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Abstract. The suffix tree of alignment is an index data structure for
similar strings. Given an alignment of similar strings, it stores all suf-
fixes of the alignment, called alignment-suffixes. An alignment-suffix rep-
resents one suffix of a string or suffixes of multiple strings starting at
the same position in the alignment. The suffix tree of alignment makes
good use of similarity in strings theoretically. However, suffix trees are
not widely used in biological applications because of their huge space
requirements, and instead suffix arrays are used in practice.

In this paper we propose a space-economical version of the suffix tree
of alignment, named the suffix array of alignment (SAA). Given an align-
ment ρ of similar strings, the SAA for ρ is a lexicographically sorted list
of all the alignment-suffixes of ρ. The SAA supports pattern search as
efficiently as the generalized suffix array. Our experiments show that our
index uses only 14% of the space used by the generalized suffix array to
index 11 human genome sequences. The space efficiency of our index in-
creases as the number of the genome sequences increases. We also present
an efficient algorithm for constructing the SAA.

Keywords: Indexes for similar data, suffix arrays, alignments.

1 Introduction

The 1000 Genomes project [4] is aiming at building a database of 1092 individual
human genome sequences using a cheap and fast sequencing, called Next Gen-
eration Sequencing (NGS). To sequence an individual genome using the NGS,
the individual genome is divided into short segments (called reads) and they are
aligned to the Human reference Genome. This is possible because an individual
genome is more than 99% identical to the Human reference Genome. The sim-
ilarity also enables us to store individual genomes efficiently. Instead of storing
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1000 whole individual sequences, only 1% different regions of each individual
genome can be stored.

Not only efficient storing techniques but also efficient indexing techniques
for similar strings have been developed. The first such index was proposed by
Mäkinen et al. [16,17]. Their index uses run-length encoding, a suffix array, and
BWT [3]. Huang et al. [9] indexed similar strings by building separate data
structures for common regions and non-common regions. In addition, indexes
based on Lemple-Ziv compression schemes [15,21] have been developed [5,14].
Some of these indexes are surveyed in [20]. The space reductions of these indexes
are achieved mostly by using classical compressed indexes. However, the indexes
do not support efficient pattern search or require auxiliary data structures to
improve the pattern search time.

Recently, a suffix tree for similar strings, called a suffix tree of alignment [19],
have been proposed without sacrificing the pattern search time, i.e., the suffix
tree of alignment supports linear-time pattern search. Given an alignment of
similar strings, the suffix tree of alignment stores suffixes of an alignment, called
alignment-suffixes (for short a-suffixes) rather than suffixes of a string. An a-
suffix may represent suffixes of multiple strings starting at the same position in
an alignment. The suffix tree of alignment makes good use of similarity in strings
theoretically. Although suffix trees support many functionalities [2,8], however,
they are not widely used in biological applications because of the huge space
requirement. Instead, suffix arrays [18] (including their compressed forms [6,7])
are widely used in practice.

In this paper we propose the suffix array of alignment (SAA), an array ver-
sion of the suffix tree of alignment. Given an alignment ρ, the SAA for ρ is a
lexicographically sorted list of all the a-suffixes of ρ. We show that the sorted
order of the a-suffixes is well defined and the longest common prefix (lcp) of
two a-suffixes is also well defined. Assume that given strings consist of com-
mon regions and non-common regions alternatively, e.g., three strings A, B, and
C can be represented as A = α1β1 . . . αkβkαk+1, B = α1δ1 . . . αkδkαk+1, and
C = α1ϑ1 . . . αkϑkαk+1, where αi’s are common regions and βi’s, δi’s and ϑi’s

are non-common regions. Then, the SAA requiresO(|A|+
∑k

i=1(2|α∗
i |+|δi|+|ϑi|))

space, where α∗
i is the longest suffix of αi appearing at least twice in A, in B

or in C. (For simplicity, three strings are considered but our results work well
for more than three strings.) The space requirement of the SAA is asymptot-
ically the same as that of the suffix tree of alignment, but the SAA is more
space-efficient practically. Furthermore, our suffix array supports pattern search
as efficiently as the generalized suffix array (GSA).

