
Document Listing on Versioned Documents�

Francisco Claude1,2,3 and J. Ian Munro3

1 Akori S.A.
Santiago, Chile

2 Escuela de Informática y Telecomunicaciones
Universidad Diego Portales, Chile

3 David R. Cheriton School of Computer Science
University of Waterloo, Canada

Abstract. Representing versioned documents, such as Wikipedia his-
tory, web archives, genome databases, backups, is challenging when we
want to support searching for an exact substring and retrieve the docu-
ments that contain the substring. This problem is called document listing.

We present an index for the document listing problem on versioned
documents. Our index is the first one based on grammar-compression.
This allows for good results on repetitive collections, whereas standard
techniques cannot achieve competitive space for solving the same
problem.

Our index can also be addapted to work in a more standard way,
allowing users to search for word-based phrase queries and conjunctive
queries at the same time.

Finally, we discuss extensions that may be possible in the future, for
example, supporting ranking capabilities within the index itself.

1 Introduction

Highly repetitive collections are becoming more and more common. We have
a lot of versioned information on the Web; good examples of this are software
repositories and Wikipedia. It is also expected that in the future we will have to
provide storage for genome sequences of many individuals of the same species,
perhaps millions of people. This last scenario is interesting because within the
same species, the sequences share close to 99.99%, making the collection highly
repetitive [15].

Being capable of storing archive data with historic information on how docu-
ments evolve is a challenging task by itself, but we also need to provide searching
capabilities to make this information easily available for people when needed. In
this work we focus on the document listing problem for such collections.

Formally speaking, the document listing problem is defined as follows: Given
a collection of documents D = {T1, T2, . . . , Td}, and a query string P , we want
to retrieve the documents that contain P as a substring. We could add a ranking

� First author funded in part by Google U.S./Canada PhD Fellowship. Second author
funded in part by NSERC and the Canada Research Chairs Programme.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 72–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5

Document Listing on Versioned Documents 73

function f , such that we retrieve the documents ordered by f(Ti, P), and even
limit the size of the resulting set by a given parameter k, these are called top-k
queries. Some examples of ranking functions include tf-idf and closeness [1].

One important point to clarify is the difference between standard text-index-
ing and the document listing problem. Usually text indexes allow you to search
for a pattern in a text and report the position where the pattern occurs. If we
concatenate all the documents and use a classical index, we can retrieve the docu-
ments that contain the pattern. The drawback is that we are forced to iterate over
all occurrences of the pattern, which means we can pay a huge overhead for just
one document if it contains the pattern multiple times. This is the main difference
that renders classical text indexes unsuitable for certain instances of the prob-
lem. For natural language, the problem has been usually simplified by using an
inverted index. For every word w in the language, we have a list L[w] = {Ti1 , Ti2 ,
. . . , Ti�} listing all documents that contain w, plus extra information to compute
the ranking function. Answering a query Q = {P1, P2, . . . , Pq} corresponds to
obtaining a subset of the elements in ∩q

i=1L[Pi].
This solution has been shown to be effective in space, retrieval time, and

quality, but it lacks the freedom we would expect in other domains. For example,
if we consider a collection of DNA sequences, the concept of a word is not well
defined. For this reason, solutions in one domain may be completely useless in
others. We also see this phenomenon in languages where the separation among
words is not clearly defined, or hard to determine automatically.

The main idea behind our proposal is as follows: Given a collection of docu-
ments, we compress the whole set of texts using a grammar-compressor [13,21,4].
The resulting file is indexed using the result of [7]. Then we augment the struc-
ture with a set of inverted lists for non-terminal symbols. This inverted lists
store the documents that contain each non-terminal. The queries are answered
by first asking the text index to produce the minimum set of non-terminals that
match the pattern for which we have to look into their inverted lists.

Once we have all the inverted lists, we compute the union of those, generating
the final result, an inverted list for the pattern that was given as a query.

The main contributions of this paper are:

– We show how to extend a grammar-compressed index to support document
listing in a simple and clean way. The index also supports access to any
document of the collection, verbatim, so it completely replaces the original
input. Building our index on top of any grammar-compressor allows us to
achieve good space for repetitive sequences, which is the case of versioned
documents. In addition to achieving good space [8,5], a straight-forward
grammar representation allows for fast decompression, and therefore, access
to the content being indexed [6,8,5].

