope
h(x) the exponential distribution Eq. (13.24). We choose τ and c in such a way, that
the acceptance probability (13.30) has amaximumunder the constraint (13.28). Since
this is equivalent to c → min we have to solve the optimization problem

c ⇐ q(x)

h(x)
→ max . (13.34)

The resulting cmin is then given by

cmin = q(xopt)

h(xopt)
. (13.35)
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Here xopt is the yet unknown optimal value for x . We obtain

d

dx

q(x)

p(x)
=
√

2τ2

ξπ 2

d

dx
exp

(
x

τ
− x2

2π 2

)

=
√

2τ2

ξπ 2 exp

(
x

τ
− x2

2π 2

)[
1

τ
− x

π 2

⎢

!= 0, (13.36)

and, therefore,

xopt = π 2

τ
. (13.37)

Consequently, we have

cmin =
√

2τ2

ξπ 2 exp

(
π 2

2τ2

)
. (13.38)

The above relation gives the minimum c for arbitrary τ. However, since h(x) is our
envelope, we can choose τ in such a way, that cmin → min. This is achieved in a
second step:

d

dτ
cmin =

√
2

ξπ 2 exp

(
π 2

2τ2

)(
1 − π 2

τ2

)

!= 0. (13.39)

This gives the optimum value τopt as

τopt = π. (13.40)

Finally, we obtain that with the help of the above choice cmin takes on the final form

cmin =
√
2e

ξ
. (13.41)

The algorithm is executed in the following steps:

1. Draw a uniformly distributed random number ω ∈ [0, 1].
2. Calculate xt = −τopt ln(ω), where τopt = π .

3. Draw a uniformly distributed random number r ∈ [0, 1]. If r ≥ q(xt )
cminh(xt )

, then

x = xt is accepted and if r >
q(xt )

cminh(xt )
, xt is rejected and we return to step 1.

4. If xt was accepted, we draw a uniformly distributed random number r ∈ [0, 1]
and only if r < 0.5 we set x = −x otherwise x stays as is.
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Fig. 13.3 The histogram
representation of the pdf
p(x) versus x generated
by random numbers drawn
from the normal distribution
Eq. (13.32) (π = 1) with the
help of the rejection method.
We sampled (a) N = 103,
(b) N = 104, and (c) N = 105

random numbers. The solid
line represents the pdf p(x)

(13.32)

(a)

(b)

(c)

5. We repeat steps 1–4 until the number N of desired random numbers has been
reached.

Figure13.3 shows random numbers obtained with the help of this method in a
histogram representation .We calculated (a) N = 103, (b) N = 104, and (c) N = 105

random numbers for π = 1. It is quite obvious that the original pdf (13.32) is the
better approximated the bigger the number N of sampled random number becomes.

13.4 Probability Mixing

Probability mixing is a method developed to generate random numbers by sampling
from piecewise defined or composite pdfs. Such a pdf is of the general form
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p(x) =
N∑

i=1

ϕi fi (x), ϕi �= 0, (13.42)

where the sub-pdfs fi (x) fulfill the normalization requirement

∫
dx ∀ fi (x ∀) = 1, (13.43)

and are non-negative, i.e.
fi (x) ⇐ 0, (13.44)

for all i = 1, . . . , N . It follows that

N∑
i=1

ϕi = 1, (13.45)

so that ∫
dx ∀ p(x ∀) = 1, (13.46)

is fulfilled. The question is how to sample random numbers from such a pdf, since
in most cases it might be hard to invert the sum (inverse transformation method)
or find a suitable envelope (rejection method). However, the question can easily be
answered: We define

qi =
i∑

α=1

ϕα. (13.47)

Thus, qN = 1 and the interval [0, 1] has been divided according to:

Auniformly distributed randomnumber r ∈ [0, 1] can nowbe employed to determine
the index i for which the condition

qi−1 < r < qi , (13.48)

is fulfilled and we draw the random number x according to the sub-pdf fi (x) with
any of the methods discussed above.

This procedure is quite plausible, since the coefficients ϕi give the relative weight
of the sub-pdfs fi (x), i.e. ϕi determines the importance of the particular sub-pdf
fi (x). It is therefore a natural approach to use it as a measure of the probability that
a random variable is to be sampled from the particular sub-pdf fi (x).
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Summary

To generate high quality random numbers from some non-uniform pdf p(x) �=
pu(x) is one of the most important tasks in computational physics, but from the
outside it appears to play only a supportive role. This chapter concentrated on basic
methods to generate the desired randomnumbers: (a) the direct sampling method uses
transformations of the uniform distribution to generate the required randomnumbers;
(b) the inverse transformation method is based on the availability of an inverse cdf
in most cases required to be calculated analytically; finally, (c) the rejection method
which is basically a hit or miss method. It uses an easily invertible pdf h(x) which
envelops the desired pdf p(x) completely within some interval x ∈ [xmin, xmax ]. The
effectiveness of this method depends on how ‘well’ the envelope h(x) encloses the
original pdf p(x). In a last step the method of probability mixing was discussed. It is
an easily verifiable method which allows to sample random numbers from composite
pdfs.

Problems

Draw random numbers from the following pdfs:

1. Direct Sampling:
Sample the normal distributionwith ⇒x≤ = 0with the help of themethod discussed
in Sect. 13.1. Check the result by plotting the random numbers against the pdf
p(x) in a histogram.

2. Inverse Transformation Method:
Write a function which samples random numbers from the exponential distribu-
tion with the help of the inverse transformation method as discussed in Sect. 13.2.
Compare the generated random numbers to the pdf in a histogram.

3. Rejection Method:
Sample the normal distribution with ⇒x≤ = 0 with the help of the exponential
distribution as discussed in Sect. 13.3. Compare the generated random numbers
with the pdf in a histogram. Determine the acceptance probability numerically.

4. Probability Mixing:
We choose an alternative envelope for the normal distribution. This envelope is
chosen to be constant for all |x | < x0 and decays exponentially for |x | ⇐ x0. The
parameters do not need to optimize the acceptance probability. Again, plot the
generated randomnumbers in a histogramand compare the acceptance probability
with the acceptance probability of point (3).



Chapter 14
A Brief Introduction to Monte-Carlo Methods

14.1 Introduction

It is the aim of this chapter to give a brief introduction to Monte-Carlo methods in
general, and to Monte-Carlo integration as well as to the Metropolis-Hastings
algorithm in particular. A detailed discussion of the fundamental concepts involved
is postponed to Chap. 16. The introduction given here is not supposed to be self-
contained. Actually, we shall introduce concepts without referring to the origin of
the relations employed.

The notion of Monte-Carlo methods, Monte-Carlo algorithms or Monte-Carlo
techniques is notwell defined. In particular, the termMonte-Carlo summarizes awide
field ofmethods, which are based on the sampling of random numbers. In general, the
advantage of Monte-Carlo algorithms can be found in their computational strength.
In many cases it is simply not feasible to employ deterministic methods due to their
very high computational cost. However, in many cases the use of methods based on
random sampling is also motivated by the nature of the processes to be described.
We mentioned in the previous chapter as a typical example the radioactive decay of
some nucleus. This process is believed to be purely stochastic in nature.

The development of Monte-Carlo techniques was initialized in the 1940s by von
Neumann,Ulam andMetropolis, who actually also coined the term Monte-Carlo
methods. In particular,Ulam’s uncle used to gamble (and loose hismoney) in a casino
named Monte-Carlo casino, which they apparently regarded as their inspiration.

One of the earliest andmost impressive illustration of the principle ofMonte-Carlo
techniques in general, and ofMonte-Carlo integration in particular is theMonte-Carlo
approximation of ξ . The discussion which follows now includes the essential ideas
of Monte-Carlo integration.

We regard the unit square characterized by the corner points (0, 0), (0, 1), (1, 0),
and (1, 1). The area As of this square is one.We insert a quarter-circle of radius r = 1
which, consequently, possesses the area Ac = ξ/4. Suppose, we are throwing darts
on this unit square in such a way that the impact points are uniformly distributed;
then the probability P that a certain dart becomes stuck within the interior of the
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Table 14.1 Approximate values ξ
(i)
a obtained with the method discussed in the text

N ξ
(1)
a |ξ(1)

a − ξ | ξ
(2)
a |ξ(2)

a − ξ |
10 2.8000 0.34159 2.8000 0.34159
102 2.9200 0.22159 3.1600 0.01841
103 3.1600 0.01841 3.1840 0.04241
104 3.1304 0.01119 3.1868 0.04521
105 3.1358 0.00579 3.1875 0.04589
106 3.1393 0.00229 3.1875 0.04599
107 3.1413 0.00028 3.1875 0.04599

The linear congruential generators are initialized by the following parameters: generator (1): a = 75,
c = 0, m = 231 − 1, and x0 = 281 (Park-Miller) and generator (2): a = 75, c = 0, m = 210,
and x0 = 281. We also give the absolute errors |ξ(i)

a − ξ |

quarter-circle is given by

P = Ac

As
= Ac = ξ

4
= 0.785398 . . . . (14.1)

From a probabilistic point of view, we have after N throws of which n hit the
interior of the quarter-circle the probability:

P = lim
N∈∀

n

N
. (14.2)

The strategy is clear: we draw random numbers xi , yi from the interval [0, 1]. These
are the intersection points of the darts. Repeating this experiment several times and
counting the number of hits n within the quarter-circle allows us to approximateξ via

P = ξ

4
≈ n

N
. (14.3)

The resulting approximation of ξ will be strongly influenced by the number of
experiments N as well as by the performance of the random number generator used.
Table 14.1 lists computed approximations of ξ for different numbers of experiments
N as they were obtained with the help of a linear congruential generator. Linear con-
gruential generators havebeen introduced anddiscussed inSect. 12.2. Theparameters
used to initialize the generators are given in the caption of the table. Furthermore,
Fig. 14.1 illustrates the result after N = 103 experiments for both generators.

14.2 Monte-Carlo Integration

We generalize the ideas formulated above: we consider a function f (x) ∞ 0 for
x √ [a, b] ⇒ R where the area of interest is

http://dx.doi.org/10.1007/978-3-319-02435-6_12
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Fig. 14.1 N = 103 uniformly distributed random numbers within the unit-square. Frame (a) gives
the results for generator (1) while frame (b) is for generator (2). The number of elements within
the quarter-circle indicated by the solid line determines the value of ξ

(i)
a . The inferior result of the

approximation obtained with generator (2) [frame (b)] originates in correlations between the x and
y coordinates

A =
b∫

a

dx f (x). (14.4)

We denote
θ = max

x√[a,b] f (x), (14.5)

and obtain using the above example

A = As lim
N∈∀

n

N
, (14.6)

where n is the number of random points under the curve indicated schematically in
Fig. 14.2. The area As is given by

As = (b − a)θ, (14.7)

and the random numbers ri = (xi , yi ) are uniformly distributed within the intervals
xi √ [a, b] and yi √ [0, θ ]. This method is referred to as hit and miss integration.

Another way to perform a Monte-Carlo integration is the so called mean-value
integration . It is essentially based on the mean value theorem of calculus which
we already employed in our discussion of quadrature in Chap. 3. We will restate the
theorem here for the sake of a more transparent illustration. The mean-value theorem
states that if f (x) is a continuous function for x √ [a, b] then there exists a z √ (a, b)

such that

http://dx.doi.org/10.1007/978-3-319-02435-6_3
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Fig. 14.2 Schematic illus-
tration of the Monte-Carlo
integration technique

b∫

a

dx f (x) = f (z)(b − a). (14.8)

The function value f (z) = ≤ f ≥ is referred to as the expectation value or mean value
of f (x). Now we know from probability theory [1, 2], that the expectation value
can be approximated by the arithmetic mean f , with the error given by the standard
error, i.e.

1

b − a

b∫

a

dx ∓ f (x ∓) = f ±
√

f 2 − f
2

N
. (14.9)

The arithmetic mean f , on the other hand, is given by

f = 1

N

N∑
i=1

f (xi ), (14.10)

and consequently

f 2 = 1

N

N∑
i=1

f 2(xi ). (14.11)

Note that here the variables xi are assumed to be uniformly distributed random
numbers within the interval [a, b]. We will immediately discuss this result in more
detail. However, first of all we note from the law of large numbers, AppendixD, that
this approach is exact in the limit N ∈ ∀, i.e.

1

b − a

b∫

a

dx ∓ f (x ∓) = lim
N∈∀

1

N

N∑
i=1

f (xi ). (14.12)

Let us consider the more general case: We want to evaluate the expectation value
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≤ f ≥ =
∫

dx f (x)p(x), (14.13)

where x √ R
d and p(x) is a pdf. A typical example is the calculation of the thermal

expectation value in statistical physics where the pdf p(x) is given by the normalized
Boltzmann distribution

p(x) = 1

Z
exp

[
− E(x)

kB T

]
. (14.14)

Here E(x) denotes the energy as a function of the parameter x √ R
d , kB stands

for Boltzmann’s constant, T is the temperature, and the normalization factor Z is
referred to as the canonical partition function.

Equation (14.13) may be rewritten as

≤ f ≥ =
∫

dx f (x)p(x) =
∫

d f f q( f ), (14.15)

where we introduced the probability density q( f ) of f via

q( f ) =
∫

dx ω [ f − f (x)] p(x). (14.16)

with ω(·) Dirac’s ω-distribution. Let us briefly explain how we arrived at this defin-
ition. Let the cdf P(x) be defined by1

P(x) = Pr(X → x) =
x∫

−∀
dx p(x). (14.17)

We define in a similar fashion the cdf Q( f ) via

Q( f ) = Pr(F → f ) = Pr[ f (X) → f ]. (14.18)

Note that we distinguish between the function f (X) of the random variable X—
which in turn follows the pdf p(X)—and the particular function value f √ R.
Furthermore, the probability Pr[ f (X) → f ] can be rewritten as

Pr[ f (X) → f ] =
∑

n

Pr(an → X → bn), (14.19)

where the values an < bn are the ordered intersection points a1 < b1 < a2 < b2 <

· · · < aN < bN chosen in such a way that

1 Please note that according to the conventions established in AppendixD capital letters denote
random variables.
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f (an) = f (bn) = f, and f [x √ (an, bn)] < f. (14.20)

It is a matter of the particular form of f (x) whether or not the boundary points have
to be included. Equation (14.19) can be rewritten:

Pr(an → X → bn) = P(bn) − P(an) =
bn∫

an

dx p(x). (14.21)

The pdf q( f ) is related to the cdf Q( f ) via

q( f ) = d

d f
Q( f ), (14.22)

and we obtain

q( f ) =
∑

n

d

d f
Pr(an → X → bn)

=
∑

n

d

d f

bn∫

an

dx p(x)

=
∑

n

[
dbn

d f
p(bn) − dan

d f
p(an)

]

=
∑

n

[(
d f (x)

dx

)−1

p(x)

∣∣∣∣∣
x=bn

−
(
d f (x)

dx

)−1

p(x)

∣∣∣∣∣
x=an

]
.

(14.23)

However, from Eq. (14.20) we know that

d f (x)

dx

∣∣∣∣
x=bn

!
> 0 and

d f (x)

dx

∣∣∣∣
x=an

!
< 0. (14.24)

We introduce the intersection points xk where x1 < x2 < · · · < xK and K = 2N—if
the boundary points are not included—for which f (x1) = f (x2) = · · · = f (xK ) =
f . Hence, Eq. (14.23) may be rewritten as

q( f ) =
∑

k

∣∣∣∣d f (x)

dx

∣∣∣∣
−1

∣∣∣∣∣
x=xk

p(xk)

=
∑

k

p(xk)

| f ∓(xk)| . (14.25)
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The Dirac ω-distribution of an arbitrary function g(y) can be expressed as

ω[g(y)] =
∑

i

ω(y − yi )

|g∓(yi )| , (14.26)

where the yi are the zeros of g(y), i.e. g(yi ) = 0. Hence, we arrive at the final result
and find for Eq. (14.23):2

q( f ) =
∫

dx ω [ f − f (x)] p(x). (14.27)

Furthermore, we note that

∫
d f q( f ) =

∫
d f

∫
dx ω [ f − f (x)] p(x) =

∫
dx p(x) = 1. (14.28)

As a result, the variance of f , var ( f ) can be expressed as

var ( f ) =
∫

dx [ f (x) − ≤ f ≥]2 p(x) =
∫

d f [ f − ≤ f ≥]2 q( f ). (14.29)

Let us define in a next step the arithmetic mean

F = 1

N

N∑
i=1

f (xi ) = 1

N

N∑
i=1

fi , (14.30)

calculated with the help of N random numbers. Hence, we have

≤F ≥ = ≤ f ≥ , (14.31)

and

var (F ) = var ( f )

N
, (14.32)

according to AppendixD. It follows from the central limit theorem, that for large
values of N , the pdf of F , p(F ) converges to a normal distribution N with ≤F ≥
and var (F ), i.e.

2 We give an example. Suppose f (x) = exp(x). Then we deduce that

ω
[

f − exp(x)
] = ω(x − ln f )

f
,

and, consequently,

q( f ) = p(ln f )

f
.
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p(F ) ≈ N

(
F

∣∣∣∣≤ f ≥ ,
var ( f )

N

)
. (14.33)

This property can now be employed to estimate ≤ f ≥ according to

≤ f ≥ = F ±
√
var ( f )

N
= 1

N

N∑
i=1

f (xi ) ±
√
var ( f )

N
, (14.34)

with random numbers xi sampled from the pdf p(x). This method is the most promi-
nent formulation of Monte-Carlo integration.

We shall briefly discuss some properties of this method. We deduce from

Eq. (14.34) that the error scales like N− 1
2 . In contrast to the integration methods

we discussed in Chap. 3, N is no longer the number of grid-points but the number
of random numbers sampled.3 In principle, the error scaling is worse than in the
case of classical integrators. For instance, in the case of the central rectangular rule
(Sect. 3.2) we had an error scaling of N−2 when summed over the whole interval.
However, we obtained this result for the one-dimensional case, in higher dimensions
we will certainly need much more grid-points. On the other hand, in Eq. (14.34) N
corresponds the number of d-dimensional random numbers x . Hence, Monte-Carlo
integration can be of advantage whenever one has to deal with complicated, high
dimensional integrals. In contrast, restricted to one dimension it is in most cases not
an improvement of the methods discussed already.

Monte-Carlo integration can also be of advantage whenever the integrand f (x)

is not well behaved, i.e. if one would need a very fine grid in order to compute
a reasonable estimate of the true value of the integral. In such cases Monte-Carlo
integration offers a very convenient approach due to its conceptual simplicity.

It is certainly a drawback of Monte-Carlo integration in its formulation (14.34),
that the error is also proportional to

√
var ( f ), which is a yet unknown quantity.

One has to approximate it with an adequate estimator, for instance with the help of
the sampling variance. Moreover, if the variance var ( f ) diverges, the central limit
theorem does not hold and the procedure (14.34) is no longer justified and will fail
for sure.

Closely related to the problem of how to determine var ( f ), is the question of how
many random numbers should be drawn. In most cases an iterative approach is the
most promising strategy. In a first step N random numbers are drawn and the integral
is computed using Eq. (14.34). Then another set of N random numbers is sampled
and Eq. (14.34) is reevaluated now using all 2N random numbers. If the change in
the resulting estimate of the integral is less than some given tolerance τ, the loop is
terminated otherwise another set of N random numbers is added.

Wemention that this formofMonte-Carlo integration canbe improvedparticularly
by sampling only from points which dominantly contribute to the integral. This

3 Nevertheless, there is certainly some conceptual similarity between grid-points and random num-
bers within this context.

http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_3


14.2 Monte-Carlo Integration 205

method is referred to as importance sampling and will be discussed in more detail
later on.

14.3 The Metropolis Algorithm: An Introduction

Within this section we shall briefly discuss the Metropolis algorithm as a more
sophisticated method to produce random numbers from given distributions. In fact,
the Metropolis algorithm is a special form of the rejection method (Sect. 13.3).
The aim of this particular section is to introduce the algorithm on a very basic level
in order to allow a first view at an interesting model out of statistical physics, namely
the Isingmodel which will be discussed in Chap. 15. A more detailed discussion of
theMetropolis algorithm is postponed to Sect. 16.4.

The Metropolis algorithm is particularly useful to treat problems in statistical
physics where thermodynamic expectation values of some observable O are the
interesting objects. They are defined as

≤O≥ =
∫

dx O(x)q(x), (14.35)

where x is a set of parameters and q(x) is the Boltzmann distribution (14.14).
The set of parameters x could be, for instance, the position- and momentum-space
coordinates of N different particles. In most cases x is a high dimensional object,
which makes classical numerical integration (Chap. 3) cumbersome. Instead Monte-
Carlo integration is employed and the integral (14.35) is approximated with the help
of Eq. (14.34)

≤O≥ ≈ 1

N

N∑
i=1

O(xi ) ±
√
var (O)

N
, (14.36)

where the uncorrelated random numbers xi , i = 1, 2, . . . , N are drawn according to
the pdf q(x) Eq. (14.14). We recognize immediately the problem: we need to know
the exact functional formof q(x) if wewant to apply either the inverse transformation
methodor the rejectionmethoddiscussed inChap. 13.However, the partition function
Z itself is determined by an integral which can be approximated using Eq. (14.36).
We set

q(x) = p(x)

Z
, (14.37)

and

Z =
∫

dx p(x) (14.38)

follows from the normalization of q(x). TheMetropolis algorithmwas designed to
avoid precisely this problem. We concentrate on a pdf which is of the form (14.37),
but q(x) must not necessarily be of the form (14.14), i.e. p(x) is arbitrary but it

http://dx.doi.org/10.1007/978-3-319-02435-6_13
http://dx.doi.org/10.1007/978-3-319-02435-6_15
http://dx.doi.org/10.1007/978-3-319-02435-6_16
http://dx.doi.org/10.1007/978-3-319-02435-6_3
http://dx.doi.org/10.1007/978-3-319-02435-6_13
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ensures that ∫
dx q(x) = 1 ⇐⇒

∫
dx p(x) = Z , (14.39)

and q(x) ∞ 0 for all x . In other words, q(x) is a pdf. Suppose we already have a
sequence x0, x1, . . . , xn = {xn} of parameters which indeed follows the pdf q(x).4

We now add to the last element of this sequence xn a small perturbation ω and set

xt = xn + ω. (14.40)

Note that the perturbation ω is of the same dimension as the vector x . In similarity
to the rejection method we seek for a criterion which helps us to decide whether or
not the value xt can be accepted as the next element of the sequence {xn}.

The Metropolis method proposes an acceptance probability of the form

Pr(A|xt , xn) =
{
1 if q(xt )

q(xn)
∞ 1 ,

q(xt )
q(xn)

otherwise.
(14.41)

Hence, if Pr(A|xt , xn) = 1, we set xn+1 = xt , and if Pr(A|xt , xn) < 1, we draw a
random number r √ [0, 1] and accept xt if r → Pr(A|xt , xn) and reject xt otherwise.
We note that in this formulation the knowledge of the normalization factor Z is no
longer required since it follows from Eq. (14.37) that

q(xt )

q(xn)
= p(xt )

p(xn)
. (14.42)

Consequently we rewrite Eq. (14.41) as

Pr(A|xt , xn) = min

(
p(xt )

p(xn)
, 1

)
= p(xt |xn), (14.43)

where we introduced in the last step a more compact notation.
A discussion of the underlying concepts and why the choice (14.41) indeed sam-

ples random numbers according to the pdf q(x) requires some basic knowledge of
stochastics in general and ofMarkov-chains in particular. Hence, we postpone this
discussion to Chap. 16. We will solely emphasize here a particular property which is
referred to as detailed balance and which we shall acknowledge to be crucial for the
Metropolis algorithm: let p(xt |xn) denote the pdf for the probability that a random
number xt is generated from the random number xn as defined in Eq. (14.43). Then
the condition of detailed balance is given by

p(xt |xn)q(xn) = p(xn|xt )q(xt ). (14.44)

4 The question of how one can obtain such a sequence will be discussed in Sect. 16.3.

http://dx.doi.org/10.1007/978-3-319-02435-6_16
http://dx.doi.org/10.1007/978-3-319-02435-6_16
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In words: The probability p(xt |xn) that a random number xt is generated from a
random number xn times the probability q(xn) that the random number xn occurred
at all is equal to the probability p(xn|xt ) that the random number xn is generated
from xt times the probability q(xt ) that xt occurred. Detailed balance is motivated
by physics and is a condition of thermodynamic equilibrium.

Let us briefly demonstrate that the Metropolis algorithm (14.43) satisfies
detailed balance (14.44). We distinguish three different cases: (i) Suppose that
p(xt |xn) = p(xn|xt ) = 1. From Eq. (14.43) we note that this is only possible if
p(xt ) = p(xn) and therefore q(xt ) = q(xn) which is already Eq. (14.44) for this
particular case. (ii) We assume that p(xt |xn) = 1 but p(xn|xt ) ∪= 1. It then follows
from Eq. (14.43)

p(xn|xt )q(xt ) = p(xn)

p(xt )
q(xt )

= q(xn), (14.45)

which corresponds to Eq. (14.44) for p(xt |xn) = 1. Note that we made use of
definition (14.37) in order to achieve this result. (iii) In a similar fashion we have for
p(xn|xt ) = 1 and p(xt |xn) ∪= 1 that

p(xt |xn)q(xn) = p(xt )

p(xn)
q(xn)

= q(xt ), (14.46)

which, again, is Eq. (14.44). Hence, theMetropolis algorithm (14.43) indeed obeys
detailed balance.

A question we did not answer so far is how to choose the initialization point
x0 of the sequence. This is clearly not trivial and is strongly related to one of the
major disadvantages of theMetropolis algorithm, namely that subsequent random
numbers (xn, xn+1) are strongly correlated. One of the most pragmatic approaches
is to choose a starting point x0 at random from the parameter space and then discard
it together with the first few members of the sequence. This approach is strongly
motivated by a clear physical picture: the sequence of random numbers resembles the
evolution of the physical system from an arbitrary initial point x0 toward equilibrium
which manifests itself in the condition of detailed balance. Hence, the approach of
discarding the first few members of the sequence is referred to as thermalization.

The integral of interest, Eq. (14.35) is then approximated with the help of
Eq. (14.36), where the random numbers xk, xk+1, . . . , xk+N are used, if the ther-
malization required k steps. There is a remedy which helps to reduce correlations
between subsequent randomnumberswithin the sequencewhich is based on a similar
strategy. In particular, the modified sequence

xk, xk+π, xk+2π, . . . , (14.47)
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generated by discarding π intermediate random numbers will reduce correlations
between the members of this final sequence of random numbers.

Summary

This chapter set the stage for an important numerical tool in computational physics:
the Monte-Carlo techniques. It started with the conceptual transparent task of how
to calculate ξ using a sequence of uniformly distributed random numbers of the
range [0, 1]. This established the so-called hit and miss technique. It moved on to a
discussion of Monte-Carlo integration in a more formal way and discussed in detail
the error involved by this type of integration as opposed to the error experienced
by deterministic methods. The conclusion was, that Monte-Carlo integration is cer-
tainly preferable whenever estimates of highly dimensional integrals are required. It
also has advantages when the integrand is heavily structured. The second part of this
chapter dealt with theMetropolis algorithm which allowed to generate a sequence
of random numbers from some pdf p(x). It is conceptually similar to the rejection
method discussed earlier. The mathematical background which is more involved was
not discussed within this first contact with the Metropolis algorithm. Instead, the
emphasis was to demonstrate that this algorithm obeyed detailed balance a prop-
erty purely based on physics as a condition of thermodynamic equilibrium. It was,
furthermore, pointed out that the random numbers generated by this algorithm are
highly correlated and some strategies to remedy this problem have been discussed.
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Chapter 15
The ISING Model

15.1 The Model

Ferromagnetic materials are materials which develop a non-vanishing magnetization
M even in the absence of an external magnetic field B. It is an experimental obser-
vation, that this magnetization decreases smoothly with increasing temperature, and
vanishes above the critical temperature TC , referred to as Curie temperature. This
typical situation is illustrated in Fig. 15.1. In a theoretical description of this phase
transition the magnetization M serves as an order parameter.1 At T = TC the system
exhibits a second order phase transition, i.e. the magnetization is not differentiable
with respect to T ; it is, however, continuous.

Themicroscopic origin of thismacroscopic phenomenon is based on the exchange
interaction between identical particles, i.e. between the atoms or molecules forming
thematerial. The exchange interaction is a purely quantummechanical effectwhich is
a consequence of the Coulomb interaction in combination with the Pauli exclusion
principle. For a more detailed discussion, the reader may consult any textbook on
quantum mechanics [1–3].

Given two atoms or molecules with spins S1 and S2, where S1, S2 ∈ R
3, the

exchange interaction energy is of the form2

E = JS1 · S2, (15.1)

with the exchange constant J . The magnitude of J as well as its sign are determined
by overlap integrals which include the Coulomb interaction. If J < 0 a parallel
orientation of the spins is favorable and ferromagnetic behavior arises if T < TC .
On the other hand, if J > 0, antiparallel orientation is established as long as the
temperature does not exceed the Néel temperature TN . However, in both cases the
system undergoes a phase transition to a paramagnetic state if the temperature T

1 For a short introduction to phase transitions in general please consult Appendix E.
2 In this discussion we regard the spin as a classical quantity. In the quantum mechanic case one
has to replace the vectors by vector operators Si.

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 209
DOI: 10.1007/978-3-319-02435-6_15, © Springer International Publishing Switzerland 2014
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Fig. 15.1 Schematic illustra-
tion of the magnetization M
as a function of temperature T
in a ferromagnetic material

Fig. 15.2 Schematic illustra-
tion of the spin-orientation in
(a) ferromagnetic (J < 0) or
(b) antiferromagnetic (J > 0)
two-dimensional crystal

exceeds the Curie temperature (ferromagnetic case) or the Néel temperature (anti-
ferromagnetic case). A schematic illustration of ferro- and antiferromagnetism for
a two-dimensional crystal is illustrated in Fig. 15.2. We summarize the different
scenarios:




J < 0 ferromagnetic,

J > 0 antiferromagnetic,

J = 0 non-interacting.

(15.2)

We concentrate now on a cubic crystal lattice in which the atoms are localized at
positions xξ. The spin of atom ξwill be denoted by Sξ ∈ R

3 and the exchange parame-
ter between atom ξ and atom ξ∀ by Jξξ∀ . Furthermore, we consider the ferromagnetic
case, i.e. Jξξ∀ < 0. The Hamilton function is of the form

H = 1

2

∑
ξξ∀

Jξξ∀Sξ · Sξ∀ = 1

2

∑
ξξ∀

Jξ−ξ∀Sξ · Sξ∀ . (15.3)

Here Jξξ∀ was replaced by Jξ−ξ∀ = Jξ∀−ξ to account for translational invari-
ance. Moreover, we define that Jξξ = 0, otherwise we would have to exclude the
contributions ξ = ξ∀ from the above sum. The Hamilton function (15.3) is genuine
to the Heisenberg model [4]. We note that in this model there is no distinguished
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direction of spin orientation, i.e. the Hamilton function is invariant under a rota-
tion of all spin vectors Sξ. The actual orientation may be determined by an external
magnetic field or by an anisotropy of the crystal lattice. Furthermore, the restriction
of the spin orientation to the positive or negative z-direction is the characteristic
of the Ising model. In a quantum mechanical description the Hamilton operator
(Hamiltonian) of this model is defined by

H = 1

2

∑
ξξ∀

Jξ−ξ∀Sz
ξSz

ξ∀ , (15.4)

where Sz
ξ are the spin operators in z-direction. In the specific case of spin 1/2 particles

the spin operators Sz
ξ in this Hamiltonian are replaced by (�/2)θ z

ξ with θ z
ξ the Pauli

matrix and � the reduced Planck’s constant. Furthermore, we redefine J ∀
ξ−ξ∀ =

−(�2/4)Jξ−ξ∀ , J ∀
ξ−ξ∀ > 0, and represent the Hamiltonian in the basis of eigenstates

of the operators θ z
ξ . These eigenstates have eigenvalues θξ = ±1, which correspond

to spin up and spin down states, respectively. Hence we obtain

H = −1

2

∑
ξξ∀

Jξ−ξ∀θξθξ∀ − h
∑

ξ

θξ, (15.5)

where we dropped the prime of the exchange parameter Jξ−ξ∀ for the sake of a more
compact notation. We added, furthermore, a term which accounts for the possible
coupling of the spins to an external magnetic field,3 where h stands for the reduced
field h = −μBgB/2.4

There are some special cases in which the Isingmodel can be solved analytically
[5, 6]. For instance, one can solve the general case described by Eq. (15.5) with the
help of themean field approximation. In this case, the contribution hξ acting on site ξ,
namely

hξ = h +
∑
ξ∀

Jξ−ξ∀θξ∀ , (15.6)

is replaced by its mean value
≈hξ∞ = h + J̃m, (15.7)

where m = ≈θξ∞ and J̃ = ∑
ξ Jξ. (The term J̃m is commonly referred to as the

molecular field.) With the help of this ansatz it is, for instance, possible to reproduce
the experimentally observed Curie-Weiss-law of ferromagnetic materials, i.e. the
temperature dependenceof themagnetic susceptibilityω forT > TC canbedescribed
by:

3 We note in passing that the Hamiltonian (15.5) is invariant under a spin flip of all spins if h = 0
(Z2 symmetry). This symmetry is broken if h √= 0, i.e. the spins align with the external field h.
4 We note that H ⇒ μ ·B where B is the magnetic field andμ is the magnetic moment. Furthermore,
μ can be expressed as μ = −μBgS/� = −μBgθ/2, where μB is the Bohr magneton, g is the
Landé g-factor and θ is the vector of Pauli matrices. The sign is convention.
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ω ⇒ 1

T − TC
. (15.8)

Another very interesting special case of the general model (15.5) is the restriction
to nearest neighbor (n. n.) interactionwith the assumption that the interaction between
non-nearest neighbor spins is negligible. One step further goes the approximation
that Jξ−ξ∀ ≤ J for nearest neighbors. Hence, we have

Jξ−ξ∀ =
{

J if ξ, ξ∀ n. n.,
0 otherwise.

(15.9)

In this case Eq. (15.5) is rewritten as

H = −J

2

∑
≈ξξ∀∞

θξθξ∀ − h
∑

ξ

θξ, (15.10)

where
∑

≈ξξ∀∞ denotes the sum over all nearest neighbors. This model can be solved
analytically in one and two dimensions if one assumes that the system is spatially
unlimited. The solution in one dimension was published by E. Ising [7], the solution
in two dimensions, which is much more involved, was reported by L. Onsager [8].
We shall briefly discuss Ising’s solution in one dimension:

We rewrite the Hamiltonian (15.10) for N-particles aligned in a one-dimensional
chain as

H = −J
N∑

ξ=1

θξθξ+1 − h
N∑

ξ=1

θξ, (15.11)

under the assumption of periodic boundary conditions, i.e. θN+1 = θ1 and the factor
1/2was absorbed into J . Let us briefly elaborate on the kind of observables wewould
like to describe within this model. (We note in passing that the following discussion
is not restricted to the one-dimensional case.) Given a particular spin configuration
C = {θi}, we assume that the probability of finding the system in this configuration
is given by the Boltzmann distribution p(C )5:

p(C ) = 1

ZN
exp

⎛
−E(C )

kBT

⎧
. (15.12)

Here, T is the temperature and kB is Boltzmann’s constant. The energy E(C )

associated with configuration C is given by Eq. (15.11). Please note that this is now,
obviously, a classical model although we consider spin degrees of freedom. The
partition function ZN is given by the sum over all possible configurations C :

5 In particular we assume ergodicity of the system as will be explained in Chap.16.

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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ZN =
∑
C

exp

⎛
−E(C )

kBT

⎧
. (15.13)

In the general case the problem of solving the Ising problem is a problem of eval-
uating the sum (15.13). This is certainly not an easy task since, for instance, in the
one dimensional case with N = 100 grid-points one has 2N = 2100 ≥ 1.3 × 1030

different configurations C . However, if ZN is known a lot more follows [5, 6, 9]. For
instance, the expectation value of the energy6 is given by

≈E∞ =
∑
C

p(C )E(C ) = (kBT)2
τ

τT
ln ZN , (15.14)

and the expectation value of the magnetization is given by

≈M∞ =
∑
C

p(C )M (C ) = kBT
τ

τh
ln ZN , (15.15)

where we defined the magnetization M (C ) of the configuration C via

M (C ) =
⎪∑

ξ

θξ

⎨

C

. (15.16)

Here we put the term
∑

ξ θξ within parenthesis indexed by C in order to emphasize
its dependence on the particular configuration C . From the observables (15.14) and
(15.15) the fluctuation quantities themagnetic susceptibility,ω , and the heat capacity,
ch, can be derived. The following relations hold:

ω = τ

τh
≈M∞ and ch = τ

τT
≈E∞ . (15.17)

Equation (15.14) allows to rewrite the expression for the heat capacity as:

ch =
∑
C

E(C )
τ

τT
p(C ). (15.18)

Herewemade use of the fact thatE(C ) is independent of temperatureT .We evaluate,
furthermore, the derivative of p(C ) with respect to temperature T :

τ

τT
p(C ) = τ

τT

⎩
exp

⎜
−E(C )

kBT

)

ZN


⎟

= p(C )

(kBT)2
[E(C ) − ≈E∞] . (15.19)

6 ≈E∞ is also referred to as internal energy U.
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This is inserted into Eq. (15.18) and results in a final expression for the heat capacity:

ch = 1

(kBT)2

∑
C

p(C )
[
E2(C ) − E(C ) ≈E∞

]

= 1

(kBT)2

⎜
≈E2∞ − ≈E∞2

)

= 1

(kBT)2
var (E) . (15.20)

This expression for the heat capacity ch justifies why it is referred to as a fluctuation
quantity.

