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Abstract. Mining and analyzing graphs are challenging tasks, espe-
cially with today’s fast-growing graphs such as Web and social networks.
In the case of Web and social networks an effective approach have been
using compressed representations that enable basic navigation over the
compressed structure. In this paper, we first present a parallel algorithm
for reducing the number of edges of Web graphs adding virtual nodes over
a cluster using BSP (Bulk Synchronous Processing) model. Applying an-
other compression technique on edge-reduced Web graphs we achieve the
best state-of-the-art space/time tradeoff for accessing out/in-neighbors.
Second, we present a scalable parallel algorithm over BSP for extracting
dense subgraphs and represent them with compact data structures. Our
algorithm uses summarized information for implementing dynamic load
balance avoiding idle time on processors. We show that our algorithms
are scalable and keep compression efficiency.
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1 Introduction

Massive graphs appear in a wide range of domains including the Web, social
networks, RDF graphs, protein networks and many more. For instance, the Web
graph on a recent estimation has more than 7.8 billion pages with more than
200 billions of edges (mentioned in previous work [1]).

In the last decade, many graph algorithms have been proposed to address
some of the problems associated with large graphs. Different approaches have
been used to manage large graphs. One approach consists of representing graphs
in compressed form while being able to resolve queries of interest without de-
compression. Although these compressed structures are usually slower than un-
compressed representations, they are faster than having to access the disk. Many
of these compressed structures target Web graphs, some support out-neighbor
queries [2,3], that is retrieving the outgoing links of a node x, and some also
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support in-neighbor queries, that is incoming links of a node x [4]. Another ap-
proach is the use of distributed systems where distributed memory is aggregated
to process the graph. Distributed memory is useful when data is larger than the
memory available on a commodity machine. Pregel [5] is a graph system that
works on BSP model, Pegasus [6] is a graph mining library over Hadoop, which
is the free implementation of MapReduce [7]. Pace [8] discusses important dif-
ferences between BSP and MapReduce and shows that iterative algorithms are
more efficient using BSP than MapReduce.

The main contributions of this paper are:

– A scalable BSP parallel algorithm for reducing the number of edges of Web
graphs by finding dense subgraphs and adding virtual nodes. This algorithm
is based on DSM (Dense Subgraph Mining) algorithm, which used with vir-
tual nodes, BFS ordering and K2tree [9] achieves the best compression on
Web graphs [1].

– A scalable parallel DSM algorithm for extracting dense subgraphs. The al-
gorithm exploits locality of adjacency lists and uses dynamic load balanced
for maximizing processor utilization avoiding idle times. Representing these
dense subgraphs with compact data structures [10] combined with an im-
proved version of MPk [11] provides the best space/time tradeoffs for social
networks [10].

2 Related Work

Compressing the Web has been an active research area for some time. Some
of the earlier proposals include basic navigation, which is reduced at retrieving
out-neighbors [2,3], and others that include retrieving out/in-neighbors [4,11,10].
Compression techniques for Web graphs use different patterns, such as locality
and similarity of adjacency lists [2], the sparse nature of the adjacency matrix
[4], label ordering [3,2], edge reduction [12], and dense subgraphs [10,1]. In so-
cial networks, successful representations use clique-like structures [13,11] and
more dense subgraph patterns, such as cliques, bicliques and other patterns that
combine cliques and bicliques [10]. Some of these structures [11,10,1] use com-
pact data structures based on bit vectors and symbol sequences. Compact data
structures use space efficiently and their basic operations are rank/select/access.

Discovering dense subgraphs in large graphs is a challenging problem in data
analysis and has a wide-range of applications, including community mining, spam
detection, and social analysis. The general problem has many variants such as
finding and enumerating cliques [14] and detecting dense subgraphs or commu-
nities [15,16]. Although, there are some differences in the terminology defining
a dense subgraph, all works consider the density as measuring the number of
edges in relation with the number of nodes in such structures.

In recent years, parallel and distributed data management has gained attention
due to the success of MapReduce [7] and Hadoop. MapReduce is simple to use and
provides high throughput. Pregel [5] aims processing graphs and it is based on ver-
tex computation using BSP. However, MapReduce and Pregel require hundreds
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or thousands of machines in order to process large graphs. For instance, Pegasus
[6] and Pregel focus on large graph querying and mining, Pegasus is built on top
of Hadoop and Pregel is built using BSP. Pregel improves upon MapReduce by
passing computation results instead of graph structures among processors.