Moreover, we show by experiments that our index is space-efficient for similar
data in practice by analyzing and comparing the space requirements of the SAA
and the GSA, which support the same efficiency of pattern search. The space
requirement of our index is influenced by the lengths of α∗

i and non-common
regions. Our experiments show that these lengths are short in practice and thus
our index consumes very small space. We used 11 human genome sequences, one
reference sequence and 10 individual sequences from the 1000 Genomes project



Suffix Array of Alignment: A Practical Index for Similar Data 245

website1. In the genome sequences, non-common regions are only 0.3% of the
entire positions, i.e., these sequences are very similar. Moreover, the α∗

i ’s, which
is a main factor for the space requirement of the SAA, occupy 5% of the entire
positions and the length of α∗

i is 16.64 on average. Conclusively, the SAA requires
only 14% of the space required by the GSA for indexing the 11 sequences. It
should be noted that the space efficiency of our index increases as the number
of the genome sequences increases.

We also present an efficient algorithm for constructing the SAA. One might
think the SAA can be simply constructed by simulating the algorithm for con-
structing the suffix tree of alignment in [19]. However, it is not easy because the
algorithm heavily uses the dynamic property of the suffix tree and makes use
of suffix links. The core of the tree construction algorithm is how to compute
α∗
i efficiently, which is solved using a property satisfied in a partial suffix tree

containing suffixes derived from several strings. Thus, we developed a new algo-
rithm to compute α∗

i using only suffix arrays. For this, we generalize the property
dedicated to the suffix tree so that the property is satisfied in substrings of in-
put strings. Conclusively, we can compute α∗

i and thus construct the SAA as
efficiently as the algorithm in [19].

2 Suffix Array of Alignment (SAA)

In this section we define the suffix array of alignment (SAA) and present how to
construct the SAA. For simplicity, we consider only alignments of three strings
but our definitions and algorithms can be easily extended to more than three
strings. We first consider alignments with one non-common chunk and then
general alignments with more than one non-common chunk.

2.1 Definition of SAA

Let A, B, and C be similar strings such that A = αβγ, B = αδγ, and C = αϑγ,
where α and γ are common regions in all strings, and β, δ, and ϑ are non-common
regions. Then, these regions represent an alignment of the strings and each string
can be transformed to another string by replacing non-common regions. We
denote this alignment of the three strings by ρ = α(β/ δ/ ϑ)γ. For simplicity, we
assume that all strings end with a special symbol # ∈ Σ occurring nowhere else
in the strings.

The suffixes of the alignment ρ, called alignment-suffixes (for short a-suffixes),
are defined as in [19]. Let αa, αb, and αc be the longest suffixes of α occurring
at least twice in the strings A, B, and C, respectively. Let α∗ be the longest of
αa, αb, and αc, i.e., α∗ is the longest suffix of α occurring at least twice in A, in
B, or in C. Then, these are a-suffixes of ρ, which are classified into 5 types.

1. a suffix of γ,
2. ωaγ, where ωa is a (non-empty) suffix of α∗β.

1 http://www.1000genomes.org/

http://www.1000genomes.org/
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idx POS LCP a-suffixes (type)

1 (1, 9) - # (1)
2 (2, 6) 0 a a b # (3)
3 (1, 4) 3 a a b a b # (2)
4 (3, 4) 2 a a c a b # (4)
5 (1, 7) 1 a b # (1)
6 (2, 4) 2 a b a a b # (3)
7 (1, 5) 3 a b a b # (2)
8 (1, 1) 2 a b c a (a b / b a / a c ) a b # (5)
9 (3, 5) 1 a c a b # (4)
...

...
...

...

Fig. 1. The SAA of abca(ab/ba/ac)ab#. A pair (a, b) in POS represents the string
number a and the starting position b of an a-suffix. LCP [i] is the length of lcp between
two a-suffixes of POS[i− 1] and POS[i].

3. ωbγ, where ωb is a (non-empty) suffix of α∗δ.
4. ωcγ, where ωc is a (non-empty) suffix of α∗ϑ.
5. α′(β/ δ/ ϑ)γ, where α′ is a suffix of α longer than α∗.

For example, assume that an alignment abca(ab/ba/ac)ab# is given. Then,
αa = αb = a and αc = ca. Since α∗ is ca, caabab# is an a-suffix of type 2 and
bca(ab/ba/ac)ab# is an a-suffix of type 5.

