
Minimal Discriminating Words Problem

Revisited

Pawe�l Gawrychowski1, Gregory Kucherov2,3,
Yakov Nekrich4, and Tatiana Starikovskaya5

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gawry@cs.uni.wroc.pl

2 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS,
Marne-la-Vallée, Paris, France

Gregory.Kucherov@univ-mlv.fr
3 Department of Computer Science, Ben-Gurion University of the Negev,

Be’er Sheva, Israel
4 Department of Electrical Engineering & Computer Science, University of Kansas,

Lawrence, USA
yakov.nekrich@googlemail.com

5 School of Applied Mathematics and Information Science,
Higher School of Economics, Moscow, Russia

tat.starikovskaya@gmail.com

Abstract. We revisit two variants of the problem of computingminimal
discriminating words studied in [5]. Given a pattern P and a threshold d,
we want to report (i) all shortest extensions of P which occur in less than
d documents, and (ii) all shortest extensions of P which occur only in
d selected documents. For the first problem, we give an optimal solution
with constant time per output word. For the second problem, we propose
an algorithm with running time O(|P |+ d · (1 + output)) improving the
solution of [5].

1 Introduction

Given a collection of text documents (character sequences), we are often inter-
ested in patterns that characterize a certain subset of these documents, i.e., occur
only in the documents of this subset and not in the others. Such patterns (words)
are called discriminating with respect to the corresponding subset. Identifying
such patterns can be part of a machine learning or data mining task over a sam-
ple of documents, or can arise in automated text classification. In computational
biology, patterns that appear in a subset of sequences sharing some biological
feature and do not appear in the other sequences of the considered sample can
be naturally assumed to be responsible for that feature.

In [5], the authors introduced the problem of minimal discriminating words
alongwith the complementary problem ofmaximal generic words. In both of them,
it is asked to compute some extensions of a given patternP (which can be an empty
word), i.e. strings which have P as a prefix. Consider a collection of strings (doc-
uments) T1, T2, . . . , Tm of total length n. Two variants of the minimal discrimi-
nating words problem have been considered in [5]. The basic variant is to report,

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 129–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5

130 P. Gawrychowski et al.

given a pattern P and a threshold d ≤ m, all extensions of P which occur in at
most d documents and which are minimal, i.e. any proper prefix of a reported ex-
tension must occur in more than d documents. A more practically motivated vari-
ant, called minimal discriminating words for specified documents, is to compute
all minimal extensions starting with P which occur only in documents within a
given subset Ti1 , Ti2 , . . . , Tid . Minimality condition means that any proper prefix
of a reported extension must occur in documents other than Ti1 , . . . , Tid .

To exemplify minimal discriminating words, consider T1 = baaababb, T2 =
babaabab and T3 = babbaaab. For d = 2 , minimal discriminating extensions of
P = aa are aaa (discriminates {T1, T3}) and aaba (discriminates {T1, T2}).

The complementary problem of maximal generic words looks for all maximal
extensions of P occurring in at least d documents. In [5] a linear-space solution
to the problem of reporting all maximal generic extensions was given. Its running
time was optimal time O(|P | + output), where output is the number of reported
extensions. The same paper proposed efficient solutions for the two variants of the
minimal discriminating words problem, but their time bounds were not optimal:
the basic variant of the problem was solved inO(|P |+log logn+output) time, and
the variantwith specified documents was solved inO(|P |+d log logm·(1+output))
time. Moreover, in the latter case, the solution of [5] has the following undesirable
property: it assumes that each Ti ends with a unique sentinel $i that can be a part
of a discriminating word even if dropping the sentinel yields a word which is not
discriminating. Both solutions use O(n) space.