3 Our Approach

We represent a web graph as a directed graph G = (V,E) where V is a set
of vertices (pages) and E ⊆ V × V is a set of edges (hyperlinks). For an edge
e=(u,v), we call u the source and v the center of e. We find patterns given by
the following definition.

Definition 1. A dense subgraph H(S,C) of G = (V,E) is a graph G′(S ∪
C, S × C), where S,C ⊆ V .

Note that this definition includes cliques (S = C) and bicliques (S ∩ C = ∅).
Our goal is to represent the |S| · |C| edges of a dense subgraph H(S,C) in space
proportional to |S| + |C| − |S ∩ C|. Thus, the bigger the dense subgraphs we
detect, the more space we save at representing their edges.

The parallel algorithms presented here are based on a sequential algorithm for
discovering dense subgraphs, DSM (Dense SubgraphMining) [1]. DSM consists of
2-step clustering and 2-step mining. The clustering algorithm computes |R| hash
values for each adjacency list conforming a matrix of hash values of dimension
|R ·V | (Step 1). The matrix is sorted by columns where each cluster is formed by
similar rows (Step 2). The mining phase takes the adjacency lists related to hash
rows of each cluster and sorts edges by frequency (Step 3). Then, each adjacency
list of the cluster is inserted into a prefix tree, discarding edges of frequency 1.
Each node v in the prefix tree has a label (consisting of the node id), and it
represents the sequence l(v) of labels from the root to the node. Such node v
stores also the range of graph nodes whose list start with l(v) (Step 4). Figure
1 shows an example.

Our first parallel algorithm (Algorithm 1 in Table 1) uses DSM for reducing
edges by a factor between 5 and 10, adding a small percentage of virtual nodes

Fig. 1. Example of the Dense Subgraph Mining (DSM) algorithm
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(around 10 and 15 %). Then, we apply BFS ordering and k2tree over the edge-
reduced Web graphs. Our second parallel algorithm (Algorithm 2 in Table 1)
uses DSM for extracting dense subgraphs and represent them with compact
data structures. Such representation is based on the following components.

Let H = {H1, . . . , HN} be the dense subgraph collection found in the graph,
based on Definition 1. We represent H as a sequence of integers X with a corre-
sponding bitmap B. Sequence X = X1 : X2 : . . . : XN represents the sequence
of dense subgraphs and bitmap B = B1 : B2 : . . . BN is used to mark the separa-
tion between each subgraph. We now describe how a given Xr and Br represent
the dense subgraph Hr = H(Sr, Cr).

We define Xr and Br based on the overlapping between the sets S and C.
Sequence Xr will have three components: L, M , and R, written one after the
other in this order. Component L lists the elements of S−C. Component M lists
the elements of S∩C. Finally, component R lists the elements of C−S. Bitmap
Br = 10|L|10|M|10|R| gives alignment information to determine the limits of the
components. In this way, we avoid repeating nodes in the intersection, and have
sufficient information to determine all the edges of the dense subgraph.

Table 1. Algorithms DSM with virtual nodes (Algorithm 1), and DSM for extracting
dense subgraphs (Algorithm 2)

Algorithm 1

Input: Gp,ES, T
Output: Reduced RG(|V + V N |, E2) graph

Each processor reads its data partition
{Step 0}
for (i ← 0 to T − 1 ) do
clusters = FindClusters()
for (c ∈ clusters) do
Sets(S,C) = FindDenseSubs(c, ES)
localV nodes = DefineSets(S, C)
Replace(Gp, Sets(S, C), localV nodes)
AddV nodes(Gp, Sets(S,C), localV nodes)

end for
end for
sendLocalV nodeMsg()
sync()
{Step 1}
if (proc == 0) then
lvnodes = RecibeMsgs()
gvnodes = ProcV NodeGlobal(lvnodes)
sendGlobalV nodes(gvnodes)

end if
sync()
{Step 2}
gvnodes = RecieveMsgs()
replaceV nodes(Gp, lvnodes, gvnodes)
return RG

