
Space-Efficient Construction

of the Burrows-Wheeler Transform

Timo Beller1, Maike Zwerger1, Simon Gog2, and Enno Ohlebusch1

1 Institute of Theoretical Computer Science, University of Ulm, 89069 Ulm, Germany
{Timo.Beller,Maike.Zwerger,Enno.Ohlebusch}@uni-ulm.de

2 Department of Computing and Information Systems, The University of Melbourne,
VIC, 3010, Melbourne, Australia

Simon.Gog@unimelb.edu.au

Abstract. The Burrows-Wheeler transform (BWT), originally invented
for data compression, is nowadays also the core of many self-indexes,
which can be used to solve many problems in bioinformatics. However,
the memory requirement during the construction of the BWT is often
the bottleneck in applications in the bioinformatics domain.

In this paper, we present a linear-time semi-external algorithm whose
memory requirement is only about one byte per input symbol. Our exper-
iments show that this algorithm provides a new time-memory trade-off
between external and in-memory construction algorithms.

1 Introduction

In 1994 Burrows and Wheeler [5] presented the Burrows-Wheeler transform
(BWT). This reversible transformation produces a permutation of the input
string, in which symbols tend to occur in clusters. Because of this clustering,
in virtually all cases the BWT compresses much easier than the original string,
and Burrows and Wheeler suggested their transformation as a preprocessing step
in data compression. Data compression has become a major application for the
Burrows-Wheeler transform, e.g. it is the basis of the bzip2 algorithm.

Interestingly, the BWT has become the core of self-indexes [7, 14] which have
applications in bioinformatics and information retrieval. In the data compression
scenario it is possible to split a large input and construct the BWT for small
blocks, since decoding and encoding are done sequentially. However, this is not
possible for self-indexes because the optimal search routine requires the BWT
of the whole text. In this case, both the runtime and the memory requirement
of the construction of the BWT are critical. In the past, there were impressive
improvements in algorithms constructing the suffix array. Theoretical worst-case
time complexity, practical runtime and memory footprint have been improved.
As the BWT can easily (fast and space efficiently) be obtained from the suffix
array, the construction of the BWT profited indirectly from these improvements.
However, n logn bits seems to be a lower memory bound for fast suffix array
construction. On the other hand, this memory bound seems not to be valid
for BWT construction, as there are algorithms that directly construct the BWT

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 5–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5

6 T. Beller et al.

using less that n logn bits, but still depend on the input size. External algorithms
take only a given amount of memory, which is independent of the input size
and normally user defined. In the past, external algorithms were presented that
compute the suffix array or the BWT, e.g. [4, 6, 8, 11]. While this approach
finally solves the memory problem (the algorithm needs only as much memory
as available), it is commonly known that external algorithms have a significant
slow down.

Thus, external algorithms are only used when the input does not fit in RAM.
Currently, this happens already for quite small files: In our experiments on
a machine equipped with 8GB RAM, the suffix array construction algorithm
divsufsort1 already suffered from swapping effects for inputs larger than 1.5GB.
A direct computation of the BWT may allow bigger inputs: An implementation
of Sadakane2 can construct the BWT for inputs up to 3GB on that machine.
But this implementation is limited to inputs of 4GB (even if much more RAM
would be available). We show in this paper that the space requirements can
further be improved: We present a new semi-external algorithm to compute the
BWT. Semi-external algorithms are in between internal algorithms and exter-
nal algorithms. To be more precise, semi-external algorithms are—at least in
this paper—algorithms that are allowed to use an input dependent amount of
memory (like internal algorithms), but also use disk memory (like external al-
gorithms). In practice, semi-external algorithms store all data on disk that is
accessed sequentially, while data with random access pattern is kept in main
memory. Our implementation has no limitation on the input size and can con-
struct the BWT of a 6GB file with only 8GB of RAM. In contrast, internal suffix
array construction algorithms would need over 54GB of RAM (or 31GB if bit
compression would be used) to compute the suffix array of a 6GB file, because
they must keep at least the input and the output in memory.

