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Preface

This year marks the 10th anniversary of GECON, the International Conference
on the Economics of Grids, Clouds, Systems, and Services. In 2003, three years
before the launch of Amazon’s EC2 Cloud computing offering, this event was
jointly initiated by members from the research and industry communities, to
explore the problems at the interface of economics and IT. Its main focus at
that time was the need to develop business models and economically inspired
forms of resource allocation for grid computing systems in order to increase their
availability, sustainability, and efficiency. Many of the models proposed in this
event over the years have now turned into reality, and its widened scope is more
relevant than ever considering the recent developments in our service economy
with respect to (automated) trading, pricing, and management of services.

For a decade, the conference has brought together the research and practi-
tioner community that works in the area of economics and computer science to
address this emerging interest in infrastructure, platform, and software services.
This includes the operation and structure of the service market, the alignment of
cost, revenue, and quality-related objectives, and the creation of innovative busi-
ness models and value chains. GECON has been unique in bringing together both
technical and micro/macro economic aspects associated with the management
and operation of services over distributed infrastructures. This year’s conference,
GECON 2013, continues this work.

GECON 2013 took place in the beautiful city of Zaragoza (the capital city
of the autonomous community of Aragon). The city is famous for its folklore,
a renowned local gastronomy, and landmarks such as the Baśılica del Pilar, La
Seo Cathedral, and the Aljafeŕıa Palace. Holding GECON 2013 in Zaragoza
allowed us to combine a beautiful environment with intensive discussions on
interdisciplinary research on economics and computer science.

This year again, we received a number of high-quality paper submissions.
Each submission received a minimum of three reviews by members of an in-
ternational Program Committee. Our final program consisted of seven sessions
(three of which were work-in-progress sessions). The schedule for the conference
this year was structured to encourage discussions and debates, with discussion
time included in each paper presentation session, led by the session chair. We
believe such discussion sessions are essential in order to boost more open and
informed dialogue between presenters and the audience, and to enable the pre-
senters to better position their work for future events and to get a more informed
understanding of the impact their work is likely to have on the research commu-
nity. The presentation sessions were:
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Session 1: Business Models
Session 2: Energy Consumption
Session 3: Resource Allocation
Session 4: Work in Progress on Resource Allocation
Session 5: Work in Progress on Pricing
Session 6: Quality of Service
Session 7: Work in Progress on Utility and ROI Modelling

Session 1 started with the paper by Eetu Luoma on “Examining Business
Models of Software-as-a-Service Firms”, which focuses on how business models,
using two examples of companies offering Software-as-a-Service (SaaS), differ
from other (more traditional) software vendors. The authors derive useful com-
parisons that may be of benefit to vendors intending to operate in the SaaS
market. The next paper by Kaufmann and Ma on “Cost Efficiency Strategy in
the Software-as-a-Service Market: Modeling Results and Related Implementa-
tion Issues” identifies various features that SaaS vendors can use to distinguish
themselves, with a particular focus on costs for clients and vendors, leading to a
discussion about mechanism design choices in a SaaS market. Dutta and Hasan’s
subsequent paper on“How Much Does Storage Really Cost? Towards a Full Cost
Accounting Model for Data Storage” addresses the commonly held misconcep-
tion that with increasing availability of providers, storage costs have decreased.
They consider a variety of factors that influence such costs – and not just the
cost of the storage media – thereby providing the basis for an“accounting model”
for storage.

Session 2 focused on the emerging interest in energy management and cost in
Cloud systems. The paper by Cambazard et al. entitled “Constraint Program-
ming Based Large Neighborhood Search Approach for Energy Minimization in
Data Centers” presents an approach for the allocation of virtual machines to
servers with time-variable resource demands on data centers – in order to min-
imize energy costs. The authors discuss this approach in the context of the
EnergeTIC project. The next contribution by Cauwer and O’Sullivan entitled
“A Study of Electricity Price Features on Distributed Internet Data Centers”
considers how the design of Internet Data Centers and energy cost prediction
regimes impact overall energy usage (considering factors such as price variability
and time lag between geographical locations). The last paper in this session by
Katsaros and Stichler on “Quantifying Ecological Efficiency in Cloud Comput-
ing” provides a methodology for calculating the ecological efficiency of virtual
machines within a Cloud infrastructure. Their work is motivated by the ques-
tion whether the economic and ecological efficiency of Cloud computing can be
measured in practice (in real time).

Session 3 focused on resource allocation – one of the most widely researched
areas within Cloud computing (and in previous GECON conferences). The con-
tribution by Hernández et al. entitled “Cost Evaluation of Migrating a Com-
putation Intensive Problem from Clusters to Cloud” identifies how an Amazon
EC2 instance could be used as an alternative to a heterogeneous computing
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system used previously for supporting semantic annotation of educational re-
sources at a university. The outcome provides a useful comparison about issues
that need to be considered for migrating an application to a public Cloud in-
frastructure. Leon and Navarro present their work on “Incentives for Dynamic
and Energy-Aware Capacity Allocation for Multi-Tenant Clusters”, identifying
how incentives could be developed to enable users to report their actual resource
requirements to an infrastructure provider. Such reporting could be used as a
basis to improve resource sharing (in a multi-tenancy environment) and reduce
energy costs. The contribution by Banares et al. entitled “Revenue Creation for
Rate Adaptive Stream Management in Multi-tenancy Environments” describes
how a multi-tenancy Cloud infrastructure could be used to support stream pro-
cessing from multiple users (with different customer classes). They outline how
rate adaptation of a stream and dynamic resource allocation could be used to
ensure penalties are minimized by an infrastructure provider.

Session 4 consisted of work-in-progress papers that deal with resource al-
location problems. In “Scheduling Divisible Loads to Optimize the Computing
Time and Cost”, Natalia Shakhlevich revisits the problem of finding Pareto op-
timal solutions to divisible load scheduling problems that require optimization
of both time and cost. The paper addresses the issue that common conceptions
on divisible load scheduling, such as the necessity to spread load evenly on all
processors and to fix the sequence of the processors in a non-decreasing order of
their cost/speed characteristic, do not hold in general, and proposes alternatives
strategies. In “Preference-Based Resource Allocation: Using Heuristics to Solve
Two-Sided Matching Problems with Indifferences”, Haas et al. apply genetic al-
gorithms to the problem of allocating resources through two-sided matching on
the basis of preference rankings rather than monetary valuations. Their heuris-
tics yield superior results compared to standard algorithms, given the choice of
appropriate objective functions. They also demonstrate the use of a penalty in
such functions for unstable pairs, in order to achieve stable matches that perform
well with respect to both fairness and welfare. Finally, in “Advanced Promethee-
Based Scheduler Enriched with User-Oriented Methods”, Moca et al. analyze
the performance of a scheduler that optimizes user satisfaction when schedul-
ing bag-of-tasks applications on hybrid distributed computing infrastructures
(DCIs). These consist of desktop resources, Cloud resources, and best effort Grid
resources. The user satisfaction function is based on a combination of makespan
and cost metrics.

In session 5, work-in-progress on pricing was presented. Philipp Berndt and
Andreas Maier from Zimory, a company offering Cloud management software,
propose an alternative to the current pay-as-you-go flat-rate pricing schemes that
are combined with overbooking strategies as adopted by many Cloud providers.
In “Characterizing Sustainable IaaS Pricing”, they highlight the issues with the
existing billing approach and conduct a game theoretical analysis based on an
asymmetric non-cooperative game. The authors subsequently propose a hybrid
billing approach wherein a flat part of the rate deals with a minimum guaran-
teed level of performance, while a flexible part of the rate deals with resource
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usage beyond the flat rate portion. In“Towards a PaaS Architecture for Resource
Allocation in IaaS Providers Considering Different Charging Models”, Vieira et
al. discuss the consumer-side problem of selecting the optimal charging models
when mapping PaaS workloads and associated QoS requirements to VM alloca-
tions. In addition, they also present an additional charging model in the form of
time-slotted reservations and present an integer linear programming model for
optimizing the scheduling of requests.

Session 6 on quality of service began with a contribution by Khan et al. enti-
tled “Towards Incentive-Based Resource Assignment and Regulation in Clouds
for Community Networks”, which investigates how a Cloud infrastructure could
be supported within community networks (which are primarily volunteer-driven
networks using off-the-shelf communication equipment to address the Internet
access and service needs of a particular community). They focus on how incen-
tive mechanisms could be developed to enable users to participate and contribute
applications within such networks. The contribution by Baker et al. entitled“To-
wards Autonomic Cloud Services Engineering via Intention Workflow Model”
describes how user requirements, captured using situation calculus, could be
mapped into a workflow model that can be enacted over a Cloud infrastructure.
The particular contribution of this paper is a description of how high level user
objectives can be mapped into concrete services, which can then be composed
to carry out these requirements. The authors also briefly describe how non-
functional requirements such as fault tolerance and resilience can be addressed
using this approach. The final contribution in this session by Oberle et al. enti-
tled “End-to-End Service Quality Considerations for Cloud-Based Applications”
identifies current limitations with offering end-to-end QoS within a Cloud envi-
ronment that is often composed of multiple, independently operating business
entities (often with contrasting and competing requirements). They describe the
limitations of establishing service level agreements in this context and how stan-
dardization could play an important role towards achieving such end-to-end QoS
objectives.

The final work-in-progress session on“Utility and Return on Investment Mod-
elling” began with the paper by Haile and Altmann entitled “Estimating the
Value Obtained from Using a Software Service Platform”, which focuses on un-
derstanding benefits provided to users as service platforms and, in particular,
the applications they offer within the market place. This work considers service
variety, perceived usefulness, and the number of users associated with services
as key parameters in understanding how they provide value to users. The pa-
per by Franke et al. entitled “An Experiment in SLA Decision-Making” uses an
experimental-economics approach to solicit the views of 16 professionals working
in IT management, to better understand their choices. The results indicate that
IT management practitioners do not behave as expected utility maximizers – as
often assumed by other researchers. The final paper in this session by Naldi et al.
entitled “Information Security Investments: When Being Idle Equals Negligence”
focuses on the relationship between investments made in infrastructure to reduce
the expected loss due to a potential attack and subsequent revenue loss due to
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a malicious attack on a system. The authors determine the potential investment
threshold that a company must consider compared to making no investment.

We would like to wholeheartedly thank the reviewers and Program Commit-
tee members for completing their reviews on time, and giving insightful and
valuable feedback to the authors. We would also like to extend our thanks
to the organizers at the University of Zaragoza and to Ivan Breskovic of the
Vienna University of Technology for their assistance this year. Furthermore, we
would like to thank Alfred Hofmann of Springer for his support in publishing
the proceedings of GECON 2013.

August 2013 Kurt Vanmechelen
Jörn Altmann

José Ángel Bañares
Omer F. Rana
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Information Security Investments: When Being Idle Equals
Negligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Maurizio Naldi, Marta Flamini, and Giuseppe D’Acquisto

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



Examining Business Models

of Software-as-a-Service Firms

Eetu Luoma

University of Jyväskylä,
P.O. Box 35 (Agora), 40014 University of Jyväskylä, Finland

eetu.luoma@jyu.fi

Abstract. The paper focuses the attention to different business models
and intended strategic aims of the firms providing Software-as-a-Service
(SaaS). SaaS vendors have been said to challenge the business practices of
the existing vendors providing proprietary or customer-specific solutions.
The current studies on the topic have shown that SaaS is different from
preceding software business models, but consider and emphasize SaaS
business model as an invariable configuration. This case study compares
two SaaS firms with different backgrounds and reveals characteristics of
two very different SaaS business models. The findings indicate that along
with SaaS vendors providing only standard software applications and fo-
cusing on cost efficiency, there are vendors who provide more specialized
software applications and complement the SaaS offering with services
required by larger customers.

Keywords: Software-as-a-Service, Business Models, Strategies.

1 Introduction

This paper contributes to the growing body of literature on Software-as-a-Service,
which is one of the Cloud Computing service models. Technically speaking, the
term Software-as-a-Service (SaaS) refers to an application running on top of
cloud infrastructure and to an application delivered and used over the Internet
and provisioned by the users themselves [1]. From the software systems out-
sourcing perspective, SaaS is different from preceding custom-tailored, product
software and application service provisioning models. By adopting a SaaS of-
fering the end-user organization outsources all the software-related functions to
the service provider [2], from requirements specification, implementation, de-
ployment to operating. SaaS model is therefore considered in this paper as both
technical and business innovation.

Scholars have called for more studies on the business aspects of Cloud Com-
puting [3], [4]. Searching the contemporary literature, we found that the business
related studies on SaaS consider the benefits and issues of the SaaS model, client
side perceptions and adoption, characteristics and business models of the SaaS
providers and discrete aspects of the SaaS business model. Need for “rich under-
standing on the complex phenomenon” has been identified in the previous litera-
ture [2], [5] and we also found shortage of studies capturing the aims and outlooks

J. Altmann, K. Vanmechelen, and O.F. Rana (Eds.): GECON 2013, LNCS 8193, pp. 1–15, 2013.
c© Springer International Publishing Switzerland 2013



2 E. Luoma

of SaaSvendors,whichwould provide a view to the development of thewhole trans-
forming software industry. Further, Currie et al. [6] suggested more in-depth case-
based investigation of the differences in vendors business models and offerings.

The aim of this paper is to respond to the calls referred to above, generating
two contributions to the literature on SaaS from the business viewpoint. First,
the paper examines the different characteristics of SaaS firms; in other words,
we compare operations, revenue logics and structures of software firms. This is
accomplished by taking business model as the unit of analysis for our empirical
study. Second, we consider the scope and aims of the SaaS firms, and changes
thereof, to suggest potential courses of future developments in the software mar-
kets. Finnish software firms were selected as a target group that addresses the
concerns of this study. In the context of a software market affected by the global
competition, two research questions are of particular interest in this study: 1)
What are the characteristics of different SaaS business models? 2) How are the
SaaS vendors changing their business model?

In essence, business model is a description of how company operates and how
it makes money [7]. The term has also been used to classify operating firms
[8], [9]. While the concept is causing controversy and discussion in the research
community (see e.g. Porter [10] and George and Bock [11]), this paper relies on
the conclusion by Zott et al. [9] that there is a widespread acknowledgement
of business model as a new unit of analysis. The current paper also submits to
the views that business model emphasizes holistic approach, seeks to explain for
both value creation and capture and considers both a focal organization and its
surroundings [8], [9].

The incentive to address the questions above emerges from recent claim by
Andriole [12]. He suggests that software renting (i.e. software acquired as a ser-
vice and paid per use) will radically change the software business setting, by
breaking down the positions of big proprietary software vendors. In addition to
major decrease in costs to acquire and deploy software, Andriole argues that
SaaS entails increase in end-user involvement in software development. Active
users are affecting the software requirements and design. Combined with com-
ponent architectures, this enables improved flexibility and, above all, increase in
the speed of deploying new software capabilities. In case SaaS offers both cost-
efficiency, flexibility and speed, the software firms providing proprietary solution
or custom-tailored projects are unlikely not to take action, but we can assume
them to change their business to match the customers needs. For that reason,
the practical motivation behind of this paper is to demonstrate possible transfor-
mations from business models based on solutions and projects to business model
with Software-as-a-Service offering in its core.

This paper is outlined as follows: We begin by summarizing and discussing
the business-related literature on Software-as-a-Service. After methodological
considerations of our empirical study, the findings of the study will be presented,
followed by discussion. To conclude, the contributions and limitations of the
study are discussed.
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2 Existing Literature on SaaS Firms

To start with an overview of the relevant literature, recent empirical studies
have examined both demand and supply of Software-as-a-Service. Most com-
mon topics looking at the client side include consideration of pros and cons of
SaaS [13],[14],[15],[16] discussion of service quality and related expectations by
SaaS customers [17],[18] and explaining the reasons to outsource in SaaS mode
[19],[20]. Software vendors viewpoint has been addressed in papers depicting
archetypal SaaS business models [6],[21],[22], [23] comparing SaaS to other busi-
ness models [2],[18],[24] and papers examining distinct aspects of SaaS business
[25], [26]. Software-as-a-Service business model has also received attention in the
closely related forums. In the following, we shall introduce and discuss relevant
literature on SaaS business model.

Software-as-a-Service business model first seems to be close to the traditional
model for selling software products. Only single set of functionalities is provided
to all customers with limited possibilities for customer-specific alterations, and
vendors aim to achieve economies of scale [13]. However, delivery of software
capabilities over the Internet, hence, outsourcing deployment and hosting to ser-
vice provider changes the business model configuration essentially. Differences
to software product business include more direct and continuous nature of cus-
tomer relationship, subscription based pricing logic, combining both software
development and hosting as key activities and required capabilities [23]. A well-
known contemporary example of SaaS business model is that of Dropbox, which
combines characteristic of both software product and as-a-service business mod-
els. Provisioning applications as a service has also been compared to business
of supplying customer-specific applications. Schwarz et al. [2] finds application
service providers targeting SMEs with one-to-many model for non-critical appli-
cations, as opposed to targeting large firms with customer-specific offering for
critical applications. They also see difference in short-term and standard con-
tracts of service provisioning and long-term and complex outsourcing contracts.
Overall, the reviewed literature considers Software-as-a-Service as explicit and
unique configuration of business model elements. This configuration is argued to
be different from preceding software business models [6],[20].

Benlian and Hess [13] conducted a survey on the IT executives perceptions on
benefits and risks of SaaS, and found cost advantages as the strongest adoption
level, followed by flexibility and improved quality factors. They also found that
IT executives are concerned by the security, economic and contractual risks. Sim-
ilarly, Repschlaeger et al. [15] found costs, flexibility, trustworthiness, IT security
as general selection criteria for SaaS. However, results of survey on SaaS adoption
by Benlian et al. [20] suggest that criterion of decisions on SaaS-adoption vary
between application types. Less specific and less strategically important appli-
cations are to a higher degree adopted as SaaS, than more complex, specific or
strategically significant applications [20]. Also, comparing traditional software
product, open source software or software provided on-demand, Benlian [18]
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observes a difference in preferences between buyers in SMEs who favored open
source and on- demand software, as compared to large enterprises who favored
the features of traditional software products. While standardized software prod-
uct and combined IT outsourcing is attractive to some customers, others may
require more IT support services or aim to achieve advantages over customizing
their software systems. As the needs of small and larger customers are differ-
ent, its likely that also SaaS vendors are differentiating themselves to fulfill the
customer requirements, and there will be different types of SaaS offerings.

Whereas some authors aim at uniform definition of SaaS and definitive SaaS
business model configuration, few papers [6],[22],[27], [28] introduce possible vari-
ations of the assumed pure-play SaaS. In addition to offering a standard, hori-
zontal web- enabled application, offering industry-specific and complex business
applications is also a viable option for the SaaS vendor [6]. Equally, Cusumano
[27] suggests several potential variations of a software business model as combi-
nations of different customer segments, revenue models and delivery models. In
a recent study, Luoma et al. [28] classified 163 ASP and SaaS firms to uncover
two main types of SaaS business models, a pure-play and an enterprise version.
Their description of pure-play SaaS is in line with the established thinking about
the SaaS business model. Moreover, the enterprise SaaS suggests a configuration
with more complex application requiring support services, a combination of sub-
scription fee and time and materials fee, more high-touch customer relationships
and varying marginal costs. Salesforce.com could be considered as present-day
example of such business model, especially if one takes in their extended enter-
prise delivering value-adding applications and services. We find two implications
of such business model; SaaS could become a part of inclusive offering of the
software firm, and enterprise SaaS could be the means for vendors supplying
customer-specific applications to embrace the demand for SaaS.

Cusumano [27] highlights the importance of the shift of software firms revenues
from software product to service. He finds a number of cases where software
product firms evolve from selling product licenses, to a mixture of products and
services and finally to mostly services. In the context of SaaS, Dsouza et al.
[24] examines the SaaS transition from software product business, and pinpoint
essential changes in both operations, revenue logic and structures. Given the
major impact of the transition on both the industry-level and on individual
firms level, we find the lack of studies on the transition somewhat surprising.

To summarize, the current studies have discovered that general and simple soft-
ware applications delivered as a service as very cost-efficient alternative appeals
to intended target segment of small and medium size enterprises. These studies
have mainly described an invariable business model configuration. Thus, there is
very little indication whether adoption and overall uptake of SaaS is affected by
offering which combines SaaS and value-adding services. However, there are early
evidence that varying configurations for SaaS exists. More studies on the types of
SaaS business models and their effect on SaaS adoption is needed.
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3 Research Method

This study examines the operations, revenue logic and organizational structures,
i.e. business models of Software-as-a-Service firms, based on the empirical case
study data collected from Finnish software companies. Focusing on these aspects
enables us to fill the gap of missing empirical insights on the different types of
SaaS firms. An emphasis is also put on how software firms have evolved to pursue
the selected Software-as-a-Service strategy. This helps us in assessing the ongoing
change in the supply of applications.

The study applies the interpretive case study approach [29] in producing new
insights and information to understand and portray the SaaS phenomenon. Over-
all, case study was deemed a suitable approach as the study relies on the experi-
ences of practitioners and attempts to capture the complexity and details of the
phenomenon [30]. The present study is considered as a holistic case study with
multi-case design [31], [32].

Regarding the frame of reference, the operations and revenue logic of case com-
panies were examined by employing the concepts and visualization of a business
model suggested by Osterwalder et al. [33]. In particular, the concepts include
value propositions, customer segmentation, channel preferences, key activities
and partnerships, revenue logic, cost structure. Their framework was used as an
initial guide to design and data collection. The framework for examining inte-
grated solutions and related organizational structure by Davies et al. [34] was
later discovered useful in examining and depicting SaaS business. They divide
organization into front-end unit performing customer-specific work, two back-
end units producing standardized products and services, and a strategic centre
coordinating activities between front-end and back-end units.

The cases were selected to this study through purposive sampling [35] and in
two phases. The initial sampling frame had two conditions: Company provides
Software-as-a-Service and focuses on business-to-business market. Attention was
also paid in finding SaaS firms with varying background, complexity of software
offering, size and age. After initial round of interviews with five SaaS firms, four
of the companies were found vastly similar in terms of their age and software
product core as the foundational offering. Only one firm was found with back-
ground in professional services and, additionally, this was the largest and oldest
of the firms. In line with objectives of the study, a decision was made to compare
the latter firm against one with highest variation of the attributes in the initial
sampling frame. Thus, the two firms were selected for their similarity as well as
their differences, to facilitate comparing the characteristics.

The present study was executed during autumn 2011 and the year 2012, using
two main sources of information: public documents and interviews. We initiated
the study by gathering general background information on the case companies
from their web pages and publicly available company presentations. As suggested
by Walsham [29], interpretive research uses interviews with case company rep-
resentatives as the primary data source. The interviews were both focused inter-
views and in-depth interviews with informants. By focused interviews, we refer
to a single interview [32], which in the present study usually took approximately
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two hours. By in-depth interview, we refer to an interaction with the informant
over longer period of time involving at least two interview sessions [32]. This
enabled asking more detailed questions and confirming initial observations. The
criterion for determining interviewees was that they were involved in managing
of the execution of the selected strategy and business model.

The interviews were conducted as semi-structured interviews consisting of
both fixed and open-ended questions, but the researcher also allowed some new
directions during the interview for the benefit of richness of data. An interview
guide was developed and data collection focused on the current operations and
revenue logic, their changes over time and on the quantifiable facets of the orga-
nizational structure, according to the selected frameworks. Particularly, question
were asked on the elements suggested by Osterwalder et al. [33], changes in any
single element or configuration, or possible problems in executing intended busi-
ness model. Questions related to organizational structure included allocation of
employees to front-end and back-end of the organization, share of value created
by these parts and level of product and service standardization. Following the
common practice, interviews were recorded and transcribed for analysis.

Data collection, coding and analysis were conducted in iterative fashion [36].
During the first round, interviews and analysis can be considered more relaxed.
In the later phase, more structured interview procedures were used. Data analy-
sis followed the principles of qualitative research on parallel data reduction, data
display and drawing conclusions [35]. First, the data was organized by identifying
unique patterns in each case on the basis of interview questions. Pattern match-
ing [32] enabled analyzing whether observation matches with expected pattern
within the cases. Next cross-case synthesis technique was employed, enabling
comparing the cases and aggregating the data [32].

4 Findings within the Cases

4.1 Case: Sopima

Sopima Ltd. is a greenfield SaaS company founded in 2009. Company aims at
being a “puritan SaaS company”. Respondents included companys co-founder
and sales director (in total four interviews). Firms core product is an application
for managing contracts. The business case forms around enhancing contract
document handling and improving contracting processes. With careful contract
management, client companies would be able to improve their financial result.
Company website introduces reference cases from multiple industries, indicating
a horizontal focus.

Companys value proposition is based on enhancing customer processes through
the features of the application. SaaS is used as competitive advantage, i.e. its
cheaper, faster to deploy and more flexible. The overall solution consists of stan-
dardized web-native application that is deployed in single, multi- tenant IT en-
vironment, namely on top of Microsoft Azure. The initial solution has minimal
value- adding features and services. This is in line with the attributes of pure-play
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SaaS model aiming at highly standardized offering and solution-ready product
and operational services.

“Our solution is a way to achieve good contract management practices. The
fastest and the easiest. Very low investment for the customers, easy to acquire.
No deployment project and costs. Value is achieved immediately.”

“Our vision is that less is more. You cannot do tailoring.. Id say level of stan-
dardization on the application and the service delivery is more than 90 percent.
You cannot ruin your value proposition, cause then youre doing implementation
project and SaaS becomes merely a mode of delivery.”

The respondents stressed an efficient mode of sales. The firm engages in high-
pressure sales. This type of SaaS is also associated with online channels for
marketing, sales and delivery that, in turn, entail high level of automation to
these activities. Respondents emphasized the strict requirements for both sales
activities and system maturity, which are likely to be associated with the small
sales case size:

“The biggest problem for SaaS businesses is the sales channel. It s difficult
push this to a channel partner since you cannot give him a decent share. We
aim at that the whole sales and delivery process would work using the inside
sales model. Its the opposite to field sales, where you go and meet the customer.
But its too expensive to meet all the customers. You just have to close the deal
with online tools and on the phone. We optimize this all the time.”

As assumed, the respondents reported that the company is targeting SMEs
and sell to middle management and end-users. They also described that business
model development is about balancing the value proposition, the segmentation
and the sales model.

“You have to find out where this works the best. First, you cannot sell to large
enterprises with inside sales model, youd have to meet them... Then you have to
think, to which kind of customers does your product and value proposition fit.”

“We need to develop the application to empower the person, let him push it in
the organization.. It needs to be easy and intuitive. Then with bigger firms, we
might give some support, do some minimal adjustments.”

Sopimas revenue streams are obtained through an entry fee and a recurring
fee. Owing to the revenue logic, customer base becomes the most important
asset. SaaS business model requires investments on customers behalf as the ini-
tial software and service development costs may be high. Once the service is
launched, pure-play SaaS firm aims for minimal marginal costs per customer.
However, as the firm has increased focus on customer acquisition and retention,
generally a high investments on customer acquisition is required.

“The basic model is per user per month. But often we sell an annual subscrip-
tion with slightly lower cost, in return to the longer commitment.”

“Launching SaaS requires monstrous development investment before you start
receiving anything. That is, cash flow comes so much slower, compared to soft-
ware projects, and then you realize you can make a product. You have to make a
product before you get money. You have to have a good investor and relationship.
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Youre financing your customer, because the money only comes afterwards. You
make the investments on customers behalf.”

SaaS firms combine capabilities for both operational excellence and infras-
tructure management into their solution. In Sopimas case, the firm partners with
software developers for implementing the product core and with service providers
for infrastructure and support services. Reasons include cost- efficiency, faster
time-to-market and flexibility.

“We have roughly two types of people, those who build the solution and those
selling it. We have a direct sales channel. Close to 50 percent of budget goes to
development. It used to be 80 percent, but now were pretty close to 50. And in the
middle, we have what we call service owner, who oversees that the application,
service produced and mode of sales and delivery are synchronized.”

The company website indicates that Sopima partners with legal professionals,
IT service providers and IT security professionals. Company is a Microsoft ISV
partner and Cloud accelerate partner.

This type of SaaS demands delicate balance between business model elements:
product attributes, pricing and revenue logic and sales channel. Respondent re-
ported problems in sustaining this balance, causing the company to move to-
wards Enterprise SaaS with professional services. While the company aimed for
removing customer- specific activities altogether, the employees conducting sales
activities were forced to take the responsibilities of a customer facing unit in pro-
viding support and performing small customizations.

“We tried to take our light-touch inside sales to self service mode, where the
sales channel would go pull-oriented.. and the product would spread as in vi-
ral marketing. Instead, we ended up going toward high touch field sales. Small
domestic market caused.. we had to do customizations. This caused major prob-
lems since the selected pricing logic didn’t match the mode of sales. There were
cases were we had high sales costs per customer but low revenues per customer.
Better model would have then be to increase revenues per customer by providing
professional services.”

“We had to put more effort to customer-specific work that we wanted to.
Our sales team was also helping our customer to get started, did some minor
customization. This was problematic, since it raises the costs of customer acqui-
sition.”

4.2 Case: Qvantel

Qvantel Ltd. is a Scandinavian IT solutions company, established in 1995, with
180 people worldwide. Company has two business units: One focusing on IT
SaaS solutions in a pay-as-you-grow business model to help service providers in
telecommunication sector to respond quickly to with new products and service
launches and provide better customer experience. The second unit, in Bangalore,
focuses on software development and testing with offshoring business model.
Informants were the firms chief operating officer, HR manager and director of
the business unit focusing on SaaS development and provisioning (in total six
interviews).
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The overall offering can be labeled as business process outsourcing, a solution
where Qvantel takes responsibility of parts of customer processes. Consequently,
firm is focused on providing exactly what the customer wants and each customer
solution is unique. The software core is very complex, often a combination of
multiple applications. Firm aims to standardize the core, but customizations are
a necessity and performing customer-specific tailoring is also usual. Typically,
the core is integrated as part of existing system infrastructure, but vendor aims
for pre-integration.

“The core product is a customer care and billing solution for the telecommu-
nication operators. Rating and billing is the core, and then we have supplement-
ing products depending on customer needs. Some customers want to use their
own CRM system, some customers needs mediation and provisioning and or-
der management and so on. Basically helps the customer to bundle the different
products.”

“The way we do the work, we do approximately 90 percent customized solu-
tion. We have customers with different levels of SLAs. We have standardized our
operating services, but we don’t have standardized software for those. Meaning,
we’re supporting for example standardized billing process, but for each customer
we have combined the solution. We’re naturally using standard cloud platform
and the architecture may be modular, but solution, it’s different for each cus-
tomer.”

“Our benefits to the customers are agility, time-to-market and cost efficiency.
This flexibility is achieved through customer-specific implementations and then
we don’t have to think about the constraints, we deploy and tailor what software
is needed.”

The company is required to possess up-to-date domain expertise and to utilize
an ecosystem around it as a resource. Product development is driven by multiple
inputs. In addition, in providing the overall offering, respondents stressed un-
derstanding customers business. In order to simultaneously improve operational
efficiency and to provide customer intimacy, organization has been transformed
from customer silos into competence areas serving all customers and smaller
on-site teams. Company is also in the course of improving their software archi-
tecture, to improve cost efficiency and flexibility.

“Source number one is the industry standardization, making visible basically
the standards and trends that are actually driving the industry growth. Then the
key inputs for us come from the different RFPs and RFQs that we get from the
customers. Basically from there we pick up what is new, what is the innovation
that the particular operator is looking for. If we see it can add significant value to
our product, we want to take it as core feature in our product. Then, of course,
we also have customer relationships where we get a lot of requirements. We are
evolving the solution and the service for the customer. And nowadays all these
inputs are implemented in one core product.”

“Business understanding. We’re not software vendors, but we’re experts in
understanding customers business. That’s why we focus on certain domain, cause
we really need to have unique knowledge and capabilities. Then, how we split the
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work, we have customer-independent teams, supporting every customer. They’re
not just working on product platform, but supporting multiple customer teams.
For example, one is doing software development, operating our common hosted
environment, managing common customer business processes. So, 50 percent of
employees are working on customer-specific solutions and 50 percent for all the
customers.”

“Now, we decoupled the pieces and a monolith database we had. And took the
pieces that are actually stable, reused them and decided to use latest technology to
support the architecture. Like enterprise service bus which gives us the possibility
to create dynamic services. We use of course virtualization environments, but the
architecture makes it easier for us to scale and meet the SLA requirements. And
this granularity helped us reduce the TCO. And it is also most flexible in terms
of.. most configurable.. the pieces which are common across all the systems and
its also very easy to integrate.”

Firm concentrates on long-term customer relationships with tailored con-
tracts. Thus, marketing and sales is based on field sales targeting mainly larger
enterprises, willing to outsource their non-core functions, and their executives.
Respondents indicated that theyre building trust by committing to customers
growth in the way they organize and also in their pricing model. Vendor charges
according to volume-based pay-as-go model, enabling both tiered pricing logic
and monetizing on larger business case. Revenue model has two components:
service fee and possibility for time and materials charging.

“We’re mainly focusing on our existing customers and long-term operations
and relationships. So, the sales is focused on better supporting their business
needs. It’s field sales, face-to-face with customers.”

“When initiating our SaaS business, we changed our sales tactics so that we
wouldnt target the CIO or IT management, but we went to the sales manager or
general management and asked whether they have pain points. They would say
they cannot invest on IT. But we could respond that they wouldnt be investing
on software, theyd buy a service.”

“We want to help our customers to buy, on a mental level. Customer would
argue that they cannot predict their future volumes. Here, we could say that they
dont need to buy a software license, but we check at the end of each month how
the volume has changed and we charge based on the actual volume. We share
risk and act as true partner. This logic has major effect on customers mental
level.”

“It’s hard to say but I would estimate approximately 70-80 percent of revenue
is based on our portfolio of product and services. Tailored services we charge on
time and material basis, based on how much the customer needs.”

5 Cross-Case Analysis and Discussion

The two main objectives of the paper are to compare different SaaS business
models and to examine changes in the business model. Accordingly, Table 1
below summarizes the findings of the introduced cases and enables highlighting
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contrasting business model configurations. Scope and aims refer to both the
current focus of the business as well as the intended direction of changes. Analysis
on the vendors business models using the framework by Osterwalder et al. [33]
is reduced to foremost findings about operations and revenue logic. Analysis on
the quantifiable aspects of organizational structure with framework by Davies et
al. [34] populate the last row.

Table 1. Comparsion of the business models of case companies

Case Sopima Case Qvantel

Scope and aims

Horizontal focus From vertical to horizontal
Balanced business model Integrated solution
Cost efficiency Customer intimacy
Maintain standardization Increase standardization
Increase automation

Operations

Target on SMEs Target on key customer
One application to all customers One platform to all customers
100% standard application 90% custom-tailored
Inside sales, low-touch Long-term relationships

Helping customers

Revenue Logic
Recurrent monthly fee Revenue share
Service fees 100% of total Service fees 70-80% of total
Tailoring 0% of total Time and materials 20-30%

Structure

Approx. 60% in front office Approx. 80% in front office
Approx. 40% in back office Approx. 20% in back office
Sw implementation outsourced R&D 10%, Managed services 10%
Infrastr. Services fully outsourced
Value adding services outsourced

The case of Sopima Ltd. demostrates a business model configuration with fo-
cus on providing as a service a standard software application suitable for multiple
domain. Sopima targets SMEs with inside sales model and low-cost monthly fee,
and work toward minimal marginal costs. The company has outsourced soft-
ware development, infrastructure hosting and value-added services and most of
the team focuses on marketing and sales activities. The management strive for
balance in the business model configuration to maintain cost-efficiency. This low-
cost strategy necessitates keeping the application simple and increase the level
of automation. These conditions have been difficult to retain.

The business model configuration of Qvantel Ltd. is vastly different from what
case Sopima and descriptions in the contemporary literature presents. Their
background is in delivering tailor-made solution for one vertical. The solution
comprises not only software application provisioned in SaaS mode, but also a
variety of services to help their customers to be effective. This is attributed to
the focus on key customers, long-term customer relationships and revenue share
model. Services fees cover approximately 70-80 percent of the revenues and, in



12 E. Luoma

addition, company charges for time and materials for customer specific work.
Qvantel has and further aims to make their offerings uniform, for both software
components and common set of services. Reaching this objective would enable
them to serve also other vertical markets.

In line with the empirical findings by Currie et al. [6] and Luoma et al. [28],
our case study reveals two very different SaaS business model configurations.
We interpret this finding as a possibility for various configurations to appear.
Rather than been an invariable set of elements, SaaS business models can be
seen as a continuum. The other extreme is where standard and ultra-simple
software applications are provided for the masses with freemium model. (At
this point, were thinking of Dropbox). At the opposite end, we have a software
application for a specific set of customers with standardized infrastructure, but
combined with support and value-adding services. We also suggest that taking
different business model configurations into account would increase the reliability
of studies on SaaS adoption.

With regards to the strategic aims and changes in the business models, we find
that SaaS vendors like Sopima are trying to sustain their focus on cost-efficiency
through avoiding customer-specific work and complexity in their software. In-
crease in complexity results in increasing marginal costs and, in such case, SaaS
vendors would need to increase their recurring fee at the cost of disheartening
their customers. Taking the software market perspective, we find it likely that the
new SaaS start-ups and the software firms with standardized software products
will aim at or change to similar business model as represented by case Sopima.

On the other hand, we suggest that software vendors currently embracing cus-
tomer intimacy strategy could develop their own SaaS offering, by standardizing
a parts of their software application or developing common support or value-
adding services for all their customers. This would help them to match the price
competition by existing SaaS vendors or to capture better margins.

6 Conclusions

This study contributes to the literature on Software-as-a-Service by recogniz-
ing the different characteristics of SaaS business models. To conclude on these
characteristics (research question 1), we also find a possibility for various types
of SaaS business model configurations to appear. Or, rather than being discrete
types, we suggest different SaaS business models to appear as a continuum.
The configurations can be observed by measuring the degree of standardization
or customer-specificity of the offering, revenue logic and operations and, conse-
quently, marginal cost per customer. The software firms design their business
models according to the needs of their prospective customer segments.

First, as the previous studies describe, SaaS business model can be associ-
ated with provisioning of simple and non-specific software application in a very
cost-efficient manner. Owing to the subscription-based revenue logic and target
at low marginal costs, customer relationship tends to be continuous but low-
touch. Companies opting for this kind of business aim for low-cost operations
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and maintaining simplified offering. Demonstration of this type, the“Pure-play
SaaS” business model, has enabled distinguishing SaaS from preceding software
business models.

Second, findings here reveal a different SaaS business model with complex soft-
ware application for a vertical domain. Vendorsmay incorporate customer-specific
services to their offering and charge both a subscription fee and other service fees.
They may also target larger customers and aim at enduring, trust-enhancing cus-
tomer relationships with tailored contracts. These “Enterprise SaaS” firms may
have their background in business of supplying customer-specific applications and
their business model is changing towards more standardized offering and opera-
tions. This observation could be seen as early indication of the existing software
vendors attempts to embrace the transforming software business setting.

With regards to the changes in software vendors’ business models (research
question 2), it seems obvious that those aiming for SaaS business shall reduce
the number customer-specific elements in their offering and operations. As the
firms with“Pure-play SaaS” start off with simplified offering, their scope and
aim is to maintain standardization across customers and segments, to avoid
increase in marginal costs. In fact, a fatal risk for a SaaS company would be to
increase customer-specificity and at the same time restrict themselves to fixed
subscription-based revenue logic.

The “Enterprise SaaS” business model can be seen as potential strategic op-
tion to those software firms who do not want the radically change their business
model or wish to focus on larger customers. These software firms may benefit
from increasing the degree of standardization in their offering and scale eco-
nomics, but also from maintaining as part of their offering the customer-specific
features due to customer demand and additional revenues.

Recognizing the issue of generalizing from rare cases, we suggest a need for
further empirical investigation of different Software-as-a-Service business models.
We realize that the business model as unit of analysis has been criticized for
giving a limited picture of the firms surroundings. In this study, we examined the
intended adjustments in operations that the SaaS companies perform to match
the changes in their environment. Future studies should nonetheless attempt to
observe SaaS vendors business context in more detail and by more structured
means. Further, limiting our case study to Finland may fall short of providing a
representative illustration on SaaS business model in a global context. Although
the business of SaaS is less limited to national borders, we would welcome insights
from similar studies in other countries.
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Abstract. We model competition between software-as-a-service (SaaS) ven-
dors by focusing on several key features of SaaS. These include: differences in 
vendor offerings; incomplete information for the clients side about the vendor’s 
capability to offer well-fitting services, and the clients' learning costs and op-
tions to switch. Our findings suggest pricing strategies that will be effective for 
the SaaS vendor. High cost efficiency in the operations of the SaaS business 
model is key for the vendor to gain leverage to retain the client by making its 
switching costs too high, and to achieve high profitability in the process by im-
plementing the appropriate strategies in the appropriate customer segments. We 
also extend the analysis by considering a broader set of implementation issues 
related to mechanism design choices in the SaaS market that arise around our 
modeling approach. 

