
Oren Kurland
Moshe Lewenstein
Ely Porat (Eds.)

 123

LN
CS

 8
21

4

20th International Symposium, SPIRE 2013
Jerusalem, Israel, October 2013
Proceedings

String Processing 
and Information Retrieval



Lecture Notes in Computer Science 8214
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Oren Kurland Moshe Lewenstein
Ely Porat (Eds.)

String Processing
and Information Retrieval

20th International Symposium, SPIRE 2013
Jerusalem, Israel, October 7-9, 2013
Proceedings

13



Volume Editors

Oren Kurland
Technion Institute of Technology
Faculty of Industrial Engineering and Management Technion
Haifa 32000, Israel
E-mail: kurland@ie.technion.ac.il

Moshe Lewenstein
Bar-Ilan University
Department of Computer Science
Ramat-Gan 52900, Israel
E-mail: moshe@cs.biu.ac.il

Ely Porat
Bar-Ilan University
Department of Computer Science
Ramat-Gan 52900, Israel
E-mail: porately@cs.biu.ac.il

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-02431-8 e-ISBN 978-3-319-02432-5
DOI 10.1007/978-3-319-02432-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948098

CR Subject Classification (1998): H.3, H.2.8, I.5, I.2.7, F.2, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

© Springer-Verlag Berlin Heidelberg 2013



The original version of the book was revised: 
The copyright line was incorrect. The Erratum 
to the book is available at 
DOI: 10.1007/978-3-319-02432-5_33

http://dx.doi.org/10.1007/978-3-319-02432-5


Preface

In the 20 years since its inception in 1993 the International Symposium on
String Processing and Information Retrieval (SPIRE) has become the reference
meeting for the interdisciplinary community of researchers whose activity lies
at the crossroads of string processing and information retrieval. This volume
contains the proceedings of SPIRE 2013, the 20th symposium in the series.

The first four events concentrated mainly on string processing, and were
held in South America under the title South American Workshop on String
Processing (WSP) in 1993 (Belo Horizonte, Brazil), 1995 (Valparaiso, Chile),
1996 (Recife, Brazil), and 1997 (Valparaiso, Chile). WSP was renamed SPIRE in
1998 (Santa Cruz, Bolivia) when the scope of the event was broadened to include
information retrieval. The change was motivated by the increasing relevance of
information retrieval and its close interrelationship with the general area of string
processing. From 1999 to 2007, the venue of SPIRE alternated between South
/ Latin America (odd years) and Europe (even years), with Cancun, Mexico in
1999; A Coruna, Spain in 2000; Laguna de San Rafael, Chile in 2001; Lisbon,
Portugal in 2002; Manaus, Brazil in 2003; Padova, Italy in 2004; Buenos Aires,
Argentina in 2005; Glasgow, UK in 2006; and Santiago, Chile in 2007. This
pattern was broken when SPIRE 2008 was held in Melbourne, Australia, but it
was restarted in 2009 when the venue was in Saariselkä, Finland, followed by
Los Cabos, Mexico in 2010, Pisa, Italy in 2011, and in Cartagena de Indias,
Colombia in 2012.

SPIRE 2013 was held in Jerusalem, Israel. The call for papers resulted in
the submission of 60 papers. Each submitted paper was reviewed by at least
three of the 40 members of the Program Committee, who eventually engaged in
discussions coordinated by the three PC chairmen in cases of lack of consensus.
We believe this resulted in a very accurate selection of the truly best submitted
papers. As a result, 18 long papers and 10 short papers were accepted and have
been published in these proceedings.

The main conference featured keynote speeches by Ido Dagan, Roberto Grossi,
Robert Krauthgamer, and Yossi Matias, plus the presentations of the 18 full pa-
pers and 10 short papers. Following the main conference, on October 10, SPIRE
2013 hosted the Workshop on Compression, Text, and Algorithms (WCTA 2013).

We would like to take the opportunity to thank Yahoo!, Google, Bar-Ilan
Univerity, and i-Core (Center of Excellence in Algorithms). All of them pro-
vided generous sponsorship. Thanks also to all the members of the Program
Committee and to the additional reviewers, who went to great lengths to ensure
the high quality of this conference, and to the coordinator of the SPIRE Steering



VIII Preface

Committee, Ricardo Baeza-Yates, who provided assistance and guidance in the
organization. We would like to thank the Local Organization Committee consist-
ing of Amihood Amir, Tomi Klein, and Tsvi Kopelowitz (as well as ourselves).
It is due to them that the organization of SPIRE 2013 was not just hard work,
but also a pleasure.

October 2013 Oren Kurland
Moshe Lewenstein

Ely Porat



Organization

Program Committee

Giambattista Amati Fondazione Ugo Bordoni
Amihood Amir Bar-Ilan University and Johns Hopkins

University
Alberto Apostolico Univ. of Padova and Georgia Tech
Ricardo Baeza-Yates Yahoo! Research
Ayelet Butman Holon Institute of Technology
Edgar Chavez Universidad Michoacana
Raphael Clifford University of Bristol
Carsten Eickhoff Delft University of Technology
Johannes Fischer Karlsruhe Institute of Technology
Inge Li Gørtz Technical University of Denmark
Shunsuke Inenaga Kyushu University
Markus Jalsenius University of Bristol
Gareth Jones Dublin City University
Jaap Kamps University of Amsterdam
Tsvi Kopelowitz Weizmann Institute of Science
Oren Kurland Technion
Gad M. Landau Haifa University
Avivit Levy Shenkar College
Moshe Lewenstein Bar Ilan University
Stefano Lonardi UC Riverside
Andrew McGregor University of Massachusetts, Amherst
Alistair Moffat The University of Melbourne
Ian Munro University of Waterloo
Gonzalo Navarro University of Chile
Yakov Nekrich University of Chile
Krzysztof Onak IBM Research
Ely Porat Bar-Ilan University
Berthier Ribeiro-Neto Google Research
Benjamin Sach University of Warwick
Rodrygo L.T. Santos University of Glasgow
Srinivasa Rao Satti University of Aarhus
Rahul Shah Louisiana State Univeristy
Chris Thachuk University of Oxford
Paul Thomas CSIRO
Dekel Tsur Ben Gurion University
Esko Ukkonen University of Helsinki



Oren Weimann University of Haifa
David Woodruff IBM Almaden
Nivio Ziviani Federal University of Minas Gerais
Guido Zuccon CSIRO

Additional Reviewers

Atserias, Jordi
Bachrach, Yoram
Bessa, Aline
Bingmann, Timo
Biswas, Sudip
Claude, Francisco
Davoodi, Pooya
Ferrada, Héctor
Flouri, Tomas
Gagie, Travis
Gog, Simon
Gupta, Ankur
Hata, Itamar
Hernandez, Cecilia
Konow, Roberto

Ku, Tsung-Han
Lecroq, Thierry
Nakashima, Yuto
Patil, Manish
Petri, Matthias
Rozenberg, Liat
Shiftan, Ariel
Sirén, Jouni
Tanaseichuk, Olga
Tatti, Nikolaj
Thankachan, Sharma V.
Veloso, Adriano
Vind, Soren
Wootters, Mary

X Organization



Table of Contents

Consolidating and Exploring Information via Textual Inference . . . . . . . . 1
Ido Dagan

Pattern Discovery and Listing in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Roberto Grossi

Efficient Approximation of Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Robert Krauthgamer

Nowcasting with Google Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Yossi Matias

Space-Efficient Construction of the Burrows-Wheeler Transform . . . . . . . 5
Timo Beller, Maike Zwerger, Simon Gog, and Enno Ohlebusch

Using Mutual Influence to Improve Recommendations . . . . . . . . . . . . . . . . 17
Aline Bessa, Adriano Veloso, and Nivio Ziviani

Position-Restricted Substring Searching over Small Alphabets . . . . . . . . . 29
Sudip Biswas, Tsung-Han Ku, Rahul Shah, and
Sharma V. Thankachan

Simulation Study of Multi-threading in Web Search Engine
Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Carolina Bonacic and Mauricio Marin

Query Processing in Highly-Loaded Search Engines . . . . . . . . . . . . . . . . . . . 49
Daniele Broccolo, Craig Macdonald, Salvatore Orlando, Iadh Ounis,
Raffaele Perego, Fabrizio Silvestri, and Nicola Tonellotto

Indexes for Jumbled Pattern Matching in Strings, Trees and Graphs . . . . 56
Ferdinando Cicalese, Travis Gagie, Emanuele Giaquinta,
Eduardo Sany Laber, Zsuzsanna Lipták, Romeo Rizzi, and
Alexandru I. Tomescu

Adaptive Data Structures for Permutations and Binary Relations . . . . . . 64
Francisco Claude and J. Ian Munro

Document Listing on Versioned Documents . . . . . . . . . . . . . . . . . . . . . . . . . 72
Francisco Claude and J. Ian Munro

Order-Preserving Incomplete Suffix Trees and Order-Preserving
Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Marcin Kubica, Alessio Langiu, Solon P. Pissis, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń



XII Table of Contents

Compact Querieable Representations of Raster Data . . . . . . . . . . . . . . . . . 96
Guillermo de Bernardo, Sandra Álvarez-Garćıa, Nieves R. Brisaboa,
Gonzalo Navarro, and Oscar Pedreira

Top-k Color Queries On Tree Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Stephane Durocher, Rahul Shah, Matthew Skala, and
Sharma V. Thankachan

A Lempel-Ziv Compressed Structure for Document Listing . . . . . . . . . . . . 116
Héctor Ferrada and Gonzalo Navarro

Minimal Discriminating Words Problem Revisited . . . . . . . . . . . . . . . . . . . . 129
Pawe�l Gawrychowski, Gregory Kucherov, Yakov Nekrich, and
Tatiana Starikovskaya

Adding Compression and Blended Search to a Compact Two-Level
Suffix Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Simon Gog and Alistair Moffat

You Are What You Eat: Learning User Tastes for Rating Prediction . . . . 153
Morgan Harvey, Bernd Ludwig, and David Elsweiler

Discovering Dense Subgraphs in Parallel for Compressing Web and
Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Cecilia Hernández and Mauricio Maŕın

Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed
Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Tomohiro I, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda

Lossless Compression of Rotated Maskless Lithography Images . . . . . . . . 186
Shmuel Tomi Klein, Dana Shapira, and Gal Shelef

Learning URL Normalization Rules Using Multiple Alignment of
Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Kaio Wagner Lima Rodrigues, Marco Cristo
Edleno Silva de Moura, and Altigran Soares da Silva

On Two-Dimensional Lyndon Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Shoshana Marcus and Dina Sokol

Fully-Online Grammar Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Shirou Maruyama, Yasuo Tabei, Hiroshi Sakamoto, and
Kunihiko Sadakane

Solving Graph Isomorphism Using Parameterized Matching . . . . . . . . . . . 230
Juan Mendivelso, Sunghwan Kim, Sameh Elnikety, Yuxiong He,
Seung-won Hwang, and Yoan Pinzón



Table of Contents XIII

Suffix Array of Alignment: A Practical Index for Similar Data . . . . . . . . . 243
Joong Chae Na, Heejin Park, Sunho Lee, Minsung Hong,
Thierry Lecroq, Laurent Mouchard, and Kunsoo Park

Faster Top-k Document Retrieval in Optimal Space . . . . . . . . . . . . . . . . . . 255
Gonzalo Navarro and Sharma V. Thankachan

Faster Range LCP Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Manish Patil, Rahul Shah, and Sharma V. Thankachan

Learning to Schedule Webpage Updates Using Genetic Programming . . . 271
Aécio S.R. Santos, Nivio Ziviani, Jussara Almeida,
Cristiano R. Carvalho, Edleno Silva de Moura, and
Altigran Soares da Silva

Accurate Profiling of Microbial Communities from Massively Parallel
Sequencing Using Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Or Zuk, Amnon Amir, Amit Zeisel, Ohad Shamir, and Noam Shental

Distributed Query Processing on Compressed Graphs Using
K2-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Sandra Álvarez-Garćıa, Nieves R. Brisaboa,
Carlos Gómez-Pantoja, and Mauricio Marin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

E1Erratum to: String Processing and Information Retrieval . . . . . . . . . . . .

Oren Kurland, Moshe Lewenstein, and Ely Porat



Consolidating and Exploring Information

via Textual Inference

Ido Dagan

Computer Science Department
Bar-Ilan University
dagan@cs.biu.ac.il

Effectively consuming information from large amounts of texts, which are often
largely redundant in their content, is an old but increasingly pressing challenge.
It is well illustrated by the perpetual attempts to move away from the flat result
lists of search engines towards more structured fact-based presentations. Some
recent attempts at this challenge are based on presenting structured informa-
tion that was formulated according to pre-defined knowledge schemes, such as
Freebase and Google’s knowledge graph. We propose an alternative, as well as
complementary, approach that attempts to consolidate and structure all textual
statements in a document collection based on the inference relations between
them. Generic textual inference techniques, formulated under the Textual En-
tailment paradigm, are used to consolidate redundant information into unique
”core” statements, and then present them in an intuitive general-to-specific hi-
erarchy. The talk will review some of the underlying concepts and algorithms
behind our approach and present an initial demo.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Pattern Discovery and Listing in Graphs

Roberto Grossi

Dipartimento di Informatica
Università di Pisa

grossi@di.unipi.it

Graphs are gaining increasing popularity in many application domains as they
have the potential of modeling binary relations among entities. Along with tex-
tual and multimedia data, they are the main sources for producing large data
sets. It is natural to ask how it is easy to extend the notion of patterns typically
found in string matching and sequence analysis, to graphs and real-life networks.
Unfortunately, even the basic problem of finding a simple path in a graph is
NP-hard since this can establish if the graph is Hamiltonian. Also, the num-
ber of patterns can be exponentially large in the size of the graph, thus listing
them is a challenge. We will discuss some output-sensitive and parameterized
algorithms for listings patterns that are paths, cycles and trees, and provide a
notion of “certificate” to attain this goal. This is joint work with Rui Ferreira.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, p. 2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Efficient Approximation of Edit Distance

Robert Krauthgamer�

Faculty of Mathematics and Computer Science
Weizmann Institute of Science, Rehovot, Israel

robert.krauthgamer@weizmann.ac.il

Abstract. The similarity between two strings is often measured by some
variant of edit distance, depending on the intended application. But even
the basic version of this distance, which is simply the minimum number
of character insertions, deletions and substitutions needed to transform
one string to the other, presents remarkable algorithmic challenges.

This talk will examine the task of approximating the basic edit dis-
tance between two strings, starting with the classical RAM model and
moving on to computational models which impose further constraints,
such as the query complexity model and the sketching model. Beyond
their concrete applications, these investigations provide a wealth of in-
formation about the problem, teaching us state of the art techniques
and uncovering the limitations of certain methodologies. We will then
come full circle with improved algorithms for the classical RAM model.
During this journey, we may encounter special cases like permutation
strings, whose patterns are all distinct, and smoothed instances, which
are a mixture of worst-case and average-case inputs.

Finally, we shall discuss known gaps and open problems in the area,
including variants of the basic edit distance, such as allowing block
moves, or edit distance between trees, and hopefully touch upon related
computational problems like nearest-neighbor search.

� Work was supported in part by the Israel Science Foundation (grant #897/13), the
US-Israel BSF (grant #2010418), and by the Citi Foundation.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, p. 3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Nowcasting with Google Trends

Yossi Matias

Google

Since launching Google Trends we have seen extensive interest in what can be
learned from search trends. A plethora of studies have shown how to use search
trends data for effective nowcasting in diverse areas such as health, finance,
economics, politics and more.

We give an overview of Google Trends and Nowcasting, highlighting some
exciting Big Data challenges, including large scale engineering, effective data
analysis, and domain specific considerations.

An extended summary will be available at http://goo.gl/FbYh9

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, p. 4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://goo.gl/FbYh9
http://dx.doi.org/10.1007/978-3-319-02432-5


Space-Efficient Construction

of the Burrows-Wheeler Transform

Timo Beller1, Maike Zwerger1, Simon Gog2, and Enno Ohlebusch1

1 Institute of Theoretical Computer Science, University of Ulm, 89069 Ulm, Germany
{Timo.Beller,Maike.Zwerger,Enno.Ohlebusch}@uni-ulm.de

2 Department of Computing and Information Systems, The University of Melbourne,
VIC, 3010, Melbourne, Australia

Simon.Gog@unimelb.edu.au

Abstract. The Burrows-Wheeler transform (BWT), originally invented
for data compression, is nowadays also the core of many self-indexes,
which can be used to solve many problems in bioinformatics. However,
the memory requirement during the construction of the BWT is often
the bottleneck in applications in the bioinformatics domain.

In this paper, we present a linear-time semi-external algorithm whose
memory requirement is only about one byte per input symbol. Our exper-
iments show that this algorithm provides a new time-memory trade-off
between external and in-memory construction algorithms.

1 Introduction

In 1994 Burrows and Wheeler [5] presented the Burrows-Wheeler transform
(BWT). This reversible transformation produces a permutation of the input
string, in which symbols tend to occur in clusters. Because of this clustering,
in virtually all cases the BWT compresses much easier than the original string,
and Burrows and Wheeler suggested their transformation as a preprocessing step
in data compression. Data compression has become a major application for the
Burrows-Wheeler transform, e.g. it is the basis of the bzip2 algorithm.

Interestingly, the BWT has become the core of self-indexes [7, 14] which have
applications in bioinformatics and information retrieval. In the data compression
scenario it is possible to split a large input and construct the BWT for small
blocks, since decoding and encoding are done sequentially. However, this is not
possible for self-indexes because the optimal search routine requires the BWT
of the whole text. In this case, both the runtime and the memory requirement
of the construction of the BWT are critical. In the past, there were impressive
improvements in algorithms constructing the suffix array. Theoretical worst-case
time complexity, practical runtime and memory footprint have been improved.
As the BWT can easily (fast and space efficiently) be obtained from the suffix
array, the construction of the BWT profited indirectly from these improvements.
However, n logn bits seems to be a lower memory bound for fast suffix array
construction. On the other hand, this memory bound seems not to be valid
for BWT construction, as there are algorithms that directly construct the BWT

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 5–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


6 T. Beller et al.

using less that n logn bits, but still depend on the input size. External algorithms
take only a given amount of memory, which is independent of the input size
and normally user defined. In the past, external algorithms were presented that
compute the suffix array or the BWT, e.g. [4, 6, 8, 11]. While this approach
finally solves the memory problem (the algorithm needs only as much memory
as available), it is commonly known that external algorithms have a significant
slow down.

Thus, external algorithms are only used when the input does not fit in RAM.
Currently, this happens already for quite small files: In our experiments on
a machine equipped with 8GB RAM, the suffix array construction algorithm
divsufsort1 already suffered from swapping effects for inputs larger than 1.5GB.
A direct computation of the BWT may allow bigger inputs: An implementation
of Sadakane2 can construct the BWT for inputs up to 3GB on that machine.
But this implementation is limited to inputs of 4GB (even if much more RAM
would be available). We show in this paper that the space requirements can
further be improved: We present a new semi-external algorithm to compute the
BWT. Semi-external algorithms are in between internal algorithms and exter-
nal algorithms. To be more precise, semi-external algorithms are—at least in
this paper—algorithms that are allowed to use an input dependent amount of
memory (like internal algorithms), but also use disk memory (like external al-
gorithms). In practice, semi-external algorithms store all data on disk that is
accessed sequentially, while data with random access pattern is kept in main
memory. Our implementation has no limitation on the input size and can con-
struct the BWT of a 6GB file with only 8GB of RAM. In contrast, internal suffix
array construction algorithms would need over 54GB of RAM (or 31GB if bit
compression would be used) to compute the suffix array of a 6GB file, because
they must keep at least the input and the output in memory.

2 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the so-called
sentinel character $. In the following, S is a string of length n on Σ having the
sentinel character at the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the
character at position i in S. For i ≤ j, S[i..j] denotes the substring of S starting
with the character at position i and ending with the character at position j.
Furthermore, Si denotes the i-th suffix S[i..n] of S. The suffix array SA of the
string S is an array of integers in the range 1 to n specifying the lexicographic
ordering of the n suffixes of S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n].

The suffix array SA is often enhanced with the so-called LCP-array con-
taining the lengths of longest common prefixes between consecutive suffixes in
SA. Formally, the LCP-array is an array so that LCP[1] = −1 = LCP[n + 1]
and LCP[i] = |lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the
longest common prefix between two strings u and v. The Burrows-Wheeler

1 http://code.google.com/p/libdivsufsort/
2 http://researchmap.jp/muuw41s7s-1587/#_1587

http://code.google.com/p/libdivsufsort/
http://researchmap.jp/muuw41s7s-1587/#_1587


Space-Efficient Construction of the Burrows-Wheeler Transform 7

transform [5] converts a string S into the permuted string BWT[1..n] defined
by BWT[i] = S[SA[i]− 1] for all i with SA[i] �= 1 and BWT[i] = $ otherwise.

As in [15–18], we distinguish between S-type, L-type and LMS-type suffixes:
Si is called S-type if i = n or Si < Si+1. Analogously, we call Si an L-type
suffix if Si > Si+1. An S-type suffix is (also) an LMS-type suffix provided
that Si−1 is an L-type suffix. Note that S1 is never an LMS-type suffix, but
Sn is always an LMS-type suffix. We call S[i..j] an LMS-substring if Si and
Sj are LMS-type suffixes and for every k, i < k < j, Sk is not of type LMS.
Additionally, $S[1..k] is also an LMS-substring, where Sk is the first LMS-type
suffix in S.

A rank query rankb(B, i) on a bit-vector B counts the number of occurrences
of bit b in B[1..i]. Similarly a select query selectb(B, i) on a bit-vector B returns
the position of the i-th occurrence of bit b in B. By pre-processing B one can
answer both queries in constant time [10].

3 Related Work

There are many suffix array construction algorithms with different time and
space complexities. We refer to the overview article [19] for details. It is widely
agreed that in practice Yuta Mori’s divsufsort is one of the fastest algorithms to
compute the SA. For n < 231, it uses 5n bytes and 9n bytes otherwise.

In contrast to suffix array construction algorithms, the direct computation of
the BWT has received much less attention. In [13], it is shown how to compute
the BWT for biological data in O(n logn) time. In [18], a linear-time algorithm
for computing the Burrows-Wheeler transform was presented. This algorithm
uses O(n log σ log logσ n) working space.

External algorithms for computing the BWT are described in [8, 11]. They
construct the BWT by splitting the input into blocks of fixed length and com-
puting the BWTs of these blocks. Afterwards, one has to merge the BWTs of the
blocks to obtain the BWT of the input. In contrast, [1] presented an external
algorithm for computing the BWT of a collection of short strings. However, this
task is conceptually easier and can not easily be adapted to the case of arbitrary
strings.

Algorithms also exist for computing the suffix array in external memory, see
e.g. [6]. Very recently, [4] presented an external algorithm, not only for suffix
array construction, but also for the computation of the LCP array. This algorithm
is also based on the induced sorting algorithm and it is reported to be faster than
the previous external suffix array construction algorithms.

4 The Induced Sorting Algorithm

As our new algorithm is based on the induced sorting algorithm, we briefly revisit
this elegant algorithm here. For more details and correctness, we refer to [15].

The suffix array can be divided into σ buckets, where all suffixes in a bucket
start with the same character. Within a bucket, L-type suffixes are smaller than



8 T. Beller et al.

S-type suffixes. So every bucket can further be divided in two ranges, an L-type
range and an S-type range. In the following, assume that A is an array of size n,
which is divided into buckets and ranges as described before. Fig. 1 illustrates
the induced sorting algorithm by an example.

Step 1. Input S is scanned from right to left in order to detect all indexes j in
S at which an LMS-type suffix starts. All these indexes are written consecu-
tively to the rightmost free position in the S-type range of the corresponding
S[j] bucket in A.

Step 2. Array A is scanned from left to right. Assume we are at position i in A.
If A[i] is empty, we go to the next position i+ 1. Otherwise let j = A[i]; we
check if S[j − 1] ≥ S[j]. If so, we delete A[i] and write j − 1 to the leftmost
free position in the L-type range of the corresponding S[j − 1] bucket.

Step 3. After we finished the left-to-right scan, we scan A from right to left.
Assume again that we are at position i of the array A. If A[i] is empty, we go
to the next position i− 1. Otherwise for j = A[i] we check if S[j− 1] ≤ S[j].
If so, we delete A[i] and write j − 1 to the rightmost free position in the
S-type range of the corresponding S[j − 1] bucket.

Step 4. The two scans in steps 2 and 3 sort the LMS-substrings (but not the
LMS-type suffixes). In this step, the induced sorting algorithm replaces each
LMS-substring by its lexicographical name and concatenates them in text
order. First, all LMS-type positions are moved to the second half of A. This
is possible because there are at most n

2 LMS-substrings. Then the second half
of A is scanned from left to right. Assume that we are at a non-empty position
i in A and j = A[i]. We compare the LMS-substring starting at S[j] with the
LMS-substring starting at S[A[i−1]]. If the substrings are identical, j gets the
same lexicographical name, otherwise, j gets the next larger lexicographical
name. The name is moved to A[� j

2�]. Finally, all names are placed into the
second half of A, overwriting the LMS-type positions there. We now interpret
these values as a new string S′. Note that S′ usually has a different alphabet
size than S.

Step 5. The order of the LMS-type suffixes is now obtained from the suffix
array of S′. If every symbol in S′ is unique, then one can easily create the
suffix array. Otherwise, the induced sorting algorithm recursively computes
the suffix array of the string S′. In either case, the suffix array of S′ is written
to the first half of A.

Step 6. The inverse suffix array of S′ is now calculated and stored in the second
half of A (overwriting S′). Then, a right-to-left scan of S is executed to find
all LMS-type positions (again). Each LMS-type position is written (with the
help of the inverse suffix array of S′) in the correct lexicographical order to
the first half of A. Afterwards the induced sorting algorithm removes the
inverse suffix array of S′ and places the LMS-type positions stably into the
S-type ranges of their corresponding buckets in A.

Step 7. Array A is scanned from left to right and the indexes are moved as
described in step 2 . However, this time indexes placed into an L-type range
are not erased.



Space-Efficient Construction of the Burrows-Wheeler Transform 9

a m a m m m a s a s m a s a s s a a r a $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 20 3 7 9 12 14 17 2 6 11 5 4 19 8 13 16 10 15

$ a m r s

21 17 1 3 18 7 12 9 14 2 4 19 8 13 10 15

21 17 3 7 12 9 14

21 17 3 7 12 9 14

3 4 5 4 6 2 1 21 17 3 7 12 9 14

3 4 5 4 6 2 1

7 6 1 2 4 3 5 3 4 5 4 6 2 1

7 6 1 2 4 3 5 3 4 6 5 7 2 1

21 17 3 7 12 9 14 3 4 6 5 7 2 1

21 20 17 3 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

$ a m r s

21 20 17 1 3 18 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

21 20 17 1 3 18 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

step 1

step 2

step 3

step 4

step 5

step 6

step 7

step 8

Fig. 1. Steps of the induced sorting algorithm: It computes the suffix array of the input
string amammmasasmasassaara$. The movements of the indexes are illustrated with
arrows, temporary results are shown in gray.



10 T. Beller et al.

Step 8. Array A is scanned from right to left and the indexes are moved as
described in step 3, but again indexes placed into an S-type range are not
erased. After this step, A contains the suffix array of S.

The induced sorting algorithm, as described in this section, uses the input
string S, the array A and σ pointers to the rightmost (leftmost) free position
of the S-type (L-type) buckets. The space requirement for the pointers are only
relevant in the recursive calls of the induced sorting algorithm because in the
recursive calls σ is no longer negligible small. Surprisingly, [17] showed that one
can get rid of these pointers in the recursive levels. The resulting algorithm is
optimal for an internal algorithm, as it keeps only input, output and a constant
number of variables (for constant alphabet size) in main memory. In order to
reduce the space further, one has to allow the use of disk. Unfortunately, random
accesses on disk are very slow and most of the accesses done by the induced
sorting algorithm are random accesses to both the input string S and the array
A. We show in Section 5 how to modify the induced sorting algorithm to get rid
of the A array, while using only sequential accesses to disk.

5 Semi-external Construction of the Burrows-Wheeler
Transform

In this section nS, nL, and nLMS denote the number of S-type, L-type and LMS-
type suffixes of S, respectively. The following steps correspond to the steps of
the induced sorting algorithm, but this time the BWT of S instead of the suffix
array is calculated. Fig. 2 illustrates all steps of the new algorithm.

Step 1. In this step S can reside on disk, as it is read sequentially. Furthermore,
only nLMS indexes are written into A. We can save space by storing the
indexes (without gaps) in an array ALMS,left of size nLMS, which is written
to disk and will be read sequentially in step 2. The next two steps require
random access to the input string S, therefore S is loaded from disk.

Step 2. Only the L-type positions of A are accessed here. Thus, we use AL of size
nL instead ofA. However, at each end of a bucket, we must read (sequentially)
from ALMS,left to place all LMS-type suffixes belonging to the next bucket.
Then we continue by scanning the next bucket of AL. Additionally, if an
index would not be moved by the original induced sorting algorithm, we
write it sequentially into the array ALMS,right. So after performing step 2,
ALMS,right contains all indexes, while ALMS,left and AL are empty.

Step 3. Similar to step 2, only the S-type positions of A are accessed now.
So instead of A, we now use the array AS of size nS. As before, between
two buckets one must read (sequentially) from ALMS,right. Again, if an index
would not be moved by the original induced sorting algorithm, we write
it sequentially into ALMS,left. At the end of step 3, ALMS,left contains the
LMS-type indexes sorted according to their corresponding LMS-substrings.



Space-Efficient Construction of the Burrows-Wheeler Transform 11

a m a m m m a s a s m a s a s s a a r a $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 3 7 9 12 14 17 ALMS,left

20 2 6 11 5 4 19 8 13 16 10 15 AL

2 4 19 8 13 10 15ALMS,right

21 17 1 3 18 7 12 9 14 AS

21 17 3 7 12 9 14 ALMS,left

1 1 1 1 0 1 1B

3 21 7 14 12 17R

3 4 5 4 6 2 1 S′

3 4 5 4 6 2 1 S′

2 6 1 3 5 4 4BWT′

step 5: recursion

21 17 3 7 12 14 14 ALMS,left

20 2 6 11 9 4 19 16 13 13 10 15 AL

2 4 19 13 13 10 15ALMS,right

21 17 1 3 18 12 12 9 14 AS

a r s $ m a m m s s a m s m a a s a a a a

step 1

step 2

step 3

step 4

step 6

step 7

step 8

Fig. 2. Steps of the semi-external construction of the Burrows-Wheeler Transform for
the input string amammmasasmasassaara$



12 T. Beller et al.

Step 4. For the creation of the renamed string S′ a bit-vector B of size nLMS

is computed, which indicates whether two consecutive entries in ALMS,left

correspond to identical LMS-substrings or not. During this computation an
array R is constructed, which contains the mapping of the lexicographi-
cal names for the LMS-substrings to their (end)positions in S. For identical
LMS-substrings only one position has to be stored. Then ALMS,left is read se-
quentially again. The corresponding lexicographical name of j = ALMS,left[i]
(determined with the help of B) is written to S′[� j

2�]. Afterwards, the gaps in
S′ are removed (preserving the order of the entries), and ALMS,left is deleted.

Step 5. The Burrows-Wheeler transform of S′ (called BWT′) is calculated di-
rectly if the characters of S′ are pairwise distinct, and recursively otherwise.

Step 6. The array R contains the mapping of the lexicographical names to the
corresponding positions in S. So ALMS,left can be filled sequentially based
on the equation ALMS,left[i] = R[BWT′[i]].

Step 7. Array AL is created again and scanned as in step 2 from left to right.
Between two buckets, one must read (sequentially) from ALMS,left. Again,
if an index would not be moved by the original induced sorting algorithm,
we write it sequentially to the array ALMS,right. Additionally, we begin to
produce the BWT of S. To be precise, every time an index i is placed into
AL, the character S[i− 1] is written to the correct position of the BWT. So
after performing this step, every entry in the BWT that corresponds to an
L-type suffix is set correctly, while there are gaps corresponding to S-type
suffixes. Furthermore, ALMS,right contains all indexes, while ALMS,left and AL

are empty.
Step 8. Array AS is created again and scanned as described in step 3 from right

to left (but we do not need ALMS,left). During this computation, the gaps
of the BWT of S are filled. To be precise, each time an index i is placed
into AS, the character S[i− 1] is written to the correct position of the BWT.
After this step, the BWT of S is completely calculated.

The correctness and linear runtime of this algorithm follows directly from the
correctness and runtime of the induced sorting algorithm.

Table 1. Access pattern to the data structures during the different steps of the algo-
rithm. In step 4, random access is needed first to S and then to S′.

step random access sequential access

1 ALMS,left S
2 S, AL ALMS,left, ALMS,right

3 S, AS ALMS,left, ALMS,right

4 S/S′, B ALMS,left, R
5 S′

6 R BWT′

7 S, AL BWT′, ALMS,right, BWT
8 S, AS ALMS,right, BWT



Space-Efficient Construction of the Burrows-Wheeler Transform 13

Table 1 summarizes which data structures are needed in memory, and which
can reside on disk because only sequential access is needed. The memory peak is
now in steps 2, 3, 7, and 8 because in these steps the text and a relatively large
array (AL or AS) is accessed randomly. However, one can reduce the space for AL

and AS because of the special access pattern: These arrays are read sequentially,
while the write access occurs only at positions that were not already read. We
describe now how to replace AL of size nL with A′

L of size k < nL. The idea is to
split AL in �nL

k � parts of size k. A′
L covers only one part of AL, while for all other

parts arrays Pi are created. Assume that we have to write value v to position
p, where p does not belong to the part of AL that corresponds to A′

L. In this
case, both values v and p are written to the corresponding array Pi. When our
reading position reaches the end of A′

L, we read the array Pi that covers the next
part and write the values with an appropriate offset to A′

L. Because read and
write accesses on Pi are sequentially, it can reside on disk. We deal analogously
with AS.

6 Practical Optimization for Very Small Alphabets

The BWT has important applications in bioinformatics. In this field, the alphabet
size is very small, e.g. 4 or 5 in case of DNA data. Thus, it is worthwhile to
optimize the algorithm for inputs with very small alphabet.

Let � be a fixed natural number. We call an LMS-substring s short if |s| ≤ �
and long otherwise. For a short LMS-substring s, we define its number as:

number(s) =

|s|∑
i=1

ord(s[i]) · σ�−i +

�∑
i=|s|+1

(σ − 1) · σ�−i

where ord(a) = |{a′ ∈ Σ : a′ < a}| for every a ∈ Σ. For two short LMS-
substrings s1 and s2, number(s1) < number(s2) if and only if s1 has a smaller
lexicographical name than s2. Now, we can obtain S′ by another approach:
We create a bit-vector Bshort of size σ� to mark the numbers of all short
LMS-substrings. By scanning S once from right to left, all LMS-substrings can
be found. If the current LMS-substring s is short, we calculate its number
i = number(s) and set Bshort[i] = 1. Otherwise, we store its starting position to-
gether with its position in S′ (which is the number of LMS-type suffixes before the
current one in S). Afterwards we (naively) sort the long LMS-substrings accord-
ing to their lexicographical order. Then we create another bit-vector BLMS, where
BLMS[i] = 0 if the i-th smallest LMS-substring is longer than � and BLMS[i] = 1
otherwise. BLMS can be calculated by scanning V and Bshort in parallel. During
this scan, the lexicographical names of the long LMS-substrings can be written
to S′. At last, the lexicographical names of the short LMS-substrings are in-
serted into S′: S is scanned again from right to left. When we find a short LMS-
substring s, we calculate the number of short LMS-substrings that are smaller
than s by r = rank1(Bshort, number(s)), and obtain the lexicographical name
with select1(BLMS, r).



14 T. Beller et al.

Sorting the long LMS-substrings can be done in O(n log n) using multikey
quicksort [3], so this optimization does not have a linear runtime. However, it is
in practice faster than the linear method described in Section 5 because we can
exploit that LMS-substrings are usually very short and thus (for � = 8) there
are not so many long LMS-substrings. Unfortunately, this optimization does not
work in the recursive steps because in the recursive calls the alphabet size is not
small enough.

7 Experimental Results

We implemented the algorithm using Simon Gog’s [9] library sdsl
(http://github.com/simongog/sdsl). In particular, we used bit-compressed
integers, which causes a slow down but avoids problems with inputs larger
than 232.

The experiments were conducted on a machine with a Intel(R) Core i5-3570
processor (3.40GHz; L1 Cache=256KB, L2 Cache=1MB, and L3 Cache=6MB)
and 8GB RAM. The operating system was Ubuntu 12.04.2 LTS. All programs
were compiled with g++ (version 4.6.3) using the provided makefile.

As test files we used DNA data of different size because this is the main
application. We concatenated the genomes3 from Human (hg19), Mouse (mm10)
and Gorilla (gorGor3) and deleted all characters other than A, C, G, T and
N. Then we took prefixes of size 1GB (genome1), 3GB (genome2), and 6GB
(genome3).

For a comparison with internal memory algorithms, we used Yuta Mori’s
divsufsort. It needs 5n bytes for inputs smaller than 231 and 9n bytes otherwise.
Additionally, an implementation from Sadakane (called dbwt in the following)
was used. This implementation is based on [18] (but has some simplifications
compared to the algorithm described in [18]) and usually uses less than 2.5n
bytes. Unfortunately, dbwt is limited to inputs smaller than 232 bytes and it
is unclear if it can be modified so that it can handle bigger inputs without
increasing the memory footprint or runtime.

For a comparison with external memory algorithms, we took the following
three implementations: bwtdisk 0.9.0 from Giovanni Manzini based on the al-
gorithms described in [8]. This program can handle compressed inputs and can
produce compressed outputs, but we did not make use of that option. LS from
Kunihiko Sadakane. It is an external memory variant of the Larsson-Sadakane
algorithm presented in [12]. This implementation can use multiple processors
and we tested it with all 4 available processors. eSAIS 0.5.2 [4] does not compute
the BWT but the suffix array and (optional) the LCP array. We turned the LCP
construction off to construct only the suffix array.

For a fair comparison with our new algorithm, we allowed each external im-
plementation to take n bytes of RAM. However, LS can only take a power of 2,
so we allowed it the usage of 232 byte for the 3GB input and 233 byte for the
6GB input.

3 Downloaded from http://genome.ucsc.edu

http://github.com/simongog/sdsl
http://genome.ucsc.edu


Space-Efficient Construction of the Burrows-Wheeler Transform 15

Table 2. Each column shows the runtime in seconds and in parentheses the maximum
memory usage in byte per input character. The files genome2 and genome3 were too
large for divsufsort on the machine equipped with 8GB of RAM. Because dbwt is limited
to files smaller than 4GB, genome3 (6GB) could not be calculated with dbwt.

algorithm genome1 genome2 genome3

divsufsort 204 (5.00) - -
dbwt 229 (1.95) 705 (2.00) -
this paper 412 (1.00) 1 475 (1.00) 3 387 (1.00)
bwtdisk 1 751 (1.05) 5 693 (1.05) 12 342 (1.05)
eSAIS 4 042 (1.08) 14 225 (1.02) 28 324 (1.06)
LS 9 382 (0.82) 34 200 (1.07) 94 728 (1.07)

Table 2 shows the experimental results. On the small genome1 file, divsufsort
is the fastest algorithm, followed by dbwt. Compared to dbwt our algorithm is
about 2 times slower, but uses only about half of the space. The same is true
for the genome2 file. The 6GB file (genome3) was far too big for the internal
memory algorithms divsufsort and dbwt on the machine with 8GB of RAM.
The suffix array construction algorithm divsufsort would require about 54GB of
RAM and dbwt is limited to inputs of at most 4GB. That is why our algorithm
is important. Of course, one can always resort to an external algorithm if in-
ternal memory algorithms need too much RAM. But as our experiments show,
our algorithm is the faster alternative (provided that there is enough RAM for
it): The implementation described in this paper is over 3 times faster than the
fastest external algorithm bwtdisk. Compared to eSAIS it is nearly one order of
magnitude faster. However, one should keep in mind that the comparison with
eSAIS is not fair because eSAIS constructs the suffix array and not the BWT.

8 Conclusion and Future Work

In this paper we presented a new method to construct the BWT space efficiently.
It is a semi-external algorithm, which is based on the induced sorting algorithm.
The implementation is not limited to inputs smaller than 4GB and experiments
show that it needs only about n bytes to compute the BWT of a length n DNA
sequence. Thus, it needs about half of the space dbwt uses and over 5 times less
space than suffix array construction algorithms. Furthermore, it is faster than
external algorithms when they are allowed to use n bytes of memory. So only in
cases when the input does not fit in RAM, external algorithms must be used. In
all other cases, one can construct the BWT with a non-external algorithm. Note
that n bytes are enough to compute the LCP-array from the BWT as shown in
[2] and also to construct the suffix array (semi-externally) from the BWT. So it
is now possible to construct SA, BWT and LCP with about n bytes without using
an external algorithm. These arrays are components of several full-text indexes.

In the full paper, we will show how the presented algorithm can be modified
so that it directly computes the suffix array.



16 T. Beller et al.

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing
and inverting the BWT of string collections. Theoretical Computer Science 483,
134–148 (2013)

2. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. Journal of Discrete
Algorithms 18, 22–31 (2013)

3. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 360–369
(1997)

4. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and lcp arrays in external
memory. In: Proc. Wkshp. Algorithm Engineering and Experiments (2013)

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center (1994)

6. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. Journal of Experimental Algorithmics 12, Article No. 3.4
(2008)

7. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE Symposium on Foundations of Computer Science, pp. 390–398 (2000)

8. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica 63(3), 707–730 (2012)

9. Gog, S.: Compressed Suffix Trees: Design, Construction, and Applications. PhD
thesis, University of Ulm, Germany (2011)

10. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sym-
posium on Foundations of Computer Science, pp. 549–554. IEEE (1989)

11. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting. Theoretical
Computer Science 387(3), 249–257 (2007)

12. Larsson, J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Sci-
ence 387(3), 258–272 (2007)

13. Lippert, R.A., Mobarry, C.M., Walenz, B.P.: A space-efficient construction of the
Burrows-Wheeler transform for genomic data. Journal of Computational Biol-
ogy 12(7), 943–951 (2005)

14. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1), Article No. 2 (2007)

15. Nong, G., Zhang, S., Chan, W.: Linear suffix array construction by almost pure
induced-sorting. In: Proc. Data Compression Conference, pp. 193–202 (2009)

16. Nong, G., Zhang, S., Chan, W.: Two efficient algorithms for linear time suffix array
construction. IEEE Transactions on Computers 60(10), 1471–1484 (2011)

17. G. Nong Practical Linear-Time O(1)-Workspace Suffix Sorting for Constant Al-
phabets. ACM Transactions on Information Systems (to appear, July 2013)

18. Okanohara, D., Sadakane, K.: A linear-time Burrows-Wheeler transform using in-
duced sorting. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 90–101. Springer, Heidelberg (2009)

19. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2), Article No. 4 (2007)



Using Mutual Influence

to Improve Recommendations

Aline Bessa, Adriano Veloso, and Nivio Ziviani

Universidade Federal de Minas Gerais
Department of Computer Science, Belo Horizonte, Brazil

{alinebessa,adrianov,nivio}@dcc.ufmg.br

Abstract. In this work we show how items in recommender systems
mutually influence each other’s utility and how it can be explored to
improve recommendations. The way we model mutual influence is cheap
and can be computed without requiring any source of content informa-
tion about either items or users. We propose an algorithm that considers
mutual influence to generate recommendations and analyse it over dif-
ferent recommendation datasets. We compare our algorithm with the
Top − N selection algorithm and obtain gains up to 17% in the utility
of recommendations without affecting their diversity. We also analyse
the scalability of our algorithm and show that it is as applicable for
real-world recommender systems as Top − N .

Keywords: Recommender systems, theory of choice, mutual influence,
collaborative filtering.

1 Introduction

Consumers from widely varying backgrounds are inundated with options that
lead to a situation known as “information overload”, where the presence of too
much information interferes with decision-making processes [1]. To circumvent
it, content providers and electronic retailers have to identify a small yet effective
amount of information that matches users expectations. In this scenario, Recom-
mender Systems have become tools of paramount importance, providing a few
personalized recommendations that intend to suit user needs in a satisfactory
way. One type of such systems, known as Collaborative Filtering [2], generally
works as follows: (i) prediction step - keeps track of consumers known preferences
to predict items that may be interesting to other consumers; (ii) recommendation
step - selects predictions, ranks and recommends them to consumers.

Traditionally, predictions are scores assigned to items with respect to a certain
consumer. The higher the score the higher the compatibility between the items
in question and consumer’s known preferences. It is therefore intuitive to think
that the N items with highest scores should be the ones chosen in the recommen-
dation step. This approach though, known as Top −N recommendation, does
not consider the utility of the recommended list as a whole, focusing exclusively
on individual scores. As we show in this work, items exert a mutual influence on

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 17–28, 2013.
c©

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

Springer-Verlag Berlin Heidelberg 2013

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


18 A. Bessa, A. Veloso, and N. Ziviani

their utilities, i.e. the quality of an item depends not only on its own score but
also on which other items are presented in the Top −N recommendations.

This work is motivated by the theory of choice of Amos Tversky [3], which
indicates that preference among items depends not only on the items’ specific
features, but also on the presented alternatives. In the context of movies, for in-
stance, it is equivalent to state that an action fan may prefer a mediocre karate
movie over romance titles, but would not interact with this same karate movie
when presented with better action films. We investigate the influence alternatives
exert on each other, and how this information can be used to improve recom-
mendations utility. It could be either embedded on the predictions computation
or weighed right after they are generated in the recommendation step. We here
focus on the recommendation step.

We propose a novel algorithm that incorporates mutual influence to perform
the selection of a set of N items, which we call GSMI - Greedy Selection based
on Mutual Influence. We conducted a systematic evaluation of GSMI involving
different recommendation scenarios and distinct datasets. In order to evaluate
GSMI , we used the utility metric proposed in [4] and measured diversity using
the framework proposed in [5].

In summary, the main contributions of this work are (i) a cheap way of mod-
elling and computing the mutual influence items exert on each other’s utility,
(ii) a new algorithm that considers mutual influence to select items in the rec-
ommendation step of a collaborative filtering, (iii) a thorough evaluation of its
benefits in recommendation tasks – we compare GSMI with Top −N and ob-
tain significant gains in the utility of recommendations without affecting their
diversity –, (iv) an analysis of the scalability of GSMI , which indicates that the
algorithm is applicable for real-world recommender systems.

This paper is structured as follows. Section 2 discusses previous related work
and connects it to our study. Section 3 outlines some basic concepts that are the
foundations of this work. Section 4 details GSMI and our evaluation methodol-
ogy. Section 5 presents experiments that demonstrate the efficiency and efficacy
of GSMI , taking different datasets into account. Finally, Section 6 details our
conclusions and future work.

2 Related Work

In this section, we present related work in Top −N recommendations, depen-
dencies among items, and learning to rank, as described next.

Top −N Recommendation. The state of the art prediction algorithms for
Top −N recommendations, when explicit feedback is available, are PureSVD
and NNCosNgbr (Non-normalized Cosine Neighborhood) [6]. A Top −N rec-
ommendation step when predictions are generated by these algorithms performs
better than some sophisticated Learning to Rank methods. PureSVD is based
on latent factors, i.e. users and items are modelled as vectors in a same vector
space and the score of user u for item i is predicted via the inner-product between



Using Mutual Influence to Improve Recommendations 19

their corresponding vectors. NNCosNgbr works upon the concept of neighbor-
hood, computing predictions according to feedback of similar users/items. [6] is
related to our work because we use both PureSVD and NNCosNgbr as our pre-
diction algorithms and compare GSMI with Top −N for the recommendation
step.

Dependencies among Items. In 1972, Amos Tversky proposed a model acording
to which a user chooses among options by sets of item aspects – an example would
be {price < $100.00} [3]. We do not assume that items’ features are available and
therefore do not model aspects in our approach, but we do rely on the idea that
user choice depends on all presented alternatives – i.e. such alternatives interfere
with each other’s utility. Another work that relies on Economics principles to
model dependencies among items is that of Wang [7]. Inspired by the Modern
Portfolio Theory in finance, Wang derives a document ranking algorithm that
extends the Probability Ranking Principle by considering both the uncertainty
of relevance predictions and correlations between retrieved items. This work is
the closest to ours.

Learning to Rank. LTR (Learning to Rank) are supervised methods to auto-
matically build ranking models for items [8]. Although we do not generate an
ordering among the items selected in the recommendation step, we do use su-
pervised learning to compute mutual influence and perform selections. An LTR
work that is somewhat close to ours is that of Xiong et al [9]. In an advertise-
ment scenario, they observed that the CTR (Click-Through Rate) of an ad is
often influenced by the other ads shown alongside. Based on it, they designed
a Continuous Conditional Random Field for click prediction focusing on how
ads influence each other. Another work that models influence among items and
explores it to perform an LTR is [10]. In this paper, influences are modelled as
similarities among items and embedded in a latent structured ranking method
afterwards.

3 Basic Concepts

In this work, there are two fundamental sources of evidence that are used to select
which items should be recommended to a certain user: (i) individual scores φ
generated in the prediction step by either PureSVD or NNCosNgbr, and (ii)
pairwise scores θ that quantify mutual influence among items. Both φ and θ are
real values in the interval [0, 1].

The pairwise scores θ work in a positive way: the higher they are, the higher
the utility of the items in question when selected to a same recommendation
list. Given items a and b, θ(a, b) should ideally be computed considering only
cases where they are simultaneously selected to recommendation. Unfortunately,
it is not possible to reconstruct the recommendation lists in none of the studied
datasets. As a consequence, it is not possible to know which items were presented
to users together and therefore we compute θ(a, b) considering users historical
data as a whole, as detailed in Section 3.2.



20 A. Bessa, A. Veloso, and N. Ziviani

In this work, we assume that predictions are generated to K items, and then
N , N ≤ K, items must be selected to compose a recommendation list. Typical
values for N are 5 and 10, and depending on the prediction algorithm K can
be equivalent to the total number of items in the dataset [8]. We also assume
that users explicitly give feedback to items, and depending on the system it can
be a rating, a purchase signal (0/1), a click (0/1) etc. Next, we detail how we
compute individual scores φ, pairwise scores θ, and how they are combined.

3.1 Individual Scores φ

Individual scores are generated by prediction algorithms that are divided into
two categories: neighborhood-based and model-based [8]. The latter have re-
cently enjoyed much interest due to related outstanding results in the Netflix
competition, a popular event in the recommender systems field that took place
between 2006 and 20091. Nonetheless, neighborhood-based prediction algorithms
usually provide a more concise and intuitive justification for the computed pre-
dictions, and are more stable, being little affected by the addition of users, items,
or ratings [8]. The predictors used in this paper are PureSVD (model-based) and
NNCosNgbr (neighborhood-based), both state of the art methods for Top−N
recommendations when explicit feedback is available.

The input for PureSVD is a User × Item matrix M filled up as follows:

Mui =

{
numerical feedback, if consumer u gave feedback about item i,

0, if not.
(1)

PureSVD consists in factorizing M via SVD as M = U × E ×Q, where U is
an orthonormal matrix, E is a diagonal matrix with the first γ singular values of
M , and Q is also an orthonormal matrix. The prediction of an individual score
φ(i) given a user u is thus given by:

φ(i) = Mu ×QT ×Qi (2)

where Mu is the u-th row of M corresponding to user u latent factors, QT is
the transpose of Q, and Qi is the i-th row of Q corresponding to item i latent
factors.

NNCosNgbr is a neighborhood model that bases its predictions on similar-
ity relationships among either users or items. Working with items similarities
usually lead to better accuracy rates and more scalability [11]. In this case, rec-
ommendations can be explained in terms of the items that users have already
interacted with via ratings, purchases, likes etc [11]. Due to these reasons, we fo-
cus on item-based NNCosNgbr. The prediction of an individual score φ(i) given
a user u is computed as follows:

φ(i) = bui +
∑

j∈Dk(u;i)

dij(ruj − buj) (3)

1 http://en.wikipedia.org/wiki/Netflix_Prize

http://en.wikipedia.org/wiki/Netflix_Prize


Using Mutual Influence to Improve Recommendations 21

where bui is a combination of user and item biases as in [12], Dk(u; i) is the set
of k items rated by u that are the most similar to i, dij is the similarity between
items i and j, ruj is an actual feedback given by u to j and buj is the bias related
to u and j.

Biases are taken into consideration because they mask the fundamental re-
lations between items. Item biases include the fact that certain items tend to
receive better feedback than others. Similarly, user biases include the tendency of
certain users to give better feedback than others. Finally, the similarity among
items, used to compute both Dk(u; i) and dij , is measured with the adjusted
cosine similarity [6].

3.2 Pairwise Scores θ

The pairwise scores θ(i, j) capture the mutual influence items i and j have on
their own utility. In other words, θ(i, j) quantifies to what extent the selection
of i is correlated with the selection of j and vice-versa. Given that it is not
possible to track at what times i and j were selected together in the studied
datasets, we compute θ(i, j) considering all their co-occurences in the historical
data, regardless of when they were presented to users. A straightforward way of
computing θ(i, j) is via Maximum Likelihood Estimator (MLE), as follows:

θ(i, j) =
lij
fij

(4)

where lij is the number of consumers that liked i and j and fij is the number of
consumers that gave feedback to i and j. It turns out that this MLE computation
yields good results, as detailed in Section 5.

The notion of “liked” can be understood as “clicked”, “received a high rating”,
“purchased”, etc. The problem with computing θ via Equation 4 is that most
items do not receive much feedback – i.e., recommendation datasets. As a con-
sequence, using MLE to approximate the value of θ can lead to arbitrarily bad
approximations. To make more realistic approximations, one can penalize pairs
of items with a poor support, shrinking the computation with a factor λ [6]:

θ(i, j) =
fij

λ+ fij
× lij
fij

(5)

Note that Equation 5 converges to Equation 4 when λ → 0. The main chal-
lenge in using Equation 5 is to find an adequate value for λ.

3.3 Combining Scores

In this work, we combine individual and pairwise scores to select N items out
of K for recommendation. The problem is therefore posed as selecting a set of
items I = {i1, ..., iN} that maximizes the following utility function:∑

ia∈I

φ(ia)

|I| +
∑

(il,im)∈I2

θ(il, im)

|I|2 (6)



22 A. Bessa, A. Veloso, and N. Ziviani

where the normalization in both summations is important to keep their contri-
butions fair – i.e., both values will remain in the interval [0, 1].

There are some different ways of obtaining an exact solution to this optimiza-
tion problem. For instance, one can trivially enumerate all N -combinations of
a set with K items and choose the one that sums up to the highest value. It
is also possible to use integer programming to solve it (NP -Hard) [13]. To the
best of our knowledge, all these techniques are costly and there is no polynomial
algorithm that maximizes this function in an exact way.

4 The GSMI Algorithm

Combining scores to select items for recommendation leads to an intractable op-
timization, as discussed previously. To tackle with this problem under a practical
viewpoint, we propose GSMI, a greedy algorithm that selects N items, one at a
time, taking into account items that were selected previously.

The algorithm receives a set of items I = {i1, . . . , ik} and their individual
scores {φ(i1), . . . , φ(ik)}, and returns a set R with N selected items, where
N ≤ K. It is described as follows.

Algorithm 1. GSMI Algorithm

1: i ← argmax
i∈I

φ(i)

2: R ← {i}
3: I ← I \ {i}
4: while |R| < N do

5: j ← argmax
j∈I

∑

a∈Rj

φ(a)

|Rj |
+

∑

(b,c)∈R2
j

θ(b, c)

|Rj |2
, where Rj = R ∪ {j}

6: R ← Rj

7: I ← I \ {j}
8: end while
9: return R

GSMI starts selecting the item that has the best individual score, i. All other
N − 1 selected items are chosen in a way that maximizes the equation in line 5,
where the maximized set is comprised by all items that were already chosen, R,
and the new item itself. The crucial greedy choice of GSMI is selecting the item
with best individual score first.

GSMI runs in polynomial time. The loop in line 4 will be executed exactly
N − 1 times. In line 5, an item is chosen out of K − 1 in the worst case; in the
best case, out of K−N +1 ones. It means that O(K) items need to be analysed
at each time. In line 5, the first summation is performed in O(|R|) time. The
second summation is performed in O(|R|2 × β) time, where O(β) is the time
complexity of θ. An upper bound for the time complexity of GSMI is therefore
O(K + |R| × (K × |R|2 × β)) = O(KN3β), given that |R| ≤ N .



Using Mutual Influence to Improve Recommendations 23

The time complexity of computing θ, O(β), depends on the size of the dataset,
on the maximum number of feedback given by a certain user to the items in
question, and on the used data structures. For each loop iteration, it is possible
to reuse partial summations from the previous iteration, in a way that the total
time complexity is reduced to O(KN2β). Besides that, it is possible to optimize
function calls to compute θ by taking advantage of its symmetry and by using
memoization. Therefore, as we discuss in Section 5, it is simple to speed up
GSMI and make it scalable to big datasets.

It is worth pointing out that GSMI is compatible with any recommender sys-
tem where it is possible to estimate I, its corresponding scores {φ(i1), . . . , φ(ik)},
and approximations for pairwise scores θ. Therefore, the proposed algorithm is a
priori compatible with systems that employ both matrix factorization techniques
and sketching/fingerprinting methods for dealing with big data.

To validate GSMI , we use the explicit feedback users give over items as a util-
ity measurement: the better it is, the more useful the recommendations are [14].
The hypothesis we started investigating can therefore be simply posed as “Does
GSMI select items that receive better feedback when compared to those selected
by Top −N?” For all studied datasets, feedback consists of ratings. To perform
the comparison between GSMI and Top −N we thus measure the average rat-
ing users gave to recommended items, applying 5-fold cross-validation [4]. We
generate individual scores for all (user, item) pairs in the test set and then per-
form items selection using both GSMI and Top −N . The recommendation list
containing items that receive higher ratings is the one that is considered more
useful.

In this work we also compare GSMI and Top −N under a diversity perspec-
tive. It has recently become a consensus that a desirable feature for success-
ful recommender systems is the ability of generating diverse, non-monotonous
recommendations to users [15]. Diversity is usually defined as the opposite of
similarity, and the most explored approach for measuring it uses content-based
similarity between items [8]. The diversity metric we apply, intra-list distance
(ILD), was proposed by Zhang and Hurley [16] and works as follows:

ILD =
2

|R|(|R| − 1)

∑
ik,il∈R,l<k

1− sim(ik, il) (7)

where R is comprised by all selected items and sim(ik, il). More details of how
we performed experiments with ILD are given in Section 5.

5 Experiments

In this work, we investigated mutual influence in three different datasets: Movie-
Lens 100K2, MovieLens 1M3, and Jester 14. Table 1 summarizes some of their
characteristics.
2 http://www.grouplens.org/system/files/ml-100k.zip
3 http://www.grouplens.org/system/files/ml-1m.zip
4 http://goldberg.berkeley.edu/jester-data/jester-data-1.zip

http://www.grouplens.org/system/files/ml-100k.zip
http://www.grouplens.org/system/files/ml-1m.zip
http://goldberg.berkeley.edu/jester-data/jester-data-1.zip


24 A. Bessa, A. Veloso, and N. Ziviani

Table 1. Succint characterization of the studied datasets

Characteristic MovieLens 100K MovieLens 1M Jester 1

Domain Movies Movies Jokes

Feedback Ratings (1 - 5) Ratings (1 - 5) Ratings (-10.00 - 10.00)

Number of users 943 6,040 24,983

Number of items 1,682 3,900 100

Number of feedback 100,000 1,000,209 1,810,455

Minimum ratings/user 20 20 36

Sparsity rate 0.937 0.958 0.275

Table 2. Average ratings given by users to items recommended by two different
methods: Top − N and GSMI . GSMI − 5 , GSMI − 10 , and GSMI − 20 correspond
to GSMI selecting N = 5, 10, 20 items respectively. The average ratings were com-
puted for different values of N using PureSVD and NNCosNgbr as predictors. For
each GSMI/Top − N pair, we performed a t-test over each dataset, and with a 95%
confidence level only the underlined results are not statistically different.

Predictor Method MovieLens 100K MovieLens 1M Jester 1

Top − 5 3.924 4.127 1.292
GSMI − 5 3.974 4.175 1.518

PureSVD Top − 10 3.837 4.004 1.031
GSMI − 10 3.878 4.057 1.188
Top − 20 3.738 3.908 0.892

GSMI − 20 3.765 3.939 0.911

Top − 5 3.821 4.027 2.312
GSMI − 5 3.875 4.096 2.363

NNCosNgbr Top − 10 3.775 3.928 1.529
GSMI − 10 3.824 3.993 1.589
Top − 20 3.691 3.836 0.939

GSMI − 20 3.726 3.890 0.940

The MovieLens datasets are significantly more sparse than Jester 1. While
in the former users rated at least 20 movies, in the latter users gave feedback
to at least 36% of the jokes. MovieLens 1M is comprised by many more users
and items than MovieLens 100K, and its total amount of ratings is similar to
Jester’s. Finally, while ratings in the MovieLens dataset are discretized and vary
from 1 to 5, users in Jester 1 can assign any real number from -10.00 to 10.00 to
any rated joke.

We compared GSMI with the Top −N approach in order to evaluate how
mutual influence alone can bring up gain to recommender systems. Table 2
presents results for experiments with N = 5, 10, 20. For the MovieLens datasets,
we considered that movies were liked by users if their ratings were equal or
higher than 4; in the case of Jester 1, if they were equal or higher than 5.00.
For all experiments, PureSVD was executed with 50 latent factors, the number
of neighbors in Dk(u; i) in Equation 3 was fixed in 60, and the value of λ for
pairwise scores θ in Equation 5 was fixed in 0.5.



Using Mutual Influence to Improve Recommendations 25

Fig. 1. Average running times per validation fold, in seconds, for different combinations
of datasets and predictors, with N = 5, 10, 20

As shown in Table 2, predictor PureSVD generated better average ratings
for both Top −N and GSMI methods with respect to the MovieLens datasets.
Concerning the Jester 1 dataset, NNCosNgbr performed better. In all cases,
either GSMI produced superior average ratings or was statistically equivalent to
the Top −N results. The obtained gains were up to 17%. Although the difference
between Top −N and GSMI approaches may seem small, it is known that such
differences have a huge impact on recommender systems [17].

5.1 Efficiency and Scalability of GSMI

GSMI is a greedy algorithm for the maximization problem posed by Equa-
tion 6. It is thus useful to compare it against exact solutions. We implemented
such solutions for the MovieLens 100K dataset, with predictors PureSVD and
NNCosNgbr and N = 5. The computations were carried out via the enumera-
tion of all items combinations and posterior selection of the one that maximized
Equation 6. Nonetheless, such computations took more than 3 hours to be com-
pleted, while GSMI generates results per validation fold in around 70 seconds
in the worst case, as shown in Figure 1.

Regarding the utility of results, the average ratings obtained with the exact
solutions were 3.984 and 3.895 for PureSVD and NNCosNgbr respectively. Both
results were not statistically different from the corresponding average ratings
obtained with GSMI for N = 5, 3.974 and 3.875, according to a t-test with a 95%



26 A. Bessa, A. Veloso, and N. Ziviani

confidence level. The fact that GSMI forN = 5 generated statistically equivalent
results for the MovieLens 100K dataset is an indicative that it is a good heuristic
to approximate exact solutions. Also, results presented in Table 2 consistently
indicate that GSMI , by embedding mutual influence in its selection strategy, can
improve recommendations utility. As a consequence, it is important to devise
competitive implementations for GSMI that scale in real-time situations.

Although GSMI is polynomial and rather fast, given that values for N are
usually small in real-world scenarios [8], there are some easy and important
optimizations that makes it scalable and competitive in practice. A first im-
provement is to precompute and store all pairwise scores θ in a hashtable as a
preprocessing step. This offline computation speeds up the generation of differ-
ent values for Equation 6 by avoiding redundant computations of Equation 5.
Another improvement involves the use of memoization to reuse partial summa-
tions in the GSMI algorithm. Figure 1 illustrates the average computation time
per validation fold for each dataset, varying N and the predictor algorithm. All
experiments were performed in a Pentium Dual-Core 2.0GHz with 2GB RAM.

Results in Figure 1 correspond to the average aggregated time for the gener-
ation of all recommendation lists concerning a validation fold. For higher values
of N , the time difference between GSMI and Top −N could increase, but such
analysis is not useful in real-world scenarios because N values are never big in
practice. Therefore, for realistic values of N , GSMI scales well and its average
running times per validation fold are only slightly bigger than those obtained
with Top −N . In spite of that, the time difference for generating a single recom-
mendation list with both methods is irrelevant. Given that in real-world systems
recommendation lists are generated once at a time via the interaction with users,
and GSMI yields better utility results, it is thus a feasible alternative.

5.2 Relation between GSMI and Recommendations Diversity

To investigate the relation between GSMI and recommendations diversity, we
computed the ILD metric, as in Equation 7, for the MovieLens datasets. Movie
similarities were computed via the Jaccard’s similarity over their corresponding
genres, as properly indicated in the datasets. We did not perform such experi-
ments over the Jester 1 dataset because it does not provide any content-based
information. Results for both Top −N and GSMI with respect to predictors
PureSVD and NNCosNgbr are summarized in Table 3.

According to our experiments, GSMI and Top −N do not generate statis-
tically significant diversity differences in recommendations. This is an evidence
that GSMI is not likely to hurt recommendations diversity – at least when com-
pared to Top −N . It also indicates that considering mutual influence via pairwise
scores θ does not imply in either redundant or monotonous recommendations.

6 Conclusions and Future Work

In this work, we investigated how items can interfere with their own utility in
recommendation scenarios. We stated that there is a mutual influence among



Using Mutual Influence to Improve Recommendations 27

Table 3. ILD results for different values of N using PureSVD and NNCosNgbr as
predictors. For each GSMI /Top − N pair, we performed a t-test over each dataset.
With a 95% confidence level, none of the results are statistically different.

Predictor Method MovieLens 100K MovieLens 1M

Top − 5 0.8557 0.7459
GSMI − 5 0.8544 0.7557

PureSVD Top − 10 0.8619 0.7591
GSMI − 10 0.8615 0.7660
Top − 20 0.8645 0.7666

GSMI − 20 0.8643 0.7696

Top − 5 0.8649 0.7617
GSMI − 5 0.8652 0.7636

NNCosNgbr Top − 10 0.8649 0.7694
GSMI − 10 0.8652 0.7709
Top − 20 0.8649 0.7712

GSMI − 20 0.8652 0.7727

them that increases their utilities when simutaneously selected. It is thus pos-
sible to take advantage of these mutual influences to improve recommendation
systems. The main intuition behind this project is that not only individual fea-
tures matter in decision-making processes: the presented set of alternatives as a
whole also plays an important role on it.

We proposed a means of computing such mutual influence, pairwise scores θ,
and an algorithm that incorporates it to improve the recommendation of items,
GSMI . To analyse mutual influence as an isolated evidence, we compared GSMI
with Top −N , an item selection technique that does not rely upon any type
of signal but sorted individual items scores. These individual scores, namely
φ, were generated by two different state of the art predictors: PureSVD and
NNCosNgbr [6].

We showed that for three distinct datasets – MovieLens 100K, MovieLens 1M,
and Jester 1 – GSMI consistently generated recommendation lists with higher
utility measures, i.e. higher average ratings [14], when compared to Top −N .
We also present evidence that GSMI is easily scalable and therefore useful for
real-world scenarios. Finally, we show that this algorithm does not seem to hurt
recommendations diversity.

Given that we show that mutual influence is an important evidence for recom-
mender systems, we intend to develop LTR algorithms that embed it in a near
future. We also want to investigate exact solutions for our optimization problem
(Equation 6) that can be feasible in practice, as well as ways of overcoming data
sparsity as a means to compute scores θ in a more stable fashion. A thorough
assessment of which of all studied algorithms leads to less performance variations
is also planned as future work. Finally, we plan on implementing different base-
lines that also consider some type of influence or dependency among items, such
as Latent Structured Ranking [10] or the mean-variance ranking model proposed
by Wang [7].



28 A. Bessa, A. Veloso, and N. Ziviani

Acknowledgements. This work was partially sponsored the Brazilian Na-
tional Institute of Science and Technology for the Web (grant MCT/CNPq
573871/2008-6), and by the authors’ individual grants and scholarships from
CAPES and CNPq. The first author is also thankful for fruitful discussions with
Google Software Engineer Davi M. J. Barbosa.

References

1. Toffler, A.: Future Shock. Random House (1970)
2. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749 (2005)

3. Tversky, A.: Elimination by aspects: A theory of choice. Psychological Re-
view 79(4), 281–299 (1972)

4. Passos, A., Gael, J.V., Herbrich, R., Paquet, U.: A penny for your thoughts? the
value of information in recommendation systems. In: NIPS Workshop on Bayesian
Optimization, Experimental Design, and Bandits, pp. 9–14 (2011)

5. Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for
recommender systems. In: RecSys., pp. 109–116 (2011)

6. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: RecSys., pp. 39–46 (2010)

7. Wang, J.: Mean-variance analysis: A new document ranking theory in information
retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR
2009. LNCS, vol. 5478, pp. 4–16. Springer, Heidelberg (2009)

8. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems
Handbook. Springer (2011)

9. Xiong, C., Wang, T., Ding, W., Shen, Y., Liu, T.Y.: Relational click prediction for
sponsored search. In: WSDM, pp. 493–502 (2012)

10. Weston, J., Blitzer, J.: Latent structured ranking. In: UAI, pp. 903–913 (2012)
11. Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based

prediction algorithms for recommendation agents. Engineering Applications of Ar-
tificial Intelligence 18(7), 781–789 (2005)

12. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: SIGKDD, pp. 426–434 (2008)

13. Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley (1988)
14. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms

for collaborative filtering. In: UAI, pp. 43–52 (1998)
15. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy

metrics have hurt recommender systems. In: SIGCHI, pp. 1097–1101 (2006)
16. Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommen-

dation lists. In: RecSys., pp. 123–130 (2008)
17. Bell, R., Koren, Y.: Lessons from the netflix prize challenge. ACM SIGKDD Ex-

plorations Newsletter 9(2) (2007)



Position-Restricted Substring Searching

over Small Alphabets�

Sudip Biswas, Tsung-Han Ku, Rahul Shah, and Sharma V. Thankachan

Louisiana State University, USA
National Tsing Hua University Hsinchu, Taiwan

{sudip,rahul,thanks}@csc.lsu.edu, thku@cs.nthu.edu.tw

Abstract. We consider the problem of indexing a given text T [0...n−1]
of n characters over an alphabet set Σ of size σ, in order to answer the
position-restricted substring searching queries. The query input consists
of a pattern P (of length p) and two indices � and r and the output
is the set of all occ�,r occurrences of P in T [�...r]. In this paper, we
propose an O(n log σ)-word space index with O(p+occ�,r log log n) query
time. Our solution is interesting when the alphabet size is small. For
example, when the alphabet set is of constant size, we achieve exponential
time improvement over the previously best-known linear space index
by Navarro and Nekrich [SWAT 2012] with O(p + occ�,r log

ε n) query
time, where ε > 0 is any positive constant. We also study the property
matching problem and provide an improved index for handling semi-
dynamic (only insertions) properties, where we use position-restricted
substring queries as the main technique.

1 Introduction and Related Work

Let T [0...n − 1] be a text of size n over an alphabet set Σ of size σ. The fun-
damental problem in text indexing is to preprocess T and maintain an index
for reporting all occ occurrences of a query pattern P within T . Linear space
data structures such as suffix trees and suffix arrays can answer this query in
O(p+ occ) and O(p+ logn+ occ) time respectively [18,16,15]. In this paper, we
revisit the well studied Position-restricted substring searching (PRSS) problem
as defined below:

The query input consists of a pattern P (of length p) and two indices �
and r, and the task is to report all occ�,r occurrences of P in T [�...r].

Many text searching applications, where the objective is to search only a
part of the text collection can be modeled as PRSS problem. For example, re-
stricting the search to a subset of dynamically chosen documents in a document
database, restricting the search to only parts of a long DNA sequence, etc [14].
The problem also finds applications in the field of information retrieval as well.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 29–36, 2013.

� This work is supported in part by US NSF Grant CCF–1017623 (R. Shah and J. S.
Vitter) and CCF–1218904 (R. Shah).

c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


30 S. Biswas et al.

The PRSS problem was introduced by Mäkinen and Navarro [14], where they
show an elegant reduction of PRSS problem into a two dimensional orthogonal
range reporting problem. Their data structure consists of a suffix tree (for initial
pattern matching) and an orthogonal range reporting structure in two dimen-
sion (RR2D). Their structure takes O(n)-word space and the queries can be
answered in O(p+logn+occ�,r logn) query time. By using the most recent two-
dimensional range reporting structure by Navarro and Nekrich [17], this query
time can be improved to O(p + logε n + occ�,r log

ε n), where ε is any positive
constant. Another trade-off given by Mäkinen and Navarro [14] is O(n logε n)-
word space and near optimal O(p + log logn + occ�,r) query time. This query
time is further improved to O(p + log log σ + occ�,r) by Kopelowitz et al. [13]
and then to optimal O(p + occ�,r) by Bille and Gortz [3] without changing the
space bounds. Crochemore et al. [6] also have proposed an optimal time solution
with a much higher space requirement of O(n1+ε) bits. Recently, Hon et al. [10]
have studied the possibility of indexing the text in succinct space and answering
PRSS queries efficiently. They proved that designing a succinct index with poly-
logarithmic query bounds is at least as hard as designing a three dimensional
range reporting structure in linear space with poly-logarithmic query bounds,
using Geometric BWT techniques [5]. However, they provided optimal time and
succinct space solutions for a special case where the pattern is sufficiently long.

The counting version of PRSS is also an interesting problem. For this, the
linear space index by Mäkinen and Navarro [14] takes O(p + logn) time. A
solution by Bille and Gortz [3] can perform counting in faster O(p + log logn)
time, which is slightly improved to O(p + log log σ) by Kopelowitz et al. [13].
However these indexes consumes O(n log n/ log2 log n) words of space. Finally
Gagie and Gawrychowski proposed a space efficient solution of O(n) words,
where counting queries can be answered in O(p + log log n) time for general

alphabets and in optimal O(p) time, when σ = logO(1) n [7]. In this paper, we
revisit the reporting version of PRSS problem and obtain the result summarized
in the following theorem:

Theorem 1. There exist an O(n log σ)-word index supporting PRSS queries in
O(p+ occ�,r log logn) time.

Using the existing techniques, one can easily design an O(n log logn)-word
space index with O(p + occ�,r log logn) query time. Therefore, our result is in-
teresting when the alphabet size is small (i.e., when σ = 2o(log logn)). Note that
when σ = O(1), we achieve exponential time improvement over the previously
best-known linear space index.

In property matching problem, in addition to the text T , a set π =
{[s1, e1], [s2, e2], ...} of intervals is also given. Our task is to preprocess T and π
and maintain an index, such that when ever a pattern P (of length p) comes
as a query, return those occurrences of P in T which are within (at least) one
of the intervals in π. Efficient linear space [1,11] and compressed space [9] in-
dexes are known for this problem. In [12], Kopelowitz have studied the dynamic
case of this problem, where π can be updated (i.e., intervals can be inserted to



Position-Restricted Substring Searching over Small Alphabets 31

or deleted from π), and provide a linear space index with O(e − s + log logn)
update time, where (s, e) is the interval inserted/deleted. In semi-dynamic case,
(i.e., only insertions or deletions) the update time is O(e − s). Note that e − s
can be even Θ(n) in the worst case. In this paper, we describe a semi-dynamic
index (only insertions) with the result summarized in the following theorem. We
use position-restricted substring queries as one of the main technique to achieve
this result.

Theorem 2. There exists an O(n logε n) space index for semi-dynamic (only
insertions) property matching with query time O(p +

√
n log logn + occπ) and

amortized update time O(
√
n), where occπ represents the output size.

2 Preliminaries

2.1 Suffix Trees

For a text T [0...n−1], a substring T [i..n−1] with i ∈ [0, n−1] is called a suffix of
T and T [0...i] called a prefix of T . The suffix tree [18,16] of T is a lexicographic
arrangement of all these n suffixes in a compact trie structure of O(n) words
space, where the ith leftmost leaf represents the ith lexicographically smallest
suffix of T . The suffix range of a pattern P (of length p) is given by the maximal
range [L,R] such that for L ≤ j ≤ R, P is a prefix of (lexicographically) jth
suffix of T . Using suffix tree, the suffix range of P can be computed in O(p) time
and all the occurrences of P within T can be reported in optimal O(p + occ)
time, where occ is the number of occurrences of P within T . The following is a
useful result from [2].

Lemma 1. For a given pattern P = P [0...p− 1], a substring of the form P [i...
p− 1], 0 ≤ i ≤ p− 1 is called a suffix of P , and the suffix range of all suffixes of
P can be computed in O(p) time.

2.2 Orthogonal Range Reporting in Two Dimensions (RR2D)

Let S be a given set of n points of the form (xi, yi) in an [0, n− 1] × [0, n − 1]
grid. An orthogonal range reporting query consists of two input ranges (x′, x′′)
and (y′, y′′), and the task is to output all those k points (xj , yj) such that,
x′ ≤ xj ≤ x′′ and y′ ≤ yj ≤ y′′. For our purpose, we used the data structure (in
RAM model) by Chan et al. [4], where the space requirement is O(n log logn)
words and the query time is O(log logn+ k log logn).

3 The Index

Based on the alphabet size σ and the pattern length p, we consider 3 cases as
follows:



32 S. Biswas et al.

3.1 Index for σ = logΩ(1) n

The index consists of a suffix tree ST of the text T . Then for each suffix T [x...n−
1], we define a two dimensional point (x, y) such that y be the lexicographic rank
of T [x...n−1] among all suffixes of T , and maintain an RR2D structure over these
n two-dimensional points using the data structure described in preliminaries.
The index space can be bounded by O(n log logn) = O(n log σ) words. In order
to answer a PRSS query, we first obtain the suffix range [L,R] of P in O(p)
time via navigating in the suffix tree and report all those points within the
box [�, r − p]× [L,R] by querying on the RR2D structure. The y coordinate of
each output is an answer to the original PRSS problem. The query time can
be bounded by O(p+ (occ�,r +1) log log n). The range emptiness problem states
given a range in the text and a substring, check if the substring exists in the
given range of the text or not. Bille and Gortz [3] showed how to solve the range
emptiness problem in O(p) time. Using this result, the query time for PRSS
problem can be improved to O(p+ occ�,r log logn).

Lemma 2. There exist an O(n log σ) space index supporting PRSS queries in

O(p+ occ�,r log logn) time for σ = logΩ(1) n.

3.2 Index for σ = logO(1) n and p ≥ √
logn

In this section, we introduce suffix sampling techniques to achieve the desired
space bound. Based on a sampling factor δ = � 1

3 logσ logn�, we define the
followings:

– δ-sampled suffix: T [x...n− 1] is an δ-sampled suffix if x mod(δ) = 0.
– δ-sampled block (or simply block): any substring T [x, x+δ−1] of T of length
δ with x mod(δ) = 0 is called a block.

The number of blocks in T is Θ(n/δ), where the number of all possible distinct
blocks is at most the number of distinct strings of length δ, and is bounded by
σδ = O(log1/3 n). Let Bi represent the lexicographically ith smallest string of
length δ. We categorize the δ-sampled suffixes into σδ categories C1, C2, ..., Cσδ

such that Ci contains the set of all δ-sampled suffixes whose previous block is Bi.
For each category Ci, we maintain a two-dimensional range reporting structures
RR2Di’s (Section 2.2) on the set of points (x, y), where T [x...n − 1] is a δ-
sampled suffix in Ci and y is its lexicographic rank among all suffixes of T (i.e.,
SA[y] = x). Note that each δ-sampled suffix belongs to exactly one category and
the number of δ-sampled suffixes is Θ(n/δ). Therefore, the overall space for all
RR2Di structures can be bounded by O((n/δ) log logn) = O(n log σ) words.

Query Answering: Since p ≥
√
logn > δ, the starting and ending positions of an

occurrence of P will not be in the same block of T . Based on the block in which
a match starts, we shall categorize the occurrences into σδδ types as follows:

We call an occurrence as a type-(i, j) occurrence, if the prefix of P and
the suffix of block Bi matches for j characters.



Position-Restricted Substring Searching over Small Alphabets 33

Here 1 ≤ i ≤ σδ and 0 ≤ j ≤ δ− 1. In other words, a type-(i, j) occurrence is
an occurrence of P at an index y satisfying:

(1) The block of T containing y is equal to Bi.
(2) y = δ − j(mod δ).

Then type-(i, j) occurrences for a fixed i and j can be retrieved as follows:
firstly check if the prefix of P and the suffix of block Bi matches for j characters.
This takes only O(j) = O(δ) = O(log logn) time. If it is not matching, occi,j = 0.
Otherwise, corresponding to each type-(i, j) occurrence, there exist a δ-sampled
suffix T [x...n− 1] of T which is (i) prefixed by P [j...p− 1], (ii) occurring after a
block Bi, and (iii) x− j ∈ [�, r]. By issuing a query on the RR2Di structure with
[�+ j, r − p+ j]× [Lj , Rj ] as the input range, all such suffixes can be retrieved.
Here [Lj, Rj ] represents the suffix range of P [j, ..., p− 1]. Note that [Lj, Rj ] for
j = 0, 1, ...p − 1 can be computed in total O(p) time (Lemma 1). From every
reported point (x, y), we shall output x − j as an answer to the original PRSS
query. This way, all type-(i, j) occurrences can be reported in O(log logn) time
plus O(log logn) time per output. Hence the total time for reporting all possible
type-(., .) occurrences is bounded by O(p+σδδ log logn+occ�,r log log n) = O(p+√
logn+ occ�,r log logn).

Lemma 3. There exist an O(n log σ) space index supporting PRSS queries in
O(p+ occ�,r log logn) time, given p ≥

√
logn.

3.3 Index for σ = logO(1) n and p ≤ √
logn

Here we maintain
√
logn separate structure for answering PRSS queries for

patterns of length 1, 2, 3....,
√
logn. Structure for a fixed pattern length (say

α ≤
√
logn) is described as follows: the number of distinct patterns of length α

is σα. Each such distinct pattern can be encoded using an integer from Σα =
{1, 2, ..., σα} in α log σ bits. Next we transform the original text T [0...n− 1] into
Tα[0...n− α], such that

– Each character in Tα is drawn from an alphabet set Σα = {1, 2, ..., σα} and
can be represented in α log σ bits.

– Tα[i]: the ith character of Tα is the integer in Σα corresponding to the
encoding of the string T [i...i+ α− 1].

Hence, Tα can be seen as a sequence of (n − α + 1) integers drawn from an
alphabet set Σα. We shall maintain Tα in O(|Tα| log |Σα|) = O(nα log σ) bits
using the data structure described in [8], such that rank/select queries on any
character within Tα can be supported in O(log log |Σα|) = O(log logn) time.
Since we are maintaining Tα for α = 1, 2, 3, ...,

√
logn, the total space can be

bounded by O(n log σ
∑√

logn
α=1 α) = O(n log σ log n) bits or O(n log σ) words.



34 S. Biswas et al.

Query Answering: A PRSS query for a pattern P of length p ≤
√
logn can be

answered as follows: first we find the integer β in Σp corresponding to P in O(p)
time. An occurrence of β at position i in Tα corresponds to an occurrence of P
at position i in T . Therefore, all occurrences of P in T [�...r] can be answered by
reporting all those occurrences of β in Tα[�...r]. Using rank/select queries on Tα,
this can be easily handled as follows: find the number of occurrences (say a) of
β in Tα before the position � and the number of occurrences (say b) of β until
the position r in Tα. Using two rank queries on Tα, the values of a and b can
be obtained in O(log logn) time. Next we output the kth occurrence of β in Tα

for k = a+ 1, a+ 2, ..., b using (b − a) select queries in total O((b − a) log logn)
time, and each output corresponds to an answer to the original PRSS problem.
Hence the total query time can be bounded by O(p+ log logn+ occ�,r log logn).
In order to remove the additive log logn factor, we also maintain the linear space
structure by Gagie and Gawrychowski [7] for counting the number of outputs in
O(p) time (for poly-logarithmic alphabet). And while querying, we first count
the output size using this structure, and then we query on our structure only if
the output size is non zero.

Lemma 4. There exist an O(n log σ) space index supporting PRSS queries in
O(p+ occ�,r log logn) time, for p ≤

√
logn.

By combining Lemma 2, Lemma 3 and Lemma 4, we obtain Theorem 1.

4 Semi Dynamic Index for Property Matching

In this section we design an index for the Property Matching problem which
supports insertion. We use the following two existing structures as the building
blocks of our index for P.

Lemma 5. [12] There exists a linear space index (which we call as ISDPM ) for
semi-dynamic (only insertions) property matching with query time O(p + occπ)
and update time O(e − s), where (e, s) is the inserted interval.

Lemma 6. [3] There exists an O(n logε n) space index (which we call as IPRSS)
supporting PRSS queries in optimal O(p + occ�,r) time, where ε > 0 is any
constant.

Our index consists of ISDPM , and IPRSS . An interval (e, s) be called small if
e− s ≤ √

n, otherwise it is large. Note that a small interval can be inserted into
π, and can update ISDPM in O(

√
n) time. However, if the interval is large, we

do not update ISDPM . Actually we insert it into a set S of intervals. When ever
the size of S grows up to

√
n, we do a batched insertions of all the intervals in S

into ISDPM using the following lemma, and then initialize S to a tree with zero
nodes.

Lemma 7. [12] A set I of intervals can be inserted into π, and we can update
ISDPM in time O(|coversize(I)|), where coversize(I)= {i ∈ [1, n] : ∃[s, e] ∈ I,
such that i ∈ [s, e]}.



Position-Restricted Substring Searching over Small Alphabets 35

Here |cover.size(I)| can be at most size of the text, n. Batch insertion will be
required after

√
n number of insertions. Therefore, from Lemma 7, the time for

batch insertion can be bounded by O(n). Since each batch insertion can support
O(

√
n) number of subsequent insertions, the time for insertion of a single interval

can be bounded by O(
√
n) in amortized sense.

Query Answering: Our algorithm has the following 3 phases:

1. Issue a query on ISDPM and retrieve the corresponding occurrences. How-
ever, we cannot obtain the complete outputs just by this step alone, as we
do not (always) update ISDPM immediately after an insertion.

2. The task of finding those missing occurrences, which are from the region
corresponding to those large intervals in S are obtained in this Step. Firstly
we sort all intervals in S in O(

√
n) time as follows: if |S| <

√
n/ logn, then

the time for sorting is O(|S| log |S|) = O(
√
n), otherwise use radix sort and

the required time is O(|S|) = O(
√
n). After initializing a variable h as 1 (this

is an invariant storing the last occurrence retrieved so far), we perform the
following steps for each interval [si, ei] ∈ S (where si ≤ si+1) in the ascending
order of i: if h ∈ [si, ei], then issue a PRSS query with [h + 1, ei − p + 1]
as the input range, and if h < si, then issue another PRSS query with
[si, ei − p + 1] as the input range, where as if h > ei, skip this step. Based
on the retrieved occurrences, we update h with the last occurrence. The
overall time required for this step can be bounded by O(|S| log logn+ occπ)
= O(

√
n log logn+ occπ).

3. There can be occurrences which are retrieved by both Step 1 and 2. In order
to eliminate these duplicated, we sort the occurrences retrieved from Step 1
and Step 2 separately (in O(

√
n+ occπ) time as described before), and then

merge these results without duplicates by scanning both lists simultaneously.

By combining all, the query time can be bounded by O(p+
√
n log logn+ occπ).

This completes the proof of Theorem 2. 
�

References

1. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theoretical Computer Science 395, 298–310
(2008)

2. Amir, A., Farach, M., Idury, R.M., La Poutré, J.A., Schäffer, A.A.: Improved Dy-
namic Dictionary Matching. Information and Computation 119(2), 258–282 (1995)

3. Bille, P., Gørtz, I.L.: Substring Range Reporting. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 299–308. Springer, Heidelberg (2011)

4. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: SoCG, pp. 1–10 (2011)

5. Chien, Y.-F., Hon, W.K., Shah, R., Thankachan, S.V., Vitter, J.S.: Geometric
BWT: Compressed Text Indexing via Sparse Suffixes and Range Searching. Algo-
rithmica, 1–21 (2013)



36 S. Biswas et al.

6. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved
Algorithms for the Range Next Value Problem and Applications. In: STACS,
pp. 205–216 (2008)

7. Gagie, T., Gawrychowski, P.: Linear-Space Substring Range Counting over Poly-
logarithmic Alphabets. CoRR, arXiv: 1202.3208 (2012)

8. Golynski, A., Munro, J.I., Rao, S.S.: Rank/Select Operations on Large Alphabets:
A Tool for Text Indexing. In: SODA, pp. 368–373 (2006)

9. Hon, W.K., Patil, M., Shah, R., Thankachan, S.V.: Compressed Property Suffix
Tree. In: IEEE Data Compression Conference, pp. 123–132 (2011)

10. Hon, W.K., Shah, R., Thankachan, S.V., Vitter, J.S.: On position restricted sub-
string searching in succinct space. Journal of Discrete Algorithms (2012); Hon,
W.-K., Ku, T.-H., Shah, R., Thankachan, S.V., Vitter, J.S.: Compressed text in-
dexing with wildcards. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE
2011. LNCS, vol. 7024, pp. 267–277. Springer, Heidelberg (2011)

11. Juan, M.T., Liu, J.J., Wang, Y.L.: Errata for “Faster index for property matching”.
Information Processing Letter 109(18), 1027–1029 (2009)

12. Kopelowitz, T.: The Property Suffix Tree with Dynamic Properties. In: Amir, A.,
Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 63–75. Springer, Heidelberg
(2010)

13. Kopelowitz, T., Lewenstein, M., Porat, E.: Persistency in Suffix Trees with Ap-
plications to String Interval Problems. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 67–80. Springer, Heidelberg (2011)

14. Mäkinen, V., Navarro, G.: Position-Restricted Substring Searching. In: Correa,
J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714.
Springer, Heidelberg (2006)

15. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

16. McCreight, E.M.: A Space-Economical Suffix Tree Construction Algorithm. Jour-
nal of the ACM 23(2), 262–272 (1976)

17. Nekrich, Y., Navarro, G.: Sorted Range Reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012)

18. Weiner, P.: Linear Pattern Matching Algorithms. In: SWAT (1973)



Simulation Study of Multi-threading

in Web Search Engine Processors�

Carolina Bonacic�� and Mauricio Marin

Universidad de Santiago, Chile
Yahoo! Labs Santiago, Chile

Abstract. Modern cluster processors have been steadily increasing the
number of cores able to execute concurrent threads. Web search engines
critically rely on multithreading to efficiently process user queries and
document insertions to support real-time search. This requires synchro-
nization of readers and writers which, for large number of threads, poses
the question of what concurrency control strategies are capable of scaling
to hundreds of cores and more. This paper presents a comparative study
of a number of such strategies. To this end, we focus on the development
of suitable simulation models for performance evaluation of search algo-
rithms on dedicated single-purpose multi-threaded processors. We vali-
date our model against actual implementations of the multi-threading
strategies to then go further on studying performance on very large pro-
cessors. We conclude that intra-query parallelism scales up more effi-
ciently than inter-query parallelism.

1 Introduction

Web search engines are large-scale systems devised to achieve efficient perfor-
mance using the least possible hardware resources from data centers. Efficiency
is achieved throughout a composition of distributed indexing, partial-results
caching and parallel query processing algorithms, all devised to be deployed
on large clusters of processing nodes (processors). These clusters form a dis-
tributed memory systems among processors, wherein each processor is a shared
memory multi-core node that allows concurrent execution of multiple threads.
Queries processing is usually divided in a number of tasks and each processor
is in charge of a single task. Communication latency among processors is small
with respect to the relative cost of query processing.

In this paper we develop a process-oriented simulation model that enables
performance evaluation studies of multi-threaded algorithms for search engine
processors. We then use the model to investigate the scalability of search strate-
gies involving R/W operations to hundreds of threads in multi-core processors.
The aim is to realize what strategies are the most efficient ones to support real-
time search. In this case, insertion and elimination of documents in the search
index (inverted file) are allow to take place concurrently with normal user query

� Partially funded by research grant DICYT 061319BC and FONDEF CA12i10314.
�� Corresponding author.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


38 C. Bonacic, and M. Marin

processing. This requires the use of thread synchronization strategies to prevent
from R/W conflicts on the shared inverted index at processor level.

The simulation model is constructed on the following concepts that we believe
make it of practical interest:

1. Web search engines are daily subjected to highly dynamic and intensive
query traffic. Performance is totally dependent on user intention which is
unpredictable. This means that any credible performance evaluation study
must consider the execution of millions of actual user queries (large sets of
queries are publicly available for research). This is because there are de-
pendencies across terms in query streams that can be observed only after
processing many queries (e.g., partial-results cache design). This implies that
a practical simulation model program must be light enough to deliver results
in a fairly short time, at most a few hours, hopefully minutes.

2. Point 1 rules out sophisticated simulators that model processor hardware de-
tails including aspects such as instruction/data pre-fetching and processor
cache consistency protocols. To overcome this obstacle we resort to models of
parallel computation intended to cost just relevant key features of hardware
rather than low level details. This is possible thanks to the nature of our ap-
plication since it can be considered as a coarse-grained application where cost
dominating operations can be clearly differentiated each other. In particular,
we use the so-called Multi-BSP model of parallel computation [8] proposed
recently for multi-core processors. The well-defined structure of the model
enables us to (a) run benchmark programs on the actual hardware to get
the average value of parameters representing the effect of hardware in the
cost of algorithms and (b) simplify debugging in the software development
process required to produce correct simulation programs.

3. As modelling world-view we use process-oriented simulation since it provides
a direct mapping between a multi-threaded algorithm and its simulation.
Processes (programmed as co-routines that can be blocked and unblocked at
will during simulation) represent threads and the cost of relevant operations
is caused in the simulation time by means of a process blocking hold(cost) op-
eration. Using this approach to simulation, we formulate a model of a generic
multi-core processor which extends the Multi-BSP model with implementa-
tions of processor caches and special global variables such as exclusive locks.
On top of this simulated multi-core processor, we perform the simulation
of thread computations. The cost of relevant operations is determined with
benchmark programs run on actual datasets.

To our knowledge, literature reports no work on performance evaluation methods
located in the intersection of search engine multi-threaded processor computa-
tions, models of parallel computation for multi-core processors, and modelling
and simulation of Web search problems. Certainly there are works on each sep-
arate topic but not in the intersection (cf. [2]). For our application setting (e.g.,
research on multi-threaded search algorithms, and partial or full results caching),
the goal of this intersection is to compare different solutions for a given problem
under the same conditions and understand reasons of efficient performance.



Simulation Study of Multi-threading in Web Search Engine Processors 39

2 Background and Running Example

Web search engines use inverted indexes to determine the top K results for
queries. Namely, the K documents that best match the query terms in accordance
with a given document ranking method. The index is composed of a vocabulary
table and a set of inverted or posting lists. The vocabulary contains the set of
relevant terms found in the text collection. Each of these terms is associated with
an inverted list which contains the document identifiers where the term appears
in the collection along with the term frequency in the document. Frequencies
are used for document ranking purposes. To solve a query, it is necessary to get
from the inverted lists the set of documents associated with the query terms
and then to perform a ranking of these documents in order to select the top K
documents as the query answer. A query receptionist machine, called the broker,
sends queries for solution to a set of search nodes (in our case processors) and
blends their results to produce the global top K ones (cf. [4,5]).

Query processing efficiency is increased by using application caches (cf. [3,7]).
Usually the size of the inverted index is huge and only the part that is most
referenced by queries in a given period of time is maintained in main memory
by means of a posting lists cache. Also caches holding pre-computed results can
be kept in each search node such as a top-K results cache for frequent queries.

Fig. 1. Paths followed by queries in a single search node processor

Figure 1 illustrates a possible search node layout. The posting lists cache con-
sists of a large number of blocks which are used to store inverted list items,
namely pairs (doc id, term freq). Each inverted list usually contains several
blocks. The second cache holds the top K results of the most frequent queries
resolved by the search node. The whole inverted file is kept on local disk or in
main memory but in highly compressed format.

A feasible road map for the threads is illustrated in Figure 1. In this example,
queries arrive at the input queue of the search node (processor). A given number
of threads are in charge of solving the queries. Every time a thread takes a new



40 C. Bonacic, and M. Marin

Table 1. Solutions to thread synchronization for read/write transactions

Serial Type of Parallelism Sync. Primitive

BP Yes PRT and PWT Thread Barrier
CR Yes CRT and PWT Thread Barrier

TLP1 Yes CRT (list sharing) and CWT Inverted List Locking
TLP2 Yes CRT (no list sharing) and CWT Inverted List Locking
RTLP No non-atomic: CRT and CWT Inverted List Locking
RBLP No non-atomic: CRT and CWT Inverted List Block Locking

CRT= concurrent read transactions PRT= read transaction in parallel
CWT= concurrent write transactions PWT= write transaction in parallel

query from the input queue it checks whether the same query is already stored
in the top-K cache (1). If there is a hit on this cache, the thread responds with
the K document IDs stored in the respective entry (2). Otherwise, the thread
verifies whether all of the blocks holding inverted list items are already in the
posting lists cache (3). If so, the thread uses those blocks to solve the query by
applying a document ranking algorithm (3.a). Once the thread calculates the
top K document IDs, it applies the top-K cache admission and eviction policy
to store the new entry in the cache (4), and responds with the calculated top-
K results (5). If there are missing inverted list blocks in the cache (3.b), the
thread places the query in another queue of secondary memory requirements (a
subordinate thread manages these transfers of new blocks) and verifies whether
in this second queue there is another query for which the transferring of its
blocks has finished to proceed with its solution (3.c), (4) and (5).