2 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the so-called
sentinel character $. In the following, S is a string of length n on Σ having the
sentinel character at the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the
character at position i in S. For i ≤ j, S[i..j] denotes the substring of S starting
with the character at position i and ending with the character at position j.
Furthermore, Si denotes the i-th suffix S[i..n] of S. The suffix array SA of the
string S is an array of integers in the range 1 to n specifying the lexicographic
ordering of the n suffixes of S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n].

The suffix array SA is often enhanced with the so-called LCP-array con-
taining the lengths of longest common prefixes between consecutive suffixes in
SA. Formally, the LCP-array is an array so that LCP[1] = −1 = LCP[n + 1]
and LCP[i] = |lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the
longest common prefix between two strings u and v. The Burrows-Wheeler

1 http://code.google.com/p/libdivsufsort/
2 http://researchmap.jp/muuw41s7s-1587/#_1587

http://code.google.com/p/libdivsufsort/
http://researchmap.jp/muuw41s7s-1587/#_1587

Space-Efficient Construction of the Burrows-Wheeler Transform 7

transform [5] converts a string S into the permuted string BWT[1..n] defined
by BWT[i] = S[SA[i]− 1] for all i with SA[i] �= 1 and BWT[i] = $ otherwise.

As in [15–18], we distinguish between S-type, L-type and LMS-type suffixes:
Si is called S-type if i = n or Si < Si+1. Analogously, we call Si an L-type
suffix if Si > Si+1. An S-type suffix is (also) an LMS-type suffix provided
that Si−1 is an L-type suffix. Note that S1 is never an LMS-type suffix, but
Sn is always an LMS-type suffix. We call S[i..j] an LMS-substring if Si and
Sj are LMS-type suffixes and for every k, i < k < j, Sk is not of type LMS.
Additionally, $S[1..k] is also an LMS-substring, where Sk is the first LMS-type
suffix in S.

A rank query rankb(B, i) on a bit-vector B counts the number of occurrences
of bit b in B[1..i]. Similarly a select query selectb(B, i) on a bit-vector B returns
the position of the i-th occurrence of bit b in B. By pre-processing B one can
answer both queries in constant time [10].

3 Related Work

There are many suffix array construction algorithms with different time and
space complexities. We refer to the overview article [19] for details. It is widely
agreed that in practice Yuta Mori’s divsufsort is one of the fastest algorithms to
compute the SA. For n < 231, it uses 5n bytes and 9n bytes otherwise.

In contrast to suffix array construction algorithms, the direct computation of
the BWT has received much less attention. In [13], it is shown how to compute
the BWT for biological data in O(n logn) time. In [18], a linear-time algorithm
for computing the Burrows-Wheeler transform was presented. This algorithm
uses O(n log σ log logσ n) working space.

External algorithms for computing the BWT are described in [8, 11]. They
construct the BWT by splitting the input into blocks of fixed length and com-
puting the BWTs of these blocks. Afterwards, one has to merge the BWTs of the
blocks to obtain the BWT of the input. In contrast, [1] presented an external
algorithm for computing the BWT of a collection of short strings. However, this
task is conceptually easier and can not easily be adapted to the case of arbitrary
strings.

Algorithms also exist for computing the suffix array in external memory, see
e.g. [6]. Very recently, [4] presented an external algorithm, not only for suffix
array construction, but also for the computation of the LCP array. This algorithm
is also based on the induced sorting algorithm and it is reported to be faster than
the previous external suffix array construction algorithms.

4 The Induced Sorting Algorithm

As our new algorithm is based on the induced sorting algorithm, we briefly revisit
this elegant algorithm here. For more details and correctness, we refer to [15].

The suffix array can be divided into σ buckets, where all suffixes in a bucket
start with the same character. Within a bucket, L-type suffixes are smaller than

8 T. Beller et al.

S-type suffixes. So every bucket can further be divided in two ranges, an L-type
range and an S-type range. In the following, assume that A is an array of size n,
which is divided into buckets and ranges as described before. Fig. 1 illustrates
the induced sorting algorithm by an example.

Step 1. Input S is scanned from right to left in order to detect all indexes j in
S at which an LMS-type suffix starts. All these indexes are written consecu-
tively to the rightmost free position in the S-type range of the corresponding
S[j] bucket in A.