– The resulting structure supports retrieving the inverted list for an arbitrary
pattern. This is particularly interesting, since all the algorithms developed
for plain posting lists can be applied to the output of our searches. This
allows to easily extend our result to support conjunctive queries.

74 F. Claude and J. Ian Munro

– We can apply the same result for words in natural language, allowing a new
index. This index does not support full-text document listing, but solves the
problem of searching for phrases, a problem that is also hard to handle with
traditional inverted indexes. Due to lack of space, we ommit the experimental
results for this particular application of our result.

– Our final index does not only allow document listing. We discuss how to
extend it to compute other pieces of information commonly used by ranking
functions: Term frequencies for each document and positional information
on where patterns occur inside each document.

2 Related Work

Most of the items in our index are built using grammar compression and indexes.
A grammar-compressed representation of a sequence corresponds to a context-
free grammar that generates one single text, the one being compressed. For
purposes of this work, the following definition suffices.

Definition 1 (Grammar-compressed seq.). Given a grammar G = (X =
{X1, X2, . . . , Xn}, σ, Γ : X → X+ ∪ σ, s), where:

– X represents the set of non-terminal symbols.
– σ corresponds to the set of terminal symbols.
– Γ is the set of rules that transform a non-terminal into a sequence of non-

terminals or just one terminal symbol. We do not allow cycles in the rules,
and that is enough to make sure the grammar generates only one sequence.

– s corresponds to the identifier of the start symbol Xs.

We define F(Xi) as the result of recursively replacing all non-terminals until
obtaining a sequence of terminal symbols. We also refer to F(Xi)

R as F(Xi)
read from right to left (i.e., reversed).

We say that G compresses T = t1t2 . . . tu, iff F(Xs) = T .
We call N the sum of the sizes of all the right sides in the grammar, that is

N =

n∑
i=1

|Γ (Xi)|

We also refer to the height of the grammar as the longest path from the
starting symbol to a terminal symbol in the parse tree.

We rely on the grammar-based index proposed by Claude and Navarro [7] to
support one of the steps in our searching procedure. We explain in more detail
the pieces needed in Section 2.1.

2.1 Grammar Indexes

We first explain the basics of the index proposed by Claude and Navarro [7]. The
index takes as input a free-context grammar that generates a single sequence. We

Document Listing on Versioned Documents 75

call G the grammar, composed of a set of non-terminals X = {X1, X2, . . . , Xn},
an initial symbol Xs and a set of rules Γ , that map non-terminals to a sequence
of non-terminals or just one single terminal symbol.

The grammar is first preprocessed to remove duplicate rules, and embed rules
that are mentioned only once inside the rule that mentions them. This does not
increase the size of the grammar, but allows to bound some of the running times
further.

The main result of [7] is summarized in Theorem 1. We next explain the
structures we need in this paper, omitting some of the details for the sake of
readability.

Theorem 1. [7] Let a sequence T [1..u] be represented by a context free grammar
with n symbols, size N and height h. Then, for any 0 < ε ≤ 1, there exists a
data structure using at most 2N lg n+N lg u+ ε n lgn+ o(N lg n) bits that finds

the occ occurrences of any pattern P [1..m] in T in time O((m2/ε) lg
(

lg u
lgn

)
+

(m + occ) lgn). It can extract any substring of length � from T in time O(� +
h lg(N/h)). The structure can be built in O(u +N lgN) time and O(u lg u) bits
of working space.

For the construction of the index, we first preprocess the grammar and re-
assign the identifiers of each non-terminal so that they are sorted lexicograph-
ically by the reverse of the string they generate, i.e., F(Xi)

R. We number the
non-terminals in sorted order, that is, F(Xi)

R ≤ F(Xj)
R iff i ≤ j. We then

create a bitmap Y where we assign a 1 to position i iff Xi generates just a single
terminal symbol. We augment this bitmap to support the following operations:

– accessY (i): retrieves the bit at position i in Y .
– rankY (b, i): counts the number of times bit b appears up to position i in Y .