The above multi-threaded query processing approach assumes the existence of
a strategy able to properly deal with the concurrent R/W operations demanded
by the threads on the caches and queues. As a result of the eviction policy,
concurrent reads and writes can be performed on the same cache entries so
threads must be synchronized to prevent from R/W conflicts. The situation gets
further involved when inverted lists are required to receive new pairs (doc id,
term freq) in an on-line manner as a support for real-time search (recent work
on real-time search can be found in [1]).

A number of solutions to the above inverted lists thread synchronization
problem are listed in Table 1 from [1]. Insertion/deletion of new documents
are represented by write-only transactions whereas user queries are represented
by read-only transactions. Parallelism means all threads dedicated to solve one
transaction at a time whereas concurrency means each thread completely pro-
cesses a different transaction. A research question is which of those strategies is
able to scale up efficiently to more threads than current multi-core processors
are able to support efficiently. A simulation model as we describe in the following
should be able to predict performance to answer that question. Another research
question is what are the relevant reasons for a given strategy to outperform other
alternatives. Executions with actual implementations on actual hardware would
tend to show us the fact but not the reasons as it is difficult to repeatedly re-
produce the same running conditions in each experiment, and it is difficult to
properly trace computations for queries that last a few milliseconds.



Simulation Study of Multi-threading in Web Search Engine Processors 41

3 Simulation Model

The simulation model uses a processes and resources approach. We describe
the model for the running examples described in Section 2. Processes represent
threads in charge of transaction processing. Resources are artifacts such as in-
verted lists, processor caches and global variables like exclusive access locks. The
simulation program is implemented using a library like [6], where each process
is implemented by a co-routine that can be locked and unlocked at will during
simulation. The operations passivate() and activate() are used for this purpose.
Co-routines execute the relevant operations of threads/transactions. The opera-
tion hold(t) blocks the co-routine during t units of simulation time. This is used
to simulate the different costs of transactions and the cost of the different tasks
performed by the simulated multi-core processor. For the running example, the
dominant costs come from ranking of documents, intersection of inverted lists
and inverted list updates. These costs are determined by benchmark programs
implementing the same operations. Figure 2 illustrates the main ideas where we
placed the rank() operation to emphasize that these simulations can be driven
at each point by the outcome of the actual process being simulated.

Fig. 2. Concurrent routines simulating the steps taken by a thread to process a query
(read-only transaction) and generating cost in simulation time

The processor cache entries (cache lines) are managed with the LRU replace-
ment policy, where each entry is a memory block of 64 bytes like Intel processors,
and we use a directory based coherence protocol for cache entries. In the Multi-
BSP model [8], a multi-core processor is seen as a hierarchy of memories (caches
and main memory) that form a tree with root being the main memory and leaves
being pairs (core, cache L1). The model is general, but we apply it in a manner
that suits our purposes. We believe that the resulting model is also generic and
includes the key features that affect performance in our application setting.



42 C. Bonacic, and M. Marin

To simply description let us assume a processor composed of eight cores, where
four pairs (core, L1 cache) are connected to a single L2 cache, and two L2 caches
are connected to the main memory. Cores (CPUs) can only work on local data
stored in their respective L1 caches. When a core references data out of its L1
cache, the data is look at the respective cache L2. If found, a cache line transfer
(or several lines if data pre-fetching is enabled) is performed between caches L2
and L1. The cost of this transfer is given by a parameter g1. If not found, a cache
line sized piece of the data is transfered from main memory to cache L2 at cost
g2, and then from L2 to L1 at cost g1. The values of g1 and g2 are determined
as explained below by using benchmark programs.

Computations in Multi-BSP are organized as sequences of three supersteps
where each superstep is ended with a synchronization barrier. During the first
superstep, all data transfers take place between main memory and the two L2
caches. During the second superstep, all data transfers take place between the
L2 and L1 caches. During the third superstep, all cores are allowed to perform
computations on the data stored in their respective L1 caches. The cost of bar-
riers at levels 1 and 2 are given by the parameters �i and �2. Certainly this
bulk-synchronous structure of computations is intended to make mathemati-
cally tractable the analysis of algorithms. We do not require this structure but it
helps during simulation program debugging. Process oriented simulation enables
us to simulate these actions asynchronously. In addition, the LRU policy and the
read/write coherence protocol on caches provide a more realistic setting to our
processor model. Lock variables are forced to be global by keeping them updated
in main memory at all time. This accounts for its fairly larger cost (g1+g2) than
standard local and global program variables. The three supersteps structure also
helps to construct benchmark programs for measuring g1 and g2.

The steps followed during the simulation of a thread that executes a cost dom-
inating transaction operation that takes time_cpu units of simulation time and
works on a piece of data whose space address is [base_address:offset_bytes] are
the following. The respective co-routine executes a function like run( time_cpu,

base_address, offset_bytes). This function divides the memory space in chunks
of similar size (line caches) and retrieves the chunks one by one. The cost of
chunk memory transfers and computation performed on it by cores is simu-
lated by corresponding hold(t) operations. Each simulator cache object contains
space to store a set of pairs (address, chunk) (line caches). Cache entries that
get replaced by the LRU policy and have been modified by threads, are copied
by the simulator to the lower memory in the hierarchy (L1 → L2, L2 → main
memory). The coherence protocol maintains track of cache entries that contain
copies of the same data so that when a thread modifies an instance of a repli-
cated data, the remaining copies are invalidated. This takes place instantaneously
with respect to simulation time as only one co-routine is active at any time in-
stant. The implementation of exclusive locks associates a name string with a
lock variable along with a queue for co-routines (threads) waiting to get access.
Lock administration takes a latency g1+g2 in simulation time, as they are always



Simulation Study of Multi-threading in Web Search Engine Processors 43

read and written in main memory. Synchronization barriers are implemented
with locks.

Simulator Parameters. In line with the above L1-L2 processor model, we
describe experiments to obtain g1 and g2 on a cluster node containing two Intel
Xeon Quad-Core processors with caches L1 and L2 as described above. Similar
method can be applied in three-level cache processors like Intel i7.

We first performed runs with actual implementations of the running examples
to measure the cost of each relevant operation separately. Running times had
less than 1% variation. From the total running time, we found that approxi-
mately 6% was due to the administration of data structures and the cost of the
memory hierarchy. For example, one execution took 571 seconds for read-only
transactions with ranking of documents set to enabled, while the same run but
with document ranking disabled took 32 seconds, thus 32/(571 − 32) = 0.059.
The total running time is reduced to 218 seconds when introducing 40% write-
only transactions, which increases to 17% the effect of data management and
memory hierarchy. This is because write-only transactions are processed much
faster than read-only transactions.

Since we know the size of the inverted lists, it is possible to determine the
average cost of processing an inverted list for document ranking, excluding the
cost of data management and memory hierarchy. The same can be determined
for the other two relevant operations, namely updating an inverted list and
determining the global top-K results for a query. If the cost of performing the
ranking on an inverted list takes x units of simulation time, it was found that
the average cost of the other two operations is x/10 and x/5 approximately.

The transfer rate of memory blocks through the hierarchy of caches is obtained
by running benchmark programs that perform consecutive accesses within arrays
of integers (this resembles the data access pattern performed by the running
example strategies). We define arrays Ai and Bi for each thread i. Before start
measuring running time, each thread i writes in Bi the consecutive positions in
Ai that it will visit during the experiment. The idea is to reference both arrays
simultaneously during measurement. Runs were performed by varying the sizes
of the arrays Ai and Bi to determine g2/g1. After obtaining this value, the values
g1 and g2 were adjusted to make the total cost of operations to access shared
data structures to represent 6% of the total simulation time, this by using read-
only transactions. This was achieved for g1= 0.010 and g2= 0.044 as we found
that g2/g1= 4.4 is a good estimate for our application.

The ratio g2/g1= 4.4 was obtained as follows. We varied the size n of the
array Ai and Bi for 8 cores and obtained Tg2+g1/Tg1 for different values of n.
Time Tg2+g1 represents the case where all threads begin their access to arrays
Ai and Bi, ensuring that measurement is started when they are stored in main
memory and not in any of the L1 and L2 caches. To ensure this, each thread
previously executes random accesses to auxiliary arrays of a size much larger
than the capacity of the L2 caches. After this, a total of m accesses to the arrays
Ai and Bi are performed to measure running time. The effective size of each L1
cache is 16KB and each L2 cache is 4MB.



44 C. Bonacic, and M. Marin

To obtain Tg1 , we first made a copy of the array B0 in the two L2 caches, and
ensured that each thread i has its array Ai stored in its L1 cache. Then we mea-
sured Tg1 by making that all threads i perform m accesses on adjacent positions
of B0 and assign the values to corresponding positions in their local arrays Ai.
This caused data transfers between L2 and L1 caches in a semantics similar to
that promoted by the Multi-BSP model. In this way, the ratio Tg2+g1/Tg1 can
be represented by the following equation:

Tg2+g1

Tg1

=
m · c+ 2 · n · g1 + 2 · n · g2

m · c+ n · g1

where c is the average time demanded by each of the m accesses performed on
the arrays Ai and Bi, both of size n. From the results for Tg1 with 8 cores, we
measured the values of c and g1. The values of c were very stable with an average
of 3.6×10−9 seconds approximately. Since experimentally we determined Tg2+g1 ,
Tg1 , c and g1, it was possible to determine g2. We observed that the average
g2/g1 ≈ 4.4 was kept with small variance when n grows. We emphasize that the
inverted lists are usually stored in contiguous memory space that is similar to
the space occupied by the arrays Ai and Bi for large n.

4 Average Case Analysis

The Multi-BSP model allows validation of intuition about performance of read
only transactions (queries) as follows. We assume queries with only one term. We
define the parameters αt and βt as estimates of the average hit rate that a term
t achieves in the caches L1 and L2 respectively. The term t has an inverted list of
size nt. Each strategy must incur in a constant software latency γ to administer
the state of queries being solved.

In the bulk-synchronous strategy, each of the p threads work in parallel to solve
a single query at a time. Each thread computes the relevance of each document
in its nt/p sized piece of inverted list for term t and sorts the results to determine
the best k local results at a cost O( γ+nt/p+(nt/p) · log(nt/p)+ �0 ). However,
the threads can maintain a heap of size O(k) to keep the top ranked documents
and therefore the cost computation can be reduced to O( γ + nt/p + (nt/p) ·
log k + �0 ). To run that amount of work it was required to pay an average cost
of O( (1−αt) · (nt/p) · c · g1+ �1 ) for data transfers among the L2 and L1 caches.
It was also necessary to pay O( (1− αt) · (1− βt) · (c · (nt/p)) · (p/c) · g2 + �2 ) =
O( (1 − αt) · (1 − βt) · nt · g2 + �2 ) for transfers among the L2 caches and main
memory.

After each thread has determined the best k local documents, one of them is
responsible for sorting the k · p results to determine the best k documents that
are the answer for the query. Since each of the p sets of size k are already ordered,
it is only necessary to perform a merge of the p sets at a cost O( k · p · log p ). As
cores are arranged so as to have c cores for each L2 cache, then the total cost
of data transfers from the L2 cache to the L1 cache and managing k · p results
is O( (c + p) · k · g1 + �1 + (c · k) · ((p/c) − 1) · g2 + �2 ), which for constant c is



Simulation Study of Multi-threading in Web Search Engine Processors 45

O( p·k·(g1+g2)+�1+�2 ). On the other hand, it is not necessary that all the cores
send k results, they can do iterations by increasingly sending their next k/p best
results. The worst case is to have p iterations. Most likely after a few iterations
it will get the best k documents. That is, the cost can be reduced to O( k · log p ),
which has a cost in data transfers among caches of O( k · (g1 + g2) + �1 + �2 ).

For fair comparison with the asynchronous strategy, it is necessary to consider
a group of p, since the asynchronous strategy processes p queries in parallel, one
per thread. For a large number of queries, it is assumed that in a Multi-BSP
superstep p queries can be processed sequentially but each one in parallel. For
any term the average case is α = ᾱt, β = β̄t, n = n̄t. Then, the total cost of
processing p queries in bulk-processing strategy is given by:

Sync. Comp. Cost → p · γ + n+ n · log k + k · log p+ �0 +
L1-L2 Cache Cost → (1 − α) · n · g1 + k · p · g1 + �1+
L2-Ram Cache Cost → (1 − α) · (1 − β) · n · p · g2 + k · p · g2 + �2 .

Similar arguments can be applied to the asynchronous strategy concluding a
similar average cost for processing p queries. In this case, the total cost is:

Async. Comp. Cost → γ + n+ n · log k + �0 +
L1-L2 Cache Cost → (1 − α) · n · g1 + k · g1 + �1+
L2-Ram Cache Cost → (1 − α) · (1 − β) · n · p · g2 + k · p · g2 + �2 .

Current cluster search engines, include main memories of very large sizes in
their multi-core nodes. This implies that the inverted lists can be very large
making the cost O(n) of scoring documents very dominant. The k value is con-
stant and small compared to the average n, and so is p. That is, in practice both
strategies should have cost

O( n + (1− α) · n · g1 + (1− α) · (1− β) · n · p · g2 ).

As a result, in the average case, the synchronous and asynchronous strategies
have a similar cost, but as the following simulation study shows they do not
scale up similarly when write transactions are included in the work-load.

5 Simulation Study

Using the above defined simulation model we experimented with the concurrency
control strategies presented in Table 1. The inverted lists were constructed from a
large sample of the UK Web, and read transactions were generated from a query
log containing queries submitted by actual users of the Yahoo! UK search engine.
To introduce write transactions, small documents were extracted from the Web
sample and were randomly mixed with the stream of user queries processed
during the experiments. This represent a case in which the search engine is able
to include in the results of user queries, documents (blogs, facebook, twitter) that
were generated by other users within a time window of a few seconds or minutes



46 C. Bonacic, and M. Marin

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

nThreads

CR
BP

TLP1
TLP2
RTLP
RBLP

 0

 500

 1000

 1500

 2000

 2500

 3000

4 6 8 12 16 24

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

nThreads

CR
BP

TLP1
TLP2
RTLP
RBLP

(a) 40% writers, Intel Xeon (b) 40% writers, Intel i7

Fig. 3. Throughput (transactions per second) achieved by actual implementations of
concurrency control strategies presented in Table 1

in the past. Overall, 40% of transactions were write-only, namely insertion of
new documents in an on-line manner. We also experimented with 20% writers.

Figure 3.a presents comparative performance results for the actual implemen-
tations of the strategies of Table 1, all executed on our cluster node formed
by two Intel Xeon Quad-Core processors. We observed a similar trend with an
Intel i7 processor that is able to efficiently support 24 threads. These results
are shown in 3.b, which confirm that comparative performance is less depen-
dent on the processor architecture than on the synchronization method used to
prevent from read/write conflicts. Therefore, to understand the reasons of such
differences in performance we resorted to simulation.

We focus next on the strategies labeled BP and RTLP as they achieve the
best performance in Figure 3. Besides, both strategies are representative of two
different forms of multi-threading. BP is a bulk-synchronous approach which uses
all threads to process one transaction at a time. Threads are barrier synchronized
between transactions. RTLP is a more classical approach where threads process
different transactions concurrently (one thread per transaction). In this case,
inverted lists are locked and unlocked by the thread as soon as it has finished
processing on it. Notice, however, that RTLP is a more relaxed strategy than BP
in terms of the serial and atomic properties of transactions. To force RTLP to be
at least atomic, we included in our simulations a RTLP version, called RTLP-
RB, that tries to preserve atomic consistency of transactions by performing
rollbacks when the same inverted lists are modified by writers whilst read-only
transactions are working with them.

Figure 4 shows results for the throughput (transactions per second) achieved
by the simulator ranging from 1 to 128 threads. Each thread is assigned to a
different core. Considering the range between 1 and 8 threads, the results show a
very similar trend in performance to that observed in Figure 3. For more than 8
threads, it is observed that the strategies RTLP and RTLP-RB do not scale effi-
ciently. Traces from simulator executions reveal that there are threads that have
to wait too long for locks on inverted lists. This happens because user queries
tend to share the same terms, and popular terms in queries are also popular



Simulation Study of Multi-threading in Web Search Engine Processors 47

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8

T
hr

ou
gh

pu
t

nThreads

BP
RTLP

RTLP-RB

 0

 5000

 10000

 15000

 20000

 25000

16 32 64 128

T
hr

ou
gh

pu
t

nThreads

BP
RTLP

RTLP-RB

(a) 40% writers, 1 to 8 threads (b) 40% writers, 16 to 128 threads

Fig. 4. Throughput obtained with the simulation model for two-level caching

Table 2. Metrics illustrating loss of performance in RTLP and RTLP-RB

20% 40%

NT RB LB RB LB

2 0.04 1 0.06 0.95
4 0.10 0.95 0.13 0.98
8 0.18 0.95 0.21 0.89
16 0.26 0.92 0.31 0.87
32 0.33 0.82 0.42 0.78
64 0.41 0.70 0.51 0.69
128 0.46 0.56 0.57 0.41

0% 40%

NT Pw LB Pw LB

2 0 1 0 1
4 0.01 0.99 0.01 1
8 0.02 0.99 0.03 1
16 0.04 0.97 0.09 1
32 0.06 0.94 0.14 0.99
64 0.10 0.88 0.17 0.97
128 0.21 0.84 0.37 0.90

(a) 20% and 40% writers (RTLP-RB) (b) 0% and 40% writers (RTLP)

in new documents inserted in the inverted lists. This also produces read/write
inconsistencies that the RTLP-RB must solve with an excessive number of roll-
backs which degrades its performance.

Table 2.a show results that illustrate the loss of performance of the strategy
RBLP-RB. The amount of rollbacks (RB columns for different percentage of
writers) increases to the point where little more than half of the transactions
must be re-executed. The table also shows the effect that these rollbacks have in
load balance of computations performed by cores (LB columns). Load balance is
measured considering the amount of computation performed by threads, and is
defined as the average load observed in the threads divided by the maximum load
in any of the threads. This metric is calculated at regular intervals of simulation
time. Load balance is significantly degraded due to rollbacks.

Table 2.b shows results that explain the loss of performance in the RTLP strat-
egy as the total number of threads increases. There is a non-negligible probably
that for any given transaction a thread has to wait for a lock. This probability
increases with the number of threads. Columns Pw show values for this proba-
bility. This causes imbalance as shown in columns LB. However, the main factor
in performance degradation is the time spent waiting for locks. We believe this
fact is difficult to observe in a real implementation.



48 C. Bonacic, and M. Marin

These simulations help us to understand that as we increase the total num-
ber of threads (transactions), the probability of threads working with the same
popular terms increases and thereby performance is degraded by the increment
of threads waiting for locks. The bulk-synchronous strategy does not suffer from
this problem which explains why it scales up better than the asynchronous strat-
egy. Another fact, that is difficult to understand by examining traces from a real
implementation, is that the oblivious barriers tend to amortize imbalance due
to variations in the lengths of inverted lists assigned to each thread in the bulk-
synchronous strategy (while a thread is blending top K results, the remaining
threads can start processing the next transaction).

6 Conclusions

This paper has presented a performance evaluation study of the scalability to
hundred core processors of different query processing strategies devised to sup-
port real-time search in search engines. To this end, we have proposed a simula-
tion method that is suitable for Web search in multi-core processors. The method
is constructed upon a model of processors based on concepts from the Multi-BSP
model of computation, and process-oriented simulation. We believe that our sim-
ulation method is generic and useful to other IR applications. Model validation
shows good agreement between what is observed with an actual implementation
of Web search and what is observed with the respective simulator. The simula-
tion results clearly show that synchronous multi-threading is able to maintain
efficiency under large number of threads whereas asynchronous multi-threading
loses performance significantly.

References

1. Bonacic, C., Garcia, C., Marin, M., Prieto-Matias, M., Tirado, F.: Building efficient
multi-threaded search nodes. In: CIKM (2010)

2. Cacheda, F., Carneiro, V., Plachouras, V., Ounis, I.: Performance analysis of dis-
tributed information retrieval architectures using an improved network simulation
model. Information Processing and Management 43, 204–224 (2007)

3. Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of Web
search engines: caching and prefetching query results by exploiting historical usage
data. ACM Transactions on Information Systems 24(1), 51–78 (2006)

4. Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R.: A pipelined architecture for
distributed text query evaluation. Information Retrieval 10(3) (2007)

5. Marin, M., Gil-Costa, V., Bonacic, C., Baeza-Yates, R., Scherson, I.D.: Sync/Async
parallel search for the efficient design and construction of Web search engines. Par-
allel Computing 36(4), 153–168 (2010)

6. Marzolla, M.: LibCppSim: A SIMULA-like, portable process-oriented simulation
library in C++. In: European Simulation Symposium, ESM (2004)

7. Gan, Q., Suel, T.: Improved techniques for result caching in Web search engines. In:
WWW (2009)

8. Valiant, L.G.: A bridging model for multi-core computing. Journal of Computer and
System Sciences 77(1) (2011)



Query Processing

in Highly-Loaded Search Engines

Daniele Broccolo1,2, Craig Macdonald3, Salvatore Orlando1,2, Iadh Ounis3,
Raffaele Perego2, Fabrizio Silvestri2, and Nicola Tonellotto2

1 Università Ca’Foscari of Venice
2 ISTI-CNR of Pisa

3 University of Glasgow
firstname.surname@unive.it, firstname.surname@isti.cnr.it,

firstname.surname@glasgow.ac.uk

Abstract. While Web search engines are built to cope with a large
number of queries, query traffic can exceed the maximum query rate
supported by the underlying computing infrastructure. We study how
response times and results vary when, in presence of high loads, some
queries are either interrupted after a fixed time threshold elapses or
dropped completely. Moreover, we introduce a novel dropping strategy,
based on machine learned performance predictors to select the queries
to drop in order to sustain the largest possible query rate with a relative
degradation in effectiveness.

Keywords: Distributed Search Engines, Efficiency, Effectiveness,
Throughput.

1 Introduction

In this paper we study strategies for query processing in highly-loaded Web
Search Engines (SEs). We refer to a classical distributed SE architecture, adopt-
ing a Document Partitioning strategy [2], where each query server manages a
local index partition (shard), built on a non-overlapping subset of the whole doc-
ument collection. Queries are processed on all the shards in parallel, and partial
results, ordered by their score, are returned to a broker for the final ranking.
Dynamic pruning strategies (e.g. WAND [3] or MaxScore [4]) have been proposed
to reduce query processing times, by avoiding to score a subset of documents
(possibly those that are likely to not be present in the final list of results). We
can thus use these techniques to improve the throughput when unsustainable
bursts of queries arrive to the SE, even if they potentially reduce the qual-
ity of the retrieved results. Another ranking strategy that trades effectiveness
for retrieval efficiency is based on impact-sorted indexes [1], but since Boolean
querying becomes harder to support and inclusion of new documents is also
complex, postings lists are commonly maintained in document-sorted order. Al-
ternatively, we can choose to fully score arriving queries, and drop during peak
load the queries that cannot be processed within a fixed time threshold [5].

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 49–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


50 D. Broccolo et al.

In this paper, we investigate the performances of different dropping solutions
with the goal of maintaining the query response time under a user specified
time threshold. We compare näıve solutions with a novel method, based on the
prediction of query processing time which leverages a machine learning tech-
nique. We consider disjunctive query processing with full DAAT as the baseline
strategy [4]. Since our reference architecture is distributed, we design a model
to predict query processing times1 to be deployed at each query server. We use
the predictors to understand when a query has to be dropped in order to re-
serve the current capacity of the SE for processing the remaining query traffic.
We test our solution while varying the query arrival rate, from 5 to 100 queries
per second (q/s), and measuring the query response time and the effectiveness in
terms of NDCG@20 for all the methods proposed. Our approach can remarkably
decrease the total number of queries dropped and also improve the overall SE
effectiveness, whilst attaining query response times within the time threshold.
For instance, for a query arrival rate of 100 per second, our strategy is able to
answer up to 40% of the queries without degrading effectiveness, while for our
baseline strategies this happens for only 10% of queries.

2 Prediction-Based Dropping

We consider that each query server of our distributed SE receives a query stream
from the query broker, and processes one query at a time. If a query server is
processing a query, and other queries arrive, they are locally enqueued until they
can be processed. Hence, the query response time for a query q is the sum of
the time spent waiting in the queue wt(q) and the processing time pt(q). The
length of the queue at each query server depends on the query arrival rate and
the processing time of the previous queries. In general, for higher query arrival
rates, the query response time increases, due to the longer waiting times. To
ensure low query response times in a high load environment, we fix a maxi-
mum processing threshold T that queries must be answered within. We adopt
two baseline strategies that define how a query server responds to a query q for
which T has elapsed during processing. The first strategy (hereinafter, Drop),
whenever wt(q)+pt(q) ≥ T , interrupts the processing of q and returns an empty
list of results. Similar to the Drop strategy, the second baseline (hereinafter,
Partial-Drop) returns the partial results list that has been computed thus far
(instead of dropping all results that have already been computed). Finally, we
note that each query server acts independently from the other servers, in an au-
tonomous fashion: each queue is managed locally, and any dropping strategy is
enforced locally. Hence, even if a query is fully processed on one query server, it
can be (partially-)dropped on another server, causing the final results returned
by the query broker to the user to be partial in nature.

Unlike the previously described baselines,in this paper we aim to use the pre-
dicted response times at each query server to understand if a query q can be
processed within the remaining time on that server before T has elapsed. Given

1 Query efficiency predictors have been proposed in [6] for WAND and MaxScore.



Query Processing in Highly-Loaded Search Engines 51

the predicted response time p̂t(q) of query q, if the inequality p̂t(q) ≤ T −wt(q)
does not hold, then the query is dropped before processing starts and the next
query is processed from the queue. In this way, the query server does not consume
processing resources for queries that cannot be fully (and effectively) completed
within the remaining time until the threshold T has elapsed. Query efficiency pre-
diction for full DAAT can be achieved using a machine learned algorithm designed
for a specific number of query terms and using the total number of postings to
be scored as feature [6]. We adopt a different learned model, where the number
of query terms is a feature, thus obtaining a single model instead of a model for
each query length. To further improve the quality of estimations based on the
total number of postings only, we use five additional features, which are listed in
Table 1(a). All features can be easily computed during the processing time with-
out affecting the query response time. The response times are predicted using a
machine learning model, i.e., a linear regression of all these features. The coef-
ficients of the regression model are computed by minimising the mean squared
error on a set of training queries. In the following, we refer to our prediction-
based dropping strategy as ML-Drop, and experiment to ascertain its properties
in terms of efficiency and effectiveness.

Table 1. (a) Features used for predicting DAAT processing time. (b) prediction
accuracy using different feature sets.

Query Efficiency Prediction Features

total no. of postings in the query’s term lists
no. of terms in the query
variance of the length of the posting lists
mean of the length of the posting lists
length of the shortest posting list
length of the longest posting list

(a)

# features RMSE err ≤ 10 ms

1a 8.78 ·10−3 87.83 %
6 4.98 ·10−3 95.53 %

(b)

a total no. of postings in the
query’s term lists

3 Experiments

The research questions addressed in this paper are: (i) What is the accuracy of
our response time predictors? (ii) What are the benefits of our ML-Drop strategy
with respect to the two baseline strategies, Drop and Partial-Drop?

First we define the setup for all the experiments. The SE is implemented in
C++, exploiting multi-threading to handle multiple queries, and communica-
tions between query servers and the broker are implemented by low-level socket
interfaces to reduce overheads. Each query is processed in disjunctive mode us-
ing a full DAAT strategy, where documents are ranked using BM25 with its default
parameters. We use a cluster of twelve machines, where each machine has one
Intel Xeon 2.40GHz X32230 CPU and 8GB of RAM, connected using Gigabit
Ethernet. Ten machines are used for the query servers, one for the broker and
the last one for the client that simulates. For the experiments, we use 40,000



52 D. Broccolo et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100

Av
er

ag
e 

qu
er

y 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

)

Queries per second

DAAT
Drop

Partial-Drop
ML-Drop

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  20  40  60  80  100

ND
CG

@
20

Queries per second

DAAT
Drop

Partial-Drop
ML-Drop

(b)

Fig. 1. (a) Average query response time (in seconds) for different dropping strategies;
(b) Effectiveness (NDCG@20)

queries from the TREC Million Query Track 2009 [7], 678 of which have cor-
responding relevance assessments: 30,000 queries are used as the training set
for learning regression models for response time prediction; the other 10,000,
including the 687 with relevance assessments, are used for testing the accuracy
of the predictors, and retrieval experiments. The corresponding document cor-
pus is ClueWeb09 (cat. B), which comprises 50 million English Web documents.
We index the document collection using the Terrier search engine2, removing
standard stopwords and applying Porter’s English stemmer (our C++ retrieval
system can read Terrier’s indices). The resulting index is document-partitioned
into ten separate index shards, while maintaining the original ordering of the
collection. We retrieve 1,000 results for each query. Finally, we set T = 0.5 s as
our time threshold. We choose this value because is a reasonable time from the
user perspective. Indeed, in our architecture, 98% of queries can be answered
within 0.5 seconds using the full DAAT strategy when the system is not heavy
loaded.

Prediction Accuracy. Table 1(b) shows the average accuracy of our predic-
tion models measured in terms of root mean square error (RMSE) respect to
the actual query execution time. The first row shows the performance of the
predictors using only one feature, namely the total number of postings for each
query. The second row shows the performance obtained when all the six features
of Table 1(a) are used. Our model with six features halves the RMSE over the
10, 000 queries used for the test set. Given an average processing time for DAAT of
110 ms, we compute the percentage of test queries with a predicted processing
time with a maximum absolute error of 10 ms, and our model performs markedly
better (∼96%) than the single feature model (∼88%). Hence, in conclusion to
our first research question, we find that the proposed additional features enhance
remarkably the accuracy of the predicted response times.

Dropping Strategies. In order to analyse the performance of three differ-
ent query dropping strategies, namely Drop, Partial-Drop and ML-Drop, we

2 http://terrier.org/

http://terrier.org/


Query Processing in Highly-Loaded Search Engines 53

Table 2. Effectiveness (NDCG@20) for the different methods. Statistically significant
degradations vs. DAAT, as measured by the paired t-test, are denoted by � (p < 0.05)
and � (p < 0.01).

Method 5 q/s 10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s

DAAT 0.228 0.228 0.228 0.228 0.228 0.228 0.228
Drop 0.219 � 0.200 � 0.140 � 0.105 � 0.076 � 0.056 � 0.021 �

Partial-Drop 0.227 0.224 � 0.210 � 0.189 � 0.173 � 0.161 � 0.110 �
ML-Drop 0.227 0.227 0.217 0.207 � 0.205 � 0.203 � 0.195 �

compute the average query response time for the various strategies and we com-
pare them to the full DAAT processing strategy without any dropping. Figure
1(a) shows the average query response time (measured on the broker) vs. the
number of queries per second (denoted q/s). We observe that using the full DAAT
processing for all the queries implies an increasing query response time that is
caused by congestion at the queues. However, all the other strategies (Drop,
Partial-Drop and ML-Drop) manage to answer, on average, within the time
threshold T = 0.5 s, as the superimposed curves show. As expected, the Drop

and Partial-Drop strategies respect this threshold, as they are both defined
such that query processing terminates within T . Our approach (ML-Drop), in-
stead, can respect the threshold since our predictor are able to identify queries
to drop that cannot be processed within T . Next, we examine the impact on
effectiveness of the different processing methods. Figure 1(b) presents effective-
ness in terms of NDCG@20, while Table 2 reports the same NDCG@20 values,
in conjunction with statistical significance tests using the paired t-test. As ex-
pected, full processing (DAAT) always obtains the best effectiveness, at the price
of a higher query response time. The other strategies obtain an effectiveness
dependent on the system load, since the number of dropped queries is impacted
by the remaining time for processing queries. This time is inversely proportional
to the waiting time of the query itself. The least effective method is Drop: even
though it achieves high effectiveness when the system is unloaded, NDCG@20
decreases quickly as the load increases, because the processing of many queries
cannot be finished within the permitted time. Consequently, these queries are
dropped by the query server and the time spent is wasted, as no results are
returned to the broker. The other baseline, Partial-Drop, obtains a better ef-
fectiveness in comparison to Drop. This is expected, because by returning partial
results that have been computed within the limited processing time, some rele-
vant results for some queries can be retrieved on average. On the other hand, the
effectiveness of ML-Drop is always higher than the two baselines. For instance,
when queries arrive at a rate of 100 q/s, ML-Drop results in an effectiveness
drop of 15% NDCG@20 (0.228 to 0.195, significant for p < 0.05), compared to
Partial-Drop which would result in a 52% drop in effectiveness, significant for
p < 0.01. Similarly, for query arrival rates up to 20 q/s, ML-Drop exhibits no
significant degradation in effectiveness, which is in contrast with both Drop and
Partial-Drop. The higher effectiveness of ML-Drop compared to the baselines is
explained by the pro-active control over the query dropping behaviour: queries



54 D. Broccolo et al.

Table 3. Percentage of globally dropped (G) and partially evaluated queries (P)

Methods
10 q/s 20 q/s 30 q/s 40 q/s 50 q/s 100 q/s

P+G G P+G G P+G G P+G G P+G G P+G G

Drop 10% 1% 36% 9% 51% 25% 62% 34% 70% 41% 90% 57%

Partial-Drop 9% - 32% - 48% - 60% - 71% - 91% -

ML-Drop 6% 1% 20% 2% 31% 7% 38% 11% 44% 15% 59% 28%

which cannot satisfy threshold T are immediately discarded, thus leaving the
potential for more queries to be fully processed. To illustrate this, we analyse
the number of queries that are globally dropped for the different methods. A
query is globally dropped when it is dropped by all query servers processing
it. Indeed, as query servers are independent, a query can be dropped only in a
subset of the query servers. It is therefore possible that some queries have partial
results, even when the Drop strategy is used. Table 3 shows, for each strategy
and query rate, the percentage of queries that are either partially evaluated or
globally dropped (see columns P+G, where the best values are in bold). The
various columns G show the percentages of queries that are globally dropped. In
the case of Partial-Drop, since the expiry of the time threshold causes some
local partial results to be sent back to the broker, no global drops are observed.
For high query loads, i.e., 100 q/s, this impacts 90% of processed queries. For the
same high arrival rate, the Drop strategy globally drops around 57% of queries
while returning partial results for 33% of queries. However, in the case of the
ML-Drop strategy, the number of queries globally dropped or with partial results
markedly decreases in relation to the other strategies. Hence, in addressing our
second research question, we find that the proposed ML-Drop strategy reduces
the number of queries dropped under high load, resulting in improved effective-
ness. Indeed, when 100 queries per second arrive, ML-Drop is able to answer up
to 40% of the queries without effectiveness degradations, while for Drop and
Partial-Drop strategies this happens for only 10% of queries.

4 Conclusions

In this paper, we analysed dropping and stopping methods for query processing
in presence of an unsustainable workload. Our aim was to answer queries within
a fixed time threshold, whilst maintaining overall effectiveness of the results. We
proposed a novel dropping method based on the prediction of query execution
time. We test the proposed method and the baseline on a distributed SE using
10, 000 queries and a collection of 50 million documents, varying the number of
queries per second. Moreover, effectiveness measures use the relevance assess-
ments from the TREC Million Query track. Our efficiency predictor models are
able to predict the query response time for DAAT with an error less than 10 ms in
more than 93% of the cases. We showed that by using these predictors to select
the queries to drop, our proposal obtains up to 80% improvement in comparison



Query Processing in Highly-Loaded Search Engines 55

to the most effective of the used baselines. Finally, we showed that our method
decreases the number of dropped queries when the system is overloaded.

Acknowledgements. This work was partially supported by the EU projects
InGeoCLOUDS (no. 297300), MIDAS (no. 318786), E-CLOUD (no. 325091), the
Italian PRIN 2011 project “Algoritmica delle Reti Sociali Tecno-Mediate” (2013-
2014) and the Regional (Tuscany) project SECURE! (FESR PorCreo 2007-2011).

References

1. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early
termination. In: Proceedings of SIGIR, pp. 35–42 (2001)

2. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The Google cluster
architecture. IEEE Micro 23(2), 22–28 (2003)

3. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query eval-
uation using a two-level retrieval process. In: Proceedings of CIKM, pp. 426–434
(2003)

4. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349–379 (1996)

5. Tonellotto, N., Macdonald, C., Ounis, I.: Efficient and Effective Retrieval using
Selective Pruning. In: Proceedings of WSDM (2013)

6. Macdonald, C., Tonellotto, N., Ounis, I.: Learning to Predict Response Times for
Online Query Scheduling. In: Proceedings of SIGIR, pp. 621–630 (2012)

7. Carterette, B., Pavlu, V., Fang, H., Kanoulas, E.: Million Query Track 2009
Overview. In: Proceedings of TREC (2009)



Indexes for Jumbled Pattern Matching

in Strings, Trees and Graphs

Ferdinando Cicalese1, Travis Gagie2,3,
Emanuele Giaquinta2,�, Eduardo Sany Laber4,

Zsuzsanna Lipták5, Romeo Rizzi5,
and Alexandru I. Tomescu2,3,��

1 Department of Computer Science, University of Salerno, Italy
2 Department of Computer Science, University of Helsinki, Finland

3 Helsinki Institute for Information Technology, Finland
4 Department of Computer Science, PUC Rio de Janeiro, Brazil
5 Department of Computer Science, University of Verona, Italy

Abstract. We consider how to index strings, trees and graphs for jum-
bled pattern matching when we are asked to return a match if one exists.
For example, we show how, given a tree containing two colours, we can
build a quadratic-space index with which we can find a match in time
proportional to the size of the match. We also show how we need only
linear space if we are content with approximate matches.

1 Introduction

Suppose we are given a connected graph G on n coloured nodes and a multisetM
of colours and asked to find a connected subgraph of G whose nodes’ colours are
exactly those inM , if such a subgraph exists. This problem is commonly referred
to as jumbled pattern matching, and has recently aroused much interest in the
case of strings [7,5,8,6,17,13,14,2]: There we are looking for substrings of the text
which have the same multiplicity of each character as the query, also referred to
as its Parikh vector. (The boolean version is the Parikh fingerprint or character
set [1,10].) Parikh vectors appear frequently in applications in computational
biology [3,5,11,4], as do jumbled patterns in graphs [16].

Even when G is a tree, there can be exponentially many such matching sub-
graphs. When G is a path, however, there are O(n) matches and we can find
them all in O(n) time [7]. When G is a path containing a constant number of
colours—i.e. the nodes are coloured with only two colours—then in O

(
n2

)
time

we can build a o(n2)-space index with which we can determine in o(n) time
whether there is a match [15]. When G is a path containing only two colours, in
O
(
n2/ log2 n

)
time we can build an O(n)-bit index with which we can determine

in O(1) time whether there is a match [8,6,17,13]. Moreover, in O
(
n2/ log2 n

)
time we can build an index of size O(n logn)-bits with which we can find all the

� Supported by Academy of Finland grant 118653 (ALGODAN).
�� Supported by Academy of Finland grant 250345 (CoECGR).

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 56–63, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Indexes for Jumbled Pattern Matching in Strings, Trees and Graphs 57

matches using O(|M |) worst-case time per match [13]. We can build an approx-
imation of this index in O

(
n1+ε

)
time with the quality of the approximation

depending on ε [9]. Throughout this paper our model is the word-RAM with
Ω(log n)-bit words and we measure space in words unless stated otherwise.

Determining whether there is a match is NP-complete even when G is a
tree [16]. It is also NP-complete when G contains only two colours, but takes
polynomial time when G both has bounded treewidth and contains only a con-
stant number of colours [12]. When G contains only two colours there exists
an O(n)-bit index with which we can determine in O(1) time whether there
is a match [13]. Building this index is NP-hard in general but, since finding a
match is self-reducible, takes polynomial time when G has bounded treewidth
and O

(
n2/ log2 n

)
time when G is a tree. At the cost of increasing the space

to O(n) words, this index can be generalized to return a subset of the nodes in
the matches that is also a hitting set for all the matches, using O(logn) time
worst-case time per match. In the worst case, however, this subset of nodes is of
little use in finding even a single complete match.

We start by presenting some basic tradeoffs in Section 2, to establish what
can be done näıvely on graphs. In Sections 3 to 6 we assume G contains only
two colours. In Section 3 we consider the case when G is a path — i.e., a binary
string — and describe an O(n)-space index with which we can find a match in
O(logn) time. In Section 4 we consider the case when G is a tree and, based on
our index for binary strings, describe an O

(
n2

)
-space index with which we can

find a match in O(|M |) time. If we are concerned only with multisets of size at
most n1/2, then we can reduce the space bound to O(n). In Section 5 we show
that we can achieve the same space bound if we are content with approximate
matches. In Section 6 we partially extend our results from trees to graphs.

2 Basic Tradeoffs

Suppose G is a graph containing a constant number c of colours and we will be
given M as the vector of length c whose components are the frequencies of the
colours, the Parikh vector for M ; note that the sum of its entries equals |M |.
Since for any 1 ≤ m ≤ n, there are

(
m+c−1
c−1

)
= O

(
mc−1

)
possible multisets of

size m and it takes O(m) space to store pointers to a match for such a multiset,
there exists an O

(
nc+1

)
-space index with which we can find a match in O(|M |)

time. When G has bounded treewidth we can build this index in polynomial
time, and we can reduce the space bound to O(n) at the cost of increasing the
query time to |M |O(1). To do the latter, we store G itself and pre-compute and
store pointers to matches only for multisets of size at most n1/(c+1). Given a
multiset M with |M | > n1/(c+1), we search G in nO(1) = |M |O(1) time.

For any positive constant ε, we can build an O(n logc n)-space approximate
index with which, if M has an exact match, then in O(1) time we can find a
substring whose Parikh vector differs from M ’s by at most a factor of 1 + ε in
each component. (This index does not tell us whether M has an exact match,
however, since we may find such a substring even when it does not.) Without



58 F. Cicalese et al.

loss of generality, assume we are concerned only with multisets in which each
character appears at least once; we can reduce the general case to 2c = O(1)
instances of this one. We store a c-dimensional grid with each side having length
�log1+ε n�+1. For each point (x0, . . . , xc−1) in this grid, we store pointers to the
nodes in a connected subgraph whose Parikh vector is component-wise between(
(1 + ε)x0 , . . . , (1 + ε)xc−1

)
and

(
(1 + ε)x0+1, . . . , (1 + ε)xc−1+1

)
. This takes a to-

tal of O(n logc n) space. Given the Parikh vector (v0, . . . , vc−1) of M , we return
the subgraph stored for the point

(
�log1+ε v0�, . . . , �log1+ε vc−1�

)
in the grid,

if that subgraph exists. We summarize these basic tradeoffs in the following
proposition:

Proposition 1. When G is a graph containing a constant number c of colours
there exists an O

(
nc+1

)
-space index with which we can find a match in O(|M |)

time. For any positive constant ε there exists an O(n logc n)-space index with
which in O(|M |) time we can find an approximate match in which each colour’s
frequency is within a factor of 1+ ε of its frequency in M . When G has bounded
treewidth we can build these indexes in polynomial time and, moreover, we can
reduce the space of the exact index to O(n) at the cost of increasing the query
time to |M |O(1).

When G is a path — which we can think of as a string over an alphabet of c
characters — we can improve these bounds. Since G contains O

(
n2

)
substrings

and we can specify any substring by its two endpoints, we can build an O
(
n2

)
-

space index with which we can find a match in O(1) time. Calculation shows we
can reduce the space bound to O(n) at the cost of increasing the query time to
O(|M |c), and we can store an approximate index in O(logc n) space.

Suppose G is a string over a constant-size alphabet and 0 < ε ≤ 1. Then in
O
(
n1+ε

)
expected time we can build an index with which, given a multiset M of

characters, we can find all occ matches ofM in O
(
|M |1/ε + occ

)
worst-case time.

To do this, we storeG itself and, for 1 ≤ m ≤ nε, we make a pass overG and store,
for each multiset of sizem that has a match in G, a list of all the locations of that
multiset’s matches. Notice the lists for multisets of size m are disjoint and have
total length n−m+ 1; therefore, with dynamic perfect hashing we use a total of
O
(
n1+ε

)
expected time and O

(
n1+ε

)
space. Given a multiset M with |M | ≤ nε,

we return our pre-computed list of the locations of M matches in O(|M |+ occ)
time, or O(occ) time if we are given M as a Parikh vector. Given a multiset M
with |M | > nε, we search G in O(n) = O

(
|M |1/ε

)
time.

As an aside, we note that we can extend our approximate indexes to
support approximate scaled-then-permuted pattern matching (see [7]). To
do this, for each point (x0, . . . , xc−1) in the grid for which there is no
subgraph whose Parikh vector is between

(
(1 + ε)x0 , . . . , (1 + ε)xc−1

)
and(

(1 + ε)x0+1, . . . , (1 + ε)xc−1+1
)
, we store pointers to the nodes in a connected

subgraph (if there is one) whose Parikh vector is a multiple of a one between(
(1 + ε)x0 , . . . , (1 + ε)xc−1

)
and

(
(1 + ε)x0+1, . . . , (1 + ε)xc−1+1

)
. The query time

is still proportional to the size of the match returned but that may now be larger
than |M |.



Indexes for Jumbled Pattern Matching in Strings, Trees and Graphs 59

3 An Index for Binary Strings

Suppose G is a binary string, i.e., G[1..n] ∈ {0, 1}∗. It holds for any m: If there
are p copies of 1 in G[i..i+m− 1] and r copies of 1 in G[k..k +m− 1], then for
every value q between p and r there is a position j between i and k such that
G[j..j + m − 1] contains q copies of 1. This observation was the basis for the
index in [8] and is the basis for ours as well.

We store an O(1)-time rank data structure for G and, for 1 ≤ m ≤ n, we
store the endpoints of two substrings of length m in G with the most and with
the fewest copies of 1. This takes a total of O(n) space. Given a Parikh vector
(v0, v1), we look up the left endpoints i and j of the substrings of length v0 + v1
in G with the most and with the fewest copies of 1. We set i and j as the initial
endpoints for a binary search: at each step, we use two rank queries to find the
number q of 1s in G

[⌊
i+j
2

⌋
..
⌊
i+j
2

⌋
+ v0 + v1 − 1

]
; if q = v1 then we stop and

report this substring by its endpoints; if q < v1 then we set i = �(i+ j)/2� and
continue; if q > v1 then we set j = �(i + j)/2� and continue. This search takes
a total of O(logn) time.

Theorem 1. When G is a path containing only two colours, we can build an
O(n)-space index with which we can find a match in O(logn) time.

4 Exact Indexes for Trees with Two Colours

Suppose G is a tree containing only two colours, black and white. Gagie, Her-
melin, Landau and Weimann [13] noted that the observation in Section 3 can be
extended to connected graphs: For any m, if there are connected subgraphs Hp

and Hr in G with m nodes each and p and r white nodes, respectively, then for
every value q between p and r, there is a connected subgraph Hq with m nodes
and q white nodes.

To see why, notice that we can construct a sequence of connected subgraphs
with m nodes such that the sequence starts with Hp and ends with Hr and any
consecutive pair of subgraphs in the sequence differ on two nodes. To build this
sequence, we find a path between Hp and Hr. We root Hp and Hr, which are
trees themselves, at the first and last nodes in the path (or at a shared node,
if they are not disjoint). One by one, we remove nodes bottom-up in Hp and
add nodes along the path; remove nodes nearest to Hp in the path and add
nodes further along the path; then remove nodes from the path and add nodes
top-down in Hr.

Suppose p and r are the minimum and maximum numbers of white nodes in
any connected subgraphs of size m, and we store a path consisting of the nodes
in Hp in bottom-up order, followed by the nodes in the path, followed by the
nodes in Hr in top-down order. If we apply Theorem 1 to this path, then we
obtain an O(n)-space index with which, given the Parikh vector for a multiset
M with |M | = m, we can find a match in the graph G in O(logn+ |M |) time.
Notice that, if |M | < logn, then we can simply store an O

(
log2 n

)
-space lookup



60 F. Cicalese et al.

table with which we can find a match in O(|M |) time. Therefore, applying this
construction for 1 ≤ m ≤ n, we obtain the following theorem:

Theorem 2. When G is a tree containing only two colours, we can build an
O
(
n2

)
-space index with which we can find a match in O(|M |) time.

When m ≈ n, we need O(n) space to store subgraphs with the minimum and
maximum numbers of white nodes and the path between them. When m � n,
however, those subgraphs are small and most of the space is taken up by the
path. We now show how we can store G such that we can support fast rank
queries on paths.

Lemma 1. We can store G in O(n) space such that q rank queries on the path
between any two nodes take a total of O(logn+ q) time.

Proof. We compute the heavy-path decomposition [18] of G and store O(1)-time
rank data structures for each of the heavy paths, which takes O(n) space. The
path between any two nodes u and v is a sequence of O(logn) intervals of heavy
paths. Given u and v, for each of these intervals we compute the number of white
nodes in that interval and to either side of it in the heavy path; this takes a total
of O(logn) time and rank queries on heavy paths. With this information we can
perform any rank query on the path from u to v using a single rank query on a
heavy path. 
�

If we store G with Lemma 1 and store subgraphs with the minimum and
maximum numbers of white nodes only for 1 ≤ m ≤ n1/2, then our index takes
only O(n) space but supports queries only for |M | ≤ n1/2. When |M | > n1/2

we can use an algorithm by Gagie et al. to find a match in O(|M |n) = O
(
|M |3

)
time.

Corollary 1. When G is a tree containing only two colours, we can build an
O(n)-space index with which we can find a match in O(|M |) time when |M | ≤
n1/2 and in O

(
|M |3

)
time otherwise.

5 An Approximate Index for Trees with Two Colours

In this section we present our most technical result, which is how to store in
O(n) space an approximate index for a tree containing only two colours. Again,
an approximate match is one whose Parikh vector differs from M ’s by a factor
of at most 1 + ε in each component. (In contrast, with Proposition 1 we would
use O

(
n log2 n

)
space.) Without loss of generality, assume we are only concerned

with multisets in which there are at least as many black nodes as white nodes;
we can build a symmetric index for the other case. Notice that in this case, if
we can find a connected subgraph H with the same size as the given multiset M
and in which the number of white nodes is within a factor of 1+ ε of the number
in M , then the number of black nodes in H is also within a factor of 1+ ε of the
number in M .



Indexes for Jumbled Pattern Matching in Strings, Trees and Graphs 61

Our main idea is to store anO(n)-space data structure with which, given a size
m, we can find two connected subgraphs with sizem that have approximately the
minimum and maximum numbers of white nodes. Suppose we store a subgraph
with the minimum number of white nodes for each size that is a power of two and
for each size such that the minimum number of white nodes is a factor of 1 + ε
greater than the number in the preceding stored subgraph. That is, we store
a sequence of lgn subgraphs with total size O(n) and a sequence of log1+ε n
subgraphs with total size O(n logn). The latter sequence of subgraphs has total
size O(n logn) in the worst case because the minimum number of white nodes
may stay low until we reach size nearly n and then increase rapidly, causing us
to store about log1+ε n subgraphs each of size nearly n. However, we can store
this sequence of subgraphs in a total of O(n) space using the following lemma.
Similarly, we also store a subgraph with the maximum number of white nodes for
each size that is a power of two and for each size such that the maximum number
of white nodes is a factor of 1+ε greater than the number in the preceding stored
subgraph; this also takes O(n) total space if we store the subgraphs with the
following lemma.

Lemma 2. We can store G in O(n) space such that, if G contains a connected
subgraph of size m with w white nodes, then we can represent some such subgraph
in O(w) space such that recovering this subgraph takes O(m) time.

Proof. We store the adjacency lists for G’s nodes, with each list ordered such
that black neighbours precede white neighbours. With this representation, we
can expand a subgraph by adding only black nodes as long as this is possible,
using O(1) time per added node.

Let H be a connected subgraph of size m with w white nodes. We store
pointers to the white nodes in H , which takes O(w) space. Since G is a tree, we
can find the unique paths between these nodes in a total of m time; notice these
paths are contained in H and consist of black nodes. If the subgraph consisting
of the white nodes and these paths has fewer than m nodes, then we add black
nodes until it has m nodes, which takes a total of O(m) time. It is possible to
add enough black nodes without adding any white nodes because, e.g., we could
add the remaining black nodes in H . 
�

If we are given a multisetM such that we have subgraphs of size |M | sampled,
then we can proceed as in the proof of Theorem 2 and find an exact match if there
is one. If we do not have subgraphs of size |M | sampled, then we use our sampled
subgraphs to build subgraphs Hmin and Hmax of size |M | with approximately
minimum and maximum numbers of white nodes, then proceed almost as in the
proof of Theorem 2: if the number of white nodes Hmin is larger but within a
factor of 1 + ε of the number in M , then we return Hmin; if the number in Hmin

is more than a factor of 1+ε larger than the number in M , then there is no exact
match and we return nothing; if the number of white nodes Hmax is smaller but
within a factor of 1+ ε of the number in M , then we return Hmax; if the number
in Hmax is less than a factor of 1 + ε smaller than the number in M , then there



62 F. Cicalese et al.

is no exact match and we return nothing; in all other cases, we proceed as in
Theorem 2.

To build Hmin we take the next larger subgraph with a minimum number of
white nodes and discard nodes until it has size |M | while leaving it connected.
This next larger subgraph has size less than 2|M |, because we sampled for every
size that is a power of two; has at most 1 + ε times more white nodes than
the subgraph of size |M | with the minimum number of white nodes, because we
sampled whenever the minimum number of white nodes increased by a factor of
1 + ε; and is a tree, because it is a connected subgraph of a tree. It follows that
discarding nodes takes O(|M |) time and, since discarding nodes cannot increase
the number of white nodes, Hmin contains at most 1 + ε times the minimum
number of white nodes. To build Hmax we take the next smaller subgraph with
a maximum number of white nodes and add nodes until it has size |M |. By
symmetric arguments, this takes O(|M |) time and, since adding nodes cannot
decrease the number of white nodes, the maximum number of white nodes in a
subgraph of size |M | is at most 1+ε times the number in Hmax. Finding the path
from Hmin to Hmax takes O(|M |) time using the representation from Lemma 1.

Theorem 3. When G is a tree containing only two colours, for any positive
constant ε we can build an O(n)-space index with which in O(|M |) time we can
find an approximate match in which each colour’s frequency is within a factor of
1 + ε of its frequency in M .

6 Indexes for Graphs with Two Colours

Suppose G is a graph containing only two colours, black and white. Theorem 2
applies in this case as well, if we consider spanning trees of Hp and Hr instead of
the connected subgraphs themselves, but we can build the index in polynomial
time only in special cases, such as when G has bounded treewidth.

Theorem 4. When G is a graph containing only two colours, there exists an
O
(
n2

)
-space index with which we can find a match in O(|M |) time.

When G has bounded treewidth we can find a match in nO(1) time, so we can
prove a weaker version of Corollary 1 for graphs. To do this, we build a spanning
tree for G and apply Lemma 1 to that spanning tree. We can build the resulting
index in polynomial time.

Corollary 2. When G is a graph with bounded treewidth containing only two
colours, we can build an O(n)-space index with which we can find a match in
O(|M |) time when |M | ≤ n1/2 and in |M |O(1) time otherwise.

We cannot quite extend Theorem 3 to graphs because Lemma 2 does not
apply (since we may not be able to recover the correct paths between the white
nodes in the subgraph H). However, if we store connected subgraphs explicitly
instead of with Lemma 2, then calculation shows the index takes O(n logn)
space. Again, this index can be built in polynomial time when G has bounded
treewidth.



Indexes for Jumbled Pattern Matching in Strings, Trees and Graphs 63

Theorem 5. When G is a graph containing only two colours, for any positive
constant ε we can build an O(n logn)-space index with which in O(|M |) time
we can find an approximate match in which each colour’s frequency is within a
factor of 1 + ε of its frequency in M .

References

1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
Parikh mapping. J. Discrete Algorithms 1(5-6), 409–421 (2003)

2. Badkobeh, G., Fici, G., Kroon, S., Lipták, Z.: Binary jumbled string matching for
highly run-length compressible texts. Inf. Process. Lett. 113(17), 604–608 (2013)

3. Benson, G.: Composition alignment. In: Benson, G., Page, R.D.M. (eds.) WABI
2003. LNCS (LNBI), vol. 2812, pp. 447–461. Springer, Heidelberg (2003)

4. Böcker, S.: Sequencing from compomers: Using mass spectrometry for DNA de
novo sequencing of 200+ nt. J. of Computational Biology 11(6), 1110–1134 (2004)

5. Böcker, S.: Simulating multiplexed SNP discovery rates using base-specific cleavage
and mass spectrometry. Bioinformatics 23(2), 5–12 (2007)

6. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012)

7. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf.
Process. Lett. 92(6), 293–297 (2004)

8. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Proc. Prague Stringology Conference (PSC 2009), pp. 105–117 (2009)

9. Cicalese, F., Laber, E., Weimann, O., Yuster, R.: Near linear time construction
of an approximate index for all maximum consecutive sub-sums of a sequence. In:
Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 149–158. Springer,
Heidelberg (2012)

10. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. J. Discrete
Algorithms 5(2), 330–340 (2007)

11. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences.
Journal of Computational Biology 11(6), 1050–1060 (2004)

12. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for
finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

13. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern
matching on trees and tree-like structures. In: Bodlaender, H.L., Italiano, G.F.
(eds.) ESA 2013. LNCS, vol. 8125, pp. 517–528. Springer, Heidelberg (2013)

14. Giaquinta, E., Grabowski, S.: New algorithms for binary jumbled pattern matching.
Inf. Process. Lett. 113(14-16), 538–542 (2013)

15. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern
matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)

16. Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to
metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 360–368
(2006)

17. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures
for permutation matching in binary strings. J. Discr. Alg. 10, 5–9 (2012)

18. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)



Adaptive Data Structures for Permutations

and Binary Relations�

Francisco Claude1,2,3 and J. Ian Munro3

1 Akori S.A.
Santiago, Chile

2 Escuela de Informática y Telecomunicaciones
Universidad Diego Portales, Chile

3 David R. Cheriton School of Computer Science
University of Waterloo, Canada

Abstract. We present new data structures for representing binary rela-
tions in an adaptive way, that is, for certain classes of inputs we achieve
space below the general information theoretic lower bound, while achiev-
ing reasonable space complexities in the worst case. Our approach is de-
rived from a geometric data structure [Arroyuelo et al., TCS 2011]. When
used for representing permutations, it converges to a previously known
adaptive representation [Barbay and Navarro, STACS 2009]. However,
this new way of approaching the problem shows that we can support
range searching in the adaptive representation. We extend this approach
to representing binary relations, where no other adaptive representations
using this chain decomposition have been proposed.

1 Introduction

Binary relations and permutations arise in many applications in computer sci-
ence. Examples include text indexing [12] and graph representations [8], among
others. These fundamental objects have been heavily studied [11,4,5,6], and very
efficient data structures supporting a wide range of operations have emerged.
However, most of them remain bounded by the information theoretic lower
bound in their space consumption, even in the cases where the objects have
exploitable properties; for example Web Graphs [7]. Some exceptions are all the
developments for compressed suffix arrays [12] and the work by Barbay and
Navarro [6] on more general permutations.

In this paper, we present space-efficient data structures that have adaptive
space and time complexities. Our approach comes from a geometric perspective,
and for permutations, converges to the representation by Barbay and Navarro [6].
However, our new approach brings a new perspective, showing how to support
range searching operations. We show that the work of [6] serves to represent
binary relations with Theorem 1, and also prove an alternative tradeoff based
on our own formulation of their structure.

� First author funded in part by Google U.S./Canada PhD Fellowship. Second author
funded in part by NSERC and the Canada Research Chairs Programme.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 64–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
 corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Adaptive Data Structures for Permutations and Binary Relations 65

The paper is organized as follows. In Section 2 we present related work on
representing permutations and binary relations, we also include some background
on data structure for range searching proposed by Arroyuelo et al. [1]. In Section
3 we present our adaptive representation for permutations, and show how this
representation converges to the one by Barbay and Navarro. Next, in Section
4, we extend the representation for permutations to cover binary relations in
general, presenting two different approaches. Then, in Section 4.2, we present
one simple application of our structure. Finally, in Section 5, we present our
conclusions.

2 Related Work

We present the related work in the next two subsections. The first one presents
previous results on representing permutations and binary relations; the second
covers recent results on adaptive range searching.

2.1 Permutation and Binary Relations

The most common queries for a permutation Π over [n]1 are: (1) π(i): obtain
the value of Π [i]; (2) π−1(j): find i such that j = Π [i]; (3) πk(i): apply π k
times, similarly we define π−k(j); and (4) RΠ(i1, i2, j1, j2): find elements i such
that i1 ≤ i ≤ i2 and j1 ≤ π(i) ≤ j2.

One efficient representation for arbitrary permutations is that of Munro et al.
[11]. This representation achieves (1 + ε)n lgn(1 + o(1)) bits. It supports π in
O(1) time and π−1 in O(1ε ) time. They also showed that π±k can be supported
in the same time as the time required to perform both π and π−1 by using only
O(n) extra bits. This extension applies to any representation, and thus, to our
results too.

The R operation is less commonly required, but also of interest. For instance,
consider a position-restricted search using a suffix array. The suffix array is a
permutation and searching for a pattern P between positions p1 and p2 is just
the result of doing a range query over the range of suffixes starting with P (i.e.,
[i1, i2]) and those pointing to positions in [p1, p2]. Mäkinen and Navarro showed
how to use wavelet trees to solve this operation and all others in O(lg n) time
within n lgn(1 + o(1)) bits of space [10].

Prior to this paper the only adaptive representation for permutations was that
proposed by Barbay and Navarro [6]. They show many possible decompositions
into monotonic sequences and subsequences, and give their space/time complex-
ities in term of the entropy of such sequences. As we will see later, we converge
to the same structure at the end of Section 3.

A natural representation for a permutation is a binary matrix of n× n where
we mark the coordinates (i, j) with a 1 iff π(i) = j. We will use this conceptual
representation in our construction. For a binary relation B over two sets [n1]

1 We use [n] to represent {1, 2, . . . , n}.



66 F. Claude and J. Ian Munro

Table 1. Operations and implementations supported by the representation of Barbay
et al. [4,5]. The space requirement is t(lgn2 + o(lg n2)) bits.

Operation Implementation 1 Implementation 2

rowrankB(i, j): number of 1s in row i O(lg lgn2 lg lg lg n2) O(lg lg n2)
up to position j (included).

rowselectB(i, p): p-th 1 in row i, or O(lg lg n2) O(1)
∞ if rowrankB(i, n2) < p.

rowcountB(i): number of 1s in row i. O(1) O(1)

colrankB(i, j): number of 1s in column j O(lg lg n2) O(lg lg n2 lg lg lg n2)
up to position i (included).

colselectB(p, j): p-th 1 in column j, O(1) O(lg lg n2)
or ∞ if colrankB(n1, j) < p.

colcountB(j): number of 1s in column j. O(1) O(1)

relaccessB(i, j): true iff (i, j) ∈ B. O(lg lg n2) O(lg lg n2)

and [n2], n2 ≤ n1, with t = |B| elements in the relation, we can also use the
same conceptual representation. B is represented as a matrix of n1 rows by n2

columns with t ones. A one in position (i, j) indicates that i relates to j in B.
Barbay et al. [4,5] presented a structure for representing binary relations that

requires t(lg n2+o(lgn2)) bits of space and supports the operations, offering two
tradeoffs, as shown in Table 1.

In a follow-up work, Barbay et al. [7] proved a set of reductions for many
operations on binary relations, and presented two structures supporting a core
of operations allowing to answer efficiently this extended set. An important op-
eration that allows us to support many of the operations in the extended set is
relrangeB. The operation relrangeB takes a range [i1, i2]× [j1, j2] and returns all
the coordinates in that range containing a one. From the structures proposed
in Barbay et al.’s work [7], the first structure achieves t lgn2 + o(t lg n2) bits,
slightly different from the previous proposal in the lower order term. The sec-
ond structure achieves lg(1 +

√
2)tH(B) + o(tH(B)) bits, where H corresponds

to the general information theoretic lower bound, supporting most operations
of interest in O(lg n2) time per element retrieved. In this case H(B) = t lg n1n2

t
corresponds to the information theoretic lower bound for representing a binary
relation with the characteristics of B.

2.2 Monotonic Decomposition of Sequences

Arroyuelo et al. [1] presented an adaptive data structure for range searching that
decomposes the set of points into non-crossing ascending and descending chains.
Let k be the number of chains generated by the decomposition, the search time
for a range query is O(lg k lgn+ k′ + output) time, where k′ corresponds to the
number of chains intersecting the query rectangle and output is the number of
points in the answer. The main idea behind the search strategy is to first search
for a chain that crosses the query rectangle (or discard all of them). Since the



Adaptive Data Structures for Permutations and Binary Relations 67

chains do not cross, we can binary search the chains, at O(lg n) cost each probe.
Once a chain is found, we have to traverse neighbouring chains until leaving the
rectangle in order to retrieve all points.

The decomposition into non-crossing chains can be computed in polynomial
time if we are given an optimal decomposition into monotonic subsequences
[1]. The optimal decomposition into monotonic subsequences is NP-Hard [15],
yet it is interesting that the optimal decomposition for a permutation of length
n is bounded by c

√
n, where c ≤ 2, and that we can get a constant factor

approximation in polynomial time [16]. In this work we consider the optimal
decomposition and show how this allows for a representation that is adaptive
in the number of monotonic subsequences into which a permutation or binary
relation can be decomposed. The results as stated apply also for the case when
we compute a constant factor approximation, thus making the data structure
feasible in practice.

3 Representing Permutations

Our representation works by decomposing the permutation into ascending and
descending subsequences. A simple way to visualize this is to consider the rep-
resentation of the permutation in a grid. Every row represents the index i, the
columns represent the value ofΠ [i]. It is easy to see that the inverse permutation
corresponds just to the transposed matrix. In order to simplify the presentation
of this work, we will only consider ascending subsequences, the results extend
easily to the general case.

First, we show how to represent a chain using bitmaps that support rank,
select and access operations.

Definition 1. A chain [(x1, y1), (x2, y2) . . . , (xn, yn)] is ascending iff xi ≤ xi+1,
1 ≤ i < n and yi ≤ yi+1, 1 ≤ i < n.

From this definition it is easy to prove our first result, stated in the following
lemma. In order to present this result in a general way we use S(n,m) as the
space requirement (in bits) for representing a bitmap of length n withm ones that
supports rank in tr, select in ts, and access in ta time. We use tb asmax(tr, ts, ta).

Lemma 1. Given an ascending chain C = [(i1, j1), (i2, j2), . . . , (im, jm)], of
length m, where the values do not exceed n, we can represent the chain in
2S(n,m) bits and support the following queries:

– getjC(i): gets j such that (i, j) ∈ C or ⊥ if such pair does not exist. We
also define getiC(j) in an analogous way. Both queries are supported in time
O(tb).

– rangeC(i1, i2, j1, j2): find the (i, j) ∈ C such that (i, j) ∈ [i1, i2]× [j1, j2] or ⊥
if such a point does not exist. This runs in time O(tb).

We can represent each chain using Lemma 1, this leads to the following
theorem:



68 F. Claude and J. Ian Munro

Lemma 2. Let mi be the number of elements in chain i. The total space
of the structure for a permutation that can be decomposed into χ chains is
2
∑χ

i=1 S(n,mi), and supports range queries in O(tb lgχ+ tbχ
′ + output), where

χ′ is the number of chains that intersect the range. The next table summarizes
some of the tradeoffs we can achieve.

Bitmap Representation Total Space tb

Pǎtraşcu [14] 2n lgχ+O
(
χ lgn+ χn

lgc n

)
O(c)

Okanohara and Sadakane [13] 2n lgχ+O(χ lg n+ n) O
(
lg n

mi
+ lg4 mi

lgn

)
The complexity for range queries follows from the work by Arroyuelo et

al. [1]. The computation of the final space is similar to the one used in proof of
Theorem 2.

This representation of course is only useful for very small values of χ, other-
wise the structure can be asymptotically bigger than the information theoretic
minimum. This can be improved by the following observation.

Observation 1. Given a set of χ bitmaps of length n, where the total number
of ones in the set is n and no two bitmaps contain a 1 in the same position,
we can represent them as a sequence of length n over an alphabet of size χ.
Furthermore, any sequence representation supporting rank, select, and access in
times tr, ts, and ta, allows us to support the same operations in each individual
bitmap within the same time.

This not only allows us to lower the space, but it also simplifies the π and
π−1 queries. To know which chain contains the value associated with π(i) we
just need to know which bitmap is referred to in the sequence representation by
accessing its position.

It is interesting that we can represent our structure using two sequences (x
and y coordinates), and they correspond exactly to Sπ and Sπ−1 . Furthermore,
they also correspond to the representation proposed by Barbay and Navarro [6],
which was originally proposed using wavelet trees, but can be modified to work
with any representation, offering a wider set of tradeoffs [2]. Currently, the most
interesting tradeoff is that of of Barbay at el. [3,2].

Another point to highlight, is that this shows that the original structure of
Barbay and Navarro also supports adaptive range searching. This particular
searching algorithm has proven to be efficient in practice [9]. This allows to
state the following corollary.

Corollary 1. Given (i) a permutation Π, that can be decomposed into χ mono-
tonically ascending and descending chains, and (ii) a sequence representation
that requires S(n, σ) for representing a sequence of length n over an alphabet
of size σ supporting rank, select and access queries in O(tb) time, there exists
a structure requiring 2S(n, χ) bits that supports computing π and π−1 in O(tb)
and range search queries in O(tb lgχ+ tbχ

′ + output), where χ′ is the number of
chains that touch the query rectangle, and output the size of the output.



Adaptive Data Structures for Permutations and Binary Relations 69

4 Representing Binary Relations

We use the same approach on the grid representing the binary relation. Given
a binary relation B, the pair (i, j) is marked iff i relates to j in B. We follow
the notation of the previous sections. Recall that σ is the number of rows, n the
number of columns, and t the number of pairs in B.

We assume all columns and rows have at least one element, as we can trivially
map the problem when we accept empty row/columns adding a bitmap of length
n+ σ supporting rank, select, and access.

We focus mostly on three operations: (1) Iterating over rowselectB(i, p =
1 . . . rowcountB(i))); (2) Iterating over colselectB(i, p = 1 . . . colcountB(i))); and
(3) Obtaining all pairs in [i1, i2]× [j1, j2] (i.e., relrangeB).

The technique presented in Section 3 does not apply directly to this case. The
main problem is that a chain could contain many elements that are in the same
row or column, and would result in multiple chains in the same position in a
bitmap. We first give a representation that matches the result for the permuta-
tions in time and space and then we show how to potentially improve the space
by using a more elegant technique. This new approach has a worse query time.

4.1 Using Permutations

We show how to transform a binary relation into a permutation by just con-
sidering a simple row/column addition algorithm that moves points around and
allows one to answer the queries of interest.

The main idea is to create multiples copies of rows and columns having more
than one point and then distribute the points across them so that each of them
has only one point, leading to a permutation on t elements. This is inefficient in
terms of space, but it allows us to match the performance of our structure for
permutations. In order to be able to extract the original information we need to
add 2t+o(t) bits, stored in B1 and B2. These bitmaps tell the length, in unary, of
each expanded row/column. Using these two bitmaps, we can answer rowcount =
Xa.select(1, x+1)−Xa.select(1, x)−1 and colcount = Xb.select(1, y+1)−
Xb.select(1, y)−1 in constant time. We omit the algorithm pseudo-code for lack
of space. We also omit the proof that our procedure generates a permutation.

This yields a theorem similar to that of Barbay et al. [4], but supporting a
different subset of operations.

Theorem 1. A binary relation B ⊆ {(i, j)|i ∈ [n1], j ∈ [n2]}, where t = |B|, that
can be decomposed into k monotonic chains, can be represented as a permutation
of length t with (n1 +n2)(1+ o(1)) extra bits. Furthermore, the resulting permu-
tation can be decomposed into k monotonic chains, and the operations rowselect,
colselect and relrange can be mapped to π, π−1 and R operations on the per-
mutation, respectively. The counting operations can be solved using bitmaps B1

and B2.



70 F. Claude and J. Ian Munro

4.2 Using Chains Directly

An alternative method can be obtained by decomposing the binary relation
directly. A chain could now contain more than one occurrence of a given row or
column, and because of that, the transformation that converges to the structure
by Barbay and Navarro does not work. At this point, the departure from the
original proposal by Barbay and Navarro pays off, allowing the representation
of a class wider than that of permutations.

We first take a look at the space consumption of our structure when decom-
posing B into chains. For that, we present an alternative representation for the
chains. For simplicity, we will use the bitmaps representation by Pǎtraşcu [14],
yet the results translate in a similar way as for Lemma 2, and thus, we can offer
a wide set of bounds.

Lemma 3. An ascending chain of length m with at most n̄ = n + σ points in

[n] × [σ] can be represented in 2m lg n̄
m + O

(
m+ n̄

lgc n

)
bits of space, but now

geti, getj and range take O(c lgm) time.

If we represent the structure using these chains, we obtain the following
theorem:

Theorem 2. A binary relation B over [n1] × [n2], where t = |B|, can be repre-
sented in 2t lg nk

t +2t lg k+O( kn
lgc n + k lg t) bits, where n = max(n1, n2). Within

this space, we can list elements in O(r) time per datum retrieved, and answer
range queries in O(r(lg k + k′) + output) time, where k is the number of chains,
k′ the number of chains hitting the query rectangle, output the size of the output,
and r = max(c lg k, c lg lgn).

We could try merging the sequences marking with a bitmap where each posi-
tion starts, and this would lead to the result obtained in Theorem 1.

Another observation regarding the representation presented in Theorem 2 is
that we can answer range minimum queries (RMQs) over the binary relation in
the same time as for relrange.

Lemma 4. By adding O(t) extra bits to the representation from Lemma 2, or
Theorems 1 and 2, and adding weights to each pair in the permutation/relation,
we can support range minimum queries in the same complexity as the one re-
quired for answering relaccess.

5 Conclusions and Future Work

We presented an alternative formulation for the representation by Barbay and
Navarro. This new approach allows to show how to support range searching
and provides some different tradeoffs. We then extended the results to the case
of binary relations. We proposed two alternatives, both achieving interesting
tradeoffs supporting navigation and range searching. It is worth noting that for
easy instances we obtain smaller and faster representations, which is clearly an
interesting behaviour.



Adaptive Data Structures for Permutations and Binary Relations 71

References

1. Arroyuelo, D., Claude, F., Dorrigiv, R., Durocher, S., He, M., López-Ortiz, A.,
Munro, J.I., Nicholson, P.K., Salinger, A., Skala, M.: Untangled monotonic chains
and adaptive range search. TCS 412(32), 4200–4211 (2011)

2. Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. Algorithmica (to appear, 2013)

3. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-
pressed rank/select and applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg (2010)

4. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly
encoded binary relations and tree-structured documents. TCS 387(3), 284–297
(2007)

5. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: SODA, pp. 680–689 (2007)

6. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: STACS, pp. 111–122 (2009)

7. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-
resentations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183.
Springer, Heidelberg (2010)

8. Claude, F., Navarro, G.: Fast and compact Web graph representations. TWEB
4(4), article 16 (2010)

9. Claude, F., Munro, J.I., Nicholson, P.K.: Range queries over untangled chains. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 82–93. Springer,
Heidelberg (2010)

10. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. TCS 387,
332–347 (2007)

11. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

12. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1), article 2 (2007)

13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX (2007)

14. Pǎtraşcu, M.: Succincter. In: FOCS, pp. 305–313 (2008)
15. Wagner, K.: Monotonic coverings of finite sets. Elektron. Informationsverarb.

Kybernet. 20, 633–639 (1984)
16. Yang, B., Chen, J., Lu, E., Zheng, S.Q.: A comparative study of efficient algorithms

for partitioning a sequence into monotone subsequences. In: Cai, J.-Y., Cooper,
S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 46–57. Springer, Heidelberg
(2007)



Document Listing on Versioned Documents�

Francisco Claude1,2,3 and J. Ian Munro3

1 Akori S.A.
Santiago, Chile

2 Escuela de Informática y Telecomunicaciones
Universidad Diego Portales, Chile

3 David R. Cheriton School of Computer Science
University of Waterloo, Canada

Abstract. Representing versioned documents, such as Wikipedia his-
tory, web archives, genome databases, backups, is challenging when we
want to support searching for an exact substring and retrieve the docu-
ments that contain the substring. This problem is called document listing.

We present an index for the document listing problem on versioned
documents. Our index is the first one based on grammar-compression.
This allows for good results on repetitive collections, whereas standard
techniques cannot achieve competitive space for solving the same
problem.

Our index can also be addapted to work in a more standard way,
allowing users to search for word-based phrase queries and conjunctive
queries at the same time.

Finally, we discuss extensions that may be possible in the future, for
example, supporting ranking capabilities within the index itself.

1 Introduction

Highly repetitive collections are becoming more and more common. We have
a lot of versioned information on the Web; good examples of this are software
repositories and Wikipedia. It is also expected that in the future we will have to
provide storage for genome sequences of many individuals of the same species,
perhaps millions of people. This last scenario is interesting because within the
same species, the sequences share close to 99.99%, making the collection highly
repetitive [15].

Being capable of storing archive data with historic information on how docu-
ments evolve is a challenging task by itself, but we also need to provide searching
capabilities to make this information easily available for people when needed. In
this work we focus on the document listing problem for such collections.

Formally speaking, the document listing problem is defined as follows: Given
a collection of documents D = {T1, T2, . . . , Td}, and a query string P , we want
to retrieve the documents that contain P as a substring. We could add a ranking

� First author funded in part by Google U.S./Canada PhD Fellowship. Second author
funded in part by NSERC and the Canada Research Chairs Programme.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 72–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Document Listing on Versioned Documents 73

function f , such that we retrieve the documents ordered by f(Ti, P ), and even
limit the size of the resulting set by a given parameter k, these are called top-k
queries. Some examples of ranking functions include tf-idf and closeness [1].

One important point to clarify is the difference between standard text-index-
ing and the document listing problem. Usually text indexes allow you to search
for a pattern in a text and report the position where the pattern occurs. If we
concatenate all the documents and use a classical index, we can retrieve the docu-
ments that contain the pattern. The drawback is that we are forced to iterate over
all occurrences of the pattern, which means we can pay a huge overhead for just
one document if it contains the pattern multiple times. This is the main difference
that renders classical text indexes unsuitable for certain instances of the prob-
lem. For natural language, the problem has been usually simplified by using an
inverted index. For every word w in the language, we have a list L[w] = {Ti1 , Ti2 ,
. . . , Ti�} listing all documents that contain w, plus extra information to compute
the ranking function. Answering a query Q = {P1, P2, . . . , Pq} corresponds to
obtaining a subset of the elements in ∩q

i=1L[Pi].
This solution has been shown to be effective in space, retrieval time, and

quality, but it lacks the freedom we would expect in other domains. For example,
if we consider a collection of DNA sequences, the concept of a word is not well
defined. For this reason, solutions in one domain may be completely useless in
others. We also see this phenomenon in languages where the separation among
words is not clearly defined, or hard to determine automatically.

The main idea behind our proposal is as follows: Given a collection of docu-
ments, we compress the whole set of texts using a grammar-compressor [13,21,4].
The resulting file is indexed using the result of [7]. Then we augment the struc-
ture with a set of inverted lists for non-terminal symbols. This inverted lists
store the documents that contain each non-terminal. The queries are answered
by first asking the text index to produce the minimum set of non-terminals that
match the pattern for which we have to look into their inverted lists.

Once we have all the inverted lists, we compute the union of those, generating
the final result, an inverted list for the pattern that was given as a query.

The main contributions of this paper are:

– We show how to extend a grammar-compressed index to support document
listing in a simple and clean way. The index also supports access to any
document of the collection, verbatim, so it completely replaces the original
input. Building our index on top of any grammar-compressor allows us to
achieve good space for repetitive sequences, which is the case of versioned
documents. In addition to achieving good space [8,5], a straight-forward
grammar representation allows for fast decompression, and therefore, access
to the content being indexed [6,8,5].

– The resulting structure supports retrieving the inverted list for an arbitrary
pattern. This is particularly interesting, since all the algorithms developed
for plain posting lists can be applied to the output of our searches. This
allows to easily extend our result to support conjunctive queries.



74 F. Claude and J. Ian Munro

– We can apply the same result for words in natural language, allowing a new
index. This index does not support full-text document listing, but solves the
problem of searching for phrases, a problem that is also hard to handle with
traditional inverted indexes. Due to lack of space, we ommit the experimental
results for this particular application of our result.

– Our final index does not only allow document listing. We discuss how to
extend it to compute other pieces of information commonly used by ranking
functions: Term frequencies for each document and positional information
on where patterns occur inside each document.

2 Related Work

Most of the items in our index are built using grammar compression and indexes.
A grammar-compressed representation of a sequence corresponds to a context-
free grammar that generates one single text, the one being compressed. For
purposes of this work, the following definition suffices.

Definition 1 (Grammar-compressed seq.). Given a grammar G = (X =
{X1, X2, . . . , Xn}, σ, Γ : X → X+ ∪ σ, s), where:

– X represents the set of non-terminal symbols.
– σ corresponds to the set of terminal symbols.
– Γ is the set of rules that transform a non-terminal into a sequence of non-

terminals or just one terminal symbol. We do not allow cycles in the rules,
and that is enough to make sure the grammar generates only one sequence.

– s corresponds to the identifier of the start symbol Xs.

We define F(Xi) as the result of recursively replacing all non-terminals until
obtaining a sequence of terminal symbols. We also refer to F(Xi)

R as F(Xi)
read from right to left (i.e., reversed).

We say that G compresses T = t1t2 . . . tu, iff F(Xs) = T .
We call N the sum of the sizes of all the right sides in the grammar, that is

N =

n∑
i=1

|Γ (Xi)|

We also refer to the height of the grammar as the longest path from the
starting symbol to a terminal symbol in the parse tree.

We rely on the grammar-based index proposed by Claude and Navarro [7] to
support one of the steps in our searching procedure. We explain in more detail
the pieces needed in Section 2.1.

2.1 Grammar Indexes

We first explain the basics of the index proposed by Claude and Navarro [7]. The
index takes as input a free-context grammar that generates a single sequence. We



Document Listing on Versioned Documents 75

call G the grammar, composed of a set of non-terminals X = {X1, X2, . . . , Xn},
an initial symbol Xs and a set of rules Γ , that map non-terminals to a sequence
of non-terminals or just one single terminal symbol.

The grammar is first preprocessed to remove duplicate rules, and embed rules
that are mentioned only once inside the rule that mentions them. This does not
increase the size of the grammar, but allows to bound some of the running times
further.

The main result of [7] is summarized in Theorem 1. We next explain the
structures we need in this paper, omitting some of the details for the sake of
readability.

Theorem 1. [7] Let a sequence T [1..u] be represented by a context free grammar
with n symbols, size N and height h. Then, for any 0 < ε ≤ 1, there exists a
data structure using at most 2N lg n+N lg u+ ε n lgn+ o(N lg n) bits that finds

the occ occurrences of any pattern P [1..m] in T in time O((m2/ε) lg
(

lg u
lgn

)
+

(m + occ) lgn). It can extract any substring of length � from T in time O(� +
h lg(N/h)). The structure can be built in O(u +N lgN) time and O(u lg u) bits
of working space.

For the construction of the index, we first preprocess the grammar and re-
assign the identifiers of each non-terminal so that they are sorted lexicograph-
ically by the reverse of the string they generate, i.e., F(Xi)

R. We number the
non-terminals in sorted order, that is, F(Xi)

R ≤ F(Xj)
R iff i ≤ j. We then

create a bitmap Y where we assign a 1 to position i iff Xi generates just a single
terminal symbol. We augment this bitmap to support the following operations:

– accessY (i): retrieves the bit at position i in Y .
– rankY (b, i): counts the number of times bit b appears up to position i in Y .

– selectY (b, j): retrieves the position of the j-th occurrence of bit b in Y .

We can represent the bitmap Y and support all three operations in constant
time using the method of Raman, Raman, and Rao [17]. This representation
requires nH0(Y ) + o(n), where H0(Y ) represents the zero order entropy of the
bitmap1.

By using Y we can know whether a rule generates more non-terminals or
just one single terminal symbol. Given Xi, if accessY (i) = 1, then we know it
generates a terminal symbol. Furthermore, if we assume terminal symbols are
contiguous, we know that Xi generates rankY (1, i). It is also possible to obtain
the non-terminal Xj that generates symbol a by computing j = selectY (1, a).

In addition, for each proper suffix of each rule, we assign an id, and then
reassign them according to the lexicographical order of the strings generated by
those proper suffixes. We will call this SuffPerm. In other words, SuffPerm stores
at position i the i-th proper suffix of a rule in lexicographical order.

1 The zeroth order entropy of a bitmap of length n with m ones is defined as m
n
lg n

m
+

n−m
n

lg n
n−m

. This is bounded above by 1.



76 F. Claude and J. Ian Munro

Finally, we create a labeled binary relation R that maps SuffPerm[i] with j
through a label k if rule j appears before the suffix represented by SuffPerm[i]
in rule k.

We want to support range searching in R. Wavelet trees [12] are a good alter-
native, access takes O(lg n) time and range searching takes O(lg n) per element
reported. Wavelet trees, in this context, require n lgn(1+o(1)) bits of space. The
time can be further improved to O(lg n/ lg lg n) (access and element reported by
the range search) within the same space bounds as the standard wavelet trees [2].

In the original paper [7], the grammar is represented as a tree, where we have
N−n leaves. In order to have efficient navigation and access to the rules, the tree
is represented using the method of Benoit et al. [3], adding a simple trick to allow
fast access to the definition of any non-terminal symbol [7]. In our case a simple
plain representation of the grammar is enough, we do not need to navigate the
parse tree upwards, and the theoretic solution for fast access works slower than
traversing a plain representation in practice.

Given a pattern P = p1p2 . . . pm, we can find two different types of occur-
rences inside the grammar. The first kind, called primary occurrences, are those
non-terminals that contain the pattern because two or more rules generated
by it, after being concatenated, generate the pattern. The second kind, called
secondary occurrences are those non-terminals that contain P because they gen-
erate a single rule that contain P . Note that actually one non-terminal may be
both at the same time, primary and secondary, but for that, the non-terminal
must have at least two different occurrences of P .

To find the primary occurrences of a pattern P = p1p2 . . . pm, we try the m
possible partitions: p1 ·p2 . . . pm , p1p2 ·p3 . . . pm, up to p1 . . . pm−1 ·pm. For each
partition P = P1 · P2, we perform a binary search on the rules to determine
which ones finish with P1. Then we perform a binary search over the suffixes of
rules, SuffPerm, to find suffixes of rules that begin with P2. Finally, using the
binary relation R, we can perform a range search to retrieve the non-terminals
that contain elements that start with P2 preceded by elements that end with P1.

Secondary occurrences are obtained by following up the primary occurrences
in the parse tree. As we will explain later, we only care about primary occurrences
in this work, that is why we do not deal with an efficient representation for the
parse tree to track secondary occurrences.

Claude and Navarro show how to represent SuffPerm in little space on top
of the binary relation, and also how to extract prefixes of suffixes of rules in
linear time. We do not need the technical details of these results, it suffices to
know the running time of each step. The binary search for P1 requires O(m lg n)
time. The binary search for P2 requires O(m lgN) time. Finally, retrieving the
primary occurrences requires O(lg n/ lg lgn) time per element retrieved.

Retrieving all occp primary occurrences requires O(m2 lgN+occp lgn/ lg lg n)
time.

2.2 Re-pair

Due to its simplicity, we chose Re-Pair as the grammar compression [13] for eval-
uating our index. It is important to point out that other grammar compressors



Document Listing on Versioned Documents 77

may achieve better results, yet their implementation for large scale is still an
issue. It is also possible to trade compression speed and space for compression
ratio using an approximate version [6].

We post-process the result of Re-Pair to make the final grammar smaller. For
each rule Xi that generates a set of non-terminals, if it is mentioned only once
in the grammar by rule Xj , we expand Xi where Xj mentions it, and remove
Xi. We repeat this process until each rule is mentioned at least twice in the
grammar.

This is required by the index, but it also has the nice property that matches
the dictionary compression algorithm proposed by González and Navarro [11],
that has shown to improve the final result considerably (see [11,6]).

3 The Index

In this section we describe how we build the index, augment it to support doc-
ument listing, and finally how queries are answered.

3.1 Construction for Primary Occurrences

We take the whole collectionD = {T1, T2, . . . , Td}, and generate a single sequence

T = $0T1$1T2$2 . . . $d−2Td−1$d−1Td,

where $i are symbols that do not appear anywhere else in the collection.
When we compress this sequence with Re-Pair, we are sure that no rule spans

from one document to the other, since the $i symbols cannot form pairs that
appear twice. We then remove the $i elements, and generate one rule per doc-
ument, containing all the elements left between the $s in Xs. After that, we
replace Xs by a new rule that generates the new rules we just created, in order.
This allows us to have direct access to a rule that generates the whole content for
any document. Our grammar, after this preprocessing, has the following form:

– Xs generates d non-terminals, Xt1 , Xt2 , . . . , Xtd , where F(Xti) = Ti.
– Xti generates the symbols between $i−1 and $i in the original Xs generated

by Re-Pair.

When building the index, we leave Xs outside the permutation SuffPerm.
This does not only save space, but makes sure that whenever we find a primary
occurrence, it is contained inside a single document, and not formed by the
concatenation of two.

To access the i-th document in the collection, we just expand the i-th non-
terminal generated by s. This allows us to retrieve documents in time propor-
tional to their length (amortized if we don’t use the result from [7]).

Note that we can adapt other grammar-based compressors to this scheme. An
interesting option is to just simply compress each document separatelywith a com-
pressor that generates an SLP (rules restricted to generate two non-terminals or



78 F. Claude and J. Ian Munro

just one terminal), and then apply the merge algorithm ofWan [20]. This will gen-
erate a grammar that satisfies the conditions above, and by applying the same pre-
processing before constructing the index, we can optimize the output even further.

3.2 Adding Inverted Lists

For each non-terminal, we store an inverted list of the documents containing
that non-terminal. Note that this requires at most n × d bits, and we expect n
to be small. Yet this is still not satisfactory. If two versions share much of their
content, they will appear in a very similar set of lists, since they will be formed
by the same non-terminals.

To exploit this, we again use grammar-compression on the sequence of lists.
We could use any space-efficient representation of lists, but for repetitive ones,
this particular solution has proven to work well in practice [8,5].

We refer to L[Xi] to the list of documents containing non-terminal Xi and
will call L the set of inverted lists. We represent the inverted lists in the same
way as we represent the documents, this allows to access an entire list in time
proportional to its length.

It is interesting to relate the size of this inverted lists to the size of the original
sequence. It turns out that under reasonable assumptions, these lists can be
represented space efficiently. We see the inverted lists as a grid, where coordinate
(i, j) is a 1 iff non-terminal i is contained in document j. Let t be the number
of points in this grid. We need t lg nd

t +O(t) bits to represent the grid2.
We know that n ≤ t, therefore, the space is bounded by t lg d, which is the

same as the solution by Välimaki and Mäkinen requires for the document array
[19]. We can further bound the space by considering the worst possible space
for the grid. The space is maximized when t = nd

e . In this case, the total space
required by the grid is O(t) bits.

On the other hand, we can also bound the length of the text in terms of t.
We know that each point on the grid represents at least one occurrence of a rule
in the collection, therefore, u ≥ t. This means that the total extra space for the
grid is bounded by the length of the collection in bits, in other words D

lg σ bits.

3.3 Full-Text Document Listing

Having built the grammar-index, and the inverted lists, the searching becomes
quite straight-forward. We search for the nonterminals that contain primary
occurrences of the pattern, and compute the union of the inverted lists associated
to those nonterminals.

At this stage we need to compute the union of sets, in contrast with the
usual operation we encounter between inverted lists, which is the intersection.
Furthermore, our case is a bit more complicated. We have a grammar-compressed

2 This is a simple information theoretic lower bound, there exist representations that
achieve this [9], and some that do better on repetitive cases [5], as in our case.



Document Listing on Versioned Documents 79

version of the lists, and thus we want to make use of this fact, both to keep the
space low, and to improve the query time.

Given a set of non-terminals representing the primary occurrences of the pat-
tern, we will create a dynamic dictionary containing those elements, called seen,
and a queue containing the same elements, we call this queue remaining. The
merge procedure generates a dictionary containing all the elements, and is shown
in Algorithm 1.

Data: Set V = {v1, v2, . . . , vn}, Lists G = (X , Γ, σ, s)
Result: R = (di1 , di2 , . . . , dik)

1 remaining ← ∅
2 seen ← ∅
3 R ← ∅
4 for v ∈ V do
5 remaining ← remaining ∪ {Xv}
6 seen ← seen ∪ {Xv}
7 while remaining �= ∅ do
8 x ← GetMax(remaining)
9 remaining ← remaining− {x}

10 if x is terminal then
11 R ← R ∪ {x}
12 for xj in Γ (x) do
13 if xj �∈ seen then
14 seen ← seen ∪ {xj}
15 remaining ← remaining ∪ {xj}
16 return L

Algorithm 1. Computing the union of the lists for a set of non-terminals

The worst case running time of this algorithm is O(occp × output). Section 4
shows that occp is in general small, and also that our heuristic of keeping track
of previously seen non-terminals allows us to save processing time; it exploits
the regularities seen between the lists. If two lists contain basically the same
elements, we will only explore one of them, since we will encounter a non-terminal
we have already seen.

It is quite straight-forward to see why we only find primary occurrences. Sec-
ondary occurrences contain documents we already reported as primary occur-
rences, so processing only primary occurrences maintains the correctness of the
result while cutting down the time.

3.4 Adding Ranking Information

The index can be augmented with extra information in a similar way as inverted
lists, with a couple of restrictions.We can augment the inverted lists that associate
each non-terminal symbol with the documents that contain it with score values.
In particular, frequencies offer a property that is easy to exploit here.



80 F. Claude and J. Ian Munro

When we augment the lists L with frequencies, we can just add up all the
values associated with primary occurrences of a certain document and we will
obtain precisely the number of occurrences of the pattern in the whole document.
We include the details of this algorithm in the Appendix.

We may not need to store the frequencies for each possible occurrence of a
document in the inverted lists. We could store an approximation of the frequency
to approximate the term frequency and save space, by storing values from a
smaller universe.

We can also use the result of Claude and Navarro [7] to support locating
the occurrences of the pattern in the collection. This allows to obtain positional
information for the query when required. Another option here is to approximate
the locations of multiple patterns depending on the primary occurrences. This
line of work is out of the scope of this article.

4 Experimental Results

4.1 Practical Considerations

For the practical implementation, we did not implement the real-time access to
prefixes/suffixes of rules as described in [7]. We just store the grammar as a set
of arrays describing each rule. We also do not need the tree in practice, since we
are not tracking occurrences upwards.

The binary relation is represented using a wavelet tree, as implemented in
Libcds3. We also make use of the arrays implemented in the library. We use
Navarro’s implementation of Re-Pair 4, which runs in linear time. As containers
we use the standard C++ STL containers. For sets we use set, and for unsorted
sequences, we use vector.

4.2 Experimental Setup

To test our index we downloaded the first part of Wikipedia in English5, and
sampled documents from it uniformly at random. For each document selected,
we extracted all its versions. This was done using anonymous’ library.

We also generated synthetic collections composed of symbols A,C,G and T .
This is to mimic the compression of genome databases. The process of generation
is the following: Generate a random sequence T1 of length n, and then generate
d− 1 copies of T1 and mutate x% of it.

Table 1 shows the main characteristics of our datasets. The compression ratio
may not be very descriptive given that the sequences are highly repetitive. For
this reason, we include the compression ratio achieved by anonymous’ Re-Pair
implementation. This does not include any post-processing, and just represents
the original sequences, therefore, it is only a guideline on how much the text
could be compressed.

3 Available at http://libcds.recoded.cl
4 Available at http://www.dcc.uchile.cl/gnavarro/software/
5 enwiki-20110722-pages-meta-history1.xml

http://libcds.recoded.cl
 http://www.dcc.uchile.cl/gnavarro/software/
 enwiki-20110722-pages-meta-history1.xml


Document Listing on Versioned Documents 81

Table 1. Datasets

Dataset size # docs versions/doc (avg) mutation rate Re-Pair

Wiki1 69MB 8 582 - 0.36MB
Wiki2 600MB 20 772.85 - 3.45MB
Wiki3 1.5GB 36 831.08 - 5.50MB
DNA1 1000MB 1 1000 0.01% 4.5MB
DNA2 1000MB 1 1000 0.005% 2.09MB
DNA3 1000MB 1 1000 0.0026% 1.17MB

Table 2. Space required for our index for each dataset, separated by components

Collection T Lists SuffPerm R Total Compr.

Wiki1 0.39MB 0.49MB 0.39MB 0.39MB 1.66MB 2.43%
Wiki2 1.75MB 2.14MB 1.69MB 1.71MB 7.29MB 1.22%
Wiki3 3.19MB 4.37MB 3.12MB 3.06MB 13.73MB 0.90%
DNA1 3.21MB 4.76MB 2.94MB 3.03MB 13.95MB 1.40%
DNA2 1.99MB 2.80MB 1.78MB 1.91MB 8.47MB 0.85%
DNA3 1.26MB 1.59MB 1.15MB 1.23MB 5.23MB 0.52%

We generated queries by taking a version uniformly at random, and then
choosing a substring uniformly at random from that particular version.