Step 2. Array A is scanned from left to right. Assume we are at position i in A.
If A[i] is empty, we go to the next position i+ 1. Otherwise let j = A[i]; we
check if S[j − 1] ≥ S[j]. If so, we delete A[i] and write j − 1 to the leftmost
free position in the L-type range of the corresponding S[j − 1] bucket.

Step 3. After we finished the left-to-right scan, we scan A from right to left.
Assume again that we are at position i of the array A. If A[i] is empty, we go
to the next position i− 1. Otherwise for j = A[i] we check if S[j− 1] ≤ S[j].
If so, we delete A[i] and write j − 1 to the rightmost free position in the
S-type range of the corresponding S[j − 1] bucket.

Step 4. The two scans in steps 2 and 3 sort the LMS-substrings (but not the
LMS-type suffixes). In this step, the induced sorting algorithm replaces each
LMS-substring by its lexicographical name and concatenates them in text
order. First, all LMS-type positions are moved to the second half of A. This
is possible because there are at most n

2 LMS-substrings. Then the second half
of A is scanned from left to right. Assume that we are at a non-empty position
i in A and j = A[i]. We compare the LMS-substring starting at S[j] with the
LMS-substring starting at S[A[i−1]]. If the substrings are identical, j gets the
same lexicographical name, otherwise, j gets the next larger lexicographical
name. The name is moved to A[� j

2�]. Finally, all names are placed into the
second half of A, overwriting the LMS-type positions there. We now interpret
these values as a new string S′. Note that S′ usually has a different alphabet
size than S.

Step 5. The order of the LMS-type suffixes is now obtained from the suffix
array of S′. If every symbol in S′ is unique, then one can easily create the
suffix array. Otherwise, the induced sorting algorithm recursively computes
the suffix array of the string S′. In either case, the suffix array of S′ is written
to the first half of A.

Step 6. The inverse suffix array of S′ is now calculated and stored in the second
half of A (overwriting S′). Then, a right-to-left scan of S is executed to find
all LMS-type positions (again). Each LMS-type position is written (with the
help of the inverse suffix array of S′) in the correct lexicographical order to
the first half of A. Afterwards the induced sorting algorithm removes the
inverse suffix array of S′ and places the LMS-type positions stably into the
S-type ranges of their corresponding buckets in A.

Step 7. Array A is scanned from left to right and the indexes are moved as
described in step 2 . However, this time indexes placed into an L-type range
are not erased.

Space-Efficient Construction of the Burrows-Wheeler Transform 9

a m a m m m a s a s m a s a s s a a r a $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 20 3 7 9 12 14 17 2 6 11 5 4 19 8 13 16 10 15

$ a m r s

21 17 1 3 18 7 12 9 14 2 4 19 8 13 10 15

21 17 3 7 12 9 14

21 17 3 7 12 9 14

3 4 5 4 6 2 1 21 17 3 7 12 9 14

3 4 5 4 6 2 1

7 6 1 2 4 3 5 3 4 5 4 6 2 1

7 6 1 2 4 3 5 3 4 6 5 7 2 1

21 17 3 7 12 9 14 3 4 6 5 7 2 1

21 20 17 3 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

$ a m r s

21 20 17 1 3 18 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

21 20 17 1 3 18 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

step 1

step 2

step 3

step 4

step 5

step 6

step 7

step 8

Fig. 1. Steps of the induced sorting algorithm: It computes the suffix array of the input
string amammmasasmasassaara$. The movements of the indexes are illustrated with
arrows, temporary results are shown in gray.

10 T. Beller et al.

Step 8. Array A is scanned from right to left and the indexes are moved as
described in step 3, but again indexes placed into an S-type range are not
erased. After this step, A contains the suffix array of S.