Keywords: Competition, Economic Analysis, IT-Enabled Services, Pricing 
Strategy, Service Science, Software-as-a-Service, Strategy. 

1 Introduction 

Software-as-a-service (SaaS) is a business model that has been transforming the soft-
ware industry’s foundations. In 2012, Gartner [10] reported that global spending for 
SaaS would rise to US$14.5 billion and growth will remain strong through 2015 when 
total spending is expected to reach US$22.1 billion. Though there were all kinds of 
uncertainties, concerns, and doubts in the initial years of SaaS, today SaaS has devel-
oped into a significant marketplace and attracted a lot of attention from practitioners 
and researchers. Existing research has investigated a variety of economic and business 
issues of the SaaS and cloud computing market, including workload scheduling [11], 
vendor pricing strategies and schemes [19, 22], service level agreements (SLAs) [20], 
contract design [3, 16, 25], and impacts on the traditional software market [9]. Firm-
to-firm competition in the SaaS market is not well understood though. In this re-
search, we try to address this gap. We propose a model of competition to explore how 
SaaS vendors can implement strategies for success based on game theory [17, 19].  

Competition in the SaaS market deserves a close investigation because it exhibits 
unique characteristics. First, SaaS offerings consist of two parts: software application 
and related IT services. Software applications are horizontally-differentiated: different 
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clients may prefer different software functionalities. IT services, contrast, are vertical-
ly-differentiated: vendors can choose to deliver higher or lower service quality. 
Second, the multi-tenancy structure of SaaS makes customization difficult [14]. The 
client has to use standardized software applications offered by the vendor, and as a 
result, the client will incur disutility from not using ideal services. Third, the expe-
rience good feature of software applications makes a client’s choice even more com-
plicated. We only learn about the quality of an experience good after we use it. The 
client faces uncertainty about how the SaaS offering will fit its specific business  
requirements, and also how well the application can be integrated into its existing 
legacy systems. Such information only can be learned after trying the SaaS offering. 
Finally, the client faces non-negligible switching costs because typically the vendor 
will be in charge of its data management, maintenance and back-up. To switch from 
one vendor to another will be costly for the client. The model we explore will capture 
all the above features, and is able to deliver new results that have not been observed 
in other types of competition.   

We also aim to deliver practical findings for the SaaS industry. To do this, we in-
clude a rich discussion of implementation and mechanism design issues that arise as a 
result of our modeling choices.  Figuring out how to identify the appropriate pricing 
strategy in a competitive IT services marketplace is a mechanism design problem. So 
vendors need to consider multiple issues that will influence their capacity to success-
fully implement SaaS in the marketplace:  

• viewing IT services client decision-making as occurring in continuous time rather 
than at discrete times;  

• identifying the willingness-to-pay, pricing and services contract valuation implica-
tions that arise when there is flexibility for the client to opt out of an IT services 
contract;  

• understanding how to leverage cost efficiency to achieve different kinds of leve-
rage to retain the firm's clients; and finally,  

• managing clients that have different levels of switching cost, and pinpointing when 
it is necessary to co-invest to achieve retention through the implement beneficial 
approaches that enabled them to be locked into the relationship.  

Section 2 presents our model of SaaS vendor competition. Section 3 analyzes the 
competition game and suggests pricing strategies for SaaS vendors. Section 4 dis-
cusses issues that relate to our modeling assumptions and choices, as well as to other 
issues that arise around the mechanism design that we have investigated. It is intended 
to enrich our understanding of competition in the SaaS market. Section 5 summarizes 
and concludes.  

2 Model 

Consider two SaaS vendors, H and L, competing in the market. Each delivers a bun-
dle of software applications and IT services to clients. Their offerings differ in two 
ways. First, the software applications have different attributes and functionalities, and 
are horizontally-differentiated. We adopt the Salop [23] circle model to capture hori-
zontal differentiation. The service space is a unit-length circle, and the two vendors’ 
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software applications are located on opposite sides of the circle with a distance of 0.5 
between them. This set-up follows the principle of maximum product differentiation 
[6] in duopolistic spatial competition.1 Second, the two vendors offer IT services at 
different quality levels: they are vertically-differentiated. Vendor H is the high-quality 
vendor that offers services of higher quality qH, while Vendor L is a low-quality ven-
dor that offers services of lower quality qL, and qH > qL. In this study, we will assume 
that vendors can eliminate service quality uncertainty through the use of SLAs, in 
which all quality-related issues, including productivity, service quality metrics, prob-
lem resolution procedures, and provisions for system and data security, are defined in 
detail. As a result, qH and qL are public information for clients.  

A vendor bears both the initial setup cost I and the service cost c for delivering 
services. Setup cost I is a one-time cost incurred when the vendor acquires a new 
client. It includes the vendor’s efforts to build the relationship with the new client, 
move the client’s data to a centralized location, and understand the technical architec-
ture and business needs of the new client. Service cost c is a recurring cost. It includes 
the vendor’s efforts to maintain client data and application code, provide supporting 
services, and manage data security. Delivering higher service quality requires the 
SaaS vendor to bear a higher service cost. We assume the quality of the vendor's IT 
service, q, is a function of c: q = f (c). This function f (·) has no specific functional 
form. In addition, both vendors charge their clients a fixed subscription price in each 
period, pH and pL. These are the decision variables in our model.  

The Salop circle model represents clients with heterogeneous tastes toward soft-
ware features. All clients are evenly distributed on the circle, and a client’s location 
represents its ideal service.2 Each vendor only offers one standard version of the 
software, however; this is due to the multi-tenancy structure of the SaaS business 
model. A client will incur a utility loss of td for not using its ideal service. Here, d 
measures the distance between the client’s ideal service and the vendor’s offering in 
the circle, and t is the parameter for a client’s unit fit costs. In addition, we assume 
that the two SaaS vendors’ positions on the circle initially are unknown to their poten-
tial clients: they learn about their fit as they use them. So a client will not know its 
distance to a vendor’s offering in the circle in advance: it has to figure this out by 
using the vendor’s software. On the other hand, although all clients always prefer 
higher quality services, their willingness-to-pay is likely to be different. Our model 
considers two types of clients with this in mind: a higher willingness-to-pay client θh 
is willing to pay more for a higher level of service quality than a lower willingness-to-
pay client θl, with θh > θl.  

The utility function of Client j, when it uses services from Vendor i, is: 

U(θ j, qi, di) = θ j ⋅ qi  - pi – t ⋅ di                          (1) 

where i ∈{H, L} indicates Vendor H or L, and j ∈ {h, l} indicates the client’s type, 
θh or θl. Here, qi is the level of service quality, pi is the price per period offered by 

                                                           
1  Under the principle of maximum product differentiation, competing SaaS vendors differen-

tiate themselves as much as possible in the service space to avoid head-to-head price  
competition.  

2  An ideal service would be an individually customized application. It will fit a client’s tech-
nical and business requirements perfectly, and can be integrated with its legacy systems 
seamlessly. 
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Vendor i, and di measures the distance between the client's ideal software and Vendor 
i’s offering on the circle. The last term, t ⋅ di, is the client’s utility loss due to not us-
ing an ideal application. We call it the client’s fit costs.  

3 Analysis  

The competition proceeds in two stages. Prior to time 0, the vendors will post their 
prices pH and pL simultaneously. Their service quality levels, qH and qL, will be 
known publicly. The fit costs experienced by each client for using a specific vendor 
will not be known though. At time 0, facing incomplete information, the client will 
decide which vendor's services to use. The first stage, between time 0 and 1, is called 
the client's FitCost Sampling Stage, during which the client learns information about 
the fit costs. As a result, at time 1, the client will have updated information about the 
vendor’s offering and will decide whether to remain with the same vendor or switch 
to another. Switching is costly though. The client will face a switching cost S, which 
includes the cost of discovering the other vendor, recovering data from the current 
vendor, and making new service arrangements. The second stage, represented by the 
period after time 1, is called the Long-Term Partnership Stage. It reflects the firming 
up of the service relationship between clients and vendors. By then, the market will 
have stabilized.  

Throughout the analysis, we will assume that both SaaS vendors and their clients 
maximize long-run profits. Following the literature in two-stage competition games 
with switching costs [4, 8], we focus on the analysis of competition between two SaaS 
vendors competing for the marginal customer.  

3.1 Analysis of the SaaS Client’s Decision 

We first analyze the client’s decisions at times 0 and 1, taking the SaaS vendors’ pric-
es pH and pL as given. We use backward induction to solve the problem.  

Consider a client’s switching decision at time 1. If a client j, j ∈ {h, l} indicating 
this client’s type, θh or θl, has chosen the Vendor H at time 0, after the FitCost Sam-
pling Stage, this client will have learned the true fit costs of using Vendor H: t ⋅ dHj , 

where t is the unit fit cost parameter and dHj is the distance from this Client j to the 
Vendor H in the circle. When making a decision on whether to switch at time 1, the 
client will compare its utility of staying with the current Vendor H, which is θj ⋅ qH  – 
t ⋅ dHj – pH , with its utility of switching to the other Vendor L, which is  θj ⋅ qL  – 0.25 
⋅ t – pL  – S.3 The latter case will incur a switching cost S. By equating the two utili-
ties, we can find the marginal switcher for Vendor H, who is indifferent between 
switching to L or staying with H at time 1, given that the client has chosen to sample 
                                                           
3  The number 0.25 was not chosen as a parameter; instead it is a logical outline of the factor 

that the vendors position their services offerings 180° away from each other on the Salop cir-
cle. The distance between these points, then, will be one-half of the unit length of the circle or 
0.50. By the same logic a client will never be farther away in terms of its ideal services prefe-
rences than one-half of the distance between the locations of the two vendors’ services loca-
tions. This is one-half of the half-circumference of the Salop circle or 0.25. 
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Vendor H at time 0. We denote the marginal switcher’s distance to Vendor H by dHj
*, 

and dHj
* is given by 

dHj
*

  = 0.25 + 
   ∆   ∆  +   .         (2) 

Similarly, we can define the marginal switcher for Vendor L and solve for the rele-
vant value as: 

dLj
*
   =0.25 –   ∆   ∆   +   . (3) 

Next, we return to time 0 to solve client j’s decision of which vendor to try out. 
The client is forward-looking and has rational expectations with respect to vendor’s 
actions. At time 0, the client will be able to correctly estimate the probability of 
switching to Vendor L, if it chooses to sample Vendor H, is 2dHj

*, and the probability 
of switching to Vendor H, if it chooses to sample Vendor L, is 2dLj

*. Thus, the client 
will compare its expected utility from sampling Vendor H, as Equation 4, and the 
expected utility of sampling Vendor L, as Equation 5, to make the decision. 

      E[UH] (θj) = 2⋅ dHj
*
 ⋅ (θ 

j ⋅ qH - pH - 0.5⋅ dHj
*
 ⋅ t) +(1 – 2⋅dHj

*) ⋅ [(θ 
j ⋅ qL - pL - 0.25⋅ t) –S](4) 

     E[UL](θj) = 2 ⋅ dLj 
*⋅ (θ 

j ⋅ qL - pL - 0.5 ⋅ dLj
*
 ⋅ t) +(1 - 2 ⋅ dLj

*) ⋅ [ (θ 
j⋅ qH – pH  -0.25 ⋅ t) - S] (5) 

In Equation 4, the first term is the client’s expected utility from staying with Ven-
dor H with a probability of 2dHj

*.4  In this case, the expected distance between this 
client and Vendor H will be 0.5⋅ dHj

* since dHj
* is the marginal switcher’s distance. 

The second term is the client’s expected utility from using Vendor L that will happen 
with a probability of (1 – 2⋅dHj

*). Here, the expected distance between this client and 
Vendor L will be 0.25 since the client has not tried Vendor L at the first stage, so it 
will not get updated information about Vendor L’s offering.  The role of Equation 5 
is similar. 

Thus, there are three outcomes after time 0:  

• all clients will choose to sample Vendor H, if and only if  E[UH] (θj) > E[UL](θj) 
for j =h and l; 

• all clients will choose to sample Vendor L if and only if E[UH] (θj) < E[UL](θj) for  
j = h and l;  

• θ 
h -type clients will choose to sample Vendor H and θ 

l -type clients will choose to 
sample Vendor L if and only if E[UH] (θh) ≥ E[UL](θh) and E[UH] (θl) ≤ E[UL](θl).  

3.2 Analysis of the Vendors’ Pricing Strategy  

Vendors also are forward-looking with rational expectations. This means that they 
will expect clients to respond strategically to their prices. Vendors will set their pric-
es, prior to time 0, to optimize their own profits. To begin our analysis, we assert:  

                                                           
4  The analysis of a marginal switcher shows that, for all clients who are in the range of (-dHj

*, 
dHj

*) around the Vendor H in the Salop circle, the marginal switcher will stay with H at time 
1, while the other clients will switch. Since the product circle is of unit length, the ex ante 
switching probability for any client at time 0 is 2dHj

*. 
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• Proposition 1 (Threshold Value for Switching Costs). When S ≥ 0.25 ⋅ t, no 
clients will not switch from their current vendor. 

Proofs for propositions are omitted, but are available upon request. 
Proposition 1 identifies a threshold value for switching costs. When a client faces 

high switching costs exceeding this threshold value, it will always choose to stay with 
its current vendor. In this case, a SaaS vendor will have absolute leverage to retain its 
existing clients. This is called lock-in power. Finding the related threshold is 
straightforward: it equals a client’s ex ante expected fit costs, 0.25 ⋅ t. This makes 
sense because the client’s decision to switch is driven by the fact that the vendor’s 
software does not fit the client’s needs very well. As a result, the client must balance 
its switching costs, if it does indeed switch, and its fit costs, if it does not.  

The strategies for vendors will be different for S ≥ 0.25 ⋅ t and S < 0.25 ⋅ t. We will 
analyze them separately as Cases A and B. 

Case A: S ≥ 0.25 ⋅ t. A vendor knows that its clients eventually will not be able to 
switch to the competing vendor once its clients try its services and build a business 
relationship. In this case, a vendor will have a strong incentive to attract new clients 
in the first stage and then lock in them at a later stage. Meanwhile, clients will be 
aware of the risk of being locked in by a vendor and will be conservative when mak-
ing their initial vendor choice at time 0. Keeping these considerations in mind, we 
expect that the market competition will become intense. Both vendors will compete 
head-to-head on price to make sure they are attractive enough so clients will try them 
out at the first stage. This has the potential to trigger a price war between them.  

This conjecture, however, may not be entirely correct though. We instead find that 
the outcome actually depends on the two vendors’ relative cost efficiencies, measured 
by the ratio Δc / Δq. Here, Δc is the service cost difference and Δq is the service quali-
ty difference for SaaS vendors. The ratio Δc / Δq provides a measure for cost efficien-
cy in the SaaS business model. Our next proposition suggests that a price war may 
occur when the cost efficiency for offering SaaS is very high or very low. It may 
cause one vendor to fail due to severe price competition: 

• Proposition 2 (Conditions for a Price War). A price war will occur under two 
different circumstances:  

o when cost efficiency is high (Δc/ Δq < θl ), Vendor H will be able to 
compete aggressively, and at pH  = cL  + Δq ⋅ θ 

l, Vendor H will be able 
to drive Vendor L out of the market and serve all clients itself; and  

o when the cost efficiency of the SaaS model is low (Δc/ Δq > θh), Vendor 
L will be able to compete aggressively, and at pL = cH  - Δq ⋅ θh, Vendor 
L will drive Vendor H out of the market and serve all of the clients.  

When cost efficiency is at a medium level θl <Δc/Δq < θh, however, no vendor will 
be able to undercut its competitor’s price. So the two vendors will coexist in the mar-
ket. More importantly, there will be no direct competition between vendors. To wit: 

• Proposition 3 (Conditions for a Monopolistic Outcome). When the SaaS  
business model has mid-range cost efficiency, θ 

l  ≤ Δc/Δq ≤ θh, both vendors will 
co-exist. The equilibrium prices will be pL =θ 

l ⋅ qL - 0.25 ⋅ t and pH  = θ 
l ⋅ qL + θh ⋅ 
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∆q  - 0.25 ⋅ t. Vendor H will serve θh  type clients and Vendor L will serve θl type 
clients, and they will not compete with each other directly.  

The equilibrium prices will ensure there is no direct competition. The price pL 

serves to extract all expected consumer surplus from θl  type clients. On the other 
hand, the price pH will be set at a level to ensure that θh type clients will not be at-
tracted to try Vendor L. This segments the market with no direct competition between 
the two vendors. Instead, each vendor will only target and serve one client group, 
behaving like a monopolist in its market segment.  

Case B: S < 0.25 ⋅ t. As long as the switching cost is not so high that it gives vendors 
full lock-in power over clients, the two vendors will always coexist in the market. 
One vendor will not become dominant, even when its SaaS cost efficiency is very 
high or very low. In this case, three different types of equilibria may come about, 
depending on the values of switching cost S and cost efficiency Δc / Δq. However, 
when the cost efficiency of the SaaS model is at different levels, somewhat paradoxi-
cally, the vendors will benefit from switching costs in different ways. For example, in 
certain situations with high cost efficiency, Vendor H will be the only beneficiary of 
switching cost: with increases in switching cost, Vendor H will be able to raise its 
price to achieve higher profitability, and meanwhile, Vendor L will be forced to re-
duce its price but still will experience lower profit. The opposite will happen when 
cost efficiency is low: in this case, Vendor L will be the only beneficiary.5   

Previous research has never documented this finding. Instead, switching cost al-
ways has been reported to affect the two competing vendors in the same way – either 
positively or negatively, but not with elements of both. We are observing a unique 
aspect of SaaS competition: there is asymmetric influence of clients’ switching cost on 
the vendors. So switching cost may benefit one vendor but hurt the other, depending 
on their relative cost efficiencies.  

4 Discussion: Recommendations on Modeling and 
Implementation 

The real world of competition in the IT services market is more complicated than our 
game-theoretical model suggests. Nevertheless, our model captures a number of inter-
esting and important features, including the vertical and horizontal differentiation of 
vendors, and the sampling of fit costs and switching costs. The model also has the 
added benefit of enabling us to draw insightful conclusions about the pricing strate-
gies of service vendors. The most deeply insightful finding is our observation of the 
asymmetric influence of clients’ switching cost. This will inspire others to think more 

                                                           
5  The three types of equilibria are: (1) all clients will try out Vendor H in the Fit Cost Sampling 

Stage and some will switch to Vendor L at time 1; (2) all clients will try out Vendor L in the 
Sampling Stage and some will switch to Vendor H at time 1; and (3) θh type clients will try 
out Vendor H in the Sampling Stage and some will switch to Vendor L at time 1, and θl type 
clients will try out Vendor L at the Sampling Stage and some will switch to Vendor H at time 
1. In equilibrium, clients’ decision-making will follow our analysis, with marginal switchers 
defined by Equations 2 and 3. 
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deeply about the inner workings of the IT services market, and to reflect on the effec-
tiveness of our modeling choices and the implementation issues that arise the strate-
gies we have indicated.  

We offer three recommendations to managers to build on our analytical results:  

• Recommendation #1: After the Sampling Stage concludes, offer your SaaS clients 
value co-creating contract flexibility to reflect their need to iteratively address 
their potentially changing fit costs for the vendor’s services.  

In the SaaS market, many vendors have adopted a marketing strategy involving 
free sampling periods for potential clients, typically of one-month duration, and offer-
ing opt-out flexibility. For example, Salesforce (www.salesforce.com) allows new 
clients to test-run its CRM applications for thirty days for free. A client only needs to 
register on Saleforce's website, and after sharing a little information, it will be able to 
run the software and quickly gauge whether the fit costs are high and unacceptable.  

Our modeling approach accords clients the flexibility of sampling a vendor's SaaS 
offering, and reaching a conclusion about whether the fit costs are acceptable, similar 
to Salesforce.com’s approach. Although our model requires clients to make switching 
decisions at a certain point in time, different clients may need different lengths of 
time to learn about the fit costs of working with a given vendor.  So a decision to 
switch by the client may happen at any time during the contract period. This makes 
the modeling setup different, since it will require a continuous-time decision-making 
approach for the clients. This may be modeled in a different way than we have so far: 
as an embedded option in the decision process [7]. The managerial implications of 
embedded option models are clear and compelling: including them tends to make any 
contract more valuable, and so the client will have a higher level of willingness-to-
pay. The worst case with an option-bearing contract is that it will not be exercised 
under unattractive conditions. 

The arrangements that we have considered with respect to SaaS offerings are in-
complete contracts: not all of the details are always pre-specified. During the period 
of the use of the services, different kinds of risks and uncertainty have to be borne by 
the vendor and its client, so SaaS contracts should be designed with enough flexibility 
to accommodate the different stakeholders' concerns. Clients face downward price 
uncertainty in the SaaS market, for example. So there is a need to permit benchmark-
ing, which allows clients to utilize a third-party auditor to conduct an analysis of the 
current market prices for SaaS services, and then to adjust the price during the period 
of the contract, after services sampling has finished and a longer-term relationship has 
been established [16]. Clients may also switch to another services vendor even after a 
longer-term contract has been established. The discovery of true fit costs also may be 
influenced by changes in a client's business activities and strategy.6  

Based on how this market operates, SaaS vendor senior managers need to address 
two questions in their competitive market operations. How can a firm convince poten-
tial clients to try out its services, as opposed to those of others? And what can be done 
to increase the conversion rate from free to paid services and the likelihood that a 

                                                           
6  In addition, when demand volatility exists for computing cycles in a market, or a client expe-

riences a precipitous drop in demand, flexibility will be of value. Clients might be permitted to 
opt out; a front-loaded fee for this option may compensate the vendor for its expected costs [3]. 
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client will not opt out after this period passes, but enter into a longer-term relationship 
with the vendor? According to Sixteen Ventures [21], an IT services metrics provider, 
66% of SaaS vendors reported conversion rates to longer-term service sales of 25%, a 
disappointing level.  

Based on our ongoing field study discussions with managers in the United States, 
Canada and Singapore, interactions with vendors around the world, and assessments 
of what market pundits have been saying, there seem to be no simple answers. We 
conjecture that, as time goes by, vendors may need to be more aggressive, even going 
to subsidized longer-term sampling period durations to create a more compelling 
value proposition to attract new clients. Vendors need to make investments to ensure 
that clients trying out their services will be satisfied, though they only bring an expec-
tation of future profit – not a guarantee. Though the first image of a SaaS vendor may 
be as a pure digital services market intermediary, our expectation is that intermedia-
ries will strategically morph to match the needs of their clients. So we encourage 
SaaS providers will do more to create service adoption consulting and business facili-
tation services involving domain experts, experienced clients in the same industries, 
and more effective initial support to serve them. It is costly to provide these kinds of 
flexibility and support to clients. Strategic necessity is likely to win out though. Plus, 
a vendor that does the right things at the right points in time will be able to turn flex-
ibility and extensive service facilitation into a strongly profitable business in the long 
run: 

• Recommendation #2: Lock in your SaaS clients, but only with mutually-beneficial 
impacts that are understood in the marketplace to balance the related risks and 
rewards.  

For SaaS vendors, experience and knowledge learned from serving one client can 
be used to enhance efficiency and create value in serving other clients. This approach 
is practiced by the large accounting, IS and marketing consulting firms: many firms 
reuse the business logic associated with their service excellence – many times over, in 
fact. Potential SaaS clients may view this as a dangerous practice though, because it 
gives rise to poaching and misappropriation of sensitive business information [5]. A 
collateral concern is knowledge lock-in. This will occur when the vendor can leverage 
the threat of using experience with the client and the resulting business knowledge to 
engage with and provide services to other firms. Clients face lock-in, but we concep-
tualized it more narrowly as a switching cost that involves data recovery from the 
SaaS vendor, a limitation of our modeling approach.  

Real-world business settings involve other hidden switching costs though. Consid-
er a large SaaS client firm that has used a particular SaaS vendor for some time, and 
also is an industry leader in its business sector. The vendor will learn industry-specific 
knowledge from serving this client over time. It also will gain a deep understanding 
of the client’s business operations, a key enabler of the client's competitive advantage. 
The client will worry that – if it opts out from the vendor's service – it may be subject 
to exploitation of its business information. This could harm its competitive position.  

The potential for lock-in occurs due to the extent to which competitive advantage 
may be lost. Lock-in that arises due to the vendor's intimate knowledge of a client's 
business is adverse lock-in, and is undesirable in a long-term IT services relationship. 
Other outcomes are possible, including beneficial lock-in to vendors. Consider the 
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case of IBM and General Motors, a client of IBM's IT services organization 
(www.ibm.com/ services). The firms have worked together to develop a CRM solu-
tion "to align [IBM's] technologies with GM’s business processes.” Leveraging its 
experience in the automotive industry, IBM was “able to provide industry-based intel-
lectual capital” that few other firms could [15]. The idea, in beneficial lock-in terms, 
is that having a long-term relationship has deepened IBM's industry-based intellectual 
capital for automotive industry IT services, and will benefit GM more than its com-
petitors. Here, the vendor co-invests in R&D, creates new innovations, and works as a 
partner with GM as its client. Knowledge is shared and value is created from a coop-
erative strategic alliance. 

Senior managers also need to think about how to retain their clients by leveraging 
beneficial lock-in in different ways. One way may be to subsidize those who are like-
ly to be profitable high service demand customers. This is appealing due to the visi-
bility of the vendor's commitment to concentrate the attention of a somewhat larger, 
more expert IT services staff as a way of helping the client to minimize the fit costs of 
adopting the vendor's services. This is why, we think, some SaaS vendors are offering 
the capability to partially customize the services they offer to big clients – a subtle 
morphing of the way they define their roles as SaaS vendors beyond the constraints of 
multi-tenancy structure. Vendors, including Salesforce.com and Amazon EC2, claim 
they are willing to cooperate, co-invest, and co-customize their applications to satisfy 
a client’s business needs. The outcome is that the vendors truly need to achieve high 
profitability in the longer term: clients should be locked into the vendor's services, but 
in a way that achieves mutual benefits.  

Our findings show that the competitive outcome will be different for competing 
SaaS vendors under different levels of cost efficiency for the SaaS business model. As 
a result, we advocate the strategy of employing differential pricing tied to a vendor's 
knowledge of the relative cost efficiency of the competition. We assert: 

• Recommendation #3: Leverage your firm's SaaS cost efficiency for stronger mar-
ket positioning.  

In duopoly competition, the two vendors are likely to have different cost functions 
for the production of high quality SaaS at the firm level. This enables us to generalize 
our findings and make it easier for a business strategist to observe the competition and 
decide what business policy actions to undertake.  

A vendor's SaaS capabilities also are subject to under-investment and over-
investment. These include over-investment in the ownership of interorganizational 
networks [2], under-investment in the enhancement of financial risk management 
systems forecast quality [12] and a spectrum of over-investment, under-investment 
and right-sized investments in customer-protecting information security capabilities 
[18]. The result in these cases is that the firms will not be efficient in the production 
of profit unless they can identify the proper levels of investment. 

The same value maximization logic applies to SaaS vendors: over-investment and 
under-investment in appropriately high quality SaaS capabilities will be a source of 
competitive disadvantage. For highly-capable firms to gain advantage on other SaaS 
providers that sell lower quality services will not be about how service quality can be 
enhanced. Instead, it will be about what it costs to offer an appropriate difference in 
quality. This will be determined by the overall cost efficiency of the firm. 
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Vendors will benefit from economies of scale and best practices that strong man-
agement can bring. Serving many clients contributes to a vendor’s capacity to deliver 
service quality enhancements too. In addition, quality-related investments, including 
training customer support staff and expanding database and IT infrastructure capabili-
ties, will help in other ways. Paul Strassmann [24], a past-CIO of Xerox, the U.S. 
Department of Defense and the National Aeronautics and Space Administration, for 
example, has claimed that these kinds of things promote managerial productivity.  

An important question remains to be answered though. What kinds of firms will be 
more likely to have the capabilities to enhance the quality of their SaaS offerings to 
match the clockspeed of the market's demand growth for higher quality? We observed 
that the firm-level cost functions of different firms will be different, but in what 
ways? Will a long-established software vendor be at an advantage compared to a 
start-up in the SaaS patch? Large vendors may be able to leverage expertise and expe-
rience in the packaged software market to provide reliable, high-quality IT services. 
In contrast, a new start-up may need to position itself as a market follower, by offer-
ing lower quality services at a lower price. A start-up may discover dramatic new 
ways to do business that a large firm may not. Salesforce.com has proven to be an 
outstanding example.  

5 Conclusion 

This research offers competitive strategy and economics analysis for the SaaS busi-
ness model. The duopoly setting we used was helpful to support our development of 
some fundamental and useful insights. We have been able to make some relatively 
refined observations about competition between SaaS vendors, especially related to 
how switching costs affect the vendors’ pricing strategies. We identified a number of 
conditions that may motivate a vendor to employ an aggressive pricing strategy aimed 
at driving another IT services competitor with relatively lower cost efficiency out of 
the market. We also saw the surprising usefulness of a non-competitive pricing strate-
gy that encourages the vendors to find a way to share the market. We saw that the two 
vendors were best off by cooperating with one another to ensure that each only tar-
geted SaaS clients with an appropriate level of willingness-to-pay, a unique insight 
into the inner workings of competitive markets that economic analysis can support. 
Based on our findings, we provided additional commentary on mechanism design 
choices in the SaaS market. We highlighted: the importance of offering clients value 
co-creating contract flexibility; beneficial lock-in practices by SaaS vendors; and the 
danger of over-investment and under-investment in vendor service quality. These 
represent practical strategies for SaaS vendors to adopt.  

There are some other limitations in our approach that deserve final comment. First, 
we assumed that all clients have only a limited time to sample the fit costs of the ven-
dor whose software services they select. In practice, different firms have different 
capabilities to acquire and process information to make value-maximizing decisions. 
Some learn fast, some slow, and some very little. Thus, in practice, there will not be a 
single time by which switching decisions must occur. Second, our assumption  
that clients make their switching decisions at some predetermined point in time elimi-
nates the possibility of assessing a more realistic valuation problem with an option 
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embedded in a client’s decision-making process. Third, we assumed also that switch-
ing cost is exogenously fixed. More likely is that switching cost will vary over time, 
and may not be entirely exogenous. There are a variety of things that firms can do to 
create some degree of endogeneity of choice related to how large their switching cost 
becomes over time [1]. Investments in the adoption of services-oriented architecture 
is such an approach.  

Finally, market competition and incentives are such that one can imagine some 
competitor in the future doing a contract buyout for a new client's commitment to a 
prior service vendor. This is similar to buyouts of sports stars’ contracts. The new 
vendor might also be willing to absorb and share some of the switching cost, possibly 
in the manner of Shapley value-based assignment of value stream rights to different 
stakeholders, who will be better off figuring out some way to split them [13]. All 
these are interesting directions to consider enhancing the future richness of our under-
standing of IT services strategy and management.  
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Abstract. In our everyday lives, we create massive amounts of data.
But how much does it really cost to store data? With ever decreasing
cost of storage media, a popular misconception is that the cost of storage
has become cheaper than ever. However, we argue that the cost of stor-
ing data is not equal to the cost of storage media alone – rather, many
often ignored factors including human, infrastructure, and environmen-
tal costs contribute to the total cost to store data. Unfortunately, very
little research has been done to determine the full cost of cloud based
storage systems. Most existing studies do not account for indirect fac-
tors and determinants of storage cost. To fully determine the true cost
of data storage, we need to perform full cost accounting – a well known
accounting technique. In this paper, we present a full cost accounting
model for cloud storage systems. We include all the hidden and environ-
mental costs as well as regular costs to develop a comprehensive model
for storage system costs. To the best of our knowledge, this is the first
work on creating a full cost accounting model for cloud based storage
systems.

1 Introduction

With the advent of modern technology, digital storage is getting cheaper every
day. As storage cost is continuing to drop by roughly 50% every 18 months [1],
we can observe two effects: storage appears to be free or very cheap, and there
is an illusion of infinite storage. As costs of storage devices are negligible, a very
popular misconception is to equate storage costs with the cost of storage media.
This line of thinking leads system designers to ignore redundancies or inefficien-
cies in storage system design, under-optimize data storage, and underestimate
the total cost of data storage. We argue that the conventional wisdom about
storage cost is mistaken, and a full range of factors – both direct and indirect –
need to be considered to determine the real cost of data storage.

The problem of finding total cost of storage is interesting and important from
both business and computational perspectives. In the current era of Big Data,
the demand for long term storage systems is increasing every day. Many startup
companies have started digital storage business (e.g. DropBox, SugarSync). Tech-
nology giants such as Google, Microsoft, and Amazon have set up large infras-
tructures for storage. Therefore, they need to identify the actual cost of long term
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digital data preservation. Moreover, storage is not only getting cheap, but also
the capacity of storage is increasing in a high volume. For a desktop computer,
the largest available disk size has increased from 5 MB to 4 TB. [2]. Therefore,
we are storing more data than ever before. In fact, in many cases, we are storing
redundant and useless data, which are never accessed after their creation [3]. A
proper cost model will allow us to determine the true monetary amount that we
are paying for these storage systems. The model will also allow system designers
to make informed design decisions, choose local or outsourced storage systems,
and provide an incentive to optimize their storage management.

Designing a storage cost model is not trivial as many hidden, non-obvious
costs are involved. There are several factors associated with the maintenance
of the storage systems, that are often neglected while developing a cost model.
Factors such as power, cooling, maintenance, management, and disposal costs
are significant. A deeper thought reveals that storage media price is only a small
portion of the overall cost. The total cost of storage also includes hidden factors
such as environmental costs. Previously developed models are often simplistic
and do not include all possible costs related to the storage systems [4]. We argue
that we can effectively apply full cost accounting to develop an all-encompassing
storage system cost model. In this paper, we take a holistic view of storage sys-
tems and develop an end to end accounting model for long term digital storage.
By considering direct and indirect costs, environmental impact, and many other
factors, we develop a full cost accounting model for cloud storage. In particular,
our model can be used to determine the amortized cost of storing a byte of data
in a storage system over a year. To the best of our knowledge, this is the first
application of full cost accounting principles to determine storage system cost.

Contributions: The contributions of this paper are as follows:

1. We propose a full cost accounting model for cloud based storage systems and
determine the cost of storing one byte over a year.

2. We apply the developed model in a real life data center to show how the
model actually works.

3. We evaluate the proposed scheme with the pricing schemes of well-known
cloud storage providers.

Organization: The rest of the paper is organized as follows: in section 2, we
provide an overview of full cost accounting. In section 3, we discuss various
determinants of storage system cost. We present our full cost accounting model
in section 4, a case study in section 5 based on the developed model, comparison
of costs with well-known cloud storage providers in Section 6, related research
in section 7 and conclusion in section 8.

2 Background

In this section, we present the definitions of cost accounting, full cost accounting,
issues in regular accounting systems, and discuss why we use full cost accounting
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technique to develop the costmodel. Additionally, we illustrate why other account-
ing models do not fit well to identify storage system cost.

2.1 Cost Accounting

Cost accounting refers to the internal financial system to track expenditures and
costs within an organization [5]. Such a system guides managers and decision
makers in their actions as they show the profit or loss of the organization within
a specific period of time.

Traditional accounting process considers only direct cost related to the prod-
uct and skips many environmental and hidden costs. For example, if toxic ma-
terials are emitted during the development of a product, then it has a high en-
vironmental cost. Manufacturing processes that generate high amount of wastes
will have a high disposal cost. These kind of costs need to be included in the
accounting system to have a proper cost model of a particular product. To solve
this, accountants have developed full cost accounting models that include all of
these costs into the accounting system.

2.2 Full Cost Accounting

Full cost accounting is a systematic approach for identifying, summing, and
reporting the costs involved in the complete life cycle of a product or process.
In addition to obvious and direct costs, full cost accounting aims to include
hidden and overhead costs involved in the system. Figure 1 displays a full cost
accounting framework that deals with all kind of costs involved in the life cycle
of a product or process development [6], [7].
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Fig. 1. Full Cost Accounting framework [6]

Outside of computing, comprehen-
sive full cost accounting models have
been successfully developed for many
real-life problem domains such as coal
plants and waste disposal systems [8],
[9]. For example, Florida local gov-
ernment uses full cost accounting for
Municipal Solid Waste (MSW) Man-
agement. According to Florida law,
the local government needs to disclose the full cost of solid waste management
services to public and the Department of Environmental Protection (DEP) annu-
ally. A book named “Municipal Solid Waste Management Full Cost Accounting
Workbook” has been published for this purpose [10].

3 Determinants of Storage Cost

In this section, we study the determinants associated with the cost of a storage
system. These factors are considered when we develop a full cost accounting
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model in the Section 4. Based on our analysis of Information Lifecycle Manage-
ment models [11], we divide the determinants of storage cost into the following
components: Initial, Floor rent, Energy, Service, Disposal, and Environmental
cost. Different breakdown is also possible if we only consider costs of internal
infrastructure of a storage service provider [4].

3.1 Initial Cost

Initial cost denotes all the costs related to infrastructure set up, including price of
disks, networking equipment (e.g. router, switches, wires etc.), floor accessories
(e.g. light, desk, furniture, security etc.), server racks, cooling fans, and other
miscellaneous costs. Costs of these components decrease with time, therefore,
we consider depreciated cost or current cost in our cost model.

3.2 Floor Rent

Floor rent is a very important determinant of storage cost and highly depends on
the locality. In early 2013, the commercial property prices in San Francisco were
almost double those in other places, such as Chicago [12]. Generally, floor rent
is high in city and low in the less populated areas. For example, in Manhattan
office space can be rented for up to tens of dollars per sqft per month; where data
center can be had with $0.1 per sqft per month, which is much lower than the
office rents [13], [14]. Small data center companies usually tend to rent spaces
inside city for their services because building their own data center office require
high capital cost. However, large technology companies usually build their own
data centers outside of the city area, mainly in less populated areas. Therefore,
per square feet cost is much lower and often the amortized cost is zero over time
[15,16].

3.3 Energy

Power is not only required to keep the servers, networks, and disks up and
running, but also to maintain the overall infrastructure, cooling, security and
other accessories. We can divide the energy cost in four main parts: networks,
infrastructure, cooling, and computation. Details of energy cost calculation are
discussed in Section 5.

3.4 Service

The service cost depends on a number of components including software devel-
opment, management, hardware repair, infrastructure and cooling maintenance,
network set up, and power services [4]. The experience of the employees are often
directly related to their remuneration and this needs to be considered in the cost
model.
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3.5 Disposal Cost

Storage service providers may decide to change their disks after a period of
fixed interval. Physical destruction is the most effective way to dispose a disk
[17]. With this process, it is not possible to recover the data. However, physi-
cal destruction of disks requires powerful and expensive machines. Sometimes
organizations may outsource this task to other companies.

3.6 Environmental Cost

Storage service providers require massive amount of energy to keep the infrastruc-
ture up and running. Heavy diesel backup generators are used to keep the service
smooth during any kind of unexpected incident (e.g. power failure, natural disas-
ter etc.). Usually, the generators are turned off most of the time. However, it has
been reported that backup generators emit exhausts even if there are no black-
outs. This smoke pollutes air significantly. A number of major storage service
providers have been accused for violations of air quality regulations in Virginia
and Illinois. For example, in Northern Virginia, Amazon was cited with more
than 24 violations over a three year period. As a result, they need to pay hefty
fines to the government for this kind of issues, and also need to test their backup
generators regularly [18]. At the same time, diesel emissions can be a potential
cause of cancer. During 2008 and 2009, in California, Microsoft was under “Air
Toxics ‘Hot Spots’ program” review for diesel emissions [19]. Many data centers
use evaporative cooling [20]. Evaporative cooling process concentrates impurities
in the remaining water, which might include anti-bacterials that were added to
keep the cooling system clean. The remaining water can pollute the environment
if not treated properly. Apart from these, the fuel or energy source used to gen-
erate electricity in data centers is the most significant factor in CO2 emissions
[21]. To nullify the effect of greenhouse gas emitted during physical destruction
of disks, companies often need to donate amount proportional to their Carbon
credit [22] to environment management authorities.

4 Cost Model

In this section, we derive equations for various costs associated to store a byte
over a year in a data center. Total cost for a byte of data storage depends on
initial cost, floor rent, energy, service, disposal, and environmental cost. We begin
by providing the following equation for total cost per byte of data storage:

Total Cost = Initial+Floor+Energy+Service+Disposal+

Environmental
(1)

The following sections discuss how each of the above costs is calculated.
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4.1 Initial Cost

Initial cost denotes all the costs related to infrastructure set up, including price of
disks, networking equipment (e.g. router, switches, wires etc.), floor accessories
(e.g. light, desk, furniture, security etc.), server racks, cooling fans, and other
miscellaneous costs. We assume that there are N disks in one floor of the data
center. We take cost for N disks, network equipment, floor accessories, server
racks, cooling fans, and miscellaneous costs as $i1, $i2, $i3, $i4, $i5 and $i6
respectively. We assume straight line depreciation here. So, to calculate these
costs, we divide the original cost by the corresponding lifetime. Thus the overall
initial cost is:

Initial Cost for N disks = i1+i2+i3+i4+i5+i6 (2)

Let us assume each disk contains m TeraBytes. The total bytes S is, S =
N×m×1012. Therefore, using equation 2, we get initial cost for per byte:

Initial Cost Per Byte =
Initial Cost for N disks

S
(3)

4.2 Floor Rent

We assume that floor rent for one floor of a data center is $f per month and
that the floor contains N disks. Therefore, for each byte, we can write:

Floor Rent Per Byte, F =
12×f

S
(4)

4.3 Energy

Total energy cost can be divided into the following parts: operational cost, com-
putational cost, infrastructure maintenance cost (e.g. light, security etc.), and
cooling cost.