In a similar fashionwe calculate themagnetic susceptibility using relation (15.15):

ω =
∑
C

M (C )
τ

τh
p(C ). (15.21)

We note that
τ

τh
E(C ) = −M (C ), (15.22)

and obtain:

τ

τh
p(C ) = τ

τh

⎩
exp

⎜
−E(C )

kBT

)

ZN


⎟

= p(C )

kBT
[M (C ) − ≈M∞] . (15.23)

This results in a final expression for the magnetic susceptibility ω which relates it to
the variance of the magnetization M:

ω = 1

kBT

∑
C

p(C )
[
M 2(C ) − M (C ) ≈M∞

]

= 1

kBT

⎜
≈M2∞ − ≈M∞2

)

= 1

kBT
var (M) . (15.24)

We return after this excursion to the analytic treatment of the infinite one-
dimensional Ising model with nearest neighbor interaction, Eq. (15.11). If it were
possible to evaluate the partition function ZN , the required observables would be
directly accessible via the above relations. In most cases this task is not analytically
feasible. Nevertheless, in our particular case it appears to be possible because we
recognize that:
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ZN =
∑
C

p(C )

=
∑
C

exp

[
1

kBT

⎪
J

N∑
ξ=1

θξθξ+1 + h
N∑

ξ=1

θξ

⎨]

=
∑
C

N⎢
ξ=1

exp

⎛
J

kBT
θξθξ+1 + h

2kBT
(θξ + θξ+1)

⎧
. (15.25)

In the last step the sum over θξ was replaced by an alternative sum

N∑
ξ=1

θξ = 1

2

N∑
ξ=1

(θξ + θξ+1) , (15.26)

as a consequence of the periodic boundary conditions θN+1 = θ1. Obviously,
Eq. (15.25) can be rewritten as

ZN = tr
⎜
T N

)
, (15.27)

where tr (·) denotes the trace operation and we introduced the transfer matrix:

Tθ,θ ∀ = exp

⎛
J

kBT
θθ ∀ + h

2kBT

(
θ + θ ∀)⎧ . (15.28)

Let us briefly clarify this point: The trace operation in the basis of the spin eigenvalues
θ = ±1 results in

tr (T ) =
∑
θ

Tθ,θ = T−1,−1 + T1,1. (15.29)

Hence, we have

tr
⎜
T N

)
=
∑
θ

⎜
T N

)
θθ

=
∑
θ

∑
{θi}

i=1,...,N−1

Tθ,θ1Tθ1,θ2 · · ·TθN−1,θ

=
∑
{θi}

i=1,...,N

Tθ1,θ2Tθ2,θ3 · · ·TθN ,θ1 . (15.30)

In the last step we redefined the sum indices and we used the notation {θi} to indicate
that the sum runs over all possible values of θ1, θ2, . . . , θN in order to abbreviate
the notation. However, the sum over all possible values of θ1, θ2, . . . , θN can be
replaced by a sum over all configurations C where one configuration is a specific
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combination of definite values θ1, θ2, . . . , θN . For these definite values the product
of transfer matrices in Eq. (15.30) is equivalent to the product of exponentials in
Eq. (15.25) due to our definition of the transfer matrix Tθ,θ ∀ , Eq. (15.28). Hence we
demonstrated that expression (15.27) is indeed equivalent to Eq. (15.25).

It follows from definition (15.28) that

T =
⎥
 exp

⎜
J+h
kBT

)
exp
⎜
− J

kBT

)

exp
⎜
− J

kBT

)
exp
⎜

J−h
kBT

)
⎫
⎬ . (15.31)

It is an easy task to determine the eigenvalues of this matrix. The characteristic
polynomial

det

⎥
 exp

⎜
J+h
kBT

)
− π exp

⎜
− J

kBT

)

exp
⎜
− J

kBT

)
exp
⎜

J−h
kBT

)
− π

⎫
⎬ (15.32)

is of the form
⎛
exp

⎭
J + h

kBT

)
− π

⎧ ⎛
exp

⎭
J − h

kBT

)
− π

⎧
− exp

⎭
− 2J

kBT

)

= π2 − 2π exp

⎭
J

kBT

)
cosh

⎭
h

kBT

)
+ 2 sinh

⎭
2J

kBT

)

!= 0, (15.33)

which is easily solved. Thus, we get for the eigenvalues π1, 2:

π1,2 = exp

⎭
J

kBT

)
cosh

⎭
h

kBT

)

±
⎡
exp

⎭
2J

kBT

)
sinh2

⎭
h

kBT

)
+ exp

⎭
− 2J

kBT

)
. (15.34)

We note that π1 ∓ π2 for all temperatures T ∓ 0.
We nowmake use of the fact that the trace is invariant under a basis transformation

ϕ . Hence we can express the transfer matrix in a basis in which it is diagonal and set

T ∀ = ϕT ϕ −1 =
⎭

π1 0
0 π2

)
, (15.35)

which immediately results in:
ZN = πN

1 + πN
2 . (15.36)

Everything required to calculate the expectation value of energy per particle ≈α∞
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≈α∞ = (kBT)2

N

τ

τT
ln ZN , (15.37)

in the thermodynamic limit N → ∞ is now in place and so we can investigate the
possibility of a phase transition. Thus, we first consider the limit

lim
N→∞

1

N
ZN = lim

N→∞
1

N
ln
⎜
πN
1 + πN

2

)
= ln π1, (15.38)

since π1 ∓ π2 for all T ∓ 0.7

If there is no external field, i.e. h = 0, we have

lim
N→∞

1

N
ZN = ln

⎛
2 cosh

⎭
J

kBT

)⎧
, (15.39)

which is a smooth function of T for T ∓ 0. Consequently, we do not observe a phase
transition in the one dimensional Ising model. More information about the system
can be provided by the spin correlation function ≈θξθξ∀ ∞

≈θξθξ∀ ∞ =
∑
C

p(C )θξθξ∀ . (15.40)

A basic, however, tedious calculation shows that in the thermodynamic limit it is
described by

≈θξθξ∀ ∞ =
⎭

π2

π1

)ξ−ξ∀

, (15.41)

with the result that the spin correlation decreases with increasing distance ξ − ξ∀
since π2 < π1 for T > 0.

We move on and briefly sketch the solution of the infinite two-dimensional Ising
model according to L. Onsager [8]. The Hamiltonian (15.11) reads

H = −J
∑
ξξ∀

θξ,ξ∀
(
θξ+1,ξ∀ + θξ−1,ξ∀ + θξ,ξ∀−1 + θξ,ξ∀+1

)− h
∑
ξ,ξ∀

θξ,ξ∀ . (15.42)

The strategy follows the onewhich has already been discussed in the one-dimensional
case: The Hamiltonian is inserted in the expression for the partition function ZN and
with the help of the correct basis one can rewrite ZN as the trace over a product

7 We transform

πN
1 + πN

2 = πN
1

[
1 +

⎭
π2

π1

)N
]

,

and use that ⎭
π2

π1

)N

→ 0, as N → ∞.



218 15 The IsingModel

of transfer matrices. However, in this case the transfer matrix T is of dimension
2N × 2N rather than 2× 2. It is obvious that the search for the largest eigenvalue for
arbitrary N is not a trivial task. We will therefore limit our discussion to a summary
of the most important results for the particular case h = 0.

In the two-dimensional case one indeed observes a phase transition, i.e. the mag-
netic susceptibility becomes singular at a particular temperatureTC . This temperature
is given as the solution of equation

2 tanh2
⎭

2J

kBTC

)
= 1. (15.43)

The expectation value of the energy per particle takes on the form

≈α∞ = −J coth

⎭
2J

kBT

){
1 + 2

ε
K1(η)

⎛
2 tanh2

⎭
2J

kBT

)
− 1

⎧⎣
, (15.44)

where K1(η) is the complete elliptic integral of the first kind [see also Eq. (1.16)]

K1(x) =
ε
2⎤

0

dy
1⎦

1 − x2 sin2 y
, (15.45)

with argument

η =
2 sinh

⎜
2J

kBT

)

cosh2
⎜

2J
kBT

) . (15.46)

The magnetization per particle ≈m∞ is proved to be determined from

≈m∞ =
{

(1+ z2)
1
4 (1− 6z2 + z4)

1
8⇐

1− z2
for T < TC,

0 for T > TC,
(15.47)

with
z = exp

⎭
− 2J

kBT

)
.

Equation (15.47) clearly describes a phase transition at T = TC .

15.2 Numerics

We study a finite two-dimensional Isingmodel on a square latticeδ with grid-points
(xi, yj), i, j = 1, 2, . . . , N , which will be denoted by (i, j). We write the Hamiltonian
in the form

http://dx.doi.org/10.1007/978-3-319-02435-6_1
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H = −J
∑
〈

ij
i∀j∀
〉 θi,jθi∀,j∀ − h

∑
ij

θi,j, (15.48)

where θi,j ∈ {−1, 1}. Hence, we consider nearest neighbor interaction and regard the
exchange parameter as independent of the actual positions i, j. The problem is easily
motivated: we would like to calculate numerically observables like the expectation
value of the energy or of the magnetization which will then be compared with the
analytic results. This allows a rather simple check of the quality of our numerical
approach which can then be extended to similar models which cannot any longer be
treated analytically. We need numerical methods because summing over all possi-
ble configurations in a calculation of the partition function ZN is simply no longer
feasible since, for instance, for N = 100 we have 2N2 = 210000 ≥ 103000 possible
configurations whichwill have to be considered as follows fromEqs. (15.13), (15.14)
and (15.15). A more convenient approach would be to approximate the sums with
the help of methods we encountered within the context of Monte-Carlo integration,
Sect. 14.2. For instance, the estimate of the energy expectation value is given by

≈E∞ = 1

M

M∑
i=1

E(Ci) ±
√
var (E)

M
. (15.49)

Here, Ci, i = 1, 2, . . . , M are M configurations drawn from the pdf (15.12), the
Boltzmann distribution. Equation (15.49) is referred to as the estimator of the
internal energy. We note that we also have to calculate an estimate of the variance of
E using a similar approach in order to determine the error induced by this approxi-
mation.8

Hence, the remaining task is to find configurations Ci which indeed follow the
Boltzmann distribution (15.12). The inverse transformation method of Sect. 13.2
cannot be employed sinceE(Ci) is not invertible. Furthermore, the rejectionmethod is
useless since we would need the partition function ZN in order to apply it. However,
calculating the partition function is a task as difficult as calculating the internal
energy (15.14) without any approximations. Therefore, the method of choice will be
theMetropolis algorithm discussed in Sect. 14.3.

Let C be a given spin configuration on the two-dimensional square lattice δ . We
modify the spin on one particular grid-point (i, j) and obtain a trial spin configuration
C t . According to our discussion in Sect. 14.3, the probability of accepting the new
configuration C t is then given by

8 In particular var (E) = 〈E2
〉−≈E∞2 is to be determined and only the second term is already known.

The first term,
〈
E2
〉
, is then estimated with the help of

〈
E2
〉
= 1

M

M∑
i=1

E2
i .

http://dx.doi.org/10.1007/978-3-319-02435-6_14
http://dx.doi.org/10.1007/978-3-319-02435-6_13
http://dx.doi.org/10.1007/978-3-319-02435-6_14
http://dx.doi.org/10.1007/978-3-319-02435-6_14
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Pr(A|C t,C ) = min

⎭
p(C t)

p(C )
, 1

)
= min

{
exp

⎛
−E(C t) − E(C )

kBT

⎧
, 1

⎣

= min

⎛
exp

⎭
−∆Eij

kBT

)
, 1

⎧
. (15.50)

The spin orientation was changed only on one grid-point (i, j), with θi,j → θ̂i,j =
−θi,j; thus, the energy difference ∆Eij is easily evaluated using

∆Eij = 2Jθi,j
(
θi+1,j + θi−1,j + θi,j−1 + θi,j+1

)+ 2hθi,j. (15.51)

with θi,j the original spin orientation.
Wewill now discuss numerical details, some particular to the numerical treatment

of the Ising model, and some of rather general nature which should be considered
whenever a Monte-Carlo simulation is planned.

(1) Lattice Geometry

Weregard a two-dimensionalN×N square latticewith periodic boundary conditions9

in order to reduce finite volume effects. It is advisable to write a program which
helps to identify the nearest neighbors of some grid-point, since we will need this
information in the Metropolis run whenever we calculate the energy difference
due to a spin flip according to Eq. (15.51). In particular, we would like to generate
a matrix neighbor(site, i), where i = 1, 2, 3, 4 are the directions to the neighboring
grid-points. Such a matrix will have to be generated only once for each choice of a
system of size N . First we relabel the sites of the system following the scheme10

N(N − 1) + 1 · · · N2

...
...

...

N + 1 · · · 2N
1 2 · · · N .

(15.52)

Then we initialize the matrix neighbor as an array of size N2 ×4. Every site has four
nearest neighbors: up, right, down and left. The following method can be applied to
evaluate the corresponding entries for periodic boundary conditions:

• for up we have:

9 Periodic boundary conditions in two dimensions imply that

θN+1,j = θ1,j and θi,N+1 = θi,1,

for all i, j.
10 In the following we will refer to the notation (i), i = 1, 2, . . . , N2 as the single-index notation
while the notation (i, j), i, j = 1, 2, . . . , N will be referred to as the double-index notation.
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(a) If site + N ≤ N2: up = site + N ,
(b) else if site + N > N2: up = site − N(N − 1).

• For right we have:

(a) If mod(site, N) √= 0: right = site + 1,
(b) else if mod(site, N) = 0: right = site − N + 1.

• For down we have:

(a) If site − N ∓ 1: down = site − N ,
(b) else if site − N < 1: down = site + N(N − 1)

• For left we have:

(a) If mod(site − 1, N) √= 0: left = site − 1,
(b) else if mod(site − 1, N) = 0: left = site + N − 1.

Finally, we arrange the array according to

neighbor(site, :) = [up, right, down, left], (15.53)

where site = 1, 2, . . . , N2.

(2) Initialization

As already discussed in Sect. 14.3, the quality of the random numbers obtained with
the help of the Metropolis algorithm is highly dependent on the choice of initial
conditions, i.e. the initial configuration C0. Of course, it would be favorable to start
with a configuration which was already drawn from the Boltzmann distribution
p(C ). However, in practice this is not feasible ab initio. But, as will be elucidated
in Chap.16, the Metropolis algorithm produces configurations, which become
independent of the initial state and follow the Boltzmann distribution. Hence we
can simply start with some arbitrary configuration and discard it together with the
first n constituents of the sequence C0,C1, . . . ,Cn. This method is referred to as
thermalization.11 The question arises: can n be determined to ensure that the follow-
ing sequence, starting with Cn+1 will be in accordance with the pdf p(C )?

There are two different possibilities to approach this problem: (i) The first is
to measure auto-correlations between configurations Ci where it has to be ensured
that the set of states is sufficiently large to allow for a significant conclusion. We
will discuss auto-correlations in more detail in Chap.19. (ii) The second approach
is to empirically check whether equilibrium has been reached or not. For instance,
one could simply plot some selected observables and check when the initial bias
vanishes, i.e. the observable reaches some saturation value as a function of the number

11 The number of configurations discarded is referred to as the thermalization length.

http://dx.doi.org/10.1007/978-3-319-02435-6_14
http://dx.doi.org/10.1007/978-3-319-02435-6_16
http://dx.doi.org/10.1007/978-3-319-02435-6_19
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of measurements. A particularly useful method is to start the algorithm using at
least two different configurations. As soon as equilibrium has been reached, the
observables should approach the same saturation values after a certain (finite) number
of measurements. A typical choice is the cold start and the hot start. Cold start
means that the temperature is initially below the critical temperature, i.e. in the Ising
model all spins are aligned (ferromagnetic state), whereas hot start means that the
temperature is well above the critical temperature and for the Ising model the spin
orientation is chosen at random for any site (paramagnetic state).

(3) Execution of the Code

The Metropolis algorithm for the Ising model is executed in the following steps:

1. Choose an initial configuration C0.
2. We migrate through the lattice sites systematically.12 Suppose we just reached

site (i, j) (we use the double-index notation i, j = 1, 2, . . . , N , to improve the
readability) and our current configuration was Ck , i.e. k configurations have been
accepted so far.

3. Generate a new configuration C t from Ck by replacing in Ck the entry θi,j by
−θi,j.

4. The new configuration is accepted with probability

Pr(A|C t,Ck) = min

⎛
exp

⎭
−∆Eij

kBT

)
, 1

⎧
, (15.54)

where ∆Eij is determined from Eq. (15.51). C t is accepted if Pr(A|C t,Ck) is
equal to one or if Pr(A|C t,Ck) ∓ r ∈ [0, 1] otherwise C t is rejected. If C t was
accepted we set Ck+1 = C t .

5. Go to the next lattice site [step 2].

We note that instead of sampling the lattice sites sequentially as suggested in
step 2 the lattice sites can also be sampled randomly with the help of

i = int(rN2) + 1, (15.55)

where r ∈ [0, 1] is a uniformly distributed random number and int(·) denotes the
integer part of a given quantity. Obviously, Eq. (15.55) is only useful in the single-
index notation i = 1, 2, . . . , N2.

12 A run through all lattice sites is referred to as a sweep.
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(4) Measurement

As soon as thermalization was achieved the procedure to measure interesting observ-
ables can be started. Such a procedure consists of collecting the data required and
in calculating expectation values as was illustrated in Eq. (15.49) for the case of the
expectation value of the energy. A more detailed study of estimator techniques is
postponed to Chap.19. However, there is one crucial point one should be aware of:
We already mentioned in our discussion of the Metropolis algorithm in Sect. 14.3
that subsequent configurations Ck may be strongly correlated. This problem can be
circumvented by simply neglecting intermediate configurations. For instance, one
may allow a couple of ‘empty’ sweeps between two measurements.

In the following we discuss some selected results obtained with the numerical
approach described above.

15.3 Selected Results

We investigate the two-dimensional Isingmodel with periodic boundary conditions.
Moreover, we chose h = 0 and J = 0.5 for all following illustrations.

In afirst experimentweplan to check the thermalizationprocess and, thus,measure
after every single sampling step and skip thermalization. The observables of interest,
the expectation value of the energy per particle, ≈α∞, and the expectation value of the
magnetization per particle, ≈m∞, are illustrated in Fig15.3 for 30 sweeps in a system
of the size N = 50 which corresponds to m ∪ 8 × 104 measurements. Moreover,
we set kBT = 3 which should be well above TC according to Eq. (15.43). Hence, we
expect paramagnetic behavior, i.e. ≈m∞ = 0 in the equilibrium since the acceptance
probability is rather large because the spins are randomly orientated. In addition,
Fig. 15.4 shows a typical spin configuration for a temperature well above TC .

Fig. 15.3 Time evolution of
(a) the expectation value of
the energy per particle ≈α∞ and
(b) of the expectation value of
the magnetization per particle
≈m∞ versus the number of
measurements M. We used a
cold start (solid line) and a hot
start (dashed line) to achieve
these results

(a) (b)

http://dx.doi.org/10.1007/978-3-319-02435-6_19
http://dx.doi.org/10.1007/978-3-319-02435-6_14
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Fig. 15.4 Typical spin con-
figuration for a temperature
well above the critical temper-
ature TC . Black shaded areas
correspond to spin up sites
while the white areas are spin
down sites

According to Fig. 15.3b the expectation value of the magnetization per particle
≈m∞ approaches indeed zero after a rather short thermalization period independently
of the starting procedure. This is certainly not the case for the energy expectation
value per particle ≈α∞, Fig. 15.3a, which does not approach saturation even after
M ∪ 8 × 104 measurements for both starting procedures. The consequence is that
the thermalization period certainly needs to be longer than only 30 sweeps.

Keeping this result inmindwemove on to perform the next check of our numerics,
namely to study the influence of the system size N on the numerical results we get
for the observables ≈α∞, ≈m∞ as well as ch and ω as functions of temperature T . Let us
outline the strategy: a thermalization period of 500 sweepswill be used and 10 sweeps
between each measurement will be discarded. Moreover, we start with the hot start
configuration and at a temperature kBT0 = 3 well above TC . After the measurements
at T0 have been finished, the temperature is slightly decreased, T1 < T0.

One more point should be addressed: suppose we perform a simulation using the
strategy outlined above and obtain as a result some observable O as a function of
temperatures {Tn}, with T0 the initial temperature well above TC and Tn+1 < Tn.
The temperature dependence of the observable will, of course, be most interesting
for temperatures T ≥ TC . Thus, what we will need is an adaptive cooling strategy
designed in such a way that the temperature is decreased rapidly for temperatures
T � TC or T ∨ TC , but for T ≥ TC the temperature is modified only minimally.
(This question will also be a very important point in the discussion of simulated
annealing, a stochastic optimization strategy.) At the moment we are satisfied with
equally spaced temperatures, i.e. Tk+1 = Tk − Λ, where Λ = const because we are
mainly interested to study the influence of the system size N on our calculations.
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(a) (b)

(d)(c)

Fig. 15.5 (a) The expectation value of the energy per particle ≈α∞, (b) the absolute value of the
expectation value of the magnetization per particle |≈m∞|, (c) the heat capacity ch, and (d) the
magnetic susceptibility ω vs temperature kBT for the two-dimensional Ising model. The system
sizes are N = 5, 20, 50, 100

The error bars of the calculated expectation values have been obtained with the
help of Eq. (15.49). The error estimates for the heat capacity ch as well as for the
magnetic susceptibility ω are more complex to evaluate. The method employed is
referred to as statistical bootstrap, where M = 100 samples have been generated.
This method will be explained in some detail in Chap. 19.

In Fig. 15.5 we compare the expectation value of the energy per particle, ≈α∞, the
absolute value of the magnetization per particle |≈m∞|, the overall heat capacity ch
and the overall magnetic susceptibility ω for four system sizes N = 5, 20, 50, 100.
Furthermore, in Fig. 15.6 we show the curves for the system size of N = 50 together
with corresponding error bars.

We observe that the phase transition gets sharper with increasing system size, i.e.
increasing values of N . In fact we know, that the phase transition is infinitely sharp
as N → ∞ from the analytic solution given byOnsager. It is a quite obvious result
of this study that the system size N should be greater than 20 to achieve acceptable
results.

Furthermore, we presented the absolute value of the magnetization rather than the
magnetization itself. The reason is that for T < TC the ground state is degenerate.
In particular, the state with all spins up or all spins down is equally probable since

http://dx.doi.org/10.1007/978-3-319-02435-6_19
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(a) (b)

(c) (d)

Fig. 15.6 (a) The expectation value of the energy per particle ≈α∞, (b) the expectation value of the
magnetization per particle |≈m∞|, (c) the heat capacity ch, and (d) the magnetic susceptibility ω with
error bars vs temperature kBT obtained for the two-dimensional Ising model of size N = 50

we set the external magnetic field h = 0. This is a manifestation of Z2 symmetry of
the Hamiltonian discussed in Sect. 15.1.

Of particular interest is the region around the critical temperature, referred to as
the critical region. In this region, the spins are not perfectly aligned and not randomly
orientated either. In this region the spins align in so called magnetic domains, which
are also referred to asWeiss domains. A typical spin configuration for such a domain
is shown in Fig. 15.7.

We conclude this chapter with an interesting note: Fig. 15.6 makes it quite clear
that the error of the expectation value of themagnetization and of the energy is biggest
for values around the transition temperature. In fact, if we increase the system size
the error will get even larger. The reason is quite obvious: the error of our Monte-
Carlo integration is proportional to the square root of the variance of the investigated
observable.However, sincewedealwith a second order phase transition, this variance
tends to infinity as N → ∞. There is one cure to the problem: We are dealing here
with finite-sized systems, thus, the variance will never actually be infinitely large.
Furthermore, according to Eq. (15.49) we can decrease the error by increasing the



15.3 Selected Results 227

Fig. 15.7 For T ≥ TC the
spins organize in Weiss
domains. Here we show a
typical spin configuration for
N = 100 and kBT = 1.15. The
black shaded areas correspond
to spin up sites while the white
areas indicate spin down sites

number of measurements. Hence, if one is confronted with large systems, one has
also to perform many measurements in order to reduce the error.13

Summary

The Isingmodel is a rather simple model which describes effectively a second order
phase transition. Such phase transitions are the topic of extensive numerical studies
and, therefore, thismodel servedhere as a tool to demonstrate how toproceed from the
problem analysis to a numerical algorithm which will allow to simulate the physics.
The advantage of the Ising model was that under certain simplifications solutions
could be derived analytically. In the course of this analysis the important concept of
observables was introduced. Observables are certain physical properties of a system
which characterize the specific phenomenon of interest. Numerically, observables are
certain variables which are to be ‘measured’ within the course of a simulation. After
the extensive analysis of the Ising model the transition to the numerical analysis of
the two-dimensional Ising model was a rather easy part. The required modification
of spin configurations turned out to be the key element of the simulation and this
suggested the application of theMetropolis algorithm for sampling. Finally, impor-
tant problems like initialization of the simulation, thermalization, finite size effects,
measurement of observables, and the prevention of correlations between subse-
quent spin configurations caused by theMetropolis algorithm have been discussed

13 We note from Eq. (15.49) that we have to perform four times as many measurements in order to
reduce the error by a factor 2.



228 15 The IsingModel

on the basis of concrete calculations. This chapter was motivated by the remark,
quote [10]:

“Numerical methods are no excuse for poor analysis.”

Problems

1. Write a program to simulate the two-dimensional Ising model with periodic
boundary conditionswith the help of theMetropolis algorithm. Follow the strat-
egy outlined in Sect. 15.2 and try to reproduce the results illustrated in Sect. 15.3
for N = 5, 20, 50.

In particular, as a first step write a routine which stores the nearest neighbors of
the square lattice in an array. As a second step, write a program which performs
a sweep through the lattice geometry. You can either choose the lattice sites
systematically or at random. As a third step, set up the main program which calls
the sweep routine. Choose some initial configuration and thermalize the system.
Measure the expectation value of the energy per particle as well as the absolute
value of the expectation value of themagnetization for different temperatures kBT
and determine the respective errors, see Eq. (15.49). Calculate also the overall
magnetic susceptibility and the overall heat capacity. The determination of the
error is more complicated in this case and can therefore be neglected for the
moment.

Good parameters to start with are J = 0.5, Ntherm = 500, Nskip = 10 and
h = 0.0.

2. Try also different values of J and h √= 0.
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Chapter 16
Some Basics of Stochastic Processes

16.1 Introduction

This chapter is devoted to an introduction to some basic concepts of the huge field
of stochastic processes. This introduction serves two purposes: First of all, it will
allow for amore systematic treatment of non-deterministicmethods in computational
physics, which is certainly necessary if we really aim at an understanding of these
methods. The second reason can be found in the elementary importance of stochastics
in modern theoretical physics and chemistry in general. Hence, many of the concepts
elaboratedwithin this chapter will be of profound importance in subsequent chapters.
For instance, we present a discussion of diffusion theory in Chap. 17 as a motivating
example.

In the following we use the notation introduced in Appendix D. The reader non
familiar with the basics of probability theory [1] is highly encouraged to at least
consult Appendix D before proceeding.

This chapter consists of five sections including this introduction. In Sect. 16.2
we introduce the basic definitions associated with stochastic processes in general.
Here we discuss concepts which will serve as a basis for understanding the con-
cepts elaborated within the subsequent sections. Section 16.3 deals with a special
class of stochastic processes, the so called Markov processes. As we shall see,
these processes are of fundamental importance for statistical physics and for com-
putational methods. Moreover, in Sect. 16.4 we consider so calledMarkov-chains,
which are discrete Markov processes defined on a discrete time span. This will
serve as the basis of a very important method in computational physics, the so called
Markov-Chain Monte Carlo technique. We already encountered a simple example
of this method in Sect. 14.3 and in Chap.15, the Metropolis algorithm. Finally, in
Sect. 16.5 continuous-time Markov-chains will be discussed, in particular discrete
Markov processes on a continuous time span. These processes are very important,
for instance, in diffusion theory as will be demonstrated in Chap.17.

We note that a discussion of detailed balance will be included in the section
Markov processes, Sect. 16.3, although detailed balance follows from physical
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arguments. Please note that we already mentioned detailed balance in our discussion
of the Metropolis algorithm in Sect. 14.3.

16.2 Stochastic Processes

The following discussion is primarily restricted to one-dimensional processes.
A stochastic process is a time dependent process depending on randomness. From

amathematical point of view, a stochastic processYX (t) is a randomvariableY , which
is a function of another random variable X and time t ∈ 0, i.e.

YX(t) = f (X, t). (16.1)

Here we apply the notation of Appendix D and denote random variables by capital
letters, such as X, and their realization by lower case characters, such as x. Conse-
quently, the realization of a stochastic process is described by

Yx(t) = f (x, t). (16.2)

The set of all possible realizations of YX(t) span the state space of the stochastic
process. We note that it is in principle not necessary to define t as the time in a
classical sense. It suffices to denote t ∀ T , where T is a totally ordered set such as,
for instance, T = N the natural numbers. The set T is referred to as the time span.
We distinguish four different scenarios:

• discrete state space, discrete time span,
• continuous state space, discrete time span,
• discrete state space, continuous time span,
• continuous state space, continuous time span.

Stochastic processes on a continuous time span are referred to as continuous-time
stochastic processes.

Suppose the random variable X follows the pdf pX(x). It is then an easy task to
calculate averages ≈Y(t)∞ of the stochastic process YX(t) via

≈Y(t)∞ =
∫

dxYx(t)pX(x). (16.3)

This concept is easily extended to multiple times t1, t2, . . . , tn by

≈Y(t1)Y(t2) · · · Y(tn)∞ =
∫

dxYx(t1)Yx(t2) · · · Yx(tn)pX(x), (16.4)

which defines the moments of the stochastic process [1–3]. Similar to the concept of
the correlation coefficient, see Appendix D, we define the so called auto-correlation

http://dx.doi.org/10.1007/978-3-319-02435-6_14


16.2 Stochastic Processes 231

function κ(t1, t2) by

κ(t1, t2) = ≈[Y(t1) − ≈Y(t1)∞] [Y(t2) − ≈Y(t2)∞]∞√
≈[Y(t1) − ≈Y(t1)∞]2∞≈[Y(t2) − ≈Y(t2)∞]2∞

= ≈Y(t1)Y(t2)∞ − ≈Y(t1)∞≈Y(t2)∞√
var[Y(t1)]var[Y(t2)]

= γ [Y(t1), Y(t2)]√
var[Y(t1)]var[Y(t2)] . (16.5)

The function γ [Y(t1), Y(t2)] is referred to as the auto-covariance function and is
defined as

γ [Y(t1), Y(t2)] = cov[Y(t1), Y(t2)]. (16.6)

We proceed by defining the pdf of a stochastic process YX(t). The pdf p1(y, t),
which describes the probability that the stochastic process YX(t) takes on its repre-
sentation y at time t, is given by (see Sect. 14.2)

p1(y, t) =
∫

dxδ[y − Yx(t)]pX(x). (16.7)

In a similar fashion we define the pdf pn(y1, t1, y2, t2, . . . , yn, tn) which describes
the probability that the stochastic process takes on the realization y1 at time t1, y2 at
time t2, …, and yn at time tn as

pn(y1, t1, y2, t2, . . . , yn, tn) =
∫

dxδ[y1 − Yx(t1)]δ[y2 − Yx(t2)] · · ·
× δ[yn − Yx(tn)]pX(x), (16.8)

for arbitrary n. This is referred to as the hierarchy of pdfs. We note the following
important properties of the pdf pn(y1, t1, y2, t2, . . . , yn, tn) [3]:

• pn(y1, t1, y2, t2, . . . , yn, tn) ∈ 0, (16.9)

• pn(. . . , yk, tk . . . , yl, tl, . . .) = pn(. . . , yl, tl . . . , yk, tk, . . .), (16.10)

•
∫

dynpn(y1, t1, . . . , yn, tn) = pn−1(y1, t1, . . . , yn−1, tn−1), (16.11)

•
∫

dyp1(y, t) = 1. (16.12)

The moments defined in Eq. (16.4) can also be expressed with the help of the pdfs
pn by

≈Y(t1)Y(t2) · · · Y(tn)∞ =
∫

dy1 . . . dyny1 · · · ynpn(y1, t1, . . . , yn, tn). (16.13)

http://dx.doi.org/10.1007/978-3-319-02435-6_14
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Conditional pdfs pl|k can also be introduced. They describe the probability that
we have yk+1 at tk+1, …, yk+l at tk+l if there existed y1 at t1, …, yk at tk via

pl|k(yk+1, tk+1, . . . , yk+l, tk+l|y1, t1, . . . , yk, tk) = pk+l(y1, t1, . . . , yk+l, tk+l)

pk(y1t1, . . . , yk, tk)
.

(16.14)
It follows that ∫

dy2p1|1(y2, t2|y1, t1) = 1. (16.15)

Let us give some further definitions:

• A stochastic process is referred to as a stationary process if the moments defined
in Eq. (16.4) are invariant under a time-shift Δt, i.e.

≈Y(t1)Y(t2) · · · Y(tn)∞ = ≈Y(t1 + Δt)Y(t2 + Δt) · · · Y(tn + Δt)∞. (16.16)

In particular, one has ≈Y(t)∞ = const and the auto-covariance depends only on the
time difference |t1 − t2|, i.e.

γ (t1, t2) = cov[Y(t1), Y(t2)] = cov[Y(0), Y(|t1 − t2|)] ⇒ γ (t1 − t2). (16.17)

It is understood that γ (t) = γ (−t). Moreover, we have

pn(y1, t1 + Δt, . . . , yn, tn + Δt) = pn(y1, t1, . . . , yn, tn), (16.18)

and in particular, p1(y, t) = p1(y).
• A time-homogeneous process is a stochastic process whose conditional pdfs are
stationary

p1|1(y2, t2|y1, t2 − τ) = p1|1(y2, s2|y1, s2 − τ), (16.19)

for all t2, τ, s2. The pdf p1|1 is referred to as transition probability.
• A process of stationary increments is a stochastic process YX(t) for which the
difference YX(t2)−YX(t1) is stationary for all t2−t1, with t2 > t1 ∈ 0. Thismeans,
in particular, that the pdf of this process depends only on the time difference t2−t1.
The quantities YX(t2) − YX(t1) are referred to as increments.

• A process of independent increments is a stochastic process YX(t) for which the
differences

YX(t2) − YX(t1), YX(t3) − YX(t2), . . . , YX(tn) − YX(tn−1),

are independent for all tn > tn−1 > · · · > t2 > t1.
• A Lévy process is a continuous-time stochastic process with stationary indepen-
dent increments which starts with YX(0) = 0.
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• A Gaussian process is a stochastic process YX(t) for which all finite linear com-
binations of YX(t), t ∀ T follow a normal distribution. We shall come back to this
kind of process in Chap. 17.

• A Wiener process is a continuous-time stochastic process with independent
increments which starts with YX(0) = 0 and for which the increments YX(t2) −
YX(t1) follow a normal distribution with mean 0 and variance t2 − t1. TheWiener
process is a special case of a Lévy process. One of the main applications of the
Wiener process is to study Brownian motion or diffusion. This process will be
discussed in more detail in Sect. 16.3 and in Chap.17.

• The random walk is the discrete analogy to the Wiener process. This means in
particular that if the step size of the randomwalk goes to zero, theWiener process
is reestablished. This point will be elucidated in Chap.17.

After stating the most important definitions, we proceed to the next section in
which the attention is on a special class of stochastic processes, the so calledMarkov
processes.

16.3 Markov Processes

AMarkov process is a stochastic process YX(t) for which the conditional pdf p1|n−1
satisfies for arbitrary n and t1 < t2 < · · · < tn the relation

p1|n−1(yn, tn|y1, t1, . . . , yn−1, tn−1) = p1|1(yn, tn|yn−1, tn−1). (16.20)

Hence, a Markov process is a process in which any state yn, tn is uniquely defined
by its precursor state yn−1, tn−1 and is independent of the entire rest of the past.
Markov processes are of particular importance in natural sciences because of their
rather simple structure. This outstanding importance will become clear throughout
the rest of this book.

We note in passing that a process with independent increments is always a
Markov process because

YX(tn+1) = YX(tn) + [
YX(tn+1) − YX(tn)

]
, (16.21)

is satisfied. Since the increment YX(tn+1) − YX(tn) is independent of all previous
increments which gave rise to YX(tn) by definition, YX(tn+1) depends only on YX(tn),
which is exactly theMarkov property (16.20).

The quantity p1|1(yn, tn|yn−1, tn−1) which appears in Eq. (16.20) is referred to as
transition probability. Given the transition probability p1|1 together with the pdf p1,
one can construct the whole hierarchy of pdfs (16.8) of the Markov process by
calculating successively [3]

http://dx.doi.org/10.1007/978-3-319-02435-6_17
http://dx.doi.org/10.1007/978-3-319-02435-6_17
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p2(y1, t1, y2, t2) = p1|1(y2, t2|y1, t1)p1(y1, t1),

p3(y1, t1, y2, t2, y3, t3) = p1|2(y3, t3|y1, t1, y2, t2)p2(y1, t1, y2, t2),

= p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1)p1(y1, t1),

...
... (16.22)

Here we employed definition (16.14) and in the second step of the second equation
we employed for p1|2 theMarkov property (16.20).

The fact that the whole hierarchy of pdfs can be constructed by repeating the steps
illustrated in Eq. (16.22) reveals the rather simple structure of Markov processes.
However, Eq. (16.22) contains another useful information. We regard the pdf p3 of
(16.22) for three successive times t1 < t2 < t3. First we integrate the left-hand side
with respect to y2 which yields with the help of property (16.9)

∫
dy2p3(y1, t1, y2, t2, y3, t3) = p2(y1, t1, y3, t3). (16.23)

Hence, we have

p2(y1, t1, y3, t3) = p1(y1, t1)
∫

dy2p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1), (16.24)

or after dividing both sides by p1(y1, t1) and by keeping inmind Eq. (16.14) we arrive
at:

p1|1(y3, t3|y1, t1) =
∫

dy2p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1). (16.25)

This equation is knownas theChapman–Kolmogorov equation. The interpretation
of this equation is straight-forward: the transition probability from (y1, t1) to (y3, t3)
is equivalent to the transition probability from (y1, t1) to (y2, t2) multiplied by the
transition probability from (y2, t2) to (y3, t3) when summed over all intermediate
positions y2. This is illustrated in Fig. 16.1.

We state a very important theorem: Any two non-negative functions p1|1 and p1
uniquely define aMarkov process if

p1|1(y3, t3|y1, t1) =
∫

dy2p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1), (16.26)

is obeyed, i.e. the Chapman-Kolmogorov equation (16.25), and if

p1(y2, t2) =
∫

dy1p1|1(y2, t2|y1, t1)p1(y1, t1), (16.27)

which follows immediately from the first equation in Eq. (16.22) in combination
with property (16.9).
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Fig. 16.1 Illustration of the
Chapmann-Kolmogorov
equation.

As a first example we consider one of the most important Markov processes
in physics, the Wiener process. Its importance stems from its application to the
description of Brownian motion, i.e. the random motion of dust particles on a fluid
surface. (In Chap.17 we shall have a closer look on diffusion phenomena.) The
transition probability of theWiener process is of the form1

p1|1(y2, t2|y1, t1) = 1√
2π(t2 − t1)

exp

[
− (y2 − y1)2

2(t2 − t1)

]
. (16.28)

The initial condition is given by

p1(y1, t1 = 0) = δ(y1). (16.29)

A simple, however, tedious calculation proves that (16.28) indeed obeys the
Chapman-Kolmogorov equation (16.25). Moreover, we deduce from Eq. (16.29)
together with (16.27) that

p1(y, t) = 1√
2π t

exp

(
−y2

2t

)
. (16.30)

The Wiener process is easily realized on the computer. We regard the one-
dimensional case and start at the origin YX(0) = 0. From the property of normally
distributed increments, i.e.