The machine used for generating the indexes and measuring time has 2 In-
tel(R) Xeon(R) CPU X5660 processors running at 2.80GHz, 11TB of hard drive
and 24GB of RAM. The machine is running Ubuntu Linux 11.04 with kernel
2.6.38-13-generic for x86_64. All our code is implemented and C++ and was
compiled using gcc version 4.5.2 with flags -O3 -DNDEBUG. Our code is available
for download from http://fclaude.recoded.cl/projects.

4.3 Full-Text Document Listing

Table 2 shows the sizes of our index for the different collections. We can see that
our indexes, for the Wikipedia samples and the DNA synthetic data, are around
4 to 4.5 times the size of the collection when we compress it using Re-Pair. This

Table 3. Time per element retrieved in microseconds for patterns of length m =
4, 8, 16, 32, averaged over 10, 000 queries

Collection m = 4 m = 8 m = 16 m = 32

Wiki1 0.60 1.36 3.37 7.38
Wiki2 0.51 0.72 1.72 4.03
Wiki3 0.54 0.83 2.40 6.23
DNA1 20.03 1.86 3.05 6.05
DNA2 12.42 1.35 2.17 4.06
DNA3 8.05 1.06 1.59 2.90



82 F. Claude and J. Ian Munro

means, within this space, we are replacing the collection and supporting search
operations on top of it. Table 3 shows the time in microseconds per element
retrieved. This was averaged over 10, 000 queries.

4.4 Comparison to Related Work

The document listing problem was first solved in linear space by Muthukrishnan
[14]. Sadakane [18] proposed a different time/space tradeoff, and later Mäkinen
and Välimäki [19] and Navarro et al. [16] proposed practical solutions to the
problem. All these solutions are not designed for repetitive collections. Only
recently, Gagie et al. [10] proposed a solution in this scenario. We measured their
results with default parameters for the Wiki collections. They offer a different
tradeoff than our solution. We provide superior space, our index is 3.56, 8.22,
and 10.86 times smaller for Wiki1, Wiki2, and Wiki3 respectively. On the other
hand, their query time is much lower, 11–17 times faster for Wiki1, 18–22 times
faster for Wiki2, and 20–31 for Wiki3. We measured patterns of length 4, 8 and
16, since the patterns of length 32 produced inconsistent results in their index,
showing less occurrences than documents reported. We also excluded patterns
of length 16 from Wiki3 for the same reason. When compared to the solution by
Navarro et al. [16], we are 16 to 62 times smaller, considering only Wiki1 and a
preffix of Wiki2.

5 Conclusions

We have presented a new index for representing highly repetitive collections. This
index can be used in two different scenarios: (1) Indexing a collection to support
document listing of exact substrings; (2) Indexing a collection and support phrase
searches for words existing in the collection.

The results show that while providing competitive time complexities, we
achieve space considerably smaller than previous results. This opens a new line
for storing historic information on documents while supporting efficient search
operations.

It is easy to relate to our index in terms on the inverted lists. In the symbol-
based version, we can build the inverted index for any possible substring using
our index. Furthermore, when we tokenize the text, and index the word iden-
tifiers, our index is just a grammar-compressed representation of the inverted
lists, augmented with extra information to support phrase search operations on
top of it, allowing to produce the inverted list of an arbitrary phrase.

Our work also leaves some challenging open problems. First, the union of
all non-terminals that represent primary occurrences has no good theoretical
bound, yet is reasonable in practice. Is it possible to modify the structure or
the grammar in order to provide a reasonable bound, say we do not visit more
than k symbols per element in the resulting set? Another interesting problem
not considered in this work, is whether we could support approximate searches,
allowing to retrieve the phrases or substrings that are most similar to the query.
This is important, since typos may have a huge effect in the result.



Document Listing on Versioned Documents 83

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston (1999)

2. Barbay, J., Claude, F., Navarro, G.: Compact binary relation representations with
rich functionality. CoRR abs/1201.3602 (2012)

3. Benoit, D., Demaine, E., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Charikar,M., Lehman,E., Liu,D.,Panigrahy,R.,Prabhakaran,M., Sahai,A., Shelat,
A.: The smallest grammar problem. IEEE Trans. Inf. Theo. 51(7), 2554–2576 (2005)

5. Claude, F., Fariña, A., Mart́ınez-Prieto, M., Navarro, G.: Indexes for highly repet-
itive document collections. In: CIKM, pp. 463–468 (2011)

6. Claude, F., Navarro, G.: A fast and compact Web graph representation. In: Ziviani,
N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 118–129. Springer,
Heidelberg (2007)

7. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012)

8. Claude, F., Fariña, A., Mart́ınez-Prieto, M.A., Navarro, G.: Compressed q-gram
indexing for highly repetitive biological sequences. In: BIBE, pp. 86–91 (2010)

9. Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids.
In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507,
pp. 327–338. Springer, Heidelberg (2010)

10. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on
repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 107–119. Springer, Heidelberg (2013)

11. González, R., Navarro, G.: Compressed text indexes with fast locate. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg
(2007)

12. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
SODA, pp. 841–850. Society for Industrial and Applied Mathematics, Philadelphia
(2003)

13. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. of the
IEEE 88(11), 1722–1732 (2000)

14. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In:
FOCS, pp. 657–666 (2002)

15. Navarro, G.: Indexing highly repetitive collections. In: Smyth, B. (ed.) IWOCA
2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)

16. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical compressed document retrieval.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205.
Springer, Heidelberg (2011)

17. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)

18. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

19. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:
Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

20. Wan, R.: Browsing and searching compressed documents. Ph.D. thesis, The Uni-
versity of Melbourne (2003)

21. Ziv, J., Lempel, A.: Compression of individual sequences via variable length coding.
IEEE Trans. Inf. Theo. 24(5), 530–536 (1978)



Order-Preserving Incomplete Suffix Trees

and Order-Preserving Indexes

Maxime Crochemore4,6, Costas S. Iliopoulos4,5, Tomasz Kociumaka1,�,
Marcin Kubica1, Alessio Langiu4, Solon P. Pissis7,8,��,

Jakub Radoszewski1,� � �, Wojciech Rytter1,3,†, and Tomasz Waleń2,1

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

{kociumaka,jrad,rytter,walen}@mimuw.edu.pl
2 Laboratory of Bioinformatics and Protein Engineering,

International Institute of Molecular and Cell Biology in Warsaw, Poland
3 Faculty of Mathematics and Computer Science,

Copernicus University, Toruń, Poland
4 Dept. of Informatics, King’s College London, London, UK

{maxime.crochemore,c.iliopoulos,alessio.langiu}@kcl.ac.uk
5 Faculty of Engineering, Computing and Mathematics,

University of Western Australia, Perth, Australia
6 Université Paris-Est, France

7 Laboratory of Molecular Systematics and Evolutionary Genetics,
Florida Museum of Natural History, University of Florida, USA

8 Scientific Computing Group (Exelixis Lab & HPC Infrastructure),
Heidelberg Institute for Theoretical Studies (HITS gGmbH), Germany

solon.pissis@h-its.org

Abstract. Recently Kubica et al. (Inf. Process. Let., 2013) and Kim et
al. (submitted to Theor. Comp. Sci.) introduced order-preserving pattern
matching: for a given text the goal is to find its factors having the same
‘shape’ as a given pattern. Known results include a linear-time algorithm
for this problem (in case of polynomially-bounded alphabet) and a gen-
eralization to multiple patterns. We give an O(n log log n) time construc-
tion of an index that enables order-preserving pattern matching queries
in time proportional to pattern length. The main component is a data
structure being an incomplete suffix tree in the order-preserving setting.
The tree can miss single letters related to branching at internal nodes.
Such incompleteness results from the weakness of our so called weak
character oracle. However, due to its weakness, such oracle can answer
queries on-line in O(log log n) time using a sliding-window approach. For
most of the applications such incomplete suffix-trees provide the same
functional power as the complete ones. We also give an O( n log n

log log n
) time

algorithm constructing complete order-preserving suffix trees.

� Supported by Polish budget funds for science in 2013-2017 as a research project
under the ‘Diamond Grant’ program.

�� Supported by the NSF–funded iPlant Collaborative (NSF grant #DBI-0735191).
� � � The author receives financial support of Foundation for Polish Science.

† Supported by grant no. N206 566740 of the National Science Centre.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 84–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes 85

1 Introduction

We introduce order-preserving suffix trees that can be applied for pattern match-
ing and repetition discovery problems in the order-preserving setting. In particu-
lar, this setting can be used to model finding trends in time series which appear
naturally when considering e.g. the stock market or melody matching of two
musical scores, see [11].

Two strings x and y of the same length over an integer alphabet are called
order-isomorphic (or simply isomorphic), written x ≈ y, if

∀1≤i,j≤|x| xi ≤ xj ⇔ yi ≤ yj.

Example 1. (5, 2, 7, 5, 1, 4, 9, 4, 5)≈ (6, 4, 7, 6, 3, 5, 8, 5, 6), see Fig. 1.

The notion of order-isomorphism was introduced in [11] and [14]. Both papers
independently study the order-preserving pattern matching problem that consists
in identifying all consecutive factors of a string x that are order-isomorphic to
a given string y. If |x| = n and |y| = m, an O(n +m logm) time algorithm for
this problem is presented in both papers. Under a natural assumption that the
characters of y can be sorted in linear time, the algorithm can be implemented in
O(n+m) time. Moreover, in [11] the authors present extensions of this problem
to multiple-pattern matching based on the algorithm of Aho and Corasick.

The problem of order-preserving pattern matching has evolved from the com-
binatorial study of patterns in permutations. This field of study is concentrated
on pattern avoidance, that is, counting the number of permutations not contain-
ing a subsequence which is order-isomorphic to a given pattern. Note that in
this problem the subsequences need not to be consecutive. The first results on
this topic were given by Knuth [12] (avoidance of 312), Lovász [16] (avoidance
of 213) and Rotem [17] (avoidance of both 231 and 312). On the algorithmic
side, pattern matching in permutations (as a subsequence) was shown to be NP-
complete [3] and a number of polynomial-time algorithms for special cases of
patterns were developed [1,9,10].

We introduce an index for order-preserving pattern matching. The prepro-
cessing time is O(n log logn) and queries are answered in O(m) time for a pat-
tern of length m over polynomially bounded integer alphabet Σ. The index
is based on incomplete order-preserving suffix trees (incomplete op-suffix-trees,
in short). We also introduce (complete) order-preserving suffix trees (op-suffix-
trees) and show how they can be constructed using their incomplete counterpart
in O(n logn/ log logn) time. We provide randomized (Las Vegas) algorithms for
the word-RAM model with Ω(log n) word size.

In the literature there are a number of results in the related field of indexing
for parameterized pattern matching. This problem is solved using parameterized
suffix trees, a notion first introduced by Baker [2] who proposed an O(n log n)
time construction algorithm. The result was then improved by Cole and Hariha-
ran [5] to O(n) construction time. Recently, Lee et al. [15] presented an online



86 M. Crochemore et al.

algorithm with the same time complexity. What Cole and Hariharan [5] pro-
posed was actually a general scheme for construction of suffix trees for so-called
quasi-suffix families with a constant time character oracle. This result can also be
applied in the order-preserving setting, however the resulting index has larger
construction time, O(n log n) or O(n log n/ log logn) depending on the codes
used.

Structure of the Paper. In Sections 2 (preliminary notation) and 3 we give
a formal definition of a complete and an incomplete op-suffix-tree and describe
their basic properties. Then in Sections 4 and 5 we show an O(n log log n) con-
struction of an incomplete op-suffix-tree. The former section contains an algo-
rithmic toolbox that is also used in further parts of the paper. Applications of
our data structure for order-preserving pattern matching and longest common
factor problems are presented in Section 6. Finally in Section 7 we obtain a
construction of complete op-suffix-trees.

2 Order-Preserving Code

Let w = w1 . . . wn be a string of length n over an integer alphabet Σ. We assume
that Σ is polynomially bounded in terms of n, i.e. Σ = {1, . . . , nc} for an integer
constant c. We denote the length of a string w by |w| = n. By w[i . . j] we denote
the factor wi . . wj , and by suf i – the i-th suffix of w, that is, w[i . . n].
For any i ∈ {1, . . . , n} define:

αw(i) = i− j where wj = max{wk : k < i, wk ≤ wi},

if there is no such j then αw(i) = i, similarly define:

βw(i) = i− j where wj = min{wk : k < i, wk ≥ wi},

and βw(i) = i if no such j exists. If several equally good values of j exist, we
select the greatest possible value of j that is smaller than i.
We introduce codes of strings in a similar way as in [14]:

Code(w) = ((αw(1), βw(1)), (αw(2), βw(2)), . . . , (αw(|w|), βw(|w|))).

We also denote LastCode(w) = (αw(|w|), βw(|w|)). The following property is a
consequence of Lemma 2 in [14].

5

2

7

5

1

4

9

4
5

6

4

7
6

3

5

8

5
6

Fig. 1. Example of two order-isomorphic strings. Their codes are equal to
(1, 1) (2, 1) (2, 3) (3, 3) (5, 3) (4, 2) (4, 7) (2, 2) (5, 5).



Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes 87

Lemma 2. Let x and y be two strings of length t and x′ = x[1 . . t − 1], y′ =
y[1 . . t− 1]. Then:

(a) x ≈ y ⇔ x′ ≈ y′ ∧ (yi ≤ yt ≤ yj), where i = t− αx(t), j = t− βx(t);
(b) x ≈ y ⇔ x′ ≈ y′ ∧ LastCode(x) = LastCode(y).

Proof. Part (a) is an equivalent formulation of Lemma 2 in [14]. Part (b) is a
technical consequence of part (a). 
�

x
xi xj xt

βx(t)

αx(t) y

yi yj yt

Fig. 2. An illustration of Lemma 2, part (a): x[1 . . t] ≈ y[1 . . t] is equivalent to x[1 . . t−
1] ≈ y[1 . . t− 1] and yi ≤ yt ≤ yj

Part (b) of Lemma 2 implies that the codes provide an equivalent characteriza-
tion of order-isomorphism:

Lemma 3. x ≈ y ⇔ Code(x) = Code(y).

The codes of strings can be computed efficiently. Applying Lemma 1 from [14]
to strings over polynomially-bounded alphabet we obtain:

Lemma 4. For a string w of length n, Code(w) can be computed in O(n) time.

3 Order-Preserving Suffix Trees

Let us define the following family of sequences:

SufCodes(w) = {Code(suf 1)#, Code(suf 2)#, . . . , Code(suf n)#},

see Fig. 3. The order-preserving suffix tree of w (op-suffix-tree in short), denoted
opSufTree(w), is a compacted trie of all the sequences in SufCodes(w).

Example 5. Let w = (1, 2, 4, 4, 2, 5, 5, 1). All SufCodes(w) are given in Fig. 3.

The nodes of opSufTree(w) with at least two children are called branch-
ing nodes, together with the leaves they form explicit nodes of the tree. All
the remaining nodes (that ‘disappear’ due to compactification) are called im-
plicit nodes. For a node v, its explicit descendant (denoted as FirstDown(v))
is the top-most explicit node in the subtree of v (possibly FirstDown(v) =
v). By LocusCode(x) we denote the (explicit or implicit) locus of Code(x) in
opSufTree(w). Only the explicit nodes of opSufTree(w) are stored. The tree con-
tains O(n) leaves, hence its size is O(n).

The leaf corresponding to Code(suf i)# is labeled with the number i. Each
branching node stores its depth and one of the leaves in its subtree. Each edge



88 M. Crochemore et al.

1 2 4 4 2 5 5 1

2 4 4 2 5 5 1

4 4 2 5 5 1

4 2 5 5 1

2 5 5 1

5 5 1

5 1

1

(1,1) (1,2) (1,3) (1,1) (3,3) (2,6) (1,1) (7,7) #

(1,1) (1,2) (1,1) (3,3) (2,5) (1,1) (7,3) #

(1,1) (1,1) (3,1) (2,4) (1,1) (6,3) #

(1,1) (2,1) (2,3) (1,1) (5,3) #

(1,1) (1,2) (1,1) (4,3) #

(1,1) (1,1) (3,1) #

(1,1) (2,1) #

(1,1) #

suffixes of w: SufCodes(w):

Fig. 3. SufCodes(w) for w = (1, 2, 4, 4, 2, 5, 5, 1)

stores the code only of its first character. The codes of all the remaining char-
acters of any edge can be obtained using a character oracle that can efficiently
provide the code LastCode(suf i[1 . . j]) for any i, j.

Each explicit node v stores a suffix link, SufLink(v), that may lead to an implicit
or an explicit node (see an example in Fig. 4). The suffix link is defined as:

SufLink(LocusCode(x)) = LocusCode(DelFirst(x)),

where DelFirst(x) results in removing the first character of x, see Fig. 5.

Observation 6. Code(x)=Code(y) ⇒Code(DelFirst(x))=Code(DelFirst(y)).

(1, 1)

(1, 1)

(3, 1)

(2, 4)

(1, 1)

(6, 3)

#

#

(1, 2)

(1, 1)

(3, 3)

(2, 5)

(1, 1)

(7, 3)

#

(4, 3)

#

(1, 3)

(1, 1)

(3, 3)

(2, 6)

(1, 1)

(7, 7)

#

(2, 1)

(2, 3)

(1, 1)

(5, 3)

#

#

#
(1, 1)

(1,1)

(2, 4)

3

#

6

(1, 2)

(1,1)

(3, 3)

2

(4,3)

5

(1, 3)

1

(2,1)

(2, 3)

4

#
7

#
8

Fig. 4. The uncompacted trie of SufCodes(w) for w = (1, 2, 4, 4, 2, 5, 5, 1) (to the left)
and its compacted version, the complete op-suffix-tree of w (to the right). The dotted
arrows (left figure) show suffix links for branching nodes, note that one of them leads
to an implicit node. Labels in the right figure that are in bold are present also in the
incomplete op-suffix-tree.

We also introduce an incomplete order-preserving suffix tree of w, denoted
T (w), in which the character oracle is not available and each explicit node v can
have one outgoing edge that does not store its first character (incomplete edge).
This edge is located on the longest path leading from v to a leaf.



Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes 89

root

p q r

leaves

v

v′

SufLink

Fig. 5. Let γ be the text spelled out on a path from the root to v in the uncompacted op-
suffix trie of w. Similarly, let γ′ be the text on a path to v′ = SufLink(v). Observe that
not necessarily γ′ is a suffix of γ, but γ′ = Code(DelFirst(x)), where x = w[p . . p+k−1]
or x = w[q . . q+ k− 1] or x = w[r . . r+ k− 1], where p, q, r are the labels on the leaves
in the subtree rooted in v.

Example 7.
Let w = (1, 2, 4, 4, 2, 5, 5, 1). The op-suffix-tree of w is presented in Fig. 4.

4 Algorithmic Toolbox

We use a predecessor data structure to compute the last symbols of the code of
a sequence changing in a queue-like manner.

Lemma 8. [Weak Character Oracle] An initially empty sequence x over
{1, . . . , n} can be maintained in a data structure D(x) of size O(|x|) so that the
following queries are supported in O(log log n) expected time:

compute LastCode(x); append a single letter to x; and DelFirst(x).

Only the second operation is valid if x is empty.

Proof. The main tool here is the y-fast tree, a data structure for dynamic pre-
decessor queries. The following fact has been shown in [19].

Claim. Let N be an integer such that ω = Ω(log n), where ω is the machine
word-size. There exists a data structure that uses O(|X |) space to maintain a
set X of key-value pairs with keys from {1, . . . , N} and supports the following
operations in O(log logN) expected time:

find(k): find the value associated with k, if any,
predecessor(k): return the pair (k′, v) ∈ X with the largest k′ ≤ k,
successor(x): return the pair (k′, v) ∈ X with the smallest k′ ≥ k,
remove(k): remove the pair with key k,
insert(k, v): insert (k, v) to X removing the pair with key k, if any.

The y-fast trees are now used as follows. The keys are the symbols present in x
while the values associated with them are the locations of their last occurrences
represented as a time-stamps (that is, the ordinal numbers of the push opera-
tions used to append them). Then the LastCode() query is answered using one
predecessor and one successor query. 
�



90 M. Crochemore et al.

Our second tool is the dynamic weighted ancestor data structure proposed by
Kopelowitz and Lewenstein [13] and originally motivated by problems related to
ordinary suffix trees. A weighted tree is a rooted tree with integer weight assigned
to each node, such that a monotonicity condition is satisfied: the weight of a node
is strictly greater than the weight of its parent. The weighted ancestor query is:

given a node v and a weight g find WeightedAnc(v, g) – the highest ancestor
of v with weight at least g.

The following lemma is proved in [13].

Lemma 9. Let N be an integer such that ω = Ω(logN), where ω is the ma-
chine word-size. There exists a data structure which maintains a weighted tree
T with weights {1, . . . , N} in O(|T |) space and supports the following operations
in O(log logN) expected time:

– answer WeightedAnc(v, g),
– insert a leaf with weight g and v as a parent,
– insert a node with weight g by subdividing the edge joining v with its parent.

The weights of inserted nodes must meet the monotonicity condition.

5 Constructing Incomplete Order-Preserving Suffix Tree

We design a version of Ukkonen’s algorithm [18] in which suffix links are com-
puted using weighted ancestor queries, see Fig. 6. The weights of explicit nodes
represent their depths. In this case for a node u, by WeightedAnc(u, d) we denote
its (explicit or implicit) ancestor at depth d.

Our algorithm works online. While reading the string w it maintains:

– the incomplete op-suffix-tree T (w) for w;
– the longest suffix F of w such that Code(F) corresponds to a non-leaf node

of T (w), together with the data structure D(F); F is called the active suffix;
– the node (explicit or implicit) LocusCode(F), called the active node.

In the algorithm all implicit nodes are represented in a canonical form: the
explicit descendant (FirstDown) and the distance to this descendant (depth
difference). Each explicit node stores a dynamic hash table (see [5,8]) of its
explicit children, indexed by the labels of the respective edges. Note that the
explicit child corresponding to the incomplete edge is stored outside of the hash
table.

When w is extended by one character, say a, we traverse the active path in
T (w): we search for the longest suffix F′ of F such that LocusCode(F′a) appears
in the tree, and for each longer suffix F′′ of F we create a branch leading to a
new leaf node LocusCode(F′′a). The active path is found by jumping along suffix
links, starting at the active node. The end point of the active path provides the
new active node, and F′a becomes the active suffix.

To compute the last symbol of Code(Fa) we use the following observation.



Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes 91

Observation 10. Due to Lemma 8 we can compute LastCode(F · a) in
O(log logn) expected time, where F is the active suffix.

We also use two auxiliary subroutines.

Function Transition(v, (p, q)). This function checks if v has an (explicit or
implicit) child v′ such that the edge from v to v′ represents the code (p, q). It
returns the node v′ or nil if such a node does not exist. We check, using hashing,
if any of the labeled edges outgoing from v starts with the code (p, q), for (at
most one for v) incomplete edge we can check if its starting letter code equals
(p, q) by checking two inequalities from part (a) of Lemma 2.

Function Branch(v, (p, q)). This function creates a new (open) transition from
v with the code (p, q). If v was implicit then it is made explicit, at this moment
the edge leading to its already existing child remains incomplete.

Algorithm Construct incomplete opSufTree(w)

Initialize T as incomplete opSufTree for w1;

v := root ; F := empty string;

for i := 2 to n do

a := wi; F := F · a;
while Transition(v,LastCode(F)) = nil do

Branch(v,LastCode(F));

if v = root then break;

F := DelFirst(F);

u := FirstDown(v); { u is the first explicit node below v, including v }
u′ := SufLink(u); { u′ can be an implicit node }
v′ := WeightedAnc(u′, |v| − 1); { weighted ancestor query }
SufLink(v) := v′; v := v′;

v := Transition(v,LastCode(F));

return T ;

v

u

FirstDown(v)

vv′

uu′

WeightedAnc(u′, |v| − 1)

SufLin
k(v)

SufLin
k(u)

Fig. 6. Computation of SufLink(v). Here u is explicit.



92 M. Crochemore et al.

Remark 11. [Why incomplete? ] At first glance it is not clear why incomplete
edges appear. Consider the situation when we jump to an implicit node v′ =
SufLink(v) and we later branch in this node. The node v′ becomes explicit and
the existing edge from this node to some node u′ becomes an incomplete edge.
Despite incompleteness of the edge (v′, u′) the equality test between the (known)
last code letter of the active string and the first (unknown) code letter of the
label of this edge can be done quickly due to part (a) of Lemma 2.

In the pseudocode above we perform O(n) operations in total. This follows from
the fact that each step of the while-loop creates a new edge in the tree. The oper-
ations involving F and the operation WeightedAnc are performed in O(log logn)
time and all the remaining operations require constant time only. We obtain the
following result.

Theorem 12. The incomplete op-suffix-tree T (w) for a string w of length n can
be computed in O(n log logn) expected time.

6 Incomplete Suffix Tree as Order-Preserving Index

The most common application of suffix trees is pattern matching with time
complexity independent of the length of the text.

Theorem 13. Assume that we have T (w) for a string w of length n. Given a
pattern x of length m, one can check if w contains a factor order-isomorphic to
x in O(m) time and report all occurrences of such factors in O(m+Occ) time,
where Occ is the number of occurrences reported.

Proof. First we compute the code of the pattern. This takes O(m) time due
to Lemma 4. To answer a query, we traverse down T (w) using the successive
symbols of the code. At each step we use the function Transition(v, (p, q)).

This enables to find the locus of Code(x) in O(m) time. Afterwards all the
occurrences of factors that are order-isomorphic to x can be listed in the usual
way by inspecting all leaves in the subtree of LocusCode(x). 
�

The motivating application of the standard suffix trees was finding the longest
common factor of two strings. An analog of this problem in the order-preserving
setting is especially important, since it provides a way to find common trends in
time series. In this problem, given two strings w and x, we need to find the longest
factor of x that is order-isomorphic to a factor of w. We show the usefulness of
the suffix links in incomplete op-suffix-tree.

Theorem 14. Let w be a string of length n. Having T (w), one can find the
order-preserving longest common factor of w and x, the latter string of length
m, in O(m(log logm+ log log n)) expected time.



Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes 93

Proof. The main principle of the algorithm is the same as in the standard setting
(see Corollary 6.12 in [6]). However, it needs to be enhanced using our algorithmic
tools.

Let pref (x) be the longest prefix of x such that Code(pref (x)) corresponds
to a node in T (w). Let suf xi be the i-th suffix of x. The algorithm computes
pref (suf x1), pref (suf

x
2) etc. and finds the maximum depth among their loci.

At each point the data structure D(pref (suf xi )) for the current suffix is stored.
First, the locus of pref (suf x1) is found by iterating Transition(v, (p, q)), as in the
order-preserving pattern matching (Theorem 13). To proceed from pref (suf xi )
to pref (suf xi+1), we remove the first letter (DelFirst), which also corresponds
to a jump along a suffix link, and then keep traversing down the T (w) using
Transition(v, (p, q)).

By Lemmas 8 and 9, we obtain the required time complexity. 
�

7 Constructing Complete Order-Preserving Suffix Tree

In Section 5 we presented an O(n log logn) time construction of an incomplete
op-suffix-tree. To obtain a complete op-suffix-tree, we need to put labels on
incomplete edges and to provide a character oracle. Note that, using a character
oracle working in f(n) time, we can fill in the missing labels in O(nf(n)) time.

Observation 15. The op-suffix-tree of a string of length n can be constructed
in O(n logn) time.

Proof. After O(n log n) preprocessing one can compute LastCode(suf i[1 . . j]) for
any i, j in O(log n) time. We use range trees for that, see [7]. Then we can fill
in separately each missing label in the incomplete tree in O(n log n) time. 
�

Below we show a slightly faster construction. For this, however, we need a dif-
ferent encoding of strings that also preserves the order. A very similar code was
already presented in [11]. For any i ∈ {1, . . . , n} define:

prev<
w(i) = |{k : k < i, wk < wi}|, prev=

w(i) = |{k : k < i, wk = wi}|.

The counting code of a string w is defined as:

Code ′(w) = ((prev<
w(1), prev

=
w(1)), . . . , (prev

<
w(|w|), prev=

w(|w|))).

We also define LastCode ′(w) = (prev<
w(|w|), prev=

w(|w|)).

Example 16. The counting code of each of the strings in Fig. 1 is (0, 0) (0, 0) (2, 0)
(1, 1) (0, 0) (2, 0) (6, 0) (2, 1) (4, 2).

The following lemma states that Code ′ is also an order-preserving code. In this
version of the paper we omit the proof, since it is basically present in [11].

Lemma 17. x ≈ y ⇔ Code ′(x) = Code ′(y).



94 M. Crochemore et al.

The main advantage of the new order-preserving code is the existence of an
O(log n/ log logn) time character oracle with o(n logn/ log logn) time construc-
tion. To design the oracle we use a geometric approach: the computation of
LastCode ′ for w corresponds to counting points in certain orthogonal rectangles
in the plane.

Observation 18. Let us treat the pairs (i, wi) as points in the plane. Then we
have LastCode ′(suf i[1 . . j]) = (a, b), where a is the number of points that lie
within the rectangle A = [i, i + j − 2] × (−∞, wi+j−1) and b is the number of
points in the rectangle B = [i, i+ j − 2]× [wi+j−1, wi+j−1], see Fig. 7.

The orthogonal range counting problem is defined as follows. We are given n
points in the plane and we are to count the number of points in axis-aligned
rectangles given as queries.

An efficient solution to this problem was given by Chan and Pǎtraşcu, see
Theorem 2.3 in [4] which we state below as Lemma 19. We say that a point
(p, q) dominates a point (p′, q′) if p > p′ and q > q′.

Lemma 19. We can preprocess n points in the plane in O(n
√
logn) time, using

a data structure with O(n) words of space, so that we can count the number of
points dominated by a query point in O(log n/ log logn) time.

i

wi

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6 B

A

Fig. 7. Geometric illustration of the sequence w = (5, 4, 6, 5, 2, 6, 1, 5, 6). The elements
wi are represented as points (i, wi). The computation of LastCode ′(suf 2[1 . . 7]) = (3, 1)
corresponds to counting points in rectangles A, B.

Theorem 20. The op-suffix-tree of a string of length n using the counting code
can be constructed in O(n log n/ log logn) expected time.

Proof. Due to Lemma 3 and the corresponding Lemma 17, the skeleton of the op-
suffix-tree for each of the order-preserving codes is the same. Hence, to construct
the op-suffix-tree for the counting code, we compute the skeleton of the suffix
tree using the algorithm for incomplete op-suffix-tree. Afterwards we use the
character oracle to insert the first characters on each edge of the skeleton.

Due to Observation 18 and Lemma 19 after O(n
√
logn) time and O(n) space

preprocessing one can compute LastCode ′(suf i[1 . . j]) for any i, j in
O(log n/ log logn) time. 
�



Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes 95

References

1. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., Holton, D.A.: Algorithms for pat-
tern involvement in permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 355–366. Springer, Heidelberg (2001)

2. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. J.
Comput. Syst. Sci. 52(1), 28–42 (1996)

3. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process.
Lett. 65(5), 277–283 (1998)

4. Chan, T.M., Patrascu, M.: Counting inversions, offline orthogonal range counting,
and related problems. In: Charikar, M. (ed.) SODA, pp. 161–173. SIAM (2010)

5. Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links.
SIAM J. Comput. 33(1), 26–42 (2003)

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, USA (2007)

7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try. Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

8. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., Meyer auf der Heide, F., Rohnert,
H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput. 23(4), 738–761 (1994)

9. Guillemot, S., Vialette, S.: Pattern matching for 321-avoiding permutations.
In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 1064–1073. Springer, Heidelberg (2009)

10. Ibarra, L.: Finding pattern matchings for permutations. Inf. Process. Lett. 61(6),
293–295 (1997)

11. Kim, J., Eades, P., Fleischer, R., Hong, S.-H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order preserving matching. CoRR, abs/1302.4064 (2013); Sub-
mitted to Theor. Comput. Sci.

12. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Fundamental Algo-
rithms, vol. I. Addison-Wesley (1973)

13. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: Bansal, N.,
Pruhs, K., Stein, C. (eds.) SODA, pp. 565–574. SIAM (2007)

14. Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A lin-
ear time algorithm for consecutive permutation pattern matching. Inf. Process.
Lett. 113(12), 430–433 (2013)

15. Lee, T., Na, J.C., Park, K.: On-line construction of parameterized suffix trees for
large alphabets. Inf. Process. Lett. 111(5), 201–207 (2011)

16. Lovász, L.: Combinatorial problems and exercices. North-Holland (1979)
17. Rotem, D.: Stack sortable permutations. Discrete Mathematics 33(2), 185–196

(1981)
18. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260

(1995)
19. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space

theta(n). Inf. Process. Lett. 17(2), 81–84 (1983)



Compact Querieable Representations

of Raster Data�

Guillermo de Bernardo1, Sandra Álvarez-Garćıa1, Nieves R. Brisaboa1,
Gonzalo Navarro2, and Oscar Pedreira1

1 Databases Lab., University of A Coruña, Spain
2 Department of Computer Science, University of Chile, Chile

Abstract. In Geographic Information Systems (GIS) the attributes of
the space (altitude, temperature, etc.) are usually represented using a
raster model. There are no compact representations of raster data that
provide efficient query capabilities. In this paper we propose compact rep-
resentations to efficiently store and query raster datasets in main mem-
ory. We experimentally compare our proposals with traditional storage
mechanisms for raster data, showing that our structures obtain competi-
tive space performance while efficiently answering range queries involving
the values stored in the raster.

1 Introduction

The raster model is widely used to represent spatial attributes [14]. A raster is
essentially a matrix representing a region of the space, in which the space is split
into cells and a value of the spatial attribute is stored for each of these cells. An
uncompressed raster representation requires much space (e.g., a 50, 000×50, 000
grid of integers requires around 10 GB), so it is typically stored in secondary
memory. Compressed raster representations are mainly designed to reduce stor-
age, and are based on well-known compression techniques such as run-length
encoding or LZW [15]. In these representations the full file must be decom-
pressed even to display a small region of the space. Some representations split
the raster into fixed size tiles and compress each tile independently, providing
some level of direct access to regions and taking advantage of the locality of
values to enhance compression (for example, GeoTIFF 1 images can be used to
represent raster data and they support this partition into tiles with different
compression techniques including LZW).

Geographic Information Systems (GIS) [16,14] routinely make use of raster
data to represent various kinds of information. They usually need not only direct
access to regions (e.g. to display a local map), but also need to find the cells whose

� GdB, NB, SAG and OP were funded by MICINN (PGE and FEDER) grants
TIN2009-14560-C03-02, TIN2010-21246-C02-01 and CDTI CEN-20091048, and by
Xunta de Galicia (co-funded with FEDER) ref. 2010/17. GN was founded by Mil-
lennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F.

1 http://trac.osgeo.org/geotiff/

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 96–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://trac.osgeo.org/geotiff/
http://dx.doi.org/10.1007/978-3-319-02432-5


Compact Querieable Representations of Raster Data 97

value is within some range. A classic example is the visualization of pressure or
temperature bands, which require retrieving the coordinates that have values
within a given range. Another example is retrieving the regions of a raster with
an altitude above a given threshold to find zones with snow alert, or below a value
to find regions with risk of floods. However, usual raster representations lack
indexing capabilities on the values stored in the raster. These representations
need to traverse the complete raster in order to return the cells that contain a
given value, even when the results may be restricted to a small subregion of the
space.

One solution is to consider the raster as a 3-dimensional matrix and use
computational geometry solutions to answer all these queries as range reporting
queries [5]. However, these solutions require superlinear space and therefore they
are not suitable to the large datasets involved. Reading the raster row-wise and
storing the sequence of values we could use a compressed sequence representation
[10,9,1] to return the cells with a given value (or a range of values [10,13])
efficiently, but further restricting the search to a spatial range is not efficiently
handled. Furthermore, these sequence representations achieve at best the zero-
order entropy space of the sequence, and this is not a significant space reduction
in many cases.

In this paper we present several proposals that aim at providing at the same
time a compact representation of raster data and efficient support of queries in-
volving spatial windows and intervals of values. We design our structures to solve
queries such as retrieving all the values of a given area, retrieving all the coordi-
nates with a given value, or retrieving all the entries of the raster within a spatial
window and with values in a given range. Our structures are enhancements of
an existing data structure called k2-tree [4], originally designed to represent
sparse binary matrices. Our first contribution is a variant of the k2-tree that can
compress not only large regions of zeros but also regions of ones. This enhance-
ment allows our structure to compress efficiently not only sparse matrices but
also binary images that contain large homogeneous regions. We experimentally
compare our structure with a Linear Quadtree [8] representation showing its su-
periority in space and even time. Our second contribution is a generalization of
the k2-tree to represent multi-dimensional data. We call this structure a kn-tree.
We use these new structures to provide different representations of raster data,
each with different strengths. We test our proposals experimentally to demon-
strate their low space requirements and their ability to efficiently solve queries.
Finally, we describe other application domains where our proposals could be of
interest.

2 Previous Work: The k2-tree

The k2-tree [4] is a data structure for the compact representation of sparse binary
matrices. In this paper we use its simplest variant, k=2, so the k2-tree is similar
to a compact Quadtree [7]. It corresponds to a recursive partition of the binary
matrix. At each partitioning step, the matrix is divided into k2 submatrices of



98 G. de Bernardo et al.

equal size. Each submatrix is represented using a single bit: 1 if the submatrix
contains at least one 1, or 0 otherwise. The method proceeds recursively for each
1-child until the current submatrix is full of 0s or we reach the cells of the original
matrix. This conceptual tree is traversed levelwise and stored in two bit arrays:
T stores all the levels except the last one, and L stores the last level. Figure 1
shows an example of k2-tree. In order to navigate the tree we need to build a
rank structure over T. This structure stores a set of counters that allow us to
compute the number of ones in the bitmap up to any position (rank1 operation)
in constant time using sublinear space [12]. Given a value 1 at position pos in
T , its k2 children will start at position pos′ = rank1(T, pos) × k2 of T : L.
This property provides simple navigation over the conceptual tree using only
the bitmaps and the additional rank structure over T . A k2-tree can solve single
cell queries, row/column queries or general range reporting queries (i.e., report
all the 1s in a range) using only rank operations, by visiting all the necessary
subtrees.

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000 00

00011100 00

00000000 10

01000011 00

00000000 00

10000000 01

00000000 01

01000000 00

01000000 00

00000000

00

00000000

00000000

00000000

00000000

01010000
1 1 0000 1 1 11 0 010 0 1 0 10 0

0011 0010

1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0

0011 0010 0001 0100 0010 10100010

00 11

0010 1000

T =1110 110110100100 0110 100101010010 1010 1100
L = 001100110010 0010000100100100 0010 100000101010

Fig. 1. Binary matrix and its k2-tree representation, for k=2. The matrix is virtually
expanded to the next power of k.

The original k2-tree was designed as a static data structure. A dynamic variant
of the k2-tree, called dk2-tree, also exists [3]. The dk2-tree essentially splits the
bitmaps T and L in chunks and builds tree structures to store these chunks.
The internal nodes of the trees store counters that replace those of static rank
structures and allow access to specific positions in T or L. The dk2-tree provides
the same query capabilities of the original k2-tree but allows at the same time
update operations, including changes in the values of the cells and insertion of
new rows/columns at the end of the matrix. See the original paper [3] for further
details.

3 Compression of Ones

In this section we propose variants of the k2-tree that are able to compress
efficiently these large regions of ones and zeros. We will show 2 variants: the



Compact Querieable Representations of Raster Data 99

first performs better when the number of ones and zeros in the matrix is not too
different; the second variant is designed to be used when the proportion of zeros
and ones is very different (without loss of generality, we will consider that the
less frequent value is 1).

The idea behind our proposals is to stop the decomposition of the binary
matrix when a uniform region is found, be it of zeros or ones. This means that
in our k2-tree we must discriminate among the 3 possible “colors” of a node:
white nodes are regions of zeros, black nodes are regions of ones and gray nodes
are internal nodes that correspond to regions with zeros and ones. With this
information, large regions of ones can be represented using a single node, just
like regions of zeros in the original k2-tree. The variants with compression of
ones can be traversed like the original k2-trees, and provide in addition a way to
find the color of a node. Using the additional navigation rules, all the operations
supported by original k2-trees can be implemented directly in a k2-tree with
compression of ones. The algorithms must only be adapted to expand automat-
ically all the results that fall in the submatrix covered by a black node. We now
propose two specific representations of the color of nodes.

3.1 2-Bits Variant

In this variant, we mark with a 1 all the regions that contain both zeros and
ones (i.e., the internal or gray nodes), whereas uniform regions are assigned a 0.
In order to tell apart white from black nodes, we create a second bitmap T ′ in
addition to T , that stores the value of each uniform region (that is, T ′ contains
a bit for each 0 in T that will store the color of that region). The navigational
properties of the original k2-tree still hold: the children of the (gray) node at
position p will start at position p′ = rank1(T, p)× k2, because each bit set to 1
in T represents a gray node and only gray nodes have children. If a position p
in T is set to 0, we can check T ′[rank0(T, p)] to see if it corresponds to a region
of zeros or of ones. The bitmap L behaves as in original k2-trees.

Figure 2 shows a k2-tree with compression of ones and the bitmaps generated
for this variant (left). We highlight a black node and the positions where its bits
are assigned in the bitmaps T and T ′.

3.2 Unbalanced (1-5)-Bits Variant

In this variant, we achieve compression of ones using the same bitmaps of the
original k2-tree. White nodes will be represented with a 0 and gray nodes will
be assigned a 1, exactly like in original k2-trees. Black nodes will be encoded
as a gray node with k2 = 4 white children (i.e., they are encoded using 5 bits).
This combination, that can not appear in the original k2-tree (gray nodes, by
definition, represent regions with at least a 1), is used to represent regions of
ones without the need of additional structures. Figure 2 (right) shows the bit
distribution for this variant. To take into account regions of ones, at each step
of the k2-tree traversal, we must check the k2 − 1 siblings of the current node to
detect if the current node is white (the current bit is 0, but one of its siblings



100 G. de Bernardo et al.

Fig. 2. Example of k2-trees with compression of ones

is 1)2 or we are in a region of ones (the current bit is 0 and all its siblings are 0,
meaning that the parent node was actually black).

This approach will obtain worse compression than the one based on 2 bits in
most cases. However, it may obtain better compression when there are blocks
of ones but the zeros are much more frequent. Also, this variant will never use
more space than the original k2-tree.

Both variants of k2-trees with compression of ones can also be applied to
dynamic k2-trees. Each bitmap used by the static representations is replaced by
a tree structure as in the original dk2-tree, to support updates as well as access
and rank queries.

3.3 Comparison of k2-tree with Linear QuadTree

The QuadTree (QT) [7] is a well-known spatial index structure for representing
binary images. The partitioning principle of QT and k2-tree is the same. At the
root of the tree, the matrix is partitioned into four quadrants, which correspond
to the four children of the root. In the QT, the quadrants that are not entirely
black or white are recursively partitioned following the same principle until we
reach a fully black or white region or the unitary cells of the matrix. To access
a particular position of the raster, the tree is traversed from the root to the
leaves following the appropriate path. Depending on the distribution of black
and white cells in the matrix, the QT can represent the binary matrix while
saving significant space and providing efficient access.

The Linear QuadTree (LQT) [8] was proposed as a representation of QTs
without pointers that can be easily managed in secondary memory and requires
less space than the original QTs. At each node, the branches corresponding to

2 The k2 bits are contiguous, so we perform this check in constant time.



Compact Querieable Representations of Raster Data 101

the NW, NE, SW, and SE quadrants are labelled with 0, 1, 2, and 3 respectively.
A leaf is formed when the submatrix is full of points. LQTs assign a quadcode to
each leaf of the QT, which describes the (4-ary) path from the root to that leaf.
To represent the quadcode of each leaf, a digit is added for each branch that is
traversed. An additional symbol is used to represent that a region is not further
partitioned (i.e., the subregion covered by that branch is full of ones, i.e., it is
a leaf). All these quadcodes are then stored in a B-Tree in secondary memory.
To access a position of the raster, we search for its corresponding quadcode or a
quadcode that contains it in the B-Tree.

Other representations of QTs that achieve less space requirements have been
proposed, such as the FBLQ [6] and the CBLQ [11]. However, they are designed
mainly to represent binary images and support union, intersection and difference
of two images, which require a full traversal of the raster.

The original k2-trees cannot be used to represent a wide class of binary images
because they do not efficiently compress regions of ones. Our variants of k2-tree
with compression of ones overcome this limitation. As a proof of concept of the
capabilities of our proposals we compare our k2-trees with LQTs.

Experimental Comparison. We compare the space requirements and search
performance of k2-trees and LQTs. Since k2-trees work in main memory, we im-
plemented in-memory versions of the LQT. To provide fair comparisons, we build
two different variants of LQT. The first one (LQT-BTree) stores the quadcodes
in a B-Tree maintained in main memory. This representation can handle mod-
ifications, so we compare it with a dk2-tree. The second variant (LQT-Array)
stores the sorted sequence of quadcodes directly in an array, and a binary search
is used to find them. We compare the LQT-Array with a static k2-tree with
compression of ones. We run all our experiments on an AMD-Phenom-II X4
955@3.2 GHz, with 8GB DDR2 RAM. The operating system is Ubuntu 9.10.
All our implementations are written in C and compiled with gcc version 4.4.1
with -O9 optimizations.

We use five collections in our comparison. The first three are binary images
obtained from elevation rasters of the Digital Terrain Model MDT05 of the
Spanish Geographic Information Center 3. A threshold is applied to each raster,
generating a binary image with 25% of ones, corresponding to the higher values.
The last two collections are adjacency matrices of Web graphs [2], and therefore
difficult to compress using LQTs because they are very sparse. Table 1 shows
the space required by all the representations. Table 2 shows the average time
needed to retrieve a cell of the matrix. To obtain this time, we run a million
random queries in each dataset and compute the average access time.

Our results show that the space required by k2-trees is an order of magnitude
smaller than the required by our two variants of LQTs, while the access time is
also better in most cases, particularly in static k2-trees.

3 Original rasters are available for download at http://cnig.es/

http://cnig.es/


102 G. de Bernardo et al.

Table 1. Space utilization of k2-trees and LQTs (in bits per one)

Dataset rows × cols #ones k2-tree LQT-Array LQT-BTree
Static Dynamic

mdt-600 3961×5881 11,647,287 0.02 0.04 0.25 0.31
mdt-700 3841×5841 13,732,734 0.02 0.04 0.17 0.17
mdt-800 3921×6001 21,580,638 0.01 0.02 0.11 0.11

cnr 325,557×325,557 3,216,152 3.14 4.95 41.32 41.46
eu 862,664×862,664 19,235,140 3.81 5.86 49.92 50.07

Table 2. Time to retrieve the value of a cell of the binary matrix, in μs/query

Dataset k2-tree LQT-Array LQT-BTree
Static Dynamic

mdt-600 0.46 0.86 1.64 1.27
mdt-700 0.50 1.00 1.64 1.27
mdt-800 0.36 0.56 1.64 1.20

cnr 0.86 2.88 3.16 3.06
eu 0.90 3.85 3.76 3.85

4 Multi-dimensional k2-trees: The kn-tree

The k2-tree has been applied in several contexts to the representation of binary
relations. Intuitively, the k2-tree can be extended to solve problems of higher
dimensionality extending its space partitioning while maintaining the represen-
tation techniques used. We call the extension of the k2-tree a kn-tree.

A kn-tree represents a binary n-dimensional matrixMm1×...×mn by recursively
partitioning it into kn n-dimensional submatrices of equal size. This partitioning
strategy generates a conceptual tree similar to a k2-tree in which each node has
kn children. The conceptual tree can then be represented and queried using the
same techniques of k2-trees.

Notice that a 1 in a cell of a binary matrix that has another 1 falling in
the same submatrix does not consume any additional space in the k2-tree, but
isolated ones induce a complete branch in the k2-tree, consuming much space.
In other words, the k2-tree takes advantage of the proximity of the ones in the
matrix, because paths in the conceptual tree to each of these ones can be shared
for most of the levels. This feature becomes more important as the value of k
increases, and also if we build a kn-tree for a high n, because each node of a
kn-tree will have kn children that must be represented if the region represented
contains ones and zeros. Therefore, a kn-tree may not be useful for unclustered
data without any regularities. We will use the kn-tree as an efficient method to
represent multi-dimensional data in a way that ensures that the data is clustered
across the different dimensions. Particularly, we will show its application to the
representation of raster matrices.



Compact Querieable Representations of Raster Data 103

5 Representation of Raster Data Using k2-tree Variants

In this section we design several structures for the representation of general
raster data using the k2-tree variants we have proposed in previous sections.

We assume in our proposals that the raster values have a “realistic” precision4,
so that the number of different values in the third dimension is not too high. We
consider that the raster has m different values and denote by vi the i-th different
value of the raster in ascending order.

Our first representation of a raster dataset consists of a collection of k2-trees
(k2-base), one for each different value of the raster (i.e., we build a k2-tree Ki

that stores all the cells with value vi). A variant with compression of ones will be
used in order to exploit the regularities of spatial attributes. This representation
can efficiently answer queries asking for cells with a given value, because these
cells are indexed in a single k2-tree. However, queries that ask for cells with
values in a range [v�, vr] require traversing many k2-trees.

We also propose an alternative representation using “accumulated” k2-trees
(k2-acc). In this representation, each k2-tree Ki will store not the cells whose
value is vi but all the cells whose value is smaller or equal to vi. While this
increases the number of cells to represent in each k2-tree, it will also increase
the clustering of ones and therefore the ability of each k2-tree to compress these
regions. To ask for the value of a given cell in this variant, we can binary search
the first k2-tree that contains the desired cell of the raster. This variant also has
an advantage when asking for cells with values within a given range, as we only
need to query at most two k2-trees: the cells with values in the range [v�, vr] are
the cells of Kr that do not appear in K�−1. As a counterpart, two k2-trees must
be queried instead of one in order to obtain the cells with a given value.

Finally, we propose a k3-tree as a better representation of the raster data, as it
is an indexed representation of the spatial coordinates and the values altogether.
Our k3-tree stores the tuples 〈x, y, z〉 such that the coordinate (x, y) of the raster
has value z. Notice that for each pair (x, y) only one z value will be set, so we
will not find (cubic) regions of ones in this case. Because of this, our k3-tree is
based on the original k2-tree codes, without compression of ones. To query for
the value of a cell in the k3-tree, we traverse all the paths found in the k3-tree for
fixed x and y values. To return all the cells with a given value, the z coordinate
is fixed and all the pairs (x, y) of the corresponding k3-tree slice are returned.
To ask for cells with a range of values the query is similar, traversing the k3-tree
only within the bounds given by the interval [z�, zr].

5.1 Experimental Framework

To test the efficiency of our proposals we use several real raster matrices obtained
from the MDT05 collection. Table 3 gives details about the different fragments

4 When representing spatial attributes, in many cases the values stored can not be con-
sidered as an accurate estimation of actual values (e.g. a temperature measurement
may be given in a precision of one thousandth of a degree, but this measurement
may only be accurate in terms of a degree or a tenth of a degree).



104 G. de Bernardo et al.

Table 3. Raster datasets used

Dataset Raster size #values Description

mdt-500 4001 × 5841 578 Raster 500
mdt-700 3841 × 5841 472 Raster 700

mdt-medium 7721 × 11081 978 Rasters 47,48, 72 and 73 combined
mdt-large 48266 × 47050 2142 Raster covering the region of Galicia

taken. The number of different values in each raster is also shown in the table,
after rounding the elevation values to a precision of 1 meter.

To measure query results, we first determine a sufficiently large number of
queries to obtain accurate results for each type of query. Then we build a different
set of random queries of each type for each dataset. All the time results shown
correspond to CPU time.

5.2 Experimental Results

We show the space required to represent each dataset with all our proposals. To
provide an element of comparison we convert the rasters to GeoTIFF5 format
using two different sets of options. The first, tiff-plain, is a plain representa-
tion without compression, that stores all the values in row order (we use 16-bit
integers as the datatype for the representation). The second representation, tiff-
comp, is optimized for space: the image is divided in tiles of size 256× 256 and
each tile is compressed using a linear predictor and LZW encoding.

Table 4 shows the space utilization of our proposals and the reference Geo-
TIFF images, in bits per cell of the raster. As an additional reference, columns
2 and 3 show the base-2 logarithm of the number of different values in each
raster and the zero-order entropy H0 of these values. These columns represent
the minimum space that would be required by a representation of the raster as an
uncompressed or entropy-compressed sequence, respectively. The k3-tree clearly
obtains the best space utilization amongst our approaches in all the datasets,
being very close to the compressed GeoTIFF representation and using much less
space than the zero-order entropy. Notice that the GeoTIFF format only offers,
at best, random access to the raster data, whereas our proposals are indexed
representations that efficiently solve various types of queries.

Table 4. Space utilization of all approaches (in bits/cell)

Dataset log(#values) H0(values) k
2-base k2-acc k3-tree tiff-plain tiff-comp

mdt-500 9.17 5.43 2.83 2.30 1.83 16.01 1.52
mdt-700 8.88 4.39 2.13 2.40 1.38 16.01 1.12

mdt-medium 9.93 5.86 3.06 2.72 1.77 16.01 1.52
mdt-large 11.06 5.32 3.16 4.37 1.62 16.00 1.35

5 http://trac.osgeo.org/geotiff/

http://trac.osgeo.org/geotiff/


Compact Querieable Representations of Raster Data 105

Table 5. Retrieving the value of a single cell. Times in μs/query.

Dataset k2-base k2-acc k3-tree tiff-plain tiff-comp

mdt-500 66.7 4.6 2.2 2.6 491.7
mdt-700 39.6 3.0 1.8 2.7 461.9

mdt-medium 76.4 5.3 2.6 5.2 499.0
mdt-large 415.3 11.1 2.8 87.9 494.8

Next we compare the query times of all our proposals for some queries of in-
terest. We implement the same queries over the GeoTiff images used to compress
the rasters. We build simple algorithms on top of the libtiff library6 to retrieve
fragments from the GeoTIFF images and run each query type. This comparison
is given as a simple sanity check, since libtiff is not designed to process these
queries7. We only aim to show that these queries are not easy to solve with the
traditional formats.

First we measure the time required to retrieve the value of a single cell of the
raster. This operation shows the ability of the representations to provide random
access to the raster. Table 5 shows the results obtained. The k3-tree representa-
tion obtains the best results among our proposals, showing the efficiency of the
multi-dimensional index in this context. The approach based on independent
k2-trees, as expected, behaves much worse than our other proposals, since it
has to scan the k2-trees one by one. The accumulated k2-tree approach obtains
also good results because it can binary search the first k2-tree that contains the
cell. Note that the tiff-plain representation should obtain much faster times, but
libtiff spends a lot of time copying chunks of the image that are useless for this
query. On the other hand, the tiff-comp representation presents poor query times
in comparison with the uncompressed version, as not only the appropriate tile
of the image has to be recovered but also decompressed in order to recover a
single cell.

Next we show the efficiency of the representations to select the cells of the
raster that contain a specific value. The results are shown in Table 6. Not sur-
prisingly, our representations obtain much better results than the tiff repre-
sentations, because the latter must always traverse the complete raster. In this
case, the k2-base obtains better results, as expected, because only one k2-tree
is accessed and the regions of the ones in the k2-tree can be decoded efficiently.
The k2-acc has to access two k2-trees, essentially doubling the query time of the
independent k2-trees. The k3-tree only needs to traverse the appropriate slice,
but it may need to explore many more nodes that correspond to regions with
close values.

Finally, we measure the efficiency of window-range queries, that ask for cells
of the raster within a spatial window and a range of values. These queries are
widely used when processing raster data corresponding to spatial attributes (for

6 http://www.libtiff.org
7 The library libtiff reads the images from disk, but we are considering only CPU
time.

http://www.libtiff.org


106 G. de Bernardo et al.

Table 6. Retrieving all the cells with a given value. Times in ms/query.

Dataset k2-base k2-acc k3-tree tiff-plain tiff-comp

mdt-500 3.9 5.8 9.4 39.5 221.4
mdt-700 3.0 6.0 7.3 37.5 199.5

mdt-medium 8.2 13.6 18.9 142.6 799.0
mdt-large 110.2 255.1 196.6 3,838.9 19,913.4

instance, regions with risk of floods or snow alert may be computed from el-
evation rasters selecting the cells with values above a threshold or in a given
interval). In this case, the k3-tree and the k2-acc take advantage of their struc-
ture to obtain the best times. The k2-acc only needs to perform a window query
in two k2-trees, and the k3-tree can restrict the navigation of the tree in all the
dimensions to the given bounds.

Table 7. Retrieving cells inside a window and within a range of values. Times in
μs/query.

Dataset Window Range k2-base k2-acc k3-tree tiff-plain tiff-comp
size length

mdt-500
10

10 5.9 1.6 1.9 24.5 525.7
50 27.4 1.9 2.6 24.4 525.0

50
10 10.3 3.6 5.1 124.0 697.1
50 51.0 5.4 16.2 124.0 699.5

mdt-700
10

10 5.9 1.6 1.6 24.3 496.0
50 27.6 1.8 2.3 24.5 493.4

50
10 10.1 3.6 4.5 123.7 653.2
50 49.2 5.0 13.6 123.8 649.9

mdt-medium
10

10 6.4 2.4 2.0 45.7 531.4
50 28.4 2.5 2.5 45.9 533.6

50
10 9.9 3.7 4.2 229.2 705.4
50 46.5 4.7 10.9 228.5 705.4

mdt-large
10

10 10.5 3.9 2.2 285.5 519.1
50 44.2 3.9 2.5 287.4 545.8

50
10 13.1 4.6 3.2 1,021.6 693.6
50 54.5 5.2 5.8 1,009.6 691.9

6 Conclusions

We have presented several compact data structures that can represent raster
data in reduced space, supporting not only access to random areas in the raster
but also advanced queries involving the values stored in the raster. We compare
our representations, based on k2-trees, with existing formats used to store and
process raster data. Our experiments show that the k3-tree can obtain very good
space results, being close to the compressed GeoTIFF representation. The k3-
tree also shows competitive times in all the queries tested, being the fastest



Compact Querieable Representations of Raster Data 107

to retrieve the value of a cell and in some window queries. The variant with
independent k2-trees obtains the best time results to retrieve all the cells with
a given value, but it is much slower in queries involving a range of values. The
variant with accumulated k2-trees obtains the best results in most of the queries
involving ranges of values. In all the queries tested the results of our proposals
are clearly better than the representations based on GeoTIFF images.

We believe that the proposed variants of the k2-tree could be used in a wider
range of application domains. We have shown, as a proof of concept, the appli-
cability of the k2-tree with compression of ones to the representation of binary
images. Variants of kn-tree could also be used to represent, for instance, spatio-
temporal raster datasets and moving region databases. Spatio-temporal raster
datasets can be seen as a collection of rasters stored for different time instants,
so we can consider the time as a fourth dimension in the matrix that represents
the raster and use a k4-tree to represent space, time and values stored. An ex-
ample of spatio-temporal raster is a collection of temperature rasters in different
days. In this example it is expected that the values stored for cells close in space
or for the same cell along time are similar. Moving region databases represent
regions of space that change with time. These regions can be encoded with a
3-dimensional matrix that stores spatial coordinates covered by a region along
time, so that cells of the matrix determine if the region covered a given position
at a given time. In many cases, these regions are continuous and change only
slightly between time instants (e.g., the evolution of oil spills along time will
yield a 3-dimensional matrix with large uniform regions that will change slowly
with time). Therefore, a k3-tree with compression of ones could exploit these
regularities to obtain good compression results, providing also spatio-temporal
query support.

References

1. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-
pressed rank/select and applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg (2010)

2. Boldi, P., Vigna, S.: The Webgraph framework I: compression techniques. In: Proc.
13th WWW, pp. 595–602 (2004)

3. Brisaboa, N.R., de Bernardo, G., Navarro, G.: Compressed dynamic binary rela-
tions. In: Proc. 22nd DCC, pp. 52–61 (2012)

4. Brisaboa, N.R., Ladra, S., Navarro, G.: k2-Trees for compact web graph represen-
tation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721,
pp. 18–30. Springer, Heidelberg (2009)

5. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. 27th SoCG, pp. 1–10 (2011)

6. Chang, H.K., Chang, J.W.: Fixed binary linear quadtree coding scheme for spatial
data. In: Proc. 9th VCIP, vol. 2308, pp. 1214–1220 (1994)

7. Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval on composite
keys. Acta Informatica 4, 1–9 (1974)

8. Gargantini, I.: An effective way to represent quadtrees. Communications of the
ACM 25(12), 905–910 (1982)



108 G. de Bernardo et al.

9. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)

10. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th SODA, pp. 841–850 (2003)

11. Lin, T.W.: Set operations on constant bit-length linear quadtrees. Pattern Recog-
nition 30(7), 1239–1249 (1997)

12. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

13. Navarro, G.: Wavelet trees for all. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012.
LNCS, vol. 7354, pp. 2–26. Springer, Heidelberg (2012)

14. Rigaux, P., Scholl, M., Voisard, A.: Spatial databases - with applications to GIS.
Elsevier (2002)

15. Welch, T.A.: A technique for high-performance data compression. Computer 17(6),
8–19 (1984)

16. Worboys, M., Duckham, M.: GIS: A Computing Perspective, 2nd edn. CRC Press,
Inc. (2004)



Top-k Color Queries on Tree Paths�

Stephane Durocher1, Rahul Shah2,
Matthew Skala1, and Sharma V. Thankachan2

1 University of Manitoba, Winnipeg, Canada
{durocher,mskala}@cs.umanitoba.ca

2 Louisiana State University, Baton Rouge, USA
{rahul,thanks}@csc.lsu.edu

Abstract. We present a data structure for the following problem: Given
a tree T , with each of its nodes assigned a color in a totally ordered set,
preprocess T to efficiently answer queries for the top k distinct colors on
the path between two nodes, reporting the colors sorted in descending
order. Our data structure requires linear space ofO(n) words and answers
queries in O(k) time.

1 Introduction and Related Work

Given an array A[1..n] of color values in {1, 2, . . . , σ} and a function p(c) that
defines priorities for the colors, the array range top-k color query problem is to
report, given indices a and b and a count k, the k distinct color values of highest
priority to occur in the array range A[a..b], in descending order of priority. A
data structure for this problem must preprocess the array to answer queries
efficiently. In this work we generalize the array range top-k color query problem
to paths in trees.

Karpinski and Nekrich [15] give a data structure for the array problem with
O(k) query time using O(n log σ) bits, which is asymptotically optimal. Other
related problems include reporting all distinct colors, counting the number of
distinct colors in the query range, finding the most frequent, least frequent,
majority or minority color in the query range, and so on. Efficient data struc-
tures offering different space-time trade-offs for these kinds of problems are
known [1–6, 8–11, 16]. Such problems arise frequently in information retrieval
and computational geometry.

Any two nodes in a tree define a unique path between them, just as two el-
ements of an array define a unique range. When the entire tree is a path, tree
paths reduce to array ranges. Most array range query problems can thus be gen-
eralized to a tree setting, and some of these problems are well studied. Krizanc
et al. [16] discuss finding the median and mode on tree paths. He et al. [12] give
efficient linear-space solutions for path selection (including median), counting,

� Work supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC) and National Science Foundation (NSF) Grants CCF–1017623
(R. Shah and J. S. Vitter) and CCF–1218904 (R. Shah).

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 109–115, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


110 S. Durocher et al.

and reporting, on individual node values (weights) as opposed to classes of dis-
tinct node values (colors) [12]. Recent results include succinct data structures
for these weighted path query problems [13, 19].

Suppose each node in a tree T of n nodes is assigned a color c ∈ {1, . . . , σ} and
each color has a priority p(c). Let T [a..b] represent the unique path connecting
the nodes with preorder indices a and b. Then the tree path top-k color query
problem is to report, given indices a and b and a count k, the k distinct color
values of highest priority to occur in T [a..b], in descending order according to
priority. We will prove the following result in Word-RAM model.

Theorem 1. There exists a linear-space data structure of O(n) words for an-
swering tree path top-k color queries in O(k) time.

2 Our Solution

We begin by defining some useful concepts. Let T be a tree with n nodes. We
define the size of an internal node v to be the number of leaves in the subtree
rooted at v. Then the heavy path of the tree T is the path starting from the
root, which each node v on the path is the largest-size child of its parent. Let
the root of a heavy path be its highest node, that is, closest to the root of T .
The heavy path decomposition of the tree T is the operation where we decompose
each off-path subtree of the heavy path recursively; therefore, edges in T will
be partitioned into disjoint heavy paths. Each leaf node belongs to a unique
path in the heavy decomposition, and each heavy path contains exactly one leaf.
Therefore the number of heavy paths is exactly equal to the number of leaves.
This decomposition will allow us to break query paths into a small number of
pieces by the following lemma.

Lemma 1 (Sleator and Tarjan [20]). Any path from the root to a leaf in T
intersects at most logn paths of the heavy path decomposition.

We will also use a data structure of Navarro and Nekrich for three-sided two-
dimensional top-k queries [18]. Given a set of n points on an n × n grid, each
having a weight, this data structure can report the k points of greatest weight
in a query region of the form [a, b] × [0, h], in O(h + k) time. Furthermore, it
reports the points in order of decreasing weight, and it reports them online, that
is, in constant time per point after the O(h) time to start the query; k need not
be specified in advance.

Any tree path T [a..b] can be divided into two overlapping paths T [a..z] and
T [z..b], where z is the lowest common ancestor (LCA) of a and b. If we can
answer tree path top-k color queries on these two paths in O(k) time, then we
can merge the answers to answer such queries on arbitrary paths in the tree in
the same time. Therefore, it suffices to solve the following problem.

Problem 1. Preprocess T to efficiently answer tree path top-k color queries on
paths of the form T [a..z] where z is an ancestor of a.



Top-k Color Queries on Tree Paths 111

A tree path top-k query involves three constraints. Each element returned
must be (1) on the query path; (2) among the top k; and (3) of a distinct
color. In other words, each color must be reported, and counted towards the
top k, only once, even if many elements of that color appear on the query path.
We eliminate the duplicates using an adaptation of Muthukrishnan’s chaining
approach to reporting distinct colors in array ranges [17].

Let depth(i) be the number of nodes on the path from the root to a node i.
Let chain(i) be the depth of the lowest ancestor of i that has the same color as
i, with chain(i) = 0 if there is no such ancestor. If there exists at least one node
with color c in T [a..z], z being an ancestor of a, then there exists a unique node
i in T [a..z] with color c and chain(i) < depth(z). Therefore, Problem 1 can be
rephrased as follows:

Problem 2. Preprocess T to efficiently find, given a node a, one of its ancestors
z, and a count k, the top k colors in decreasing order of priority among the nodes
in the set {i ∈ T [a..z]|chain(i) < depth(z)}.

For any node given by its preorder rank i, let φ(i) be the root of the path
containing i in the heavy path decomposition of T . Let �j be the preorder rank
of the jth leftmost leaf in T . We can transform T to another tree T ′, which
is actually a path, by concatenating the paths T [�i, φ(�i)] for each i up to the
number of leaves. Then we can define an array A[1..n] containing the priorities
of the colors of nodes in T ′, in order along the path starting from the root.
property is ensured. Any subpath of a path in the heavy path decomposition
must correspond to a contiguous range of A.

We build the optimal array range top-k color query data structure of Karpinski
and Nekrich on A, using O(n log σ) bits [15]. From each node i in T , we store
the index of the corresponding entry in A. The total space consumption is O(n)
words assuming σ ≤ n. Because heavy paths are contiguous in A, the special
case where both a and z are on the same heavy path can be handled optimally
by first finding the corresponding range in A, and then performing a top-k color
query on the array range top-k color query data structure.

For the case of a and z not on the same path of the decomposition, we map
each node i in T to a weighted two-dimensional point (xi, yi) with weight wi,
letting wi be the priority of the color of node i, xi be the index in A corresponding
to that node, and yi be the number of paths of the heavy path decomposition
intersected by the path from the root to chain(i). We build the data structure 1

of Navarro and Nekrich for three-sided two-dimensional top-k queries on these
weighted points [18, Theorem 2.1]. Because yi ≤ logn, the query time to return
k points from this data structure is O(log n+ k).

To answer a general tree path top-k color query, we first find the lowest
common ancestors of its endpoints and split the path into two queries of the form

1 Note that an alternate approach is to build the data structure described in [15] over
the list of colors corresponding to each heavy path, and later perform top-k queries
on all heavy paths intersect with T [a..z]. However, the drawback of this approach is
that the same color may be reported from several heavy paths.



112 S. Durocher et al.

T [a..z], with z an ancestor of a. Then for each of the two, we partition the query
path T [a..z] into at most logn disjoint subpaths T [a1..φ(a1)], T [a2..φ(a2)], . . . ,
T [ar..z], where a1 = a, ai is the parent of φ(ai−1) for i = 2, 3, . . . , r, and r ≤ logn
is such that z is on the subpath T [ar..φ(ar)]. This step takes only O(r) =
O(log n) time, by consulting a stored copy of the heavy path decomposition.

The query T [ar..z] corresponds to a contiguous range in A, so we can find its
top k colors in O(k) time and merge them in O(k) time with the top k colors
for T [a1..φ(ar−1)]. It only remains to query T [a1..φ(ar−1)] efficiently.

From the definition in Problem 2, we have that a node i can only be part of
the result for T [a1..φ(ar−1)] if chain(i) < depth(φ(ar−1)). In fact, it suffices to
check that the number of centroidal paths intersected by the path from the root
of T to chain(i) is less than the number intersected from the root to φ(ar−1).
Since φ(ar−1) and its parent cannot be on the same path of the decomposition,
any ancestor of it must be in a path nearer the root.

Let h be the number of paths of the heavy path decomposition that are
intersected by the path from φ(ar−1) to the root, and let A[si..ei] be the range
of A associated with T [ai..φ(ai)]. Then for each i ∈ {1, 2, . . . , r−1}, the weighted
points (xj , yj) ∈ [si, ei] × [0, h] correspond to nodes with distinct colors on the
path T [a1..φ(ar−1)]. The union of those lists would include the top k colors in
T [a1..φ(ar−1)], but we still must merge the lists.

We issue r − 1 simultaneous queries to the top-k geometric data structure,
corresponding to the query regions [si, ei] × [0, h] for i = 1, 2, . . . , r − 1. The
answers can be merged using a max-heap H with its size limited to at most
r− 1 = O(log n) points. We insert the first point returned from each Ri into H .
Then we repeat the following steps until we have reported k colors:

1. Extract the highest weighted point in H and report it.
2. If the reported point was from the query box Ri, then fetch the next highest

weighted point from Ri and insert it into H .

Since the size of H is always logO(1) n, we can use an atomic heap, which
can perform all heap operations in constant time in the Word RAM model [7].
Therefore, the number of heap operations, and the required time, can be bounded
by O(k + log n). Each three-sided two-dimensional top-k query takes O(log n)
time in addition to the number of points it returns. Therefore the total time for
query is O(k + log2 n).

Lemma 2. There exists a linear-space data structure for answering tree path
top-k color queries in O(k + log2 n) time.

For k = Ω(log2 n), that time is optimal. To handle the case of small k, we
use other techniques. First, we will choose a subset of the nodes in T , called
the marked nodes, as follows. Let g be an integer to be chosen later called the
grouping factor, and mark every node i in T such that i ≡ 0 (mod g). Also mark
the lowest common ancestor of any pair of marked nodes. This is a simplified
version of the scheme introduced by Hon et al. [14] for identifying marked nodes
in a suffix tree. It has the properties given in the following lemma (the proof is
deferred to the full version).



Top-k Color Queries on Tree Paths 113

Lemma 3. If we mark all nodes i such that i ≡ 0 (mod g), and all lowest
common ancestors of pairs of such nodes, then:

1. the number of marked nodes is O(n/g);
2. the lowest marked ancestor of any node is O(g) nodes above it;
3. any unmarked node has at most one unique highest marked descendant; and
4. for any unmarked node i, the subtree of T rooted at i and excluding the subtree

rooted at its highest marked descendant j (if any) contains O(g) nodes.

We mark nodes in T using g = log3 n. For every marked node i and every
j such that j is an ancestor of i and is the root of a path in the heavy path
decomposition, we store explicitly a precomputed sorted list of the top O(log2 n)
colors on the path T [i..j]. The space is bounded by O((n/ log3 n) log2 n logn) =
O(n) words. Using these precomputed lists we can find the top k colors in T [a..z],
where a is a marked node and z is one of its ancestors, by splitting the query,
as before, into T [a1..φ(ar−1)] and T [ar..z]. The former is precomputed and the
latter corresponds to a contiguous range of A. We can find the top k colors in
both of them and merge the lists in O(k) time.

Lemma 4. There exists a linear-space data structure for answering tree path
top-k color queries of the form T [a..z] in O(k) time, where a is a marked node
and z is one of its ancestors.

Next we must handle the case in which a is not a marked node. For any node
i such that i is not marked but its parent is marked, define the mini-tree T i to
be the subtree rooted at i but excluding any descendants of the highest marked
descendant of i, if any. By Lemma 3, T i is of size O(g). We choose a grouping
factor g′ = log3 g = Θ(log3 logn) and use it to mark nodes within each mini-tree,
and build the data structure of Lemma 4 for each mini-tree. The total space is
bounded by O(n) because each node in T belongs to exactly one mini-tree. By
querying from a to the root of its mini-tree, and from the parent of that root to
z, and merging the results, we can answer top-k color queries of the form T [a..z]
in O(k) time when a is marked in its mini-tree and z is its ancestor, even if a is
not marked in T .

Finally, we generalize the optimal-time solution to arbitrary a. For any i not
marked in T nor in the mini-tree that contains i, let j be the lowest marked
node above i in the same mini-tree. The node j is at most g′ = O(log3 logn)
nodes above i. Therefore the top k colors on the path T [i..j], for all choices of
i, can be stored in O(n(log3 logn)2 log log logn) bits: there are n choices of i,
O(log3 logn) lists, each of length at most O(log3 logn), and only O(log log logn)
bits are needed (as indices into the mini-block) to store the entries in the lists.
That is a total of o(n) words.

Then to answer an arbitrary query T [a..b], we first split into two queries
T [a..z] and T [b..z] with z the lowest common ancestor of a and b. We can find
the top k colors from a to its lowest marked ancestor within its mini-tree, and
from there to the root of the mini-tree, using the precomputed lists. From the
lowest marked ancestor of a in T to the highest marked ancestor of a below z,



114 S. Durocher et al.

we use Lemma 4; and from there to z we do an array range query in A. We do
the same with the query T [b..z]. All these queries can be performed, and their
results merged, in O(k) time. This completes the proof of Theorem 1.

References

1. Belazzougui, D., Gagie, T., Navarro, G.: Better space bounds for parameterized
range majority and minority. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 121–132. Springer, Heidelberg (2013)

2. Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discrete Algorithms 18, 3–13 (2013)

3. Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-
space data structures for range mode query in arrays. In: Proc. STACS, vol. 14,
pp. 291–301 (2012)

4. Chan, T.M., Durocher, S., Skala, M., Wilkinson, B.T.: Linear-space data structures
for range minority query in arrays. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 295–306. Springer, Heidelberg (2012)

5. Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in
constant time and linear space. Inf. & Comp. 222, 169–179 (2013)

6. Durocher, S., Shah, R., Skala, M., Thankachan, S.V.: Linear-space data structures
for range frequency queries on arrays and trees. In: Chatterjee, K., Sgall, J. (eds.)
MFCS 2013. LNCS, vol. 8087, pp. 325–336. Springer, Heidelberg (2013)

7. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

8. Gagie, T., He, M., Munro, J.I., Nicholson, P.K.: Finding frequent elements in com-
pressed 2D arrays and strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.)
SPIRE 2011. LNCS, vol. 7024, pp. 295–300. Springer, Heidelberg (2011)

9. Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and
document retrieval. Theor. Comput. Sci. 483, 36–50 (2013)

10. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

11. Gfeller, B., Sanders, P.: Towards optimal range medians. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 475–486. Springer, Heidelberg (2009)

12. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: Asano, T.,
Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074,
pp. 140–149. Springer, Heidelberg (2011)

13. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Ep-
stein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer,
Heidelberg (2012)

14. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: Proc. FOCS, pp. 713–722 (2009)

15. Karpinski, M., Nekrich, Y.: Top-k color queries for document retrieval. In: Proc.
SODA, pp. 401–411 (2011)

16. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists
and trees. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906,
pp. 517–526. Springer, Heidelberg (2003)



Top-k Color Queries on Tree Paths 115

17. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
SODA, pp. 657–666 (2002)

18. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Proc. SODA, pp. 1066–1077 (2012)

19. Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees
supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)

20. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)



A Lempel-Ziv Compressed Structure

for Document Listing�

Héctor Ferrada and Gonzalo Navarro

Department of Computer Science, University of Chile
{hferrada,gnavarro}@dcc.uchile.cl

Abstract. Document listing is the problem of preprocessing a set of
sequences, called documents, so that later, given a short string called the
pattern, we retrieve the documents where the pattern appears. While
optimal-time and linear-space solutions exist, the current emphasis is
in reducing the space requirements. Current document listing solutions
build on compressed suffix arrays. This paper is the first attempt to solve
the problem using a Lempel-Ziv compressed index of the text collections.
We show that the resulting solution is very fast to output most of the
resulting documents, taking more time for the final ones. This makes
this index particularly useful for interactive scenarios or when listing
some documents is sufficient. Yet, it also offers a competitive space/time
tradeoff when returning the full answers.

1 Introduction

The classical Information Retrieval (IR) problems aimed at natural language
text collections can be naturally generalized to general sequence collections. Such
general document retrieval problems are of interest in various areas like bioinfor-
matics, multimedia databases, software repositories, and so on [17]. Moreover, IR
on Oriental languages like Chinese and Korean also regards the texts as general
sequences, since inverted indexes do not handle well those languages.

In this paper we focus on the simplest document retrieval problem, called doc-
ument listing. Given D documents, which are strings d1 . . . dD over an alphabet
of size σ, each terminated with a special symbol $, we preprocess them to build
an index. Later, given a pattern p[1,m] over the same alphabet, we must list the
ndoc documents where p appears.

Muthukrishnan [15] solved this problem in optimal time O(m + ndoc), using
an index of O(n) words of space, where n =

∑
|di| is the total length of the

documents. This space usage, albeit linear, is very large in practice. Much sub-
sequent research focused on reducing the space requirements. One research line
[23,8,7,19] achieved about O(m+ndoc lgD) time and |CSA|+n lgD+O(n) bits
of space, where CSA is a compressed suffix array [18] of T . The CSA has a space
close to that of the compressed text and can replace it. They achieve in practice
fast document listing, but the extra space n lgD is still considerable. A second

� Partially funded by Fondecyt grant 1-110066, Chile.
O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 116–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


A Lempel-Ziv Compressed Structure for Document Listing 117

research line [22,11] reduced the space to |CSA|+ o(n) bits, but with the higher
listing time O(m + ndoc lg1+ε n).

In this paper we propose a novel alternative, which obtains low time and low
extra space. We build on the idea of the LZ-index [16,1] so as to produce a
document listing index that is small thanks to LZ78 compression, whereas it
can list the documents fast. While the theoretical upper bounds we can prove,
5|LZ78| + O(n lg2 σ/ lgn) bits (where |LZ78| ≈ |CSA| is the size of the LZ78-
compressed text) and O(m2 lgn+ ndocm lg2 n) time, are not too good, they are
overly pessimistic. Indeed, a good part of the occurrences are listed in O(1) time
each. We show that the index is very fast to list those first occurrences (which
usually form most of the output), becoming slower to output the final ones. This
makes it ideal for interactive scenarios, where one wishes to show some results
to the user as fast as possible, and there is much more time to produce further
results while the user browses the first ones. Another scenario is when only a
partial or approximate answer is sufficient, that is, when one simply wants to find
several documents where the pattern appears. However, the index also offers a
very competitive space/time combination when returning the full set of answers.

2 Related Work

Muthukrishnan [15] solved the document listing problem in optimal time O(m+
ndoc), using an index of O(n) words of space. Let T [1, n] be the concatenation
of the D documents. Let A[1, n] be the suffix array [13] of T . Muthukrishnan
defined the so-called document array E[1, n], where E[i] is the identifier of the
document containing the suffix A[i]. A new array C[1, n] is defined over E as
C[i] = max{1 ≤ k < i, E[k] = E[i]} ∪ {0}, that is, the position of the previ-
ous occurrence of E[i] in E, or 0 if there is no previous occurrence. Array C is
then preprocessed for range minimum queries (RMQs), which are of the form
rmqC(i, j) = argmini≤k≤jC[k], that is, it gives the position of the minimum
value in C[i, j]. RMQs can be solved in constant time after a linear-time pre-
processing (see, e.g., [6]). Once the interval A[sp, ep] of the suffixes starting with
p is determined, the problem becomes that of listing the distinct values in the
interval E[sp, ep]. The interval is found in time O(m) using a suffix tree [24]. The
ndoc distinct values are listed in time O(ndoc) using the observation that the
first occurrence E[k] of each distinct value in E[sp, ep] satisfies C[k] < sp. Then
the process recursively finds the smallest values of C[sp, ep]: It first computes
k = rmqC(sp, ep) and reports E[k], then it continues recursively with C[sp, k−1]
and C[k + 1, ep]. The recursion stops at any branch where C[k] ≥ sp.

While this solution is time-optimal, it requires much space, O(n lg n) bits.
Subsequent work has focused on reducing the space, giving away the optimality.

Välimäki and Mäkinen [23] proposed a low-space implementation of Muthukr-
ishnan’s structure. They used a 2n+o(n) bit, constant time RMQ succinct index
[6] that still required access to C. They showed that access to C can be imple-
mented by rank and select queries on E, where rankc(E, i) is the number of
occurrences of symbol c in E[1, i] and selectc(E, j) is the position in E of the



118 H. Ferrada and G. Navarro

jth occurrence of c. Then it holds C[i] = selectE[i](E, rankE[i](E, i − 1)) if we
assume that selectc(E, 0) = 0. By representing E with a multiary wavelet tree
[5,9], the space is n lgD + o(n) bits and the operations are carried out in time
O(1 + lgD/ lg lgn). Finally, the suffix tree is replaced by a compressed suffix
array (CSA), of which there are many choices [18]. A recent one [3] requires
|CSA| = nHk(T )+ o(nHk(T ))+O(n) bits of space and finds the interval [sp, ep]
in time ttsearch(m) = O(m). A slightly smaller one [2] reaches |CSA| = nHk(T )+
o(nHk(T )) + o(n) bits and ttsearch = O(m lg lg σ). Here Hk(T ) is the empirical
kth order entropy of T [12]. Overall, their solution requires |CSA|+n lgD+O(n)
bits and solves the problem in time O(ttsearch(m) + ndoc(1 + lgD/ lg lg n)).

Gagie et al. [8,7] showed that a wavelet tree [10] can be used for document
listing without any need of RMQs, but just a DFS traversal. Their index can
use |CSA|+ n lgD+ o(n) bits and their document listing time is O(ttsearch(m) +
ndoc lg(D/ndoc)). Navarro et al. [19] achieved nearly 50% compression of the
wavelet tree in practice, at the price of nearly doubling the time required (these
wavelet-tree based indices also solve more complex queries).

Sadakane [22] initiated another line based on the idea of Muthukrishnan, but
avoiding the large n lgD-bit term in the space. He replaced the RMQ solution
by a constant-time one that does not need access to C. His structure needed
4n+ o(n) bits, but more recent ones [6] require 2n+ o(n) bits. The other use for
C is to determine where to stop the recursion. Sadakane used instead a bitmap
V [1, D] where the already reported documents are marked. Once a branch of the
recursion attempts to report a marked document, it is pruned. Finally, array E
is only needed to list the document identifiers. This is done with a bit vector
B[1, n] that marks the positions in T where the documents start; then it holds
E[k] = rank1(B,A[k]). Value A[k] is computed by the CSA, for example in
time O(lg1+ε n) for any constant ε > 0 [2,3]. Bitmap B can be represented in
D lg(n/D)+O(D)+ o(n) bits with rank queries supported in constant time [20].
Overall, the data structure requires only |CSA|+2n+D lg(n/D)+O(D)+o(n) =
|CSA|+O(n) bits and O(ttsearch(m)+ndoc lg1+ε n) time. Hon et al. [11] achieved
a further reduction to |CSA| +D lg(n/D) + O(D) + o(n) bits, within the same
asymptotic time, by running the RMQs over blocks of lgε n cells (see Navarro
[17] for comments on the correctness of this solution).

As it can be seen, all the approaches build on the suffix array. Our new
approach uses instead the LZ-index, a compressed text index not based on suffix
arrays but on the LZ78 compression [25] of the text.

3 The LZ-Index

The algorithm LZ78 builds a dictionary of phrases (text substrings), with the
aim of replacing strings by pointers to their previous occurrences in the text.
The dictionary grows as the text is processed, and the result is a sequence of n′

distinct phrases (n′ ≤ n/ lgσ n). The phrases are formed by scanning the text
left to right. In each step, the method finds the longest prefix of the remaining
text that is a phrase of the dictionary. It then creates a new phrase formed by



A Lempel-Ziv Compressed Structure for Document Listing 119

the phrase found plus the symbol following it in the remaining text. This is
represented by a pointer to the dictionary and the extra character. The number
of bits output by the compressor is |LZ78| = n′(lg n+lg σ) ≤ nHk(T )+o(n lg σ)
for k = o(lgσ n) [12]. The LZ-index [16] is a compressed text index built on the
LZ78 parsing of the text, and it supports locating the occurrences of a pattern
p[1,m] in T . The index is formed by the following components.

1. LZTrie: a trie composed of all the phrases produced by the LZ78 parsing.
Note that the set of phrases is prefix-closed (the prefix of a phrase is also a
phrase), so LZTrie has n′ nodes. It stores the phrase identifiers of each node.

2. RevTrie: a trie storing the reversed phrases. It is not prefix-closed, so there
are empty nodes not associated to phrases. We collapse unary paths of empty
nodes. The trie has nrev = n′+ne ≤ 2n′ nodes, where ne empty nodes remain
after collapsing. The phrase numbers of the n′ nonempty nodes are stored.

3. Node: an array mapping from phrase numbers to their preorder in LZTrie.
4. Range: an n′×n′ grid where the rows represent the phrases and the columns

the reverse phrases, both in lexicographic order. If the (k+1)th text phrase
is at row i and the kth at column j, then there is a point at (i, j) in the grid.

Thus the LZ-index uses 4|LZ78|(1 + o(1)) bits of space. To search for the occur-
rences of pattern p[1,m] we divide them into three classes: (1) those completely
inside a phrase, (2) those spanning two phrases, (3) those spanning 3 phrases or
more. Those are found separately.

– Type 1. Search for pr (the reversed pattern) in RevTrie, arriving at node vr.
Each node ur descending from vr (including vr) corresponds to an occurrence
of type 1 where p appears at the end of the phrase. The other occurrences of
type 1 are the nodes u′ that descend from u in LZTrie, where u corresponds
to ur. Thus, for each node ur that is nonempty, we read the phrase id fu of
ur, compute u = Node(fu), and report all the phrase ids in the subtree of u.
This takes O(m + occ1) time, reporting the occ1 occurrences of type 1. See
Fig. 1, ignoring for now Doclz , Docrev, and LDocrev.

– Type 2. Partition p = pstart · pend in the m−1 possible ways, searching for
prstart in RevTrie and for pend in LZTrie. The subtrees found define column
and row ranges in the grid Range, and each point in the range is a type 2
occurrence. The phrase identifiers are obtained from those stored in LZTrie
using the rows of the reported points. Using a linear-space geometric data
structure, the total time is O(m2) for the m searches in LZTrie and RevTrie,
O(m lg n) for the m range searches, and O(occ2 lg n) for reporting the occ2
points found.

– Type 3. Since phrases are unique, each p[i, j] equal to a phrase leads to
at most one occurrence of type 3. We search LZTrie incrementally for the
O(m2) pattern substrings p[i, j] and find their phrase ids, if any. Then we
find concatenations of consecutive phrases that together form a maximal
substring p[i, j] = bk . . . bl. Finally, we check if the phrases bk−1 and bl+1
are equal to the strings p[1, i−1] and p[j+1,m], respectively. For the second
we check that the subtree of phrase p[j+1,m] in LZTrie contains Node(l+1).



120 H. Ferrada and G. Navarro

For the first we check if the column range of the node for p[1, i−1]r in
RevTrie has a point at rowNode(k), corresponding to LZTrie (them searches
in RevTrie are computed once). Thus these occurrences require O(m2 lg n)
time [1].

The total search time for the occ occurrences is O(m2 lg n+ occ lg n).

Wavelet Trees. The geometric data structure we use in practice is a wavelet
tree [10]. It is a pefect binary tree where the points are sorted in row order at
the root and in column order in the bottom. The coordinates are not explicitly
stored. At the root, a bitmap marks with a 0 or a 1 whether each point belongs
to the left or right half of the grid, respectively. Those on the left/right side of
the grid are then recursively subdivided at the left/right child of the root node.
The wavelet tree uses in total n′ lg n′ bits.

To support range searches, the bitmaps are enhanced with rank/select data
structures. Both can be computed in constant time and o(n′) extra bits [14]. To
find the points in a range [i, i′]× [j, j′] (rows × columns), we start with B[i, i′]
in the root bitmap, and project the interval to the left/right children, towards
the new interval [rank0/1(B, i − 1) + 1, rank0/1(B, i

′)]. We continue splitting
the interval, stopping when it becomes empty, or the wavelet tree node has no
intersection with the columns [j, j′], or it is fully included in [j, j′]. In the last
case, all the values in the current bitmap interval are points in the range. They
can be counted directly, or reported one by one by tracking them to the leaves, to
know their column values, for example. As any range is decomposed into O(lg n′)
wavelet tree nodes that have in total O(lg n′) ancestors, counting the points in
the range takes O(lg n′) time and reporting each of them requires O(lg n′) time.

4 A Novel LZ-Index Based Document Listing Structure

We now adapt the LZ-index to carry out document listing instead of reporting
all the occurrences of a pattern p. The general search strategy will be as follows.
For occurrences of type 1, we store the RMQ of the expansion of RevTrie with
the subtree of LZTrie that corresponds to each node. This requires O(n) bits
and allows us to apply Muthukrishnan’s algorithm [22] directly. For type 2, we
enhance the bitmaps of the wavelet tree of Range with RMQ data structures for
their documents. We can then apply Muthukrishnan’s algorithm on any of the
O(lg n′) nodes into which the range is decomposed. For occurrences of type 3 we
find their documents one by one. The total time will be O(m2 lg n+ndocm lg2 n).

Structure. We modify the LZ78 parsing so that no phrase crosses a document
boundary. Now consider the LZTrie and RevTrie structures of the original LZ-
index resulting from this parsing. We store the following structures.

– RevTrie. We represent only the topology and the letters of RevTrie and
LZTrie, just in order to be able to navigate RevTrie and to search it for
patterns in constant time per symbol [1]. The structure requires 3n′ lg σ +
O(n′) bits. (In the implementation we do not represent LZTrie, but all the
nodes of RevTrie, which in the worst case can be n but in practice are not.)



A Lempel-Ziv Compressed Structure for Document Listing 121

Fig. 1. Our structures for occurrences of type 1

– Doc. Let us define Doclz , the sequence of n′ document identifiers of the
LZTrie phrases in preorder. We save Doclz explicitly with n′�lgD� bits.
This is equivalent to the document array [15], but restricted to phrases.
Now we define Docrev, a sequence of n document identifiers built as follows.
We traverse RevTrie in preorder, and for each phrase node vr, let v be the
corresponding LZTrie node. Let Doclz [lv, rv] be the range in Doclz of all the
descendants of v (included). We append Doclz [lv, rv] to Docrev. Docrev will
not be stored, but just its RMQ structure, so as to run Muthukrishnan’s
algorithm [15] over Docrev. This RMQ structure answers queries in O(1)
time without accessing Docrev and uses 2n+ o(n) bits [6].1 Finally we store
a bitmap LDocrev[1, n], which marks theDocrev positions where the intervals
Doclz [lv, rv] start. In total we store n′�lgD�+3n+o(n) bits. Fig. 1 illustrates.

– Node. Now this is a mapping from RevTrie to LZTrie. If the node vr in
RevTrie with nonempty preorder i corresponds to the node v in LZTrie with
preorder j, then Node[i] = j. Array Node uses n′�lgn′� bits.

– Range. An enhanced binary wavelet tree. Each wavelet tree node implicitly
represents a sequence of points. Now consider the array of their correspond-
ing documents. We store, in addition to the bitmap, the RMQ structure
corresponding to Muthukrishnan’s algorithm [15] on its (virtual) array of
documents. The total space of Range is then 3n′ lgn′ + o(n′ lg n′) bits.

Overall, our structure requires 4n′ lg n′+n′ lgD+3n′ lg σ+o(n′ lg n′)+3n+o(n) ≤
5nHk(T )+3n+o(n lgσ) bits (and ≤ 4nHk(T )+3n+o(n lgσ) if lgD = o(lg n)).
This is close to the original LZ-index size [16]. We describe the document listing
procedure now.

Type 1 Occurrences. We search for p[1,m]r in RevTrie, arriving at node v
with preorder jv. We find the interval I = Docrev[sv, ev] containing all the occur-
rences of type 1, where sv = select1(LDocrev, jv) and ev = select1(LDocrev, jv+
subtree-size(jv)) − 1. Next, we report all the distinct documents in I with

1 The length is n because n is the internal path length (sum of all node depths) in
LZTrie. Each LZTrie node is appended to Docrev once per ancestor it has in LZTrie.



122 H. Ferrada and G. Navarro

Muthukrishnan’s algorithm using RMQs. For each new position Docrev[pos] re-
ported by an RMQ, we determine the nonempty preorder j = rank1(LDocrev,
pos) of the RevTrie node holding that position, and the preorder of this node in
LZTrie, i = Node[j]. The difference d = pos − select1(LDocrev, j) provides the
offset of this position within the leaf interval of the LZTrie node with preorder
i. Thus, the document is Doclz [i+ d]. The time is O(m+ ndoc1), where ndoc1 is
the number of distinct documents containing at least one occurrence of type 1.

Type 2 Occurrences. We consider all the m−1 partitions p = pstart ·pend. For
each one, we search RevTrie for prstart, arriving at node vr with preorder interval
[j, j′]. To find the LZTrie interval we do as follows. We search RevTrie for prend. If
it does not exist, or it leads to an empty node, then pend is not a phrase and there
are no phrases starting with pend (as phrases are built incrementally letter by
letter). If instead we reach node ur, with nonempty preorder t, then i = Node[t] is
the LZTrie preorder of the corresponding node u, which represents pend. It is also
the left end of the preorder interval of the descendants of u. We compute the size
of the interval using LDocrev: � = select1(LDocrev, t+ 1)− select1(LDocrev, t),
then i′ = i+ �− 1 and the row interval for the search in Range is [i, i′].

Now we identify in Range the O(lg n′) wavelet tree nodes that cover the inter-
val [j, j′], and the ranges where interval [i, i′] is projected on their bitmaps. Each
of these O(lg n′) intervals represent documents with occurrences of type 2, and
we list the documents in each by running Muthukrishnan’s algorithm over the
RMQ structures that enhance the bitmaps. For each document, which is found
in O(1) time, we need O(lg n′) time to reach the corresponding leaf and find its
identifier in Doclz . Although unlikely, in the worst case we can output the same
document in each of the O(lg n′) intervals for each of the m−1 partitions, which
gives O(m2) time for the RevTrie searches plus a (very pessimistic) worst-case
bound of O(ndoc2m lg2 n′) time for the ndoc2 occurrences of type 2.

Type 3 Occurrences. We wish to apply the same algorithm of the original
LZindex and then output the documents, yet we have fewer data structures now.
First, all the searches for all the substrings p[i, j] are carried out in RevTrie, in
time O(m2), and we record the RevTrie and LZTrie preorder values of each
(the latter using Node from the RevTrie node). For each i, we store in array Ai

the information for the substrings of the form p[i, j], sorted by LZTrie preorder
value. Now note that we have not stored phrase numbers, yet we can still use
Range to determine the LZTrie preorder t of the phrase following that of p[i, j],
which has RevTrie preorder tr. If we traverse the wavelet tree of Range starting
at position tr in the root bitmap and track it to the leaves, the final position is
precisely t. This operation takes O(lg n′) time. Now we can binary search Aj+1

for LZTrie preorder t, and if we find it corresponding to a phrase p[j + 1, j′],
we can concatenate p[i, j] to get p[i, j′]. Therefore we can carry out the same
process for finding maximal concatenations [16], in total time O(m2 lg n).

Finally, we have to check if p[1..i−1] precedes the maximal concatenation and
if p[j+1,m] follows it. The first question is equivalent to computing whether the
preorder interval for p[1..i−1]r in RevTrie is connected with the LZTrie preorder
value t of the first phrase in the maximal concatenation. The second question



A Lempel-Ziv Compressed Structure for Document Listing 123

corresponds to computing the LZTrie preorder interval of p[j+1,m] (which can
be done using RevTrie, as before) and then asking if the RevTrie preorder value
tr of the last phrase in the maximal concatenation is connected with some point
in the LZTrie interval. These tests add up O(m lg n) time.