The induced sorting algorithm, as described in this section, uses the input
string S, the array A and σ pointers to the rightmost (leftmost) free position
of the S-type (L-type) buckets. The space requirement for the pointers are only
relevant in the recursive calls of the induced sorting algorithm because in the
recursive calls σ is no longer negligible small. Surprisingly, [17] showed that one
can get rid of these pointers in the recursive levels. The resulting algorithm is
optimal for an internal algorithm, as it keeps only input, output and a constant
number of variables (for constant alphabet size) in main memory. In order to
reduce the space further, one has to allow the use of disk. Unfortunately, random
accesses on disk are very slow and most of the accesses done by the induced
sorting algorithm are random accesses to both the input string S and the array
A. We show in Section 5 how to modify the induced sorting algorithm to get rid
of the A array, while using only sequential accesses to disk.

5 Semi-external Construction of the Burrows-Wheeler
Transform

In this section nS, nL, and nLMS denote the number of S-type, L-type and LMS-
type suffixes of S, respectively. The following steps correspond to the steps of
the induced sorting algorithm, but this time the BWT of S instead of the suffix
array is calculated. Fig. 2 illustrates all steps of the new algorithm.

Step 1. In this step S can reside on disk, as it is read sequentially. Furthermore,
only nLMS indexes are written into A. We can save space by storing the
indexes (without gaps) in an array ALMS,left of size nLMS, which is written
to disk and will be read sequentially in step 2. The next two steps require
random access to the input string S, therefore S is loaded from disk.

Step 2. Only the L-type positions of A are accessed here. Thus, we use AL of size
nL instead ofA. However, at each end of a bucket, we must read (sequentially)
from ALMS,left to place all LMS-type suffixes belonging to the next bucket.
Then we continue by scanning the next bucket of AL. Additionally, if an
index would not be moved by the original induced sorting algorithm, we
write it sequentially into the array ALMS,right. So after performing step 2,
ALMS,right contains all indexes, while ALMS,left and AL are empty.

Step 3. Similar to step 2, only the S-type positions of A are accessed now.
So instead of A, we now use the array AS of size nS. As before, between
two buckets one must read (sequentially) from ALMS,right. Again, if an index
would not be moved by the original induced sorting algorithm, we write
it sequentially into ALMS,left. At the end of step 3, ALMS,left contains the
LMS-type indexes sorted according to their corresponding LMS-substrings.

Space-Efficient Construction of the Burrows-Wheeler Transform 11

a m a m m m a s a s m a s a s s a a r a $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 3 7 9 12 14 17 ALMS,left

20 2 6 11 5 4 19 8 13 16 10 15 AL

2 4 19 8 13 10 15ALMS,right

21 17 1 3 18 7 12 9 14 AS

21 17 3 7 12 9 14 ALMS,left

1 1 1 1 0 1 1B

3 21 7 14 12 17R

3 4 5 4 6 2 1 S′

3 4 5 4 6 2 1 S′

2 6 1 3 5 4 4BWT′

step 5: recursion

21 17 3 7 12 14 14 ALMS,left

20 2 6 11 9 4 19 16 13 13 10 15 AL

2 4 19 13 13 10 15ALMS,right

21 17 1 3 18 12 12 9 14 AS

a r s $ m a m m s s a m s m a a s a a a a

step 1

step 2

step 3

step 4

step 6

step 7

step 8

Fig. 2. Steps of the semi-external construction of the Burrows-Wheeler Transform for
the input string amammmasasmasassaara$

12 T. Beller et al.

Step 4. For the creation of the renamed string S′ a bit-vector B of size nLMS

is computed, which indicates whether two consecutive entries in ALMS,left

correspond to identical LMS-substrings or not. During this computation an
array R is constructed, which contains the mapping of the lexicographi-
cal names for the LMS-substrings to their (end)positions in S. For identical
LMS-substrings only one position has to be stored. Then ALMS,left is read se-
quentially again. The corresponding lexicographical name of j = ALMS,left[i]
(determined with the help of B) is written to S′[� j

2�]. Afterwards, the gaps in
S′ are removed (preserving the order of the entries), and ALMS,left is deleted.

Step 5. The Burrows-Wheeler transform of S′ (called BWT′) is calculated di-
rectly if the characters of S′ are pairwise distinct, and recursively otherwise.

Step 6. The array R contains the mapping of the lexicographical names to the
corresponding positions in S. So ALMS,left can be filled sequentially based
on the equation ALMS,left[i] = R[BWT′[i]].