YX(t + dt) − YX(t) ≤ N (dy|0, dt), (16.31)

1 This form is equivalent to the above definition of theWiener process, in particular to the require-
ment of normally distributed increments with variance t2 − t1.

http://dx.doi.org/10.1007/978-3-319-02435-6_17
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Fig. 16.2 Three possible
realizations of the Wiener
process.

where N denotes the normal distribution, we draw the step size dy. Hence, we
start with y0 = 0, draw the displacement dy within a time-step dt from the normal
distribution with mean zero and variance dt and calculate the next position according
to yn+1 = yn + dy.2 The result is depicted in Fig. 16.2.

Let us mention a second very important Markov process, the Poisson process.
The Poisson process is particularly interesting for problems involvingwaiting times,
such as the decay of some radioactive nucleus. However, we shall also come across
the Poisson process within the context of diffusion in Chap.17. The transition prob-
ability of the Poisson process is defined as

p1|1(n2, t2|n1, t1) = (t2 − t1)n2−n1

(n2 − n1)! exp [−(t2 − t1)] . (16.32)

Here it is understood that n1, n2 ∀ N and n2 > n1. Hence, thePoisson process counts
the number of occurrences n2 of a certain event until the time t2 is reached, under
the premise that n1 events have already occurred at time t1. The Poisson process is
initialized by the pdf

p1(n1, t1 = 0) = δn10, (16.33)

here δij is the Kronecker-δ. Hence we have according to Eq. (16.27)

p1(n, t) =
∑
n1

p1|1(n, t|n1, t1 = 0)p1(n1, t1 = 0) = tn

n! exp (−t) , (16.34)

i.e. a Poisson distribution. Let us briefly consider the time between two events.
Suppose we had n1 events at time t1. Then, we search the probability that at time
t2 = t1 + τ we still counted n2 = n1 events, i.e. nothing happened. We have

2 Alternatively, we may draw dy from a normal distribution with variance 1 and multiply it by
√
dt.

This follows from a simple transformation of variables.

http://dx.doi.org/10.1007/978-3-319-02435-6_17
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Fig. 16.3 Three possible
realizations of a Poisson
process.

p1|1(n1, t1 + τ |n1, t1) = exp (−τ) , (16.35)

i.e. the waiting times are independent and follow an exponential distribution.Wemay
simulate the Poisson process by starting at t1 = 0 with n1 = 0 and by increasing
n2, n3, . . . by one, i.e. ni + 1 = ni + 1 after successive waiting times τ1, τ2, . . . which
we draw from the exponential distribution, see Sect. 13.2. The result is illustrated in
Fig. 16.3.

Finally we remark that for a time-homogeneous Markov process the transition
probability p1|1(y2, t2|y1, t1) depends by definition on the time difference t2− t1 ⇒ τ

rather than explicitly on the two times t1 and t2 and is usually denoted by Tτ (y2, y1).
We shall now turn our attention to another very important general concept of

Markov processes, themaster equation. This equation is in fact the differential form
of the Chapman-Kolmogorov equation. We regard the Chapman-Kolmogorov
equation (16.25) for three successive times t1 < t2 < t3 = t2+τ where τ is assumed
to be small, i.e. τ ≥ 1. We expand the conditional pdf p1|1 in a Taylor series with
respect to τ :

p1|1(y3, t2 + τ |y2, t2) = p1|1(y3, t2|y2, t2) + τ
∂

∂τ
p1|1(y3, t2 + τ |y2, t2)τ

∣∣∣
τ=0

+ O(τ2).

(16.36)
Let us define the transition rate w(y3|y2, t2) from y2 to y3, where y2 ∓= y3, at time t2
by

w(y3|y2, t2) = ∂

∂τ
p1|1(y3, t2 + τ |y2, t2)τ

∣∣∣
τ=0

. (16.37)

We now regard the first term on the right-hand side of Eq. (16.36) and note that it has
to be of the form

p1|1(y3, t2|y2, t2) = δ(y3 − y2). (16.38)

http://dx.doi.org/10.1007/978-3-319-02435-6_13
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We note that we defined the transition rate (16.37) only for elements y2 ∓= y3. The
remaining part with y2 = y3 will be denoted by a(y2, t2) and we rewrite (16.36) as

p1|1(y3, t2 + τ |y2, t2) = [1 + a(y2, t2)]δ(y3 − y2) + τw(y3|y2, t2), (16.39)

where we neglected terms of order O(τ 2). We require Eq. (16.39) to be normalized
according to Eq. (16.15) and obtain

a(y2, t2) = −τ

∫
dy3w(y3|y2, t2). (16.40)

Hence, the term 1 + a(y2, t2) describes indeed the probability that no event occurs
within the time interval [t2, t2 + τ ]. We insert expansion (16.39) into the Chapman-
Kolmogorov equation (16.25) with the result:

p1|1(y3, t2 + τ |y1, t1) − p1|1(y3, t2|y1, t1)

τ
=

∫
dy2

[
w(y3|y2, t2)p1|1(y2, t2|y1, t1)

− w(y2|y3, t2)p1|1(y3, t2|y1, t1)
]
.

(16.41)

In the limit τ → 0 we arrive, finally, at the master equation:

∂

∂t
p1|1(y, t|y′, t′) =

∫
dy′′ [w(y|y′′, t)p1|1(y′′, t|y′, t′)

− w(y′′|y, t)p1|1(y, t|y′, t′)
]
. (16.42)

If we now multiply both sides of this equation with p1(y′, t′) and integrate over
y′, see property (16.27), a master equation for the pdf p1(y, t) is obtained:

∂

∂t
p1(y, t) =

∫
dy′ [w(y|y′, t)p1(y

′, t) − w(y′|y, t)p1(y, t)
]
. (16.43)

Let us briefly discuss this equation. In its derivation we assumed the state space
to be continuous. However, the master equation for a discrete state space is obtained
by replacing the integral by a sum over discrete states. The physical interpretation
of an equation of this kind is straight-forward: The time evolution of the quantity
p1(y, t) is governed by the sum over all transitions into state y (first term) minus
all transitions out of state y. We remark that master equations occur commonly in
physical applications; for instance, the collision integral of theBoltzmann equation
is of a similar form. The transitions rates w(y|y′, t) can be determined in many
physical applications.3

3 As an example we quote Fermi’s golden rule, where the transition rate wnn′ from unperturbed
states n to n′ is of the form

wnn′ = 2π

�
|H ′

nn′ |ρ(En),
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Furthermore, if we have a stationary distribution p1(y, t) = p1(y), i.e. if the system
is in a stationary state, we obtain from (16.43)

∫
dy′w(y|y′, t)p1(y

′) =
∫

dy′w(y′|y, t)p1(y), (16.44)

which is referred to as global balance. The much stronger condition

w(y|y′, t)p1(y
′) = w(y′|y, t)p1(y), (16.45)

is referred to as detailed balance and will be discussed next.
We demonstrate now that the equilibrium distribution function pe(X) of a classical

physical system will, under certain restrictions, indeed fulfill detailed balance [2]. In
what follows the following notation will be applied: the vector x = (qk, pk)

T ∀ R
6N

represents the phase space trajectory of the N particles constituting the system under
investigation. The equations of motion are of the form

q̇k = ∂

∂pk
H(x), ṗk = − ∂

∂qk
H(x). (16.46)

Furthermore, let YX(t) denote a stochastic process which describes some observ-
able of the physical system. We require that YX(t) is invariant under time reversal.
Furthermore, we assume the equilibrium distribution function pe(x) to be invariant
under time reversal, which in most cases is equivalent to the requirement that the
Hamilton function H(x) is invariant under time reversal. We will denote the oper-
ation of time reversal with the help of an over-line, i.e.

t = −t, x = (qk,−pk)
T . (16.47)

Hence, the above assumptions read

Yx(t) = Yx(t) = Yx(−t) = Yx(t), (16.48)

and
pe(x) = pe(x) = pe(x). (16.49)

In particular, we deduce from (16.48) that

Yx(0) = Yx(0), (16.50)

and
Yx(t) = Yx(−t). (16.51)

(Footnote 3 continued)
whereH ′

nn′ are thematrix element of the perturbation HamiltonianH ′ and ρ(En) denotes the density
of states of the unperturbed system.
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We calculate the pdf p2 from

p2(y1, 0, y2, t) =
∫

dxδ[y1 − Yx(0)]δ[y2 − Yx(t)]pe(x). (16.52)

However, sincewe integrate over thewhole phase spacewe recognize that the volume
is invariant under a change dx → dx. Thus, we can change the variable of integration
from x to x which results in

p2(y1, 0, y2, t) =
∫

dxδ[y1 − Yx(0)]δ[y2 − Yx(t)]pe(x)

=
∫

dxδ[y1 − Yx(0)]δ[y2 − Yx(−t)]pe(x)

= p2(y2,−t, y1, 0)

= p2(y2, 0, y1, t). (16.53)

Hence we have
p2(y1, 0, y2, t) = p2(y2, 0, y1, t), (16.54)

and obtain immediately

p1|1(y2, t|y1, 0)pe(y1) = p1|1(y1, t|y2, 0)pe(y2). (16.55)

Differentiating both sides with respect to t and employing definition (16.37) for small
t yields

w(y2|y1)pe(y1) = w(y1|y2)pe(y2), (16.56)

which is the condition of detailed balance, Eq. (16.45), for stationary distributions.
It should be noted at this point that detailed balance in physical systems is strongly

connected to the entropy growth (the H-theorem by Boltzmann). Detailed balance
was based on the condition that the stochastic process YX(t)was invariant under time
reversal and that the equilibrium distribution pe(x) had the same property. This has
in most cases the consequence that the Hamilton function is also invariant under
time reversal transformations. However, a detailed discussion of these properties is
far beyond the scope of this book.

We shall continue our discussion with so called Markov-chains, which are a
special class of Markov processes. Markov-chains will prove to be very impor-
tant for the understanding of Markov-chain Monte Carlo techniques, such as the
Metropolis algorithm.
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16.4 Markov-Chains

A Markov-chain is a time-homogeneous Markov process defined on a discrete
time span and in a discrete state space. Hence, we may express the time instances by
integers, i.e. T = N0, tn = n where n ∀ N0. Furthermore, possible outcomes can be
indexed by integers, i.e. YX(tn) ∀ {m} where m ∀ N. As a first consequence of the
discreteness of the state space we may replace all pdfs p by probabilities Pr. Hence
theMarkov property reads

Pr(Yn+1 = y|Yn = yn, . . . , Y1 = y1) = Pr(Yn+1 = y|Yn = yn), (16.57)

where we used the notation Yn ⇒ YX(tn). Furthermore, yn ∀ {m} is one particular
realization out of the discrete state space. Since we assume that the transition proba-
bilities are independent of the actual time, we can define a transition matrix P = {pij}
via

pij = Pr(Yn+1 = j|Yn = i). (16.58)

Consequently, we write

Pr(Yn = in, Yn−1 = in−1, . . . , Y0 = i0) = Pr(Y0 = i0)pi0i1pi1i2 · · · pin−1in . (16.59)

We note that the transition matrix is a stochastic matrix. This is a matrix with only
non-negative elements such that the sum of each row is equal to one. Furthermore,
one can show that the product of two stochastic matrices results, again, in a stochastic
matrix.

We define the state vector at time n, π(n) = {π(n)
i } as

π
(n)
i = Pr(Yn = i). (16.60)

From the marginalization rule (Sect.D.6) we have for the particular case n = 1

Pr(Y1 = i) =
∑

k

Pr(Y0 = k)Pr(Y1 = i|Y0 = k), (16.61)

or with the help of the above definitions (16.58) and (16.60)

π
(1)
i =

∑
k

pkiπ
(0)
k , (16.62)

for all i. Hence, we have for n = 1

π(1) = π(0)P, (16.63)

and for n = 2
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π(2) = π(1)P = π(0)P2. (16.64)

Obviously, for arbitrary n follows

π(n) = π(0)Pn. (16.65)

Hence the probability matrix for an n step transition P(n) reads P(n) = Pn. We imme-
diately deduce that the Chapman–Kolmogorov equation for Markov-chains is
indeed fulfilled since

P(n)P(m) = PnPm = Pn+m = P(n+m), (16.66)

for two integers n and m.
Let us give some further definitions in order to classifyMarkov-chains [2, 3].

• The notation i → j means state i leads to state j and is true whenever there
is a path of length n, i0 = i, i1, . . . , in = j such that for all pikik+1 > 0 for
k = 0, 1, . . . , n − 1. This is equivalent to (Pn)ij > 0.

• The notation i ⇐ j means state i communicates with state j. This relation is true
whenever i → j and j → i.

• A class of states is given if (i) all states within one class communicate with each
other and (ii) two states of different classes never communicate with each other.
These classes are referred to as the irreducible classes of theMarkov-chain.

• An irreducible Markov-chain is aMarkov-chain in which the whole state space
forms an irreducible class, i.e. all states communicate with each other.

• A closed set of states is a set of states which never leads to states which are outside
of this set.

• An absorbing state is a state which does not lead to any other states, i.e. it forms
itself a closed set. We note that an absorbing state can be reached from the outside
but there is no escape from it.

• A state is referred to as transient if the probability of returning to the state is less
than one.

• A state is referred to as recurrent if the probability of returning to the state is equal
to one.

• Furthermore, we call a state positive recurrent if the expectation value of the first
return time is less than infinity and null recurrent if it is infinity.Wemay formulate
this in a more mathematical language: The time of first return to state i is defined
via

Ti = inf (n ∈ 1:Xn = i|X0 = i) . (16.67)

The probability that we return to state i for the first time after n steps is defined as

f n
ii = Pr(Ti = n). (16.68)

Hence, a state is referred to as recurrent if
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Fi =
∑

n

f n
ii = 1, (16.69)

positive recurrent if
≈Ti∞ =

∑
n

nf n
ii < ∞, (16.70)

and null recurrent if
≈Ti∞ =

∑
n

nf n
ii = ∞. (16.71)

We note that we also have ≈Ti∞ = ∞ if state i is transient. Furthermore, one can
show that a state is only recurrent if

∑
n

pn
ii = ∞. (16.72)

• A state is referred to as periodic if the return time of the state can only be amultiple
of some integer d > 1.

• A state is referred to as aperiodic if d = 1.
• We call a state ergodic if it is positive recurrent and aperiodic.
• AMarkov-chain is called ergodic if all its states are ergodic.

We give some useful theorems in the context of the above definitions: First of all,
it can be proved that if aMarkov-chain is irreducible it follows that either all states
are transient, or all states are null recurrent, or all states are positive recurrent.

Furthermore, a theorem by Kolmogorov states that if a Markov-chain is irre-
ducible and aperiodic then the limit

πj = lim
n→∞ π

(n)
j = 1

≈Tj∞ , (16.73)

exists. It follows from the above discussion that if all states j are transient or null
recurrent we have

πj = 0, (16.74)

and if all states j are positive recurrent, we have

πj ∓= 0, (16.75)

for all j. In this case the state vector π = {πj} is referred to as the stationary distri-
bution or equilibrium distribution. We note that in this context the term equilibrium
does not mean that nothing changes, but that the system forgets its own past. In
particular, as soon as the system reaches the stationary distribution, it is independent
of the initial state π(0).
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We concentrate now on equilibrium distributions. It follows from Eq. (16.65) that
π satisfies

π = πP, (16.76)

i.e. π is the left-eigenvector to the transition probability matrix P with eigenvalue 1.
We note that Eq. (16.76) states a homogeneous eigenvalue problem, i.e. the solution
is only determined up to a constant multiplicator (see Sect. 8.3). However, it is clear
that the vector π satisfies ∑

j

πj = 1. (16.77)

One can show that the unique solution of the eigenvalue problem (16.76) together
with the normalization condition (16.77) for n states can be written as

π = e · (P − E − I)−1, (16.78)

where e is ann-element rowvector containing only ones,E is an×nmatrix containing
only ones and I is the n × n identity.

Let us briefly elaborate on this point: if it is possible to construct aMarkov-chain
which possesses a unique stationary distribution, we know that it will definitely reach
this distribution independent of the choice of initial conditions. The existence as
well as the form of the stationary distribution is clearly determined by the transition
probabilities pij. A sufficient condition for a unique stationary distribution to exist is
the requirement of reversibility. A Markov-chain is referred to as reversible if

pijπi = pjiπj, (16.79)

for all i, j, i.e. if the transition probabilities ensure detailed balance for the stationary
distribution π .

Now we are in a position to understand better why detailed balance is such an
important concept of the Metropolis algorithm discussed in Sect. 14.3: Invoking
the detailed balance condition ensures that for all possible initial states theMarkov-
chain converges towards the equilibrium distribution for which detailed balance is
fulfilled. Of course, the convergence time will highly depend on the choice of the
initial state as well as on the choice of the transition matrix. Hence, we may produce
random numbers with the help of such a Markov-chain and after a thermalization
period these numbers follow the required pdf. Methods based on this concept are
commonly referred as Markov-chain Monte Carlo sampling methods.

We give a brief example, the spread of a rumor. Let Z1 and Z2 be two distinct
versions of a report. If a person receives the report Z1 it will pass this report on as
Z1 with probability (1 − p) and as Z2 with probability p. In a similar fashion, if the
person receives Z2 it will pass it on as Z2 with probability (1 − q) and modify it to
Z1 with probability q. We summarize

• Pr(Z1 → Z1) = (1 − p) = p11,

http://dx.doi.org/10.1007/978-3-319-02435-6_8
http://dx.doi.org/10.1007/978-3-319-02435-6_14
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• Pr(Z1 → Z2) = p = p12,
• Pr(Z2 → Z1) = q = p21,
• Pr(Z2 → Z2) = (1 − q) = p22.

The transition matrix is of the form

P =
(
1 − p p

q 1 − q

)
. (16.80)

We note that the two states communicate with each other Z1 ⇐ Z2, hence the
Markov-chain is irreducible. Furthermore, since the process can reach either state
Z1 or Z2 within a single time step, it is clearly aperiodic. Let us briefly investigate the
probabilities of first recurrence f n

ii after n steps. Due to the theorem byKolmogorov
it is sufficient to investigate the state Z1 since the Markov-chain is irreducible and
it follows that also Z2 has the same recurrence properties. We note the following
possible paths for a first return to state Z1:

• 1 : Pr(Z1 → Z1) = (1 − p) = f 111,• 2 : Pr(Z1 → Z2 → Z1) = pq = f 211,• 3 : Pr(Z1 → Z2 → Z2 → Z1) = p(1 − q)q = f 311,• n : Pr(Z1 → Z2 → · · · → Z2 → Z1) = p(1 − q)n−2q = f n
11.

The probability of returning to Z1 is, see Eq. (16.69),

F1 =
∞∑

n=1

f n
11

= (1 − p) + pq
∞∑

n=0

(1 − q)n

= (1 − p) + pq
1

1 − (1 − q)

= 1, (16.81)

where we employed that 0 < (1−q) < 1 as well as the convergence of the geometric
series. Hence state Z1 is recurrent and, therefore, also state Z2 is recurrent. We
calculate the expectation value of the first return time ≈T1∞:

≈T1∞ =
∞∑

n=1

nf n
11

= (1 − p) + pq
∞∑

n=0

(n + 2)(1 − q)n
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= (1 − p) + 2pq
∞∑

n=0

(1 − q)n

︸ ︷︷ ︸
= 1

q

+pq
∞∑

n=0

n(1 − q)n

= 1 + p − pq(1 − q)
d

dq

∞∑
n=0

(1 − q)n

︸ ︷︷ ︸
= 1

q

= 1 + p + p

q
(1 − q)

= p + q

q
. (16.82)

Hence, the states Z1 and Z2 are positive recurrent as long as p ∓= 0 and q ∓= 0. This
means that an equilibrium distribution exists and it can be obtained from Eq. (16.73).
We have

π1 = 1

≈T1∞ = q

p + q
. (16.83)

Due to the normalization condition (16.77) we obtain

π2 = 1 − π1 = p

p + q
, (16.84)

and, therefore,

≈T2∞ = p + q

p
. (16.85)

Since all states are positive recurrent and aperiodic, the above Markov-chain is
ergodic. Finally, we remark that this example also fulfills detailed balance since

π1p12 = qp

p + q
= π2p21. (16.86)

Let us briefly interpret this example: Suppose the original, i.e. true version Z1 of
a report is ‘Mr. X is going to resign’ while Z2 is just the opposite, i.e. ‘Mr. X is not
going to resign’. The property of irreducibility of theMarkov-chain reflects the fact
that there is no version of the report which cannot be reached or modified. Moreover,
we just demonstrated that the process is positive recurrent, i.e. even if the probability
p that Z1 was modified to Z2 is very small and the probability q that Z2 was modified
to Z1 is very high, the report will infinitely often return to version Z2 with probability
one. This means that the public will be told infinitely often that Mr. X is not going
to resign with probability one. The equilibrium probabilities π1 and π2 display the
asymptotic probability of versions one and two of the report, respectively. However,
as has already been emphasized, this does notmean that the report cannot bemodified
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in equilibrium, it simply displays the fact that the probabilities reached a steady state.
Finally, we note an interesting effect in passing: Suppose that the probabilities that
any of the two versions is modified is very small but equal, i.e. p = q ≥ 1. Then the
equilibrium distribution is

π1 = π2 = 1

2
, (16.87)

i.e. the public will believe Z1 and Z2 with the same probability after some time
independent of the initial version and also independent of the actual decision ofMr.X.
Detailed balance expresses the property that the probability of receiving Z2 and
passing it on as Z1 is the same as the probability of receiving Z2 and passing it on
as Z1.

We close this section with a final remark: It is an easy task to generalize the
ideas ofMarkov-chains to continuous state spaces since we already introduced the
required tools in Sect. 16.3. Let π(x) denote the stationary distribution density and
p(x|y) the accompanying transition rate pdf. Then relation (16.76) reads

π(x) =
∫

dyπ(y)p(x|y), (16.88)

together with ∫
dxπ(x) = 1, (16.89)

the usual normalization of pdfs. In this case, the detailed balance condition reads

π(x)p(y|x) = π(y)p(x|y), (16.90)

which is equivalent to Eq. (16.55).
The extension of this discussion to a continuous time span is not as straight-

forward as the extension to a continuous state span. We will discuss this generaliza-
tion, i.e. continuous-time Markov-chains, in the following section.

16.5 Continuous-Time Markov-Chains

A continuous-time Markov-chain is a time-homogeneous Markov process on a
discrete state space but with a continuous time span, t ∈ 0. Thus

Pr[X(t + s) = n|X(s) = m] = pnm(t), (16.91)

is independent of s ∈ 0. In this case the transition matrix P(t) = {pij(t)} is an explicit
function of time t. For its elements pnm(t) we note the following four properties:

(a) All matrix elements pnm(t) of the transition matrix P are positive, i.e.
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pnm(t) ∈ 0, ∪t > 0. (16.92)

(b) Moreover, we have the usual normalization of the rows of the transitionmatrixP,

∑
m

pnm(t) = 1, ∪n and t > 0. (16.93)

(c) As for every Markov process, the transition matrix of the continuous time
Markov-chain obeys the Chapman-Kolmogorov equation:

∑
k

pnk(t)pkm(t′) = pnm(t + t′), (16.94)

which can alternatively be expressed as

P(t + t′) = P(t)P(t′). (16.95)

(d) Furthermore, we assume that pnm(t) is a continuous function of t and that

lim
t→0

pnm(t) =
{
1 for n = m,

0 for n ∓= m.
(16.96)

It follows from Eq. (16.96) that the matrix elements pnm(t) can be written as

pnm(t) =
{
1 + qnnt + O(t2) for n = m,

qnmt + O(t2) for n ∓= m,
(16.97)

where we introduced with {qnm} = Q the transition rate matrix. The transition rate
matrix Q obeys:

(a) All off-diagonal elements qnm, n ∓= m, are non-negative since

qnm = lim
t→0

pnm(t)

t
∈ 0 for n ∓= m. (16.98)

(b) All diagonal elements qnn are non-positive since

qnn = − lim
t→0

1 − pnn(t)

t
≤ 0. (16.99)

(c) Differentiating Eq. (16.93) with respect to t yields that the sum over all elements
in a row is equal to zero. Therefore, we conclude

qnn = −
∑

m
n ∓=m

qnm. (16.100)
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Moreover, differentiating the Chapman-Kolmogorov equation with respect to t
or t′ gives the Kolmogorov forward—or Kolmogorov backward equations

Ṗ(t) = P(t)Q and Ṗ(t) = QP(t), (16.101)

respectively. We obtain P(t) = exp (Qt) where the exponential function of a matrix
has to be understood in the following way

exp (Qt) =
∞∑

k=0

tk

k!Qk, (16.102)

where Q0 = I is the identity matrix.
We define s as the time of the first jump of our process for the particular case

X(0) = n
s = min [t|X(t) ∓= X(0)] . (16.103)

It can be shown that Pn(s > t), the probability that the jump occurs at some time
s > t, is given by

Pn(s > t) = exp(qnnt), (16.104)

where we note that qnn ≤ 0. Moreover,

Pn[X(s) = m] = −qnm

qnn
, (16.105)

and the process starts again at time s and in state m. This means that in a continuous-
timeMarkov-chain the waiting times between two consecutive jumps are exponen-
tially distributed. One of the simplest examples of a continuous timeMarkov-chain
is the Poisson process as discussed in Sect. 16.3.

Summary

This chapter introduced the concept of stochastic processes YX(t) as ‘time’ depen-
dent processes depending on randomness. Y is a random variable which depends on
another random variable X and t the time. All realizations of YX(t) span the state
space. Each stochastic process is coupled to a pdf which describes the probability
that the process takes on the realization y at time t. In the course of this introduc-
tion a series of general properties which classify such processes have been defined.
This was followed by the discussion of a particular class of stochastic processes, the
Markov processes. They have the remarkable property that a future realization of
the process solely depends on its current realization and not on the history how this
current realization had been reached (Markov property). A huge class of processes
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in physics and related sciences are Markovian in nature. The next refinement in our
discussion was the introduction ofMarkov-chains. These are processes defined on
a discrete time span and in a discrete state space. This allowed to replace the pdfs
by probabilities. Again, various specific properties of Markov-chains opened the
possibility of a distinctive classification. A very important observationwas that under
certain conditions aMarkov-chain reaches a stationary or equilibrium distribution
and it will definitely arrive at this distribution independent of the choice of initial
conditions. Moreover, detailed balance is obeyed by this equilibrium condition. This
observation is the backbone of Markov-chain Monte Carlo sampling methods, in
particular of the Metropolis algorithm. Finally, continuous-time Markov-chains
have been discussed with the emphasis on the fact that they are not merely a gener-
alization of discrete-timeMarkov processes.

Problems

1. Write a program to simulate the Wiener process in one dimension. Follow the
method explained in Sect. 16.2 and perform the following analysis:

(a) Illustrate graphically some typical sample paths.
(b) Calculate the mean ≈x(t)∞ and the variance var[x(t)] by restarting the process

several times with different seeds and plot the result.
(c) Measure the position x of the particle at a particular time t for several runs

(with different seeds) and illustrate the result p(x, t) graphically.

2. Realize numerically a Poisson process according to the instructions given in
Sect. 16.2. Again, plot some typical sample paths. Moreover, calculate the mean
waiting time ≈τ ∞ as well as the variance var (τ ) numerically as well as analytically.
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Chapter 17
The Random Walk and Diffusion Theory

17.1 Introduction

Diffusion is one of the most fascinating and widely spread processes in science. Its
occurrence ranges from random motion of dust particles on fluid surfaces—which is
historically known as Brownian motion—over gradient induced motion of particles
in numerous physical systems to the spreading ofmalaria bymigration ofmosquitoes
or even to the description of fluctuations in stock markets.

For instance, let us regard N neutral, identical, classical particles which solely
interact through collisions, e.g. an H2-gas in a box, where N = NA ∈ 6.022× 1023.
We are interested in the dynamics of one particle under the influence of all others
in the particular case of no influence by an external force; we expect that diffusion
will be the dominating process. From the microscopic point of view such a situation
can be described with the help of N coupled Newtonian equations. Anyhow, such a
procedure will not be feasible due to the size of the system, i.e. the magnitude of N .
However, a statistical description can be obtained from Boltzmann’s equation

d

dt
f (r, ξ, t) = θ

θt
f (r, ξ, t)

∣∣∣
coll.

, (17.1)

where f (r, ξ, t) is the phase space distribution function. Hence, f (r, ξ, t)drdξ is the
number of particles within the phase-space volume drdξ centered around position r
at time t and which have a momentum ξ. In particular, we have

θ

θt
f (r, ξ, t) + ξ

m
· θ

θr
f (r, ξ, t) + F · θ

θξ
f (r, ξ, t) = C[ f ](r, ξ, t), (17.2)

where C[ f ](r, ξ, t) is the collision integral and F describes an external force. In
cases where collisions result solely from two-body interactions between particles
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252 17 The Random Walk and Diffusion Theory

that are assumed to be uncorrelated prior to the collision,1 the collision integral can
be written as

C[ f ](r, ξ, t) =
∫

dω1

∫
dω2

∫
dω3g(ω1, ω2, ω3, ξ) [ f (r, ω1, t) f (r, ω2, t)

− f (r, ξ, t) f (r, ω3, t)] . (17.3)

Here, g(ω1, ω2, ω3, ξ) accounts for the probability that a collision between two parti-
cles with initial momenta ω1 and ω2 and final momenta ω3 and ξ occurs. This function
depends on the particular type of particles under investigation and has, in general,
to be determined from a microscopic theory.2 We now define the particle density
τ(r, t) as a function of space r and time t via

τ(r, t) =
∫

dξ f (r, ξ, t). (17.4)

A detailed, very complicated and time-consuming mathematical analysis results in
a diffusion equation of the well-known form

θ

θt
τ(r, t) = D

θ2

θr2
τ(r, t) , (17.5)

if collisions dominate the dynamics (diffusion limit). Here D = const is the diffusion
coefficient of dimension length2× time−1. Note that

∫
drτ(r, t) = N , (17.6)

is the number of particles within our system.3 Thus, in our example we can interpret
diffusion as the average evolution of the integrated phase space distribution function
governed by collisions between particles. Such an interpretation will certainly not
hold in the case of fluctuations in stock markets or in the case of the spreading of
malaria because typically mosquitoes do not collide with humans.

It is the aim of the first part of this chapter to present a purely stochastic approach
to diffusion, the so called random walk model. This stochastic description will prove
to have several precious advantages: (i) We will be able to identify criteria for the
validity of the diffusion model even for systems lacking a straight-forward physical

1 This assumption is known as the approximation of molecular chaos. In fact it represents the
Markov approximation to the dynamics of a many particle system.
2 For instance, one can employ Fermi’s golden rule to obtain this function on a quantummechanical
level. We already came across an expression of the form (17.3) on the right hand side of the master
equation, see Sect. 16.3, Eq. (16.44).
3 The function τ(r, t) is referred to as a physical distribution function due to the normalization
condition (17.6). This is in contrast to distribution functions we encountered so far within this book,
which are normalized to unity.

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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interpretation. (ii) The stochastic formulation will give us the opportunity to perform
diffusion ‘experiments’ on the computer without much computational effort. The
methods employed are based on algorithms discussed in previous chapters. (iii)
Within this framework it will be an easy task to generalize the approach to stochastic
models of anomalous diffusion, i.e. the fractal time random walk and the Lévy
flight models. These models play an increasingly important role in modern statistical
physics.

We conclude this introduction with a quote from a review article by
E. W. Montroll and M. F. Schlesinger [1]:

Since traveling was onerous (and expensive), and eating, hunting and wench-
ing generally did not fill the seventeenth century gentleman’s day, two possibilities
remained to occupy the empty hours, praying and gambling; many preferred the
latter.

17.2 The Random Walk

The randomwalk is one of the classical examples ofMarkov-chains. Its application
ranges from economics,4 genetics, foraging behavior of animals, polymer dynamics
to Brownian motion, i.e. the randommotion of dust particles on a fluid surface, brain
research (neuron dynamics), and many more. In this section we will discuss some
of the basic properties of random walks in one dimension. For convenience, we will
use the familiar picture of one diffusing particle.

Basics

We define the random walk process:We regard a single particle which moves at time
instances

0,πt, 2πt, . . . , nπt, . . . , (17.7)

between grid-points

. . . ,−nπx, . . . ,−πx, 0,πx, . . . , nπx, . . . . (17.8)

In what follows the lattice point nπx will be denoted by xn, where n ∀ Z and the
instance kπt will be denoted by tk where k ∀ N0, following the conventions of
Chap.2. The initial position is given by

Pr[X (t0 = 0) = xi ] = ϕi0, (17.9)

4 The assumption that stock fluctuations can be described by a randomwalk is known as the random
walk hypothesis.

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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and the transition rates pi j from position i to position j within a single time step πt
are defined as

Pr[X (tn + 1) = xi |X (tn) = x j ] = pϕ j i − 1 + qϕ j i + 1 + rϕi j . (17.10)

Here p denotes the probability that the particle jumps to the neighboring grid-point
on the right-hand side, q stands for the probability that the particle jumps to the
neighboring grid-point on the left-hand side, and r denotes the probability of staying
at the same-grid point within this time step. Naturally, we have

p + q + r = 1 . (17.11)

Consequently, we have aMarkov-chain with time instances tn and a state space
spanned by the positions xk . Moreover, we note that the stochastic process is clearly
irreducible since all states communicate with each other. Hence, it follows that either
all states are recurrent or all states are transient. Furthermore, in the case that r ≈= 0 the
Markov-chain is aperiodic, otherwise, if r = 0 the chain is periodic with periodicity
d = 2 because it takes at least two steps to return to the starting position.

We concentrate first on the classical random walk, that is a one-dimensional
random walk with πt = πx = 1, r = 0 and p + q = 1, i.e. the probability of
remaining in the actual position within one time step is equal to zero. If, furthermore,
p = q = 1/2 the randomwalk is referred to as unbiased for p ≈= q we call it biased.
We write the position X (tn) = xn at time tn = n as

xn =
n∑

i = 1

ωi , (17.12)

where ωi ∀ {−1, 1} and Pr(ωi = +1) = p, Pr(ωi = −1) = q. Let us assume that
within these n steps the particle moved m times to the right and, consequently, n −m
times to the left. The actual position xn after n steps can then be described by

xn = m − (n − m) = 2m − n ∞ k, (17.13)

where we used that x0 = 0. It is interesting to calculate the probability Pr(xn = k)

to find the particle after n time steps at some particular position k. This is simply the
sum over all paths along which the particle moved m = (n + k)/2 times to the right
and n − m = (n − k)/2 times to the left multiplied by the probability for m steps to
the right and n − m steps to the left. In total, this yields

(n
m

) = ( n
(n + k)/2

)
different

contributions and we have

Pr(xn = k) =
(

n

m

)
pmqn − m

=
(

n

(n + k)/2

)
p

n + k
2 q

n − k
2 . (17.14)
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In particular, we have for the unbiased random walk:

Pr(xn = k) =
(

n

(n + k)/2

)(
1

2

)n

. (17.15)

First of all, we note that due to the aperiodicity of the classical random walk, k
can only take on the values k = −n,−n + 2, . . . , n − 2, n, i.e. n ± k has to be even.
For all other k we have Pr(xn = k) = 0. Furthermore,

n∑
k = −n

n±k even

Pr(xn = k) =
n∑

m = 0

(
n

m

)
pmqn − m

= (p + q)n

= 1, (17.16)

and the probability of finding the particle at time n within [−n, n] is equal to one.
A simple algorithm to simulate the one-dimensional biased random walk consists of
the following steps:

1. Define values x0, p and q = 1 − p.
2. Draw a random number r ∀ [0, 1].
3. If r < p we set xn + 1 = xn + 1,
4. otherwise we set xn + 1 = xn − 1.
5. Return to step 2.

In Fig. 17.1we present three different realizations of an unbiased one-dimensional
random walk for (a) N = 50, (b) N = 100, and (c) N = 1000 consecutive steps.

Comparison between Figs. 17.1 and 16.2 already suggests a connection between
the random walk and theWiener process, however, we shall come back to this point
in the course of this chapter.

Moments

Let us briefly elaborate on the moments of the random walk. The first moment or
expectation value √xn⇒ is given by

√x(tn)⇒ =
n∑

k = −n
n±k even

k

(
n

(n + k)/2

)
p(n + k)/2q(n − k)/2

=
n∑

m = 0

(2m − n)

(
n

m

)
pmqn − m

= (2 √m⇒ − n)

= n(2p − 1). (17.17)

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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(a) (b)

(c)

Fig. 17.1 Three different realizations of an unbiased one-dimensional randomwalk for (a) N = 50,
(b) N = 100, and (c) N = 1000 time steps and different seeds

We now introduce the bias v such that

p = 1

2
(1 + v) and q = 1

2
(1 − v) , (17.18)

and obtain
√xn⇒ = nv. (17.19)

We calculate the second moment
⎛
x2n
⎧
using the same method and get:

⎪
x2n
⎨
= n(1 − v2) + n2v2. (17.20)

From this, the variance var (xn) follows immediately:

var (xn) =
⎪
x2n
⎨
− √xn⇒2 = n(1 − v2). (17.21)

We note the following: The expectation value √xn⇒ moves according to Eq. (17.19)
with a uniform velocity defined by the bias v = p −q. In particular, for the unbiased
random walk v = 0 and, thus, √xn⇒ = 0 for all n. Furthermore, we observe that
var (xn) increases linearly with time n—a property we already noted for theWiener
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process in Sect. 16.3—and it is maximal for v = 0. For v = ±1, which describes a
pure drift motion in the positive or negative x direction, the variance is equal to zero.

Recurrence

Let us briefly investigate the recurrence behavior of the random walk. We are inter-
ested in the probability f (2α)

00 of a first return to the origin x0 = 0 after 2α steps. We

already know that f (2α)
00 ≤ pαqα from our previous analysis. In the very first time

step the particle moves either to x1 = 1 or to x1 = −1 and, consequently, within the
following 2α − 2 steps it must not cross or touch the line xk = 0 and the particle has
to terminate at position x2α−1 = x1. Therefore, the walker performs α − 1 steps to
the left and α − 1 steps to the right within these 2α − 2 steps. The total number of
possible paths N from x1 to x2α−1 = x1 is given by

N =
(
2α − 2

α − 1

)
. (17.22)

Moreover, N may also be written as the sum of the number Nc of paths which cross
or touch the line xk = 0 and the number Nnc of paths which do not cross or touch
the line xk = 0, i.e.

N = Nc + Nnc. (17.23)

Obviously, we are only interested in the paths which do not cross or touch the line
xk = 0. We employ the reflection principle to solve this problem. In general, the
number of paths which go from x1 = i > 0 to xk + 1 = j > 0 within k-steps and
cross the line xα = 0 is equal to the total number of paths which go from x1 = −i to
xk + 1 = j , as is schematically illustrated in Fig. 17.2.

