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Abstract. We consider how to index strings, trees and graphs for jum-
bled pattern matching when we are asked to return a match if one exists.
For example, we show how, given a tree containing two colours, we can
build a quadratic-space index with which we can find a match in time
proportional to the size of the match. We also show how we need only
linear space if we are content with approximate matches.

1 Introduction

Suppose we are given a connected graph G on n coloured nodes and a multiset M
of colours and asked to find a connected subgraph of G whose nodes’ colours are
exactly those in M , if such a subgraph exists. This problem is commonly referred
to as jumbled pattern matching, and has recently aroused much interest in the
case of strings [7,5,8,6,17,13,14,2]: There we are looking for substrings of the text
which have the same multiplicity of each character as the query, also referred to
as its Parikh vector. (The boolean version is the Parikh fingerprint or character
set [1,10].) Parikh vectors appear frequently in applications in computational
biology [3,5,11,4], as do jumbled patterns in graphs [16].

Even when G is a tree, there can be exponentially many such matching sub-
graphs. When G is a path, however, there are O(n) matches and we can find
them all in O(n) time [7]. When G is a path containing a constant number of
colours—i.e. the nodes are coloured with only two colours—then in O

(
n2

)
time

we can build a o(n2)-space index with which we can determine in o(n) time
whether there is a match [15]. When G is a path containing only two colours, in
O
(
n2/ log2 n

)
time we can build an O(n)-bit index with which we can determine

in O(1) time whether there is a match [8,6,17,13]. Moreover, in O
(
n2/ log2 n

)
time we can build an index of size O(n logn)-bits with which we can find all the

� Supported by Academy of Finland grant 118653 (ALGODAN).
�� Supported by Academy of Finland grant 250345 (CoECGR).

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 56–63, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Indexes for Jumbled Pattern Matching in Strings, Trees and Graphs 57

matches using O(|M |) worst-case time per match [13]. We can build an approx-
imation of this index in O

(
n1+ε

)
time with the quality of the approximation

depending on ε [9]. Throughout this paper our model is the word-RAM with
Ω(log n)-bit words and we measure space in words unless stated otherwise.

Determining whether there is a match is NP-complete even when G is a
tree [16]. It is also NP-complete when G contains only two colours, but takes
polynomial time when G both has bounded treewidth and contains only a con-
stant number of colours [12]. When G contains only two colours there exists
an O(n)-bit index with which we can determine in O(1) time whether there
is a match [13]. Building this index is NP-hard in general but, since finding a
match is self-reducible, takes polynomial time when G has bounded treewidth
and O

(
n2/ log2 n

)
time when G is a tree. At the cost of increasing the space

to O(n) words, this index can be generalized to return a subset of the nodes in
the matches that is also a hitting set for all the matches, using O(logn) time
worst-case time per match. In the worst case, however, this subset of nodes is of
little use in finding even a single complete match.

We start by presenting some basic tradeoffs in Section 2, to establish what
can be done näıvely on graphs. In Sections 3 to 6 we assume G contains only
two colours. In Section 3 we consider the case when G is a path — i.e., a binary
string — and describe an O(n)-space index with which we can find a match in
O(logn) time. In Section 4 we consider the case when G is a tree and, based on
our index for binary strings, describe an O

(
n2

)
-space index with which we can

find a match in O(|M |) time. If we are concerned only with multisets of size at
most n1/2, then we can reduce the space bound to O(n). In Section 5 we show
that we can achieve the same space bound if we are content with approximate
matches. In Section 6 we partially extend our results from trees to graphs.

2 Basic Tradeoffs

Suppose G is a graph containing a constant number c of colours and we will be
given M as the vector of length c whose components are the frequencies of the
colours, the Parikh vector for M ; note that the sum of its entries equals |M |.
Since for any 1 ≤ m ≤ n, there are

(
m+c−1
c−1

)
= O

(
mc−1

)
possible multisets of

size m and it takes O(m) space to store pointers to a match for such a multiset,
there exists an O

(
nc+1

)
-space index with which we can find a match in O(|M |)

time. When G has bounded treewidth we can build this index in polynomial
time, and we can reduce the space bound to O(n) at the cost of increasing the
query time to |M |O(1). To do the latter, we store G itself and pre-compute and
store pointers to matches only for multisets of size at most n1/(c+1). Given a
multiset M with |M | > n1/(c+1), we search G in nO(1) = |M |O(1) time.

