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matching: for a given text the goal is to find its factors having the same
‘shape’ as a given pattern. Known results include a linear-time algorithm
for this problem (in case of polynomially-bounded alphabet) and a gen-
eralization to multiple patterns. We give an O(n loglogn) time construc-
tion of an index that enables order-preserving pattern matching queries
in time proportional to pattern length. The main component is a data
structure being an incomplete suffix tree in the order-preserving setting.
The tree can miss single letters related to branching at internal nodes.
Such incompleteness results from the weakness of our so called weak
character oracle. However, due to its weakness, such oracle can answer
queries on-line in O(loglogn) time using a sliding-window approach. For
most of the applications such incomplete suffix-trees provide the same
functional power as the complete ones. We also give an O(,"!°5™ ) time

loglogn
algorithm constructing complete order-preserving suffix trees.
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1 Introduction

We introduce order-preserving suffix trees that can be applied for pattern match-
ing and repetition discovery problems in the order-preserving setting. In particu-
lar, this setting can be used to model finding trends in time series which appear
naturally when considering e.g. the stock market or melody matching of two
musical scores, see [11].

Two strings = and y of the same length over an integer alphabet are called
order-isomorphic (or simply isomorphic), written x & y, if

Vi<ij<le| Ti < x5 & Y < Yj.

Example 1. (5,2,7,5,1,4,9,4,5) =~ (6,4,7,6,3,5,8,5,6), see Fig. 1.

The notion of order-isomorphism was introduced in [11] and [14]. Both papers
independently study the order-preserving pattern matching problem that consists
in identifying all consecutive factors of a string x that are order-isomorphic to
a given string y. If |z| = n and |y| = m, an O(n + mlogm) time algorithm for
this problem is presented in both papers. Under a natural assumption that the
characters of y can be sorted in linear time, the algorithm can be implemented in
O(n+m) time. Moreover, in [11] the authors present extensions of this problem
to multiple-pattern matching based on the algorithm of Aho and Corasick.

The problem of order-preserving pattern matching has evolved from the com-
binatorial study of patterns in permutations. This field of study is concentrated
on pattern avoidance, that is, counting the number of permutations not contain-
ing a subsequence which is order-isomorphic to a given pattern. Note that in
this problem the subsequences need not to be consecutive. The first results on
this topic were given by Knuth [12] (avoidance of 312), Lovasz [16] (avoidance
of 213) and Rotem [17] (avoidance of both 231 and 312). On the algorithmic
side, pattern matching in permutations (as a subsequence) was shown to be NP-
complete [3] and a number of polynomial-time algorithms for special cases of
patterns were developed [1,9,10].

We introduce an index for order-preserving pattern matching. The prepro-
cessing time is O(nloglogn) and queries are answered in O(m) time for a pat-
tern of length m over polynomially bounded integer alphabet . The index
is based on incomplete order-preserving suffix trees (incomplete op-suffix-trees,
in short). We also introduce (complete) order-preserving suffix trees (op-suffix-
trees) and show how they can be constructed using their incomplete counterpart
in O(nlogn/loglogn) time. We provide randomized (Las Vegas) algorithms for
the word-RAM model with £2(logn) word size.

In the literature there are a number of results in the related field of indexing
for parameterized pattern matching. This problem is solved using parameterized
suffix trees, a notion first introduced by Baker [2] who proposed an O(nlogn)
time construction algorithm. The result was then improved by Cole and Hariha-
ran [5] to O(n) construction time. Recently, Lee et al. [15] presented an online



86 M. Crochemore et al.

algorithm with the same time complexity. What Cole and Hariharan [5] pro-
posed was actually a general scheme for construction of suffix trees for so-called
quasi-suffix families with a constant time character oracle. This result can also be
applied in the order-preserving setting, however the resulting index has larger
construction time, O(nlogn) or O(nlogn/loglogn) depending on the codes
used.

Structure of the Paper. In Sections 2 (preliminary notation) and 3 we give
a formal definition of a complete and an incomplete op-suffix-tree and describe
their basic properties. Then in Sections 4 and 5 we show an O(nloglogn) con-
struction of an incomplete op-suffix-tree. The former section contains an algo-
rithmic toolbox that is also used in further parts of the paper. Applications of
our data structure for order-preserving pattern matching and longest common
factor problems are presented in Section 6. Finally in Section 7 we obtain a
construction of complete op-suffix-trees.