In this paper, we revisit both variants of the minimal discriminating words
problem and improve the bounds of [5]. For the second variant, we also get rid
of the unnatural assumption about sentinel symbols occurring in discriminating
words. Specifically, we propose O(n) space solutions for the first and for the sec-
ond problem with O(|P |+ output) and O(|P |+ d(1+ output)) time respectively.
Thus, for the first variant, we reach the optimal time bound. For the second
variant, our running time does not depend on the size nor the number of docu-
ments, but only on the number of selected documents. In particular, when this
number is constant, we obtain again an optimal O(|P | + output) time. In both
cases our solutions have the desirable property that after first spending O(|P |)
or O(|P | + d) time, respectively, to initialize the computation, the worst-case
delay between reporting two successive extensions is O(1) or O(d), respectively.

Similar to [5], our solutions are based on the generalized suffix tree
of T1, T2, . . . , Tm that can be viewed as a compacted trie for strings
T1$1, T2$2, . . . , Tm$m. It is well-known that the generalized suffix tree can be
computed in O(n) time. For each node v of the generalized suffix tree we store
its weight weight(v) defined as the number of distinct documents whose suffixes
occur in the subtree rooted at v. All weight(v) can be computed in O(n) time [3].

The locus of a string S in a trie on a set of strings is defined as the highest
explicit node labelled by an extension of S. It is important to note that in all our
algorithms, each output word is specified by its locus in the generalized suffix
tree for T1, T2, . . . , Tm (rather than by “spelling out” the word itself).

Minimal Discriminating Words Problem Revisited 131

2 Minimal Discriminating Words

Suppose that a set of documents T1, T2, . . . , Tm of total length n is given. For
a pattern P and a threshold d ≤ m, we want to find all minimal extensions
of P which occur in at most d distinct documents. “Minimal” here means that
no proper prefix of a reported extension satisfies this property. We describe a
linear-space data structure for this problem.

2.1 General Idea

Consider the generalized suffix tree for T1, T2, . . . , Tm. We first delete sentinels
$i from labels of its edges, and then delete edges with empty labels. Consider
the locus of P in the resulting trie, which we call GST. Any descendant u of the
locus such that weight(u) ≤ d and weight(p(u)) > d, where p(u) is the parent
of u, will be a locus of a desired extension of P . The extension itself will be
equal to the label of p(u) extended by the first letter on the edge (p(u), u). (By
construction the first letter on any edge of GST is not a sentinel but a letter of
the alphabet).

We represent GST with its compacted version GSTc, and a number of arrays.
An array Au corresponding to an edge (p(u), u) of GSTc contains links to nodes
which were removed in order to obtain the edge (p(u), u). More precisely, Au[Δ]
links to the lowest ancestor v of u such that weight(v) ≥ weight(u) + Δ, for
every Δ < weight(p(u)) − weight(u). Note that the total length of the arrays is
just O(n) as each entry corresponds to one suffix. Loci of the extensions can be
found in the following way: first, find the locus v of P in GSTc and compute all
nodes u in its subtree for which weight(u) ≤ d and weight(p(u)) > d. Then for
each found node u compute its ancestor u′ in GST such that weight(u′) ≤ d and
weight(p(u′)) > d. The last step can be done in constant time using the array
Au associated with (p(u), u): we choose as u′ the node Au[d−weight(u)], and if
weight(u′) > d we replace it by the unique son on the u − p(u) path. Then the
node u′ will be a locus of a desired extension. We refer to nodes u as above as
extension loci.

Let v be the locus of P in GSTc. We denote the subtree of GSTc rooted at
v by Tv. Leaves of GSTc of weight bigger than d will be called d-heavy leaves.
First note that if Tv has no d-heavy leaves, every root-to-leaf path contains an
extension locus and hence we can find each extension locus in amortized constant
time by traversing Tv in depth-first order. Below we explain how to overcome
the assumption about d-heavy leaves and to achieve worst-case constant time
per an extension locus. We first prove the following useful lemma.

Lemma 1. Each extension locus belongs to a maximal subtree of Tv without
d-heavy leaves.

