
Learning to Schedule Webpage Updates

Using Genetic Programming

Aécio S.R. Santos1, Nivio Ziviani1, Jussara Almeida1, Cristiano R. Carvalho1,
Edleno Silva de Moura2, and Altigran Soares da Silva2

1 Universidade Federal de Minas Gerais,
Department of Computer Science, Belo Horizonte, Brazil

2 Universidade Federal do Amazonas,
Institute of Computing, Manaus, Brazil

Abstract. A key challenge endured when designing a scheduling policy
regarding freshness is to estimate the likelihood of a previously crawled
webpage being modified on the web. This estimate is used to define the
order in which those pages should be visited, and can be explored to
reduce the cost of monitoring crawled webpages for keeping updated
versions. We here present a novel approach to generate score functions
that produce accurate rankings of pages regarding their probability of
being modified when compared to their previously crawled versions. We
propose a flexible framework that uses genetic programming to evolve
score functions to estimate the likelihood that a webpage has been mod-
ified. We present a thorough experimental evaluation of the benefits of
our framework over five state-of-the-art baselines.

1 Introduction

The quality of a Web search engine depends on several factors, such as the
content gathered by the web crawler, the ranking function that produces the
document ordering, and the user interface. By its turn, the success of the crawling
process of a web search engine depends the coverage of the crawl, the policy used
to select pages to collect, and the freshness of the pages. The focus of this work
is on freshness, i.e., on the design of policies for scheduling webpage updates.

Web crawlers usually have access to limited bandwidth and their scheduler
should periodically sort a large list of known URLs to define the order in which
they should be visited. In this scenario, performing a full scan of all priorly
crawled webpages to assure database freshness is unfeasible. To avoid that, crawl-
ing architectures (e.g., VEUNI [8]) use a score function to assign a weight to each
known webpage (URL). Only the top k pages, k being a parameter, are taken to
be visited. After crawling the k pages, the scheduler starts a new crawling cycle,
using the score function to rank the known pages to be visited.

We here focus on the problem of estimating the likelihood that a webpage has
been modified. Prior work has used machine learning techniques to related tasks
(e.g., grouping pages with similar change behaviour [11], and predicting a page’s
change behaviour [10]), but none has applied them to build score functions. We

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 271–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5

272 A.S.R. Santos et al.

investigate the potential of using a genetic programming (GP) framework to
learn these score functions. Our experimental evaluation shows that our solution
outperforms existing score functions [3,11], being it a viable alternative to solve
the addressed problem and opening opportunities for future work.

2 Background and Related Work

Like [2,3,11], we here consider a binary freshness model where the freshness of
page p at time t is 1 if the copy of p is identical to the live copy, or 0, otherwise.
The freshness of a set C of webpages can then be estimated by the average
number of fresh pages in C at time t.

Probabilistic models have been proposed to approximate the history and pre-
dict webpage changes. For example, Coffman et al. [5] proposed to model the
occurrences of changes on each page p by a Poisson process with parameter λp

changes per time unit. Cho and Garcia-Molina [3] also investigated estimators
for the change frequency of elements that are updated autonomously, in various
scenarios. They showed that a web crawler can achieve improvements in fresh-
ness by setting its refresh policy to visit pages proportionally more often based
on their proposed estimator, which is defined in Section 5.1.

Cho and Ntoulas [4] proposed a sampling-based method to detect webpage
changes based on the number of pages that changed in a sample downloaded
from the web site, which may be too coarse to represent all of its pages. Tan
and Mitra [11] proposed to solve this problem by grouping the pages into k
clusters with similar change behavior, and then sorting the clusters based on
the mean change frequency of a representative cluster’s sample. They proposed
four strategies to compute the weights associated with a change in each of the
downloaded cycles, which are further described in Section 5.1. Our work differs
from [11] as our approach is not sampling based, but uses machine learning to
build a score function that allows the scheduling of webpage updates. Once the
score function has been learned, which is done off-line, it can be applied quickly,
thus allowing large scale crawling using the architecture presented in Section 3.