2  Order-Preserving Code

Let w = wy ... w, be a string of length n over an integer alphabet X'. We assume
that X is polynomially bounded in terms of n, i.e. ¥’ = {1,...,n°} for an integer
constant c. We denote the length of a string w by |w| = n. By wli .. j] we denote
the factor w; .. w;, and by suf; — the i-th suffix of w, that is, w[i..n].
For any ¢ € {1,...,n} define:

ay(l) =i—j where w; =max{wy : k <i, wp <w;},
if there is no such j then a,,(#) = ¢, similarly define:

Bw(i) =i—j where w;=min{wy : k<1, wp > w;},

and B, (i) = 7 if no such j exists. If several equally good values of j exist, we
select the greatest possible value of j that is smaller than 3.
We introduce codes of strings in a similar way as in [14]:

Code(w) = ((w (1), Bu (1)), (0w (2), Buw(2)); -, (aw((wl]); Bu(|w])))-

We also denote LastCode(w) = (au, (Jwl]), Bw(Jw])). The following property is a
consequence of Lemma 2 in [14].

9
7 7 s
) 5 5 6 6 5 5 0
4 4 4 3
2
I i I 111 I 1 I I
=

Fig.1l. Example of two order-isomorphic strings. Their codes are equal to
(1L,1) (2,1) (2,3) (3,3) (5,3) (4,2) (4,7) (2,2) (5,5).
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Lemma 2. Let x and y be two strings of length t and ' = z[1..t — 1], ¢y =
y[l..t —1]. Then:

/

(a) z~y & x

~ y/ A (yi <y < yj)7 where 1 :tfam(t)f j :tfﬁm(t);
b)) e=y & /'~y A

LastCode(x) = LastCode(y).

Proof. Part (a) is an equivalent formulation of Lemma 2 in [14]. Part (b) is a

technical consequence of part (a). O
x al;(t) )
| [z =] = | il vl []
Ba(t)

Fig. 2. An illustration of Lemma 2, part (a): z[1..t] &~ y[1..t] is equivalent to x[1..t—
~y[l..t—1]and y; <y < y;

Part (b) of Lemma 2 implies that the codes provide an equivalent characteriza-
tion of order-isomorphism:

Lemma 3. z =~y < Code(x) = Code(y).

The codes of strings can be computed efficiently. Applying Lemma 1 from [14]
to strings over polynomially-bounded alphabet we obtain:

Lemma 4. For a string w of length n, Code(w) can be computed in O(n) time.

3 Order-Preserving Suffix Trees

Let us define the following family of sequences:
SufCodes(w) = { Code(suf |)#, Code(suf,)#, ..., Code(suf,)#},

see Fig. 3. The order-preserving suffiz tree of w (op-suffiz-tree in short), denoted
opSufTree(w), is a compacted trie of all the sequences in SufCodes(w).

Ezample 5. Let w = (1,2,4,4,2,5,5,1). All SufCodes(w) are given in Fig. 3.

The nodes of opSufTree(w) with at least two children are called branch-
ing nodes, together with the leaves they form explicit nodes of the tree. All
the remaining nodes (that ‘disappear’ due to compactification) are called im-
plicit nodes. For a node v, its explicit descendant (denoted as FirstDown(v))
is the top-most explicit node in the subtree of v (possibly FirstDown(v)
v). By Locus code(z) We denote the (explicit or implicit) locus of Code(x) in
opSufTree(w). Only the explicit nodes of opSufTree(w) are stored. The tree con-
tains O(n) leaves, hence its size is O(n).

The leaf corresponding to Code(suf;)# is labeled with the number i. Each
branching node stores its depth and one of the leaves in its subtree. Each edge
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suffixes of w: SufCodes(w):
12442551 (1,1) (1,2) (1,3) (1,1) (3,3) (2,6) (1,1) (7,7) #
2442551 (1,1) (1,2) (1,1) (3,3) (2,5) (1,1) (7,3) #
442551 (1,1) (1,1) (3,1) (2,4) (1,1) (6,3) #
42551 (1,1) (2,1) (2,3) (1,1) (53) #
2551 (1,1) (1,2) (1,1) (43) #
551 (L,1) (L,1) (3,1) #
51 (1L,1) (2,1) #
1 (1,1) #

Fig. 3. SufCodes(w) for w = (1,2,4,4,2,5,5,1)

stores the code only of its first character. The codes of all the remaining char-
acters of any edge can be obtained using a character oracle that can efficiently
provide the code LastCode(suf;[1..7]) for any i, j.

Each explicit node v stores a suffix link, SufLink(v), that may lead to an implicit
or an explicit node (see an example in Fig. 4). The suffix link is defined as:

SUfLZ’Ilk(LOC’LLS Code(z)) = Locus Code(DelFirst(x))»
where DelFirst(z) results in removing the first character of z, see Fig. 5.