Cooling Cost. In a data center, a significant part of energy is spent on cooling.
Therefore, We can write:

Energy Cost = Network + Infrastructure+ Cooling + Computation (5)

If for a floor with N disks has network, infrastructure and cooling maintenance
cost e1, e2 and e3 respectively for a month, then

Network, Infrastructure, Cooling Cost Per Byte =
12×(e1+e2+e3)

S
(6)

Computation Cost. Computation cost depends on the number of reads, writes
and deletion done on a disk. Disks that are always turned on; there is still some
energy usage for data preservation. To calculate the computation cost, we can
take the average current and voltage ratings of PDUs (Power Distribution Unit)
of a server rack and calculate the average power (Watt) required to keep that rack
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running. Electricity bills are charged based on the energy spent. We compute the
average energy consumption (in kilowatt-hour (kWh)) of a rack by multiplying
its power with time period. Overall computational cost is calculated by multi-
plying combined energy usages (summation of energy usage of all server racks)
with per killowatt-hour electricity price. We can write the following equation for
this purpose:

Computation Cost Per Byte =
Combined energy usage×Electricity unit price

S
(7)

As we are computing energy cost, it is important to discuss how energy ef-
ficiency is measured in data centers. With the significant growth in demand
for data centers, it is very important to reduce its overall energy cost and in-
crease the operating efficiency. In this regard, The Green Grid Consortium (a
non-profit, open-industry consortium) developed the concept of Power Usage Ef-
ficiency (PUE) which is a measure of the amount of the total power is used by
computing equipments in contrast to cooling and other infrastructure overhead.
PUE is defined as: PUE = Total Facility Power / IT Equipment Power [23]. A
PUE value 2.0 denotes that, for every watt required to power a server, there is
an additional watt consumed by the support infrastructure. As electricity bill
is paid over the total amount of electricity used, reducing the overhead cost on
support infrastructure will reduce the overall cost.

4.4 Service

We consider that n4 system administrators and software developers are required
for the installation and maintenance of N disks in a data center and their yearly
remuneration is $r (on average). Therefore, service cost for each disk is:

Service Cost Per Byte =
n4×r

S
(8)

The software and licensing cost must also be applied to determine the overall
Service cost. Software solutions usually require an initial cost for the first year
and license renewal cost for the next years. If the initial cost is T , and license
renewal cost is t for every year after the first year, and we amortize the initial
cost over p years; then Software cost for any particular year is:

Software Cost Per Byte =
T/p + t

S
(9)

4.5 Disposal Cost

If a data center needs to destroy its disks in every n5 year, and cost to physically
destroy N disks is s, then cost for N disks per year can be expressed as s

n5
.

Disposal Cost =
s

n5×S
(10)
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4.6 Environmental Cost

We assume that a storage provider requires to spend $U for different environ-
mental issues in a year. Then, we can write:

Environmental Cost Per Byte =
U

S
(11)

U is the summation of all the environmental costs. For example, storage
providers need to spend $u1 annually to maintain backup generators properly.
Evaporative cooling system also requires regular maintenance to prevent water
pollution. Also, it uses wet pads, blades and nozzles to disperse water into the air.
These surfaces can become breeding ground for bacteria if they are not cleaned
regularly. Therefore, cooling system maintenance also contributes ($u2) in over-
all environmental cost. To control CO2 emissions, storage providers may require
to donate $u3 corresponding to their carbon credit. Therefore, we can write:

U = u1 + u2 + u3 (12)

At this point, we have detailed equations for all the items specified at equa-
tion 1. These equations include all private, direct, indirect and environmental
costs to store a byte over a year for any kind of storage system.

5 Case Study: A Local Data Center

In this section, we apply the cost model we developed to the data center of
Computer and Information Sciences (CIS) department at University of Alabama
at Birmingham. This data center is very small as compared to the well-known
data centers (e.g. Amazon, Google etc.). We decided to apply the cost model
here because the internal infrastructure details and pricing for well-known data
centers are not publicly available. However, the full cost accounting model for
storage is applicable for any kind of data center and cloud storage systems.

5.1 Initial Cost

The CIS data center was developed in 2011. There are total 4 server racks and
each rack contains 9 units. Each unit has the following configuration:

1. Supermicro 4U CSE-846E26-R1200B Rackmount Chassis / Rails
2. Supermicro X8DAH+-F Dual Xeon Server Board / Intel 5520 / IPMI
3. (2) Xeon X5650 CPUs 6 Core Westmere Processors
4. (16) WD2003FYYS 2TB 7200 rpm Hard Drives
5. 24 GB (6x4gb) DDR#-1333 ECCR Memory
6. (2) LSI 9212-4i4e HBAs
7. MegaRAID SAS 9280-4i4e with BBU’s
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Total cost of a unit is $13630. Each rack also contains an UPS ($5000 for each
UPS), 2 Raritan Dominion PX (DPXS20A-30L6) Power Distribution Units ($993
for each), 1 Cisco Catalyst 2960-24TC 24 port Switch ($897 for each switch),
network cables ($150 per rack) and price of each rack is $500. Total cost for
development and setup of cooling infrastructure required $17500. We calculate
the initial major hardware cost using this data. We amortize the cost within the
warranty period of the item and get the following equations:

Initial Cost = Rack+UPS+PDU+Unit+Switch+Cables+Cooling

=
4×500

5
+
4×5000

3
+
8×993

2
+
4×9×13630

5
+
4×897

3
+
4×150

2
+
17500

5

= 114170.67

(13)

Other than the major items, many miscellaneous items were also required for
the data center. We add the costs of security system, security and environmental
monitoring device (NetBotz 500), 2 Fire Extinguishers in 2 doors, 64 energy
efficient daylights etc.

Miscellaneous Cost = Security+Monitoring+Fire Extinguishers+DayLights

=
10000

5
+
1306

5
+
200

2
+
64×30

3

= 3001.2

(14)

We get total initial cost $117171.87 by adding equation 13 and 14. From the
server rack unit configuration, we see that each unit contains 16, 2TB hard disks
and there are 9 units in one rack. Therefore, these 4 racks contain 1152×1012

bytes (S = 4×9×32×1012). We calculate initial cost using equation 3:

Initial Cost Per Byte =
117171.87

S
. (15)

5.2 Floor Rent

The CIS data center is L shaped and is 988 square feet in size. We take per square
foot rent as $45 for commercial locations at Birmingham, Alabama. Therefore,
we use equation 4 for floor rent per byte:

Floor Rent Per Byte =
12×988×45

S
=

533520

S
(16)

5.3 Energy

Cooling and Server rack energy consumption are the dominating factors in over-
all energy cost. Liebert Deluxe System//3TM - DX is used as cooling unit and
it has two main parts: Air Handlar (DH380A-HAAEI) and Condensing Unit
(DCDF415-A). The average annual energy consumption by the cooling unit is
26504 kWhrs and overall annual operating cost is $3469. We took current and
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voltage ratings from PDU to determine the average power required to keep a
server rack up and running. Each PDU draws 10.08 Amps on average in a 220
voltage line. Therefore, PDU’s power rating is 2217.6 watts1. There are two PDUs
in every server rack and per rack average power rating is 4435.2 watts. The av-
erage price for electricity is about 12 cents per kilowatt-hour in USA. Therefore,
average energy cost2 for running a server rack for an hour is $532.224×10-3. En-
ergy cost for running one rack and four server racks are $4662.28 3 and $18649.12
respectively. Therefore, overall energy cost over a year is expressed by the fol-
lowing equation:

Energy Cost Per Byte =
18649.12+3469

X
=

22118.12

X
(17)

5.4 Service

Personnel cost may be calculated by determining how much time one system ad-
ministrator is spending behind the set up andmaintenance of the data center. Our
example data center is maintained by two engineers; one senior system adminis-
trator and one mid-junior level engineer. The mid-junior level engineer works full
time and the senior system administrator spends 20% of his time to guide junior
engineers and maintain the data center. We collect the yearly remuneration data
from http://www.indeed.com and perform the following calculation:

Personnel Cost Per Byte =
20%×80000 + 60000

S
=

76000

S
(18)

Nexenta4 Software is used at the UAB CIS data center for configuration and
maintenance of software defined storage systems. Initial cost for each unit is $5000,
for 36 units (4 racks, 9 units each) it is $180000.Every year license renewal price for
each unit is $1000.Therefore, total renewal cost is $36000 (36×1000).We amortize
the initial software purchase cost over 5 years. We also include monthly internet
connection bill ($250 per month) and apply equation 9:

Software Cost Per Byte =
180000

5 + 36000 + 250×12

S
=

75000

S
(19)

5.5 Total Cost per Byte

Now we add equations 15, 16, 17, 5.4, and 19 to get the overall cost to store a byte
over a year at UAB CIS data center in picocents (1 US picocent = $1× 10-14):

Cost Per Byte =
117171.87+ 533520+ 22118.12+ 76000 + 75000

S

= 71.51×103picocents.
(20)

1 Power = Voltage×Current, 220×10.08 = 2217.6
2 Energy = Power×Time, 4435.2/1000×0.12 = 532.224×10-3
3 Energy cost for 1 year per rack = 532.224×10-3×24×365 = 4662.28
4 http://www.nexenta.com/corp/index.php

http://www.indeed.com
http://www.nexenta.com/corp/index.php
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We did not include environmental and disposal costs in the case study because
those are negligible for small data centers. However, those should be considered
for large data centers to apply full cost accounting model properly.

6 Comparison of Our Estimates with Amazon S3

The validity and effectiveness of the proposed accounting model depends on its
applicability in the real world. In this section, we validate our results by exploring
the pricing of Amazon Simple Storage Service (Amazon S3). Our calculation
shows that the cost for storing one byte is 71.51×103 picocents. We compare
this result with Amazon S3’s advertised price available online5. Using AWS
Simple Monthly Calculator6, we get the monthly bill for storing 1152 TB at
Amazon’s US East/US Standard (Virginia) region is 88.37× 103 picocents7 per
byte. While both prices are close to each other, below we discuss some important
factors regarding the price difference:

Pricing: Amazon’s price includes storage providers profit, environmental and dis-
posal costs that are not applicable for UAB CIS data center. Amazon charges for
data usage (i.e. PUT, GET, POST, LIST requests etc.) and data import/export8.
Therefore, overall price to store data in Amazon S3 will increase if we incorporate
the application usage. In our case study, we took the power usage directly from
PDUs; therefore, any number of storage access cost is included in that price. The
pricing of Amazon S3 also depends on the region we want to store data. For ex-
ample, storing same amount of data in US-West (Northern California)9 will cost
95.15×103 per byte. Apart from these, the hardware pricing that we have used in
case study are from year 2011 and prices aremuch cheaper now a days compared to
those. Open storage hardware projects built from commodity components demon-
strate affordable and energy-efficient high-capacity storage servers[24], [25]. Hence,
large data centers use these techniques internally to keep the hardware cost as low
as possible.

Scale: To perform a proper comparison, Amazon’s internal infrastructure de-
tails, energy management and many other information are required, which are
not publicly available. Cloud providers like Amazon buy high volume of hard-
ware at special discounted rate, build their own facilities, use different cooling
techniques to keep power usage down, and apply many other schemes to reduce
the overall cost. All these do not directly apply to small or medium scale data
center like the one in our case study. For example, the total number of hardware
at the UAB CIS data center is much lower compared to that of Amazon’s, so
there is a significant difference in buying price. Floor rent is almost constant
for small or medium scale data center; whereas for large data centers amortized

5 http://aws.amazon.com/s3/pricing
6 http://calculator.s3.amazonaws.com/calc5.html
7 (84844.79×12×10×14)/(1152×10×12) = 88.37×103
8 http://aws.amazon.com/importexport/
9 (91346.96×12×10×14)/(1152×10×12) = 95.15×103

http://aws.amazon.com/s3/pricing
http://calculator.s3.amazonaws.com/calc5.html
http://aws.amazon.com/importexport/
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cost is zero over time (Section 3.2). Also, only regular electrical cooling is used
at UAB CIS data center, which is expensive.

Redundancy: Amazon S3 stores redundant copies for data durability and
reliability. For example, triple mirroring [26], RAID-5, RAID-6 [27], and various
types of erasure coding [28] are very common. Small fractions of departmental
data of UAB data center are redundantly stored and most of the files are stored
without any redundancy. Adding more redundant storage will increase the price
for storing a byte for our case study.

We summarize that, the pricing difference between our case study and that
of Amazon S3 is mainly due to the factors described above. However, the full
cost accounting model we have developed addresses all the concerns and can
be used as a framework to determine total cost of data ownership for any kind
of cloud based storage systems. From the analysis, we believe the model will
provide an accurate cost calculation for cloud based storage models given that
internal details are available and very closely resemble the cost for large storage
models (like Amazon S3, RackSpace etc.), where many exact internal features
are somewhat unknown.

7 Related Work

As discussed in Section 2, full cost accounting has been used in various appli-
cation domains. Paul et al. addressed the importance of full cost accounting in
the context of life cycle impacts of coal plant [8]. Each stage in the life cycle of
coal (extraction, transport, processing, and combustion) generates wastes that
are hazardous for health and the environment. As these costs are not direct, coal
industry often treat these as externalities and does not include these into their
regular accounting model. The authors showed that the life cycle effects of coal
and the generated waste stream costs the U.S public a significant amount of dol-
lars annually. Moreover, including all these externalities will double to triple the
price of electricity generated from coal. Similar to our case study, they focused
on Appalachia (a coal mining area in the Appalachian Mountains) to determine
the life cycle impacts of coal.

Full cost accounting has not been used to develop an economic model for dig-
ital storage. Patel et al. [29] addressed the importance of developing a model to
identify the costs associated with housing and powering the computer, network-
ing and storage equipment. They discussed costs related to real estate, burdened
cost of power delivery, personnel as well as software and licensing with examples.
Their report also included typical data center layout design and key to cost ef-
fective “smart” data center development. However, this work did not apply full
cost accounting in the cost model and initial infrastructure cost, environmental
and disposal costs were not discussed. While the report included brief examples
of each type of cost, it did not calculate full cost of storing a byte in a specific
period of time in a particular data center.

To determine when cloud computing is economically tenable, Chen et al.,
[30] developed a model to calculate the cost of a CPU cycle in cloud based
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systems. This model helps decide if the cloud computing platform is economically
tenable for an organization. They considered several factors except disposal and
environmental issues that contribute to the cost of CPU cycles inside a cloud.
While we explore a similar problem domain in this paper, we provide a fine-
grained cost model for full cost analysis of storage costs.

Another work by APC developed a method to measure the total cost of own-
ership of data center and network room physical infrastructure, and relates these
costs to the overall information technology infrastructure [4] in a per rack ba-
sis. They showed the distribution of different costs such as project management,
server racks, cooling equipment etc. However, their work did not include the
disposal costs and did not break down the energy costs as we did in this paper.

Rosenthal et al. discussed the economics of long term digital storage with
respect to Kryder’s law, various storage business models, and the value of cloud
for digital preservation [31]. They encouraged to develop an accounting model
to properly recognize the long-term cost of ownership of preserved data, and
utilized current low interest rates to invest on solid state technologies which
despite of their higher capital cost, are likely to have a lower total cost than disk.
At the same time, solid state technologies retain its fast rapid access. However,
their work also does not include hidden and indirect environmental costs of
data storage and disposal costs. Our work complements the limitations of these
models by considering both direct and indirect determinants of storage cost.

8 Conclusion and Future Work

In-depth understanding of the full cost of data storage is very important to de-
velop new storage business models and in many other computational purposes.
The full cost accounting model developed here addresses all kinds of costs in-
volved in long term digital storage services and provides a clear overview to the
managers or decision makers about the full cost of this kind of systems. As a
future work, we want to employ this model to determine the value of waste data
in storage systems. Hasan et al. showed that a large amount of data have never
been used for a long time after their creation or last modification [3]. These kinds
of data are not different from regularly used data and contribute to the overall
cost of the system. Thus, knowing the monetary value of digital waste will be
very useful for the development of efficient file systems.
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Abstract. EnergeTIC is a recent industrial research project carried out in Greno-
ble on optimising energy consumption in data centres. We study the problem
formulation proposed by EnergeTIC. The problem focuses on the allocation of
virtual machines to servers with time-variable resource demands in data centres
in order to minimise energy costs while ensuring service quality. We present a
scalable constraint programming-based large neighbourhood search (CP-LNS)
method to solving this challenging problem. We present empirical results that
demonstrate that the industrial benchmarks can be solved to near optimality us-
ing our approach. Our CP-LNS method provides a fast and practical approach for
finding high quality solutions for lowering electricity costs in data centres.

1 Introduction

Data centres are a critical and ubiquitous resource for providing infrastructure for bank-
ing, Internet and electronic commerce. They use enormous amounts of electricity, and
this demand is expected to increase in the future. For example, a report by the EU
Stand-by Initiative stated that in 2007 Western European data centres consumed 56
Tera-Watt Hours (TWh) of power, which is expected to almost double to 104 TWh per
year by 2020.1 Nevertheless, as reported by the consulting firm McKinsey, only 6-12%
of electricity used by data centres can be attributed to the performance of productive
computation [1]. Therefore, one of the optimisation challenges in the domain of data
centres is to keep servers well utilised so that energy costs can be reduced.

Many data centres have the infrastructure in place for load migration. There are sev-
eral reasons for migrating the load of one or more virtual applications from their current
servers to different ones. For example, if the load on a server is very high, or if the server
is about to shut down, then one might want to move some or all the virtual machines
from that server to others. Also, if there is a server where the energy cost per unit of
computation is cheaper, then one might want to reassign some virtual applications to
that server so that the overall cost of energy consumption is reduced. In general, the
challenge is to consolidate machine workload intelligently to ensure that servers are
well utilised so that energy costs can be reduced.

1 http://re.jrc.ec.europa.eu/energyefficiency/html/
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In this paper we describe a constraint optimisation model for energy-cost aware
data centre assignment systems which allocates virtual machines with time-variable de-
mands to servers where the energy cost per unit of computation can vary between differ-
ent locations. The problem we consider is defined by a set of servers and a set of virtual
applications to be run on those servers over a given operating horizon. Each server is
associated with a set of available resources, e.g. CPU, RAM, DISK etc. Each virtual
application is associated with an optional initial server on which it is running, and a set
of required resource values, which might be different over different time slots in our
operating horizon. The solution of the problem is an assignment of virtual machines to
servers at each time-period which respects a set of hard constraints. The objective is
to take advantage of differences in energy costs across the servers, the requirements of
virtual applications, the transition costs of switching the states of servers from ON to
STANDBY and vice-versa, and by reassigning virtual applications to servers within a
given data centre.

The remainder of the paper is organised as follows. First we describe the overall
project and in particular energy and demand models to give the context of our work on
solving the optimisation problem addressed in this paper. We then describe the formal
definition of the problem before presenting a constraint optimisation formulation of it.
The size of the instances of this problem can be prohibitively large for standard optimi-
sation techniques, but needs to be solved quickly. Therefore, the challenge is to search
for a good quality solution of a very large problem instance in a very limited timeframe.
We present a constraint programming-based large neighbourhood search (CP-LNS) for
solving this problem which scales significantly beyond commercial optimisation tools
such as CPLEX.2 The key idea behind CP-LNS is to repeatedly consider a sub-problem
of the overall problem and re-optimise it using constraint programming. We present
a systematic empirical evaluation of our CP-LNS approach. Empirical results obtained
on real benchmarks demonstrate the scalability of our CP-LNS approach, and show that
it provides a practical basis for solving this very important and challenging real-world
problem.

2 Related Work

A variety of studies on allocating data and workload amongst multiple servers have been
reported [2,3]. A mixed integer programming approach to dynamically configuring the
consolidation of multiple services or applications in a virtualised server cluster has been
proposed [4]. That work both focuses on power efficiency, and considers the costs of
turning on/off the servers. However, it is assuming homogeneous workloads, e.g. web
searches, where there is little uncertainty around the duration of tasks or the current cost
of energy.

Constraint programming based approaches have also been used previously to solve
some related problems [5,6,7]. In [6] a data centre is viewed as a dynamic bin packing
system where servers host applications with varying resource requirements and varying
relative placement constraints. However, their work can be seen as a reactive approach
where the servers are reconfigured when the current configuration is no longer viable.

2 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Therefore, their objective is to minimise the transition time for migrations of virtual
machines, whereas we are concerned with minimising the energy consumption, and we
plan the migrations for virtual machines in advance so that the configuration always
remain viable.

A high-availability property for a virtual machine is defined in [7]. When a virtual
machine is marked as k-resilient, as long as there are up to k server failures, it is guar-
anteed that it can be relocated to a non-failed host without relocating other virtual ma-
chines. The property of k-resiliency relies on static resource requirements of virtual
machines whereas we are focusing on time variable resource demands.

Although in [5] an energy-aware framework is proposed for the reallocation of vir-
tual machines in a data centre to reduce the power consumption, the goal is to find the
best possible placement of virtual machines for a given time-period subject to service
level agreements.

3 Energy and Demand Models

The problem studied in this paper comes from the EnergeTIC project which is accred-
ited by the French government (FUI) [8].3 EnergeTIC brought together four companies
(Bull, Business & Decision Eolas, Schneider Electric, UXP) and several academic part-
ners (G2Elab, G-SCOP, LIG). Its main objective is to control the energy consumption
of a data centre and ensure that it is consistent with application needs, economic con-
straints and service level agreements. It focused on how to reduce energy cost by taking
into account variable cpu requirements of the clients’ applications, the wide range of IT
equipment and virtualisation techniques. A tool was implemented and deployed in prac-
tice in a data centre designed by Eolas. The system developed by EnergeTIC is based
on a model of the energy consumption of the various components in a data centre, a
prediction system to forecast the demand and an optimisation component computing
the placement of virtual machines onto servers. In the following we describe the energy
and demand models of the system and in the remaining part of the paper we focus on
the optimisation part.

3.1 Energy Model

Green data centres appeared as early as 2000 and focused on limiting the amount of
energy that was not used for running the client’s applications. The Power Usage Effec-
tiveness (PUE) is a key indicator introduced by the Green Grid consortium [9] which
measures the ratio between the total energy entering the data centre and the energy used
by its IT systems (servers, networks, etc.). The power consumed by support equipment
and infrastructure is regarded as an overhead according to this metric. A PUE value of 1
is a perfect efficiency. This indicator has been used to measure progress over the years.
A value of 2.5 was common a few years ago whereas the current average in industry is
around 1.7 with the most efficient data centres reaching 1.2 to 1.4.

3 Minalogic EnergeTIC is a global competitive cluster located in Grenoble France and fosters
research-led innovation in intelligent miniaturised products and solutions for industry.
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Fig. 1. Energy cost (Wh) vs CPU Usage (GHz) for 3 servers

The need to refine such metrics arose quickly, especially when considering that not
all electrical power delivered by the IT equipment is transformed into value-adding
computation. The Green Grid proposed a very fine-grained indicator called DCP (Data
Center Productivity) for that purpose [9]. This metric, although very accurate, is not
used in practice because of its complexity. The EnergeTIC project introduced two sim-
ple indicators related to usage efficiency. The first aims at checking the productive use
of active resources while the second focuses on the energy consumed. This last en-
ergy indicator is defined as the ratio between the total energy consumed and the energy
specifically used to run clients applications.

Fig. 2. Linear model of energy (courtesy to [8])

The energy indicator relies on a model of the energy consumption of each piece of
equipment, e.g. ventilation units, power supplies, heating/cooling systems, etc., as well
as a wide range of IT equipment such as servers, storage, etc. The characterisation of
the energy consumption of each piece of IT equipment was performed on a cooled rack
provided by Bull which was instrumented with sensors. The rack contained a dozen of
heterogeneous servers based on three types of processors: quadri, bi and mono. Dif-
ferent energy behaviour were used in various scenarios to perform the measurements.
As an example, the energy cost of the power consumption of three different servers at
different cpu loads taken from one of the problem instances is shown in Figure 1. Re-
ality is often quite complex as performance also depends on other parameters such as
the room temperature or the shared resources where contention can occur. However, a
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Fig. 4. Variable demands – Example 2

linear model was found accurate enough to model energy consumption of the servers.
The model was computed by linear regression over the measures (see Figure 2). The
measure of the cpu requirements of an application is more complex as it would need
to be done on each possible server type. Therefore, in practice, a single measure was
performed on a reference server [8].

3.2 Demand Model

The demands, i.e. the resource requirements, of the virtual machines in the benchmarks
used in the experimental section originate from the Green Data Centre of Business &
Decision Eolas located in Grenoble which started in 2011. It was used to study and
validate the system operationally. It is a Tier IV centre instrumented with thousands of
sensors spread over the site to monitor its energy consumption (IT, Security, monitoring,
inverters, power supplies, etc.) and claims a PUE between 1.28 and 1.34. It deals with
an heterogeneous demand: web applications, e-commerce, e-business, e-administration,
etc. The data sets used to make an offline evaluation of the optimiser are obtained from
historical data from this data centre. Two examples showing variable requirements of
CPU usage (GHz) over 12 and 24 time-periods for multiple virtual machines taken from
two problem instances is shown in Figures 3 and 4. An online evaluation of the opti-
miser was also performed in practice on a “sandbox” platform that reproduces the real
environment with only three servers. Real applications were copied from the produc-
tion environment to this restricted environment where the decisions proposed by the
optimiser were implemented and evaluated.

4 Problem Description

We now describe the optimisation problem provided by EnergeTIC. The problem is to
place a set of virtual machines on a set of servers over multiple time-periods in order
to minimise the energy cost of the data centre. The cpu usage of a virtual machine
changes over time. At each time-period, we must ensure that the virtual machines have
enough resources (cpu and memory). Let V = {v1, . . . , vn} be the set of virtual machines,
S = {s1, . . . , sm} be the set of servers and T = {p1, . . . , ph} be the set of time-periods.
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Fig. 5. A solution over three time-periods. Virtual machines migrate to turn off two servers at
t + 1.

Virtual Machines. A virtual machine vi is characterised by a memory consumption Mi

independent of the time-period, a set Ai ⊆ S of allowed servers where it can be hosted,
and a potential initial server (for time-period p0) denoted by Iservi (which might be
unknown). A virtual machine vi has a cpu consumption Uit at time-period t.

Servers. A server s j can be in two different states: ON=1 or STBY=0 (stand-by). It
is characterised by: a cpu capacity Umax j; a memory capacity Mmax j; a fixed cost of
usage Emin j (in Watt) when the server is ON; a unit cost τ j per unit of cpu usage; a basic
cpu consumption Ca j when it is ON to run the operating system and other permanent
tasks; an energy consumption Esby j when it is in state STBY; an energy consumption
Esta j to change the state of the server from STBY to ON; an energy consumption Esto j

to change the state of the server from ON to STBY; a maximum number Nmax j of
virtual machines that can be allocated to it at any time-period; a set of periods P j ⊆ T
during which s j is forced to be ON; and a potential initial state Istate j ∈ {0, 1}.

If a server is ON, its minimum cost is Emin j + τ jCa j. Therefore, for the sake of
simplicity, to compute the fixed energy cost of an active server we include the basic
consumption Ca j in Emin j and denote that by Emin

′
j = Emin j + τ jCa j. We also shift

the cpu capacity of a server and denote that by Umax
′
j = Umax j −Ca j.

Migrations. The maximum number of changes of servers among all virtual machines
from one time-period to the next is denoted by N and the cost of a migration by Cmig.

This problem can be seen as a series of packing problems (one per time-period) in
two dimensions (cpu and memory) that are coupled by the migration constraints and the
cost for changing the state of a server. Figure 5 gives an overview of the problem. This
example has four servers, each shown by a rectangle whose dimensions are representing
the cpu and memory capacities of that server. A virtual machine is a small rectangle
whose height (its cpu) varies from one period to the next. Therefore, the sum of the
heights (cpu) must fit within the capacity (height of the rectangle), and similarly for
the sum of the widths (memory) must fit within the available capacity (width of the
rectangle). In this scenario, the cpu needs of some virtual machines decreases allowing
us to find better packings and turn off two servers at t + 1.
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5 Problem Formulation: Constraint Optimisation Model

We present the constraint optimisation model of the problem.

5.1 Variables

– Let xit ∈ Ai be the main integer decision variables that denote the server on which
virtual machine vi is running at time-period t. The constraint that a virtual machine
has to be on a server at any time and the forbidden servers for each machine are
trivially enforced through the assignment of x to a value from its domain.

– Let cpu jt ∈ [0,Umax
′
j] be the non-negative continuous variable that measures the

cpu consumption of server s j at period t.
– Let mem jt ∈ [0,Mmax j] be the non-negative continuous variable that measures the

memory consumption of server s j at period t.
– Let nvm jt ∈ [0,Nmax j] be an integer variable that denotes the number of virtual

machines running on server s j at time t.
– Let cst ∈ [0,N] be an integer variable that denotes the number of virtual machines

that change servers from time-period t − 1 to time-period t.
– Let o jt ∈ {0, 1} be a Boolean variable that is set to 1 if s j is ON at time t, 0 otherwise.

The initial state is denoted by t = 0. For each server s j ∈ S and virtual machine vi ∈ V
variables o j0 and xio are also created.

5.2 Constraints

Capacity Constraint. The following constraints link the cpu and memory loads of a
server to the virtual machines assigned to it.

∀s j∈S∀pt∈T : cpu jt =
∑

vi∈V∧xit= j

Uit (1)

∀s j∈S∀pt∈T : mem jt =
∑

vi∈V∧xit= j

Mi (2)

The constraint on the usage for cpu and memory on a server in any time-period must not
exceed their capacities is trivially enforced through the upper bounds of the domains of
cpu jt and mem jt, respectively.

Cardinality Constraint. The maximum number of virtual machines that can run on a
server in any time-period is constrained:

∀s j∈S∀pt∈T : nvm jt = |{vi|vi ∈ V ∧ xit = j}| (3)

Migration Constraint. The number of server changes over all virtual machines in any
time-period is constrained:

∀pt∈T : cst = |{vi|vi ∈ V ∧ xit−1 � xit}| (4)
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ON Constraint. A server is ON if it is hosting at least one virtual machine:

∀vi∈V∀pt∈T : xit = j =⇒ o j = 1 (5)

The following states the time-periods where a server has to be ON:

∀s j∈S∀pt∈P j : o jt = 1 (6)

When a server s j is ON at two time-periods say ta and tc (where tc > ta + 1) it is better
to leave it ON in between when it would cost more to switch it to STBY. The cost of
putting s j in ON state would be (tc− ta)×Emin

′
j and the cost of putting s j in STBY state

would be (tc−ta)×Esby j+Esta j+Esto j. Thus, if tc−ta < D where D =
⌈

Esta j+Esto j

(Emin
′
j−Esby j)

⌉
then

it is better to set o jtb = 1 for all tb such that tc < tb < ta. In other words in an optimal
solution, any sequence of 0 values in the vector of variables [o j1, . . . , o jh] should be
of length at least D. If not the cost can be improved by turning ON the corresponding
server in the corresponding time-periods. This dominance rule can be encoded using
the following set of constraints:

∀ta∈T∀ta+1<tc∈T<ta+D∀ta<tb<tc : o jta = 1 ∧ o jtc = 1 =⇒ o jtb = 1 (7)

Similarly, for each server s j we need to consider two special cases: the first time-period
when the server s j is ON and the last time-period when the server s j is ON. If tb is the
first time-period when a server s j is ON (where tb > 1) it is better to leave it ON in all

the time-periods before tb if tb < D f where D f = 1 +
⌈

Esta j

(Emin
′
j−Esby j)

⌉
.

∀1<tb∈T<Df ∀1≤ta<tb : o jtb = 1 =⇒ o jta = 1 (8)

If ta is the last time-period when a server s j is ON (where ta < h) it is better to leave it

ON in all the time-periods after ta if ta > Dl where Dl = h −
⌈

Esto j

(Emin
′
j−Esby j)

⌉
.

∀Dl<ta∈T<h∀ta≤tb≤h : o jta = 1 =⇒ o jtb = 1 (9)

Initial State. If the initial configuration is given then the constraints o j0 = Istate j and
xi,0 = Iservi are enforced for each s j ∈ S and vi ∈ V respectively. Otherwise, the
constraints o j0 = o j1 and xi0 = xi1 are enforced.

5.3 Objective Function

The objective is to minimise the sum of the following costs:

Migration Cost. The total migration cost is the total number of server changes over all
virtual machines over all time-periods multiplied by the cost of migration:

Cmig

⎛⎜⎜⎜⎜⎜⎝
∑

t∈T
cst

⎞⎟⎟⎟⎟⎟⎠
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Transition Cost. The total transition cost is the sum of all the transitions of all servers
from STBY state at time-period t − 1 to ON state at time-period t, and vice-versa over
all time-periods:

∑

s j∈S

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

t∈T∧ ojt−1<ojt

Esta j +
∑

t∈T∧ ojt−1>ojt

Esto j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

CPU Usage Cost. The total CPU usage cost is the sum of all CPU costs incurred over
all time-periods for all servers:

∑

s j∈S

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

pt∈T∧ ojt=0

Esby j +
∑

pt∈T∧ ojt=1

τ jcpu jt + Emin
′
j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

6 Solution Method: Large Neighbourhood Search

An instance of the energy minimisation problem of data centre as described in the pre-
vious section can be very large. As it is an online problem, the challenge is to solve a
very large instance in a very limited time. Constraint-based systematic search [10] has
shown strong performance, but it does not scale well in terms of time and space for
very large instances. Local Search (LS) and Large Neighbourhood Search (LNS) meth-
ods have shown remarkable performance on very large instances. A LS method moves
from a solution to another by performing a small number of changes (and therefore
small improvement) at each iteration, while a LNS method can allow a large number of
changes (and possibly large improvement) at each iteration. A meta-heuristic is gener-
ally used with LS to escape from local minima, but it is generally unnecessary for LNS.
LNS attempts to combine the power of systematic search with the scalability of local
search.

In this section we describe a LNS approach for solving the problem formulated in
the previous section. The overall solution method is shown in Figure 6. We first find
the initial assignment of virtual machines to servers for all time-periods. We maintain
a current assignment, which is initialised with the initial solution. At each iteration,
we select a subset of the pairs of virtual machines and time-periods to be reassigned
and, accordingly, create the sub-problem. We solve the resulting sub-problem with a
threshold on the number of failures, and keep the best solution found as our new current
assignment. The search stops when the total elapsed time is greater than the given time
threshold. Notice that the decision variables can be restricted to the x variables as once
an assignment of the virtual machines to the servers is known at all time-periods, the
rest of the variables are assigned by propagation and the cost function is fully known.

6.1 Finding Initial Feasible Solution

The pseudo-code for finding an initial feasible solution is depicted in Algorithm 1.
The algorithm requires problem P as input which is composed of Constraints (1)–(9)
without any objective function as the task is to find any feasible solution. In the first
phase (Lines 3–10) it iterates over a set of unassigned decision variables, denoted by
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Select virtual machines and servers for Subproblem

Create Subproblem

Re-optimise sub-problem

Improved Solution

Fig. 6. Principle of the LNS approach

uvars, and tries to extend the current partial solution denoted by sol. If it succeeds
then the current partial solution is updated, otherwise the set of variables, denoted by
f vars, that failed to find any assignment is updated. In the second phase (Lines 10–21)
it first resets the set of unassigned variables to the set of failed variables. For each failed
virtual machine a server is selected and, until the assignment of the selected server to the
selected virtual machine is consistent, it finds a constraint C that has failed, relaxes the
current partial solution by removing a decision variable involved in the failed constraint,
and updates the set of unassigned decision variables. The algorithm terminates when all
the virtual machines over all time-periods are assigned servers, otherwise it repeatedly
executes the first phase followed by the second phase.

6.2 Subproblem Selection

A key observation was that selecting a set of virtual machines from only some servers
for reassignment works better than selecting them from many servers. Therefore, we
first select a time-period tb, and then select a number of servers, denoted by ks, and then
from each selected server we select a number of virtual machines that are assigned to
them for the time-period tb. The number of virtual machines that we want to reassign
from each selected server is bounded by an integer parameter km. Each selected virtual
machine that we want to reassign in time-period tb is also selected from its servers for
the time-periods ranging between ta and tc such that ta ≤ tb ≤ tc and tc − ta is bounded
by an integer parameter kt. Notice that a virtual machine may not be necessarily running
on the same server for all the time-periods between ta and tc inclusive. Initially ks is set
to 1, it is incremented as search progresses, and it is re-initialised to 1 when it exceeds
10. Similarly kt is initially set to 1, it is incremented as search progresses, and it is re-
initialised to 1 when it exceeds the maximum number of time-periods h. Depending on
the value of ks and kt a fixed value of km is used. The total number of decision variables
selected for reassignment for a sub-problem is bound by ks × km × kt.

6.3 Create and Re-optimise Subproblem

The conventional approach for creating a sub-problem would be to reset all the domains
of the variables, reassign the servers to the virtual machines (for the appropriate time-
periods) which are not chosen for reassignment, and perform constraint propagation
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Algorithm 1. findInitialFeasibleSolution(P)
1: uvars← {xit|vi ∈ V ∧ pt ∈ T }; sol← ∅; f vars← ∅;
2: while uvars � ∅ do
3: while uvars � ∅ do
4: select & remove any xit from uvars;
5: if ∃s j ∈ Ai s.t. P ∧ sol ∧ (xit = j) is satisfiable then
6: sol← sol ∪ {(xit = j)}
7: else
8: f vars← f vars ∪ {xit}
9: end if

10: end while
11: uvars← f vars
12: while f vars � ∅ do
13: select & remove any xit from f vars;
14: select any s j from Ai

15: while P ∧ sol ∧ (xit = j) is not satisfaible do
16: determine any constraint C ∈ P that is not satisfiable
17: select any xi′t′ involved in C such that xi′t′ ∈ sol
18: sol← sol − {(xi′t′ = j′)}
19: uvars← uvars ∪ {xi′t′ }
20: end while
21: end while
22: end while

before searching the resulting sub-problem. The reason for doing this is that existing
solvers are typically designed for systematic backtracking search. However, in LNS
one moves from one partial assignment to another in a non-systematic way and unfor-
tunately no support is provided for updating the state of the problem domains incre-
mentally. This way of creating a sub-problem can be a bottleneck for solving very large
problems in a very limited time especially if the size of the sub-problem is considerably
smaller than the size of the full problem. The reason is that the number of iterations
that one would like to perform will increase as the size of the problem increases in
which case the time spent in creating the subproblems will also increase. We therefore
use the technique described in [11] for replenishing the domains via incremental re-
computation. When a set of decisions are undone, the constraints are used explicitly to
determine which removed values can be added back to the current domains. The ad-
vantage is that it is independent on the order in which the assignments are undone and,
therefore, it can be very efficient for creating subproblems.

We use systematic branch and bound search with a threshold on the number of fail-
ures for solving a given sub-problem. At each node of the search tree constraint prop-
agation is performed to reduce the search space. We use a random variable ordering
heuristic for selecting decision variables. The value ordering heuristic for selecting a
server for a given pair of virtual machine and time-period is based on the minimum
increment in the objective cost, while ties are broken randomly.
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7 Empirical Results

In this section we present empirical results to demonstrate the effectiveness of our large
neighbourhood search approach for the constraint optimisation problem as described in
Sections 4 and 5.

Approaches. We compare three approaches: the MIP formulation of the problem, the
Temporal Greedy approach (TG), and large neighbourhood search (LNS) for the COP
model. The detailed presentation of the Mixed Integer linear Programming (MIP) for-
mulation is omitted due to lack of space. The Temporal Greedy (TG) is the currently
employed approach in the platform of the industrial partners. It proceeds by decompos-
ing time and is, therefore, more scalable than the MIP approach. It greedily solves the
problem period by period using the MIP model restricted to one period (enforcing the
known assignment of the previous period). Each time-period is used as a starting period
as long as there is time left and, therefore, if required the assignment is extended in both
directions towards the beginning and towards the end. In order to compare different up-
per bounds, we also computed lower bounds (LB) based on column generation with a 2
hour time-limit. The details of the lower bound computation is presented in [12].