Radinsky and Bennett [10] proposed a webpage change prediction framework
that uses content features, the degree and relationship among the prediction
page’s observed changes, the relatedness to other pages, and the similarity in the
kinds of changes they experienced. We here only use features related to whether
the page changed or not during each cycle. However, given the flexibility of GP,
our approach can be easily extended to include other features in the future.

3 Crawler Architecture

The incremental crawler architecture considered here has four main components:
fetcher, URL extractor, uniqueness verifier, and scheduler [8]. Considering cycle
i, the fetcher receives from the scheduler a set of candidate URLs to be crawled,
locates them, and returns a set of URLs actually downloaded. The URL extractor
parses each downloaded page and obtains a set of new URLs. The uniqueness

Learning to Schedule Webpage Updates Using Genetic Programming 273

Listing 1.1. Genetic Programming for Crawling (GP4C)

1 Let T be a training set of pages crawled in a given period ;
2 Let V be a validation set of pages crawled in a given period ;
3 Let Ng be the number of generations;
4 Let Nb be the number of best individuals ;
5 P ← Initial random population of individuals ;
6 Bt ← ∅ ;
7 For each generation g of Ng generations do {
8 Ft ← ∅ ;
9 For each individual i ∈ P do

10 Ft ← Ft ∪ {g, i, fitness(i, T)} ;
11 Bt ← getBestIndividuals(Nb,Bt ∪ Ft) ;
12 P ← applyGeneticOperations(P,Ft,Bt, g) ;
13 }
14 Bv ← ∅ ;
15 For each individual i ∈ Bt do
16 Bv ← Bv ∪ {i, fitness(i,V)} ;
17 BestIndividual ← applySelectionMethod (Bt ,Bv) ;

verifier checks each URL against the repository of unique URLs1. The scheduler
chooses a new set of URLs to be sent to the fetcher, thus starting a new cycle.

We here focus on the algorithm for scheduling webpage updates, which is
driven by two main goals: coverage, the fraction of desired pages that the crawler
downloads successfully; and freshness, the degree to which the downloaded pages
remain up-to-date, relative to the current live web copies. Most prior work fo-
cuses on only one of them. This work is focused on freshness.

4 Genetic Programming for Incremental Crawling

We here apply GP to the problem of scheduling webpage updates, using it to
derive score functions that capture the likelihood that a page has changed. Pages
with higher likelihood should receive higher scores, and thus higher priority in
the scheduling process. Our method, called GP4C – Genetic Programming for
Crawling, uses a GP process adapted from [1], and is presented in Listing 1.1.

As shown in Listing 1.1, GP4C is an iterative process with two phases: training
(lines 5–13) and validation (lines 14–16). Our training and validation sets are
built as follows: we train with an initial set of pages and validate the results with
a distinct set of pages. This scenario is closer to that of large crawling tasks (e.g.,
crawling to a world wide search engine), where an initial set of pages to build
the training set is crawled first, and then a set of validation pages is crawled.
Experimental tests apply the resulting function in a third set of pages.

GP4C starts with the creation of an initial random population of Np indi-
viduals (line 5) that evolves generation by generation using genetic operators
(line 12) until a maximum number of generations (Ng). We apply the genetic

1 Note that the size of the set of candidate URLs passed to the fetcher is defined by
the amount of memory space available to the uniqueness verifier.

274 A.S.R. Santos et al.

operators of reproduction, crossover and (swap/replacement) mutation at pre-
defined rates. In particular, for the crossover operation, the selection of the
parents is performed randomly among the top best individuals of the current
generation. In the training phase, a fitness function is applied to evaluate all in-
dividuals of each generation (lines 9–10), so that only the Nb fittest individuals,
across all previous generations, are selected to continue evolving (line 11). After
the last generation is built, to avoid over-fitting, the validation phase is applied:
the fitness function is used over the validation set (lines 15–16), and individuals
that perform the best are selected as the final scheduling solutions (line 17).

Each individual represents a function that assigns a score to each page when
composing the scheduling at the training set. Such score combines information
useful for estimating the likelihood of a given page being updated in a period
of time, exploring, for instance, its behavior in previous crawls. The training is
performed in a period of time considered by us, and each individual is evaluated
as being the function to create the scheduling in the whole training period.