For any positive constant ε, we can build an O(n logc n)-space approximate
index with which, if M has an exact match, then in O(1) time we can find a
substring whose Parikh vector differs from M ’s by at most a factor of 1 + ε in
each component. (This index does not tell us whether M has an exact match,
however, since we may find such a substring even when it does not.) Without
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loss of generality, assume we are concerned only with multisets in which each
character appears at least once; we can reduce the general case to 2c = O(1)
instances of this one. We store a c-dimensional grid with each side having length
�log1+ε n�+1. For each point (x0, . . . , xc−1) in this grid, we store pointers to the
nodes in a connected subgraph whose Parikh vector is component-wise between(
(1 + ε)x0 , . . . , (1 + ε)xc−1

)
and

(
(1 + ε)x0+1, . . . , (1 + ε)xc−1+1

)
. This takes a to-

tal of O(n logc n) space. Given the Parikh vector (v0, . . . , vc−1) of M , we return
the subgraph stored for the point

(
�log1+ε v0�, . . . , �log1+ε vc−1�

)
in the grid,

if that subgraph exists. We summarize these basic tradeoffs in the following
proposition:

Proposition 1. When G is a graph containing a constant number c of colours
there exists an O

(
nc+1

)
-space index with which we can find a match in O(|M |)

time. For any positive constant ε there exists an O(n logc n)-space index with
which in O(|M |) time we can find an approximate match in which each colour’s
frequency is within a factor of 1+ ε of its frequency in M . When G has bounded
treewidth we can build these indexes in polynomial time and, moreover, we can
reduce the space of the exact index to O(n) at the cost of increasing the query
time to |M |O(1).

When G is a path — which we can think of as a string over an alphabet of c
characters — we can improve these bounds. Since G contains O

(
n2

)
substrings

and we can specify any substring by its two endpoints, we can build an O
(
n2

)
-

space index with which we can find a match in O(1) time. Calculation shows we
can reduce the space bound to O(n) at the cost of increasing the query time to
O(|M |c), and we can store an approximate index in O(logc n) space.

Suppose G is a string over a constant-size alphabet and 0 < ε ≤ 1. Then in
O
(
n1+ε

)
expected time we can build an index with which, given a multiset M of

characters, we can find all occ matches of M in O
(
|M |1/ε + occ

)
worst-case time.

To do this, we storeG itself and, for 1 ≤ m ≤ nε, we make a pass overG and store,
for each multiset of size m that has a match in G, a list of all the locations of that
multiset’s matches. Notice the lists for multisets of size m are disjoint and have
total length n−m+ 1; therefore, with dynamic perfect hashing we use a total of
O
(
n1+ε

)
expected time and O

(
n1+ε

)
space. Given a multiset M with |M | ≤ nε,

we return our pre-computed list of the locations of M matches in O(|M |+ occ)
time, or O(occ) time if we are given M as a Parikh vector. Given a multiset M
with |M | > nε, we search G in O(n) = O

(
|M |1/ε

)
time.

As an aside, we note that we can extend our approximate indexes to
support approximate scaled-then-permuted pattern matching (see [7]). To
do this, for each point (x0, . . . , xc−1) in the grid for which there is no
subgraph whose Parikh vector is between

(
(1 + ε)x0 , . . . , (1 + ε)xc−1

)
and(

(1 + ε)x0+1, . . . , (1 + ε)xc−1+1
)
, we store pointers to the nodes in a connected

subgraph (if there is one) whose Parikh vector is a multiple of a one between(
(1 + ε)x0 , . . . , (1 + ε)xc−1

)
and

(
(1 + ε)x0+1, . . . , (1 + ε)xc−1+1

)
. The query time

is still proportional to the size of the match returned but that may now be larger
than |M |.
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3 An Index for Binary Strings

Suppose G is a binary string, i.e., G[1..n] ∈ {0, 1}∗. It holds for any m: If there
are p copies of 1 in G[i..i+m− 1] and r copies of 1 in G[k..k +m− 1], then for
every value q between p and r there is a position j between i and k such that
G[j..j + m − 1] contains q copies of 1. This observation was the basis for the
index in [8] and is the basis for ours as well.

We store an O(1)-time rank data structure for G and, for 1 ≤ m ≤ n, we
store the endpoints of two substrings of length m in G with the most and with
the fewest copies of 1. This takes a total of O(n) space. Given a Parikh vector
(v0, v1), we look up the left endpoints i and j of the substrings of length v0 + v1
in G with the most and with the fewest copies of 1. We set i and j as the initial
endpoints for a binary search: at each step, we use two rank queries to find the
number q of 1s in G

[⌊
i+j
2

⌋
..
⌊
i+j
2

⌋
+ v0 + v1 − 1

]
; if q = v1 then we stop and

report this substring by its endpoints; if q < v1 then we set i = �(i+ j)/2� and
continue; if q > v1 then we set j = �(i + j)/2� and continue. This search takes
a total of O(logn) time.

Theorem 1. When G is a path containing only two colours, we can build an
O(n)-space index with which we can find a match in O(logn) time.