Benchmarks. The industry partners provided 74 problem instances, where the max-
imum number of virtual machines, servers, and time-periods are 242, 20 and 287 re-
spectively. All the instances are available online.4 We observed on this benchmark that
the cpu constraint is the tight one, as opposed to the memory constraint which is al-
ways satisfiable. Based on the original instances we also generated larger instances by
just duplicating each virtual machine and each server. Out of 74 original instances, 2
instances then became unsatisfiable because of the migration constraints that restrict
the movement of virtual machines to different servers over different time-periods. The
result is that the increase in the total cpu requirements of the virtual machines running
on a server for one or more time-periods exceeds the maximum capacity of the server,
and hence the problem becomes unsatisfiable.

Evaluation. The time-limit is 600 seconds unless otherwise stated. If an approach fails
to solve an instance within the time-limit then 600 is recorded as its solution time.
All experiments were carried out on a Dual Quad Core Xeon CPU, running Linux
2.6.25 x64, with 11.76 GB of RAM, and 2.66 GHz processor speed. The MIP solver
used is CPLEX 12.5 with default parameters. For the LNS approach we extended the
solver used for the machine reassignment problem of ROADEF.5 All algorithms were
implemented in C.

For each problem instance LNS was allowed to run for 600 seconds. Therefore,
we report the cpu time (denoted cpu) for only MIP and TG as in some cases they
were terminated before the time-limit. For each approach we also report the number
of instances (denoted by #nu) for which an approach failed to find a feasible solution.
The gaps for upper bounds reported by different approaches are computed as 100×(ub−lb)

lb

4 http://www.4c.ucc.ie/˜dm6/energetic.tar.gz
5 http://www.sourceforge.net/projects/machinereassign/

http://www.4c.ucc.ie/~dm6/energetic.tar.gz
http://www.sourceforge.net/projects/machinereassign/
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Table 1. Summary of results obtained using MIP, LNS and TG approaches with 600 seconds
time-limit over 74 original instances

LNS MIP TG
gap gap cpu gap cpu

Mean 0.50 0.03 191.92 7.00 42.50
Median 0 0 2.67 0.05 1.45

Max 4.57 0.72 600 119.35 600
#nu 0 3 1

Table 2. Comparison of upper bounds of the various approaches with 600 seconds time-limit on
a few specific instances. The first part corresponds to the original instances while the second part
corresponds to the generated instances.

LB LNS MIP TG
n m h lb cpu ub ub cpu ub cpu

32 3 96 25404.7 14.8 25586.7 25575.7 600 36049.7 112.3
36 3 287 126730.1 248.0 127018.6 127654.4 600 127036.6 600

242 20 24 38614.2 600 40362.5 - 600 43027.6 14.2
242 20 287 431703.9 600 439926.2 - 600 - 600
242 20 24 36890.8 56.1 37701.6 - 600 36897.4 600
90 7 8 12656.82 0.1 11728.2 11435.3 600 11435.5 1.5

64 6 15 7695.6 64.9 8703.6 9657.6 600 10233.6 5.74
64 6 96 48169.3 470.3 53917.3 - 600 66407.4 84.24

484 40 24 74098.1 600 86748.8 - 600 92006.2 63.5
484 40 287 848619.4 1200 893463.6 - 600 - 600
136 10 16 15529.3 74.72 15519.3 - 600 15272.3 70.52
484 40 24 73781.5 241.32 76240.9 - 600 73791.44 600
60 6 15 9857.76 104.82 11302 - 600 13407.7 4.18
72 6 287 232222.9 1200 240679 565145 600 250104.1 600

108 14 8 9094.86 164.33 9555.49 9720.67 600 - 600
72 10 16 18337.4 223.4 18416.5 35911.7 600 18556.21 2.57
60 12 24 25484.5 8.29 25535.3 62520.2 600 25524.59 5.85
66 6 1 30558.94 0.1 49013.31 30558.94 0.1 30558.94 0.1

180 14 8 22864.6 364.42 26427.47 - 600 22971.3 32.47

respectively. To compute mean/median/max values of gaps or time of a given approach,
we exclude the instances where it fails to return any feasible solution.

Original Instances. Table 1 gives an overview of the results by reporting over the
original 74 instances the average/median/max values of the gap to the best known lower
bound, the cpu time, and the number of instances, #nu, where an approach fails to return
any results within the time-limit. Out of 74 instances, MIP is able to find solutions for
71 instances within the time-limit out of which 54 are proved optimal. It thus failed
for 3 instances where the space requirement for CPLEX exceeded 11GB. Notice that
the largest instance in the original set has 1,389,080 decision variables. Clearly, MIP-
based systematic search cannot scale in terms of time and memory. TG is able to find
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Table 3. Summary of results obtained using MIP, LNS and TG approaches with 600 second time-
limit over 72 instances which are generated by duplicating each virtual machine and each server
of each original instance

LNS MIP TG
gap gap cpu gap cpu

Mean 2.86 10.95 499 9.71 48.15
Median 0.20 0.08 600 0.18 5.59

Max 60.38 145.32 600 120.45 169.16
#nu 0 7 3

Table 4. Comparison of LNS over 146 instances for 600, 300 and 150 second time-limits

600s 300s 150s
Mean Gap 1.669 1.725 1.711

Median Gap 0.089 0.093 0.095
#nu 0 0 1

solutions for 73 instances (so it failed on one instance), out of which 26 are optimal.
Its quality deteriorates severely when one should anticipate expensive peaks in demand
by appropriately placing virtual machines several time-periods before the peak. This
can be seen in Table 2 where the maximum gap is 119.35%. LNS succeeds in finding
feasible solutions for all instances within 2 seconds, on average, but it was terminated
after 600 seconds and for 41 instances it found optimal solutions. Its average gap to the
best known lower bound is less than 0.5% showing that LNS scales very well both in
quality and problem size. Table 2 also gives the results for a few hard original instances.

Larger Instances. For larger instances MIP failed to find solutions for 7 instances
while TG failed to find solutions for 3 instances out of 72 satisfiable instances as shown
in Table 3. The increase in the size of the instances has significantly deteriorated the
performances of MIP and TG in terms of time and gap when compared to the original set
of instances. LNS is the only approach that managed to find solutions for all instances.
The maximum gap for LNS is for an instance for which both MIP and TG are able to
solve it optimally. This instance has only one time-period but the packing part of the
problem is harder because of the migration constraints. We note that when the number
of time-periods is 1 both MIP and TG are equivalent. As we use a random variable
selection heuristic for LNS, it could not perform as well as the systematic and complete
search of MIP/TG on that particular instance. Table 2 also gives the results for a few
larger instances.

Any-time Behavior. Having seen the good performance of LNS we also investigated the
impact of different time-limits on LNS. The time-out limit of 600 seconds was defined
by our industrial partners. We also solved all the 146 instances with 300 and 150 second
time-outs. The results are summarised in Table 4. These results suggest that LNS has a
very good any-time behaviour and it can find high quality solutions very quickly. When
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the time-limit is 150 seconds, it failed to find a solution for only 1 instance which has
5,556,320 decision variables. For this instance it requires at least 200 seconds to find
an initial feasible solution and the majority of that effort is spent in the first phase of
Algorithm 1, where it tries each choice at least once.

8 Conclusion

We presented a constraint optimisation formulation of the energy minimisation prob-
lem for data centres. We developed a tool that uses constraint programming and large
neighbourhood search for solving large problem instances in very limited time. Empir-
ical results on real benchmarks assert that our LNS approach is scalable, thus suited for
solving large instances. The presented approach has good anytime behaviour which is
important when solutions must be reported subject to a time limit. Currently, we are not
taking advantage of multi-cores capabilities that might be available while solving the
problem. We plan to explore this opportunty in the future.
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Schneider Electric, Business & Decision and UXP as well as public research institu-
tions: G2Elab, G-SCOP and LIG. The authors from UCC are supported by Science
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Abstract. Many modern cloud services are provided using Internet
Data Centers (IDCs), e.g. the Google search engine. A network of IDCs
is implemented using a set of data centers that are geographically dis-
tributed over many locations. The energy requirements of these systems
are considerable, and there is growing interest in minimizing the total
cost of energy required to operate them either by making the hardware
more energy efficient or by ensuring that opportunities to access low-
cost energy are exploited. In this paper we present a methodology for
studying the energy cost implications of minimizing IDC energy costs
under different operational and energy cost prediction regimes. We sys-
tematically study the impact of the level of price variability, time lag
between locations due to the geographical distribution, reconfiguration
delay, and accuracy of price predictions, on the overall electricity cost
associated with managing an IDC.

1 Introduction

For various operational and strategic reasons, such as speed and latency, redun-
dancy of both equipment and data, networks of Internet Data Centers (IDCs)
are engineered in a geographically distributed fashion [1, 2]. The cost per unit
of computation can vary significantly between various locations due to regional
specificities [3]. Considerable efforts, motivated by the importance of energy costs
in operating a DC, which typically costs up to 15% of total capital investment [1],
have been made to take advantage of these price differentials [4–7] and to design
energy-aware routing protocols [8].

From a combinatorial optimisation point of view, we can formulate the prob-
lem of managing an IDC as an assignment problem where one tries to allocate
workload to a set of data centers such that an overall cost function in minimized.
This cost function should be a function of the various characteristics of the set
of DCs and the forecasted electricity price at each location. Of course, factors
such as geographical spread and the time needed to reconfigure the system should
also be incorporated into the assignment problem. Some tools for analysing cloud
infrastructure are available, for example CloudSim [9] is a rather complete so-
lution for simulating Cloud Computing environments and building test beds for
provisioning algorithms.

J. Altmann, K. Vanmechelen, and O.F. Rana (Eds.): GECON 2013, LNCS 8193, pp. 60–73, 2013.
c© Springer International Publishing Switzerland 2013



A Study of Electricity Price Features on Distributed Internet Data Centers 61

In this paper we present an approach to studying energy management associ-
ated with an IDC under various energy price prediction regimes across a variety
of geographically distributed locations. We present an approach to simulating
realistic electricity prices using a time-series analysis technique. We provide an
approach to studying the generic behavior of electricity prices on a wholesale
electricity market. We will also introduce a simple approach to simulating errors
while predicting prices over a short time-horizon. Finally, we study a variety of
specific problems of interest in IDC management, using a framework to simu-
late instances of this routing problem. We investigate, in a systematic way, the
impact of the level of price variability, time lag between locations (geographi-
cal distribution), reconfiguration delay, and accuracy of price predictions on the
overall electricity cost associated with managing an IDC. Our electricity price
forecasting models provide a useful tool for the development of policies for the
location and management of IDCs.

2 Models for Electricity Prices

In order to study the electricity costs associated with managing an IDC, a re-
alistic model for electricity price dynamics on a wholesale market is required.
Figure 1(a) shows the weekly dynamics of the actual spot price of electricity on
the Irish market over the first seven days of 2009 at 30 minute intervals. We
study electricity price as a time-series in which each data points describes the
price of electricity at a specific moment in time.1

There are various approaches to building a predictive model for real-time
market electricity prices, for example GARCH models [10], wavelet models [11],
artificial neural networks [12, 13], other machine learning-based methods [14],
etc. We used a time-series analysis procedure referred to as the Box-Jenkins (BJ)
method [15] to build an Auto-Regressive Integrated Moving Average (ARIMA)
model characterizing the electricity price behavior over a day. We used fea-
tures provided in R [16], a platform for statistical computing2, to apply the BJ
methodology, which is described in detail in [17].

The ARIMA model is a commonly used tool to understand, model and predict
future values of a time-series Pt (see [18, 19]). The behavior of the series is
expressed using two components. The first one is the autoregressive (AR) part,

AR(p) : Pt =

p∑
i=1

ϕiPt−i + εt

which states that values of the series are partially determined by its past values.
The second part is the moving average (MA) part,

MA(q) : Pt = εt +

q∑
j=1

θjεt−j .

1 Our datasets can be found on-line as CSV files at
http://4c.ucc.ie/~gifrim/Irish-electricity-market/

2 http://www.r-project.org

http://4c.ucc.ie/~gifrim/Irish-electricity-market/
http://www.r-project.org
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Combining these two components the model

ARMA(p, q) : Pt = εt +

p∑
i=1

ϕiPt−i +

q∑
j=1

θiεt−j

is a powerful tool that builds a rather simple model for a time-series. Note that εt
is a set of independent variables identically distributed according to a Gaussian
distribution N(0, σ2

Price) with σ2
Price being a measure of the variability of the

price.
In order to grasp the seasonal nature of the series we used the generalized

SARIMA(p,d,q)(P ,D,Q)[s] model. Where d and D are, respectively, the order of
the ordinary and the seasonal differentiation, p and P are the orders of ordinary
and seasonal AR processes, and q and Q the orders of the MA processes. Finally
s is the frequency of the seasonality, which is 48 in our case representing a period
of 24 hours at a fidelity of 30 minutes.

The BJ approach is a process that iterates over a set of candidate ARIMA
models aiming to find the best fit, i.e. ϕi and θi, of a time-series to its past values.
Figure 1 shows the various steps that were undertaken in what we considered as
the best iteration of the BJ process. The first step is to ensure that the time-
series under study is stationary, i.e. that the mean and variance over time is
constant, and that we accurately model the seasonal effect, if any.

The actual series as seen in Figure 1(a) does not fulfill the stationary property,
and shows a clear seasonality over a range of 48 time periods. Thus, the series
was differentiated twice including a seasonal differentiation:

�48dPt = dPt − dPt−48

with
dPt = �Pt = Pt − Pt−1.

As a result, Figure 1(b) shows that a stationary series was achieved by differ-
entiating the time-series twice thus fixing the orders d = 1 for the regular and
D = 1 for the periodic component.

The next step allows us to define the orders of both the AR and MA processes,
p and q in our model, respectively. For doing so, we refer to the AutoCorrelation
Function (ACF), illustrated in Figure 1(c), and the Partial AutoCorrelation
Function (PACF), presented in Figure 1(d), of the differentiated series. The
quick decay of values on the ACF suggests an AR(p) process. The value of p
should be read on the PACF as the last value significantly different from 0. Hence
p = 3. Similarly, the order of the MA process is read on the ACF. Hence q = 3.
Then, the same procedure is repeated for the seasonal component by taking into
account a 48 period lag allowing us to fix P = 1 and Q = 2. Values of best fit
for parameters θi and ϕi are listed in Table 1. The last step in the BJ method
is to check that the residuals of the model are showing white noise properties.
We performed checks for white noise, which were positive.

Figure 2 illustrates the range of situations that we are now able to simulate by
varying the σ2

Price parameter. This parameter affects the amount of noise that



A Study of Electricity Price Features on Distributed Internet Data Centers 63

P
ri

c
e

Time

5
0

1
0

0
1

5
0

2
0

0

Thu Fri
S
at

S
un

M
on Tu

e
W

ed Thu

(a) Actual series.

1 2 3 4 5 6 7 8

−
1

5
0

−
1

0
0

−
5

0
0

5
0

1
0

0

Time

(b) Differentiated series.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0

.4
−

0
.2

0
.0

0
.2

Lag

A
u
to

 c
o
rr

e
la

ti
o
n
 F

u
n
c
ti
o
n

(c) Autocorrelation function.
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(d) Partial autocorrelation function.

Fig. 1. An iteration of the Box-Jenkins method

the generated series shows against the theoretical ARIMA model. As the figure
shows, even with highly fluctuating prices (e.g. σ2

Price = 500) the trend over a
day still appears. In the following, we will use σ2

Price to conduct experiments in
which price series are simulated with a controlled intrinsic variability.

3 A Model for Price Prediction Errors

One of the contributions of this paper is to provide an empirical insight into the
impact of price prediction errors on the overall cost of the optimal assignment of
workload in an IDC. To this end, we modelled forecasting errors for a particular
time slot t as being distributed according to a Gaussian distribution centered
on the actual value. Hence, let P = {p1, . . . , pT } be a price series and P̂ =
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Table 1. Seasonal ARIMA(3,1,3)(1,1,2)[48] model obtained by applying the BJ
methodology. (s)ari parameters are the best fit for the (seasonal) autoregressive process
of order i. (s)maj , the best fit for the order j (seasonal) mobile average parameters.

ar1(ϕ1) ar2(ϕ2) ar3(ϕ3) ma1(θ1) ma2(θ2) ma3(θ3) sar1(sϕ1) sma1(sθ1) sma2(sθ1)

Val -0.0536 0.7402 0.0583 -0.6738 -0.9145 0.5992 -0.5244 0.0214 -0.0772
std.er. 0.0578 0.1082 0.0788 0.0588 0.0763 0.1037 - 0.0988 0.1558
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(b) Simulated forecast errors.

Fig. 2. On the left, the top plot shows a week’s price dynamics seen on the Irish
electricity market. The other plots represent several simulations ranging from a clean
to a noisy trend. Simulations were generated on 96 time periods with σ2

Price ∈
{50, 126.6, 300, 500}. On the right, simulated forecast errors: σpred ∈ {2.0, 5.0, 10.0}
ranging from good predictions to inaccurate ones.

{p̂1, . . . , p̂T } be a simulation of its forecasted values. Given P , we propose to
build P̂ such that P̂t = N (Pt, σpred), ∀t ∈ T . Here σpred describes the standard
deviation of the predictions.

Figure 2(b) shows an instance of a generated price series (in black) using
the model discussed in the previous section. The figure also shows simulations
of predicted prices for various σpred values. As a measure of the accuracy of
the simulated predictions, we use the mean squared error (MSE) defined as
MSE(P, P̂ ) = 1

T

∑
t∈T (Pt − P̂t)

2. Values of MSE for those particular simula-
tions are also reported in the figure. Small values (e.g. 4.46) of MSE suggest
that the overall predictions are good. As the accuracy of predictions degrades,
the value of MSE rises (e.g. 124.83). Throughout the remainder of the paper we
will be using the σpred parameter to simulate situations ranging from perfect
(σpred = 0) to highly inaccurate price forecasts with bigger values of σpred.
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Table 2. Notations of parameters and decision variables

N Number of Locations
Mi Number of servers available at i ∈ L
μi Request rate handled by a server at i ∈ L
Poi Power used by a working server at i ∈ L

WL(t) Amount of requests for period t
Pi(t) Electricity Price at i during time slot t

P̂i(t) Forecasted Price at i during time slot t
TR Time needed to reconfigure
TL Time lag between two consecutive loca-

tions

mi Number of turned on servers at i ∈ L
λi Number of requests assigned to i ∈ L

4 Minimizing IDC Electricity Cost

We formalize the problem of finding the minimum total electricity cost for a net-
work of IDCs. The formulation is adapted from the problem described in [5]. Our
intention, however, is to give a systematic characterization of price properties
on the cost of running a network of IDCs. Table 2 summarizes the parameters
and the decision variables needed to formulate the problem.

We first assume that each IDC is in a location where electricity price Pi(t) on
the wholesale market varies every 30 minutes; this is the case in Ireland where
energy can be purchased from the Single Energy Market Operator.3 We thus
consider a set L of locations spread geographically so that there is a time lag of
TL ∈ {0, 1, 2, . . . , 24} half hours between two consecutive locations. This time
lag parameter actually controls how the price signals at the various locations
will be shifted with respect to each other; it has been suggested that energy
prices become less correlated between two locations as the distance between
them increases, i.e. the further away two locations are, the less correlated are
their energy prices [3]. Using the model defined in previous section, we also define
P̂i(t) as a vector of predicted prices of Pi(t).

Each IDC has a number Mi of servers that can be switched on or off in order
to handle the workload WL at location i. At each period the decision is thus
to turn on a subset mi ∈ {0, . . . ,Mi} of servers at each location i. We assume
that each server in location i has a capacity factor μi, expressed in terms of
processing requests, and will consume an amount Poi of electricity if running.
For each time interval t we can express the expected total energy cost of running
N IDCs as:

Ct =

N∑
i=1

mi × Pi(t)× Poi.

3 http://www.sem-o.com

http://www.sem-o.com
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Therefore, we can define the cost over all time periods as C =
∑

t∈T Ct. The
decision of the assignment of workload at a particular time t is computed in
order to minimize overall expected energy cost. The optimization process is thus
based the forecasted prices P̂i(t). This quantity is given by:

Ĉt =
N∑
i=1

mi × P̂i(t)× Poi.

In some of the experiments shown in the next section, we assume a perfect
prediction accuracy (σpred = 0), and solving the problem with P̂ is equivalent
to solving the problem with P . A solution to this problem requires that all the
workload is distributed among the locations. Thus we can express the workload
constraint as

∑
i∈L λi = WL(t). On the other hand, the assigned load to an IDC

at location i should not exceed its processing power (requests): λi ≤ mi × μi.
Solving this problem requires finding the assignment of the workload to the

IDCs λi, and subsequently the number of servers, mi, that are turned on. The
mathematical model can be written as follows and will be solved for each time
interval t ∈ T considered in the problem:

min
λi,mi

∑
i∈L

mi × P̂i(t)× Poi

s.t.

λi ≤ mi × μi ∀i ∈ L∑
i∈L

λi ≤ WL(t)

mi ∈ {0, . . . ,Mi} ∀i ∈ L

λi ∈ N ∀i ∈ L

Finally, our model provides a way to simulate various levels of inertia in the
system. The parameter TR specifies the number of time slots needed to reassign
the workload. When TR is set to 0, we assume that the assignment for time t
is performed instantaneously at the beginning of the period. For positive values
of TR, a new assignment done at time t will be held over TR times slots before
a new assignment is allowed to be performed. We simulate this by solving the
optimization program on every time period divisible by TR and keeping the
assignment in between those time periods.

5 Empirical Analysis

We consider the impact of factors such as price volatility, forecasting errors, time
lag between locations, and time needed to reconfigure the system on the optimal
energy cost required by a network of IDCs. For doing so, all experiments were
conducted with the same set of fixed parameters for both the set of locations
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Fig. 3. A representation of the assignment
problem

Table. 3. Data centers setup for
each of the four locations

IDCs
l 1 2 3 4

Po 100 110 120 110
μ 0.9 1.1 1.5 1.2
M 50000 40000 20000 40000

and the workload. We simulated instances of the problem with 4 IDCs such that
the total maximum processing power was fixed at

∑
i∈L μi ×Mi = 167000. On

the other hand, the load was fixed at WLt = 100000, ∀t ∈ T requests. We thus
have the guarantee that the problem always admits a feasible solution.

The individual IDC configurations are summarized in Table 3. Those features
form the static part of the model. We can see that IDC 3 has the most efficient
configuration with a cheaper cost per unit of computation ratio. Despite the
fact that we can order IDCs by efficiency, finding an optimal assignment for a
particular time period requires one to further investigate price behavior features.
We thus discuss these parameters in the remainder of this section.

5.1 Exploring Two Specific Scenarios

Figures 4 illustrates with two scenarios how the overall system behaves over
time. Figure 4(a) shows how many servers (m1 on top to m4 at the bottom) were
set to run in each of the 4 IDCs over the 48 time intervals. In this particular
scenario we defined a 4 hour (8 intervals of 30 minutes) timezone difference
between each location causing price peaks to be shifted across the day. The
workload distribution was computed assuming that price forecasting was perfect
(i.e. σpred = 0). The price levels for each individual location are also reported on
the right axis. Despite the fact that some IDCs are more efficient than others,
we see that none of the IDCs are constantly working at full capacity. In fact,
none of the four IDCs are producing any work while local electricity prices are at
their highest. Due to its superior configuration, IDC 3 is running all its servers
over most of the day but is still powering down during time slots 39, 40 and 41,
where local energy costs are highest.

We further note that the assignment over time is very sensitive to price varia-
tions. This is due to the fact that the cost per unit of computation in the various
locations are always relatively close to each other. This ratio favors, in turn,
different locations only because of the price differentials occurring within a day.

Let us explore another scenario involving errors in price prediction for both
IDC 3 and IDC 4. For Figure 4(b) errors were simulated with a σpred = 10 level

such that P̂t = N (Pt, 10), ∀t ∈ T and are represented with the solid gray line.
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(a) 4 hour timezone gap between each con-
secutive locations.
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(b) Inaccurate price forecasts for locations
3 and 4.

Fig. 4. Number of servers running mi (in black) and price levels (in gray) at each
locations. In Figure 4(b) we also plot the electricity price forecasts (solid gray line).
Since σpred was set to 0 for IDCs 1 and 2, actual and forecasted prices are strictly
overlapping at these locations.

In this scenario we observe that forecasted prices can be significantly departed
from the actual price. Since workload distribution is computed from the predicted
prices P̂t, we can clearly see that this assignment is not optimal. For instance,
the workload assignment at t = 29 seem to be erroneous as IDC 1 and IDC 2 are
both in a quite high-priced period but are still carrying workload. This is due
to a large overshooting of the price forecast in location 3 at that particular time
causing IDC 3 to turn all its servers down and thus shifting the load to other
IDCs. Looking more closely at the dynamics of this scenario, one can observe
this faulty behavior taking place over the 24 hour period, e.g. t = 16, t = 24.

5.2 General Behaviors

We report on systematic experiments that sought to gain insights into how vari-
ous features of the problem would affect the overall energy cost. Unless specified,
the configuration mentioned above was used. Each experiment was run 10 times.
In the following figures, we systematically fit curves to the data to help demon-
strate the trend in the results.

Price Variability. The first two experiments that were conducted aim to char-
acterize the impact of variety amongst prices on the overall assignment cost. To
this end we increase, in turn, the number of locations considered in the problem.
The underlying assumption here is that the number of opportunities to reduce
electricity costs occur more frequently as the number of locations increases. Price



A Study of Electricity Price Features on Distributed Internet Data Centers 69

Pi were all generated with σ2
price = 126.6 and their forecast were set to be per-

fect ( i.e. σpred = 0). Neither time lags nor reconfiguration times were used. One
should note that the capacity Mi of each IDC was tuned in order to keep the
total processing power constant (i.e. 167000).
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Fig. 5. On the left, Figure 5(a), we show the effect on optimal energy cost associated
with increasing the number of locations. On the right, Figure 5(b), we show the effect
associated with intrinsic price fluctuation with σ2

price ∈ {0, 5, . . . , 500}. Both factors can
be seen as opportunities to exploit price diversities in order to reduce overall operating
costs.

As Figure 5(a) shows, the cost of the optimal assignment quickly decreases
with the cardinality of L. In fact, it dropped by almost 10% from a situation in
which there is no possibility to take advantage of price differentials (card(L) = 1)
to a situation in which price differentials are induced by a larger number of
locations (card(L) = 20 and above). This effect seems to level off for more than
20 locations in this particular setup.

To further test the impact of price variety on total energy cost, we can also
generate prices that are intrinsically more or less fluctuating as shown in Fig-
ure 2(a) by varying the σ2

price parameter. Figure 5(b) shows how the level of
fluctuation amongst prices affects the cost of the optimal assignment. For low
values of σ2

price, prices at distant locations will not deviate much from each other.

As σ2
price rises, prices are more and more noisy, and thus exhibit more intrin-

sic diversity. We see the impact of that diversity by the decreasing cost of the
optimal assignment. In the best cases, it appears that energy costs can be re-
duced by almost 15% if prices at the different locations show a reasonable level
of variability. Finally, we note that it is not clear if this effect would level, but
we clearly see that as σ2

price progresses the cost displays more variance.
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Fig. 6. On the left, Figure 6(a), we present the average optimal assignment cost un-
der several time lags configurations. Even for high intrinsically fluctuating prices, i.e.
σ2
price = 300, geographical distribution of IDCs is still beneficial. On the right, in Fig-

ure 6(b), we show how the quality of price prediction is correlated to the suboptimal
decision making by measuring the gap of assignment made under perfect prediction (
i.e. σpred = 0) and several levels of uncertainty.

Timezone Effect. The timezone effect was illustrated in the first scenario (Fig-
ure 4(a)) discussed in the previous section. We conjecture that, given the par-
ticular daily shape of real-time electricity prices, spreading IDCs over distant
locations would allow substantial electricity cost savings. To test this hypothesis,
we assumed perfect prediction on prices generated with a σ2

price ∈ {5, 150, 300}
and varied the TL parameter to set the time lag between each consecutive loca-
tions. Thus, TL = 0 means that prices are perfectly in phase and TL = 2 means
that each consecutive location is separated by an hour, slightly shifting the price
signals.

As Figure 6(a) suggests, in this configuration a time lag of 12 30-minute
intervals (6 hours) is giving the best results. This is not surprising since with
TL = 12 prices at the four locations are perfectly out of phase. This gives
the opportunity to route the load away from locations showing high price levels
(midday) to locations where electricity is cheaper (night time). In this particular
setup, a perfect geographical spread could account for up to 15% in electricity
cost savings. We further note that the price variability effect does not contradict
the time lag effect since the observed trends are quite similar.

Price Forecast Quality. As the “bad forecast” scenario depicted in Figure 4(b)
suggested, low prediction accuracy can lead to non-optimal assignments. To gain
an insight into how the quality of price forecasting affects the cost of assignment,
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we varied the parameter σpred in the range 0, . . . , 5 by steps of 0.1. Predictions
will thus be fuzzier as σpred rises. Prices at the various locations were generated
with a standard variability level σ2

price = 126.6. Recall that when σpred = 0,
predictions are perfect and thus the assignment will be optimal.

Figure 6(b) shows that the difference between the assignment cost computed
with P̂ and the same solution evaluated with the actual price P . This differ-
ence can be interpreted as a penalty cost induced by bad decision-making due
to the uncertainty while predicting prices. We show that this penalty cost is
quadratically rising with the level of uncertainty σpred. Furthermore, this dif-
ference seems to be strongly correlated with the MSE indicator measuring the
accuracy of predictions. For σpred = 0 the penalty cost represent about 10 % of
the overall cost.
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Fig. 7. Time to reconfigure TR ∈ {0, 1, 2, 4}. As there is more and more inertia in the
system, the expected gain from highly fluctuating prices vanishes.

Reconfiguration Time. The last feature that was tested is the speed with
which the IDC can be reconfigured. Until now, we assumed that the system
could be configured instantaneously at the beginning of a given time period. For
realism sake, we defined scenarios in which the time needed to reconfigure the
system was set to TR ∈ {0, 1, 2, 4}. For instance, when TR is set to 2 the system
will need an hour to reassign the workload.

As can been in Figure 7, the reconfiguration time dramatically affects the cost
of the assignment. For TR = 0 we assumed that reconfiguration for period t is
done at the beginning of period t, thus we have the same behavior as shown in
Figure 5(a). For TR = 4, we see that the gain induced by more variability within
prices is almost null. In fact, several runs are indicating a degradation of the cost
of assignment. This could be explained by the fact that introducing latency in
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the system prevents one from taking immediate advantage of price differentials.
We can derive from this that the more that prices fluctuate, the more flexible
and responsive the system must be in order to benefit from it.

6 Conclusion

We have presented an approach to studying the energy costs associated with
an IDC under various energy price prediction regimes across a variety of ge-
ographically distributed locations. The basis of our analysis is an approach to
forecasting on the basis of a time-series representing energy prices over time, and
an approach to controlling the effect of forecast errors. An assumption has been
that the more distant a pair of IDCs, the less correlated are their local energy
prices.

We have studied the total cost of energy in an IDC in a variety of scenarios.
We investigated, in a systematic way, the impact of the level of price variability,
time lag between locations (geographical distribution), reconfiguration delay,
and accuracy of price predictions on the overall electricity cost associated with
managing an IDC.
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Abstract. Cloud computing is considered to be energy and ecological
efficient, and is promoted as the environmental friendly computing solu-
tion. On the other hand, the massive development of the Cloud market-
place lead in an increase of the Data Centers globally and eventually in
the increase of the CO2 related footprint. The calculation of the impact
of Virtual Machines (VMs) on the environment is a challenging task, not
only due to the technical difficulties but also due to the lack of infor-
mation from the energy providers. In this paper we present a method-
ology for the estimation of the ecological efficiency of Virtual Machines
in Cloud infrastructures. We focus on the information management in
relation with the energy production in a region as well as the ecological
efficiency of a VM in a Data Center. To this end, we have designed and
implemented a framework through which the ecological efficiency can
be monitored. The presented framework is being evaluated through a
private Cloud scenario deployed into infrastructure located in Germany.

Keywords: Ecological Efficiency, Cloud Computing, Virtual Machine,
Energy Consumption, Monitoring.

1 Introduction

The rapid growth of ICT application services goes along with an increase in
number and size of data centers (DCs) that host these services. Because data
centers are massive energy consumers, the carbon footprint of application ser-
vices is moving more and more into the focus. It is considered that ICT presently
accounts for approximately 2% of global carbon emissions [1]. To give a concrete
example, in 2011, Googles data centers alone were responsible for 1.43 million
tons of carbon emissions, and this only accounts for about 1 percent of all data
centers worldwide1. To this end, and as pointed out by 1,600 professionals dur-
ing IBMs summit , ecological efficiency (a.k.a. eco-efficiency) of ICT application
services will be the biggest economic game-changer for organizations during the
next decades [2].

Nowadays, application services are increasingly provided using Cloud infras-
tructures. Its technological advantages (easy and fast access to heterogeneous

1 www.google.com/green/bigpicture

J. Altmann, K. Vanmechelen, and O.F. Rana (Eds.): GECON 2013, LNCS 8193, pp. 74–89, 2013.
c© Springer International Publishing Switzerland 2013
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resources, flexible and powerful computing capacity etc.) as well as its econom-
ical advantages (e.g. pay-as-you-go model) made Cloud computing a common
paradigm for developing and hosting application services. Such services com-
pose resources on different layers, spanning physical and virtual infrastructure
or other services, and can be deployed to different providers.

Ecological efficiency of a system is the amount of work that is delivered in
relation to its CO2 emissions. To assess the eco-efficiency of Cloud-based ser-
vices, it becomes increasingly important to investigate the eco-efficiency of the
Cloud resources that the service utilizes. To this end, there are several technical
constraints and challenges [3]: virtualization technology, which is a major char-
acteristic of Cloud computing, introduces a layer of intransparency between the
consumers of Cloud resources and the physical infrastructure. The energy con-
sumed by a service or a virtual machine cannot be directly metered and therefore
must be estimated through certain modeling methodology. To what is more, the
CO2 footprint of the Cloud resources is directly related with the energy-mix that
the respective data center consumes at the time of the Virtual Machine (VM)
operation. Considering that the needed energy is provided by the local power
providers, the calculation of ecological efficiency in Cloud computing is therefore
a location and time relative figure.

The above-mentioned issues harden the effective calculation of ecological ef-
ficiency of Cloud services. To ecologically evaluate the resources that a Cloud-
enabled application utilizes, providers require appropriate tools and methods
that are still not there. Thus in this paper we aim at quantifying the environmen-
tal impact of Cloud resources and specifically estimate the ecological efficiency
in the granularity of the Virtual Machine (VM).

As has been presented also in [4] there are many parameters that affect the
cost (energy or financial) of Cloud resources. We ,though, selected to focus on
the ecological efficiency of the VM as it is one very interesting variable parameter
that is directly relates performance with power consumption of Cloud infrastruc-
tures, resulting in a highly dynamic metric. In our work, we have not considered
the cost related with the static infrastructure (cooling of Data Center, manage-
ment cost etc.) while those figures could be calculated separately and added on
top of the parameters that we calculate dynamically. In addition, we assume that
contemporary Cloud application topologies are consisted of multiple application
components installed in different VMs. Therefore, the power consumption and
eventually the ecological efficiency could be investigated in the level of the VMs.

In the following sections we will present the proposed methodology and corre-
sponding implementation for calculating ecological efficiency of VMs considering
the location and time constraints of the operation. In section 2 we present the
state-of-the-art and the related work in the respective fields of research. In sec-
tion 3 we elaborate on the proposed solution: a monitoring system that allows
for the calculation of eco-efficiency of VMs. Finally, in section 4 we proceed in a
proof of concept of the implemented solution with several deployment scenarios
within Germany, while in section 5 we conclude and summarize our findings.
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2 State of the Art and Related Work

In order to reduce the carbon footprint of a system or a service we need first of all
to monitor and analyze the performance as well as energy related information of
our computing infrastructure. In Cloud computing, it is important to know how
much energy a specific service or a VM consumes, rather than the consumption
of the physical infrastructure. However, measuring the energy consumption of
a single or even several VMs is challenging task. While VMs, from a consumer
point of view, are a black box, their energy consumption can only be estimated
[5]. In order to do so, power usage models are normally used where performance
characteristics are being used for the modeling of energy consumption. [6] [7] [8]
[9] It is pointed out that CPU utilization is the factor driving energy consumption
of a computing system, with memory and disk resource utilization to play a
secondary role.

To what is more, in [10] they make use of power usage metering for calcu-
lating and forecasting the energy efficiency level of VMs in order to optimize
VM deployments in private Clouds. The methodology for the calculation of en-
ergy efficiency of all Cloud entities has been proposed using the CPU utilization
of the VMs as the parameter to define the useful work performed and linear
regression technique for the forecasting. To this end, there have been many dis-
cussions about measuring the useful work of a computer accurately [11]. Several
benchmarks have been proposed [12], however, since every application has differ-
ent requirements no universal formula can be determined. In the same context,
power consumption modeling has been used for power-aware VM allocation us-
ing genetic algorithms [13] or through heuristic algorithms [14]. The definition
of energy efficiency in Cloud computing has been playing an important role also
for the application of VM consolidation strategies. [15] [16]

The term ecological efficiency is a rather generic description of the efficient
use of ecological resources. In computing systems eco-efficiency can be seen as
computing power delivered compared to the environmental resources needed to
do so. And again, in this context the complete product or service life-cycle and
its related impacts on the environment have to be considered. In the context of
Cloud computing, there have been different approaches to define eco-efficiency.
For example, Google publishes the carbon emissions per query (0.2 g CO2) and
per watched minute on YouTube (0.1 g of CO2) [17]. Similarly, in [18] a charge-
back model is presented, where the environmental impact of providing data
center services to the service consumers is traced back to the consumer. The
consumer receives information about the CO2 intensity of each transaction as
well as the overall CO2 emissions produced by his transactions. The eco-efficiency
is calculated by CO2 emissions per data transaction executed on the service.

In [19], the authors have formulated the cost of VM migrations between pri-
vate Clouds aiming at the reduction of the carbon footprint of a Cloud network.
Furthermore, in [20] is presented a routing methodology for user placement
in data centers, that generates minimum carbon footprint and therefore opti-
mizes the ecological efficiency. Both research studies point out the significance
of the geographic location of the Cloud infrastructure towards the increasing the
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eco-efficiency of a service deployment. In addition, in [21], a framework for op-
timizing the carbon efficiency in Clouds is being presented, which is based on
the installment of a registry with offers from Cloud providers with data about
CO2 emission rate, average DCiE(data center infrastructure efficiency) and VM
power efficiency, prices, etc.; all these information though have to be updated
by the provider.

In our work, we evolve and combine the above-mentioned techniques concern-
ing the modeling of the VM performance and the estimation of energy consumed.
We introduce also a methodology for the mapping of energy consumption with
the amount of CO2 emitted and therefore calculate the ecological efficiency of
VMs based on the location of deployment, the time of execution and the perfor-
mance characteristics of each instance.

3 Monitoring Ecological Efficiency in Clouds

The goal of the Cloud ecological efficiency monitoring system which we present
in this paper, is to calculate the eco-efficiency of the VMs taking into consid-
eration their performance utilization as well as energy related information. The
system includes two independent operations (Figure 1) that are necessary for
the calculation of the eco-efficiency of each VM:

– Creation of the CO2 Emission Registry: the amount of CO2 emitted by a
service is based on the energy resources mix (coal, wind, solar, nuclear etc.)
and therefore is a location-specific (for example, 10KWh electricity produced
in Athens results in 2Kg of carbon emission, while in Berlin it results in 3Kg
of carbon emission) and a time-related (the energy-mix changes by the time)
figure. The CO2 Emissions Registry will maintain the emission factors (how
much CO2 is generated for the production of 1KWh electricity) per location
and for every hour of the day. The required information will be gathered by
invoking public energy data streams (e.g. European Energy Exchange2) and
historical data-stores, transformed and placed in a database from where it
will become available to the rest services.

– Calculation for eco-efficiency: the systems monitors in terms of energy as well
as performance metrics the Cloud infrastructure. The interaction with the
private Cloud infrastructure is being done through a plug-in mechanism that
can support multiple Cloud middleware. The respective service calculates in
real-time the ecological efficiency of each VM.

The first operation represents the data aggregation phase in which the data
regarding the CO2 emissions from the energy resources of all regions and coun-
tries are being collected and analyzed. On the other hand, the second operation
represents the monitoring phase in which the performance and energy data from
the Cloud infrastructure are being gathered and the eco-efficiency of each VM
is being calculated.

In the following subsections we will describe in detail the design, implemen-
tation and operation of the two phases.

2 http://www.eex.com/en/

http://www.eex.com/en/
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Fig. 1. High level architecture of the ecological efficiency monitoring system for Clouds

3.1 Aggregation Phase: Creation of the CO2 Emission Registry

This phase aims at creating the CO2 emission registry with region and time
specific information about the carbon emission factor. As have been pointed
out in [22], the location of a DC is of great importance. A DC and therefore
the Cloud services (IaaS, PaaS, SaaS etc.) that it offers, is powered by energy
sources of the local region. Transferring of energy in long distances is expen-
sive and inefficient, thus, contemporary DCs are being constructed close to the
energy sources and specifically close to ”green” energy sources. Examples are
Facebook’s and Spotify’s new DCs in Sweden where there is a big percentage of
renewable energy production. In the following analysis, we assume that regard-
less of the existence of different power providers or utilities, all of them are con-
suming the same energy mix in the region. Therefore, for simplification reasons in
the development of our methodology, we have extracted the complexity level of
the power providers and we consider the regional energy mix when calculating
the ecological impact of a DC and therefore a VM.