Observation 6. Code(z)= Code(y) = Code(DelFirst(x)) = Code(DelFirst(y)).

Fig. 4. The uncompacted trie of SufCodes(w) for w = (1,2,4,4,2,5,5,1) (to the left)
and its compacted version, the complete op-suffix-tree of w (to the right). The dotted
arrows (left figure) show suffix links for branching nodes, note that one of them leads
to an implicit node. Labels in the right figure that are in bold are present also in the
incomplete op-suffix-tree.

We also introduce an incomplete order-preserving suffix tree of w, denoted
T'(w), in which the character oracle is not available and each explicit node v can
have one outgoing edge that does not store its first character (incomplete edge).
This edge is located on the longest path leading from v to a leaf.
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root
!
_________ » U
v SufLink
leaves
pqr

Fig. 5. Let «y be the text spelled out on a path from the root to v in the uncompacted op-
suffix trie of w. Similarly, let 4 be the text on a path to v" = SufLink(v). Observe that
not necessarily 7' is a suffix of v, but ' = Code(DelFirst(z)), where x = w[p..p+k—1]
orz=wlqg..q+k—1] or x = w(r..r+k— 1], where p, g, r are the labels on the leaves
in the subtree rooted in v.

Ezample 7.
Let w=(1,2,4,4,2,5,5,1). The op-suffix-tree of w is presented in Fig. 4.

4 Algorithmic Toolbox

We use a predecessor data structure to compute the last symbols of the code of
a sequence changing in a queue-like manner.

Lemma 8. [Weak Character Oracle] An initially empty sequence x over
{1,...,n} can be maintained in a data structure D(x) of size O(|z|) so that the
following queries are supported in O(loglogn) expected time:

compute LastCode(x);  append a single letter to x;  and DelFirst(x).

Only the second operation is valid if x is empty.

Proof. The main tool here is the y-fast tree, a data structure for dynamic pre-
decessor queries. The following fact has been shown in [19].

Claim. Let N be an integer such that w = §2(logn), where w is the machine
word-size. There exists a data structure that uses O(|X|) space to maintain a
set X of key-value pairs with keys from {1,..., N} and supports the following
operations in O(loglog N) expected time:

find(k): find the value associated with k, if any,

predecessor(k): return the pair (k’,v) € X with the largest k' < k,
successor(z): return the pair (k',v) € X with the smallest k' > k,
remove(k): remove the pair with key k,

insert(k, v): insert (k,v) to X removing the pair with key k, if any.

The y-fast trees are now used as follows. The keys are the symbols present in x
while the values associated with them are the locations of their last occurrences
represented as a time-stamps (that is, the ordinal numbers of the push opera-
tions used to append them). Then the LastCode() query is answered using one
predecessor and one successor query. O
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Our second tool is the dynamic weighted ancestor data structure proposed by
Kopelowitz and Lewenstein [13] and originally motivated by problems related to
ordinary suffix trees. A weighted tree is a rooted tree with integer weight assigned
to each node, such that a monotonicity condition is satisfied: the weight of a node
is strictly greater than the weight of its parent. The weighted ancestor query is:

given a node v and a weight g find WeightedAnc(v, g) — the highest ancestor
of v with weight at least g.

The following lemma is proved in [13].

Lemma 9. Let N be an integer such that w = 2(log N), where w is the ma-
chine word-size. There exists a data structure which maintains a weighted tree
T with weights {1,..., N} in O(|T|) space and supports the following operations
in O(loglog N) expected time:

— answer WeightedAnc(v,g),
— insert a leaf with weight g and v as a parent,
— insert a node with weight g by subdividing the edge joining v with its parent.

The weights of inserted nodes must meet the monotonicity condition.

5 Constructing Incomplete Order-Preserving Suffix Tree

We design a version of Ukkonen’s algorithm [18] in which suffix links are com-
puted using weighted ancestor queries, see Fig. 6. The weights of explicit nodes
represent their depths. In this case for a node u, by WeightedAnc(u, d) we denote
its (explicit or implicit) ancestor at depth d.

Our algorithm works online. While reading the string w it maintains:

— the incomplete op-suffix-tree T'(w) for w;

— the longest suffix § of w such that Code(F) corresponds to a non-leaf node
of T'(w), together with the data structure D(F); §F is called the active suffiz;

— the node (explicit or implicit) Locus coqe(g), called the active node.