This adds up to the promised total time of O(m2 lgn + ndocm lg2 n). Note,
however, that the occurrences of type 1 are reported very early, in time O(m+
ndoc1). If the text is generated by an ergodic source, the occurrences of any
pattern p appear regularly, every d positions on average (e.g., d = σm if the
symbols are generated uniformly and independently). On the other hand, since
n′ ≤ n/ lgσ n, only O((n/d)m/ lgσ n) of those occurrences hit a phrase boundary
on average. This means that that a fraction of 1−O(m/ lgσ n) of the occurrences
are of type 1, and also ndoc2 = O(ndocm/ lgσ n) = o(ndoc) ifm = o(lgσ n). Thus
we report almost all of the occurrences in O(1) time each. If we just lose those
o(ndoc) occurrences not of type 1, our time is the optimal O(m+ndoc)! We show
in the next section that, indeed, our index is particularly competitive to show
the first occurrences (those of type 1), which are the most for short patterns.

5 Experimental Results

We consider the following document collections, following previous work [19].

– ClueChin: A 2.3 MB sample of ClueWeb09 (boston.lti.cs.cmu.edu/Data/
clueweb09), formed by 23 Web pages in Chinese.

– ClueWiki: A 141 MB sample of ClueWeb09, formed by 3,334 Web pages
from the English Wikipedia (same source as the previous).

– KGS: A 75 MB collection of 18,838 sgf-formatted Go game records from year
2009 (www.u-go.net/gamerecords).

– Proteins: A 60 MB collection formed by 143,244 sequences of Human and
Mouse proteins (www.ebi.ac.uk/swissprot).

Our machine is an Intel Xeon with 8 processors of 2.4GHz and 12MB cache,
with 96GB RAM. It runs Linux 2.6.32-46-server, and we use gcc with full op-
timization. We choose 40,000 patterns of lengths m = 3 and m = 8 extracted
randomly from the collection.

Table 1 gives the space obtained by our LZ-Index structure on those collec-
tions. ClueWiki and KGS are the most compressible ones, reaching 11–12 bpc,
whereas ClueChin and Proteins are the least compressible ones. All are, as
roughly expected from the space analysis, 4.3–5.3×|LZ78|. We show how |LZ78|
relates to n/n′, and how it roughly coincides with the output size of Compress,
a classical LZW Unix compressor.

In the more compressible collections, RevTrie uses less than 20% of the space,
Doc uses slightly more than 30%, Node slightly more than 10%, and Range uses
almost 40%. The distribution varies a bit on the less compressible collections,
where the fraction of Node and Range increases, reaching 50%. Note that com-
ponent Range can be omitted if we only want to list the occurrences of type 1,
in which case the index size is reduced by 40%–50%.



124 H. Ferrada and G. Navarro

Table 1. Space breakdown of the main components of our LZ-Index based structure.
The numbers are in bpc. Main components are in bold and their space is the sum
of the second-level components (bpc in italics). The percentages are w.r.t. the total
LZ-Index size, whose line indicates its ratio over |LZ78|. The |LZ78| line, in turn, gives
also (n/n′). The last line gives the bpc of a real LZ78-like compression program.

Component ClueChin ClueWiki KGS Proteins

RevTrie 2.429 (15%) 1.725 (16%) 2.091 (18%) 2.154 (9%)
topology 0.396 0.182 0.247 0.461
labels 1.793 1.396 1.613 1.530
empty nodes 0.240 0.147 0.231 0.163

Doc 3.594 (22%) 3.529 (33%) 3.864 (33%) 5.777 (25%)
Doclz 0.638 0.696 1.002 2.788
Docrev RMQ 2.331 2.336 2.360 2.348
LDocrev 0.625 0.497 0.502 0.641

Node 2.424 (15%) 1.335 (12%) 1.403 (12%) 3.717 (16%)
Range 7.938 (48%) 4.279 (39%) 4.423 (37%) 11.748 (50%)

Total LZ-Index (/|LZ78|) 16.386 (4.27×) 10.870 (5.21×) 11.831 (5.35×) 23.550 (4.90×)
|LZ78| (avg. phrase length) 3.840 (7.81) 2.088 (17.24) 2.211 (14.93) 4.805 (6.45)
Compress 2.927 2.733 1.851 4.610

 0

 5

 10

 15

 20

 8  10  12  14  16  18  20  22  24

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

m=3

ClueChin
ClueWiki

KGS
Proteins

 0

 10

 20

 30

 40

 50

 60

 8  10  12  14  16  18  20  22  24

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

m=8

ClueChin
ClueWiki

KGS
Proteins

Fig. 2. Space versus listing time per document output. The tradeoff is obtained by not
representing RMQ information on the last levels of the wavelet tree of Range.

A way to reduce the space without sacrificing functionality is to remove the
RMQ structures at the last levels of the wavelet tree of Range. In those levels
we simply obtain all the documents one by one. The query covers at most two
ranges per level, those at the last levels are the smallest, and they are closest to
the bottom, so obtaining the document identifiers is faster. Thus, removing those
structures should not impact much the time. Fig. 2 confirms that the time is
practically unaffected when the first levels are removed, while the space improves
noticeably. From now on we will remove the RMQ structures on the last 6 levels
of ClueChin, 12 levels of ClueWiki and KGS, and all the levels in Proteins.

Table 2 shows the number of documents listed by the queries. In these rel-
atively small collections we list a good percentage of the documents, with the
exception of Proteins, which has many more documents and then a document
listing query is selective enough. From the listed documents, many are obtained
as type 1 occurrences (75%–100% for m = 3 and 50%–95% for m = 8). This
shows that we could obtain a significant part of the result using just the fastest
listing and without representing Range.



A Lempel-Ziv Compressed Structure for Document Listing 125

Table 2. Number of occurrences of each type, for pattern lengths m = 3 and m = 8.
Global percentages are w.r.t. the total number of documents, whereas local percentages
(in italics) are w.r.t. the total number of occurrences found.

Occurrences ClueChin ClueWiki KGS Proteins

m = 3 14.20 (62%) 2,732.41 (82%) 15,799.10 (84%) 12,106.90 (8%)
Type 1 13.60 (96%) 2,727.93 (99%) 15,132.60 (96%) 9,185.01 (76%)
Type 2 0.598 (4%) 25.06 (1%) 667.40 (4%) 2,921.90 (24%)
Type 3 0.002 (0%) 0.001 (0%) 0.022 (0%) 0.015 (0%)

m = 8 6.52 (28%) 1,742.52 (52%) 4,285.02 (23%) 89.45 (0%)
Type 1 5.02 (77%) 1,646.97 (95%) 2,943.00 (69%) 46.27 (52%)
Type 2 1.28 (20%) 94.79 (5%) 1,338.74 (31%) 42.49 (48%)
Type 3 0.208 (3%) 0.724 (0%) 3.29 (0%) 0.981 (0%)

Fig. 3 compares our LZ-Index structures in three modes: the full mode where
it returns all the occurrences, a mode where it can return all the occurrences but
we take the time needed to return only the occurrences of type 1, and use the
minimum space for Range (called “up to type 1”), and a mode where it can only
return the occurrences of type 1 as it does not store Range at all (called “only
type 1”). We also compare Sadakane’s document listing [22] we implemented on
top of Sadakane’s CSA [21] obtained from PizzaChili2 , and showing three points
using suffix array sampling steps 32, 64, and 128. Finally, we include the variant
using document arrays as plain wavelet trees [23], as RePair-compressed wavelet
trees, and an intermediate between both called “alpha”, as implemented by their
authors [19] and using Sadakane’s CSA with no sampling to minimize space (the
sampling is not needed here).

It can be seen that Sadakane’s technique uses less space than our smallest LZ-
Index variant, but it is orders of magnitude slower (except on ClueChin), even
on this CSA that is the fastest [4] to compute A[i]. The wavelet trees dominate
our LZ-Index variants on ClueChin, because it has very few documents and thus
the wavelet trees are small and fast. On the other collections, instead, wavelet
trees use much more space than our LZ-Index variants. Indeed, in all but the
toy collection ClueChin, even the LZ-Index in full mode is a relevant alternative,
whereas the approximate ones offer even better space/time performance.

6 Final Remarks

We have introduced the first document listing data structure based on Lempel-
Ziv compression. Apart from offering a competitive space/time tradeoff in gen-
eral, an interesting feature of the index is its ability to retrieve a large number
of documents very fast. This makes it an ideal choice in interactive scenarios,
where one must show some answers immediately and others can be calculated
in the background, and in cases where only some answers are sufficient.

We plan to extend our ideas to top-k document retrieval. Since the bulk of
the occurrences are type 1, considering only those for computing top-k would
yield very fast an answer that will usually be very accurate.

2 From site pizzachili.di.unipi.it or pizzachili.dcc.uchile.cl



126 H. Ferrada and G. Navarro

 0.1

 1

 10

 100

 1000

 5  6  7  8  9  10  11  12  13  14  15

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

ClueChin, m=3

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 1

 10

 100

 1000

 5  6  7  8  9  10  11  12  13  14  15

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

ClueChin, m=8

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 0.1

 1

 10

 100

 1000

 4  6  8  10  12  14  16  18  20  22

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

ClueWiki, m=3

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 0.1

 1

 10

 100

 1000

 4  6  8  10  12  14  16  18  20  22

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

ClueWiki, m=8

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 0.1

 1

 10

 100

 5  10  15  20  25  30

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

KGS, m=3

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 0.1

 1

 10

 100

 5  10  15  20  25  30

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

KGS, m=8

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 0.1

 1

 10

 100

 5  10  15  20  25  30  35  40

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

Proteins, m=3

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Alpha

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30  35  40

tim
e 

pe
r 

do
cu

m
en

t (
m

ic
ro

se
c)

space (bpc)

Proteins, m=8

LZ-Index
LZ-Index, up to type 1
LZ-Index, only type 1

Sadakane
WT Plain

WT RePair
WT Proteins

Fig. 3. Space versus listing time (logscale) per document output, for various indexes



A Lempel-Ziv Compressed Structure for Document Listing 127

References

1. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed
text indexing. Algorithmica 62(1), 54–101 (2012)

2. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-
pressed rank/select and applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg (2010)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759.
Springer, Heidelberg (2011)

4. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. ACM J. Exp. Alg. 13, art. 12 (2009)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), article 20 (2007)

6. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comp. 40(2), 465–492 (2011)

7. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theor. Comp. Sci. 426-427, 25–41 (2012)

8. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

9. Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the size of succinct
indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 371–382. Springer, Heidelberg (2007)

10. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th SODA, pp. 636–645 (2003)

11. Hon, W.-K., Shah, R., Vitter, J.: Space-efficient framework for top-k string retrieval
problems. In: Proc. 50th FOCS, pp. 713–722 (2009)

12. Kosaraju, S., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM J. Comp. 29(3), 893–911 (2000)

13. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp. 22(5), 935–948 (1993)

14. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

15. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
13th SODA, pp. 657–666 (2002)

16. Navarro, G.: Indexing text using the ziv-lempel trie. J. Disc. Alg. 2(1), 87–114
(2004)

17. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-
trieval on sequences. CoRR, arXiv:1304.6023v1 (2013)

18. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
art. 2 (2007)

19. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical compressed document retrieval.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205.
Springer, Heidelberg (2011)

20. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 3(4), art. 43
(2007)



128 H. Ferrada and G. Navarro

21. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Alg. 48(2), 294–313 (2003)

22. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Disc.
Alg. 5(1), 12–22 (2007)

23. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:
Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

24. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium
on Switching and Automata Theory, pp. 1–11 (1973)

25. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)



Minimal Discriminating Words Problem

Revisited

Pawe�l Gawrychowski1, Gregory Kucherov2,3,
Yakov Nekrich4, and Tatiana Starikovskaya5

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gawry@cs.uni.wroc.pl

2 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS,
Marne-la-Vallée, Paris, France

Gregory.Kucherov@univ-mlv.fr
3 Department of Computer Science, Ben-Gurion University of the Negev,

Be’er Sheva, Israel
4 Department of Electrical Engineering & Computer Science, University of Kansas,

Lawrence, USA
yakov.nekrich@googlemail.com

5 School of Applied Mathematics and Information Science,
Higher School of Economics, Moscow, Russia

tat.starikovskaya@gmail.com

Abstract. We revisit two variants of the problem of computingminimal
discriminating words studied in [5]. Given a pattern P and a threshold d,
we want to report (i) all shortest extensions of P which occur in less than
d documents, and (ii) all shortest extensions of P which occur only in
d selected documents. For the first problem, we give an optimal solution
with constant time per output word. For the second problem, we propose
an algorithm with running time O(|P |+ d · (1 + output)) improving the
solution of [5].

1 Introduction

Given a collection of text documents (character sequences), we are often inter-
ested in patterns that characterize a certain subset of these documents, i.e., occur
only in the documents of this subset and not in the others. Such patterns (words)
are called discriminating with respect to the corresponding subset. Identifying
such patterns can be part of a machine learning or data mining task over a sam-
ple of documents, or can arise in automated text classification. In computational
biology, patterns that appear in a subset of sequences sharing some biological
feature and do not appear in the other sequences of the considered sample can
be naturally assumed to be responsible for that feature.

In [5], the authors introduced the problem of minimal discriminating words
alongwith the complementary problem ofmaximal generic words. In both of them,
it is asked to compute some extensions of a given patternP (which can be an empty
word), i.e. strings which have P as a prefix. Consider a collection of strings (doc-
uments) T1, T2, . . . , Tm of total length n. Two variants of the minimal discrimi-
nating words problem have been considered in [5]. The basic variant is to report,

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 129–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


130 P. Gawrychowski et al.

given a pattern P and a threshold d ≤ m, all extensions of P which occur in at
most d documents and which are minimal, i.e. any proper prefix of a reported ex-
tension must occur in more than d documents. A more practically motivated vari-
ant, called minimal discriminating words for specified documents, is to compute
all minimal extensions starting with P which occur only in documents within a
given subset Ti1 , Ti2 , . . . , Tid . Minimality condition means that any proper prefix
of a reported extension must occur in documents other than Ti1 , . . . , Tid .

To exemplify minimal discriminating words, consider T1 = baaababb, T2 =
babaabab and T3 = babbaaab. For d = 2 , minimal discriminating extensions of
P = aa are aaa (discriminates {T1, T3}) and aaba (discriminates {T1, T2}).

The complementary problem of maximal generic words looks for all maximal
extensions of P occurring in at least d documents. In [5] a linear-space solution
to the problem of reporting all maximal generic extensions was given. Its running
time was optimal time O(|P | + output), where output is the number of reported
extensions. The same paper proposed efficient solutions for the two variants of the
minimal discriminating words problem, but their time bounds were not optimal:
the basic variant of the problem was solved inO(|P |+log logn+output) time, and
the variantwith specified documents was solved inO(|P |+d log logm·(1+output))
time. Moreover, in the latter case, the solution of [5] has the following undesirable
property: it assumes that each Ti ends with a unique sentinel $i that can be a part
of a discriminating word even if dropping the sentinel yields a word which is not
discriminating. Both solutions use O(n) space.

In this paper, we revisit both variants of the minimal discriminating words
problem and improve the bounds of [5]. For the second variant, we also get rid
of the unnatural assumption about sentinel symbols occurring in discriminating
words. Specifically, we propose O(n) space solutions for the first and for the sec-
ond problem with O(|P |+ output) and O(|P |+ d(1+ output)) time respectively.
Thus, for the first variant, we reach the optimal time bound. For the second
variant, our running time does not depend on the size nor the number of docu-
ments, but only on the number of selected documents. In particular, when this
number is constant, we obtain again an optimal O(|P | + output) time. In both
cases our solutions have the desirable property that after first spending O(|P |)
or O(|P | + d) time, respectively, to initialize the computation, the worst-case
delay between reporting two successive extensions is O(1) or O(d), respectively.

Similar to [5], our solutions are based on the generalized suffix tree
of T1, T2, . . . , Tm that can be viewed as a compacted trie for strings
T1$1, T2$2, . . . , Tm$m. It is well-known that the generalized suffix tree can be
computed in O(n) time. For each node v of the generalized suffix tree we store
its weight weight(v) defined as the number of distinct documents whose suffixes
occur in the subtree rooted at v. All weight(v) can be computed in O(n) time [3].

The locus of a string S in a trie on a set of strings is defined as the highest
explicit node labelled by an extension of S. It is important to note that in all our
algorithms, each output word is specified by its locus in the generalized suffix
tree for T1, T2, . . . , Tm (rather than by “spelling out” the word itself).



Minimal Discriminating Words Problem Revisited 131

2 Minimal Discriminating Words

Suppose that a set of documents T1, T2, . . . , Tm of total length n is given. For
a pattern P and a threshold d ≤ m, we want to find all minimal extensions
of P which occur in at most d distinct documents. “Minimal” here means that
no proper prefix of a reported extension satisfies this property. We describe a
linear-space data structure for this problem.

2.1 General Idea

Consider the generalized suffix tree for T1, T2, . . . , Tm. We first delete sentinels
$i from labels of its edges, and then delete edges with empty labels. Consider
the locus of P in the resulting trie, which we call GST. Any descendant u of the
locus such that weight(u) ≤ d and weight(p(u)) > d, where p(u) is the parent
of u, will be a locus of a desired extension of P . The extension itself will be
equal to the label of p(u) extended by the first letter on the edge (p(u), u). (By
construction the first letter on any edge of GST is not a sentinel but a letter of
the alphabet).

We represent GST with its compacted version GSTc, and a number of arrays.
An array Au corresponding to an edge (p(u), u) of GSTc contains links to nodes
which were removed in order to obtain the edge (p(u), u). More precisely, Au[Δ]
links to the lowest ancestor v of u such that weight(v) ≥ weight(u) + Δ, for
every Δ < weight(p(u)) − weight(u). Note that the total length of the arrays is
just O(n) as each entry corresponds to one suffix. Loci of the extensions can be
found in the following way: first, find the locus v of P in GSTc and compute all
nodes u in its subtree for which weight(u) ≤ d and weight(p(u)) > d. Then for
each found node u compute its ancestor u′ in GST such that weight(u′) ≤ d and
weight(p(u′)) > d. The last step can be done in constant time using the array
Au associated with (p(u), u): we choose as u′ the node Au[d−weight(u)], and if
weight(u′) > d we replace it by the unique son on the u − p(u) path. Then the
node u′ will be a locus of a desired extension. We refer to nodes u as above as
extension loci.

Let v be the locus of P in GSTc. We denote the subtree of GSTc rooted at
v by Tv. Leaves of GSTc of weight bigger than d will be called d-heavy leaves.
First note that if Tv has no d-heavy leaves, every root-to-leaf path contains an
extension locus and hence we can find each extension locus in amortized constant
time by traversing Tv in depth-first order. Below we explain how to overcome
the assumption about d-heavy leaves and to achieve worst-case constant time
per an extension locus. We first prove the following useful lemma.

Lemma 1. Each extension locus belongs to a maximal subtree of Tv without
d-heavy leaves.

Proof. An extension locus u cannot have a d-heavy leaf in its subtree, otherwise
weight of u would be bigger than d. Let u′ be the highest ancestor on the path
from u to v that does not have a d-heavy leaf in its subtree. Then u belongs to
Tu′ , and Tu′ is a maximal subtree of Tv that does not have d-heavy leaves. 
�



132 P. Gawrychowski et al.

The algorithm will iterate over the maximal subtrees of Tv without d-heavy
leaves and report extension loci for each of them. We give the details below.

2.2 Computing Maximal Subtrees

Let a trie τk, 0 ≤ k ≤ m − 1, be a compact trie containing labels of all k-
heavy leaves. (Note that τ0 is essentially GSTc.) From the construction it follows
that there is one-to-one correspondence between leaves of τk and k-heavy leaves.
Moreover, for each node u of τk there is a node w of GSTc such that the labels
of u and w are equal. Such nodes w will be referred to as k-nodes. We say that
u and w are of type 1 iff the degree of u is smaller than the degree of w, and
that they are of type 2 iff there is at least one node on the path from w to its
nearest k-node ancestor. (A node can be of type 1 and of type 2 simultaneously
or neither of type 1 nor of type 2.) We store nodes of types 1 and 2 in two lists
ordered as in the depth-first traversal of τk. Next, let us consider a node of GST.
Nodes of type 1 in its subtree form a sublist in the first list. For each node we
store pointers to the start and to the end of the corresponding sublist. Pointers
associated with nodes of type 2 are defined in a similar way.

Note that the parent p of the root of a maximal subtree T without d-heavy
leaves has a d-heavy leaf in its subtree (otherwise, T would not be maximal).
That is, p is either a d-node or a node on the path connecting a d-node and
its nearest d-node ancestor. At the same time, p has at least one son (the root
of T) which does not have a d-leaf, and, consequently, a d-node, in its subtree.
Therefore, in the first case p is a d-node of type 1, and in the second case p is
on the path connecting a d-node of type 2 and its nearest d-node ancestor.

We now return to the description of the algorithm. We start by computing
the locus of P in τd in O(|P |) time in a usual way. Then we iterate over nodes
of types 1 and 2 in the subtree of the locus using the pointers and the lists and
report associated maximal subtrees without d-heavy leaves.

Let w be a d-node of GSTc of type 1, and u be the corresponding node of τd.
By the definition, the degree of u is smaller than the degree of w, which means
that at least one child of w is a root of a maximal subtree without d-heavy leaves.
Such children form subranges of the list of all children of w, and we assume that
pointers to these subranges are available. (As we show below, the total number
of the pointers is linear and they can be precomputed in linear time.) Using the
pointers we can output i requested children of w in O(i) time.

If w is a d-node of GSTc of type 2 and w′ is its nearest d-node ancestor, then
all subtrees hanging off the path from w to w′ are maximal subtrees without
d-heavy leaves. The subtrees can be found in linear time by iterating over nodes
on the path from w to w′.

All in all, retrieving maximal subtrees without d-heavy leaves takes constant
time per subtree in the worst case.

Lemma 2. Tries τk and pointers to the subranges of children of k-nodes that
do not have k-heavy leaves in their subtrees occupy O(n) space in total and can
be constructed in O(n) time.



Minimal Discriminating Words Problem Revisited 133

Proof. To estimate the space occupied by the tries it is enough to estimate the
total number of their leaves. The latter is equal to n, because a string which is
a suffix of k documents will correspond to a leaf in τ1, to a leaf in τ2, . . ., to a
leaf in τk, that is, k leaves in total. The statement follows.

The tries are built as follows. We first augment GST with a linear-space data
structure [8] that allows to answer lowest common ancestor queries in constant
time. This step takes O(n) time. We then iterate over leaves of GSTc from the
left to the right and for each k compose a lexicographically ordered list Lk of k-
heavy leaves’ labels. Secondly, we scan Lk and compute the length of the longest
common prefix of every two consecutive suffixes in Lk. (The length is equal to
the string depth of the lowest common ancestor of the leaves corresponding to
the suffixes and hence can be computed in constant time). Once we have Lk and
the lengths, we build τk in linear time in a usual way. Correspondence between
nodes of τk and GSTc and hence types of nodes can be established in O(|τk|)
time with the help of the lowest common ancestor queries. Finally, the lists of
nodes of types 1 and 2 are constructed by depth-first traversal of τk.

Let w be a k-node of GSTc and u be the corresponding node of τk. The number
of subranges formed by children of w without k-heavy leaves in their subtrees
does not exceed the degree of u. Therefore, the total number of the subranges
does not exceed the total size of the tries, which is O(n). Next, note that a
node does not have k-heavy leaves in its subtree if and only if the weight of the
heaviest leaf in its subtree ≤ k. We compute the subranges in two steps. First we
traverse GSTc bottom-up and for each node compute the weight of the heaviest
leaf in its subtree. Secondly, we scan the list of children of each node and for each
k such that the node is a k-node remember the starting and the ending points
of maximal subranges with the weights ≤ k. Construction takes linear time in
total. 
�

2.3 Computing Extension Loci

Here we show how to report all extension loci in a maximal subtree of Tv without
d-heavy leaves. We start with an auxiliary lemma.

Lemma 3. A compact trie of size n can be partitioned into disjoint node-to-leaf
paths of length O(log n) each.

Proof. For a node u of the trie we define h(u) to be the length of the shortest
downward path to a leaf from u, and �(u) to be the number of leaves in the
subtree rooted at u. We prove by induction that �(u) ≥ 2h(u).

If h(u) = 0, then u is a leaf and �(u) = 1. Suppose that the inequality holds
for all u such that h(u) ≤ k. A node u of the compact trie with h(u) = k + 1
has at least two descendants v1, v2 and both h(v1) and h(v2) must be at least k,
hence �(u) ≥ 2h(v1) + 2h(v2) ≥ 2k+1, the claim follows.

For each node u of the compact trie we colour the edge from u to its child v
with the smallest h(u) red. This colouring induces a partition of all nodes into
node-disjoint red paths. From the inequality it follows that the length of any red
path is O(log n). 
�



134 P. Gawrychowski et al.

weight(r) > d

weight(p(u)) > d

1

2 3weight(u) ≤ d

weight ≤ d

weight ≤ d

Fig. 1. We push the root of the subtree 1 into S first. When we pop it from S, we push
the root of the subtree 2 into S, and so on.

We partition GSTc into disjoint node-to-leaf paths of length O(log n) using
Lemma 3. q-heaps [4] allow to support predecessor queries on logarithmic-size
subsets of [1, n] in constant time using linear space and a common precomputed
table of size o(n). We use q-heaps to answer predecessor queries on weights of
each path of the partition. The total space occupied by q-heaps is O(n).

Lemma 4. Given a maximal subtree T of Tv without d-heavy leaves, all exten-
sion loci in τ can be reported in O(1) time per locus.

Proof. To simplify the description, assume that nodes of GSTc are rearranged
so that an edge from a node to its leftmost child is always red.

Let r be the root of T. If weight(r) ≤ d, then the only extension locus in the
subtree is r. (Remember that the parent of r has a d-heavy leaf in its subtree
and therefore its weight is bigger than d). If weight(r) > d, we start with the
node-to-leaf path containing r. Since the weight of any leaf of T is at most d, the
path contains an extension locus u. Using one predecessor query, we can find u
in O(1) time. We then push the second child of a parent of u into a stack S.

We perform recursive calls for the subtrees rooted at nodes from S. Each time
we pop a node w from S we push its right brother into S. If no brothers are left
and the parent and the grandparent of w are on the same red path, we push the
second child of the grandparent of w into S (see Fig. 1). The algorithm stops
when S is empty.

We now show that the algorithm is correct. Note that any subtree hanging off
the path below u does not contain extension loci, while each tree hanging off the
path above u contains at least one such node. All the latter trees are examined
due to the order of recursive calls. Each call takes constant time and returns a
requested node. 
�

To sum up, each extension locus inside a given maximal subtree without d-
heavy leaves can be reported in constant time in the worst case. Since, according
to Section 2.2, each such subtree of Tv can be identified in worst-case constant
time, we obtain the final theorem.



Minimal Discriminating Words Problem Revisited 135

Theorem 1. For a given pattern P and a threshold d, all minimal discriminat-
ing extensions of P can be reported in time O(|P |+output), where output is the
number of reported extensions. The underlying indexing data structure occupies
O(n) space, where n is the total length of the strings T1, T2, . . . , Tm.

3 Minimal Discriminating Words for Specified
Documents

In many applications, we need to compute words that discriminate documents
from a given sample. Consider a set of documents T1, T2, . . . , Tm of total length n.
Given a set of indices Ind = {i1, i2, . . . , id} and a pattern P , we want to find
all minimal extensions of P occurring only in documents Ti, i ∈ Ind, where
“minimal” means that any of their proper prefixes has at least one occurrence
in a document which does not belong to this subset.

Here we propose a linear-space data structure which allows to compute such
extensions in time O(|P | + d · (output + 1)), where output is the number of
reported extensions.

3.1 General Idea

Consider the generalized suffix tree for T1, T2, . . . , Tm. For each suffix of
T1, T2, . . . , Tm we create an explicit node labelled by this suffix (if it does not
exist already). We denote the resulting tree by GST. Note that the size of GST is
O(n). Problems of computing loci of the minimal extensions in the generalized
suffix tree and GST are equivalent.

An inner node of GST is called $-terminating if all its outgoing edges are
labelled by sentinels. If, in addition, the sentinels are $i, where i ∈ Ind, then the
node is called Ind-terminating. From the definition it follows that the locus of
any string occurring only in documents Ti, i ∈ Ind, contains an Ind-terminating
node in its subtree, in particular, the locus of any minimal extension contains
such node in its subtree. Besides, each Ind-terminating node belongs to a subtree
rooted at the locus of some minimal extension, as shown below.

Lemma 5. Suppose that w is an Ind-terminating node and that its label starts
with P . Then the path from w to the root contains a locus of a minimal extension
of P occurring only in documents Ti, i ∈ Ind.

Proof. The label S of w is an extension of P occurring only in documents Ti,
i ∈ Ind. The locus of the shortest prefix of S occurring only in documents Ti,
i ∈ Ind, will be the locus of a requested extension and will be on the path from
w to the root of GST. 
�

A high-level description of the algorithm is as follows. We start by locating
the locus u of P in GST in time O(|P |) and retrieving the interval [L(u), R(u)]
of ranks of suffixes ending below u. Rank of a suffix is simply its rank in the
lexicographic order, equal suffixes are assigned equal ranks. The algorithm keeps



136 P. Gawrychowski et al.

a stack of intervals which it is to process, initialized to contain just [L(u), R(u)].
At each step it pops an interval [a, b] from the stack, finds an Ind-terminating
node v covering a subrange of [a, b], computes the ancestor w of v labelled by a
requested extension of P , and pushes the intervals [a, L(w)−1] and [R(w)+1, b]
onto the stack. If there is no such Ind-terminating node, the algorithm does
nothing. The algorithm terminates when the stack is empty.

To estimate the running time of the algorithm, we note that each of the
processed intervals, except for [L(u), R(u)], either corresponds to a reported ex-
tension, or is a child of an interval corresponding to a reported extension (and
each such interval has two children). Hence the total number of processed inter-
vals will be O(output + 1), where output is the number of reported extensions.
Below we show that processing of each interval takes O(d) time. Note that if
we want to make sure that the delay between reporting two minimal extensions
is O(d), we only need to check if the interval contains an Ind-terminating node
before we push it onto the stack.

3.2 Computing an Ind-Terminating Node

Given an interval [a, b], we want to find some Ind-terminating node u such that
all leaves in its subtree are of ranks in [a, b], or to show that there is none. Below
we show that it can be done in O(d) time.

Consider a trie T on the reverses TR
1 , T

R
2 , . . . , T

R
m of the documents. Each node

v of T corresponds to a prefix of some TR
j , or, equivalently, to a reversed suffix

of Tj. We call the node v active if the suffix is a label of a $-terminating node of
GST. If the node is also Ind-terminating, we call v Ind-good, otherwise we call it
Ind-bad. Note that if a node is Ind-bad, then all its ancestors are Ind-bad. That
is, Ind-good nodes are exactly active nodes of maximal subtrees of T without Ind-
bad nodes. We compactify T leaving nodes labelled by TR

i , 1 ≤ i ≤ m, explicit.
The resulting trie is denoted by Tc (see Fig. 2).

For an edge e of Tc we define a set S(e) to contain ranks of some suffixes
of T1, T2, . . . , Tm in the lexicographic order. The suffixes are exactly the suffixes

v
p(v)

Fig. 2. Maximal subtrees of T without any Ind-bad nodes. Thick nodes exist in Tc.



Minimal Discriminating Words Problem Revisited 137

the reverses of which were the labels of the active nodes removed in order to
obtain e.

Lemma 6 (Theorem 4 in [1]). S(e) can be stored using linear space so that
given any interval [a, b] we can in O(1) time either retrieve some element in
S(e) ∩ [a, b] or detect that there is none.

Remember that we want to find an Ind-terminating node of GST such that all
leaves in its subtree are of ranks in [a, b]. The algorithm will search, instead, for
an active node of maximal subtrees of T without Ind-bad nodes corresponding
to such Ind-terminating node.

Consider a maximal subtree of T without Ind-bad nodes (see Fig. 2). The
parent p(v) of its root is labelled by a prefix of TR

j , for some j /∈ Ind, while v is

not. Hence, p(v) is either a node of degree bigger than 1, or is labelled by TR
j .

In both cases, p(v) is a node of Tc. It follows that we can decompose a set of
active nodes of the subtree into a set of active nodes existing in Tc and sets of
active nodes associated with the edges of Tc. Each leaf v of a maximal subtree
without Ind-bad nodes corresponds to TR

i , for some i ∈ Ind. We will make use
of precomputed values lcp(i), where lcp(i) is the length of the longest common
prefix of TR

i and TR
j , j /∈ Ind. Note that all ancestors of v of string depth bigger

than lcp(i) belong to the maximal subtree.
We start at a node v labelled by some TR

i , i ∈ Ind, and go up until we reach
a node of string depth lcp(i) or an already visited node. For each encountered
node we check if it is active and if it corresponds to the desired Ind-terminating
node. If yes, the algorithm stops. For each edge e we traverse we try to retrieve
an element in S(e) ∩ [a, b]. If there is such an element, the algorithm finds the
corresponding Ind-terminating node and stops. We repeat such procedure for
each i ∈ Ind.

The total number of processed nodes and edges is bounded by the total size
of the maximal subtrees without Ind-bad nodes. Since each leaf and each inner
node of degree one in the subtrees corresponds to TR

i , i ∈ Ind, the total size of
the subtrees, and hence the time of computing an Ind-terminating node covering
a subrange of [a, b], is O(d). It remains to show that the values lcp(i), i ∈ Ind,
can be precomputed efficiently.

Lemma 7. Given Ind, we can compute lcp(i) for all i ∈ Ind in O(d) total time.

Proof. To compute the values, we use an array R defining the lexicographic
order on TR

1 , T
R
2 , . . . , T

R
m , its inverse R−1 and an array LCP which contains

the length of the longest common prefix of every pair of consecutive (in the
lexicographic order) reversed documents. The LCP array is augmented with a
range minimum query data structure [2], which allows to compute the minimum
value in any interval of LCP in constant time. All these structures are built in
the preprocessing phase without knowing Ind.

Consider an index i ∈ Ind, and let TR
k1

and TR
k2

with k1, k2 /∈ Ind be the

reversed documents closest to TR
i in the lexicographic order from the left and

from the right, respectively. From the properties of the lexicographic order it



138 P. Gawrychowski et al.

follows that lcp(i) is equal to the maximum of the lengths of the longest common
prefixes of TR

k1
and TR

i and of TR
k2

and TR
i . The lengths can be computed by

taking the minimum of the values stored in the array LCP between the entries
corresponding to TR

k1
and TR

i and of TR
k2

and TR
i respectively. Hence the only

question is how to find k1 and k2 efficiently.
Consider the occurrences of TR

i for all i ∈ Ind in R, and let R[a..b] be a
maximal interval of such occurrences, i.e., both R[a− 1] and R[b+1] correspond
to reversals outside of Ind. Then k1 = a − 1 and k2 = b + 1 for all i ∈ Ind
corresponding to occurrences in the interval. Our method identifies such maximal
intervals one-by-one and updates the values of lcp(i) accordingly. To make the
identification efficient, we store an additional bit vector B of length m to keep
track of the already processed indices from Ind, initially containing all zeros. We
loop over Ind, and if a given i ∈ Ind is not processed yet, sweep to the left and to
the right starting from R−1[i] to identify the maximal interval of R containing
i and some other indices from Ind. Then knowing the values of k1 and k2 for
all indices in the interval we calculate their values of lcp. Finally, we set their
corresponding bits in B to one. In the very end we iterate through all i ∈ Ind and
clear their corresponding bits in B. The algorithm clearly spends just constant
time per a single element of Ind. 
�

3.3 Computing Ancestor Loci

Here we show how to find the ancestor w of an Ind-terminating node that cor-
responds to a minimal discriminating word. We assume that for each node v of
GST there is a pointer to its highest ancestor with the same weight and that the
ranks L(v) and R(v) of the leftmost and the rightmost leaves in the subtree of
v can be retrieved in O(1) time. We also store an array D such that D[i] = k if
the i-th leaf of GST in the left-to-right order corresponds to a suffix from Tk.

Lemma 8. Given a node u in GST and M ∈ [L(u), R(u)], for all distinct val-
ues j occurring in D[L(u), R(u)] we can find the leftmost occurrence of j after
position M and the rightmost occurrence of j before M in D[L(u), R(u)] in
O(weight(u)) time, where weight(u) is the number of distinct documents whose
suffixes occur in the subtree rooted at u.

Proof. We can enumerate all distinct values in an interval of D using the data
structure of Muthukrishnan [7]. As follows from the description in [7], the struc-
ture reports the leftmost occurrence of each j that occurs in the interval. By
reversing the input, we can modify the structure so that the rightmost occur-
rence of each j is reported, too. We obtain the result by reporting the leftmost
occurrence of each distinct j in the interval D[M,R(u)] and the rightmost oc-
currence of each j in the interval D[L(u),M ]. 
�

In Lemma 5 we showed that any Ind-terminating node w in the subtree rooted
at the locus of P has an ancestor v that is a locus of a desired minimal extension.
We compute v in two steps.



Minimal Discriminating Words Problem Revisited 139

Using the pointers we can find the highest ancestor w′ of w of weight at
most d in O(d) time. The interval D[L(w′), R(w′)] contains indices of at most d
different documents, and we output these indices in time O(d) using Lemma 8.
For each index j that occurs in D[L(w′), R(w′)] but does not belong to Ind,
we find the rightmost occurrence of j before L(w). The maximum (rightmost)
position among them is denoted by L′. Similarly, we find the leftmost position
of each j �∈ Ind after R(w), and denote the leftmost among them by R′. This
step takes O(d) time. [L′, R′] is the maximal segment that contains [L(w), R(w)]
and consists only of indices from Ind.

Now consider the node w again. We initialize v to w and jump from v to the
highest node v′ such that weight(v) = weight(v′). Let p(v′) be the parent of v′.
If L′ ≤ L(p(v′)) ≤ R(p(v′)) ≤ R′, we set v = p(v′) and repeat the same step for
the new node v. Otherwise we set v = v′ and stop. Observe that each iteration
increases the number of different indices occurring in [L(v), R(v)] by at least one
and takes just constant time.

Lemma 9. Given an Ind-terminating node w in the subtree of u being the locus
of P . The node on the path from w to the root of GST that is a locus of a minimal
extension of P occurring only in documents Ti, i ∈ Ind, can be computed in O(d)
time.

Combining Lemma 9 and the algorithm described in Section 3.2, we obtain
the final result.

Theorem 2. Given a subset of indices {i1, i2, . . . , id} and a pattern P , all min-
imal extensions of P which occur only in the documents Ti1 , Ti2 , . . . , Tid can be
computed in time O(|P |+d(output +1)), where output is the number of reported
extensions. The underlying indexing data structure occupies O(n) space, where
n is the total length of the strings T1, T2, . . . , Tm.

We can also output the loci of minimal extensions in lexicographic order with-
out increasing the query time. We achieve this by keeping intervals [L(w), R(w)]
for all found extension loci w in a tree T . We initialize T to a one-node tree and
store the interval [L(u), R(u)] at its root r. If we find a new extension locus w, we
replace [L(u), R(u)] with [L(w), R(w)] and append two child nodes to r. Intervals
[L(u), L(w)−1] and [R(w)+1, R(u)] are stored in the left and the right children
of r respectively. Every time when we find an Ind-terminating node v in the
interval [l(ν), r(ν)] stored in some ν ∈ T , we identify the ancestor w of v that is
the locus of a minimal extension. Then we replace [l(ν), r(ν)] with [L(w), R(w)]
and append two child nodes to ν as described above. When all loci are found,
we traverse internal nodes of T in-order to obtain a sorted list L of the intervals
[L(w), R(w)] for extension loci w. The traversal of T takes O(output) time; thus
the total asymptotic time necessary to answer a query remains unchanged.

We remark that the data structure of Theorem 2 can be constructed in
O(n logε n) time for any constant ε > 0 with high probability [6]. The pre-
processing time is dominated by the cost of constructing data structures S(e).



140 P. Gawrychowski et al.

4 Conclusions

We developed an optimal algorithm for reporting all minimal discriminating
words. For the problem of reporting all minimal discriminating words for a spec-
ified set of documents, our solution is optimal when d = O(1), but it might still
be possible to improve the running time for the case of non-constant value of d.

Another interesting question is whether counting the number of solutions
can done faster than reporting them all according to our algorithm. Finally, we
also wonder if we can generate k lexicographically smallest solutions in time
proportional to k rather than to output . Our algorithms can be used to output
k distinct solutions with such complexity, but we cannot guarantee that the
generated solutions are lexicographically smallest.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimen-
sion. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing,
pp. 476–482 (2001)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Hui, L.C.K.: Color set size problem with applications to string matching. In: Apos-
tolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644,
pp. 230–243. Springer, Heidelberg (1992)

4. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

5. Kucherov, G., Nekrich, Y., Starikovskaya, T.: Computing discriminating and generic
words. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.)
SPIRE 2012. LNCS, vol. 7608, pp. 307–317. Springer, Heidelberg (2012)

6. Mortensen, C.W., Pagh, R., Patrascu, M.: On dynamic range reporting in one di-
mension. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing,
pp. 104–111 (2005)

7. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2002)

8. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing 17, 111–123 (1988)



Adding Compression and Blended Search
to a Compact Two-Level Suffix Array

Simon Gog and Alistair Moffat

Department of Computing and Information Systems,
The University of Melbourne, Australia 3010

Abstract. The suffix array is an efficient in-memory data structure for pattern
search; and two-level variants also exist that are suited to external searching and
can handle strings larger than the available memory. Assuming the latter situa-
tion, we introduce a factor-based mechanism for compressing the text string that
integrates seamlessly with the in-memory index search structure, rather than re-
quiring a separate dictionary. We also introduce a mixture of indexed and sequen-
tial pattern search in a trade-off that allows further space savings. Experiments on
a 4 GB computer with 62.5 GB of English text show that a two-level arrangement
is possible in which around 2.5% of the text size is required as an index and for
which the disk-resident components, including the text itself, occupy less than
twice the space of the original text; and with which count queries can be carried
out using two disk accesses and less than two milliseconds of CPU time.

Keywords: string search, pattern matching, suffix array, Burrows-Wheeler trans-
form, succinct data structure, disk-based algorithm, experimental evaluation.

1 Introduction

The problem of string search is well known: given a text T[0 . . .n− 1] over some al-
phabet Σ of size σ , and a pattern P[0 . . .m− 1], identify whether P occurs in T. Four
different query modes are possible: reporting whether or not the pattern occurs at all
(existence queries); reporting how many times the pattern occurs (count queries); re-
porting the locations in T at which it occurs (locate queries); and reporting, for each
such occurrence, the context in T within which P appears (context queries).

One way of preprocessingT to facilitate fast search is to construct a suffix array [11].
Array SA[0 . . .n] is a suffix array for T if and only if TSA[i] < TSA[ j] whenever i < j,
where Tk = T[k . . .n] is the k th suffix of T, the ordering between strings is lexico-
graphic, and where T is assumed to be augmented by a sentinel T[n] that is smaller than
every element in Σ . Using binary search in SA, the range SA[lb . . .rb] corresponding to
P can be found in O(m logn) time. Each SA entry in that range is the location in T of an
occurrence of P ; and so locate and context queries can be answered in O(m logn+ k)
and O(m logn+ km) time respectively, where k is the number of matching locations.

Stored as a sequence of integers, SA requires n logn bits, in addition to the n logσ bits
required by T (note that logx should be interpreted as �log2 x� when appropriate). The
need for random-access to the suffix array and text during pattern search means that both
structures need to be held in memory. If that is not possible, either compressed indexing

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 141–152, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


142 S. Gog and A. Moffat

structures such as the FM-INDEX must be used [5], or a two-level blocked suffix array
arrangement must be employed. The drawback of the former is that random-access
memory is still required, and so while using 250 MB for an FM-INDEX for 1 GB of
ASCII text may be viable, using 2.5 GB to index 10 GB may not be. On the other hand,
the drawback of two-level suffix arrays structures has been – until recently – that they
require even more disk space than a straight suffix array.

Our Contribution: The Reduced On-disk Suffix Array (ROSA) structure of Gog et
al. [6] supports pattern search on large strings using an in-memory index of around
2–3% of the text size, and less disk space than a plain suffix array. Here we further
reduce the disk space requirement of the ROSA, by:

– using the block prefix strings associated with the set of ROSA suffix blocks as a
phrase-book for representing T in compressed form as a sequence of factors in a
manner that still allows random access decoding;

– storing the addresses of phrases (rather than characters) in the suffix array, reducing
the number of bits required for suffix pointers;

– quantizing the set of addresses used as suffix pointers, further trading disk space
for moderately increased query execution costs.

As is demonstrated by the experiments described below, count queries on multi-gigabyte
English strings can be carried out via an index of around 2.5% of |T|; total disk space,
including T, of under 2|T|; two disk accesses; and less than two milliseconds of CPU.

2 Two-Level Suffix Arrays

The drawback of using suffix arrays on high-latency storage devices has been recog-
nized by a range of authors [1,2,4,8,9,13]; Gog et al. [6] summarize that work. Our
assumption here is that memory is only available for an index structure that is some
small percentage of the text size, and that disk operations to fetch secondary data incur
a fixed latency cost plus a transfer cost proportional to the amount of data transferred.
That is, searching and retrieval cost are assessed experimentally, rather than via the
machine-independent external memory model.

Variable-Sized Blocks: Sinha et al. [13] describe the LOF-SA, a two-level suffix array
structure. The distinguishing characteristic of the LOF-SA compared to other two-
level structures is that it makes use of variable-sized suffix blocks. An upper bound b
determines how the suffix array is partitioned into blocks; the requirement is that no
block may contain more than b pointers, and that the suffixes in each block share a
common prefix. That is, a block is formed for a block prefix string (BPS) v if and only
if size(node(v)) ≤ b and size(parent(node(v))) > b, where node(v) is the suffix tree
node corresponding to v, and size(z) is the number of leaves in the subtree rooted at
node z. Sinha et al. suggest the use of a trie as an in-memory search structure; and add
an LCP and other auxiliary information to each of the suffix pointers, to allow suffix
blocks to be searched without needing multiple accesses to T. A LOF-SA structure for
a text of n = |T| symbols (n < 232) requires 12|T| bytes of disk storage; in follow-up
work, the use of byte-codes reduced the space to approximately 7|T| bytes [12].



Adding Compression and Blended Search to a Compact Two-Level Suffix Array 143

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16

4

15

12

1

9

6

0

5

14

13

3

11

8

2

10

7

066

044

055

122

111

399

466

000

455

044

133

033

111

288

122

200

377

i
s
p

s

m

s

m

$

p

i
s

s

s

i

i

i

1

1

1

1

1

0

0

1

0

1

0

1

1

0

1

0

00

1

$
mississippi$

i$
ippi$

iss mississippi$

issippi$

ississippi$

miss mississippi$

mississippi$

pi$

ppi$

s mississippi$

sippi$

sissippi$

ss mississippi$

ssippi$

ssissippi$

$
mm

i$
ip

is

is

is

4

5

6

4

6
m

m
7

8

7

8
p

p
9

10

9

0
s mm

si

si
12

13

12

3
ss

ss

ss

14

15

16

14

6

0
0

1
2

2
1

3
7

4
8

5
5

6
6

7
3

Δx = 1
Δd = 2

8
4

Δx = 0
Δd = 1

9
9

((44
55

8,0,0)
((55
66

4,1,2)
((66(66((
77
(
77
((99,,00,,11))
((77
88

5,0,0)

((99
00

6,0,0)

i SA[i]LCPAA[[ii]] [i]L[i] bF[i]T[SA[i]..n]

Fig. 1. Forwards BWT for T = “miss mississippi”. The suffix blocks formed when b = 3
are shown on the left, and the block prefix strings (BPS) are shaded on the right. The block at
i= 14,15,16 is reducible to the block at i= 4,5,6; and the block at i= 12,13 is reducible in two
steps to locations i= 5,6.

Gog et al. [6] refine the LOF-SA to make a new structure they call the ROSA, or
Reduced On-Disk Suffix Array, requiring around 3|T| bytes. Key changes include:

– replacing the in-memory trie by a condensed BWT-based index structure over a set
of reversed substrings, giving rise to smaller query-time memory requirements and
significantly better worst-case space performance;

– handling blocks identified as being reducible – in that they can be translated on to
contiguous sequences of suffix pointers contained within other blocks – via pointer
reductions rather repeating them, giving rise to substantial disk space savings, in a
manner also noted by Mäkinen and Navarro [10].

Figure 1 shows the 10 ROSA blocks created for the string T = “miss mississippi”
with b= 3. There are two reducible blocks, signified by all of the suffixes in the block
having the same BWT character L[i]; three irreducible blocks; and five singleton blocks.

Searching: In the ROSA each pattern P is first searched for in a condensed BWT built
over the reversals of the block prefix strings (BPS’s), and all their prefixes. For exam-
ple, in Figure 1 there are 10 BPS’s: “$”, “ ”, “i$”, “ip”, “is”, “m”, “p”, “s ”, “si”,
and “ss”. If a pattern P commences with any of these strings, or any prefix of any of
these strings, the corresponding suffix block(s) must be retrieved so that the remainder
of the pattern can be checked. On the other hand, if P does not commence with one
of the BPS’s, then it is certain that P does not appear in T. The set of BPS reversals
and prefixes of reversals covers the strings: “$”, “$i”, “ ”, “ s”, “i”, “is”, “m”, “p”,
“pi”, “s”, “si”, and “ss”. Figure 2 shows the BWT and suffixes generated from the



144 S. Gog and A. Moffat

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

m

m

s

s

$
s
p

i

i
p

i
s

s

s

i

i

1

0

1

0

1

0

1

1

0

1

0

1

0

0

1

1

0

1

1

1

0

0

1

0

1

0

1

1

1

0

0

1

0

0

1

$

ssim$

im$

im ssim$
ippississim ssim$

issim ssim$

ississim ssim$

m$

m ssim$
pississim ssim$

ppississim ssim$

sim$

sim ssim$

sissim ssim$

ssim$

ssim ssim$

ssissim ssim$

i LTr
[i] bl[i] bf[i] Tr[SA[i]..n]

0
0

$

0

2
1

02000

1
2

sss

21112

7
3

is

is

1777111

8
4

m

m

7888777

5
5

p

8555888

6
6

ip

5666555

3
7

si

si

si

6333666

4
8

ss

ss

ss

3444333 99944

9
9

bl =
CL =

1

m

01

s

01

$

01

p

1

i

01

p

01

s

0011

i

0

bm =
min depth =

001

1

001

1

101

2

01

1

001

1

101

2

01

2

1

Fig. 2. The reverse BWT of the example string, together with the structures that represent it. Only
bitvectors bf, bl, and bm, plus arrays min depth, CL, and CC (cumulative symbol frequency
counts derived from CL, not shown), plus a dense array of pointers mapping backward block
identifiers to disk addresses, are required during operation.

reverse of the example string, and the relationship between the forwards block identi-
fiers (circular black labels), and the backwards block identifiers derived from the set of
reversed BPS’s (grey superscripts). The mapping between the original BWT sequence
and the condensed sequence is recorded via three bitvectors bf, bl, and bm: bf contains
a 1-bit at the beginning of every interval that is required during a search for any of the
BPS reversals, plus a 1-bit at the first suffix after any of those intervals; bl is the inverse
mapping, and has a 1-bit for every BWT symbol that is required while those same in-
tervals are being accessed; and bm records the interleaving of the block identifiers and
the 1-bits of bf, with 0-bits in bm indicating block identifiers (black circles), and 1-bits
indicating corresponding 1-bits in bf.

Gog et al. [6] show how these structures can be used to support pattern search, and
give comprehensive results including for a 62.5 GB text, with the complete suffix array
index for that file requiring just 134 GB, or an average of 17.4 bits per pointer (with a
total disk requirement of 197 GB = 2.9|T|); and the in-memory index taking 1.4 GB.
Searching for infrequent patterns (count queries) of length 10 ≤ |P| ≤ 100 requires two
disk accesses and around 40 msec elapsed time on a MacBook Pro with mechanical
disk; and under 2 msec on a MacBook Air with solid-state disk.



Adding Compression and Blended Search to a Compact Two-Level Suffix Array 145

Expansion

Factors T′

m

5

i s

8

s

3

m

5

i s

8

s i

4

s s

9

i p

7

p

6

i $

1

Fig. 3. The result of parsing the example string into factors. Each of the factors is a backwards
block identifier, shown in Figure 2 as a grey superscript.

3 Reducing Disk Space

As with all suffix array structures, the text T is an integral part of the ROSA. In this
section we describe how the condensed BWT can be used to store T as a set of factors.
In particular, the set of block prefix strings can be interpreted as a phrase-book and used
in a dictionary-based compression regime. Issues that must be addressed include:

– the parsing strategy used to convert T into a sequence of factors drawn from the set
of available strings;

– the encoding used to store the factor identifiers, including how random access de-
coding is supported; and

– how the phrase-book is represented, and how decoding to be carried out using it.

Greedy Parsing: Every suffix of T has as a prefix a member of the set of BPS’s which
can be used as a factor. To identify a subset of those prefixes in a left-to-right greedy
manner, the BWT depicted in Figure 2 is used, following the same backwards search
process as is used for pattern matching. In addition, because the terminator symbol “$”
is unique in T, it is a singleton suffix block and hence one of the BPS’s, guaranteeing
that a left-to-right parse can be properly closed.

For example, suppose that two factors “m” and “is” have been identified, and that
“s mississippi$” remains. Starting from the initial interval (0,16), the (lb,rb) range
is narrowed to (11,16) as the next character, “s”, is incorporated. This interval is greater
than b, the blocksize, and so a BPS has not yet been identified. The “ ” character nar-
rows the interval to (1,1), corresponding to the reversed string “ s” and forwards string
“s ”. Now the range is smaller than b, and the backward identifier 3 is emitted (the grey
superscript in Figure 2). Continuing the same process identifies the full set of factors
shown in Figure 3. A full description of pattern searching appears in Gog et al. [6].

Encoded Representation: The factorization process generates a sequence T′ of length
n′ ≤ n, over an alphabet of σ ′ ≥ σ symbols. One obvious way of representing T′ is to
use fixed-width binary codes of logσ ′ bits each.

That approach is effective if the majority of BPS’s are used as factors. If only a small
subset occur in T′, an alternative is to extract a subalphabet, and to use (potentially)
shorter binary codes. We refer to this second approach as being a dense alphabet rep-
resentation and the original as being sparse. The dense approach has the potential to
generate superior compression, but requires an in-memory rank/select bitvector map-
ping of size σ ′ to convert between the dense domain and the set of BPS’s.



146 S. Gog and A. Moffat

00 decode factor(bwd id)
01 zero pos← select(bm,bwd id,“0”)
02 ones← zero pos−bwd id
03 d ← min depth[rank(bm,zero pos,“1”)]
04 if ones= 0 then
05 d ← d+ zero pos
06 else
07 d ← d+ zero pos− (select(bm,ones−1,“1”)+1)
08 lb← select(bf,ones,“1”)
09 for i← d−1 downto 0 do
10 c← first row character(lb)
11 factor[i]← c
12 c rank ← rank(bf, lb,“1”)−CC[c]
13 c pos← select(CL,c rank,c)
14 lb← select(bl,c pos,“1”)
15 return factor[0..d−1]

Fig. 4. Decoding a factor using the condensed BWT, given its backwards identifier. Function
first row character(lb) returns the first character of the lb th suffix in the reversed BWT.

A third option is to use an entropy coder, and represent the factors using a Huffman or
similar mechanism. The drawback of this approach is that to provide random access into
the compressed bitstream an auxiliary structure storing indexed entry points is required;
fixed-width binary codewords are much more useful in this regard.

Decoding: Figure 4 describes the process of converting a backwards identifier, ex-
tracted from T′, back into a string over σ . Lines 01–08 determine the length of the
factor, which is the depth in the condensed BWT of the corresponding BPS; and the
start of the corresponding interval, lb. The loop from line 09 to 14 then extracts one
character at a time, from left-to-right in the condensed BWT, and hence from right-to-
left in P. The following lemma summarizes the decoding process.

Lemma 1: Function decode factor() correctly regenerates a factor from its backward
identifier. A factor of d characters is computed in O(d logσ) time.
Proof : Function decode factor() executes in two distinct phases. The first eight lines
access bitvector bm multiple times, with the goal of determining the length of the factor
(variable d) and the left bound (variable lb) of the interval associated with the factor
in the list of suffixes of the reversed text, Tr. The second group, starting at step 09,
iteratively determine the symbols associated with that factor.

Consider the first block, steps 01 to 08. By construction, bitvector bm indicates the
relative positions in bf at which the backward blocks occur, with each group ending
in a “1” bit representing in unary (that is, by counting the “0”s) the number of back-
ward block identifiers associated with the corresponding “1” bit in bf. For example, in
Figure 2, bm commences with “0010011” to record that two backward blocks (hence,
block number 0 and number 1) are associated with the first “1” bit in bf , the one that
happens to be in bf[0]; that two more backward blocks are associated with the second
“1” bit in bf, being the one in bf[1]; and that no backward blocks are associated with



Adding Compression and Blended Search to a Compact Two-Level Suffix Array 147

the third “1” bit in bf, the one in bf[2]. With this structure for bm, the select at step 01
identifies the location in bm of the “0” that corresponds to the block number supplied as
argument bwd id; then the difference calculation at step 02 determines how many “1”s
there are through until that point; and then at step 08 the location in bf of that ones’th
“1”-bit is determined using the select operator, and taken as the initial value of lb.

Because multiple backward blocks can have the same lb, the depth d of the block,
which is the length of that block’s corresponding BPS in the forwards suffix array (see
Figure 1), serves as a secondary identification. Array min depth stores an integer value
for each “01” pair that arises in bm, showing the minimum depth of any of the blocks –
of which there must be one, because of the “0”, and might be more – that correspond to
that “1”-bit in bm, and hence share a common “1” in bf. Backward block identifiers for
the blocks associated with this “1”-bit in bf are assigned in increasing order from that
minimum depth, noting that the block formation process is such that there cannot be
any subsequent gaps in the sequence of block depths, and for any lb entry point, block
depths form a contiguous range.

Once the minimum depth for a set of backward blocks has been established and
assigned to d at step 03, the relative depth of the backward block indicated by bwd id
is computed at step 05, in the case that it is associated with the first “1”-bit in bf, or at
step 07, in the case when the backward block corresponds to an entry point beyond the
first “1”-bit in bf. That is, step 07 increments d by the distance between the bwd id’th
“0” location in bm and the most recently preceding “1” bit. By step 08, both lb and d
have been assigned values, and in combination describe a single prefix in the sorted list
of suffixes of the reverse string. Note that for symmetry with rank we regard select as
starting at 0. For example, in Figure 2, select(bm,3,“1”) returns 8.

Now the decoding loop from step 09 commences. As an invariant, lb is the index
in the sorted list of suffixes of Tr of the first i symbols of the factor. That invariant is
established via the computation already described; and the loop exits once i reaches
zero and no further symbols remain.

For a given lb value, the symbol that is required is the lb’th one in the list of sorted
symbols of T. But lb is an index in the original domain, and CC stores the cumula-
tive character frequencies in the condensed domain. Hence, the first action of function
first row character() is to apply the full-to-condensed mapping that is encapsulated in
bf, and compute rank(bf, lb,“1”). The offset that is generated is then binary searched
for in the CC array, and the corresponding character c returned and stored in factor[i].

Steps 12–14 then adjust lb, in preparation for the next iteration. It must be updated to
address the suffix in the reversed domain of the current string. For example, in Figure 2,
if bwd id = 8 when function decode factor() is called, then lb is initially 11 to indicate
the suffix “sim$”, and d is 2, to indicate that the first two characters of that suffix are to
be extracted and reversed. The first row character from row 11 when i= 1 is “s”, which
is stored in factor[1]. Now lb must be shifted so that it addresses the one-symbol-shorter
suffix “im$”. That adjustment is done in three operations: step 12 determines which of
the c symbols in the condensed BWT string the one in question is, by first using bf to
map into the condensed domain, and then offsetting by CC[c]; step 13 interrogates CL
to determine where that same symbol appears within it; and then step 14 converts the
rank of that symbol back into the uncondensed domain, to get the new lb value.



148 S. Gog and A. Moffat

Table 1. Operations required during function decode factor()

Line Structure Operation Implementation Number Cost each
01 bm select compressed bitvector 1 O(1)
03 bm rank compressed bitvector 1 O(1)
03 min depth access array 1 O(1)
07 bm select compressed bitvector 1 O(1)
08 bf select compressed bitvector 1 O(1)
10 bf rank compressed bitvector d O(1)
10 CC search sorted array d O(logσ)
12 bf rank compressed bitvector d O(1)
13 CL rank Huffman wavelet tree d O(H0(CL)) = O(logσ)
14 bl select compressed bitvector d O(1)

In terms of the example, starting with lb = 11 and d = 2, the three assignments
compute c rank = 0 (that “s” is the first of the “s”s); c pos = 1 (that first “s” is the
second symbol in CL); and then lb = 2 (that second symbol in CL corresponds to the
third symbol in the uncondensed domain). Continuing the example, when lb = 2, the
symbol “i” is prefixed to the previous “s”, to make the complete factor “is”. The loop
then ends, and the decoded factor “is” derived from bwd id = 8 is made available to
the calling environment.

To establish the execution cost of the decoding process, Table 1 summarizes the low-
level operations required by decode factor(). Note that function first row character()
involves a rank on the bf bitvector, and then a binary search over the CC cumulative
count array for the condensed BWT string, in order to identify the first character of the
corresponding suffix. Summing the costs shown in the table yields the required bound
on execution time. 
�

If just existence and count queries are to be processed, the only additional space
requirement compared to the original ROSA is that of providing select operations on
two of the structures, CL and bl. But if locate and context queries are also anticipated,
then a mapping that converts factor numbers to byte addresses in T is necessary.

Suffix Pointers: In the original ROSA, each suffix pointer is a byte address in T. With
T replaced by a sequence of factors, there are now two options for the suffix pointers:

– retain them as byte offsets, and provide a mapping that converts byte addresses to
〈factor number, offset within factor〉 pairs.

– store the factor offset in which each suffix string commences; and after decoding,
search within the decompressed factor to identify the commencing byte position of
the pattern.

The second option requires that a mapping from factor numbers to byte offsets be main-
tained so that locate queries can be handled, but has the advantage of reducing the space
taken by the suffix pointers, since, as is shown in Section 4, the sequence of factors is
less than 1/10 the length of the text T . That is, in the second option there is also a
saving of around 3 bits per suffix pointer.



Adding Compression and Blended Search to a Compact Two-Level Suffix Array 149

Table 2. Sample texts used in experiments. The values listed in the fourth column are generated
by executing xz --best and expressing the output size as a fraction of the input size. The ROSA
sizes are from Table 5 of Gog et al. [6], expressed as multiples of |T|, computed with b= 4,096.

File Type of data
Length in xz Original ROSA (/|T|)
characters (/|T|) Memory Disk Total

WEB-4G HTML/Web 4.19×109 0.071 0.025 1.961 2.986
WEB-64G HTML/Web 6.87×1010 0.076 0.022 1.900 2.922
DBLP-1G XML/Bibliographic 1.08×109 0.112 0.020 2.126 3.146
DNA-3G Text/Genomic 3.10×109 0.206 0.116 4.704 5.820

Approximate Suffixes: If factor rather than byte addresses are being stored as suffix
pointers, then localized string search is required over the decoded factor(s) in order
to find the starting point of the pattern. A further enhancement is then possible, of
storing approximate suffix pointers that are restricted to certain quantized values – if
the only addresses that may be stored as suffix pointers are the multiples of some fixed
value R, then around logR bits can be saved in each suffix pointer. Access to T in this
arrangement consists of a sequence of steps: first, identification of the suffix pointer that
corresponds to the pattern P; second, retrieval of m+R− 1 factors from that starting
location in T′; third, decoding those factors using Figure 4; and, finally, use of KMP
or equivalent to search the decoded string for the pattern P. If a match is found and
locations or contexts in T are required, an in-memory mapping is used to convert the
〈factor number, byte offset〉 coordinates back into a byte address in T. This mapping
has a non-trivial cost, especially when R is small. For larger values of R the cost is
amortized, and the mapping does not dominate the size of the index. The mapping
could also be interspersed in the compressed text T′ stored on disk, in which case it
would not affect the query-time memory footprint. Either way, it gets smaller as R is
increased from 1, further allowing space to be traded against execution time.

4 Experimentation

Text, Patterns, and Hardware: Table 2 summarizes the data files used in the experi-
mentation, and lists previously reported sizes for the original ROSA when applied to
them. The three English-plus-markup data files require an overall retrieval system that
occupies around 3|T|, and can be accessed via an index that requires less than 2.5% of
the size of the raw text. The DNA data is more expensive both in memory and on disk.

Query pattern sets were generated by identifying all substrings of a given length and
a given approximate frequency across the text. Once the set of substrings that met the
two criteria was identified, 1,000 of them were chosen at random to make each test set.
Using this methodology we are able to execute tests in which both the pattern length m
is known and, independently, the occurrence frequency k is known.

The experimental machine was a MacBook Air with 1.8 GHz Intel Core i7 processor,
4 GB RAM, a 250 GB solid-state disk, and running Mac OS X 10.7.3.

Compressing the Text: Table 3 demonstrates that the factorization process yields effec-
tive compression, and reduces the space required by T by more than 75%. Comparing



150 S. Gog and A. Moffat

Table 3. Representing T via the BPS’s. In all cases the ROSA blocksize is b= 4,096.

File
Length in Av. factor Sparse Dense H0 factors

factors in characters range (/|T|) range (/|T|) (/|T|)
WEB-4G 2.43×108 17.27 1.54×107 0.174 0.45×107 0.167 0.131
WEB-64G 6.71×1010 24.70 2.19×108 0.142 4.74×107 0.132 0.091
DBLP-1G 8.99×107 12.03 2.89×106 0.229 1.35×106 0.218 0.190
DNA-3G 2.56×108 12.13 5.86×107 0.268 0.21×107 0.216 0.166

0 1 4 16 64 256

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 text pointer

LCP
topology
header
text representation

match pattern
load text
block tree matching
build block tree
load disk block
internal matching

0 1 4 16 64 256

0
1

2
3

4
5

(a) Space as a function of R (b) Query time as a function of R

Fig. 5. Space and speed tradeoffs for count queries using WEB-4G, with b= 4,096, and patterns
of length m= 40 and k = 100 occurrences. Space is measured in units of |T|, and execution time
as elapsed query time in msec per query, averaged over 1,000 distinct queries.

the sparse- and dense-alphabet versions shows that for the three English files there is
only a modest additional gain achieved by the use of a subalphabet; whereas on the
DNA file the gain is substantial. The final column in Table 3 shows the H0 entropy of
the factors, and represents the compression that could be expected using a Huffman
code. The further gains do not justify the increased complexity that would be required.

Trading Space for Speed: Figure 5 shows how space and search time vary as a function
of R, the quantization factor for suffix pointers. The original ROSA is shown as R =
0. When R = 1, significant space is saved as a result of using the factored text (the
green bar at the bottom of the left graph); with only slightly increased querying time.
Thereafter, each increase in R further reduces the cost of the suffix pointers (the grey top
component in the left-hand graph), at the cost of increased decoding and KMP scanning
time (the grey top component in the right-hand graph). Taking R = 16 yields a useful
compromise between space and speed.

Query Types: Table 4 shows the relative cost of count and locate queries, with time
measured in elapsed milliseconds per query (msec), that is, including the cost of



Adding Compression and Blended Search to a Compact Two-Level Suffix Array 151

Table 4. Execution cost (elapsed query time in msec per query) for count and locate queries using
different pattern matching structures and different numbers of answer occurrences k. All results
are for b= 4,096 and |P|= 40 and are the average over 1,000 distinct queries.

Structure File
Memory Disk count queries locate queries
(%|T|) (/|T|) k = 10 k = 100 k = 10 k = 100

ROSA, R= 0 WEB-4G 2.5 2.96 1.0 1.1 1.0 1.1
ROSA, R= 16 WEB-4G 3.0 1.80 1.6 1.7 7.0 46.8
ROSA, R= 64 WEB-4G 2.5 1.71 2.4 2.5 13.1 101.9

FM-INDEX, sampling = 16 WEB-4G 44.4 — 0.1 0.1 0.3 0.8
FM-INDEX, sampling = 64 WEB-4G 22.2 — 0.1 0.1 0.6 3.3

ROSA, R= 0 WEB-64G 2.3 2.89 1.1 1.1 1.1 1.2
ROSA, R= 16 WEB-64G 2.6 1.75 2.8 2.2 11.5 96.7
ROSA, R= 64 WEB-64G 2.4 1.68 4.5 3.9 33.4 221.7

FM-INDEX, sampling = 64 WEB-64G 21.6 — 120.3 116.9 268.5 644.7

accessing secondary storage. In the R = 0 original ROSA both types of query are very
fast, taking around a msec on a machine with SSD drive. When T has been compressed,
count queries are still fast, but locate queries require factor decompression plus KMP
searching, neither of which is needed when R = 0. The added searching cost is offset
by a saving of more than 1.0|T| disk space between R = 0 and R = 16. The R = 16
enhanced ROSA structures store the text T plus its suffix array in just 1.8|T|.

Compared to the FM-Index and the FEMTO: Table 4 also gives query timings for the
FM-INDEX [5], using the best available implementation [7]. The FM-INDEX has the
great advantage of being smaller than the text T, even when sampled access points are
provided to allow locate and context queries; but requires that all of its data be memory
resident. When that is not possible, query times increase dramatically, as shown by
the last row of Table 4. The same experiment on a MacBook Pro with a mechanical
disk resulted in a query time of more than two seconds, whereas the ROSA performs
just two disk accesses and requires 41 msec on a MacBook Pro. That is, regardless of
whether mechanical disk or SSD is used, if the index can be maintained in memory, the
FM-INDEX should be preferred; but once the size of the FM-INDEX index exceeds the
available memory, the ROSA is faster.

The work of Ferguson [3] confirms what happens when an FM-INDEX is used in ex-
ternal memory. Using SSD storage, and a 43 GB collection of English text, the FEMTO
system required approximately 90 msec to execute a count query for a single m = 28-
byte test pattern of unknown collection frequency, and a further 40 msec to identify 10
of the locations at which that three-word string appeared. When executed using disk
storage, the same query took more than 3 seconds. These times are considerably longer
than those shown in Table 4, but are achieved with between 0.5|T| and 1.0|T| of space,
less than the 1.8|T| required by the enhanced ROSA.

Ferguson also explored batching of queries, and demonstrated a substantial increased
in query throughput, at the cost of corresponding increases in query latency, by “elevator
sorting” storage requests.



152 S. Gog and A. Moffat

5 Summary

We have demonstrated that the approximately 3|T| disk space requirement of the ROSA
for English text can be reduced to less than 2|T|. Moreover, the techniques used –
factorizing T, and quantizing suffix pointers – are implemented without the need for
an explicit in-memory phrase-book, a significant achievement. Search times increase
somewhat, but remain better than other external-memory approaches. In future work
we plan to turn our attention to the LCP component (the pink section in Figure 5(a),
second from the top, and larger than the compressed text), and to fast sequential search
mechanisms that can avoid fully decoding factors while carrying out the scanning phase.

Acknowledgments. This work was funded by the Australian Research Council. We
also thank Giovanni Manzini for his input.

The ROSA software is available at https://github.com/simongog/RoSA.

References

1. Baeza-Yates, R.A., Barbosa, E.F., Ziviani, N.: Hierarchies of indices for text searching. Inf.
Systems 21(6), 497–514 (1996)

2. Colussi, L., De Col, A.: A time and space efficient data structure for string searching on large
texts. Inf. Processing Letters 58(5), 217–222 (1996)

3. Ferguson, M.P.: FEMTO: Fast search of large sequence collections. In: Kärkkäinen, J., Stoye,
J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 208–219. Springer, Heidelberg (2012)

4. Ferragina, P., Grossi, R.: The string B-tree: A new data structure for search in external mem-
ory and its applications. J. ACM 46(2), 236–280 (1999)

5. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)
6. Gog, S., Moffat, A., Culpepper, J.S., Turpin, A., Wirth, A.: Large-scale pattern search us-

ing reduced-space on-disk suffix arrays. IEEE Trans. Knowledge and Data Engineering (to
appear)

7. Gog, S., Petri, M.: Optimized succinct data structures for massive data. Software Practice &
Experience (to appear, 2013), http://dx.doi.org/10.1002/spe.2198

8. González, R., Navarro, G.: A compressed text index on secondary memory. J. Combinatorial
Mathematics and Combinatorial Comp. 71, 127–154 (2009)

9. Kärkkäinen, J., Rao, S.S.: Full-text indexes in external memory. In: Meyer, U., Sanders,
P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 149–170.
Springer, Heidelberg (2003)

10. Mäkinen, V., Navarro, G.: Compressed compact suffix arrays. In: Sahinalp, S.C., Muthukr-
ishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 420–433. Springer, Hei-
delberg (2004)

11. Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches. SIAM J.
Comp. 22(5), 935–948 (1993)

12. Moffat, A., Puglisi, S.J., Sinha, R.: Reducing space requirements for disk resident suffix
arrays. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463,
pp. 730–744. Springer, Heidelberg (2009)

13. Sinha, R., Puglisi, S.J., Moffat, A., Turpin, A.: Improving suffix array locality for fast pattern
matching on disk. In: Wang, J.T.-L. (ed.) Proc. ACM SIGMOD Int. Conf. Management of
Data, pp. 661–672 (2008)

https://github.com/simongog/RoSA
http://dx.doi.org/10.1002/spe.2198


You Are What You Eat:

Learning User Tastes for Rating Prediction

Morgan Harvey1, Bernd Ludwig2, and David Elsweiler2

1 Faculty of Informatics, University of Lugano, Lugano, Switzerland
2 Inst. for Info. and Media, Lang. and Culture, University of Regensburg, Germany

morgan@derharvey.de, bernd.ludwig@ur.de, david@elsweiler.co.uk

Abstract. Poor nutrition is one of the major causes of ill-health and
death in the western world and is caused by a variety of factors includ-
ing lack of nutritional understanding and preponderance towards eating
convenience foods. We wish to build systems which can recommend nu-
tritious meal plans to users, however a crucial pre-requisite is to be able
to recommend recipes that people will like. In this work we investigate
key factors contributing to how recipes are rated by analysing the re-
sults of a longitudinal study (n=124) in order to understand how best to
approach the recommendation problem. We identify a number of impor-
tant contextual factors which can influence the choice of rating. Based on
this analysis, we construct several recipe recommendation models that
are able to leverage understanding of user’s likes and dislikes in terms of
ingredients and combinations of ingredients and in terms of nutritional
content. Via experiment over our dataset we are able to show that these
models can significantly outperform a number of competitive baselines.

1 Introduction

In the developed world people have the luxury of an abundance of choice with
regard to the food they eat. While huge choice offers many advantages, mak-
ing the decision of what to eat is not always straightforward, is influenced by
several personal and social factors [9] and can be complex to the point of being
overwhelming [12]. Therefore, many people would benefit from assistance that
allows them to strike a balance between a diet that is healthy and will keep them
well and one that is appealing and they will want to eat. After all, it is no good
providing users with healthy diet plans if they do not cook and eat the recipes
therein, but instead choose unhealthy meals which are more appealing to them.

This is a problem for which recommender systems (RS) are ideally suited: If
systems can predict recipes that the user would actually like to eat, this could be
combined within a system modelling expert nutritional knowledge to generate
appealing meal recommendations that are also healthy and nutritious. A prereq-
uisite, therefore, is an understanding of the factors that influence the decision of
whether a recommended meal will be eaten and prepared or not. In this work we
investigate these factors by analysing the results of a long-term user study, using
the insights obtained to build new RS which are able to significantly outperform
the current state-of-the-art in this field.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 153–164, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


154 M. Harvey, B. Ludwig, and D. Elsweiler

2 Related Work

RS provide suggestions, in the form of items, that are predicted to offer utility
to the user. Such systems are particularly beneficial in situations where there
is an overwhelming choice of alternatives and/or where the user lacks sufficient
personal experience, competence or time to evaluate potential options [10]. Cor-
respondingly, recommendations are usually made based on knowledge of the
user’s needs, preferences, and past behaviour. Many RS only use past ratings in
order to predict ratings for previously unseen combinations of user and item. A
common approach to generating recommendations is to mimic the natural hu-
man behaviour of making decisions based on recommendations from peers. More
modern approaches [5] attempt to learn a model of how ratings are generated
by breaking the rating process down into a number of components or “biases”
which contribute to the final rating. In the case of recommending recipes there
are many content-related features that could be used to base predictions on,
e.g., cooking time, ingredients, nutritional properties, classification of dish, skills
required. The open questions are: which content is useful and how can you best
make use of this content in recommendation models?

While food recommendation is not frequently studied, there is a small body
of appropriate related work. Early attempts to design automated systems us-
ing case-based planning to recommend meals include CHEF [4] and JULIA [7].
Hybrid recommenders have been presented [13] for recommending recipes and
systems have been proposed based on grouping of users [14]. More recent ef-
forts try to understand user’s tastes, improving recommendations by breaking
recipes down into individual ingredients, which has been demonstrated to work
well [2,3]. This work has shown that, in the case of recipes, new approaches to the
RS problem are necessary. We hypothesise that the process of rating a recipe
is complex and several factors will combine to determine the rating assigned,
beyond purely the user’s tastes and that these tastes must be carefully mod-
elled. Factors such as how well the preparation steps are described and perhaps
the nutritional properties of the dish and the availability of ingredients could
have a bearing on the user’s opinion of the recommendation [6]. We believe that
by building recommender algorithms that incorporate or exploit these kinds of
aspects we will be better able to accurately predict ratings. However we also be-
lieve that it is important that such factors can be automatically ascertained from
ratings data rather than relying on the users themselves. The amount of infor-
mation expected from users is therefore minimised. Below we describe how data
was collected and analysed to understand how content and contextual factors
may influence the way a recipe is rated.

3 Data Collection

To collect data we developed a simple food rating system, which selected recipes
from a pool of 912 recipes sourced from a popular German recipe web site. While
there is quite a strong emphasis on German food (which is beneficial as most



You Are What You Eat: Learning User Tastes for Rating Prediction 155

users were German), the web site also contains a large number of recipes from
all of the major world cuisines. Users were given a personalised URL and when
this was accessed, they were presented with a randomly selected recipe. The
system did not attempt to perform any recommendation or try to match recipes
to a user’s tastes. The user was then asked to provide a rating for the recipe in
context - either as a main meal or breakfast for the following day - by clearly
stating which meal the user should have in mind when rating, e.g. Please rate
this recipe as a breakfast for tomorrow. Recipe meta-data was used to determine
which meals should be recommended for which time period. This is important
because, in contrast to previous data collection methods, the user is not only
rating the recipe with respect to how appealing it is, but also how suitable
the recipe is given a specific context. In addition to collecting ratings, the web
interface offered the user the chance to explain his rating by clicking appropriate
check boxes representing reason. These check boxes were grouped into reasons
to do with personal preferences, reasons related to the healthiness of the recipe
and reasons related to the preparation of the recipe. The listed explanations
were generated through a small user study, whereby 11 users rated recipes and
explained their decisions in the context of an interview. The web interface also
provided a free-text box for reasons not covered by the checkboxes 1.

After publicising the system on the Internet, through mailing lists and twitter,
124 users from 4 countries provided 4,472 ratings over a period of 9 months.
We argue that although this is a relatively small and sparse dataset, it is an
improvement on previous recipe ratings data collection methods, which have used
mechanical turk, where there are no validity controls and users are incentivised
to rate as many recipes a possible as they are being paid [2,3] and surveys where
participants rate large numbers of recipes or ingredients in a single session.

Our dataset also differs from previous work in terms of matrix density. The
number of ratings per user is Zipfian (median = 7, mean = 29.93 max = 395
min =1; 18 users have 1, 52 have 10+). Whereas previous food recommender
papers report user-ratings densities of 22%-35% [2,3], our dataset exhibits a
more realistic density of 3.95% and a median 3 ratings per recipe (mean = 4.04,
max=14, min=2), more in line with collections such as movielens and netflix.
Our dataset is, therefore, not only realistic, but also a challenging platform for
experimentation as it is both sparse and variant in terms of ratings (sd = 1.43).

4 Exploratory Analysis

To learn about the decision process undertaken when users rate recipes, as well
as the factors that influence this process, we statistically analysed the reasons
provided by the users when they rated. The most common reasons for negatively
rating a recipe were that the recipe contained a particular disliked ingredient,
the combination of ingredients did not appeal, or the recipe would take too
long to prepare and cook. The most common positive factors included ease or
quickness of preparation, the type of dish or the recipe being novel or interesting.

1 Screenshot of the interface - http://tinypic.com/r/1zx4p77/4

http://tinypic.com/r/1zx4p77/4


156 M. Harvey, B. Ludwig, and D. Elsweiler

Health related reasons, such as the recipe containing too many calories, the recipe
being perceived as unhealthy, or positive factors like the recipe being balanced
or easily digestible were clicked less often overall. However, these were clicked
very frequently for a particular subset of users; those who ever chose a health
reason did so, on average, for 16.3% of the recipes they rated.

We trained a number of linear models to understand how relationships be-
tween factors contribute to a final rating. The final model (adj. R2=0.329) shows
that 17 factors were significant. Ingredient factors, such as the presence of par-
ticular ingredients or combination of ingredients and whether meat was in the
recipe had particularly strong predictive power. Furthermore, the data show
that ingredient factors can have both a positive and negative influence on rat-
ings and that the combination of ingredients can be important, neither of which
are considered by current models.

Although the health factors did not add significantly to the predictive power
of the models, we wanted to understand if they might help predict ratings on a
per-user basis. We looked at the correlation between calorie and fat content of
recipes and the ratings provided by two groups of users, those who had clicked
on a health related factor once or more (Care-about-Health, n= 54, 3130 rat-
ings), and those who never clicked on a health reason (Don’t-Care-About Health,
n=70, 1342 ratings)2. Figure 1 shows clear differences between the rating be-
haviour exhibited in these groups. There is a strong trend that for the Care-
about-Health group, the higher the fat (R2=0.88, p=0.012) or calorific content
(R2=0.87,p=0.022) of the recipe, the lower the rating. However, this trend is
not present in the second group. If anything, there seems to be a slight tendency
toward the reverse trend, whereby recipes higher in fat (R2=0.23,p=0.643) and
calories (R2=0.73, p=0.064) are assigned a higher rating. This analysis suggests
that accounting for nutritional factors in recommendation models will allow more
accurate predictions to be generated. To summarise, these analyses demonstrate

Fig. 1. Influence of Calorific Content and Fat on Ratings

the complexity of rating decision process. Even with 17 significant explanatory
variables, the best model is still only able to return an adj. R2 value of 0.329.
Nevertheless, they hint that several factors could be exploited in recipe recom-
mendation algorithms to improve accuracy. In the following section we describe

2 Nutritional content of recipes was calculated using the system as described in [8].



You Are What You Eat: Learning User Tastes for Rating Prediction 157

models that exploit the factors and trends uncovered. As a starting point, we
focus on building powerful ingredient based models, as these were shown to be
important and have been emphasised in previous work. We then extend these in-
gredient models to take account of nutritional aspects in terms of fat and energy,
which aligns well with our long-term research aims.

5 Recommendation Models

Before describing the new models, we first introduce appropriate notation in
Table 1. Note for the purposes of this discussion recipes may also be referred to as
“items” and ingredients as “features”, these terms will be used interchangeably.

Table 1. List of notation for recommender models

Symbol Description Symbol Description

d ∈ d set of items (recipes) Φ item feature weights d x f

u ∈ u set of users φd,f weight of feature f in item d

f ∈ f set of features (ingredients) Ψ user feature weights u x f

R ratings matrix u x d ψu,f weight of feature f for user u

bu bias due to user u Ψ+ matrix of positive user features

bd bias due to item (recipe) d Ψ− matrix of negative user features

ru,d rating for item d by user u IUFf inverse user frequency of feature f

IDFf inverse item frequency of f

Ingredients contained in recipes are like words in documents and can be re-
ferred to as features. Based on this assumption, we can build an item-feature
matrix Φ which can be either binary, indicating the presence or absence of an
ingredient in a recipe, or the relative weight of each ingredient in the recipe.
The weight of feature f in item d is φd,f . To compute a similarity between users
and items, we can construct a similar feature matrix for users. Such a matrix Ψ
(where ψu,f is the weight of feature f for user u) can be constructed by consid-
ering the ingredients contained within the recipes rated by the user. Concretely:
ψu,f =

∑
d∈D φd,f I{ru,d > 0} π, where π is an additional weighting factor that

may be item, user or feature-dependent (in the un-weighted case this defaults
to 1) and I{} is the indicator function which is 1 when the condition within the
braces - in this case that user u has rated item d - is satisfied.

From our analysis we know that the contextual factors which affect ratings
can be both positive and negative and vary in their influence. In the case of
ingredients, it was shown that users have a set of ingredients (and combinations
thereof) that they like as well as a set of those that they do not like. Previous
work has attempted to incorporate this observation into the modelling process
by weighting ingredient-features by the rating assigned to the recipes containing
that ingredient [3]. In one model, ratings are exploited by assigning weighting



158 M. Harvey, B. Ludwig, and D. Elsweiler

to ingredients based on their parent recipe’s rating (i.e. π is set to ru,d). The
problem with this approach is that it implicitly assigns some positive rating to
ingredients which the user dislikes, particularly compared to ingredients which
they have not yet rated.

We take a different approach by using two separate user-feature matrices Ψ+

and Ψ− containing weighted values for ingredients the users like and those that
they do not like. Ψ+ is derived from recipes to which the user assigned a rating
of 4 or 5 and Ψ− from those that the user assigned a score of 1 or 2. Here we
utilise the weighting factor π; for Ψ+ we can assign a weighting of 1 for those
rated 4 and a weighting of 2 for those rated 5, for Ψ− recipes rated 1 receive a
weighting of 2 and those rated 2, a weight of 1. This preserves the idea that a
rating of 5 indicates a stronger positive preference than a rating of 4 whereas a
rating of 1 should be more strongly negative than a rating of 2.

5.1 Predicting Ratings

We now need a metric to determine how similar (or dissimilar) an item and
a user are. We use a variation on TF-IDF weighting [11] as this will give high
weights to ingredients that are frequently rated positively by the user of interest,
but not generally by all users. Similarity between two items can be computed
using the cosine similarity metric, resulting in a vector space (VS) model:

simV S(u, d) =
∑
f∈f

(ψu,f IUFf )(φd,f IDFf )∑
f

√
(ψu,fIUFf )2

∑
f

√
(φd,fIDFf )2

(1)

When analysing the ratings matrix we noted that it was rather sparse, partic-
ularly on a per-user basis with many users having only rated a small number of
recipes. This introduces problems for the basic TF-IDF model as a large num-
ber of users will have very sparse feature vectors. Our analyses also show that
people like types of ingredients and specific combinations of them and therefore
performance may be improved by trying to learn which ingredients are similar
through their co-occurrence in recipes. This can be achieved implicitly by the
use of dimensionality reduction techniques on the feature matrix.

We can therefore apply a Singular Value Decomposition (SVD) to the feature
matrices in a similar fashion to previous work in information retrieval [1] where
this method has been used successfully to improve accuracy for document re-
trieval. SVD is commonly used to reduce the amount of noise within matrices
and can uncover relationships between variables that are not obvious from the
explicit first-order co-occurence data. The reader is referred to [1] for a more de-
tailed treatment of the subject. Given a reduced-dimensionality representation
of the original feature matrices, a similarity metric between two items is simply
the cosine of the angle between their vectors over the new feature space.

5.2 User and Item (Recipe) Biases

As noted in the related work section, many modern RS estimate ratings based
on a number of biases. Two sets of biases which have been shown to have a large



You Are What You Eat: Learning User Tastes for Rating Prediction 159

impact on the rating ultimately given are dependent on each individual user
and on the item (in this case recipe) being rated. For example, some users may
naturally rate items higher than others and some may naturally choose from a
lower baseline score. Similarly some items are intrinsically better than others
and are therefore likely to be rated higher by all users. By calculating these
biases as part of our model, we can effectively remove these eccentricities from
the ratings. This gives the ingredient similarity measures the freedom to deal
purely with the variations caused by each user’s tastes. The bias due to user u
is denoted bu and the bias for recipe/item d is denoted bd.

These biases can be calculated by means of iterating fixed-point gradient
descent optimisation routine based on the training ratings until convergence is
observed via the following update rules:

b̂u = bu − λ(ebd − αbu) (2)

b̂d = bd − λ(ebu − αbd) (3)

where b̂u and b̂d are the updated values for the parameters, λ is a fixed scalar
parameter which determines the learning rate of the optimiser, α is a regularisa-
tion parameter to prevent over-fitting and e is the error of the following simple
model estimate r̂u,d = μ+ bu + bd where μ is the mean training rating.

5.3 Including Nutritional Information

Our analysis indicate that there is a notable split between users who appear to
care about the healthiness of a dish and those to whom this factor is perhaps
not so important. We know, for example, that those users for whom nutrition is
important will, in the mean, rate items with high levels of fat and calories lower
than other recipes. This information could be used to introduce an additional
bias into the model in order to improve prediction performance. To model this
bias, we first split the recipes into “bins” based on their calorific and fat content.
Bins were chosen by calculating the q quantiles of the calories and fat respectively
and assigning each recipe to its corresponding bin. We separated users into
“healthy” and “unhealthy” groups based on their use of the calories and healthy
checkboxes in the training ratings. For each of the two groups a vector of biases
was computed for all bins over both the calories and the fat content, where the
biases are simply the expected mean-normalised change in the rating for rated
items within the bins. These biases are then included as additional explanatory
variables in the linear model. Due to the splitting of users it is necessary to
calculate two separate models, one for each user group, since the coefficients for
both the calories and fat biases will be different for the two distinct groups.

To predict a rating r̂ for user u given a recipe (or item) d we can learn a
linear weighted model based on the output from the similarity metrics over both
positive and negative feature matrices and the biases:

r̂u,d = θ0 + θ1sim
+(u, d) + θ2sim

−(u, d)
+θ3bc(u, d) + θ4bf (u, r) + θ5(bu + bd)



160 M. Harvey, B. Ludwig, and D. Elsweiler

where bc(u, d) and bf(u, d) are the predicted calorie and fat biases for user u
and recipe d (based on the calorie and fat bins d belongs to). The terms in this
linear equation can actually be seen as the factors that combine to bias the rat-
ing in either a positive or negative direction, thus perturbing the rating from
some baseline “standard” rating. θ0 can be seen as approximating a standard or
average rating, θ1 is the factor biasing the rating in a positive direction and θ2
biases in the opposite direction. θ3 and θ4 represent the biases due to nutritional
content and θ5 encodes the influence of the user and item-specific biases. These
weights can be optimised using a large number of numerical optimisation proce-
dures including gradient descent, neural networks and generalised linear models.
Due to its stability and relative simplicity we use the latter method in this work.

6 Experimental Results

To test the performance of our models for recipe recommendation we must as-
certain how well they are able to predict ratings for unknown pairs of users and
recipes. To do so we randomly separated our dataset into 5 equal partitions and
conducted split-fold testing where for each test 4 of the partitions is used for
training the models and the remaining partition is used to test performance.
resulting in a total of 3,624 training ratings and 848 test ratings.

The prediction problem is best described by saying that we would like to
“fill in” the sparse ratings matrix, extrapolating (or predicting) a rating r̂i for
every possible user-item pair from the limited data available. More practically
we wish to define some function or model which will minimise the root mean

squared prediction error over the test data RMSE =
√

1
Ntest

∑Ntest

i=1 (ri − r̂i)2.

The RMSE is commonly used in statistics for measuring the difference between
the set of values predicted by a model and the values actually observed from the
system being modelled. We also report the Mean Absolute Error (MAE) which is
simply the mean absolute difference between the predicted rating and the actual
rating, over the whole test set. We report both metrics as they provide different
information regarding the performance of predictions: the RMSE penalises large
errors much more than small errors while the MAE penalises all errors equally
relative to their size.

6.1 Models and Parameters

We compare the performance of our models against 3 baselines from the CF
literature, including the state-of-the-art recipe recommendation model:

mean-r näıve baseline, returns the mean rating as an estimate for all u, d pairs.
CF nearest-neighbour method, Pearson correlation coefficient similarity metric.
CB best-performing content-based algorithm by Freyne et al [3].

In this section we evaluate the performance of the following 4 recipe recom-
mendation models as described in Section 5:



You Are What You Eat: Learning User Tastes for Rating Prediction 161

VS weighted model with VS similarity measure
VS+n weighted model, VS similarity measure, nutritional biases
VS+n+b weighted model, VS similarity measure, all biases
SVD weighted model, SVD-based similarity measure
SVD+n weighted model, SVD-based similarity measure, nutritional biases
SVD+n+b weighted model, SVD-based similarity measure, all biases

For CF we use a maximum of 10 neighbours ignoring those with low similarity
(<0.2). Both SVD models were trained over 100 dimensions. For the +n models
q was set to 20 quantiles. The user and item optimiser converges as would be
expected, with major gains being made over the earlier iterations and becoming
smaller as the optimal values are reached, completely flattening out near the end.
This hints that the algorithm has fully converged by this point. The learning rate
λ was set to 0.001 and the regularisation parameter α was set to 0.05 as this
resulted in the fastest convergence times and best held-out likelihood.

6.2 Average Performance

Table 2. Best results from each model. % indicate improvement over mean baseline.
* indicates statistically significant improvement over mean, † over CB model.

Prediction error Improvement

Model MAE RMSE MAE RMSE

mean 1.180 1.383 - -

CF 1.175 1.379 0.42% 0.28%

CB 1.154 1.347 2.2% 2.6%

VS 1.115 * 1.308 * 5.5% 5.4%

VS+n 1.109 * 1.299 * 6% 6.1%

VS+n+b 1.079 * † 1.269 * † 8.6% 8.2%

SVD 1.095 * † 1.296 * † 7.2% 6.3%

SVD+n 1.086 * † 1.289 * † 8% 6.8%

SVD+n+b 1.072 * † 1.256 * † 9.2% 9.2%

Table 2 shows the average performance figures yielded by the models. Signif-
icance is determined based on the p-value returned by a paired Student’s-t test.
Exact p-values were: SVD-CB = 0.02, SVD+n-CB = 0.011, mean-CB = 0.39.
The p-values comparing the mean with all of the models presented in this paper
were � 0.01. The results indicate that all the content-based recommenders are
able to outperform both the mean rating and the neighbourhood-based algo-
rithm, which returns particularly poor figures for this dataset. This is likely due
to the sparsity of the data making it difficult for the algorithm to find suitable
neighbours from which to derive its estimates. Among the content-based meth-
ods it is clear that the VS method outperforms the CB method and that the
SVD method in turn outperforms VS.



162 M. Harvey, B. Ludwig, and D. Elsweiler

Addition of the nutritional information into the model improves performance
for both the VS and SVD variants, however in neither case is this improvement
significant. The addition of the individual user and item biases is, however, signifi-
cant and increases the performance of both the VS and SVD-basedmodels. In fact,
the performance gain is such that the VSmodel with the biases is even able to beat
both of the SVDmodels without the biases. Aswould be expected, the performance
of the SVD algorithms are somewhat dependent on the number of dimensions. Per-
formance with a small number of dimensions (i.e. 10) is poor, but increases con-
sistently until it reaches an informational saturation point at approximately 100
dimensions, after which performance gain is asymptotic. The performance of all
of the trained models increases with the proportion of training data, however it
appears that the newer models are better able to exploit the extreme case where
90% of the data is used for training. The errors returned at the other extreme (i.e.
where only 50% of the data is kept for training) suggest that the SVD-based model
is able to cope better in the case of sparse data than the VS-based one.

6.3 Standard Deviation of Errors

The RMSE and MAE provide useful information regarding the performance, and
more specifically the expected error, of a given prediction algorithm. However,
users do not want excessively large errors as this can rapidly destroy their trust in
the system and therefore the standard deviation of the errors is also important.

The most variant errors are returned by the CF algorithm followed by the
mean, with these returning 0.716 and 0.715 respectively. The content-based rec-
ommenders perform better: CB = 0.696, VS = 0.669, SVD = 0.665, VS+n =
0.66 and SVD+n= 0.659. By adding in the user and item biases the standard
deviation is further reduced to 0.647 for SVD+n+b and 0.649 for VS+n+b.
These results illustrate further that differences in performance suggested by the
RMSE and MAE results are likely to make a tangible difference to the accuracy
of the recommender. There is little difference between the performance of the
3 baselines, however there is a large step-up in the performance of the models
outlined in this work. The fact that the improvements (over the baseline) for the
RMSE scores are larger than for MAE also suggests that the models presented in
this paper make fewer large errors. As discussed previously, this is advantageous
as making large errors can have serious implications with regard to the trust
of the user in the RS. The much lower standard deviations for the models that
incorporate the user and item biases also illustrate how much extra prediction
power and flexibility these are able to provide.

7 Discussion of Results and Conclusion

In this paper we have investigated the decisional process involved in rating rec-
ommended recipes. We described a large naturalistic data collection method
with 124 users in which recipes were rated in context over a period of 9 months.
This resulted in a realistic dataset for testing RS for this specific problem which



You Are What You Eat: Learning User Tastes for Rating Prediction 163

approximates well the kind of data that would be generated in a real recipe rec-
ommendation system, especially compared to recipe datasets used in the past.
Analyses of the dataset underlined the complexity of the recipe rating process
with 17 factors having a significant influence on the rating in the best linear
model. Yet, this model is only able to explain about a third of the variance in
the rating. However, based on insights obtained from analyses performed, we de-
veloped new models and showed empirically that these models offer performance
improvement over strong baselines.

The results justify choices made in the modelling process; the new models
offer improved performance both in terms of reducing error and the variance of
the error. The results show that the ingredients contained within recipes are im-
portant and that this data can be better exploited by using models that account
for positive and negative weighting and by applying dimensionality reduction
techniques. Furthermore it is clear from the results obtained that training sep-
arate bias parameters for each individual user and item is extremely beneficial,
particularly given the low cost in terms of increased model estimation time.