The challenge in this task was to discover public data streams that provide
energy production information per country, region and per resource in a reliable
manner. To succeed that we had to use energy information providers such as
European Energy Exchange, that provide information for every country with an
hourly refresh rate. We had also to combine that information with historical data
regarding the energy mix of every region in order to come up with a real-time
energy analysis of every region. We collected, analyzed and transformed those
data by introducing a certain data structure and transformation logic which
allows for the calculation of the CO2 emission factors per region.

Data Structure. In order to efficiently manage the available information we
designed a data model that captures all the above mentioned information and
their interrelations. The gray boxes in Figure 2 represent the information that is
collected from different sources and after certain processing and transformation
is being aggregated in the CO2 Emission Registry. The energy resources that we
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considered are split into the following categories: Coal, Gas, Lignite, Oil, Ura-
nium, Water/Wind, Photovoltaic (sun), Others. The resource category ”others”
combines the energy produced from resources, not covered in the list, such as
geothermal energy. In order to transform the energy mix to carbon emissions
data, we need information about the CO2 emissions of each energy category.

For the calculation of the different CO2 emission factor we must also consider
the complete life cycle of the respective power plants (construction, operation,
maintenance, disposal). In the literature there have been different attempts to
estimate the factors accurately. One common approach is the process chain anal-
ysis in which the energy production process is divided into different steps and
for each step the input and output factors are calculated. Wagner et al. [23] have
performed a comparison of the major methodologies and summarized them into
a minimal reasonable, maximal reasonable and average CO2 emission factor for
each resource. In order to make all the emissions factors (like CH4, N2O etc.)
comparable, we transformed them into CO2 equivalents. To do so, one unit of
the respective gas is transformed into the amount of CO2, which would have the
same impact on the environment as one unit of the gas. In our work we adopted
these factors as well as data from Lübbert [24] during the aggregation phase of
our system.

ID
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Region
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Fig. 2. Data model that captures the information used during the aggregation phase.
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Transformation Logic. The raw information from the data streams is being
transformed and combined to calculate the region and time specific CO2 emission
factor. The process is split into several steps. In the beginning, we work with
the historical datasets and we calculate the overall amount of energy produced
in a specific year for each resource in the region of interest. This is done by
multiplying the share of the resource in the energy-mix of a region (E Share)
with the overall amount produced in the respective region. Then, the values from
all regions are added up to get the overall amount for the country:

Ecountry,resource =
∑

reg∈region

E Shareres(reg)% ∗Etotal(reg) (1)

For example in 2009 in Baden-Württemberg, region in Germany, 23 % of the
energy was produced with coal as the energy source and the overall amount of
energy produced was 61.792 million kWh. Hence, the amount of energy produced
with coal in Baden-Württemberg was 14.212 million kWh. Added up with the
corresponding values in all other regions, the overall amount of power produced
with coal was 99.673 million kWh in 2009 in Germany.

In the second step, we calculate the energy share of each region in the country-
wide power generation for each resource:

E Shareregion,resource% =
E Shareresource(region)% ∗Etotal(region)

Etotal(resource)
(2)

For Baden-Württemberg this is EnergyShareBaWu,coal =
14 212 million kWh
99 673 million kWh

= 0.1426 = 14.26%. As a result, from all power produced with coal in Germany,
14.26 % are generated in Baden-Württemberg.

In the final step, the historical data are being combined with the up-to-date
data from the EnergyResourcesDataStream (ERDData) to calculate the actual
CO2 emission factor for each region of a country. Therefore, the historical en-
ergy share in power production per region is multiplied with the actual power
production for that specific hour. In order to transform the power generation to
actual CO2 emissions, the power generation is multiplied with the CO2 emission
factor of the particular resource. The values from each resource are then summed
up to get the overall emissions. Finally, to get an average CO2 emission factor,
the overall CO2 emissions of the region are divided by the power generation of
the region.

CO2EmissionFactorregion,time

=

∑
r∈resources

E Shareregion(r) ∗ERDDataT (r) ∗ CO2Factor(r)

∑
r∈resources

E Shareregion(r) ∗ERDDataT (r)

(3)

If we look at the example February 13, 2013, from 10 am - 11 am in Baden-
Württemberg: The overall energy production was 5.38 million kWh resulting in
overall CO2 emissions of 2.14 million kilogram. This leads to an average CO2

factor for this time period of 397 g
kWh .
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The detailed process is described in the pseudocode in Algorithm 1.

Algorithm 1. Algorithm 1: Transformation

Require: ERDData,HistoricalData,CO2Factors
Ensure: CO2 emission factor for each region of a country by energy sources

STEP 1
for r ∈ resources do

for reg ∈ regions do
Etotal[r] = Etotal[r] +E Share[r][reg] ∗ Etotal[reg]

end for
end for

STEP 2
for r ∈ resources do

for reg ∈ regions do
if Etotal[r] > 0 then

EShare[r][reg] =
E Share[r][reg]%∗overallAmount[reg]

overallAmount[r]

end if
end for

end for

STEP 3
for t ∈ EEXData do

for reg ∈ regions do
for r ∈ resources do

CO2Emission[t][reg] = CO2Emission[t][reg] + (E Share[reg][r] ∗
ERDData[t][r]) ∗ Co2Factor[r];
energyProd[t][reg] = energyProd[t][reg] + (E Share[reg][r] ∗
ERDData[t][r]);

end for
CO2EmissionFactors[t][reg] = CO2Emission[reg][t]

energyProd[t][reg]

end for
end for

3.2 Monitoring Phase: Calculation of Eco-efficiency

In this operational phase of our system the monitoring of the Cloud resources
and the calculation of the eco-efficiency in being performed. As has been pre-
sented in Figure 1, the monitoring phase involves two separate processes: (a) the
monitoring of the Cloud infrastructure, and (b) the calculation of eco-efficiency
for each active VM resource of the private Cloud environment. As we mentioned
before, we are examining the ecological footprint and efficiency of a VM from
a computing system perspective, in the sense that we do not consider environ-
mental, maintenance or installation costs. Those parameters are not directly
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related with the performance of the application that is being executed within
the VM and therefore such static figures could be calculated and considered
independently.

For the first process, the Performance and Energy Monitor interacts with the
hypervisor of the Cloud infrastructure and collects the list of the active VMs.
For each VM, our system monitors the status, the performance metrics (such as
CPU, disk and memory utilization) as well as power consumption of the Cloud
server that hosts those VMs. In this paper we will not discuss the methodology
of energy metrics collection while in [10] we have presented more details about
that issue. The methodology that we followed for the calculation of eco-efficiency
in Clouds is based on a more low level approach from the ones we presented in
section 2 to compare the useful work to the amount of carbon dioxide emitted.

The work performed by a computing system relies on three performance mod-
ules: CPU, memory and disk. The performance capacity of the CPU can be mea-
sured either by million instructions per second (MIPS) or in order to make it
even more comparable by million whetstone instructions per second (MWIPS).
In the same context, the memory capacity by the amount of allocated memory
(measured in bytes) and the disk disk performance by the number of input and
output operations per second (IOPS).

However, the absolute numbers are not comparable since they are calculated in
different units. In addition, literature research as well as experimentation proved
that the main factor that relates with the energy consumption of a computing
system is CPU utilization [5] [6]. Hence, in this work we will consider as the
useful work performed by a VM as the product of CPU utilization of a VM
over the Cloud host, multiplied with the maximum capacity of operations of the
same Cloud host. As a result, the formula for the real-time calculation of the
eco-efficiency will be:

Eco− Efficiency =
MWIPScapacity, Node ∗ CPUutil,V M

CO2(g)

=
MWIPScapacity, Node ∗ CPUutil,V M

CO2 factor ∗ PowerConsumptionV M

(4)

In our implementation, the eco-efficiency is being calculated using the infor-
mation deriving from the Cloud infrastructure (CPU utilization of every VM,
power consumption of the VM), the CO2 Emission Registry (CO2 factor) and
the static number of the MIPS capacity which is provided beforehand after
having benchmarked the infrastructure. The unit of the eco-efficiency is defined

as billion whetstone instructions(BWI)
CO2(g) ∗ s2 . The billion whetstone instructions represent

the useful work that can be done per gram of carbon dioxide emitted. In the
following the transformation steps to get to this unit will be shown. As it can
be seen the result has to be multiplied by 3600 to transform the unit into the
desired format.
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1 MWIPS

1 Watt ∗ 1 CO2(g)
kWh

=
1 MWI

s

1 Watt ∗ 1 CO2(g)
1000 Watt

1 h

=
1000 MWI

s

1 CO2(g) ∗ h
=

1000 ∗ 3600 MWI

1 CO2(g) ∗ s ∗ s
=

3600 BWI

1 CO2(g) ∗ s2

(5)

In order to calculate the eco-efficiency of a VM as accurate as possible, we
consider the CO2 factor available in the CO2 Emission Registry, that has the
closest timestamp with the current time of monitoring. While the variation of
the CO2 emission factor has a certain pattern within a day for every region,
we use the value for the same time period of the previous day. For example,
if it 11:30 a.m., the eco-efficiency of a VM will be calculated considering the
emission factor of the 11:00 to 12:00 a.m. of the previous day for that specific
region. Hence, the eco-efficiency is calculated based not only on region but also
time specific values for the CO2 emission factors.

4 Proof of Concept

For the evaluation of the proposed system we performed a series of experi-
ments using a private Cloud infrastructure located in Germany. The information
sources that have been aggregated and transformed into the CO2 Emission Reg-
istry are from the statistics platform Statista 3 through which we acquired data
regarding the energy mix of each federated state in Germany, and from the Eu-
ropean Energy Exchange Transparency Platform (EEX) which provided us the
daily production and energy mix for every country.

By triggering the data aggregation and transformation service the CO2 Emis-
sion Registry is being populated with information for every state in Germany,
using the refresh interval that is available in the EEX dataset. Therefore, in Fig-
ure 3 we present the intra-day CO2 emission factors for the German states based
on the EEX dataset of 23rd of April, 2013. The significant variation between
the values of the German states is a result of the type of the energy resources
available in each state. For example, in Bavaria which the CO2 emission factor
is around 131gr/kWh, the 56% of the energy is produced by nuclear resources,
while in Saxony where the CO2 emission factors is around 1087gr/kWh, the 80%
of the energy is produced by coal plants. In addition, we notice an important
variation of the values within the day. This phenomenon is very interesting while
could allow us to synchronize the VM scheduler with this distinctive pattern.

For the Cloud monitoring testing we instantiated one small VM instance
(VM1) of 1vCPU and 1024MB memory and one big instance (VM2) of eight
vCPUs and 2048 MB memory. The CPU capacity on the physical host (Cloud
server) has been benchmarked through the UnixBench tool at 3560.0 MWIPS.

Assuming that within the VMs we execute some CPU intensive applications
and considering also the fact that CPU is the driver of energy consumption

3 http://www.statista.com/

http://www.statista.com/
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Fig. 3. Intraday CO2 emission factors for all German states

into computing systems [25] [26] [27], in the following experimentation we have
monitored and analyzed the CPU workload in comparison with the eco-efficiency.

By applying variable CPU load to VM1 when it has being deployed in a private
Cloud in Berlin and the same load when it is deployed in Baden-Würtemberg
state, we collected the results shown in Figure 4. As expected, the eco-efficiency
of the VM in Berlin is worse than the one in Baden-Würtemberg, following the
pattern of the CPU utilization. The big spikes in the beginning and the end of the
chart are caused due to the small latency of the energy metric that is reported
(big and fast changes of CPU utilization cause increased energy consumption
that is reported with a small latency) and therefore the changes in the CPU
load are reported faster than the changes in energy metrics.

In Figure 5 we compare the ecological efficiency of the two different VMs, which
are deployed in the same infrastructure (Berlin). Even though they have different
specification and are subjected into different CPU load, the eco-efficiency level
during operation is very similar. The spikes in the chart are caused for the same
reason as mentioned before and the zero eco-efficiency is when a VM is inactive.

The relation of CPU utilization on a VM with it’s eco-efficiency which is
depicted in Figure 6 brought some interesting results: as the CPU utilization
increases, the eco-efficiency increases as well. The threshold of 40% CPUutil
seems critical while above that the eco-efficiency seems stable at around 1.5
billion whetstone instructions(BWI)

CO2(g) ∗ s2 . That finding should be exploited by a VM re-

source allocation policy that would place VM resources into server trying to keep
the utilization above 40%.
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Fig. 4. Ecological efficiency comparison of a VM in Berlin and in Baden Württemberg
state.
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Fig. 5. Ecological efficiency comparison of two VMs in Berlin state.
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Fig. 6. Relation of ecological efficiency with CPU utilization during operation of VM1
in Berlin state

5 Conclusions

In this paper we discussed about the environmental impact of Cloud resources
and specifically about techniques to measure and monitor the CO2 footprint of
virtual machines in Cloud computing infrastructures. We identified ecological
efficiency of VMs as the metric that effectively defines such impact and we mod-
eled this metric using energy and performance related parameters of the hosting
system. To this end, we proposed a service framework which allows for monitor-
ing the eco-efficiency of VMs in private Cloud scenarios. The designed system
aggregates information from public energy data-stores and historical data for
each country in order to define the CO2 emission factors for each region of in-
terest. Through this methodology we are able to calculate the eco-efficiency of
VMs in a location and time specific manner.

The proposed framework has been validated against VM deployments in Cloud
infrastructures within Germany. The results gathered from the executed experi-
ments demonstrated the intra-day variation of CO2 emission factors in each state
of Germany and therefore the potential for an eco-efficient resource management
of VMs. In addition, we captured the eco-efficiency levels for: (a) identical VMs
deployed in different locations (Berlin, Karlsruhe), and (b) different size of VMs
deployed in the same infrastructure. Finally, we noticed that a CPU utilization
over 40% tends to stabilizes the eco-efficiency level, where bellow that threshold
it drops significantly.



Quantifying Ecological Efficiency in Cloud Computing 87

The targeted users of the toolkit are Cloud providers that can use services
developed to monitor the eco-efficiency of their own infrastructure. They can
use this information, for example, either for internal management or to offer
new green services and therefore attract eco-concerned customers. Thus, the
establishment of ecological efficiency as an important factor of ICT services and
Cloud resources does not only have an environmental impact but also innovative
market potentials.

As future steps of this research we are aiming at extending the eco-efficiency
calculation formula by considering also the activity of the memory and disk
resources when estimating the performed work of a VM. Contemporary produc-
tion servers 4 that have been developed with the last generation CPU cores have
significantly improved the power consumption and therefore resources like mem-
ory, network and disk must be considered as well. In addition, we would like to
extend the data model and methodology of calculating the CO2 Factors taking
into account the energy providers too. Even if the energy resources of a region
are the ones that the power providers are consuming, there can be significant
variations in the energy mix that each company uses and therefore that could
affect eco-footprint of the consumers. Finally, having completed with this work
an analysis of the energy and ecological efficiency at the level of the VM, we
now will focus our efforts towards a holistic ecological modeling of Cloud re-
sources considering the cooling costs, environmental parameters and migration
capabilities.
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-Emissionen der Stromerzeugung. BWK 59(10), 44–52 (2007)

http://www.google.com/green/bigpicture
http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/
http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/


Quantifying Ecological Efficiency in Cloud Computing 89
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Abstract. Cloud has emerged as an alternative to clusters and grids.
Its adoption as an execution environment capable of supporting the high
requirements of scientific computations is still an open question. In a
previous work, the authors conducted successfully a practical experience
of taking advantage of clusters and grids to solve a semantic annotation
problem in 178 days. In this work, the authors analyse the cost of solving
that problem and compare it with the cost of solving it in a pure Cloud
scenario. For this last, a detailed cost estimation is conducted according
to the data extracted from the actual execution of a reduced dataset on
Amazon EC2. As a result, the suitability of using Cloud-based solutions
to solve large and complex scientific problems is discussed.

Keywords: Computing Resource Management, Grid and Cloud Com-
puting, Cloud Cost Estimation and Analysis, Large-scale Semantic
Annotation.

1 Introduction

Grids and clusters have been, until recently, the way of dealing with large scale
application execution. This approach may not be economically viable when the
needs for such executions are rather spurious: acquiring and maintaining grids
and clusters is expensive. Cloud computing emerges as a solution to that prob-
lem [1–3]. There are different definitions for the Cloud computing term, depend-
ing on which aspect one focuses on. Let us adopt the one proposed in [2] that
conforms the concept of Infrastructure as a Service (IaaS): “A large-scale dis-
tributed computing paradigm that is driven by economies of scale, in which a
pool of abstracted, virtualized, dynamically-scalable, managed computing power,
storage, platforms, and services are delivered on demand to external customers
over the Internet”. Therefore, Cloud avoids the need of constantly maintaining a
pool of computing resources, allowing acquiring and releasing them as the needs
appear and just paying for their use, in a pay-as-you-go way. This makes Cloud
an ideal execution environment to increase the computational power of clusters
and grids when demand peeks appears and to carry out large scale scientific
experiments.
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In a previous work, we conducted the problem of semantically annotating
a Universia [4] repository composed of more than 15 million of educational re-
sources [5]. The annotation process required both computing complex structures
(semantic graphs) as well as interacting with external resources (DBpedia [6]),
becoming a very expensive task in computational terms. To solve this, the pro-
cess was programmed to be executed over a resource management framework
able to integrate several heterogeneous computing resources. Three cluster in-
frastructures were used to solve the problem in about 178 days.

In this paper, we evaluate the economic cost of executing the same process
using the Amazon Elastic Compute Cloud (Amazon EC2) [7] in the same time
(178 days). For that purpose, Cloud-related costs are experimentally measured,
analysed, and compared to the ones of the previous approach. The main goal of
this work is to evaluate if Cloud computing can be an alternative environment
to deploy the management framework and solve the annotation process.

The remainder of the paper is organized as follows. Section 2 presents the
related work. Section 3 describes the semantic annotation problem and the so-
lution approach. Section 4 analyses the cost of the annotation process using
clusters and grids. Section 5 depicts an alternative Cloud-based deployment to
solve the problem. Section 6 analyses the cost of the Cloud approach. Finally,
Section 7 concludes the paper with a discussion of the suitability of Cloud to
solve scientific problems.

2 Related Work

The current availability of Cloud computing has made the discussion about
its integration with clusters and grids to become a hot topic. All the three
approaches have common elements and also important differences. [2] compares
them from different points of view, describing the essential characteristics of
each approach. Concentrating on the same topic, [3] describes the main existing
projects related to the three paradigms, as well as the challenges they must face.

Another relevant topic is the integration of Cloud-based resources with local
clusters or grids. [8] integrates Cloud resources into a private grid, by extending
the Askalon enactment engine to consider Cloud resources. By means of some
experimental executions of real-world applications, the authors show the inter-
est and viability of adding external Cloud-based resources to improve computing
capabilities of grids. [9] investigates whether the use of Cloud computing infras-
tructures can provide with some benefits when added to local computing ones.
For that, they evaluate six different scheduling strategies with the aim of finding
a good balance between performance and usage costs. Studying the viability of
Amazon S3 as the storage option for large scale science projects, from the per-
formance, cost, and availability points of view is the objective of [10]. The study
also suggests some recommendations that any storage service for the scientific
community should provide. The conclusion is that, despite of Amazon S3 being
successful for many usual applications, its security is not adequate for supporting
complex collaborative scenarios, which are usual in scientific environments.
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However, the use of Cloud resources can impact the performance of the sys-
tem. [11] studies how virtualization overhead impacts on performance in High
Performance Computing (HPC). The study is based on the use of standard
benchmarks for HPC applications, being the main conclusion that virtualization
can have, at least, a 60% performance penalty. [12] compares the performance
of EC2’s Cluster Compute instances (the Amazon’s virtual HPC infrastructure)
and NASA’s Pleiades supercomputer when executing a wide range set of bench-
marking applications. As a result, the authors conclude that the HPC offerings
of Amazon cannot currently compete with specific HPC systems, particularly
for tightly coupled applications where communication performance is impor-
tant. [13] examines the performance of existing Cloud computing infrastructures,
providing with a mechanism for their quantitative evaluation. By means of real
executions of up to eight HPC applications, authors report and conclude that
Amazon EC2 is six times slower than a Linux cluster and up to twenty times
slower than a modern HPC system.

Finally, the cost of Cloud and Grid infrastructures has been analysed, mod-
elled and compared by several authors. On the one hand, [14–16] focus on com-
paring the cost of Grid and Cloud infrastructures. In [14], the authors analyse
the total cost of owning a computational Grid and they estimate the cost of
two real life Grids. The analysis shows that the cost per processor and hour
is highly influenced by the resource load. They also analyse the cost of com-
mercial Clouds and they identify potential cost savings if the private Grid is
underutilised. [15] analyses the financial suitability of Cloud for enterprises by
comparing its cost to that of acquiring in-house resources. They conclude that
the cost-effectiveness of the Cloud depends on the usage duration and intensity.
In [16], the monetary cost-benefits of using Cloud computing for scientific ap-
plications are analysed by comparing Amazon EC2 and several BOINC-based
projects. They determine that Clouds are advantageous for small projects with
low bandwidth requirements whereas they are expensive for large projects. They
also demonstrate that hybrid approaches can save between 40-95% depending
on resource usage.

On the other hand, [17–19] focus on modelling the cost of hybrid approaches
to assist in the decision process of migrating applications to Cloud. In [17], a
service able to estimate the cost of migrating scientific applications to Clouds is
presented. The service monitors the application performance, data transfers and
data storages, and it uses this information to estimate the cost of several hybrid
deployments. Thus, the service allows users to compare the cost of different
deployments in order to select what part of a workflow should be executed in
a Cloud to minimize the cost. [18] explores the benefit of migrating enterprise
applications to Clouds. The authors build a model that takes into account both
performance and cost implications of Cloud migration to find the best hybrid
deployment. Through actual evaluations they show the importance of planning
which components should be migrated to Cloud in order to take advantage of the
potential cost savings of Clouds. In [19], the authors propose a comprehensive
cost model for hybrid Clouds. The authors review and categorize the cost factors
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that a large enterprise must take into account to migrate some of its services
to a Cloud environment. The cost model focuses on hybrid Clouds and it can
be used to evaluate the economic impact of different configurations. Its main
contribution is a model that includes all possible cost factors allowing to obtain
a more accurate cost estimation improving the decision making.

3 Problem Description and Solution Approach

The Universia [4] repository is composed of a huge collection of educational
resources in different languages and domains, totalling more than 15 million
academic resources. These resources must be semantically annotated in order
to facilitate the access to its contents. The ADEGA algorithm is used for this
process [5]. The ADEGA algorithm consists of first identifying a set of relevant
terms (or keywords) of each resource and, then, annotating each term by means
of a Resource Description Framework (RDF) graph created from those instances
of the DBpedia that were relevant in the resource domain. The resulting RDF
graphs (a graph for each specific term) are then used to classify the considered
educational resources facilitating the search and retrieval of information.

For each academic resource, around 10 terms are identified as relevant. Thus,
the annotation process involves the execution of about 150 million computational
tasks resulting in several CPU-years. The extremely high computational cost of
annotating all resources stored in the repository was achieved by means of the use
of a framework for the flexible deployment and execution of scientific workflows
in heterogeneous clusters, grids, and Clouds [20].

Figure 1 depicts the general overview for the deployment of the annotation
process using this framework. As shown, the integration model is based on a
message bus. More specifically, the cornerstone of the proposal is DRLinda, a
bus implementation inspired by the Linda coordination model [21]. The archi-
tectural design of the framework relies on the integration of two different types
of components. On the one hand, management components are related to the
functionality and capabilities of the framework. Some important components
are the Meta-Scheduler to select a target computing infrastructure for each job,
the Fault Management component to handle job failures, or the Data Move-
ment component to move data among infrastructures in a transparent manner.
On the other hand, mediation components encapsulate the heterogeneity of the
computing resources providing a transparent interface to the underlying set of
middleware systems that manage the infrastructures. A more detailed overview
of the framework design and its components can be found in [20, 22].

For the annotation process, we developed a workflow that manages job sub-
mission and result retrieval. Thus, jobs are sent to the framework via the message
bus. Next, the Meta-Scheduler retrieves each job, selects the target computing
infrastructure where the job will be executed and writes a new message with that
decision in the bus. The appropriate Mediator retrieves that message, submits
the job to the computing infrastructure and collects the results when the job
finishes. Additionally, it may request the Data Movement component to retrieve
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the input data from the specified Data Storage and store the output data af-
terwards. On the one hand, if the job has ended successfully, the Mediator puts
a result message in the bus so that the annotation workflow can read it. On
the other hand, if the job has failed, the Mediator writes an error message and
the Fault Management component retrieves it and handles the failure taking the
appropriate corrective action.

For the execution environment, three computing infrastructures were used in
the problem resolution: the HERMES cluster hosted by the Aragón Institute of
Engineering Research (I3A, http://i3a.unizar.es/) and two research and produc-
tion grids hosted by the Institute for Biocomputation and Physics of Complex
Systems (BIFI, http://bifi.es/en/), namely AraGrid (http://www.aragrid.es/)
and PireGrid (http://www.piregrid.eu/). Furthermore, Amazon EC2 [7] was
used to execute some jobs that suffered a lot of failures in the previous in-
frastructures, as we will depict in Section 4. Integrating these resources, the
annotation of the 15 million of academic resources was solved in 178 days.

Fig. 1. Grid and cluster-based deploy-
ment for the semantic annotation process
with detail of HERMES.

Fig. 2. Cloud-based deployment for the
semantic annotation process on Amazon.

4 Economic Cost of the Grid-Based Implementation

Let us now describe the cost of solving the problem using the infrastructures at
our disposal: HERMES, AraGrid, and PireGrid. The main difference compared
to other analysis available in the literature [15, 14] is that this study is carried
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out from an user point of view. The prices of using these infrastructures were
mainly based on a model of pay per CPU hour: e0.012 pay-per-CPU-hour in
HERMES, and e0.03 in AraGrid and PireGrid. In order to establish these rates,
the following internal costs had been considered by Grid-resource providers:
software and hardware maintenance and updating, energy consumption, staff
cost, data communications, resource usage and resource economic redemption.
Additionally, users also had to pay for data storage into HERMES resources:
e0.015 per GB-month of data stored. Data storage in AraGrid and PireGrid is
included in the previous fee.

Top of Table 1 describes the cost of the first term computation: the terms are
submitted to the infrastructures. As a result, some of them terminate properly,
while others fail. Since we do not have data to estimate at which point in the
processing a term fails, we assume that terms consume CPU time as if they will
succeed. The cost is composed of:

Cost of Computation: The columns in the table correspond, respectively, to
the cluster, the number of terms submitted to the cluster, the mean execu-
tion time for each term, the CPU cost in euros per hour, the total cost of
processing all the submitted terms in euros, and the failure rate (which will
require a later processing, as described in the following, increasing the real
cost).

Cost of Data Storage: Only the HERMES cluster appears since the CPU
consumption and data storage (DBpedia in each node and input/output
data) are billed in a separated way, while in the case of AraGrid and PireGrid
the storage is not considered in the pricing policy.

As shown in the last column, there is an important number of faults, which
have to be solved (our objective is to annotate every term). These faults appear
due to different reasons: hardware failures, software malfunction, middleware
problems, etc. [22]. For fault management, a hierarchical three phases recovery
policy is applied, whose real costs are shown in the second, third and fourth
parts of Table 1, respectively. The recovery process is as follows. Each faulty
term is first resubmitted to the same infrastructure (First Fault Handling Pol-
icy); if it fails again, the term is submitted to AraGrid (Second Fault Handling
Policy), which in our initial experiments shown to be the most reliable comput-
ing infrastructure; if the term still fails, it is then sent to Amazon EC2 (Third
Fault Handling Policy). This way, we have succeeded in processing the whole
set of terms. For the Third Fault Handling policy we chose Amazon m1.medium
instances, deployed in Ireland. Some experiments convinced us that this was a
very appropriate configuration [5].

In general terms, processing 149, 427, 907 terms costed e36, 446.02, being
e0.000243904 the mean cost per term. Let us now concentrate on the following
question: How much cost every term initially submitted to HERMES, AraGrid
and PireGrid? For the set of terms submitted to a computing infrastructure, we
must consider the cost of the initial execution, plus the cost of the First Fault
Handling Policy (for the percentage of faulty terms) and plus the cost of the
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Table 1. Cost of solving the annotation problem
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Second and Third Fault Handling (in a proportional way according to the num-
ber of faulty terms provided to these policies). Considering all these elements,
the average processing cost per term in HERMES, AraGrid and PireGrid was
e0.000334036, e0.000208700 and e0.000229857, respectively.

As it can be seen in the corresponding part of the table, the First Fault
Handling Policy is not efficient (in all the three cases, more than a third of the
terms failed a second time), which means that this intermediate step could be
avoided, directly jumping to the Second Fault Handling Policy.

5 A Cloud-Based Deployment of the Annotation Process

We have decided to migrate the annotation process to the Amazon Cloud [7]
due to the benefits described below. Cloud elasticity allows us to automatically
vary the number of resources. Thus, the framework computational power can
be increased to meet hard deadlines, deal with load peaks and provide good
Quality of Service. In the same way, replication techniques can be easily incor-
porated to improve the framework performance and reliability. Also, decoupling
the computing and storage resources is useful to recover from failures in virtual
machines. Another key advantage is the increase in the framework availability
(Amazon SLA guarantees a 99.95% availability), a must on a long-time exper-
iment. Finally, Amazon provides a wide range of highly scalable and reliable
services that can be used to enhance the framework capabilities.

For the deployment, some framework components have simply been hosted
in an Amazon virtual instance while others have been modified in order to take
advantage of some Amazon services and features. Figure 2 depicts the Cloud-
based deployment. As depicted in the top of the figure, the user submits the
annotation jobs via the message bus using the same annotation workflow as
in the previous deployment. These jobs will be executed in the Amazon EC2
instance pool located at the bottom.

The message bus has been completely redesigned. The Cloud version consists
of two decoupled components: the Bus Entry Point (BEP), which implements
the bus interface, and the Amazon Simple Queue Service (Amazon SQS), which
effectively implements the message bus. On the one hand, the BEP has been
designed to be highly available, reliable and scalable by using different Amazon
services. Amazon Route 53 is used as DNS Server to redirect requests to alive
Elastic Load Balancers (ELBs) placed in different availability zones. The ELBs
route the requests to the Request Managers (RMs), hosted by Amazon EC2 in-
stances, that handle each request and interact with Amazon SQS to store and
retrieve messages. On the other hand, Amazon SQS has been used for the imple-
mentation due to its high availability, reliability and scalability. Each framework
component and each job submitted has an associated queue where messages ad-
dressed to them are placed. Thus, clients write messages to the Mediator queue
of the infrastructure where the job will be executed or in the Meta-Scheduler
queue if the job does not have a target infrastructure and read the job results
from the appropriate results queue. Meanwhile, framework components retrieve
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messages from its associated queue and write the response messages to the right
queue. In any case, the process is managed by the RMs, being transparent to
users. More details on the design and operation of the message bus can be found
in [23].

Therefore, messages submitted by users, are retrieved by the Amazon EC2
Mediator that acts as the Cloud Broker and manages the jobs execution in the
resource pool. The Mediator is deployed using a virtual instance and it has been
modified to acquire the resource pool at the beginning rather than on-demand.
The same approach has been used to host the Fault Management component
responsible of applying the appropriate corrective action when a job fails.

Finally, each virtual instance forming the computing resource pool uses its
own local DBpedia database to improve the application performance and to
avoid communication delays. Besides, the application has been slightly modified
to download/upload input/output data using the specified location in the job
description (Amazon S3 is used for this purpose).

6 Deployment on Amazon Services: A Cost Estimation

Let us now discuss about the cost of the Cloud-based deployment. First, we
present the method we followed for selecting the most appropriate Amazon in-
stance type for the execution environment. Then, we detail the cost estimation
of applying the Cloud-based deployment presented in Section 5 to the semantic
annotation problem. The deployment is proposed with the aim of solving the
problem in the same time as described in Section 4: 178 days.

6.1 Instance Type Selection

To select the most appropriate machine instance from the wide range offered by
Amazon, we have experimentally computed the mean time required to annotate
a term using different Amazon instance types. Based on these results, we have
chosen the instance type that provides the best performance/cost ratio. Then,
we have estimated the number of resources required to solve the problem meeting
the deadline of 178 days.

In [23], we concluded that the US West (Oregon) Amazon region is the best
location to deploy the framework and the computing instances also should be
deployed in the same region. Then, a reduced collection of terms has been ex-
ecuted for a week using different instances in that region. The same Amazon
Machine Image (AMI) has been used, independently of the instance type. For
each instance, as many parallel tasks as the number of processors provided by
the machine instance have been executed. Table 2 summarizes for each instance
type its number of processors, its cost per hour, the average execution time
observed in the experiments (including data movement and other management
delays) and the number of terms that can be annotated per euro.

Results depict that the performance/cost ratio improves when using more
powerful instances until a limit is reached. They also show that m1.xlarge in-
stances are the best choice in terms of performance/cost ratio. Finally, based on
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Table 2. Evaluation of the time required to annotate a term using different Amazon
EC2 instances

Instance type m1.small m1.medium m1.large m1.xlarge m3.xlarge m3.2xlarge

Number of cores 1 1 2 4 4 8

Price (e/hour) 0.04655 0.0931 0.1862 0.3724 0.3879 0.7758

Execution time
(sec/term)

152.38 59.03 41.39 38.97 38.04 37.69

Terms per e 507.52 655.06 934.01 992.25 975.89 984.96

the observed execution time, we estimate that a pool of 95 m1.xlarge instances
will be necessary to meet the objective of solving the problem in 178 days.

6.2 Comprehensive Cost Analysis

Now, we analyse the cost of the Cloud-based deployment. In addition to the 95
m1.xlarge instances forming the computing resource pool, one m1.xlarge instance
is used to host the Amazon EC2 Mediator since it has to manage thousands of
job requests and one m1.medium instance is used to host the Fault Manager
since that component is not used so frequently. Also, the Bus Entry Point is
deployed in a single availability zone using two Elastic Load Balancers and five
Request Managers hosted in m1.micro instances because this configuration is
reliable and scalable enough, providing with a good performance [23].

Cost of Executing the Annotation Application. Table 3 summarizes the
cost of executing the semantic application on Amazon. Let us analyse the cost
of each Amazon service involved.

Amazon Elastic Compute Cloud (Amazon EC2). 149, 427, 907 terms must be
annotated using 95 m1.xlarge instances. The mean time to compute a term
is 38.97 seconds, while CPU price is 0.093 e/hour. Therefore, the total cost
will be e150, 491.04. For this estimation, we have considered that there are
no failures because in our preliminary experiments every term was annotated
successfully and we have no information on the expected failure rate.

Amazon Elastic Block Storage (Amazon EBS). Every computing instance is at-
tached to an Elastic Block Store (EBS) of 70 GB to store the database and
data to be annotated. Amazon bills depending on the provisioned storage
and the number of input/output requests performed. On the one hand, 6, 650
GB-month (considering the 95 instances) are provisioned for 5.93 months
with a cost of e3, 059.33. On the other hand, an average of 185.2 requests are
performed to calculate each term (this value has been extracted from the ex-
periments described in the previous section) generating a cost of e2, 146.95.
Therefore, the total EBS-related cost amounts to e5, 200.91.

Amazon Simple Storage Service (Amazon S3). Amazon bills depending on the
number of requests performed and the amount of data stored. On the one
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hand, each job gets the input data (terms to annotate and associated con-
texts) at the beginning of the experiment and store the output data (in one
single compressed file) at the end. Also, the input data is deleted but these
requests are free of charge. Thus, the cost of the API requests is e57.37:
e51.26 for GET requests and e6.11 for PUT requests. On the other hand,
1, 413.51 GB are stored in Amazon S3 between input and output data. In-
put data is deleted when terms are processed and output data is gradually
generated and retrieved, therefore, we estimate that the cost is equivalent to
considered 1 month storing all data. Therefore, the cost of storing I/O Data
in Amazon S3 is e104.18. As summary, the Amazon S3 cost will be e161.55.

Briefly, the total cost of executing the application on Amazon is e155, 858.87.
The Amazon EC2 service represents a 96.56% of the total cost, whereas the
Amazon EBS represents the 3.34% and the Amazon S3 represents the remaining
0.1%. Also, the mean cost per term is e0.00104304.

Table 3. Cost estimation of executing the application on Amazon

Cost of Deploying the Framework on the Amazon Cloud. Table 4 sum-
marizes the cost of deploying the framework on Amazon. Let us describe each
one of the used Amazon services and their impact on the deployment cost:

Amazon Elastic Compute Cloud (Amazon EC2). The total cost of the virtual
instances used in the deployment is e2, 318.73: e331.24 correspond to the
Request Managers, e397.5 to the Fault Manager and e1, 590 to the Amazon
EC2 Mediator.
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Table 4. Cost estimation of deploying the framework on Amazon

Amazon Elastic Block Storage (Amazon EBS). We have determined that 8 GB
are attached to the Request Manager instances and 50 GB to the Fault
Manager and Amazon EC2 Mediator instances. Furthermore, considering
the average number of input/output operations per second obtained from the
preliminary experiments, the total storage-related estimated cost is e85.49:
e64.40 correspond to the provisioned storage and e21.09 to the I/O requests.
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Amazon Simple Queue Service (Amazon SQS). The queueing service bills for
the number of API requests and data transfer. However, data transfer cost
is e0 since the exchange stays inside the same Amazon region. Regarding
the number of API requests, each job involves writing and reading a sub-
mission message in the Mediator queue and writing and reading a results
message in the right results queue. The write operation involves 2 API re-
quests (get queue URL and send message) while the read operation involves
3 API requests (get queue URL, read message, and delete message). Fur-
thermore, every job involves two additional requests (create and delete the
results queue). Therefore, 12 requests per job are performed. As 1, 575, 098
jobs must be executed and Amazon bills e0.3879 per each million of requests,
the total cost is e7.33.

Amazon Elastic Load Balancer (Amazon ELB). Amazon bills according to the
number of hours each ELB is active and the amount of data processed by the
service. On the one hand, the computational cost is e165.66. On the other
hand, the total number of requests handled by the Load Balancers matches
the number of API Requests in the Amazon SQS. In order to calculate the
amount of data processed, we assume a worst case scenario where the size of
each request is 64 KB (the maximum size of message supported by Amazon
SQS). Thus, the cost of data processed is e7.15 and the total cost will be
e172.81.

Amazon Route 53. The DNS Service involves the cost corresponding to the zone
where the framework is hosted, the DNS Failover mechanism over 2 Elastic
Load Balancers (this mechanism checks the health of the Load Balancer and
routes requests to the alive ones) and the number of DNS queries. The first
two are fixed costs whereas the third one depends on the number of requests
performed, being equal to the number of messages moving through the ELBs
(we assume that the DNS information is not cached in any case). The total
estimated cost of the Amazon Route 53 service amounts to e14.23.

Therefore, the total cost of deploying the framework on Amazon is e2, 598.59.
Most of this cost (89.23%) is due to the virtual machines hosting the framework
components and the Bus Entry Point. The two Elastic Load Balancers represent
a 6.38%. Finally, the Amazon EBS, SQS and Route 53 services together with
the data processed by the Load Balancers represent the remaining 4.39%.

7 Conclusions and Future Work

In summary, the cost of solving the annotation problem with the grid approach
is e36, 446.02 while the estimated cost of the Cloud approach is e158, 457.46. In
both cases, the cost is mostly due to the computational resources and not to stor-
age or I/O operations. In the cluster/grid approach, that cost represents 98.87%
of the total while in the Cloud approach it is 94.97%. The Cloud approach is
334.77% more expensive and, therefore, it is not a good option if we simply want
to solve the annotation process in the same time as the cluster/grid approach
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(178 days). However, it can be useful if our goal is to reduce the required time,
since using twice resources would reduce the time by half without increasing the
computational cost. For example, if we want to solve the problem in 30 days, we
estimate that 562 m1.xlarge instances would be necessary, being the total cost
about e157, 589.15. This is even cheaper than solving the process in 178 days
due to the savings when deploying the framework for a shorter time. Obviously,
increasing the size of the resource pool has some implications one should pay for
and are not considered in the previous estimation: it increases the complexity of
the resource management, it impacts the performance of the whole framework,
it may delay the acquisition and management of virtual machines, etc. In the
future, we will further analyse this issue.