Proof. An extension locus u cannot have a d-heavy leaf in its subtree, otherwise
weight of u would be bigger than d. Let u′ be the highest ancestor on the path
from u to v that does not have a d-heavy leaf in its subtree. Then u belongs to
Tu′ , and Tu′ is a maximal subtree of Tv that does not have d-heavy leaves.
�

132 P. Gawrychowski et al.

The algorithm will iterate over the maximal subtrees of Tv without d-heavy
leaves and report extension loci for each of them. We give the details below.

2.2 Computing Maximal Subtrees

Let a trie τk, 0 ≤ k ≤ m − 1, be a compact trie containing labels of all k-
heavy leaves. (Note that τ0 is essentially GSTc.) From the construction it follows
that there is one-to-one correspondence between leaves of τk and k-heavy leaves.
Moreover, for each node u of τk there is a node w of GSTc such that the labels
of u and w are equal. Such nodes w will be referred to as k-nodes. We say that
u and w are of type 1 iff the degree of u is smaller than the degree of w, and
that they are of type 2 iff there is at least one node on the path from w to its
nearest k-node ancestor. (A node can be of type 1 and of type 2 simultaneously
or neither of type 1 nor of type 2.) We store nodes of types 1 and 2 in two lists
ordered as in the depth-first traversal of τk. Next, let us consider a node of GST.
Nodes of type 1 in its subtree form a sublist in the first list. For each node we
store pointers to the start and to the end of the corresponding sublist. Pointers
associated with nodes of type 2 are defined in a similar way.

Note that the parent p of the root of a maximal subtree T without d-heavy
leaves has a d-heavy leaf in its subtree (otherwise, T would not be maximal).
That is, p is either a d-node or a node on the path connecting a d-node and
its nearest d-node ancestor. At the same time, p has at least one son (the root
of T) which does not have a d-leaf, and, consequently, a d-node, in its subtree.
Therefore, in the first case p is a d-node of type 1, and in the second case p is
on the path connecting a d-node of type 2 and its nearest d-node ancestor.

We now return to the description of the algorithm. We start by computing
the locus of P in τd in O(|P |) time in a usual way. Then we iterate over nodes
of types 1 and 2 in the subtree of the locus using the pointers and the lists and
report associated maximal subtrees without d-heavy leaves.

Let w be a d-node of GSTc of type 1, and u be the corresponding node of τd.
By the definition, the degree of u is smaller than the degree of w, which means
that at least one child of w is a root of a maximal subtree without d-heavy leaves.
Such children form subranges of the list of all children of w, and we assume that
pointers to these subranges are available. (As we show below, the total number
of the pointers is linear and they can be precomputed in linear time.) Using the
pointers we can output i requested children of w in O(i) time.

If w is a d-node of GSTc of type 2 and w′ is its nearest d-node ancestor, then
all subtrees hanging off the path from w to w′ are maximal subtrees without
d-heavy leaves. The subtrees can be found in linear time by iterating over nodes
on the path from w to w′.

All in all, retrieving maximal subtrees without d-heavy leaves takes constant
time per subtree in the worst case.

Lemma 2. Tries τk and pointers to the subranges of children of k-nodes that
do not have k-heavy leaves in their subtrees occupy O(n) space in total and can
be constructed in O(n) time.

Minimal Discriminating Words Problem Revisited 133

Proof. To estimate the space occupied by the tries it is enough to estimate the
total number of their leaves. The latter is equal to n, because a string which is
a suffix of k documents will correspond to a leaf in τ1, to a leaf in τ2, . . ., to a
leaf in τk, that is, k leaves in total. The statement follows.

The tries are built as follows. We first augment GST with a linear-space data
structure [8] that allows to answer lowest common ancestor queries in constant
time. This step takes O(n) time. We then iterate over leaves of GSTc from the
left to the right and for each k compose a lexicographically ordered list Lk of k-
heavy leaves’ labels. Secondly, we scan Lk and compute the length of the longest
common prefix of every two consecutive suffixes in Lk. (The length is equal to
the string depth of the lowest common ancestor of the leaves corresponding to
the suffixes and hence can be computed in constant time). Once we have Lk and
the lengths, we build τk in linear time in a usual way. Correspondence between
nodes of τk and GSTc and hence types of nodes can be established in O(|τk|)
time with the help of the lowest common ancestor queries. Finally, the lists of
nodes of types 1 and 2 are constructed by depth-first traversal of τk.