The suffix array of alignment (SAA) for ρ is a lexicographically sorted list of
all the a-suffixes of ρ. It is clear what the sorted order for a-suffixes of types 1-4 is
since an a-suffix of types 1-4 represents one string. On the other hand, an a-suffix
of type 5, e.g., ω = α′(β/ δ/ ϑ)γ where |α′| > |α∗| represents three strings α′βγ,
α′δγ, and α′ϑγ derived from A, B, and C, respectively. However, it does not
cause trouble when determining the order of ω between the a-suffixes of ρ. Since
α′ occurs only once in each string, i.e, as prefix of α′βγ, α′δγ, and α′ϑγ, the
order of ω is determined by α′. Thus, the lexicographically sorted order between
the a-suffixes is well defined and the longest common prefix (lcp), an additional
information often used together with the suffix arrays, between a-suffixes of ρ is
also well defined. See Figure 1 for an example.

The space requirement of the SAA is linear to the number of a-suffixes. There
are |γ| a-suffixes of type 1. The number of a-suffixes of types 2, 3, and 4 is
|α∗β|+ |α∗δ|+ |α∗ϑ|) and the number of a-suffixes of type 5 is |α| − |α∗|. Since
|A| = |α|+ |β|+ |γ|, the SAA of ρ requires O(|A| + 2|α∗|+ |δ|+ |ϑ|) space.

2.2 Construction of SAA

One method for constructing the SAA of ρ is using the suffix tree of the alignment
ρ [19] as an intermediate index. However, this method does not make full use
of the space-efficiency of suffix arrays because suffix trees require much more
space than suffix arrays. Another method, without constructing suffix trees, is
constructing first the generalized suffix array (GSA) for the three strings as
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an intermediate index and then deleting suffixes that are not a-suffixes in the
GSA. However, this method also is not efficient in working space as well as
in construction time because the time and space requirement of the GSA is
proportional to the total length of the strings regardless of similarity among the
strings. The more number of strings are in the alignment and the more similar
the strings are, the more is the inefficiency.

We present how to construct the SAA efficiently in time and space. Our
algorithm for constructing the SAA of ρ consists of three steps. Let γa, γb, and
γc be the longest prefixes of γ occurring at least twice in the strings A, B, and C,
respectively. Let γ∗ be the longest of γa, γb, and γc. (Note that these definitions
are symmetrical with those of αa, αb, αc, and α∗, and are different from the
definition of γ̂ used in [19].) Then, the outline of our algorithm is as follows:

1. Compute |α∗| and |γ∗|.
2. Construct the GSA for three strings A, α∗δγ∗d, and α∗ϑγ∗d, where d is the

symbol following γ∗ in γ.
3. Delete suffixes of γ∗d derived from α∗δγ∗d and α∗ϑγ∗d.

Step 1 is the core step of our algorithm. We mainly focus on the problem of
computing |α∗| since |γ∗| can be computed symmetrically. For a string S, let
SR be the reversed string of S. We can compute |αa| by searching for αR in the
suffix array of AR. Thus, one method to compute |α∗| is constructing the suffix
array of each reversed string and computing |αa|, |αb|, and |αc|. However, this
method requires the time proportional to the total length of the three strings
due to constructing the three suffix arrays.

To compute |α∗| more efficiently, we make use of the similarity in the strings.
Consider the strings A and B. The following lemma says that, given |αa|, a
substring including δ is sufficient for computing max(|αa|, |αb|) instead of the
entire of B. (Note that we do not need to compute the exact value of |αb| to
compute |α∗|.)

Lemma 1. If |αb| > |αa|, αb occurs in the substring B′ of B, where B′ = αaδγa.

Proof. By definition of αb, there are at least two occurrences of αb in B. Ob-
viously, one occurrence occ1 of αb appears as a suffix of α. Since |αb| > |αa|,
occ1 cannot be included in B′. Let occ2 denote an occurrence of αb in B other
than occ1. Let s2 and e2 be the starting and the ending positions of occ2 in
B, respectively. Let sa and ea be the starting and the ending positions of the
substring B′ in B, respectively.

We show that occ2 is included in B′, i.e., sa ≤ s2 and e2 ≤ ea. We first prove
by contradiction that sa ≤ s2. Suppose s2 < sa. We have two cases according to
whether occ2 is overlapped with δ or not.

– The case when occ2 is not overlapped with δ. Then, occ2 is included in α
and it means that there are at least two occurrences (occ1 and occ2) of αb

in α and also in A. It contradicts with the definition of αa since |αb| > |αa|.
– The case when occ2 is overlapped with δ. Let α′ be the suffix of α starting at

s2. Since s2 < sa, |α′| > |αa|. Since α′ is a prefix of occ2, α
′ is also a prefix
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of occ1. Hence, there are at least two occurrences of α′ in α and also in A.
It contradicts with the definition of αa since |α′| > |αa|.