Step 7. Array AL is created again and scanned as in step 2 from left to right.
Between two buckets, one must read (sequentially) from ALMS,left. Again,
if an index would not be moved by the original induced sorting algorithm,
we write it sequentially to the array ALMS,right. Additionally, we begin to
produce the BWT of S. To be precise, every time an index i is placed into
AL, the character S[i− 1] is written to the correct position of the BWT. So
after performing this step, every entry in the BWT that corresponds to an
L-type suffix is set correctly, while there are gaps corresponding to S-type
suffixes. Furthermore, ALMS,right contains all indexes, while ALMS,left and AL

are empty.
Step 8. Array AS is created again and scanned as described in step 3 from right

to left (but we do not need ALMS,left). During this computation, the gaps
of the BWT of S are filled. To be precise, each time an index i is placed
into AS, the character S[i− 1] is written to the correct position of the BWT.
After this step, the BWT of S is completely calculated.

The correctness and linear runtime of this algorithm follows directly from the
correctness and runtime of the induced sorting algorithm.

Table 1. Access pattern to the data structures during the different steps of the algo-
rithm. In step 4, random access is needed first to S and then to S′.

step random access sequential access

1 ALMS,left S
2 S, AL ALMS,left, ALMS,right

3 S, AS ALMS,left, ALMS,right

4 S/S′, B ALMS,left, R
5 S′

6 R BWT′

7 S, AL BWT′, ALMS,right, BWT
8 S, AS ALMS,right, BWT

Space-Efficient Construction of the Burrows-Wheeler Transform 13

Table 1 summarizes which data structures are needed in memory, and which
can reside on disk because only sequential access is needed. The memory peak is
now in steps 2, 3, 7, and 8 because in these steps the text and a relatively large
array (AL or AS) is accessed randomly. However, one can reduce the space for AL

and AS because of the special access pattern: These arrays are read sequentially,
while the write access occurs only at positions that were not already read. We
describe now how to replace AL of size nL with A′

L of size k < nL. The idea is to
split AL in �nL

k � parts of size k. A′
L covers only one part of AL, while for all other

parts arrays Pi are created. Assume that we have to write value v to position
p, where p does not belong to the part of AL that corresponds to A′

L. In this
case, both values v and p are written to the corresponding array Pi. When our
reading position reaches the end of A′

L, we read the array Pi that covers the next
part and write the values with an appropriate offset to A′

L. Because read and
write accesses on Pi are sequentially, it can reside on disk. We deal analogously
with AS.

6 Practical Optimization for Very Small Alphabets

The BWT has important applications in bioinformatics. In this field, the alphabet
size is very small, e.g. 4 or 5 in case of DNA data. Thus, it is worthwhile to
optimize the algorithm for inputs with very small alphabet.

Let � be a fixed natural number. We call an LMS-substring s short if |s| ≤ �
and long otherwise. For a short LMS-substring s, we define its number as:

number(s) =

|s|∑
i=1

ord(s[i]) · σ�−i +

�∑
i=|s|+1

(σ − 1) · σ�−i

where ord(a) = |{a′ ∈ Σ : a′ < a}| for every a ∈ Σ. For two short LMS-
substrings s1 and s2, number(s1) < number(s2) if and only if s1 has a smaller
lexicographical name than s2. Now, we can obtain S′ by another approach:
We create a bit-vector Bshort of size σ� to mark the numbers of all short
LMS-substrings. By scanning S once from right to left, all LMS-substrings can
be found. If the current LMS-substring s is short, we calculate its number
i = number(s) and set Bshort[i] = 1. Otherwise, we store its starting position to-
gether with its position in S′ (which is the number of LMS-type suffixes before the
current one in S). Afterwards we (naively) sort the long LMS-substrings accord-
ing to their lexicographical order. Then we create another bit-vector BLMS, where
BLMS[i] = 0 if the i-th smallest LMS-substring is longer than � and BLMS[i] = 1
otherwise. BLMS can be calculated by scanning V and Bshort in parallel. During
this scan, the lexicographical names of the long LMS-substrings can be written
to S′. At last, the lexicographical names of the short LMS-substrings are in-
serted into S′: S is scanned again from right to left. When we find a short LMS-
substring s, we calculate the number of short LMS-substrings that are smaller
than s by r = rank1(Bshort, number(s)), and obtain the lexicographical name
with select1(BLMS, r).