Let w be a k-node of GSTc and u be the corresponding node of τk. The number
of subranges formed by children of w without k-heavy leaves in their subtrees
does not exceed the degree of u. Therefore, the total number of the subranges
does not exceed the total size of the tries, which is O(n). Next, note that a
node does not have k-heavy leaves in its subtree if and only if the weight of the
heaviest leaf in its subtree ≤ k. We compute the subranges in two steps. First we
traverse GSTc bottom-up and for each node compute the weight of the heaviest
leaf in its subtree. Secondly, we scan the list of children of each node and for each
k such that the node is a k-node remember the starting and the ending points
of maximal subranges with the weights ≤ k. Construction takes linear time in
total.
�

2.3 Computing Extension Loci

Here we show how to report all extension loci in a maximal subtree of Tv without
d-heavy leaves. We start with an auxiliary lemma.

Lemma 3. A compact trie of size n can be partitioned into disjoint node-to-leaf
paths of length O(log n) each.

Proof. For a node u of the trie we define h(u) to be the length of the shortest
downward path to a leaf from u, and �(u) to be the number of leaves in the
subtree rooted at u. We prove by induction that �(u) ≥ 2h(u).

If h(u) = 0, then u is a leaf and �(u) = 1. Suppose that the inequality holds
for all u such that h(u) ≤ k. A node u of the compact trie with h(u) = k + 1
has at least two descendants v1, v2 and both h(v1) and h(v2) must be at least k,
hence �(u) ≥ 2h(v1) + 2h(v2) ≥ 2k+1, the claim follows.

For each node u of the compact trie we colour the edge from u to its child v
with the smallest h(u) red. This colouring induces a partition of all nodes into
node-disjoint red paths. From the inequality it follows that the length of any red
path is O(log n).
�

134 P. Gawrychowski et al.

weight(r) > d

weight(p(u)) > d

1

2 3weight(u) ≤ d

weight ≤ d

weight ≤ d

Fig. 1. We push the root of the subtree 1 into S first. When we pop it from S, we push
the root of the subtree 2 into S, and so on.

We partition GSTc into disjoint node-to-leaf paths of length O(log n) using
Lemma 3. q-heaps [4] allow to support predecessor queries on logarithmic-size
subsets of [1, n] in constant time using linear space and a common precomputed
table of size o(n). We use q-heaps to answer predecessor queries on weights of
each path of the partition. The total space occupied by q-heaps is O(n).

Lemma 4. Given a maximal subtree T of Tv without d-heavy leaves, all exten-
sion loci in τ can be reported in O(1) time per locus.

Proof. To simplify the description, assume that nodes of GSTc are rearranged
so that an edge from a node to its leftmost child is always red.

Let r be the root of T. If weight(r) ≤ d, then the only extension locus in the
subtree is r. (Remember that the parent of r has a d-heavy leaf in its subtree
and therefore its weight is bigger than d). If weight(r) > d, we start with the
node-to-leaf path containing r. Since the weight of any leaf of T is at most d, the
path contains an extension locus u. Using one predecessor query, we can find u
in O(1) time. We then push the second child of a parent of u into a stack S.

We perform recursive calls for the subtrees rooted at nodes from S. Each time
we pop a node w from S we push its right brother into S. If no brothers are left
and the parent and the grandparent of w are on the same red path, we push the
second child of the grandparent of w into S (see Fig. 1). The algorithm stops
when S is empty.