– selectY (b, j): retrieves the position of the j-th occurrence of bit b in Y .

We can represent the bitmap Y and support all three operations in constant
time using the method of Raman, Raman, and Rao [17]. This representation
requires nH0(Y) + o(n), where H0(Y) represents the zero order entropy of the
bitmap1.

By using Y we can know whether a rule generates more non-terminals or
just one single terminal symbol. Given Xi, if accessY (i) = 1, then we know it
generates a terminal symbol. Furthermore, if we assume terminal symbols are
contiguous, we know that Xi generates rankY (1, i). It is also possible to obtain
the non-terminal Xj that generates symbol a by computing j = selectY (1, a).

In addition, for each proper suffix of each rule, we assign an id, and then
reassign them according to the lexicographical order of the strings generated by
those proper suffixes. We will call this SuffPerm. In other words, SuffPerm stores
at position i the i-th proper suffix of a rule in lexicographical order.

1 The zeroth order entropy of a bitmap of length n with m ones is defined as m
n
lg n

m
+

n−m
n

lg n
n−m

. This is bounded above by 1.

76 F. Claude and J. Ian Munro

Finally, we create a labeled binary relation R that maps SuffPerm[i] with j
through a label k if rule j appears before the suffix represented by SuffPerm[i]
in rule k.

We want to support range searching in R. Wavelet trees [12] are a good alter-
native, access takes O(lg n) time and range searching takes O(lg n) per element
reported. Wavelet trees, in this context, require n lgn(1+o(1)) bits of space. The
time can be further improved to O(lg n/ lg lg n) (access and element reported by
the range search) within the same space bounds as the standard wavelet trees [2].

In the original paper [7], the grammar is represented as a tree, where we have
N−n leaves. In order to have efficient navigation and access to the rules, the tree
is represented using the method of Benoit et al. [3], adding a simple trick to allow
fast access to the definition of any non-terminal symbol [7]. In our case a simple
plain representation of the grammar is enough, we do not need to navigate the
parse tree upwards, and the theoretic solution for fast access works slower than
traversing a plain representation in practice.

Given a pattern P = p1p2 . . . pm, we can find two different types of occur-
rences inside the grammar. The first kind, called primary occurrences, are those
non-terminals that contain the pattern because two or more rules generated
by it, after being concatenated, generate the pattern. The second kind, called
secondary occurrences are those non-terminals that contain P because they gen-
erate a single rule that contain P . Note that actually one non-terminal may be
both at the same time, primary and secondary, but for that, the non-terminal
must have at least two different occurrences of P .

To find the primary occurrences of a pattern P = p1p2 . . . pm, we try the m
possible partitions: p1 ·p2 . . . pm , p1p2 ·p3 . . . pm, up to p1 . . . pm−1 ·pm. For each
partition P = P1 · P2, we perform a binary search on the rules to determine
which ones finish with P1. Then we perform a binary search over the suffixes of
rules, SuffPerm, to find suffixes of rules that begin with P2. Finally, using the
binary relation R, we can perform a range search to retrieve the non-terminals
that contain elements that start with P2 preceded by elements that end with P1.

Secondary occurrences are obtained by following up the primary occurrences
in the parse tree. As we will explain later, we only care about primary occurrences
in this work, that is why we do not deal with an efficient representation for the
parse tree to track secondary occurrences.

Claude and Navarro show how to represent SuffPerm in little space on top
of the binary relation, and also how to extract prefixes of suffixes of rules in
linear time. We do not need the technical details of these results, it suffices to
know the running time of each step. The binary search for P1 requires O(m lg n)
time. The binary search for P2 requires O(m lgN) time. Finally, retrieving the
primary occurrences requires O(lg n/ lg lgn) time per element retrieved.

Retrieving all occp primary occurrences requires O(m2 lgN+occp lgn/ lg lg n)
time.

2.2 Re-pair

Due to its simplicity, we chose Re-Pair as the grammar compression [13] for eval-
uating our index. It is important to point out that other grammar compressors

Document Listing on Versioned Documents 77

may achieve better results, yet their implementation for large scale is still an
issue. It is also possible to trade compression speed and space for compression
ratio using an approximate version [6].