Fig. 17.2 Illustration of the
reflection principle

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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Let us regard the case x1 = 1, i.e. the walker moved in the first step to the right.
Hence, from the reflection principle we obtain that the number of paths from x1 to
x2α−2 = x1 in 2α − 2 steps which cross or touch the line xk = 0 is given by the total
number of paths from −x1 to x2α−2 = x1, i.e.

Nc =
(
2α − 2

α

)
. (17.24)

We note that in this picture, the walker moves α steps to the right and α − 2 steps to
the left. Hence, we obtain that the number of paths which do not cross or touch the
line xk = 0 is given by

2Nnc = 2(N − Nc) = 1

2α − 1

(
2α

α

)
. (17.25)

The prefactor 2 accounts for the fact that the walker can move in its first step either
to x1 = −1 or to x1 = 1. Thus, the probability for the first return of the particle after
2α steps is described by:

f (2α)
00 = 1

2α − 1

(
2α

α

)
pαqα. (17.26)

We calculate the recurrence probability according to Eq. (16.69) and this results
in

≥∑
α = 0

f (2α)
00 =

⎩⎜

1 for p = q = 1

2 ,

2p for p < q,

2q for p > q,

(17.27)

with the consequence that the one-dimensional random walk is only recurrent in the
unbiased case v = 0.

Another possibility to demonstrate the recurrenceof theunbiasedone-dimensional
random walk is provided by Eq. (16.72). The probability that a walker returns to
x0 = 0 after 2n steps is given by

P(2n)(x0) =
(
2n

n

)
pnqn = (2n)!

n!n! (pq)n . (17.28)

In this case we are not interested in the question whether or not it is the particle’s
first return. By Stirling’s approximation, see Appendix D, we approximate

n! ≤ nn + 1
2 e−n

∓
2ε, (17.29)

and obtain for P(2n)(x0)

P(2n)(x0) ≤ (4pq)n

∓
nε

. (17.30)

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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We assume p → 1
2 and since pq = p(1 − p) = p − p2 → 1

2 − 1
4 = 1

4 where the
equality holds for p = q = 1

2 , and obtain

≥∑
n = 0

P(2n)(x0) → ≥ only for p = q = 1

2
. (17.31)

The same argument holds for p > 1
2 since we can write pq = q − q2 → . . ..

According to (16.72) this means that the process is recurrent only for p = q, in
accordance with our previous result (17.27), and transient otherwise. We note that
this result agrees with the physical picture of an external force inducing a bias or
drift velocity v ≈= 0.

It should be noted that the unbiased random walk in two dimensions is also
recurrent while it can be proved to be transient in higher dimensions. In 3D, for
instance, the recurrence probability is approximately 0.34.

17.3 The Wiener Process and Brownian Motion

It is the purpose of this section to demonstrate that theWiener process is the scaling
limit of the random walk. Moreover, we shall briefly discuss the Langevin equation
and derive the diffusion equation.

As a starting point we consider the one-dimensional unbiased random walk on an
equally spaced grid according to Eq. (17.8) and time instances given by Eq. (17.7).
We denote the stochastic process by Xn = X (tn) and have

Xn =
n∑

i = 1

ωiπx, (17.32)

where ω ∀ {−1, 1} together with X0 = 0. Since we regard the unbiased case we
have Pr(ωi = ±1) = 1/2, √ωi ⇒ = 0, and var (ωi ) = 1. This is equivalent to

√Xn⇒ = 0 and var (Xn) = nπx2, (17.33)

as we already demonstrated in the previous section, Eq. (17.21). The variance
var (Xn) can be rewritten using the definition tn ∞ nπt as:

var (Xn) = tn
πx2

πt
. (17.34)

We would now like to perform the simultaneous limit πt,πx → 0 in such a way,
that

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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lim
πt→0
πx→0

πx2

πt
= D = const, (17.35)

is the diffusion coefficient D. This limit is known as the continuous limit and will in
the following be denoted by the operatorL . Hence, in the continuous limit we have

L [var (Xn)] = Dt, (17.36)

where we renamed tn = t . We note that the limit πt → 0 for constant t is equivalent
to n → ≥. Therefore, we obtain in accordance with the central limit theorem

L (Xn) → Wt ⇐ N (0, Dt), (17.37)

whereN (0, Dt) denotes the normal distribution of mean zero and variance Dt , see
Appendix D. We introduced, furthermore, the symbol Wt to represent the Wiener
process and, finally, the symbol⇐which stands,within this context, for the notion fol-
lows the distribution. In order to demonstrate that Wt is indeed theWiener process,
we have to prove thatWt has independent incrementsWt2−Wt1 which follow, accord-
ing to Chap.16, a normal distribution with mean zero and a variance proportional to
t2 − t1. This is easily demonstrated: From the random walk we know that

Xn − Xm =
n∑

i = 1

ωi −
m∑

i = 1

ωi =
n∑

i = m + 1

ωi , (17.38)

and, therefore, Xn − Xm and Xm − Xk are clearly independent for n > m > k and
it follows that also Wt − Ws and Ws − Wu are independent. Furthermore, we have

Xn − Xm
d= Xn − m, (17.39)

where the symbol
d= stands for the notion to follow the same distribution or to be

distributionally equivalent. Therefore, in the limitL for t > s

Wt − Ws
d= Wt − s ⇐ N [0, D(t − s)] , (17.40)

which completes the proof. We note that the particular case D = 1 is commonly
referred to as the standard Wiener process. We remark that in many cases the terms
Wiener process and Brownian motion are used as synonyms for a stochastic process
satisfying the above properties. However, strictly speaking, the stochastic process is
theWiener process while Brownian motion is the physical phenomenon which can
be described by theWiener process.

If we suppose that p ≈= q, i.e.

L (√Xn⇒) = μt, (17.41)

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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Fig. 17.3 Three different
realizations of the stan-
dard Wiener process with
drift μ = 1 according to
Eq. (17.42). The expectation
value √x⇒ = μt of the process
is presented as a dashed line

with the drift constant μ, aWiener process with a drift term

L (Xn) → W̃t = μt + Wt , (17.42)

is described. This process behaves like Wt with the only difference that it fluctuates

around mean μt instead of mean zero. Note that for μ > 0 the mean
⎪
W̃t

⎨
increases,

while for μ < 0 it decreases with time t .
Another interesting property of the Wiener process is its self-similarity. In par-

ticular, we have the property that for η > 0

Wt
d= η− 1

2 Wηt , (17.43)

with the consequence that it is completely sufficient to study the properties of the
Wiener process for t ∀ [0, 1] to know its properties for arbitrary time intervals.
Relation (17.43) follows from the fact that Wt ⇐ N (0, Dt).

Furthermore, white noise, ξ(t), is defined as the formal derivative of theWiener
process Wt with respect to time. We give its most important properties without going
into details5:

√ξ(t)⇒ = 0, and √ξ(t)ξ(s)⇒ = ϕ(t − s). (17.44)

White noise is referred to as Gaussian white noise if ξ(t) follows a normal distribu-
tion.

Figure17.3 presents three different realizations of the standard Wiener process
with drift according to Eq. (17.42).

5 In fact, it can be shown that Wt is non-differentiable with probability one. This is the reason why
it is defined as the formal derivative of Wt . Let δ(t) be a test function and f (t) an arbitrary function
which does not need to be differentiable with respect to t . Then the formal derivative ḟ (t) is defined
by

≥∫

0

dt ḟ (t)δ(t) = −
≥∫

0

dt f (t)δ̇(t).
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Let us briefly derive the diffusion equation from the random walk model. The
probability Pr(x, t) of finding the particle at time t at position x can be expressed by

Pr(x, t) = Pr(x, t − πt)r + Pr(x − πx, t − πt)p

+ Pr(x + πx, t − πt)q (17.45)

= Pr(x, t − πt)(1 − p − q) + Pr(x − πx, t − πt)p

+ Pr(x + πx, t − πt)q, (17.46)

i.e. the probability of being at point x at time t is the same as the probability of being
at time t − πt either at point x and remaining there, or at point x − πx and moving
one step to the right, or at point x + πx and moving one step to the left. Expanding
each term in a Taylor series up to order O(πx2) and O(πt), respectively, yields

p(x, t) = (1 − p − q)
[

p(x, t) − πt
θp(x, t)

θt

⎟

+ p
[

p(x, t) − πt
θp(x, t)

θt
− πx

θp(x, t)

θx

+ 1

2
πx2

θ2 p(x, t)

θx2

⎟

+ q
[

p(x, t) − πt
θp(x, t)

θt
+ πx

θp(x, t)

θx

+ 1

2
πx2

θ2 p(x, t)

θx2

⎟
. (17.47)

Note that we replaced the probabilities Pr(·) by the pdfs p(·) because we switched
from a discrete to a continuous state space. From Eq. (17.47) we obtain

θp(x, t)

θt
= − (p − q)πx

πt

θp(x, t)

θx
+ (p + q)πx2

2πt

θ2 p(x, t)

θx2
. (17.48)

We draw the continuous limit and define the drift constant

μ = L

[
(p − q)

πx

πt

]
= lim

πt→0
πx→0

(q − p)

πt
πx, (17.49)

the diffusion constant

D = L

[
(p + q)

πx2

2πt

]
= lim

πt→0
πx→0

(p + q)

2πt
πx2, (17.50)

and arrive at the one-dimensional diffusion equation with drift term:

θp(x, t)

θt
= μ

θp(x, t)

θx
+ D

θ2 p(x, t)

θx2
. (17.51)
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This equation is referred to as aFokker-Planck equation. In the specific case p = q
the drift term disappears and we obtain, as expected, the classical diffusion equation

θ

θt
p(x, t) = D

θ2

θx2
p(x, t), (17.52)

which we solved already numerically in Chaps. 9 and 11. It follows from this discus-
sion that the position of a diffusing particle can be described as a stochastic process
where, in the continuous limit, the jump-lengths follow a normal distribution. More-
over, we know from our discussion of continuous-timeMarkov-chains in Sect. 16.5,
that the waiting times between two successive jumps will certainly follow an expo-
nential distribution. These insights will serve as a starting point in the discussion
of general diffusion models in Sect. 17.4. Moreover, we note that the anisotropy of
the jump-length distribution is a model for the presence of an external field which
manifests itself in a drift term.

A completely different approach to the formal description of Brownian motion
goes back to Langevin. He considered the classical equation of motion of a particle
in a fluid which reads

v̇ = −βv, (17.53)

where β denotes the friction coefficient and we set the particle’s massm equal to one.
Langevin argued that this equation may only be valid for the average motion of the
particle, i.e. the long time behavior or the motion of massive particles. However, if
the particle is not heavy at all its trajectory may be highly affected by collisions with
solvent’s molecules. He supposed that a reasonable generalization of Eq. (17.53)
should be of the form

v̇ = −βv + F(t), (17.54)

where F(t) is a random force. In particular, F(t) is a stochastic processwhich satisfies

√F(t)⇒ = 0 and √F(t)F(s)⇒ = Aϕ(t − t ′), (17.55)

where A is a constant and we obtain

F(t)
d= ∓

Aξ(t). (17.56)

Equation (17.54) is referred to as the Langevin equation and it is the prototype
stochastic differential equation. From the definition of white noise ξ(t) we note that
we can rewrite the Langevin equation as

dv = −βvdt + ∓
AdWt . (17.57)

The solution of the Langevin equation describes a stochastic process referred to
as the Ornstein–Uhlenbeck process. This process is essentially the only stochas-
tic process which is stationary, Gaussian and Markovian. Its master equation is a

http://dx.doi.org/10.1007/978-3-319-02435-6_9
http://dx.doi.org/10.1007/978-3-319-02435-6_11
http://dx.doi.org/10.1007/978-3-319-02435-6_16
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Fokker-Planck equation of the form

θ

θt
p(v, t) = β

θ

θv
v p(v, t) + A

2

θ2

θv2
p(v, t), (17.58)

where p(v, t) is the pdf of theOrnstein–Uhlenbeck process. If the initial velocity
v0 is given then the pdf p(v, t) can proved to be defined by:

p(v, t) =
∓

β√
εA
(
1 − e−2βt

) exp
[
−β

(
v − v0e−βt

)2
A
(
1 − e−2βt

)
⎢

. (17.59)

The Langevin Eq. (17.54) can be solved analytically and one obtains

v(t) = v0 exp (−βt) + ∓
A

t∫

0

dt ′ ξ(t ′) exp
[−β(t − t ′)

]
. (17.60)

In particular, we can write

v(tn + 1) = v(tn) exp (−βπt) + Zn, (17.61)

where we defined Zn as

Zn = ∓
A

πt∫

0

dt ′ ξ(tn + t ′) exp
[−β(πt − t ′)

]
. (17.62)

Since ξ(t)was assumed to beGaussian white noise, Zn can be proved to be described
by

Zn ⇐ N

⎥
0,

A

2β

[
1 − exp (−2βπt)

]}
, (17.63)

which offers a very convenient way to simulate theOrnstein–Uhlenbeck process.
This particular formulation of Brownian motion allows to model this process by
sampling changes in the velocity Zn from the normal distribution with mean zero
and the variance given in Eq. (17.63). The walker’s position x(t) can then be obtained
by approximating the velocity v = ẋ with the help of finite difference derivatives, as
described in Chap.2. In conclusion we remark that although the Langevin equation
was introduced in a heuristic manner, it represents a very useful tool due to its rather
simple interpretation.

In Fig. 17.4 we show three different realizations of the Ornstein–Uhlenbeck
process corresponding to three different initial velocities v0. The corresponding ran-
dom trajectories of the Brownian particle are illustrated in Fig. 17.5.

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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Fig. 17.4 Three different
realizations of the Ornstein-
- Uhlenbeck process. For
this simulation we chose
β = 1, A = 5, dt = 10−2

and N = 103 time steps.
Furthermore, we chose three
different initial velocities, i.e.
v0 = 0 (black), v0 = 5 (gray)
and v0 = 10 (light gray)

Fig. 17.5 Random trajecto-
ries of the Brownian particle
corresponding to the veloc-
ities illustrated in Fig. 17.4
with initial position x0 = 0.
Note that we used for this
figure N = 105 time steps

17.4 Generalized Diffusion Models

We formulate now a very general approach to diffusive behavior which is based on
continuous random variables. We start with the introduction of the pdf Λ(x, t). Its
purpose is to describe the event that a particle arrives at time t at position x . It can
be expressed as [2]

Λ(x, t) =
∫

dx

t∫

0

dt ′Ψ (x, t; x ′, t ′)Λ(x ′, t ′), (17.64)

where Ψ (x, t; x ′, t ′) is the jump pdf. It can be understood in the following way:
Ψ (x, t; x ′, t ′) describes the probability for an event that a particle which arrived at
time t ′ at position x ′—with pdf Λ(x ′, t ′)—waited at position x ′ until the time t was
reached and then jumped within an infinitesimal time interval from position x ′ to x .
If we regard a space and time homogeneous process, we can replace Ψ (x, t; x ′, t ′)
byΨ (x −x ′, t − t ′). This allows us to introduce a jump length pdf p(x) and a waiting
time pdf q(t). They are related to the jump pdf by
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p(x) =
≥∫

0

dt ′Ψ (x, t ′) and q(t) =
≥∫

−≥
dx ′Ψ (x ′, t). (17.65)

If the jump length pdf and the waiting time pdf are conditionally independent one
can simply write Ψ (x, t) = p(x)q(t). The probability δ(x, t) of finding a particle
at position x at time t is, furthermore, given by

δ(x, t) =
t∫

0

dt ′Λ(x, t ′)Ψ (t − t ′), (17.66)

where Ψ (t) is the probability, that a particle stayed at least for a time interval t at the
same position, i.e.

Ψ (t) = 1 −
t∫

0

dt ′q(t − t ′). (17.67)

Finally, the jump length variance Σ2 and the characteristic waiting time T are
given by

Σ2 =
≥∫

−≥
dx ′x ′2 p(x ′) and T =

≥∫

0

dt ′t ′q(t ′). (17.68)

Our discussion of theWiener process in the previous section allowed us to con-
clude that for Brownian motion the jump length pdf is a Gaussian and the waiting
time pdf is an exponential distribution, i.e.

p(x) = 1∓
2εΣ2

exp

(
− x2

2Σ2

)
and q(t) = 1

T
exp

(
− t

T

)
. (17.69)

The characteristic function, see Appendix D, of the waiting time pdf q(t) is given
by

q̂(s) =
≥∫

0

dtq(t)e−st = 1

T

1

s − 1
T

= 1

1 + sT
, (17.70)

and we find for the jump length pdf p(x):

p̂(k) =
∫

dxe−ikx p(x) = exp
⎫
−σ 2k2

⎬
. (17.71)

HerewedefinedΣ2 ∞ 2σ 2. For x, t → ≥, i.e. k, s → 0, the characteristic functions
q̂(s) and p̂(k) develop the asymptotic behavior
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Fig. 17.6 Travelling behavior of humans. Adapted from [3]. Copyright c∪ 2006, Rights Managed
by Nature Publishing Group

lim
s→0

1

1 + sT
∈ 1 − sT + O(s2), (17.72)

and
lim
k→0

exp
⎫
−σ 2k2

⎬
∈ 1 − σ 2k2 + O(k4). (17.73)

In fact, it can be shown that any pair of jump length and waiting time pdfs lead to
the same asymptotic behavior in first order, i.e. O(T ) and O(σ 2), as long as the
moments T and Σ2 exist.

However, there is a variety of processes which cannot be accounted for within
the basic framework of Brownian motion. Such processes are described within the
concept of anomalous diffusion. Examples for such a behavior are, for instance, the
foraging behavior of spider monkeys, particle trajectories in a rotating flow, diffusion
of proteins across cell membranes, diffusion of tracers in polymer-like breakable
micelles, the traveling behavior of humans, see Fig. 17.6 which was adapted from
[3], charge carrier transport in disordered organic molecules, etc.

In what follows, we plan to concentrate on two different models of anomalous
diffusion. The first model can, from a qualitative point of view, be characterized as a
diffusion process which consists of small clustering jumps which are intersected by
very long flights. Such behavior is, for instance, encountered in the context of human
travel behavior, see Fig. 17.6, charge carrier transport in disordered solids, etc. The
incorporation of these long jumps on a stochastic level is referred to as Lévy flight.



268 17 The Random Walk and Diffusion Theory

The secondmodel, which is referred to as the fractal time random walk6 incorporates
anomalously long waiting times between two successive jumps. In particular, these
long waiting times account for non-Markovian effects which could be due to, for
instance, trapping processes of charge carriers in disordered solids. It has to be
emphasized at this point that the resulting diffusion models are still linear in the pdf
δ(x, t). The inclusion of non-linear effects will not be discussed here, however, can
be achieved within the framework of non-extensive thermodynamics formulated by
C. Tsallis [4], an immediate application was reported by [5].

Let us start our discussion with Lévy flights. In this case one modifies the asymp-
totic behavior of the characteristic function of the jump length pdf according to

p̂(k) ≤ 1 − (σ |k|)η, (17.74)

where η ∀ (0, 2]. We recognize that this is the asymptotic behavior |k| → 0 of
the characteristic function of a symmetric Lévy η-stable distribution following
Eq. (D.75) of Appendix D. In the limit η → 2 normal, i.e. Gaussian behavior is
recovered. Such a characteristic function corresponds to a jump length pdf of the
form

p(x) ≤ |x |−η−1 for |x | → ≥, (17.75)

according to Eq. (D.76). A jump-length pdf of this form is commonly referred to as
a fat-tailed jump length pdf due its asymptotic behavior.

A Lévy flight is, in principle, a random walk where the length of the jumps at
discrete time instances tn follow the pdf (17.75). In the continuous time limit, the
waiting times are distributed exponentially as was illustrated in Sect. 16.5. It has
to be noted that in such a case the jump length variance diverges, i.e. Σ2 → ≥,
consequently, Lévy stable distributions are not subject to the central limit theorem.
In particular, the distance from the origin after some finite time t follows a Lévy
stable distribution. Moreover, we note that if 0 < η < 1 even the mean jump length
√x⇒ diverges. A detailed mathematical analysis proves, that Lévy flights result in a
diffusion equation of the form

θ

θt
p(x, t) = DηDη|x | p(x, t), (17.76)

where Dη is the fractional diffusion coefficient of dimension lengthη× time−1 and
Dη|x | is the symmetric Riesz fractional derivative operator of order η ∀ (1, 2)7:

Dη|x | f (x) = 1

2Γ (2 − η) cos
(

ηε
2

)
∫

dx ′ f ′′(x ′)
|x − x ′|η−1 , (17.77)

6 This model is also sometimes referred to as the continuous-time random walk, which is somehow
misleading since also classical diffusion is defined on a continuous time span.
7 A short introduction to fractional derivatives and integrals can be found in Appendix F.

http://dx.doi.org/10.1007/978-3-319-02435-6
http://dx.doi.org/10.1007/978-3-319-02435-6
http://dx.doi.org/10.1007/978-3-319-02435-6_16
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Fig. 17.7 Three different
realizations of the one dimen-
sional Lévy flight. The para-
meters are α = 0.001, η = 1.3
and we performed N = 1000
time steps

Fig. 17.8 Comparison
between the two-dimensional
Wiener process (solid
up-triangles) and the two-
dimensional Lévy flight
(open squares) for η = 1.3.
The minimal flight length of
the Lévy flight as well as
the jump length variance of
the Wiener process were set
α = Σ2 = 0.1 and we per-
formed N = 100 time steps

where f ′′(x) is the second spatial derivative of f .
In Fig. 17.7 a one-dimensional Lévy flight is illustrated. Furthermore, we give

in Fig. 17.8 a comparison between a two-dimensional Lévy flight and a two-
dimensionalWiener process. In order to obtain these figures, we sampled thewaiting
times from an exponential distribution with mean √t⇒ = 1. The jump length of the
Lévy flight were sampled by writing the jump length pdf (17.75) in the form

p(x) = ηαη Θ(x − α)

xη+1 , x > 0. (17.78)

Here η is referred to as the Lévy index, Θ(·) denotes the Heaviside Θ function
and α > 0 is the minimal flight length. We introduced this particular form of the
pdf because it is rather easy to sample with the help of the inverse transformation
method—Sect. 13.2—and it features the asymptotic behavior, Eq. (17.75).Moreover,
it can be demonstrated that it gives the correct behavior in the limit α → 0. We note
that the direction of the jump has to be sampled in an additional step. Figure17.8 is
particularly instructive because the different physics described by these two models
becomes immediately apparent.

http://dx.doi.org/10.1007/978-3-319-02435-6_13
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Let us turn our attention to the second scenario, the fractal time random walk. In
this case the asymptotic behavior of the waiting time pdf is modified according to

q̂(s) ≤ 1 − (T s)β, (17.79)

where β ∀ (0, 1] and for β → 1 regular behavior, i.e. an exponentially distributed
waiting time, is recovered.A pdf of such a form is commonly referred to as a fat-tailed
waiting time pdf. After an inverse Laplace transform we obtain

q(t) ≤ t−β−1 for t → ≥. (17.80)

We note that in this case the mean waiting time T = √t⇒ diverges for β < 1. This
clearly indicates a non-Markovian time evolution sincewe demonstrated in Sect. 16.5
that every Markovian discrete time process converges in the continuous time limit
to a process with exponentially distributed waiting times. Again, the ansatz

q(t) = βτβ Θ(t − τ)

tβ + 1 , (17.81)

is employed, where τ > 0 is the minimal waiting time. The process is essentially a
random walk with waiting times distributed according to Eq. (17.81), i.e. the jump
length πx is constant. In the continuous space limit πx → 0 one obtains that the
jump lengths follow a Gaussian, as in the case of a regular random walk. A detailed
analysis shows that in the limit τ → 0 the corresponding diffusion equation is of the
form

C Dβ
t p(x, t) = Dβ

θ2

θx2
p(x, t), (17.82)

where the diffusion constant Dβ is of dimension length2× time−β . Here, C Dβ
t is the

Caputo fractional time derivative of order β ∀ (0, 1), see Appendix F. It is of the
form

C Dβ
t f (t) = 1

Γ (1 − β)

t∫

0

dt ′ ḟ (t ′)
(t − t ′)β

. (17.83)

It follows from the properties of fractional derivatives that an alternative form of
Eq. (17.82) can be found, namely

θ

θt
p(x, t) = Dβ

θ2

θx2
Dβ

t p(x, t), (17.84)

where Dβ
t is the Riemann-Liouville fractional derivative of order β, see

Appendix F.
In Fig. 17.9 we show three different realizations of the fractal time random walk.

The waiting times are drawn from the pdf (17.81) with the help of the inverse trans-

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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Fig. 17.9 Three different
realizations of the fractal time
randomwalk in one dimension
for β = 0.8 and τ = 0.1

Fig. 17.10 Three possible
realizations of the fractal time
Lévy flight in one dimension.
The parameters are τ = 0.1,
β = 0.8, α = 0.01 and
η = 1.3

formation method—Sect. 13.2—and the jump lengths are drawn from a normal dis-
tribution with jump length variance Σ2 = 1.

It is a straight-forward task to combine fractal time randomwalks andLévy flights
to so called fractal time Lévy flights. The resulting diffusion equation can be written
as

C Dβ
t p(x, t) = DηβD

η|x | p(x, t), (17.85)

where the diffusion constant Dηβ has units lengthη× time−β and C Dβ
t and Dη|x | are

the fractional Caputo and Riesz derivatives, respectively.
In Fig. 17.10 we show three different realizations of such a diffusion process. The

waiting times were drawn from Eq. (17.81) where we set τ = 0.1 and β = 0.8. The
jump lengths were drawn from (17.78) with η = 1.3 and α = 0.01. The direction of
the jump was sampled in an additional step.

We close this chapter with a short discussion: The description of diffusion
processes with the help of stochastics proofed to be one of the most powerful
approaches in modern theoretical physics. Within this chapter we discussed several
different approaches toward a description of Brownian motion, namely the random
walk, the Wiener process, and the Langevin equation, as well as models which
describe phenomena beyond Brownian motion. It has to be emphasized that the field

http://dx.doi.org/10.1007/978-3-319-02435-6_13
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of anomalous diffusion in general is still developing rapidly, however, its importance
for the description of various phenomena in science is already impressive. We refer
the interested reader to the excellent review articles byR. Metzler and J. Klafter
on anomalous diffusion [6, 7].

Summary

The random walk, a classical example of Markov-chains, was used to open the
door to the realm of diffusion theory. Random walks have been used for a long time
to simulate Brownian motion and related problems, and from a theoretical point
of view it is the scaling limit of the Wiener process. The biased Wiener process
was then used to demonstrate that the Fokker-Planck equation follows in the limit
of a continuous state space, as the classical diffusion equation follows from the
unbiasedWiener process in the same limit. Brownian motion was also the basis for
the rather heuristic introduction of the stochastic differential equation by Langevin.
A direct consequence of this equation was the Ornstein-Uhlenbeck process with
its master equation, the Fokker-Planck equation. It is the only stationary, Gaussian,
and Markovian process in this class of stochastic diffusion processes. An extension
of these processes was then possible by the introduction of a jump pdf which in turn
allowed to define a jump length pdf and awaiting time pdf. These two pdfs resulted in
a more general description of diffusion processes in a space and time homogeneous
environment. Furthermore, the observation that many diffusive processes (not only in
physics) cannot be understood within the framework of ‘classical’ Brownian motion
resulted in the introduction of Lévy flights. This was particularly motivated by the
need for a process whose jump-length variance diverges, which enabled, for instance
the simulation of human travel behavior. In the very last step the fractal time random
walk was introduced. It was characterized by a specific form of the waiting time pdf
which made it possible to describe on a stochastic level anomalously long waiting
times between two consecutive jumps. Such behavior can, for instance, be observed
by trapping phenomena in solids. The combination of both extensions resulted in the
fractal time Lévy flight.

Problems

1. Write a programwhich simulates different realizations of the following stochastic
processes in one spatial dimension:

(a) A random walk,
(b) a standard Wiener process and a Wiener process with drift,
(c) an Ohrnstein- Uhlenbeck process,
(d) a Lévy flight,
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(e) a fractal time random walk,
(f) and a fractal time Lévy flight.

Illustrate three different sample paths graphically for each process. Furthermore,
perform the following tests:

(a) Calculate the expectation value √xn⇒ and the variance var (xn) of the random
walk numerically by restarting the process several times with different seeds.

(b) In a similar fashion, calculate numerically √Wt ⇒ and var (Wt ).
(c) Try different parameters η, β for Lévy flights and fractal time random walks.

2. Write a programwhich simulates theWiener process in two dimensions. This can
be achieved by drawing the jump length from a normal distribution and sampling
the jump angle, i.e. the direction, in an additional step. Augment this program
with Lévy flight jump lengths pdfs.
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Chapter 18
Markov-Chain Monte Carlo and the Potts
Model

18.1 Introduction

This chapter will discuss in more detail the concept of Markov-chain Monte Carlo
techniques. We already came across theMetropolis algorithm in Sect. 14.3, where
the condition of detailed balance proved to be the crucial point of the method. The
reason for imposing such a condition was explained in general later on in our discus-
sion of Markov-chains within Sect. 16.4. The Ising model, analyzed in Chap.15,
served as a first illustration of the applicability of Markov-chainMonte Carlo meth-
ods in physics.

Let us briefly summarize what we learned so far: We discussed several methods
to draw pseudo random numbers from a given distribution in Chap.13. The two
most important methods, i.e. the inverse transformation method and the rejection
method, are based on an exact knowledge of the analytic form of the distribution
function which the random numbers are supposed to follow. However, when simu-
lating the physics of the Ising model it is required to draw random configurations
from the equilibrium distribution of the system and, unfortunately, the exact form
of this distribution is primarily unknown. On the other hand, in the discussion of
Markov-chains we came across the condition of detailed balance. Invoking this
condition ensures that the constructedMarkov-chain converges toward a stationary
distribution, independently of the initial conditions. Hence we can also draw random
numbers by constructing a Markov-chain with a stationary distribution which is
equal to the distribution from which we would like to obtain our random numbers.
In this case the distribution function has to be known, at least in principle. However,
the formulation of the Metropolis algorithm allows for an unknown normaliza-
tion constant of the distribution function which, in turn, makes this method such a
powerful tool in computational physics.

Here we want to discuss Markov-chain Monte Carlo techniques in some
more detail and start by introducing the concept of importance sampling, review
the Metropolis algorithm, and discuss the straight-forward generalization to the
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Metropolis-Hastings algorithm. Finally, the applicability of the Metropolis- -
Hastings algorithm will be demonstrated by simulating the physics of the q-states
Potts model [1] which is closely related to the Ising model. This chapter is closed
with a brief presentation of some of themore advanced techniqueswithin this context.

18.2 Markov-Chain Monte Carlo Methods

Before turning our focus toward the Markov-chain Monte Carlo methods we shall
briefly discuss importance sampling. Let p(x) be a certain pdf fromwhich we would
like to draw a sequence of random numbers {xi }, i ∈ 1. Furthermore, let f (x) be
some arbitrary function and we would like to estimate its expectation value ∀ f ≈p,
i.e. the integral

∀ f ≈p =
∫

dx f (x)p(x). (18.1)

In equivalence, ∀ f ≈p can also be regarded as the expectation value ∀a≈ ∞ ∀a≈u of
the function a(x) := f (x)p(x), with u(x) (in the standard notation) the pdf of the
uniform distribution. Hence, we may evaluate ∀a≈ by drawing uniformly distributed
random numbers on a given interval [a, b] √ R and by estimating the expectation
value by its arithmetic mean as discussed in Sect. 14.2. This approach is the easiest
version of a method referred to as simple sampling. On the other hand, we might
approximate ∀ f ≈p by sampling xi according to p(x) and by employing the central
limit theorem as was demonstrated in Sect. 14.2. The basic idea of importance sam-
pling, however, is to improve this approach by sampling from a different distribution
q(x) which is in most cases chosen in such a way that the expectation value ∀ f ≈p is
easier to calculate.

Let g(x) be some function with g(x) > 0 for all x . Then

∀ f ≈p =
∫

dx f (x)p(x) =
∫

dx
f (x)

g(x)
p(x)g(x) = c

〈
f

g

〉
q
, (18.2)

where we defined the function q(x) = 1
c p(x)g(x) and c is chosen in such a way

that
∫

dxq(x) = 1. We note that g(x) can be any positive function. Hence, such an
approach might be interesting in two different scenarios: (i) if it is easier to sample
from the distribution q(x) rather than from p(x) and, (ii) if such a sampling results
in a variance reduction which is equivalent to a decrease in error, and less random
numbers are to be sampled to obtain comparable results.

Let us briefly elaborate on this point: we have

var

(
f

g

)
q

=
〈(

f

g
−

〈
f

g

〉
q

)2〉

q

, (18.3)
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and for the particular choice g(x) ∞ f (x) we obtain that

var

(
f

g

)
q

= 0, (18.4)

i.e. the error of our Monte Carlo integration vanishes. However, the ideal case of
g(x) ∞ f (x) is unrealistic because we obtain for the normalization constant c

c =
∫

dx p(x)g(x) = ∀g≈p ∞ ∀ f ≈p , (18.5)

which is exactly the integral we want to evaluate. However, the function g(x) can be
adapted to improve the result and g(x) can be chosen in such a way that the integral
∀g≈p is easy to evaluate and that g(x) follows f (x) as closely as possible; in other
words, the quotient f (x)/g(x) becomes as constant as possible. This means that we
do not sample from p(x) on a given interval but only from points which matter for
the particular function f (x). Such an approach is referred to as importance sampling.

The attentive reader might have observed that, on a first glance, importance
sampling has nothing to do with Markov-chain Monte Carlo methods in general.
Nevertheless, it can be demonstrated that Markov-chain Monte Carlo methods
corresponds indeed to importance sampling.

To prove this, we remember that Markov-chain Monte Carlo techniques are
based on the generation of a sequence of configurations S(n):

S(1) ⇒ S(2) ⇒ · · · ⇒ S(n) ⇒ · · · . (18.6)

Each individual configuration S(n) is generated from the previous configuration
S(n−1) at random with a certain transition probability P(S(n−1) ⇒ S(n)). These
transition probabilities obey

P(S ⇒ S≤) ∈ 0 and
∑

S≤
P(S ⇒ S≤) = 1, (18.7)

and this property ensures that the sequence (18.6) is a Markov-chain. In Sect. 16.4
we observed that the detailed balance condition for a stationary distribution P(S)

P(S)P(S ⇒ S≤) = P(S≤)P(S≤ ⇒ S) (18.8)

guarantees convergence of the Markov-chain toward the stationary distribution.
Hence, the remaining task is to find transition probabilities which fulfill detailed
balance. In a typical situation, the transition probabilities can be written as

P(S ⇒ S≤) = Pp(S ⇒ S≤)Pa(S ⇒ S≤), (18.9)

http://dx.doi.org/110.1007/978-3-319-02435-6_16


278 18 Markov-Chain Monte Carlo and the Potts Model

where P(S ⇒ S≤) is the probability that a configuration S≤ is proposed and Pa(S ⇒
S≤) is the probability that the proposed configuration is accepted. In many cases one
simplifies the situation by assuming that

Pp(S ⇒ S≤) = Pp(S≤ ⇒ S), (18.10)

and, thus, the detailed balance condition changes into

P(S)Pa(S ⇒ S≤) = P(S≤)Pa(S≤ ⇒ S). (18.11)

TheMetropolis algorithm uses one possible choice for the acceptance probability,
namely

Pa(S ⇒ S≤) = min

[
1,

P(S≤)
P(S)

]
. (18.12)

It was demonstrated in Sect. 14.3 that (18.12) indeed fulfills Eq. (18.11). The execu-
tion of the algorithmwas already illustrated inChap.15 in the course of our discussion
of the numerics of the Ising model.

A rather straight-forward generalization of theMetropolis algorithm (18.12) is
obtained by considering an asymmetric proposal probability Pp(S ⇒ S≤). It is easily
demonstrated that the choice

Pa(S ⇒ S≤) = min

[
1,

P(S≤)
P(S)

Pp(S≤ ⇒ S)

Pp(S ⇒ S≤)

]
, (18.13)

also fulfills detailed balance (18.8). The choice (18.13) is referred to as the
Metropolis-Hastings algorithm.1

By exploiting theMarkov property in order to sample configurations according
to theBoltzmanndistributionweperform importance sampling as illustrated above.
An alternative approach would be to select different configurations according to a
uniform distribution which obviously increases the numerical cost of the method by
magnitudes. Hence, sampling with the help of a Markov-chain yields a variance
reduction in comparison to the crude approach of simple sampling. Furthermore, the
algorithm can be optimized by a clever choice of Pp(S ⇒ S≤) which does not need
to be symmetric. Clearly, this choice will have to depend on the particular problem
at hand.

We shall briefly discuss two alternative approaches to Markov-chain Monte
Carlo sampling, namely Gibbs sampling and slice sampling.

Suppose we want to sample a sequence of m-dimensional variables x (n) =
(x (n)

1 , x (n)
2 , . . . , x (n)

m )T from a multivariate distribution function p(x) =
p(x1, x2, . . . , xm). Gibbs sampling is particularly interesting if the joint distribution
functions are well-known and simple to sample. One sets for a particular component

1 Please note that it is common in the literature to refer even to Eq. (18.12) as a Metropolis–
Hastings algorithm, despite the fact that here Pp(S≤ ⇒ S) = Pp(S ⇒ S≤).

http://dx.doi.org/110.1007/978-3-319-02435-6_14
http://dx.doi.org/110.1007/978-3-319-02435-6_15
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Fig. 18.1 Schematic illus-
tration of slice sampling.
The following steps are
required: (a) Choose x0,
(b) draw y0 ≥ [0, p(x0)], (c)
draw x1 ≥ S [p−1(y0)], (d)
draw y1 ≥ [0, p(x1)], (e) draw
x2 ≥ S [p−1(y1)], (f) ….

of the vector x (n)

Pa(x (n+1)
j |x (n)) = p(x (n+1)

j |x (n+1)
1 , . . . , x (n+1)

j−1 , x (n)
j+1, . . . , x (n)

m ). (18.14)

We note that this is possible since we have

p(x j |x1, . . . , x j−1, x j+1, . . . , xm) = p(x1, . . . , xm)

p(x1, . . . , x j−1, x j+1, . . . , xm)

∓ p(x1, . . . , xm), (18.15)

because the denominator of the left hand side of Eq. (18.15) is independent of x j . It
can therefore be treated as a normalization constant when sampling x j .

Let us briefly discuss slice sampling: For reasons of simplicity we shall regard the
uni-variate case, where p(x) denotes the pdf from which we would like to sample.
In a first step we draw a random variable y0 uniformly from the interval [0, p(x0)],
where x0 is some initial value. The next random variable x1 is then obtained by
uniformly sampling it from the sliceS [p−1(y0)]. The sequence {x j } is constructed
by ignoring the y0 values. This procedure is illustrated in Fig. 18.1.