4 Exact Indexes for Trees with Two Colours

Suppose G is a tree containing only two colours, black and white. Gagie, Her-
melin, Landau and Weimann [13] noted that the observation in Section 3 can be
extended to connected graphs: For any m, if there are connected subgraphs Hp

and Hr in G with m nodes each and p and r white nodes, respectively, then for
every value q between p and r, there is a connected subgraph Hq with m nodes
and q white nodes.

To see why, notice that we can construct a sequence of connected subgraphs
with m nodes such that the sequence starts with Hp and ends with Hr and any
consecutive pair of subgraphs in the sequence differ on two nodes. To build this
sequence, we find a path between Hp and Hr. We root Hp and Hr, which are
trees themselves, at the first and last nodes in the path (or at a shared node,
if they are not disjoint). One by one, we remove nodes bottom-up in Hp and
add nodes along the path; remove nodes nearest to Hp in the path and add
nodes further along the path; then remove nodes from the path and add nodes
top-down in Hr.

Suppose p and r are the minimum and maximum numbers of white nodes in
any connected subgraphs of size m, and we store a path consisting of the nodes
in Hp in bottom-up order, followed by the nodes in the path, followed by the
nodes in Hr in top-down order. If we apply Theorem 1 to this path, then we
obtain an O(n)-space index with which, given the Parikh vector for a multiset
M with |M | = m, we can find a match in the graph G in O(logn+ |M |) time.
Notice that, if |M | < logn, then we can simply store an O

(
log2 n

)
-space lookup
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table with which we can find a match in O(|M |) time. Therefore, applying this
construction for 1 ≤ m ≤ n, we obtain the following theorem:

Theorem 2. When G is a tree containing only two colours, we can build an
O
(
n2

)
-space index with which we can find a match in O(|M |) time.

When m ≈ n, we need O(n) space to store subgraphs with the minimum and
maximum numbers of white nodes and the path between them. When m � n,
however, those subgraphs are small and most of the space is taken up by the
path. We now show how we can store G such that we can support fast rank
queries on paths.

Lemma 1. We can store G in O(n) space such that q rank queries on the path
between any two nodes take a total of O(logn+ q) time.

Proof. We compute the heavy-path decomposition [18] of G and store O(1)-time
rank data structures for each of the heavy paths, which takes O(n) space. The
path between any two nodes u and v is a sequence of O(logn) intervals of heavy
paths. Given u and v, for each of these intervals we compute the number of white
nodes in that interval and to either side of it in the heavy path; this takes a total
of O(logn) time and rank queries on heavy paths. With this information we can
perform any rank query on the path from u to v using a single rank query on a
heavy path. �

If we store G with Lemma 1 and store subgraphs with the minimum and
maximum numbers of white nodes only for 1 ≤ m ≤ n1/2, then our index takes
only O(n) space but supports queries only for |M | ≤ n1/2. When |M | > n1/2

we can use an algorithm by Gagie et al. to find a match in O(|M |n) = O
(
|M |3

)
time.

Corollary 1. When G is a tree containing only two colours, we can build an
O(n)-space index with which we can find a match in O(|M |) time when |M | ≤
n1/2 and in O

(
|M |3

)
time otherwise.

5 An Approximate Index for Trees with Two Colours

In this section we present our most technical result, which is how to store in
O(n) space an approximate index for a tree containing only two colours. Again,
an approximate match is one whose Parikh vector differs from M ’s by a factor
of at most 1 + ε in each component. (In contrast, with Proposition 1 we would
use O

(
n log2 n

)
space.) Without loss of generality, assume we are only concerned

with multisets in which there are at least as many black nodes as white nodes;
we can build a symmetric index for the other case. Notice that in this case, if
we can find a connected subgraph H with the same size as the given multiset M
and in which the number of white nodes is within a factor of 1+ ε of the number
in M , then the number of black nodes in H is also within a factor of 1+ ε of the
number in M .
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Our main idea is to store anO(n)-space data structure with which, given a size
m, we can find two connected subgraphs with sizem that have approximately the
minimum and maximum numbers of white nodes. Suppose we store a subgraph
with the minimum number of white nodes for each size that is a power of two and
for each size such that the minimum number of white nodes is a factor of 1 + ε
greater than the number in the preceding stored subgraph. That is, we store
a sequence of lgn subgraphs with total size O(n) and a sequence of log1+ε n
subgraphs with total size O(n logn). The latter sequence of subgraphs has total
size O(n logn) in the worst case because the minimum number of white nodes
may stay low until we reach size nearly n and then increase rapidly, causing us
to store about log1+ε n subgraphs each of size nearly n. However, we can store
this sequence of subgraphs in a total of O(n) space using the following lemma.
Similarly, we also store a subgraph with the maximum number of white nodes for
each size that is a power of two and for each size such that the maximum number
of white nodes is a factor of 1+ε greater than the number in the preceding stored
subgraph; this also takes O(n) total space if we store the subgraphs with the
following lemma.