Let us now briefly sketch some lessons learned, whose value must be con-
strained to the problem domain we have been working on. Firstly, the use of
Cloud is more suitable for handling some specific situations (fault recovery and
dealing with demand peaks, for instance) than for providing all the required com-
puting resources. This result is in accordance with other research works [16, 17]
that show the benefits and potential savings of hybrid approaches. Secondly,
Cloud vendors provide different instances with different capabilities, performance
and cost. Therefore, selecting the most appropriate instance for each application
is a challenging task because of the great variety of possible deployments and
the inability to estimate the performance of each type of instance a priori. We
have used an experimentation-based approach to simplify this preliminary stage,
but alternative simulation-based methods could also be put into practice. Also,
in order to improve the accuracy of the cost estimation, we should measure the
performance impact of the virtualization of a same type of instance in different
hardware configurations. This could lead to performance variations depending
on the physical resource used and, consequently, cause a change in the most
appropriate instance type to compute the annotation process. Finally, Cloud
gives the opportunity of increase the reliability of scientific computations. Cloud
vendors guarantee 99.99% availability of their resources/services, which is much
higher than what real-world cluster and grids provide [24]. Also, it provides the
opportunity of running applications in a customized environment and without
external interferences allowing higher reliability [22]. However, at this point, it
is difficult to establish failure metrics in public Clouds as well as the impact of
these failures in large-scale computations because of the impossibility to carry
out these experiments due to the high cost involved.

As future work, we are interested in extending the analysis to other Amazon
instances looking for new techniques to reduce the cost of the Cloud-based ap-
proach. Specifically, we are interested in the cost/performance ratio of the HPC
Amazon instances because, although recent studies have shown that its perfor-
mance is rather poor compared to local clusters [12], we consider them as an
interesting/necessary solution for users without their own powerful computing
resources who need to perform intensive computations. Additionally, we will ex-
plore the use of spot and reserved instances. On the one hand, spot instances
have a lower price because they correspond to the unused Amazon capacity.



104 S. Hernández et al.

Besides, their price may vary, so they can be interrupted if it exceeds the user’s
bid. According to Amazon specifications, using spot instances can reduce the
cost by about 50%. On the other hand, reserved instances are leased for 1 or 3
years with an initial payment and have a lower hourly price. A quick estimation
is that using reserved instances for the considered annotation process could save
about e35, 225.
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Abstract. Large scale clusters are now being used in shared, multi-
tenant scenarios by heterogeneous applications with completely different
requirements. In this scenario, it’s useful to explore the intersection of
two complementary goals. On one side, energy efficiency is an important
factor to consider in this world with increasing operating costs related
to energy consumption. On the other side, heterogeneous applications
emphasize the problem of distributing the execution capacity among
competitive users in a shared setting. In this paper, we address the com-
bination of these two goals by introducing an incentive mechanism to
make users report their actual resource requirements, allowing them to
dynamically scale-up or down as necessary. In turn, this information is
used by the infrastructure operator to shut down resources without re-
ducing the QoS provided to users and effectively reducing energy costs.
We show how our mechanism is able to meet the performance require-
ments of applications without over-provisioning physical resources, which
in turn translates into energy savings.

1 Introduction

Energy consumption is a key concern in networked computing systems, includ-
ing service overlays, content distribution networks, and many other distributed
systems. One of the main usages of large scale clusters is data analysis and ma-
nipulation using distributed computation models like MapReduce [1]. In this
context, all data centers or cloud computing providers face the problem of a
changing resource demand by applications over time and high energy costs that
makes low server utilization a luxury.

Hoelzle and Barroso looked at the average CPU utilization of 5000 Google
servers during a six-month period. It was shown that, on average, servers spend
relatively little aggregate time at high load levels, but that they spend most of
the time at the 10-50% CPU utilization range, where server efficiency in terms
of energy is the lowest [2]. Given that, energy efficiency should be considered a
first-order metric when designing data centers and the software they run.

From a different perspective, large scale clusters are used in shared, multi-
user settings in which submitted applications may have completely different
requirements. For this paper, we assume that applications are heterogeneous in
terms of space (number of simultaneous running tasks) and time (duration of
the execution), from small almost interactive executions, to very long programs
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that take hours to finish. This situation makes task scheduling, by which jobs
are assigned a set of resources, even more relevant.

For example, Hadoop (the MapReduce implementation of computation sup-
ported by the Apache foundation) provides two different schedulers for multi-
tenant scenarios: the fair share scheduler and the capacity scheduler. The former
focuses on delivering a similar share of resources to all running applications tar-
geting fairness as their main objective while the latter focuses on accommodating
heterogeneous applications with different share requirements. However, both ap-
proaches are highly static in the sense that shares are granted by high-level
policies decided by the infrastructure operator, and end users must negotiate
a change in case the allocated shares are not enough. Besides, none of the ap-
proaches considers energy efficiency as a metric on the scheduling decisions.

To better understand the rationale behind our design, we start with a set
of properties that scheduling policies try to satisfy: social efficiency, the allo-
cation should maximize the utility or satisfaction (quality of experience, QoE)
perceived by users; capacity differentiation, it should be capable of provisioning
different capacity to different applications depending on their needs; fairness,
each application should have a chance to obtain resources proportional to its
assigned capacity; elasticity, or high utilization, a job should not be delayed or
not executed if there are free or spare resources in the infrastructure due to
an imbalance of execution capacity among users; dynamically adaptive, applica-
tion capacity should be allowed to change or adapt dynamically depending on
an application’s needs without (or with minimal) intervention of administrators
to increase responsiveness; and energy efficient, in today’s world where energy
operating costs are an important share of the total costs, the scheduling algo-
rithm should consider energy costs as a first-order metric to optimize the energy
consumption of operating the infrastructure.

Current schedulers already consider capacity differentiation, fairness and elas-
ticity as important elements on its design. Thus, in this paper we focus and
explore the intersection of two additional lines of research: i) energy costs aware-
ness of big data clusters through resource scheduling policies and ii) enabling
dynamic capacity allocation on shared multi-tenant clusters. In this context, our
mechanism handles and manages the potential excess of allocated capacity to
applications in relation to their QoS to achieve these goals.

From the energy efficiency perspective, it’s risky for resource provides to sim-
ply power down a portion of the infrastructure without breaking service level
agreements (SLAs) usually described as deadlines, given the heterogeneity of run-
ning applications and their changing requirements over time. Thus, we propose
an incentive mechanism to maximize progress at an acceptable rate minimizing
power consumption or unnecessary resource usage by promoting users to report
their actual requirements in terms of resources instead of deadlines.

From the scheduling perspective, our goal is to move from operator-oriented
static allocation policies to a user-oriented dynamic allocation to provide guaran-
tees to users depending on their global or instant needs, without the intervention
of the infrastructure operator.
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This paper is organized as follows. Section 2 introduces some technical con-
cepts related to map-reduce to situate the context of our mechanism. Section 3
and section 4 present our incentive mechanism and associated algorithms respec-
tively. Section 5 presents the simulation results that support the contribution of
our work. Finally, section 6 shows related work and we conclude in section 7.

2 Background

The MapReduce [1] model of computation was originally designed by Google to
exploit large clusters to perform parallel computations on extremely large sets
of data. It requires the programmer to implement two functions: a map func-
tion, which processes fragments of input data to produce intermediate results,
usually in the form of key-value pairs, then feed a reduce function to combine
the intermediate results to create the final output.

All nodes in the cluster execute these functions on different subsets of data.
The MapReduce runtime divides and distributes the data across nodes and col-
lects the results once nodes finish their calculations.

Although there are different implementations of this model for different pur-
poses and architectures [3][4], we focus on Hadoop [5], one of the most widely
used frameworks by companies like Yahoo!, Facebook or Amazon.

One of the core components of Hadoop is the job scheduler which allocates
resources to jobs. Currently, there are three different scheduling policies imple-
mented on Hadoop. The FIFO scheduler which pulls jobs from the work queue,
oldest first. This scheduling policy has no concept of the size or resource require-
ment of a job, but the approach was simple enough to implement at first. The
fair share scheduler –developed by Facebook– assigns resources to jobs in a way
that on average, each job obtains a similar share of the available resources over
time. This scheduler is able to interleave low consuming jobs with short time
spans with jobs that require more resources and more time to complete, provid-
ing a more responsive system and avoiding starvation of small jobs in favor of
larger ones. Finally, the capacity scheduler –developed by Yahoo!– shares some
of the principles of the fair share scheduler in the sense that a certain amount
of shares can be assigned to different users or applications. However, it was de-
fined for large clusters with multiple, independent users and target applications,
providing greater control over the capacity guarantees among users.

An important factor about the operation efficiency of Hadoop is how the data is
spread amongnodes. It is usually replicated over different nodes as to improve data
availability in case some of the replicas are busy or just failed.Without digging into
details, the aforementioned schedulers alreadydeal with such issues related to data
replication. Current research is dealing with data placement policies to overcome
the problem of shutting down nodes to save energy costs as well [6][7][8].

As we will see, enhancements over data placement policies are orthogonal
to our work since our mechanism is in fact an extension of the fair share or
capacity schedulers and any improvement on that matter would be applicable
to our solution as well. Thus, we will leave out the issues related to the mapping
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of jobs and data for simplicity and it will allow us to simplify our model. It will
remain future work stating the impact of our solution considering data placement
as another variable to consider.

3 Dynamic Allocation Based on Incentives

In this section we present the design, operation and objectives of the incentive-
based allocation mechanism introduced in this paper. The mechanism consists of
two elements: an incentive for users to report their actual resource requirement,
and the strategy to allocate available resources.

3.1 Design Goal

The goal of the incentive mechanism presented in this paper is twofold. From
the application perspective, users should have an incentive to report their ac-
tual resource requirement in order to allocate only those resources necessary
to complete the task within their completion goal, and no more. This way, we
may be able to aggregate unused resources that are not necessary to satisfy the
Quality of Service (e.g. SLAs) of users and, therefore, put strategies in place
to shut-down such resources to reduce energy costs. In contrast with current
mechanisms which use the maximum amount of resources available to complete
the task, targeting job runtime as a primary goal, we propose a more rational
way to share resources by making explicit the cost of using such resources and
giving users the option to scale up and down their resource allocation.

From the infrastructure operator perspective, the allocation of resources is
usually static because of the complexity of the allocation decision. For example,
the Hadoop fair share scheduler always allocates the same amount of resources to
each application regardless of application requirements and the Capacity sched-
uler is able to allocate a specific share of resources to each application but re-
quires the infrastructure operator to manually change such allocations in case of
a change on the priority of different applications. Our mechanism simplifies the
decision on the amount of resources to allocate to each user – because now users
are in charge of such decisions – and allows reducing energy costs by shutting-
down unused resources without breaking the QoS commitments with users.

Therefore, this may lead us to a win-win situation in which users are able
to finish their tasks within a given time goal and infrastructure operators are
able to reduce energy costs by shutting-down unused resources and simplify their
allocation decisions.

3.2 System Model

While MapReduce was originally used for batch data processing, it is now also
being used in shared, multi-tenant environments in which submitted jobs may
have completely different priorities depending on resource requirements and com-
pletion time: from small, almost interactive, executions, to very long programs
that take hours to complete. This shift in the initial paradigm makes the as-
sociated resource allocation even more relevant. In this multi-tenant scenario,
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each user has a guaranteed resource capacity according to different strategies
implemented by different schedulers. For example, the fair share scheduler allo-
cates 1/n of the available slots to each application and the Capacity scheduler
allocates a fixed amount of resources to each application according to high-level
policies –e.g. 5% to application A, 25% to application B and 70% to application
C. Our mechanism can be considered an hybrid of these two in the sense that
an application has a fair share of the resource guaranteed but is free to hand out
spare resources to other applications or ask for more resource when necessary –
this is the essence of dynamic allocation.

Through out this paper, we will indistinctly refer as user or application a piece
of software running in the cluster to perform data intensive computations. These
applications are modeled as a MapReduce job characterized by an upper (rmax)
and lower (rmin) bound on resource requirements in the form of a percentage or
share of the cluster capacity. This information is considered in principle unknown
to the resource provider and private to the user.

This simple model allow us to specify the minimum share to meet a certain
time goal to complete the job. Thus, the utility function of a user will be com-
puted as a function of the share allocated by the scheduler (si) and the share
requirement (rmin) in the following way:

U(si, rmin) =

{
1 if si ≥ rmin

si
rmin

if si < rmin
(1)

In a few words, this utility function is in the range [0, 1] and models the fact
that users will not obtain more benefit if they obtain more than their minimum
requirement, which is the minimum share to meet the deadline of the job. In
case the allocated share is less than the share requirement, the utility obtained
by the user will decrease linearly.

3.3 Making Private Information Explicit through Incentives

The basic principle behind our mechanism is a use your assigned resources now
or better save them for later approach. Our goal is to provide users an incen-
tive to truthfully declare their actual resource requirements (rmin). This way,
the infrastructure operator can decide which minimum portion of the cluster is
necessary to provide jobs with enough resources to complete their tasks in time.

As we stated in the model above, applications are given a fair share (1/nth

where n is the number of concurrent applications) of the time slots available
for execution. Sometimes applications will need more than this fair share, and
sometimes applications will need less. The incentive we propose is a simple mar-
ket in which users sell their spare allocations when not needed to the operator
to obtain a certain amount of credits, and buy resources with these credits from
the pool of unused resources when they need more than their fair share. Credits
used in this mechanism are an abstract representation of the capacity which is
used to exchange resources among users and the operator. In a few words, it’s
an enhancement over the fair-share scheduler in which users can dynamically
decide which is their actual share allocated as a function of their requirements.
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The benefits of such mechanism are two-fold: i) applications are able to scale
up (buy) and down (sell) their allocations based on their requirements which
provides a dynamic environment to adapt to changing conditions according to
the workload (dynamic capacity allocation); and ii) if at any point in time, the
aggregated demand is less than the total capacity, the infrastructure operator
can decide to reduce costs by powering down (or switch resources to a low power
consumption state) without breaking application’s SLAs (energy efficiency).

4 Algorithms for Trading Unused Capacity

Throughout this section, we will detail the procedure to allocate resources to
applications according to their requested share. The allocation mechanism pre-
sented in this work consists of two main components: i) an algorithm to update

Algorithm 1. UpdateCapacityAllocation – main algorithm to compute
capacity allocation

Require: φ = 〈φ1, . . . , φn〉 � users’ share request
Require: C = 〈c1, . . . , cn〉 � users’ current credits
Q ← {∅} � greater than φi set
S ← {∅} � lower than φi share set
p ← 0 � pool of free resources
r ← 0 � extra capacity requested
for all request φi do
if φi ≤ 1/n then
si ← φi � sellers
S ← S ∩ {si}
p ← p+ ( 1n − φi)

else
if ci > 0 then
qi ← φi − 1

n � buyers
r ← r + qi
Q ← Q ∩ {qi}

end if
end if

end for
if r < p then
for all request qi ∈ Q do
si ← 1

n + qi
Q′ ← Q′ ∩ {si}

end for
else
Q′ ← AllocateUnusedCapacity(Q, C, p)

end if
return S ∩Q′
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the capacity allocated to each application which is executed every time a new
allocation request is made (Algorithms 1 and 2) and, ii) a procedure to recompute
the credits earned by selling spare resources, or the credits spent (virtual money)
by buying extra capacity required to accomplish the QoS needed (Algorithm 3).

Dynamic Capacity Allocation. Every time an application sends a request
to obtain a specific set of resources, Algorithm 1 is executed. It recomputes the
shares assigned to all running jobs taking into account the new request. Basically,
we are given a set of share requests submitted by users (φ), which are the shares
(percentage of the cluster) needed by an application to complete within a specific
deadline and a set of budgets or credits for each user.

First, we divide all requests in two groups by looking if each request is lower
(set S) or greater (set Q) than its fair share (1/n). In the first case, we directly
grant the request (φi) and add the spare capacity not planned to be used (1/n−
φi) to the pool of free resources (p). In the second case, we add this extra
capacity requested to a counter (r) for later use and include it on the second
set (Q), always checking that the application has enough credit to spend on
extra resources. Notice that the set S is the set of applications selling their spare
capacity, and the set Q is the set of applications buying extra capacity.

Thereafter, if the amount of extra capacity required is lower than the pool of
free resources or, in economic terms, demand is lower than supply, we allocate

Algorithm 2. AllocateUnusedCapacity – ... among users

Require: Q = 〈q1, . . . , qm〉 � users’ extra share request (above fair share)
Require: C = 〈c1, . . . , cm〉 � users’ current credits
Require: p � % of free resources
for all i ∈ Q do

X ←
m∑
i=0

ci

for all ci ∈ C do
xi ← ci/X
yi ← (xi ∗ p)/qi

end for
Sort set Q by yi in decreasing order � if yi > 1 → request < capacity

if yi > 1 then
ai ← qi

else
ai ← (xi ∗ p)

end if
si ← 1/n+ ai
p ← p− ai

end for
return S ← (s1, . . . , sm)
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Algorithm 3. updateCredits – update the amount of credits

Require: S = 〈s1, . . . , sn〉 � allocations by UpdateCapacityAllocation
Require: C = 〈c1, . . . , cn〉 � users’ current credits
Require: t � time since last updateCapacityAllocation
for all si ∈ S do
ci ← ci + t ∗ ( 1n − si)

end for
return C ← {c1, . . . , cn}

this extra capacity to applications buying resources – which will be charged for
this extra use and accomplish the elasticity criteria presented on section 1. On
the other hand, when resources are scarce and demand is higher than supply,
we allocate these extra requests proportional to the credits earned previously
–which accomplish the fairness criteria presented also on section 1– following
Algorithm 2 which is a loosely-based proportional share allocation algorithm.

On algorithm 2, we take into account the set Q of extra capacity requests and
the budget in credits owned by each application. Following our goal of allocating
only the necessary (and no more) resources to applications, we first compute for
each application the theoretical share of resources proportional to their budget
(xi) and compute the ratio yi which will be greater than 1 for applications
requesting less than their theoretical proportional share and lower than 1 for
applications requesting more than their theoretical proportional share. Given
that, by sorting the set Q by the ratio yi in decreasing order, we first allocate
the extra requested capacity to applications requesting less than their theoretical
proportional share to accumulate their spare capacity to subsequent applications.
In case yi < 1, the theoretical proportional share is the upper bound on the
amount of resources an application can obtain given the credits. This procedure
is repeated until no application requests are left in the set Q.

It is important to note that users are always awarded a minimum resource
allocation equal to a fair share –1/n of the computational time, where n is the
number of active users. If a user under-predict the actual resource requirements
of the application to earn credits but do not make enough progress to meet the
deadline, the user can always request more capacity up to its fair share, or more
if enough credits are available.

Accounting of Credits. Before the actual allocation is made, algorithm 3 is
processed to update the credits each application owns based on the previous
execution. The current budget of credits for each application is computed as a
function of the current allocation provided by algorithm 1 at time t-1. Therefore,
if the application bought extra resources (si ≥ 1

n ) on the previous round of the
algorithm, the term t ∗ ( 1n − si) will be negative and the corresponding amount
of credits will be discounted. On the other hand, if the application sold spare
resources (si < 1

n ), the term t ∗ ( 1
n − si) will be positive and the equivalent

number of credits will be added to the current budget.
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Utility (Ui)

Share allocation (Si)

1

0

si < rmin

si = rmin

si = rmin

si > rmin

Fig. 1. User Utility comparing rmin and
si

Credits (Ci)

Share allocation (Si)

si = rmin

si > rmin

si < rmin

Fig. 2. Credits earned/spent comparing
rmin and si

Analysis of Incentive Compatibility. A key factor of our mechanism is its
incentive compatibility. A mechanism is incentive compatible if all the partic-
ipants consider their best interest to truthfully reveal any private information
inquired by the mechanism.

In our case, the private information that the mechanism asks users is their
actual resource requirement in terms of shares to finish the job within a deadline.
To perform the analysis, we will consider the case in which a user declare a share
request below, above or exactly equal to its actual share requirement and observe
how our mechanism reacts to these values and the utility function described in
Equation 1.

An informal proof of incentive compatibility is as follows. Given a user i, a
minimum share requirement for a job rmin and the outcome of our mechanism
which is an actual share allocation si, we can observe these situations considering
a user reports ri:

– case ri ≤ 1/n. Request share is lower than fair share (potential earnings).
In this case, si = ri because all requests less than the granted fair share
are accepted without charges. Users have no incentive to report ri < rmin

because it will not obtain its minimum share to complete the job (Ui(si, ri) =
si

rmin
< 1), as shown in Figure 1. Reporting a ri above its requirement rmin

will grant the user more shares and maximize utility (Ui(si, ri) = 1) but with
the drawback of earning less credits to spend in the future without gaining
any utility out of it. Therefore, the best response of the user is to report a
ri = rmin.

– case ri > 1/n. Request share is higher than fair share (potential payments).
• case ri = rmin. Request share is equal to requirement. This is the ideal
situation in which users truthfully report their requirements. In this case,
si ≤ rmin = ri. Because the user is requesting more resources than its
fair share, it will pay up to ci credits which is proportional to si − 1

n
or, in the best case, proportional to rmin − 1

n = ri − 1
n . Looking at the

utility function Ui(si, ri) = 1 because si = rmin in the best case. In the
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following cases, we will see that this is the best possible situation and,
thus, the users have no incentive to misreport ri.

• case ri > rmin. Request share is higher than requirement. In this case,
rmin ≤ si ≤ ri. Again, user will pay up to ci credits which is proportional
to si− 1

n or, in the best case of allocating the whole request, proportional
to ri− 1

n . The request in this case is greater than the request in case ii-i,
so the total amount of credits to pay will be higher (si > rmin in Figure
2). Given that the outcome of our algorithm Ui(si, ri) = 1 is the same
as the case above because si > rmin, it will end up paying more credits
for the same utility.

• case ri < rmin. Request share is lower than requirement. In this case,
the utility obtained Ui(si, ri) =

si
ri

< 1 because si < rmin and it will be
lower than in the previous two cases because our algorithm allocates a
maximum number of shares equal to the request.

Following that, we can conclude that our mechanism always maximizes the
utility Ui(si, ri) = 1 while minimizing the amount of credits to pay in case of
buying resources, and also maximizes the amount of credits to earn in case of
selling resources. �

5 Evaluation

We use simulation to evaluate the long-term impact of our system. To determine
the effectiveness of our incentive mechanism in reducing the cluster usage without
reducing the QoS perceived by users, we compare our algorithm – cooperative
label in the figures – with the outcome of a widely used scheduler – the fair share
scheduler used in Hadoop. We also use for comparison purposes an optimum
allocation mechanism which always allocates the share requirement rmin to jobs
effectively maximizing user utility and minimizing resource usage, independently
of the market of resources (credits earned and spent). This optimum scheduler
however has an unbound resource pool so it can always allocate the optimum
shares regardless of the load.

The set-up of the simulations consists in varying the number of simultaneous
users n (from 2 to 100) to assess the scalability of the solution as more users
(and, therefore, more load) are added to the system. In addition, each user is
assigned a set of jobs to execute in the cluster. Specifically, each job is represented
by a tuple (t, rmin, rmax) where t is the deadline for completing the job, rmin

is the minimum share necessary to finish the job before time t and rmax is
the maximum number of shares the job is able to use taking into account that
the level of parallelism is bounded or, in other words, we model the fact that
depending on the nature of the job, it cannot use the whole cluster even if a
single job is running on it.

Given the lack of public reliable MapReduce-like workloads, we simulate a
synthetic workload that tries to mimic real world workloads as described by Za-
haria et al. [9]. Thus, we assign rmin and t drawn from a log-normal distribution



116 X. León and L. Navarro

L ∼ (1, 1.25) which produce a workload distribution in which most of the jobs
have a rather short running time and share requirement (small to medium size
jobs) and fewer jobs with higher running times and share requirements. rmax

is derived from rmin by adding a variable k drawn from a uniform distribution
U ∼ (0, 100). We normalize rmin and rmax in the range [0, 100] as it represents
the shares in percentage of a cluster and t is capped in the range [0, 10000] which
is an arbitrary number large enough to not misrepresent the random distribution
but effective to avoid unrealistic or excessively large jobs.

To study the behavior of our mechanism, we consider the following metrics.

– Cluster usage. This is the average usage of the cluster in percentage over the
whole simulation period. Although peak usage may differ over time depend-
ing on the actual jobs being run on the cluster, this is an indication of the
overall usage over time, the time the cluster remains unused and the per-
centage of the cluster that could be shutdown to reduce power consumption
on average.

– Satisfaction. Given a specific share request ri for user i and a specific share
allocation si, the satisfaction or efficiency is φi = si − ri. In other words,
it is the difference between the share requirement of user i and the actual
allocation made by the algorithm. This is a measure of the QoS the user
perceives from the running time on the cluster considering their requests and
their actual allocations. Given that this metric is measured as a difference,
the lower the better.

– Mean completion time. Given a set of jobs for user i and its actual completion
time (time elapsed between submitting the job and gathering the results), it
is the mean time to complete each of the jobs. This measure is an indication
of how well the scheduler is able to scale down the number of shares given
to a job to save resources.

All figures are normalized in the range [0, 1] for comparison purposes and
because the actual numbers are actually meaningless because of the synthetic
nature of our workload. Thus, we are only interested in the relative difference
between our proposal and the widely used fair share scheduler.

Figure 3 shows the QoS perceived by users. Because satisfaction is measured
as the difference between the share request (requirement) and the share allo-
cated, the lower the number the better. We can see that our mechanism (label
cooperative in the figures) is able to provide better QoS to users compared to
the widely used fair share scheduler because it is able to allocate dynamically
more resources to those jobs in more need instead of allocating the same fair
share to all of them. It can also provide a QoS on par with the optimum up to
the point where resources become scarce and the gap between share request and
share allocation becomes noticeable (20-30 simulated users). However, we stress
the importance of our incentive mechanism as users can buy more resources to
improve their QoS even in high contention scenarios (more than 20-30 users).

If we now look at the cluster usage (Figure 4), we can observe that our algo-
rithm consumes up to 50% less resources than the fair share scheduler with 20
simultaneous users. This lower resource consumption is possible because users
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Fig. 3. User Satisfaction
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Fig. 4. Cluster Usage

sell resources to the infrastructure operator when not strictly necessary to meet
the job’s deadline.

It’s important to note that this lower cluster usage may allow the infrastruc-
ture operator to scale down the available nodes to reduce power consumption
and, thus, increase the revenue obtained given the same workload. In contrast,
the fair share scheduler always allocates the maximum amount of shares to a
given job regardless of the actual minimum resource requirement. This is because
the fair share scheduler is agnostic to the job characteristics – i.e. minimum share
requirement and deadline. In contrast, our incentive mechanism is actually able
to extract such information from the user and use it to the operator’s benefit to
maintain the resource usage to a minimum without impacting user efficiency.

However, these benefits (reduced resource consumption, lower energy costs,
higher user’s satisfaction) comes at a certain cost, namely a higher mean comple-
tion time (see Figure 5). Because our mechanism influences users to report the
minimum share to meet a certain deadline, its easy to see that the mean com-
pletion time for the set of jobs a user must run will be higher than in the case of
traditional schedulers, which one of the objectives is to finish a job as soon as the
cluster capacity allows. However, this minor drawback is bearable considering
that almost no deadlines are broken when there are less than 30 users. In fact,
below this threshold its performance is comparable to the optimum allocation.
As the number of concurrent users increases, our mechanism behaves almost
exactly as the other schedulers. This fact comes from the algorithm design itself
which awards at least a fair share of the cluster capacity at any time, regardless
of workload conditions.

It’s clear that our mechanism leads to a longer mean completion time and
thus, resources are used for a longer period of time. However, the fact that we
encourage users to scale down and report their actual resource requirements
allows the infrastructure operator to make an informed decision on whether it
is safe to shutdown spare resources without afecting the quality perceived by
users. Therefore, we refer our mechanism as energy-aware in contrast to other
scheduling policies which does not facilitate the problem of deciding whether a
certain portion of the cluster is safe to shutdown considering the quality targets
of users.
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Fig. 5. Mean Completion Time
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Fig. 6. Variable % of followers

Another important aspect is that users are free to follow our incentive mech-
anism by reporting the minimum share requirement and engaging in buying and
selling resources, or reject it and just behave as a regular user receiving its fair
share.

To state the effectiveness of our incentive mechanism, we observe the satisfac-
tion of users depending on the opt-in ratio in our mechanism. Figure 6 shows the
scalability of our mechanism with a variable ratio of opt-in users (label follow-
ers) and opt-out users (label no followers): the more users opt-in to collaborate
through our mechanism the better the satisfaction (recall that a lower number is
better by the definition of satisfaction). This is true because there will be more
users selling resources which in turn can be used by other users in need of more
resources effectively allowing a dynamic allocation of resources.

Although we evaluate and compare our mechanism against the vanilla fair
share scheduler through out this paper, our proposal deals with scenarios where
tasks have a sense of timeliness and therefore can observe an excess of resources or
a potential need for additional capacity in the future. Therefore, our mechanism
is easily applicable to other schedulers, as it focuses on handling excess and
scarcity situations. For example, a FIFO scheduler may decide the order in which
tasks are executed while our extension may allow users decide the amount of
resources allocated.

6 Related Work

The focus of current schedulers in distributed processing frameworks is on high
performance computations targeting job run time as a primary objective. How-
ever, the trade off between performance and the effect on data center energy
efficiency has not been fully investigated. Our work is a step towards the recon-
ciliation of quality of service allowing dynamic scale up and down of jobs and
energy cost efficiency.

There are different strategies to address the problem of energy efficiency, most
of them based on data replication strategies to allow shutting down a portion
of the cluster safely. Jacob et al. [7] find that running Hadoop in fractional
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configurations by means of distributing data replicas over a covering set can
save energy by shutting down idle fractions of the clusters at a cost of losing
performance due to data contention. Kaushik et al. [6] makes use of hardware
heterogeneity and different power consumption policies by dividing the cluster in
two zones: the hot zone where highly popular data is placed and where servers
run without any power saving policy and the cold zone where low spatial or
temporal popularity data is placed but with an aggressive policy towards saving
energy. Interestingly, their simulations were carried out using three month worth
of traces from Yahoo! and found an impressing 26% savings in energy costs. Our
proposal is orthogonal to such previous works in the sense that our focus is not on
data placement strategies nor performance prediction but on scheduling decisions
of the time slots allocated to each application and, as such, any improvement
over data placement policies is complementary to our solution.

Lang et al. [8] proposes to use the entire cluster for a certain period of time to
run a specific workload and then powers down the entire cluster until the next
running period, certainly consolidating dispersed workload over a shorter period.
Although an interesting analysis, the practicality of such mechanism remains to
be seen as starting up and shutting down a large-scale cluster is not trivial and
would need improvements on the hardware side between transition periods. From
the economic standpoint, Sandholm et al. [10][11] already proposed a market for
dynamically assigning resources of a shared cluster to multiple Hadoop instances.
The priorities are assigned using high level policies like budgets similarly to our
solution. However, they had to deal with the complexities of a “real” market like
inflation and deflation or forcing the users to understand the mapping between
currency and real resources. In our case, we simplify this complexity leveraging
the share concept and applying a direct translation between shares, time and
credits earned or bought, which help users understand how many resources they
can buy or sell for a given share at any point in time.

It is important to note that, as previously stated on this paper, our mecha-
nism relies on the users’ knowledge about their jobs and quality targets. This
knowledge could be acquired over time by learning from previous executions. In
the literature, there are several works that propose learning from past execu-
tions [12][13][14] which could be integrated into our mechanism to aid users in
their decisions or even implement high level policies to act on behalf of users
using such predictions. However, it is important to note that learning or guess-
ing resource profile needs from past executions is a different problem than the
problem we are tackling in this paper, which is handling the excess and shortage
of capacity of users at any point in time. It remains as future work to evaluate
the impact of inacurate predictions about the requirements of applications.

7 Conclusions

In this paper we investigate the possibility of reducing energy costs by providing
users an incentive to report their actual needs instead of over reporting the size
of their jobs. Our mechanism is based on markets and could be implemented as
an extension of the traditional Capacity Scheduler.
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Our mechanism pursues two different goals. From the user perspective, we
show how our incentive mechanism effectively encourages users to report their
true share requirement for a given job. Thus, we are able to provide a shares
market in which users engage to dynamically scale up (buy) or down (sell)
the allocated time slots of a job without the intervention of the infrastructure
operator, providing a more elastic and agile infrastructure. We also show that
it’s in the users’ best interest to participate in the market to improve their QoS
instead of default.

Furthermore, map-reduce computations are characterized by long, predictable,
streaming I/O, massive parallelization, and non interactive performance. These
computational services are often used in real-time data processing scenarios [15]
and, as such, they can benefit from our mechanism as quality of service becomes
more important than job run time.

From the infrastructure operator point of view, our mechanism is able to col-
lect valuable information from users by providing them an incentive to truthfully
report share requirements. In a scenario in which energy related costs is one of
the single largest factors in the overall cost of operating a data center, this in-
formation can be used to shut down a portion of the cluster without reducing
the quality of service provided to users, which in turn could reduce energy costs.

Looking at the results, we can conclude that our mechanism is a step towards
a more rational use of the available resources. It is able to dynamically scale up
and down the shares allocated to jobs with the aid of users and at the same
time provide valuable information to the resource provider to shutdown spare
resources without breaking SLAs or affecting QoS.

To the best of our knowledge, our work is the first to explore the problem of
the intersection of ensuring users’ quality of service providing dynamic allocation
of resources based on user’s requests and reducing energy costs together.
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Abstract. With the increasing availability of streaming applications
from mobile devices to dedicated sensors, understanding how such stream-
ing content can be processed within some time threshold remains an im-
portant requirement. We investigate how a computational infrastructure
responds to such streaming content based on the revenue per stream
– taking account of the price paid to process each stream, the penalty
per stream if the pre-agreed throughput rate is not met, and the cost of
resource provisioning within the infrastructure. We use a token-bucket
based rate adaptation strategy to limit the data injection rate of each
data stream, along with the use of a shared token-bucket to enable bet-
ter allocation of computational resource to each stream. We demonstrate
how the shared token-bucket based approach can enhance the perfor-
mance of a particular class of applications, whilst still maintaining a
minimal quality of service for all streams entering the system.

1 Introduction

The increasing deployment of sensor network infrastructures has led to large
volumes of data becoming available, which are often required to be processed in
real-time. In addition, data from these sensors may be streamed in an unpre-
dictable manner (i.e. the availability of data may not be known apriori) with
potential bursty behaviour in data generation. Data source (sensor) can vary
in complexity from smart phones to specialist instruments, and can consist of
sensing, data processing and communication components. Data streams in such
applications are generally large-scale and distributed, and generated continu-
ously at a rate that cannot be estimated in advance. Scalability remains a major
requirement for such applications, to handle variable event loads efficiently [1].
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Multi-tenancy Cloud environments enable such concurrent data streams (with
data becoming available at unpredictable times) to be processed using a shared,
distributed computing infastructure. This leads to challenges in offering Quality
of Service (QoS) guarantees for each data stream, specified in Service Level
Agreements (SLAs). SLAs identify the cost that a user must pay to achieve
the required QoS, and the penalty in case the QoS cannot be met. Stream
descriptions may, in some cases, provide placeholders in the SLA for data that
will be generated at some time in the future. Assuming the maximisation of the
revenue as the provider’s objective, then it must decide which streams to accept
for storage and analysis; and how many (computational / storage) resources to
allocate to each stream in order to improve overall revenue. When the real-time
requirements demand a rapid reaction, the dynamic provisioning of resource (i.e.
from an elastic resource provider) may not be useful, since the delay incurred
might be too high. Alternatively, idle resources that were initially allocated for
other streams could be re-allocated, avoiding the penalisation.

This paper extends our previous contributions in this area; papers [2–4] de-
scribe a revenue-based resource management strategy for bursty data streams
on shared Clouds. This contribution extends the token bucket model used previ-
ously to enable: (i) the re-distribution of unused resources amongst data streams;
and (ii) a dynamic re-allocation of resources to streams likely to generate greater
revenue for the provider. These extensions are provided by a direct addition of
business rules in the token bucket behavior – as an alternative to using a rule
engine alongside a token bucket model, which has a significant performance over-
head. The remainder of this paper is structured as follows. Section 2 describes
the revenue model and the resource requirements for QoS in data stream pro-
cessing applications. Section 3 shows the system architecture based on the token
bucket model and actions the provider can take to maximize revenue: using a
rule-based approach with token bucket model extensions. Section 4 shows our
evaluation and simulation results. In Section 5, related work is briefly discussed.
Finally, conclusions and future work are outlined in Section 6.

2 Revenue Based Resource Management

We consider a provider centric view of costs incurred to provide data stream
processing services over a number of available computational resources (e.g. a
pool of virtual machines in an elastic infrastructure). A provider may use a (pre-
agreed and reserved) posted price, a spot price (to gain revenue from currently
unused capacity), or on an on-demand use (the most costly for the user) for
resources, on a per-unit-time basis – as currently undertaken by Amazon.com

in their EC2 and S3 services. In the case of data stream processing services,
this cost may also be negotiated between the user and the provider using QoS
criteria. How such a price is set is not the focus of this work, our primary interest
is in identifying what are the performance objectives that can be established in
a SLA, and what actions the provider can perform to guarantee the agreed QoS
and maximize the revenue. A key distinction between batch-based execution on
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a Cloud infrastructure is that the query/computation and data are generally
available before the execution commences. In a streamed application, a query is
often executed continuously on dynamically available data. An SLA is therefore
essential to identify what a user must pay the provider, often based on a previous
estimation of resources required/used. Conversely, the provider can also utilize
previously similar stream processing capability to identify resources required and
any penalties paid in the past (for service degradation that violated the SLA).
Due to the greater potential variation likely to be seen in stream processing
applications, an SLA therefore protects both the user and the provider.

Defining QoS properties in an SLA is very application dependent. In appli-
cations such a commercial Web hosting, QoS levels specify parameters such as
request rate, for example expressed as served URLs per period; and data band-
width, that specifies the aggregate bandwidth in bytes per second to be allocated
in the contract [5]. In other applications such as video-on-demand, QoS levels
may represent frame rates and average frame sizes. In the context of data stream,
the analysis can include min/max/avg calculations on a data or sample time
window, an event analysis, a summarisation of data over a time window, etc.
[6] provides a useful summary of the performance objectives of event processing
and their associated metrics (see table 2).

Table 1. Performance objectives and their associated metrics for Event Processing [6]

Performance Objectives and their metrics
Objective Name Objective metrics

Max input throughput Max. number of input events processed within an interval
Max output throughput Max. number of derived events produced within an interval
Min average latency Min. average time to process an event
Min Maximal latency Min. the maximal time to process an event
Jitter Min. value of the variance in processing times
Real-time Min. of the deviation in latency from a given value

When a shared Cloud infrastructure is being used, a provider may serve multi-
ple users using a common resource pool through a “multi-tenancy” architecture.
This architecture is used to offer multiple functions over a shared infrastructure
to one or more users. The revenue for the provider in this case is the total of all
prices charged to users minus the cost of all required resources and the penalties
incurred for degraded services.

We assume that the provider (client) monitor their offered (provided) QoS
properties over fixed time intervals. The revenue obtained by the provider over a
particular time interval is assumed to be constant, and determined by the price
clients pay for allocated resources to process their data streams, minus the cost
incurred by the provision of these resources (generally identified as operational
expenditure (OPEX)). A sudden peak in data, due to sudden data injection or
traffic burstiness can produce shortage of resources to process such bursts, over
some time slots/intervals. The provider can either accept the penalty due to the
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unavailability of resources, or can provide additional resources in an elastic way.
We define the benefit function for a provider over a particular a time interval
for n clients (represented as Instant Revenue) as:

(Eq. 1) Instant Revenue =
∑n

i=1(CostPUclient − CostPUprovider) ∗#PU
−
∑n

i=1 #penaltiesi ∗ CostPenaltiesi
−Δ#PU ∗ CostPUprovider

where CostPUclient and CostPUprovider are respectively the price of each pro-
cessing unit (PU) for the client and the provider, #PU represents the number of
resources (in PUs) provisioned by the provider for supporting the aggregated re-
quests of n clients, and Δ#PU the number of resources allocated to avoid penal-
ties over bursty periods. The global revenue is the accumulated InstantRevenue
over time.

Eq. 1 can be extended to account for additional capabilities, for instance the
cost of provisioning additional PUs (Δ#PU) – which can include the number of
virtual machines executed on a single physical machine. Alternatively, the num-
ber of processing units can be a function of an estimated workload as a function
of data size defined by a data window (CostPUclienti = f(operation, datasize)),
etc. We will consider Eq. 1 in this paper for sake of simplicity and we will assume
for the same reason that data streams can be classified according to the benefit
and penalty values of their respective QoS levels as: “Gold” – for high penalty
and revenue; “Silver” – for medium penalty and revenue, and “Bronze” – for
low revenue and no penalty [7]. This class approach for provisioning resource is
commonly found in many commercial data centres and network providers today.

3 Dynamic Control of Resources under Revenue-Based
Management

The revenue model can be used internally by a provider to decide what actions
are the most “financially” suitable to dynamically manage resources on a near
real-time basis. For instance, when a failure to meet the minimum QoS level
for a given user is predicted or detected, a provider may perform the following
actions:

– action (1): allocate new local resources or buy remote resources,
– action (2): redistribute unused resources by users,
– action (3): redistribute pre-allocated resources from less prioritized users

to more prioritized users (“Bronze” to “Silver” to “Gold”, or “Bronze” to
“Silver”).