Similarly, we can prove that e2 ≤ ea by contradiction with the definition of
γa. �

Note that this property also holds for other strings. For example, if |αc| > |αa|,
αc occurs in the substring αaϑγa of C.

Using this property, we can compute |α∗| and |γ∗| as follows:
1.1 Compute |αa| by searching for αR in the suffix array of AR and, symmetri-

cally, compute |γa| by searching for γ in the suffix array of A.
1.2 Compute �b = max(|αa|, |αb|) using the suffix array of (αaδγa)R as follows.

Let α′ be the longest suffix of α occurring in αaδγa. (Note that |α′| ≥ |αa|
since αa occurs in αaδγa.) We can find α′ by searching for αR in the suffix
array of (αaδγa)R. By Lemma 1, if |α′| > |αa|, �b = |α′| and, otherwise,
�b = |αa|.
Symmetrically, compute max(|γa|, |γb|) using the suffix array of αaδγa.

1.3 Similarly, compute �c = max(|αa|, |αc|) using the suffix array of (αaϑγa)R.
Then, |α∗| = max(�b, �c).
Symmetrically, compute max(|γa|, |γc|) and |γ∗|.

Since the suffix array of a string S can be constructed using O(|S|) time and
O(|S|) space [10,12,13], and one can search for a string P using the suffix array
of S with some auxiliary information in O(|P |) [1,11], computing |α∗| and |γ∗|
requires O(|A| + |α∗δγ∗| + |α∗ϑγ∗|) time and O(|A|) working space. Note that
the suffix array constructed in each substep is needed only in the substep.

In Step 2, we construct the GSA for three strings A, α∗δγ∗d, and α∗ϑγ∗d,
where d is the symbol following γ∗ in γ. The GSA contains all the a-suffixes of the
alignment ρ. (Note that the suffixes of γ in A are the a-suffixes of type 1 of ρ and
the suffixes of A longer than α∗βγ can be implicitly converted to the a-suffixes
of type 5 of ρ [19].) The reason why γ∗d is necessary is as follows. Let ωγ be an
a-suffix of type 3 (of B). To determine the order of ωγ among a-suffixes of ρ, we
may need a prefix of γ. Since γ∗d occurs only once in each string, the order of
ωγ is determined by ωγ∗d. Obviously, Step 2 requires O(|A|+ |α∗δγ∗|+ |α∗ϑγ∗|)
time and space.

In Step 3, we delete suffixes of γ∗d in α∗δγ∗d and α∗ϑγ∗d because these are
redundant with suffixes of A (a-suffixes of type 1). Consider a suffix ω of γ∗d. In
the GSA, there are two ω’s derived from α∗δγ∗d and α∗ϑγ∗d. The two ω’s are
adjacent in the GSA. We can delete redundant suffixes by scanning the entire
GSA, which requires O(|A| + |α∗δγ∗|+ |α∗ϑγ∗|) time and space.

Theorem 1. Given an alignment ρ = α(β/ δ/ ϑ)γ, the SAA of ρ can be con-
structed using O(|A| + |α∗δγ∗|+ |α∗ϑγ∗|) time and working space.

2.3 Alignment with Multiple Regions

In this section we consider alignments with multiple non-common re-
gions. Let A = α1β1 . . . αkβkαk+1, B = α1δ1 . . . αkδkαk+1, and C =
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α1ϑ1 . . . αkϑkαk+1. We denote the alignment of the strings by ρ =
α1(β1/ δ1/ ϑ1)α2(β2/ δ2/ ϑ2)α3 . . . αk+1. Without loss of generality, we assume
that αi (2 ≤ i ≤ k) occurs only once in each string. (Otherwise, we merge
αi with adjacent non-common regions, e.g., βi−1αiβi is regarded as one non-
common region). For 1 ≤ i ≤ k, let αa

i , α
b
i , and αc

i be the longest suffixes of αi

occurring at least twice in the strings A, B, and C, respectively. Let α∗
i be the

longest of αa
i , α

b
i , and αc

i . Then, these are a-suffixes of ρ, which are classified
into 5 types (1 ≤ i ≤ k).