We post-process the result of Re-Pair to make the final grammar smaller. For
each rule Xi that generates a set of non-terminals, if it is mentioned only once
in the grammar by rule Xj , we expand Xi where Xj mentions it, and remove
Xi. We repeat this process until each rule is mentioned at least twice in the
grammar.

This is required by the index, but it also has the nice property that matches
the dictionary compression algorithm proposed by González and Navarro [11],
that has shown to improve the final result considerably (see [11,6]).

3 The Index

In this section we describe how we build the index, augment it to support doc-
ument listing, and finally how queries are answered.

3.1 Construction for Primary Occurrences

We take the whole collectionD = {T1, T2, . . . , Td}, and generate a single sequence

T = $0T1$1T2$2 . . . $d−2Td−1$d−1Td,

where $i are symbols that do not appear anywhere else in the collection.
When we compress this sequence with Re-Pair, we are sure that no rule spans

from one document to the other, since the $i symbols cannot form pairs that
appear twice. We then remove the $i elements, and generate one rule per doc-
ument, containing all the elements left between the $s in Xs. After that, we
replace Xs by a new rule that generates the new rules we just created, in order.
This allows us to have direct access to a rule that generates the whole content for
any document. Our grammar, after this preprocessing, has the following form:

– Xs generates d non-terminals, Xt1 , Xt2 , . . . , Xtd , where F(Xti) = Ti.
– Xti generates the symbols between $i−1 and $i in the original Xs generated

by Re-Pair.

When building the index, we leave Xs outside the permutation SuffPerm.
This does not only save space, but makes sure that whenever we find a primary
occurrence, it is contained inside a single document, and not formed by the
concatenation of two.

To access the i-th document in the collection, we just expand the i-th non-
terminal generated by s. This allows us to retrieve documents in time propor-
tional to their length (amortized if we don’t use the result from [7]).

Note that we can adapt other grammar-based compressors to this scheme. An
interesting option is to just simply compress each document separatelywith a com-
pressor that generates an SLP (rules restricted to generate two non-terminals or

78 F. Claude and J. Ian Munro

just one terminal), and then apply the merge algorithm ofWan [20]. This will gen-
erate a grammar that satisfies the conditions above, and by applying the same pre-
processing before constructing the index, we can optimize the output even further.

3.2 Adding Inverted Lists

For each non-terminal, we store an inverted list of the documents containing
that non-terminal. Note that this requires at most n × d bits, and we expect n
to be small. Yet this is still not satisfactory. If two versions share much of their
content, they will appear in a very similar set of lists, since they will be formed
by the same non-terminals.

To exploit this, we again use grammar-compression on the sequence of lists.
We could use any space-efficient representation of lists, but for repetitive ones,
this particular solution has proven to work well in practice [8,5].

We refer to L[Xi] to the list of documents containing non-terminal Xi and
will call L the set of inverted lists. We represent the inverted lists in the same
way as we represent the documents, this allows to access an entire list in time
proportional to its length.

It is interesting to relate the size of this inverted lists to the size of the original
sequence. It turns out that under reasonable assumptions, these lists can be
represented space efficiently. We see the inverted lists as a grid, where coordinate
(i, j) is a 1 iff non-terminal i is contained in document j. Let t be the number
of points in this grid. We need t lg nd

t +O(t) bits to represent the grid2.
We know that n ≤ t, therefore, the space is bounded by t lg d, which is the

same as the solution by Välimaki and Mäkinen requires for the document array
[19]. We can further bound the space by considering the worst possible space
for the grid. The space is maximized when t = nd

e . In this case, the total space
required by the grid is O(t) bits.

On the other hand, we can also bound the length of the text in terms of t.
We know that each point on the grid represents at least one occurrence of a rule
in the collection, therefore, u ≥ t. This means that the total extra space for the
grid is bounded by the length of the collection in bits, in other words D

lg σ bits.