Lemma 2. We can store G in O(n) space such that, if G contains a connected
subgraph of size m with w white nodes, then we can represent some such subgraph
in O(w) space such that recovering this subgraph takes O(m) time.

Proof. We store the adjacency lists for G’s nodes, with each list ordered such
that black neighbours precede white neighbours. With this representation, we
can expand a subgraph by adding only black nodes as long as this is possible,
using O(1) time per added node.

Let H be a connected subgraph of size m with w white nodes. We store
pointers to the white nodes in H , which takes O(w) space. Since G is a tree, we
can find the unique paths between these nodes in a total of m time; notice these
paths are contained in H and consist of black nodes. If the subgraph consisting
of the white nodes and these paths has fewer than m nodes, then we add black
nodes until it has m nodes, which takes a total of O(m) time. It is possible to
add enough black nodes without adding any white nodes because, e.g., we could
add the remaining black nodes in H . �

If we are given a multiset M such that we have subgraphs of size |M | sampled,
then we can proceed as in the proof of Theorem 2 and find an exact match if there
is one. If we do not have subgraphs of size |M | sampled, then we use our sampled
subgraphs to build subgraphs Hmin and Hmax of size |M | with approximately
minimum and maximum numbers of white nodes, then proceed almost as in the
proof of Theorem 2: if the number of white nodes Hmin is larger but within a
factor of 1 + ε of the number in M , then we return Hmin; if the number in Hmin

is more than a factor of 1+ε larger than the number in M , then there is no exact
match and we return nothing; if the number of white nodes Hmax is smaller but
within a factor of 1+ ε of the number in M , then we return Hmax; if the number
in Hmax is less than a factor of 1 + ε smaller than the number in M , then there
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is no exact match and we return nothing; in all other cases, we proceed as in
Theorem 2.

To build Hmin we take the next larger subgraph with a minimum number of
white nodes and discard nodes until it has size |M | while leaving it connected.
This next larger subgraph has size less than 2|M |, because we sampled for every
size that is a power of two; has at most 1 + ε times more white nodes than
the subgraph of size |M | with the minimum number of white nodes, because we
sampled whenever the minimum number of white nodes increased by a factor of
1 + ε; and is a tree, because it is a connected subgraph of a tree. It follows that
discarding nodes takes O(|M |) time and, since discarding nodes cannot increase
the number of white nodes, Hmin contains at most 1 + ε times the minimum
number of white nodes. To build Hmax we take the next smaller subgraph with
a maximum number of white nodes and add nodes until it has size |M |. By
symmetric arguments, this takes O(|M |) time and, since adding nodes cannot
decrease the number of white nodes, the maximum number of white nodes in a
subgraph of size |M | is at most 1+ε times the number in Hmax. Finding the path
from Hmin to Hmax takes O(|M |) time using the representation from Lemma 1.

Theorem 3. When G is a tree containing only two colours, for any positive
constant ε we can build an O(n)-space index with which in O(|M |) time we can
find an approximate match in which each colour’s frequency is within a factor of
1 + ε of its frequency in M .

6 Indexes for Graphs with Two Colours

Suppose G is a graph containing only two colours, black and white. Theorem 2
applies in this case as well, if we consider spanning trees of Hp and Hr instead of
the connected subgraphs themselves, but we can build the index in polynomial
time only in special cases, such as when G has bounded treewidth.

Theorem 4. When G is a graph containing only two colours, there exists an
O
(
n2

)
-space index with which we can find a match in O(|M |) time.

When G has bounded treewidth we can find a match in nO(1) time, so we can
prove a weaker version of Corollary 1 for graphs. To do this, we build a spanning
tree for G and apply Lemma 1 to that spanning tree. We can build the resulting
index in polynomial time.

Corollary 2. When G is a graph with bounded treewidth containing only two
colours, we can build an O(n)-space index with which we can find a match in
O(|M |) time when |M | ≤ n1/2 and in |M |O(1) time otherwise.

We cannot quite extend Theorem 3 to graphs because Lemma 2 does not
apply (since we may not be able to recover the correct paths between the white
nodes in the subgraph H). However, if we store connected subgraphs explicitly
instead of with Lemma 2, then calculation shows the index takes O(n logn)
space. Again, this index can be built in polynomial time when G has bounded
treewidth.
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Theorem 5. When G is a graph containing only two colours, for any positive
constant ε we can build an O(n logn)-space index with which in O(|M |) time
we can find an approximate match in which each colour’s frequency is within a
factor of 1 + ε of its frequency in M .
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