18.3 The Potts Model

As an illustrative example of the Metropolis algorithm we already discussed the
two-dimensional Ising model in Chap.15. Within this section, we shall discuss
another example, the q-states Potts model, which can be regarded as a general-
ization of the Ising model. The model is characterized by the Hamiltonian

H = −
∑

i j

Ji jδσi σ j , (18.16)

http://dx.doi.org/110.1007/978-3-319-02435-6_15
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where the notation used for the Ising model applies. In particular, we shall regard
the case Jij = J for i, j nearest neighbors and Jij = 0 otherwise. In contrast to
the Ising model, the spin realizations σi on grid-point i can take integer values
σi = 1, 2, . . . , q. For q = 2, the Potts model is equivalent to the Ising model,
which can be easily proved by rewriting the Hamiltonian as

H = J

2

∑
∀i j≈

2

(
1

2
− δσi σ j

)
− J

∑
i

1

2
. (18.17)

Here ∀i j≈ denotes sum over nearest neighbors. We observe that 2
[ 1
2 − δσi σ j

]
is

equal to +1 for σi = σ j and −1 for σi →= σ j . Moreover, the constant energy shift in
Eq. (18.17) can be neglected and we recover the Ising model of Chap.15.

The calculation of the observables of interest, i.e. ∀E≈, ∀M≈, ch and χ , as well as
the basic algorithm can be adopted from Chap.15 as it is.2 The only main difference
occurs at step 3 of the algorithm discussed in Sect. 15.2: Instead of setting σi j = −σi j

we draw the new value of σi j uniformly distributed from 1, 2, . . . , q excluding the
old value of σi j .

In Figs. 18.2, 18.3, 18.4 and 18.5 we show the mean energy per particle ∀ε≈,
the mean magnetization per particle ∀m1≈ (with Q = 1 in Eq. (18.18)), the heat
capacity ch as well as the magnetic susceptibility χ for q = 1, 2, . . . , 8 and J = 0.5
(Eq. (18.16)) versus temperature kB T . The size of the system was N × N with
N = 40. We performed 104 measurements per temperature and 10 sweeps where
discarded between two successive measurements in order to reduce correlations. The
equilibration time was set to 103 sweeps. A typical spin configuration for q = 4 and
kB T = 0.47 can be found in Fig. 18.6.

Fig. 18.2 The mean free
energy per particle ∀ε≈ versus
temperature kB T for a q-
states Potts model on a
40 × 40 square lattice, with
q = 1, 2, . . . , 8 and J = 0.5.
104 measurements have been
performed

2 We calculate the magnetization in a particular spin configuration Q via

MQ(C ) =
(∑

i

δσi ,Q

)

C

. (18.18)

http://dx.doi.org/110.1007/978-3-319-02435-6_15
http://dx.doi.org/110.1007/978-3-319-02435-6_15
http://dx.doi.org/110.1007/978-3-319-02435-6_15
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Fig. 18.3 The mean mag-
netization per particle ∀m1≈
versus temperature kB T for
a q-states Potts model on
a 40 × 40 square lattice, for
q = 1, 2, . . . , 8 and J = 0.5.
104 measurements have been
performed

Fig. 18.4 The heat capacity
ch versus temperature kB T
for a q-states Potts model
on a 40 × 40 square lattice,
with q = 1, 2, . . . , 8 and
J = 0.5. 104 measurements
have been performed. The
inset shows the specific heat
ch on a logarithmic scale in the
region around the transition
temperature

Fig. 18.5 The magnetic sus-
ceptibility χ versus tempera-
ture kB T for a q-states Potts
model on a 40 × 40 square
grid, with q = 1, 2, . . . , 8 and
J = 0.5. 104 measurements
have been performed. The
inset shows the magnetic sus-
ceptibility χ on a logarithmic
scale in the region around the
transition temperature

A number of interesting details can be observed in Figs. 18.2 and 18.3. First of
all, we observe that the meanmagnetization above the critical temperature decreases
with increasing values of q. The reason for this is obvious: the mean magnetization
for T � Tc represents the probability of finding a particular spin in state σi = 1,
which is equivalent to 1/q for a uniform distribution and therefore decreases with
increasing q. Please note that the expectation value of the magnetization ∀m Q≈ is
restricted to take the values from {0, 1} for T ⇐ TC due to the modified definition
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Fig. 18.6 A typical spin
configuration σi, j for a q-
states Potts model on a
40 × 40 square lattice with
q = 4, J = 0.5, and kB T =
0.47

Table 18.1 List of the
critical αc = J

kB Tc
of the

q-states Potts model for
q = 2, 3, . . . , 8

q αc

2 0.89
3 1.00
4 1.09
5 1.16
6 1.22
7 1.28
8 1.35

ofMQ(C ). This is in contrast to the Ising model where ∀m≈ ≥ {−1, 1} for T < Tc.
Hence, we obtain for T ⇐ TC ∀m1≈ = 0 with probability (q − 1)/q and ∀m1≈ = 1
with probability 1/q. However, the particular definition (18.18) of MQ(C ) is not
important since the physically relevant property of the Potts model Hamiltonian
(18.16) is the Zq symmetry with a degenerate ground state.

A second interesting feature is the observation that the critical temperature also
decreases with increasing q which becomes particularly transparent from Figs. 18.4
and 18.5. The critical temperatures are quoted in Table18.1. Finally, we deduce
from Fig. 18.2 that the phase transition is smoother for q = 2 and becomes dis-
continuous for large values of q. In particular, the q-states Potts model exhibits a
second order phase transition for q = 2, 3, 4 and a first order phase transition for
q > 4, which is hard to see from Figs. 18.2 and 18.3. However, there is another
method to unambiguously identify a first order phase transition. It is referred to as
the histogram technique. The mean energies of consecutive measurements near the
critical temperature are simply collected in a histogram. If one peak is observed,
the system fluctuates around a single phase, i.e. a second order phase transition was
observed. However, the existence of two or more peaks means that the system fluctu-
ates between two or more different phases and, therefore, exhibits a first order phase
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(a) (b)

Fig. 18.7 (a) Histogram of 104 measurements of the absolute value of the mean free energy per
particle |∀ε≈| for a q-states Potts model on a 40 × 40 square lattice at temperature kB T = 0.56
with q = 2. We observe one single peak which indicates that the system exhibits a second order
phase transition. (b) The same as (a) but for q = 8 and temperature kB T = 0.37. We observe two
well separated peaks, thus the system exhibits a first order phase transition

transition. In Fig. 18.7 we show two histograms for q = 2 (kB T = 0.56) and q = 8
(kB T = 0.37) from 104 measurements to prove our case.

One possible realization of the q = 3 states Potts model was discussed by
M. Kardar and A. N. Berker [2]. They studied the oversaturated adsorption of
Krypton atoms on a graphite surface. A detailed analysis of this system revealed that
three energetically degenerate sublattices are formed. It was further demonstrated
that the thermodynamic properties can be explained by a q = 3 states Pottsmodel.
For a more detailed discussion we refer to the original paper by M. Kardar and
A. N. Berker. Further applications of the Potts model are found in the review by
Wu [3].

The attentive reader may have noticed that our results do not carry error-bars. We
neglected error-bars for a clearer illustration. A short discussion of methods used
to calculate numerical errors was presented in Sect. 15.2 for the Ising model and
they can easily be adapted for the Potts model. More advanced techniques will be
introduced in the next chapter.

http://dx.doi.org/110.1007/978-3-319-02435-6_15
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18.4 Advanced Algorithms for the Potts Model

Within this section we shall briefly discuss some advanced techniques for the Potts
model. Although these algorithms are applicable for arbitrary q we shall restrict
our discussion to the case q = 2, i.e. the Ising model, for reasons of simplicity.
Let us briefly motivate the problem. For large N we observe the formation of spin
domains (regions in which all spins point in the same direction; Weiss regions)
for temperatures T ≈ Tc. In such a case this particular Metropolis algorithm is
disadvantageous because single spin flips will only affect the boundaries of these
domains (critical slowing down). It is therefore necessary to perform many sweeps
in order to produce configurations which are entirely different. It might therefore be
a better approach to flip the whole spin cluster at once. Such algorithms are referred
to as cluster algorithms. The main problem is the identification of clusters as well as
the assignment of a probability to the flip of a particular cluster.

As a first example we shall discuss the Swendsen-Wang algorithm [4]. The
algorithm is executed in the following steps:

1. Identify all links between two neighboring identical spins.
2. Define a bond between two linked spins with probability

P = 1 − exp (−2β J ) , (18.19)

with β = 1/(kB T ).
3. Identify all clusters, i.e. spins which are connected by bonds.
4. Flip every cluster with probability 1/2.
5. Delete the bonds and restart the iteration for the next spin configuration.

Figure18.8 shows a schematic illustration of a cluster.
We note the following properties of the Swendsen-Wang algorithm:

• The algorithm is ergodic because every spin forms a cluster on its own with a
non-vanishing probability according to Eq. (18.19).

• The algorithm fulfills detailed balance for the Boltzmann distribution and thus
reproduces the correct stationary distribution.

Since the algorithm breaks domain walls or flips whole clusters, this algorithm
can be regarded to be very efficient from a numerical point of view. However, it

Fig. 18.8 Schematic illus-
tration of the identification
of clusters according to the
Swendsen-Wang algorithm.
1 and 2 denote two different
spin orientations, bonds are
denoted by solid lines and all
bonded spins form clusters
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outperforms the single spin Metropolis algorithm only for temperatures near the
critical temperature because only then spin domains dominate the observables.

A simpler version of this algorithm consists of the following four steps:

1. Randomly pick a lattice site.
2. Find all neighbors with the same spin and form bonds with probability (18.19).
3. Move to the boundary of the cluster and repeat step 2, i.e. the cluster grows.
4. If no new bond is formed, flip the cluster with probability 1.

In this simplified version the identification of clusters is not necessary because each
cluster is built dynamically during the simulation. Such a formulation of a cluster
algorithm is theWolff algorithm [5]which is essentially a generalization of thework
of Swendsen and Wang [4]. The question arises why it is possible to accept every
step, i.e. flip every formed cluster, without contradicting the condition of detailed bal-
ance. The reason can be found in the definition of the probability of bond-formation.
An even more effective extension to quantum systems of theWolff algorithm is the
loop algorithm [6]. For a more detailed discussion of all these methods we refer the
interested reader to the literature [7] and to the particular papers cited here.

Before proceeding to the next chapter, let us briefly mention that there is also
an entirely different approach to improve the Metropolis algorithm for quantum
systems, the so called worm algorithms [6]. However, a detailed discussion of such
algorithms is beyond the scope of this book.

Summary

The dominant topic of this chapter was importance sampling, a method to improve
Monte Carlo methods by reducing the variance. In this method some hard to sample
pdf is approximated as closely as possible by another, easy to sample pdf and one
concentrates on intervals which particularly matter for an as accurate as possible
estimate of, for instance, an expectation value of some property f (x). In this sense
Markov-chain Monte Carlo techniques correspond to importance sampling as long
as detailed balance is obeyed. In this particular case theMarkov-chain is known to
approach the equilibrium distribution which must not necessarily be known in detail.
TheMetropolis algorithmwith its symmetric acceptance probability is one possible
realization of Markov-chains which obey detailed balance. Another method is the
Metropolis-Hastings algorithmwith its asymmetric acceptanceprobability. It also
obeys detailed balance and improves the variance over the ‘classical’ Metropolis
algorithm. The second part of this chapter was dedicated to the simulation of the
q-state Potts model, an extension of the Ising model. The Potts model has the
fascinating feature that it develops a second order phase transition for q ∪ 4 and
a first order phase transition for q > 4. Moreover, the transition temperature is
q-dependent. The numerical simulation of the physics of this model proved to be
able to pick up on all these particular features. Finally, some advanced algorithms
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developed for a more precise handling of various properties of spin-models, par-
ticularly around the phase transition, have been presented without going into great
detail.

Problems

1. Modify the program designed to solve the Ising model (see Problems in
Chap.15) in such a way that the physics of the q-states Potts model can be
simulated for arbitrary values of q. Try to reproduce the figures presented within
this chapter. In order to investigate the order of the phase transition, plot the inter-
nal energy per particle ∀ε≈ for T ≈ Tc in a histogram for different measurements.

The critical temperatures listed in Table 18.1 for q = 2, 3, . . . , 8 can be used to
validate your code.

2. Include a non-zero external field h and study its influence on the physics of the
q-states Potts model for different values of q.
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Chapter 19
Data Analysis

19.1 Introduction

This chapter will discuss some of the most important techniques to analyze data sets
of general origin and Monte-Carlo generated data in particular.

This program is easily motivated: the enormous importance of data analysis in
theoretical as well as experimental physics is hard to overestimate and it is a common
superstition, that data generated by numerical methods do not require to be analyzed
bymeans of statisticalmethods. This is quite generally not true and statistical analysis
of the data becomes even more important if the data themselves have been generated
by stochastic algorithms. For instance, simple tests for the quality of data generated
by random number generators have already been discussedwithin Chap.12 and some
simple estimators to approximate observables and to calculate respective errors have
been discussed in Chap.15. This chapter aims to summarize these techniques and to
introduce some of the more advanced techniques.

19.2 Calculation of Errors

We shall briefly reintroduce the simple estimators which have already been in use.
We approximate the expectation value ∈x∀ of some variable x

∈x∀ =
∫

dx xp(x), (19.1)

where p(x) is a pdf, by its arithmetic mean

∈x∀ ≈ x = 1

N

N∑
i=1

xi, (19.2)
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where the numbers xi follow the distribution p(x). It is of conceptual importance
to distinguish between the expectation value ∈x∀, which is a c-number while the
estimator x is a random number fluctuating around ∈x∀. The error of approximating
∈x∀ by x can be estimated by calculating the variance

var (x) = var (x)

N
=
〈
x2
〉− ∈x∀2

N
, (19.3)

for uncorrelated random numbers xi (see Appendix D). In case of correlated mea-
surements, the treatment becomes more involved and will be discussed in Sect. 19.3.
In Eq. (19.3), the expectation values

〈
x2
〉
and ∈x∀ may again be replaced by the corre-

sponding estimators x2 and x in order to obtain a reasonable estimate of the variance
var (x). In particular, we approximate

〈
x2
〉
≈ x2 = 1

N

N∑
i=1

x2i . (19.4)

This approximation has already been applied during the discussion of the Isingmodel
in Chap.15. In the case ofMarkov-chain Monte Carlo simulations, the result (19.3)
can be interpreted in a rather obviousway. If the simulation is repeated under identical
conditions roughly 68 % of all simulations would yield a mean value x within the
range [x − ξx, x + ξx], where ξx = ∞

var (x) is the standard error.
Let us briefly consider the quite familiar case where the underlying distribution

p(x) of a sequence of random numbers {xi} is unknown. In such a case one cannot
simply use a particular estimator without caring about the particular form of p(x).
A common way to proceed is the poor person’s assumption: The underlying distri-
bution is symmetric. This assumption has its origin in the central limit theorem (see
Appendix D). However, in order to avoid fatal misconceptions some intuitive checks
may be necessary. If the data sample is reasonably large one may obtain essential
information from presenting the data points in form of a histogram or, if the index i
refers to time instances, by plotting the time sequence. We shall briefly elaborate on
these intuitive checks.

From a histogram of the data set a first idea about the form of the underlying
distribution can be obtained. For instance, if there is only one peak, like in Fig. 19.1,
quantities like the mean or the variance might be useful. Anyhow, if there are two (or
more) separate peaks, like in Fig. 19.2, it may make no sense to calculate the mean
or variance by summing over the data points of both peaks. Such a situation may for
instance occur in statistical spin models, with two phases, for instance in the q-state
Potts model as illustrated in Fig. 18.7a, b.

In a similar fashion, plotting the time series, i.e. the data points xi as a function
of ti where the ti are discrete time instances, could reveal important information on
the properties of the data set. For instance systematic trends, outliers, or hints for
correlations may be observed.

http://dx.doi.org/10.1007/978-3-319-02435-6_15
http://dx.doi.org/10.1007/978-3-319-02435-6_18
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Fig. 19.1 Histogram gener-
ated by random sampling of
a Gaussian of mean zero and
variance one

Fig. 19.2 Histogram gener-
ated by random sampling of
two Gaussians of mean zero
and variance one, displaced
by +3 and −3, respectively

Let us turn our attention to some more advanced estimator techniques. So far
we discussed the sample mean and sample variance as candidates for unbiased
estimators.1 In a more general context the calculation of observables from data sets
might be more complex. In the following we assume a data set of N data points
(x1, x2, . . . , xN ). Basically, we would like to estimate a quantity of the form f (∈x∀)
where f is some particular function (for instance ∈x∀2). A bad (biased) estimatewould
be to calculate

f = 1

N

∑
f (xi), (19.5)

which is definitely not the quantity we are interested in because for N √ ⇒we have
f √ ∈f ∀. A better estimate would be to calculate

1 Since mean and variance are calculated from the same data points, they are usually not unbiased.
Therefore a common choice is the so called bias corrected variance var (x)B which is given by
var (x)B = N

N−1 var (x) where N is the number of data points. A more detailed discussion can be
found in any textbook on statistics [1].
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f (x) = f

(
1

N

∑
xi

⎛
, (19.6)

which converges to f (∈x∀) for N √ ⇒. The error of x is given by ξx as was outlined
above. The question immediately arises: how can we estimate the error attached to
f (x)? This will be answered exemplary on the basis of two different methods which
proved to be very successful in this context, the Jackknife method and the statistical
bootstrap method.

We define Jackknife averages

xJ
i = 1

N − 1

∑
j ≤=i

xj, (19.7)

and xJ
i is the average of all values xj ≤= xi. Moreover, we define

f J
i ≥ f (xJ

i ), (19.8)

and this opens the possibility to estimate f (∈x∀) following

f (∈x∀) ≈ f
J = 1

N

∑
i

f J
i , (19.9)

with the statistical error

ξ 2
f

J = (N − 1)
⎧
(f J)2 − (f

J
)2
⎪
, (19.10)

which can be written as

ξ 2
f

J = N − 1

N

∑
i

(f J
i − f

J
)2, (19.11)

for uncorrelated f J
i (see Appendix D).

In the case of the statistical bootstrap we consider again a set ofN data-points {xi}.
We randomly choose N elements from this data set without removal and calculate
for these N points the observable fi = f (1/N

⎨
j xi

j). This is repeated M-times and
we get

f (∈x∀) ≈ f BS = 1

M

∑
i

fi, (19.12)

and

ξ 2
f BS

= 1

M

∑
i

⎩
fi − f BS

)2
. (19.13)
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We note that this method has been employed in Chap. 15 in order to calculate the
error-bars of the observables as a function of temperature in Fig. 15.6. In the same
fashion the methods discussed here can be employed to estimate the errors attached
to the observables calculated for the Potts model in Chap.18.

Let us close this section with a short comment on systematic errors. As already
highlighted within Chap. 1 one also has to take care of possible systematic errors.
Like in experimental data, these errors are more likely to be overlooked since they
are rather hard to identify. In general, there is no method available to investigate
systematic errors. For instance, in the simulation of the Isingmodel, the main source
of errors is that we do not allow ourMarkov-chain to equilibrate completely, which
would be equivalent to running the simulation forever. Within the following section,
however, we will introduce the notion of an auto-correlation time which, at least,
allows for a systematic investigation of this fundamental problem.

However, in general it is not possible to give a standard procedure which allows
to determine an estimate of systematic errors.

19.3 Auto-Correlations

The situation becomesmore involved whenever the random numbers of the sequence
{xi} are correlated, i.e. cov

⎜
xi, xj

) ≤= 0 for i ≤= j.We interpret now the elements of the
series {xi} as successive members of a time series. Hence, the covariances between
elements xi and xj account for auto-correlations of a certain observable between
different time steps. We rewrite Eq. (19.3):

var (x) =
〈
x2
〉
− ∈x∀2

= 1

N2

N∑
i,j=1

〈
xixj
〉− 1

N2

N∑
i,j=1

∈xi∀
〈
xj
〉

= 1

N2

N∑
i=1

⎩〈
x2i

〉
− ∈xi∀2

)

+ 1

N2

∑
i ≤=j

⎜〈
xixj
〉− ∈xi∀

〈
xj
〉)

. (19.14)

The first term on the right hand side of Eq. (19.14) is identified as var (xi) /N which
is assumed to be identical for all i, i.e. var (xi) ≥ var (x). Furthermore, we rewrite
the sum ∑

i ≤=j

· = 2
N∑

i=1

N∑
j=i+1

· ,

in order to obtain

http://dx.doi.org/10.1007/978-3-319-02435-6_15
http://dx.doi.org/10.1007/978-3-319-02435-6_15
http://dx.doi.org/10.1007/978-3-319-02435-6_18
http://dx.doi.org/10.1007/978-3-319-02435-6_1
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var (x) = 1

N


⎟var (x) + 2

N

N∑
i=1

N∑
j=i+1

cov
⎜
xi, xj

)

 . (19.15)

Let us assume time translational invariance, i.e.

cov
⎜
xi, xj

) ≥ C(j − i), (19.16)

for j > i. Plugging expression (19.16) into Eq. (19.15) yields

var (x) = 1

N


⎟var (x) + 2

N

N∑
i=1

N∑
j=i+1

C(j − i)




= 1

N

[
var (x) + 2

N

N∑
k=1

C(k) (N − k)

]

= 1

N

[
var (x) + 2

N∑
k=1

C(k)

(
1 − k

N

⎛]
. (19.17)

Hence, we have

var (x) = var (x)

N
2θ̂ i

x, (19.18)

where we introduced the (proper) integrated auto-correlation time θ̂ i
x via

θ̂ i
x = 1

2
+

N∑
k=1

A(k)

(
1 − k

N

⎛
, (19.19)

with the normalized auto-correlation function

A(k) = C(k)

C(0)
= cov (xi, xi+k)

var (xi)
. (19.20)

In most cases we are interested in the limit N √ ⇒ of Eq. (19.19):

θ i
x = lim

N√⇒ θ̂ i
x = 1

2
+

⇒∑
k=1

A(k). (19.21)

Let us briefly investigate the particular form of the auto-correlation function A(k)

in order to further simplify relation (19.21).Duringour discussionofMarkov-chains
in Sect. 16.4 we observed that the stationary distribution ω is the left-eigenvector of
the transition matrix P with eigenvalue 1, as expressed in Eq.16.76. Let {τπ} denote

http://dx.doi.org/10.1007/978-3-319-02435-6_16
http://dx.doi.org/10.1007/978-3-319-02435-6_16
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the set of all left-eigenvectors of the matrix P with eigenvalues ϕπ, i.e. τπP = ϕπτπ.2

We may then express an arbitrary state q(0) in this basis as

q(0) =
∑

i

αiτi. (19.22)

It follows from Eq. (16.4) that after n consecutive time steps we have

q(n) = q(0)Pn =
∑

i

αiτiP
n =

∑
i

αiϕ
n
i τi. (19.23)

Let us assume that we are interested in some observable O(n) at some time n. The
observable can be expressed as

O(n) =
∑

i

[q(n)]ioi =
∑

i

αiϕ
n
i oi, (19.24)

where we defined with oi the expectation value of O in the i-th eigenstate τi. For
large n the value of O(n) will be dominated by the largest eigenvalue of P, say ϕ0,
and we denote this value by O(⇒) = α0o0. This allows to rewrite Eq. (19.24) as

O(n) = O(⇒) +
∑
i ≤=0

αioiϕ
n
i . (19.25)

Let ϕ1 ∓ R be the second largest eigenvalue and let us define the exponential auto-
correlation time θ e

x via

θ e
x = − 1

log(ϕ1)
. (19.26)

This allows to approximate O(n) for large n by

O(n) ≈ O(⇒) + ε exp

(
− n

θ e
x

⎛
, (19.27)

where ε is some constant. Hence, the auto-correlation obeys

C(n) → [O(0) − O(⇒)] [O(n) − O(⇒)] → ε exp

(
− n

θ e
x

⎛
, (19.28)

and we can simply set for the auto-correlation function A(k)

A(k) = η exp

(
− k

θ e
x

⎛
, (19.29)

2 Note that since P is a stochastic matrix, it follows that |ϕπ| ≤ 1 for all π. Furthermore, it can be
shown that the largest eigenvalue of a stochastic matrix is equal to 1.

http://dx.doi.org/10.1007/978-3-319-02435-6_16
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where η is some constant.
This result is now used in the expression for the integrated auto-correlation time

(19.21) and the result is:

θ i
x = 1

2
+ η

⇒∑
k=1

⎢
exp

(
− 1

θ e
x

⎛]k

= 1

2
+ η


⎟ 1

1 − exp
⎩
− 1

θ e
x

) − 1




= 1

2
+ η

exp
⎩
− 1

θ e
x

)

1 − exp
⎩
− 1

θ e
x

) . (19.30)

For large θ e
x ⇐ 1 the exponential function can be expanded into a Taylor series

up to first order and we obtain

θ i
x = 1

2
+ η

1 − 1
θ e

x

1
θ e

x

= 1

2
+ η

⎜
θ e

x − 1
) → η θ e

x . (19.31)

However, we note that in general relation (19.31) is a poor approximation because
usually the exponential auto-correlation time is very different from the integrated
auto-correlation time.

Let us briefly discuss our results. A comparison between Eqs. (19.3) and (19.18)
reveals that due to correlations in the time series, the number of effective data points
is reduced by a factor 2θ̂ i

x , i.e.

Neff = N

2θ̂ i
x
. (19.32)

In the limit θ e
x √ 0 we obtain θ i

x = 1/2 and therefore recover Eq. (19.3). We note
that the effective number of measurements is the relevant quantity whenever the error
of a Monte Carlo integration is calculated.

Moreover, one can measure the exponential auto-correlation time θ e
x for an esti-

mate of the number of steps that should be neglected between two successive mea-
surements. This is achieved by fitting the auto-correlation A(k) with an exponential
function. A brief introduction to least squares fits can be found in Appendix G.

In a final remark we note that the auto-correlation times may be very different for
different observables.
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19.4 The Histogram Technique

The histogram technique is a method which allows to approximate the expectation
value of some observable for temperatures near a given temperature T0 without
performing furtherMarkov-chainMonte Carlo simulations. The basic idea is easily
sketched. Suppose the observable O is solely a function of energy E. We perform a
Markov-chain Monte Carlo simulation for a given temperature T0 and measure the
energy E several times. The resulting measurements are sorted in a histogram with
bin width δE as was demonstrated in Sect. 18.3. In what follows n(E) shall denote
the number of configurations measured within the interval (E, E + δE). Hence, the
probability of measuring an energy within the interval (E, E + δE) is given by

PH(E, T0) = n(E)

M
, (19.33)

where the index H refers to histogram and M = ⎨
E n(E) is the number of mea-

surements. However, we note that this probability can also be expressed by the
Boltzmann distribution

P(E, T) =
N(E) exp

⎩
− E

kBT

)
⎨

E N(E) exp
⎩
− E

kBT

) , (19.34)

where N(E) denotes the number of micro-states within the interval (E, E +δE). We
note that N(E) is independent of the temperature T and that relation (19.34) is valid
for all temperatures T . In particular for T = T0 we have

PH(E, T0) = P(E, T0), (19.35)

which immediately yields

N(E) = αn(E) exp

(
E

kBT0

⎛
, (19.36)

whereα is some constant.We remember that n(E) is the distribution of configurations
measured at T0. Inserting Eq. (19.36) into (19.34) yields

P(E, T) =
n(E) exp

⎧
−
⎩

1
kBT − 1

kBT0

)
E
⎪

⎨
E n(E) exp

⎧
−
⎩

1
kBT − 1

kBT0

)
E
⎪ , (19.37)

for arbitrary T . The expectation value of the observable O at some temperature T ,
i.e. ∈O∀T , can now be calculated from

http://dx.doi.org/10.1007/978-3-319-02435-6_18


296 19 Data Analysis

∈O∀T =
∑

E

O(E)P(E, T)

=
⎨

E O(E)n(E) exp
⎧
−
⎩

1
kBT − 1

kBT0

)
E
⎪

⎨
E n(E) exp

⎧
−
⎩

1
kBT − 1

kBT0

)
E
⎪ . (19.38)

It is, therefore, not necessary to run an additional Markov-chain Monte Carlo
simulation in an attempt to compute the expectation value for T in the vicinity
of T0. However, if T0 deviates strongly from T , the above procedure (19.38) is not a
good approximation because the relevant configurations for T may have been very
improbable at T0 and may therefore not have been reproduced sufficiently often in
the original Markov-chain Monte Carlo simulation.

Summary

Data analysis is an important but often neglected part of natural sciences and in
particular of numerical simulations. It consists mainly of consistency checks and
error analysis. This chapter concentrated in a first step on error analysis. It discussed
the most common methods to arrive at an estimate of the error involved whenever
expectation values of some property are analyzed. These went beyond all those
methods which have already been discussed in some detail throughout this book. In a
second step auto-correlations have beendiscussed. They should be part of consistency
checks and give valuable information about possible systematic errors. The auto-
correlation analysis is of particular importance whenever the quality of the sequence
of random numbers is crucial to a particular simulation. (Experiments in which the
events are expected to be random, like radioactive decay, fall also into this category.)
Nevertheless, this method can also be very useful in Markov-chain Monte Carlo
simulations as it allows to define and determine an auto-correlation time which can
be used as a measure of the number of sweeps which have to be neglected between
two consecutive measurements. Finally, the histogram technique was introduced as
a method of data interpolation. It allows in addition to the applications which have
already been presented within this book to estimate the expectation value of some
property at some ‘temperature’ T if the expectation value of this same property is
known at some other temperature T0 if T ∼ T0 and if the equilibrium distribution
is known. Thus, in most cases there is no need to run an additional simulation at
temperature T .
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Problems

1. Calculate the auto-correlation function for random numbers generated by the two
linear congruential generators discussed in Sect. 12.2. Check also the random
number generator provided by your system. Discuss the results.

2. Potts model: Calculate the error attached to the specific heat ch and the sus-
ceptibility χ using the Jackknife method for all values of q = 1, . . . , 8. Plot the
corresponding diagrams and discuss the results. Determine the exponential and
integrated correlation time.

Reference

1. Iversen, G.P., Gergen, I.: Statistics. Springer Undergraduate Textbooks in Statistics. Springer,
Berlin (1997)
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Chapter 20
Stochastic Optimization

20.1 Introduction

Let us define the problem: Suppose x ∈ S is some vector in an n-dimensional search
space S and let H : S ∀ R be a mapping from the search space S onto the real
axis R. The function H plays a particular role and is usually referred to as the cost
function. A minimization problem can be defined in a very compact form:

Find x0 ∈ S, such that H(x0) is the global minimum of the cost function H.

In analogue, a maximization problemwith cost functionH defines a minimization
problem with cost function G = −H. The class of both problems is referred to as
the class of optimization problems. In what follows only minimization problems are
considered.

The reader might be aware that there is an uncountable number of examples of
applications in physics and related sciences which actually are optimization prob-
lems. We list a few in order to remind ourselves of their fundamental importance:

• The set of linear equations Ax = b is in many cases regarded as a minimization
problem: H(x) = ≈Ax − b≈2 for high dimensional problems.

• The quantum mechanical ground state energy E0 is given by

E0 = min
ξ

∞ξ | H | ξ √
∞ξ | ξ √ , (20.1)

where |ξ √ denotes the wave function and H is the Hamiltonian of the system.
• High dimensional and highly non-linear least squares fits. (More details can be
found in AppendixG).

• The equilibrium crystal structure of solids is obtained by minimization of the free
energy.

• Protein folding is described byminimization of the forces in amolecular dynamics
problem.

• etc.

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 299
DOI: 10.1007/978-3-319-02435-6_20, © Springer International Publishing Switzerland 2014
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Whenever the cost function is at least once differentiable,methods of deterministic
optimization canbe applied. (Two simple deterministic optimizationmethods are pre-
sented in AppendixH.) On the other hand, if H is not differentiable or too complex,
due to a huge search space S or many local minima, methods of stochastic optimiza-
tion can be employed. The term stochastic optimization is used for methods which
contain at least one step which is based on random number generation. Let us briefly
give some examples of problems for which deterministic methods fail:

• The Traveling Salesperson Problem: A traveling salesperson has to visit L cities
in a tour as short as possible under the constraint that he/she has to return to the
starting point in the end. Each city has to be visited only once, hence the cities
have to be ordered in such a way that the travel length becomes a global minimum.
In particular, the cost function

H({i}) =
L∑

θ=1

|xiθ+1 − xiθ | , (20.2)

has to be minimized. Here {i} denotes a certain configuration of cities and we set
iL+1 = i1. Obviously, we cannot calculate the first derivative of H with respect
to {i}, set it zero, and solve the problem in the classical way. On the other hand,
a brute force approach of calculating H({i}) for all possible arrangements {i} is
not possible since we have L! different possible routes. Since for one particular
choice all L starting points and both travel directions yield the same result, we
have to calculate L!

2L = (L−1)!
2 different configurations {i}. We would have about

10155 different choices for L = 100 cities! This clearly makes such an approach
intractable.

• The arrangement of timetables under certain constraints. In particular, the design
of timetables in schools, universities or at airports. This problem is also referred
to as the Nurse Scheduling Problem for obvious reasons.

• The Ising spin glass: In contrast to the classical Ising model, the Ising spin
glass is characterized by nearest neighbor interactions Ji j which are, in the most
simple case, chosen to be Ji j = +1 and Ji j = −1 with the same probability.
In this case the ground state below the critical temperature is not simply given
by a configuration in which all spins point in the same direction. Of course, the
ground state configuration in such a case can be highly degenerate. The fact that
such amodel can be simulated usingMarkov-chainMonte Carlo methods as they
have been discussed within Chaps. 15 and 18 gives us some idea of how one may
employ stochastic methods to solve optimization problems.

• The N-Queens Problem: Place N queens on a N × N chessboard in such a way
that no two queens attack each other. In particular, this means that two queens
are not allowed to share the same row, the same column, and the same diagonal.
It can be shown that the problem possesses solutions for N ⇒ 4. One defines a
functionH({n})which counts the number of attacks in a certain configuration {n}.
For instance, for N = 4, the configuration

http://dx.doi.org/10.1007/978-3-319-02435-6_15
http://dx.doi.org/10.1007/978-3-319-02435-6_18
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has H({n}) = 2. On the contrary, the configuration

solves the 4-queens problem, i.e. H({n}) = 0.

We will discuss here some of the most basic methods of stochastic optimiza-
tion: the method of hill climbing, the method of simulated annealing, and genetic
algorithms. The ideas on which several more advanced techniques are based will be
sketched in Sect. 20.5.

20.2 Hill Climbing

Themethod of hill climbing is probably one of the most simple methods of stochastic
optimization. Given a cost function H(x), we proceed with the following steps:

1. Choose an initial position x0.
2. Randomly pick a new xn from the neighborhood of xn−1.
3. Keep xn if H(xn) ≤ H(xn−1).
4. Terminate the search if no new xn can be found in the neighborhood of xn−1.

We note that in order to execute the algorithm a neighborhood relation is required.
In particular, for instance in the case of the traveling salesperson problem it is by no
means clear what a configuration in the neighborhood of a certain route {i} should
mean. This neighborhood relation has to be defined for each problem and we discuss
here two possibilities.

In the case of the traveling salesperson or the Ising spin glass model the neigh-
borhood of a route {i} or of a configuration C can be defined as the set of all routes
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{i} in which two cities have been interchanged or as the set of all configurations C
in which one spin has been flipped.

On the other hand, if the search space S = R
n we may define the neighborhood

as the number of points within an n-sphere of radius r centered at z ≥ xn−1. It is
rather simple to sample points from an n-sphere centered at the origin by apply-
ing the method of G. Marsaglia [1]: For an n-dimensional vector we sample all
components x1, . . . , xn from the normal distribution N (0, 1) with mean zero and
variance one. The points are then transformed according to

x j ∀ x ∓
j = r

≈x≈ x j + z j , (20.3)

where ≈x≈ denotes the Euclidean norm of the vector x . The points given by Eq. (20.3)
lie on the surface of then-spherewith radius r . In order to obtain uniformly distributed
random points within a sphere with radius r we draw a random number u ∈ [0, 1]
and calculate

x j ∀ x ∓
j = u

1
n x j , (20.4)

where the factor 1/n in the exponent of u ensures that the points are uniformly
distributed.

Let us briefly summarize the most important properties of the method of hill
climbing:

• The way the algorithm is defined it will terminate in a local minimum, not in the
global minimum. A possible remedy to this caveat is achieved by restarting the
algorithm several times from different initial positions. Information gathered from
previous runs can help to make a good choice for the initial positions of restarts.

• How the global minimum is obtained depends highly on the choice of the initial
conditions and this is very similar to the situation when deterministic methods of
optimization (AppendixH) are employed. Sometimes it may even be of advantage
to accept points which result in a slight increase of the cost function’s value just
to escape a local minimum.

• For most problems this method is very expensive from a computational point of
view.

We apply the method of hill climbing to the N -queens problem for N = 8. The
algorithm is executed in the following way: In the initial configuration the queens are
set randomly on the chessboard andwe place only one queen in each row and column.
It is then checked whether or not two queens attack each other. If they do, a new
configuration is generated by picking two queens at random and by changing their
respective positions. This is repeated until a configuration arises in which none of the
queens attacks another. Hence, the algorithm resembles a random walk in parameter
space (i.e. possible configurations under the constraint that only one queen is placed
in each row and column), which is terminated as soon as no queen is attacked by
any other queen. It is rather obvious that this strategy is not very fast, however, one
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possible solution to the problem for N = 8 can easily be found within a couple of
iterations:

However, for large N the method of hill climbing is definitely not a good method
for the N -queens problem.

20.3 Simulated Annealing

Let us turn our attention to another method, i.e. simulated annealing. Simulated
annealing is a method which is highly motivated by physics. In order to reconstruct
its train of thoughts let us consider the Ising spin glass introduced in Sect. 20.1. As
in the case of the Ising model, Chap.15, we know from thermodynamics that the
equilibrium distribution of configurations P(C , T ) at a certain temperature T is a
Boltzmann distribution

P(C , T ) = 1

Z
exp

[
− H(C )

kB T

]
, (20.5)

where H(C ) is the Hamilton function of the system. In particular, we expect that
the system is in its ground state (let us assume a non-degenerate ground-state for
the time being) with probability one in the limit T ∀ 0, provided that we cooled
sufficiently slow, i.e. let the system enough time to equilibrate. This provides a rather
interesting method to solve an optimization problem:We take the cost functionH(x)

and define the probability for the realization of a particular point in the search space
x0 ∈ S by

P(x0, T ) = 1

Z
exp

[
−H(x0)

T

]
, (20.6)

http://dx.doi.org/10.1007/978-3-319-02435-6_15
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where T is some external parameter which we refer to as temperature for reasons of
convenience. Moreover, in Eq. (20.6) Z denotes the normalization constant, i.e.