Algorithm 2

Input: Gp, esArray, T , threshold.
Output: Dense subgraph collection

Each processor reads its data partition
ES = esArray.first()
{Step 0}
for (i ← 0 to T ) do
clusters = FindClusters()
for (c ∈ clusters) do
Sets(S, C) = FindDenseSubs(c, ES)
numDSs = |Sets(S,C)|
WriteToDisk(Sets(S, C))

end for
if (i == period()) then
sendLoadMsg()
sync()
{Step 1}
if (proc == 0) then
ProcessLoad()
sendDistInfo() (to all procs)

end if
sync()

end if
{Step 2}
sendData()
if (numDSs < threshold) then
ES = esArray.next

end if
end for

3.1 Algorithms and Analysis

The BSP model provides an efficient parallel distributed memory model that con-
siders relevant parameters of a real parallel computer system. A BSP computer
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is defined by P processors with local memory, connected via a point-to-point
communication link. BSP algorithms proceed in supersteps in each of which
processors receive input data, perform asynchronous computation over its data
and communicate output at the end. Supersteps are synchronized at the end
using barriers. An algorithm designed in BSP is measured by three main fea-
tures: computation, communication, and synchronization costs. The cost model
is given by W + Hg + L, where W is the maximum cost of computation on a
processor, H is the maximum input/output communicated among processors, g
is the latency and L is the synchronization cost.

Algorithm 1 in Table 1-(left) describes our parallel DSM for reducing edges
and adding virtual nodes. During Step 0 each processor processes Gp in parallel
locally. Each iteration finds all clusters on Gp and on each cluster the mining
algorithm discovers dense subgraphs of the type H with components (S,C) of size
at least ES. For each subgraph, we create local virtual node ids (localVnodes)
to separate sets (S,C).

In Step 0 all processors sends a tuple with (lvnodeInit, numberLV nodes) to

processor 0. Thus, Step 0 is O(O(T |E|
P log |E|

P ), where |E| is the number of edges
in G, P the number of available processors, and T the number of iterations. In
Step 1 processor 0 relabels local virtual nodes to global ids and sends that infor-
mation to all processors. Relabeling is done by changing the gV nodeInit based
on the number of virtual nodes found in previous processed processor tuple, that
is gV nodeIniti = vninit and gV nodeIniti+1 =

∑
numberLV nodesi. We work

with global virtual node ids instead of locals to minimize mapping space. Thus,
Step 1 is O(Pg+L). In Step 2 all processors receive tuples with global virtual
node ids and each processor replaces local virtual node ids for global ones. Then,
this step is O(|V +V N |) which indicates that the algorithm scales up efficiently
since the amount of required communication is much smaller than the amount
of computation performed by processors on local data. Therefore, the total cost

is O(T ( |E|
P log |E|

P ) + Pg + L+ |V + V N |).
Algorithm 2 in Table 1-(right) describes our parallel algorithm for extract-

ing dense subgraphs using dynamic load balance. This is an iterative algorithm,
where each iteration has several steps. In Step 0 each processor computes clus-
tering and mining and extracts dense subgraphs and sends periodically its work-
load information to processor 0. Processor workload tuple is given by ES and
numDSs, where ES is the current size of the dense subgraphs that are mined
and numDSs is the number of subgraphs at the current iteration. The clustering

is O( |E|
P log |E|

P ) and all processors send local workload tuples to processor 0 in
O(Pg+L) periodically. Function period() determines how often processors send
their load. In Step 1 processor 0 receives local load from all processors, com-
putes a global load tuple containing (minP ,maxP ,minES,maxES,minDSs,
maxDSs), and decides whether load balance is performed and the amount of
data to move. If it decides to apply load balance, it sends global load balance
tuple to all processors. In Step 2 each processor receives the global load tuple
and the heavier processor sends a portion of its data to the lighter processor.
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Step 0 is computed T times and each processor sends workload tuples to pro-
cessor 0 Tp times. During Step 1 processor 0 computes workload tuples and decide
whether heavier processors will send data to lighter processors, which is O(Pg+
L). Applying load balance depends on the distance between (maxES,minES)
and (minDSs,maxDSs) among processors, and it can happen Td times. This
step is computed in O(Mg+L), where M is a portion of Gp to move. The total

cost is O(T ( |E|
P log |E|

P ) + Tp(Pg + L+ P ) + Td((P +M)g + L)).

4 Experimental Evaluation

We perform different experiments over Web and social graphs described in
Table 2. 1. We use the natural order for input graphs in all our experiments.
We implemented parallel algorithms using C++ and BSP over a cluster with at
most 64 processors. Each processor is an Intel 2.66 GHz, with 24 GB of RAM
and 8 MB of cache. We partition input graphs among processors by equal num-
ber of edges contained by complete list of out-neighbors. This partition scheme
gave us more balanced processor work load.