3.3 Full-Text Document Listing

Having built the grammar-index, and the inverted lists, the searching becomes
quite straight-forward. We search for the nonterminals that contain primary
occurrences of the pattern, and compute the union of the inverted lists associated
to those nonterminals.

At this stage we need to compute the union of sets, in contrast with the
usual operation we encounter between inverted lists, which is the intersection.
Furthermore, our case is a bit more complicated. We have a grammar-compressed

2 This is a simple information theoretic lower bound, there exist representations that
achieve this [9], and some that do better on repetitive cases [5], as in our case.

Document Listing on Versioned Documents 79

version of the lists, and thus we want to make use of this fact, both to keep the
space low, and to improve the query time.

Given a set of non-terminals representing the primary occurrences of the pat-
tern, we will create a dynamic dictionary containing those elements, called seen,
and a queue containing the same elements, we call this queue remaining. The
merge procedure generates a dictionary containing all the elements, and is shown
in Algorithm 1.

Data: Set V = {v1, v2, . . . , vn}, Lists G = (X , Γ, σ, s)
Result: R = (di1 , di2 , . . . , dik)

1 remaining ← ∅
2 seen ← ∅
3 R ← ∅
4 for v ∈ V do
5 remaining ← remaining ∪ {Xv}
6 seen ← seen ∪ {Xv}
7 while remaining �= ∅ do
8 x ← GetMax(remaining)
9 remaining ← remaining− {x}

10 if x is terminal then
11 R ← R ∪ {x}
12 for xj in Γ (x) do
13 if xj �∈ seen then
14 seen ← seen ∪ {xj}
15 remaining ← remaining ∪ {xj}
16 return L

Algorithm 1. Computing the union of the lists for a set of non-terminals

The worst case running time of this algorithm is O(occp × output). Section 4
shows that occp is in general small, and also that our heuristic of keeping track
of previously seen non-terminals allows us to save processing time; it exploits
the regularities seen between the lists. If two lists contain basically the same
elements, we will only explore one of them, since we will encounter a non-terminal
we have already seen.

It is quite straight-forward to see why we only find primary occurrences. Sec-
ondary occurrences contain documents we already reported as primary occur-
rences, so processing only primary occurrences maintains the correctness of the
result while cutting down the time.

3.4 Adding Ranking Information

The index can be augmented with extra information in a similar way as inverted
lists, with a couple of restrictions.We can augment the inverted lists that associate
each non-terminal symbol with the documents that contain it with score values.
In particular, frequencies offer a property that is easy to exploit here.

80 F. Claude and J. Ian Munro

When we augment the lists L with frequencies, we can just add up all the
values associated with primary occurrences of a certain document and we will
obtain precisely the number of occurrences of the pattern in the whole document.
We include the details of this algorithm in the Appendix.

We may not need to store the frequencies for each possible occurrence of a
document in the inverted lists. We could store an approximation of the frequency
to approximate the term frequency and save space, by storing values from a
smaller universe.

We can also use the result of Claude and Navarro [7] to support locating
the occurrences of the pattern in the collection. This allows to obtain positional
information for the query when required. Another option here is to approximate
the locations of multiple patterns depending on the primary occurrences. This
line of work is out of the scope of this article.

4 Experimental Results

4.1 Practical Considerations

For the practical implementation, we did not implement the real-time access to
prefixes/suffixes of rules as described in [7]. We just store the grammar as a set
of arrays describing each rule. We also do not need the tree in practice, since we
are not tracking occurrences upwards.

The binary relation is represented using a wavelet tree, as implemented in
Libcds3. We also make use of the arrays implemented in the library. We use
Navarro’s implementation of Re-Pair 4, which runs in linear time. As containers
we use the standard C++ STL containers. For sets we use set, and for unsorted
sequences, we use vector.

4.2 Experimental Setup

To test our index we downloaded the first part of Wikipedia in English5, and
sampled documents from it uniformly at random. For each document selected,
we extracted all its versions. This was done using anonymous’ library.

We also generated synthetic collections composed of symbols A,C,G and T .
This is to mimic the compression of genome databases. The process of generation
is the following: Generate a random sequence T1 of length n, and then generate
d− 1 copies of T1 and mutate x% of it.