An individual is represented by a binary tree with a maximum depth d, where
terminals are features that help characterizing a page’s updating behavior. We
here consider three features: (1) n, the number of times that the page was visited;
(2) X , the number of times that the page changed in n visits; and t, the number
of cycles since the page was last visited. We also use the following constant values
as terminals: 0.001; 0.01; 0.1; 0.5; 1; 10; 100; 1000. As inner nodes of the tree, we
use the functions addition (+), subtraction (−), multiplication (∗), division (/),
logarithm (log), exponentiation (pow), and the exponential function (exp).

The fitness function measures the quality of the ranking produced using a
given individual for the whole training period. To compute the fitness of an
individual, we take the score it produces for each page in the training set of each
day and generate a schedule for the crawling to be performed on the next day.
We here use as fitness function the ChangeRate metric, defined in Section 5.1.

As in [1], we select the best individuals in the validation step by running the GP
process N times with distinct random seeds, so as to reduce the risk of finding
a low performance local best individual. We pick the best individual among
those generated by these N runs, referring to this approach as GP4CBest. As
in [6], we also consider two other strategies that are based on the average Avgσ
and the sum Sumσ of the performances of each individual in both training and
validation sets, minus the standard deviation of such performance when selecting
best individuals. The individual with the highest Sumσ (or Avgσ) is selected.
We refer to GP4C using these selection strategies as GP4C Sum and GP4CAvg.

5 Experimental Evaluation

We used a crawl simulation to ensure that all policies are compared under the
same conditions. We built a webpage dataset collected from the Brazilian Web
(.br domain) using the crawler presented in [8], whose architecture is described
in Section 3. Table 1 summarizes the dataset, referred to as BRDC’122, which

2 Available at http://homepages.dcc.ufmg.br/∼aeciosantos/datasets/

brdc12/

http://homepages.dcc.ufmg.br/$\sim $aeciosantos/datasets/brdc12/
http://homepages.dcc.ufmg.br/$\sim $aeciosantos/datasets/brdc12/

Learning to Schedule Webpage Updates Using Genetic Programming 275

consists of a fixed set of webpages crawled on between September and Novem-
ber 2012. From a repository of around 200 million URLs we selected 3,059,698
webpages, which were then daily monitored. During the monitoring periods, our
crawler ran from 0AM to 11PM, recollecting each selected webpage every day,
which allowed us to determine when each page was modified.

Table 1. Overview of our BRDC’12 dataset

Monitoring Number of Number of Number of webpages/site
period webpages websites Min Max Average

57 days 417,048 7,171 1 2,336 58.15

5.1 Baselines and Evaluation Metric

We compare GP4CBest, GP4C Sum and GP4CAvg with five baselines, referred
to here as CG, NAD, SAD, AAD and GAD. Given n the number of visits and
X the number of times that a page p changed in those n visits, the CG baseline
[3] estimates the change frequency of p as:

CG = − log(
n−X + 0.5

n+ 0.5
). (1)

The other four baselines were proposed by Tan and Mitra [11]. In order to
compute the change frequency of the pages, they assume that each page p follows
a Poisson process with parameter λp. That is, the probability that a page p will
change in the interval (0, t] is given by 1 − eλpt. We set t to be the number of
cycles since the page was last downloaded and compute λp using the change
history of the pages:

λp =

n∑
i=1

wi · Ii(p),

where n is the number of times the page was downloaded so far, wi is a weight
associated with a change occurred in the ith download of the page (

∑n
i=1 wi = 1),

and Ii(p) is either 1 if page p changed in the ith download, or 0 otherwise.
The weights wi are computed according to one of the following schemes:

– NAD (Nonadaptive): all changes are equally important (wi=
1
n , ∀i = 1..n).

– SAD (Shortsighted adaptive): only the last change is important (w1=· · · =
wn−1 = 0, wn = 1).

– AAD (Arithmetically adaptive): more recent changes are more important,
and weights decrease according to an arithmetic progression (wi =

i∑n
i=1 i).