Z = ∑∫
x∈S

dx exp

[
−H(x)

T

]
. (20.7)

We then take some finite initial temperature T0 →= 0 and construct a Markov-
chain of realizations {xn} which converges towards the distribution (20.6), as we
did in the case of a Markov-chain Monte Carlo methods in Chap.18. Of course,
we choose a sampling technique which does not require the explicit knowledge of
the normalization Z , such as theMetropolis-Hastings algorithm of Sect. 18.2. As
soon as theMarkov-chain reaches its stationary distribution for a given temperature
T , we slightly decrease the temperature and restart theMarkov-chain with the last
configuration of the previous temperature.

It is of advantage to choose an initial temperature at which a large part of the
search space S can be covered, i.e. the acceptance probability for a new realization
in the Markov-chain is almost equal for all x ∈ S. Otherwise, some regions of
the search space might be excluded from our search routine by an unlucky choice
of the initial configuration. In particular the result might be a configuration in the
neighborhood of the initial configuration of the Markov-chain and it is, therefore,
most likely a local minimum rather than the global minimum.

The method outlined in the above paragraphs is commonly referred to as the
classical version of simulated annealing. The name for the algorithm stems from the
annealing process in metallurgy, where a metal is first heated and then slowly cooled
in order to reduce the amount of defects in the material. The same principles hold
for this algorithm: by slowly cooling the searchMarkov-chain, we slowly exclude
unimportant parts of the search space by decreasing their acceptance probability.
Nevertheless, the chain is given enough time to explore the whole remaining search
space at each temperature.

We note that the algorithm consists of the following essential ingredients: (i)
a proposal probability for new states x within search space S, (ii) an acceptance
probability PA(x ∓ ∀ x) for a proposed x from a previous state x ∓, and (iii) a cooling
strategy T = T (t), where t is time. Let us briefly elaborate on these points.

(i) Proposal Probability

The question of how to generate new states x from a previous state x ∓ within the
search space S is closely related or even identical to the definition of a neighborhood
in the case of hill climbing in Sect. 20.2. It is therefore not necessary to repeat the
above discussion, we simply refer to it. The proposal probability will be denoted by
Pp(x ∀ x ∓) in what follows.

http://dx.doi.org/10.1007/978-3-319-02435-6_18
http://dx.doi.org/10.1007/978-3-319-02435-6_18
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(ii) Acceptance of Probability

The acceptance probability has to be chosen in such a way that the sequence of
generated states constitutes a Markov-chain which converges towards the distri-
bution (20.6). Hence, detailed balance has to be imposed and the implications of
this requirement have been discussed extensively in Chap. 18. Note that the proposal
probability has to be included into the definition of the acceptance probability, see
Sect. 18.2.

We note that the particular choice of aMetropolis-Hastings acceptance prob-
ability

Pa(x ∀ x ∓, T ) = min

(
1,

P(x ∓, T )

P(x, T )

Pp(x ∓ ∀ x)

Pp(x ∀ x ∓)

)
, (20.8)

appears to be quite natural for several reasons:

• It is very general and can, thus, also handle asymmetric proposal probabilities.
• In the symmetric case, i.e. for Pp(x ∀ x ∓) = Pp(x ∓ ∀ x), we have for H(x ∓) ≤
H(x) according to our choice (20.6)

P(x ∓, T )

P(x, T )
= exp

{
1

T

[
H(x) − H(x ∓)

]} ⇒ 1 , (20.9)

and the state x ∓ is accepted with probability 1. Moreover, for H(x ∓) > H(x), x ∓
may still be accepted with some finite probability Pa(x ∀ x ∓, T ) which offers an
opportunity to escape a local minimum.

Let us now turn our attention to the choice of a proper cooling strategy.

(iii) Cooling Strategy

The design of a proper cooling strategy includes both, the choice of an appropriate
initial temperature T0 as well as the formulation of a mathematical rule which defines
Tn+1 = f (Tn) where Tn+1 < Tn .

We discuss the choice of the initial temperature in a first step. A common choice
for the initial temperature is to choose it in such a way that at least 80 % of all
generated states can be accepted. One determines this temperature by taking some
arbitrary T0 > 0 and generating N states. If the number of rejected states Nr is
greater than 0.2N , then the temperature T0 is doubled and the number of rejected
states is measured again.

Another more sophisticated choice is based on the following idea: In the best
case the initial temperature reaches infinity, i.e. T0 ∀ ∞, because in this case
the acceptance probability is one for all states independent of H(x), and we per-
form a random walk in search space S. We calculate the mean value ∞H√∞ and

http://dx.doi.org/10.1007/978-3-319-02435-6_18
http://dx.doi.org/10.1007/978-3-319-02435-6_18
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the variance var (H)∞. Thus, the function values H fluctuate between [∞H√∞ −√
var (H)∞, ∞H√∞ +√

var (H)∞]. We consider now the expectation value ∞H√T0 for
large T0, when ε = 1/T0 is small, and find with p(x, ε) = P(x, T ) = q(x, ε)/Z(ε)

∞H√ε =
∫

dx p(x, ε)H(x)

≥ 1

Z(ε)

∫
dx q(x, ε)H(x)

⇐ 1

Z(ε)

∫
dx q(x, ε)H(x)

∣∣∣∣
ε=0

+ ε

∫
dx

d

dε

(
1

Z(ε)
q(x, ε)

)
H(x)

∣∣∣∣
ε=0

= ∞H√0 + ε

∫
dx

[
p(x, ε) ∞H√ε − H(x)p(x, ε)

]
H(x)

∣∣∣∣
ε=0

= ∞H√0 − ε
[〈
H

2
〉
0
− ∞H√20

]
. (20.10)

Re-substituting T0 = 1/ε results, finally, in:

∞H√T0 ⇐ ∞H√∞ − var (H)∞
T0

. (20.11)

T0 is now chosen in such a way that the expectation value ∞H√T0 borders infinite
temperature fluctuations and we set consequently

∞H√T0 = ∞H√∞ − √
var (H)∞ , (20.12)

with the implication that
T0 = √

var (H)∞ . (20.13)

Having discussed in quite some detail the choice of an initial temperature it is
now time to investigate possibilities of an appropriate cooling strategy. An often used
cooling strategy is the geometric cooling schedule

Tn = T0qn , (20.14)

with 0 � q < 1. However, for a particular cost function H(x) one might observe
several phase transitions during the cooling process. Naturally, the expectation value
∞H√ changes rapidly in the region T ⇐ Tc and it is therefore advantageous to take
such a possibility into account and to design the cooling strategy accordingly.

Hence, a more appropriate strategy is to use temperature changes which cause
only slightly modified acceptance probabilities. In particular, we demand that

1

1 + δ
<

P(x, Tn)

P(x, Tn+1)
< 1 + δ , (20.15)
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with 0 < δ � 1. Assuming a Boltzmann type distribution for P(x, Tn), we obtain

exp

[
−H(x)

(
1

Tn
− 1

Tn+1

)]
< 1 + δ , (20.16)

or

Tn+1 >
Tn

1 + Tn
H(x)

ln(1 + δ)
. (20.17)

Hence, we can choose

Tn+1 ⇐ Tn

1 + Tn

3
∪

var(H)Tn
ln(1 + δ)

, (20.18)

where we replaced H(x) ⇐ 3
√
var (H)Tn

. This choice is plausible if one recognizes
that we can replace H(x) ∀ H(x) − Hmin in the above calculations, where Hmin
represents the (unknown) minimum of H(x). This cooling schedule is known as the
Aarts schedule.

The final question concerns the termination of the algorithm. Typically, there are
several choices. We shall briefly note the most popular procedures. Obviously, the
first choice is to terminate the algorithm as soon as the acceptance ratio is below
a predefined threshold value. A more sophisticated choice is to terminate the algo-
rithm whenever the mean value ∞H√ ⇐ const reaches some constant value. A totally
different approach would be to initially choose a maximum number of iterations or
to set the final temperature T f to some reasonable value. Of course, the termination
condition has to be defined for each particular problem individually.

Before discussing a specific example, let us briefly present some further points
which can be found in the literature. It has been demonstrated [2] that the optimal
cooling strategy for a Boltzmann type distribution is of the form

Tn ∝ 1

ln(n)
. (20.19)

In this case one finds the global minimumwith probability one. However, the conver-
gence toward this minimum is rather slow. Moreover, several extensions of classical
simulated annealing have been suggested in the literature. For instance, fast simulated
annealing uses a Cauchy distribution instead of a Boltzmann distribution:

P(x, T ) = T(
x2 + T 2

) d+1
2

. (20.20)

Here d is the dimension of the search space S. The optimal cooling strategy for such
a distribution function is of the form
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Tn ∝ 1

n
, (20.21)

which signifies a considerable increase in convergence speed in comparison to
Eq. (20.19).A further generalization is referred to as generalized simulated annealing
and is based on the Tsallis distribution which depends on an external parameter ε:

Pε(x, T ) = 1

Z

[
1 + εH(x)

kB T

]− 1
ε

. (20.22)

It can be demonstrated that Pε converges towards the Boltzmann distribution for
ε ∀ 0. Furthermore, we mention that the concept of the Tsallis distribution is
closely intertwined with the definition of the Tsallis entropy and the formulation
of non-extensive thermodynamics [3].

As a first illustrative example we discuss the traveling salesperson problem for
cities on a regular grid because in this case the optimal route is easily identified. We
calculate the initial temperature from Eq. (20.13) and employ the geometric cooling
schedule (20.14) with q = 0.99 together with a termination criterion of the form

∞H√Tn − ∞H√Tn−1 < η , (20.23)

where η is the required accuracy. In Fig. 20.1 we show the path for two different
temperatures T and N = 36 cities. This case will in what follows be called the first
scenario. In a second scenario we place 36 cities in four equally spaced clusters.
Results for the optimal route are presented in Fig. 20.2.

Fig. 20.1 (a) Initial route of the traveling salesperson for 36 cities on a regular grid. (b) One of
many optimal routes of the traveling salesperson for 36 cities on a regular grid
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Fig. 20.2 (a) Initial route of the traveling salesperson for 36 cities placed in four equally spaced
clusters. (b) One of many optimal routes of the traveling salesperson for 36 cities placed in four
equally spaced clusters

Fig. 20.3 (a) The expecta-
tion value ∞H√T and (b) the
‘specific heat’ ch versus tem-
perature T for scenario one

(a) (b)

In a genuine physical system the question whether a possible phase transition is
of first or second order is solely determined by the Hamilton function H(x) of the
system. As an intriguing example we refer to the q-states Pottsmodel of Sect. 18.3
where a second order phase transition was observed for q ≤ 4 and a first order phase
transition for q > 4. In analogue, the order of a ‘phase transition’ during the iteration
process toward the global minimum in simulated annealing is completely determined
by the particular form of the cost function H(x). To follow up on this comment, the
expectation values of ∞H√T and of the ‘specific heat’ ch are compared for the two
scenarios as functions of temperature T . Figures20.3a, b presents the results for
scenario one and Figs. 20.4a, b those for scenario two. The second scenario develops
two second order phase transitions while in the first scenario only one second order

http://dx.doi.org/10.1007/978-3-319-02435-6_18
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Fig. 20.4 The same as
Fig. 20.3 but for scenario
two. Two first order phase
transitions are observed. They
are indicated by down arrows
labeled (1) and (2)

(a) (b)

phase transition can be observed. The first phase transition of the second scenario
(at T ⇐ 3.5) can be related to the optimization of the clusters’ sequence while in
the second phase transition (at T ⇐ 0.42) the sequence of cities within the clusters
becomes finalized. These two transitions are indicated by down arrows labeled (1)
and (2).

20.4 Genetic Algorithms

The sparkling idea of genetic algorithms has originally been lent from natures
survival of the fittest. The basic intentions are quickly summarized by remember-
ing the natural evolution of a particular species within a hostile environment: The
individuals of the species reproduce from one generation to another. During this
process the genes of the individuals are modified by local mutations. Individuals
best accustomed to the environment then survive with higher probability. This very
last process is referred to as selection. By iterating this process for large populations
the individuals of the whole species will adjust their properties to the environment
on average,1 and, thus, the individuals will be better equipped for survival within
the hostile environment. A large population is compulsory in order to obtain a huge
variety in the phenotype of the individuals. Algorithms based on such a scheme are
referred to as genetic algorithms.

We are not going into the details of the implementation of genetic algorithms
because this is beyond the scope of this book. However, the ideas sketched above
will be applied to the problem of the traveling salesperson passing through m-cities
just to illustrate the method. Let s = (s1, . . . , sm) ∈ N

m denote a list of m integers,
which obey si ≤ i . For instance, for m = 10, s might be given by

1 Note that in the real world the environment (in particular the natural enemies of a species) develop
as well. Moreover, we do not consider any communication within a species, like the formation of
societies, learning, and related processes.
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Table 20.1 Sample tour to illustrate the recovery of the order of cities within a genetic algorithm

ŝ 1 2 3 4 5 6 7 8 9 10 Tour

9 1 2 3 4 5 6 7 8 [9] 10 ∀ 9
4 1 2 3 [4] 5 6 7 8 10 ∀ 4
3 1 2 [3] 5 6 7 8 10 ∀ 3
3 1 2 [5] 6 7 8 10 ∀ 5
5 1 2 6 7 [8] 10 ∀ 8
1 [1] 2 6 7 10 ∀ 1
4 2 6 7 [10] ∀ 10
2 2 [6] 7 ∀ 6
2 2 [7] ∀ 7
1 [2] ∀ 2

Elements indicated by [x] are ‘selected’ elements which are added to the column Tour

s = (1, 2, 2, 4, 1, 5, 3, 3, 4, 9). (20.24)

The order of cities is then recovered by setting ŝ = (sm, . . . , s1) and performing the
steps illustrated in Table20.1.

In words: The vector ŝ labels the elements taken from the list (1, 2, . . . , m) with
removal. The resulting list Tour specifies the optimum sequence of the cities. The
genetic algorithm is executed in the following steps:

• Define M initial individuals.
• Mutation: for each individual we introduce a single random local modification
with probability pmut.

• Reproduction: We produce M additional individuals by pairwise combining the
parents. This is performed by

(a) Pick two individuals at random.
(b) Draw a random integer r ∈ [1, m − 1] and replace the first r genes of the first

individual by the first r genes of the second individual and vice versa.

In this way, we obtain 2M individuals.
• Selection: The M individuals with the highest fitness, i.e. the lowest value of the
cost function survive.

The above steps are repeated until the desired number of generations has been
achieved.

In Fig. 20.5 we show the optimal path for the traveling salesperson problem
discussed in the previous section, but now for N = 30 cities. It was obtained with
the genetic algorithm described here. The number of individuals was chosen to be
M = 5000 and the number of generations to be G = 5000.

Some remarks are appropriate: First of all we note that there are many different
permutations of how a genetic algorithm can be realized. In particular, it is the prob-
lem which determines the most convenient form to implement the essential ingredi-
ents: mutation, reproduction, and selection. However, particular care is required in
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Fig. 20.5 (a) The random route of one individual out of the population of 5000. (b) One of many
optimal routes of the traveling salesperson for N = 30 cities as obtained by a genetic algorithm

formulating the algorithm so that it does not produce individuals which are too sim-
ilar. In such a case the algorithm very likely terminates in a local minimum.

Asecond remark concerns the treatment of optimizationproblemswith continuous
variables x . Here it might be advantageous to represent the variable x in its binary
form because it makes the reproduction step particularly simple.

20.5 Some Further Methods

We briefly list some alternative stochastic optimization techniques without going
into detail. Two famous alternatives which are closely related to simulated annealing
are:

• Threshold Accepting Algorithms: The new configuration x ∓ is acceptedwith proba-
bility one ifH(x ∓) ≤ H(x)+ T . During the simulation the temperatureor threshold
level T is continuously decreased. The above choice of an acceptance is a very
effective choice to allow for escaping local minima.

• Deluge Algorithms: These algorithms are very similar to threshold accepting algo-
rithms. We present it in the original formulation which is suited to find the global
maximum of a function G(x). The global minimum of H(x) can be found by
searching the maximum ofG(x) = −H(x). One accepts a new state x ∓ with prob-
ability one ifG(x ∓) > T , where T is continuously increased during the simulation.
Hence, the whole landscape of G(x) is flooded with increasing T until only the
summits of G(x) are left. Finally, only the biggest mountain will reach out of the
water and the global maximum has been found.
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Two famous ideas which are closely related to genetic algorithms are:

• Grouping Genetic Algorithms: The idea is to put the individuals of the population
in distinct groups. These groups may for instance be formed by comparing the
genes or grouping individuals with similar cost function values. All members of a
group have one part of the genes in common, and all operators acting on genes act
on the whole group. Such an approach can significantly improve the convergence
rate of a classical genetic algorithm.

• Ant Colony Optimization: The idea is, again, borrowed from nature, in particular
from an ant colony searching the optimum path between two or more fixed or
variable points. In real world an ant travels from one point to another randomly,
leaving a trail of pheromone on its traveled path. Following ants are very likely
to follow the pheromone trail, however, some random nature remains. The key
point is that with time the pheromone trail starts to evaporate, hence its impact on
the path of following ants is reduced if the path is not traveled frequently or often
enough so that the pheromones already evaporated. In this way one prevents the
algorithm to get stuck in a local minimum and the global minimum may be found
by sending out artificial ants.

There are many further methods available in the literature [see, for instance, [4]]
to which we refer the interested reader.

Summary

The local maximum/minimum of some cost function H(x) within a search space S
can be determined using stochastic methods, thus establishing a particular class of
algorithms known as Stochastic Optimization. The most straightforward method was
the algorithm of hill climbing which resembled a controlled random walk within a
restricted search space S called neighborhood. Because of this feature hill climbing
will find in general local minima within this neighborhood and the global minimum
has to be found under variation of initial conditions. This made this method too
expensive for complex problems from a computational point of view. To move from
a random walk formulation to a formulation on the basis of Markov-chain Monte
Carlo was the logical next step. The method of choice was named simulated anneal-
ing. It uses the Metropolis-Hastings algorithm to generate new configurations
within search space S from a temperature dependent equilibrium distribution using a
cooling strategy to slowly restrict the search space to the neighborhood of the global
minimum. It can be proved that this method always converges to the global min-
imum if the cooling strategy obeys some specific conditions, albeit rather slowly.
There are many flavors of this basic algorithm which either differ in the definition
of the acceptance probability or in the cooling strategy. A completely different class
of algorithms was established with the so-called genetic algorithms. They are bor-
rowed from nature’s concept of the survival of the fittest. They are based on the
notions of: (i) Mutation, a single random local modification of certain probability.
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(ii) Reproduction, additional ‘individuals’ are generated by pairwise combining
parents. (iii) Selection: Individuals with the lowest value of the cost function survive
and mutation starts again. Genetic algorithms are very versatile and a huge body of
optimization problems can actually be covered by this kind of methods.

Problems

Solve the traveling salesperson problem for N = 20 cities on a regular grid with
the help of simulated annealing. As a cooling schedule, use the geometric cooling as
explained in Sect. 20.3. Determine the initial temperature by demanding an accep-
tance rate of 90 % and terminate the algorithm if the mean value of the cost function
∞H√ remains unchanged for at least 10 successive temperatures. Calculate the expec-
tation value ∞H√T for different temperatures and identify the transition temperature.
In a second step produce a list of 20 cities which are randomly distributed on a two-
dimensional plane. Optimize this problem as well. Note that you should produce the
list of cities only once in order to obtain comparable and reproducible results.
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Appendix A
The Two-Body Problem

Consider two mass points with position ri(t) ∈ R
3, i = 1, 2 and masses mi, i = 1, 2.

It is assumed that the pointmasses interact through a central potentialU = U(|r1(t)−
r2(t)|) and external forces are neglected, i.e. the system is closed. In the following
we will omit the explicit notation of time t for the sake of a more compact notation.
Furthermore, let pi ∈ R

3, i = 1, 2 denote the point mass’ momentum. Then the
Lagrange function takes on the form

L(r1, r2, p1, p2) = p21
2m1

+ p22
2m2

− U(|r1 − r2|) ∀ CS : R12. (A.1)

and defines a twelve-dimensional configuration space (CS). Replacing the mass
momenta pi by

pi = miṙi, i = 1, 2, (A.2)

yields for the Lagrange function (A.1)

L(r1, r2, ṙ1, ṙ2) = m1

2
ṙ21 +

m2

2
ṙ22 − U(|r1 − r2|), (A.3)

where ṙi denotes the time derivative of ri. We note the following symmetries: the
Lagrange function (A.3) is (i) translational invariant, (ii) rotational invariant, and,
(iii) time invariant. We know from mechanics [1] that each symmetry of the
Lagrange function corresponds to a constant of motion (a quantity that is con-
served throughout the motion) and, thus, results in a reduction of the dimensionality
of the twelve-dimensional configuration space.

Let us demonstrate these symmetries: In order to prove translational invariance,
we transform to center of mass coordinates, which are given by

R = m1r1 + m2r2
m1 + m2

and r = r2 − r1. (A.4)

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 315
DOI: 10.1007/978-3-319-02435-6, © Springer International Publishing Switzerland 2014
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It is easily verified that we can express the original coordinates r1 and r2 with the
help of (A.4) as

r1 = R+ m2

m1 + m2
r and r2 = R− m1

m1 + m2
r. (A.5)

Rewriting the Lagrange function (A.3) in the new coordinates (A.4) yields

L(r, R, ṙ, Ṙ) = M

2
Ṙ2 + μ

2
ṙ2 − U(|r|)

≈ L(r, ṙ, Ṙ), (A.6)

where we introduced the total mass M and the reduced mass μ:

M = m1 + m2 and μ = m1m2

m1 + m2
. (A.7)

Note that in Eq. (A.6) the center ofmass coordinateR is a cyclic coordinate, i.e. it does
not appear explicitly in the Lagrange function. Hence, the system is translational
invariant and we can deduce from Lagrange’s equations that

d

dt

ξ

ξṘ
L = ξ

ξR
L = 0, (A.8)

i.e. the center of mass momentum is conserved. Hence, we obtain that

ξ

ξṘ
L = MṘ = const, (A.9)

or equivalently,
R(t) = At + B, (A.10)

where A, B ∈ R
3 are constants determined by the initial conditions of the problem.

Note that this means that the center of mass moves along a straight line with constant
velocity. It is now possible to reformulate the Lagrange function (A.6) as

L(r, ṙ) = M

2
A2 + μ

2
ṙ2 − U(|r|)

≈ L̃(r, ṙ)+ const ∀ CS : R6. (A.11)

Hence, the problemwas reduced to a one-body problemwith theLagrange function
L̃(r, ṙ).We shall omit the tilde in the following for the sakeof amore compact notation
and regard the Lagrange function

L(r, ṙ) = μ

2
ṙ2 − U(|r|), (A.12)
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instead of (A.11). We note that the translational invariance allowed us to reduce the
two-body problem to an effective one body problem.

We proceed by investigating rotational invariance. Equation (A.12) resembles the
Lagrange function of a particle located at position r in the field of a central force
F ∈ R

3 pointing to the center of the coordinate system (or pointing from the center
of the coordinate system to the particle). This situation is clearly invariant under a
rotation of the coordinate system since U depends only on the modulus of r, i.e.
U = U(|r|). We note that, therefore, r∞F, i.e. r is parallel to F for all t √ 0. In such
a case the angular momentum θ ∈ R

3 is conserved, since

d

dt
θ = M = r ⇒ F = 0, ≤ θ = const, (A.13)

where M is the torque. This allows us to arbitrarily rotate our coordinate system. We
take advantage if this result to rotate it in such a way that

θ = |θ|ez, (A.14)

where ez is the unit vector in z-direction. Moreover, since the angular momentum θ

is given by
θ = μr ⇒ ṙ = const, (A.15)

and because θ∞ez we conclude that r≥ ez. This allows us to put z = 0, which
means that the whole motion of the point mass can be described in the x − y
plane ∀ CS : R4. We note that the rotational invariance led us to the conserva-
tion of angular momentum which allowed a reduction from a three-dimensional
problem to a two dimensional problem. In a next step, we rewrite the Lagrange
function (A.6) as (A.12) in polar coordinates (ω, τ):

L(ω, ω̇, τ̇) = μ

2

(
ω̇2 + ω2τ̇2

)
− U(ω) ∀ CS : R3. (A.16)

Let us calculate Lagrange’s equations (A.6) as from (A.16): First we regard the
differential equation for the radius ω

d

dt

ξ

ξω̇
L = μω̈ = ξ

ξω
L = ωτ̇2 − ξ

ξω
U(ω), (A.17)

thus

μω̈ − μωτ̇2 + d

dω
U(ω) = 0. (A.18)

For τ we obtain
d

dt

ξ

ξτ̇
L = d

dt
μω2τ̇ = ξ

ξτ
L = 0, (A.19)
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which is
d

dt

(
μω2τ̇

)
= 0. (A.20)

Equation (A.20) is trivially fulfilled since according to Eq. (A.15)

μω2τ̇ = |θ| = const. (A.21)

However, we solve Eq. (A.21) for τ̇

τ̇ = |θ|
μω2 , (A.22)

and plug (A.22) into (A.18) and obtain

μω̈ − |θ|2
μω3 +

d

dω
U(ω) = 0. (A.23)

We can now make use of the time invariance of the Lagrange function (A.16).
Since this equation does not explicitly depend on time t we have

ξ

ξt
L = 0. (A.24)

This implies conservation of energy, Eq. (A.6), as can easily be demonstrated. We
regard the total time derivative of the Lagrange function L

d

dt
L = ω̇

ξ

ξω
L + ω̈

ξ

ξω̇
L + τ̈

ξ

ξτ̇
L + ξ

ξt
L, (A.25)

and solve for ξ
ξt L

d

dt

(
ω̇

ξ

ξω̇
L + τ̇

ξ

ξτ̇
L − L

)
= − ξ

ξt
L = 0. (A.26)

Consequently

ω̇
ξ

ξω̇
L + τ̇

ξ

ξτ̇
L − L = const, (A.27)

which states the conservation of energy. Let us evaluate this expression with the help
of Eq. (A.16). We obtain

ω̇
ξ

ξω̇
L + τ̇

ξ

ξτ̇
L − L = μ

2

(
ω̇2 + ω2τ̇2

)
+ U(ω)

= μ

2
ω̇2 + |θ|2

2μω2 + U(ω)

= E. (A.28)
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Here we employed, in a second step, relation (A.22). In summary, time invariance
led us to the result

μ

2
ω̇2 + |θ|2

2μω2 + U(ω) = E ∀ CS : R2. (A.29)

We note that time reversal allowed us to reduce the problem to a first order
differential equation in ω, Eq. (A.29). Hence the way to solve the two-body problem
can be outlined as follows: (i) calculate R(t) according to Eq. (A.10), (ii) solve
Eq. (A.29) in order to obtainω(t), (iii) plugω(t) intoEq. (A.22) and solve forτ(t), (iv)
since z(t) = 0, the original vectors r1(t), r2(t) can be constructed from ω(t) and τ(t).
All integration constants are uniquely determined by the initial conditions of the
problem at hand.

From Eq. (A.29) we obtain

ω̇ = ±
√

2

μ

(
E − U(ω)− |θ|2

2μω2

)
, (A.30)

which results in an implicit equation for ω

t = t0 +
ω∫

ω0

dω∓ μω∓√
μω∓2 [E − U(ω∓)]− |θ|2 , (A.31)

where we defined ω0 ≈ ω(t0), and t0 is some initial time and we neglected the
negative root. The integral in Eq. (A.31) yields t as a function of ω, t = t(ω), which
then has to be inverted to, finally, obtain ω = ω(t). Whether Eq. (A.31) can be solved
analytically depends on the particular formof the potentialU(ω). If Eq. (A.31) cannot
be solved analytically one has to employ numerical approximations.

Furthermore, let us express the angle τ as a function of the radius ω, τ = τ(ω).
We get from Eqs. (A.22) and (A.30):

dτ

dω
= dτ

dt

dt

dω
= ± |θ|

μω2

⎛
2

μ

(
E − U(ω)− |θ|2

2μω2

)⎧− 1
2

. (A.32)

We integrate this equation over ω and find the desired relation

τ = τ0 ± |θ|
ω∫

ω0

dω∓

ω∓
√
2μω∓2 [E − U(ω∓)]− |θ|2 , (A.33)

where τ0 ≈ τ(t0).



Appendix B
Solving Non-Linear Equations:
The Newton Method

We give a brief introduction into the solution of non-linear equations with the help
of Newton’s method. We regard a differentiable function F(x) and we would like
to find the solution of the equation

F(x) = 0. (B.1)

The simplest approach is to transform the equation into an equation of the form

x = f (x), (B.2)

which is always possible. This equation could be solved iteratively by simply
repeating

xt+1 = f (xt), (B.3)

where we start with some initial value x0. If this method converges, one can appro-
ximate the solution arbitrarily close, however, convergence is not guaranteed and
will in fact depend on the transformation from Eqs. (B.1) to (B.2). A more advanced
technique is the so called Newton method. It is based on the definition of f (x) as

f (x) = x − F(x)

F ∓(x)
, (B.4)

which allows the iteration

xt+1 = xt − F(xt)

F ∓(xt)
. (B.5)

HereF ∓(x) denotes the derivative ofF(x)with respect to x. The convergence behavior
of the iteration (B.5) highly depends on the formof the functionF(x) andon the choice
of the starting point x0. The routine can be regarded as converged if |xt+1 − xt | < π,
where π is the accuracy required.
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If F(x) is not differentiable one can use the regula falsi or employ stochastic
methods which will be discussed in the second part of this book. The iteration of the
method known as regula falsi is

xt+1 = xt − F(xt)
xt − xt−1

F(xt)− F(xt−1)
. (B.6)

Amore detailed discussion onmethods to solve transcendental equations numerically
can be found in any textbook on numerical methods, see for instance [2, 3]. We shall
also briefly introduce the case of a non-linear system of equations of the form (B.1)
where F(x) ∈ R

N and x ∈ R
N . In this case the iteration scheme is given by

xt+1 = xt − J−1(xt)F(xt), (B.7)

where

J(x) = →xF(x) =

⎪
⎨⎨⎨⎨⎩

ξF1(x)
ξx1

ξF1(x)
ξx2

. . .
ξF1(x)
ξxN

ξF2(x)
ξx1

ξF2(x)
ξx2

. . .
ξF2(x)
ξxN

...
...

. . .
...

ξFN (x)
ξx1

ξFN (x)
ξx2

. . .
ξFN (x)

ξxN


⎜⎜⎜⎜ . (B.8)

is the Jacobi matrix of F(x). We can also make use of the methods discussed in
Chap. 2 to calculate numerically the derivatives in Eqs. (B.5) or (B.8).

http://dx.doi.org/10.1007/978-3-319-02435-6_2


Appendix C
Numerical Solution of Linear Systems
of Equations

Here we would like to discuss briefly two of the most important methods to solve
non-homogeneous systems of linear equations applying numerical methods. We
consider n equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

...

an1x1 + an2x2 + · · · + annxn = bn, (C.1)

which is usually expressed in a matrix equation,

Ax = b. (C.2)

The coefficients of the matrix A = {aij} as well as the vector b = {bi} are assumed
to be real valued and, furthermore, if

n∑
i=1
|bi| �= 0, (C.3)

the problem (C.2) is referred to as non-homogeneous (inhomogeneous). The solution
of non-homogeneous linear systems of equations is one of the central problems in
numerical analysis, since numerous numerical methods, such as the finite difference
approach to a boundary value problem, seeChap. 8, can be reduced to such a problem.

From a purely theoretical point of view we note that the solution to (C.2) is well
defined as long as the matrix A is non-singular, i.e. as long as

det(A) �= 0. (C.4)
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Then the unique solution of (C.2) can be written as

x = A−1b. (C.5)

However, the inversion of matrix A is very complex for n √ 4 and one would
prefer methods which are computationally more effective. Basically, one distin-
guishes between direct and iterative methods. Since a complete discussion of this
huge topic would be too extensive, we will mainly focus on two methods.

In contrast to iterative procedures, direct procedures do not contain any method-
ological errors and can, therefore, be regarded as exact. However, these methods
are often computationally very extensive and rounding errors are in many cases not
negligible. As an example we will discuss the LU decomposition. On the other hand,
many iterative methods are fast and rounding errors can be controlled easily. How-
ever, it is not guaranteed that an iterative procedure converges, even in cases where
the system of equations is known to have unique solutions. Moreover, the result is
an approximate solution. As an illustration for an iterative procedure we will discuss
the Gauss-Seidel method.

C.1 The LU Decomposition

The LU decomposition is essentially a numerical realization of Gaussian elimina-
tion which is based on a fundamental property of linear systems of equations (C.2).
This property states the system (C.2) to remain unchangedwhen a linear combination
of rows is added to one particular row. This property is then employed in order to
obtain a matrix in triangular form. It was demonstrated by Doolittle and Crout
[4–6] that the Gaussian elimination can be formulated as a decomposition of the
matrix A into two matrices L and U, i.e.

A = LU, (C.6)

where U is an upper triangular matrix and L is a lower triangular matrix. In partic-
ular, U is of the form

U =

⎪
⎨⎨⎨⎩

u11 u12 . . . u1n

0 u22 . . . u2n
...

...

0 0 . . . unn


⎜⎜⎜ , (C.7)

and L is of the form
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L =

⎪
⎨⎨⎨⎨⎨⎩

1 0 . . . 0
m21 1 0 . . . 0
m31 m32 1 . . . 0
...

...

mn1 mn2 mn3 . . . 1


⎜⎜⎜⎜⎜

. (C.8)

The factorization (C.6) is referred to as LU decomposition. The corresponding
procedure can be easily identified by equating the elements in (C.6). One can show
that the following operations yield the desired result: For j = 1, 2, . . . , n one com-
putes

uij = aij −
i−1∑
k=1

mikukj i = 1, 2, . . . , j, (C.9)

mij = 1

ujj

⎪
⎩aij −

j−1∑
k=1

mikukj


 i = j + 1, j + 2, . . . , n, (C.10)

with the requirement that ujj �= 0. Note that in this notation we used the convention
that the contribution of the sum is equal to zero if the upper boundary is less than the
lower boundary. We rewrite Eq. (C.2) with the help of the LU decomposition (C.6)

Ax = LUx = b, (C.11)

and by defining y = Ux, we have a system of equations for the variable y,

Ly = b. (C.12)

Due to the particular form of L the system (C.12) is readily solved by forward
substitution. We get the solution

yi = bi −
i−1∑
k=1

mikyk, i = 1, 2, . . . , n. (C.13)

The remaining equation reads
Ux = y, (C.14)

which can solved by backward substitution:

xi = 1

uii

⎪
⎩yi −

n∑
k=i+1

uikxk


 , i = n, n− 1, . . . , 1. (C.15)
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We note that this method can also be employed to invert the matrix A. The strategy
is based on the relation

AX = I, (C.16)

where X = A−1 is to be determined and I is the n-dimensional identity. Equation
(C.16) is equivalent to the following system of equations:

Ax1 =

⎪
⎨⎨⎨⎩

1
0
...

0


⎜⎜⎜ ,

Ax2 =

⎪
⎨⎨⎨⎨⎨⎩

0
1
0
...

0


⎜⎜⎜⎜⎜

,

...
...

Axn =

⎪
⎨⎨⎨⎩

0
...

0
1


⎜⎜⎜ , (C.17)

where the vectors xi are the rows of the unknown matrix X, i.e. X = (x1, x2, . . . , xn).
The n equations of (C.17) can be solved with the help of the LU decomposition.

Furthermore, one can easily calculate the determinant of A using the LU decom-
position. We note that

det(A) = det(LU) = det(L) det(U) = det(U), (C.18)

since L and U are triangular matrices, the determinants are equal to the product of
the diagonal elements, which yields det(L) = 1. Hence we have

det(A) = det(U) =
n⎟

i=1
uii. (C.19)

In conclusion we remark that there are many specialized methods which have
beendesignedparticularly formatrices of specific forms, such as tridiagonalmatrices,
symmetricmatrices, block-matrices,…. Suchmatrices commonly appear in physical
applications, for instance, we remember that the matrix we encountered in Sect. 8.2
in the context of a finite difference approximation of boundary value problems, is
tridiagonal. These specialized methods are usually the first choice if one has a matrix

http://dx.doi.org/10.1007/978-3-319-02435-6_8
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of such a specific form because they are much faster and more stable than methods
developed for matrices of more general form. Since a full treatment of these methods
is beyond the scope of this course,we refer the interested reader to books on numerical
linear algebra [4, 5].

C.2 The Gauss-Seidel Method

The Gauss-Seidel method is an iterative procedure to approximate the solution of
non-homogeneous systems of linear equations. The advantage of an iterative pro-
cedure, in contrast to a direct approach, is that its formulation is in general much
simpler. However, one might have problems with the convergence of the method,
even in cases where a solution exists and is unique. We note that the Gauss-Seidel
method is of particular interest whenever one has to deal with sparse coefficient
matrices. Let us define a sparse matrix: a matrix A is referred to as sparse, when
the matrix is populated primarily by zeros. This requirement is not too restrictive
since most of the matrices encountered in physical applications are indeed sparse.
As an example we remember the matrices arising in the context of a finite difference
approach to boundary value problems, Sect. 8.2.

Again, we use Eq. (C.1) as a starting point for our discussion. In order to allow
a treatment with the help of the Gauss-Seidel method, we require that all diagonal
elements of A are non-zero. We then solve each row of (C.1) for xi. This yields the
following hierarchy

x1 = − 1

a11
(a12x2 + a13x3 + · · · + a1nxn − f1) ,

x2 = − 1

a22
(a21x1 + a23x3 + · · · + a2nxn − f2) ,

...
...

xn = − 1

ann

(
an1x1 + an2x2 + · · · + an,n−1xn−1 − fn

)
, (C.20)

or in general for i = 1, . . . , n

xi = − 1

aii

⎪
⎨⎩

n∑
j=1
j �=i

aijxj − fi


⎜ . (C.21)

We note that Eq. (C.21) can be rewritten as a matrix equation of the form

x = Cx + b, (C.22)

http://dx.doi.org/10.1007/978-3-319-02435-6_8
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where we defined the matrix C = {cij} via

cij =
{− aij

aii
i �= j,

0 i = j,
(C.23)

and the vector b = {bi} as
bi = fi

aii
. (C.24)

We recognize that Eq. (C.21) can be transformed into an iterative form with the help
of a trivial manipulation

xi = xi −

⎢xi + 1

aii

⎪
⎨⎩

n∑
j=1
j �=i

aijxj − fi


⎜

⎥ , (C.25)

or
x(t+1)

i = x(t)
i −ϕx(t)

i , (C.26)

where

ϕx(t)
i = x(t)

i + 1

aii

⎪
⎩ i−1∑

j=1
aijx

(t+1)
j +

n∑
j=i+1

aijx
(t)
j − fi


 . (C.27)

Equation (C.26) in combination (C.27) produces a sequence of vectors

x(0) ≤ x(1) ≤ x(2) ≤ · · · ≤ x(m), (C.28)

where x(0) is referred to as the initialization vector or trial vector. One can show that
if this sequence converges, it approaches the exact solution x arbitrarily close, i.e.

lim
t≤⇐ x(t) = x. (C.29)

We remark that if we replace the terms x(t+1)
i on the right hand side of Eq. (C.27)

with x(t)
i the method is referred to as the Jacobi method.