Table 1 shows the main characteristics of our datasets. The compression ratio
may not be very descriptive given that the sequences are highly repetitive. For
this reason, we include the compression ratio achieved by anonymous’ Re-Pair
implementation. This does not include any post-processing, and just represents
the original sequences, therefore, it is only a guideline on how much the text
could be compressed.

3 Available at http://libcds.recoded.cl
4 Available at http://www.dcc.uchile.cl/gnavarro/software/
5 enwiki-20110722-pages-meta-history1.xml

http://libcds.recoded.cl
 http://www.dcc.uchile.cl/gnavarro/software/
 enwiki-20110722-pages-meta-history1.xml

Document Listing on Versioned Documents 81

Table 1. Datasets

Dataset size # docs versions/doc (avg) mutation rate Re-Pair

Wiki1 69MB 8 582 - 0.36MB
Wiki2 600MB 20 772.85 - 3.45MB
Wiki3 1.5GB 36 831.08 - 5.50MB
DNA1 1000MB 1 1000 0.01% 4.5MB
DNA2 1000MB 1 1000 0.005% 2.09MB
DNA3 1000MB 1 1000 0.0026% 1.17MB

Table 2. Space required for our index for each dataset, separated by components

Collection T Lists SuffPerm R Total Compr.

Wiki1 0.39MB 0.49MB 0.39MB 0.39MB 1.66MB 2.43%
Wiki2 1.75MB 2.14MB 1.69MB 1.71MB 7.29MB 1.22%
Wiki3 3.19MB 4.37MB 3.12MB 3.06MB 13.73MB 0.90%
DNA1 3.21MB 4.76MB 2.94MB 3.03MB 13.95MB 1.40%
DNA2 1.99MB 2.80MB 1.78MB 1.91MB 8.47MB 0.85%
DNA3 1.26MB 1.59MB 1.15MB 1.23MB 5.23MB 0.52%

We generated queries by taking a version uniformly at random, and then
choosing a substring uniformly at random from that particular version.

The machine used for generating the indexes and measuring time has 2 In-
tel(R) Xeon(R) CPU X5660 processors running at 2.80GHz, 11TB of hard drive
and 24GB of RAM. The machine is running Ubuntu Linux 11.04 with kernel
2.6.38-13-generic for x86_64. All our code is implemented and C++ and was
compiled using gcc version 4.5.2 with flags -O3 -DNDEBUG. Our code is available
for download from http://fclaude.recoded.cl/projects.

4.3 Full-Text Document Listing

Table 2 shows the sizes of our index for the different collections. We can see that
our indexes, for the Wikipedia samples and the DNA synthetic data, are around
4 to 4.5 times the size of the collection when we compress it using Re-Pair. This

Table 3. Time per element retrieved in microseconds for patterns of length m =
4, 8, 16, 32, averaged over 10, 000 queries

Collection m = 4 m = 8 m = 16 m = 32

Wiki1 0.60 1.36 3.37 7.38
Wiki2 0.51 0.72 1.72 4.03
Wiki3 0.54 0.83 2.40 6.23
DNA1 20.03 1.86 3.05 6.05
DNA2 12.42 1.35 2.17 4.06
DNA3 8.05 1.06 1.59 2.90

82 F. Claude and J. Ian Munro

means, within this space, we are replacing the collection and supporting search
operations on top of it. Table 3 shows the time in microseconds per element
retrieved. This was averaged over 10, 000 queries.

4.4 Comparison to Related Work

The document listing problem was first solved in linear space by Muthukrishnan
[14]. Sadakane [18] proposed a different time/space tradeoff, and later Mäkinen
and Välimäki [19] and Navarro et al. [16] proposed practical solutions to the
problem. All these solutions are not designed for repetitive collections. Only
recently, Gagie et al. [10] proposed a solution in this scenario. We measured their
results with default parameters for the Wiki collections. They offer a different
tradeoff than our solution. We provide superior space, our index is 3.56, 8.22,
and 10.86 times smaller for Wiki1, Wiki2, and Wiki3 respectively. On the other
hand, their query time is much lower, 11–17 times faster for Wiki1, 18–22 times
faster for Wiki2, and 20–31 for Wiki3. We measured patterns of length 4, 8 and
16, since the patterns of length 32 produced inconsistent results in their index,
showing less occurrences than documents reported. We also excluded patterns
of length 16 from Wiki3 for the same reason. When compared to the solution by
Navarro et al. [16], we are 16 to 62 times smaller, considering only Wiki1 and a
preffix of Wiki2.