1. a suffix of αk+1,
2. ωa

i αi+1 . . . αk+1 where ωa
i is a (non-empty) suffix of α∗

i βi.
3. ωb

iαi+1 . . . αk+1 where ωb
i is a (non-empty) suffix of α∗

i δi.
4. ωc

iαi+1 . . . αk+1 where ωc
i is a (non-empty) suffix of α∗

i ϑi.
5. α′

i(βi/ δi/ ϑi)αi+1 . . . αk+1, where α′
i is a suffix of αi longer than α∗

i .

The SAA of ρ is a lexicographically sorted list of all the a-suffixes of ρ. The SAA
requires the space linear to the number of a-suffixes, i.e., O(|A|+

∑k
i=1(2|α∗

i |+
|δi|+ |ϑi|)) space.

For 1 ≤ i ≤ k, let γa
i , γ

b
i , and γc

i be the longest prefix of αi+1 occurring at
least twice in the strings A, B, and C, respectively, and let γ∗

i be the longest of
γa
i , γ

b
i , and γc

i . Let B
′ be the concatenation of the k strings αa

i δiγ
a
i #i (1 ≤ i ≤ k)

and C′ be the concatenation of the k strings αa
i ϑiγ

a
i #i (1 ≤ i ≤ k), where #i is

a delimiter. That is,

B′ = αa
1δ1γ

a
1#1α

a
2δ2γ

a
2#2 . . . α

a
kδkγ

a
k#k and

C′ = αa
1ϑ1γ

a
1#1α

a
2ϑ2γ

a
2#2 . . . α

a
kϑkγ

a
k#k.

Then, Lemma 1 can be generalized to the following lemma (we omit the proof).

Lemma 2. For every i = 1, . . . , k, if |αb
i | > |αa

i |, αb
i occurs in B′.

The SAA of ρ can be constructed as follows:

1. Compute |α∗
i | and |γ∗

i | (1 ≤ i ≤ k).
1.1 Compute |αa

i |, for every i = 1, . . . , k, by searching for αR
i in the suffix

array of AR and, symmetrically, compute |γa
i | by searching for γi in the

suffix array of A.
1.2 Compute �bi = max(|αa

i |, |αb
i |) using the suffix array of (B′)R as follows.

Let α′
i be the longest suffix of αi occurring in B′. We can find α′

i by
searching for (αi)

R in the suffix array of (B′)R. By Lemma 2, if |α′
i| >

|αa
i |, �bi = |α′

i| and, otherwise, �bi = |αa
i |.

Symmetrically, compute max(|γa
i |, |γb

i |) using the suffix array of B′ .
1.3 Similarly, compute �ci = max(|αa

i |, |αc
i |) using the suffix array of (C′)R.

Then, |α∗
i | = max(�bi , �

c
i).

Symmetrically, compute max(|γa
i |, |γc

i |) and |γ∗
i |.

2. Construct the GSA for 2k + 1 strings A, α∗
i δiγ

∗
i di, and α∗

i ϑiγ
∗
i di, where di

is the symbol following γ∗
i in αi+1 (1 ≤ i ≤ k).

3. Delete suffixes of γ∗
i di derived from α∗

i δiγ
∗
i di and α∗

i ϑiγ
∗
i di (1 ≤ i ≤ k) in

the GSA.
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2.4 Pattern Search

We can perform pattern search using the SAA in the same way as using classical
suffix arrays of strings except for dealing with alignments in a-suffixes. Consider
an a-suffix ω(βi/ δi/ ϑi) . . . αk+1 where ω does not contain an alignment. We can
perform binary search with lcp information like in classical suffix arrays until a
prefix of a given pattern P matches ω. If a prefix of P matches ω, we consider
only the a-suffix to search for P since ω occurs only once in each string by
definition of a-suffixes. Thus, after a prefix of P matches ω, we compare P with
βi, δi, and ϑi. We can enhance this comparison using the trie of βi, δi, and ϑi.

3 Experiments

We show by experiments that our index (the SAA) is an effective data structure
for similar data. The SAA requires only about 1/7 of the space required by the
GSA to index 11 human genome sequences, which is explained in the following.

3.1 Experimental Data

To measure the space requirement of indexes in practice, we used one reference
sequence and 10 individual sequences from 1000 Genomes project website. From
the project website, we downloaded pairs of bam and bai files of 10 individual
human genomes, where bam files contain reads (short segments of length 90-
125) of each individual and bai files contain alignment of the reads. We also
downloaded their corresponding reference genome, hg19. To convert a set of
reads into one sequence, we used samtools2 (Sequence Alignment/Map tools),
by which we obtained 10 individual genome sequences. Since individual genome
sequences are aligned to the reference genome sequence, these 11 sequences make
a multiple alignment based on the reference genome sequence.