To terminate the Gauss-Seidel method, we need an exit condition: One should
terminate the iteration whenever

• The approximate solution x(t) obeys the required accuracy π or π̃, for instance

max
(
|x(t)

i − x(t−1)
i |

)
≤ π, (C.30)

where π is the absolute error, or
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max

⎫
|x(t)

i − x(t−1)
i |

|x(t)
i |

⎬
≤ π̃, (C.31)

where π̃ is the relative error.
• When a maximum number of iterations is reached. This condition may be
interpreted as an emergency exit, which ensures that the iteration terminates even
if the process is not convergent or has still not converged.

Let us discuss one final, however, crucial point of this appendix. In many cases
the convergence of the Gauss-Seidel method can be significantly improved by
including a relaxation parameter α to the iterative process. In this case the update
routine (C.26) takes on the form

x(t+1)
i = x(t)

i − αϕx(t)
i . (C.32)

If the relaxation parameter α obeys α > 1 one speaks of over-relaxation, if α < 1
of under-relaxation and if α = 1 the regular Gauss-Seidel method is recovered.
An appropriate choice of the relaxation parameter may fasten the convergence of the
method significantly. The best result will certainly be obtained if the ideal value ofα,
αi were known. Unfortunately, it is impossible to determine αi prior to the iteration
in the general case. We remark the following properties:

• The method (C.32) is only convergent for 0 < α ≤ 2.
• If the matrix C is positive definite and 0 < α < 2, the Gauss-Seidel method
converges for any choice of x(0) (Ostrowski-Reich theorem, [7]).

• Inmany cases, 1 ≤ αi ≤ 2.We note that this inequality holds only under particular
restrictions for the matrix C [see Eq. (C.23)]. However, we note without going into
detail, that these restrictions are almost always fulfilled when one is confronted
with physical applications.

• If C is positive definite and tridiagonal, the ideal value αi can be calculated using

αi = 2

1+∪1− ε2
, (C.33)

where ε is the largest eigenvalue of C, Eq. (C.23).
• Since the calculation of ε is in many cases quite complex, one could employ the
following idea: It is possible to prove that

lim
t≤⇐

|ϕx(t+1)|
|ϕx(t)| ≤ ε2. (C.34)

Hence, one may start with α = 1, perform t0 (20 < t0 < 100) iterations and then
approximate αi with the help of Eq. (C.33) and

ε2 ≈ |ϕx(t0)|
|ϕx(t0−1)| . (C.35)
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The iteration is then continuedwith the approximated value ofαi until convergence
is reached.

In conclusion we remark that numerous numerical libraries contain sophisticated
routines to solve linear systems of equations. In many cases it is, thus, advisable
to rely on such routines, in particular because they also provide various routines
developed for specific matrices, as already discussed in Sect. C.1.



Appendix D
Basics of Probability Theory

D.1 Classical Definition

The classical probability P(A) for an event A is defined by the number of favorable
results n, divided by the number of possible results m,

P(A) = n

m
. (D.1)

For two events A and B we can deduce the following rules1

P(A ∨ B) = P(A)+ P(B)− P(A ⇒ B), (D.2a)

P(Z) = 0 impossible event;Z . . . zero element, (D.2b)

P(I) = 1 certain event; I . . . identity element, (D.2c)

0 ≤ P(A) ≤ 1, (D.2d)

P(A|B) = P(A ⇒ B)

P(B)
, (D.2e)

where P(A|B) is the probability for the event A under the constraint that event B is
true. Moreover, if A is the complementary event2 to A we have

P(A) = 1− P(A). (D.3)

1 Here we use the symbols ∨ and ⇒ to denote the Boolean operators OR and AND, respectively.
2 This means that A ∨ A = I and A ⇒ A = Z .
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The statistical definition of the probability for an event A reads

P(A) = lim
m≤⇐

n

m
. (D.4)

D.2 Random Variables and Moments

A random variable is a functional which assigns to an event α a real number x from
the set of possible outcomes η: x = X(α).3 Roughly speaking it is a variable whose
value is assigned to the observation of some random process. The mean value of a
discrete random variable X is defined by

〈X〉 =
∑
α∈η

X(α)Pα, (D.5)

where Pα is the probability for the event α. For instance, in case of a dice-throw
X(α) ≈ n = 1, 2, . . . , 6.

In the following we regard discrete random variables, i.e. x can only take on
discrete values. For a function of random variables Y = f (X)we can write in general

〈f (X)〉 ≈ 〈f 〉 =
∑

i

f (xi)Pi. (D.6)

Note that
〈1〉 ≈

∑
i

Pi = 1. (D.7)

Moments of order k are defined accordingly by

mk :=
⎭
Xk
〉
, (D.8)

and central moments are defined as

μk :=
⎭
(ϕX)k

〉
=
⎭
(X − 〈X〉)k

〉
. (D.9)

Of particular interest is the second central moment, the variance:

var (X) :=
⎭
(X − 〈X〉)2

〉
=
⎭
X2
〉
− 〈X〉2 . (D.10)

3 A more exact formulation will follow in the course of this appendix.
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The standard deviation δ is defined as the square root of the variance:

δ := std(X) = √var (X). (D.11)

For instance, for a discrete set of observations xi where i = 1, . . . , N the sample
mean value is given by

x = 1

N

∑
i

xi. (D.12)

The error (standard deviation) of x (standard error) can be calculated from

var (x ) = var

⎫
1

N

∑
i

xi

⎬

= 1

N2

∑
i

var (xi)

= 1

N2 Nδ 2

= δ 2

N
, (D.13)

where we assumed that cov
(
xi, xj

) = var (xi) δij [defined in Eq. (D.16)], i.e. the
random variables are uncorrelated. Therefore,

standard error = δx = δ∪
N

, (D.14)

where δ is the standard deviation of the observations as defined above.
The above concept can be generalized to functions of multiple random variables.

We only give two essential definitions, i.e. the definition of the mean value of such
a function and the definition of the covariance, in the particular case of two random
variables:

〈f (X, Y)〉 :=
∑
i,j

f (xi, yj)Pij, (D.15)

and
cov (X, Y) := 〈(X − 〈X〉)(Y − 〈Y〉〉 = 〈XY〉 − 〈X〉 〈Y〉 . (D.16)



334 Appendix D: Basics of Probability Theory

Fig. D.1 Uncorrelated (left panel) and positively correlated (right panel) variables X and Y

Note that

cov (X, Y) =

⎡⎣⎣⎣⎣⎣⎣⎣⎣⎤
⎣⎣⎣⎣⎣⎣⎣⎣⎦

>0 for Y − 〈Y〉 > 0∀ X − 〈X〉 > 0,

(positive linear correlation)

<0 for Y − 〈Y〉 > 0∀ X − 〈X〉 < 0,

<0 forX − 〈X〉 > 0∀ Y − 〈Y〉 < 0,

(negative linear correlation)

= 0 no linear dependence between X and Y.

(D.17)

Random variables whose covariance is zero are called uncorrelated, see Fig. D.1.

D.3 Binomial Distribution and Limit Theorems

The binomial distribution is given by

P(k|n, p) =
(

n

k

)
pk(1− p)n−k, (D.18)

where
(n

k

)
is the binomial coefficient

(
n

k

)
= n!

k!(n− k)! . (D.19)

According to Stirling’s approximation we have for large n

n! = nn+ 1
2 e−n

∪
2Λ
[
1+ O(n−1)

]
. (D.20)
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As can easily be shown the mean value and the variance of the binomial distribution
are given by

〈k〉 = np, (D.21)

var (k) = np(1− p). (D.22)

The de Moivre–Laplace theorem states that for δ � 1

P(k|n, p) ≈ g(k|k0, δ ) = 1∪
2Λδ 2

exp

⎛
− (k − k0)2

2δ 2

⎧
, (D.23)

where k0 = 〈k〉 and δ = ∪var (k). Furthermore, we can deduce that

P(k = np|n, p) = 1∪
2Λnp(1− p)

−≤ 0, (D.24)

for n ≤⇐. Bernoulli’s law of large numbers follows in the limit n ≤⇐:

P(|k/n− p| < π|n, p) ≤ 1 ∀π > 0. (D.25)

D.4 Poisson Distribution and Counting Experiments

In case that np = μ ≈ const, i.e. the mean expectation value μ is independent of the
number of experiments n, it follows that

lim
n≤⇐P

(
k
∣∣∣n, p = μ

n

)
= exp(−μ)

μk

k! =: P(k|μ). (D.26)

The distribution P(k|μ) is named Poisson distribution. For the Poisson distribution
we obtain

〈k〉 = μ, (D.27)

var (k) = μ. (D.28)

It should be noted that counting experiments, as for instance radioactive decay, follow
the Poisson statistics. Let t be a time interval in which we observe (in average) μ

events.We nowdivide this time interval in n sub-intervalswithϕt = t/n. If the events
are assumed to be independent, the process follows a binomial distribution and we
haveμ = np, which is equivalent to p = μ/n. In case of radioactive decaywe observe
μ signals within one minute which are uniformly distributed over the time interval. If
we now reduce the experiment to a duration of one second the probability of detecting
a signal reduces consequently to μ/60. Note that it is possible to approximate the
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binomial distribution P(k|n, p) by P(k|μ) in the case that p � 1 but np /� 1. For
large μ we can write

P(k|μ) = 1∪
2Λδ 2

exp

⎛
− (k − μ)2

2δ 2

⎧
, (D.29)

with
δ = ∪μ ≈ ∪k. (D.30)

If μ is unknown (as in most experimentally relevant cases) one can approximate
μ by

μ = k ±∪k. (D.31)

D.5 Continuous Variables

We define the cumulative distribution function (cdf), F(x), of a continuous variable
x by4

F(x) := P(X ≤ x|B), (D.32)

where B is a generalized condition (condition complex). Moreover we define the
probability density function (pdf), p(x) by

p(x) = d

dx
F(x). (D.33)

It follows that

p(x)dx = (F(x + dx)− F(x))
!= P(x ≤ X ≤ x + dx|B). (D.34)

Hence,

F(x) =
x∫

−⇐
dx∓p(x∓). (D.35)

Note that the pdf is normalized, i.e.

∫
dx∓p(x∓) = F(⇐) = P(X ≤ ⇐|B) = 1, (D.36)

and non-negative, i.e.
p(x) √ 0. (D.37)

4 For convenience we use here the notation F(x) for the cumulative distribution function in contrast
to the notation P(x) used throughout the second part of this book.
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D.6 Bayes’ Theorem

We regard a set of discrete events Ai under the generalized condition B. Then we
have the normalization condition

∑
i

P(Ai|B) = 1, (D.38)

and the marginalization rule

P(B|B) =
∑

i

P(B|Ai,B)P(Ai|B). (D.39)

Bayes’ theorem [8] for discrete variables follows from Eq. (D.2e) since P(A⇒B) =
P(B ⇒ A):

P(A|B,B) = P(B|A,B)P(A|B)

P(B|B)
. (D.40)

In case of continuous variables the above equations modify accordingly. The mar-
ginalization and Bayes’ theorem for pdfs are given by

P(B|B) =
∫

dxP(B|x,B)p(x|B), (D.41)

and

p(y|x,B) = p(x|y,B)p(y|B)

p(x|B)
. (D.42)

D.7 Normal Distribution

The normal distribution (Gauss distribution) is given by the pdf

p(x) = N (x|x0, δ ) = 1∪
2Λδ 2

exp

⎛
− (x − x0)2

2δ 2

⎧
. (D.43)

The corresponding cdf is given by

F(x) = 1∪
2Λδ 2

x∫

−⇐
dx∓ exp

⎛
− (x∓ − x0)2

2δ 2

⎧
(D.44)

= Φ

(
x − x0

δ

)
= 1

2
+ 1

2
erf

(
x − x0∪
2δ 2

)
, (D.45)
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where Φ(x) is given by

Φ(x) = 1∪
2Λ

x∫

−⇐
dx∓e−x∓2/2, (D.46)

and erf(x) is the error function:

erf(x) = 2∪
Λ

x∫

0

dx∓e−x∓2 . (D.47)

Furthermore, we obtain

〈x〉 = x0, (D.48)

var (x) = δ 2. (D.49)

D.8 Central Limit Theorem

Let S denote a random variable defined by

S =
N∑

i=1
ciXi, (D.50)

where the Xi are independent and identically distributed random numbers with mean
μ and variance δ 2 and

lim
N≤⇐

1

N

N∑
i=1

ck
i = const, ∀k ∈ Z. (D.51)

Then,
p(S|N,B) ≈ N [S| 〈S〉 , var (S)], (D.52)

with

〈S〉 = μ

N∑
i=1

ci, (D.53)

and

var (S) = δ 2
N∑

i=1
c2i , (D.54)
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for large N . Note that the theorem of de Moivre-Laplace is a special case of the
central limit theorem, i.e. the Xi are binomial distributed.

D.9 Characteristic Function

The characteristic function G(k) of a stochastic variable X is defined by

G(k) =
⎭
eikX
〉
=
∫

I
dxeikxp(x), (D.55)

where I denotes the range of the pdf p(x). It follows that

G(0) = 1 and |G(k)| ≤ 1. (D.56)

Expanding Eq. (D.55) in a Taylor series with respect to k yields

G(k) =
∑

m

(ik)m

m!
∫

I
dxxmp(x) ≈

∑
m

(ik)m

m!
〈
Xm〉 . (D.57)

Hence, the characteristic function is a moment generating function.

D.10 Kolmogorov’s Zero-One Law

In order to discuss Kolmogorov’s zero-one law, we shall briefly put the concepts
introduced above into a more systematic framework: Let A denote some particular
event and {An} a sequence of events. Then we define the probability space denoted
by (η,A , μ) where η is the set of possible outcomes, A is a set of events which
form a δ -algebra (also called δ -field). They fulfill

• ∅ ∈ A and η ∈ A , (D.58a)

• if A1 ∈ A and A2 ∈ A ,

then A1 ∪ A2 ∈ A , A1 ∩ A2 ∈ A and A1 \ A2 ∈ A , (D.58b)

• for a sequence {An}, ∩n An ∈ A if Ak ∈ A ∀k, (D.58c)

and μ is a measure μ : η ≤ [0, 1], which obeys

• μ(∅) = 0, (D.59a)

• μ(A) = 1− μ(Ac), (D.59b)
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• μ(∪nAn) =
∑

n

μ(An) if An ∩ Am = 0 for all n �= m. (D.59c)

From properties (D.58a) and (D.58b) we deduce that if A ∈ A then also Ac =
η \ A ∈ A . Furthermore, we deduce from properties (D.59a) and (D.59b) that
μ(η) = 1. A contains all possible subsets of η , i.e. all events we would like to
consider. We note that the dimension of A is given by dimA = 2dimη .

Let us give an illustrative example: We regard an ideal coin toss, where H denotes
heads and T denotes tails. The set of possible outcomes η contains the two possible
outcomes of the experiment, i.e. η = {H, T} (read: heads or tails). The δ -algebra
A has dimension 22 = 4 and contains all possible combinations. In particular we
have A = {∅, {H}, {T}, {H, T}}. We clarify the notation ∅: neither heads nor tails,
{H}: heads, {T}: tails, {H, T}: either heads or tails. The measure μ fulfills μ(∅) = 0,
μ({H, T}) = 1, μ({H}) = μ({T}) = 0.5.

We consider a sequence of events A1, A2, . . . , An ˆ η , denoted by {An} ˆ η .
We note that we can form a δ -field from these events, by adding their complements
Ac

i , intersections and unions [see properties (D.58a)–(D.58c)]. In particular, given
A ∈ η , we can define the δ -field δ(A) = {∅, A, Ac,η}.

We define the sequence of δ -fields

Ai = δ(Ai, Ai+1, Ai+2, . . .), (D.60)

and note that A1 ⊃ A2 ⊃ A3 ⊃ . . ., since, for instance, A2 = δ(A2, A3, . . .) con-
tains all elements included in A1 = δ(A1, A2, . . .), except the elements associated
with A1.

Now the tail δ -field A ∗ is defined as the intersection of allAi, i = 1, . . . ,⇐, i.e.

A ∗ =
⇐⋂

i=1
Ai. (D.61)

In an intuitive way we may state that the tail δ -field contains those events, which
depend only on the limiting behavior of the sequence. These events are referred to as
tail events. In terms of independent (not necessarily identically distributed) random
variables Xn a typical example for a tail event might be the question whether or not
the series

ξ =
∑

n

Xn, (D.62)

converges. Clearly, the answer to this question is independent of each finite subset of
the sequence {Xn}. In contrast to that, the event that the series converges to a value
ξ > 1 is not a tail event, since it depends on all elements of the sequence {Xn}, in
particular, it is certainly not independent of the value X1. A second example would
be an infinite sequence of dice tosses. The event, that a sequence of n consecutive
tosses occurs infinitely often is a tail event.
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We are now in the position to give Kolmogorov’s zero-one law: It states that
any tail-event T ∈ A ∗ occurs either with probability one or with probability zero,
i.e. μ(T ) = 0 or μ(T ) = 1.

Let us briefly illustrate the meaning of this strong theorem by discussing the
dactylographic monkey, as it was stated by Borel: Suppose a monkey hits type-
writer keys randomly forever, then it will eventually type every book in France’s
National Library. The truth of this statement is easily demonstrated with the help
of Kolmogorv’s zero-one law: The probability that the monkey hits the correct
typewriter keys at the first time it tries is very tiny, however, not necessarily equal
to zero. Therefore, the probability that it hits the correct keys some-when cannot be
zero and must be one according to Kolmogorv’s zero-one law.

D.11 The Correlation Coefficient

We shall briefly define and discuss the correlation coefficient due to its outstanding
importance in mathematics and physics. Two random variables X and Y form a ran-
domvectorZ = (X, Y)which follows the pdf p(Z) = p(X, Y)with the normalization

∫
dx dy p(x, y) = 1. (D.63)

The correlation coefficient r is now defined as

r = cov (X, Y)∪
var (X) var (Y)

, (D.64)

where cov (X, Y) is the covariance (D.16) of X and Y while var (·) denotes the
variance (D.10) of the respective argument. It follows from the Cauchy-Schwarz
inequality that 0 ≤ r2 ≤ 1 and, therefore, −1 ≤ r ≤ 1.5

The random variables X and Y are said to be the stronger correlated the bigger
r2 is because for statistical independent (uncorrelated) variables we have p(x, y) =
q1(x)q2(y), which includes cov (X, Y) = 0, and, therefore, r = 0.

The definition of the correlation coefficient is usually motivated by the problem
of linear regression. Suppose we have a set of data points Y associated with data
points X. We would like to find a linear function f (X) = a+bX which approximates
the data points Y as good as possible. The problem may be stated as

5 One defines the scalar product between random variables (X, Y) = cov (X, Y) and therefore
∞X∞2 = (X, X) = var (X). The Cauchy-Schwarz inequality reads

|(X, Y)|2 ≤∞ X ∞2∞ Y ∞2, (D.65)

and therefore 0 ≤ r2 ≤ 1.
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⎭
[Y − f (X)]2

〉
=
⎭
(Y − a− bX)2

〉
≤ min, (D.66)

where a and b are real constants. This is Gauss’s method of minimizing the square
of errors. We have

ξ

ξa

⎭
(Y − a− bX)2

〉
= −2 〈Y − a− bX〉 = 0, (D.67)

and
ξ

ξb

⎭
(Y − a− bX)2

〉
= −2 〈(Y − a− bX)X〉 = 0. (D.68)

From Eq. (D.67) we have
a+ b 〈X〉 = 〈Y〉 , (D.69)

and from (D.68) we obtain

a 〈X〉 + b
⎭
X2
〉
= 〈XY〉 . (D.70)

Equations (D.69) and (D.70) are readily solved for a and b and one obtains

a = 〈Y〉 − b 〈X〉 , (D.71)

where

b = 〈XY〉 − 〈X〉 〈Y〉〈
X2
〉− 〈X〉2 = cov (X, Y)

var (X)
. (D.72)

Hence, the solution to the problem is found to be

f (X) = 〈Y〉 − cov (X, Y)

var (X)
(X − 〈X〉)

= 〈Y〉 − r

√
var (Y)

var (X)
(X − 〈X〉). (D.73)

It follows immediately that the squared error is given by

⎭
[y− F(x)]2

〉
= var (Y) (1− r2). (D.74)

Hence, we obtain the best result for r = ±1, i.e. the dependence is really linear. The
worst result is obtained for r = 0.
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D.12 Stable Distributions

A stable distribution is a distribution which reproduces itself. In particular, con-
sider two random variables X1 and X2 which are independent copies of the random
variable X, following the distribution pX .6

Now pX is referred to as a stable distribution if for arbitrary constants a and b
the stochastic variable aX1+ bX2 has the same distribution as the stochastic variable
cX + d for some positive c and some d ∈ R.

For this case one can write down the characteristic function analytically. We will
give a special case, the so called symmetric Lévy distributions:

Gα(k) = exp
(−δ |k|α) . (D.75)

Here δ > 0 and 0 < α ≤ 2. The pdf of such a distribution shows the asymptotic
behavior

pα(x) ∝ α

|x|1+α
|x| ≤ ⇐. (D.76)

From Eq. (D.75) we deduce that for α = 2 one has the normal distribution.
Moreover, we observe from Eq. (D.76) that the variance diverges for all α < 2.
However, the existence of the variance was the criterion for the validity of the central
limit theorem formulated in Sect. D.8. We note that stable distributions reproduce
themselves and are attractors for sums of independent identical distributed random
variables. This is referred to as the generalized central limit theorem.

In conclusion we remark that for α = 1 the Cauchy distribution results and note
that stable distributions are also referred to as Lévy α-stable distributions.

6 Independent copies of a random variable, are random variables, which are independent and follow
the same distribution as the original random variable.



Appendix E
Phase Transitions

E.1 Some Basics

In many physical systems transitions between different phases are observed [9].
A different physical structure develops in these phases, such as ordered / disordered
or magnetized / non-magnetized, etc. In many cases one can account those phase
transitions to the variation of a macroscopic quantity (e.g. temperature, particle den-
sity, external fields, etc.). For instance, the phase transition from liquid to gaseous
phase may be caused by an increase of the temperature to the boiling point. Fur-
thermore, it is possible to define an order parameter τ. This parameter is usually
zero in one phase and takes some definite value, τ �= 0, in the other phase. It can
be expressed as the first derivative of the free energy with respect to some external
field. For instance, in case of the ferromagnetic transition, the magnetization plays
the role of the order parameter.

From statistical mechanics [9] we know that in a canonical ensemble

Pr(T) = 1

Z
exp [−βEr] , (E.1)

is the probability for the micro-state r, where β = 1/(kBT) where kB is the
Boltzmann constant and T the temperature. In what follows we will leave out the
arguments for the sake of a more compact notation. The canonical partition function
Z is given by

Z =
∑

r

exp (−βEr) . (E.2)

The free energy F is connected to Z by the relation

F = − 1

β
ln Z. (E.3)
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Reminder: the four thermodynamic potentials are the energy E, the free energy
F = E − TS, the enthalpy H = E + pV , and the free enthalpy G = E − TS + pV ,
where S is the entropy, p the pressure, and V the volume. From the total derivatives
one can deduce the equations of state and theMaxwell relations.

We give the classification of phase transitions according to Ehrenfest:

First Order Phase Transition

If F is a continuous function of its variables at the transition point and its first deriv-
ative with respect to some thermodynamic variable is discontinuous we call it a first
order phase transition. For instance, transitions from the liquid to the gaseous phase
exhibit a first order phase transition because the density, which is the first derivative
of the free energy with respect to the chemical potential, changes discontinuously at
the boiling temperature T = TB. We note the following characteristics of first order
phase transitions:

1. The transition involves a latent heat ϕQ [for instance latent heat of fusion (melting
or freezing)].

2. Both phases can coexist at the transition.
3. A metastable phase can be observed.

Second Order Phase Transition

In case of a second order phase transition, the first derivative of the free energyF stays
continuous but the second derivative of F exhibits a discontinuity. For instance, in
case of the ferromagnetic phase transition themagnetization (first derivative ofF with
respect to the external magnetic field B) changes continuously while the magnetic
susceptibility χ (the second derivative of F with respect to B) is discontinuous at the
Curie temperature Tc.

Modern Classification

In the modern classification one identifies first order phase transitions by the occur-
rence of latent heat, i.e. the system absorbs or releases energy. Second order phase
transitions (or continuous phase transitions) are characterized by a divergent suscep-
tibility, an infinite correlation length, and/or a power law decay of correlations near
criticality.
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E.2 Landau Theory

We regard a second order phase transition with the order parameter τ [10]. Since we
know that 〈τ〉 is continuous at T = Tc we define τ in such a way that 〈τ〉 |T=Tc = 0.
Furthermore, we have 〈τ〉 |T√Tc = 0 and 〈τ〉 |T<Tc �= 0. We write the free energy as
(the particular form is chosen in analogy to the theory of ferromagnetism):

F(T , h, τ) = F0(T)+ V

⎛
a(T − Tc)

2
τ2 + b

4
τ4 − hτ

⎧
. (E.4)

Here, a and b are some constants and h denotes the external field. In equilibrium we
have

δF

δτ
= 0, (E.5)

which results in
a(T − Tc)τ + bτ3

0 = h. (E.6)

For h = 0 and T < Tc we obtain

〈τ0〉 =
√

a

b
(Tc − T) ∼ (Tc − T)γ , (E.7)

where γ = 1/2 is called the critical exponent. For T √ Tc we have 〈τ0〉 = 0. We
now regard a weak external field h. The order parameter will change

τ = 〈τ0〉 + δτ. (E.8)

Again, we obtain

δF

δτ
= a(T − Tc)(〈τ0〉 + δτ)+ b(〈τ0〉 + δτ)3 − h = 0. (E.9)

Neglecting contributions of order O(δτ2) yields for the susceptibility

χ = ξ

ξh
〈τ〉 = 〈δτ〉

h
∼ |T − Tc|δ, (E.10)

where δ = −1 is a second critical exponent. This is the Curie-Weiss law. Finally
for T = Tc we obtain from Eq. (E.6)

τ =
(

h

b

) 1
3 ∼ h

1
π , (E.11)
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with the third critical exponent π. The Landau theory is a mean-field approximation
since local fluctuations of the order parameter are neglected. Since fluctuations play
a crucial role in phase transitions, the critical exponents obtained with Landau’s
approach deviate from experimental values.

However, the critical exponents are universal (property of universality), i.e. they
depend only on the dimensionality and the symmetry of the interaction. This means,
at the critical point the system is independent of its material-specific parameters.



Appendix F
Fractional Integrals and Derivatives in 1D

In this section we introduce briefly the common definitions and notations associated
with fractional calculus in one dimension [11].

The Riemann–Liouville fractional integrals of order α ∈ C [R(α) > 0],
Iα
a+f (x) and Iα

b−f (x) on a finite interval [a, b] on the real axis R are given by

Iα
a+f (x) := 1

Γ (α)

∫ x

a
dx∓ f (x∓)

(x − x∓)1−α
, for (x > a, R(α) > 0), (F.1a)

Iα
b−f (x) := 1

Γ (α)

∫ b

x
dx∓ f (x∓)

(x∓ − x)1−α
, for (x < b, R(α) > 0), (F.1b)

where Γ (x) denotes the Gamma function, R(α) is the real part of α, and f (x) is a
sufficientlywell behaved continuous, differentiable function forwhich the integrals in
(F.1) exist. The corresponding Riemann-Liouville fractional derivatives Dα

a+f (x)
and Dα

b−f (x) of order α ∈ C [R(α) √ 0] are defined by

Dα
a+f (x) :=

(
d

dx

)n

(In−α
a+ f )(x)

= 1

Γ (n− α)

(
d

dx

)n ∫ x

a
dx∓ f (x∓)

(x − x∓)α−n+1 for x > a, (F.2a)

and

Dα
b−f (x) :=

(
− d

dx

)n

(In−α
b− f )(x)

= 1

Γ (n− α)

(
− d

dx

)n ∫ b

x
dx∓ f (x∓)

(x∓ − x)α−n+1 for x < b, (F.2b)

with n = [R(α)]+1.Here [R(α)] denotes the integer part ofR(α). For a ≤−⇐ and
b ≤ +⇐ the Riemann-Liouville fractional integrals and derivatives are referred
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to asWeyl fractional integrals and derivatives . In what follows, they will be denoted
by Iα± and Dα±, respectively.

If α ∈ C [R(α) √ 0] and [a, b] ∈ R is a finite interval, then the left- and
right-sided Caputo fractional derivatives CDα

a+f (x) and CDα
b−f (x) are defined by

CDα
a+f (x) = Dα

a+f (x)−
n−1∑
k=0

f (k)(a)

Γ (k − α + 1)
(x − a)k−α, (F.3a)

and

CDα
b−f (x) = Dα

b−f (x)−
n−1∑
k=0

(−1)kf (k)(b)

Γ (k − α + 1)
(b− x)k−α, (F.3b)

with

n =
{
[R(α)] + 1 α /∈ N,

α α ∈ N0.
(F.3c)

This is, however, equivalent to

CDα
a+f (x) = 1

Γ (n− α)

∫ x

a
dx∓ f (n)(x∓)

(x − x∓)α−n+1
= (In−α

a+ Dnf )(x), (F.4a)

and

CDα
b−f (x) = (−1)n

Γ (n− α)

∫ b

x
dx∓ f (n)(x∓)

(x∓ − x)α−n+1
= (−1)n(In−α

b− Dnf )(x). (F.4b)

The symmetric fractional integrals Iα|x| and derivativesDα|x| are referred to asRiesz
fractional integrals or derivatives and are of the form

Iα|x| =
Iα+ + Iα−

2 cos
(

αΛ
2

) , (F.5)

for α ∈ (0, 1) and

Dα|x| =

⎡⎣⎣⎤
⎣⎣⎦

(−1) n
2

Dα++Dα−
2 cos (αΛ/2) for n = [R(α)] + 1 ≈ 2k, k ∈ N0,

(−1) n−1
2

Dα+−Dα−
2 sin (αΛ/2) for n = [R(α)] + 1 ≈ 2k + 1, k ∈ N0.

(F.6)



Appendix G
Least Squares Fit

G.1 Motivation

In numerous physics applications a set of corresponding data points (xk, yk) was
measured or calculated and a set of certain parameters {αj} characterizing a function
f (xk, {αj}) is to be determined in such a way that

χ2 =
∑

k

ck
[
yk − f (xk, {αj})

]2 ≤ min. (G.1)

This is referred to as a least squares fit problem. Here, ck √ 0 are weights, which in-
dicate the relevance of a certain data point (xk, yk) for the fitting routine and f (x, {αj})
is referred to as the model function. Besides numerous applications in the context
of experimentally obtained data points, we already came across such a problem in
our discussion of data analysis in Chap. 19. Here it was of interest to determine the
experimental auto-correlation time by fitting an exponential function to the mea-
sured auto-correlation coefficient A(k) discussed in Sect. 19.3. Hence, we note that
in many applications the parameters {αj} can be associated with a physical property
of interest.

We distinguish between two different cases: (i) the function f (xk, {αj}) is a linear
function of the parameters {αj} and (ii) the function f (xk, {αj}) is not linear in its
parameters {αj}. It should be emphasized that in both cases the function does not
need to be linear in xk . In what follows we shall discuss linear as well as non-linear
least squares fits. However, before proceeding some comments on the data points
{yk} may be appropriate.

Suppose the points (xk, yk) stem from a measurement which has been repeated
N-times. In this case for every value xk we have N different values {yj

k} and we may
use the arithmetic mean

ȳk = 1

N

∑
j

yj
k, (G.2)
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in expression (G.1). We may also calculate the variance var (yk) via7

var (yk) = 1

N

∑
j

(yj
k − ȳk)

2. (G.3)

If we assume that the data points yj
k follow a normal distribution with mean 〈yk〉

and variance var (yk) we may proceed in the following way: The weights ck are
chosen as

ck = 1

var (yk)
. (G.4)

The resulting fit parameters {αj} are then regarded as mean values of parameters
where the variances var (αi) as well as the covariances cov

(
αi, αj

)
can be obtained

from the matrix

Nij = 1

2

ξ2χ2

ξαiξαj
, (G.5)

via inversion, i.e.
C = N−1, (G.6)

and
Cij = cov

(
αi, αj

)
. (G.7)

G.2 Linear Least Squares Fit

In this particular case we can write the model function f (xk, {αj}) as

f (xk, {αj}) =
∑

j

αjτj(xk), (G.8)

where τj(xk) are linear independent basis functions, which do not have to be linear
in xk . The particular case of a linear regression of Appendix D.11 is included.
Inserting (G.8) into (G.1) yields

χ2 =
∑

k

ck


yk −

∑
j

αjτj(xk)



2

, (G.9)

7 In many cases one employs the bias corrected variance var (yk)B = N
N−1 var (yk). For a detailed

discussion of the bias corrected variance the interested reader is encouraged to consult a statistics
textbook [12, 13].
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which is supposed to tend to a minimum. Hence, we calculate

ξχ2

ξαθ

= −2
∑

k

ckτθ(xk)


yk −

∑
j

αjτj(xk)


 != 0, (G.10)

which yields ∑
j

αj

∑
k

ckτθ(xk)τj(xk) =
∑

k

ckykτθ(xk), (G.11)

for all θ. This equation may be rewritten as the linear equation

Mα = β, (G.12)

where we introduced the vector α = (α1, α2, . . .)
T , the matrix M

Mij =
∑

k

ckτi(xk)τj(xk), (G.13)

and the vector β

βi =
∑

k

ckykτi(xk). (G.14)

Equation (G.12) can, for instance, be solvedwith the help of themethods discussed
in Appendix C. In the case of a linear least squares fit, it is also particularly simple
to determine the covariances because we have

Nij = 1

2

ξ2χ2

ξαiξαj
= Mij. (G.15)

G.3 Nonlinear Least Squares Fit

Before we discuss the most general case of a completely arbitrary function f (xk,

{αj})we shall brieflymention that inmost cases it is advantageous to directly linearize
the function if possible. For instance, if themodel function is an exponential function,
it may be linearized by taking the data points ln(yk) instead of yk .

However, if this is not possible there are several methods how to solve the prob-
lem. If the function f (xk, {αj}) and its derivatives with respect to the parameters αj

are known analytically, the Gauss-Newton method can be employed. We discuss
this possibility in more detail in what follows. An alternative would be a determin-
istic optimization algorithm as they are introduced in Appendix H. If even this is
not possible, methods discussed in Chap. 20, stochastic optimization, might be the
obvious choice.

http://dx.doi.org/10.1007/978-3-319-02435-6_20
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We describe now the Gauss-Newton method which is essentially a generaliza-
tion of theNewtonmethod presented in Appendix B. TheGauss-Newtonmethod
is a method developed to minimize the expression (G.1) iteratively, where the deriv-
atives

ξf (xk, {αj})
ξαθ

, (G.16)

are assumed to be known analytically. In what follows the upper index on the para-
meters refers to the iteration index. One proceeds in the following steps:

1. Choose a set of initial values {α0
j } for the iteration.

2. Linearize the function f (xl, {αn
j }) and insert the result into Eq. (G.1), i.e.

χ2 ≈
∑

k

ck

{
yk − f (xk, {αn

j })−
∑

θ

⎛
ξf (xk, {αj})

ξαθ

⎧
{αj}={αn

j }
(αθ − αn

θ )

}2

.

(G.17)
For reasons of a more compact notation we introduce the abbreviations

df n
k,θ =

⎛
ξf (xk, {αj})

ξαθ

⎧
{αj}={αn

j }
, (G.18)

and
f n
k = f (xk, {αn

j }). (G.19)

3. We solve

ξχ2

ξαi
= −2

∑
k

ckdf n
k,i

[
yk − fk −

∑
θ

df n
k,θ (αθ − αn

θ )

]
!= 0, (G.20)

for the parameters {αj}. Therefore, we define α = (α1, α2, . . .)
T ,

βi =
∑

k

ck(yk − f n
k )df n

k,i , (G.21)

as well as
Mij =

∑
k

ckdf n
k,i df n

k,j . (G.22)

The resulting linear system of equations takes on the form

M(α − αn) = β, (G.23)

which is solved for ϕαn = α − αn. Please note that αn denotes the value of α

after n iterations. The next values are guessed according to
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αn+1 = αn +ϕαn. (G.24)

4. The iteration is terminated if for all parameters the desired accuracywas achieved.
For instance, |αn+1

j −αn
j | ≤ π can be used. Here π is a small parameter. A criterion

for the relative error can be formulated in analogue.

Some comments are in order: First of all we note that the calculation of the
covariance matrix is more complicated in the nonlinear case because we also have
to consider the second partial derivatives of the test function f (xk, {αθ}). However,
if these can for some reason be neglected we obtain, again, that Nij = Mij, see
Appendix G.2. Another, more serious problem is the fact that the Gauss-Newton
method suffers from severe instability problems. However, a possible solution was
formulated byD. Marquart [14], who suggested tomultiply the diagonal elements
of the matrix M with a factor (1 + ε) where ε > 0. A detailed analysis shows that
one can choose ε sufficiently large and in such a way that the value of χ2

n decreases
monotonically, i.e. χ2

n+1 ≤ χ2
n for all n. However, an increase of ε decreases the

convergence rate, i.e. more iterations are necessary in order to obtain the required
accuracy. It is therefore desirable to choose ε values in such a way that the error is
monotonically decreasing but that the convergence rate stays as large as possible.
A possible strategy is to start with a given value of ε and to decrease it in every
iteration step by a constant rate. However, if at some point the error χ2 increases,
i.e. χ2

n+1 > χ2
n then ε has again to be increased.



Appendix H
Deterministic Optimization

H.1 Introduction

We use the term deterministic optimization to distinguish these particular optimiza-
tion methods from the stochastic optimization methods discussed in Chap. 20. There
are numerous different deterministic methods developed to find the minimum (or
maximum) of a given function f (x), where x can be a vector. Roughly speaking,
we can distinguish between methods which require the knowledge of the Hessian,8

methods which need gradients only, and methods which are based on function values
only. For instance, if the gradient of a function is known analytically one may exploit
Newton’s method, as it was introduced in Appendix B. Note that such an approach
requires the Hessian of the function f (x).

In what follows we shall discuss in some detail two particular methods, namely
the method of steepest descent and the method of conjugate gradients. Both meth-
ods require the knowledge of the gradient of the function, however, it may also be
approximated with the help of finite differences (Chap. 2). A discussion of additional
methods is beyond the scope of this book and the interested reader is referred to the
available literature [15].