We now show that the algorithm is correct. Note that any subtree hanging off
the path below u does not contain extension loci, while each tree hanging off the
path above u contains at least one such node. All the latter trees are examined
due to the order of recursive calls. Each call takes constant time and returns a
requested node.
�

To sum up, each extension locus inside a given maximal subtree without d-
heavy leaves can be reported in constant time in the worst case. Since, according
to Section 2.2, each such subtree of Tv can be identified in worst-case constant
time, we obtain the final theorem.

Minimal Discriminating Words Problem Revisited 135

Theorem 1. For a given pattern P and a threshold d, all minimal discriminat-
ing extensions of P can be reported in time O(|P |+output), where output is the
number of reported extensions. The underlying indexing data structure occupies
O(n) space, where n is the total length of the strings T1, T2, . . . , Tm.

3 Minimal Discriminating Words for Specified
Documents

In many applications, we need to compute words that discriminate documents
from a given sample. Consider a set of documents T1, T2, . . . , Tm of total length n.
Given a set of indices Ind = {i1, i2, . . . , id} and a pattern P , we want to find
all minimal extensions of P occurring only in documents Ti, i ∈ Ind, where
“minimal” means that any of their proper prefixes has at least one occurrence
in a document which does not belong to this subset.

Here we propose a linear-space data structure which allows to compute such
extensions in time O(|P | + d · (output + 1)), where output is the number of
reported extensions.

3.1 General Idea

Consider the generalized suffix tree for T1, T2, . . . , Tm. For each suffix of
T1, T2, . . . , Tm we create an explicit node labelled by this suffix (if it does not
exist already). We denote the resulting tree by GST. Note that the size of GST is
O(n). Problems of computing loci of the minimal extensions in the generalized
suffix tree and GST are equivalent.

An inner node of GST is called $-terminating if all its outgoing edges are
labelled by sentinels. If, in addition, the sentinels are $i, where i ∈ Ind, then the
node is called Ind-terminating. From the definition it follows that the locus of
any string occurring only in documents Ti, i ∈ Ind, contains an Ind-terminating
node in its subtree, in particular, the locus of any minimal extension contains
such node in its subtree. Besides, each Ind-terminating node belongs to a subtree
rooted at the locus of some minimal extension, as shown below.

Lemma 5. Suppose that w is an Ind-terminating node and that its label starts
with P . Then the path from w to the root contains a locus of a minimal extension
of P occurring only in documents Ti, i ∈ Ind.

Proof. The label S of w is an extension of P occurring only in documents Ti,
i ∈ Ind. The locus of the shortest prefix of S occurring only in documents Ti,
i ∈ Ind, will be the locus of a requested extension and will be on the path from
w to the root of GST.
�

A high-level description of the algorithm is as follows. We start by locating
the locus u of P in GST in time O(|P |) and retrieving the interval [L(u), R(u)]
of ranks of suffixes ending below u. Rank of a suffix is simply its rank in the
lexicographic order, equal suffixes are assigned equal ranks. The algorithm keeps

136 P. Gawrychowski et al.

a stack of intervals which it is to process, initialized to contain just [L(u), R(u)].
At each step it pops an interval [a, b] from the stack, finds an Ind-terminating
node v covering a subrange of [a, b], computes the ancestor w of v labelled by a
requested extension of P , and pushes the intervals [a, L(w)−1] and [R(w)+1, b]
onto the stack. If there is no such Ind-terminating node, the algorithm does
nothing. The algorithm terminates when the stack is empty.

To estimate the running time of the algorithm, we note that each of the
processed intervals, except for [L(u), R(u)], either corresponds to a reported ex-
tension, or is a child of an interval corresponding to a reported extension (and
each such interval has two children). Hence the total number of processed inter-
vals will be O(output + 1), where output is the number of reported extensions.
Below we show that processing of each interval takes O(d) time. Note that if
we want to make sure that the delay between reporting two minimal extensions
is O(d), we only need to check if the interval contains an Ind-terminating node
before we push it onto the stack.

3.2 Computing an Ind-Terminating Node

Given an interval [a, b], we want to find some Ind-terminating node u such that
all leaves in its subtree are of ranks in [a, b], or to show that there is none. Below
we show that it can be done in O(d) time.