In our experiments, we used chromosome 20 of each genome. The length of
the reference sequence is 63,025,520 and the lengths of the individual sequences
vary from 62,965,442 to 62,965,512, which are a little shorter than the reference
sequence. The sequences consist of five characters {A,G, T, C,N}, where A, G,
T , and C stand for nucleotides Adenine, Guanine, Thymine, and Cytosine, re-
spectively, and N appears in some special cases and is treated exceptionally in
general (also in our experiments). In the reference sequence, N ’s do not appear
alone but as chunks of N ’s. There are six chunks of N ’s in the reference and
their lengths are 60,000, 3,100,000, 150,000, 50,000, 50,000 and 50,000. In the
positions where the reference sequence has N’s, individual sequences also have
N’s mostly. In the other positions, most of N’s in individual sequences are single
N’s. The chunks of N’s in individual sequences may represent the regions that
are not sequenced, the regions that are sequenced but have very low quality, or
the regions that are moved to other places. Single N’s in individual sequences
represent positions where one character from {A,G, T, C} cannot be determined

2 http://samtools.sourceforge.net/

http://samtools.sourceforge.net/
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Table 1. The number of non-common regions according to length

Length 1 2 3 4 5 6 Total

Number 190,804 3,057 215 47 9 3 194,135

Table 2. The lengths of α∗’s and αj ’s (0 ≤ j ≤ 10)

Total length Average length Total length Average length

α0’s 3,202,864 16.50 α6’s 2,987,607 15.39
α1’s 3,030,406 15.61 α7’s 3,022,359 15.57
α2’s 2,558,396 13.18 α8’s 3,132,487 16.14
α3’s 2,976,231 15.33 α9’s 3,026,544 15.59
α4’s 2,989,375 15.40 α10’s 3,140,456 16.18
α5’s 2,991,517 15.14 α∗’s 3,229,589 16.64

because reads have different characters in {A,G, T, C}, there are deletions in
reads, and/or the quality is low.

3.2 Experimental Results

In this section, we compare the space requirements of the GSA and the SAA for
the 11 sequences. For simplicity, we appended N ’s to the end of each individual
sequence so that the length of the individual sequence is the same as that of
the reference sequence. Let S0 be the reference sequence and Si (1 ≤ i ≤ 10) be
each individual sequence. We call an aligned position a non-common position if
at least two distinct characters in {A,G, T, C} appear at this position. Notice
that we do not regard a position as a non-common position if N and only one
character in {A,G, T, C} appear at the position. In our data set, there are 0.3%
non-common positions (197,814 among 63,025,520 positions). Consecutive non-
common positions become a non-common region. There are 194,135 non-common
regions whose lengths vary from 1 to 6 (Table 1).

We first compute the lengths of α∗’s in the sequences, which is a main factor
for the space requirement of our index. For a common region αi, we denote by
αj
i the longest suffix of αi appearing at least twice in sequence Sj (0 ≤ j ≤ 10).

Recall that α∗
i is the longest of α0

i , . . ., α
10
i . When computing αj

i , we exclude
the part of αi containing at least 10 consecutive N ’s since long consecutive N ’s
do not carry any information about {A,G, T, C}. For each j, the total length
and the average length of αj

i ’s are shown in Table 2. (We omit the subscript i in

αj
i if not confusing.) For example, in sequence S1, 3,030,406 characters (4.8%)

of the entire 63,025,520 characters are included in α1’s. Since there are 194,135
non-common regions, the average length of α1’s is 15.61.