We study the performance of our parallel DSM with virtual nodes and ex-
tracting dense subgraphs using dynamic load balance. We analyze the effect of
using different number of processors in terms of compression efficiency, running
times, and speedup. We also compute the Edge ratio (ER). ER is the total num-
ber of edges (belonging to dense subgraphs) extracted in parallel versus the total
number of edges in dense subgraphs extracted with the sequential algorithm.

Table 2. Number nodes, edges and size in MBs of graphs. A1S stands for the
speedup(S) for 8 and 64 processors when using DSM in Algorithm 1, and A2S when
using DSM in Algorithm 2. ER (Edge ratio) is the number of edges (belonging to dense
subgraphs) extracted in parallel versus the ones extracted sequentially.

Data Set Nodes Edges MB A1S (8) A1S (64) A2S (8) ER A2S (64) ER
eu-2005 862,664 19,235,140 77 4.95 20.88 14.46 0.99 58.6 0.99
indochina 7,414,866 194,109,311 765 2.18 23.85 5.39 0.96 52.4 0.99
uk-2002 18,520,486 298,113,762 1,200 10.10 68.18 11.21 0.90 102.87 0.97
arabic-2005 22,744,080 639,999,458 2,500 10.52 55.40 6.95 0.92 66.80 0.96
dblp-2011 986,324 6,707,236 30 - - 29.08 0.76 117 0.87
LJSNAP 4,847,571 68,993,773 280 - - 8.63 0.45 55.34 0.65

Figure 2 shows parallel running times and compression performance (bpe)
using different numbers of processors for different Web graphs. We include run-
ning times for computing DSM-ESx-T10 (where ES = x for finding dense sub-
graphs of at least size x, and T = 10 i.e. 10 iterations); and the running time
for achieving the complete compression structure, which consists of two parts;
DSM-ESx-T10 builds a graph with fewer edges and virtual nodes (RG); and
K2treeBFS applies BFS and k2tree over RG. As observed, the running time im-
proves greatly without affecting compression. These results suggest that there

1 Data sets available at: law.dsi.unimi.it and snap.stanford.edu/data
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is a great amount of locality of reference in adjacency lists. Figure 2 shows that
the cost of applying k2treeBFS, which is sequential, has more impact on larger
graphs. This is seen by the distance between the two running time plots visible
on Arabic data set.

Table 2 shows the speedup achieved using 8 and 64 processors (A1S (8) and
A1S (64)) using DSM with virtual nodes (k2tree not included). We observe that
the speedup is higher for larger graphs, which suggest that such graphs take
more advantage of memory aggregation in the cluster system.

We evaluate our second parallel algorithm (extracting dense subgraphs with
DSM) measuring running times, speedup and the Edge ratio (ER). We use 100
iterations for extracting dense subgraphs and dblp-2011 and 200 iterations for
LJSNAP (LiveJournal). Figure 3 shows the running time for DSM with dense
subgraph extraction, considering only time for extraction, complete compression
time (including mpk), and the compression achieved for social networks using
H and R with mpk [11]. This figure also shows that the sequential part of
the compression construction slows down the compression time. Table 2 shows
the speedup for 8 and 64 processors (A2S (8) and A2S (64)). We also measure
ER, which is the total number of edges extracted in dense subgraphs using our
parallel algorithm versus the total number of edges extracted belonging to dense
subgraphs using the sequential algorithm. We extract in parallel more than 90%
edges belonging to dense subgraphs achieving good speedups on Web graphs.
However, it is less effective on social graphs where ER is lower as seen in Table2.

5 Conclusions

This paper proposes two parallel algorithms for DSM, a sequential algorithm
for discovering dense subgraphs [1] for compressing Web and social graphs. Our
first parallel algorithm uses DSM with virtual nodes for reducing the number of
edges. This algorithm exploits locality of reference of adjacency lists. Applying
BFS ordering and k2tree over parallel edge-reducedWeb graphs does not degrade
compression efficiency. Our second parallel algorithm extracts dense subgraphs
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Fig. 2. Parallel running time with corresponding compression for Web graphs
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in parallel using dynamic load balance. Both algorithms provide good speedup
and compression efficiency. However, since both algorithms are used with other
sequential compression techniques such as k2tree [9] and mpk [11], they limit
our compression speed.
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