Consider a trie T on the reverses TR
1 , TR

2 , . . . , TR
m of the documents. Each node

v of T corresponds to a prefix of some TR
j , or, equivalently, to a reversed suffix

of Tj. We call the node v active if the suffix is a label of a $-terminating node of
GST. If the node is also Ind-terminating, we call v Ind-good, otherwise we call it
Ind-bad. Note that if a node is Ind-bad, then all its ancestors are Ind-bad. That
is, Ind-good nodes are exactly active nodes of maximal subtrees of T without Ind-
bad nodes. We compactify T leaving nodes labelled by TR

i , 1 ≤ i ≤ m, explicit.
The resulting trie is denoted by Tc (see Fig. 2).

For an edge e of Tc we define a set S(e) to contain ranks of some suffixes
of T1, T2, . . . , Tm in the lexicographic order. The suffixes are exactly the suffixes

v
p(v)

Fig. 2. Maximal subtrees of T without any Ind-bad nodes. Thick nodes exist in Tc.

Minimal Discriminating Words Problem Revisited 137

the reverses of which were the labels of the active nodes removed in order to
obtain e.

Lemma 6 (Theorem 4 in [1]). S(e) can be stored using linear space so that
given any interval [a, b] we can in O(1) time either retrieve some element in
S(e) ∩ [a, b] or detect that there is none.

Remember that we want to find an Ind-terminating node of GST such that all
leaves in its subtree are of ranks in [a, b]. The algorithm will search, instead, for
an active node of maximal subtrees of T without Ind-bad nodes corresponding
to such Ind-terminating node.

Consider a maximal subtree of T without Ind-bad nodes (see Fig. 2). The
parent p(v) of its root is labelled by a prefix of TR

j , for some j /∈ Ind, while v is

not. Hence, p(v) is either a node of degree bigger than 1, or is labelled by TR
j .

In both cases, p(v) is a node of Tc. It follows that we can decompose a set of
active nodes of the subtree into a set of active nodes existing in Tc and sets of
active nodes associated with the edges of Tc. Each leaf v of a maximal subtree
without Ind-bad nodes corresponds to TR

i , for some i ∈ Ind. We will make use
of precomputed values lcp(i), where lcp(i) is the length of the longest common
prefix of TR

i and TR
j , j /∈ Ind. Note that all ancestors of v of string depth bigger

than lcp(i) belong to the maximal subtree.
We start at a node v labelled by some TR

i , i ∈ Ind, and go up until we reach
a node of string depth lcp(i) or an already visited node. For each encountered
node we check if it is active and if it corresponds to the desired Ind-terminating
node. If yes, the algorithm stops. For each edge e we traverse we try to retrieve
an element in S(e) ∩ [a, b]. If there is such an element, the algorithm finds the
corresponding Ind-terminating node and stops. We repeat such procedure for
each i ∈ Ind.

The total number of processed nodes and edges is bounded by the total size
of the maximal subtrees without Ind-bad nodes. Since each leaf and each inner
node of degree one in the subtrees corresponds to TR

i , i ∈ Ind, the total size of
the subtrees, and hence the time of computing an Ind-terminating node covering
a subrange of [a, b], is O(d). It remains to show that the values lcp(i), i ∈ Ind,
can be precomputed efficiently.

Lemma 7. Given Ind, we can compute lcp(i) for all i ∈ Ind in O(d) total time.

Proof. To compute the values, we use an array R defining the lexicographic
order on TR

1 , TR
2 , . . . , TR

m , its inverse R−1 and an array LCP which contains
the length of the longest common prefix of every pair of consecutive (in the
lexicographic order) reversed documents. The LCP array is augmented with a
range minimum query data structure [2], which allows to compute the minimum
value in any interval of LCP in constant time. All these structures are built in
the preprocessing phase without knowing Ind.