– GAD (Geometrically adaptive): as the previous scheme, but weights decrease

more quickly, following a geometric progression (wi =
2i−1

∑
n
i=1 2i−1).

We also consider two simpler approaches to build score functions, referred to
as Rand and Age. In Rand, the scores are randomly chosen, whereas in Age,
they are equal to the time t since the page was last visited (i.e., downloaded).

276 A.S.R. Santos et al.

Our main evaluation metric is the ChangeRate, defined in [7] to assess the
ability of a scheduling policy to detect updates. The ChangeRate at cycle i is the
fraction of pages that were downloaded during i that had changed. The intuition
is that the higher the concentration of changed pages, the better the scheduling.
We use ChangeRate both as evaluation metric and fitness function, leaving the
use of alternative metrics (e.g., weighted ChangeRate [4]) for the future.

5.2 Experimental Methodology

We adopted a 5-fold cross validation: 4 folds were equally divided into training
set and validation set, and the last fold was used as test set. We report average
results for the 5 test sets, along with corresponding 95% confidence intervals.

In order to evaluate the score functions and compute fitness values we simulate
a crawl using our dataset. Our simulation starts with a warm-up period W=2
days, during which collected data is used to build basic statistics about each page.
For each day following warm-up, we apply our proposed score function and each
baseline to assign scores to each page. The download of the top-k pages with
highest scores produced by each method is then simulated by updating statistics
of the page such as number of visits (i.e., downloads), number of changes, etc.
We set k equal to 5% of the total number of webpages in the dataset. Whenever
the actual number of changed pages on a day is smaller than k, no evaluated
algorithm can reach a maximum ChangeRate.

Regarding parametrization of the GP framework, we set Np equal to 300
individuals, created using the ramped half-and-half method [9]. Due to the sta-
bility of results, we set Ng equal to 50 generations as termination criterion. We
adopted tournament selection of size 2 to select individuals to evolve and set the
crossover, reproduction, replacement mutation and swap mutation rates equal
to 90%, 15%, 5% and 5%, respectively. We set the maximum tree depth d to 10
and the maximum depth for crossover to 9. During the evolution process we kept
the Nb = 50 best individuals discovered through all generations to the validation
phase. We ran the GP process using N=5 random seed values.

5.3 Results

We now discuss the results produced by our GP4C framework and the baselines
using the BRDC’12 dataset. We consider only a basic set of terminals - n, X and
t (see Section 4) - to show that our solution can derive functions that perform
as good or better than the baselines.

Figure 1 shows the average ChangeRate for each day, for GP4CBest and all
baselines. We omit the results for the other GP4C variations as they are either
statistically tied or inferior to GP4CBest. With 95% confidence, GP4CBest is
statistically superior to all baselines in most days, being tied to NAD, AAD,
GAD and CG, the most competitive baselines, in only a few days. Specifically,
GP4CBest is statistically superior to NAD, AAD, GAD and CG in 22, 47, 49
and 50 of the simulated download cycles, respectively, being statistically tied

Learning to Schedule Webpage Updates Using Genetic Programming 277

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 10 20 30 40 50

C
ha

ng
eR

at
e

Download Cycles (Days)

NAD SAD AAD GAD CG GP2C_Best

Fig. 1. (Color online) Average ChangeRate on each download cycle

with them in the other days. The only exceptions occur in the three initial days:
GP4CBest is statistically inferior to AAD in days 1 and 3 and to GAD in day 1.
This result corroborates the flexibility of our framework as it is able to produce
results at least as good, if not better, than all five baselines.

Table 2 summarizes these results, showing average ChangeRate along with
95% confidence intervals for all methods, including the Rand and Age baselines
(omitted in Figure 1). Once again, our GP4C solutions produce score functions
superior to all baselines. Note that the results of Rand and Age are much worse
than all other methods. Moreover, even though our GP4C approaches use the
exact set of parameters used by the CG baseline [3] (i.e., n,X, t), our methods
produce much better results, increasing the average ChangeRate by around 10%.
The best baseline is NAD, which uses a different set of parameters that may
provide more useful information about a page’s updating behavior. Nevertheless,
our approaches are still slightly better than NAD and can easily derive other
functions if more parameters are given as input.