In the algorithm all implicit nodes are represented in a canonical form: the
explicit descendant (FirstDown) and the distance to this descendant (depth
difference). Each explicit node stores a dynamic hash table (see [5,8]) of its
explicit children, indexed by the labels of the respective edges. Note that the
explicit child corresponding to the incomplete edge is stored outside of the hash
table.

When w is extended by one character, say a, we traverse the active path in
T'(w): we search for the longest suffix §' of § such that Locuscoge(z/a) appears
in the tree, and for each longer suffix §’ of § we create a branch leading to a
new leaf node Locus coge(ga)- The active path is found by jumping along suffix
links, starting at the active node. The end point of the active path provides the
new active node, and §F'a becomes the active suffix.

To compute the last symbol of Code(Fa) we use the following observation.
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Observation 10. Due to Lemma 8 we can compute LastCode(§ - a) in
O(loglogn) expected time, where § is the active suffiz.

We also use two auxiliary subroutines.

Function Transition(v, (p,q)). This function checks if v has an (explicit or
implicit) child v" such that the edge from v to v’ represents the code (p,q). It
returns the node v’ or nil if such a node does not exist. We check, using hashing,
if any of the labeled edges outgoing from v starts with the code (p,q), for (at
most one for v) incomplete edge we can check if its starting letter code equals
(p, q) by checking two inequalities from part (a) of Lemma 2.

Function Branch(v, (p,q)). This function creates a new (open) transition from
v with the code (p, q). If v was implicit then it is made explicit, at this moment
the edge leading to its already existing child remains incomplete.

Algorithm Construct incomplete opSufTree(w)
Initialize T" as incomplete opSufTree for wi;
v := root; § :=empty string;
for i :=2 to n do
a:=wi; §i=38a;
while Transition (v, LastCode(F)) = nil do
Branch (v, LastCode(F));
if v = root then break;
§ := DelFirst(F);
u := FirstDown(v); { w is the first explicit node below v, including v }
v’ = SufLink(u); { v’ can be an implicit node }
v’ := WeightedAnc(u', [v] — 1); { weighted ancestor query }
SufLink(v) :=v'; v :=1;
v := Transition(v, LastCode(F));

return T’

\
; ‘ ‘: WeightedAnc(u', |v] — 1)
FirstDown(v):' T/
1
\

Sk

Fig. 6. Computation of SufLink(v). Here u is explicit.
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Remark 11. [Why incomplete? ] At first glance it is not clear why incomplete
edges appear. Consider the situation when we jump to an implicit node v/ =
SufLink(v) and we later branch in this node. The node v’ becomes explicit and
the existing edge from this node to some node v’ becomes an incomplete edge.
Despite incompleteness of the edge (v, ') the equality test between the (known)
last code letter of the active string and the first (unknown) code letter of the
label of this edge can be done quickly due to part (a) of Lemma 2.

In the pseudocode above we perform O(n) operations in total. This follows from
the fact that each step of the while-loop creates a new edge in the tree. The oper-
ations involving § and the operation WeightedAnc are performed in O(loglogn)
time and all the remaining operations require constant time only. We obtain the
following result.

Theorem 12. The incomplete op-suffiz-tree T (w) for a string w of length n can
be computed in O(nloglogn) expected time.

6 Incomplete Suffix Tree as Order-Preserving Index

The most common application of suffix trees is pattern matching with time
complexity independent of the length of the text.

Theorem 13. Assume that we have T'(w) for a string w of length n. Given a
pattern x of length m, one can check if w contains a factor order-isomorphic to
x in O(m) time and report all occurrences of such factors in O(m + Occ) time,
where Occ is the number of occurrences reported.

Proof. First we compute the code of the pattern. This takes O(m) time due
to Lemma 4. To answer a query, we traverse down 7T'(w) using the successive
symbols of the code. At each step we use the function Transition (v, (p,q)).
This enables to find the locus of Code(x) in O(m) time. Afterwards all the
occurrences of factors that are order-isomorphic to z can be listed in the usual
way by inspecting all leaves in the subtree of Locus code(s)- a

The motivating application of the standard suffix trees was finding the longest
common factor of two strings. An analog of this problem in the order-preserving
setting is especially important, since it provides a way to find common trends in
time series. In this problem, given two strings w and x, we need to find the longest
factor of x that is order-isomorphic to a factor of w. We show the usefulness of
the suffix links in incomplete op-suffix-tree.

Theorem 14. Let w be a string of length n. Having T(w), one can find the
order-preserving longest common factor of w and x, the latter string of length
m, in O(m(loglogm + loglogn)) expected time.
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Proof. The main principle of the algorithm is the same as in the standard setting
(see Corollary 6.12 in [6]). However, it needs to be enhanced using our algorithmic
tools.