Consider an index i ∈ Ind, and let TR
k1

and TR
k2

with k1, k2 /∈ Ind be the

reversed documents closest to TR
i in the lexicographic order from the left and

from the right, respectively. From the properties of the lexicographic order it

138 P. Gawrychowski et al.

follows that lcp(i) is equal to the maximum of the lengths of the longest common
prefixes of TR

k1
and TR

i and of TR
k2

and TR
i . The lengths can be computed by

taking the minimum of the values stored in the array LCP between the entries
corresponding to TR

k1
and TR

i and of TR
k2

and TR
i respectively. Hence the only

question is how to find k1 and k2 efficiently.
Consider the occurrences of TR

i for all i ∈ Ind in R, and let R[a..b] be a
maximal interval of such occurrences, i.e., both R[a− 1] and R[b+1] correspond
to reversals outside of Ind. Then k1 = a − 1 and k2 = b + 1 for all i ∈ Ind
corresponding to occurrences in the interval. Our method identifies such maximal
intervals one-by-one and updates the values of lcp(i) accordingly. To make the
identification efficient, we store an additional bit vector B of length m to keep
track of the already processed indices from Ind, initially containing all zeros. We
loop over Ind, and if a given i ∈ Ind is not processed yet, sweep to the left and to
the right starting from R−1[i] to identify the maximal interval of R containing
i and some other indices from Ind. Then knowing the values of k1 and k2 for
all indices in the interval we calculate their values of lcp. Finally, we set their
corresponding bits in B to one. In the very end we iterate through all i ∈ Ind and
clear their corresponding bits in B. The algorithm clearly spends just constant
time per a single element of Ind.
�

3.3 Computing Ancestor Loci

Here we show how to find the ancestor w of an Ind-terminating node that cor-
responds to a minimal discriminating word. We assume that for each node v of
GST there is a pointer to its highest ancestor with the same weight and that the
ranks L(v) and R(v) of the leftmost and the rightmost leaves in the subtree of
v can be retrieved in O(1) time. We also store an array D such that D[i] = k if
the i-th leaf of GST in the left-to-right order corresponds to a suffix from Tk.

Lemma 8. Given a node u in GST and M ∈ [L(u), R(u)], for all distinct val-
ues j occurring in D[L(u), R(u)] we can find the leftmost occurrence of j after
position M and the rightmost occurrence of j before M in D[L(u), R(u)] in
O(weight(u)) time, where weight(u) is the number of distinct documents whose
suffixes occur in the subtree rooted at u.

Proof. We can enumerate all distinct values in an interval of D using the data
structure of Muthukrishnan [7]. As follows from the description in [7], the struc-
ture reports the leftmost occurrence of each j that occurs in the interval. By
reversing the input, we can modify the structure so that the rightmost occur-
rence of each j is reported, too. We obtain the result by reporting the leftmost
occurrence of each distinct j in the interval D[M,R(u)] and the rightmost oc-
currence of each j in the interval D[L(u),M].
�

In Lemma 5 we showed that any Ind-terminating node w in the subtree rooted
at the locus of P has an ancestor v that is a locus of a desired minimal extension.
We compute v in two steps.

Minimal Discriminating Words Problem Revisited 139

Using the pointers we can find the highest ancestor w′ of w of weight at
most d in O(d) time. The interval D[L(w′), R(w′)] contains indices of at most d
different documents, and we output these indices in time O(d) using Lemma 8.
For each index j that occurs in D[L(w′), R(w′)] but does not belong to Ind,
we find the rightmost occurrence of j before L(w). The maximum (rightmost)
position among them is denoted by L′. Similarly, we find the leftmost position
of each j �∈ Ind after R(w), and denote the leftmost among them by R′. This
step takes O(d) time. [L′, R′] is the maximal segment that contains [L(w), R(w)]
and consists only of indices from Ind.