Including nutritional information in the model was also shown to be beneficial.
The models incorporating calorie and fat data offered improved performance, al-
though the differences were not significant. It is our intuition that as our dataset
grows, the results of models exploiting nutritional information will improve. It
should also be noted that our current method of incorporating recipe nutri-
tional information in the rating prediction is quite simple and could certainly
be improved. More sophisticated models might, for example, use a continuous
function to estimate weights for calories or fat values rather than simply using
bins. Moreover, future models may learn weights on a per user basis rather than
relying on pre-defined groups as we do now.

The presented work represents a single component in a much larger project
aimed at building RS that can promote healthier dietary choices. Our short term
goals include continuing the work here to build models that better predict user
food preferences using the ideas suggested above or, for example, by incorporat-
ing other content factors. We are continuing to collect data and hope to investi-
gate how performance of models change as the collection size increases. For exam-
ple, will the CF approaches eventually match content approaches when the collec-
tion achieves a certain density?We acknowledge that, in contrast to our long-term
goals, the nutrition-aware models could be improving performance by offering un-
healthy choices to users who prefer such recipes. It would be interesting to look
at how these models influence the error for the two user groups. Further analysis
might also provide an understanding of where nutritional content plays a role i.e.
at what level of fat content do users start to rate differently? Our initial analyses
in Section 4 suggest that there is also scope for further performance improvement
by developing models that take other content-related factors into account.

In the longer term we plan to move beyond recommending recipes in isolation
to recommending full dietary plans. This would involve recommending sequences
of recipes under a number of constraints such as the daily recommended intake
suggested by the WHO, and user activity patterns. Achieving this will present



164 M. Harvey, B. Ludwig, and D. Elsweiler

several algorithmic and usability challenges and will necessitate the development
of more sophisticated models. We are also interested in understanding how us-
ing this kind of RS can influence user behaviour and knowledge of nutritional
principles. Will users learn about nutrition over time from the suggestions made
or will they instead simply rely on the system to provide them with meal plans
without truly understanding what they should be eating to keep healthy?

It is worth noting that the models presented in this paper could also be used
for other RS problems where contextual data is available for items that could
be used as features for the similarity matrices. For example, the models could
be adapted to recommend movies by using features such as directors, actors and
genres instead of ingredients.

References

1. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, R.: Indexing by
lsa. J. of the Am. Soc. of Inf. Sci. 41(6), 391–407 (1990)

2. Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommen-
dation. In: 15th Int. Conf. on Intelligent User Interfaces, IUI 2010, pp. 321–324.
ACM, New York (2010)

3. Freyne, J., Berkovsky, S., Smith, G.: Recipe recommendation: Accuracy and rea-
soning. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011.
LNCS, vol. 6787, pp. 99–110. Springer, Heidelberg (2011)

4. Hammond, K.: Chef: A model of case-based planning. In: Proceedings of the Na-
tional Conference on AI (1986)

5. Harvey, M., Carman, M.J., Ruthven, I., Crestani, F.: Bayesian latent variable mod-
els for collaborative item rating prediction. In: Proc. CIKM 2011, pp. 699–708.
ACM (2011)

6. Harvey, M., Ludwig, B., Elsweiler, D.: Learning user tastes: a first step to gener-
ating healthy meal plans? In: ACM RecSys 2012 LifeStyle Workshop (2012)

7. Hinrichs, T.: Strategies for adaptation and recovery in a design problem solver. In:
Proceedings of the Workshop on Case-Based Reasoning (1989)

8. Mueller, M., Harvey, M., Elsweiler, D., Mika, S.: Ingredient matching to determine
the nutr. properties of internet-sourced recipes. In: Pervasive Health (2012)

9. Nestle, M., Wing, R., Birch, L., DiSogra, L., Drewnowski, A., Middleton, S.,
Sigman-Grant, M., Sobal, J., Winston, M., Economos, C.: Behavioral and social
influences on food choice. Nutrition Reviews 56(5), 50–64 (1998)

10. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Rec. Systems Handbook.
Springer (2011)

11. Salton, G., Buckley, C.: Weighting approaches in automatic text retrieval. IP and
M 24(5), 513–523 (1988)

12. Scheibehenne, B., Greifeneder, R., Todd, P.M.: Can there ever be too many op-
tions? A meta-analytic review of choice overload. J. of Consumer Rsrch. 37, 409–425
(2010)

13. Sobecki, J., Babiak, E., S�lanina, M.: Application of hybrid recommendation in
web-based cooking assistant. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES
2006. LNCS (LNAI), vol. 4253, pp. 797–804. Springer, Heidelberg (2006)

14. Svensson, M., Laaksolahti, J., Höök, K., Waern, A.: A recipe based on-line food
store. In: 5th Int. Conf. on Intelligent User Interfaces, IUI 2000, pp. 260–263. ACM,
New York (2000)



Discovering Dense Subgraphs in Parallel

for Compressing Web and Social Networks�,��

Cecilia Hernández1,2 and Mauricio Maŕın3

1 Dept. of Computer Science, University of Concepción, Chile
2 Dept. of Computer Science, University of Chile, Chile

3 Yahoo Research, Santiago
chernand@dcc.uchile, mmarin@yahoo.com

Abstract. Mining and analyzing graphs are challenging tasks, espe-
cially with today’s fast-growing graphs such as Web and social networks.
In the case of Web and social networks an effective approach have been
using compressed representations that enable basic navigation over the
compressed structure. In this paper, we first present a parallel algorithm
for reducing the number of edges of Web graphs adding virtual nodes over
a cluster using BSP (Bulk Synchronous Processing) model. Applying an-
other compression technique on edge-reduced Web graphs we achieve the
best state-of-the-art space/time tradeoff for accessing out/in-neighbors.
Second, we present a scalable parallel algorithm over BSP for extracting
dense subgraphs and represent them with compact data structures. Our
algorithm uses summarized information for implementing dynamic load
balance avoiding idle time on processors. We show that our algorithms
are scalable and keep compression efficiency.

Keywords: Parallel algorithms, Compressed Web and social graphs.

1 Introduction

Massive graphs appear in a wide range of domains including the Web, social
networks, RDF graphs, protein networks and many more. For instance, the Web
graph on a recent estimation has more than 7.8 billion pages with more than
200 billions of edges (mentioned in previous work [1]).

In the last decade, many graph algorithms have been proposed to address
some of the problems associated with large graphs. Different approaches have
been used to manage large graphs. One approach consists of representing graphs
in compressed form while being able to resolve queries of interest without de-
compression. Although these compressed structures are usually slower than un-
compressed representations, they are faster than having to access the disk. Many
of these compressed structures target Web graphs, some support out-neighbor
queries [2,3], that is retrieving the outgoing links of a node x, and some also

� Partially funded by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F.

�� Partially funded by FONDEF IDeA CA12i10314.
O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 165–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


166 C. Hernández and M. Maŕın

support in-neighbor queries, that is incoming links of a node x [4]. Another ap-
proach is the use of distributed systems where distributed memory is aggregated
to process the graph. Distributed memory is useful when data is larger than the
memory available on a commodity machine. Pregel [5] is a graph system that
works on BSP model, Pegasus [6] is a graph mining library over Hadoop, which
is the free implementation of MapReduce [7]. Pace [8] discusses important dif-
ferences between BSP and MapReduce and shows that iterative algorithms are
more efficient using BSP than MapReduce.

The main contributions of this paper are:

– A scalable BSP parallel algorithm for reducing the number of edges of Web
graphs by finding dense subgraphs and adding virtual nodes. This algorithm
is based on DSM (Dense Subgraph Mining) algorithm, which used with vir-
tual nodes, BFS ordering and K2tree [9] achieves the best compression on
Web graphs [1].

– A scalable parallel DSM algorithm for extracting dense subgraphs. The al-
gorithm exploits locality of adjacency lists and uses dynamic load balanced
for maximizing processor utilization avoiding idle times. Representing these
dense subgraphs with compact data structures [10] combined with an im-
proved version of MPk [11] provides the best space/time tradeoffs for social
networks [10].

2 Related Work

Compressing the Web has been an active research area for some time. Some
of the earlier proposals include basic navigation, which is reduced at retrieving
out-neighbors [2,3], and others that include retrieving out/in-neighbors [4,11,10].
Compression techniques for Web graphs use different patterns, such as locality
and similarity of adjacency lists [2], the sparse nature of the adjacency matrix
[4], label ordering [3,2], edge reduction [12], and dense subgraphs [10,1]. In so-
cial networks, successful representations use clique-like structures [13,11] and
more dense subgraph patterns, such as cliques, bicliques and other patterns that
combine cliques and bicliques [10]. Some of these structures [11,10,1] use com-
pact data structures based on bit vectors and symbol sequences. Compact data
structures use space efficiently and their basic operations are rank/select/access.

Discovering dense subgraphs in large graphs is a challenging problem in data
analysis and has a wide-range of applications, including community mining, spam
detection, and social analysis. The general problem has many variants such as
finding and enumerating cliques [14] and detecting dense subgraphs or commu-
nities [15,16]. Although, there are some differences in the terminology defining
a dense subgraph, all works consider the density as measuring the number of
edges in relation with the number of nodes in such structures.

In recent years, parallel and distributed data management has gained attention
due to the success of MapReduce [7] and Hadoop. MapReduce is simple to use and
provides high throughput. Pregel [5] aims processing graphs and it is based on ver-
tex computation using BSP. However, MapReduce and Pregel require hundreds



Discovering Dense Subgraphs in Parallel for Compressing Web 167

or thousands of machines in order to process large graphs. For instance, Pegasus
[6] and Pregel focus on large graph querying and mining, Pegasus is built on top
of Hadoop and Pregel is built using BSP. Pregel improves upon MapReduce by
passing computation results instead of graph structures among processors.

3 Our Approach

We represent a web graph as a directed graph G = (V,E) where V is a set
of vertices (pages) and E ⊆ V × V is a set of edges (hyperlinks). For an edge
e=(u,v), we call u the source and v the center of e. We find patterns given by
the following definition.

Definition 1. A dense subgraph H(S,C) of G = (V,E) is a graph G′(S ∪
C, S × C), where S,C ⊆ V .

Note that this definition includes cliques (S = C) and bicliques (S ∩ C = ∅).
Our goal is to represent the |S| · |C| edges of a dense subgraph H(S,C) in space
proportional to |S| + |C| − |S ∩ C|. Thus, the bigger the dense subgraphs we
detect, the more space we save at representing their edges.

The parallel algorithms presented here are based on a sequential algorithm for
discovering dense subgraphs, DSM (Dense SubgraphMining) [1]. DSM consists of
2-step clustering and 2-step mining. The clustering algorithm computes |R| hash
values for each adjacency list conforming a matrix of hash values of dimension
|R ·V | (Step 1). The matrix is sorted by columns where each cluster is formed by
similar rows (Step 2). The mining phase takes the adjacency lists related to hash
rows of each cluster and sorts edges by frequency (Step 3). Then, each adjacency
list of the cluster is inserted into a prefix tree, discarding edges of frequency 1.
Each node v in the prefix tree has a label (consisting of the node id), and it
represents the sequence l(v) of labels from the root to the node. Such node v
stores also the range of graph nodes whose list start with l(v) (Step 4). Figure
1 shows an example.

Our first parallel algorithm (Algorithm 1 in Table 1) uses DSM for reducing
edges by a factor between 5 and 10, adding a small percentage of virtual nodes

Fig. 1. Example of the Dense Subgraph Mining (DSM) algorithm



168 C. Hernández and M. Maŕın

(around 10 and 15 %). Then, we apply BFS ordering and k2tree over the edge-
reduced Web graphs. Our second parallel algorithm (Algorithm 2 in Table 1)
uses DSM for extracting dense subgraphs and represent them with compact
data structures. Such representation is based on the following components.

Let H = {H1, . . . , HN} be the dense subgraph collection found in the graph,
based on Definition 1. We represent H as a sequence of integers X with a corre-
sponding bitmap B. Sequence X = X1 : X2 : . . . : XN represents the sequence
of dense subgraphs and bitmap B = B1 : B2 : . . . BN is used to mark the separa-
tion between each subgraph. We now describe how a given Xr and Br represent
the dense subgraph Hr = H(Sr, Cr).

We define Xr and Br based on the overlapping between the sets S and C.
Sequence Xr will have three components: L, M , and R, written one after the
other in this order. Component L lists the elements of S−C. ComponentM lists
the elements of S∩C. Finally, component R lists the elements of C−S. Bitmap
Br = 10|L|10|M|10|R| gives alignment information to determine the limits of the
components. In this way, we avoid repeating nodes in the intersection, and have
sufficient information to determine all the edges of the dense subgraph.

Table 1. Algorithms DSM with virtual nodes (Algorithm 1), and DSM for extracting
dense subgraphs (Algorithm 2)

Algorithm 1

Input: Gp,ES, T
Output: Reduced RG(|V + V N |, E2) graph

Each processor reads its data partition
{Step 0}
for (i ← 0 to T − 1 ) do
clusters = FindClusters()
for (c ∈ clusters) do
Sets(S,C) = FindDenseSubs(c, ES)
localV nodes = DefineSets(S, C)
Replace(Gp, Sets(S, C), localV nodes)
AddV nodes(Gp, Sets(S,C), localV nodes)

end for
end for
sendLocalV nodeMsg()
sync()
{Step 1}
if (proc == 0) then
lvnodes = RecibeMsgs()
gvnodes = ProcV NodeGlobal(lvnodes)
sendGlobalV nodes(gvnodes)

end if
sync()
{Step 2}
gvnodes = RecieveMsgs()
replaceV nodes(Gp, lvnodes, gvnodes)
return RG

Algorithm 2

Input: Gp, esArray, T , threshold.
Output: Dense subgraph collection

Each processor reads its data partition
ES = esArray.first()
{Step 0}
for (i ← 0 to T ) do
clusters = FindClusters()
for (c ∈ clusters) do
Sets(S, C) = FindDenseSubs(c, ES)
numDSs = |Sets(S,C)|
WriteToDisk(Sets(S, C))

end for
if (i == period()) then
sendLoadMsg()
sync()
{Step 1}
if (proc == 0) then
ProcessLoad()
sendDistInfo() (to all procs)

end if
sync()

end if
{Step 2}
sendData()
if (numDSs < threshold) then
ES = esArray.next

end if
end for

3.1 Algorithms and Analysis

The BSP model provides an efficient parallel distributed memory model that con-
siders relevant parameters of a real parallel computer system. A BSP computer



Discovering Dense Subgraphs in Parallel for Compressing Web 169

is defined by P processors with local memory, connected via a point-to-point
communication link. BSP algorithms proceed in supersteps in each of which
processors receive input data, perform asynchronous computation over its data
and communicate output at the end. Supersteps are synchronized at the end
using barriers. An algorithm designed in BSP is measured by three main fea-
tures: computation, communication, and synchronization costs. The cost model
is given by W + Hg + L, where W is the maximum cost of computation on a
processor, H is the maximum input/output communicated among processors, g
is the latency and L is the synchronization cost.

Algorithm 1 in Table 1-(left) describes our parallel DSM for reducing edges
and adding virtual nodes. During Step 0 each processor processes Gp in parallel
locally. Each iteration finds all clusters on Gp and on each cluster the mining
algorithm discovers dense subgraphs of the type H with components (S,C) of size
at least ES. For each subgraph, we create local virtual node ids (localVnodes)
to separate sets (S,C).

In Step 0 all processors sends a tuple with (lvnodeInit, numberLV nodes) to

processor 0. Thus, Step 0 is O(O(T |E|
P log |E|

P ), where |E| is the number of edges
in G, P the number of available processors, and T the number of iterations. In
Step 1 processor 0 relabels local virtual nodes to global ids and sends that infor-
mation to all processors. Relabeling is done by changing the gV nodeInit based
on the number of virtual nodes found in previous processed processor tuple, that
is gV nodeIniti = vninit and gV nodeIniti+1 =

∑
numberLV nodesi. We work

with global virtual node ids instead of locals to minimize mapping space. Thus,
Step 1 is O(Pg+L). In Step 2 all processors receive tuples with global virtual
node ids and each processor replaces local virtual node ids for global ones. Then,
this step is O(|V +V N |) which indicates that the algorithm scales up efficiently
since the amount of required communication is much smaller than the amount
of computation performed by processors on local data. Therefore, the total cost

is O(T ( |E|
P log |E|

P ) + Pg + L+ |V + V N |).
Algorithm 2 in Table 1-(right) describes our parallel algorithm for extract-

ing dense subgraphs using dynamic load balance. This is an iterative algorithm,
where each iteration has several steps. In Step 0 each processor computes clus-
tering and mining and extracts dense subgraphs and sends periodically its work-
load information to processor 0. Processor workload tuple is given by ES and
numDSs, where ES is the current size of the dense subgraphs that are mined
and numDSs is the number of subgraphs at the current iteration. The clustering

is O( |E|
P log |E|

P ) and all processors send local workload tuples to processor 0 in
O(Pg+L) periodically. Function period() determines how often processors send
their load. In Step 1 processor 0 receives local load from all processors, com-
putes a global load tuple containing (minP ,maxP ,minES,maxES,minDSs,
maxDSs), and decides whether load balance is performed and the amount of
data to move. If it decides to apply load balance, it sends global load balance
tuple to all processors. In Step 2 each processor receives the global load tuple
and the heavier processor sends a portion of its data to the lighter processor.



170 C. Hernández and M. Maŕın

Step 0 is computed T times and each processor sends workload tuples to pro-
cessor 0 Tp times. During Step 1 processor 0 computes workload tuples and decide
whether heavier processors will send data to lighter processors, which is O(Pg+
L). Applying load balance depends on the distance between (maxES,minES)
and (minDSs,maxDSs) among processors, and it can happen Td times. This
step is computed in O(Mg+L), where M is a portion of Gp to move. The total

cost is O(T ( |E|
P log |E|

P ) + Tp(Pg + L+ P ) + Td((P +M)g + L)).

4 Experimental Evaluation

We perform different experiments over Web and social graphs described in
Table 2. 1. We use the natural order for input graphs in all our experiments.
We implemented parallel algorithms using C++ and BSP over a cluster with at
most 64 processors. Each processor is an Intel 2.66 GHz, with 24 GB of RAM
and 8 MB of cache. We partition input graphs among processors by equal num-
ber of edges contained by complete list of out-neighbors. This partition scheme
gave us more balanced processor work load.

We study the performance of our parallel DSM with virtual nodes and ex-
tracting dense subgraphs using dynamic load balance. We analyze the effect of
using different number of processors in terms of compression efficiency, running
times, and speedup. We also compute the Edge ratio (ER). ER is the total num-
ber of edges (belonging to dense subgraphs) extracted in parallel versus the total
number of edges in dense subgraphs extracted with the sequential algorithm.

Table 2. Number nodes, edges and size in MBs of graphs. A1S stands for the
speedup(S) for 8 and 64 processors when using DSM in Algorithm 1, and A2S when
using DSM in Algorithm 2. ER (Edge ratio) is the number of edges (belonging to dense
subgraphs) extracted in parallel versus the ones extracted sequentially.

Data Set Nodes Edges MB A1S (8) A1S (64) A2S (8) ER A2S (64) ER
eu-2005 862,664 19,235,140 77 4.95 20.88 14.46 0.99 58.6 0.99
indochina 7,414,866 194,109,311 765 2.18 23.85 5.39 0.96 52.4 0.99
uk-2002 18,520,486 298,113,762 1,200 10.10 68.18 11.21 0.90 102.87 0.97
arabic-2005 22,744,080 639,999,458 2,500 10.52 55.40 6.95 0.92 66.80 0.96
dblp-2011 986,324 6,707,236 30 - - 29.08 0.76 117 0.87
LJSNAP 4,847,571 68,993,773 280 - - 8.63 0.45 55.34 0.65

Figure 2 shows parallel running times and compression performance (bpe)
using different numbers of processors for different Web graphs. We include run-
ning times for computing DSM-ESx-T10 (where ES = x for finding dense sub-
graphs of at least size x, and T = 10 i.e. 10 iterations); and the running time
for achieving the complete compression structure, which consists of two parts;
DSM-ESx-T10 builds a graph with fewer edges and virtual nodes (RG); and
K2treeBFS applies BFS and k2tree over RG. As observed, the running time im-
proves greatly without affecting compression. These results suggest that there

1 Data sets available at: law.dsi.unimi.it and snap.stanford.edu/data



Discovering Dense Subgraphs in Parallel for Compressing Web 171

is a great amount of locality of reference in adjacency lists. Figure 2 shows that
the cost of applying k2treeBFS, which is sequential, has more impact on larger
graphs. This is seen by the distance between the two running time plots visible
on Arabic data set.

Table 2 shows the speedup achieved using 8 and 64 processors (A1S (8) and
A1S (64)) using DSM with virtual nodes (k2tree not included). We observe that
the speedup is higher for larger graphs, which suggest that such graphs take
more advantage of memory aggregation in the cluster system.

We evaluate our second parallel algorithm (extracting dense subgraphs with
DSM) measuring running times, speedup and the Edge ratio (ER). We use 100
iterations for extracting dense subgraphs and dblp-2011 and 200 iterations for
LJSNAP (LiveJournal). Figure 3 shows the running time for DSM with dense
subgraph extraction, considering only time for extraction, complete compression
time (including mpk), and the compression achieved for social networks using
H and R with mpk [11]. This figure also shows that the sequential part of
the compression construction slows down the compression time. Table 2 shows
the speedup for 8 and 64 processors (A2S (8) and A2S (64)). We also measure
ER, which is the total number of edges extracted in dense subgraphs using our
parallel algorithm versus the total number of edges extracted belonging to dense
subgraphs using the sequential algorithm. We extract in parallel more than 90%
edges belonging to dense subgraphs achieving good speedups on Web graphs.
However, it is less effective on social graphs where ER is lower as seen in Table2.

5 Conclusions

This paper proposes two parallel algorithms for DSM, a sequential algorithm
for discovering dense subgraphs [1] for compressing Web and social graphs. Our
first parallel algorithm uses DSM with virtual nodes for reducing the number of
edges. This algorithm exploits locality of reference of adjacency lists. Applying
BFS ordering and k2tree over parallel edge-reducedWeb graphs does not degrade
compression efficiency. Our second parallel algorithm extracts dense subgraphs

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60  70
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

T
im

e 
(s

ec
s)

C
om

pr
es

si
on

 (
bp

e)

Processors

INDOCHINA-2004

DSM-ES15-T10
Running time DSM-ES15-T10+k2treeBFS

BPE DSM-ES15-T10+k2treeBFS

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70
 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

T
im

e 
(s

ec
s)

C
om

pr
es

si
on

 (
bp

e)

Processors

ARABIC-2005

DSM-ES10-T10
Running time DSM-ES10-T10+k2treebfs

BPE DSM-ES10-T10+k2treebfs

Fig. 2. Parallel running time with corresponding compression for Web graphs



172 C. Hernández and M. Maŕın

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60  70
 8.2

 8.25

 8.3

 8.35

 8.4

 8.45

 8.5

 8.55

T
im

e 
(s

ec
s)

C
om

pr
es

si
on

 (
bp

e)

Processors

DBLP-2011

DSM100
Running Time DSM100+mpk

BPE DSM100+mpk

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  10  20  30  40  50  60  70
 13.1

 13.15

 13.2

 13.25

 13.3

 13.35

 13.4

T
im

e 
(s

ec
s)

C
om

pr
es

si
on

 (
bp

e)

Processors

LiveJournal-SNAP

DSM200
Running Time DSM200+mpk

BPE DSM200+mpk

Fig. 3. Parallel running time for extracting dense subgraphs and bpe for social graphs

in parallel using dynamic load balance. Both algorithms provide good speedup
and compression efficiency. However, since both algorithms are used with other
sequential compression techniques such as k2tree [9] and mpk [11], they limit
our compression speed.

References

1. Hernández, C., Navarro, G.: Compressed representations for web and social graphs.
To appear in Knowledge and Information Systems (2013),
http://link.springer.com/article/10.1007/s10115-013-0648-4

2. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A mul-
tiresolution coordinate-free ordering for compressing social networks. In: WWW,
pp. 587–596 (2011)

3. Apostolico, A., Drovandi, G.: Graph compression by bfs. Algorithms 2(3),
1031–1044 (2009)

4. Brisaboa, N.R., Ladra, S., Navarro, G.: k2-Trees for compact web graph represen-
tation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721,
pp. 18–30. Springer, Heidelberg (2009)

5. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: A system for large-scale graph processing. In: SIGMOD Con-
ference, pp. 135–146 (2010)

6. Kang, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: mining peta-scale graphs.
Knowl. Inf. Syst. 27(2), 303–325 (2011)

7. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

8. Pace, M.F.: Bsp vs mapreduce. Procedia CS 9, 246–255 (2012)
9. Ladra, S.: Algorithms and compressed data structures for information retrieval.

Ph.D. Thesis, University of A. Coruña (2011)
10. Hernández, C., Navarro, G.: Compressed representation of web and social networks

via dense subgraphs. In: Calderón-Benavides, L., González-Caro, C., Chávez, E.,
Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 264–276. Springer, Heidelberg
(2012)

11. Claude, F., Ladra, S.: Practical representations for web and social graphs. In:
CIKM, pp. 1185–1190 (2011)

http://link.springer.com/article/10.1007/s10115-013-0648-4


Discovering Dense Subgraphs in Parallel for Compressing Web 173

12. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph
compression with communities. In: WSDM, pp. 95–106 (2008)

13. Maserrat, H., Pei, J.: Neighbor query friendly compression of social networks. In:
KDD, pp. 533–542 (2010)

14. Schmidt, M.C., Samatova, N.F., Thomas, K., Park, B.-H.: A scalable, parallel
algorithm for maximal clique enumeration. J. Parallel Distrib. Comput. 69(4),
417–428 (2009)

15. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for
emerging cyber-communities. Computer Networks 31(11-16), 1481–1493 (1999)

16. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense
communities in the web. In: WWW, pp. 461–470 (2007)



Faster Lyndon Factorization Algorithms

for SLP and LZ78 Compressed Text

Tomohiro I1,2, Yuto Nakashima1, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Japan
{tomohiro.i,yuto.nakashima,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

2 Japan Society for the Promotion of Science (JSPS)

Abstract. We present two efficient algorithms which, given a com-
pressed representation of a string w of length N , compute the Lyn-
don factorization of w. Given a straight line program (SLP) S of size
n and height h that describes w, the first algorithm runs in O(nh(n +
logN log n)) time and O(n2) space. Given the Lempel-Ziv 78 encoding
of size s for w, the second algorithm runs in O(s log s) time and space.

1 Introduction

Two strings x and y are conjugates, if x = uv and y = vu for some strings u and
v. A string w is said to be a Lyndon word, if w is lexicographically strictly smaller
than all of its conjugates. The Lyndon factorization of a string w, denoted LFw,
is a factorization of w such that each factor is a Lyndon word and the sequence
of Lyndon factors is lexicographically non-increasing [4]. Lyndon factorizations
are used in a bijective variant of Burrows-Wheeler transform [10,7] and a digital
geometry algorithm [3]. Given a string w of length N , LFw can be computed
on-line in O(N) time [6].

When the length N of the string w is huge, even the O(N)-time solution
may not be efficient enough. In this paper, we give two algorithms to compute
LFw, which are more efficient when w is highly compressible. Given a straight
line program (SLP) S of size n that describes the string w, our first algorithm
computes LFw in O(nh(n + logN logn)) time and O(n2) space, where h ≤ n
is the height of the derivation tree of S. Since the decompressed string length
|w| = N can be exponentially large w.r.t. n, our solution is more efficient than
the O(N)-time decompress-then-process solution in the worst case. In addition,
our solution improves on the previous work by I et al. [9], which solves the same
problem in O(n3(n + mh)) time and O(n2) space, where m is the number of
Lyndon factors of w. As a byproduct of our solution, we show that the number
m of Lyndon factors of string w is bounded by the size n of any SLP representing
w, i.e. m ≤ n, which may be of independent interest.

Our second algorithm is designed for amore specific case, i.e., when the Lempel-
Ziv 78 (LZ78) encoding [12] of the string w is given as input. If s is the size of the
LZ78 encoding, then the algorithm computes LFw in O(s log s) time and space.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 174–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text 175

For a fixed alphabet s = O(N/ logN) [12]. Thus, for a fixed alphabet ourO(s log s)
solution is at least as efficient as Duval’s O(N) solution that works on uncom-
pressed strings, and is more efficient when s is sufficiently small.

2 Preliminaries

Strings and Model of Computation. Let Σ be an ordered finite alphabet.
An element of Σ∗ is called a string. The length of a string w is denoted by |w|.
The empty string ε is a string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗−{ε}. For a string w = xyz, x, y and z are called a prefix,
substring, and suffix of w, respectively. A prefix x of w is called a proper prefix
of w if x �= w. The set of non-empty suffixes of w is denoted by Suffix(w). The
i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string
w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that
begins at position i and ends at position j. For convenience, let w[i..j] = ε when
i > j. For any string w let w1 = w, and for any integer k ≥ 2 let wk = wwk−1,
i.e., wk is a k-time repetition of w. Let w∞ denote an infinite repetition of w.

An integer p ≥ 1 is said to be a period of a string w if w[i] = w[i + p] for all
1 ≤ i ≤ |w| − p. If p is a period of a string w with p < |w|, then |w| − p is said
to be a border of w. If w has no borders, then w is said to be border-free.

If character a is lexicographically smaller than another character b, then we
write a ≺ b. Let ω be the lexicographically largest character in Σ. For any strings
x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We write
x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.
When we want to clarify that the former condition holds for some x ≺ y, we
denote x � y. For any non-empty set S ⊆ Σ∗ of strings, let min≺ S and max≺ S
denote the lexicographically smallest and largest strings in S, respectively.

Our model of computation is the word RAM: We assume the computer word
size is at least �log2 |w|�, and hence, standard operations on values represent-
ing lengths and positions of string w can be manipulated in O(1) time. Space
complexities will be determined by the number of computer words (not bits).

Lyndon Words and Lyndon Factorization of Strings. Two strings x and
y are conjugates, if x = uv and y = vu for some strings u and v. A string w is
said to be a Lyndon word, if w is lexicographically strictly smaller than all of
its conjugates. Namely, w is a Lyndon word, if for any factorization w = uv, it
holds that uv ≺ vu. Notice any Lyndon word is border-free.

The Lyndon factorization of a string w, denoted LFw, is the factorization
�p1

1 · · · �pm
m of w, such that each �i ∈ Σ+ is a Lyndon word, pi ≥ 1, and �i " �i+1

for all 1 ≤ i < m. The size of LFw is m. LFw can be represented by the sequence
(|�1|, p1), . . . , (|�m|, pm) of integer pairs, where each pair (|�i|, pi) represents the
i-th Lyndon factor �pi

i of w. Note that this representation requires O(m) space.
In some literature, the Lyndon factorization is defined to be a sequence of

lexicographically non-increasing Lyndon words, namely, each Lyndon factor �p

is decomposed into a sequence of p �’s. In this paper, each Lyndon word � in the
Lyndon factor �p is called a decomposed Lyndon factor.



176 T. I et al.

For any string w, let LFw = �p1

1 · · · �pm
m . Let lfbw(i) denote the position where

the i-th Lyndon factor begins in w, i.e., lfbw(1) = 1 and lfbw(i) = lfbw(i − 1) +
|�pi−1

i−1 | for any 2 ≤ i ≤ m. For any 1 ≤ i ≤ m, let lfsw(i) = �pi

i �
pi+1

i+1 · · · �pm
m and

lfpw(i) = �p1

1 �p2

2 · · · �pi

i . For convenience, let lfsw(m+ 1) = lfpw(0) = ε.

Straight Line Programs (SLPs). A straight line program (SLP) is a set of
productions S = {Xi → expri}ni=1, where each Xi is a variable and each expri is
an expression, where expri = a (a ∈ Σ), or expri = X�(i)Xr(i) (i > �(i), r(i)). Let
val(Xi) denote the string derived by Xi. We will sometimes associate val (Xi)
with Xi and denote |val (Xi)| as |Xi|. An SLP S represents the string w =
val(Xn). The size of the program S is the number n of productions in S. If N is
the length of the string represented by SLP S, then N can be as large as 2n−1.

The derivation tree TS of SLP S is a labeled ordered binary tree where each
internal node is labeled with a non-terminal variable in {X1, . . . , Xn}, and each
leaf is labeled with a terminal character in Σ. The root node has label Xn.
The height of SLP S is the height of TS . We associate to each leaf of TS the
corresponding position in string w = val(Xn).

Let [b, e] be any integer interval with 1 ≤ b < e ≤ |val (Xn)| = N . We say that
node z of TS stabs the interval [b, e], if the lowest common ancestor of the leaves
b and e in TS is z. If Xj is the label of node z, then we also say that variable Xj

stabs the interval [b, e]. Note that for any interval I of length at least two, there
is a unique variable that stabs I.

Lempel Ziv 78 Encoding. The LZ78-factorization of a string w is a factoriza-
tion f1 · · · fs of w, where each fi ∈ Σ+ for each 1 ≤ i ≤ s is defined as follows:
For convenience, let f0 = ε. Then, fi = w[p..p+ |fj|] where p = |f0 · · · fi−1|+ 1
and fj(0 ≤ j < i) is the longest previous factor which is a prefix of w[p..|w|].
The LZ78 encoding of w is a sequence (k1, a1), . . . , (ks, as) of pairs s.t. each pair
(ki, ai) represents the i-th LZ78 factor fi, where ki is the ID of the previous
factor fki , and ai is the new character w[|f1 · · · fi|]. The LZ78 encoding requires
O(s) space. Regarding this pair as a parent and edge label, the factors can also
be represented as a trie of size O(s).

3 Properties on Strings and Lyndon Words

In this section, we introduce some fundamental properties on strings and Lyndon
words which will be used in our algorithms. Below, let LF (w) = �p1

1 · · · �pm
m for

string w. Proofs for Lemmas 1, 3, 6, and 7 are omitted due to lack of space.

Lemma 1. Let u ∈ Σ+ and v ∈ Σ∗. If v ≺ u∞, v ≺ u1v ≺ u2v ≺ . . . holds. If
v " u∞, v " u1v " u2v " . . . holds.

Lemma 2 ([6]). For any Lyndon words u, v, uv is a Lyndon word iff u ≺ v.

Lemma 3. A non-empty string w is a Lyndon word iff w�v for any non-empty
proper suffix v of w.

Lemma 4 ([6]). For any 1 ≤ i < m, LFw = LF lfpw(i)LF lfsw(i+1).



Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text 177

Lemma 5 ([6]). It holds that �1 is the longest prefix of w which is a Lyndon
word and p1 is the largest integer k such that �k1 is a prefix of w.

The following lemmas are essentially the same as what Duval’s algorithm is
founded on but are tailored for explaining our algorithm.

Lemma 6. Let j > 1 be any position of a string w such that w ≺ w[i..|w|] for
any 1 < i ≤ j, and lcp(w,w[j..|w|]) ≥ 1. Then, w ≺ w[k..|w|] also holds for any
j < k ≤ j + lcp(w,w[j..|w|]).

Lemma 7. It holds that |�1| = ĵ − 1 and p1 = 1 + �ĥ/|�1|�, where ĵ = min{j |
w " w[j..|w|]} and ĥ = lcp(w,w[ĵ ..|w|]).

Thus, computing the first Lyndon factor reduces to computing ĵ and ĥ. From
Lemmas 3 and 7, the following lemma holds.

Lemma 8. For any 1 ≤ i ≤ m and 1 ≤ j < lfbw(i), w[j..|w|] " lfsw(i).

4 Faster Lyndon Factorization from SLP

Here, we present a faster algorithm to compute Lyndon factorization of a string
represented by an SLP. Our algorithm employs the following lemma which is
used in parallel algorithms to compute Lyndon factorization of an uncompressed
string. Below, let LF u = up1

1 · · ·upm
m and LF v = vq11 · · · vqm′

m′ for u, v ∈ Σ+.

Lemma 9 ([1,5]). LFuv = up1

1 . . . upc
c zkv

qc′
c′ . . . v

qm′
m′ for some 0 ≤ c ≤ m, 1 <

c′ ≤ m′ + 1 and LF lfsu(c+1)lfpv(c
′−1) = zk.

This lemma implies that we can obtain LFuv from LFu and LF v by computing
zk since the other Lyndon factors remain unchanged in uv.

4.1 How to Compute the Medial Lyndon Factor zk

Unfortunately, the algorithm for computing zk given in the proof of Theorem
2.2 of [5], appears to be wrong. In the sequel, we present several combinatorial
properties from which a correct and efficient algorithm to compute the medial
Lyndon factor zk follows.

Let λu be the minimum integer such that lfsu(i + 1) is a prefix of ui for any
λu ≤ i ≤ m.

Lemma 10. For any 1 ≤ j < λu, uj � lfsu(j + 1).

Proof. Since we have lfsu(j) " lfsu(j +1) from Lemma 8, we only have to show
that lcp(uj , lfsu(j + 1)) < min{|uj|, |lfsu(j + 1)|}. Note that uj is not a prefix
of lfsu(j + 1) since otherwise the jth Lyndon factor should extend to the right
with at least another occurrence of uj . It follows from the definition of λu that
lfsu(λu) is not a prefix of uλu−1, and hence uλu−1 � lfsu(λu) holds. If we assume
on the contrary that lfsu(j + 1) is a prefix of uj for some 1 ≤ j < λu − 1,
since lfsu(λu) appears before the (λu − 1)-th Lyndon factor, there exists a suffix
u[i..|u|] = lfsu(λu)z of u with i < lfbu(λu − 1). It follows from uλu−1 � lfsu(λu)
that u[i..|u|] = lfsu(λu)z �uλu−1 ≺ lfsu(λu−1), which contradicts Lemma 8. 
�



178 T. I et al.

We define the set of significant suffixes Λu of u as Λu = {lfsu(i) | λu ≤ i ≤ m}.
It is clear from the definition of Lyndon factorization that for any λu ≤ i ≤ m,
ui = lfsu(i + 1)yi for some non-empty string yi. Let xi denote the suffix of
u of length |ui|. Note that xi = yilfsu(i + 1) and lfsu(i) = upi

i lfsu(i + 1) =
(lfsu(i+ 1)yi)

pi lfsu(i + 1) = lfsu(i+ 1)xpi

i .

Lemma 11. For any string u, |Λu| = O(log |u|).

Proof. Straightforward, since |lfsu(i)| > 2|lfsu(i+ 1)| for any λu ≤ i ≤ m. 
�

Lemma 12. For any λu ≤ i < m, yi � x
∞
i+1.

Proof. Since ui = lfsu(i + 1)yi = (lfsu(i + 2)yi+1)
pi+1 lfsu(i + 2)yi, if we as-

sume that yi = x∞i+1[1..|yi|] = (yi+1lfsu(i + 2))∞[1..|yi|] we get a contradiction
that ui has period |lfsu(i + 2)yi+1|. Also, if yi ≺ x∞i+1[1..|yi|], ui+1[1 + |lfsu(i +
2)yi+1|..|ui+1|] ≺ ui+1 holds, a contradiction. 
�

From Lemma 12, we get x∞λu−1 " yλu " x∞λu+1 " yλu+1 " · · · " x∞m−1 "
ym−1 " x∞m = u∞m , where we assume for convenience that x∞λu−1 = ω∞.

Lemma 13. For any v ∈ Σ+, if sv = min≺{s′v | s′ ∈ Suffix(u)}, then s ∈ Λu.

Proof. We show for any s ∈ (Suffix(u)− Λu), sv �= min≺{s′v | s′ ∈ Suffix(u)}.

– If s �= uki lfsu(i+1) with 1 ≤ k ≤ pi, namely, s = turi lfsu(i+1) with 1 ≤ i ≤ m
and 0 ≤ r < pi, where t is a proper suffix of ui. It follows from the definition
of Lyndon word t � ui, and hence, sv �= min≺{s′v | s′ ∈ Suffix(u)}.

– If s = uki u
′
i+1 with 1 ≤ k < pi. From Lemma 1, sv " min≺{u0i lfsu(i +

1)v, upi

i lfsu(i+ 1)v}. Therefore, sv �= min≺{s′v | s′ ∈ Suffix(u)}. 
�

Lemma 14. For any string v ∈ Σ+, if x∞i−1 " v " x∞i with λu ≤ i ≤ m,
lfsu(i)v = min≺{sv | s ∈ Suffix(u)}, and lfsu(1)v " · · · " lfsu(i − 1)v "
lfsu(i)v ≺ lfsu(i+ 1)v ≺ · · · ≺ lfsu(m+ 1)v holds.

Proof. By Lemma 10, lfsu(1)v � . . .� lfsu(λw−1)v �uλuv. By Lemma 12, x∞j " v
and also lfsu(j+1)x∞j = u∞j " lfsu(j+1)v hold for any λu ≤ j < i, and hence, it

follows from Lemma 1 that lfsu(j)v = u
pj

j lfsu(j +1)v " lfsu(j +1)v. Also, since
v " x∞j′ for any i ≤ j′ ≤ m, lfsu(j

′)v ≺ lfsu(j
′ + 1)v holds. Therefore, we get

u′1v " · · · " u′i−1v " u′iv ≺ u′i+1v ≺ · · · ≺ u′mv holds. It is clear from Lemma 13
that u′iv is the lexicographically smallest string in {sv | s ∈ Suffix(u)}. 
�

We can compute the medial Lyndon factor as follows:

Lemma 15. Given LFu = up1

1 · · ·upm
m and LF v = vq11 · · · vqm′

m′ for u, v ∈ Σ+,
we can compute LFuv = up1

1 · · ·upc
c zkv

qc′
c′ · · · vqm′

m′ by O(logm + logm′) lexico-
graphical string comparisons.

Proof. Clearly, it holds that LFuv = LF uLF v if um " v1, and that LFuv =
up1

1 · · ·upm−1

m−1 u
pm+q1
m vq22 · · · vqm′

m′ if um = v1. In what follows we consider the case
when um ≺ v1. Note that v " u∞m holds in this situation.



Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text 179

First, we compute integer j such that 1 ≤ j ≤ m+1 and lfsu(j)v = min≺{sv |
s ∈ Suffix(u)}. From Lemma 14, for any 1 ≤ i ≤ m, j ≤ i iff lfsu(i)v ≺
lfsu(i + 1)v. Hence we can find j by binary search which requires O(logm)
lexicographical string comparisons. Next, we compute j′ = min{j′′ | 1 ≤ j′′ ≤
m′, lfsu(j)v " lfsv(j

′′ + 1)}. Since lfsv(1) " lfsv(2) " . . . " lfsv(m
′ + 1), j′ can

be found by O(logm′) lexicographical string comparisons with binary search.
We show z = lfsu(j)lfpv(j

′) is the first decomposed Lyndon factor of lfsu(j)v.
By definition of j, for any position i with lfbu(j) < i ≤ |u|, lfsu(j)v ≺ (uv)[i..|uv|].
Since lfsu(j)v ≺ lfsv(j

′), it follows from Lemma 8 that for any |u| < i <
|u|+lfbv(j

′), lfsu(j)v ≺ lfsv(j
′) ≺ (uv)[i..|uv|]. Next we show vj′ is not a prefix of

lfsu(j)v. Assume on the contrary that lfsu(j)v = vj′ t. The beginning position of t
in uv is at most |u|+lfbv(j

′) since the occurrences of vj′ cannot overlap, and hence

lfsu(j)v ≺ t. Since lfsu(j)v = vj′ t ≺ lfsv(j
′), lfsu(j)v ≺ t ≺ v

qj′−1

j′ lfsv(j
′ + 1).

Applying this deduction qj′ times, we get lfsu(j)v ≺ t ≺ lfsv(j
′+1), a contradic-

tion. Thus, lfsu(j)v�vj′ # (uv)[i..|uv|] for any |u|+lfbv(j
′) ≤ i < |u|+lfbv(j

′+1).
Since |u|+ lfbv(j

′ +1) is the first position where the suffix becomes lexicograph-
ically smaller than lfsu(j)v, the claim follows from Lemma 7.

Finally, we show uj−1 $ z. Assume on the contrary that uj−1 ≺ z. By
Lemma 2 uj−1z is a Lyndon word, which implies uj−1z � z. This contradicts
lfsu(j)v = min≺{s′v | s′ ∈ Suffix(u)} due to uj−1lfsu(j)v � lfsu(j)v.

The above procedure correctly computes the decomposed Lyndon factoriza-
tion of uv. The exponent of z can be computed by checking if uj = z and/or
uj′+1 = z and packing them together if needed. Hence the total number of lexi-
cographical string comparisons is O(logm+ logm′). 
�

4.2 Computing Lyndon Factorization from SLP

Given an SLP S of size n, we process each production Xi → X�(i)Xr(i) in in-
creasing order of i, and compute LFXi from LFX�(i)

and LFXr(i)
using dynamic

programming. We use Lemma 15 to compute the medial Lyndon factor for each
variable Xi. In the final stage where i = n, we obtain the Lyndon factorization
LFXn = LFw for the uncompressed string w. Using Lemma 15, LFXi can be
computed by O(logm� + logmr) string comparisons, where m� and mr are re-
spectively the number of Lyndon factors in LFX�(i)

and LFXr(i)
. We can use the

following lemma for lexicographical string comparisons on SLPs.

Lemma 16 ([8]). We can pre-process an SLP S of size n and height h in
O(n2h) time and O(n2) space, so that for any Xi and 1 ≤ k1, k2 ≤ |Xi|, the lex-
icographical order and the length of the longest common prefix of val (Xi)[k1..|Xi|]
and val (Xi)[k2..|Xi|] can be determined in O(h logN) time.

What remains is to show how large the number m of Lyndon factors of a
string w can be. In the sequel, we show that m ≤ n holds, where n is the size of
any SLP representing the string w. The next lemma follows from Lemma 9.

Lemma 17. Let LFw = �p1

1 · · · �pm
m for a string w ∈ Σ+. Let [b, e] be any interval

with 1 ≤ b ≤ e ≤ |w|, and let u = w[b..e]. For any b ≤ lfbw(i) ≤ e, there exists
integer j such that b− 1 + lfbu(j) = lfbw(i).



180 T. I et al.

Lemma 18. Let n be the size of any SLP representing a string w. The size m
of the Lyndon factorization of w is at most n.

Proof. Let LFw = �p1

1 · · · �pm
m . For any Lyndon factor �pi

i of length at least 2, i.e.
pi|�i| ≥ 2, consider interval I = [lfbw(i), lfbw(i)+pi|�i|−1] which corresponds to
the occurrence of �pi

i in w. Let Xj → X�(j)Xr(j) be the unique variable that stabs
I. Assume on the contrary that another node of the derivation tree TS with the
same label Xj stabs a different Lyndon factor �pk

k with k �= i. Lemma 17 implies
that both �pi

i and �pk

k are Lyndon factors of val(Xj) that crosses the boundary
between X�(j) and Xr(j), a contradiction. Hence �pi

i is a unique Lyndon factor
that is stabbed by Xj in w. Moreover, by definition of Lyndon factorization, no
other node of TS with label Xj can stab the same Lyndon factor �pi

i . Therefore,
if n′ is the number of variables which derive a string of length at least 2, then
there can be at most n′ Lyndon factors of length at least 2 in w. Clearly, the
number of Lyndon factors of length 1 is at most n− n′. Thus m ≤ n holds. 
�

Theorem 1. Given an SLP of size n and height h representing string w of
length N , we can compute LFw in O(nh(n+logN logn)) time and O(n2) space.

Proof. By Lemmas 15, 16 and 18, for each production Xi → X�(i)Xr(i) we
can compute LFXi in O(h logN logn) time, provided that LFX�(i)

and LFXr(i)

are already computed. Using a dynamic programming method, this takes a to-
tal of O(nh logN logn) time. The space complexity for this dynamic program-
ming is O(n2) since for each variable Xi we have to store at most n beginning
positions of the Lyndon factors of Xi. Putting these and the pre-processing
costs of Lemma 16 together, we conclude that our algorithm takes a total of
O(n2h+ nh logN logn) = O(nh(n+ logN logn)) time and O(n2) space. 
�

Corollary 1. We can pre-process, in O(nh(n + logN logn)) time and O(n2)
space, an SLP of size n and height h describing string w of length N so that
the following query can be answered in O(h(n + h logN logn)) time: given an
interval [b, e] with 1 ≤ b ≤ e ≤ N , compute LFw[b..e].

By Corollary 1, we can compute the Lyndon factorization of a query substring of
w, without decompression. Corollary 1 is more efficient than applying Theorem 1
to an SLP describing substing w[b..e], since it takes O(nh(n+logN logn)) time.

5 Computing Lyndon Factorization from LZ78

In this section, we show how, given an LZ78 encoding of string w, we compute
the Lyndon factorization LF (w) = �p1

1 · · · �pm
m of w. Our algorithm is based on

Duval’s algorithm [6] which computes the Lyndon factorization of a given string
w of length N in O(N) time by scanning w from left to right.

From Lemma 6 and Lemma 7, we can compute the first Lyndon factor by
initializing j ← 2 and executing the following: 1) compute h ← lcp(w,w[j..|w|]).
2) if w[1 + h] ≺ w[j + h], set j ← j + h+ 1 and go back to Step 1); otherwise,
output |�1| ← j − 1 and p1 ← 1 + �h/|�1|�.



Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text 181

Let ĵ and ĥ denote the last values of j and h, respectively. Duval’s algorithm
computes h ← lcp(w,w[j..|w|]) by character comparisons, and it takes a total of

O(ĵ+ ĥ) time. Note O(ĵ+ ĥ) = O(|�1|p1) since ĵ+ ĥ < |�1|p1+ |�1|. By Lemma 4,
we can compute the second Lyndon factor by executing the above procedure with
the remaining string w[1 + |�1|p1..|w|]. By applying this recursively, the Lyndon
factorization of w can be computed in O(

∑m
i=1 |�i|pi) = O(|w|) time.

In what follows, we show how to simulate, in O(s log s) time and space, the
above algorithm on the LZ78 encoding of size s.

The next lemma describes one of the key ideas to achieve such complexity.

Lemma 19. Let w be non-empty string such that w = xvyvz with v ∈ Σ+ and
x, y, z ∈ Σ∗. If |xvy| < lfbw(k) ≤ |xvyv| for some k, then lfbw(k) ∈ {|xvy| +
lfbv(j) | λv ≤ j ≤ m′}, where LF v = vq11 · · · vq

′
m

m′ .

Proof. By Lemma 9, lfbw(k) ∈ {|xvy| + lfbv(j) | 1 ≤ j ≤ m′}. On the contrary,
assume lfbw(k) = |xvy|+ lfbv(j) with j < λv. By Lemma 10, lfsv(j)� lfsv(λv) and
w[|xvy|+ lfbv(j)..|w|]�w[|x|+ lfbv(λv)..|w|], a contradiction due to Lemma 8. 
�

Thanks to Lemma 19, when a string u appears multiple times without over-
lapping, we can utilize Λu to skip some suffix comparisons of Duval’s algorithm.
Also, we can compute Λu for all LZ78 factors efficiently.

Lemma 20. Given the LZ78 encoding of size s of a string w, we can compute
Λfk for all LZ78 factors fk, 1 ≤ k ≤ s, in a total of O(s log s) time and space.

Proof. It follows from |fk| ≤ s and Lemma 11 that |Λfk | = O(log s) for any
1 ≤ k ≤ s. Consider any LZ78 factor fk = fha, where 1 ≤ h < k ≤ s
and a ∈ Σ. Let LF fh = xp1

p1
· · ·xpm

pm
and LF fk = yq1q1 · · · y

qm′
qm′ . We show how,

given LF lfsfh
(λfh

), we compute LF lfsfk
(λfk

) in O(log s) time. We can use a

simplified version of the algorithm of Lemma 15 to compute Lyndon factor-
ization of lfsfh(λfh)a by O(log log s) lexicographical string comparisons. Note
that LF fk = LF lfpfh

(λfh
−1)LF lfsfh

(λfh
)a holds from Lemmas 15 and 10. Next

we compute λfk by searching for the largest integer i such that lfsfk(i + 1) is
not a prefix of yi. Since lfsfk(i + 1) is not a prefix of yi for any 1 ≤ i < λfh by
Lemma 10, we can get λfk without the information of LF lfpfh

(λfh
−1). Hence it

requires O(log s) string comparisons. Since lfsfh(j) is a proper prefix of xi for any
λfh ≤ i < j ≤ m, each comparison which is conducted between xi and lfsfh(j)a
can be done in O(1) time by using a data structure of LAQ (see Lemma 21), and
hence we can compute LF lfsfk

(λfk
) in O(log s) time. Therefore we can compute

Λfk for all LZ78 factors fk in a total of O(s log s) time and space. 
�

Given the LZ78 encoding of size s corresponding to a string w, we can build the
LZ78 trie Tw in O(s) time. For any LZ78 factor v, let v denote the corresponding
node of Tw. We use the following data structures LAQ and LCS:

Lemma 21 (Level Ancestor Query (LAQ) [2]). We can pre-process a given
rooted tree in linear time and space so that the �th node in the path from any
node to the root can be found in O(1) time for any � ≥ 0, if such exists.



182 T. I et al.

The suffix tree of a reversed trie can be constructed in linear time [11]. Com-
bined with the constant-time LCA data structure [2], we obtain the following:

Lemma 22 (Longest Common Suffix (LCS)). We can pre-process a given
trie in linear time and space so that the length of the longest common suffix of
any two strings in the trie can be answered in O(1) time.

Using LAQ, given a node v of the LZ78 trie Tw, we can access any position
of the corresponding LZ78 factor v in O(1) time.

A string u is called an LZ-block w.r.t. w if u is a substring of some LZ78 factor
of w. Since any node of Tw corresponds to an LZ78 factor, there exists at least
one node v of the trie s.t. u is a suffix of v. Such node v is called a handler of u.
Then u can be represented by a pair (v, |u|), in constant space. Let ρ(u) and ρ(u)
denote a handler of u and its corresponding LZ78 factor, respectively. For any
LZ-block u and 1 ≤ i ≤ j ≤ |u|, u[i..j] is also an LZ-block and its handler can be
computed from ρ(u) in O(1) time by using LAQ, i.e., when we write u′ ← u[i..j],
it means we compute ρ(u′) as the (|u| − j)th ancestor of ρ(u). Using LCS, we
can check the equality of two given LZ-blocks u and u′ of the same length in
O(1) time. lcp(u, u′) can be computed in O(log |u|) time by a binary search and
finding the position where the first mismatch occurs.

Any substring of w can be represented by a sequence of LZ-blocks. Our al-
gorithm to compute the first Lyndon factor of w maintains a sequence of LZ-
blocks representing w by a dynamic linked list K , which is initially set to the
LZ78 factorization of w itself but is restructured during the computation. After
computing the leftmost Lyndon factor, we will also modify K to represent the
remaining suffix of w in order to compute the remaining Lyndon factors. Let
strK denote the string represented by K . For any positions i ≤ j of strK , let
#K [i, j] denote the number of LZ-blocks used to represent strK [i..j].

A pseudo-code of our algorithm is shown in Algorithm 1, which simulates
Duval’s algorithm to compute the first Lyndon factor of w on K .

The algorithm initializes j ← 2 and h ← 0, then starts with computing
lcp(w,w[j..|w|]). Here, variables u and v are used for showing LZ-blocks which
describe prefixes of w[1+h..|w|] and w[j+h..|w|], respectively, where variable h
shows that currently w[1..h] and w[j..j + h− 1] match. We can see at Lines 12-
16 that the algorithm computes lcp(w,w[j..|w|]) by block-to-block comparisons,
namely, the prefixes of length d = min{|u|, |v|} of u and v are cut out to LZ-
blocks u′ and v′, and compared at Line 15. If u′ = v′, we set h ← h + d and
continue matching the following LZ-blocks.

When we face LZ-blocks u′ and v′ that have a mismatch, we compute h′ ←
lcp(u′, v′) by binary search at Line 25. At this moment h ← h + h′ is equal to
lcp(w,w[j..|w|]), and w and w[j..|w|] mismatch with u′[1 + h′] and v′[1 + h′]. If
u′[1+ h′] " v′[1+ h′], we have done the computation as Duval’s algorithm does.

A major difference between our algorithm and Duval’s lies in how we reset
j when u′[1 + h′] ≺ v′[1 + h′]. While Duval’s algorithm set j ← j + h + 1, our
algorithm skips some positions by utilizing Λρ(v[1..|v|−1]) in light of Lemma 19.
Let fi = fkv[|v|] = ρ(v), i.e., we are processing the i-th LZ78 factor. Since



Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text 183

Algorithm 1. Algorithm to compute the first Lyndon factor.

Input: The linked list of LZ-blocks K initialized to the sequence of the LZ78
factors of w.

Output: The first Lyndon factor �p11 of strK .
// Note that variables u, u′, v, v′, x and y are LZ-blocks and

manipulated via handlers.

1 u ← K .first; v ← u[2..|u|];
2 cu ← 0; cv ← 0;
3 j ← 2; h ← 0;
4 while true do
5 if u = ε then u ← next(u);
6 if v = ε then v ← next(v);
7 if v is an LZ78 factor which is used for the first time then
8 x ← K .first; y ← K .second;
9 v′ ← the longest member in Λv s.t. (xy)[1..|v′|] = v′ if such exists, ε

otherwise;
10 if |x|+ 1 = |v′| then
11 restructure the first LZ-block to be v′, and reset u and/or v if

needed;

12 d ← min{|u|, |v|};
13 u′ ← u[1..d]; u ← u[d+ 1..|u|];
14 v′ ← v[1..d]; v ← v[d+ 1..|v|];
15 if u′ = v′ then
16 h ← h+ d;
17 if u = ε & cu ≥ 2 then
18 restructure the last two LZ-blocks before u to be a single LZ-block;

19 if v = ε & cv ≥ 2 then
20 restructure the last two LZ-blocks before v to be a single LZ-block;

21 if u = ε & v = ε then cu ← 1; cv ← 1;
22 else if u = ε then cu ← cu + 1; cv ← 0;
23 else if v = ε then cv ← cv + 1; cu ← 0;

24 else
25 h′ ← lcp(u′, v′);
26 if u′[1 + h′] ≺ v′[1 + h′] then
27 cu ← 0; cv ← 0;
28 if v = ε then continue;
29 x ← K .first;
30 v′ ← the longest member in Λρ(v[1..|v|−1]) s.t. x[1..|v′|] = v′ if such

exists, ε otherwise;
31 j ← the position in strK where the v′ begins if v′ �= ε, the position

where the v ends otherwise;
32 h ← |v′|; u ← x[1 + h..|x|]; v ← v[|v|];
33 else // u′[1 + h′] � v′[1 + h′]
34 h ← h+ h′; break;

35 output |�1| ← j − 1 and p1 ← 1 + 
h/|�1|�;



184 T. I et al.

fk is an LZ78 factor appearing before fi, we can use Lemma 19, i.e., we only
have to consider the positions where a significant suffix of fk begins. Moreover,
at Lines 8-11 we have maintained the first LZ-block x of K to be the longest
member in

⋃i
i′=1 Λfi′ which is also a prefix of w. Since x[1..|v′|] # v′ for any

v′ ∈ Λfk , we can notice that x[1..|v′|] ≺ v′ if x[1..|v′|] �= v′, and hence we are
able to skip such positions. Then we set j to be the beginning position of the
longest member v′ ∈ Λfk with x[1..|v′|] = v′ if such exists, otherwise the ending
position of v, and restart suffix competition.

As for the maintenance of the first LZ-block of K at Lines 8-11, since any
LZ78 factor has form fi = fka with 1 ≤ k < i ≤ s and a ∈ Σ, the length of
the longest member in

⋃i
i′=1 Λfi′ which is also a prefix of w increases at most 1

when processing the new LZ78 factor. Hence the procedures at Lines 8-11 works
fine as far as the first LZ-block has maintained properly.

The following is the main theorem of this section.

Theorem 2. Given the LZ78 encoding of size s for string w, we can compute
LFw in O(s log s) time and space.

Proof. We compute the Lyndon factorization of w from left to right using Al-
gorithm 1 recursively. We pre-process in O(s) time and space for data struc-
tures LAQ and LCS on Tw. We also compute Λfi for all LZ78 factors fi, from
Lemma 20 it takes O(s log s) time and space.

During the whole computation, for any LZ78 factor fi we execute Lines 8-11
just once. Since |Λfi | = O(log s) it takes in total of O(s log s) time. In what
follows, we consider the cost other than that comes from Lines 7-11.

Let K1 denote the linked list of the sequence of the LZ78 factors of w. We
show that Algorithm 1 computes, given K1, the first Lyndon factor of w in
O(e1 log s+ g1) time, where ĵ1 and ĥ1 are respectively the last values of j and h

when algorithm halts, and e1 = #K1 [1, ĵ1] and g1 = #K1 [1, ĵ1 + ĥ1].
Firstly, let us estimate the total cost for the if-control of Line 15. Let t, t′

and t′′ be the numbers we execute Lines 21, 22 and 23, respectively. When we
enter the if-control, any one of them must be executed. Here note that next(v)
is executed at most g1. Since next(v) must be executed just after either Line 21
or Line 23 is executed, t+ t′′ ≤ g1. In addition, if we execute Line 22 more than
three consecutive times Line 18 reduces the number of LZ-blocks in K1, and
hence t′ ≤ 3g1. Since the unit cost of the if-control is O(1), the total cost for the
if-control is O(t+ t′ + t′′) = O(g1). Next, the else-control of Line 24 is executed
O(e1) times since we either halt the computation at Line 34, or reset j to be in
the last LZ-block we are processing at Line 31 and j will get over that LZ-block
when Line 31 is executed next time. Since Line 25 and Line 30 take O(log s)
time, the cost for the else-control is O(e1 log s) in total. Hence the first Lyndon
factor of w can be computed in O(e1 log s+ g1) time.

After computing the first Lyndon factor, we modify K1 to K2 which represents
the remaining suffix of w, i.e., we discard the LZ-blocks representing w[1..|�1|p1].
Also we maintain its first block to be the longest member in

⋃i
i′=1 Λfi′ , where

fi is the last LZ78 factor we have processed. The modification takes O(g1) time.



Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text 185

Then we use Algorithm 1 to compute the second Lyndon factor of w, i.e., the
first Lyndon factor of strK1 . The computation takes O(e2 log s+ g2) time, where

ĵ2 and ĥ2 are respectively the last values of j and h when algorithm halts, and
e2 = #K2 [1, ĵ2] and g2 = #K2 [1, ĵ2 + ĥ2]. We iterate this procedure until we get
the last Lyndon factor �pm

m of w. The sum of the cost isO(
∑m

i=1 ei log s+
∑m

i=1 gi).

Since lfbw(i)+ĵi ≤ lfbw(i+1) for any 1 ≤ i < m,
∑m

i=1 ei = O(
∑m

i=1 #Ki [1, ĵi]) =
O(#K1 [1, |w|]) = O(s), and hence O(

∑m
i=1 ei log s) = O(s log s).

The final concern is how we can analyze
∑m

i=1 gi = O(s). Since the sub-

strings of w considered in each iteration are overlapped, e.g., w[1..ĵ1 + ĥ1] and

w[lfbw(2)..lfbw(2)+ ĵ2 + ĥ2 − 1] are overlapped at most |�1|, we cannot conclude
immediately that

∑m
i=1 gi = O(#K1 [1, |w|]) = O(s). However, we can charge the

cost from the overlapped LZ-blocks to the previous LZ-blocks thanks to the re-
structuring at Line 20, e.g., when w[1..ĵ1+ĥ1] and w[lfbw(2)..|w|] are overlapped,
namely lfbw(2) ≤ ĵ1 + ĥ1, #K2 [1, ĵ1 + ĥ1 − |�1|p1] = O(#K1 [lfbw(2) − |�1|, ĵ1 +
ĥ1− |�1|]). Hence,

∑m
i=1 gi = O(2

∑m
i=1 #Ki [1, |�i|pi]) = O(2#K1 [1, |w|]) = O(s).

Therefore the statement holds. 
�

References

1. Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applica-
tions. Mathematical Systems Theory 28(2), 89–108 (1995)

2. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

3. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel =
digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)

4. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient
groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)

5. Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factor-
izing words. Theor. Comput. Sci. 127(1), 53–67 (1994)

6. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4),
363–381 (1983)

7. Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR abs/1201.3077
(2012)

8. I, T., Matsubara, W., Shimohira, K., Inenaga, S., Bannai, H., Takeda, M., Nari-
sawa, K., Shinohara, A.: Detecting regularities on grammar-compressed strings. In:
Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 571–582. Springer,
Heidelberg (2013)

9. I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Efficient lyndon factor-
ization of grammar compressed text. In: Fischer, J., Sanders, P. (eds.) CPM 2013.
LNCS, vol. 7922, pp. 153–164. Springer, Heidelberg (2013)

10. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc.
PSC 2009, pp. 65–79 (2009)

11. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences E86-A(5), 1061–1066 (2003)

12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)



Lossless Compression

of Rotated Maskless Lithography Images

Shmuel Tomi Klein1, Dana Shapira2, and Gal Shelef1

1 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il, gal.shelef@gmail.com

2 Computer Science Department, Ashkelon Academic College, Israel
shapird@ash-college.ac.il

Abstract. A new lossless image compression algorithm is presented,
aimed at maskless lithography systems with mostly right-angled regular
structures. Since these images appear often in slightly rotated form, an
algorithm dealing with this special case is suggested, which improves
performance relative to the state of the art alternatives.

1 Introduction

The tremendous storage requirements and ever increasing resolutions of digital
images, necessitate automated analysis and compression tools for information
processing and extraction. Most of the images may tolerate lossy compression
techniques, but there are cases in which each single pixel is significant. For
example, medical X-ray images must not be changed in any way as the lost data
may be critical to diagnosis. Another example, on which we wish to concentrate
in this work, is microchip lithography, the process of fabricating the complex
designs of a microchip onto a semiconducting substrate also known as a wafer.

Today’s dominating, though quite expensive, technique for microchip fabri-
cation is masked lithography, in which a mask is produced and then used to
mass-produce wafers at a high throughput. If a change is introduced to the
wafer design, then a new mask must be produced, thus incurring an even higher
production cost. This inflexibility to design changes may greatly increase the
costs of chip manufacturing in case of frequent design updates.

Over the last decade, a new microchip fabrication method referred to as
maskless lithography is being developed and refined, but suffers from several
limitations which stand in its way of becoming a serious competitor to masked
lithography. One of these limitations is handling large-scale wafer data.

Microchip fabrication in a maskless fashion requires the microchip design
data to be fed to the maskless printer which fabricates the microchip feature by
feature onto the wafer. The data is essentially an image in which each pixel is a
nano-scale feature. When taking into account the size of a microchip compared
to the size of a feature, the resulting image measures in the hundreds of gigabits.
For example, a 10 × 20 mm sized microchip with a 22 nm feature size would
produce an image of about 385 Gb.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 186–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Lossless Compression of Rotated Maskless Lithography Images 187

A microchip is designed using vector graphics. The vector graphics represen-
tation is very compact, but takes hours to rasterize and therefore cannot be used
directly during the printing process. The image is rasterized beforehand and then
fed to the maskless printer. A rasterized wafer image requires large amounts of
space, which introduces a difficulty: the wafer image data is too large to be saved
on-chip and therefore can only be streamed, thus creating a bottleneck in the
printing process.

The throughput of the maskless writer is not competitive with masked writing,
even when taking into account its flexibility advantage. One solution would be
to use massively parallel writers. As alternative, simple decoding logic can be
integrated on the writing chip, so the data streamed to the writers may be
compressed and decoded on-chip to allow higher throughput. This problem and
the data path designed to solve it are specified in detail in [7].

Generally, achieving high lossless compression for images may be impossible
in some cases, but many wafer images are characterized by a simple Manhattan-
like structure. A Manhattan structure [7] is a structure of mainly right angled
polygons in which most lines are parallel to the edges of the image. This structure
may be exploited in order to model the data very accurately and thus, achieve a
high compression ratio. Figure 1 depicts a sample Manhattan style wafer image.

Fig. 1. Sample Manhattan style image Fig. 2. Rotated sample image

The state of the art solutions for data throughput in maskless lithography are
the algorithms Block C4 [7] and its variations, and Corner [10], both of which
take a similar approach, inspired by the Burrows-Wheeler compression method.
They first apply a reversible transformation on the data, which in itself does
not reduce its size, but recodes it into a generally much more compressible form.
Similarly here, the images are reversibly transformed so that the result, at least
for this class of potential inputs, will be an extremely sparse image, i.e., one that
is almost fully zeroed out. This transformed image is much more compressible
than the original, and each algorithm uses some kind of entropy coder to take
advantage of this fact.

However, the algorithms rely heavily on the Manhattan structure, yet not all
images adhere to it. Microchips manufacturing images are sometimes deliberately
slightly rotated for various hardware reasons, as, for example, in [8, 9], but these



188 S.T. Klein, D. Shapira, and G. Shelef

are not the only applications. We obtained rotated images from some wafer
manufacturer and the reason for the choice of such a slanted layout was to allow
the continuous processing of very large periodic wafers at some constant speed,
without being forced to disrupt the production at regular intervals. But such
rotations disrupt the Manhattan structure of the image yielding considerably
worse compression savings. Even if the general layout is still dominated by the
appearance of various rectangles, the sides of the polygons are not always parallel
to the external edges of the image, and are rather chosen so as to form some
constant, generally small, angle. A sample such rotated image appears above in
Figure 2, which clearly shows how segments that must have been straight lines
in some original, non-rotated image, turned into a collection of jagged saw-like
forms.

The compressibility of images is obviously connected to their density (prob-
ability of a 1-bit), which is only minorly affected by rotation. However, the
compressibility of the Manhattan-structured wafer image changes dramatically
even after rotating by a small angle.

In the next section, we introduce a new and simple alternative to the lossless
image compression techniques mentioned above. Section 3 then deals with the
compression of rotated images and Section 4 brings comparative experimental
results.

2 New Compression Technique for Maskless Lithography

In a first attempt to deal with the lossless image compression problem, we have
designed a simple generic algorithm as alternative to the transformation steps
of Block C4 and Corner. It also applies a reversible transformation to the image
which zeros out large regions of the image, and then uses a simple encoder to
compress the data.

Since wafer images have a tendency to contain identical or at least similar
consecutive rows and columns, the idea is to exploit this similarity as in an
application for the compression of correlated bitmaps [3], and to Xor each line
(except the top one) with that above it, and afterwards each column (except
the leftmost) with that to its left. The Xored lines and columns are expected
to be much sparser than the original ones, and thus much more compressible.
The transformation is of course reversible, by Xoring again, starting with the
columns and then with the rows.

Using Boolean Xor has several advantages. Not only is it reversible, very fast
and can exploit bit-parallelism by processing entire blocks in single operations,
but its result is also a binary image, and for similar inputs, a much sparser one.
Corner differentiates between several types of non-zero pixels, depending on their
location (upper-left corner, etc.), and these alternatives need also to be encoded.
Block C4 partitions the image into regions that can be copied from elsewhere
within the image, similarly to Lempel-Ziv techniques, and other regions whose
pixels are predicted by the neighboring pixels. The new bitmap produced as a
result of these transformations does therefore not convey the full information



Lossless Compression of Rotated Maskless Lithography Images 189

necessary for the decoding, and must be supplemented by additional data. The
Xoring based technique, on the other hand, yields a pure black and white image,
including all the information of the original data.

Moreover, Corner works by hollowing out entire regions, transforming two-
dimensional polygonal forms into their one-dimensional contours. This could
be challenging if there are nested rectangular regions or non-closed geometrical
forms for which the contour may be ill defined. All these are treated by Xoring
in a straightforward way. On the other hand, Xoring does not deal with repeated
sub-patterns, as suggested by LZ techniques, so for images containing frequent
repeated regions that are not efficiently compressible on their own, a Xoring
based method may be inferior.

As to the encoding, there are several alternatives, based on run length or
Huffman codes, but the best results, at least on our test samples, have been
obtained by adapting hierarchical bit-vector compression [4] to two dimensions.
The basic idea of the one-dimensional method is the following. The data vector
of size n is sectioned into blocks of size f(n) < n, where f is a linear function
serving as parameter, such that f(n) divides n. Then, a bit vector of size n/f(n)
is created and the value of bit i in the bit vector is set to 0 if the i-th block
contains only zeroes, and to 1 otherwise. Non-zero blocks are re-partitioned
into blocks of size f(f(n)), and again a bit vector for each block is created and
concatenated to the previous vector, repeating the same process until a threshold
T on the block size is reached.

If the data is mostly zeroes, then many blocks will be encoded using a single
bit achieving a good compression ratio. This method may be adapted to two-
dimensional data in several ways. In order to exploit the distribution of non-zero
bits over the two-dimensional Xor transformed images, we adapt the bit vector
compression by simply sectioning to two-dimensional blocks of size f(w)× f(h),
where w is the width of the image and h is its height. The same recursive process
as in the one-dimensional case is applied and a bit vector is generated which,
essentially, hierarchically encodes the image by finer and finer blocks. When the
block size threshold is reached, the whole block is concatenated to the bit vector
in raster scan order.

We used f(n) = n/2 for both dimensions, and T = 16, i.e., the image was
partitioned into 4 quarters, and each non-zero section was recursively partitioned
to quarters until the section size in pixels was less or equal to 16. The formal
compression algorithm for an image I, of size w × h generates a sequence of
elements E forming a tree, and prints its elements in post-order, that is, printing
recursively the subtrees from left to right, followed by their parent node.

Hier-compress(I, w, h)

1 if w · h ≤ T then output I
2 else
3 k ←− w

f(w) ·
h

f(h)

4 partition I into k equal sized sections I1, I2, . . . , Ik
5 define an element E of k bits



190 S.T. Klein, D. Shapira, and G. Shelef

6 for j ←− 1 to k
7 if Ij is completely 0 then
8 E[j] ←− 0
9 else
10 E[j] ←− 1
11 Hier-compress(Ij, f(w), f(h))
12 output E

The left side of Figure 3 is an example image with w = h = 16 and the right
side shows the corresponding tree for f(n) = n/2 and T = 4. Note that the
compressed image could either consist of the sequence of elements of this tree
in pre-order, even though they were produced in post-order by the algorithm,
or one might simply concatenate the elements of the tree layer by layer, top
down, and in each layer, left to right. The size of each element E encoded in
the layers above the lowest one is k = wh/(f(w)f(h)), and the size of the
elements in the lowest level is T , which both are 4 bits in our example. One
could of course get even better compression by applying on these blocks some
entropy coding, like Huffman or arithmetic coding. Even without that additional
step, the compressed size is 4 × 15 = 60 bits, corresponding on this example to
a compression ratio 4.27. The compression ratio is defined as the size of the
original divided by the size of the compressed image.

We shall refer to the method based on Xoring rows and columns followed by
the hierarchical bit compression technique as XH.

3 Compression of Rotated Wafers

As mentioned above, wafer images are not always given in strict Manhattan style,
and many of them are rotated. The following experiment shows the impact of
such rotation on their compressibility. Taking as baseline the compression ratio
obtained on a set of original images (rotation angle 0), the three compression
methods BlockC4, Corner and XH have been applied after rotating the images
by 5, 10, . . . , 45 degrees, and Figure 4 displays the relative compression, that is,
the average compression ratio on the sample set for a given angle, divided by
the corresponding compression ratio for angle 0. As can be seen, most of the
values are in the 40–60% range, for all methods. This is in spite of the fact that
the rotated images contain essentially the same number of 1-bits. One may thus
conclude that compressibility is not only a function of the sparsity of the image,
but that also the strict Manhattan structure, with lines that are parallel to the
edges, has a major impact.

We suggest dealing with the problem of compressing rotated images in a way
that is inspired by the compressed matching problem [1, 2, 6]. Given a pattern
P , a text T and complementing encoding and decoding functions E and D, the
problem is to locate P in the compressed text E(T ). While the obvious solution
would be to decompress and then search, i.e., look for P in D(E(T )), compressed



Lossless Compression of Rotated Maskless Lithography Images 191

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

0111

1010 1000 0010 1000 0010 0100

0101 0001 0001 0001 0010

0010 1010 1001

Fig. 3. Hierarchical compression of sparse binary images

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45

Xor
Corner

BlockC4

Fig. 4. Degradation of the compression ratio as function of rotation angle

matching calls for rather compressing the pattern too, and looking for E(P ) in
E(T ), with the necessary adaptations. Similarly for our problem, we suggest that
instead of investing efforts to compress a rotated — and thus less compressible —
image, we first try to rectify the rotation, producing an alternative by “rotating
back” into a strict Manhattan structure, and only then applying some of the
known compression methods.

More specifically, the suggested algorithm consists of the following steps:

1. Detecting the rotation angle α. The angle is generally constant over the whole
image, and can be detected using image processing tools.



192 S.T. Klein, D. Shapira, and G. Shelef

2. Generating a “straightened” image. Rotating the original by −α, should yield
an image that is very close to being strictly Manhattan. This can then be
compressed using any of the methods for such bitmaps.

3. Rectifying the (small) errors. Ideally, decompressing and rotating by α should
produce an exact copy of the original, but because of the discretization, some
perturbation on the edges seem to be unavoidable.

In order to detect the rotation angle, one may use the Hough transform [5],
which extracts geometric features from an image. We use the simplest form to
extract straight lines and then analyze the results to calculate the rotation angle.
The result of applying the transform on an image is a matrix A in which each cell
represents a different straight line by polar parameters. The polar representation
of a line L consists of the angle θ of the perpendicular to L passing through the
origin, and of r, the length of this perpendicular, as illustrated in Figure 5.

The dimensions of the matrix are thus the number of discrete steps into which
the angle θ and the length r are partitioned, and the value of a cell is the number
of votes that the line represented by that cell, got while applying the transform.
A line gets a vote for every pixel in the original image that is on that line and
is not zeroed. The formal algorithm used on an input image Img is then:

1 For every pixel index x from 0 to the width w of Img
2 For every pixel index y from 0 to the height h of Img
3 if Img[x, y] �= 0
4 For each angle θ from 0 to π in discrete steps
5 r = �x cos θ + y sin θ + 1

2�
6 increment A[r, θ]

After obtaining the result matrix A, we proceed to find the local maxima in
the matrix and those correspond to the lines in the image. There is, of course,
some noise in the result collection of lines that is caused when a large enough
group of non-zero pixels in the image are accidentally on the same straight line.
To filter out this noise, only the k lines that got the most votes are taken. Each
line in this group adds its votes to its angle, θ modulo 180, so parallel lines vote
for the same angle. The angle that gets the most votes from the k top lines is
chosen as the rotation angle. We used k = 10 in our experiments.

The Hough transform may be computationally too expensive to be applied to
the whole image. But since we do not seek the original lines in the image, and
are merely trying to calculate their angle, it is possible to scale down the image
considerably while keeping the general trends, and thus apply the transformation
on a significantly reduced image. This can be done, e.g., by considering a sparse
enough subset of equi-spaced pixels. An alternative is partitioning the image into
small squares of odd side length, which ensures an odd number of pixels in each
square, and replacing each square by a single pixel set by a majority vote of the
pixels in the square.



Lossless Compression of Rotated Maskless Lithography Images 193

�

r

Fig. 5. Polar coordinates for Hough Fig. 6. Rotated pixels

To address the problem of rectifying small perturbations, we suggest to use
an error image, as also done, albeit differently, in BlockC4. After recognizing the
rotation angle, the image is rotated back into Manhattan form, and standard
compression methods designed for such images achieve then a good ratio. To
uncompress, we decode and get the reverse-rotated image back, which can be
rotated by the detected angle to yield an image which is almost identical to the
original one, but has a few errors where interpolation has been utilized. This
can be understood by realizing that each pixel of a rotated image may touch
and thus influence the value of several pixels after the rotation, as shown in the
schematic view of Figure 6. It is unlikely to revert to an image which is an exact
copy, so one has to deal with the errors.

To repair those errors, after reverse rotating the original image, it is imme-
diately rotated back again and Xored with the original image to get the error
image E. By Xoring E with the decoded image, one essentially gets the original.
Since the decoded and original images are almost identical, except for a few in-
terpolation differences, the error image E is almost completely zeroed out. This
fact enables effective compression of E similarly to what has been suggested
above, since this is another instance of the same problem of compressing sparse
bitmaps. The combined algorithm of detecting a rotation angle, rotating back,
compressing the rectified image and adding a compressed error map, will be
referred to below as rotated XH, or RXH for short.

Note that the basic idea of RXH of trying to rotate the image back into strict
Manhattan form, can be applied in combination with the other compression
methods as well, and not just with XH. We have therefore compared our method
also to the corresponding versions of BlockC4 and Corner, which will be referred
to as RBC4 and RCorner, respectively.

4 Experimental Results

Obtaining real world microchip fabrication images is not an easy task. These
images are considered an industrial secret for long periods of time even after the
microchips are produced, marketed and become outdated. The dataset of images
used for this research is a series of 30 binary images that were kindly provided



194 S.T. Klein, D. Shapira, and G. Shelef

by some HighTech company. Each image takes about 150MB of storage space
when uncompressed, and a fragment of one of them is depicted in Figure 1. For
technical reasons, these images were split into fragments of 2048× 10384 pixels
each, and a random subset of 21 of the fragments was chosen for our tests. The
chosen input sample contained images of various densities and layouts, and the
results are brought by way of example only, since it might not be possible to
find a set that can be agreed upon for being representative.

Figure 7 is a comparative chart, showing the compression ratios obtained by
the three methods XH, BlockC4 and Corner. The images are listed by order of in-
creasing compression ratio for XH, which goes up to about 600 (for a nearly fully
blacked out image on which the hierarchical bit vector encoding compresses very
efficiently). As can be seen, for certain images, the Xor based method performs
up to 3 times better than BlockC4, while on others, the latter may be 10 times as
effective as the former. On all the examples, XH performed better than Corner,
which was also inferior to BlockC4 in most, but not all, cases. A closer look at
the images on which BlockC4 performed much better than the competitors (e.g.,
the images indexed 1–4) revealed that they contained many repeated patterns
in the form of circles, which are detected by the Lempel-Ziv copy mechanism,
but deviate from the assumed Manhattan structure.

On the other hand, BlockC4 runs significantly slower when compared to Cor-
ner and our Xor based method. Table 1 shows the average obtained compression
ratios, and the total encoding and decoding times, in seconds, of the three meth-
ods on the sample of 21 images. Note in particular the large encoding time used

Fig. 7. Compression ratios of the three methods on the sample images



Lossless Compression of Rotated Maskless Lithography Images 195

Table 1. Compression ratios and processing speed

XH BlockC4 Corner

compression ratio 161 160 91

encoding time 3.4 211.5 7.7
decoding time 0.7 2.2 1.2

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20  25  30  35  40  45

RXH
RBC4

XH
RCorner

BC4
Corner

Fig. 8. Compression ratios on rotated images as function of rotation angle

by BlockC4, which is due to the search for matching sub-blocks. On all examples,
XH was significantly faster.

To test the effect of RXH, Image12 was chosen as testbed, on which BlockC4
performed somewhat better than XH, and the six methods (XH, BC4, Corner
and their “rotated” counterparts) were applied after having rotated the image
by 5, 10, etc. up to 45 degrees. Specifically, XH, BC4 and Corner refer to the
results obtained by applying the algorithms directly on the rotated image, while
RXH, RBC4 and and RCorner use preprocessing by rotating back and only then
attempting to compress. The results are displayed in Figure 8. As expected,
there is a general loss versus the possible compression before the rotation (with
angle 0). For all the rotated images, RXH gave the best results. Similar results
have been obtained on other test images.

It should be noted that the authors of Corner have published improved algo-
rithms [11, 12], which have not been compared herein, and we shall deal with it
in future work.



196 S.T. Klein, D. Shapira, and G. Shelef

Acknowledgements. We would like to thank Vito Dai for sharing the code of
BlockC4, and Jeehong Yang for the code of Corner.

References

[1] Amir, A., Benson, G.: Efficient two-dimensional compressed matching. In: Proc.
Data Compression Conference DCC 1992, Snowbird, Utah, pp. 279–288 (1992)

[2] Amir, A., Landau, G.M., Sokol, D.: In place 2D matching in compressed images.
J. Algorithms 49(2), 240–261 (2003)

[3] Bookstein, A., Klein, S.T.: Compression of Correlated Bit-Vectors. Information
Systems 16, 387–400 (1991)

[4] Choueka, Y., Fraenkel, A.S., Klein, S.T., Segal, E.: Improved Hierarchical Bit-
Vector Compression in Document Retrieval Systems. In: Proc. 9-th ACM-SIGIR
Conf., Pisa, pp. 88–97 (1986)

[5] Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and
Curves in Pictures. Comm. of the ACM 15, 11–15 (1972)

[6] Klein, S.T., Shapira, D.: Compressed Pattern Matching in JPEG Images. Intern.
J. of the Foundations of Computer Science 17(6), 1297–1306 (2006)

[7] Liu, H.I., Dai, V., Zakhor, A., Nikolic, B.: Reduced complexity compression algo-
rithms for direct-write maskless lithography systems. In: Proc. of the SPIE, San
Jose, California, vol. 6151, p. 61512B (2006)

[8] Paraskevopoulos, A., Voss, S.H., Talmi, M., Walf, G.: Scalable (24–140 Gbs) opti-
cal data link, well adapted for future maskless lithography applications. In: Proc.
of SPIE Advanced Lithography, vol. 7271, p. 7271–53 (2009)

[9] Petric, P., Bevis, C., Brodie, A., Carroll, A., Cheung, A., Grella, L., McCord,
M., Percy, H., Standiford, K., Zywno, M.: Reflective electron-beam lithography
(REBL), Alternative Lithographic Technologies. In: Proc. of SPIE Advanced
Lithography, vol. 7271, pp. 7271–7 (2009)

[10] Yang, J., Savari, S.A.: A Lossless Circuit Layout Image Compression Algorithm
for Maskless Lithography Systems. In: Data Compression Conference, DCC 2010,
pp. 109–118 (2010)

[11] Yang, J., Savari, S.A.: Lossless circuit layout image compression algorithm for
maskless direct write lithography systems. J. of Micro/Nanolithography, MEMS,
and MOEMS 10(4), 043007-1–043007-13 (2011)

[12] Yang, J., Savari, S.A.: Improvements on Corner2, a lossless layout image com-
pression algorithm for maskless lithography systems. Proc. of SPIE Advanced
Lithography 8352, 83520K1–9 (2012)



Learning URL Normalization Rules Using Multiple
Alignment of Sequences

Kaio Wagner Lima Rodrigues, Marco Cristo, Edleno Silva de Moura,
and Altigran Soares da Silva

Universidade Federal do Amazonas,
Department of Computer Science, Manaus, Brazil

Abstract. In this work, we present DUSTER, a new approach to detect and elim-
inate redundant content when crawling the web. DUSTER takes advantage of a
multi-sequence alignment strategy to learn rewriting rules able to transform URLs
to other likely to have similar content, when it is the case. We show the alignment
strategy that can lead to a reduction in the number of duplicate URLs 54% larger
than the one achieved by our best baseline.

1 Introduction

A well-know problem faced by web crawlers is the existence of large fraction of dis-
tinct URLs that correspond to pages with duplicate or near-duplicate contents. In fact,
as estimated in [7], about 29% of web pages are duplicates. Such URLs, commonly
named as DUST (Different URLs with Similar Text), represent an important problem
to search engines. Crawling DUST leads to several drawbacks: waste of resources, such
as bandwidth and disk storage; disturbance in results of link analysis algorithms; and
poor user experience due to duplicate results.

To overcome such a problem, several authors have proposed methods for detecting
and removing DUST in the past years. Whereas first efforts were focused on comparing
document content, more recent strategies inspect only the URL string without fetching
the corresponding document content to detect DUST [1, 2, 5, 9, 10]. As pointed in these
works, most of the examples of duplicate URLs can be seen as transformations on the
URL string resulting from server software. In general, a training set is provided which
contains clusters of URLs (dup-clusters), such that all the URLs of a cluster correspond
to pages with equal or similar contents. From these dup-clusters, it is possible to mine
rewrite rules that transform all URLs to a same canonical form. These rewrite rules can
be then applied to eliminate duplicates among URLs that are encountered for the first
time during the crawling.

A challenging aspect of this strategy is to derive a small set of general and precise
rewriting rules. In order to derive rules, we here present DUSTER, a new approach
which takes advantage of a multi-sequence alignment strategy to significantly improve
the quality and coverage of rewriting rules. Multiple sequence alignment is largely used
in Molecular Biology as an analyzing tool since it is easier to found patterns in aligned
sequences [3, 8]. In this work, we show that a full multi-sequence alignment of all
DUST, before rule extraction, can obtain very effective rewriting rules. By evaluating
our method in a reference collection, we observed a reduction in the number of duplicate
URLs 54% larger than the one achieved by our best baseline.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 197–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


198 K.W. Lima Rodrigues et al.

2 Related Work

Current research on DUST detection can be classified into content-based and URL-
based. In content-based DUST detection, the similarity of two URLs is determined by
comparing content signatures of the pages the URLs refer to [10, 11]. To avoid such an
expensive inspection of page contents, several URL-based methods have been proposed.

The first URL-based method proposed was DustBuster [2]. In that work, the authors
addressed the DUST detection problem as the problem of finding rewrite rules able to
transform a given URL to other likely to have similar content. Dasgupta et. al. presented
a new formalization of URL rewrite rules [5] to capture many common duplicated URL
transformations ignored by DustBuster. The authors also used some heuristics to gener-
alize the generated rules. In particular, they attempt to infer the false-positive rate of the
rules to select the most precise ones. They also verify if the set of values that a certain
URL component assumes is greater than a threshold value N, a heuristic which they call
fanout-N. Their best results were obtained with N = 10. In this work, we refer to this
method as Rfunout−10. By applying the set of rules found by Rfunout−10 to a number of
large scale experiments on real data, the authors were able to reduce the number of du-
plicate URLs by 60%, whereas DustBuster achieved about 22%. We adopt this method
as our first baseline because it has been compared to all other methods proposed after
it. The authors in [1] extended the work in [5] to make it feasible their use at web scale.
To overcome the quadratic complexity of the rule extraction, they proposed a method
for deriving rules from samples of URLs. In a following paper [9], they implemented
their algorithm using a distributed framework and extended the URL and rule represen-
tations to include additional patterns. They evaluated the method with 3 billion URLs
showing its scalability. By comparing their method with Rfunout−10, they achieved two
times more reduction using 56% of the rules.

The previous methods used a bottom-up approach in which rewrite rules are learned
by inducing local duplicate pairs to more general forms. Authors in [10] argue that
such an approach is very sensitive to noise. Thus, they proposed a top-down approach
in which a URL pattern tree (UPT) is built from clusters of duplicated URLs for a
targeted website. They evaluated their approach in a collection with 70 million URLs
and showed that their method was able to outperform Rfunout−10 achieving about twice
the reduction using 46% of the rules and consuming half of the learning time. As far
as we know, this is the best method in literature, which led us to adopt it as our second
baseline. In this work, we refer to it as Rtree.

As Rfunout−10 [5], we use a bottom-up approach. Differently from other bottom-
up methods, we do not derive candidate rules from URLs pairs. We perform a full
alignment of all URLs within the dup-cluster before the rule generation. We do not
address large dup-clusters since they are very rare. For such a cases, we can use efficient
heuristics based on the ones proposed in [9].

3 Sequence Alignment

A sequence alignment can be seen as a way of arranging n sequences in order to identify
similar regions between them. Given the sequences X and Y with m and n characters
respectively, the alignment process can be described by using a matrix S of size (m+
1)× (n+ 1), so that S cells are filled as follows:



Learning URL Normalization Rules Using Multiple Alignment of Sequences 199

Si, j =

⎧⎪⎪⎨⎪⎪⎩
0 i f i=0 or j=0

max

(
Si−1, j−1 + s f (Xi,Yj),

Si−1, j,
Si, j−1

)
otherwise

⎫⎪⎪⎬⎪⎪⎭ (1)

where s f (Xi,Yj) is a scoring function that defines a similarity between the pairs of
symbols (Xi,Yj). This function gives points for matching tokens and penalties for any
gap.

Given k > 2 sequences S = {S1,S2, ...,Sk}, a Multiple Sequence Alignment of S
can be considered a natural generalization of the pairwise alignment problem.

Definition 1. (Multiple Sequence Alignment) Let {S1,S2, S3, ...,Sk} be sequences of
characters, and let |Si| represent the size of Si. The Multiple Sequence Alignment among
S1 to Sk is a mapping of {S1,S2, ...,Sk} to other sequences {S′1,S′2, ...,S′k} such that S′i
has the same characters of Si in the same order with possibly the adition of spaces (also
known as gaps) and |S′1|= |S′2|= ...= |S′k|.

As the Multiple Sequence Alignment problem is known to be NP-hard, we use a
heuristic solution known as Progressive Alignment [6]. In general terms, the method
first performs the alignment between two previously selected sequences. Then a new
sequence is chosen and aligned with the first alignment obtained or other pair of se-
quences is selected and aligned. This process repeats until all sequences have been
aligned, giving rise to the final multiple alignment.

4 Duster

In this section, we present DUSTER, our method to generate rewrite rules from dup-
clusters provide as input. The method (1) obtains a consensus sequence (or CS, for
short) for each dup-cluster in training set; (2) merges similar consensus sequences and
extract rules from them; (3) generalizes rules; and (4) removes redundant rules. In the
following, each of these steps is described in turn.

4.1 Finding CSs

We perform this task by aligning the URLs in each cluster and then generating the CS
as a result of this alignment. Following, we first show how we align two URLs and then
continue showing how to generate a CS involving all URLs within a dup-cluster.

Pair-wise URL Alignment. The output of our alignment process is a sequence of
sets which we refer to as CS. Unlike previous work that treated URLs as strings gen-
erated according to W3C grammar1, we adopt a simpler representation: each URL to
be aligned is initially decomposed into a sequence of t URL tokens set (referred to
as tokenization), whose types are either alphabetic, digit or punctuation. For example,
URL u = http://www.example.com/01.html is represented by the following
sequence of 14 tokens set:

〈{htt p},{:},{/},{/},{www},{.},{example},{.},{com},{/},{0},{1},{.},{html}〉

Definition 2. (Consensus Sequence) Let {u1,u2, ...,un} be a set of n tokenized and
aligned URLs, such that |u1| = |u2| = ... = |un| = k. Let tui represents the token of
URL u at position i. A CS is a sequence of k token sets 〈T1, ...,Tk〉 such that Ti =∪∀utui.

1 http://www.w3.org/Addressing/URL/5_BNF.html



200 K.W. Lima Rodrigues et al.

CS of n sequences is composed by the union of the tokens in the corresponding
positions of the n aligned sequences. To obtain the CS of two URLs u1 and u2, we first
tokenize them in two sequences X and Y, associated with u1 and u2 respectively, with
m and n tokens. Sequences X and Y are then aligned by inserting gaps, either into or at
the ends of them. To determine where gaps should be inserted, matrix S in Equation 1
has to be calculated. To accomplish this, it is necessary to define a score function s f
to measure the distance between the URL tokens set. The scoring function we adopt
is given by Equation 2, which prioritizes the alignment of tokens located at the same
positions.

s f (Xi,Yj) =

⎧⎪⎨⎪⎩
7 if Xi∩Yj �= /0∧ i= j
5 if Xi∩Yj �= /0∧ i �= j
1 if ∃(xi,y j) ∈ Xi×Yj |τ(xi) = τ(y j)
−1 otherwise

⎫⎪⎬⎪⎭ (2)

where τ : T → {a,d, p} is a function which maps a token to its token type, T is the
token space and {a,d, p} are the token types (a for alphabetic, d for digit, and p for
punctuation).

The basic idea of the scoring function is the following: (i) if token sets (Xi,Yj) contain
at least one token in common2 at the same position, the score should be higher (we
adopted 7 in our experiments); (ii) if token sets (Xi,Yj) contain tokens in common (at
least one) only at different positions, the score should be high, but smaller than in the
first case (we adopted 5 in our experiments); (iii) if the token sets have no tokens in
common but have tokens of same type, the score value is small (we adopted 1 in our
experiments). Finally, (iv) the score value indicates a penalty (we adopted −1 as a
penalty in our experiments) in any other case.

For instance, given URLs u1 = http://www.ex/ and u2 = http://www.un/
home, X and Y are given by: X = 〈{htt p},{:},{/},{/},{www},{.},{ex},{/}〉 and
Y = 〈{htt p},{:},{/},{/},{www},{.},{un},{/},{home}〉. Thus, given Definition 2,
the CS is given by: CS = 〈{htt p},{:},{/},{/},{www},{.},{ex,un},{/},{λ ,home}〉,
where λ indicates a gap. To avoid a cumbersome notation, from now on, we will omit
curly brackets and commas to denote token sets with just one token. Thus, CS will be
written as: CS= 〈htt p : //www.{ex,un}/{λ ,home}〉

Multiple URL Alignment. To solve the problem of align more than two URLs,
we take advantage of the progressive alignment strategy [6]. At each iteration of the
progressive alignment, we align two sequences and obtain a new sequence from this
alignment. For the initial alignment when the input is composed by two URLs, we
proceed as described above. This process is a variation of the technique described in [6]
and is described in Algorithm 1.

The goal of URL normalization is to distinguish the URL tokens that impact on
page content from the ones that do not or are irrelevant. In this way, given a CS =
〈T1,T2, ...,Tk〉, inferred from a set of URLs U, token set Ti is classified as follows:

(a) Irrelevant: Ti is irrelevant if λ ∈ Ti, that is, some token of Ti was aligned with
a gap during the multiple alignment process. Theses tokens are considered irrelevant,
i.e., the page content is the same independently of their presence in the URL.