Table 2. Average ChangeRate for all days along with 95% confidence intervals

Rand Age NAD SAD AAD GAD CG GP4CBest GP4CSum GP4CAvg

0.1857 0.2130 0.6892 0.5166 0.6344 0.6016 0.6439 0.7058 0.7008 0.7034
± ± ± ± ± ± ± ± ± ±

0.0007 0.0009 0.0056 0.0066 0.0095 0.0059 0.0067 0.0096 0.0176 0.0107

Finally, we note that our GP4C framework can be used for better understand-
ing the scheduling problem. As example, an extremely simple, but also effective,
function generated by our method is t ∗ X , which yields a final performance
superior to most of the baselines, with average ChangeRate above 0.690. It was
not the best function found by GP4C, but illustrates how the framework can be
applied not only to derive good score functions, but also to give insights about
the most important parameters.

278 A.S.R. Santos et al.

6 Conclusions and Future Work

We have presented a GP framework to automatically generate score functions
to be used by schedulers of web crawlers to rank webpages according to their
likelihood of being modified since they were last crawled. We compared three
variations of our framework against seven state-of-the-art baselines, using a web-
page dataset collected from the Brazilian Web. Our results show that our best
function, GP4CBest, is statistically superior to all baselines in most of the simu-
lated download cycles. Moreover, our framework is quite flexible and can derive
new score functions by exploiting new features (e.g., Pagerank of the pages,
cost for crawling) or alternative fitness functions that balance the objectives of
freshness and coverage. This is a direction we intend to pursue in the future.

Acknowledgements. We thank the Brazilian National Institute of Science and
Technology for the Web (grant MCT-CNPq 573871/2008-6), Project MinGroup
(grant CNPq-CT-Amazônia 575553/2008-1) and authors’ grants and scholar-
ships from CNPq.

References

1. Carvalho, A.L., Rossi, C., de Moura, E.S., da Silva, A.S., Fernandes, D.: Lepref:
Learn to precompute evidence fusion for efficient query evaluation. Journal of the
American Society for Information Science and Technology 63(7), 1383–1397 (2012)

2. Cho, J., Garcia-Molina, H.: Synchronizing a database to improve freshness. In:
SIGMOD Record, pp. 117–128 (2000)

3. Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Transactions on
Internet Technology 3, 256–290 (2003)

4. Cho, J., Ntoulas, A.: Effective change detection using sampling. In: VLDB,
pp. 514–525 (2002)

5. Coffman, E.G., Liu, Z., Weber, R.R.: Optimal robot scheduling for web search
engines. Journal of Scheduling 1(1) (1998)

6. de Almeida, H.M., Gonçalves, M.A., Cristo, M., Calado, P.: A combined compo-
nent approach for finding collection-adapted ranking functions based on genetic
programming. In: SIGIR, pp. 399–406 (2007)

7. Douglis, F., Feldmann, A., Krishnamurthy, B., Mogul, J.: Rate of change and other
metrics: a live study of the world wide web. In: USENIX Symposium on Internet
Technologies and Systems, p. 14 (1997)

8. Henrique, W.F., Ziviani, N., Cristo, M.A., de Moura, E.S., da Silva, A.S., Carvalho,
C.: A new approach for verifying URL uniqueness in web crawlers. In: Grossi, R.,
Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 237–248.
Springer, Heidelberg (2011)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

10. Radinsky, K., Bennett, P.: Predicting content change on the web. In: WSDM (2013)
11. Tan, Q., Mitra, P.: Clustering-based incremental web crawling. ACM Transactions

on Information Systems 28, 17:1–17:27 (2010)

	Learning to Schedule Webpage UpdatesUsing Genetic Programming
	1 Introduction
	2 Background and Related Work
	3 Crawler Architecture
	4 Genetic Programming for Incremental Crawling
	5 Experimental Evaluation
	5.1 Baselines and Evaluation Metric
	5.2 Experimental Methodology
	5.3 Results

	6 Conclusions and Future Work
	References