Now consider the node w again. We initialize v to w and jump from v to the
highest node v′ such that weight(v) = weight(v′). Let p(v′) be the parent of v′.
If L′ ≤ L(p(v′)) ≤ R(p(v′)) ≤ R′, we set v = p(v′) and repeat the same step for
the new node v. Otherwise we set v = v′ and stop. Observe that each iteration
increases the number of different indices occurring in [L(v), R(v)] by at least one
and takes just constant time.

Lemma 9. Given an Ind-terminating node w in the subtree of u being the locus
of P . The node on the path from w to the root of GST that is a locus of a minimal
extension of P occurring only in documents Ti, i ∈ Ind, can be computed in O(d)
time.

Combining Lemma 9 and the algorithm described in Section 3.2, we obtain
the final result.

Theorem 2. Given a subset of indices {i1, i2, . . . , id} and a pattern P , all min-
imal extensions of P which occur only in the documents Ti1 , Ti2 , . . . , Tid can be
computed in time O(|P |+d(output +1)), where output is the number of reported
extensions. The underlying indexing data structure occupies O(n) space, where
n is the total length of the strings T1, T2, . . . , Tm.

We can also output the loci of minimal extensions in lexicographic order with-
out increasing the query time. We achieve this by keeping intervals [L(w), R(w)]
for all found extension loci w in a tree T . We initialize T to a one-node tree and
store the interval [L(u), R(u)] at its root r. If we find a new extension locus w, we
replace [L(u), R(u)] with [L(w), R(w)] and append two child nodes to r. Intervals
[L(u), L(w)−1] and [R(w)+1, R(u)] are stored in the left and the right children
of r respectively. Every time when we find an Ind-terminating node v in the
interval [l(ν), r(ν)] stored in some ν ∈ T , we identify the ancestor w of v that is
the locus of a minimal extension. Then we replace [l(ν), r(ν)] with [L(w), R(w)]
and append two child nodes to ν as described above. When all loci are found,
we traverse internal nodes of T in-order to obtain a sorted list L of the intervals
[L(w), R(w)] for extension loci w. The traversal of T takes O(output) time; thus
the total asymptotic time necessary to answer a query remains unchanged.

We remark that the data structure of Theorem 2 can be constructed in
O(n logε n) time for any constant ε > 0 with high probability [6]. The pre-
processing time is dominated by the cost of constructing data structures S(e).

140 P. Gawrychowski et al.

4 Conclusions

We developed an optimal algorithm for reporting all minimal discriminating
words. For the problem of reporting all minimal discriminating words for a spec-
ified set of documents, our solution is optimal when d = O(1), but it might still
be possible to improve the running time for the case of non-constant value of d.

Another interesting question is whether counting the number of solutions
can done faster than reporting them all according to our algorithm. Finally, we
also wonder if we can generate k lexicographically smallest solutions in time
proportional to k rather than to output . Our algorithms can be used to output
k distinct solutions with such complexity, but we cannot guarantee that the
generated solutions are lexicographically smallest.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimen-
sion. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing,
pp. 476–482 (2001)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Hui, L.C.K.: Color set size problem with applications to string matching. In: Apos-
tolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644,
pp. 230–243. Springer, Heidelberg (1992)

4. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

5. Kucherov, G., Nekrich, Y., Starikovskaya, T.: Computing discriminating and generic
words. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.)
SPIRE 2012. LNCS, vol. 7608, pp. 307–317. Springer, Heidelberg (2012)

6. Mortensen, C.W., Pagh, R., Patrascu, M.: On dynamic range reporting in one di-
mension. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing,
pp. 104–111 (2005)

7. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2002)

8. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing 17, 111–123 (1988)

	Minimal Discriminating Words Problem
Revisited
	1 Introduction
	2 Minimal Discriminating Words
	2.1 General Idea
	2.2 Computing Maximal Subtrees
	2.3 Computing Extension Loci

	3 Minimal Discriminating Words for Specified Documents
	3.1 General Idea
	3.2 Computing an Ind-Terminating Node
	3.3 Computing Ancestor Loci

	4 Conclusions
	References