Each of these actions could have a different cost or penalty for the provider.
For instance, allocating new local resources is usually less costly than buying
remote resources (using other providers’ resources for instance), but may be more
costly than redistributing pre-allocated resources from Silver users to Gold users.
This could occur because the penalty for not satisfying these Silver users may be
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less than the cost of allocating new local resources, especially for a short period of
time, or because this redistribution of resources may not impact the chosen Silver
users due to statistical multiplexing of user needs. When redistributing unused
resources, a typical SLA would indicate a negotiated mean data injection rate to
be supported by the provider of the computational resource(s). Therefore, when
the amount of injected data over a given time period is smaller than the predicted
value, some pre-allocated resources are unutilized. In this case, the redistribution
of these unused resources can be done at a low cost by the provider. Hence,
we assume that due to the inherent variation in stream processing, it is often
difficult to predict accurately the resource demand across multiple time frames.
Consequently, this introduces a slack in the system, whereby unused resources
may be reallocated to reduce penalties for other data streams in the system. We
proposed in our previous work [3] an architecture that uses the token bucket
model to perform traffic shaping on user data flows. We also defined how token
bucket parameters can be controlled by a rule engine to prioritize data streams.
In this paper, we will explain how self-controlled actions could also be directly
implemented with different extensions of the token bucket model, introducing
for instance an intermediate, shared bucket that will collect unused resources
that can be later on be re-distributed across different user classes.

3.1 Dynamic Management of Resources

QoS requirements are often defined using the worst case scenario – i.e. the max-
imum number of resources required to achieve a particular QoS objective. How-
ever, some data streams may not use the resources that they have reserved and
these unused resources could be used to process other streams to increase rev-
enue. Hence, spare capacity in the system could be reallocated. This is particu-
larly useful to handle periods of bursty behavior on some streams. The provider’s
objective is to maximize its revenue by the management of available computa-
tional resources (e.g. a pool of virtual machines in an elastic infrastructure) to
process each data stream in accordance with its SLA, taking into account various
costs and penalties. It is therefore necessary to regulate end-user’s data injec-
tion rate according to an agreed SLA, to monitor whether enough resources have
been provisioned, and to perform actions to redistribute resources when needed.
We described in [3] a modular architecture (illustrated in Fig. 1) consisting of a
traffic shapping component and a QoS provisioning component that provides a
dynamic management of resources. We will quickly review the main features of
this architecture.

The traffic shapping component provides a token bucket per data stream.
Within a data stream, it is often useful to identify a “data acceptance rate”,
which is often different from the physical link capacity connecting nodes and
which identifies the rate at which a client can send data to be processed by
the server. The data stream processing service tries to maintain this acceptance
rate as the output rate. We characterise it for each flow by means of three QoS
parameters: (i) average throughput (average number of data elements processed
per second), (ii) maximum allowed burst, and (iii) an optional load shedding
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(data dropping) rate. We make the first two parameters match R and b of the
token bucket respectively. For each data stream, its associated token bucket
will allow data elements to enter into the processing stage according to the
R parameter. The token bucket can also accept a burst of b data elements.
Subsequently, a data element is forwarded to a First Come First Serve (FCFS)
queue buffer at a processing unit (PU). In addition to regulating access to the
PU and enforcing QoS per data stream, the token bucket also achieves stream
isolation, i.e. a data burst in one stream does not interfere with another. The
load shedding mechanism acts at input buffers by discarding older data elements
of a flow at a specified rate. It is only active, however, when triggered by the
controller component.

The QoS provisioning component takes decisions about the allocation and
redistribution of resources based on the monitoring of buffers and token buck-
ets. For example, availability of data in buffers of a token bucket implies data
injection over the agreed mean rate, which can trigger different actions based on
occupancy thresholds: 1) dropping data from the buffers, 2) allocating additional
resources to consume the burst of data, 3) reallocation of resources from other
streams. The number of allocated resources for providing service to the aggre-
gate demand may not be enough for a bursty period. In this case, the controller
must detect data streams that require more resources. Data in the computa-
tional phase are stored in buffers associated with each data stream (we denote
these as PU buffers to differentiate them from TB buffers). The PU buffer size
can be used to detect when data are been buffered because there are not enough
allocated resources. For instance, during each control interval T the maximum
amount of data that can appear is RT +b. If the PU buffer size is greater than b,
this suggests that not enough resources have been provisioned to sustain the QoS
of this data stream. Note that during a time interval b data can be transferred
to the processing phase if there are enough tokens in the TB.

The bottom part of Fig. 1 shows the control loop configuring the R parameter
and the number of resources for each flow instance. For simplicity, the figure shows
the regulation of one flow instance. Each flow instance monitors its input and out-
put rates at each stage at a pre-defined sampling rate (magnifying glasses (a) in
the figure). Using these initial parameter values, the control strategy is initiated,
subsequently recording the TB (b) and PU (c) input queue buffer occupancies,
and the number of resources in use at the PU (d). The size of each input buffer is
chosen in accordance with the agreed requirements of the data flow. The controller
must estimate the buffer size during execution. When the input buffer size reaches
an established threshold, it triggers the controller to initiate one of two possible
actions: (i) calculate the number of additional resources (PU) needed (based on
those available) to process the additional data items generated above rate R; (ii)
if there are free local resources (not being used by other data flows), they can be
used to increase the rate R of flow associated with this instance. The amount of
resources and the rate value will return to their previously agreed values when the
input buffer size goes below the threshold. A detailed description of this control
loop and validation scenarios can be found in [3].
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Fig. 1. Control loop for decision making

It appeared that allocating new resources, action (1), may not be suitable for
handling short periods of resource shortage. The time required to get statistics
and the inference process of the rule engine does not allow introduction of new
resources in near real-time. In this paper, we propose to additionally investi-
gate action (2), redistribute unused resources, and action (3), redistribute pre-
allocated resources from less prioritized to more prioritized users. The choice
of the final action will be determined by the revenue model using a cost, or
penalty, associated with each action. We will describe how these actions can
be easily implemented by the provider by extending the previous token bucket
model.

3.2 Redistribute Unused Uesources by Users

When the real amount of injected data over a given time period is lower than
the predicted amount, tokens can be saved by a user and they accumulate in its
associated TB up to a maximum of b tokens (which is the bucket size). Normally,
these excess tokens are dropped by the TB to avoid very large bursts of data
in the future. However, it is possible for a provider to save these tokens in an
additional shared bucket (of maximum size Bmax) and to redistribute them at a
low cost – as these tokens typical represent unused resources that have already
been allocated. Figure 2 illustrates this behavior. These tokens in excess could
also have a limited lifetime as symbolically represented by the clock in Fig. 2 in
order to limit their usage within a few control intervals only.
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Fig. 2. Redistributing unused resources over a control period

Collecting tokens in excess and redistribution of tokens can be performed
globally over all user classes. However, limiting token movement within the same
class may be easier to support, e.g. excess tokens from Gold users can only
be redistributed to other Gold users. Fig. 2 with the dashed box illustrates
this solution where each user class should have their own additional bucket
space. The Bmax parameter can be different for each user class. For instance,
Bgold

max > Bsilver
max > Bbronze

max . The rationale behind different values for Bmax is
that unused resources from Bronze users could be considered more volatile than
unused resources from Silver or Gold users for instance, as Bronze user resources
may have been statistically allocated. It is possible to generalize this architecture

for a higher number of classes where BCn
max > B

Cn−1
max > ... > BC2

max > BC1
max

3.3 Redistribute Pre-allocated Resources from Less Prioritized
Users to More Prioritized Users

The case of redistributing pre-allocated resources is quite different from the
unused resources case: tokens from a chosen user’s bucket will be moved directly
to another user’s bucket. Figure 3 illustrates this redistribution process from a
Bronze user to a Silver user.
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Fig. 3. Redistribution from low priority users to high priority users
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Redistribution from less prioritized users to more prioritized users is typically
the most financially efficient solution for the provider. Moving tokens directly
from one bucket to another may generate temporary resource shortages for the
data flow from which tokens are taken. As a result, at time of shortage, the
revenue model will decide again between the 3 possible actions it can perform.

3.4 An Example of Dynamic Management of Resources

Let us explain with an example how redistribution of unused resources and
redistribution of pre-allocated resources from less prioritized users could be used
consistently and conjointly by a provider. Let us denote by TBCn

u the token
bucket of a user stream u in class Cn and by TBCn

unused the shared bucket space
in class Cn to keep unused resources (tokens) up to BCn

max.
Consider that a provider has under-estimated the resources that should be

allocated to a user of class Cn (one reason could be a bursty injection period).
When the system detects that this user does not have a sufficient processing
rate according to its negotiated token bucket data injection rate, the provider
can take unused tokens from TBCn

unused that have been collected within class
Cn, if any. If there are no unused tokens in class Cn, the provider will take
tokens directly from TBCi

u of a user u in a lower class Ci, with 1 ≤ i ≤ n − 1,
and not from the shared bucket space TBCi

unused of these lower classes Ci. The

reason is that resources collected in TBCi

unused represent more ”volatile” resources
than resources kept in TBCi

u that normally could be somehow mapped to real
resources in the current control interval.

By doing so, the class Cn user demand can be satisfied at minimum cost,
therefore limiting the penalty for the provider. If the Ci class users, 1 ≤ i ≤ n−1,
from whom tokens have been taken away by users in class Cn have token/resource
shortage, the system will first try to take tokens from the shared unused resource
bucket space of the corresponding class, i.e. TBCi

unused, if any, and only then will
try to take token directly from a token bucket of a lower class Cj , i.e. from

TB
Cj
u , 1 ≤ j ≤ i − 1. This process could be repeated at each class Ci. We can

therefore see how this 2-level token movement system can be used to optimally
move resources (unused or pre-allocated) based on a maximum revenue strategy.

4 Evaluation Scenarios

The redistribution of pre-allocated resources from less prioritized users to more
prioritized was illustrated in the evaluation scenarios of [3] by means of the
rule engine controlling TB parameters. In this paper, we will present the results
of different simulation scenarios to show the redistribution of unused resources
by an additional bucket that collects tokens in excess and redistribute them
over the same class, as proposed in section 3.2. We consider two scenarios: (i)
using the rule-engine controller, which validates the shared bucket in an elastic
provisioning approach with tokens representing reliable allocated resources; and
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(ii) without use of controller actions, which validates the shared bucket with
more volatile tokens.

The scenarios has been modeled using the Reference net formalism [8] to spec-
ify the decision making component. The models have been simulated in Renew
(see http://www.renew.de), a Java-based editor and simulator based on refer-
ence nets that integrates the Petri net formalism, and the Java programming
language. The Java Expert System Shell (Jess), is used to trigger actions based
on threshold monitored values, such as token bucket and PU buffers, and in-
put/output rates. For this work, the token bucket manager model that provides
a token bucket for each new data stream presented in [2] has been extended
with the common shared bucket. The modeled behavior moves excess tokens to
the common bucket, and all data streams can make use of these tokens if their
buckets are empty and there are no pending data items to be processed in the
PU buffers. At the end of each control period, the common bucket is emptied:
therefore the lifetime of collected unused resources is limited to a control interval.

4.1 Redistribution of Tokens in an Elastic Scenario

The first scenario considers data streams at the same priority level. We assume
4 Gold (i.e. high priority) customer streams with a period of control of T=1
second and all data streams have same requirements: R=20 and b=10. The
maximum number of data to be processed is 120 data chunk/second and a token
is required to process a data chunk. We assume that each resource can process 10
data chunk/s (therefore requiring in the worst case a maximum of 12 processing
units). Input streams follow on ON-OFF process where ON and OFF periods
follow a uniform distribution between 2 to 5 seconds and alternate each other.
Data injection rates within the ON period follows an exponential law (Poisson
distribution) therefore varying the data injection rate over time. On average
about 4 resources are required for the 4 data streams (each stream sends on
average 20 data/second half of the time). For the first set of simulations we
compare the behavior of the system with and without the common bucket (of
capacity Bgold

max = 80 tokens). These simulations are developed in combination
with the use of the rule engine to provide enough resources throughout the
simulation period. The rule engine triggers actions for dropping data when the
TB buffer occupancy is over an established threshold, adding/removing resources
in a elastic way (borrowing resources from low priority data streams) and tuning
TB parameters to use the new added resources or available resources when PU
buffers have accumulated data (which is an indication that not enough resources
are available). All simulations reproduce the same input data injection rates for
comparison purpose.

To calculate the revenue with Eq. 1 we assume a cost of 20 units/second per
PU for clients and 15 units/second per PU for provider. We assume the client
pays for having the processing rate R all the time. Taking into account that
the data stream rates are irregular and the client send data at a rate R/2 on
average, the provider will suffer from a high penalization, for example 30 times
the price paid by the client, i.e. 600 units, if it does not provide enough resources.
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A penalty occurs when the output rate is under the agreed rate R if there are
data in the TB buffer. In this way, it is easy for the client to monitor whether
the provider is allocating enough resources or not. If the buffer is full, the output
rate should be at least equal to R. If the throughput is under this value, data
in the buffer are being accumulated and will be delayed to be processed in the
next control intervals due to the lack of resources.
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Fig. 4. Scenario I: Redistribution of tokens in an elastic scenario with different baseline
PUs (horizontal axis) and using control loop to avoid penalties. Revenue is measured
in an abstract unit, but can be mapped to a particular economic currency.

Figure 4 shows the provider’s revenue for different number of initial PUs and
an elastic provisioning of resources scenario. The x-axis represents the initial
baseline number of resources and the y-axis the aggregated revenue over 300
seconds of simulation. These results show the maximum revenue when enough
resources are available to satisfy the demand. Providing less resources than this
baseline increases the number of penalties, and providing more resources as base-
line increases the cost. The common bucket however does not improve signifi-
cantly the aggregated throughput as shown in Figure 6, but the throughput of
each individual data stream is improved as shown in the sample data stream
output of figure 5. If we look at time interval 20s-40s, 70s-80s and 140s-150s we
can see that the shared bucket allows the output throughput to closely follow
the input data injection rate. This behavior can be more clearly seen with 9
PUs than with 4 PUs, i.e. when there are globally enough resources. Without
the shared bucket the output throughput is clearly limited by the b parameter
(maximum amount of tokens in the bucket) and a shortage of tokens limits the
output throughput to R until the TB buffer is emptied.

The bottom of Figure 7 shows that the average number of PUs provisioned
(their cost being represented by the last term in Eq. 1) in an elastic scenario is
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not affected by the use of the shared bucket. However the number of penalizations
(second term in Eq 1.) is clearly reduced with the use of the shared bucket as
illustrated in Figure 7(top).
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Fig. 5. Data stream input & output in an elastic provisioning scenario

4.2 Redistribution of Tokens in a Non-elastic Scenario

The second scenario uses the same number of data streams than previously but
without rules to provide additional resources in an elastic way. Therefore, when
there are shortage of resources, the benefit of the redistribution feature can be
better seen. In this scenario data streams have a more sporadic behavior to en-
able greater usage of the shared bucket: ON and OFF period durations follow
a uniform distribution between 1 to 3 seconds, but now an ON period have a
probability of 1/3 to occur. Again, data injection rates follow a Poisson distri-
bution. Therefore, for 4 data streams sending on average 20 data chunk/second
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Fig. 6. Aggregated input and output in an elastic provisioning scenario
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Fig. 7. Average number of PU in an elastic scenario and number of penalties
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Fig. 8. Scenario II: Redistribution of tokens in a non-elastic scenario with different
baseline PUs (horizontal axis)

the number of required resources is around 3. Figure 8 shows the provider’s rev-
enue with different number of initial provisioned PUs. With less than 3 PUs, the
number of penalizations makes the revenue to decrease and the shared bucket
gives a lower revenue when there is shortage of resources. Provisioning between 3
and 5 PUs makes the shared bucket very useful as a low cost solution to balance
the usage of resources between classes. Figure 9 shows how throughput closely
follows the input data injection rate at time interval 110s-120s and 210s-220s.
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Fig. 9. Data stream input & output in a non elastic scenario
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5 Related Work

Auto-scaling of resources has been identified as one of the main challenges for
Cloud Computing. The main concern to optimize the use of resources is to
automatically scale quickly up and down in response to load in order to save
money, but without violating SLAs [1]. There is emerging interest in process-
ing automated elastic resource provisioning over shared Cloud. Three main ap-
proaches have been pointed out to quickly scale resources [9]. First, reactive
mechanisms, mainly use elasticity rules or threshold-based rules pre-defined by
service providers [10, 7, 11]. Second, predictive mechanisms try to learn from
previous data history and resource usage to construct mathematical models to
forecast resource demands. These approaches are useful when regular behavior
pattern can be identified, but can not forecast unpredictable burstiness [12, 13].
This problem has been considered in [14] to propose pattern matching scaling
based algorithms as an alternative to mathematical models that do not consider
arbitrarily-repetitive self-similarities. And third, hybrid approaches [15] that in-
tegrate the 2 previous approaches or, more recently, use theory of control [16].
A brief reference to related work on elastic resources provisioning of workflow,
streaming and event processing have been presented in [3].

6 Conclusion and Future Work

We propose (i) an architecture that features a token bucket process envelop to
support data throttling, (ii) a rule-based control loop to enable corrective actions
to be triggered when QoS is violated: the control loop monitors QoS for each ap-
plication and chooses an action that maximises revenue over a pre-defined control
interval, and dynamic corrective actions embedded in token bucket extensions
to (iii) re-distribute unused resources among users, and (iv) to re-distribute pre-
allocated resources from less prioritized users to more prioritized users – in the
context of stream processing applications. The validation scenarios have shown
that the token bucket extension based on a shared bucket to redistribute re-
sources increases data stream throughput when there are enough resources on
average to serve the aggregated demand. We showed that from a revenue-based
perspective, optimization of resources with low-cost solutions using local unused
resources is very effective compared to buying remote resources. Future work
will consider additional aspects to calculate the instant revenue considering the
cost of additional processing units, taking into account the number of virtual
machines that can be executed on a single machine, or the estimation of the
workload as a function of historical data (using previous service executions)
with different parameters (operation, data size, window size, etc.).
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to Optimize the Computation Time and Cost
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Abstract. Efficient load distribution plays an important role in grid
and cloud applications. In a typical problem, a divisible load should be
split into parts and allocated to several processors, with one processor
responsible for the data transfer. Since processors have different speed
and cost characteristics, selecting the processor order for the transmis-
sion and defining the chunk sizes affect the computation time and cost.
We perform a systematic study of the model analysing the properties
of Pareto optimal solutions. We demonstrate that the earlier research
has a number of limitations. In particular, it is generally assumed that
the load should be distributed so that all processors have equal comple-
tion times, while in fact this property is satisfied only for some dead-
lines; for many optimal schedules this property does not hold. Moreover,
fixing the processor sequence in the non-decreasing order of the cost-
characteristic may be appropriate only for Pareto-optimal solutions with
relatively large deadlines; optimal schedules for tight deadlines may have
a different order of processors. We conclude with an efficient algorithm
for finding the time-cost trade-off.

Keywords: Scheduling, Divisible Load, Time/cost Optimization.

1 Introduction

Parallel computer systems have given rise to new scheduling models that go
beyond the classical scheduling theory. While in a traditional scheduling model
a task can be processed by one machine at a time, a new feature of multiprocessor
computations is the ability to split tasks into several parts and to process them
simultaneously by different processors, see, e.g., [8,14]. An additional feature of
modern Grid computing and cloud computing systems is the introduction of the
cost factor, see, e.g. [4,11,16]. This study is motivated by the lack of theoretical
research in the area and some inaccuracies which can be found in the earlier
research.

We consider the network model described in [13]. There is a set P = {P1, P2,
. . . , Pm} of m processors connected via a bus type communication medium. One
processor of the set P is selected as a master processor to receive a divisible load
of size τ and to divide it into portions of size α1τ , α2τ ,. . . , αmτ ,

∑m
k=1 αk =

1, which are then transmitted to slave processors from P to perform required
computations.

J. Altmann, K. Vanmechelen, and O.F. Rana (Eds.): GECON 2013, LNCS 8193, pp. 138–148, 2013.
c© Springer International Publishing Switzerland 2013
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The processors have different computation speeds and for each processor Pk ∈
P the inverse of the speed wk is given. This implies that the load of size αkτ
allocated to processor Pk requires computation time αkwkτ .

If P1 is selected as a master processor and the transmission sequence is P2,
P3, . . ., Pm, then P1 can start processing its own load of size α1τ at time 0 and
at the same time it can start transmitting the relevant portions of the load first
to P2, then to P3, etc., until the last portion is transmitted to Pm, see Fig. 1. If z
is the time needed to transmit the whole load of size τ , then the communication
time for transmitting the portion αkτ to processor Pk is αkz.

Fig. 1. An example of a schedule with master processor P1 and transmission sequence
P2, . . . , Pm

With the selected transmission order, processor P1 completes its portion of
computation at time

T1 = α1w1τ. (1)

Processor Pk, 2 ≤ k ≤ m, receives its portion of the load at time
∑k

i=2 αiz and
immediately after that it can start computation, which takes αkwkτ time. Thus
processor Pk completes its portion of the load at time

Tk =

k∑
i=2

αiz + αkwkτ.

The finish time T of the load is defined as the makespan of the schedule; it is
equal to the maximum completion time among all processors,

T = max
1≤k≤m

{Tk} . (2)



140 N.V. Shakhlevich

It is assumed in the described scenario that the master processor can perform
data transmission and computation simultaneously. This usually happens if the
processor is equipped with an additional front-end co-processor which takes care
of all data transfer so that the master processor can perform computation as
any other processor of the network. In the absence of a front-end co-processor,
the master processor performs data transmission first and only after that it can
start computing its portion of the load. In the latter scenario, Fig. 1 should be
modified so that for processor P1 the box “α1w1τ” is moved immediately after
“αmz”, and formula (1) should be replaced by

T1 =
m∑
i=2

αiz + α1w1τ.

Processing the load in accordance with the load distribution α1, α2,. . . , αm

incurs computation cost which depends on processors’ costs. Following the no-
tation from [13], we denote the cost of using processor Pk ∈ P during one time
unit by ck so that the cost of performing the portion of the load αkwkτ by
processor Pk is ckαkwkτ . The overall cost of using all processors P is therefore

K =

m∑
k=1

ckαkwkτ.

Thus a schedule S is given by

- the transmission sequence with the first processor of the sequence selected as
a master processor
and

- the load distribution α1, α2,. . . , αm with
∑m

k=1 αk = 1.

In this paper we assume that the processors are numbered so that

c1w1 ≤ c2w2 ≤ · · · ≤ cmwm. (3)

The quality of a scheduled is measured in terms of the two characteristics:
maximum completion time T and computation cost K. As a solution to a bicri-
teria problem we accept the set of Pareto optimal points defined by the break-
points of the so-called efficiency frontier. In a pair of the associated single cri-
terion problems,

min K
s.t. T ≤ T

(4)

and
min T
s.t. K ≤ K

(5)

one of the objectives is bounded while the other one is to be minimized. Here
T and K are threshold values of the load finish time and computation cost,
respectively.
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Model (4) and its bicriteria counterpart have been under study since the 90s,
see [13]. Over the last 20 years the research has been expanded to cover more
complicated versions of the divisible load model which take into account ad-
ditional features of real-world systems such as, e.g., the time needed for the
transmission of the results back to the master processor, different transmission
speeds dependent on a receiving processor (see, e.g., [2]), and generalized for-
mulae for data transmission in which the transmission time is not proportional
to the size of the computation chunk. Recently divisible load analysis has been
extended to more complex networks [6,10], to the area of MapReduce distributed
computations [3] and to cloud computing [1,9,12].

Although divisible load models have attracted much attention of researchers
and the study expands now by incorporating additional features, there are still
some optimization aspects which have not been addressed properly in the previ-
ous work. The flaws in the analysis of the basic problem (4) lead to some wrong
conclusions in more recent research. Without re-solving those issues related to
the simplest problem (4), the analysis of more complex models is questionable. In
particular, in the early paper [13] the authors solve problem (4) under an unjus-
tified assumption that in an optimal schedule all processors complete their com-
putation chunks simultaneously. In addition, the processors’ sequence is fixed in
accordance with the non-decreasing order of the cost-characteristic, which does
not necessarily hold in an optimal solution. The misconceptions from [13] are
propagated to the subsequence research [6].

As we show in our study, there exist optimal schedules in which processors
do not complete their chunks simultaneously and the processor order is different
from the one proposed in [13]. A careful analysis of the divisible load model
allows us to develop an efficient algorithm that solves the bicriteria problem of
time-cost optimization and guarantees the optimality of the trade-off solutions it
produces. Notice that until recently researchers have been working on heuristic
approaches for solving single criterion problems (4) and (5), see, e.g., [7].

2 Finding the Efficiency Frontier

In the (T,K)-space, the set of Pareto-optimal points represents a time-cost ef-
ficiency frontier. We start with an overview of the main outcomes of [13] and
then proceed with the description of additional steps needed to find a correct
efficiency frontier.

It is claimed in [13] that all break-points correspond to the schedules of a
special type: the processor sequence is the same for all break-points and it is
(P1, P2, . . . , Pm); only a subset of the several first processors have a non-zero load,
while the remaining processors are idle. Recall that processors are numbered in
accordance with (3).

To represent the described schedules formally, introduce notation (P ∗
1 , P

∗
2 , . . . ,

P ∗
k ,−, . . . ,−) to indicate that processors P1, P2, . . . , Pk are fully loaded complet-

ing computation at time T , while the remaining processors Pk+1, Pk+2, . . . , Pm

are idle. Then the set of the break-points established in [13] is of the form:
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( P ∗
1 , −, −, · · · , −, −, · · · , −, − )

( P ∗
1 , P

∗
2 , −, · · · , −, −, · · · , −, − )

( P ∗
1 , P

∗
2 , P

∗
3 , · · · , −, −, · · · , −, − )

. . .

( P ∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

k , −, · · · , −, − )
( P ∗

1 , P
∗
2 , P

∗
3 , · · · , P ∗

k , P ∗
k+1, −, − )

. . .

( P ∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

k , P ∗
k+1, · · · , P ∗

m−1, − )
( P ∗

1 , P
∗
2 , P

∗
3 , · · · , P ∗

k , P ∗
k+1, · · · , P ∗

m−1, P ∗
m )

The graphical representation of the efficiency frontier from [13] for the case
of m = 3 processors is shown in Fig. 2. The three break-points, considered
right to left, are (P ∗

1 ,−,−), (P ∗
1 , P

∗
2 ,−) and (P ∗

1 , P
∗
2 , P

∗
3 ). When transition from

(P ∗
1 ,−,−) to (P ∗

1 , P
∗
2 ,−) is performed, the load from P1 is re-distributed to

P2 until both processors have equal completion time; the intermediate points
belonging to that segment of the efficiency frontier are denoted by (P ∗

1 , P2,−),
where notation P2 in the schedule description indicates that processor P2 is
partly loaded. Similarly, when transition from (P ∗

1 , P
∗
2 ,−) to (P ∗

1 , P
∗
2 , P

∗
3 ) is per-

formed, the load from P1 and P2 is re-distributed to P3 until all three processors
have equal completion time; the intermediate points belonging to that segment
are denoted by (P ∗

1 , P
∗
2 , P3), where notation P3 indicates that processor P3 is

partly loaded, while notation P ∗
1 , P

∗
2 implies that the corresponding processors

are fully loaded completing their portions of the load simultaneously.
It appears that the efficiency frontier is more complicated than the one pre-

sented in [13]. In particular, it includes also the points with the processor order
different from (P1, P2, . . . , Pm). In fact, the efficiency frontier can be found as
the set of non-dominating segments of m curves C�, � = 1, . . . ,m. Each curve
C� consists of linear segments and corresponds to a processor sequence with a
fixed master processor P�. As we demonstrate in the appendix, in the class of
schedules with a fixed master processor P�, an optimal processor sequence is
(P�, P1, P2, . . . , P�−1, P�+1, . . . , Pm). If � > 1, then the first � − 1 breakpoints
(considered in the (T,K)-space from right to left) correspond to schedules in
which the master processor P� performs only data transmission and does not
perform ant computation; the next break-point involves all � processors fully
loaded, so that the master processor P� performs both, data transmission and
computation; in the remaining m−� schedules, � first processors are fully loaded
together with an increasing number of additional slave processors with indices
larger than �.

Formally, the break-points of the curve C� with a fixed master processor P�

are of the form:

processor P�

does not perform
any computation,

only data
transmission

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( P �, P
∗
1 , −, −, · · · , −, −, · · · , −, − )

( P �, P
∗
1 , P

∗
2 , −, · · · , −, −, · · · , −, − )

( P �, P
∗
1 , P

∗
2 , P

∗
3 , · · · , −, −, · · · , −, − )

. . . −,
( P �, P

∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

�−1, −, · · · , −, − )
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Fig. 2. Efficiency frontier defined in [13] for the case of m = 3 processors and the
associated schedules (idle processors are omitted)
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processor P�

performs
computation

(until T )
and data transmission

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( P ∗
� , P

∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

�−1, −, · · · , −, − )
( P ∗

� , P
∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

�−1, P
∗
�+1, · · · , −, − )

. . .

( P ∗
� , P

∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

�−1, P
∗
�+1, · · · , P ∗

m−1, − )
( P ∗

� , P
∗
1 , P

∗
2 , P

∗
3 , · · · , P ∗

�−1, P
∗
�+1, · · · , P ∗

m−1, P
∗
m )

Here notation P �, which appears in the first � − 1 schedules, indicates that
processor P� performs only data transmission and no computation.

The intermediate points of the segments connecting the first � − 1 break-
points correspond to the re-distribution of the load to one additional slave
processor, without involving the master processor P� in the computation; the
previously loaded slave processors complete their load simultaneously. The tran-
sition from the break-point

(
P �, P

∗
1 , P

∗
2 , . . . , P

∗
�−1,−, . . . ,−

)
to the �-th break-

point
(
P ∗
� , P

∗
1 , P

∗
2 , . . . , P

∗
�−1,−, . . . ,−

)
corresponds to the reallocation of the load

from the slave processors P ∗
1 , P

∗
2 , . . . , P

∗
�−1 to the master processor P�, keeping

the slave processors completing their computation simultaneously. Finally, the
intermediate points of the last m − � segments to the re-distribution of the
load to one additional slave processor that follows the current busy processors in
the processor sequence (P�, P1, P2, . . . , P�−1, P�+1, . . . , Pm); all previously loaded
processors complete their load simultaneously.

An example of the three curves C1, C2, and C3 for the three-processor case
is shown in Fig. 3. The resulting efficiency frontier consisting of non-dominated
solutions is represented as solid lines. It consists of the following components,
listed from right to left:

(i) the right-most segment of the curve C1 that connects (P ∗
1 ,−,−) and (P ∗

1 ,
P ∗
2 , −);

(ii) a part of the second segment of C1 that connects (P ∗
1 , P

∗
2 ,−) and (P ∗

1 , P
∗
2 , P

∗
3 )

until its intersection point with the first segment of C2;
(iii) a part of the segment of the curve C2 connecting (P 2, P

∗
1 ,−) and (P ∗

2 , P
∗
1 ,−)

starting at the previously defined intersection with C1;
(iv) the full segment of the curve C2 connecting (P ∗

2 , P
∗
1 ,−) and (P ∗

2 , P
∗
1 , P

∗
3 );

(v) a part of the last segment of the curve C3 connecting (P 3, P
∗
1 , P

∗
2 ) and

(P ∗
3 , P

∗
1 , P

∗
2 ); its right-most T -value corresponds to the T -value of the left

end (P ∗
2 , P

∗
1 , P

∗
3 ) of the previous segment.

Notice that the resulting efficiency frontier is not convex and even not con-
tinuous.

While it is possible to prove that some points of the curves C1, C2, and Cm
always dominate each other (for example, (P ∗

1 ,−,−, . . . ,−) always dominate
(P k, P

∗
1 ,−, . . . ,−) for any 1 < k ≤ m), the dominance relation between other

points can vary depending on the specific ci- and wi-values. For example in the
three processor case, the may be no intersection point between curves C1 and C2,
so that the whole curve C1 dominates all points of the curve C2.

We demonstrate in the full version of the paper that for each curve C�, all its
break-points can be found in O(m2) time since each subsequent break-point can
be defined from the previous one in O(m) time by re-calculating the associated
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Fig. 3. Three curves
C1 coonecting (P ∗

1 ,−,−), (P ∗
1 , P

∗
2 ,−), (P ∗

1 , P
∗
2 , P

∗
3 )

C2 coonecting (P ∗
2, P

∗
1 ,−), (P ∗

2 , P
∗
1 ,−), (P ∗

2 , P
∗
1 , P

∗
3 )

C2 coonecting (P ∗
3, P

∗
1 ,−), (P ∗

3 , P
∗
1 , P

∗
2 ), (P

∗
3 , P

∗
1 , P

∗
2 )

and the trade-off curve (in solid lines) consisting of non-dominating segments and their
parts

αi-values, 1 ≤ i ≤ m. Thus all break-points of the curves C1, C2, . . . , Cm can be
found in O(m3) time.

Having constructed m(m − 1) segments of the curves C1, C2, and Cm, the
required efficiency frontier is found as the lower boundary among the curves.

3 Conclusions

In this paper, we have performed a systematic analysis of the problem of schedul-
ing a divisible load on m processes in order to minimize the computation time
and cost. An efficient algorithm for solving the bicriteria version of the prob-
lem defines optimal processor sequences for different segments of the efficiency
frontier and the corresponding optimal load distribution among the processors.

Our study demonstrates that some important underlying ideas in the divisible
load theory [6,7,13] have a number of limitations which result in incorrect major
conclusions. In particular, it is generally assumed in [6,13] that the load should be
distributed so that all processors complete their portions simultaneously. As we
show in our study, this property holds only for the break-points of the trade-off.
For the intermediate points that lie in-between the break-points, the associated
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schedules have one partly-loaded processor which completes earlier than other
busy processors.

Another misconception is related to fixing the sequence of all processors in the
non-decreasing order of the cost/speed characteristic given by (3), see [7,13]. As
we show, this order is correct only for Pareto-optimal solutions with relatively
large deadlines; optimal schedules for tight deadlines have a different order of
processors with master processor P�, 1 < � ≤ m, moved in front of slave proces-
sors P1, P2, . . . , P�−1, P�+1, . . . , Pm.

Developing an efficient exact algorithm for the bicriteria version of the time-
cost optimization model provides an answer to the solvabilitiy of the single crite-
rion problems (4) and (5), for which until recently, researchers have been working
on heuristic algorithms [7]. Moreover, the described model with a single divisi-
ble load provides a foundation for more advanced models which better describe
various real-world scenarios. Further generalizations include multiple divisible
loads, bandwidth dependent formulae for calculating transmission times, multi-
installment load distribution, multi-round schedules and more complex network
topologies. Clearly, a study of more complex models should rely on the accurate
analysis of the basic model.

Appendix

The validity of the described algorithm follows from a number of properties of
optimal schedules. These properties are presented below for the single-criterion
version of problem (4) for a fixed makespan parameter T ; their proofs appear in
the full version of the paper. Since parameter T may take different values, the
properties are correct for all schedules of the efficiency frontier.

The first two propositions provide a justification for fixing a processor se-
quence in an optimal solution; the third proposition establishes how the load
should be distributed in an optimal solution.

We assume that processors are numbered in accordance with (3). Initially
we consider an arbitrary processor sequence which can be different from the
sequences listed in Section 2.

Proposition 1. ‘Swapping Two Neighbour Slave Processors’
Consider schedule S in which two neighbour slave processors Pi and Pk in the
processor sequence compute portions of load αi and αk and have finishing times
Ti and Tk, respectively. It is always possible to change the order of Pi and Pk

in the processor sequence so that in a new schedule S′ the loads are α′
i and α′

k,
processors’ finish times are T ′

i and T ′
k and

(a) the loads are re-distributed so that α′
i = αi−δ and α′

k = αk+δ for 0 ≤ δ ≤ αi;
(b) the load on other processors remains the same;
(c) the maximum finish time of processors Pi and Pk does not increase:
max {T ′

i , T
′
k} ≤ max {Ti, Tk}.

The next proposition justifies that the optimal sequence of slave processors
corresponds to the non-decreasing order of the characteristic ciwi.
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Proposition 2. ‘Non-decreasing Sequence of ciwi for Slave Proces-

sors’
If the master processor P� is fixed, then an optimal processor sequence is (P�, P1,
P2, . . . , P�−1, P�+1, . . . , Pm).

We next demonstrate that in an optimal solution all busy processors, except
for possibly the last one, complete their computation chunks simultaneously; the
last processor may have an earlier finish time.

Given a schedule, let T be its makespan, see (2). Depending on processors’
completion times, we classify them as fully loaded, partly loaded or idle. Proces-
sor Pi is busy if Ti ≥ 0, and it is idle otherwise. To be precise, we call processor
Pi fully loaded if Ti = T and it is partly loaded if 0 < Ti < T . Notice that
the master processor can be idle if its performs only data transmission and no
computation.

Proposition 3. ‘Unique Partly Loaded Processor’
Consider a class of schedules with master processor P� and an optimal schedule
with processor sequence (P�, P1, P2, . . . , P�−1, P�+1, . . . , Pm). Let k be the largest
index among busy processors, 1 ≤ k ≤ m. Then all processors with smaller
indices P1, P2, . . . , Pk−1 are fully loaded and all processors with larger indices
Pk+1, Pk+2, . . . , Pm are idle.

It follows from Propositions 1-3 that in a class of schedules with a fixed mas-
ter processor P� all optimal schedules have processor order (P�, P1, P2, . . . , P�−1,
P�+1, . . . , Pm) and for a given makespan threshold value T , an optimal schedule
can be constructed by loading in full processors in the order P1, P2, . . . , Pk−1

until the remaining load can be processed by Pk. Varying the T -values we con-
clude that all optimal schedules in that class belong to the curve C� defined in
Section 2.
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Abstract. The allocation of resources between providers to consumers
is a well-known problem and has received significant attention, typically
using notions of monetary exchanges. In this paper, we study resource
matching in settings without monetary transactions by using a two-sided
matching approach, e.g., in social and collaborative environments where
users define preferences for with whom they may be matched. Whereas
two-sided matching for strict and complete preference rankings (i.e.,
without indifferences) has been extensively studied, it is known that the
matching problem is NP-hard for more realistic preference structures.
We study, via simulation, the applicability of a heuristic procedure in
settings with indiffernces in preferences, and compare its performance
to existing algorithms. We study performance metrics like fairness and
welfare in addition to the classic stability objective. Our results show
interesting trade-offs between performance metrics and promising per-
formance of the heuristic.

Keywords: Two-Sided Matching, Preferences with Indifferences, Mul-
tiple Objectives, Heuristics.

1 Introduction

Resource allocation is a well-known problem that occurs in many circumstances,
ranging from technical applications such as job and VM scheduling on com-
pute infrastructures to economic applications such as the allocation of products
to consumers. In the field of Cloud computing, various types of market mech-
anisms have been suggested to facilitate efficient allocations. They range from
monetary-based mechanisms like auctions or fixed-price markets (Infrastructure-
as-a-Service, Software-as-a-Service) to dynamic negotiation that determines the
details of the allocation and exchange of goods (e.g. B2B procurement). In most
settings, allocation of goods involves monetary exchange based on (private) val-
uations that participants have for goods, and a mechanism that determines how
the exchange price is calculated.
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Recently, electronic platforms have emerged that facilitate the collaborative
sharing of resources based on non-monetary or voluntary exchanges. Unlike tradi-
tional Cloud platforms, participants (who can still be distinguished into resource
providers and consumers) share and consume available resources without the im-
mediate goal of monetary gain. One such approach is a Social Cloud [1,2] where
social networks are leveraged as a means to construct Cloud platforms via shar-
ing compute resources amongst socially-connected peers. A key characteristic of
a Social Cloud and similar platforms is that users often do not require, expect or
value monetary incentives, and instead value non-monetary incentives (such as
reciprocity and altruism) more highly [3]. Based on the specific type of resource,
users have preferences from whom they want to consume and to whom they want
to provide resources, and the preferences are described by an ordinal ranking of
users. For example, users might prefer users they know directly, rather than
users with indirect connections such as a friend-of-a-friend. Consequentially, the
question of how to efficiently allocate resources quickly arises. Leaving the allo-
cation to users themselves through self-organization, for example via distributed
communication protocols, e.g. [4], can lead to substantial overhead for the users
and, in general, can lead to unpredictable and potentially inefficient allocations.
In addition, Roth [5] also notes that many decentralized allocation systems can
lead to market failure, which is why we address this problem using a clearing-
house: a centralized, managed market mechanism that considers the matching
problem and the social context of participants. Social context, in our setting is
critically important. It captures the basic parameters (user preferences) of social
exchange: with whom does a user wish to interact, and to what extent, i.e. are
some users preferred over others.