From the lengths of non-common regions and α∗’s, we calculate the space
requirement of the SAA. For a substring αβ of a sequence Sj where α is a
common region and β is a non-common region, we call α∗β a NS-region (non-
shared region) and α′ a S-region (shared region) where α′ is the prefix of α such
that α′α∗ is α. For a sequence, let nt be the length of the sequence, ns be the
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Table 3. Distribution of characters in our sequences

NS-regions S-regions
(3,427,403 characters) (59,598,117 characters)

# of {A,G, T,C} # of N # of {A,G, T,C} # of N

S0 3,427,401 2 56,078,119 3,519,998
S1 3,318,768 108,635 55,263,839 4,334,278
S2 2,940,879 486,524 49,719,051 9,879,066
S3 3,272,652 154,751 54,872,472 4,725,645
S4 3,279,318 148,085 54,969,949 4,628,168
S5 3,285,414 141,989 54,972,379 4,625,738
S6 3,275,604 151,799 54,947,026 4,651,091
S7 3,306,405 120,998 55,010,622 4,587,495
S8 3,385,161 42,242 55,717,092 3,881,025
S9 3,311,346 116,057 55,045,612 4,552,505
S10 3,390,329 37,074 55,722,788 3,875,329

Total 36,193,277 1,508,156 602,318,949 53,260,338

total length of S-regions, and nn be the total length of NS-regions. (Note that
nt, ns, and nn are identical in all sequences and nt = ns + nn.) Then, the size
of the GSA is 11nt and the size of the SAA is ns + 11nn (= nt + 10nn). In our
data set, nt = 63, 025, 520 and nn = 3, 427, 403, and thus the size of the GSA
is 693,280,720 words and the size of the SAA is 97,299,550 words. That is, our
index uses only 14.03% space compared to the GSA.

When searching the sequences for a pattern, we may assume that the pattern
does not contain N since we do not consider wild-card matches. In this circum-
stance, we can reduce the space requirement of indexes by eliminating in indexes
the suffixes whose first characters are N . To compute the sizes of the two in-
dexes for our data set, we first investigate the distribution of N in our sequences.
Table 3 shows the distribution of characters in NS-regions and S-regions for each
sequence. For example, in NS-regions of sequence S1, the number of characters
A,G, T, C is 3,318,768 (97%) and the number of character N is 108,635 (3%).
In S-regions of sequence S1, the number of characters A,G, T, C is 55,263,839
(93%) and the number of character N is 4,334,278 (7%).

We compute the sizes of the two indexes when excluding the suffixes whose
first characters are N . The size of the GSA is the total number of characters
A,G, T, C in NS-regions and S-regions of the 11 sequences, which is 638,512,226
(36, 193, 277+ 602, 318, 949) words (see Table 3). Next, consider the SAA. For a
position in an NS-region, we eliminate the suffix of each sequence starting at this
position if the first character of the suffix is N . For a position in an S-region, we
eliminate the suffix (a-suffix) starting at this position only if the characters in the
position are N in all sequences. In our data set, the total number of A,G, T, C
in NS-regions is 36,193,277 and the number of positions in S-regions excluding
the positions where characters are N in all sequences is 56,078,133 (see the last
row in Table 4). Thus, the size of our index is 92,271,410 words, which is only
14.45% of the size of the GSA.
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Table 4. Comparison of the sizes of the GSA and the SAA according to the number of
sequences when excluding the suffixes whose first characters are N . Column (C1) is the
total number of A,G, T,C in NS-regions and column (C2) is the number of positions
in S-regions excluding the positions where characters are N in all sequences. Then, the
size of the SAA is (C1) + (C2). The ratio of the size of the SAA to that of the GSA is
given in the last column.

Size of GSA Size of SAA (C1) (C2) Ratio (%)

S0 ∼ S1 118,088,127 60,455,692 1,914,833 58,540,859 51.20
S0 ∼ S2 170,748,057 62,473,223 4,553,672 57,919,551 36.59
S0 ∼ S3 228,893,181 65,338,136 7,905,004 57,433,132 28.55
S0 ∼ S4 287,142,448 68,758,063 11,706,204 57,051,859 23.95
S0 ∼ S5 345,400,241 72,483,002 15,719,471 56,763,531 20.99
S0 ∼ S6 403,622,871 76,417,395 19,881,933 56,535,462 18.93
S0 ∼ S7 461,939,898 80,305,819 23,928,531 56,377,288 17.38
S0 ∼ S8 521,042,151 84,226,410 27,963,745 56,262,665 16.16
S0 ∼ S9 579,399,109 88,223,461 32,062,878 56,160,583 15.23
S0 ∼ S10 638,512,226 92,271,410 36,193,277 56,078,133 14.45

We also compare the space requirements of the GSA and the SAA according
to the number of sequences used in indexing (Table 4). Obviously, the space
efficiency of our index increases as the number of the sequences increases. The
ratio of the space of the SAA to that of the GSA is 51.2% when two sequence
are used, and the ratio is 14.45% when the 11 sequences are used.
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