5 Conclusions

We have presented a new index for representing highly repetitive collections. This
index can be used in two different scenarios: (1) Indexing a collection to support
document listing of exact substrings; (2) Indexing a collection and support phrase
searches for words existing in the collection.

The results show that while providing competitive time complexities, we
achieve space considerably smaller than previous results. This opens a new line
for storing historic information on documents while supporting efficient search
operations.

It is easy to relate to our index in terms on the inverted lists. In the symbol-
based version, we can build the inverted index for any possible substring using
our index. Furthermore, when we tokenize the text, and index the word iden-
tifiers, our index is just a grammar-compressed representation of the inverted
lists, augmented with extra information to support phrase search operations on
top of it, allowing to produce the inverted list of an arbitrary phrase.

Our work also leaves some challenging open problems. First, the union of
all non-terminals that represent primary occurrences has no good theoretical
bound, yet is reasonable in practice. Is it possible to modify the structure or
the grammar in order to provide a reasonable bound, say we do not visit more
than k symbols per element in the resulting set? Another interesting problem
not considered in this work, is whether we could support approximate searches,
allowing to retrieve the phrases or substrings that are most similar to the query.
This is important, since typos may have a huge effect in the result.

Document Listing on Versioned Documents 83

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston (1999)

2. Barbay, J., Claude, F., Navarro, G.: Compact binary relation representations with
rich functionality. CoRR abs/1201.3602 (2012)

3. Benoit, D., Demaine, E., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Charikar,M., Lehman,E., Liu,D.,Panigrahy,R.,Prabhakaran,M., Sahai,A., Shelat,
A.: The smallest grammar problem. IEEE Trans. Inf. Theo. 51(7), 2554–2576 (2005)

5. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Indexes for highly repet-
itive document collections. In: CIKM, pp. 463–468 (2011)

6. Claude, F., Navarro, G.: A fast and compact Web graph representation. In: Ziviani,
N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 118–129. Springer,
Heidelberg (2007)

7. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012)

8. Claude, F., Fariña, A., Mart́ınez-Prieto, M.A., Navarro, G.: Compressed q-gram
indexing for highly repetitive biological sequences. In: BIBE, pp. 86–91 (2010)

9. Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids.
In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507,
pp. 327–338. Springer, Heidelberg (2010)

10. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on
repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 107–119. Springer, Heidelberg (2013)

11. González, R., Navarro, G.: Compressed text indexes with fast locate. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg
(2007)

12. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
SODA, pp. 841–850. Society for Industrial and Applied Mathematics, Philadelphia
(2003)

13. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. of the
IEEE 88(11), 1722–1732 (2000)

14. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In:
FOCS, pp. 657–666 (2002)

15. Navarro, G.: Indexing highly repetitive collections. In: Smyth, B. (ed.) IWOCA
2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)

16. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical compressed document retrieval.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205.
Springer, Heidelberg (2011)

17. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

18. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

19. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:
Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

20. Wan, R.: Browsing and searching compressed documents. Ph.D. thesis, The Uni-
versity of Melbourne (2003)

21. Ziv, J., Lempel, A.: Compression of individual sequences via variable length coding.
IEEE Trans. Inf. Theo. 24(5), 530–536 (1978)

	Document Listing on Versioned Documents
	1 Introduction
	2 Related Work
	2.1 Grammar Indexes
	2.2 Re-pair

	3 The Index
	3.1 Construction for Primary Occurrences
	3.2 Adding Inverted Lists
	3.3 Full-Text Document Listing
	3.4 Adding Ranking Information

	4 Experimental Results
	4.1 Practical Considerations
	4.2 Experimental Setup
	4.3 Full-Text Document Listing
	4.4 Comparison to Related Work

	5 Conclusions
	References