(b) Invariant: Ti is invariant if |Ti−{λ}|= 1 (inside U) and it is present in all URLs
of U. Such invariant tokens in a CP can be considered as identifiers of the replicated
page, e.g., the token disclaimer from the urls *disclaimer.html;

2 The comparison here is case-insensitive.



Learning URL Normalization Rules Using Multiple Alignment of Sequences 201

Algorithm 1. GenerateConsensSequence
Input: C: list of n URLs {u1 , ...,un} in a dup-cluster
Output: Consensus Pattern p ofC
1: for i← 0 to n do {Distance matrix S is created}
2: for j← i+1 to n do
3: add PairwiseSeqAlignment(ui , uj) to S
4: end for
5: end for
6: while size(C)> 1 do
7: Let Si, j be the highest score in matrix S
8: p ← InferConsensusPattern(ui , uj) {pair is aligned

and a CP p is inferred}
9: add p to C
10: remove ui and uj from C
11: eliminate alignments for ui and uj from S
12: ∀u j∈C|u j �=p (add PairwiseSeqAlignment(p, uj) to S)

{Distance between this new sequence and all the re-
maining ones}

13: end while
14: return p

Algorithm 2. HAC
Input: C : list of n CSs with same signature
Output: R: set of rules to be extracted from C
1: if |C |> 1 then
2: ∀i, jDi, j ← d(Ci,C j)

3: while D �= /0 do
4: (a,b)← argmax

i, j
Di, j

5: if merge Ca and Cb is safe then
6: Cm ← MergePatterns(Ca, Cb)
7: eliminate Ca and Cb from C
8: eliminate row a and column b from D
9: add Cm to C
10: ∀ jDm, j ← d(Cm,C j)

11: else
12: eliminate Da,b from D
13: end if
14: end while
15: end if
16: R ←∪∀c∈C Rule(c)
17: return R

(c) Converted: Ti is converted if |Ti−{λ}|= 1 (inside U) just after their tokens being
converted to lowercase. Depending of how a web server manages names of directories
and files, we can find tokens in URLs as disclaimer, DISCLAIMER or Disclaimer;

(d) Variant: Ti is variant if |Ti−{λ}|> 1 even after their tokens being converted to
lowercase. Differently from irrelevant tokens, we can not remove them from the URLs,
being necessary to choose one of them. However, the content of the page will not change
depending on the chosen alternative. As examples of theses tokens, we cite tokens de-
noting directories where files were copied redundantly, multiple domain names from
the same website or session id lists used to identify users;

4.2 Phase 2: Generating Rules

After inferring a CS for each dup-cluster, our method generates the rewrite rules to
be used to normalize URLs. Here, we precisely define rewrite rules and show how to
generate them from a set of similar CSs.

Rewrite Rules. A rewrite rule is a description of the conditions and operations
necessary to translate a URL into a canonical form. More formally, a rewrite rule is
a pair r = (c, t), where c and t are regular expressions (regexes) named context and
transformation, respectively. The context c of a rule is a regex that represents the set
of URLs to which the rule can be applied. The transformation t is a regex applied to
transform a URL into a general, or canonical, form.

As an example, consider a the rewrite rule r= (c, t), where c = ˆhttp://www(1|
2|3)?.([A-Za-z]+).edu/(a|b)/([A-Za-z]+) is the context regex and t =
http://www(1|2|3)?.\%2.edu/(a|b)/\$4 is the transformation regex.Thus,
URL u = http://www1.EX.edu/a/dwill match context c. Note that %2 will store
the string matched in the second group after converted to lowecase and $4 will store the
string matched in the fourth group. After applying transformation t, u is transformed in
http://www(1|2|3)?.ex.edu/(a|b)/d.

Rule Generation. Before generate rewrite rules, we first need to merge similar CSs.
To accomplish this, we apply a strategy based on a Hierarchical Agglomerative Clus-
tering (HAC) technique. The application of a HAC process over the n patterns inferred



202 K.W. Lima Rodrigues et al.

in the previous phase can be prohibitive at web scale. To cope with this problem, the
method generates a mask (signature) to represent each CS and then creates lists of CS
with the same masks. After that, the HAC process is applied in each list to derive rules.
These rules are then added to the final pool of rules. Function Signature that generates
such masks is explained as follows: Given the consensus sequenceCS =〈T1,T2, ...,Tk〉,
the signature of CS is the string s1s2...sk, where si is given by Equation 3.

si =

{
t if |Ti|= 1∧ τ(t) = p

τ(t) otherwise

}
(3)

where t ∈ Ti. For instance, given the CP P= 〈htt p : //www.example.com.br/{a,b,c}/A−210.html〉, the
signature of P is given by a://a.a.a.a/a/a-ddd.a.

The HAC algorithm adopts a bottom-up strategy in which CSs are gradually unified
until all the similar patterns have been merged. A stopping criterion is used to avoid
merging CSs from different contexts. Algorithm 2 describes such processes in details.

We start by evaluating all pairwise distances between the CSs, building distance ma-
trix D (Line 2). The metric we use to evaluate the distances between CSs is d(Ca,Cb) =

∑k
i=1

|Xi∩Yi|
min(Xi,Yi)

, where Xi and Yi represent the ith token sets from consensus sequences
Ca and Cb respectively. During the execution of HAC, similar CSs should be merged.
The basic idea behind this process is simple. Given two patterns Ca = 〈X1, ...,Xk〉
and Cb = 〈Y1, ...,Yk〉, their merge corresponds to the union of their token sets, that is,
Ca ∪Cb = 〈X1 ∪Y1, ...,Xk ∪Yk〉. However, for this merging be considered safe, and to
avoid merging CSs that do not capture the same structured transformations3, the union
involving a variant token set is allowed only if one of the sets is a subset of the another.
For example, if {m,n,o} is a variant token set and {n} is an invariant one, their merge
is safe since {n} ⊆ {m,n,o}.

Note that, after the merging of two CSs Ca = 〈X1, ...,Xk〉 and Cb = 〈Y1, ...,Yk〉, the
classification of any token set Zi in the resulting consensus pattern Cm = 〈Z1, ...,Zk〉 is
defined by the first of the following conditions to hold: (i) the same of Xi and Yi if they
share the same classification; (ii) optional if Xi or Yi is optional; (iii) obligatory if Xi or
Yi is obligatory; (iv) converted if Xi or Yi is converted.

Conversion of CSs to Rewrite Rules. CSs can be straightforwardly converted to
rewrite rules. To this, each token set Ti in the consensus sequence CS has to be con-
verted, as described as follows: (a) If Ti is invariant and |Ti| = 1, the token t ∈ Ti is
added to the rule context and transformation. If |Ti|> 1 (that is, P was derived from the
union of CSs), all tokens from Ti are grouped between parentheses, separated by | in the
rule context. In rule transformation, a backreference $N is included in order to allow the
reuse of the corresponding URL to be matched; (b) If Ti is irrelevant, all tokens from Ti
are grouped between parentheses, separated by |, with a question mark ? placed after
the closing bracket. The regular expression is included in both rule context and trans-
formation; (c) If Ti is converted and |Ti| > 1, all tokens from Ti are grouped between
parentheses, separated by | in the rule context. In rule transformation, a backreference
%N is included in order to allow the reuse of the corresponding URL to be matched,
converted to lowercase. (d) If Ti is variant, all tokens from Ti are grouped inside paren-
theses separated by | in the rule context and transformation. (e) Finally, anchors are
included in the final expression.

For example, given theCP= 〈htt p : //www{1,2,3,λ}.{ex,EX}.edu/{a,b}/{c,d}〉
the corresponding rule is r = (c, t), where c = ˆhttp://www(1|2|3)?.(ex|EX)

3 Transformations normally resulting from some underlying process being carried out by for
instance a web server or a web designer.



Learning URL Normalization Rules Using Multiple Alignment of Sequences 203

.edu/(a|b)/(c|d)$ is the context and t = http://www(1|2|3)?.%2.edu/
(a|b)/$4 is the transformation pattern.

Generalizing Rules. To generalize rule r, we proceed as follows. We first find a
group of alternative tokens with more than a certain number of tokens (threshold value)
and generalize such list converting it to a regular expression according to the type of
its tokens: (a) Alphabetic: if the token group has at least one token with more than
one letter, it is substituted by the regular expression ([a− zA− Z]+). Otherwise, it is
substituted by the regular expression ([a− zA−Z]); (b) Digit: the group is substituted
by ([0− 9]); (c) Punctuation: no normalization is done.

Different threshold values are used according to the classification of the group of
tokens. We use a larger value for variant and irrelevant tokens (we adopted 2 in our
experiments) than for invariant and converted tokens (we adopted 5 in our experiments).

Refining Rules. As a final step of our method, we refine our rule set by eliminating
redundant and very specific rules. To detect such cases, we divide the example dataset
into training and validation sets. We infer the rules from the training set and apply the
inferred rules to the validation set. Whenever a rule α affects a subset of another more
general rule in the validation set, we eliminate α from our set of rules. Finally, we also
remove specific rules, which are detected by removing rules which affect no URL at the
validation set.

5 Experimental Evaluation

Experimental Setup. The list of duplicate URLs we use in this work was derived
from the GOV2 TREC Dataset [4]. This dataset consists of about 25 million pages
from the US government domains. This dataset contains about 3.42 million duplicate
URLs divided into about 1.43 million dup-clusters. To evaluate the effectiveness of our
method and the baselines, we adopted the same metrics used in [9]:

Precision: let f be the number of URLs for which the application of a rule has
failed, that is, two URLs from different clusters are converted to the same canonical
form. Now, let rcov be the number of URLs that match the context of some rule. Given
f and rcov, precision is defined as 1− ( f/rcov);
Compression: this metric measures the reduction ratio of the number of URLs to be

really crawled, after the removal of duplicates. It is defined as
|Uorig|−|Unorm|

|Uorig| , whereUorig

is the original URL set and Unorm is the normalized URL set;
In all the experiments, we calculated these metrics as the average obtained for ten

sub-sets of URLs according to a 10-fold cross-validation strategy [12], as follows. We
randomly divide the duplicate clusters of GOV2 into ten approximately equal-size sets.
From each of these ten subsets, 50% of the URLs were retained as training set, 40% as
validation set, and the remaining 10%, as test set. We then performed 10 runs, rounding
the sets such that a same URL was never used as test example in different runs. We used
the training set to generate the rules, the validation set to refine them, and the test set
to evaluate them. We adopted this strategy for our method and the baselines. The first
baseline is the work by Dasgupta et al [5], which we implemented using the fanout-
10 heuristic. Second baseline is the method proposed in [10], which we here refer to
as Rtree.

Results. The elimination of redundant rules resulted in a reduction from about 11%
to about 15% in the total number of rules when varying the estimated precision from
100% to 80%. Such result shows the importance of performing the filtering of redundant
rules, thus avoiding the generation of a large number of rules which would not be useful
for the DUST detection.



204 K.W. Lima Rodrigues et al.

Table 1 shows a comparison between DUSTER and the baseline methods regarding
the task of DUST detection. This table shows, for each precision level p and method,
the number of rules generated that achieved this precision level (#Rules column), along
with its respective proportion over all valid rules (% of Rules). Column Compression
shows the compression ratio, i.e., the reduction in the amount of URLs crawled, ob-
tained with these rules.

As for precision, the performance of DUSTER was fair superior when compared to
the baselines at all precision levels experimented. We consider the 100% level as the
most important one, since it includes rules that did not fail in any of the test URLs
in the validation set. At this level, DUSTER was able to reduce the amount of URLs
crawled in 26.54%, while the best baseline (Rfanout10) achieved only 17.22%. Further-
more, these rules correspond to about 77% of our valid rules against about 55% of
Rfanout10. This means that, besides achieving a higher compression rate, the rules gen-
erated by DUSTER are more accurate than the ones generated by Rfanout10. The neces-
sity of splitting the URLs according to each target site can partially explain the poor
performance of Rtree. This prevents the generation of rules involving multiple domains.
Unlike Rtree, our method and Rfanout10 are able to generate such rules.

These results indicate that DUSTER is a quite effective and viable alternative for
solving the DUST detection problem. When considering other precision levels experi-
mented, again DUSTER was able to outperform the baselines. The gains in compression
ratio of DUSTER over the best baseline, Rfanout10, were about 54% for 100%-precise
rules, about 59% for over-95%-precise rules, and about 75% for rules with precision
between 80% and 95%.

Table 1. Compression obtained at each precision level by R fanout−10, Rtree and DUSTER

Precision Rtree R f anout−10 DUSTER
Level #Rules % of Rules Compression #Rules % of Rules Compression #Rules % of Rules Compression
1.0 1531.7 5.79 6.83 14601.9 55.21 17.22 20034.1 76.74 26.54

>= 0.95 1632.1 5.46 9.45 15912.4 60.16 20.18 20668.1 79.16 32.08
>= 0.90 1677.1 5.61 10.45 16972.2 64.17 21.03 20828.9 79.78 36.88
>= 0.80 1726.3 5.77 10.46 18475 69.85 21.97 21036.9 80.58 38.48

6 Conclusions and Future Work

DUSTER generates rewrite rules that are very precise in converting distinct URLs
which refer to a same content to a common canonical form. By analyzing the align-
ments obtained, high-quality rewrite rules can be generated, as demonstrated in our
experiments. DUSTER also shown a clearly superior performance in the coverage of
the rules generated. As future work, we intend to improve the scalability and precision
of our method, as well as to evaluated it using other datasets.

References

1. Agarwal, A., Koppula, H.S., Leela, K.P., Chitrapura, K.P., Garg, S., GM, P.K., Haty, C.,
Roy, A., Sasturkar, A.: Url normalization for de-duplication of web pages. In: CIKM 2009,
pp. 1987–1990. ACM, New York (2009)

2. Bar-Yossef, Z., Keidar, I., Schonfeld, U.: Do not crawl in the dust: Different urls with similar
text. ACM Trans. Web 3(1), 3:1–3:31 (2009)



Learning URL Normalization Rules Using Multiple Alignment of Sequences 205

3. Blackshields, G., Sievers, F., Shi, W., Wilm, A., Higgins, D.G.: Sequence embedding for fast
construction of guide trees for multiple sequence alignment. Algorithms Mol. Biol. 5, 21
(2010)

4. Clarke, C.L.A., Craswell, N., Soboroff, I.: Overview of the trec 2004 terabyte track. In:
Voorhees, E.M., Buckland, L.P. (eds.) TREC, Volume Special Publication 500-261. NIST
(2004)

5. Dasgupta, A., Kumar, R., Sasturkar, A.: De-duping urls via rewrite rules. In: KDD 2008,
pp. 186–194. ACM, New York (2008)

6. Feng, D.F., Doolittle, R.F.: Progressive sequence alignment as a prerequisite to correct phy-
logenetic trees. Journal of molecular evolution 25(4), 351–360 (1987)

7. Fetterly, D., Manasse, M., Najork, M.: On the evolution of clusters of near-duplicate web
pages. In: LA-WEB 2003, pp. 37–45. IEEE Computer Society, Washington, DC (2003)

8. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: a novel method for rapid multi-
ple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14),
3059–3066 (2002)

9. Koppula, H.S., Leela, K.P., Agarwal, A., Chitrapura, K.P., Garg, S., Sasturkar, A.: Learning
url patterns for webpage de-duplication. In: WSDM 2010, pp. 381–390. ACM, New York
(2010)

10. Lei, T., Cai, R., Yang, J.-M., Ke, Y., Fan, X., Zhang, L.: A pattern tree-based approach
to learning url normalization rules. In: WWW 2010, pp. 611–620. ACM Press, New York
(2010)

11. Mao, X., Liu, X., Di, N., Li, X., Yan, H.: SizeSpotSigs: An effective deduplicate algorithm
considering the size of page content. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD
2011, Part I. LNCS, vol. 6634, pp. 537–548. Springer, Heidelberg (2011)

12. Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., New York (1997)



On Two-Dimensional Lyndon Words

Shoshana Marcus1 and Dina Sokol2,�

1 Simons Center for Quantitative Biology,
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724

smarcus@cshl.edu
2 Department of Computer and Information Science,

Brooklyn College of the City University of New York, Brooklyn, NY, 11210
sokol@sci.brooklyn.cuny.edu

Abstract. A Lyndon word is a primitive string which is lexicographically small-
est among cyclic permutations of its characters. Lyndon words are used for con-
structing bases in free algebras, constructing de Bruijn sequences, finding the
lexicographically smallest or largest substring in a string, and succinct suffix-
prefix matching of highly periodic strings. In this paper, we extend the concept
of the Lyndon word to two dimensions. We introduce the 2D Lyndon word and
use it to capture 2D horizontal periodicity of a matrix in which each row is highly
periodic, and to efficiently solve 2D horizontal suffix-prefix matching among a
set of patterns. This yields a succinct and efficient algorithm for 2D dictionary
matching. We present several algorithms that compute the 2D Lyndon word that
represents a matrix. The final algorithm achieves linear time complexity even
when the least common multiple of the periods of the rows is exponential in the
matrix width.

1 Introduction

Two strings are conjugate if they differ only by a cyclic permutation of their charac-
ters. A string is said to be primitive if it cannot be expressed as uk for any integer
k > 1. A Lyndon word is a primitive string which is the smallest of its conjugates for
the alphabetic ordering [13]. For example, abba and aabb are conjugate; aabb is
a Lyndon word, while abba is not. Lyndon words are useful for constructing bases in
free Lie algebras [14], constructing de Bruijn sequences [8], musicology [5], computing
the lexicographically smallest or largest substring in a string [4], computing the shortest
superstring for a set of strings [15], searching for tandem approximate repeats [6], and
succinct suffix-prefix matching of highly periodic strings [16].

A string S is periodic if it can be expressed as uju′ where u′ is a proper prefix of u,
and j ≥ 2. When u is primitive we call it “the period” of S. Depending on the context,
we use the term period to refer to either u or |u|.

Lyndon word naming classifies highly periodic strings by the conjugacy of their pe-
riods and uses the Lyndon word as the class representative. Once Lyndon word naming
has been performed, a string can be represented by the name of its period’s class and its
LWpos, the position at which the Lyndon word first occurs in the string. For example,

� This work was supported in part by PSC-CUNY research award 65112-0043.
O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 206–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


On Two-Dimensional Lyndon Words 207

Table 1. A summary of the algorithms presented in this paper to compute the 2D Lyndon word
that represents an m×m matrix

Best Time Complexity Worst Time Complexity Described In
Naive Algorithm O(m·LCMm) O(m·LCMm) Section 3
Algorithm 1 O(m log2 m+LCMm) O(m log2 m+ (LCMm +m) m

logm
) Section 3

Algorithm 2 O(m log2 m) O(m log2 m+ m2

logm
) Section 4

the strings T1 = abbaabbaabbaabbaab and T2 = aabbaabbaabbaabbaa are in
the same class and the class representative is aabb. LWpos of T1 is 3 while LWpos of
T2 is 0 since it begins with the Lyndon word that represents its period [16].

In this paper, we extend the concept of the Lyndon word to two dimensions. We
first define the 2D Lyndon word. We then introduce a new classification scheme which
captures the horizontal suffix-prefix matches among a set of matrices for matrices whose
rows are highly periodic. We focus on matrices whose rows are highly periodic since a
non-periodic pattern row would allow us to quickly narrow down the possible pattern
occurrences in a text yielding much fewer possibilities of overlap.

We present several algorithms for computing the 2D Lyndon word that represents a
matrix; see Table 1 for a summary of time complexities. The input to these algorithms
is the output of Lyndon word naming1 on the rows, i.e., the period size of each row,
and the offset of the first Lyndon word occurrence in each row. LCMm denotes the
least common multiple of the periods of all rows. Since LCMm may be exponential in
m, the straightforward algorithms take exponential time for certain inputs. Thus, we
use modular arithmetic in Algorithm 2 to develop an extremely efficient algorithm that
does not need to process the actual matrix and is independent of LCMm.

The classification technique that we introduce is a new way of capturing horizon-
tal 2D periodicity. Amir and Benson introduced the concept of 2D periodicity [1, 2]
and it serves as the basis for an efficient 2D pattern matching algorithm [3]. However,
their approach to 2D periodicity is not suitable for multiple pattern matching, which
requires suffix-prefix matching between pairs of different patterns. The all-pairs suffix-
prefix matching problem is the problem of finding, for any pair of strings in a given set,
the longest suffix of one which is a prefix of the other. Lyndon word naming is an effi-
cient tool to identify suffix-prefix matches between highly periodic strings. 2D Lyndon
word naming is equally meaningful for horizontal suffix-prefix matching in matrices,
resulting in efficient dictionary matching. Both one and two dimensional Lyndon word
naming have the additional benefit over other algorithms, e.g. [9, 10, 17], of being on-
line and of using very little working space. While this paper focuses on square matrices
for ease of exposition, the new concepts and techniques apply to rectangles that are of
uniform size in at least one dimension.

The remainder of this paper is organized as follows. We begin by defining the 2D
Lyndon word in Section 2. In Section 3, we present an algorithm that calculates the 2D
Lyndon word directly from the actual matrix. In Section 4, we present a more efficient
algorithm that calculates the 2D Lyndon word using modular arithmetic. In Section 5,
we apply this technique and show how it is useful for several applications.

1 Lyndon word naming of the matrix rows takes linear O(m2) time [16].



208 S. Marcus and D. Sokol

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �

����	




�




�




�

�

�� � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �

����	




�

�




�

�

�

�� � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �

����	










�

�








� � � � � � � � 


Fig. 1. Matrices that are horizontal 2D conjugate, along with each LWpos array. In its first conju-
gate, the matrix is shifted right by one column and in its second conjugate it is shifted left by two
columns. The matrix on the right is a 2D Lyndon word.

2 Main Idea

2.1 Definition of 2D Lyndon Word

We say that a matrix M has a horizontal prefix (resp. suffix) U if U is an initial (resp.
ending) sequence of contiguous columns in M .

Definition 1. Two matrices, M1 and M2, are horizontal 2D conjugate if M1 = UV ,
M2 = V U for some horizontal prefix U and horizontal suffix V ofM1.

In other words, we say that two matrices are horizontal 2D conjugate if they differ
only by a cyclic permutation of entire columns. When it is clear from the context, we
simply use the word conjugate to refer to horizontal 2D conjugate.

Lemma 1. Horizontal 2D conjugacy is an equivalence relation among matrices.

The proof is omitted due to lack of space and will appear in the journal version.
We represent each horizontal 2D conjugate as a sequence c1, c2, . . . , cm. If row i is

non-primitive, i.e. uk, then ci represents the minimum number of characters that need
to be cyclically permuted in the primitive root u to obtain a 1D Lyndon word. If row i is
primitive, ci is the minimum number of characters that need to be cyclically permuted
in row i to obtain a 1D Lyndon word. For example, if row i is the string T = uv, u is
a prefix of T , v is a suffix of T , and vu is a Lyndon word, ci = |u|. We refer to the
sequence of a conjugate as the LWpos array since it is essentially an array of Lyndon
word positions in the matrix.

We order horizontal 2D conjugates by comparing their LWpos arrays. Three matrices
that are horizontal 2D conjugate are depicted in Fig. 1, along with their LWpos arrays.
The order of the matrices in ascending order is: the matrix on the right, the matrix on
the left, and then the matrix in the center.

Definition 2. A matrix M is horizontally primitive, or h-primitive, if it cannot be ex-
pressed as Uk, where U is a horizontal prefix ofM and k is an integer, k > 1.

Definition 3. A 2D Lyndon word is an h-primitive matrix that is the smallest of its
horizontal 2D conjugates for the numerical ordering of LWpos arrays.



On Two-Dimensional Lyndon Words 209

The 2D Lyndon word is defined for all h-primitive matrices. It is a compact repre-
sentation of the Lyndon word that is conjugate to each row, combined with the relative
alignments of the Lyndon words among the matrix rows. In one dimension, Lyndon word
naming provides a classification of highly periodic strings based upon the Lyndon word
of the period of the string, which is by definition primitive. Analogous to this in two di-
mensions, we compute the representative 2D Lyndon word of the 2D horizontal period,
or more specifically, the h-primitive LCM-matrix, as described in the next subsection.

2.2 Classification Scheme

In this section, we present a new classification scheme for matrices whose rows are all
highly periodic (i.e. for a matrix of width m, all rows have period ≤ m/4). In a matrix
whose rows are all highly periodic, the columns may also repeat at regular intervals.
This matrix-wide repetition is at a distance of the lowest common multiple (LCM) of
the periods of the rows, as we prove in Lemma 2. If the columns repeat, we focus on a
submatrix that spans the first LCMm columns of the original matrix. If LCMm spans up
to m/2 columns, then LCMm is in fact a horizontal period of the matrix. If the width
of the matrix is smaller than LCMm, then we can enlarge the matrix to LCMm columns
by extending the period in each row. We refer to the (possibly enlarged) matrix of width
LCMm as the LCM-matrix of the original matrix. Fig. 2 shows a matrix with its LCM-
matrix highlighted. We use a matrix with a small LCMm in the example to illustrate the
definitions, however, all the definitions and algorithms apply to a matrix with a large
LCMm as well.

Note that we cannot simply view the columns as metacharacters, name them, and use
1D Lyndon word naming to classify matrices. This approach2 would work only for ma-
trices whose horizontal 1D pattern of metacharacters is highly periodic. Our techniques
exploit the periodicity of the rows to classify 2D patterns irrespective of whether there
exists a horizontal period.

Lemma 2. In a matrix with m rows, each of which is a periodic string, the columns
repeat every LCMm columns, where LCMm denotes the least common multiple of the
periods of all rows.

Proof. Every row repeats in columns that are multiples of its period. LCMm is a multi-
ple of every row’s period. Since every row repeats at LCMm columns, the entire matrix
repeats at LCMm columns. 
�

It follows from Lemma 2 that each of the LCMm conjugates of an LCM-matrix
has a distinct LWpos array. The key property of an LCM-matrix is that horizontal 2D
conjugacy preserves row periodicity. We prove this in Lemma 3 by showing that a cyclic
permutation of the columns in an LCM-matrix results in a cyclic permutation of each
row’s period.

Lemma 3. Two LCM-matrices that are horizontal 2D conjugate have periods in
corresponding rows that are 1D conjugate.

2 Processing columns even for this type of pattern would have several additional drawbacks,
including working only for matrices that are uniform in both dimensions.



210 S. Marcus and D. Sokol

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �� � � � � � � �

Fig. 2. A matrix with its LCM-matrix highlighted. The periods of the rows are of length 1, 2 and
3. LCMm = 6, yielding an LCM-matrix that is 6 columns wide.

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �

����	




�




�

�

�

�

�� � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �

����	







�

�

�

�




�� � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � �

����	










�

�

�




�� � � � � � � � �

Fig. 3. Matrices whose LCM-matrices are horizontal 2D conjugate, along with each LCM-
matrix’s LWpos array. These matrices are not horizontal 2D conjugate. In each of these matri-
ces, LCMm = 6. The first occurrence of the Lyndon word in each row of the LCM-matrices is
highlighted. The first matrix appears in Fig. 2, where the focus is on its LCM-matrix. In its first
conjugate, the LCM-matrix is shifted left by one column and in its second conjugate it is shifted
left by two columns.

The proof is omitted due to lack of space and will appear in the journal version.
In our new classification scheme, each equivalence class consists of matrices whose

LCM-matrices are horizontal 2D conjugate. We use the 2D Lyndon word in each class
as the class representative, in a similar manner to the 1D equivalence relation that uses
the Lyndon word as the class representative. Three matrices whose LCM-matrices are
horizontal 2D conjugate are shown in Fig. 3, along with their LWpos arrays. To classify
matrix M as belonging to exactly one horizontal 2D conjugacy class, we compute the
conjugate of M ’s LCM-matrix that is a 2D Lyndon word. This classification allows us
to represent a matrix compactly, with a constant number of 1D arrays. At the same time,
this representation allows us to quickly answer horizontal suffix-prefix queries on a set
of classified matrices. In the following two sections, we present several algorithms for
computing the 2D Lyndon word that represents a given matrix.

3 Simple Algorithm for Computing 2D Lyndon Word

In this section we develop an intuitive algorithm that efficiently computes the 2D Lyn-
don word to represent an m × m matrix whose rows are highly periodic. We present
algorithms that are run after Lyndon word naming has been performed on each row of
the matrix. That is, the input to each of these algorithms is an m × m matrix repre-
sented by 3 arrays of size m, the 1D Lyndon word names for each row, the period size



On Two-Dimensional Lyndon Words 211

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Fig. 4. The set of LWpos arrays for the conjugates of an LCM-matrix. Each column in this table
contains the LWpos array of the conjugate that begins with that column. The column that begins
the 2D Lyndon word is highlighted. This LCM-matrix corresponds to the matrix in Fig. 2 and the
leftmost matrix in Fig. 3.

of each row, and an LWpos array. Lyndon word naming of the matrix rows takes linear
O(m2) time [16]. 1D Lyndon word naming was designed for highly periodic strings,
with periods ≤ m/4. As in [16], these ideas can be extended from squares to rectangles
of uniform size in at least one dimension.

We have already seen that each conjugate of an LCM-matrix can be obtained by
a cyclic permutation of columns in the LCM-matrix. As a result, computing the 2D
Lyndon word that represents a matrix is a search for the cyclic permutation of its LCM-
matrix at which the LWpos array is smallest.

We can naively compute the 2D Lyndon word that represents a matrix by computing
the LWpos array for each conjugate of its LCM-matrix and then finding the minimum
sequence. We show in Lemma 4 that the conjugates can be obtained by shifting the ma-
trix rows. Thus, we can generate each conjugate’s LWpos array from the matrix’s LWpos
array combined with the periods of the rows and then select the minimum LWpos array
in this set. Since the LCM-matrix has LCMm conjugates to consider (by Lemma 2), the
naive algorithm runs in time proportional to the size of the LCM-matrix, O(m·LCMm)
time. Fig. 4 shows the set of LWpos arrays for the conjugates of the LCM-matrix de-
picted in Fig. 2. Each column represents the LWpos array of the conjugate that begins
with that column. The columns of this table are compared from top-down and the mini-
mum is selected as the 2D Lyndon word. In this example, the conjugate that begins with
the third column is the 2D Lyndon word that represents the matrix depicted in Fig. 2.

Lemma 4. Two matrices have LCM-matrices that are horizontal 2D conjugate iff the
LWpos entries for each row are shifted by C (mod period[i]), where C is an integer
and period[i] is the period size of row i.

The proof is omitted due to lack of space and will appear in the journal version.
We improve on the naive algorithm and present an O(m+LCMm) time algorithm

for calculating the 2D Lyndon word that represents an m ×m matrix. This procedure
is delineated in Algorithm 1 and described in the following paragraphs.

We can systematically compute the numerically smallest LWpos array among the
conjugates of the LCM-matrix without actually generating the complete LWpos arrays.
The computation is incremental and considers one row at a time. Initially, before we
examine the first row, all columns of the LCM-matrix are potentially the beginning



212 S. Marcus and D. Sokol

of the 2D Lyndon word. As we proceed through the rows, we discard columns that
cannot be the beginning of the 2D Lyndon word. Once a column is discarded, it is never
considered again.

Algorithm 1. Computing a 2D Lyndon Word
Input: LWpos[1...m], period[1...m] for matrix M .
Output: 2D Lyndon word 2D LW [1...m], shift z (i.e. column number in LCM-matrix of M ).

2D LW [1] ← 0
z ← LWpos[1]
{LWpos[1] is first column of shift 0}
{columns z, z + period[1], z + 2 ∗ period[1], . . . can be 2D Lyndon word}
LCM[1] ←period[1]
for i ← 2 to m do

GCD← gcd( LCM[i− 1], period[i])
LCM [i] ← LCM[i− 1]∗period[i]/GCD
if LCM[i− 1] ≡ 0 (mod period[i]) then

{if period of row i is a factor of cumulative LCM}
2D LW [i] ← (LWpos[i]− z) (mod period[i])

else
{LCM[i] > LCM[i− 1]}
firstShift ← (LWpos[i]− z) (mod period[i])
{shift LWpos[i] to column z}
2D LW [i] ← min ((firstShift−x∗LCM[i− 1]) (mod period[i]))
{minimize over x ≥ 0 such that z + x∗LCM[i− 1] ≤ LCM[m]}
z+ = x∗ LCM[i− 1]
{adjust z by x that minimizes shift in previous equation}

end if
end for

In general, we begin by eliminating all but the columns at which the Lyndon word
of the first row begins. Suppose the first LWpos entry is z and the period of the first row
is u. Columns z, z + u, z + 2u, . . . are the only columns at which the 2D Lyndon word
can begin; the other columns are immediately eliminated.

Subsequently, for each row i there are two possibilities. The first possibility is that
the period of row i is a factor of the least common multiple of the periods of the first
i−1 rows, which we denote by LCM[i−1]. In this case, the Lyndon word offset is iden-
tical in all remaining columns. We calculate the LWpos entry without eliminating any
columns. The other possibility is that the period of row i is not a factor of LCM[i − 1],
i.e., LCM[i] is larger than LCM[i − 1]. In this case, we calculate the LWpos value in
each remaining column, select the minimum, and update z to be the first column that
attains this minimum value. Then, columns z, z + u, z + 2u, . . ., where u = LCM [i],
are the only columns at which the 2D Lyndon word can begin, since the columns of
the first i rows in the table of LWpos arrays recur every LCM[i] columns, by Lemma 2.



On Two-Dimensional Lyndon Words 213

This process continues until the last row is reached and only one column remains, since
the columns in an LCM-matrix are distinct.

Lemma 5. Let M be anm×m matrix and let α denote the time complexity of a single
arithmetic operation on LCMm of the matrix and a second operand that is ≤ m. Algo-
rithm 1 computes the 2D Lyndon word that represents M in O(m log2m + (LCMm +
m)α) time and uses O(m logm) bits of working space.

Proof. The greatest common divisor of LCM[i − 1] and period[i] can be computed
in O(log2m) time since the Euclidean algorithm takes O(log2m) time to compute
the greatest common divisor of two integers when the smaller operand is stored in
logm bits [11], after the first modulus step that requires O(α) time. In this case, pe-
riod[i] ≤ m/4 is stored in logm bits and LCM[i − 1] may be larger. Subsequently,
the least common multiple of LCM[i− 1] and period[i] is computed from their greatest
common divisor inO(α) time. Over all rows, the total time spent on LCM computations
is O(m log2m+mα).

The LCM-matrix has LCMm distinct columns, by Lemma 2. Thus, Algorithm 1 be-
gins with a set of LCMm columns at which the 2D Lyndon word can begin. As row i is
examined, the if statement in Algorithm 1 has two possibilities:
(i) Its period is a factor of LCM[i − 1]: computation completes in O(α) time.
(ii) LCM[i] > LCM[i − 1]: we examine the LWpos arrays for the conjugates beginning
in several columns. The values are compared and all but the columns of minimal value
are discarded. Since LCM(x, y) > 2x where x > y, and y is not a factor of x, at
least half the possibilities are discarded, and we can charge the computation of LWpos
values in row i to the discarded columns. Over all rows, at most LCMm columns can be
discarded. The computation of an LWpos value takes O(α) time.

Thus, the overall time complexity, aside from the LCM computation, is O((LCMm+
m)α). In terms of space, the representative 2D Lyndon word is stored in O(m logm)
bits since it is an array of m integers, each of which is between 0 and m/4. Along the
way, the only extra information we store are the column number, z, and LWpos values
for the active column and for the minimum in the preceding columns of the row. 
�

In the best case, LCMm is linear or polynomial in m, thus it can be stored in O(logm)
bits and fits in one word of memory. Then, α = O(1), and the algorithm runs in
O(m log2m+LCMm) time. In the worst case, LCMm can grow exponentially, yet an
upper bound of 3m has been proven for the LCM of the numbers 1 through m [7].
Thus, the least common multiples can always be stored in O(m) bits and α is at most
O(m/ logm). Hence, the worst case running time of Algorithm 1 is O(m log2m +
(LCMm +m) m

logm ).
Since Algorithm 1 requires exponential time with respect to the input size in the

worst case, in the next section we present a different algorithm whose time complexity
is dependent on the number of bits needed to store LCMm, yielding a worst case linear
time algorithm for computing a 2D Lyndon word. We compare the time complexities
of these algorithms in Table 1.



214 S. Marcus and D. Sokol

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

(a)

� � � � � � � � � � � �

(b)

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

(c)

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

(d)

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

(e)

Fig. 5. (a) An LCM-matrix. (b) Its table of LWpos arrays in which each column contains the
LWpos array of the conjugate that begins with that column. (c)-(e) The computation of the 2D
Lyndon word that represents the matrix. The columns that remain after each iteration of the
algorithm are highlighted. (c) After examining the first row, the columns beginning with 0 remain.
(d) After examining the first two rows, the columns beginning with 01 remain. (e) The only
remaining column is the 2D Lyndon word.

4 Computation of 2D Lyndon Word by Modular Arithmetic

In this section we derive a more efficient algorithm to compute the 2D Lyndon word that
represents a matrix. The naive algorithm generates the LWpos array for each conjugate
of the LCM-matrix, as shown in Fig. 5(b), and selects the minimum. Algorithm 1 only
partially computes the LWpos arrays and narrows in on the column at which the 2D
Lyndon word begins, as computation proceeds through the rows of the matrix. This
is depicted in Fig. 5(c),(d), and (e). In this section, we present Algorithm 2, which
uses modular arithmetic to directly compute each LWpos entry of the 2D Lyndon word,
avoiding the comparison of any LWpos entries of the LCM-matrix’s conjugates. We
show a reduction of the computation of a representative 2D Lyndon word to an algebraic
problem that is solved with modular arithmetic.

In Algorithm 1, we obtain the representative 2D Lyndon word by computing LWpos
values for some of the conjugates of the LCM-matrix and then selecting the minimum
value. We transform this to a sequence for each row i, 2 ≤ i ≤ m,

Si = {f − �x (mod p)}p−1
x=0

where � is LCM[i−1], p is period[i], and f is the first column for which we consider an
LWpos entry for row i. The objective of Algorithm 1 is to iteratively find the minimum
value in Si and the value of x at its first occurrence. We use properties of modular
arithmetic to solve this problem.

Definition 4. [12] The modular inverse of an integer � (mod p) is an integer �−1 such
that �(�−1) ≡ 1 (mod p). More simply, we refer to �−1 as an inverse.

The modular inverse of � (mod p) exists iff gcd(�, p) = 1. In other words, �
(mod p) has an inverse when � and p are relatively prime [12].

When � and p are relatively prime, 0 is the minimum value in the sequence and �−1

(mod p) is the first position x for which Si(x) = 1. Multiplying �−1 by the first value
in the sequence, �−1 ∗ f (mod p), locates the first position x such that Si(x) = 0, the
first minimum in the sequence.



On Two-Dimensional Lyndon Words 215

Algorithm 2. Computing a 2D Lyndon Word More Efficiently
Input: LWpos[1...m], period[1...m] for matrix M .
Output: 2D Lyndon word 2D LW [1...m], shift z (i.e. column number in LCM-matrix of M ).

2D LW [1] ← 0
z ← LWpos[1]
LCM[1] ←period[1]
for i ← 2 to m do

GCD← gcd( LCM[i− 1], period[i])
� ← LCM[i− 1]/GCD
p ← period[i]/GCD
�Inv ← inverse of � (mod p)
LCM [i] ← �∗period[i]
firstShift ← (LWpos[i]-z) (mod period[i])
{shift LWpos[i] to z}
divFirstShift ← 
firstShift / GCD�
x ← (�Inv∗ divFirstShift) (mod p)
2D LW [i] ← ( firstShift−x∗LCM[i− 1]) (mod period[i])
z+ = x∗LCM[i− 1]

end for

When � and p are not relatively prime, the minimum value in Si may not be 0. We
can convert Si to a sequence with a minimum of 0 by dividing both � and p by their
greatest common divisor. Then 0 is surely in Si and we can use �−1 to locate its first
occurrence, as before. The process of computing the representative 2D Lyndon word by
modular arithmetic is delineated in Algorithm 2.

We illustrate Algorithm 2 using the example in Fig. 5. In the first row, the location
of the first 0 is LWpos[1], thus, no computation is necessary for S1. S2 = {1 − 2x
(mod 2)} = {3, 1}, which are the highlighted values in the second row of Fig. 5(c).
S2 does not include the values 0 and 2 since period[2] = 4 and LCM[1] = 2 have a
GCD of 2. Thus, we convert S2 to a sequence in which the minimum value is 0 and find
that the minimum occurs in the third column. S3 = {3 − 4x (mod 4)} = {0, 2, 1},
which are the highlighted values in the third row of Fig. 5(d).S3 includes all the original
values since period[3] = 3 and LCM[2] = 4 are relatively prime. Thus, for the third
row, �−1 ∗ f (mod p) = 1 ∗ 3 (mod 3) = 0 so the first 0 occurs in the first remaining
column and the third column is the 2D Lyndon word that represents this matrix.

Lemma 6. Let M be anm×m matrix and let α denote the time complexity of a single
arithmetic operation on LCMm of the matrix and a second operand that is ≤ m. Algo-
rithm 2 computes the 2D Lyndon word that represents M in O(m log2m +mα) time
and uses O(m logm) bits of working space.

The proof is omitted due to lack of space and will appear in the journal version.
The best case is where LCMm is polynomial in m, so α = O(1) and Algorithm 2

runs in sublinear O(m log2m) time. The worst case is where LCMm=O(3m), resulting
in α = O(m/ logm), yielding worst case time complexity of O(m log2m+ m2

logm ).



216 S. Marcus and D. Sokol

5 Applications

2D Periodicity
The classification technique that we introduce in this paper is a new perspective on
horizontal 2D periodicity. When Amir and Benson introduced the concept of 2D peri-
odicity [1, 2], they presented matrix periodicity as self-overlap that covers the center of
the matrix. Our classification scheme is based on horizontal periodicity in a matrix. Just
as Amir and Benson’s 2D periodicity is the basis for an efficient 2D pattern matching
algorithm [3], so is horizontal periodicity. Our new techniques have the benefit of being
compact since we do not need to store a 2D witness table for each pattern. Further-
more, our techniques generalize nicely to multiple patterns, as we show in the next two
sections.

Suffix-Prefix Matching
The 2D Lyndon word naming technique contributes the first efficient tool for horizontal
suffix-prefix matching in a set of matrices whose rows are all highly periodic. Two
m×m matrices whose rows are all periodic,M1 and M2, can have a horizontal suffix-
prefix match of ≥ m/2 columns if the LCM-matrices of M1 and M2 are horizontal 2D
conjugate. When two matrices are in the same class, the difference between the number
of columns that are cyclically permuted in each LCM-matrix determines whether there
is a horizontal suffix-prefix match, and if so, by how many columns. After linear time
preprocessing classifies each matrix in a set, horizontal suffix-prefix queries between
two matrices are answered in constant time. This algorithm is succinct since it uses
only O(km) extra space for input of size O(km2). It is online since matrices can be
classified as they arrive and horizontal suffix-prefix matches can be announced at any
time.

Succinct Dictionary Matching with the 2D Lyndon Word
The dictionary matching problem is to search a text for all occurrences of patterns
in a given set. Our new classification technique improves the succinct 2D dictionary
matching algorithm of [13], which has a strict implicit assumption that the period of
the first row of each pattern matches the horizontal period of the pattern. For succinct
dictionary matching on 2D data whose rows are highly periodic, we need to compare
segments of the larger text to many patterns simultaneously. We can work with 3m/2×
3m/2 blocks of the text to conserve working space. It takes too much time to classify
every m×m submatrix of the text. However, we can partially compute the 2D Lyndon
word that represents each submatrix of the text in linear time even when LCMm is
exponential.

Let r be the minimum value for which LCM[r] > m. We calculate the 2D Lyn-
don word that represents the first r rows of the text block using Algorithm 2 in O(1)
time per row. We compare 2D LW [1...r] of the text block to 2D LW [1...r] of patterns
with the same 1D name simultaneously by traversing a compressed trie. Then we com-
pute the LWpos array in the first two columns of the text block’s LCM-matrix at which
2D LW [1...r] occurs. It suffices to compare these LWpos arrays to the LWpos array at
the first occurrence of 2D LW [1...r] in each of the patterns to determine if a pattern
can occur in a text block since a difference in the LWpos shifts results in patterns that
cannot overlap. This process completes in time proportional to the size of the text block.



On Two-Dimensional Lyndon Words 217

Acknowledgements. The authors would like to thank Binyomin Balsam for his helpful
discussions and his insight into the modular arithmetic solution.

References

[1] Amir, A., Benson, G.: Two-dimensional periodicity and its applications. In: ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 440–452 (1992)

[2] Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. SIAM Journal on
Computing 27(1), 90–106 (1998)

[3] Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two-dimensional
pattern matching. SIAM Journal on Computing 23(2), 313–323 (1994)

[4] Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications.
Mathematical Systems Theory 28(2), 89–108 (1995)

[5] Chemillier, M.: Periodic musical sequences and Lyndon words. Soft Computing 8(9),
611–616 (2004)

[6] Delgrange, O., Rivals, E.: Star: an algorithm to search for tandem approximate repeats.
Bioinformatics 20(16), 2812–2820 (2004)

[7] Farhi, B.: Nontrivial lower bounds for the least common multiple of some finite sequences
of integers. Journal of Number Theory 125(2), 393–411 (2007)

[8] Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences.
Discrete Mathematics 23(3), 207–210 (1978)

[9] Gusfield, D., Landau, G.M., Schieber, B.: An efficient algorithm for the all pairs suffix-
prefix problem. Information Processing Letters 41(4), 181–185 (1992)

[10] Kedem, Z.M., Landau, G.M., Palem, K.V.: Parallel suffix-prefix-matching algorithm and
applications. SIAM Journal on Computing 25(5), 998–1023 (1996)

[11] Knuth, D.E.: The Art of Computer Programming, vol. 2. Addison Wesley (1998)
[12] Koshy, T.: Elementary Number Theory with Applications, 2nd edn. Academic Press (2001)
[13] Lothaire, M.: Applied Combinatorics on Words (Encyclopedia of Mathematics and its Ap-

plications). Cambridge University Press, New York (2005)
[14] Lyndon, R.C.: On burnside’s problem. Transactions of the American Mathematical Soci-

ety 77(2), 212–215 (1954)
[15] Mucha, M.: Lyndon words and short superstrings. In: ACM-SIAM Symposium on Discrete

Algorithms (SODA), pp. 958–972 (2013)
[16] Neuburger, S., Sokol, D.: Succinct 2D dictionary matching. Algorithmica 65(3), 662–684

(2013)
[17] Ohlebusch, E., Gog, S.: Efficient algorithms for the all-pairs suffix-prefix problem and the

all-pairs substring-prefix problem. Information Processing Letters 110(3), 123–128 (2010)



Fully-Online Grammar Compression�

Shirou Maruyama1, Yasuo Tabei2, Hiroshi Sakamoto3, and Kunihiko Sadakane4

1 Preferred Infrastructure, Inc.
maruyama@preferred.jp

2 ERATO Minato Project, JST
yasuo.tabei@gmail.com

3 Kyushu Institute of Technology
hiroshi@donald.ai.kyutech.ac.jp
4 National Institute of Informatics

sada@nii.ac.jp

Abstract. We present a fully-online algorithm for constructing straight-
line programs (SLPs). A naive array representation of an SLP with n
variables on an alphabet of size σ requires 2n lg(n + σ) bits. As al-
ready shown in [Tabei et al., CPM’13], in offline setting, this size can
be reduced to n lg(n+ σ) + 2n + o(n), which is asymptotically equal to
the information-theoretic lower bound. Our algorithm achieves the same
size in online setting, i.e., characters of an input string are given one by
one to update the current SLP. With an auxiliary position array of size
n lg(N/n)+3n+o(n) bits, our representation supports substring extrac-
tions in O((m + h)t) time where N is the length of the input string,
m is the length of a substring extracted, h = O(lgN) is the height of
the SLP, t = O(1) in offline case, and t = O(lg n/ lg lg n) in online case.
The working space is bounded by (1+α)n lg(n+σ)+n(3+ lg(αn)) bits
depending on a constant α ∈ (0, 1], which is a load factor of hash tables.
We compared our algorithm to LZend in experiments using real world
repetitive texts.

1 Introduction

Recently, large-scale and highly repetitive text collections have become ubiqui-
tous. Examples are next-generation sequence data of individual human genomes,
version controlled documents, source codes in repositories. In addition, such text
data is increasingly generated in one after another, i.e., stream data. There is
therefore a strong demand to process such text data in an online fashion.

Grammar compression builds a small context free grammar (CFG) that gen-
erates only an input text, and represents the obtained CFG as compactly as
possible. The method reveals high compressive and processing abilities for highly
repetitive texts in e.g. pattern matching [18,19], edit-distance computation [4],
q-gram mining [2] and mining characteristic substrings [5,10] and so on. Basi-
cally, existing methods first build a complete CFG from an input text, and then

� This work was supported by JSPS KAKENHI(24700140,23680016,23240002).

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 218–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Fully-Online Grammar Compression 219

Table 1. Comparison with known algorithms. Here N is the length of the input string,
σ is the alphabet size, n is the number of generated rules, and α is a parameter between
0 and 1 (the load factor of hash tables). The size of the auxiliary index for efficient
substring decoding is excluded. The expected time complexities are due to the use of
a hash function.

compression time working space (bits) Ref.

O(N/α) expected (3 + α)n lg(n+ σ) [9]
O(N/α) expected ( 11

4
+ α)n lg(n+ σ) [17]

O(N lg n) 2n lg n(1 + o(1)) + 2n lg ρ (ρ ≤ 2
√
n) [16]

O( N lgn
α lg lgn

) expected (1 + α)n lg(n+ σ) + n(3 + lg(αn)) Theorem 1

O(N lg n) 2n lg n(1 + o(1)) + 2n Theorem 2

encode it into a compact representation. A crucial drawback of those methods is
to require a large working space consumed for building a CFG and its encoding.
Even worse, they can not deal with stream data because of their static property.

Maruyama et al. [9] solved the inefficiency problem of large working space
and the static property by introducing an online grammar compression called
online LCA (OLCA). OLCA assumes straight line program (SLP), a canonical
form of CFG, and builds production rules in an SLP by gradually reading an
input text. Although OLCA achieves a good worst-case approximation ratio of
O(lg2N) to the smallest CFG for an input string of length N , it has a serious
issue of large working space and its inability of direct encoding of an SLP into
a succinct representation, resulting in limited scalability. Later, Takabatake et
al. [17] presented an online encoding scheme of an SLP of n variables built from
OLCA into a succinct representation achieving 7

4n lgn + 4n + o(n) bits, which
was still larger than an information-theoretic lower bound of n lgn+n+o(n) bits
recently presented in [16]. Moreover, they did not present a space-efficient reverse
dictionary, a crucial data structure for checking whether or not a production
rule in an SLP already exists in execution, which has been implemented using
a chaining hash table having a load factor α. The space is αn lg n+ α bits for
the hash table and n lgn+ σ bits for the lists, resulting in the total working
space of (114 + α)n lg n+ α bits. Though this scheme is fully-online, its working
space is larger than an information-theoretic lower bound. Since available data
of highly repetitive texts is ever increasing, developing a fully-online grammar
compression for building an SLP using the minimum space remains a challenge.

We present a fully-online grammar compression building an SLP and directly
encoding it into a succinct representation in an online manner. Our online al-
gorithm called fully-online LCA (FOLCA) is a modification of OLCA [9] that
builds a post order SLP (POSLP), a special form of an SLP having post-order
internal nodes in the partial parse tree. A major advantage of a POSLP is en-
abling a direct encoding into a succinct representation, while keeping the ap-
proximation ratio O(lg2N) of OLCA. The memory of our representation is at
most n lgn + 2n + o(n) bits for an SLP, which is asymptotically equal to the
information-theoretic lower bound of n lgn + n + o(n) bits, while supporting
random access in O(lg n) time. To keep working space small, we also present a
novel representation for reverse dictionary by leveraging a nice property of each



220 S. Maruyama et al.

list as a strictly increasing sequence of integers in the hash table. Thus, FOLCA
also computes POSLP in an online manner using small space (see Theorems 1
and 2). Table 1 summarizes results of ours and existing algorithms.

Experiments were performed on extracting substrings from real-word repeti-
tive texts. The performance comparison with LZend [8], a state-of-the-art com-
pression and substring extraction algorithm for repetitive texts, demonstrates
significant reduction of working space to build SLPs and high ability of sub-
string extractions in FOLCA.

2 Preliminaries

2.1 Basic Notations

We assume a finite alphabet Σ for the symbols forming input texts throughout
this paper. Σ has total order relation. The set of all strings over Σ is denoted
by Σ∗, and Σi denotes the set of all strings of length i. The length of w ∈ Σ∗

is denoted by |w|, and the cardinality of a set C is similarly denoted by |C|.
X is a recursively enumerable set of variables with Σ ∩ X = ∅. A sequence of
symbols from Σ ∪X is also called a string, and a pair of symbols from Σ ∪X is
called a digram. Strings x and z are said to be a prefix and suffix of the string
w = xyz, respectively. Also, x, y, z are called substrings of w. The i-th symbol
of w is denoted by w[i] (1 ≤ i ≤ |w|). For integers i, j with 1 ≤ i ≤ j ≤ |w|, the
substring of w from w[i] to w[j] is denoted by w[i, j]. lg n stands for log2 n.

2.2 Grammar-Based Compression

A context-free grammar (CFG) is a quadruple G = (Σ, V,D,Xs) where V is a
finite subset of X , D is a finite subset of V × (V ∪Σ)∗ of production rules, and
the start symbol Xs ∈ V . Variables in V are called nonterminals. Let val(Xi)
represent the string derived from Xi ∈ V , and let |val(Xi)| be the length of
val(Xi). We assume a total order over Σ ∪N . The set of strings in Σ∗ derived
from Xs by G is denoted by L(G). A CFG G is called admissible if exactly one
X → γ ∈ D exists and |L(G)| = 1. An admissible G deriving a text S is called
a grammar compression of S. The size of G is the total length of strings on the
right hand sides of all production rules, and is denoted by |G|. The problem of
grammar compression is formalized as follows:

Definition 1 (Grammar Compression). Given a string w ∈ Σ∗, compute
the smallest and admissible G that derives the only w.

In the following, we assume the case |γ| = 2 for any production rule X → γ. This
assumption is reasonable because any grammar compression with n variables can
be transformed into such restricted CFG with at most 2n variables.

The parse tree of G is represented as a rooted ordered binary tree such that
internal nodes are labeled by variables in V and the yields, i.e., the sequence of
labels of leaves is equal to S. In a parse tree, any internal node Z ∈ V corresponds



Fully-Online Grammar Compression 221

i) POSLP ii) Parse tree of the POSLP. 

iii) POPPT is built by trarversing the 
parse tree in a depth-first manner and 
pruning out all the descendants under 
every node having nonterminal symbols 
appearing no less thatn twice. All the 
descentants under nodes having  
     and      are pruned out.

iv) Succinct representation of
the POPPT. B is a bit string built 
by traversing the POPPT and 
putting bit ‘0’ for a leaf and bit ‘1’ 
for aninternal node. L is a label 
sequence of leaves. P is an array 
containing each start position of a 
substring encoded by a symbol at 
leaf. The last element of P is the 
text length+1. 

  12345678910
B:0010101011
L:abaX1X2
P:123469

Fig. 1. Example of post order SLP (POSLP), parse tree, post order partial parse tree
(POPPT), and succinct representation of POPPT

to the production rule Z → XY , and has a left child labeled X and a right child
labeled Y . Let height(Xi) be the height of the subtree having the root Xi in the
parse tree. We assume a straight line program (SLP) for a CFG as follows.

Definition 2. (Karpinski-Rytter-Shinohara [7]) An SLP is a grammar com-
pression over Σ ∪ V whose production rules are formed by Xk → XiXj, where
Xi, Xj ∈ Σ ∪ V and 1 ≤ i, j < k ≤ |V |+ |Σ|.
Note that although our definition of an SLP is different from the original defi-
nition [7] in that our production rules derive only digrams, they are equivalent.
In this paper we use our definition for notational convenience.

2.3 Phrase/Reverse Dictionaries

For a set P of production rules, a phrase dictionary D is a data structure for
directly accessing the phrase XiXj for any Xk ∈ V if Xk → XiXj ∈ P . A plain
representation of D by an ordinal array requires 2n logn bits of space to store
n production rules. A reverse dictionary D−1 is a data structure for directly
accessing the variable Xk given XiXj for a production rule Xk → XiXj ∈ P .
Thus, D−1(XiXj) returns Xk if Xk → XiXj ∈ P .

2.4 Rank/Select Dictionary

Our method represents an SLP using a rank/select dictionary, a succinct data
structure for a bit string B [6] supporting the following queries: rankc(B, i)
returns the number of occurrences of c ∈ {0, 1} in B[0, i] and selectc(B, i) returns
the position of the i-th occurrence of c ∈ {0, 1} in B. Although naive approaches
require the O(|B|) time to compute a rank, data structures with only the |B|+
o(|B|) bit storage to achieve O(1) time rank and select queries [14] have been
presented. Practical implementations have been also presented [11,13].

3 Post-order SLPs and Succinct Encoding

Our algorithm builds post-order SLP (POPPT) as a special form of an SLP
that generates a post-order partial parse tree. A POSLP is directly encoded into



222 S. Maruyama et al.

its succinct representation, which enables online substring extractions. In this
section, we present the definition of POSLP and its succinct representation.

3.1 Post-order SLPs

Rytter [15] defined a partial parse tree as a binary tree built by traversing a
parse tree in a depth-first manner and pruning out all the descendants under
every node of a nonterminal symbol appearing no less than twice. Maruyama
et al. [9] defined a post-order SLP (POSLP) and a post-order partial parse tree
(POPPT) as follows.

Definition 3 (Post-order SLP (POSLP) and post-order partial parse
tree (POPPT)). A post-order partial parse tree is a partial parse tree whose
internal nodes have post-order variables. A post-order SLP is an SLP whose
partial parse tree is a post-order partial parse tree.

For a POSLP of n variables, the numbers of nodes in the POPPT is 2n + 1,
because the numbers of internal nodes and leaves are n and n+ 1, respectively.
Figure 1-(i)(iii) shows an example of POSLP and POPPT, respectively. In this
example, all the descendants under every node having the second X1 and X2 in
the parse tree (ii) are pruned out. The resulting POPPT (iii) has internal nodes
consisting of post-order variables.

Maruyama et al. [9] proposed OLCA, which outputs the POPPT of a given
string, with a decoding algorithm of the input string from the POPPT.

Lemma 1 ([9]). A POSLP of n variables can be represented in at most n lg(n+
σ) + 2n+ o(n) bits of space. The string represented by the POSLP is decoded in
time proportional to the string length.

However, their encoding algorithm is not fully-online. That is, their algorithm
first constructs the phrase dictionary that occupies 2n lg(n + σ) bits of space,
then converts it into the POSLP. Furthermore, in addition to the space for the
phrase dictionary, their algorithm also uses at least n(1 + α) lg(n + σ) bits of
space for the reverse dictionary where 0 < α < 1 is a fixed parameter called a
load factor of a hash table.

In this paper, we propose fully-online LCA (FOLCA), which improves the
OLCA in the following sense:

– A string is given in an online manner; that is, characters of the string is
given one by one from left to right. At anytime, a POSLP of n variables
representing the current string and its phrase dictionary can be encoded in
at most n lg(n+ σ) + 2n+ o(n) bits of space.

– The reverse dictionary uses less space than that of the OLCA.

– At anytime during compression, we can decode any substring efficiently.

The details are described in the following subsections.



Fully-Online Grammar Compression 223

3.2 Succinct Representation of POSLP and the Phrase Dictionary

A major advantage of POSLP is that we can encode the corresponding POPPT
and the phrase dictionary into a succinct representation consisting of a succinct
tree B and a label sequence L. We build a succinct tree B as a bit string by
traversing POPPT in post-order, and putting ′0′ if a node is a leaf and ′1′

otherwise. The last bit ′1′ in B represents a virtual node. Our succinct tree uses
the following four operations: left child(B, i) returns the left child of a node i;
right child(B, i) returns the right child of a node i; leftmost leaf(B, i) returns
the leftmost leaf of a node i; rightmost leaf(B, i) returns the rightmost leaf of a
node i. They are computed in O(1) time for a static case [14] and O(lg n/ lg lg n)
time for a dynamic case [12] for an n-node tree. Let Ttree(n) denote those time
complexities. The space for our succinct tree is at most 2n+ o(n) bits for both
offline and online cases, because a POPPT of a POSLP of n variables consists
of n internal nodes, n+ 1 leaves and a virtual node.

Label sequence L keeps symbols in leaves of a POPPT. The length of L is
n+1 and the space is (n+1)�lg(n+ σ)� bits. Accessing to L[i] for i ∈ [1, n+1]
is performed by several rank/select operations on B in O(Ttree(n)) time. Given
a variable Xi, the computation of its right-hand side is as follows: We first
compute the positions p = select0(B, i), and then compute the left child ql =
left child(B, p) and the right child qr = right child(B, p). If ql (respectively
qr) is an internal node, i.e., B[ql] = 1 (respectively B[qr] = 1), we compute the
corresponding symbol by rank1(B, ql) (respectively rank1(B, qr)). Otherwise,
we compute L[select0(B, ql)] (respectively L[select0(B, qr)]).

Thus, the following lemma holds.

Lemma 2. A POSLP of n variables and its phrase dictionary can be represented
in at most n lg(n + σ) + 2n + o(n) bits of space while supporting access to the
right-hand side of any rule in O(Ttree(n)) time.

3.3 Smaller Reverse Dictionary

The reverse dictionary of the OLCA is a chaining hash table. Let α be a constant
called a load factor. The hash table has αn entries and each entry stores a list
of integers i representing the left-hand side of a rule Xi → XjXk. For the
rule Xi → XjXk, the hash value is computed from j and k. Then the list
corresponding to the hash value is scanned to search for i. For each value i′ in
the list, we compute the right-hand side using the phrase dictionary, and if it
is XjXk, the value i′ is what we search for. The size of the data structure is
αn lg(n+ σ) bits for the hash table and n lg(n+ σ) bits for the lists. Therefore
the total size is n(1+α) lg(n+σ) bits. The access time is expected O(1/α) time.

We reduce the space for the lists by using gap-encoding. Because we use post-
order for rules, newer rules have larger post-orders. When we insert a new value
i into a list in the hash table, we append it at the end of the list. Then each list
in the hash table consists of a strictly increasing sequence of integers. Instead
of encoding i as it is, we encode the difference between i and the preceding one,
say i′, by the delta code. The difference i − i′ is encoded in 1 + �lg(i − i′)� +



224 S. Maruyama et al.

2�lg�1+ lg(i− i′)�� bits. For all n rules, the space for the lists is upper-bounded
by n(1 + lg(αn) + 2 lg lg(αn)). Note that this is the worst-case bound and does
not depend on the skewness of hash values. In total, the reverse dictionary uses
αn lg(n + σ) + n(1 + lg(αn) + 2 lg lg(αn)) bits. We can rewrite the formula to
αn lg(n + σ) + n(1 + lg(αn)) by multiplying the original α by a constant. The
access time is expected O(1/α) time, the same as OLCA.

By adding the space for the phrase and reverse dictionaries, we obtain the
main result:

Theorem 1. For a string of length N , a POSLP of n variables and its phrase
and reverse dictionaries can be constructed in O( N lgn

α lg lgn ) expected time using

(1 + α)n lg(n+ σ) + n(3 + lg(αn)) bit working space.

Tabei et al. [16] proposed another representation of the phrase and the re-
verse dictionaries based on the wavelet tree. The dictionaries can be stored in
2n lgn(1 + o(1)) bits and a query to either the phrase or the reverse dictionary
is done in worst-case O(lg n) time. Our data structure is also smaller than it,
though our query time is an expected time. Furthermore, by using our POSLP,
we can reduce the working space of Tabei et al. [16]. We use the bit vector B
to encode the tree shape of the grammar in 2n+ o(n) bits. Instead of using the
label sequence L and the hash table for the reverse dictionary, we can use their
data structure for the phrase and the reverse dictionaries using 2n lgn(1+ o(1))
bits. Thus we obtain the following:

Theorem 2. For a string of length N , a POSLP of n variables and its phrase
and reverse dictionaries can be constructed in O(N lg n) time using 2n lgn(1 +
o(1)) + 2n bit working space.

3.4 Substring Extraction

We need to compute the length |val(Xi)| of the string val(Xi) derived from
any Xi efficiently for substring extractions. Here, we use position array P of
length n + 2 to store all |val(Xi)|, defined as follows: P [i] = 1 if i = 1 and
P [i] = Σi−1

k=1|val(Xk)| otherwise. A naive representation of P is a standard array
which requires n�lgN� bits of space for the length N of an input text. A crucial
observation is that P is a monotonic increasing sequence where P [n+2] = N+1.
For such a sequence, we can apply a compressed integer representation [3] whose
bits of space is at most n(�lgN�− �lg n�+2)+ o(n) ≤ n lg N

n +3n+ o(n), while
supporting constant time access to P [i] for any position i.

We compute the length |var(Xi)| of the substring encoded by a variable Xi as
follows: We access the position k = select0(B, i), and then compute its leftmost
and rightmost leaves by l = leftmost leaf(B, k) and r = rightmost leaf(B, k),
respectively. Thus, |var(Xi)| = P [r+1]−P [l]. The computation time is Ttree(n)
and thus the following lemma holds.

Lemma 3. A POSLP of n variables and the length N of an input text is rep-
resented by n lg N

n + 3n+ o(n) bits of space, while |var(Xi)| for any variable Xi

can be computed in O(Ttree(n))-time.



Fully-Online Grammar Compression 225

Theorem 3. The POSLP, which derives w, of n variables and height h, and its
position array can be represented in at most n lgN +n lg(1+ σ

n )+ 5n+ o(n) bits
of space, while enabling extractions of substring w[l, r] in O((r− l+ h)Ttree(n))
time.

Proof. The time complexity is clear, because the access to right-hand side and
the length for any variable are computed in Ttree(n)-time. The required bits
of space consists of at most n lg(n + σ) + 2n + o(n) bits for a POSLP and
n lg N

n +3n+ o(n) for its position array. Thus, the total bits of space is n lg N
n +

n lg(n+ σ) + 5n+ o(n) = n lgN + n lg(1 + σ
n ) + 5n+ o(n).

To extract a substring val(Xi)[l, r], we apply a well-knownmethod for SLPs by
simulating descending in the parse tree having the root Xi [1]. Let Xi → XjXk.
If |val(Xi)| > l, we descend to Xl, otherwise, we descend to Xr and l := l −
|val(Xj)|. This process is recursively repeated until we reach the first character
val(Xi)[l]. Note that the time to access val(Xi)[l] is O(height(Xi)Ttree(n)), if
the right-hand side of any rules and the length of any variables are computed in
Ttree(n) time. To extract the substring val(Xi)[l, r], we first access to position
l, and then extract its right-side characters while backtracking the descending
path. The extraction time for any substring w[l, r] = val(Xi)[l, r] is O((r − l +
h)Ttree(n)), because the length of the descending path in the tree is O(h) from
the root to w[l] and the number of nodes covering w[l, r] is bounded by O(r− l).

In practice, we first find the index i = max{j|P [j] ≤ l, 1 ≤ j ≤ n+ 2} which
is computed by a binary search on P [1, n+ 2] in O(lg n) time. The substring of
val(L[i]) includes a prefix of w[l, r], We then extract only the prefix w[l, p] from
val(L[i]) and decode w[p + 1, r] from the right-side leaves of L[i]. This proce-
dure enables practically fast substring extractions, because the first descending
process from the root Xn is omitted in the most case.

Note the height h can be as large asΩ(n), this would cause inefficient substring
extraction in the worst case. In the next section, we present a direct construction
algorithm of POPPTs that height is bounded by O(lgN).

4 Fully-Online Grammar Compression

Maruyama et al. [9] proposed an online grammar-transform algorithm, called
online LCA (OLCA), which generates SLPs with height h = O(lgN) and num-
ber of variables n = O(n∗ lg2N), where n∗ is the optimal grammar size, N is
the input string length. In this section, we present fully-online LCA (FOLCA)
as a modification of OLCA. In OLCA, a function � : [m]×{Σ∪V }m → {0, 1} is
defined to check whether or not the i-th character u[i] in the string u ∈ {Σ∪V }m
has a landmark 1. We say that the character u[i] has a landmark if �(i, u) = 1.
The appearances of landmark are almost synchronized in long and common
substrings to minimize the number of different variables generated in common
substrings. �(i, u) can be determined by a constant range in one symbol to the

1 Precisely, the function � is a trivial modification to detect special pairs in the original.



226 S. Maruyama et al.

Algorithm 1. FOLCA: Fully-Online LCA. D: phrase dictionary, D−1: reverse
dictionary, qk: queue at level k.

1: D := ∅, D−1 := ∅, initialize queues;
2: while Read a new character c and c is not the end of the file do
3: process symbol(q1, c)
4: end while

Algorithm 2. process symbol(qk, x): a queue qk and a symbol X ∈ Σ ∪ V .

1: qk.enque(X);
2: if qk.size() = 4 then
3: if �(2, qk) = 0 then
4: Y := D−1(qi[3], qi[4]); D := D ∪ {Y → qi[3]qi[4]};
5: process symbol(qk+1, Y );
6: qk.deque(); qk.deque();
7: end if
8: else if qk.size() = 5 then
9: Y := D−1(qk[4], qk[5]); D := D ∪ {Y → qi[4]qi[5]};
10: Z := D−1(qk[3], Y ); D := D ∪ {Z → qi[3]Y };
11: process symbol(qk+1, Z);
12: qk.deque(); qk.deque(); qk.deque();
13: end if

left and two symbols to the right of u[i], and for any adjacent landmark positions
i and j in u, we have 2 ≤ |j− i| ≤ 2 lg |Σ∪V |. However, we omit the detail since
the basic idea is the same as the OLCA (See [9]). For a sufficiently large N , we
assume a sequence of queues q1, . . . , qk such that k ≤ lgN and the length of any
qk (1 ≤ i ≤ k) is fixed by a constant.

For an input string w ∈ Σ∗, when the prefix w[1, N ] has been processed
by OLCA, the next character w[N + 1] is enqueued into q1. In the k-th queue
qk, the enqueued symbols is recursively processed by following operations: (i)
decide a replaced digram XY in qk by computing landmarks. (ii) generate a rule
Z → XY ∈ D for qk[i, i+1] = XY and a new variable Z if Z /∈ V , (iii) dequeue
XY from qk, and (iv) enqueue Z into the upper queue qk+1. The final dictionary
D is returned as an SLP.

We modify OLCA so that D represents a post-order SLP, that is, the algo-
rithm gradually constructs a parse tree represented asD by simulating post-order
traversal. The new algorithm is described in Algorithms 1 and 2. In FOLCA,
each queue q is initialized by two dummy symbol d /∈ {Σ∪V } so that q[1, 2] = dd
and q.size() = 2. The length of each queue is at most five such that q[1, 2] is used
for deciding a new landmark by the function �, and depending on the result, one
of digrams in q[3, 5] is selected and it is replaced by an appropriate variable. In
particular, when q[4, 5] is replaced to a variable X , the resulting digram q[3]X
is immediately replaced to a variable Y . In this case, the variable Y is enqueued
to the upper queue. This process is described in Algorithm 2.



Fully-Online Grammar Compression 227

Theorem 4. Let P be the set of production rules generated by FOLCA, and let
T be the partial parse tree corresponding to P . Then, T is a POPPT.

Proof. Without loss of generality, we can assume T is identical to the parsing
tree itself, that is, T has no variables appearing no less than twice. Let Vk is the
set of variables generated with the queue qk. Then, we show that TX for any
X ∈ Vk is a POPPT by induction on k where TX is the subtree of T whose root
is X . The base step is clear because any X is a leaf. Suppose the hypothesis
on some k ≥ 1 and let qk[3, 5] = ABC for some A,B,C ∈ Vk. For the trigram
ABC, there are two cases for parsing: (1) X → AB ∈ P and X ∈ qk+1, and
(2) X → BC, Y → AX ∈ P and X,Y ∈ qk+1. By the induction hypothesis,
X > A,B holds in Case (1) and similarly, X > B,C and Y > A,X hold in Case
(2), that is, TX and TY are POPPTs. Hence, TX is a POPPT for any X ∈ Vk+1.
This concludes that the whole tree T is a POPPT.

By Theorem 4, Algorithm 1 computes a phrase dictionary equivalent to a
POPPT T deriving S ∈ Σ∗. Given a succinct representation of T , we can update
it for Sa (a ∈ Σ) in O(lg n/ lg lgn) time, using the results in the previous section.
Thus, FOLCA can be regarded as a fully-online algorithm for succinct grammar
compression. We note the theoretical performance of FOLCA is the same as
OLCA, however, we omit the details because it is most of the same.

5 Experiments

We tested our method of substring extractions in comparison with LZend [8].
We used highly repetitive texts Ecoli and kernel downloadable from
http://pizzachili.dcc.uchile.cl/repcorpus/real/ as a test dataset. The
sizes of the Ecoli and kernel texts were 108MB and 247MB, and their alpha-
bet sizes were 15 and 160, respectively. We also used compression/extraction
times and working space as evaluation measures. FOLCA and LZend were im-
plemented using C++, and all experiments were performed on one core of an
aeight core Intel Xeon(R) CPU E5640 (2.67GHz) machine with 100GB memory.

Table 5 and table 5 show compression time and working memory on the Ecoli
and kernel texts, respectively. We chose a load factor from {0.01, 0.05, 0.1, 0.3,
0.5}, and evaluated the space-time trade-off of FOLCA. Although LZend is
known as a state-of-the-art substring extraction method based on LZ77-encoding,
it consumes a large amount of working memory of about 2.5GB and 4.6GB for
constructing the index, respectively. This is because LZend needs suffix array,
inverse suffix array, and FM-index for compression. Such a large working space
prevents practical usage of LZend. The working space of FOLCA were 20-202
times smaller than that of LZend, while FOLCA was 2-5 times faster than LZend.
The most of the space was consumed by the hash table for each load factor. The
space of hash table varied from 23MB to 90MB according to the load factor on
the Ecoli and kernel texts, while there was a large reduction of compression time
from 1, 328 seconds to 408 seconds.

http://pizzachili.dcc.uchile.cl/repcorpus/real/


228 S. Maruyama et al.

Table 2. Experimental results on the Ecoli text. The table details compression time
in seconds and working space of hash table (H), dictionary (D) and position array (P )
in mega bytes. LZend does not have the parameter load factor.

Method FOLCA LZend
load factor time (sec) H (MB) H + D (MB) H + D + P (MB) time (sec) space (MB)

0.01 1, 328 23 45 50
0.05 728 37 59 64
0.1 553 48 70 75 2, 217 2, 410
0.3 416 65 87 92
0.5 408 90 112 117

Table 3. Experimental results on the kernel text

Method FOLCA LZend
load factor time (sec) H (MB) H + D (MB) H + D + P (MB) time (sec) space(MB)

0.01 2, 891 11 21 23
0.05 2, 071 13 23 25
0.1 1, 472 16 26 28 4, 547 4, 653
0.3 951 30 40 42
0.5 882 42 52 54

Table 4. Time for substring extraction on the Ecoli and the
kernel texts

Ecoli kernel
length FOLCA(sec) LZend(sec) FOLCA(sec) LZend(sec)

101 0.00007 0.00002 0.00010 0.00003
102 0.00026 0.00011 0.00029 0.00012
103 0.00224 0.00100 0.00224 0.00098
104 0.02176 0.00954 0.02182 0.00901
105 0.21328 0.09215 0.21622 0.09418

Table 5. Working
memory for sub-
string extraction in
megabyte on the
Ecoli and the kernel
texts

Ecoli kernel
FOLCA 27 12
LZend 23 14

Table 5 and table 5 show time and working space for substring extractions.
FOLCA was about three times slower than LZend, while the working space of
FOLCA was slightly larger than that of LZend. These results were reasonable
when considering the large reduction of construction space of FOLCA.

6 Conclusion

We first proposed a special representation of SLP, called POSLP, which sup-
ports basic functionalities in addition to the space being asymptotically close
to an information-theoretic lower bound. Any grammar-compressed string can
be converted into POSLP for algorithms on SLP-compressed strings because,
once loaded a POSLP on main memory, they can be immediately run without
transforming into plain SLPs. Therefore, our representation would be suitable
for any grammar compression as a standard format.

We improved an online grammar-transform algorithm of Maruyama et al. [9]
into a fully-online version named FOLCA, that can directly construct a POSLP
while keeping the theoretical performance of the original. The FOLCA can ef-
ficiently compress highly-redundant data in the space of compressed string, not
the space of input string. In the real world, representative examples of compress-
ible data consist of genome collection of individual species, versioned documents,



Fully-Online Grammar Compression 229

web texts and so on. Such data would be generated day after day, one right after
the other, and thus our study would be the foundation of storage systems for
highly-redundant data collections in online setting.

References

1. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111, 313–337 (2010)

2. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram mining on slp com-
pressed strings. J. Discrete Algorithms 18, 89–99 (2013)

3. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: SODA, pp. 636–645 (2003)

4. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for
accelerating edit-distance computation via text-compression. In: STACS, pp. 26–28
(2009)

5. Inenaga, S., Bannai, H.: Finding characteristic substrings from compressed texts.
In: PSC, pp. 40–54 (2009)

6. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554 (1989)
7. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm

for strings with short descriptions. Nordic J. Comp. 4(2), 172–186 (1997)
8. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theo-

retical Computer Science 483, 115–133 (2013)
9. Maruyama, S., Sakamoto, H., Takeda, M.: An online algorithm for lightweight

grammar-based compression. Algorithms 5(2), 213–235 (2012)
10. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,

K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)

11. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Proc.
SEA, pp. 295–306 (2012)

12. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
ACM Transactions on Algorithms (2010), Accepted A preliminary version appeared
in SODA 2010

13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Workshop on Algorithm Engineering & Experiments (2007)

14. Raman, R., Rao, S.S., Raman, V.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3 (2007)

15. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)

16. Tabei, Y., Takabatake, Y., Sakamoto, H.: A succinct grammar compression. In:
Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 235–246. Springer,
Heidelberg (2013)

17. Takabatake, Y., Tabei, Y., Sakamoto, H.: Variable-length codes for space-efficient
grammar-based compression. In: SPIRE, pp. 398–410 (2012)

18. Tiskin, A.: Towards approximate matching in compressed strings: Local subse-
quence recognition. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS,
vol. 6651, pp. 401–414. Springer, Heidelberg (2011)

19. Yamamoto, T., Bannai, H., Inenaga, S., Takeda, M.: Faster subsequence and don’t-
care pattern matching on compressed texts. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 309–322. Springer, Heidelberg (2011)



Solving Graph Isomorphism

Using Parameterized Matching

Juan Mendivelso1, Sunghwan Kim2, Sameh Elnikety3, Yuxiong He3,
Seung-won Hwang2, and Yoan Pinzón1

1 Universidad Nacional de Colombia, Colombia
2 POSTECH, Republic of Korea

3 Microsoft Research, Redmond, WA, USA

Abstract. We propose a new approach to solve graph isomorphism us-
ing parameterized matching. To find isomorphism between two graphs,
one graph is linearized, i.e., represented as a graph walk that covers all
nodes and edges such that each element is represented by a parameter.
Next, we match the graph linearization on the second graph, searching
for a bijective function that maps each element of the first graph to an
element of the second graph. We develop an efficient linearization algo-
rithm that generates short linearization with an approximation guaran-
tee, and develop a graph matching algorithm. We evaluate our approach
experimentally on graphs of different types and sizes, and compare to
the performance of VF2, which is a prominent algorithm for graph iso-
morphism. Our empirical measurements show that graph linearization
finds a matching graph faster than VF2 in many cases because of better
pruning of the search space.

1 Introduction and Related Work

Graphs are widely used in many application domains, and graph isomorphism
is a fundamental problem that appears in graph processing techniques of many
applications including pattern analysis, pattern recognition and computer vision
as discussed in a recent survey [8]. Graph isomorphism is a challenging problem:
Given two graphs, we search for a bijective mapping from each element of the
first graph to an element of the second graph such that both data and structural
properties match. Data properties include node and edge attributes and types,
and structural properties maintain the adjacency relations.

A naive solution could search for all possible mappings, facing an exponential
search space. Surprisingly, the exact complexity of graph isomorphism is not
determined yet [9], but likely to be NP-Complete. Notice however, graph sub-
isomorphism, which is a closely related but a different problem, is NP-Complete
[9]. Existing algorithms for graph isomorphism include Nauty Algorithm [19],
Ullmann Algorithm [22] and VF2, a more recent algorithm [9]. All these algo-
rithms have exponential worst case performance (since isomorphism is a hard
problem). Except for some easy cases, solving isomorphism generally takes much
longer time if there is no match, since all possible mappings are progressively

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 230–242, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Solving Graph Isomorphism Using Parameterized Matching 231

searched until shown not to lead to an isomorphism. Several heuristics, how-
ever, are employed to find likely mappings quickly. A good algorithm for graph
isomorphism should find isomorphic graphs quickly in many cases.

In this paper we apply parameterized matching to solve graph isomorphism.
Parameterized matching [4] was introduced to efficiently track down duplicate
code in large software systems. It determines if two strings have the same struc-
ture. Specifically, two equal-length strings parameterized-match if there exists
a bijective function f for which every text symbol in one string is equal to the
image under f of the corresponding symbol in the other string. Brenda Baker [4]
introduced this problem in 1993, and research work [1–3, 5–7, 10, 12–17, 20, 21]
extends parameterized matching. A survey on parameterized matching is pre-
sented in [18].

Our approach to solve graph isomorphism has two main steps, linearization,
and matching. First, in the linearization step, one of the graphs is represented
as a graph walk that visits each node and edge, such that each element is
represented as a parameter. This linear sequence is used in the second step
for matching, which parameterized-matches the graph linearization against the
other graph, to search for mapping.

This approach allows us to incorporate optimizations for both linearization
and parameterized matching steps. Although we focus on presenting and evalu-
ating the fundamental approach, we point out several attractive features of this
approach. For example, this approach supports general graph models, such as at-
tributed multi-graphs (in which nodes and edges may have arbitrary attributes,
and several edges may connect two nodes). The graph statistics, such as node
degree distribution and histograms of attribute values can be easily integrated in
the linearization step to provide better linearization. The matching algorithm is
embarrassingly parallel, enabling efficient implementation on multi-core machine
and distributed frameworks.

We present the algorithms, correctness and complexity analysis of these two
steps and implement them for experimental evaluation using graph of several
types and sizes. We also compare to an optimized implementation of VF2, which
is one of most widely used algorithms for graph isomorphism. Our empirical re-
sults show that in many cases, the graph linearization approach provides shorter
response times, and the improvements increase with the graph size.

Our contributions are the following: (1) We propose a new approach to graph
isomorphism using parameterized matching (Section 3). (2) We develop an effi-
cient linearization algorithm to represent a graph as a parameterized walk, and
we establish a bound on the linearization length (Section 4). (3) We introduce
an algorithm to parameterized-match the linearization on graph (Section 5). (4)
We evaluate our approach experimentally (Section 6).

2 Preliminaries

This section defines the graph isomorphism problem and points out its similarity
to parameterized matching in strings. In this paper, we consider multigraphs.



232 J. Mendivelso et al.

A multigraph G(V,E) is comprised of a set of vertices V , n = |V |, and a set
of undirected edges E ⊆ V × V , m = |E|, where multiple edges between two
distinct vertices and self loops are permitted. We distinguish the edges that have
the same end vertices by the notation of the edge; for example, e = (u, v) and
e′ = (u, v). Let EG = V ∪ E denote the set of graph elements of G, i.e. the set
of vertices and edges in G. Also, let u.degree denote the number of adjacent
edges that vertex u ∈ V has. In this paper, we consider undirected multigraphs;
however our algorithms can be easily extended to support directed multigraphs.
Next we define the Graph Isomorphism problem.

Problem 1 (Graph Isomorphism). Let G1(V1, E1) and G2(V2, E2) be two multi-
graphs such that n = |V1| = |V2| and m = |E1| = |E2|. The graph isomor-
phism problem determines whether there exists a bijective mapping function
f : EG1 → EG2 , such that ∀u,v∈V1 , e = (u, v) ∈ E1 ⇐⇒ f(u), f(v) ∈ V2 ∧ f(e) =
(f(u), f(v)) ∈ E2.

V1 E1 A B C D E e1 e2 e3 e4 e5 e6

X Y Z W Sf1 e1 e2 e3 e4 e5 e6' ' ' ' ' '

U

X Y Z W Sf2 e1 e2 e3 e5 e4 e6' ' ' ' ' '

(c)

e1 e2

e3

e4 e5

e6
A

B C

D

E

V1G1 E1
( , ) V2G2 E2

( , )

(a) (b)

X

Y Z

W

S

e1
e2'
'

e6'

e5'
e4'

e3'

Fig. 1. Isomorphism example: the multigraphs presented in (a) and (b) are isomorphic;
the functions that define the isomorphism are presented in (c). The difference between
f1 and f2 is that f1(e4) = e′4 and f1(e5) = e′5 while f2(e4) = e′5 and f2(e5) = e′4.

For example, the graphs in Figure 1(a,b) are isomorphic; furthermore there are
two possible mapping functions that define the isomorphism (see Figure 1(c)).
Notice that the graph isomorphism determines whether the topological struc-
tures of two multigraphs are the same. It is very similar to what parameterized
matching does with strings: checking whether two strings have the same struc-
ture. Next we define parameterized matching on strings:

Definition 1. Let X = X1...� and Y = Y1...� be two equal-length strings defined
over alphabet Σ. Each symbol in the alphabet is called a parameter. Strings X and
Y are said to parameterized-match iff there exists a bijective function f : Σ → Σ
such that f(Xi) = Yi, for all 1 ≤ i ≤ �.



Solving Graph Isomorphism Using Parameterized Matching 233

For example, let X = abacab and Y = bcbabc be two strings defined over
Σ = {a, b, c}. They parameterized-match as X is equal to Y by means of f :
(a, b, c) → (b, c, a). In Section 3.1, we define parameterized matching for walks
to solve the graph isomorphism problem.

3 Graph Linearization

Our approach for solving graph isomorphism consists of two main steps: (i)
linearizingG1 into a walk p1...�; and (ii) exploring all the walks inG2 to determine
whether there is one that parameterized matches p1...�. In this section, we define
graph linearization and parameterized matching on graph walks (Section 3.1).
Then, we discuss characteristics and algorithms for linearization (Section 3.2).

3.1 Definition of Graph Linearization

Definition 2 (Linearization). Let G(V,E) be a connected undirected multi-
graph. A walk p = p1...� of vertices and edges is a linearization of G iff:

1. pi is a vertex v ∈ V if i is odd, 1 ≤ i ≤ �.
2. pi is an edge e ∈ E if i is even, 1 ≤ i ≤ �, such that e = (pi−1, pi+1).
3. Each vertex v ∈ V and each edge e ∈ E appears at least once in p.

Our motivation for defining graph linearization is to represent the topology of
a multigraph through a walk. Specifically, the linearization p of G is a walk that
represents all its adjacency relation, which we use to solve the graph isomorphism
problem by comparing walks instead of multigraphs. For this purpose, we define
parameterized matching on walks as follows:

Definition 3 (Parameterized Matching on Graph Walks). Let G1(V1, E1)
and G2(V2, E2) be two connected undirected multigraphs. Also, let V ′

1 ⊆ V1 and
E′

1 ⊆ E1 be subsets of vertices and edges in G1; similarly, V ′
2 ⊆ V2 and E′

2 ⊆ E2

are subsets of vertices and edges in G2. Consider the walk p1...k in G1 and the
walk q1...k in G2. The walk p1...k is said to parameterized-match the walk q1...k if
and only if there exists a bijective function f : EG1 → EG2 such that qi = f(pi)
for 1 ≤ i ≤ k.

The core idea of using parameterized matching to solve the graph isomorphism
problem is as follows. Let p be a linearization of G1. Recall that, p represents
the topology of G1. Thus, if a walk q in G2 parameterized-matches p, then p and
q have the same topology. Furthermore, as q represents G2, we conclude that G1

and G2 are isomorphic. This is formally presented in the next theorem:

Theorem 1. Let G1(V1, E1) and G2(V2, E2) be two connected undirected multi-
graphs such that n = |V1| = |V2| and m = |E1| = |E2|. Also, let p1...� be the
linearization of G1. Then, G1 and G2 are isomorphic if and only if there exists
a walk q1...� in G2 such that p1...� parameterized-matches q1...�.



234 J. Mendivelso et al.

3.2 Characteristics and Algorithms for Graph Linearization

There may be many linearizations that represent the same graph. However, a
compact representation is preferable. For solving graph isomorphism, the length
of the linearization is an important measure on the matching time. This is be-
cause a shorter linearization often leads to a smaller cost at the matching stage.
Next, we define length-optimal linearization.

Definition 4 (Length-Optimal Linearization). The linearization p = p1...�
of a connected undirected multigraph is length-optimal if the length of p, i.e. �,
is minimum.

The Graph Linearization problem is very similar to the Chinese Postman
Problem (CPP). CPP finds a walk that visits all the edges (and all the vertices)
in the multigraph at least once; the only difference is that Graph Linearization
does not require the starting vertex to be the same final vertex. In [11], an
O(n3 +m2) algorithm for the CPP was proposed. We can adapt this algorithm
to calculate a length-optimal linearization. However, for large multigraphs, it
is desirable to have algorithms with lower time complexity even if they do not
produce length-optimal linearizations. As an attractive trade-off between length-
optimality and efficiency, we propose a greedy approximation algorithm with an
approximation guarantee.

4 Graph Linearization Algorithm - GLA

This section presents the GLA or Graph Linearization Algorithm. First, we
describe the key ideas of the algorithm in Section 4.1; then we go through the
details in Section 4.2. In Section 4.3 we present an upper bound for the length of
GLA linearizations. Finally, in Section 4.4, we present the complexity analysis.

4.1 Key Ideas

One of the challenges of linearization algorithms is visiting all the edges with
short linearization length. To address the challenge, we develop three heuristics:
(1) the traversal starts from the vertex with the lowest degree; (2) the unexplored
edges that lead to already explored vertices are visited before the ones that
lead to unexplored vertices; and (3) the edges that lead to unexplored vertices
are considered sorted, in ascending order, on the number of unexplored edges
they have. Heuristics (1) and (3) aim to put the vertices that are close to be
covered in the top levels of the DFS tree. Furthermore, heuristic (2) aims to
cover the vertices in the highest levels of the DFS tree at an early stage. The
three heuristics make the traversal explore one region of the multigraph before
visiting another one; then, the produced linearization is shorter.

The proposed linearization approach also allows us to incorporate optimiza-
tions for both linearization and parameterized matching steps. For instance, the
matching time will not only depend on the length of the linearization, but also



Solving Graph Isomorphism Using Parameterized Matching 235

on the order of comparisons. Specifically, the graph statistics of the multigraphs
can be used to produce a linearization that prunes the search space during the
matching phase. For example, if the frequency of some vertices of a certain de-
gree (or a certain attribute in attributed graphs) is low, it would be appropriate
to start the linearization from such vertices. However, for clarity, in this paper,
we focus on the fundamental approach only.

4.2 Algorithm

The pseudocode of the Graph Linearization Algorithm (GLA) is listed in Fig-
ures 2 and 3. The linearization produced by GLA for the graph presented in
Figure 1(a) is Ae1Be3Ce4De5Ce5De2 Be2De6E; its length is 17.

Algorithm 1: GLA Algorithm

Input: G(V,E) Output: p

1. for every e ∈ E do e.Explored ← false
2. for every v ∈ V do
3. v.Explored ← false
4. S ← {(u, v) | v ∈ V ∧ (u, v) ∈ E}
5. v.NumUnexploredEdges ← |S|
6. choose u ∈ VP with min(u.NumUnexploredEdges)
7. p ← 〈〉, unexplGE ← |V |+ |E|
8. TraverseGraph(G,u, p, unexplGE)
9. return p

Fig. 2. GLA Algorithm

4.3 Length of GLA Linearization

Theorem 2 shows that given the multigraph G = (V,E), the length of the walk
generated by GLA is at most 2 times the length of an optimal linearization.
Therefore, the length produced by GLA is asympotically optimal.

Theorem 2. GLA is 2-approximate with respect to the length of the length-
optimal linearization.

This theorem is based on the fact that each edge in the multigraph G appears
at most twice in the linearization p = p1...� generated by GLA. Then, � is
compared to a lower bound that visits each edge only once to show worst-case
approximation ratio. However, even an optimal linearization may not achieve
the lower bound for many graph structures. Thus, for average cases in practice,
GLA linearization is much closer to the optimal.



236 J. Mendivelso et al.

Algorithm 2: TraverseGraph Procedure

Input: G(V,E), u, p, unexplGE

1. p.Add(u), u.Explored ← true, unexplGE- -
2. for every e ∈ E such that e = (u, v) do
3. if !e.Explored ∧ v.Explored then
4. p.Add(e), e.Explored ← true, unexplGE- -, p.Add(v)
5. u.NumUnexplEdges- -, v.NumUnexplEdges- -
6. if unexplGE > 0 do
7. p.Add(e), p.Add(u)
8. while there are unexplored edges e = (u, v)
9. choose e with min(v.NumUnexploredEdges)
10. p.Add(e), e.Explored ← true, unexplGE- -
11. u.NumUnexplEdges- -, v.NumUnexplEdges- -
12. TraverseGraph(G,v, p, unexplGE)
13. if unexplGE = 0 then break
14. p.Add(e), p.Add(u)

Fig. 3. TraverseGraph Procedure

4.4 Complexity Analysis

The complexity of GLA is dominated by the walk traversed (line 8, Figure 2)
which corresponds to the linearization. Notice that p has at most 2m edges
and 2m+ 1 vertices. Each insertion takes constant time as it is always done at
the end of p. But when a vertex is inserted for the first time, it is necessary
to consider the unexplored adjacent edges e that lead to unexplored vertices v
sorted on v.NumUnexplEdges (lines 8 − 9, Figure 3). This sorting operation
takes O(d lg d), where d is the maximum degree of the vertices in G1; specifically
d = maxv∈V1 v.degree. Thus, the time complexity of GLA is O(2m + (2m +
1)(d lg d)) = O(dm lg d).

5 Matching a Linearized Graph

The Parameterized Matching on multi-Graphs (PMG) algorithm uses a lin-
earization of G1(V1, E1), denoted as p = p1...�, and matches it against G2(V2, E2)
to determine whether G1 and G2 are isomorphic by using Theorem 1.

5.1 Key Ideas

PMG considers all the possible injective functions f : EG1 → EG2 to determine
whether there is mapping with two properties: (i) f is bijective; and (ii) there
exists a walk q1...� in G2 for which qi = f(pi) (i.e. q parameterized-matches p).
These possible injective functions are explored by traversing p and G2 simul-
taneously; specifically, a graph element pi is compared to a graph element ge



Solving Graph Isomorphism Using Parameterized Matching 237

in G2 to determine whether an injective mapping is possible. We progressively
extend a successful mapping by considering pi+1 and an adjacent graph element
of ge. The graph elements of G2 are traversed in a depth-first manner while p
is traversed from left to right. Let us consider the DFS tree that represents the
traversal of G2. Then, the idea of this traversal of G2 is considering the possible
injective mappings by attempting to set f(pi) = ge where ge ∈ EG2 is a graph
element at level i of the DFS tree. Notice that the walk from the root to a
leaf in the DFS tree parameterized-matches p1...� under f ; hence G1 and G2 are
isomorphic.

Next, we show our heuristics to prune the search space. At each step of the
process, a vertex u ∈ V2 and a vertex in pi are compared. Let us say that we
set f(pi) = u. In order to extend the match, we use vertex degrees and previous
assignments in f to prune the search space. Specifically, we consider two cases:

Case 1: Vertex pi+2 is unassigned. We consider all the possible assignments
f(pi+1) = e and f(pi+2) = v for edges e = (u, v) ∈ E2 such that: (i) both e and
v are unassigned; and (ii) v.degree = pi+2.degree. Condition (i) is to guarantee
that f is injective; condition (ii) is a pruning criterion based on that fact that, if
G1 and G2 are isomorphic, then analogous vertices must have the same degree.
Notice that if pi+2 is unassigned, pi+1 is unassigned as well; this is because the
assignment of an edge in p is done at the same time (or after) the assignment of
its end vertices. The process continues by considering pi+2 and each v.

Case 2: Vertex pi+2 is assigned to v ∈ V2. There are two sub-cases. (a) Edge
pi+1 is already assigned: it is not necessary to check adjacency as this was done
when the mapping was set. We continue by considering pi+2 and v. (b) Edge pi+1

is unassigned: the algorithm considers all the possible assignments f(pi+1) = e
for the unassigned edges e = (u, v). The process continues at pi+2 and v.

If the algorithm reaches a successful assignment for p�, then the algorithm
reports that the multigraphs are isomorphic.

5.2 Pseudocode

Figure 4 lists the pseudocode of PMG. The mapping function is represented as
the array f . On the other hand, boolean array g indicates if each graph element
in EG2 is already assigned to a graph element in EG1 (through function f). When
we run PMG for G2 and the linearization p = Ae1Be3Ce4De5Ce5De2Be2De6E
of G1, the match is returned when any of the following walks are traversed: q1 =
Xe′1Y e′3Ze′4We′5Ze′5We′2Y e′2We′6S or q2 = Xe′1Y e′3Ze′5We′4Ze′4We′2Y e′2We′6S.
Notice that both q1 and q2 parameterized-match p. The mapping functions of
these matches correspond to the functions f1 and f2 presented in Figure 1(c).

5.3 Complexity Analysis

The time complexity of PMG is given by the number of executions of the re-
cursive procedure ExtendMatch; each execution requires constant time. This
number is equal to the number of vertices and edges in the DFS search trees.