14 T. Beller et al.

Sorting the long LMS-substrings can be done in O(n log n) using multikey
quicksort [3], so this optimization does not have a linear runtime. However, it is
in practice faster than the linear method described in Section 5 because we can
exploit that LMS-substrings are usually very short and thus (for � = 8) there
are not so many long LMS-substrings. Unfortunately, this optimization does not
work in the recursive steps because in the recursive calls the alphabet size is not
small enough.

7 Experimental Results

We implemented the algorithm using Simon Gog’s [9] library sdsl
(http://github.com/simongog/sdsl). In particular, we used bit-compressed
integers, which causes a slow down but avoids problems with inputs larger
than 232.

The experiments were conducted on a machine with a Intel(R) Core i5-3570
processor (3.40GHz; L1 Cache=256KB, L2 Cache=1MB, and L3 Cache=6MB)
and 8GB RAM. The operating system was Ubuntu 12.04.2 LTS. All programs
were compiled with g++ (version 4.6.3) using the provided makefile.

As test files we used DNA data of different size because this is the main
application. We concatenated the genomes3 from Human (hg19), Mouse (mm10)
and Gorilla (gorGor3) and deleted all characters other than A, C, G, T and
N. Then we took prefixes of size 1GB (genome1), 3GB (genome2), and 6GB
(genome3).

For a comparison with internal memory algorithms, we used Yuta Mori’s
divsufsort. It needs 5n bytes for inputs smaller than 231 and 9n bytes otherwise.
Additionally, an implementation from Sadakane (called dbwt in the following)
was used. This implementation is based on [18] (but has some simplifications
compared to the algorithm described in [18]) and usually uses less than 2.5n
bytes. Unfortunately, dbwt is limited to inputs smaller than 232 bytes and it
is unclear if it can be modified so that it can handle bigger inputs without
increasing the memory footprint or runtime.

For a comparison with external memory algorithms, we took the following
three implementations: bwtdisk 0.9.0 from Giovanni Manzini based on the al-
gorithms described in [8]. This program can handle compressed inputs and can
produce compressed outputs, but we did not make use of that option. LS from
Kunihiko Sadakane. It is an external memory variant of the Larsson-Sadakane
algorithm presented in [12]. This implementation can use multiple processors
and we tested it with all 4 available processors. eSAIS 0.5.2 [4] does not compute
the BWT but the suffix array and (optional) the LCP array. We turned the LCP
construction off to construct only the suffix array.

For a fair comparison with our new algorithm, we allowed each external im-
plementation to take n bytes of RAM. However, LS can only take a power of 2,
so we allowed it the usage of 232 byte for the 3GB input and 233 byte for the
6GB input.

3 Downloaded from http://genome.ucsc.edu

http://github.com/simongog/sdsl
http://genome.ucsc.edu

Space-Efficient Construction of the Burrows-Wheeler Transform 15

Table 2. Each column shows the runtime in seconds and in parentheses the maximum
memory usage in byte per input character. The files genome2 and genome3 were too
large for divsufsort on the machine equipped with 8GB of RAM. Because dbwt is limited
to files smaller than 4GB, genome3 (6GB) could not be calculated with dbwt.

algorithm genome1 genome2 genome3

divsufsort 204 (5.00) - -
dbwt 229 (1.95) 705 (2.00) -
this paper 412 (1.00) 1 475 (1.00) 3 387 (1.00)
bwtdisk 1 751 (1.05) 5 693 (1.05) 12 342 (1.05)
eSAIS 4 042 (1.08) 14 225 (1.02) 28 324 (1.06)
LS 9 382 (0.82) 34 200 (1.07) 94 728 (1.07)