However, before discussing these two methods in more detail, let us briefly con-
sider the quadratic problem,which can be solved analytically. In this case the function
f (x) can be written as

f (x) = 1

2
xT Ax − bT x + c, (H.1)

where x ∈ R
N , A ∈ R

N×N , b ∈ R
N and c ∈ R where we restrict the discussion to

real valued functions for reasons of simplicity. We shall now demonstrate that for
symmetric and positive definite matrices A, i.e. AT = A and xT Ax > 0 for all x �= 0,
the minimum of f (x) is given by x = A−1b. The gradient of f (x) is readily evaluated

8 The Hessian, or Hesse matrix, H ∈ R
N×N of a function f (x), x ∈ R

N is the Jacobian of the
Jacobian J(x) of f (x) defined in Eq. (B.8). Thus, it is the matrix of second order partial derivatives
of a function. It describes the local curvature of a function of many variables.

B. A. Stickler and E. Schachinger, Basic Concepts in Computational Physics, 357
DOI: 10.1007/978-3-319-02435-6, © Springer International Publishing Switzerland 2014
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to be9

→f (x) = 1

2
AT x + 1

2
Ax − b, (H.2)

which immediately yields the desired result,

Ax = b. (H.3)

From the fact that we assumed A to be positive definite it follows that x = A−1b
is a minimum. If A is not symmetric it is possible to solve the problem in a similar
fashion by inverting the matrix

(
A+ AT

)
/2. In Appendix C we discussed some

simple methods to solve the linear Eq. (H.3).
In what follows we will discuss methods which solve the minimization problem

for some arbitrary function f (x) iteratively by evaluating the gradient →f (x) at each
iteration point xn. This gradient is then employed to obtain the next guess xn+1 until
convergence has been achieved.

H.2 Steepest Descent

The most simple gradient based method is steepest descent. It is based on the rather
straight forward idea ofmoving in each iteration step into the opposite direction of the
gradient, i.e. downhill. Hence, we may formulate it mathematically in the following
way: Let xn be the current position of our search for the minimum. Then we choose

xn+1 = xn − αn→f (xn), (H.4)

where the step-size in direction of the negative gradient, αn, has to be determined in
an additional step. The step-size should be chosen in such a way that we reach the
line minimum in direction →f (xn), i.e.

d

dαn
f [xn+1(αn)] = −→f (xn+1) · →f (xn)

!= 0. (H.5)

Hence, we observe that the search directions are orthogonal for an optimal choice
of αn. In practice αn is estimated with the help of a separate minimization technique,
such as bisection as it has already been used in our discussion of the shootingmethods
in Chap. 10.

9 We remember from vector analysis that

→x

(
xT Ax

)
= →x

(
xT A

)
︸ ︷︷ ︸

=A

x + →x

(
xT AT

)
︸ ︷︷ ︸

AT

x = (A+ AT )x

where I is the identity.

http://dx.doi.org/10.1007/978-3-319-02435-6_10
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We give an example in order to clarify themethod and discuss its caveats: Suppose
we want to find the global minimum of the function

f (x, y) = cos(2x)+ sin(4y)+ exp(1.5x2 + 0.7y2)+ 2x. (H.6)

Its gradient is readily evaluated to be

ξf (x, y)

ξx
= −2 sin(2x)+ 3x exp(1.5x2 + 0.7y2)+ 2, (H.7)

and
ξf (x, y)

ξy
= 4 cos(4y)+ 1.4y exp(1.5x2 + 0.7y2). (H.8)

We execute the algorithm in the following steps:

1. Choose some initial values x0 and y0.
2. Calculate the gradient →f (xn, yn).
3. Determine αn in such a way that

f [xn+1(αn), yn+1(αn)] ≤ min, (H.9)

which is equivalent to

g(αn) := →f [xn+1(αn), yn+1(αn)] · →f (xn, yn) = 0. (H.10)

This is achieved by a bisection similar to the one employed in Sect. 10.3, i.e.

(a) Set αa
n = 0 and chose αb

n arbitrary.
(b) Increase αb

n until g(αa
n)g(αb

n) < 0.
(c) Define

αc
n =

αa
n + αb

n

2
, (H.11)

and determine g(αc
n).

(d) If g(αa
n)g(αa

n) < 0, set αb
n = αc

n and return to step (c). Otherwise, set α
a
n = αc

n
and return to step (c).

(e) The bisection is terminated if |g(αa
n)| < π, some required accuracy.

4. Check whether |f (xn+1, yn+1)− f (xn, yn)| ≤ η with η some required accuracy.

The above algorithm was executed for the function f (x, y) given by Eq. (H.6)
for three different starting points, (0.8, −0.75), (0.8, 1.05), and (−1.05, 1.05). The
function f (x, y) as well as the iteration sequence towards the minimum for all three
starting points is illustrated in Fig. H.1.

We note the following properties of the method: First of all it is a rather slow
method due to the orthogonality of subsequent search directions. Moreover, as we
observe from Fig. H.1, we can only find the local minimum closest to the starting

http://dx.doi.org/10.1007/978-3-319-02435-6_10
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Fig. H.1 Iteration sequence
of the method of steepest
descent for three different
starting points

point and not the global minimum of the function f (x, y). The convergence rate is
also highly affected by the choice of the initial position. More problems arise if the
function f (x, y) is not differentiable by analytic means because then the gradient
has to be approximated by finite differences (Chap. 2). However, it is a very simple
method which works in spaces of arbitrary dimension.

H.3 Conjugate Gradients

The method of conjugate gradients [15] is based on the definition of N orthogonal
search directions {ψi} in an N dimensional space. In contrast to steepest descent it is
designed in such a way that we take only one step in each search direction, i.e. we are
done after at most N steps, if the function f (x) is of the quadratic form (H.1). In the
more general case, however, it will take more steps but will, nevertheless, be much
more efficient than the method of steepest descent. Let us formulate the method for
a general function f (x).

In what follows, x ∈ R
N . We approximate the function f (x) in the vicinity of the

reference point xn of the n-th iteration step up to second order and name the resulting
function f̂ (x), i.e.

f̂n(x) := f (xn)+→f (xn) · (x − xn)+ 1

2
(x − xn) ·

[
ϕf (xn)(x − xn)

]

≈ f (xn)− bT
n (x − xn)+ 1

2
(x − xn)

T An(x − xn), (H.12)

where An denotes the Hessian10 at position xn and bn is the negative gradient at xn.
In particular, for a quadratic function f (x)we have the equality f̂ (x) = f (x). We now

10 Note that the Hessian is always symmetric for real valued f (x) due to the symmetry of second
order derivatives.

http://dx.doi.org/10.1007/978-3-319-02435-6_2
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write the minimum of f (x), x̂, as a linear combination of search directions {ψi} with
coefficients εi and the initial point x0:

x̂ = x0 +
M∑

i=0
εiψi. (H.13)

Note that in the quadratic case (H.1) this sum will be restricted to M = N − 1. At
each iteration instance we have the relation

xn+1 = xn + εnψn, (H.14)

together with the goal

xM
!= x̂. (H.15)

Let us define a couple of useful quantities. The deviation from the minimum at
iteration step n+ 1, δn+1, is given by

δn+1 = xn+1 − x̂

= xn + εnψn − x̂

= δn + εnψn. (H.16)

In a similar fashion we obtain the residual

rn+1 := −→ f̂n(xn+1)
= bn − An(xn+1 − xn)

= bn − εnAnψn, (H.17)

where we employed that

1

2
→
[
(x − xn)

T An(x − xn)
]
= An(x − xn). (H.18)

Finding the minimum of the quadratic approximation f̂ (x) of f (x) around xn is equiv-
alent to the condition

rn+1 = 0. (H.19)

In particular, we have to find the product εnψn in such a way that rn+1 = 0. Of
course, we could invert the Hessian An in order to obtain this result. However this
would be too expensive from a computational point of view. The idea is to apply the
ideal search strategy for quadratic functions to f̂n(x) in order to obtain xn+1. Hence,
the method of conjugate gradients executes packages of N steps, where each package
solves the quadratic problem around xn, until the minimum of the original function
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f (x) has been found. Therefore, we have to generalize the relations (H.14), (H.16),
and (H.17) for iterations within step n.

In particular, for every iteration step n we have

xn+1 = xn +
N−1∑
θ=0

εθ
nψ

θ
n , (H.20)

together with the definitions

xθ+1
n = xθ

n + εθ
nψ

θ
n , (H.21)

where xn+1 ≈ xN
n . Furthermore, we define the deviation

δθ+1
n = xθ+1

n − xn+1 = δθ
n + εθ

nψ
θ
n , (H.22)

and the residual

rθ+1
n = −→ f̂n(x

θ+1
n )

= bn − An(x
θ+1
n − xn). (H.23)

In contrast to relation (H.17), Eq. (H.23) features the difference (xθ+1
n − xn) rather

than (xn+1 − xn). We insert the recurrence (H.21) and obtain

rθ+1
n = bn − An(x

θ
n − xn)− εθ

nAnψ
θ
n

= rθ
n − εθ

nAnψ
θ
n . (H.24)

Hence, in contrast to relation (H.17) Eq. (H.24) defines a recurrence relation. Again,
we want to choose the search directions ψθ

n and the step length εθ
n in such a way that

we find the minimum as quickly as possible. Suppose we already knew the search
direction ψθ

n . The line minimum in this direction is then given by

d

dεθ
n

f̂n(x
θ+1
n ) = → f̂ (xθ+1

n ) · ψθ
n

= −rθ+1
n · ψθ

n

= −(rθ
n − εθ

nAnψ
θ
n )T ψθ

n

= −(rθ
n)

T ψθ
n + εθ

n(ψ
θ
n )T Anψ

θ
n

!= 0, (H.25)

and we have

εθ
n =

(rθ
n)

T ψθ
n

(ψθ
n )T Anψθ

n
. (H.26)



Appendix H: Deterministic Optimization 363

Hence, the remaining unknown quantities in our algorithm are the search direc-
tions ψθ

n . So far, the only information we obtained is that the search direction ψθ
n is

orthogonal to the residual rθ+1
n , see Eq. (H.25).

However, we also know that

0 = An (xn+1 − xn)− bn

= An

N−1∑
θ=0

εθ
nψ

θ
n − bn, (H.27)

and therefore

0 =
(
ψk

n

)T
An

N−1∑
θ=0

εθ
nψ

θ
n −

(
ψk

n

)T
bn, (H.28)

for arbitrary k. A sufficient condition to ensure the validity of relation (H.28) is to
impose An-orthogonality, i.e. to demand that

⎭
ψk

n

∣∣∣ψθ
n

〉
An
≈ (ψk

n )T Anψ
θ
n = δk,θ

⎭
ψk

n

∣∣∣ψk
n

〉
An

. (H.29)

Wenote that
〈
ψk

n

∣∣ψθ
n

〉
A constitutes indeed a scalar product sinceAn is positive definite

in the neighborhood of a minimum.
Let us briefly demonstrate that the choice (H.29) fulfills Eq. (H.28). First of all

we note that we obtain from Eq. (H.24)

rθ+1
n = bn −

θ∑
k=0

εk
nAnψ

k
n , (H.30)

and, therefore, we get from Eq. (H.26) the coefficients εθ
n in the convenient form

εθ
n =

bT
n ψθ

n〈
ψθ

n

∣∣ψθ
n

〉
An

. (H.31)

Inserting the condition of orthogonality (H.29) into Eq. (H.28) gives

0 = εk
n

⎭
ψk

n

∣∣∣ψk
n

〉
An
−
(
ψk

n

)T
bn, (H.32)

which together with Eq. (H.31) proves the equality (H.28). Hence, the strategy is
clear: We choose an initial direction ψ0

n and then construct the further directions in
such a way that they fulfill An-orthogonality (H.29). Before discussing the construc-
tion of search directions in more detail we observe the following property:
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(ψk
n )T rθ

n = (ψk
n )T bn −

θ−1∑
m=0

εm
n

⎭
ψk

n

∣∣∣ψm
n

〉
An
=
{

(ψk
n )T bn for k √ θ,

0 else.
(H.33)

This means that all search directions ψk
n for k ≤ θ− 1 are orthogonal to the residual

rθ
n , or in other words, all residuals rθ

n are orthogonal (in the classical sense) to all
previous search directions.

We shall now briefly outline the resulting update algorithm for search directions.
Let {τθ

n} be a set of linear independent vectors that span our search space for f̂n(x).11

We write the search direction ψk
n as

ψk
n = τk

n +
k−1∑
θ=0

βkθ
n ψθ

n , (H.34)

together with
ψ0

n = τ0
n . (H.35)

The expansion coefficients βθk
n can be determined recursively by imposing

An-orthogonality for all θ < k:

0 =
⎭
ψk

n

∣∣∣ψθ
n

〉
An

=
⎭
τk

n

∣∣∣ψθ
n

〉
An
+

k−1∑
m=0

βkm
n

⎭
ψm

n

∣∣∣ψθ
n

〉
An

=
⎭
τk

n

∣∣∣ψθ
n

〉
An
+ βkθ

n

⎭
ψθ

n

∣∣∣ψθ
n

〉
An

, (H.36)

and therefore

βkθ
n = −

〈
τk

n

∣∣ψθ
n

〉
An〈

ψθ
n

∣∣ψθ
n

〉
An

. (H.37)

This procedure is known as the Gram-Schmidt conjugation.
Now, the question arises how one should choose the basis vectors τθ

n and whether
or not it is advantageous to choose the τθ

n as a function of n. A particularly clever
choice is to take the residuals, i.e.

τθ
n = rθ

n. (H.38)

In this case we have for θ < k

11 In principle these linear independent vectors {τθ
n} do not need to depend on the index n, i.e. on

the actual position xn. However, we consider here the most general case as will become clear in
what follows.
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βkθ
n = −

〈
rk

n

∣∣ψθ
n

〉
An〈

ψθ
n

∣∣ψθ
n

〉
An

= − (rk
n)T Anψ

θ
n〈

ψθ
n

∣∣ψθ
n

〉
An

= − (rk
n)T〈

ψθ
n

∣∣ψθ
n

〉
An

⎛
rθ

n − rθ+1
n

εθ
n

⎧
, (H.39)

where we used recurrence (H.24). We now calculate with the help of Eq. (H.34)

(rk
n)T (rθ

n) = (rk
n)T ψθ

n − (rk
n)T

θ−1∑
m=0

βθm
n ψm

n = 0, (H.40)

for θ < k due to the orthogonality of the search direction and the residuals, see
Eq. (H.33). Hence, we obtain for all θ < k

βkθ
n = 1

εk−1
n

(rk
n)T rk

nδθ+1,k⎭
ψk−1

n

∣∣∣ψk−1
n

〉
An

= (rk
n)T rk

n

(rk−1
n )T rk−1

n
δθ,k−1. (H.41)

Hence, the name conjugated gradients. We summarize the algorithm:

1. Choose an initial position x0.
2. Determine the vector bn and the matrix An for a given position xn.
3. Perform the following N steps in order to calculate xn+1:

(a) Set

ψ0
n = r0n = bn and ε0n =

bT
n ψ0

n〈
ψ0

n

∣∣ψ0
n

〉
An

, (H.42)

as well as
xn+1 = xn + ε0nψ

0
n . (H.43)

(b) Calculate for k = 1, . . . , N − 1 the residuals,

rk
n = rk−1

n − εk−1
n Anψ

k−1
n , (H.44)

the new search directions

ψk
n = rk

n +
(rk

n)T rk
n

(rk−1
n )T rk−1

n
ψk−1

n , (H.45)
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the step lengths

εk
n =

bT
n ψk〈

ψk
n

∣∣ψk
n

〉
An

, (H.46)

and, finally, the modified positions

xn+1 = xn + εk
nψ

k
n . (H.47)

4. If | f (xn+1)− f (xn)| < π, with π some required accuracy, terminate the iteration,
otherwise return to step 2. In case of a convex function f (x) terminate also after
N steps.

Strictly speaking, this algorithm is only valid for convex functions because we
note that one might get into trouble whenever a position is reached at which the
Hessian is not positive definite. It is therefore desirable to exclude the Hessian from
the algorithm. This can be achieved by an algorithm developed by Fletcher and
Reeves [16]. Based on our pervious discussion the generalization is rather obvious:
If we do not want to use the Hessian explicitly, we have to determine the step length
εθ

n by minimizing f (xθ
n + εθ

nψ
θ
n ) for a given search direction ψθ

n numerically. The
residuals are then taken to be the exact gradient of the function f (xθ

n) rather than of
f̂n(xθ

n). The next search direction ψk+1
n is then determined via

ψk+1
n = −→f (xk+1

n )+ ∞→f (xk+1
n )∞2

∞→f (xk
n)∞2

ψk
n . (H.48)

Hence, we have the following algorithm (Fletcher-Reeves algorithm) :

1. Choose an initial position x0.
2. Perform the following N steps in order to calculate xn+1:

(a) Set
ψ0

n = −→f (xn). (H.49)

(b) Calculate for k = 0, . . . , N − 1, εk
n by minimizing f (xk

n + εk
nψ

k
n ), the new

position xk+1
n = xk

n + εk
nψ

k
n and the new search direction via

ψk
n = −→f (xk+1

n )+ ∞→f (xk+1
n )∞2

∞→f (xk
n)∞2

ψk
n . (H.50)

3. If |f (xn+1)− f (xn)| < π, with π some required accuracy, terminate the iteration,
otherwise return to step 2.

The resulting sequence of steps towards the minimum for the same function and
initial conditions as were used for Fig. H.1 is illustrated in Fig. H.2. In comparing
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Fig. H.2 Iteration sequence
of the method of conjugated
gradients for three different
starting points

Fig. H.3 Comparison of the
iteration sequence between
the method of steepest descent
and the method of conjugated
gradients

Figures H.1 and H.2 we note immediately that the search strategy developed for
the method of conjugate gradients superbly outperforms the search strategy of the
method of steepest descent. In particular, if the ratio between the gradient in x and
y direction is large, a strategy of orthogonal search directions is disadvantageous.
This particular case is illustrated in Fig. H.3 for both, steepest descent and conjugate
gradients. Here we investigate the convex function

f (x, y) = x2 + 10y2, (H.51)

together with an initial position (x0, y0) = (1.9, 0.4). The resulting sequence of
points towards the minimum is illustrated in Fig. H.3. In the case of steepest descent
the sequence approaches the minimum rather slowly since subsequent search direc-
tions have to be orthogonal to each other in the classical sense. The advantage of
conjugate gradients is that An-orthonormality accelerates the convergence towards
the minimum. In this example we reach it within two steps and a required absolute
accuracy of η = 10−7.
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As a final remarkwe note that also themethod of conjugate gradientswill only find
the local minimum closest to the initial position. Hence, the outcome of the method
highly depends on the choice of x0. Moreover, the calculation of the gradients may
be very tedious and time-consuming from a numerical point of view.
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A
Absolute error, see error
Adams–Bashford method, see integrator
Algorithm, 5
Anomalous diffusion, 267
Antiferromagnetism, 210
Auto-correlation function, 231
Auto-correlation time

exponential, 293
integrated, 292, 294

Auto-correlations, 291
Autonomous system, 89

B
Backward difference, 20, 31
Barometric formula, 109
Bayes’ theorem, 337
Bernoulli’s law of large numbers, 335
Binomial distribution, see probability density

function
Boltzmann distribution, see probability

density function
Boltzmann equation, 251

collision integral, 251
particle density, 252

Boundary conditions
decoupled, 112
Dirichlet conditions, 112, 150
homogeneous, 112
Neumann conditions, 112
of first kind, 112
of second kind, 112
of third kind, 112
periodic, 103, 116
Sturm conditions, 112

Brownian motion, 171, 233
Butcher tableau, see integrator

C
Calculus

mean value theorem, 199
Canonical partition function, 201, 205, 212
Caputo fractional derivative, 270, 271, 350
Cauchy distribution, see probability density

function
Cdf, see cumulative distribution function
Central difference, 20
Central limit theorem, 181, 203, 339

generalized, 343
Chaos

attractor, 91
deterministic, 12
Lyapunov length, 91
Lyapunov stability, 90
Poincaré map, 91
Poincaré section, 92
theory, 12

Chapman–Kolmogorov equation, 234, 237,
242, 248, 249

χ2 distribution, 181
Closed integration rule, 32
Cluster algorithm, 284
Computational cost, 12
Configuration space, 88, 315
Conjugate gradients, see deterministic

optimization
Covariance, 333
Crank–Nicolson method, see integrator
Cumulative distribution function, 175, 185,
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D
de Moivre–Laplace theorem, 335, 339
Derivative

finite difference, 147, 149, 157, 162, 264
average μ, 22
backward, 21, 23, 56, 100
central, 21, 22, 57, 152, 161
forward, 20, 23, 55
operator technique, 22
shift operator, 23
three point approximation, 21

fractional
Caputo fractional derivative, 270, 271,

350
Riemann–Liouville fractional

derivative, 270, 349
Riesz fractional derivative, 271, 350
Weyl fractional derivative, 350

partial, 26
Detailed balance, 206, 239, 240, 244, 275, 277
Deterministic optimization, 357

conjugate gradients, 360
An-orthogonality, 363
Fletcher–Reeves algorithm, 366
Gram–Schmidt conjugation, 364
line minimum, 362
residual, 361

Hessian matrix, 360
steepest descent, 358

convergence rate, 360
line minimum, 358

Differential equation
harmonic oscillator, 2
Legendre, 39

Diffusion equation, 123, 252, 262
diffusion coefficient, 123, 252
particle density, 123

Dirac δ-distribution, 127, 201, 203
Distribution function, 171
Double pendulum

chaotic, 87
generalized momenta, 82
Hamilton equations of motion, 84
Hamilton function, 84
kinetic energy, 82, 83
Lagrange function, 81, 82
Poincaré plot, 93
potential energy, 82
Runge–Kutta algorithm, 85
trajectories, 86

E
e-RK-4, 70, 71, 85
Eccentricity, 54
Effective potential, 52
Error

absolute, 6
algorithmic, 5
input, 5
measurement, 6
methodological, 6, 8, 21, 77
output, 5
relative, 6
rounding, 6
standard, 333
truncation, 4, 19, 21, 22, 25, 65, 66

Estimator, 219
energy expectation value, 219
error, 288
internal energy, 219

Euler methods, 56, 58, 64, 67, 68, 74, 76
Exchange interaction, 209

F
Ferrari’s method, 56
Ferromagnetism, 209, 210
Fibonacci sequence, 176
Finite difference, 8, 17, 18, 30, 123

backward, 20, 31
central, 20
forward, 20, 31

Finite difference derivative, see derivative
Finite volume effects, 103
Fletcher–Reeves algorithm, see determinis-

tic optimization
Floating-point form, 6
Fluctuation quantities, 213
Fokker–Planck equation, 263
Forward difference, 20, 31
Fractal random walk, 270

diffusion equation, 270
fractal time random walk, 268

Fractional integral
Riemann–Liouville fractional integral,
349

Riesz fractional integral, 350
Weyl fractional integral, 350

G
Gauss–Seidl method, 327, 329
Gauss distribution, see probability density

function
Gauss peak, 126
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Gauss–Hermite quadrature, 43
Gauss–Legendre quadrature, 38
Gauss–Seidl method, 150
Gauss–Newton method, 353
Gaussian process, 233
Generalized diffusion model

characteristic waiting time, 266
jump length pdf, 265
jump pdf, 265
length variance, 266
waiting time pdf, 265

Genetic algorithm, see stochastic optimization
Gibbs sampling, see Markov-chain

Monte-Carlo sampling
Gravitational potential, 52
Grid-point, 18, 113, 124, 140, 150, 254

distance between, 18, 113, 149, 160
equally spaced, 18, 30, 149
variable spaced, 18

H
Hamilton

equations of motion, 73
function, 73, 74, 303

Hamilton operator, see operator
Heat capacity, 213, 214, 280
Heat equation

heat source/drain, 126
homogeneous, 123
inhomogeneous, 126
stationary, one-dimensional, 123
thermal diffusivity, 123
time-dependent heat equation, see partial
differential equation

Heisenberg model, 210
Hessian matrix, see deterministic optimization
Hill climbing, see stochastic optimization
Histogram technique, 179, 288, 295
Hit and miss integration, 199

I
Ill-conditioned, 9

problems, 10
Implicit midpoint rule, 57
Importance sampling, 205, 275–277
Induced instability, 10
Integrable system, 89
Integration, see quadrature
Integrator

Adams–Bashford method, 66
backward Euler method, 64
Butcher tableau, 69

Crank–Nicolson method, 65
algorithmic form, 68

explicit Euler method, 56, 64, 67
algoritmic form, 68

explicit midpoint rule, 67
algorithmic form, 68

forward Euler method, 64
implicit Euler method, 56, 64, 67

algorithmic form, 68
implicit midpoint rule, 57, 65, 68
leap-frog method, 65, 101
linear multi-step methods, 65, 66
predictor–corrector method, 67
Runge–Kutta method, 65, 67

e-RK-4, 71, 85
e-RK-4, algorithmic form, 70
explicit, algorithmic form, 69

simple integrators, 62
Strömer–Verlet method, 65, 100
symplectic integrators

Euler method, 58, 74, 100
flow of the system, 72
Runge–Kutta method, 74

velocity Verlet algorithm, 101
Inverse transformation method, 187, 205
Ising model, 205

antiferromagnetism, 210
expectation value

energy, 213
energy per particle, 216

ferromagnetism, 209, 210
Hamilton function, 210
Hamilton operator, 211

Z2 symmetry, 226
one-dimensional chain, 212

heat capacity, 213, 214
magnetic susceptibility, 213, 214
magnetization, 213, 219
mean field approximation, 211
molecular field, 211
nearest neighbor interaction, 212
numerics

auto-correlation, 221
cold start, 222
cooling strategy, 224
error on expectation values, 225
hot start, 222
initial configuration, 221
lattice geometry, 220
measurement, 223
size effect, 224
thermalization, 221, 223
thermalization length, 221
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phase transition, 217
spin correlation function, 217
thermodynamic limit, 217
transfer matrix, 215

eigenvalue, 216
two-dimensional solution, 217

Isingmodel
exchange interaction, 209
paramagnetism, 209

J
Jackknife averages, 290
Jacobi determinant, 186
Jacobi matrix, 73, 77, 322
Jacobi method, 150, 328

K
Kepler problem

absolute error, 55
central potential, 51
conservation

of angular momentum, 51
of energy, 51, 318

differential equation, 51
explicit Euler, 75
Hamilton equations of motion, 58, 74
Hamilton function, 57, 74
implicit Euler, 75
Lagrange equation, 317
Lagrange function, 315–317
pericenter velocity, 78
perihelion, 78
rotational invariance, 317
symplectic Euler, 76
translational invariance, 315

Kolmogorov’s zero-one law, 341

L
L2-norm, 132
Lagrange polynomial, 36, 37, 67
Landau theory, 347
Landé factor, 211
Langevin equation, see stochastic differential

equation
Laplace equation, see partial differential

equation
Law of large numbers, 200
Leap-frog, see integrator and/or molecular

dynamics
Least squares fit, 351

linear, 352

model/test function, 351
nonlinear

Gauss–Newton method, 353
Legendre polynomial, 39

normalization condition, 40
Rodrigues formula, 40

Lennard–Jones potential, 98, 103
Lévy flight, 267

diffusion equation, 268
fat-tailed jump length pdf, 268
jump length pdf, 268

Lévy process, 232
Linear equations, 113, 118, 162

Gauss–Seidl method, 327
relaxation parameter, 329

Gauss–Seidl method, 150
inhomogeneous, 115
Jacobi method, 150, 328
LU decomposition, 324
non-homogeneous, 323
sparse matrix, 327
tridiagonal matrix, 118, 124, 127, 162, 163,
326

Linear multi-step methods, 65, 66
Loop algorithm, 285
LU decomposition, 324
Lyapunov length, 91
Lyapunov stability, 90

M
Machine-number, 7
Magnetic susceptibility, 213, 214, 280
Magnetization, 213, 219, 281
Marginalization rule, 190, 241, 337
Markov process, 233

Chapman–Kolmogorov equation, 234,
237

detailed balance, 239, 240
equilibrium distribution function, 239
global balance, 239
Hamilton’s equations of motion, 239
hierarchy of pdfs, 233
Markov property, 233
master equation, 237, 238
Poisson process, 236

transition probability, 236
waiting time, 236

precursor state, 233
time-homogeneous, 237
transition probability, 233
transition rate, 237
Wiener process, 235

transition probability, 235
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Markov-chain, 206, 241
absorbing state, 242
aperiodic state, 243, 254
Chapman–Kolmogorov equation, 242,
248, 249

closed set of states, 242
continuous state space, 247
continuous time, 247
detailed balance, 206, 244, 275, 277
equilibrium distribution, 243, 244
ergodic state, 243
irreducible, 242, 243
irreducible class, 242
Markov property, 241
null recurrent state, 242
periodic state, 243, 254
positive recurrent state, 242
recurrent state, 242
reversible, 244
stationary distribution, 243, 275
transient state, 242, 243
transition matrix, 241
transition probability, 277

Markov-chain Monte-Carlo sampling
Gibbs sampling, 278
Metropolis algorithm, 205, 219, 275

acceptance probability, 206, 219, 278
asymmetric proposal probability, 278
correlations, 207
initialization, 207
thermalization, 207

Metropolis–Hastings algorithm, 276,
278, 304

slice sampling, 279
Maxwell–Boltzmann distribution, 105
Mean-value integration, see quadrature
Methodological error, see error
Metropolis algorithm, see Markov-chain

Monte-Carlo sampling
Metropolis–Hastings algorithm, see

Markov-chain Monte-Carlo
sampling

Midpoint rules, 65, 67, 68
Molecular dynamics, 97

barometric formula, 109
boundary conditions, 102
constant temperature, 104
external potential, 98
finite volume effects, 103
forces, 99
initial conditions, 105
leap-frog method, see intgrator
Lennard–Jones potential, 98

natural units, 106
Newton equations of motion, 97, 99
Strörmer–Verlet method, 100
system temperature, 104
thermal equilibrium, 105
time invariance, 102
total kinetic energy, 104
total velocity shift, 104
two-particle interaction, 98
velocity Verlet algorithm, 101

Monte-Carlo integration, see quadrature

N
Néeltemperature, 209
Newton method, 77, 321
Newton–Cotes rules, 36
Normal distribution, see probability density

function
Normalization condition, 119

O
Open integration rule, 32
Operator

expectation value, 133
Hamilton operator, 131, 160
Hermitian, 133
kinetic energy, 132
Laplace operator, 123
momentum, 132
position, 138
potential energy, 132
time-evolution operator, 160

Operator technique, 22
Ordinary differential equation, 51, 55

collocation point, 71
eigenvalue problem, 119, 132
explicit, 61, 62
homogeneous, 112
homogeneous boundary value problem,
119, 140

initial value problem, 61
integrators, see integrator
linear boundary value problem, 111

Ornstein–Uhlenbeck process, 263
master equation, 263

P
Paramagnetism, 209
Partial differential equation

diffusion equation, see diffusion equation
elliptic, 147, 148
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hyperbolic, 147, 157
Laplace equation

charge density, 148
parabolic, 147, 151
Poisson equation, 148

charge density, 148, 151
convergence condition, 151
dielectric function, 148
electric field, 148
electrostatic potential, 148
iterative solution, 150

time-dependent heat equation, 151
Crank–Nicolson method, 153
explicit Euler method, 152, 155
implicit Euler method, 152, 154, 155
stability, 154

time-dependent Schrödinger equation,
see Schrödinger equation

wave equation
explicit Euler method, 157
one-dimensional, 157

Pauli matrix, 211
Pdf, see probability density function, see

stochastic process
Pendulum, 2

period, 3
Phase space, 88
Phase transition

critical exponent, 347
Curie - Weiss law, 347
Curie temperature, 209, 210, 346
Curie–Weiss law, 211
first order, 346
modern classification, 346
Néel temperature, 210
second order, 209, 346

Landau theory, 347
order parameter, 209, 347

universality, 348
Poincaré map, 91
Poincaré section, 92
Poisson distribution, see probability density

function
Poisson equation, see partial differential

equation
Poisson process, 236
Poor person’s assumption, 288
Potts model, 279

Hamilton operator, 279
heat capacity, 280
magnetic susceptibility, 280
magnetization, 281
phase transition

first order, 282
histogram technique, 282
second order, 282

Predictor–corrector method, see integrator
Probability

classical, 331
conservation, 188
correlation coefficient, 341
event, 331

certain, 331
complimentary, 331
impossible, 331

Probability density function, 105, 174
binomial distribution, 334
Boltzmann distribution, 201, 205, 212,
219, 284, 295, 303, 307

Cauchy distribution, 307
χ2 distribution, 181
composite pdf, 193
exponential distribution, 195
Gauss distribution, 337
Lévy α-stable distributions, 343
normal distribution, 186, 191, 203, 236,
264, 337

piecewise defined, 193
Poisson distribution, 236, 335
stable distribution, 343
Tsallis distribution, 308

Q
Quadrature, 29

backward rectangular rule, 31, 56, 64
central rectangular rule, 32, 57, 64, 67, 101,
204

closed integration rule, 32, 34
elemental area, 31, 33
forward rectangular rule, 31, 55, 64, 140
Gauss–Hermite, 43
Gauss–Legendre, 38

error, 42
grid-point, 40–42
weight, 40, 42

improper integrals, 45
integral transform, 46
Monte-Carlo integration, 197, 204, 205,
219
approximation of Λ , 197
error, 204
expectation value, 200
hit and miss, 199
mean-value, 200
mean-value integration, 199
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multiple integrals, 47
Newton–Cotes rules, 36

closed, 36
open, 37

open integration rule, 32
piecewise smooth integrand, 46
rectangular rule, 30, 32, 37

error, 31, 32
Rhomberg method, 37
Simpson rule, 35, 37

error, 38
three-eight rule, 36, 37
total error, 38

trapezoidal rule, 33, 37, 65
error, 34, 38
total error, 38

R
Random number, 172

non-uniform distribution, 173, 185
pseudo, 174
real, 174
sequence, 173

correlation, 173, 178
moments, 173, 178
moments error, 178

uniform distribution, 173, 276
Random number generator, 172

criteria, 174
Fibonacci, 176

lagged, 176
linear congruential, 175, 198

Park–Miller parameters, 175
shuffling, 176

Marsaglia–Zaman, 177
carry bit, 177

period, 174
quality

χ2 test, 179
hypothesis test, 179
spectral test, 179
statistical tests, 178

seed, 175
shift register, 177

Random sampling, see also Markov-chain
Monte-Carlo sampling

direct method, 185
importance sampling, 205, 275–277
inverse transformation, 187, 205
n-sphere, 302
probability mixing, 193

rejection method, 190, 205
acceptance probability, 190
envelope, 190
histogram test, 193

simple sampling, 276
Random variable, 171, 230, 332

central moments, 332
characteristic function, 339
mean value, 332
moments, 332
standard deviation, 333
uncorrelated, 334
variance, 332

Random walk, 253
biased, 254
definition, 253
moments, 255
probability of first return, 258
recurrence, 257
recurrence probability, 258
transition rate, 254
unbiased, 254
variance, 256

Randomness, 171
definition, 172

Chaitin, 173
event, 172
measurement, 172
probability, 172

Rectangular rules, 31, 32, 55–57, 64, 67, 101,
140, 204

Reflection principle, 257
Regula falsi, 322
Rejection method, 190, 193, 205
Relative error, see error
Rhomberg method, 37
Riemann–Liouville fractional derivative,

270, 349
Riemann–Liouville fractional integral, 349
Riesz fractional derivative, 271, 350
Riesz fractional integral, 350
Rounding error, see error
Runge–Kutta methods, 65, 67, 69, 70, 74

S
Schrödinger equation

basis, 133
dimensionless variables, 135
eigenenergy, 132
eigenfunction, 132
Gauss wave packet, 165
stationary
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one-dimensional, 120, 134
time-dependent, 160

Crank–Nicolson method, 161
explicit Euler method, 161

time-evolution operator, 160
total wave-function, 133
wave-function, 131

normalization, 134
Series expansion

Lagrange polynomial, 36, 71
Legendre polynomials, 40
Taylor, 19, 23, 30, 32, 65, 68, 100, 101,
158, 237, 294

Shooting method, 118
Numerov method, 120, 139, 141

δ algebra, 339
Simpson rule, 35, 37
Simulated annealing, see stochastic

optimization
Slice sampling, see Markov-chain

Monte-Carlo sampling
Stability, 5, 9, 148

Courant–Friedrichs–Lewy condition,
148, 157

definition, 9
Standard deviation, 333
Standard error, see error
Statistical bootstrap, 225, 290
Steepest descent, see deterministic optimization
Stirling approximation, 11, 258, 334
Stochastic differential equation, 172, 263

random force, 263
Stochastic matrix, 241
Stochastic optimization

ant colony optimization, 313
cost function, 299
deluge algorithms, 312
genetic algorithm, 310

traveling salesperson problem, 311
grouping genetic algorithms, 313
hill climbing, 301

N-queens problem, 302
simulated annealing, 303

Aarts schedule, 307
acceptance probability, 305
fast, 307
generalized, 308
geometric cooling schedule, 306
initial temperature, 305
traveling salesperson problem, 308

threshold algorithms, 312
Stochastic process

auto-correlation function, 231

auto-covariance function, 231
conditional pdf, 232
definition, 230
Gaussian process, 233
hierarchy of pdfs, 231
independent increments, 232
Lévy process, 232
moments, 230
pdf, 231
random variable, 230

realization, 230
random walk, 233
state space, 230
stationary increments, 232
stationary process, 232
time span, 230
time-homogeneous process, 232
transition probability, 232
Wiener process, 233

Stochastic variable, see random variable
Strömer–Verlet method, 65, 100
Subtractive cancellation, 7, 19, 26
Swendsen–Wang algorithm, 284
Symplectic integrators, 57, 72, 74, 76
Symplectic mapping, 73

T
Taylor theorem, see series expansion
Thermodynamic equilibrium, 207
Thermodynamic expectation value, 205
Time series plot, 288
Time-dependent heat equation, see partial

differential equation
Trapezoidal rule, 33, 37, 65
Traveling salesperson problem, 308, 311
Truncation error, see error
Two-body problem, see Kepler problem

V
Variance, 138, 203, 332
Velocity Verlet algorithm, 101
Violation of energy conservation, 74, 77

W
Wave equation, see partial differential equation
Wave-function, see Schrödinger equation
Weyl fractional derivative, 350
Weyl fractional integral, 350
White noise, 261

Gaussian, 261
Wiener process, 233, 235, 259
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continuous limit, 260
drift term, 261
independent increments, 260

self-similarity, 261
standard process, 260

Wolff algorithm, 285
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