238 J. Mendivelso et al.

Algorithm 3: PMG Algorithm

Input: G1(V1, E1), G2(V2, E2) Output: true/false

1. p = GLA(G1)
2. for every ge ∈ (V1 ∪ E1) do f [ge] ← undef
3. for every ge ∈ (V2 ∪ E2) do g[ge] ← false
4. for every u ∈ V2 do
5. if u.degree = p1.degree
6. f ′ ← copyOf(f), f ′[p1] ← u
7. g′ ← copyOf(g), g′[u] ← true
8. if ExtendMatch(u, p, 1, f ′, g′, G2) = true
9. return true
10. return false

Fig. 4. PMG Algorithm

Algorithm 4: ExtendMatch Algorithm

Input: u, p = p1...�, i, f, g,G2(V2, E2) Output: true/false

1. if i = � then return true
2. if f [pi+2] = undef
3. for every e = (u, v) ∈ E2 do
4. if g[v] = false and g[e] = false and v.degree = pi+2.degree
5. f ′ ← copyOf(f), f ′[pi+1] ← e, f ′[pi+2] ← v
6. g′ ← copyOf(g), g′[e] ← true, g′[v] ← true
7. if ExtendMatch(v, p, i+ 2, f ′, g′, G2) = true
8. return true
9. else
10. v = f [pi+2]
11. if pi+1 = undef
12. for every e = (u, v) ∈ E2 such that g[e] = false
13. f ′ ← copyOf(f), f ′[pi+1] ← e
14. g′ ← copyOf(g), g′[e] ← true
15. if ExtendMatch(v, p, i+ 2, f ′, g′, G2) = true
16. return true
17. else
18. if ExtendMatch(v, p, i+ 2, f, g,G2) = true
19. return true
20. return false

Fig. 5. ExtendMatch Algorithm

As the number of edges in a DFS tree is equivalent to the number of vertices —
each vertex, except the root, is associated to an edge that leads to its parent,
the asymptotic behavior of PMG depends on the number of vertices in the DFS
trees. Next theorem gives an upper bound for this number.



Solving Graph Isomorphism Using Parameterized Matching 239

Theorem 3. Let p1...� be a linearization of G1. Also, let d be the maximum
degree of the vertices in G2; specifically d = maxv∈V1 v.degree. The DFS tree
that represents the traversal of G2 done by PMG has at most O(d��/2�) vertices.

This theorem is based on the following facts: (i) there are O(��/2�) branching
vertices in the DFS search tree associated to the vertices in the linearization
p = p1...�; and (ii) the branching factor for each of such vertices in the search tree
is O(d). As a DFS tree starts at each vertex in G2, the total number of vertices
visited, and hence the time complexity of PMG, is O(nd��/2�). Note that if G2

is complete, i.e., d = n− 1, the time complexity is O(n(n− 1)��/2�) = O(n
�/2�).
However, it is important to remark that Theorem 3 gives an upper bound

for the worst-case complexity. It assumes that, at every level of vertices, all the
possible neighbors are explored. The average-case situations in practice are often
not that “bad” because (i) when a vertex pi has already been assigned, only such
assigned vertex is considered; and (ii) when the multigraph has varied vertex
degrees, the pruning criterion highly reduces the number of adjacent vertex to
be visited.

6 Experimental Evalution

We assess the performance of our proposed approach experimentally. We imple-
ment the linearization and the matching algorithms in C#. We employ a set of
synthetic graphs generated for benchmarking. We compare our approach to VF2,
using an optimized implementation from the networkX library 1. All evaluations
are performed on a server running under a Windows platform on a 3.40GHz
CPU with 16GB memory.

For graph generation, we deliberately avoid the “trivial cases”. For example,
consider a graph where vertex vi is connected to v1, . . . , vi−1. As the degree
of each node is unique, testing isomorphism can be done trivially by a simple
heuristic like sorting nodes by degree. In contrast, we consider cases where no
such simple heuristic wins. Graphs where every node has the identical degree
would much more challenging in that sense.

Meanwhile, we also avoid topologies that are always isomorphic, such as a
grid or a complete graph. For this reason, we generate random graph pairs of
identical-degree nodes. As the complexity of isomorphism testing algorithm is
reported to vary significantly over degree, from O(n2) to O(nn!) [9], we consider
both low- and high-degree cases to evaluate algorithms in a wide spectrum of
settings. The lower end of this spectrum is observed when the matching graphs
are found early in a sparse graph, while the opposite case of dense graphs often
leads to long running times. More specifically, we generate sparse and dense
identical-degree graphs as follow: 1-Sparse: We generate a random graph G
where every node has degree three, with 3N total edges for N nodes. We first
build a random binary tree with N − 1 edges. Then, the nodes with the degree

1 http://networkx.github.io

http://networkx.github.io


240 J. Mendivelso et al.

less than three connect to another such node chosen at random. 2-Dense: We
generate graph G′ by subtracting G from a complete graph. Every node of G
has the same degree of N − 4.

In each setting, we vary the number of nodes from 16 to 256, and evaluate the
response time of GLA (our proposed approach) and VF2 (baseline). For each
point in the figures, we randomly generate 45 graphs and report the median re-
sponse time. We choose median response time as our performance metric because
the running time on different graphs significantly varies over graph complexity
(as discussed above) while the optimization margin is narrow for easy cases and
hard extremes. Our target problems are thus neither of these, and using the
average or min/max as the main performance metric would bias the results to
represent either extreme. In contrast, median would filter out extreme results.

64 128 192 256
0

50

100

150

200

250

Number of Nodes

M
ed

ia
n 

of
 R

es
po

ns
e 

T
im

e(
m

s)

 

 

GLA
VF2

(a) Sparse median response time.

64 128 192 256
0

1000

2000

3000

4000

Number of Nodes

M
ed

ia
n 

of
 R

es
po

ns
e 

T
im

e(
m

s)

 

 

GLA
VF2

(b) Dense median response time.

Fig. 6. Response time of GLA and VF2 on sparse and dense graphs

Figure 6(a) and (b) show the results for Sparse and Dense respectively. The
X-axis is the number of nodes (in log scale) and Y -axis is the median response
time in milliseconds. Note the two graphs have different scales, and number of
edges is linear with the number of nodes for sparse graphs and quadratic for
dense graphs. In Figure 6(a), the median running time of GLA remains more or
less constant to 10 milliseconds, despite the increase in graph size. As a result,
when v = 256, GLA outperforms VF2 by an order of magnitude. In Figure 6(b),
we observe a consistent trend, except that the performance gap is larger. In
particular, for N = 256, GLA is faster by two orders of magnitude. These figures
show that GLA has low response time, shorter than VF2, by effectively pruning
the notoriously large search space, guided by linearization rules leveraging node
degree and exploration history.

7 Conclusions

This paper presents a novel approach to solve graph isomorphism. The key idea
is to linearize one graph into a parameterized sequence — a walk that covers



Solving Graph Isomorphism Using Parameterized Matching 241

every node and edge — and parameterized-match the linearization on the second
graph. We develop a fast linearization algorithm that produces a short lineariza-
tion, and a parameterized matching algorithm.We implement the algorithms and
evaluate them experimentally against VF2, and observe lower response times for
sparse and dense graphs with varying sizes.

References

1. Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching:
Algorithms, applications, and a lower bound. In: Proc. 30th International Collo-
quium on Automata, Languages and Programming (2003)

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Information Processing Letters 49(3), 111–115 (1994)

3. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discrete Applied Mathematics 156(9), 1389–1398 (2008)

4. Baker, B.: A theory of parameterized pattern matching: algorithms and applica-
tions. In: Proc. 25th Annual Symposium on Theory of Computing (1993)

5. Baker, B.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
p. 550. Society for Industrial and Applied Mathematics (1995)

6. Baker, B.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

7. Baker, B.: Parameterized duplication in strings: algorithms and an application to
softwaremaintenance. SIAM Journal on Computing 26(5), 1343–1362 (1997)

8. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence 18(03), 265–298 (2004)

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26(10), 1367–1372 (2004)

10. Du Mouza, C., Rigaux, P., Scholl, M.: Parameterized pattern queries. Data &
Knowledge Engineering 63(2), 433–456 (2007)

11. Edmonds, J., Johnson, E.L.: Matching, euler tours and the chinese postman. Math-
ematical Programming 5(1), 88–124 (1973)

12. Fredriksson, K., Mozgovoy, M.: Efficient parameterized string matching. Informa-
tion Processing Letters 100(3), 91–96 (2006)

13. Hazay, C.: Parameterized matching. Master’s thesis, Bar-Ilan University (2004)
14. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM

Transactions on Algorithms 3(3), 29 (2007)
15. Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized matching.

In: CPM, pp. 266–279 (2005)
16. Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees.

In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence. IEEE Computer Society Press, Washington, DC (1995)

17. Lee, I., Mendivelso, J., Pinzón, Y.J.: δγ – parameterized matching. In: Amir, A.,
Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 236–248. Springer,
Heidelberg (2008)



242 J. Mendivelso et al.

18. Lewenstein, M.: Parameterized matching. In: Encyclopedia of Algorithms. Springer
(2008)

19. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45
(1981)

20. Mendivelso, J., Lee, I., Pinzón, Y.J.: Approximate function matching under δ- and
γ- distances. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani,
N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 348–359. Springer, Heidelberg (2012)

21. Salmela, L., Tarhio, J.: Sublinear algorithms for parameterized matching. In: Proc.
17th Annual Symposium on Combinatorial Pattern Matching (2006)

22. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM
(JACM) 23(1), 31–42 (1976)



Suffix Array of Alignment:

A Practical Index for Similar Data

Joong Chae Na1, Heejin Park2, Sunho Lee3, Minsung Hong3,
Thierry Lecroq4, Laurent Mouchard4, and Kunsoo Park3,�

1 Department of Computer Science and Engineering, Sejong University, Korea
jcna@sejong.ac.kr

2 College of Information and Communications, Hanyang University, Korea
hjpark@hanyang.ac.kr

3 School of Computer Science and Engineering, Seoul National University, Korea
{slee,mshong,kpark}@theory.snu.ac.kr

4 Department of Computer Science, University of Rouen, France
{Thierry.Lecroq,Laurent.Mouchard}@univ-rouen.fr

Abstract. The suffix tree of alignment is an index data structure for
similar strings. Given an alignment of similar strings, it stores all suf-
fixes of the alignment, called alignment-suffixes. An alignment-suffix rep-
resents one suffix of a string or suffixes of multiple strings starting at
the same position in the alignment. The suffix tree of alignment makes
good use of similarity in strings theoretically. However, suffix trees are
not widely used in biological applications because of their huge space
requirements, and instead suffix arrays are used in practice.

In this paper we propose a space-economical version of the suffix tree
of alignment, named the suffix array of alignment (SAA). Given an align-
ment ρ of similar strings, the SAA for ρ is a lexicographically sorted list
of all the alignment-suffixes of ρ. The SAA supports pattern search as
efficiently as the generalized suffix array. Our experiments show that our
index uses only 14% of the space used by the generalized suffix array to
index 11 human genome sequences. The space efficiency of our index in-
creases as the number of the genome sequences increases. We also present
an efficient algorithm for constructing the SAA.

Keywords: Indexes for similar data, suffix arrays, alignments.

1 Introduction

The 1000 Genomes project [4] is aiming at building a database of 1092 individual
human genome sequences using a cheap and fast sequencing, called Next Gen-
eration Sequencing (NGS). To sequence an individual genome using the NGS,
the individual genome is divided into short segments (called reads) and they are
aligned to the Human reference Genome. This is possible because an individual
genome is more than 99% identical to the Human reference Genome. The sim-
ilarity also enables us to store individual genomes efficiently. Instead of storing

� Corresponding author.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 243–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


244 J. Chae Na et al.

1000 whole individual sequences, only 1% different regions of each individual
genome can be stored.

Not only efficient storing techniques but also efficient indexing techniques
for similar strings have been developed. The first such index was proposed by
Mäkinen et al. [16,17]. Their index uses run-length encoding, a suffix array, and
BWT [3]. Huang et al. [9] indexed similar strings by building separate data
structures for common regions and non-common regions. In addition, indexes
based on Lemple-Ziv compression schemes [15,21] have been developed [5,14].
Some of these indexes are surveyed in [20]. The space reductions of these indexes
are achieved mostly by using classical compressed indexes. However, the indexes
do not support efficient pattern search or require auxiliary data structures to
improve the pattern search time.

Recently, a suffix tree for similar strings, called a suffix tree of alignment [19],
have been proposed without sacrificing the pattern search time, i.e., the suffix
tree of alignment supports linear-time pattern search. Given an alignment of
similar strings, the suffix tree of alignment stores suffixes of an alignment, called
alignment-suffixes (for short a-suffixes) rather than suffixes of a string. An a-
suffix may represent suffixes of multiple strings starting at the same position in
an alignment. The suffix tree of alignment makes good use of similarity in strings
theoretically. Although suffix trees support many functionalities [2,8], however,
they are not widely used in biological applications because of the huge space
requirement. Instead, suffix arrays [18] (including their compressed forms [6,7])
are widely used in practice.

In this paper we propose the suffix array of alignment (SAA), an array ver-
sion of the suffix tree of alignment. Given an alignment ρ, the SAA for ρ is a
lexicographically sorted list of all the a-suffixes of ρ. We show that the sorted
order of the a-suffixes is well defined and the longest common prefix (lcp) of
two a-suffixes is also well defined. Assume that given strings consist of com-
mon regions and non-common regions alternatively, e.g., three strings A, B, and
C can be represented as A = α1β1 . . . αkβkαk+1, B = α1δ1 . . . αkδkαk+1, and
C = α1ϑ1 . . . αkϑkαk+1, where αi’s are common regions and βi’s, δi’s and ϑi’s

are non-common regions. Then, the SAA requiresO(|A|+
∑k

i=1(2|α∗
i |+|δi|+|ϑi|))

space, where α∗
i is the longest suffix of αi appearing at least twice in A, in B

or in C. (For simplicity, three strings are considered but our results work well
for more than three strings.) The space requirement of the SAA is asymptot-
ically the same as that of the suffix tree of alignment, but the SAA is more
space-efficient practically. Furthermore, our suffix array supports pattern search
as efficiently as the generalized suffix array (GSA).

Moreover, we show by experiments that our index is space-efficient for similar
data in practice by analyzing and comparing the space requirements of the SAA
and the GSA, which support the same efficiency of pattern search. The space
requirement of our index is influenced by the lengths of α∗

i and non-common
regions. Our experiments show that these lengths are short in practice and thus
our index consumes very small space. We used 11 human genome sequences, one
reference sequence and 10 individual sequences from the 1000 Genomes project



Suffix Array of Alignment: A Practical Index for Similar Data 245

website1. In the genome sequences, non-common regions are only 0.3% of the
entire positions, i.e., these sequences are very similar. Moreover, the α∗

i ’s, which
is a main factor for the space requirement of the SAA, occupy 5% of the entire
positions and the length of α∗

i is 16.64 on average. Conclusively, the SAA requires
only 14% of the space required by the GSA for indexing the 11 sequences. It
should be noted that the space efficiency of our index increases as the number
of the genome sequences increases.

We also present an efficient algorithm for constructing the SAA. One might
think the SAA can be simply constructed by simulating the algorithm for con-
structing the suffix tree of alignment in [19]. However, it is not easy because the
algorithm heavily uses the dynamic property of the suffix tree and makes use
of suffix links. The core of the tree construction algorithm is how to compute
α∗
i efficiently, which is solved using a property satisfied in a partial suffix tree

containing suffixes derived from several strings. Thus, we developed a new algo-
rithm to compute α∗

i using only suffix arrays. For this, we generalize the property
dedicated to the suffix tree so that the property is satisfied in substrings of in-
put strings. Conclusively, we can compute α∗

i and thus construct the SAA as
efficiently as the algorithm in [19].

2 Suffix Array of Alignment (SAA)

In this section we define the suffix array of alignment (SAA) and present how to
construct the SAA. For simplicity, we consider only alignments of three strings
but our definitions and algorithms can be easily extended to more than three
strings. We first consider alignments with one non-common chunk and then
general alignments with more than one non-common chunk.

2.1 Definition of SAA

Let A, B, and C be similar strings such that A = αβγ, B = αδγ, and C = αϑγ,
where α and γ are common regions in all strings, and β, δ, and ϑ are non-common
regions. Then, these regions represent an alignment of the strings and each string
can be transformed to another string by replacing non-common regions. We
denote this alignment of the three strings by ρ = α(β/ δ/ ϑ)γ. For simplicity, we
assume that all strings end with a special symbol # ∈ Σ occurring nowhere else
in the strings.

The suffixes of the alignment ρ, called alignment-suffixes (for short a-suffixes),
are defined as in [19]. Let αa, αb, and αc be the longest suffixes of α occurring
at least twice in the strings A, B, and C, respectively. Let α∗ be the longest of
αa, αb, and αc, i.e., α∗ is the longest suffix of α occurring at least twice in A, in
B, or in C. Then, these are a-suffixes of ρ, which are classified into 5 types.

1. a suffix of γ,
2. ωaγ, where ωa is a (non-empty) suffix of α∗β.

1 http://www.1000genomes.org/

http://www.1000genomes.org/


246 J. Chae Na et al.

idx POS LCP a-suffixes (type)

1 (1, 9) - # (1)
2 (2, 6) 0 a a b # (3)
3 (1, 4) 3 a a b a b # (2)
4 (3, 4) 2 a a c a b # (4)
5 (1, 7) 1 a b # (1)
6 (2, 4) 2 a b a a b # (3)
7 (1, 5) 3 a b a b # (2)
8 (1, 1) 2 a b c a (a b / b a / a c ) a b # (5)
9 (3, 5) 1 a c a b # (4)
...

...
...

...

Fig. 1. The SAA of abca(ab/ba/ac)ab#. A pair (a, b) in POS represents the string
number a and the starting position b of an a-suffix. LCP [i] is the length of lcp between
two a-suffixes of POS[i− 1] and POS[i].

3. ωbγ, where ωb is a (non-empty) suffix of α∗δ.
4. ωcγ, where ωc is a (non-empty) suffix of α∗ϑ.
5. α′(β/ δ/ ϑ)γ, where α′ is a suffix of α longer than α∗.

For example, assume that an alignment abca(ab/ba/ac)ab# is given. Then,
αa = αb = a and αc = ca. Since α∗ is ca, caabab# is an a-suffix of type 2 and
bca(ab/ba/ac)ab# is an a-suffix of type 5.

The suffix array of alignment (SAA) for ρ is a lexicographically sorted list of
all the a-suffixes of ρ. It is clear what the sorted order for a-suffixes of types 1-4 is
since an a-suffix of types 1-4 represents one string. On the other hand, an a-suffix
of type 5, e.g., ω = α′(β/ δ/ ϑ)γ where |α′| > |α∗| represents three strings α′βγ,
α′δγ, and α′ϑγ derived from A, B, and C, respectively. However, it does not
cause trouble when determining the order of ω between the a-suffixes of ρ. Since
α′ occurs only once in each string, i.e, as prefix of α′βγ, α′δγ, and α′ϑγ, the
order of ω is determined by α′. Thus, the lexicographically sorted order between
the a-suffixes is well defined and the longest common prefix (lcp), an additional
information often used together with the suffix arrays, between a-suffixes of ρ is
also well defined. See Figure 1 for an example.

The space requirement of the SAA is linear to the number of a-suffixes. There
are |γ| a-suffixes of type 1. The number of a-suffixes of types 2, 3, and 4 is
|α∗β|+ |α∗δ|+ |α∗ϑ|) and the number of a-suffixes of type 5 is |α| − |α∗|. Since
|A| = |α|+ |β|+ |γ|, the SAA of ρ requires O(|A| + 2|α∗|+ |δ|+ |ϑ|) space.

2.2 Construction of SAA

One method for constructing the SAA of ρ is using the suffix tree of the alignment
ρ [19] as an intermediate index. However, this method does not make full use
of the space-efficiency of suffix arrays because suffix trees require much more
space than suffix arrays. Another method, without constructing suffix trees, is
constructing first the generalized suffix array (GSA) for the three strings as



Suffix Array of Alignment: A Practical Index for Similar Data 247

an intermediate index and then deleting suffixes that are not a-suffixes in the
GSA. However, this method also is not efficient in working space as well as
in construction time because the time and space requirement of the GSA is
proportional to the total length of the strings regardless of similarity among the
strings. The more number of strings are in the alignment and the more similar
the strings are, the more is the inefficiency.

We present how to construct the SAA efficiently in time and space. Our
algorithm for constructing the SAA of ρ consists of three steps. Let γa, γb, and
γc be the longest prefixes of γ occurring at least twice in the strings A, B, and C,
respectively. Let γ∗ be the longest of γa, γb, and γc. (Note that these definitions
are symmetrical with those of αa, αb, αc, and α∗, and are different from the
definition of γ̂ used in [19].) Then, the outline of our algorithm is as follows:

1. Compute |α∗| and |γ∗|.
2. Construct the GSA for three strings A, α∗δγ∗d, and α∗ϑγ∗d, where d is the

symbol following γ∗ in γ.
3. Delete suffixes of γ∗d derived from α∗δγ∗d and α∗ϑγ∗d.

Step 1 is the core step of our algorithm. We mainly focus on the problem of
computing |α∗| since |γ∗| can be computed symmetrically. For a string S, let
SR be the reversed string of S. We can compute |αa| by searching for αR in the
suffix array of AR. Thus, one method to compute |α∗| is constructing the suffix
array of each reversed string and computing |αa|, |αb|, and |αc|. However, this
method requires the time proportional to the total length of the three strings
due to constructing the three suffix arrays.

To compute |α∗| more efficiently, we make use of the similarity in the strings.
Consider the strings A and B. The following lemma says that, given |αa|, a
substring including δ is sufficient for computing max(|αa|, |αb|) instead of the
entire of B. (Note that we do not need to compute the exact value of |αb| to
compute |α∗|.)

Lemma 1. If |αb| > |αa|, αb occurs in the substring B′ of B, where B′ = αaδγa.

Proof. By definition of αb, there are at least two occurrences of αb in B. Ob-
viously, one occurrence occ1 of αb appears as a suffix of α. Since |αb| > |αa|,
occ1 cannot be included in B′. Let occ2 denote an occurrence of αb in B other
than occ1. Let s2 and e2 be the starting and the ending positions of occ2 in
B, respectively. Let sa and ea be the starting and the ending positions of the
substring B′ in B, respectively.

We show that occ2 is included in B′, i.e., sa ≤ s2 and e2 ≤ ea. We first prove
by contradiction that sa ≤ s2. Suppose s2 < sa. We have two cases according to
whether occ2 is overlapped with δ or not.

– The case when occ2 is not overlapped with δ. Then, occ2 is included in α
and it means that there are at least two occurrences (occ1 and occ2) of αb

in α and also in A. It contradicts with the definition of αa since |αb| > |αa|.
– The case when occ2 is overlapped with δ. Let α′ be the suffix of α starting at
s2. Since s2 < sa, |α′| > |αa|. Since α′ is a prefix of occ2, α

′ is also a prefix



248 J. Chae Na et al.

of occ1. Hence, there are at least two occurrences of α′ in α and also in A.
It contradicts with the definition of αa since |α′| > |αa|.

Similarly, we can prove that e2 ≤ ea by contradiction with the definition of
γa. 
�

Note that this property also holds for other strings. For example, if |αc| > |αa|,
αc occurs in the substring αaϑγa of C.

Using this property, we can compute |α∗| and |γ∗| as follows:
1.1 Compute |αa| by searching for αR in the suffix array of AR and, symmetri-

cally, compute |γa| by searching for γ in the suffix array of A.
1.2 Compute �b = max(|αa|, |αb|) using the suffix array of (αaδγa)R as follows.

Let α′ be the longest suffix of α occurring in αaδγa. (Note that |α′| ≥ |αa|
since αa occurs in αaδγa.) We can find α′ by searching for αR in the suffix
array of (αaδγa)R. By Lemma 1, if |α′| > |αa|, �b = |α′| and, otherwise,
�b = |αa|.
Symmetrically, compute max(|γa|, |γb|) using the suffix array of αaδγa.

1.3 Similarly, compute �c = max(|αa|, |αc|) using the suffix array of (αaϑγa)R.
Then, |α∗| = max(�b, �c).
Symmetrically, compute max(|γa|, |γc|) and |γ∗|.

Since the suffix array of a string S can be constructed using O(|S|) time and
O(|S|) space [10,12,13], and one can search for a string P using the suffix array
of S with some auxiliary information in O(|P |) [1,11], computing |α∗| and |γ∗|
requires O(|A| + |α∗δγ∗| + |α∗ϑγ∗|) time and O(|A|) working space. Note that
the suffix array constructed in each substep is needed only in the substep.

In Step 2, we construct the GSA for three strings A, α∗δγ∗d, and α∗ϑγ∗d,
where d is the symbol following γ∗ in γ. The GSA contains all the a-suffixes of the
alignment ρ. (Note that the suffixes of γ in A are the a-suffixes of type 1 of ρ and
the suffixes of A longer than α∗βγ can be implicitly converted to the a-suffixes
of type 5 of ρ [19].) The reason why γ∗d is necessary is as follows. Let ωγ be an
a-suffix of type 3 (of B). To determine the order of ωγ among a-suffixes of ρ, we
may need a prefix of γ. Since γ∗d occurs only once in each string, the order of
ωγ is determined by ωγ∗d. Obviously, Step 2 requires O(|A|+ |α∗δγ∗|+ |α∗ϑγ∗|)
time and space.

In Step 3, we delete suffixes of γ∗d in α∗δγ∗d and α∗ϑγ∗d because these are
redundant with suffixes of A (a-suffixes of type 1). Consider a suffix ω of γ∗d. In
the GSA, there are two ω’s derived from α∗δγ∗d and α∗ϑγ∗d. The two ω’s are
adjacent in the GSA. We can delete redundant suffixes by scanning the entire
GSA, which requires O(|A| + |α∗δγ∗|+ |α∗ϑγ∗|) time and space.

Theorem 1. Given an alignment ρ = α(β/ δ/ ϑ)γ, the SAA of ρ can be con-
structed using O(|A| + |α∗δγ∗|+ |α∗ϑγ∗|) time and working space.

2.3 Alignment with Multiple Regions

In this section we consider alignments with multiple non-common re-
gions. Let A = α1β1 . . . αkβkαk+1, B = α1δ1 . . . αkδkαk+1, and C =



Suffix Array of Alignment: A Practical Index for Similar Data 249

α1ϑ1 . . . αkϑkαk+1. We denote the alignment of the strings by ρ =
α1(β1/ δ1/ ϑ1)α2(β2/ δ2/ ϑ2)α3 . . . αk+1. Without loss of generality, we assume
that αi (2 ≤ i ≤ k) occurs only once in each string. (Otherwise, we merge
αi with adjacent non-common regions, e.g., βi−1αiβi is regarded as one non-
common region). For 1 ≤ i ≤ k, let αa

i , α
b
i , and αc

i be the longest suffixes of αi

occurring at least twice in the strings A, B, and C, respectively. Let α∗
i be the

longest of αa
i , α

b
i , and αc

i . Then, these are a-suffixes of ρ, which are classified
into 5 types (1 ≤ i ≤ k).

1. a suffix of αk+1,
2. ωa

i αi+1 . . . αk+1 where ωa
i is a (non-empty) suffix of α∗

i βi.
3. ωb

iαi+1 . . . αk+1 where ωb
i is a (non-empty) suffix of α∗

i δi.
4. ωc

iαi+1 . . . αk+1 where ωc
i is a (non-empty) suffix of α∗

i ϑi.
5. α′

i(βi/ δi/ ϑi)αi+1 . . . αk+1, where α
′
i is a suffix of αi longer than α∗

i .

The SAA of ρ is a lexicographically sorted list of all the a-suffixes of ρ. The SAA
requires the space linear to the number of a-suffixes, i.e., O(|A|+

∑k
i=1(2|α∗

i |+
|δi|+ |ϑi|)) space.

For 1 ≤ i ≤ k, let γai , γ
b
i , and γci be the longest prefix of αi+1 occurring at

least twice in the strings A, B, and C, respectively, and let γ∗i be the longest of
γai , γ

b
i , and γ

c
i . Let B

′ be the concatenation of the k strings αa
i δiγ

a
i #i (1 ≤ i ≤ k)

and C′ be the concatenation of the k strings αa
i ϑiγ

a
i #i (1 ≤ i ≤ k), where #i is

a delimiter. That is,

B′ = αa
1δ1γ

a
1#1α

a
2δ2γ

a
2#2 . . . α

a
kδkγ

a
k#k and

C′ = αa
1ϑ1γ

a
1#1α

a
2ϑ2γ

a
2#2 . . . α

a
kϑkγ

a
k#k.

Then, Lemma 1 can be generalized to the following lemma (we omit the proof).

Lemma 2. For every i = 1, . . . , k, if |αb
i | > |αa

i |, αb
i occurs in B′.

The SAA of ρ can be constructed as follows:

1. Compute |α∗
i | and |γ∗i | (1 ≤ i ≤ k).

1.1 Compute |αa
i |, for every i = 1, . . . , k, by searching for αR

i in the suffix
array of AR and, symmetrically, compute |γai | by searching for γi in the
suffix array of A.

1.2 Compute �bi = max(|αa
i |, |αb

i |) using the suffix array of (B′)R as follows.
Let α′

i be the longest suffix of αi occurring in B′. We can find α′
i by

searching for (αi)
R in the suffix array of (B′)R. By Lemma 2, if |α′

i| >
|αa

i |, �bi = |α′
i| and, otherwise, �bi = |αa

i |.
Symmetrically, compute max(|γai |, |γbi |) using the suffix array of B′ .

1.3 Similarly, compute �ci = max(|αa
i |, |αc

i |) using the suffix array of (C′)R.
Then, |α∗

i | = max(�bi , �
c
i).

Symmetrically, compute max(|γai |, |γci |) and |γ∗i |.
2. Construct the GSA for 2k + 1 strings A, α∗

i δiγ
∗
i di, and α∗

i ϑiγ
∗
i di, where di

is the symbol following γ∗i in αi+1 (1 ≤ i ≤ k).
3. Delete suffixes of γ∗i di derived from α∗

i δiγ
∗
i di and α∗

i ϑiγ
∗
i di (1 ≤ i ≤ k) in

the GSA.



250 J. Chae Na et al.

2.4 Pattern Search

We can perform pattern search using the SAA in the same way as using classical
suffix arrays of strings except for dealing with alignments in a-suffixes. Consider
an a-suffix ω(βi/ δi/ ϑi) . . . αk+1 where ω does not contain an alignment. We can
perform binary search with lcp information like in classical suffix arrays until a
prefix of a given pattern P matches ω. If a prefix of P matches ω, we consider
only the a-suffix to search for P since ω occurs only once in each string by
definition of a-suffixes. Thus, after a prefix of P matches ω, we compare P with
βi, δi, and ϑi. We can enhance this comparison using the trie of βi, δi, and ϑi.

3 Experiments

We show by experiments that our index (the SAA) is an effective data structure
for similar data. The SAA requires only about 1/7 of the space required by the
GSA to index 11 human genome sequences, which is explained in the following.

3.1 Experimental Data

To measure the space requirement of indexes in practice, we used one reference
sequence and 10 individual sequences from 1000 Genomes project website. From
the project website, we downloaded pairs of bam and bai files of 10 individual
human genomes, where bam files contain reads (short segments of length 90-
125) of each individual and bai files contain alignment of the reads. We also
downloaded their corresponding reference genome, hg19. To convert a set of
reads into one sequence, we used samtools2 (Sequence Alignment/Map tools),
by which we obtained 10 individual genome sequences. Since individual genome
sequences are aligned to the reference genome sequence, these 11 sequences make
a multiple alignment based on the reference genome sequence.

In our experiments, we used chromosome 20 of each genome. The length of
the reference sequence is 63,025,520 and the lengths of the individual sequences
vary from 62,965,442 to 62,965,512, which are a little shorter than the reference
sequence. The sequences consist of five characters {A,G, T, C,N}, where A, G,
T , and C stand for nucleotides Adenine, Guanine, Thymine, and Cytosine, re-
spectively, and N appears in some special cases and is treated exceptionally in
general (also in our experiments). In the reference sequence, N ’s do not appear
alone but as chunks of N ’s. There are six chunks of N ’s in the reference and
their lengths are 60,000, 3,100,000, 150,000, 50,000, 50,000 and 50,000. In the
positions where the reference sequence has N’s, individual sequences also have
N’s mostly. In the other positions, most of N’s in individual sequences are single
N’s. The chunks of N’s in individual sequences may represent the regions that
are not sequenced, the regions that are sequenced but have very low quality, or
the regions that are moved to other places. Single N’s in individual sequences
represent positions where one character from {A,G, T, C} cannot be determined

2 http://samtools.sourceforge.net/

http://samtools.sourceforge.net/


Suffix Array of Alignment: A Practical Index for Similar Data 251

Table 1. The number of non-common regions according to length

Length 1 2 3 4 5 6 Total

Number 190,804 3,057 215 47 9 3 194,135

Table 2. The lengths of α∗’s and αj ’s (0 ≤ j ≤ 10)

Total length Average length Total length Average length

α0’s 3,202,864 16.50 α6’s 2,987,607 15.39
α1’s 3,030,406 15.61 α7’s 3,022,359 15.57
α2’s 2,558,396 13.18 α8’s 3,132,487 16.14
α3’s 2,976,231 15.33 α9’s 3,026,544 15.59
α4’s 2,989,375 15.40 α10’s 3,140,456 16.18
α5’s 2,991,517 15.14 α∗’s 3,229,589 16.64

because reads have different characters in {A,G, T, C}, there are deletions in
reads, and/or the quality is low.

3.2 Experimental Results

In this section, we compare the space requirements of the GSA and the SAA for
the 11 sequences. For simplicity, we appended N ’s to the end of each individual
sequence so that the length of the individual sequence is the same as that of
the reference sequence. Let S0 be the reference sequence and Si (1 ≤ i ≤ 10) be
each individual sequence. We call an aligned position a non-common position if
at least two distinct characters in {A,G, T, C} appear at this position. Notice
that we do not regard a position as a non-common position if N and only one
character in {A,G, T, C} appear at the position. In our data set, there are 0.3%
non-common positions (197,814 among 63,025,520 positions). Consecutive non-
common positions become a non-common region. There are 194,135 non-common
regions whose lengths vary from 1 to 6 (Table 1).

We first compute the lengths of α∗’s in the sequences, which is a main factor
for the space requirement of our index. For a common region αi, we denote by
αj
i the longest suffix of αi appearing at least twice in sequence Sj (0 ≤ j ≤ 10).

Recall that α∗
i is the longest of α0

i , . . ., α
10
i . When computing αj

i , we exclude
the part of αi containing at least 10 consecutive N ’s since long consecutive N ’s
do not carry any information about {A,G, T, C}. For each j, the total length
and the average length of αj

i ’s are shown in Table 2. (We omit the subscript i in

αj
i if not confusing.) For example, in sequence S1, 3,030,406 characters (4.8%)

of the entire 63,025,520 characters are included in α1’s. Since there are 194,135
non-common regions, the average length of α1’s is 15.61.

From the lengths of non-common regions and α∗’s, we calculate the space
requirement of the SAA. For a substring αβ of a sequence Sj where α is a
common region and β is a non-common region, we call α∗β a NS-region (non-
shared region) and α′ a S-region (shared region) where α′ is the prefix of α such
that α′α∗ is α. For a sequence, let nt be the length of the sequence, ns be the



252 J. Chae Na et al.

Table 3. Distribution of characters in our sequences

NS-regions S-regions
(3,427,403 characters) (59,598,117 characters)

# of {A,G, T,C} # of N # of {A,G, T,C} # of N

S0 3,427,401 2 56,078,119 3,519,998
S1 3,318,768 108,635 55,263,839 4,334,278
S2 2,940,879 486,524 49,719,051 9,879,066
S3 3,272,652 154,751 54,872,472 4,725,645
S4 3,279,318 148,085 54,969,949 4,628,168
S5 3,285,414 141,989 54,972,379 4,625,738
S6 3,275,604 151,799 54,947,026 4,651,091
S7 3,306,405 120,998 55,010,622 4,587,495
S8 3,385,161 42,242 55,717,092 3,881,025
S9 3,311,346 116,057 55,045,612 4,552,505
S10 3,390,329 37,074 55,722,788 3,875,329

Total 36,193,277 1,508,156 602,318,949 53,260,338

total length of S-regions, and nn be the total length of NS-regions. (Note that
nt, ns, and nn are identical in all sequences and nt = ns + nn.) Then, the size
of the GSA is 11nt and the size of the SAA is ns + 11nn (= nt + 10nn). In our
data set, nt = 63, 025, 520 and nn = 3, 427, 403, and thus the size of the GSA
is 693,280,720 words and the size of the SAA is 97,299,550 words. That is, our
index uses only 14.03% space compared to the GSA.

When searching the sequences for a pattern, we may assume that the pattern
does not contain N since we do not consider wild-card matches. In this circum-
stance, we can reduce the space requirement of indexes by eliminating in indexes
the suffixes whose first characters are N . To compute the sizes of the two in-
dexes for our data set, we first investigate the distribution of N in our sequences.
Table 3 shows the distribution of characters in NS-regions and S-regions for each
sequence. For example, in NS-regions of sequence S1, the number of characters
A,G, T, C is 3,318,768 (97%) and the number of character N is 108,635 (3%).
In S-regions of sequence S1, the number of characters A,G, T, C is 55,263,839
(93%) and the number of character N is 4,334,278 (7%).

We compute the sizes of the two indexes when excluding the suffixes whose
first characters are N . The size of the GSA is the total number of characters
A,G, T, C in NS-regions and S-regions of the 11 sequences, which is 638,512,226
(36, 193, 277+ 602, 318, 949) words (see Table 3). Next, consider the SAA. For a
position in an NS-region, we eliminate the suffix of each sequence starting at this
position if the first character of the suffix is N . For a position in an S-region, we
eliminate the suffix (a-suffix) starting at this position only if the characters in the
position are N in all sequences. In our data set, the total number of A,G, T, C
in NS-regions is 36,193,277 and the number of positions in S-regions excluding
the positions where characters are N in all sequences is 56,078,133 (see the last
row in Table 4). Thus, the size of our index is 92,271,410 words, which is only
14.45% of the size of the GSA.



Suffix Array of Alignment: A Practical Index for Similar Data 253

Table 4. Comparison of the sizes of the GSA and the SAA according to the number of
sequences when excluding the suffixes whose first characters are N . Column (C1) is the
total number of A,G, T,C in NS-regions and column (C2) is the number of positions
in S-regions excluding the positions where characters are N in all sequences. Then, the
size of the SAA is (C1) + (C2). The ratio of the size of the SAA to that of the GSA is
given in the last column.

Size of GSA Size of SAA (C1) (C2) Ratio (%)

S0 ∼ S1 118,088,127 60,455,692 1,914,833 58,540,859 51.20
S0 ∼ S2 170,748,057 62,473,223 4,553,672 57,919,551 36.59
S0 ∼ S3 228,893,181 65,338,136 7,905,004 57,433,132 28.55
S0 ∼ S4 287,142,448 68,758,063 11,706,204 57,051,859 23.95
S0 ∼ S5 345,400,241 72,483,002 15,719,471 56,763,531 20.99
S0 ∼ S6 403,622,871 76,417,395 19,881,933 56,535,462 18.93
S0 ∼ S7 461,939,898 80,305,819 23,928,531 56,377,288 17.38
S0 ∼ S8 521,042,151 84,226,410 27,963,745 56,262,665 16.16
S0 ∼ S9 579,399,109 88,223,461 32,062,878 56,160,583 15.23
S0 ∼ S10 638,512,226 92,271,410 36,193,277 56,078,133 14.45

We also compare the space requirements of the GSA and the SAA according
to the number of sequences used in indexing (Table 4). Obviously, the space
efficiency of our index increases as the number of the sequences increases. The
ratio of the space of the SAA to that of the GSA is 51.2% when two sequence
are used, and the ratio is 14.45% when the 11 sequences are used.

Acknowledgements. Joong Chae Na was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education, Science and Technology(2012-0003214), and by the IT
R&D program of MKE/KEIT [10038768, The Development of Supercomputing
System for the Genome Analysis]. Heejin Park was supported by Basic Science
Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education, Science and Technology(2012-0006999),
by Seoul Creative Human Development Program (HM120006), by the Proteoge-
nomics Research Program through the National Research Foundation of Korea
funded by the Korean Ministry of Education, Science and Technology, and by the
National Research Foundation of Korea(NRF) funded by the Ministry of Science,
ICT & Future Planning(2012-054452). Laurent Mouchard was supported by the
French Ministry of Foreign Affairs Grant 27828RG (INDIGEN, PHC STAR
2012). Kunsoo Park was supported by National Research Foundation of Korea-
Grant funded by the Korean Government(MSIP) (2012K1A3A4A07030483), and
by Next-Generation Information Computing Development Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Science,
ICT & Future Planning (2011-0029924).



254 J. Chae Na et al.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

2. Apostolico, A.: The myriad virtues of subword trees. In: Apostolico, A., Galil, Z.
(eds.) Combinatorial Algorithms on Words, pp. 85–95. Springer (1985)

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Paolo Alto, California (1994)

4. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

5. Do, H.H., Jansson, J., Sadakane, K., Sung, W.-K.: Fast relative lempel-ziv self-
index for similar sequences. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM
2012 and FAW 2012. LNCS, vol. 7285, pp. 291–302. Springer, Heidelberg (2012)

6. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

7. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35(2), 378–407
(2005)

8. Gusfield, D.: Algorithms on Strings, Tree, and Sequences. Cambridge University
Press, Cambridge (1997)

9. Huang, S., Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Indexing similar DNA
sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 180–190. Springer,
Heidelberg (2010)

10. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
Journal of the ACM 53(6), 918–936 (2006)

11. Kim, D.K., Kim, M., Park, H.: Linearized suffix tree: an efficient index data struc-
ture with the capabilities of suffix trees and suffix arrays. Algorithmica 52(3),
350–377 (2008)

12. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time.
Journal of Discrete Algorithms 3(2-4), 126–142 (2005)

13. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms 3(2-4), 143–156 (2005)

14. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theo-
retical Computer Science 483, 115–133 (2013)

15. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative lempel-ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

16. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of individ-
ual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137.
Springer, Heidelberg (2009)

17. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology 17(3), 281–308
(2010)

18. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

19. Na, J.C., Crochemore, M., Park, H., Holub, J., Iliopoulos, C.S., Mouchard, L., Park,
K.: Suffix tree of alignment: An efficient index for similar data. In: Proceedings of
IWOCA 2013 (2013)

20. Navarro, G.: Indexing highly repetitive collections. In: Smyth, B. (ed.) IWOCA
2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)

21. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)



Faster Top-k Document Retrieval

in Optimal Space�

Gonzalo Navarro1 and Sharma V. Thankachan2

1 Department of Computer Science, University of Chile, Chile
gnavarro@dcc.uchile.cl

2 Department of Computer Science, Louisiana State University, USA
thanks@csc.lsu.edu

Abstract. We consider the problem of retrieving the k documents from
a collection of strings where a given pattern P appears most often. We
show that, by representing the collection using a Compressed Suffix Array
CSA, a data structure using the asymptotically optimal |CSA|+o(n) bits
can answer queries in the time needed by CSA to find the suffix array
interval of the pattern plus O(k lg2 k lgε n) accesses to suffix array cells,
for any constant ε > 0. This is lg n/ lg k times faster than the only
previous solution using optimal space, lg k times slower than the fastest
structure that uses twice the space, and lg2 k lgε n times the lower-bound
cost of obtaining k document identifiers from the CSA. To obtain the
result we introduce a tool called the sampled document array, which can
be of independent interest.

1 Introduction

The problem of top-k document retrieval is that of preprocessing a text collection
so that, given a search pattern P [1,m] and a threshold k, we retrieve the k
documents most “relevant” to P , for some definition of relevance. This is the
basic problem of search engines and forms the core of the Information Retrieval
(IR) field [5].

The inverted index has been highly successful to solve those top-k queries in
many IR scenarios. However, inverted indexes are bound to text collections that
can be easily segmented into “words”, so that only whole words can be queried,
and the distinct words form a reasonably small set. Inverted indexes store, for
each word, the list of the documents where it appears, with the associated rele-
vance. Such a structure is not easily applicable in highly synthetic languages like
Finnish or German, where long words are built from particles, and even less in
languages where word separators are absent and can only be inferred from the
meaning, like Chinese, Korean, etc. Out of resorting to complex segmentation
heuristics, a simple solution for those cases is to treat the text as an uninter-
preted sequence of symbols and look for any substring in those sequences. The
model of a collection of documents (strings) where one can find those where a

� Funded in part by Fondecyt Grant 1-110066.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 255–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


256 G. Navarro and S.V. Thankachan

pattern string is relevant is also appealing in other applications like bioinfor-
matics, chemoinformatics, software repositories, multimedia databases, and so
on. Supporting document retrieval queries on those general string collections has
proved much more challenging.

Sufix trees [24] and suffix arrays [13] are useful tools to search string collec-
tions. However, these structures solve the pattern matching problem: they can
count or list all the occ individual occurrences of P in the collection. Obtaining
the k most relevant documents from that set requires time proportional to occ,
usually much much larger than k. Only relatively recently [12,8,11,18,22] was
this problem solved satisfactorily, finally reaching the optimal time O(m + k).
Those solutions, like suffix trees, have the drawback of requiring O(n lg n) bits of
space on a collection of length n, whereas the collection itself would require no
more than n lg σ bits, if σ is the alphabet size. In practice these indexes require
many times the text size, which renders them impractical on moderate and large
text collections.

For the pattern matching problem, the space issue began to be solved in year
2000. Recent Compressed Suffix Arrays (CSAs) efficiently answer queries within
space asymptotically equal not only to n lg σ bits, but to the size of the com-
pressed text collection [17]. Moreover, those CSAs can retrieve any substring of
any document and hence replace the collection: they can be regarded as com-
pressors that support queries. We call their space |CSA|, which can be tought of
as the minimum space in which the text collection can be represented.

A similar result for top-k document retrieval has been more elusive. In their
seminal paper, Hon et al. [11] showed that, if the relevance is taken as the number
of times P appears in the document (a popular choice in IR), the collection
can be represented in 2|CSA| + o(n) bits so that queries are solved in time
O(m lg lg σ + k lg4+ε n), for any constant ε > 0 (this complexity assumes that
the CSA searches for P in time O(m lg lg σ) and computes a cell of the suffix
array or its inverse in time O(lg1+ε n); there exists such a CSA achieving high-
order entropy compression of the text [1]). After several time improvements that
still used 2|CSA| + o(n) bits [6,3], Hon et al. [10] achieved the best time to
date, O(m lg lg σ + k lg k lg1+ε n). Finally, Tsur [23] reduced the space to the
asymptotically optimal |CSA| + o(n) bits, yet with higher time, O(m lg lg σ +
k lg k lg2+ε n).

In this paper we (almost) obtain the best from both solutions. We maintain
the space in the optimal |CSA|+ o(n) bits, and obtain search time O(m lg lg σ+
k lg2 k lg1+ε n), almost lg n times faster than the current space-optimal solution
and only a lg k factor away from the fastest one (that uses twice the space). To
obtain the result, we introduce a data structure called the sampled document
array, which may have independent interest.

2 Compressed Top-k Retrieval Indexes

Consider a collection of D strings {T1, T2, . . . , TD} over alphabet [1, σ], called
documents, concatenated into a text T [1, n] = T1$T2$ . . . TD$, where $ = 0 is a



Faster Top-k Document Retrieval in Optimal Space 257

special symbol. Consider the suffix tree [24] of T , the suffix array [13] A[1, n] of
T , and a Compressed Suffix Array [17] CSA that is able to (1) given a pattern
P [1,m], find the area A[sp, ep] of suffixes starting with P in time tsearch(m),
and (2) given a position i, compute A[i] in time tSA. For example, there is a
CSA with tsearch(m) = O(m lg lg σ) and tSA = O(lg1+ε n) for any constant ε > 0
and using |CSA| = nHh(T )(1 + o(1)) + o(n) bits of space [1], and another with
tsearch(m) = O(m) and tSA = O(lg n) using |CSA| = nHh(T )(1+o(1))+O(n) bits
of space, where Hh(T ) ≤ lg σ is the per-symbol h-th order empirical entropy of
T [14] (this is a lower bound on compressibility using any reasonable statistical
model). In this paper we focus on the top-k (most frequent documents) retrieval
problem: given a pattern P [1,m], return the k documents where P appears most
often. As explained, this is a reasonable relevance measure, especially when just
one pattern is involved.

Each suffix tree leaf (or suffix array cell) can be associated to the document
Td where the corresponding suffix starts. We call tf(v, d) the number of leaves
associated to document d that descend from suffix tree node v (i.e., the number
of times the string label of v appears in document d). Then the top-k retrieval
problem can be solved by first finding the locus v of pattern P , and then retriev-
ing the k documents d with highest tf(v, d) values. Note that the problem could
be solved by attaching the answer to any suffix tree node, but the space would
be O(kn lg n) bits, and work only up to the chosen k value. Now we describe the
solutions we build on to obtain our result.

Hon, Shah and Vitter’s Solution. Hon et al.’s [11] structure is built (in
principle) for a fixed k value. We choose a grouping factor b = k lg2+ε n and
mark every bth leaf in the suffix tree (we use a slightly simplified description of
their method [19]). Then we mark the lowest common ancestor (LCA) of every
consecutive pair of marked leaves. The tree of marked nodes is called τk and
has O(n/b) nodes. For every marked suffix tree node v, we store the k pairs
(d, tf(v, d)) with highest tf(v, d). Hon et al. prove that any locus node v contains
one maximal marked node u so that there are at most 2b leaves covered by v but
not by u (we will denote v \u that leaf set). Therefore they traverse those leaves
using the CSA, and for each one they (1) compute the corresponding document
d, (2) compute the frequency tf(v, d), (3) add d to the top-k list (or correct its
frequency from tf(u, d) to tf(v, d) if d was already stored in the precomputed
top-k list of u).

To carry out (1) on the ith suffix tree leaf, they first compute A[i] in O(tSA)
time, and then convert it into a document number by storing a bitmap B[1, n]
that marks with a 1 the document beginnings in T [20]. So the document is
d = rank(B,A[i]), where rank(B, j) counts the number of 1s in B[1, j]. Since B
has D 1s, it can be represented using D lg(n/D) + O(D) + o(n) bits, which is
o(n) if D = o(n), and answer rank queries in constant time [21]. To carry out
(2) they need additional |CSA| bits (see Sadakane [20]), and time O(tSA lg n).
The node u ∈ τk is found using the CSA plus a constant-time LCA on τk
for the leftmost and rightmost marked leaves in [sp, ep], whereas the leaves
covered by v are simply [sp, ep]. Thus the total query time is O(tsearch(m) +



258 G. Navarro and S.V. Thankachan

b tSA lgn) = O(tsearch(m) + k tSA lg3+ε n). On the two CSAs we have mentioned,
this is O(tsearch(m) + k lg4+ε n).

As storing the top-k list needs O(k lg n) bits, the space for τk is
O((n/b)k lg n) = O(n/ lg1+ε n) bits. One τk tree is stored for each k power of 2,
so that at query time we increase k to the next power of 2 and solve the query
within the same time complexity. Summed over all the powers of 2, the space
becomes O(n/ lgε n) = o(n) bits. Therefore the total space is 2|CSA|+ o(n) bits.

Several subsequent improvements [6,3,10] reduced the time to O(tsearch(m) +
k tSA lg k lg

ε n), yet still using 2|CSA|+o(n) bits of space, that is, twice the space
of an optimal (under the hth order empirical entropy model) representation of the
collection. Only this year [23] the space was reduced to the optimal |CSA|+ o(n)
bits, yet the time raises to O(tsearch(m) + k tSA lg k lg

1+ε n).

Tsur’s Optimal-Space Index. Building on ideas of Belazzougui et al. [3], Tsur
[23] managed to reduce the space to the asymptotically optimal |CSA|+o(n) bits.
Let u′ ∈ τk be the parent of u in τk, that is, its nearest marked ancestor in the
suffix tree. Tsur proved that, from the O(b) leaves of u′ \ u, only O(

√
bk) have

a chance to become part of the top-k list for a locus node v between u′ and u.
Thus, they simply store those candidate documents, and their frequency in u,
associated to u. When one traverses the O(b) leaves in v \ u, one (1) computes
the document d as before, (2) if it is not stored as a candidate for u one can just
ignore it, (3) if it is in the list then one just increases its frequency by 1. At the
end one has enough information to answer the top-k query, without the need of
the second |CSA| bits to compute frequencies below v.

If b = k�, the number of candidates is t = O(
√
bk) = O(k

√
�). One can

encode them efficiently by storing, for each candidate d, the position of one leaf
corresponding to d in the area covered by u′ \ u. Those leaf positions are sorted
and stored differentially: Let 0 < p1 < p2 < . . . < pt < 2b be the ordered
positions, then one encodes x1, x2, . . . , xt, where xi = pi − pi−1 (p0 = 0) using,
say, γ-codes [4], which occupy

∑
2 lgxi = O(t lg(b/t)) = O(k

√
� lg �) bits by the

log-sum inequality. The frequencies are encoded in O(k lg n+ k
√
� lg �) bits (the

method is not relevant here).
Therefore, the space for top-k answers plus candidates is O(k lg n+ k

√
� lg �)

bits, and the total space for a fixed k equals O((n/b)(k lg n + k
√
� lg �)) =

O(n((lg n)/�+(lg �)/
√
�)) bits. By choosing � = lg k lg1+ε n, and since lg k ≤ lg n,

this is O(n/(lg k lgε/2 n)). Added over all the k values that are powers of 2, this

is O(n/ lgε/2 n)
∑lgD

i=1 1/i = O(n lg lgD/ lgε/2 n) = o(n) bits.
The total time is O(tsearch(m) + b tSA) = O(tsearch(m) + k tSA lg k lg1+ε n). For

the two CSAs we have described, this is O(tsearch(m) + k lg k lg2+ε n).

Hon, Shah, Thankachan and Vitter’s Fastest Index. Hon et al. [10]
obtained the fastest solution to date using 2|CSA|+ o(n) bits of space. For this
sake they consider two independent blocking values, c < b. For block value b
they build the τk trees as before. For block value c they build another set of
marked trees ρk. These trees are finer-grained than the τk trees. Now, given the
locus node v, there exists a maximal node w ∈ ρk contained in v, and a maximal



Faster Top-k Document Retrieval in Optimal Space 259

node u ∈ τk contained in w. The key idea is to build a list of top-k to top-2k
candidates by joining the precomputed results of w and u, and then correct this
result by traversing O(c) suffix tree leaves.

Since we have a maximal node u ∈ τk contained in any node w ∈ ρk, we
can encode the top-k list of w only for the documents that are not already in
the top-k list of u. Note that a document must appear at least once in w \ u
if it is in the top-k list of w but not in that of u. Thus the additional top-k
candidates of w can be encoded using O(k lg(b/k)) bits, by storing as before one
of their positions in w \ u, and encoding the sorted positions differentially. The
frequencies do not need to be encoded, since they can be recomputed as for any
other candidate.

The space for a τk tree is O((n/b)k lgn) = O(n/ lg1+ε n) bits using b =
k lg2+ε n, which added over all the powers of 2 for k gives O(n/ lgε n) = o(n)
bits, as before. For the ρk trees they require O((n/c)k lg(b/k)) bits, which using
c = k lg k lgε n gives O(n lg lg n/(lg k lgε n)) bits. Added over the powers of 2 for

k this gives O(n lg lgn/ lgε n)
∑lgD

i=1 1/i = O(n lg lg n lg lgD/ lgε n) = o(n) bits.
The time is dominated by that of traversing O(c) cells. Using some speedups

[3] over the basic technique [11], the time is O(tSA lg lg n) per cell, for a total
of O(tsearch(m) + k tSA lg k lg

ε n) for any constant ε > 0. Over the two CSAs we
have described, this is O(tsearch(m) + k lg k lg1+ε n).

3 A Faster Space-Optimal Representation

We build upon the schemes of Tsur [23] and Hon et al. [10]. We will use the
dual marking mechanism of Hon et al., with trees τk and ρk, and make it work
without using the second |CSA| bits. Without this data, the structure gives us
the top-k list of the maximal node w ∈ ρk that is below the locus v, but not
their frequencies. Similarly, when we traverse the O(c) extra cells to correct the
top-k list, we have no way to compute the frequency of the documents d found
in v \ w.

In order to cope with the second problem, we will use the idea of Tsur: there
can be only O(

√
ck) candidates that can make it to the top-k list. If c = k�,

this is O(k
√
�). Thus we can record their identities by means of their sorted and

differentially encoded positions along O(c) leaves, in total space O(k
√
� lg lg n)

bits. Now we need a mechanism to store the frequencies, both of the top-k
elements and of the O(k

√
�) candidates. For this sake we introduce a new data

structure.

3.1 The Sampled Document Array

The document array E[1, n] of T contains at E[i] the document to which A[i]
belongs [15]. It is a convenient structure but it requires n lgD bits of space. We
store just a sampled version of it.

Definition 1. The sampled document array is an array E′[1, n′] that stores
every sth occurrence of each document d in E, for a sampling step s. That is, if



260 G. Navarro and S.V. Thankachan

rankd(E, i) is the number of times d occurs in E[1, i], the cell E[i] is stored in
E′ iff rankE[i](E, i) is a multiple of s. Note that n′ ≤ n/s.

To E′ we associate a bitmap S[1, n] that marks the positions in E that are
sampled in E′. The following lemma follows easily.

Lemma 1. Let x be the number of occurrences of a document d in E[sp, ep],
and let y be the number of occurrences of d in E′[rank(S, sp−1)+1, rank(S, ep)].
Then (y − 1)s < x < (y + 1)s.

Proof. The area E[sp, ep] includes y sampled occurrences of d. For the last y−1,
their s − 1 preceding non-sampled occurrences are also in E[sp, ep]. The s − 1
occurrences preceding the first sampled one could be before sp, and thus x ≥
(y−1)s+1. Alternatively, all the ys occurrences corresponding to the y sampled
ones could be in the range, which could also include up to s − 1 non-sampled
occurrences to their right, yet their sampled successor could be after ep, thus
x ≤ ys+ (s− 1). 
�

To use this lemma we store E′ using a representation [7] that requires n′ lgD+
o(n′ lgD) and computes rankd(E

′, i) in time O(lg lgD). Further, we represent S
in compressed form [21] so that it requires n′ lg(n/n′) + O(n′) + o(n) bits and
supports rank(S, i) in constant time. We use s = lg2 n, thus n′ = O(n/ lg2 n)
and the space for both E′ and S is o(n). Using this representation, we can
compute y in Lemma 1 as rankd(E

′, rank(S, ep)) − rankd(E
′, rank(S, sp − 1)) in

time O(lg lgD).

3.2 Completing the Index

To retrieve any tf(w, d) for a top-k document in node w ∈ ρk, we use S and
E′ to compute the approximation ys in time O(lg lgD), and then need to store
only O(lg s) = O(lg lgn) bits in w to correct this approximate count. Each
node w ∈ ρk stores (the correction of) the frequency information of both its
top-k documents that appear in the top-k list of its maximal descendant node
u ∈ τk, and those that do not (in fact, we do not need frequency information
associated to τk nodes). Similarly, we need to compute tf(w, d) for any of the
O(

√
ck) candidates to top-k in w, thus we must also store (the correction of)

those O(
√
ck) frequencies, which dominate the total space of O(k

√
� lg lg n) bits.

With this information we can discard the second |CSA| bits of Hon et al. [10].
We use � = lg2 k lgε n. The space for one ρk tree is O((n/c)k

√
� lg lgn) =

O(n lg lg n/
√
�) = O(n lg lg n/(lg k lgε/2 n)) bits. Adding over all the powers of

2 for k yields O(n lg lg n/ lgε/2 n)
∑lgD

i=1 1/i = O(n lg lg n lg lgD/ lgε/2 n) = o(n)
bits. Thus the total space is |CSA|+ o(n) bits.

At query time we store the top-k documents of w, plus the O(
√
ck) candidates,

together with their frequencies in w, in a dictionary using the document identi-
fiers as keys. Then we traverse the O(c) cells of v\w, accessing the CSA to deter-
mine each document identifier d. If d is not in the dictionary, it can be discarded,
otherwise we increment its frequency. At the end, we scan the O(

√
ck) elements



Faster Top-k Document Retrieval in Optimal Space 261

of the dictionary and keep the k largest ones. The cost is dominated by comput-
ing the O(c) CSA cells, plus O(lg lgD) time per cell to compute rankd(E

′, i) and
O(1) to operate the dictionary1. This adds up to O(k(tSA + lg lgD) lg2 k lgε n),
and the latter term absorbs the lg lgD.

Theorem 1. The top-k most frequent documents problem, on a collection of
length n, for a pattern of length m, can be solved using |CSA| + D lg(n/D) +
O(D) + o(n) bits and in O(tsearch(m) + k tSA lg

2 k lgε n) time, for any constant
ε > 0. Here CSA is a compressed suffix array over the collection, tsearch(m) is
the time CSA takes to find the suffix array interval of the pattern, and tSA is the
time it takes to retrieve any suffix array cell.

We also give two simplifications using recent CSAs [1,2] whose size is related to
Hh, the per-symbol empirical entropy of the text collection, for any h ≤ α lgσ n
and any constant 0 < α < 1. For the second, since it uses O(n) extra bits, we
set a smaller c = k(lg k lg lgn lg lgD)2.

Corollary 1. The top-k most frequent documents problem, when D = o(n), can
be solved using nHh(1 + o(1)) + o(n) bits and in O(m lg lg σ + k lg2 k lg1+ε n)
time, for any constant ε > 0.

Corollary 2. The top-k most frequent documents problem can be solved using
nHh(1 + o(1)) +O(n) bits and in O(m+ k lgn(lg k lg lg n lg lgD)2) time.

4 Final Remarks

Reaching asymptotic space optimality (under the hth order empirical entropy
model) for top-k document retrieval indexes is a very recent achievement. In this
work we have improved the time of that space-optimal solution [23]. Our time
complexity is a lg2 k lgε n factor away from the minimum time required to obtain
k document identifiers using the CSAs, and a lg k factor away from the fastest
available solution that uses 2|CSA|+ o(n) bits [10].

It is natural to ask if those limits can be reached. Especially if the first limit
is matched, this problem could be finally considered closed in the scenario of
using optimal space based on CSAs. We believe, however, that a lg k factor in
the time is the unavoidable price of allowing k to be specified at query time,
whereas reaching the time of the currently fastest solution [10] seems feasible.

The other natural question is how much space is necessary to obtain the
optimal O(m + k) time. The best current space used to achieve this time is
O(n(lgD + lg σ)) [18]. While it seems that n lgD bits are unavoidable in this
case, there have been some efforts to use only |CSA|+n lgD+ o(n lgD) bits [9].
However the time achieved is not yet the optimal.

1 For example, we can bucket the universe [1, D] in chunks of lg2 D elements, and store
a B-tree of arity

√
lgD and height O(1) for the elements falling in each chunk. The

bucket structure adds up to o(D) bits, which can be taken as part of the index. The
B-trees are operated in constant time because they store only O(lgδ D lg lgD) bits
per internal node. They occupy overall O(

√
ck lg n) = O(k lg k lg1+ε/2 n) bits, which

is the space we use to answer the query. See [16, App. E] for more details.



262 G. Navarro and S.V. Thankachan

References

1. Barbay, J., Gagie, T., Navarro, G., Nekrich,Y.: Alphabet partitioning for compressed
rank/select and applications. In: Proc. 21st ISAAC, Part II, pp. 315–326 (2010)

2. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Proc. 19th ESA, pp. 748–759 (2011)

3. Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discr. Alg. 18, 3–13 (2013)

4. Bell, T., Cleary, J., Witten, I.: Text compression. Prentice-Hall (1990)
5. Büttcher, S., Clarke, C., Cormack, G.: Information Retrieval: Implementing and

Evaluating Search Engines. MIT Press (2010)
6. Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and

document retrieval. Theo. Comp. Sci. 483, 36–50 (2013)
7. Golynski, A., Munro, I., Rao, S.: Rank/select operations on large alphabets: a tool

for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)
8. Hon, W.-K., Patil, M., Shah, R., Bin Wu, S.: Efficient index for retrieving top-k

most frequent documents. J. Discr. Alg. 8(4), 402–417 (2010)
9. Hon, W.-K., Shah, R., Thankachan, S.V.: Towards an optimal space-and-query-

time index for top-k document retrieval. In: Kärkkäinen, J., Stoye, J. (eds.) CPM
2012. LNCS, vol. 7354, pp. 173–184. Springer, Heidelberg (2012)

10. Hon, W.-K., Shah, R., Thankachan, S., Vitter, J.: Faster compressed top-k docu-
ment retrieval. In: Proc. 23rd DCC, pp. 341–350 (2013)

11. Hon, W.-K., Shah, R., Vitter, J.: Space-efficient framework for top-k string retrieval
problems. In: Proc. 50th FOCS, pp. 713–722 (2009)

12. Hon, W.-K., Shah, R., Wu, S.-B.: Efficient index for retrieving top-k most frequent
documents. In: Proc. 16th SPIRE, pp. 182–193 (2009)

13. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp. 22(5), 935–948 (1993)

14. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3),
407–430 (2001)

15. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc
13th SODA, pp. 657–666 (2002)

16. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-
trieval on sequences. CoRR, arXiv:1304.6023v5 (2013)

17. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
art 2 (2007)

18. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Proc. 23rd SODA, pp. 1066–1078 (2012)

19. Navarro, G., Valenzuela, D.: Space-efficient top-k document retrieval. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 307–319. Springer, Heidelberg (2012)

20. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discr.
Alg. 5, 12–22 (2007)

21. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with ap-
plications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 3(4),
art 43 (2007)

22. Shah, R., Sheng, C., Thankachan, S.V., Vitter, J.S.: Top-k document retrieval in
external memory. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS,
vol. 8125, pp. 803–814. Springer, Heidelberg (2013)

23. Tsur, D.: Top-k document retrieval in optimal space. Inf. Proc. Lett. 113(12),
440–443 (2013)

24. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 1–11 (1973)



Faster Range LCP Queries�

Manish Patil, Rahul Shah, and Sharma V. Thankachan

Louisiana State University, USA
{mpatil,rahul,thanks}@csc.lsu.edu

Abstract. Range LCP (longest common prefix) is an extension of the
classical LCP problem and is defined as follows: Preprocess a string
S[1...n] so that maxa,b∈{i...j}LCP(Sa, Sb) can be computed efficiently for
the input i, j ∈ [1, n], where LCP(Sa, Sb) is the length of the longest com-
mon prefix of the suffixes of S starting at locations a and b. In this paper,
we describe a linear space data structure with O((j − i)1/2 logε(j − i))
query time, where ε > 0 is any constant. This improves the linear space
and O((j−i) log log n) query time solution by Amir et. al. [ISAAC, 2011].

1 Introduction and Related Work

Let S[1...n] be a given string of length n, and let Sa represent its suffix S[a...n]
starting at location a. Then LCP(Sa, Sb) represents the length of the longest
common prefix of Sa and Sb. Being one of the most important tools in Combi-
natorial Pattern Matching LCP has been studied extensively. LCP computation
is required in order to compute the Ziv-Lempel compression [7], and for finding
maximal repeats in a genomic sequence in various Bioinformatics algorithms [1].
In [6] authors have established the relation between LCP and a well known string
similarity measure “edit distance”. It was shown that computing mismatches and
LCPs is sufficient for computing the edit distance between a pair of strings. In
this paper, we study an extension of this problem called Range LCP which is
defined as follows:

Definition 1. Index a string S[1...n], such that given a range [i, j] with 1 ≤ i ≤
j ≤ n, output the following: maxa,b∈{i...j}LCP(Sa, Sb).

Cormode and Muthukrishnan [3] introduced a variant of range LCP (which
we call pivot range LCP), in which the maximum LCP between a given suffix
and all suffixes in a given interval is sought. They provide a solution with query
time O(log n log logn). This result was then improved by [5] to O(log n) query
time. In this paper, we first give a solution to this problem where query time is
sensitive to the input range instead of string length i.e., n as captured in theorem
below.

Theorem 1. A string S[1...n] can be indexed in O(n logn) bits, such that given
a range [i, j] with 1 ≤ i ≤ j ≤ n and a suffix Sa as query input, we can compute
maxb∈{i...j}LCP(Sa, Sb) in O(logε(j − i)) time, where ε > 0 is any constant.

� Work supported by National Science Foundation (NSF) Grants CCF–1017623 (R.
Shah and J. S. Vitter) and CCF–1218904 (R. Shah).

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 263–270, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


264 M. Patil, R. Shah, and S.V. Thankachan

Amir et. al. [1] have recently studied the range LCP problem. They gave
an algorithmic solution that returns a pair of suffixes with the longest LCP
(not the LCP itself) in O((j − i) log(j − i)) time with O((j − i) log(j − i))-
word space utilization. They also investigated the indexing techniques for the
same with space-time tradeoffs. They achieve O(log log n) query time with index
occupying O(n log1+ε n) words for arbitrary small constant ε. A space-efficient
index proposed by them is of linear space and answers range LCP queries in
O((j − i) log logn) time. We improve this result and achieve better query time
with linear space as summarized below.

Theorem 2. A string S[1...n] can be indexed in O(n logn) bits, such that range
LCP query with input range [i, j], 1 ≤ i ≤ j ≤ n can be answered in O((j −
i)1/2 logε(j − i)) time, where ε > 0 is any constant.

2 Preliminaries

2.1 Suffix Trees

Given a string S[1...n], a substring S[a...n] with 1 ≤ i ≤ n is called a suffix of
S and is denoted by Sa. The lexicographic arrangement of all n suffixes of S
in a compact trie is known as the suffix tree of S [11], where the ith leftmost
leaf represents the ith lexicographically smallest suffix. Each edge in the suffix
tree is labeled by a character string and for any node u, path(u) is the string
formed by concatenating the edge labels from root to u. For any leaf v, path(v)
is exactly the suffix corresponding to v. The space requirement of the suffix
tree of S is bounded by O(n log n) bits. Given two leaves v and w, the longest
common prefix of two suffixes corresponding to these leaves is given by the least
common ancestor (LCA) of v and w in the suffix tree. As suffix tree supports
LCA queries in constant time, each node u can be associated with a number
representing length of path(u) (maintaining space utilization of O(n log n) bits)
so that given two leaves, length of the longest common prefix can be reported in
constant time.

Suffix array of S is an array SA[1...n], such that SA[j] is the starting position
of the jth lexicographically smallest suffix of S. Like suffix tree, suffix array of
S also takes O(n logn) bits. We can maintain an additional array SA−1[1...n]
in O(n log n) bits, called inverse suffix array such that SA−1[i] = j if SA[j] = i.
Then, given a suffix Sa = S[a...n], its position in the suffix array can be located
in constant time.

2.2 Orthogonal Range Successor Queries

An orthogonal range reporting query R on a set of 2-dimensional (2d) points P
asks for all points p ∈ P that belong to the query rectangle R = [x1, x2]×[y1, y2].
The orthogonal range reporting problem, that is, the problem of construct-
ing a data structure that supports such queries has been studied extensively.
Lenhof and Smid [8] introduced an optimization query called the orthogonal



Faster Range LCP Queries 265

range successor query (ORS) and subsequently it has been investigated by many
researchers [10,12,2,4]. The answer to an ORS query R = [x1, x2] × [y1,+∞] is
the point with smallest y-coordinate among all points that are in the rectangle
R. In this paper, we use the result by Nekrich and Navarro [9] that can answer
the ORS queries in O(logε n) time and occupies O(n) word space for a collection
of n points1. Similar to ORS, we can also define orthogonal range predecessor
query (ORP), where given a query R = [x1, x2]× [−∞, y2], the goal is to return
the point with largest y-coordinate among all points that are in the rectangle
R. We note that both ORS and ORP are equivalent up to a simple change of
coordinate system and point transformation. Hence, we assume the availability
of linear space structure ORPS with O(logε n) query time that can answer both
ORP as well ORS queries.

3 Pivot Range LCP

Pivot Range LCP query is a range LCP query where along with [i, j], a pivot
suffix Sa is given as input and our goal is to compute max b∈{i...j}LCP(Sa, Sb).
Here we assume that pivot suffix Sa is made available to the query in terms of
its starting position in the text i.e. a. We rely on the following observation [1]
to answer the pivot range LCP queries.

Lemma 1. Given a string S of length n and its suffixes Sx, Sy and Sz such that
1 ≤ SA−1[x] ≤ SA−1[y] ≤ SA−1[z] ≤ n, we have LCP (Sx, Sz) ≤ LCP (Sx, Sy)
and similarly LCP (Sx, Sz) ≤ LCP (Sy, Sz).

Our first result for the pivot range LCP queries is summarized in the lemma
below, which we improve later in the section.

Lemma 2. A string S[1...n] can be indexed in O(n log n) bits, such that given
a range [i, j] with 1 ≤ i ≤ j ≤ n and a suffix Sa as query input, we can compute
maxb∈{i...j}LCP(Sa, Sb) in O(logε n) time, where ε > 0 is any constant.

Proof. The linear space structure consists of the suffix tree of S, and a ORPS
structure (Section 2.2) over the suffix array. To obtain the ORPS structure we
convert each position m in the string S[1...n] to a 2d point (m,SA−1[m]) so that
points lie on an n×n grid. To answer the query, we first find out the position ȳ of
Sy = Sa in the suffix array. i.e., ȳ = SA−1[y] = SA−1[a]. Let x̄ be the largest po-
sition in suffix array such that x̄ < ȳ and x ∈ [i, j]. If such x̄ does not exists, then
we assume x̄ = −1, with Sx being an empty string. Symmetrically, let z̄ be the
smallest position in suffix array such that ȳ < z̄ and z ∈ [i, j]. Moreover let Sb∗

be the suffix such that b∗ ∈ [i, j] and LCP(Sa, Sb∗) =max b∈{i...j}LCP(Sa, Sb).
Then with all suffixes in suffix tree/suffix array being lexicographically sorted,
we have either b̄∗ = x̄ or b̄∗ = z̄ by Lemma 1. Given ȳ, both x̄ and z̄ can be
computed in O(logε n) time with constant ε > 0. Here x̄ can be obtained using
a ORP query R = [i, j]× [−∞, ȳ] and z̄ using a ORS query R = [i, j]× [ȳ,+∞].

1 Assumes that points lie on an n× n grid.



266 M. Patil, R. Shah, and S.V. Thankachan

Then LCP values can be computed for the pairs (Sx, Sy), (Sy, Sz) in O(1) time
using suffix tree. Finally we report maximum LCP value as an output. There-
fore, total query time can be bounded by O(logε n). 
�

With the goal of making the query time sensitive to the input query range we
propose the overlapping blocking scheme. We define blocking parameter β (to
be fixed later) and without loss of generality assume that it is always rounded
to the next highest power of 2. We partition the string S[1...n] into 2(n/β) −
1 overlapping substrings each of size β (except possibly last two), such that
Sβ,t = S[1 + (t − 1)β/2...(t + 1)β/2] for t = 1, 2, 3, .... Now we maintain the
ORPS structure over the suffix array of each substring Sβ,t separately, occupying
O(n log β) bits. Further, such a collection of ORPS structures is maintained for
β = n, n1/2, n1/4, .... Total space requirement of such a storage can be bounded
by O(n(log n+ logn

2 + logn
4 + ...)) = O(n log n) bits.

To answer the pivot range LCP query ([i, j], Sy) we follow the same process
as described in Lemma 2 except this time we query the ORPS structure built for
substring Sβ,t. Here we choose smallest blocking factor β that can encompass a
string of length j− i+1 and then choose the substring with this blocking factor
that contains both locations i and j. To be precise we choose β = n1/2α , such that
n1/2α+1

< j−i+1 ≤ n1/2α and t = 1+�i/(β/2)�. We emphasize that due to such
careful selection of Sβ,t, we have log β at most twice of log(j−i+1). Hence, time
required to answer the query is bounded by O(logε β) = O(logε(j − i)). Thus,
we achieve the result summarized in Theorem 1 which forms one of the main
building blocks of our final solution.

4 An O(n) Bits LCP Matrices

In this section, we begin by describing an O(n) bits LCP matrix LM which along
with index in Theorem 1 can answer range LCP queries in O(

√
n logn logε(j−i))

time. Then we improve it to O(
√
n log logn logε(j − i)) with the help of an

additional O(n) bits LCP matrix lm. Below we describe the maintenance of
these LCP matrices to achieve the required query performance.

Δ-LCP Matrix: Let Δ be the blocking parameter to be decided later. We par-
tition the given string S[1...n] into n/Δ disjoint substrings each of size Δ. A
blocking boundary fΔ,t of partitioning based on Δ is called as Δ-boundary and
fΔ,t = 1 + (t − 1)Δ. Now we maintain a (n/Δ) × (n/Δ) LCP matrix LM such
that LM [x, y] =maxa,b∈{fΔ,x...fΔ,y}LCP(Sa, Sb) along with pair of suffixes that
achieve the maximum LCP value. In essence, we pre-compute the answers to
the range LCP queries for all ranges [i, j] where both i and j are aligned with
some Δ-boundary and maintain them in a matrix. Note that it is sufficient to
maintain only one of the suffixes in LM [x, y] instead of actual LCP value and a
pair of suffixes, as this information can be obtained quickly in (O(logε(j − i)))
time using Theorem 1. Moreover, the suffix is maintained in the matrix LM by
its starting position in the text. Therefore, space required for storing the LCP
matrix LM is bounded by O((n/Δ)2 logn) bits.



Faster Range LCP Queries 267

Query algorithm: Given an input range [i, j], we begin by identifying a maximal
(largest) range that is aligned with someΔ-boundaries and is completely covered
by input range in constant time i.e., a maximal range IΔ = [fΔ,i′ , fΔ,j′ ] such
that it is completely within the input range [i, j]. Let suffix pair (Sa∗ , Sb∗) be the
output for the given range LCP query, then there are two possibilities regarding
the beginning positions of these suffixes in text i.e., a∗ and b∗, relative to the
range IΔ. Either both suffixes begin at a position within the range IΔ (a∗, b∗ ∈
[fΔ,i′ , fΔ,j′ ]) or either of them begin at a position outside the range IΔ (either
a∗ /∈ IΔ or b∗ /∈ IΔ). Relying on this observation we follow a simple process
described below to retrieve candidates from which the pair (Sa∗ , Sb∗) along with
the LCP value can be obtained.

1. Retrieve the pre-computed answer pair (Sx, Sy) for the range IΔ by probing
LM [i′, j′] and insert it into candidate set

2. For each suffix Sx, where x ∈ [i, fΔ,i′ − 1] or x ∈ [fΔ,j′ + 1, j] (called as
fringe suffix), obtain the suffix Sy by issuing a pivot range query ([i, j], Sx)
and insert the pair (Sx, Sy) into candidate set

Finally, choose the suffix pair with maximum LCP value among the candidates
as (Sa∗ , Sb∗) and report it as an output. Since number of fringe suffixes (hence
candidates) is bounded by Δ (fΔ,i′ −i < Δ and j−fΔ,j′ < Δ), Step 2 only needs
O(Δ logε(j − i)) time. Moreover probing cell LM [i′, j′] requires O(logε(j − i))
time. Therefore, overall query time can be bounded by O(Δ logε(j − i)).

To restrict the size of LCP matrix LM , we choose Δ =
√
n logn, which

establishes the result summarized in the following lemma.

Lemma 3. A string S[1...n] can be indexed in O(n log n) bits, such that the
range LCP query with input range [i, j], 1 ≤ i ≤ j ≤ n can be answered in
O(

√
n logn logε(j − i)) time, where ε > 0 is any constant.

It can be observed that query performance in the above lemma can be im-
proved by reducing the number of fringe suffixes evaluated during query time.
Below we show how it can be achieved by maintaining an additional LCP matrix
lm in O(n) bits.

δ-LCP Matrix: Let δ be the another blocking parameter such that δ < Δ 2. By
following the partitioning with parameter δ as described earlier, we intend to keep
(n/δ)×(n/δ) LCP matrix lm such that lm[x, y] =maxa,b∈{fδ,x...fδ,y}LCP(Sa, Sb).
However, we can not afford to maintain the precomputed answers explicitly
by using logn bits as we did for matrix LM . Rather we exploit the already
precomputed answers in LM and restrict each entry in the matrix lm to 1 +
log(Δ/δ) bits as follows and total space requirement of lm can be bounded by
O((n/δ)2 log(Δ/δ)).

Let Iδ = [i, j] be the range enclosed by δ-boundaries i.e., i = fδ,x, y = fδ,y. We
obtain a maximal range IΔ = [fΔ,i′ , fΔ,j′ ] that is completely contained within

2 Assume both Δ and δ are rounded to the next highest power of 2.



268 M. Patil, R. Shah, and S.V. Thankachan

Iδ. Moreover, let (Sa∗ , Sb∗) be the output for the range LCP query with input
being range Iδ. As observed in the previous query algorithm, either a∗, b∗ ∈ IΔ
or at least one of the two suffixes do not originate in the range IΔ i.e. a∗ /∈ IΔ or
b∗ /∈ IΔ. We record these possibilities using a bit indicator. We set the indicator
bit in lm[x, y] to indicate that output of range LCP query with input Iδ is the
same as that of range LCP query with input IΔ (whenever a∗, b∗ ∈ IΔ). In such
a scenario, suffix pair (Sa∗ , Sb∗) can be retrieved from matrix LM directly and
hence need not be maintained in matrix lm at all.

For the remaining case, when either a∗ /∈ IΔ or b∗ /∈ IΔ we maintain the
approximate location of the suffix. Without loss of generality, let a∗ /∈ IΔ, then
instead of storing location a∗ explicitly (requiring logn bits), we keep identifica-
tion of the δ-partition within the Δ-partition to which a∗ belongs to. Precisely,
we store 1 + �(a∗ − �a∗/Δ�Δ)/δ� occupying log(Δ/δ) bits per entry. The down-
side of such approximate location information of the suffix is that, no longer we
can probe cell lm[x, y] in O(logε(j − i)) time as before. However retrieving the
a∗ value from this encoding is bounded by O(δ logε(j − 1)), since we can issue
pivot range LCP queries for all suffix locations sharing the same encoding value
i.e. δ-partition identified by lm[x, y].

Query algorithm: Given an input range [i, j], we first identify a maximal range
Iδ = [fδ,i′ , fδ,j′ ] such that it is completely within [i, j]. Then by similar observa-
tion as before we accumulate candidate suffix pairs as follows:

1. Retrieve the pre-computed answer pair (Sx, Sy) for the range Iδ by probing
lm[i′, j′] and insert it into candidate set

2. For each suffix Sx where x ∈ [i, fδ,i′ − 1] or x ∈ [fδ,j′ + 1, j] (called as fringe
suffix) obtain the suffix Sy by issuing a pivot range query ([i, j], Sx) and
insert the pair (Sx, Sy) into candidate set

Suffix pair with maximum LCP value among the candidates can then be re-
ported as an output. Both the above steps of candidate retrieval needO(δ logε(j−
i)) time. In the first step, probing the cell lm[i′, j′] requires O(logε(j− i)) time if
indicator bit is set otherwise the approximate suffix location stored in lm[i′, j′]
can be decoded in O(δ logε(j− i)) time as described earlier. Whereas for the sec-
ond step, the number of fringe suffixes and hence the number of pivot range LCP
queries executed is bounded by O(δ). Thus, total time required for answering
the query is bounded by O(δ logε(j − i)).

To restrict the overall size of LCP matrices, we choose Δ =
√
n logn and

δ =
√
n log logn thus establishing following result.

Lemma 4. A string S[1...n] can be indexed in O(n log n) bits, such that the
range LCP query with input range [i, j], 1 ≤ i ≤ j ≤ n can be answered in
O(

√
n log logn logε(j − i)) time, where ε > 0 is any constant.



Faster Range LCP Queries 269

5 Adaptive O((j − i)1/2 logε(j − i)) Time Solution

To reduce the term
√
n in query time of Lemma 4 to (j− i)1/2, we reuse the idea

introduced earlier to make query time of pivot range LCP queries sensitive to
the input query range. We partition the string S[1...n] using blocking parameter
β into 2(n/β)− 1 overlapping substrings such that Sβ,t = S[1+ (t− 1)β/2...(t+
1)β/2] for t = 1, 2, 3, .... We then maintain the pair of LCP matrices i.e., matrix
LM and lm for each substring Sβ,t separately, occupying O(n) bits. Such a
collection of proposed LCP matrices is maintained for β = n, n/2, n/4, ... with
overall space usage of O(n logn) bits. Our final data structure consists of three
components each of O(n log n) bits as below:

– Suffix tree of input string S
– ORPS structure for each substring Sβ,t for β = n, n1/2, n1/4, ...
– Pair of LCP matrices i.e., LM , lm for each substring Sβ,t for β =
n, n/2, n/4, ...

To answer the range LCP query with input range [i, j], we first obtain sub-
strings Sβ,t and Sβ′,t′ as follows:

– Substrings Sβ,t is selected in exactly the same way we did earlier to obtain the
result for pivot range LCP query in Theorem 1. Recall, we choose β = n1/2α

such that n1/2α+1

< j− i+1 ≤ n1/2α and t = 1+ �i/(β/2)�. Then, any pivot
range LCP query (i, j, Sy) where y ∈ [i, j] can be answered in O(logε(j − i))
time by querying the ORPS structure on Sβ,t (Theorem 1).

– For substring Sβ′,t′ , we choose β′ = n/2α
′
such that n/2α

′+1 < j − i + 1 ≤
n/2α

′
and t = 1 + �i/(β′/2)�. In essence we choose smallest blocking factor

that can encompass a string of length j− i+1 and then choose the substring
with this blocking factor that completely contains the range [i, j].

We use the matrix pair for the substring Sβ′,t′ to answer the query. Let
m ≤ 2(j − i+ 1) be the length of the substring Sβ′,t′ . We note that the matrix
LM and lm have been built for Sβ′,t′ using blocking factors Δ =

√
m logm and

δ =
√
m log logm. Therefore, by following the query algorithm for Lemma 4, the

number of fringe suffixes evaluated during query time are O(
√
m log logm) with

each such evaluation costing logε(j − i) due to the pivot range LCP query an-
swered using ORPS structure on substring Sβ,t. Moreover, probing the cell in the
matrix lm will also cost O(

√
m log logm logε(j−i)). Time required for answering

the given range LCP query is thus bounded by O(
√
m log logm logε(j − i)) =

O((j − i)1/2 log2ε(j − i)). Therefore, the proposed data structure achieves the
result summarized in Theorem 2.

References

1. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.: Range
LCP. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011.
LNCS, vol. 7074, pp. 683–692. Springer, Heidelberg (2011)



270 M. Patil, R. Shah, and S.V. Thankachan

2. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the ram,
revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)

3. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proceedings
of the sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, pp. 321–330 (2005)

4. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Tischler, G., Walen,
T.: Improved algorithms for the range next value problem and applications. Theor.
Comput. Sci. 434, 23–34 (2012)

5. Keller, O., Kopelowitz, T., Landau, S., Lewenstein, M.: Generalized substring com-
pression. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577,
pp. 26–38. Springer, Heidelberg (2009)

6. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
Journal of algorithms 10(2), 157–169 (1989)

7. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(1), 75–81 (1976)

8. Lenhof, H.-P., Smid, M.H.M.: Using persistent data structures for adding range
restrictions to searching problems. ITA 28(1), 25–49 (1994)

9. Nekrich, Y., Navarro, G.: Sorted range reporting. In: SWAT, pp. 271–282 (2012)
10. Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC,

pp. 232–240 (2006)
11. Weiner, P.: Linear Pattern Matching Algorithms. In: SWAT, pp. 1–11 (1973)
12. Yu, C.-C., Hon, W.-K., Wang, B.-F.: Improved data structures for the orthogonal

range successor problem. Comput. Geom. 44(3), 148–159 (2011)



Learning to Schedule Webpage Updates

Using Genetic Programming

Aécio S.R. Santos1, Nivio Ziviani1, Jussara Almeida1, Cristiano R. Carvalho1,
Edleno Silva de Moura2, and Altigran Soares da Silva2

1 Universidade Federal de Minas Gerais,
Department of Computer Science, Belo Horizonte, Brazil

2 Universidade Federal do Amazonas,
Institute of Computing, Manaus, Brazil

Abstract. A key challenge endured when designing a scheduling policy
regarding freshness is to estimate the likelihood of a previously crawled
webpage being modified on the web. This estimate is used to define the
order in which those pages should be visited, and can be explored to
reduce the cost of monitoring crawled webpages for keeping updated
versions. We here present a novel approach to generate score functions
that produce accurate rankings of pages regarding their probability of
being modified when compared to their previously crawled versions. We
propose a flexible framework that uses genetic programming to evolve
score functions to estimate the likelihood that a webpage has been mod-
ified. We present a thorough experimental evaluation of the benefits of
our framework over five state-of-the-art baselines.

1 Introduction

The quality of a Web search engine depends on several factors, such as the
content gathered by the web crawler, the ranking function that produces the
document ordering, and the user interface. By its turn, the success of the crawling
process of a web search engine depends the coverage of the crawl, the policy used
to select pages to collect, and the freshness of the pages. The focus of this work
is on freshness, i.e., on the design of policies for scheduling webpage updates.

Web crawlers usually have access to limited bandwidth and their scheduler
should periodically sort a large list of known URLs to define the order in which
they should be visited. In this scenario, performing a full scan of all priorly
crawled webpages to assure database freshness is unfeasible. To avoid that, crawl-
ing architectures (e.g., VEUNI [8]) use a score function to assign a weight to each
known webpage (URL). Only the top k pages, k being a parameter, are taken to
be visited. After crawling the k pages, the scheduler starts a new crawling cycle,
using the score function to rank the known pages to be visited.

We here focus on the problem of estimating the likelihood that a webpage has
been modified. Prior work has used machine learning techniques to related tasks
(e.g., grouping pages with similar change behaviour [11], and predicting a page’s
change behaviour [10]), but none has applied them to build score functions. We

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 271–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


272 A.S.R. Santos et al.

investigate the potential of using a genetic programming (GP) framework to
learn these score functions. Our experimental evaluation shows that our solution
outperforms existing score functions [3,11], being it a viable alternative to solve
the addressed problem and opening opportunities for future work.

2 Background and Related Work

Like [2,3,11], we here consider a binary freshness model where the freshness of
page p at time t is 1 if the copy of p is identical to the live copy, or 0, otherwise.
The freshness of a set C of webpages can then be estimated by the average
number of fresh pages in C at time t.

Probabilistic models have been proposed to approximate the history and pre-
dict webpage changes. For example, Coffman et al. [5] proposed to model the
occurrences of changes on each page p by a Poisson process with parameter λp
changes per time unit. Cho and Garcia-Molina [3] also investigated estimators
for the change frequency of elements that are updated autonomously, in various
scenarios. They showed that a web crawler can achieve improvements in fresh-
ness by setting its refresh policy to visit pages proportionally more often based
on their proposed estimator, which is defined in Section 5.1.

Cho and Ntoulas [4] proposed a sampling-based method to detect webpage
changes based on the number of pages that changed in a sample downloaded
from the web site, which may be too coarse to represent all of its pages. Tan
and Mitra [11] proposed to solve this problem by grouping the pages into k
clusters with similar change behavior, and then sorting the clusters based on
the mean change frequency of a representative cluster’s sample. They proposed
four strategies to compute the weights associated with a change in each of the
downloaded cycles, which are further described in Section 5.1. Our work differs
from [11] as our approach is not sampling based, but uses machine learning to
build a score function that allows the scheduling of webpage updates. Once the
score function has been learned, which is done off-line, it can be applied quickly,
thus allowing large scale crawling using the architecture presented in Section 3.

Radinsky and Bennett [10] proposed a webpage change prediction framework
that uses content features, the degree and relationship among the prediction
page’s observed changes, the relatedness to other pages, and the similarity in the
kinds of changes they experienced. We here only use features related to whether
the page changed or not during each cycle. However, given the flexibility of GP,
our approach can be easily extended to include other features in the future.

3 Crawler Architecture

The incremental crawler architecture considered here has four main components:
fetcher, URL extractor, uniqueness verifier, and scheduler [8]. Considering cycle
i, the fetcher receives from the scheduler a set of candidate URLs to be crawled,
locates them, and returns a set of URLs actually downloaded. The URL extractor
parses each downloaded page and obtains a set of new URLs. The uniqueness



Learning to Schedule Webpage Updates Using Genetic Programming 273

Listing 1.1. Genetic Programming for Crawling (GP4C)

1 Let T be a training set of pages crawled in a given period ;
2 Let V be a validation set of pages crawled in a given period ;
3 Let Ng be the number of generations;
4 Let Nb be the number of best individuals ;
5 P ← Initial random population of individuals ;
6 Bt ← ∅ ;
7 For each generation g of Ng generations do {
8 Ft ← ∅ ;
9 For each individual i ∈ P do

10 Ft ← Ft ∪ {g, i, fitness(i, T )} ;
11 Bt ← getBestIndividuals(Nb,Bt ∪ Ft) ;
12 P ← applyGeneticOperations(P,Ft,Bt, g) ;
13 }
14 Bv ← ∅ ;
15 For each individual i ∈ Bt do
16 Bv ← Bv ∪ {i, fitness(i,V)} ;
17 BestIndividual ← applySelectionMethod (Bt ,Bv ) ;

verifier checks each URL against the repository of unique URLs1. The scheduler
chooses a new set of URLs to be sent to the fetcher, thus starting a new cycle.

We here focus on the algorithm for scheduling webpage updates, which is
driven by two main goals: coverage, the fraction of desired pages that the crawler
downloads successfully; and freshness, the degree to which the downloaded pages
remain up-to-date, relative to the current live web copies. Most prior work fo-
cuses on only one of them. This work is focused on freshness.

4 Genetic Programming for Incremental Crawling

We here apply GP to the problem of scheduling webpage updates, using it to
derive score functions that capture the likelihood that a page has changed. Pages
with higher likelihood should receive higher scores, and thus higher priority in
the scheduling process. Our method, called GP4C – Genetic Programming for
Crawling, uses a GP process adapted from [1], and is presented in Listing 1.1.

As shown in Listing 1.1, GP4C is an iterative process with two phases: training
(lines 5–13) and validation (lines 14–16). Our training and validation sets are
built as follows: we train with an initial set of pages and validate the results with
a distinct set of pages. This scenario is closer to that of large crawling tasks (e.g.,
crawling to a world wide search engine), where an initial set of pages to build
the training set is crawled first, and then a set of validation pages is crawled.
Experimental tests apply the resulting function in a third set of pages.

GP4C starts with the creation of an initial random population of Np indi-
viduals (line 5) that evolves generation by generation using genetic operators
(line 12) until a maximum number of generations (Ng). We apply the genetic

1 Note that the size of the set of candidate URLs passed to the fetcher is defined by
the amount of memory space available to the uniqueness verifier.



274 A.S.R. Santos et al.

operators of reproduction, crossover and (swap/replacement) mutation at pre-
defined rates. In particular, for the crossover operation, the selection of the
parents is performed randomly among the top best individuals of the current
generation. In the training phase, a fitness function is applied to evaluate all in-
dividuals of each generation (lines 9–10), so that only the Nb fittest individuals,
across all previous generations, are selected to continue evolving (line 11). After
the last generation is built, to avoid over-fitting, the validation phase is applied:
the fitness function is used over the validation set (lines 15–16), and individuals
that perform the best are selected as the final scheduling solutions (line 17).

Each individual represents a function that assigns a score to each page when
composing the scheduling at the training set. Such score combines information
useful for estimating the likelihood of a given page being updated in a period
of time, exploring, for instance, its behavior in previous crawls. The training is
performed in a period of time considered by us, and each individual is evaluated
as being the function to create the scheduling in the whole training period.

An individual is represented by a binary tree with a maximum depth d, where
terminals are features that help characterizing a page’s updating behavior. We
here consider three features: (1) n, the number of times that the page was visited;
(2) X , the number of times that the page changed in n visits; and t, the number
of cycles since the page was last visited. We also use the following constant values
as terminals: 0.001; 0.01; 0.1; 0.5; 1; 10; 100; 1000. As inner nodes of the tree, we
use the functions addition (+), subtraction (−), multiplication (∗), division (/),
logarithm (log), exponentiation (pow), and the exponential function (exp).

The fitness function measures the quality of the ranking produced using a
given individual for the whole training period. To compute the fitness of an
individual, we take the score it produces for each page in the training set of each
day and generate a schedule for the crawling to be performed on the next day.
We here use as fitness function the ChangeRate metric, defined in Section 5.1.

As in [1], we select the best individuals in the validation step by running the GP
process N times with distinct random seeds, so as to reduce the risk of finding
a low performance local best individual. We pick the best individual among
those generated by these N runs, referring to this approach as GP4CBest. As
in [6], we also consider two other strategies that are based on the average Avgσ
and the sum Sumσ of the performances of each individual in both training and
validation sets, minus the standard deviation of such performance when selecting
best individuals. The individual with the highest Sumσ (or Avgσ) is selected.
We refer to GP4C using these selection strategies as GP4C Sum and GP4CAvg.