Let pref(x) be the longest prefix of = such that Code(pref(x)) corresponds
to a node in T'(w). Let suf; be the i-th suffix of x. The algorithm computes
pref (suf?), pref (suf3) ete. and finds the maximum depth among their loci.

At each point the data structure D(pref (suf?)) for the current suffix is stored.
First, the locus of pref (suf{) is found by iterating Transition (v, (p,q)), as in the
order-preserving pattern matching (Theorem 13). To proceed from pref (suf?)
to pref (sufi ), we remove the first letter (DelFirst), which also corresponds
to a jump along a suffix link, and then keep traversing down the T'(w) using
Transition(v, (p, q)).

By Lemmas 8 and 9, we obtain the required time complexity. a

7 Constructing Complete Order-Preserving Suffix Tree

In Section 5 we presented an O(nloglogn) time construction of an incomplete
op-suffix-tree. To obtain a complete op-suffix-tree, we need to put labels on
incomplete edges and to provide a character oracle. Note that, using a character
oracle working in f(n) time, we can fill in the missing labels in O(nf(n)) time.

Observation 15. The op-suffiz-tree of a string of length n can be constructed
in O(nlogn) time.

Proof. After O(nlogn) preprocessing one can compute LastCode(suf,[1.. j]) for
any ¢, j in O(logn) time. We use range trees for that, see [7]. Then we can fill
in separately each missing label in the incomplete tree in O(nlogn) time. O

Below we show a slightly faster construction. For this, however, we need a dif-
ferent encoding of strings that also preserves the order. A very similar code was
already presented in [11]. For any ¢ € {1,...,n} define:

prev (i) = {k + k <i, wr <w;}|, prev,(i)={k : k<i, wp =w;}|
The counting code of a string w is defined as:
Code! (w) = ((prevs (1), prevz (1)), .., (prevs (), prevs ().
We also define LastCode' (w) = (prevys (Jw)), prevy (|wl]))-

Ezample 16. The counting code of each of the strings in Fig. 1 is (0,0) (0,0) (2,0)
(1,1)(0,0)(2,0) (6,0) (2,1) (4,2).

The following lemma states that Code’ is also an order-preserving code. In this
version of the paper we omit the proof, since it is basically present in [11].

Lemma 17. z ~y < Code'(z) = Code'(y).
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The main advantage of the new order-preserving code is the existence of an
O(logn/loglogn) time character oracle with o(nlogn/loglogn) time construc-
tion. To design the oracle we use a geometric approach: the computation of
LastCode’ for w corresponds to counting points in certain orthogonal rectangles
in the plane.

Observation 18. Let us treat the pairs (i,w;) as points in the plane. Then we
have LastCode' (suf;[1..7]) = (a,b), where a is the number of points that lie
within the rectangle A = [i,i 4+ j — 2] x (—o0,witj—1) and b is the number of
points in the rectangle B = [i,1 + j — 2] X [wi1j—1,Wit;—1], see Fig. 7.

The orthogonal range counting problem is defined as follows. We are given n
points in the plane and we are to count the number of points in axis-aligned
rectangles given as queries.

An efficient solution to this problem was given by Chan and Patrascu, see
Theorem 2.3 in [4] which we state below as Lemma 19. We say that a point
(p, q) dominates a point (p’,¢’) if p > p’ and ¢ > ¢'.

Lemma 19. We can preprocess n points in the plane in O(n+/logn) time, using
a data structure with O(n) words of space, so that we can count the number of
points dominated by a query point in O(logn/loglogn) time.

— N W Ut o
®

123456789 1

Fig. 7. Geometric illustration of the sequence w = (5,4, 6,5,2,6,1,5,6). The elements
w; are represented as points (i, w;). The computation of LastCode’ (suf,[1..7]) = (3,1)
corresponds to counting points in rectangles A, B.

Theorem 20. The op-suffiz-tree of a string of length n using the counting code
can be constructed in O(nlogn/loglogn) expected time.

Proof. Due to Lemma 3 and the corresponding Lemma 17, the skeleton of the op-
suffix-tree for each of the order-preserving codes is the same. Hence, to construct
the op-suffix-tree for the counting code, we compute the skeleton of the suffix
tree using the algorithm for incomplete op-suffix-tree. Afterwards we use the
character oracle to insert the first characters on each edge of the skeleton.

Due to Observation 18 and Lemma 19 after O(ny/logn) time and O(n) space
preprocessing one can compute LastCode'(suf;[1..j]) for any 4, j in
O(logn/loglogn) time. O
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