Table 2 shows the experimental results. On the small genome1 file, divsufsort
is the fastest algorithm, followed by dbwt. Compared to dbwt our algorithm is
about 2 times slower, but uses only about half of the space. The same is true
for the genome2 file. The 6GB file (genome3) was far too big for the internal
memory algorithms divsufsort and dbwt on the machine with 8GB of RAM.
The suffix array construction algorithm divsufsort would require about 54GB of
RAM and dbwt is limited to inputs of at most 4GB. That is why our algorithm
is important. Of course, one can always resort to an external algorithm if in-
ternal memory algorithms need too much RAM. But as our experiments show,
our algorithm is the faster alternative (provided that there is enough RAM for
it): The implementation described in this paper is over 3 times faster than the
fastest external algorithm bwtdisk. Compared to eSAIS it is nearly one order of
magnitude faster. However, one should keep in mind that the comparison with
eSAIS is not fair because eSAIS constructs the suffix array and not the BWT.

8 Conclusion and Future Work

In this paper we presented a new method to construct the BWT space efficiently.
It is a semi-external algorithm, which is based on the induced sorting algorithm.
The implementation is not limited to inputs smaller than 4GB and experiments
show that it needs only about n bytes to compute the BWT of a length n DNA
sequence. Thus, it needs about half of the space dbwt uses and over 5 times less
space than suffix array construction algorithms. Furthermore, it is faster than
external algorithms when they are allowed to use n bytes of memory. So only in
cases when the input does not fit in RAM, external algorithms must be used. In
all other cases, one can construct the BWT with a non-external algorithm. Note
that n bytes are enough to compute the LCP-array from the BWT as shown in
[2] and also to construct the suffix array (semi-externally) from the BWT. So it
is now possible to construct SA, BWT and LCP with about n bytes without using
an external algorithm. These arrays are components of several full-text indexes.

In the full paper, we will show how the presented algorithm can be modified
so that it directly computes the suffix array.

16 T. Beller et al.

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing
and inverting the BWT of string collections. Theoretical Computer Science 483,
134–148 (2013)

2. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. Journal of Discrete
Algorithms 18, 22–31 (2013)

3. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 360–369
(1997)

4. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and lcp arrays in external
memory. In: Proc. Wkshp. Algorithm Engineering and Experiments (2013)

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center (1994)

6. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. Journal of Experimental Algorithmics 12, Article No. 3.4
(2008)

7. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE Symposium on Foundations of Computer Science, pp. 390–398 (2000)

8. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica 63(3), 707–730 (2012)

9. Gog, S.: Compressed Suffix Trees: Design, Construction, and Applications. PhD
thesis, University of Ulm, Germany (2011)

10. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sym-
posium on Foundations of Computer Science, pp. 549–554. IEEE (1989)

11. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting. Theoretical
Computer Science 387(3), 249–257 (2007)

12. Larsson, J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Sci-
ence 387(3), 258–272 (2007)

13. Lippert, R.A., Mobarry, C.M., Walenz, B.P.: A space-efficient construction of the
Burrows-Wheeler transform for genomic data. Journal of Computational Biol-
ogy 12(7), 943–951 (2005)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1), Article No. 2 (2007)

15. Nong, G., Zhang, S., Chan, W.: Linear suffix array construction by almost pure
induced-sorting. In: Proc. Data Compression Conference, pp. 193–202 (2009)

16. Nong, G., Zhang, S., Chan, W.: Two efficient algorithms for linear time suffix array
construction. IEEE Transactions on Computers 60(10), 1471–1484 (2011)

17. G. Nong Practical Linear-Time O(1)-Workspace Suffix Sorting for Constant Al-
phabets. ACM Transactions on Information Systems (to appear, July 2013)

18. Okanohara, D., Sadakane, K.: A linear-time Burrows-Wheeler transform using in-
duced sorting. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 90–101. Springer, Heidelberg (2009)

19. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2), Article No. 4 (2007)

	Space-Efficient Construction
of the Burrows-Wheeler Transform
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 The Induced Sorting Algorithm
	5 Semi-external Construction of the Burrows-Wheeler Transform
	6 Practical Optimization for Very Small Alphabets
	7 Experimental Results
	8 Conclusion and Future Work
	References