5 Experimental Evaluation

We used a crawl simulation to ensure that all policies are compared under the
same conditions. We built a webpage dataset collected from the Brazilian Web
(.br domain) using the crawler presented in [8], whose architecture is described
in Section 3. Table 1 summarizes the dataset, referred to as BRDC’122, which

2 Available at http://homepages.dcc.ufmg.br/∼aeciosantos/datasets/

brdc12/

http://homepages.dcc.ufmg.br/$\sim $aeciosantos/datasets/brdc12/
http://homepages.dcc.ufmg.br/$\sim $aeciosantos/datasets/brdc12/


Learning to Schedule Webpage Updates Using Genetic Programming 275

consists of a fixed set of webpages crawled on between September and Novem-
ber 2012. From a repository of around 200 million URLs we selected 3,059,698
webpages, which were then daily monitored. During the monitoring periods, our
crawler ran from 0AM to 11PM, recollecting each selected webpage every day,
which allowed us to determine when each page was modified.

Table 1. Overview of our BRDC’12 dataset

Monitoring Number of Number of Number of webpages/site
period webpages websites Min Max Average

57 days 417,048 7,171 1 2,336 58.15

5.1 Baselines and Evaluation Metric

We compare GP4CBest, GP4C Sum and GP4CAvg with five baselines, referred
to here as CG, NAD, SAD, AAD and GAD. Given n the number of visits and
X the number of times that a page p changed in those n visits, the CG baseline
[3] estimates the change frequency of p as:

CG = − log(
n−X + 0.5

n+ 0.5
). (1)

The other four baselines were proposed by Tan and Mitra [11]. In order to
compute the change frequency of the pages, they assume that each page p follows
a Poisson process with parameter λp. That is, the probability that a page p will
change in the interval (0, t] is given by 1 − eλpt. We set t to be the number of
cycles since the page was last downloaded and compute λp using the change
history of the pages:

λp =

n∑
i=1

wi · Ii(p),

where n is the number of times the page was downloaded so far, wi is a weight
associated with a change occurred in the ith download of the page (

∑n
i=1 wi = 1),

and Ii(p) is either 1 if page p changed in the ith download, or 0 otherwise.
The weights wi are computed according to one of the following schemes:

– NAD (Nonadaptive): all changes are equally important (wi=
1
n , ∀i = 1..n).

– SAD (Shortsighted adaptive): only the last change is important (w1=· · · =
wn−1 = 0, wn = 1).

– AAD (Arithmetically adaptive): more recent changes are more important,
and weights decrease according to an arithmetic progression (wi =

i∑n
i=1 i).

– GAD (Geometrically adaptive): as the previous scheme, but weights decrease

more quickly, following a geometric progression (wi =
2i−1

∑
n
i=1 2i−1 ).

We also consider two simpler approaches to build score functions, referred to
as Rand and Age. In Rand, the scores are randomly chosen, whereas in Age,
they are equal to the time t since the page was last visited (i.e., downloaded).



276 A.S.R. Santos et al.

Our main evaluation metric is the ChangeRate, defined in [7] to assess the
ability of a scheduling policy to detect updates. The ChangeRate at cycle i is the
fraction of pages that were downloaded during i that had changed. The intuition
is that the higher the concentration of changed pages, the better the scheduling.
We use ChangeRate both as evaluation metric and fitness function, leaving the
use of alternative metrics (e.g., weighted ChangeRate [4]) for the future.

5.2 Experimental Methodology

We adopted a 5-fold cross validation: 4 folds were equally divided into training
set and validation set, and the last fold was used as test set. We report average
results for the 5 test sets, along with corresponding 95% confidence intervals.

In order to evaluate the score functions and compute fitness values we simulate
a crawl using our dataset. Our simulation starts with a warm-up period W=2
days, during which collected data is used to build basic statistics about each page.
For each day following warm-up, we apply our proposed score function and each
baseline to assign scores to each page. The download of the top-k pages with
highest scores produced by each method is then simulated by updating statistics
of the page such as number of visits (i.e., downloads), number of changes, etc.
We set k equal to 5% of the total number of webpages in the dataset. Whenever
the actual number of changed pages on a day is smaller than k, no evaluated
algorithm can reach a maximum ChangeRate.

Regarding parametrization of the GP framework, we set Np equal to 300
individuals, created using the ramped half-and-half method [9]. Due to the sta-
bility of results, we set Ng equal to 50 generations as termination criterion. We
adopted tournament selection of size 2 to select individuals to evolve and set the
crossover, reproduction, replacement mutation and swap mutation rates equal
to 90%, 15%, 5% and 5%, respectively. We set the maximum tree depth d to 10
and the maximum depth for crossover to 9. During the evolution process we kept
the Nb = 50 best individuals discovered through all generations to the validation
phase. We ran the GP process using N=5 random seed values.

5.3 Results

We now discuss the results produced by our GP4C framework and the baselines
using the BRDC’12 dataset. We consider only a basic set of terminals - n, X and
t (see Section 4) - to show that our solution can derive functions that perform
as good or better than the baselines.

Figure 1 shows the average ChangeRate for each day, for GP4CBest and all
baselines. We omit the results for the other GP4C variations as they are either
statistically tied or inferior to GP4CBest. With 95% confidence, GP4CBest is
statistically superior to all baselines in most days, being tied to NAD, AAD,
GAD and CG, the most competitive baselines, in only a few days. Specifically,
GP4CBest is statistically superior to NAD, AAD, GAD and CG in 22, 47, 49
and 50 of the simulated download cycles, respectively, being statistically tied



Learning to Schedule Webpage Updates Using Genetic Programming 277

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  10  20  30  40  50

C
ha

ng
eR

at
e

Download Cycles (Days)

NAD SAD AAD GAD CG GP2C_Best

Fig. 1. (Color online) Average ChangeRate on each download cycle

with them in the other days. The only exceptions occur in the three initial days:
GP4CBest is statistically inferior to AAD in days 1 and 3 and to GAD in day 1.
This result corroborates the flexibility of our framework as it is able to produce
results at least as good, if not better, than all five baselines.

Table 2 summarizes these results, showing average ChangeRate along with
95% confidence intervals for all methods, including the Rand and Age baselines
(omitted in Figure 1). Once again, our GP4C solutions produce score functions
superior to all baselines. Note that the results of Rand and Age are much worse
than all other methods. Moreover, even though our GP4C approaches use the
exact set of parameters used by the CG baseline [3] (i.e., n,X, t), our methods
produce much better results, increasing the average ChangeRate by around 10%.
The best baseline is NAD, which uses a different set of parameters that may
provide more useful information about a page’s updating behavior. Nevertheless,
our approaches are still slightly better than NAD and can easily derive other
functions if more parameters are given as input.

Table 2. Average ChangeRate for all days along with 95% confidence intervals

Rand Age NAD SAD AAD GAD CG GP4CBest GP4CSum GP4CAvg

0.1857 0.2130 0.6892 0.5166 0.6344 0.6016 0.6439 0.7058 0.7008 0.7034
± ± ± ± ± ± ± ± ± ±

0.0007 0.0009 0.0056 0.0066 0.0095 0.0059 0.0067 0.0096 0.0176 0.0107

Finally, we note that our GP4C framework can be used for better understand-
ing the scheduling problem. As example, an extremely simple, but also effective,
function generated by our method is t ∗ X , which yields a final performance
superior to most of the baselines, with average ChangeRate above 0.690. It was
not the best function found by GP4C, but illustrates how the framework can be
applied not only to derive good score functions, but also to give insights about
the most important parameters.



278 A.S.R. Santos et al.

6 Conclusions and Future Work

We have presented a GP framework to automatically generate score functions
to be used by schedulers of web crawlers to rank webpages according to their
likelihood of being modified since they were last crawled. We compared three
variations of our framework against seven state-of-the-art baselines, using a web-
page dataset collected from the Brazilian Web. Our results show that our best
function, GP4CBest, is statistically superior to all baselines in most of the simu-
lated download cycles. Moreover, our framework is quite flexible and can derive
new score functions by exploiting new features (e.g., Pagerank of the pages,
cost for crawling) or alternative fitness functions that balance the objectives of
freshness and coverage. This is a direction we intend to pursue in the future.

Acknowledgements. We thank the Brazilian National Institute of Science and
Technology for the Web (grant MCT-CNPq 573871/2008-6), Project MinGroup
(grant CNPq-CT-Amazônia 575553/2008-1) and authors’ grants and scholar-
ships from CNPq.

References

1. Carvalho, A.L., Rossi, C., de Moura, E.S., da Silva, A.S., Fernandes, D.: Lepref:
Learn to precompute evidence fusion for efficient query evaluation. Journal of the
American Society for Information Science and Technology 63(7), 1383–1397 (2012)

2. Cho, J., Garcia-Molina, H.: Synchronizing a database to improve freshness. In:
SIGMOD Record, pp. 117–128 (2000)

3. Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Transactions on
Internet Technology 3, 256–290 (2003)

4. Cho, J., Ntoulas, A.: Effective change detection using sampling. In: VLDB,
pp. 514–525 (2002)

5. Coffman, E.G., Liu, Z., Weber, R.R.: Optimal robot scheduling for web search
engines. Journal of Scheduling 1(1) (1998)

6. de Almeida, H.M., Gonçalves, M.A., Cristo, M., Calado, P.: A combined compo-
nent approach for finding collection-adapted ranking functions based on genetic
programming. In: SIGIR, pp. 399–406 (2007)

7. Douglis, F., Feldmann, A., Krishnamurthy, B., Mogul, J.: Rate of change and other
metrics: a live study of the world wide web. In: USENIX Symposium on Internet
Technologies and Systems, p. 14 (1997)

8. Henrique, W.F., Ziviani, N., Cristo, M.A., de Moura, E.S., da Silva, A.S., Carvalho,
C.: A new approach for verifying URL uniqueness in web crawlers. In: Grossi, R.,
Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 237–248.
Springer, Heidelberg (2011)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

10. Radinsky, K., Bennett, P.: Predicting content change on the web. In: WSDM (2013)
11. Tan, Q., Mitra, P.: Clustering-based incremental web crawling. ACM Transactions

on Information Systems 28, 17:1–17:27 (2010)



Accurate Profiling of Microbial Communities

from Massively Parallel Sequencing Using
Convex Optimization

Or Zuk1,2, Amnon Amir3, Amit Zeisel3, Ohad Shamir4, and Noam Shental5

1 Broad Institute of MIT and Harvard
2 Toyota Technological Institute at Chicago

3 Department of Physics of Complex Systems, Weizmann Institute of Science
4 Microsoft Research, New England

5 Department of Computer Science, The Open University of Israel

Abstract. We describe the Microbial Community Reconstruction
(MCR ) Problem, which is fundamental for microbiome analysis. In
this problem, the goal is to reconstruct the identity and frequency of
species comprising a microbial community, using short sequence reads
from Massively Parallel Sequencing (MPS) data obtained for specified
genomic regions. We formulate the problem mathematically as a convex
optimization problem and provide sufficient conditions for identifiability,
namely the ability to reconstruct species identity and frequency correctly
when the data size (number of reads) grows to infinity. We discuss dif-
ferent metrics for assessing the quality of the reconstructed solution, in-
cluding a novel phylogenetically-aware metric based on the Mahalanobis
distance, and give upper-bounds on the reconstruction error for a finite
number of reads under different metrics. We propose a scalable divide-
and-conquer algorithm for the problem using convex optimization, which
enables us to handle large problems (with ∼ 106 species). We show us-
ing numerical simulations that for realistic scenarios, where the microbial
communities are sparse, our algorithm gives solutions with high accuracy,
both in terms of obtaining accurate frequency, and in terms of species
phylogenetic resolution.

Keywords: Microbial Community Reconstruction, Massively Parallel
Sequencing, Short Reads, Convex Optimization.

1 Introduction

Characterization of the micro-organisms present in a microbial community is of
major biological and clinical importance. Since different micro-organisms have
different genomes, it is possible to identify species based on their DNA sequences,
using either whole-genome sequencing, or sequencing of pre-specified regions.
The 16S ribosomal RNA gene (16S rRNA) is of particular interest for identify-
ing microbial communities via sequencing. It has both highly conserved regions,
present in almost all microbial species, together with variable regions. The con-
served regions allow sequence amplification using universal PCR primers, while

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 279–297, 2013.
c©

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

Springer-Verlag Berlin Heidelberg 2013

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


280 O. Zuk et al.

the variable regions provide information used to distinguish between different
species. Large databases [3, 4] with millions of 16S rRNA sequences may enable
species identification by querying sequencing results in a database.

Previous methods aiming to characterize microbial communities using mi-
croarrays [7] and Sanger sequencing [2] have shown that, in principle, it is pos-
sible to identify species present in a sample, yet it is not clear how to get ac-
curate estimation of species frequencies from the analog measurements provided
by these technologies. Massively Parallel Sequencing (MPS) [16], also known as
Next-Generation Sequencing (NGS), provides high-throughput digital sequence
data and can allow a more detailed and accurate picture of the species in the
mixture. In this method, one obtains a large number of short sequence reads
from the mixture, and the goal is to reconstruct the identities and quantities of
the species present. Many studies have used short reads to characterize microbial
communities [10], yet they did not demonstrate an ability to identify the specific
species present and quantify their abundance in the mixture - reliable recogni-
tion was typically achieved only at coarse genus level [12]. The main drawback
of MPS is the relatively short read length (typically around 50-400 base-pairs
in current technologies), which poses a problem for species reconstruction; short
reads do not provide unambiguous evidence in support of the presence of a spe-
cific species, as typically the same read may originate from multiple different
species, and cannot be uniquely aligned to the reference database.

Recently, more sophisticated methods for quantifying species abundance were
developed, for 16S rRNA [6, 17] and whole metagenome shot-gun sequencing
data [25]. These methods take into account read-assignment ambiguity and en-
able increased species resolution, but the question of maximal reconstruction
resolution achieved was not systematically studied.

In this paper, we study mathematically the Microbial Community Reconstruc-
tion problem (MCR) - in which we use MPS data to characterize a microbial
community. In a nutshell, the computational and statistical problem we face is
as follows: given a large collection of short MPS reads (strings) sampled from
a known database of species’ sequences (longer strings) according to a certain
unknown distribution, our goal is to estimate the sampling frequencies for each
species in the database, and specifically recover the support of the distribution,
i.e. the list of species with non-zero sampling probabilities. We model the se-
quencing process statistically, providing a probabilistic generative model for the
short read data at hand. We prove conditions for identifiability - namely the abil-
ity to reconstruct precisely the identity and frequency of species present in the
mixture from the short read data as the number of reads is increased. We prove
upper-bounds on reconstruction errors for a finite number of reads. We propose
a divide-and-conquer algorithm, handling large scale problems with hundreds of
thousands of species, which is particularly appealing for sparse microbial com-
munities - that is, realistic scenarios where only hundreds or a few thousands of
species are present in the mixture, out of the possible millions of species in the
database (see e.g. [5,18]). We study the reconstruction performance in these re-
alistic settings by simulating reads from the Greengenes 16S rRNA database [4].



Accurate Profiling of Microbial Communities 281

Our goal here is to formulate and study the problem mathematically. Practical
considerations (e.g. amplification and sequencing biases, restrictions on primers,
paired-end reads) together with experimental results for real sequencing data
are described in a separate publication [1].

In the spirit of reproducible research, we have implemented all of our algo-
rithms in the Matlab package COMPASS (Convex Optimization for Microbial
Profiling by Aggregating Short Sequence reads), which is freely available at
github: https://github.com/orzuk/COMPASS.

2 The MCR Problem Formulation

We describe informally and briefly the biological settings. Our goal is to identify
the species present in a given sample. We extract DNA, use 16S rRNA univer-
sal primes and amplify the DNA in this region. We then assume that DNA is
sheared randomly and sequence it using MPS. We assume that the sequences
database contains 16S rRNA sequences for all species present in the mixture,
and reconstruct the species in the mixture in silico. A schematic representation
of the MCR method is shown in Figure 1.

We denote by N the number of species in the database. The species’ 16S
rRNA sequences are marked S1, .., SN , represented as strings over the alphabet
Υ = {‘A’, ‘C’, ‘G’, ‘T’}. We assume that the Si’s are distinct sequences. The
sequences may have different lengths n1, .., nN , with ni the length of the i-th
species’ sequence, i.e. Si ∈ Υni . For the 16S rRNA gene, the lengths ni are
roughly 1500 base-pairs. We define the maximum sequence length as nMAX ≡
maxi ni. We denote by si,j the j-th nucleotide in the i-th species’ sequence Si,
and by si,j:k the substring containing nucleotides j, j+1, .., k in the sequence Si.

We represent the proportion of each species in the mixture using a vector x
of length N , with xi the frequency of species i. We have x ∈ ΔN , where ΔN is
the N -dimensional simplex, ΔN = {x : xi ≥ 0,

∑N
i=1 xi = 1}. We represent

the interior of a set A as int(A). In particular, int(ΔN) is the subset of ΔN

containing vectors with positive entries, int(ΔN ) = {x : xi > 0,
∑N

i=1 xi = 1}.
We observe data in the form of R reads of length L, r1, .., rR ∈ ΥL, with L

typically around ∼ 50−400, as in the Illumina and 454 sequencing technolo-
gies. We represent the data by a vector of read frequencies, y ∈ Δ4L , with
the j-th coordinate given by yj = 1

R

∑R
i=1 1{lex(ri)=j}, ∀j = 1, .., 4L. Here

lex(r) is the index of r in the lexicographic ordering of all 4L possible reads
(i.e. lex(’AAA ... A’) = 1, .., lex(’TTT ... T’) = 4L). We also define the inverse
lexicographic ordering transformation, lex−1, which for a given index j gives the
corresponding sequence (e.g. lex−1(18) = ’AAA ... ATC’).

In the MCR problem, the data vector y and the database sequences S1, .., SN

are given as input. Our goal is to reconstruct the species frequencies vector x from
this information. The vector y is of exponential length (4L) but very sparse, with
only M ≤ R non-zero coordinates, where M is the number of unique sequence
reads. We store and manipulate only the non-zero part of y - therefore the
computational complexity of all of our algorithms will depend on M , and not

https://github.com/orzuk/COMPASS


282 O. Zuk et al.

Unknown Mixture 

Extract DNA, 
PCR Amplify 

Massively Parallel  
   Sequencing 

Short Reads 

 Estimated Species Abundances: 

In-Silico  
Reconstruction 

Sequence Database 

S1  

…
 S2  

SN  

r1=GAGCGCGGAT 

r2=GGAGACGCTC 

rN=AGAGAGATGT 

…
 

Fig. 1. The steps performed for species reconstruction using the MCR method. First,
DNA is extracted and amplified using PCR with universal primers matching the 16S
rRNA gene. The DNA is then sheared and sequenced using MPS, producing millions
of short sequence reads. The sequencing data (reads), together with a database of
16S rRNA sequences, are entered into the computational pipeline providing estimated
species abundances as output.

the exponentially large 4L (see Section 5). In typical MPS experiments with
current technologies R may be on the order of ∼105 −108.

2.1 Probabilistic Model

We formulate a probabilistic generative model capturing the sequencing process.
We assume that the R reads are sampled identically and independently (i.i.d.)
from the set of amplified regions in two steps,

1. First, sample a microbial species b from the set of possible species {1, .., N},
with the probability of species j being sampled proportional to the amount
of DNA from this species, x′j ≡ Pr(b = j) =

xjnj∑
N
i=1 xini

.

2. Next, sample a read r from a distribution given by the species b. We represent
sampling probabilities using a 4L × N read-sampling matrix A = A(S,L)
whose (i, j)-th entry is the probability to observe read i given that we know
it came from species j, Aij = Pr(r = i|b = j).

Remark 1. The vector of sampling probabilities x′ from step 1 is obtained by
re-weighting the frequency vector x according to the sequence lengths. For ease
of notation, we disregard this re-weighting, and denote both vectors as x. When
all sequences lengths nj are identical we have indeed x′ = x. More generally, the
vectors are different but we can easily convert x to x′ or x′ to x using the above
relation x′j =

xjnj∑N
i=1 xini

The sampling process defines a probability distribution Px = Px(y;A,L) on the
space of possible frequencies Δ4L ,

Px(y;A,L) =

{∑N
j=1Aijxj y = e(i)

0 otherwise
(1)



Accurate Profiling of Microbial Communities 283

where e(i) ∈ Δ4L is the i-th vector in the standard basis, e
(i)
i = 1, e

(i)
j = 0 ∀j �=

i. The data can be represented as R i.i.d. random variables, y(1), ..,y(R) ∼
Px(y;A,L), with the sample frequency y represented as, y = 1

R

∑R
i=1 y

(i). We
denote the MCR problem with read sampling matrix A by MCR(L,A). In its
simplest form, A can be constructed as follows,

Aij =

∑nj−L+1
k=1 1{lex−1(i)=sj,k:k+L−1}

nj − L+ 1
(2)

This matrix represents uniform sampling of error-free reads along the sequence
of the chosen species j, assuming L ≤ nj ∀j. A non-zero element Aij means that
read i appears in the sequence of species j. If L > ni we assume that the ‘tail’
of each read is sampled uniformly from Υ (see Appendix Section A.1).

Remark 2. The above construction of A assumes no read errors and no biases.
Incorporating more realistic sequencing models with non-uniform read density
due to amplification biases, read errors (substitutions and indels), alignments
errors etc. can be done by changing the definition of A from eq. (2). The same
database S may thus yield different matrices A, and the statistical and algo-
rithmic properties of a certain MCR problem depend on the database S only
through the matrix A. The assumption in step 1 is that species DNA fragments
are sampled according to their DNA frequencies out of the total DNA present
in a sample. The model cannot accommodate deviations from this assumption
which may arise from amplification biases and limited library complexity, which
may distort the species frequencies - that is, the fraction of reads originating from
a certain species may not represent the species’ true frequency in the mixture.
Accounting and correcting for such biases require analyzing multiple samples
together.

In similar to the read frequencies vector y, the matrix A is also huge (4L×N)
but very sparse. In particular, the number of non-zero rows in A, denote K, is
much smaller than 4L, as most of the rows in A are zero and need not be stored.
In the simple model above, K ≤

∑N
j=1(nj−L+1), which is roughly equal to the

database size in nucleotides. In more complicated models involving read error,
K will be larger, but still much smaller than 4L. The computational complexity
of our algorithms depends on K (see Section 5).

An estimator x̂ of the frequency vector x is simply a function from the set of
all reads and database, to the n-dimensional simplex, x̂ : Δ4L × S → ΔN , x̂ =
x̂(y, S) (here S is the set of all possible sequences databases, i.e. the space of all
ordered finite collections of strings over Υ ).

We can solve the MCR problem by finding an estimator x̂ minimizing an
empirical loss function. That is, define ŷ = Ax̂, the empirical reads distribution
given the estimator x̂. We would like to minimize the loss l(ŷ, y), and define the
following estimator,

x̂ = argminx∈ΔN l(Ax,y) (3)



284 O. Zuk et al.

Anatural loss function is the Kullback-Leibler divergence lKL(y, ŷ) = D(Py||Pŷ).
This formulation is equivalent to maximizing the likelihood of the data y, accord-
ing to the probabilistic model in eq. (1). Maximizing the likelihood using the EM
algorithm was proposed in [13] for a very similar likelihood formulation - this ap-
proach, however, is currently not scalable to a large number of species. We choose
instead the l2 loss l2(y, ŷ) = ||y− ŷ||2, mainly for computational considerations.
The l2 loss leads to a standard optimization problemandmany off-the-shelf solvers
can be used.

We expect real mixtures to be sparse, with only a few hundreds to a few thou-
sands species present (out of hundreds of thousands). it is therefore appealing
to use a sparsity-promoting loss in the cost function in eq. (3), for example by
penalizing l0 norm of x. This is especially important when the number of reads
is limited, to avoid over-fitting of the solution to the randomly sampled reads.
The l0 norm is not convex, leading to an intractable computational problem.
The most common remedy of replacing the l0 norm by the convex l1 norm does
not work in our problem since for probability vectors in the simplex x ∈ ΔN the
constraint ||x||1 = 1 trivially holds. Promoting sparsity for probability distribu-
tions in the simplex by convex relaxation was recently proposed [20], but the
approach does not scale to our problem’s size. Instead, we developed a scalable
divide-and-conquer thresholding algorithm (see Section 5) which minimizes the
l2 error, while enforcing sparsity implicitly, by a repeated truncation of non-zero
frequencies. The resulting solution is guaranteed to be sparse, while still keeping
the l2 error low as desired.

2.2 Evaluating the Solution: Metrics

To evaluate reconstruction accuracy, we need a measure comparing the recon-
structed solution x̂ with the correct solution x. Different applications may require
different metrics - for example, in some applications we may be interested only in
the identity of the species, while in other applications one would want to detect
changes in frequencies. It may be important to identify the particular species or
strain, or one may be satisfied with coarser reconstruction at the genus or family
level. There are two major groups of performance metrics:

1. Phylogenetically-Unaware criteria: These metrics take into account only the
species identities and frequencies. Examples include the lp norm between
the two vectors, recall-precision and Jaccard index. We use the simple l2
norm as a representative of this group. This metric measures the deviation in
species frequencies between the true and reconstructed solutions, Dl2(x, x̂) =√∑M

i=1(xi − x̂i)2.

2. Phylogenetically-Aware criteria: These metrics take into account the
phylogenetic relationship between species. The main intuition here is that
identifying a species close to the true species is in fact almost as good as
reconstructing the correct species. Examples include unifrac [14], weighted
unifrac [15], and DPCoA [19]. We propose a novel Phylogenetically-aware
criterion, using a Mahalanobis distance,



Accurate Profiling of Microbial Communities 285

DMA(x, x̂;D) =
√
(x− x̂)�D(x − x̂) =

√∑
i,j Dij(xi − x̂i)(xj − x̂j).

The matrix D is constructed to capture the phylogenetic distance between
species (for example, from the species 16S rRNA sequences themselves). High
(low) values of Dij correspond to pairs of species (i, j) which are closely-
related (remote). For concreteness, we choose specifically D = A�A, which
represent the similarity between species based on their 16S rRNA sequences.
The resulting Mahalanobis distance measures the agreement between the
true and reconstructed solutions, in terms of both the species identities and
their frequencies, while taking into account the similarities between closely
related species.

3 Species Identifiability

In this section we study species identifiability - that is, the ability to correctly
identify the species and their frequencies as the number of reads, R, goes to
infinity.

Definition 1. We say that the problem MCR(L,A) is identifiable, if for every
x(1) �= x(2) ∈ ΔN , there exists y ∈ Δ4L such that Px(1)(y;A;L) �= Px(2)(y;A;L).

Species identifiability captures fundamental limits of our ability to recon-
struct the species frequency vector from the observed reads data. If the problem
MCR(L,A) is identifiable, then in principle it is possible to correctly reconstruct
the species frequencies vector x, since different vectors will generate different dis-
tributions on the observed reads. If the problem is not identifiable, recovering
the correct frequencies vector x may not be possible, regardless of the data size
and computational resources available, since other (incorrect) frequency vectors
give rise to an identical distribution on the observed reads data.

The identifiability question is not unique to the MCR problem, and arises
more generally when reconstructing the identity of long sequences in a mixture
using short reads. For example, conditions for the identification of isoforms from
RNA-seq data were given in [11]. The different Isoforms in [11] are analogous
to the different species in our problem, yet the precise modeling assumptions
and identifiability criteria are different in the two problems. Identifiability is
determined by both the similarity between the sequences of different species,
and the read length. Longer and more diverse sequenced regions provide more
information on the DNA sequence of different species in the mixture, and allow
to distinguish between the underlying species more easily. However, even when
the sequenced regions are informative enough, short sequenced reads obtained
from these region may map to multiple species, thus species identification can be
hard when reads are too short. We next formalize this intuition mathematically,
showing how identifiability is determined by the input sequence database (and
the read length L) through the matrix A, which represents the relation between
the unknown vector x and the observed data y (see Appendix for proofs of all
Propositions),



286 O. Zuk et al.

Proposition 1. Let A(1) be the matrix constructed from A, concatenated with

an all 1’s row vector 1N , A(1) ≡
(

A
1N

)
. The reconstruction problem MCR(L,A)

is identifiable if and only if rank(A(1)) = N .

As the read length increases, it becomes increasingly easier to distinguish
between species,

Proposition 2. Assume N > 4. Suppose that the database S is composed of
N distinct sequences such that no sequence is a substring of another sequence,
i.e. si,j:k �= si′ ∀i �= i′ ∈ {1, .., N}, ∀j, k ∈ {1, .., ni}. Let A(u,L) be the sampling
matrix obtained by uniform sampling of reads with read length L, according to
eq. (2). Then there is a critical read length Lc, 1 < Lc ≤ maxi ni such that the
problem MCR(L,A(u,L)) is identifiable if and only if L ≥ Lc.

Remark 3. We assume that no sequence in the database is a substring of another
database sequence for mathematical convenience. This assumption usually holds
in practice provided a long enough region is sequenced, and can be relaxed
while still obtaining similar identifiability results. In addition, we demonstrated
identifiability for a uniform read sampling distribution, but a similar result can
be obtained for other read sampling distributions.

Species identifiability is a worst-case measure, as it requires all species to be
identified correctly. In practice, we may settle for a weaker notion - for example
we would still consider a reconstruction as successful if all species except a small
minority were identified correctly. We next define partial identifiability, which is
a weaker property characterizing our ability to correctly reconstruct identities
and frequencies of specific species, while for other species the reconstruction may
remain ambiguous.

Definition 2. We say that the problem MCR(L,A) is partially identifiable for
species j, if for any x(1),x(2) ∈ ΔN such that Px(1)(y;A,L) = Px(2)(y;A,L)∀y ∈
Δ4L , we have x

(1)
j = x

(2)
j .

We can check partial identifiability using the following proposition,

Proposition 3. The problem MCR(L,A) is partially identifiable for species j,
if and only if the standard basis vector e(j) ∈ ΔN is orthogonal to the null-space
of A(1), that is A(1)x = 0 ⇒ xj = 0 ∀x ∈ R

N .

We present the identifiability properties achieved for real 16S rRNA data in
the Appendix (Section A.5).

4 Reconstruction Error

While identifiability ensures that one can in principle reconstruct correctly the
species vector x, it essentially assumes an unlimited number of reads and compu-
tational power. Here we study the reconstruction error in more realistic scenarios,



Accurate Profiling of Microbial Communities 287

with a finite number of reads. We prove general rigorous upper-bounds on re-
construction error, in terms of the matrix A and the number of reads R. In the
Appendix (Section A.8) we examine the actual error achieved in practice using
simulations.

The next proposition gives bounds on the approximation error of the true
frequency vector x∗ by the estimator x̂, which we obtain using the empirically-
observed frequencies y,

Proposition 4. Consider the problem MCR(L,A) with R sequence reads, and
let x̂ be the estimator minimizing the l2 loss, x̂ = argminx∈ΔN l2(Ax,y). Then,

1. Let λmin(A
�A) be the smallest eigenvalue of A�A. The Euclidian l2 distance

satisfies:

Pr
(
Dl2(x̂,x

∗) ≤ 2 +
√
log(1/δ)√

Rλmin(A�A)

)
≥ 1− δ, ∀δ ∈ (0, 1) (4)

2. The Mahalanobis distance with weight matrix A�A satisfies:

Pr
(
DMA(x̂,x

∗;A�A) ≤ 2 +
√
log(1/δ)√
R

)
≥ 1− δ, ∀δ ∈ (0, 1). (5)

The bound on the convergence rate of the Dl2 error depends on spectral proper-
ties of the matrix A�A. This is related to the database coherence, or similarity
between the sequences Si, encoded as similarity between the rows of A. In partic-
ular, when the problem is non-identifiable, the matrix A�A has a zero eigenvalue
and the reconstruction error may be arbitrarily large.

In contrast, the Mahalanobis bound does not depend on the matrix A or
even the dimension N . Even if the problem is non-identifiable, we still achieve
convergence under the Mahalanobis distance - yet the entries in the solution
vector will not converge to the corresponding entries in the true frequencies
vector x, i.e. the reconstruction may assign (part of) the abundance of a specific
species to different, yet highly similar species.

5 Divide-and-Conquer Algorithm

Solving a large scale MCR problem with hundreds of thousands of species is
computationally challenging. Even computing and storing the matrix A is not
trivial, let alone minimizing the loss l(Ax,y) in eq. (3). We developed a scalable
divide-and-conquer thresholding approach to cope with large problems. In a
nutshell, the algorithm divides the species into distinct blocks, solves a reduced-
size problem within each block, setting species with low frequency in the solution
for each block to zero, merges solutions from different blocks and iterates to
reduce problem size. For the reduced size sub-problems we minimize the l2 loss,
resulting in a convex optimization problem in each block which we solve (exactly)
using the CVX convex optimization software package [8, 21]. We describe the
algorithm in more details in the Appendix (Section A.7).



288 O. Zuk et al.

We implemented the divide-and-conquer algorithm in the COMPASS Mat-
lab package (with some computationally demanding parts implemented in C).
For a problem of size N ∼ 5 × 105, running time is a few hours on a standard
PC. The algorithm showed accurate reconstruction performance on simulated
and real sequence data (see Section A.8 and [1]).

6 Discussion

We formulated the MCR problem mathematically, proposed an algorithm for
solving large scale problems, and obtained results on reconstruction performance.

We applied our approach on the 16S rRNA gene. However, the approach
is generic and could be applied to other genes or regions. The reconstruction
performance is determined by properties of the genomic region used (in our
case, 16S rRNA). Different genes or regions will provide different information
allowing us to distinguish between different species or strains, for example using
clade-specific markers [23].

Extending our method to genome-wide metagenomics sequencing is possible,
although computationally challenging. Our approach relies on the presence of
a database of reference sequences, and cannot be used as is for de novo dis-
covery of new species. Currently there are ∼ 3000 whole-genome sequences in
the NCBI database [9], compared to ∼ 106 16S rRNA sequences in the Green-
genes database, thus the current utility of the whole-genome approach is lim-
ited, although it can be useful as a first filter before the remaining reads can be
used for de novo discovery (assembly). More importantly, as these database are
likely to grow in the near future, it will become increasingly appealing to use
whole-genome sequencing, especially for identifying small variations in very close
strains, or newly born alleles in present strains (where the 16S rRNA sequences
may be identical and not allow identification).

Providing efficient algorithms for theMCR problem is important - solving the
MCR problem directly for N in the order of hundreds of thousands is currently
infeasible due to memory and time issues. We used a feasible divide-and-conquer
approach to cope with this problem yet there is still room for algorithmic im-
provements, especially when coping with read errors, which increase the size of
the matrix A. Designing faster algorithms for handling larger databases will be-
come crucial in light of the expected growth of microbial databases, in terms of
both the number species and the regions (including whole-genomes) covered.

References

1. Amir, A., Zeisel, A., Zuk, O., Elgart, M., Stern, S., Shamir, O., Turnbaugh, P.J.,
Soen, Y., Shental, N.: High resolution microbial community reconstruction by in-
tegrating short reads from multiple 16S rRNA regions. In Revision (2013)

2. Amir, A., Zuk, O.: Bacterial community reconstruction using compressed sensing.
Journal of Computational Biology 18(11), 1723–1741 (2011)



Accurate Profiling of Microbial Communities 289

3. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-
Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al.: The ribosomal
database project: improved alignments and new tools for rrna analysis. Nucleic
Acids Research 37(suppl. 1), D141–D145 (2009)

4. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K.,
Huber, T., Dalevi, D., Hu, P., Andersen, G.L.: Greengenes, a chimera-checked 16S
rRNA gene database and workbench compatible with arb. Applied and environ-
mental microbiology 72(7), 5069–5072 (2006)

5. Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M.,
Gill, S.R., Nelson, K.E., Relman, D.A.: Diversity of the human intestinal microbial
flora. Science 308(5728), 1635–1638 (2005)

6. Eskin, I., Hormozdiari, F., Conde, L., Riby, J., Skibola, C., Eskin, E., Halperin, E.:
eALPS: Estimating abundance levels in pooled sequencing using available geno-
typing data. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds.) RECOMB 2013.
LNCS, vol. 7821, pp. 32–44. Springer, Heidelberg (2013)

7. Gentry, T.J., Wickham, G.S., Schadt, C.W., He, Z., Zhou, J.: Microarray applica-
tions in microbial ecology research. Microbial Ecology 52(2), 159–175 (2006)

8. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In:
Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control.
LNCIS, vol. 371, pp. 95–110. Springer, Heidelberg (2008),
http://stanford.edu/~boyd/graph_dcp.html

9. Haft, D.H., Tovchigrechko, A.: High-speed microbial community profiling. Nature
Methods 9(8), 793–794 (2012)

10. Hamady, M., Knight, R.: Microbial community profiling for human microbiome
projects: Tools, techniques, and challenges. Genome Research 19(7), 1141–1152
(2009)

11. Hiller, D., Jiang, H., Xu, W., Wong, W.H.: Identifiability of isoform deconvolution
from junction arrays and rna-seq. Bioinformatics 25(23), 3056–3059 (2009)

12. Huse, S.M., Dethlefsen, L., Huber, J.A., Welch, D.M., Relman, D.A., Sogin, M.L.:
Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag
sequencing. PLoS Genetics 4(11), e1000255 (2008)

13. Kessner, D., Turner, T., Novembre, J.: Maximum likelihood estimation of frequen-
cies of known haplotypes from pooled sequence data. Molecular Biology and Evo-
lution 30(5), 1145–1158 (2013)

14. Lozupone, C., Knight, R.: UniFrac: a new phylogenetic method for comparing
microbial communities. Applied and Environmental Microbiology 71(12), 8228–
8235 (2005)

15. Lozupone, C.A., Hamady, M., Kelley, S.T., Knight, R.: Quantitative and qualita-
tive β diversity measures lead to different insights into factors that structure mi-
crobial communities. Applied and Environmental Microbiology 73(5), 1576–1585
(2007)

16. Mardis, E.R.: The impact of next-generation sequencing technology on genetics.
Trends in Genetics 24(3), 133–141 (2008)

17. Meinicke, P., Aßhauer, K.P., Lingner, T.: Mixture models for analysis of the taxo-
nomic composition of metagenomes. Bioinformatics 27(12), 1618–1624 (2011)

18. Paster, B.J., Boches, S.K., Galvin, J.L., Ericson, R.E., Lau, C.N., Levanos, V.A.,
Sahasrabudhe, A., Dewhirst, F.E.: Bacterial diversity in human subgingival plaque.
Journal of Bacteriology 183(12), 3770–3783 (2001)

19. Pavoine, S., Dufour, A.B., Chessel, D.: From dissimilarities among species to dis-
similarities among communities: a double principal coordinate analysis. Journal of
Theoretical Biology 228(4), 523–537 (2004)

http://stanford.edu/~boyd/graph_dcp.html


290 O. Zuk et al.

20. Pilanci, M., El Ghaoui, L., Chandrasekaran, V.: Recovery of sparse probability
measures via convex programming. In: NIPS (2012)

21. CVX Research. CVX: Matlab software for disciplined convex programming, ver.
2.0 (2012), http://cvxr.com/cvx

22. Rockafellar, R.T.: Convex Analysis. Princeton Mathematics Series, vol. 28. Prince-
ton University Press (1970)

23. Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., Huttenhower,
C.: Metagenomic microbial community profiling using unique clade-specific marker
genes. Nature Methods 9(8), 811–814 (2012)

24. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
University Press (2004)

25. Xia, L.C., Cram, J.A., Chen, T., Fuhrman, J.A., Sun, F.: Accurate genome rela-
tive abundance estimation based on shotgun metagenomic reads. PloS One 6(12),
e27992 (2011)

http://cvxr.com/cvx


Accurate Profiling of Microbial Communities 291

Appendix

A.1 Dealing with Sequences Shorter Than the Read Length

In rare cases the read length L might be larger than the sequence length nj for
a particular species j. For completeness, we adopt a convention of a read having
it’s first ni nucleotides matching the sequence, and the next ni − L nucleotides
distributed uniformly in ΥL−ni . In this case eq. (2) generalizes to,

Aij =
4min(0,nj−L)

∑max(1,nj−L+1)
k=1 1{lex−1(i)1:min(nj,L)=sj,k:k+L−1}

max(1, nj − L+ 1)
(6)

where lex−1(i)1:k denotes the first k nucleotides in the i-th read (in lexicographic
ordering). One can adopt different conventions for this case, for example obtain-
ing a shorter read (of length nj), or using a ‘joker’ symbol for the tail (i.e. for
example when sequencing the molecule ‘AACGCT ′ a read of length 10 will be
‘AACGCTNNNN ′). The choice of different conventions does not change our
result significantly - we chose the above for mathematical convenience.

A.2 Proof of Proposition 1

Proof. From eq. (1), we have Px(e
(i);A,L) = [Ax]i, ∀i = 1, .., 4L. Therefore

identifiability holds if and only if Ax(1) = Ax(2) ⇒ x(1) = x(2), ∀x(1),x(2) ∈ ΔN .
The vector A(1)x is of size 4L + 1, obtained as a concatenation of Ax with

one additional entry, [A(1)x]4L+1 =
∑N

j=1 xj . For any x ∈ ΔN the last en-

try [A(1)x]4L+1 is equal to 1. Therefore A(1)x
(1) = A(1)x

(2) ⇐⇒ Ax(1) =

Ax(2), ∀x(1),x(2) ∈ ΔN .
If rank(A(1)) = N , we have A(1)x

(1) = A(1)x
(2) ⇒ x(1) = x(2), ∀x(1),x(2) ∈

R
N . Therefore in particular the relation is true for any x(1),x(2) ∈ ΔN ⊂ R

N

and identifiability holds.
Conversely, if rank(A(1)) < N then there exists a non-zero vector x ∈ R

N ,x �=
0N in the null-space of A(1). Thus A(1)x = 0 and in particular [A(1)x]4L+1 =∑N

j=1 xj = 0. Take a vector x(1) ∈ int(ΔN ). Then there exists ε > 0 such that

x(2) ≡ x(1)+εx ∈ ΔN . But Ax(1) = Ax(2) and x(1) �= x(2), therefore the problem
MCR(L, S,A) is not identifiable.

A.3 Proof of Proposition 2

Proof. Take L = 1. Then the vector y simply measures the fraction of ‘A’s,
‘C’s, ‘G’s and ‘T’s in the sample, and is of length 4. The matrix A(u,1) is of size
4×N , and rank(A(u,1)) ≤ 4. Therefore, there exists a non-zero vector x in the
null-space of A(u,L), A(u,L)x = 0. Let x(1) ∈ int(ΔN ). Then there exists ε > 0
such that x(2) ≡ x(1) + x ∈ ΔN . But Px(x

(1)) = Px(x
(2)) for x(1),x(2) ∈ ΔN .

Hence the problem MCR(1, A(u,1)) is not identifiable.



292 O. Zuk et al.

Take L = nMAX(= maxi ni). For each species j define the read r(j) ≡ [Sj :
′A′(L−nj)] where ′A′(k) is a string of k consecutive ′A′s, and [a : b] denotes
the concatenation of the two strings a and b. The read r(j) contains the se-
quence Sj , followed by a string of ‘A’s. Since Sj′ is not a subsequence of Sj for
any j �= j′, the read r(j) cannot appear when sequencing any other sequence
j′ �= j, so Alex(r(j))j′ = 0 ∀j′ �= j, and the lex(r(j))-th row of A is all zeros
except for the j-th term. This means that A has N independent rows, indexed
by lex(r(1)), .., lex(r(N)) and rank(A) = N . Therefore rank(A(1)) = N and the

problem MCR(nMAX , A
(u,nMAX)) is identifiable.

Suppose that the problem is MCR(L,A(u,L)) is identifiable, and let L′ >
L. By definition, for every x(1) �= x(2) ∈ ΔN , there exists y ∈ Δ4L such
that Px(1)(y;A;L) �= Px(2)(y;A;L). But the distribution Px(i)(·;A;L) is ob-
tained by a projection of the distribution Px(i)(·;A;L′) (for i = 1, 2), with
Px(i)(·;A;L) =

∑
y′,y=y′

1:L
Px(i)(·;A;L′). Therefore, there must exist y ∈ Δ4L′

with Px(1)(y′;A;L′) �= Px(2)(y′;A;L′) and the problem MCR(L′, A(u,L′)) is also
identifiable for L′.

A.4 Proof of Proposition 3

Proof. In similar to Proposition 1, since Px(e
(i);A,L) = [Ax]i, ∀i = 1, .., 4L we

have partial identifiability if and only if Ax(1) = Ax(2) ⇒ x
(1)
j = x

(2)
j , ∀x(1),x(2) ∈

ΔN , which holds if and only if A(1)x
(1) = A(1)x

(2) ⇒ x
(1)
j = x

(2)
j , ∀x(1),x(2) ∈

ΔN .
Assume that A(1)x = 0 ⇒ xj = 0 ∀x ∈ R

N . Then, for any two vectors

x(1),x(2) ∈ ΔN take x = x(1) − x(2) to get,

A(1)x
(1) = A(1)x

(2) ⇒ A(1)(x
(1) − x(2)) = 0 ⇒ [x(1) − x(2)]j = 0 ⇒ x

(1)
j = x

(2)
j .
(7)

Therefore, MCR(L,A) is partially identifiable for species j. For the other
direction, assume that MCR(L,A) is partially identifiable for species j. Let
x ∈ R

N . Take some x(1) ∈ int(ΔN ) and set x(2) = x(1) + αx with α > 0 small
enough such that x(2) ∈ ΔN . Then,

A(1)x = 0 ⇒ A(1)x
(1) = A(1)x

(2) = 0 ⇒ x
(1)
j = x

(2)
j ⇒ xj = 0. (8)

A.5 Identifiability in the 16S rRNA Database

We checked the ability to identify species based on their 16S rRNA sequences.
We downloaded the 16S rRNA Greengenes database from greengenes.lbl.gov

[4] (file ‘current prokMSA unaligned.fasta.gz’, version dated 2010). After cluster-
ing together species with identical 16S rRNA sequences, we were left with N =

greengenes.lbl.gov


Accurate Profiling of Microbial Communities 293

455, 055 unique sequences of the 16S rRNA gene, with mean sequence length 1401
- we refer to these N unique sequences as the species. We assume that the en-
tire 16S rRNA gene is available - this can be achieved for example by shot-gun
or RNA sequencing (In practice, the choice of primers used when performing tar-
geted DNA sequencing may be restricted due to biochemical considerations. This
will affect the region sequenced and therefore all aspects of the reconstruction per-
formance including identifiability - see [1]). Although the sequences are all distinct
when considering the entire 16S rRNA sequences, identifiability is not guaranteed
since we only observe short reads covering possibly non-unique portions of the
16S rRNA gene, which may cause ambiguities. We plot in Figure 2 the number
of uniquely identifiable species as a function of the read length L. Even for very
short L, we can identify most species, since the short reads aggregate information
from the entire 16S rRNA gene. However, even when L is long (L = 100), there
is still a small subset of species which are not identifiable.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Read Length

F
ra

c.
 Id

en
tif

ia
bl

e 
S

pe
ci

es

 

 

10 20 30 40 50 60 70 80 90 100
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

16s
rand.

Fig. 2. Partial identifiability as a function of the read length. The red line shows results
for a set of N = 10, 000 similar species from the Greengenes database. For comparison,
the blue line shows results for N = 10, 000 sequences of the same length, with uniformly
drawn i.i.d. characters. (i.e. Pr(′A′) = Pr(′C′) = Pr(′G′) = Pr(′T ) = 0.25 for each
base). The X-axis is read length used. The y-axis shows the fraction of identifiable
species. At L = 7 we see a big jump in identifiability, as expected, since this is the
point at which the number of equations 4L exceeds the number of species N . For
random sequences the problem is identifiable for L ≥ 7 (i.e., 100% of species are
partially identifiable). For the sequences from the 16S rRNA database, the vast majority
(∼ 96.5%) of species are partially identifiable for L = 7. The number of partially
identifiable species then increases slowly with read length (see inset). Even at L = 100
the problem is still not identifiable, but ∼ 98.5% of species can be identified. The
remaining un-identified species contain groups of species with very close sequences,
which can be distinguished only by increasing read length even further.



294 O. Zuk et al.

A.6 Proof of Proposition 4

Proof. Eq. (3) with a l2 loss implies that Ax is the Euclidean projection of y on
the convex set A(ΔN ) ≡ {z : ∃x ∈ ΔN , z = Ax} (namely, it is the closest point
to y in A(ΔN )). Similarly, Ax∗ is the Euclidean projection of y∗ on A(ΔN ).
Since projections on convex sets can only reduce distances [22], we have,

‖Ax−Ax∗‖2 = ‖Ax− y∗‖2 ≤ ‖y − y∗‖2 . (9)

The left hand side above is equal to the Mahalanobis distance, since

DMA(x,x
∗;A�A) =

√
(x− x∗)�(A�A)(x − x∗) = ‖Ax−Ax∗‖2 . (10)

Therefore we get

DMA(x,x
∗;A�A) ≤ ‖y − y∗‖2 . (11)

Recall that y = 1
R

∑R
i=1 y

(i) where the y(i) are i.i.d. vectors with E[y(i)] = y∗.
Using large-deviation bounds on vectors [24] we get,

Pr
(
‖y − y∗‖2 ≤ 2√

R
+

√
log(1/δ)

R

)
≥ 1− δ, ∀0 < δ < 1 (12)

Combining eqs. (11,12), we get part 2 of the proposition.
To prove part 1, we need to convert this result to a bound on the Euclidian

distance between x and x∗. The conversion is performed by first writing an
eigen-decomposition of A�A, A�A = UΛU� where U is an orthogonal matrix
and Λ a diagonal matrix with the eigenvalues of A�A. This gives,

DMA(x,x
∗;A�A)2 = (x− x∗)�(UΛU�)(x − x∗)

≥ ||U�(x− x∗)||22λmin(A
�A)

= ||(x− x∗)||22λmin(A
�A)

= Dl2(x,x
∗)2λmin(A

�A) (13)

Dividing both sides by λmin(A
�A), taking the square root and substituting

in eq. (5) gives immediately part 1.



Accurate Profiling of Microbial Communities 295

A.7 Details of Divide-and-Conqour Algorithm

Box 1: Divide-and-Conquer Reconstruction Algorithm
Input: S - Set of Sequences, y - read measurements, Probabilis-

tic model
Output: x - vector of species frequencies
Parameters: B - block size. τB - frequency threshold for each

block. kB,j - number of partitions into blocks in j-th iteration, kF
- final number of species allowed

1. Partition to blocks: Set v as a binary vector with one entry per species.
If this is the first partitioning, set iteration number j = 1. Repeat kB,j

times:
(a) Partition species randomly into non-overlapping blocks of size B.
(b) In each block (B) compute the matrix A(B), (where (B) denotes the

restriction of a vector or a matrix to a block B), and solve (exactly)
the convex optimization problem (using CVX),

min
x(B)

||A(B)x(B) − y||2 s.t., x
(B)
i ≥ 0 (14)

(c) Collect all species with frequency above the threshold: if x
(B)
i ≥ τB ,

set vi = 1. Set j = j + 1.
(d) Collect all linearly dependent species: For each i which is non-

identifiable in the block (i.e. species i is orthogonal to the null space
of A(B)) set vi = 1.

2. Collect results from blocks: Keep only indices i with vi = 1, i.e. species
with high enough frequency in at least one block reconstruction.

3. Reduce problem size: Keep only species i with vi = 1. Set V = {i, vi = 1}
and set A = A(V ), x = x(V ). If |V | > kF , go back to step 1.

4. Solve for the last time the l2 minimization problem for the reduced
matrix,

min
x(V )

||A(V )x(V ) − y||2 s.t., x
(V )
i ≥ 0 (15)

Normalize x(V ) to sum to one, and output the normalized vector as the
solution



296 O. Zuk et al.

A.8 Simulation Results

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

# Reads

E
rr

or

 

 
L

2
 (simulations)

L
2
 (upper−bound)

MA (simulations)
MA (upper−bound)

Fig. 3. The curves show the l2 (blue) and Mahalanobis (red) errors in reconstruction
for the example described in the text as function of sample size (number of reads used).
Error-bars show mean and 1 standard deviation of error over 100 simulations. Solid
curves show the theoretical upper-bounds, taken with δ = 1/2, giving a bound on the
median error. For both metrics, the performance achieved in practice is significantly
better than the upper bound.

To evaluate the actual reconstruction performance in practice, we have per-
formed a simulation study. In Figure 3 we compare the actual reconstruction per-
formance using simulations to the general rigorous bounds obtained in
Section 4.

In our simulations, we studied the performance as a function of the number of
reads using the Greengenes 16S rRNA database, with N = 455, 055 unique 16S
rRNA sequences. In each simulation we sampled at random k = 200 species out of
the total N . We sampled the species frequencies from a power-law distribution
with parameter α = 1, with frequencies normalized to sum to one. We then
sampled sequence read according to the model in eq. (1). Read length was L =
100. The number of reads R was varied from 104 to 106.

We performed reconstruction using Algorithm 1, with the following parame-
ters: block size B = 1000, threshold frequency τB = 10−3. The parameter kB,j

represents a trade-off between time complexity and accuracy, and was initialized
to 1 at j = 1, then set to 10 when total size |V | was below 150, 000. Then, set
to 20 below 20, 000. The final block size used was kF = 1000.

Very low error (∼2%) is achieved for R > 500, 000, showing that accurate
reconstruction is possible for a feasible number of reads. The error rate achieved
in practice is much lower than the theoretical bounds, indicating that tighter



Accurate Profiling of Microbial Communities 297

bounds might be achieved. There are many reasons for the gap between our
bounds and simulation results: the concentration inequalities we have used may
not be tight, the particular frequency distribution chosen may perform better
than the worst-case distribution, and most importantly, the small number of
species present in the simulated mixture may enable accurate detection with
a smaller sample size. Proving improved bounds on reconstruction performance
which consider all these issues including the sparsity of the solution is interesting
yet challenging. Standard techniques (e.g. from compressed sensing) would need
to be modified to achieve improved bounds since they assume incoherence of
the matrix A which does not hold in our case, and do not consider the poisson
sampling model we use for the reads.



Distributed Query Processing

on Compressed Graphs Using K2-Trees�

Sandra Álvarez-Garćıa1, Nieves R. Brisaboa1,
Carlos Gómez-Pantoja2, and Mauricio Marin3

1 Database Laboratory, University of Coruña, Spain
2 Universidad Andres Bello, Facultad de Ingenieŕıa, Sazié 2325, Santiago, Chile

3 Yahoo!Research Latin America, Santiago, Chile

Abstract. Compact representation of Web and social graphs can be
made efficiently with the K2-tree as it achieves compression ratios about
5 bits per link for web graphs and about 20 bits per link for social graphs.
The K2-tree also enables fast processing of relevant queries such as direct
and reverse neighbours in the compressed graph. These two properties
make the K2-tree suitable for inclusion in Web search engines where it is
necessary to maintain very large graphs and to process on-line queries on
them. Typically these search engines are deployed on dedicated clusters
of distributed memory processors wherein the data set is partitioned and
replicated to enable low query response time and high query throughput.
In this context a practical strategy is simply to distribute the data on the
processors and build local data structures for efficient retrieval in each
processor. However, the way the data set is distributed on the processors
can have a significant impact in performance. In this paper, we evaluate
a number of data distribution strategies which are suitable for the K2-
tree and identify the alternative with the best general performance. In
our study we consider different data sets and focus on metrics such as
overall compression ratio and parallel response time for retrieving direct
and reverse neighbours.

1 Introduction

Efficiency of parallel query processing in large Graphs has become a relevant
issue due to emergent applications in the Web and social networks in which
there exists a Graph that must be held in main memory to be queried in real
time. Efficiency has implications in the ever increasing need to (1) reduce service
latency represented by total response time of individual queries of the order of
few milliseconds, (2) design systems capable of processing hundreds of thousands
queries per second using the least amount of hardware resources possible, and

� SAG and NB were founded by MICIN (PGE and FEDER) grants TIN2009-14560-
C03-02, TIN2010-21246-C02-01, and CDTI CEN-20091048 and Xunta de Galicia
(co-funded with FEDER) ref. 2010/17. MM was partially funded by research grant
FONDEF IDeA CA12I10314.

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 298–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The original version of this chapter was  The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI:

:re iv eds
10.1007/978-3-319-02432-5 33

http://dx.doi.org/10.1007/978-3-319-02432-5


Distributed Query Processing on Compressed Graphs Using K2-Trees 299

(3) optimize power consumption in data centers hosting the query processing ser-
vice. To this end, clusters of dedicated processors are deployed in the respective
data center in a “one service – one cluster” manner.

To achieve scalable and flexible services, the query processing task is organized
as a distributed memory system where processors compute on local data and
communication among processors is performed via message passing. Typically
this paradigm is applied in a master/slaves fashion where the master (broker)
is in charge of sending queries to a set of slaves (processors). The dataset is
assumed to be evenly distributed on the processors. Upon the reception of a
query from the broker, the processors compute the local top K answers for the
query and send the results back to the broker. The broker then merges the local
results to compute the global top K results. This scheme has practical advantages
related to dynamically handling processor replication to meet query throughput
requirements and support fault tolerance.

In this paper we follow the master/slaves approach in the context of serving
queries upon a distributed Graph that has been compressed using the K2-tree
method. In this case, the key for achieving efficient performance is to be smart on
how to distribute the data across the processors. We propose a number of data
distribution alternatives and present an evaluation study using actual datasets
executed on a cluster of processors. The experimental results tell us that a strat-
egy we call Latin Square offers the best performance in general.

2 Related Work

Notice that previous works focus on off-line processing whereas we are interested
in on-line query processing.

Parallel Boost Graph Library (PBGL) [8] (based on Boost Graph Library
[1]), is a generic library written in C++ that implements distributed graph data
structures and graph algorithms. To implement a parallel algorithm, it applies
existing sequential algorithms to distributed data structures. It supports a rich
set of parallel graph implementations and property maps. In contrast with Pregel
and HipG expressiveness, PBGL offers a very general model to implement paral-
lel algorithms. Pregel [13] is a scalable infrastructure to mine graphs, where each
program is expressed as a sequence of iterations. This infrastructure is inspired
by the Bulk Synchronous Parallel (BSP) model [14], which represents a program
as a sequence of supersteps. Pregel partitions the graph using a hash function
applied to the vertex identifier modN , where N is the number of partitions,
and all its outgoing edges are assigned to the same partition. The partitioning
method can be user-defined.

Parallel Combinatorial BLAS [6] is a scalable high-performance library that
enables graph analysis and data mining. The authors mention that this li-
brary is unique among other libraries, because it combines scalability and dis-
tributed memory parallelism. The p processors are logically organized as a two-
dimensional grid (to limit the communication), and the partitioning of matrices
follows this organization, using a 2D block decomposition. As we will see in the
experiments, this partitioning does not reach the best results.



300 S. Álvarez-Garćıa et al.

HipG [9] is a distributed framework in which the underlying idea is similar to
Pregel: the user has to define pieces of sequential work to be executed in each
graph node. HipG partitions the graph nodes into equal-size chunks. A chunk is
a set of graph nodes and their outgoing edges (edges are co-located with their
source nodes). Chunks are assigned to workers, which are the responsible for
processing the nodes associated to the chunk. HipG is similar to Pregel in two
aspects: the vertex-centered programming and composing the parallel program
automatically from user-provided simple sequential-like components. The main
difference is the BSP-like global synchronization in each superstep used in Pregel.
In contrast, HipG uses asynchronous messages with computation synchronized
on the user’s request.

GraphLab [12] is a parallel abstraction that exploits the sparse structures and
computational patterns of Machine Learning algorithms. The same authors ex-
tend this tool to a distributed setting: Distributed GraphLab [15]. Finally, Pow-
erGraph [7] introduces a new approach that exploits the structure of power-law
graphs, which are difficult to partition and represent in a distributed environ-
ment. PowerGraph exposes greater parallelism, reduces network communication
and storage costs associated to the graph processing, and provides a highly ef-
fective scheme to distributed graph placement. It also provides fault tolerance.

2.1 K2-Tree

K2-tree is a compact data structure to represent binary relationships represented
over a conceptual adjacency matrix. Rows and columns of an adjacency matrix
M represent the objects in the relationship. A cell M [i, j] would have a 1 value
if there were a relationship between the object represented by the row i with the
object represented by the column j, and a 0 otherwise.
K2-tree was originally designed to represent web graphs [10], and it takes

advantage of the existence of large areas with a high density of ones or zeros.
It achieves a very compact space (less than 5 bits per link) over very sparse
matrices allowing to very large datasets fitting in the main memory. K2-tree
also allows an efficient navigation over the compressed structure [4], providing
fast retrieving of direct and reverse neighbours.

The K2-tree construction begins with the subdivision of the adjacency ma-
trix in K2 submatrices of equal dimensions. Each one of K2 submatrices are
represented with one bit in the first level of the tree, following a top-down and a
left-right order. The bit that represents each submatrix will be 1, if the submatrix
contains at least one cell with value 1. Otherwise, the bit will be a 0.

The next level of the tree is created by expanding the 1 elements of the
previous levels (that is, the not-empty areas), dividing in the same way the
corresponding submatrix in K2 submatrices. This method continues recursively
until the subdivision gets to cell-level. Variations of this structure have been
proposed by using different K values depending on the level of the tree or by
compressing the last levels through a submatrix vocabulary which is encoded
with Direct Access Codes [5].



Distributed Query Processing on Compressed Graphs Using K2-Trees 301

00000001
00000001
00000100
00000000
10000000
11000000
00000000
00000000

1001
1001 0100

1010 1000 0111

T: 100110010100
L: 101010000111

Adjacency matrix
 0  1   2   3   4  5  6   7

0   
1   
2   
3   
4   
5   
6   
7

 Conceptual K -tree

 K -tree structure

2

2

0
1

2
4

5

6
7

Graph
Direct(2)

Fig. 1. An example of a binary relationship represented with a k2-tree

Figure 1 shows an example of this tree creation for k = 2. It represents a
binary relationship of a set of 8 elements whose graph is shown in the left, with
its corresponding adjacency matrix is shown in the middle of the Figure. The
K2-tree structure is represented in the right. The first 1 of the first level means
that the up-left 4x4 submatrix has at least a cell with 1 value. The second bit,
which is a 0, means that the up-right submatrix does not contain any relation
between nodes (that is, all its cells are zero) and so on. Therefore, a node with 0
has no children because it represents a submatrix full of zeros. Otherwise, each
node with a one has 4 children corresponding to the subdivision of the matrix
it represents in K2 submatrices; again, each one will be represented with a zero
or a one depending on whether they have or not at least a cell with a one.

The K2-tree is only an abstract representation. In fact, it is stored in a very
compact way using two bitmaps called T and L. T is a bitmap that stores all
the intermediate levels of the K2-tree, following a level-wise traversal (from left
to right) over it. L stores the bits of the last level of the tree, from left to right.
It is easy to see in the Figure 1 how T and L store the whole K2-tree.

Retrieving direct or reverse neighbours is the most common operation per-
formed over an adjacency matrix. It requires obtaining the cells with a 1 value
for a given row or column in the adjacency matrix. These operations are solved
in a K2-tree by following a top-down traversal over the tree and they are sym-
metrical in terms of their computing cost. The example shows the bits of the
tree involved in order to obtain the direct neighbours of the element 2 (that
is, recovering the ones which appear in the second row of the adjacency ma-
trix). This navigation over the K2-tree is efficiently performed over the bitmaps
T and L through an additional structure of counters, created over the bitmap
T, which allows to rank operations performing in an efficient way. Note that,
given a bit x in T, the children of x are between positions rank(T, x) ∗K2 and
rank(T, x) ∗K2 +K2 − 1. More details can be found on [4,10].

3 Our Proposal

In this work we study how K2-tree can be used as a basis in order to build
and query a distributed graph in a parallel environment. Our problem can be



302 S. Álvarez-Garćıa et al.

summarized in how to partition a graph G = (N,E) (where N denotes the set
of the nodes of the graph and E corresponds with the edges that connect the
nodes) in a set of P = {pi, i = 1, . . . , |P |} independent processors.

In this context, the main problem is how to optimize the space and querying
response in order to obtain a competitive querying system. To that end we
propose several ways of partitioning the graph in |P | subgraphs. Then, processors
build local K2-trees from their corresponding subgraphs. In this way, a basic
query operation can be computed by performing, depending on the query and
the distribution, from 1 to |P | local operations and a final union of the local
answers to compose the global result.

Next, we propose different graph distribution strategies. They map each cell
of the global adjacency matrix to only one processor. However, a node of the
graph could be implicitly represented in several processors, since its outgoing
edges can be stored in different processors.

3.1 Basic Distributions

As explained before, K2-tree represents the adjacency matrix of a graph.
Therefore, some classic matrix partitioning can be applied in order to obtain
a distributed graph where each processor stores its adjacency matrix by using a
K2-tree. We propose several distributions where each cell (x, y) of the adjacency
matrix is mapped by a simple formula to its corresponding position pi(x

′, y′),
meaning the cell (x′, y′) is placed at processor pi. In this way, no additional in-
formation has to be stored to perform graph mining over the distributed graph.
Figure 2 shows an example of basic distributions for 4 processors.

00000001 00000000
00000000 00000000
00000100 00000000
00000000 00000000
00100000 00000000
10000000 00000000
00000000 00000000
00000000 00000000
00000000 00000011
00000000 00000001
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

Block distribution

P1

P2

P3

P4

00000001 00000000
00000000 00000000
00000100 00000000
00000000 00000000
00100000 00000000
10000000 00000000
00000000 00000000
00000000 00000000
00000000 00000011
00000000 00000001
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

Cyclic distribution 

P1
P2
P3
P4
P1
P2
P3
P4
P1
P2
P3
P4
P1
P2
P3
P4

00000001 00000000
00000000 00000000
00000100 00000000
00000000 00000000
00100000 00000000
10000000 00000000
00000000 00000000
00000000 00000000
00000000 00000011
00000000 00000001
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

Basic grid distribution

P1 P2

P3 P4

00000001 00000000
00000000 00000000
00000100 00000000
00000000 00000000
00100000 00000000
10000000 00000000
00000000 00000000
00000000 00000000
00000000 00000011
00000000 00000001
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

Multi-level distribution (L=2) 

P1 P2 P1 P2

P3 P4 P3 P4

P1 P2 P1 P2

P3 P4 P3 P4

Fig. 2. Basic distributions with |P | = 4 and a graph with |N | = 16 nodes

Block Distribution. We can divide the adjacency matrix in |P | horizontal
blocks. Each processor builds a K2-tree for a subgraph which supports an ad-

jacency matrix with dimensions (block, |N |), where block = � |N |
|P | �. The K2-tree

needs to fill out the adjacency matrix with zeros in order to obtain a square ma-
trix, but since big regions of 0 can be compressed by using only a few bits, this
asymmetric dimension does not deteriorate the compression. Likewise, a vertical
distribution could be used too.



Distributed Query Processing on Compressed Graphs Using K2-Trees 303

We define a neighbour operation over a node q, direct(q), in terms of the
local operations directpi(q

′), meaning the row q′ of the processor i is queried.
Each obtained local result r is mapped to the global graph through the function
dMappi(r). The reverse neighbour operation uses the same notation. We can
note that a direct neighbour operation only needs one processor to be performed.
However, a reverse neighbour operation in answered through the union of the
local results of all processors:

– direct(q) = directp1+� q
block

�((q mod block)), with dMappi(r) = r

– reverse(q) =
|P |⋃
i=1

reversepi (q), with rMap(r)pi = r + (pi − 1) · block

The main disadvantage of this method is that balance in terms of space strongly
relies on the distribution of the adjacency matrix. If it is heterogeneous this
distribution will achieve a poor spatial balance.

Cyclic Distribution. This basic distribution tries to minimize the dependency
on the distribution by performing a cyclical distribution, where the rows of the
global matrix are mapped to processors in a round-robin fashion. As in block
distribution it has asymmetrical behaviour for the basic operations:

– direct(q) = direct(� q
block�)p1+(q mod |P |) , with dMappi(r) = r

– reverse(q) =
|P |⋃
i=1

reversepi (q), with rMappi(r) = pi + r · block

The main disadvantage of this distribution is its low compressibility because
it breaks the natural clusterization of 1 in the adjacency matrix used for the
K2-tree to save space.

Grid Distribution. As a symmetrical alternative we can distribute the ad-
jacency matrix over |P | square matrices of dimension sq ∗ sq, where sq =
�N/

√
|P |�, as it is shown in the left-bottom of the Figure 2. Unlike Block and

Cyclic distributions direct and neighbour operations are always distributed over
sq processors. However it still divides the matrix in big regions, being sensible
to the node distribution. This basic grid can be improved by making a recursive
L-grid distribution, where L denotes the number of levels of recursion, so we
have submatrices with dimensions sq′ ∗ sq′, where sq′ = � N

L
√

|P |�. An example

with L = 2 is shown on the bottom-right in the Figure 2. Using larger L values,
the imbalance produced by an heterogeneous graph distribution is highly min-
imized. However, with very larger L values the locality of the data can be lost
because of the assignment of smaller submatrices to different processors. The
effect of the L parameter is discussed in the experimental evaluation. Next we
formalise the implementations of the direct and reverse retrieval:

– direct(q) =

√
P⋃

i=1

directp√
p(� q

sq′ � mod
√

|P |)+i
(q mod sq′)



304 S. Álvarez-Garćıa et al.

– dMappi(r) =
√
|P |sq′� r

sq′ �+ sq′((i − 1) mod
√
|P |) + (r mod sq′)

– reverse(q) =

√
P⋃

i=1

reversep
(� q

sq′ � mod
√

|P |)+1+(i−1)
√

|P |
(q mod sq′)

– rMappi(r) =
√
|P |sq′� r

sq′ �+ sq′� i−1√
|P |�+ (r mod sq′)

3.2 Perfect Spatial Balanced Distribution

Basic distributions do not guarantee balance in terms of space, because it strongly
depends on the distribution of the edges over the adjacency matrix. Now we are
focused on levelling out the final size of the K2-tree structures that each proces-
sor manages, expecting that a spatial balance may bring a well-balanced work
load. While the previous section describes typical distributions of an adjacency
matrix, this distribution is specific of a final K2 structure, because it is designed
attending to its structural characteristics.

We first consider a global K2-tree, which stores the full graph (shown in the
Figure 3). We propose a distribution of the edges of the graph attending to their
position in this global K2-tree. That is, we allocate the edges to the processors
following the order of the last level of the tree. This level corresponds with a
Z − ordering over the position of those edges in the adjacency matrix. This
distribution will accomplish that if an edge ei (where i denotes the position of
the edge in the last level of the global tree) is allocated on the processor px, and
another edge ej is allocated on the processor py, and i <= j; then x <= y. In
this way, we expect to avoid representing duplicated elements of the intermediate
levels of the tree in multiple processors, since edges with common ancestors are
expected to be stored in the same processor. Consequently, this distribution
contains a minimum overhead of space in relation to the sequential approach.

1111

1001 0001 0010 0011

0111 1110 0001 0010 0100 1110
0012C 004 8 8 8 004 |E|    C (ei) = 44i=1

P1 P2 P3 P4C (e1) C (e4)C (e2)

Fig. 3. An example of perfect balanced distribution

If we study how the K2-tree is built, we can notice that each edge of the tree
is represented by using K bits for each level. That is, for a graph with N nodes,
the path of an edge from the root to the leaf costs K2logKN bits. However, if
we attend to the cumulative costs, not all the edges of the tree cost the same.



Distributed Query Processing on Compressed Graphs Using K2-Trees 305

An edge placed in a dense region costs less bits than an isolated edge in a sparse
region, because the edges in a dense area will share common ancestors that
are stored only once. We first define the spatial cost of a graph G = (N,E),
denoted as SC(G), as the number of bits that the K2-tree structure spends in
order to represent G. Then, we define the differential cost of an edge ei, C(ei) =
SC(G′)−SC(G′′), where G′ = (N, {e1, ..., ei}) and G′′ = (N, {e1, ..., ei−1}), that
is the number of bits that the insertion of ei in G′′ costs. We have SC(G) =∑|E|

i=1 C(ei), so we distribute the edges of the graph by storing in each processor

a K2− tree containing consecutive edges em, ..., en, where
∑n

i=m C(ei) ≈ SC(G)
|P | .

An example of this distribution can be seen in the Figure 3, which shows, for
each edge in the last level ei, its differential cost C(ei) (in number of bits). Note
that the common ancestors for the last edge of each processor i and the first
edge of the processor i+1 are replicated between these two processors, but this
overhead is minimal since the overlapping between two processors is less than
K2logKN bits.

3.3 Latin-Square Distribution

We propose another approach focused on workload efficiency. It forces all opera-
tions to be distributed over the |P | processors, while it tries to maintain a good
balance in terms of space.

00111111 00010000
00101111 00100000
11001111 00000000
11001110 00000000
01110000 00000001
11110000 01000010
01001111 00000100
00001011 00001000
00010000 00000011
01000110 00000101
00000110 00100100
00000000 01000000
00100000 10000000
01000000 01000010
00000000 00100000
00000000 00010101

Global Adjacency Matrix

841220

8201612

12161220

2016124

Spatial Costs (C)

4321

1432

2143

3214

Latin Square Template

44

60

56

52

RC

1º

2º

3º

4º

 P: 3
 C: 8

 P: 2
 C: 4

 P: 1
 C: 12

 P: 4
 C: 20

 P: 4
 C: 12

 P: 3
 C: 16

 P: 2
 C: 12

 P: 1
 C: 20

 P: 1
 C: 8

 P: 4
 C: 20

 P: 3
 C: 16

 P: 2
 C: 12

 P: 3
 C: 20

 P: 2
 C: 16

 P: 1
 C: 12

 P: 4
 C: 4

Final Assignation

P1

P2

P3

P4

SC(P)

52

44

60

56

Fig. 4. An example of a Latin Square distribution

We start with the subdivision of the adjacency matrix in a grid of |P | ∗ |P |
regions. For each region a K2-tree is built. The spatial cost of a region (i, j),



306 S. Álvarez-Garćıa et al.

SC(Gi,j) will be the number of bits of the K2-tree representing this region.
Figure 4 shows the grid of spatial costs (top-center) for a global adjacency matrix

(top-left). We define the cost of a row i, RCi =
∑|P |

j=1 SC(Gi,j), which is also
shown in the Figure 4.

We want to distribute this grid of |P | ∗ |P | K2-trees so that any row and any
column of the matrix is distributed over all the processors. Latin Square is an
example of matrix that complies with this restriction. It is a two-dimensional
matrix of size n ∗ n in which each cell contains a value between 1, . . . , n, where
each value appears once in each row and column. The normalised Latin Square
with dimensions |P | ∗ |P | (shown in the Figure 4) will be our starting template
LS, although any other could be used.We could use this template to allocate
each K2-tree Gi,j to the processor LS(i, j). In the example, G0,0 will be stored
in the processor P1, since LS(0, 0) = 1, and so on. This distribution complies
with our first requirement: any query is distributed over all processors.

However, this procedure is not enough, because we also want to obtain a
good spatial balance. In order to improve it, we will permute the rows of our
template. We start with the row i that has the maximum spatial cost RC, which
is row 2. Then, we assign any available row of the LS template to this row. After
that we disable this row, because it cannot be assigned to any other row of the
grid. Next, we choose the row with the next maximum cost; in this case, row
3. Then we compute which of the available rows of the template LS obtains a
better spatial balance when it is assigned to row 3: it is row 2, so LS2 will be
allocated to the row 3. The same process is performed |P | times, until each row
has been assigned. We can see the final distribution (bottom-left in Figure 4)
and the achieved spatial costs for each processor (bottom-right). In this way any
row and any column of the original adjacency matrix is distributed over all |P |
processors while we try to maintain a reasonable spatial balance.

4 Experimental Evaluation

We use a cluster composed by 67 processing nodes. Each node is equipped with
two quad-core Intel Xeon E5555 processors running at 2.67GHz, and 24GB
RAM. The cluster uses an Infiniband network to communicate the nodes for
calculations and I/O purposes, that reaches a peak bandwidth of 40Gb/s per
port and a latency of 100 nsec. The computing nodes are allowed to use a mes-
sage passing communication library (MPI). In the experiments, we ensure that
each process is located in a different processing node in the cluster.

We analyse the performance of all our distributed implementations on real
graphs from two different contexts. Live Journal is a social graph obtained from
[11] that represents the relationships between the user of this community. UK
is a Web crawl from the WebGraph project [3][2] that represents links between
pages of the Web. Table 1 shows the number of nodes and edges of the graphs,
and the size of the K2-tree structure that stores them.

In this experiment, we distribute the graphs over a system with |P | processors
using our strategies. We implement a querying system divided in supersteps. In
superstep i, each processor p will perform the following operations:



Distributed Query Processing on Compressed Graphs Using K2-Trees 307

Table 1. Web and social graphs used in this experimentation

Graph Domain Number of nodes Number of edges Size (MB) BPE

LiveJournal Social Network 4847571 68993773 167.29 20.34

UK-2002 Web 18520486 298113762 149.78 4.21

– It receives Q queries and it computes, depending on the distribution, which
processors have to be queried in order to answer each one of them, mapping
the global query to several local queries.

– It solves the queries received from the other |P | − 1 processors sent in su-
perstep i− 1 and it sends the answers to the remiting processor.

– It gathers the answers from the other processors calculated in the superstep
i − 2, mapping the local results to the global graph to produce the final
answer.

We use a value of Q = 100000 for each superstep, that is, the querying sys-
tem processes 100000 ∗ |P | queries per superstep. The performance is evaluated
from the average time of 10 supersteps. We run experiments with 1 (sequential
version), 4, 9, 16 and 25 processors.

We first compare the proposed approaches in terms of space. The total space
of the distributed graph is composed by the cost of all local K2-trees. Depending
on the distribution, additional information for the mapping could be required.
For instance, the Latin Square distribution needs to store the final assignation of
the |P | ∗ |P | K2-trees replicated in all processors. If we compare the total space
regarding to a K2-tree, the overhead of the distributed approaches is minimum
(less than 1%). The only exception is the cyclic distribution, which damages the
compression of the K2-tree (since it loses the locality of the data, getting worse
as the number of processors grows). For instance, the cyclic distribution of the
graph UK in 25 processors has a space overhead of 44%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  9  16  25

Spatial Efficiency - LiveJournal

Cyclic Block Grid(L=4) PBS LS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  9  16  25

Spatial Efficiency - UK

Cyclic Block Grid(L=4) PBS LS

Fig. 5. LiveJournal and UK spatial efficiency comparative

A more interesting study is how well this spatial cost is distributed in the
network, because a good balance will allow bigger datasets to fit in the main-
memory of each individual processor. Figure 5 shows for LiveJournal (left) and



308 S. Álvarez-Garćıa et al.

UK (right), the spatial efficiency achieved with the different distributions. Effi-
ciency is calculated as X/Y where X is the average space occupied by the graph
partition in each processor and Y is the maximum space in any processor. As
expected, the perfect spatial balanced distribution achieves the best results in
both graphs, since it is specifically designed to allocate the same number of bits
on each processor. Cyclic distribution also obtains a good spatial efficiency close
to 1 because it minimizes the effects caused by a heterogeneous distribution of
the matrix (but in return of a significant spatial overhead). Block distribution
obtains different results for the Social and the Web graphs, because its efficiency
strongly relies on the distribution of the graph. Most of the edges of LiveJournal
appear in the first rows and columns of the matrix, so in this case, block dis-
tribution achieves a poor spatial efficiency. However, the results achieved in the
UK graph for the block distribution are much better since the distribution of
this graph favours this partitioning. Grid and Latin Square distributions obtain
intermediate results for both graphs.

We also analyse the running time performance of the different distributions.
Speed-up is defined as Ts/Tp where Ts is the running time of a sequential algo-
rithm for the problem and Tp the running time of a parallel algorithm. Figure
6 shows the speed-up obtained for LiveJournal (left) and UK (right) executing
direct neighbour queries (we omit the results for retrieving reverse neighbours
because identical results were obtained). We observe that PSB obtains the worst
results. Since the processors which contain elements of a row or column of the
adjacency matrix are unknown, the implementation of a direct or reverse op-
eration always queries all processors of the network, deteriorating performance.
The results obtained for the block distribution demonstrate its dependency on
the distribution, obtaining better results for UK. We also observe that Grid dis-
tribution with L = 4 achieves good results that can be explained because it only
asks to

√
|P | processors for each query. Finally, Latin Square obtains, in general,

very good results. It has a great advantage with respect to other approaches:
the original adjacency matrix is represented by |P | ∗ |P | K2-trees, and only |P |
of them are queried in each operation. That is, a large region of the original
adjacency matrix is completely ignored in each operation.

We finally study the load efficiency for each distribution calculated as A/B
where A is the average running time of processors per superstep and B is the
maximum running time in any processor. Figure 7 shows the results achieved for
direct neighbour queries in LiveJournal(left) and UK(right). We can observe that
cyclic distribution obtains the best load efficiency. As expected, Grid and Latin
Square distributions achieve good load efficiency as well, while PSB obtains the
worst efficiency causing the poor speed-up reported in Figure 6.

5 Conclusions

In this paper we have proposed alternative methods for distributing compressed
Web and Social Graphs on a set of distributed memory processors. The complex
features of the K2-tree compact data structure make the distribution a non-
trivial task. For the same reason, at the start of our study, it was not clear to us



Distributed Query Processing on Compressed Graphs Using K2-Trees 309

 0

 5

 10

 15

 20

 25

 1  4  9  16  25

Speed-up - LiveJournal

Cyclic Block Grid(L=4) PBS LS

 0

 5

 10

 15

 20

 25

 1  4  9  16  25

Speed-up - UK

Cyclic Block Grid(L=4) PBS LS

Fig. 6. Speed-up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  9  16  25

Querying Efficiency  - LiveJournal

Cyclic Block Grid(L=4) PBS LS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  9  16  25

Querying Efficiency - UK

Cyclic Block Grid(L=4) PBS LS

Fig. 7. Querying efficiency

which scheme was most efficient in practice. To answer this question we resorted
to actual implementations and experiments executed on a cluster of processors.
The results indicate that strategies like Latin Squares are the best choice as it
achieves good speed-ups due to a good load balance across processors during
query processing. Its |P | ∗ |P | K2-trees approach, meaning that each processor
contains |P | trees, enables an even distribution of the amount of processing per
query performed in each processor.

References

1. The boost graph library: user guide and reference manual. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

2. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-
tributed web crawler. Software: Practice & Experience 34(8), 711–726 (2004)

3. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:
WWW, pp. 595–601. ACM Press, Manhattan (2004)

4. Brisaboa, N.R., Ladra, S., Navarro, G.: k2-trees for compact web graph represen-
tation. In: SPIRE, pp. 18–30 (2009)

5. Brisaboa, N.R., Ladra, S., Navarro, G.: Dacs: Bringing direct access to variable-
length codes. In: SPIRE, pp. 392–404 (2009)



310 S. Álvarez-Garćıa et al.

6. Bulu, A., Gilbert, J.R.: The combinatorial blas: design, implementation, and ap-
plications. Int. J. High Perform. Comput. Appl. 25(4), 496–509 (2011)

7. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: OSDI 2012 (2012)

8. Gregor, D., Lumsdaine, A.: The parallel bgl: A generic library for distributed graph
computations. In: POOSC (2005)

9. Krepska, E., Kielmann, T., Fokkink, W., Bal, H.: Hipg: parallel processing of large-
scale graphs. SIGOPS Oper. Syst. Rev. 45(2), 3–13 (2011)

10. Ladra, S.: Algorithms and Compressed Data Structures for Information Retrieval.
PhD thesis, Department of Computer Science, University of A Corun̈a (2011)

11. Leskovec, L.: Snap: Stanford network analysis platform,
http://snap.stanford.edu

12. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Graphlab: A new framework for parallel machine learning. In: Grünwald, P.,
Spirtes, P. (eds.) UAI, pp. 340–349. AUAI Press (2010)

13. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010,
pp. 135–146. ACM Press, New York (2010)

14. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

15. Yucheng, L., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. VLDB 5(8), 716–727 (2012)

http://snap.stanford.edu


Erratum to: String Processing and Information
Retrieval

Oren Kurland1, Moshe Lewenstein2, and Ely Porat2

1 Technion Institute of Technology, Faculty of Industrial
Engineering and Management Technion, Haifa 32000, Israel

kurland@ie.technion.ac.il
2 Bar-Ilan University, Department of Computer Science, Ramat-Gan 52900, Israel

{moshe,porately}@cs.biu.ac.il

Erratum to:

O. Kurland, M. Lewenstein, and E. Porat (Eds.)

String Processing and Information Retrieval

DOI: 10.1007/978-3-319-02432-5

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© Springer-Verlag
Berlin Heidelberg. The book has been updated with the changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-319-02432-5

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, p. E1, 2013.
c© Springer-Verlag Berlin Heidelberg 2017

http://dx.doi.org/10.1007/978-3-319-02432-5
http://dx.doi.org/10.1007/978-3-319-02432-5


Author Index

Almeida, Jussara 271
Álvarez-Garćıa, Sandra 96, 298
Amir, Amnon 279

Bannai, Hideo 174
Beller, Timo 5
Bessa, Aline 17
Biswas, Sudip 29
Bonacic, Carolina 37
Brisaboa, Nieves R. 96, 298
Broccolo, Daniele 49

Carvalho, Cristiano R. 271
Cicalese, Ferdinando 56
Claude, Francisco 64, 72
Cristo, Marco 197
Crochemore, Maxime 84

Dagan, Ido 1
da Silva, Altigran Soares 197, 271
de Bernardo, Guillermo 96
de Moura, Edleno Silva 197, 271
Durocher, Stephane 109

Elnikety, Sameh 230
Elsweiler, David 153

Ferrada, Héctor 116

Gagie, Travis 56
Gawrychowski, Pawe�l 129
Giaquinta, Emanuele 56
Gog, Simon 5, 141
Gómez-Pantoja, Carlos 298
Grossi, Roberto 2

Harvey, Morgan 153
He, Yuxiong 230
Hernández, Cecilia 165
Hong, Minsung 243
Hwang, Seung-won 230

I, Tomohiro 174
Iliopoulos, Costas S. 84
Inenaga, Shunsuke 174

Kim, Sunghwan 230
Klein, Shmuel Tomi 186
Kociumaka, Tomasz 84
Krauthgamer, Robert 3
Ku, Tsung-Han 29
Kubica, Marcin 84
Kucherov, Gregory 129

Laber, Eduardo Sany 56
Langiu, Alessio 84
Lecroq, Thierry 243
Lee, Sunho 243
Lima Rodrigues, Kaio Wagner 197
Lipták, Zsuzsanna 56
Ludwig, Bernd 153

Macdonald, Craig 49
Marcus, Shoshana 206
Maŕın, Mauricio 165
Marin, Mauricio 37, 298
Maruyama, Shirou 218
Matias, Yossi 4
Mendivelso, Juan 230
Moffat, Alistair 141
Mouchard, Laurent 243
Munro, J. Ian 64, 72

Na, Joong Chae 243
Nakashima, Yuto 174
Navarro, Gonzalo 96, 116, 255
Nekrich, Yakov 129

Ohlebusch, Enno 5
Orlando, Salvatore 49
Ounis, Iadh 49

Park, Heejin 243
Park, Kunsoo 243
Patil, Manish 263
Pedreira, Oscar 96
Perego, Raffaele 49
Pinzón, Yoan 230
Pissis, Solon P. 84



312 Author Index

Radoszewski, Jakub 84
Rizzi, Romeo 56
Rytter, Wojciech 84

Sadakane, Kunihiko 218
Sakamoto, Hiroshi 218
Santos, Aécio S.R. 271
Shah, Rahul 29, 109, 263
Shamir, Ohad 279
Shapira, Dana 186
Shelef, Gal 186
Shental, Noam 279
Silvestri, Fabrizio 49
Skala, Matthew 109
Sokol, Dina 206
Starikovskaya, Tatiana 129

Tabei, Yasuo 218
Takeda, Masayuki 174
Thankachan, Sharma V. 29, 109, 255,

263
Tomescu, Alexandru I. 56
Tonellotto, Nicola 49

Veloso, Adriano 17

Waleń, Tomasz 84

Zeisel, Amit 279
Ziviani, Nivio 17, 271
Zuk, Or 279
Zwerger, Maike 5


	Preface
	Organization
	Table of Contents
	Consolidating and Exploring Information
via Textual Inference
	Pattern Discovery and Listing in Graphs
	Efficient Approximation of Edit Distance
	Nowcasting with Google Trends
	Space-Efficient Construction
of the Burrows-Wheeler Transform
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 The Induced Sorting Algorithm
	5 Semi-external Construction of the Burrows-Wheeler Transform
	6 Practical Optimization for Very Small Alphabets
	7 Experimental Results
	8 Conclusion and Future Work
	References

	Using Mutual Influence
to Improve Recommendations
	1 Introduction
	2 Related Work
	3 BasicConcepts
	3.1 Individual Scores
	3.2 Pairwise Scores
	3.3 Combining Scores

	4 TheGSMI Algorithm
	5 Experiments
	5.1 Efficiency and Scalability of GSMI
	5.2 Relation between GSMI and Recommendations Diversity

	6 Conclusions and Future Work
	References

	Position-Restricted Substring Searching
over Small Alphabets
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Suffix Trees
	2.2 Orthogonal Range Reporting in Two Dimensions (RR2D)

	3 The Index
	3.1 Index for σ = logΩ(1) n
	3.2 Index for σ = logO(1) n and p ≥√log n
	3.3 Index for σ = logO(1) n and p ≤√log n

	4 Semi Dynamic Index for Property Matching
	References

	Simulation Study of Multi-threading
in Web Search Engine Processors
	1 Introduction
	2 Background and Running Example
	3 Simulation Model
	4 Average Case Analysis
	5 Simulation Study
	6 Conclusions
	References

	Query Processing
in Highly-Loaded Search Engines
	1 Introduction
	2 Prediction-Based Dropping
	3 Experiments
	4 Conclusions
	References

	Indexes for Jumbled Pattern Matching
in Strings, Trees and Graphs
	1 Introduction
	2 Basic Tradeoffs
	3 An Index for Binary Strings
	4 Exact Indexes for Trees with Two Colours
	5 An Approximate Index for Trees with Two Colours
	6 Indexes for Graphs with Two Colours
	References

	Adaptive Data Structures for Permutations�and Binary Relations
	1 Introduction
	2 Related Work
	2.1 Permutation and Binary Relations
	2.2 Monotonic Decomposition of Sequences

	3 Representing Permutations
	4 Representing Binary Relations
	4.1 Using Permutations
	4.2 Using Chains Directly

	5 Conclusions and Future Work
	References

	Document Listing on Versioned Documents
	1 Introduction
	2 Related Work
	2.1 Grammar Indexes
	2.2 Re-pair

	3 The Index
	3.1 Construction for Primary Occurrences
	3.2 Adding Inverted Lists
	3.3 Full-Text Document Listing
	3.4 Adding Ranking Information

	4 Experimental Results
	4.1 Practical Considerations
	4.2 Experimental Setup
	4.3 Full-Text Document Listing
	4.4 Comparison to Related Work

	5 Conclusions
	References

	Order-Preserving Incomplete Suffix Trees
and Order-Preserving Indexes
	1 Introduction
	2 Order-Preserving Code
	3 Order-Preserving Suffix Trees
	4 Algorithmic Toolbox
	5 Constructing Incomplete Order-Preserving Suffix Tree
	6 Incomplete Suffix Tree as Order-Preserving Index
	7 Constructing Complete Order-Preserving Suffix Tree
	References

	Compact Querieable Representations
of Raster Data
	1 Introduction
	2 Previous Work: The k2-tree
	3 Compression of Ones
	3.1 2-Bits Variant
	3.2 Unbalanced (1-5)-Bits Variant
	3.3 Comparison of k2-tree with Linear QuadTree

	4 Multi-dimensionalk2-trees: The kn-tree
	5 Representation of Raster Data Using k2-tree Variants
	5.1 Experimental Framework
	5.2 Experimental Results

	6 Conclusions
	References

	Top-k Color Queries on Tree Paths
	1 Introduction and Related Work
	2 Our Solution
	References

	A Lempel-Ziv Compressed Structure
for Document Listing
	1 Introduction
	2 Related Work
	3 The LZ-Index
	4 A Novel LZ-Index Based Document Listing Structure
	5 Experimental Results
	6 FinalRemarks
	References

	Minimal Discriminating Words Problem
Revisited
	1 Introduction
	2 Minimal Discriminating Words
	2.1 General Idea
	2.2 Computing Maximal Subtrees
	2.3 Computing Extension Loci

	3 Minimal Discriminating Words for Specified Documents
	3.1 General Idea
	3.2 Computing an Ind-Terminating Node
	3.3 Computing Ancestor Loci

	4 Conclusions
	References

	Adding Compression and Blended Search
to a Compact Two-Level Suffix Array
	1 Introduction
	2 Two-Level Suffix Arrays
	3 Reducing Disk Space
	4 Experimentation
	5 Summary
	References

	You Are What You Eat:
Learning User Tastes for Rating Prediction
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Exploratory Analysis
	5 Recommendation Models
	5.1 Predicting Ratings
	5.2 User and Item (Recipe) Biases
	5.3 Including Nutritional Information

	6 Experimental Results
	6.1 Models and Parameters
	6.2 Average Performance
	6.3 Standard Deviation of Errors

	7 Discussion of Results and Conclusion
	References

	Discovering Dense Subgraphs in Parallel
for Compressing Web and Social Networks
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Algorithms and Analysis

	4 Experimental Evaluation
	5 Conclusions
	References

	Faster Lyndon Factorization Algorithms
for SLP and LZ78 Compressed Text
	1 Introduction
	2 Preliminaries
	3 Properties on Strings and Lyndon Words
	4 Faster Lyndon Factorization from SLP
	4.1 How to Compute the Medial Lyndon Factor
	4.2 Computing Lyndon Factorization from SLP

	5 Computing Lyndon Factorization from LZ78
	References

	Lossless Compression
of Rotated Maskless Lithography Images
	1 Introduction
	2 New Compression Technique for Maskless Lithography
	3 Compression of Rotated Wafers
	4 Experimental Results
	References

	Learning URL Normalization Rules Using Multiple
Alignment of Sequences
	1 Introduction
	2 Related Work
	3 Sequence Alignment
	4 Duster
	4.1 Finding CSs
	4.2 Phase 2: Generating Rules

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	On Two-Dimensional Lyndon Words
	1 Introduction
	2 MainIdea
	2.1 Definition of 2D LyndonWord
	2.2 Classification Scheme

	3 Simple Algorithm for Computing 2D Lyndon Word
	4 Computation of 2D Lyndon Word by Modular Arithmetic
	5 Applications
	References

	Fully-Online Grammar Compression
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 Grammar-Based Compression
	Definition 1 (Grammar Compression).
	Definition 2.
	2.3 Phrase/Reverse Dictionaries
	2.4 Rank/Select Dictionary

	3 Post-order SLPs and Succinct Encoding
	3.1 Post-order SLPs
	Definition 3 (Post-order SLP (POSLP) and post-order partial parse
	tree (POPPT)).
	Lemma 1 ([9]).
	–
	–
	–
	3.2 Succinct Representation of POSLP and the Phrase Dictionary
	Lemma 2.
	3.3 Smaller Reverse Dictionary
	Theorem 1.
	Theorem 2.
	3.4 Substring Extraction
	Lemma 3.
	Theorem 3.

	4 Fully-Online Grammar Compression
	Algorithm 1.
	Algorithm 2.
	Theorem 4.

	5 Experiments
	6 Conclusion
	References

	Solving Graph Isomorphism
Using Parameterized Matching
	1 Introduction and Related Work
	2 Preliminaries
	3 Graph Linearization
	3.1 Definition of Graph Linearization
	3.2 Characteristics and Algorithms for Graph Linearization

	4 Graph Linearization Algorithm - GLA
	4.1 Key Ideas
	4.2 Algorithm
	4.3 Length of GLA Linearization
	4.4 Complexity Analysis

	5 Matching a Linearized Graph
	5.1 Key Ideas
	5.2 Pseudocode
	5.3 Complexity Analysis

	6 Experimental Evalution
	7 Conclusions
	References

	Suffix Array of Alignment:
A Practical Index for Similar Data
	1 Introduction
	2 Suffix Array of Alignment (SAA)
	2.1 Definition of SAA
	2.2 Construction of SAA
	2.3 Alignment with Multiple Regions
	2.4 Pattern Search

	3 Experiments
	3.1 Experimental Data
	3.2 Experimental Results

	References

	Faster Top-k Document Retrieval
in Optimal Space
	1 Introduction
	2 Compressed Top-k Retrieval Indexes
	3 A Faster Space-Optimal Representation
	3.1 The Sampled Document Array
	3.2 Completing the Index

	4 FinalRemarks
	References

	Faster Range LCP Queries
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Suffix Trees
	2.2 Orthogonal Range Successor Queries

	3 PivotRangeLCP
	4 AnO(n) Bits LCP Matrices
	5 Adaptive O((j − i)1/2 log�(j − i)) Time Solution

	References

	Learning to Schedule Webpage Updates
Using Genetic Programming
	1 Introduction
	2 Background and Related Work
	3 Crawler Architecture
	4 Genetic Programming for Incremental Crawling
	5 Experimental Evaluation
	5.1 Baselines and Evaluation Metric
	5.2 Experimental Methodology
	5.3 Results

	6 Conclusions and Future Work
	References

	Accurate Profiling of Microbial Communities from Massively Parallel Sequencing Using
Convex Optimization
	1 Introduction
	2 The MCR Problem Formulation
	2.1 Probabilistic Model
	2.2 Evaluating the Solution: Metrics

	3 Species Identifiability
	4 Reconstruction Error
	5 Divide-and-Conquer Algorithm
	6 Discussion
	References

	Distributed Query Processing
on Compressed Graphs Using K2-Trees
	1 Introduction
	2 Related Work
	2.1 K2-Tree

	3 Our Proposal
	3.1 Basic Distributions
	3.2 Perfect Spatial Balanced Distribution
	3.3 Latin-Square Distribution

	4 Experimental Evaluation
	5 Conclusions
	References

	Erratum to: String Processing and Information Retrieval
	Author Index