The field of two-sided matching markets is a successful and established means
to allocate resources based on user preferences rather than monetary valuations,
and therefore lends itself for our clearinghouse. The objective of the clearing-
house is to guarantee that the solutions given by a market mechanism satisfy
certain desirable characteristics, such as stability, fairness, or optimal (social)
welfare. Although literature with respect to preference-based matching has in-
creased considerably over the past years, most of it considers the case of strict
preferences: preference rankings are ordinal, transitive and there are no ties be-
tween any two ranked users. For this special case, several efficient algorithms
exist that compute an optimal solution for certain objectives. However, in more
realistic settings (such as a Social Cloud), even if users rank all other users
they might be indifferent between some users they can be matched with. In this
case, determining an optimal allocation is NP-hard for most of the previously
mentioned objectives, and even difficult to approximate [6].

Although existing algorithms can be applied after transforming the prefer-
ences to a strictly ranked order, they cannot guarantee a good solution and their
performance in the setting with indifferences is unclear as it depends on the way
that ties are broken. Therefore, the contribution of this paper is the compari-
son of these algorithms with a heuristic approach, a Genetic Algorithm (GA),
in the case of preferences with indifferences. GAs have been used for matching



Using Heuristics for Two-Sided Matching with Indifferences 151

problems previously, such as in [7] in case of strict preferences, and [8] who em-
phasize fair solutions. In contrast to previous work in this field, we specifically
consider the case of non-strict preferences. Hence, we use the GA with different
objective functions to compute allocation solutions, and compare these with the
solutions of other leading algorithms to address the following research questions:

1. For preferences with indifferences, can heuristics find better solutions than
accepted algorithms?

2. Is there a relationship between the performance metrics, and how do they
affect the selection of useful objective functions?

The structure of the paper is as follows. Section 2 overviews related work. Sec-
tion 3 describes our model and defines performance metrics. Section 4 presents
the simulation environment used to evaluate the algorithms. Section 5 presents
our evaluation which shows that in many circumstances we can improve upon the
standard solutions by using heuristics, especially for objectives such as welfare.
Finally, section 6 discusses our findings and future work.

2 Related Work

The seminal paper on two-sided matching [9] introduced two of the standard
problems in two-sided matching, the College Admissions problem and the Mar-
riage Market, and provided the first description of the Deferred-Acceptance (DA)
algorithm. Under the assumption of complete, strict (no ties) and independent
(of preferences of other individuals) preference rankings, DA is able to find at
least one and at most two stable matches rapidly (in polynomial time).1 The
literature on two-sided matching has grown considerably since [9] as have the
applications of two-sided matching (see [5] for a survey of the latter). This sec-
tion intends to provide an overview of topics related to this paper, yet does not
claim to be a complete overview of the field. Considering this paper, the most
relevant areas of research can be summarized as: (1) preferences, (2) alternative
design objectives, and (3) computational complexity and heuristics.

Regarding preferences, most of the literature focuses on problems with strict
and complete preference orderings, i.e., users are not indifferent between any
two options (strict), and rank all users of the other side (complete). If either
ties (indifferences) or incompleteness are introduced into the problem, certain
characteristics of the algorithms can no longer be guaranteed. As the standard
algorithms such as DA only allow strict preferences as input, the ties have to be
broken first. Erdil and Ergin [10,11] introduced an extension to the DA that can
cope with ties in preferences. Their algorithm tries to find cycles in a given solu-
tion which might Pareto-improve the solution (either for one, or both sides). Yet,
as [12, page 219] note, many of the strong results for DA and related algorithms
depend upon strict preference orderings, and characterizing stable matches under
partial ordering remains a largely open problem.

1 For incomplete preferences the DA will still yield stable matches, but not necessarily
of maximum size.
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Regarding design objectives for matching, other than stability, it was shown
early on that DA is heavily biased as it finds the optimal stable match for
one side, and the pessimal stable match for the other side [13]. This raises the
question of finding stable matches (or matches with only a few unstable pairs of
pairs) for the sake of other criteria, such as fairness and social welfare, however
defined. For strict and complete preferences, [14] efficiently compute the welfare-
best stable match. [15] discuss trade-offs between stability and welfare; [16] study
(procedural) fairness and stability; [17] propose an algorithm that approximately
yields the fairness-best stable matching; and [7] show that GAs can yield superior
solutions for welfare and fairness if a certain instability is allowed.

The third area of concern, computational complexity, arises once we are forced
to move beyond DA and closely related algorithms, as the first two issues man-
date. On one hand, the number of stable matches can be large, sometimes ex-
ponential in the size of the problem [12,13], and it has been shown that the
two-sided matching problem in general is #P-complete [12, page 157]. For strict
and complete preferences, there are polynomial-time algorithms to compute
the welfare-best [14] and approximately fairness-best solutions [17]. However,
by introducing indifferences and/or incompleteness, the problem of finding the
welfare-best, minimum-regret or fairness-best stable match becomes NP-hard,
and sometimes even hard to approximate [6]. Due to this complexity, heuris-
tics have been studied to obtain solutions to the matching problem, the GA
being a prominent example. For example, [8] study whether a GA can yield
stable matches with higher fairness than the DA solutions, yet do not consider
indifferences or other objectives. [18] describe a GA to compute stable solutions
from random initial assignments, with stability as the sole objective. Further-
more, both [7] and [19] compare a GA with multiple objectives to the standard
algorithms, yet neither of them consider indifferences in preferences.

3 Model

3.1 Users, Preferences and Matches

Formally, in a two-sided matching problem we are given two sets of individuals,
X and Y (in our case consumers and providers), and we are asked to produce a
match μ (or 〈X,Y 〉), consisting of pairs of individuals 〈x, y〉 where x ∈ X and
y ∈ Y [20]. We consider users i, i ∈ {1, . . . , nX + nY }, as participants in the
market who want to share and exchange resources, where nX and nY are the
number of users of the two sides. We assume that a user i cannot concurrently
supply and demand the same resource type r, and for this paper only consider
matching within the same resource type. Therefore it is possible to split the users
into the set of providing users, X , and requesting users Y , thus i ∈ X ∨ i ∈ Y .

Each user i has a preference ranking over users with whom they want to share
resources. Preferences can either be strict, in which case j �(i) k denotes that
user i strictly prefers to share with user j rather than user k, and indifferent,
where j ∼(i) k denotes that user i is indifferent between user j and user k. We also
require that the preferences are transitive. Hence, each user can represent their
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preferences by attributing an ordinal rank to the other users. Let rank(i,j) denote
the ordinal rank of requester yj for provider xi, where rank(i,j) ∈ {1, . . . , nJ},
and rank(i,j) < (=) rank(i,k) means that user i strictly prefers (is indifferent
between) user j to (and) user k, and 1 counts as the highest rank. In general,
users can also choose not to state a full preference ranking for all users of the
other side of the market, in which case we would have incomplete preferences.
This is, however, not focus of this paper, which considers complete preferences
with indifferences. Given the representation of users’ preferences and the supply
and demand in the market, we now have to find a match 〈X,Y 〉 to clear the
market. 〈X,Y 〉 consists of pairs 〈x, y〉 with x ∈ X and y ∈ Y .

3.2 Stable Matching Algorithms

The algorithms found in the literature concentrate on finding stable matches
under certain conditions. For strict preferences we can use the Deferred Accep-
tance (DA) algorithm by [9] which always yields a stable outcome. Additionally,
in this case the welfare-optimal (WO) algorithm by [14] yields the welfare-best
(or most egalitarian) stable solution in polynomial time, and for finding the
most balanced (fair) solution we can use the approximation algorithm by [17]
(henceforth called Fairness-Equal, FE). In the case of indifferences, which we
are interested in, we have to first apply a tie-breaking rule in order to apply
these algorithms. The tie-breaking rule greatly affects the goodness of the re-
sulting match and, in general, tie-breaking and applying the algorithms does not
guarantee a good solution. Therefore, we apply the Pareto-improvement cycles
suggested by [10] to potentially increase the welfare of the solutions.

3.3 Matching Heuristics

In addition to the mentioned algorithms, we investigate the use of a GA [21] as
an example of a heuristic to find solutions to the matching problem. Whereas
much related work on GA’s for two-sided matching focuses on finding (stable)
solutions from random initial assignments (see e.g. [18]), we use the GA to
improve an initial stable match by trying to retain stability and increasing other
performance criteria.

The GA uses a population of chromosomes, each of which represents a solution
to the matching problem (i.e., each chromosome describes a 〈X,Y 〉). A chromo-
some consists of several genes, where each gene encodes a provider-requester
match 〈x, y〉 of the solution. In other words, when a solution has m matches, the
chromosome has m genes, and each gene consists of two identifiers, one for the
provider, one for the requester. To determine the performance of a given chromo-
some, a fitness function is used. Common fitness functions for two-sided matching
are the maximization of stability, welfare, fairness, or a combination thereof (see
the next section for a definition of these metrics). In order to improve the fitness
of the solutions, two genetic operators are applied after the fitness evaluation in
order to derive new, potentially better-performing solutions. The cycle crossover
operator [21], creates new potential solutions by combining two parent solutions.
The mutation operator, given a certain mutation probability, randomly selects
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two genes (matched pairs) of a given chromosome and exchanges either the re-
quester or provider identifiers to create a new chromosome. The population is
evolved using these operators over a given number of rounds.

3.4 Performance Metrics

In standard two-sided matching scenarios, stability is often seen as the most im-
portant property. Further commonly addressed criteria are welfare and fairness.
Hence, we consider the following economic performance criteria:2

Stability: Stability can be measured by the number of unstable (blocking) pairs
in a solution. Given a match 〈X,Y 〉 and a pair of matched users, 〈x1, y1〉 and
〈x2, y2〉, the pair is said to be unstable if x1 prefers being matched with y2
instead of y1 and at the same time y2 prefers being matched with x1 than with
x2. The same argument holds if x2 prefers y1 over y2 and y1 prefers x2 over x1.
If one of the previous statements holds, we count one unstable pair, in case both
statements hold we count two unstable pairs.

Welfare: We define welfare, or equivalently the most “egalitarian” solution, as
the average rank that each user is matched with, by summing the respective
preference ranks of the matched users. Formally:3

Welfare =

∑
xi∈〈X,Y 〉 rankxi,yj +

∑
yj∈〈X,Y 〉 rankyj ,xi

nX + nY
(1)

Fairness: We use the definition of the “sex-equal”- match provided by [17].
Fairness is measured as the inequality in welfare distribution. Formally:

Fairness =

∣∣∣∣∣
∑

xi∈〈X,Y 〉 rankxi,yj

nX
−

∑
yj∈〈X,Y 〉 rankyj ,xi

nY

∣∣∣∣∣ (2)

High scores reflect a high inequality between the two sides, whereas scores closer
to 0 indicate a more equal distribution of welfare between the market sides.

4 Simulation

To evaluate the performance of the GA, we use simulation. Our simulator is
implemented in Java and described in [23]. In all subsequently described simula-
tion scenarios, randomly created sets of preferences for the users are used. In this
paper we present scenarios where the two sides of the market are equally sized.
Initial results show that in case of unequally sized market, the presented results
are even stronger. We simulate scenarios with 10, 20, 50 and 100 consumers and
providers (i.e., 20, 40, 100, 200 users in total). Each of the simulation scenarios
was independently repeated 100 times with different user preferences in each
repetition. Results refer to the averages of these runs.

2 The definitions of welfare and fairness scores are adapted from [22] and [17].
3 Note that lower numbers indicate better solutions.
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As the focus of this paper is preferences with indifferences, we ensure that
preferences are complete, i.e., each user has a complete ranking over all users
of the opposite side. Each users’ preferences contains indifference groups (i.e.,
users between which a user is indifferent) and the group size is randomly drawn
from the interval [1,10]. In order to perform the algorithms which require strict
preferences on indifference groups, randomized tie-breaking is performed to get
a ordered preference ranking. For each scenario, the three performance metrics
as described in the previous section are recorded.

The GA has a population of 50 chromosomes, a crossover probability of 0.6,
and a mutation probability of 0.2 per chromosome. The GA uses DA, WO and
FE to create initial (stable) solutions. We use 1000 evolution rounds and take
the fittest chromosome for evaluation. The GA uses one of the following four
fitness functions: (1) the number of unstable matches (S), (2) the welfare score
(W), (3) the fairness score (F), and (4) an equally-weighted function of (1), (2)
and (3) (EW). If we adjust the fitness function such that unstable solutions
get a penalty on the number of unstable pairs, we add “P” for Penalty to the
objective function description.4 We indicate the GA fitness configuration in the
form GA-S.x, where x ∈ {S, F, FP,W,WP,EW}.

5 Evaluation

In this section, we compare the performance of the GA and the algorithms devel-
oped for strict preferences. The third column of the table (PM) specifies the per-
formance metric, stability (S), welfare (W) and fairness (F). The evaluation will
compare results from the Deferred-Acceptance (DA), Welfare-Optimal (WO),
Fairness-Equal (FE), and the GA’s with the respective objective functions. Note
that a score of 0 for stability means the solution is stable.

5.1 Optimization of Stability and Welfare

The goal of finding a stable solution with a best welfare performance is one of
the standard problems in two-sided matching. Whereas for strict preferences we
can use the welfare-optimal (WO) algorithm which runs in polynomial time, for
more general preference structures this problem is NP-hard and also hard to
approximate. Table 1 compares DA, WO and the GA with different objectives
with respect to welfare performance. For all algorithms, the Pareto-improvement
cycle described in [10] is applied on the algorithm’s solutions to potentially
find improvements in welfare. For the average performance of DA and WO, the
welfare score is also shown in Figure 1a as the average rank of the matched
partner of each user. As the GA is initialized with a population of 50 solutions,
we report the average, best and worst solution out of 50 different tie-breakings
of the DA and WO in order to evaluate the potential range of solution quality
that can be expected. There are several interesting results that can be observed.

4 In that case, unstable solutions have a much lower fitness than stable solutions,
which discourages the creation of such solutions.
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Table 1. Comparison of Welfare Optimization

Size PM DA-Avg (Best, Worst) WO-Avg (Best, Worst) GA-S-W GA-S-WP GA-S-EW

10x10
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 0.00 0.00
W 1.24 (1.16, 1.47) 1.20 (1.16, 1.40) 1.16 1.16 1.21
F 0.32 (0.20, 0.71) 0.23 (0.20, 0.54) 0.18 0.18 0.25

20x20
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.13 0.00 0.00
W 2.16 (1.72, 2.84) 1.96 (1.69, 2.45) 1.72 1.72 1.99
F 1.41 (0.51, 3.01) 0.69 (0.43, 1.22) 0.46 0.41 0.40

50x50
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 1.01 0.00 0.00
W 5.52 (4.20, 7.07) 4.42 (3.88. 5.04) 3.91 3.99 4.50
F 6.18 (2.10, 10.96) 1.42 (0.96, 2.04) 0.77 1.02 0.24

100x100
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 2.64 0.00 0.00
W 10.33 (7.66, 13.20) 7.27 (6.70, 7.88) 6.66 6.78 7.41
F 14.54 (5.62, 22.68) 1.85 (1.37, 2.41) 1.21 1.26 0.09
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Fig. 1. Comparison of Algorithms

First, the GA with pure welfare optimization yields the best solutions welfare-
wise, yet introduces a small number of unstable pairs (on average), which might
not be desirable. In contrast, the GA with welfare optimization and penalty for
unstable pairs (WP) essentially yields similar performance, yet enforces solutions
that are completely stable. The GA with a weighted objective function seems to
trade off fairness for stability, and yields similar results when it comes to welfare.

Comparing the GA with the DA and WO, we see that for the average solution
quality, the GA-S-WP on average outperforms both algorithms for the studied
problem sets.We can see that the welfare score of GA-S-WP is considerably better
than the average welfare scores of DA and WO, and in most cases is similar to
the best solutions of DA and WO. The relative welfare improvement of the GA-
S-WP is 3-12% to WO-A and 7-34% to DA-A. The improvement to the average
solutions is also statistically significant at the 0.1% level, using non-parametric
paired Wilcoxon tests with Bonferroni adjustment. Another interesting result is
the possible range of solution quality by using a random tie-breaking and applying
theDA orWOwith additional Pareto-improvement cycles. As can be seen in Table
1 this range can be quite large, and that one can end up with solutions that are
particularly bad. Overall, given these results the use of GA-S-WP seems to be the
most promising, yielding solutions which are superior to the other algorithms.
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5.2 Optimization of Stability and Fairness

Finding the stable solution with the most equal welfare distribution between
the two market sides is an NP-complete problem even for strict preferences,
and the FE algorithm [17] approximates the optimal solution. For preferences
with ties, the problem is NP-hard similar to the problem of finding the stable
solution with best welfare score. Hence, we again apply the GA with pure fairness
optimization (GA-S-F), additional penalty for unstable pairs (GA-S-FP) and a
weighted function of stability, welfare and fairness (GA-S-EW).5

Table 2. Comparison of Fairness Optimization

Size PM DA-Avg (Best, Worst) FE-Avg (Best, Worst) GA-S-F GA-S-FP GA-S-EW

10x10
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 4.41 0.00 0.00
W 1.24 (1.16, 1.47) 1.58 (1.56, 1.94) 2.90 1.98 1.19
F 0.32 (0.20, 0.71) 0.43 (0.00, 1.63) 0.00 0.00 0.07

20x20
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 48.83 0.00 0.07
W 2.16 (1.72, 2.84) 2.57 (2.48, 3.13) 7.75 2.76 1.86
F 1.41 (0.51, 3.01) 0.89 (0.01, 3.38) 0.00 0.00 0.07

50x50
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 479.85 0.00 0.86
W 5.52 (4.20, 7.07) 4.88 (4.74, 5.96) 22.64 4.76 4.15
F 6.18 (2.10, 10.96) 1.21 (0.01, 7.44) 0.00 0.02 0.07

100x100
S 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 1780.73 0.00 1.97
W 10.33 (7.66, 13.20) 7.57 (7.55, 8.84) 42.97 7.48 6.95
F 14.54 (5.62, 22.68) 1.10 (0.02, 9.42) 0.00 0.03 0.06

Table 2 shows the average, best and worst solutions of the DA, FE and GA.
Figure 1b compares the results for the average solution of DA, FE and GA.
As before, the results in Table 2 show that the range of fairness scores for the
DA and FE can be quite large, and the best solutions of the FE are stable and
close to a perfect welfare distribution. The results also show that it seems to be
always possible to find a completely fair solution in all scenarios, if fairness is the
single objective (GA-S-F), yet this comes with a high penalty on stability and
welfare performance. However, if we enforce stable solutions by adding penalties
for unstable pairs (GA-S-FP), the GA yields almost completely fair solutions
for most scenarios. Especially, these solutions are on average superior to the
average FE solutions and also similar to the best FE solutions. In other words,
this means that the GA-S-FP finds solutions that yield similar matched ranks for
both sides, which also have (for larger market sizes) better welfare values. Using
a non-parametric paired Wilcoxon test with Bonferroni adjustment reveals a
significant improvement compared to the average FE solutions at the 0.1% level
for the studied market sizes. The GA with weighted objective function yields very
good results with respect to fairness, yet trades off gains in welfare (compared
to GA-S-FP) for a certain number of unstable pairs.

5 In this case, the Pareto-improvement cycles [10] are not applied, as they potentially
decrease fairness of the solutions.
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Fig. 2. Balancing Performance Metrics

5.3 Balancing Performance Metrics

We have seen that using heuristics to solve a two-sided matching problem with
indifferences is able to yield superior results to the best algorithms for strict
preferences coupled with Pareto-improvement cycles. Now, we study if trade-
offs between the performance metrics stability, welfare and fairness exist, and if
different algorithms yield similar trade-offs.

Figure 2 shows the comparison of the three performance metrics for a small
and a large problem instance. Several issues can be observed. First, the high
number of unstable pairs and the high welfare score in case of fairness optimiza-
tion (GA-S-F) indicates that focusing solely on fairness has detrimental effects
on the other objectives. In contrast, focusing solely on welfare (GA-S-W) yields
solutions that are nearly stable (only 3 unstable pairs in a 100x100 market, on
average) and 0-2% better than the best stable solution (GA-S-WP) with respect
to welfare. Hence, the question is if such an increase in welfare justifies the intro-
duction of unstable pairs into the system. Second, the penalty-based objective
functions (GA-S-FP and GA-S-WP) which are focusing on two out of the three
considered objectives yield solutions superior to the equally-weighted objective
function that tries to explicitly balance all three scores. Third, using the GA
objective functions with penalties for unstable pairs seems to yield the best,
i.e., most balanced solutions. The GA-S-WP optimization yields the best stable
solutions with respect to welfare and which are almost as fair as the average
FE solutions, whereas GA-S-FP optimization yields almost perfectly fair solu-
tions without considerably decreasing the welfare score of the solution. Hence,
the choice of the proper objective function depends on the specific application
scenario, i.e., whether welfare or fairness are considered to be more important.

5.4 Summary

The results discussed in the previous sections give valuable insight in the gains
by using heuristics to solve two-sided matching problems with ties in preferences,
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and the potential trade-offs between performance metrics. Given the research
questions in section 1, we can derive the following statements:

1. The GA can find solutions that are significantly better than the average
solutions provided by DA, WO and FE.

2. Optimizing only one metric can be detrimental to performance considering
the other metrics, whereas objective functions focusing on two performance
metrics yield the best, most-balanced results considering all metrics.

6 Conclusion and Future Work

With the widespread use of electronic platforms in various domains, the consid-
eration of non-monetary allocation mechanisms becomes increasingly interesting
and necessary. Such allocation mechanisms are particularly relevant for scenar-
ios where users are embedded in a social network, which might elicit significant
non-monetary incentives on sharing. In this paper we study two-sided matching
for the allocation of resources based on preference rankings rather than mon-
etary valuations. As the standard algorithms rely on the assumption of strict
preferences and cannot guarantee the best solution(s) in the presence of prefer-
ence ties, we studied the applicability of a Genetic Algorithm as a heuristic to
compute potential solutions to the two-sided matching problem.

Our results show that heuristics with appropriate objective functions can
yield superior solutions to the solutions of standard algorithms. Furthermore,
that objective functions with a penalty for unstable pairs are effective in com-
puting stable matches that simultaneously perform well with respect to welfare
or fairness. Depending on the scenario, we could significantly increase the quality
of a match, but still retain a computationally efficient procedure.

To increase the validity of the (simulation) results, firstly we will study the
effect of real-life preferences on the robustness of the results by using friend-
list-based preference groups from social network platforms (e.g. Facebook) and
manually specified preferences for comparison to the random preferences in this
paper. Secondly, we will investigate strategy-proofness to determine if users can
benefit by misrepresenting their preferences. Thirdly, we will study additional
heuristics and compare their performance with the results of the GA.
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6. Halldórsson, M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxima-
tion results for the stable marriage problem. ACM Transactions on Algorithms
(TALG) 3(3), 30 (2007)

7. Kimbrough, S., Kuo, A.: On heuristics for two-sided matching: Revisiting the stable
marriage problem as a multiobjective problem. In: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, pp. 1283–1290. ACM (2010)

8. Nakamura, M., Onaga, K., Kyan, S., Silva, M.: Genetic algorithm for sex-fair sta-
ble marriage problem. In: 1995 IEEE International Symposium on Circuits and
Systems, ISCAS 1995, April- May 3, vol. 1, pp. 509–512 (1995)

9. Gale, D., Shapley, L.: College admissions and the stability of marriage. In: Ameri-
can Mathematical Monthly, pp. 9–15 (1962)

10. Erdil, A., Ergin, H.: Two-sided matching with indifferences. Unpublished mimeo,
Harvard Business School (2006)

11. Erdil, A., Ergin, H.: What’s the matter with tie-breaking? improving efficiency in
school choice. The American Economic Review 98(3), 669–689 (2008)

12. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

13. Knuth, D.E.: Stable Marriage and Its Relation to Other Combinatorial Problems:
An Introduction to the Mathematical Analysis of Algorithms. CRM Proceedings &
Lecture Notes, Centre de Recherches Mathématiques Université de Montréal, vol.
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Abstract. Efficiently scheduling tasks in hybrid Distributed Computing
Infrastructures (DCI) is a challenging pursue because the scheduler must
deal with a set of parameters that simultaneously characterize the tasks
and the hosts originating from different types of infrastructure.

In this paper we propose a scheduling method for hybrid DCIs, based
on advanced multi-criteria decision methods. The scheduling decisions
are made using pairwise comparisons of the tasks for a set of criteria
like expected completion time and price charged for computation. The
results are obtained with an XtremWeb-like pull-based scheduler simu-
lator using real failure traces from [1] for a combination of three types of
infrastructure. We also show how such a scheduler should be configured
to enhance user satisfaction regardless their profiles, while maintaining
good values for makespan and cost.

We validate our approach with a statistical analysis on empirical data
and show that our proposed scheduling method improves performance by
12-17% compared to other scheduling methods. Experimenting on large
time-series and using realistic scheduling scenarios lead us to conclude
about time consistency results of the method.

1 Introduction

The requirements of parallel applications in terms of processing power and sto-
rage capacities is continuously increasing, pushed by the gigantic deluge of large
data volume to process. Meanwhile, scientific communities and industrial compa-
nies can choose between a large variety of DCIs to execute their Grand Challenge
applications. Examples of such infrastructures are Desktop Grids or Volunteer
Computing systems which can gather a huge number of volunteer PCs at al-
most no cost, Grids which assemble large number of distributed clusters and
more recently, Cloud infrastructures which can be accessed remotely, following
a pay-as-you-go pricing model. All these infrastructures have very different cha-
racteristics in terms of computing power, cost, reliability, power efficiency and
more. Hence, combining these infrastructures in such a way that meets users’
requirements raises several scheduling challenges.

J. Altmann, K. Vanmechelen, and O.F. Rana (Eds.): GECON 2013, LNCS 8193, pp. 161–172, 2013.
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The first challenge concerns the middleware which allows the assemblage of
hybrid computing infrastructures. The pull-based scheduler, often used in Desk-
top Grid computing, relies on the principle that the computing resources pull
tasks from a centralized scheduler. Because of their desirable properties, such as
scalability, fault resilience, low deployment cost, pull-based schedulers are widely
used for assembling hybrid DCIs. For instance, GridBot [2] puts together Super-
link@Technion, Condor pools and Grid resources to execute both throughput
and fast-turnaround oriented BoTs.

The second challenge is the design of scheduling heuristics which efficiently
use hybrid DCIs, given that computing resources are highly heterogeneous and
infrastructures might be elastic and subject to failures. In our previous work [3],
we proved that a multi-criteria non-parametric decision model like Promethee
[4] can make a pull-based scheduler to be efficient, but for one infrastructure
as target at a time: Internet Desktop Grid (IDG), Best Effort Grid1 (BEG) or
Cloud. However, up to now, we did not know whether such an approach would
work with hybrid DCIs.

In this paper we introduce the work of investigating the performance of a pull-
based scheduler employing a decision model like Promethee, considering a mix of
several types of infrastructure. When working with Promethee, the challenge [4]
is to properly define the preference function used by the decision model in order
to incorporate both the technical properties of the infrastructures and the
user requirements. We evaluate our approach by using the standard scheduling
metrics - makespan and cost, and also by analyzing the user satisfaction gained
at the completion of her BoT. We show how a system designer can empirically
configure the scheduler to put more emphasize on criteria that are important
from their own perspective.

The remaining of this paper is structured as follows. In section 2 we give
the background for our work, in section 3 we discuss the evaluation methodo-
logy, then present the results obtained through a mix of experimentation and
simulation. In section 4 we synthesize related work, then conclude and present
interesting future work in section 5.

2 The Scheduling Context

In this section we describe the scheduling problem with hybrid DCIs, the archi-
tecture of the scheduler and the insights of the Promethee method.

2.1 The Scheduling Problem Definition

In our context we consider users submitting BoTs to a centralized pull-based
scheduler, responsible with a mix of infrastructures: IDG, BEG and Clouds.

1 BEG: an infrastructure or a particular usage of it (like OAR [5]) providing unused
computing resources without guaranteing their full availability to user, during the
complete execution of his application [6].
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Fig. 1. Schematic architecture of a hybrid DCI with pull-based scheduler

Each computing resource from the above mentioned infrastructures have differ-
ent characteristics in terms of computing power, reliability, cost, power efficiency,
and trust. For instance, Internet volunteer desktop PCs could be considered as
free of charge but insecure and unreliable, while a Cloud node can be costly but
more secure and reliable.

Users usually expect good performance but they are also concerned about
other issues like cost, confidence and environmental footprint of the infrastruc-
ture. Thus, the scheduling problem translates into finding the best usage of the
infrastructures that meets user’s preferences, expressed by multiple criteria.

2.2 Scheduler Architecture

Figure 1 depicts the schematic architecture of our scheduler for hybrid DCIs. In
order to keep the discussion clear and simple, we omitted additional middleware-
specific interfacing levels between users, the scheduling system and DCIs, which
naturally occur in real systems. Hence, a user submits a bag of work units to
the scheduler and receives after a while the corresponding results. During the
execution, for each work unit, the scheduler creates at least one task and adds it
to a priority queue. When a host from a particular type of DCI pulls work, the
scheduler calls the multi-criteria decision component (MCD) to select a task. The
scheduler maps this task to the pulling host, which, after completing the execu-
tion will return a result. The MCD component is responsible for the scheduling
decisions by using the Promethee multi-criteria decision model.

Our scheduler is a centralized component, based on the pull communica-
tion model between the master and worker components. The rationale behind
this design option is the requirement for elasticity and adaptability to structure
disruptions that characterize IDG environments. This model allows complete in-
dependence of all system components [7]. The pull model allows clients to have
the contact initiative, which overcome the real issue of connecting to volunteers
residing behind firewalls [8] or other security components.

In our model, when a host becomes available (either because it (re-)joins the
system or after completing a task execution) it contacts the scheduler in order to
receive a new task. We denote with Hpull such a host. This approach is efficient
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[9] since in IDGs, hosts contact the server quite seldom. More, if embedded into
a real middleware, such a scheduling component becomes more scalable, since
the master is relieved from keeping track of workers’ state.

Due to the use of the pull model, the structure of the system and the sche-
duling process are driven by the behavior of participating hosts. As discussed
above, in our implementation there are two situations when a host pulls work:
either when it (re-)joins the system, or right after returning the result for a com-
plete task. In the current context, a host leaves the system without preventing
the scheduler. When this happens, the scheduler maps, after a while, the failed
task to another pulling host. Obviously, such disruptions degrade the execution
performance of a BoT and they are more likely to occur in IDGs.

2.3 The Promethee Method

Our scheduler relies on the Promethee method to map a task to a pulling host.
When called, the MCD component computes a complete ranking of the tasks,
from which, the scheduler maps the best ranked one to the current Hpull. In the
following we shortly describe how the scheduler uses Promethee for task selection
and highlight the challenges of this approach.

Promethee[10] is a multi-criteria decision model based on pairwise compa-
risons, which outputs a ranking of the tasks. This method considers a set of
criteria C = {cic ; ic ∈ [1, Nc]} to characterize tasks. Such criteria can be host
dependent or independent. In our case, we consider ECT (the expected comple-
tion time) of a task and the price charged by Hpull to execute the task. When
designing a real system, one is free to put her own relevant criteria in C. In
addition, we set weights of importance for each criterion, W = ωic(cic), so that∑Nc

ic=1 ωic(·) = 1.
For each task tit and criterion cic the method computes a real value aic,it ,

representing the evaluation of the task within the respective criterion. To com-
pare two tasks within a criterion the method inputs the tasks’ evaluation values
into a preference function which calculates a dominance (preference) relation
between tasks. As indicated by the literature[4], we use the following preference
functions Linear, Level, Gaussian, defined below:

PLinear(dic) =

{
dic

σ if dic ≤ σ
1 otherwise

(1)

PGaussian(dic) =

{
1− e−

dic
2

2σ2 if dic > 0
0 otherwise

(2)

PLevel(dic) =

⎧⎨
⎩

0 if dic < q
1
2 if q ≤ dic < p
1 if dic ≥ p

(3)
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where:

– dic is the deviation between the evaluations of two tasks within a criterion
cic : dic(t1, t2) = aic,1 − aic,2;

– σ is the standard deviation of all differences dic ;
– q is the degree of indifference; any deviation below q leads to considering t1

and t2 equivalent;
– p is the degree of preference; any deviation greater than q gives a strict

preference, either 0.5 (for deviations between q and p) or 1.

A criterion ic can be considered either max or min in the sense that the scheduler
will prefer a higher evaluation on that criterion to a lower one, or the viceversa. If
a criterion ic is max/min, and dic(t1, t2) is negative/positive, then P(.)(dic (t1, t2))
is 0. When comparing two tasks t1 and t2, the aggregated preference within all
criteria is computed by applying the weights ωic to the values P(.)(dic ).

When adapting Promethee to our scheduling problem with the Level pre-
ference function, we shall set the values for q and p in order to optimize the
considered evaluation metrics of the scheduler. In subsection 3.2 we present a
comprehensive discussion on this topic.

Further, Promethee computes the outranking flows, defined in [4] as: the pos-
itive outranking flows φ+(a), representing how many times a task outranks (is
preferred to) all others and the negative outranking flows φ−(a), showing how
many times a task is outranked by other tasks. So, the higher the φ+(a), the
better. Finally, the net outranking flow φ(a) = φ+(a) − φ−(a) gives the final
ranking of the tasks. Thus, the higher the net flow, the better the task.

2.4 Tasks Evaluation Criteria

All tasks waiting in the priority queue at scheduler are evaluated against the
following criteria:

ECT: the expected completion time of ti, which is evaluated based on the
computing power of Hpull and the number of instructions (NOI) of ti, so

ECT(ti) = ε× NOI(ti)

CPU(Hpull)
(4)

We apply a delayfactor ε > 1, in order to create realistic scenarios in which a
fraction of all hosts complete later than expected. ε may have great values for
IDG, or it can be 0 for Cloud.

Price: a task ti is assigned a price 0 when Hpull is from IDG or BEG, meaning
that the computation is free of charge; if the host is from Cloud, the evaluation
is the price charged by Hpull for executing ti.

Once the task evaluation phase is complete, the MCD component is executed,
then the best ranked task is mapped to Hpull.

3 Experiments and Results

To validate the model presented in section 2 we implemented a scheduler, and
tested it in a realistic XtremWeb-like simulator fitting the architecture depicted
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Table 1. Computing power and price values for different types of infrastructure

DCI
type

Computing power
(instructions/ second)

Price charged by host (monetary
units/sec., univ. distrib.)

IDG {50, 100, 150, 200, 250, 300, 350, 400} 0

Cloud {250, 300, 350, 400} {0.001, 0.005, 0.0075, 0.01}
BEG {50, 100, 150} 0

in figure 1. The scheduler accepts pull work requests from three types of in-
frastructure: IDG, Cloud and BEG. The behavior of these infrastructures is
simulated by a component that consumes events created from real availability
traces[11], downloaded from the public FTA repository [1]. In the following we
describe the traces used in our experiments.

– IDG: For Internet Desktop Grid, we use BOINC failure traces, characterized
by highly volatile resources. The traces contain 691 hosts observed during a
period of 18 months, starting from 2010.

– Cloud: We use Amazon spot instance traces containing 1754 hosts observed
during 2011. These resources are very stable.

– BEG: We use Grid5000 traces with host join/leave events for a period of
12 months during 2011 from the following sites: Lyon, Grenoble, Bordeaux
and Lille, capturing the activity of 2256 hosts. Analyzing the trace files we
observe that the resources are quite stable, only small groups of machines
going off all a once for approximately a small number of hours.

In table 1 we describe the key parameters of the hosts for considered DCIs.
The workload used in all experiments is a bag of 2000 tasks with uniformly

distributed size between 105 and 106 operations, lasting between 0.5 − 2 hours
on the various host types presented above.

3.1 Evaluation and Metrics

For the evaluation of the scheduler performance we use the following metrics:
makespan, cost and Θ.

Makespan (M) denotes the time interval needed for the completion of a BoT,
and it is computed as difference between the time of the last received result and
the first task scheduling.

The cost (C) indicates the total cost in monetary units accumulated during
the execution of a BoT.

To measure the user satisfaction, in eq. 5 we define the aggregated objective
function Θ. Given that a system designer can configure the scheduler using a
set S of configurations, Θ shows the relative satisfaction perceived by a user
submitting for execution a BoT, for a scheduler configuration i from S.

Θi(M,C) = wm × Mmax −Mi

Mmax −Mmin
+ wc ×

Cmax − Ci

Cmax − Cmin
(5)
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Table 2. Descriptive statistics of the makespan distributions for each method

Method Mean (STDEV) Difference (%) The p-values2

Linear 367540,26 (104523,14) 0 0,190 (> 10%)
Level 414840,79 (110604,18) +12,86 0,466 (> 10%)
FCFS 432419,97 (118178,69) +17,65 0,831 (> 10%)

where Mmax, Cmax represent the maximum value of makespan and cost obtained
for the BoT execution in all configurations within S, Mmin, Cmin represent the
minimum value of makespan and cost obtained for the BoT execution in all
configurations within S, and wm and wc are the weights of importance from the
user perspective over makespan and cost. While a higher wm and a lower wc

denote a user which is more satisfied by a faster but costly execution, a lower
wm and a higher wc indicate that the user wants a slower but cheaper execution.

3.2 Tuning the Scheduler to Enhance Performance

In this section we present the performance of our scheduler compared with other
scheduling strategies and we show how Promethee can be configured to leverage
the performance of the scheduler. Here we are interested in makespan and we
do not consider the user-related metrics (cost and Θ).

First we compare our scheduler using Level and Linear preference functions
described in subsection 2.3 and a First−Come−First−Served (FCFS) schedu-
ler. We omitted the Gaussian function as its performance is very close to Linear.
Table 2 presents the descriptive statistics regarding makespan distribution after
scheduling the same BoT 120 times with each method.

We note that in terms of average execution times, the Linear function obtains
a 12,86% lower makespan than Level, and 17,65% lower makespan than FCFS.
Figure 2 depicts the empirical cumulative distribution functions (CDFs) of the
execution times for the three methods. The Y-axis depicts the values of the CDF
function F (M) of the makespan M , showing the probability that the makespan
records values lower than the scalar on the abscissa. We observe that the Linear
function strictly dominates the other two methods, in the sense that FLinear >
FLevel and FLinear > FFCFS for all values on the abscissa. We also tested the
dominance of the Linear method over the Level and FCFS using the t− test
for the equality of means in two samples and the Levene’s test for equality
of variances in two samples with 99% confidence level, and the results are the
same. Statistical tests show a weak dominance of Level over FCFS, therefore
we conclude that the Promethee scheduling is superior to FCFS.

When using the scheduler with the Level function, an interesting and cha-
llenging issue is how to set the indifference and preference thresholds, q and p.

2 P-values are computed for the Kolmogorov-Smirnov test of normality under the null
hypothesis is that the distribution of makespan is Gaussian.
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Fig. 2. Stochastic dominance of the Linear method with respect to the FCFS and
Level methods

We observed that the values of q and p impact on makespan. Therefore, we con-
ducted an empirical study to find values for q and p that minimize the makespan
obtained with Level. If σ is the standard deviation of the evaluations of tasks
(within criterion cj) before making a scheduling decision, q and p can be mapped
in a orthogonal space according with the following formulas: q = p × y and
p = σ × x.

Figure 3a depicts the makespan surface resulted from scheduling the same
BoT with different Level configurations, by varying x and y. Points of the surface
are averages of 120 observations. Darker areas are obtained for low makespan
values (darker areas) are obtained for particular values of x and y only. However,
many other combinations of values from the solution search space yield a 20%
higher makespan (see brighter surfaces and peeks). Consequently, when designing
a scheduler, x and y seem to be worth optimizing. To sum up, we can say that
such a preference function may be hard to use in practice because it needs
optimization for a given context. It is out of the scope of this work to discuss a
method of optimum search for the Level function. In all our experiments with
the Level function we used q and p such that we obtain the best makespan.

In what follows, we are concerned about how overloaded is the scheduler when
making the decision with various preference functions. In figure 3b we present
real execution time measurements of the scheduling component captured during
experimentation for the completion of a BoT, in the same experimental setup
as above, with Linear, Level and Gaussian preference functions. The graph
clearly shows that Gaussian is significantly more CPU-consuming, compared to
Linear and Level functions. Consequently, although the Linear and Gaussian
functions yield very similar performances in terms of makespan, when designing
a real system one should consider the Linear function due to its efficiency in
terms of execution time.
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(a) Makespan surface for different configu-
rations of the Level function.

(b) Real execution time measurements of
the Promethee-based scheduling compo-
nent during the execution of a BoT.

Fig. 3. Makespan and execution time measurements

3.3 Advanced Scheduling Scenarios

In this subsection we present how the scheduler should be configured to yield
good values for the user satisfaction metric Θ. We aim at finding the combi-
nations of importance weights ωic for criteria ECT and price, and the sche-
duler configuration that maximizes user satisfaction regardless the user profile
(wm, wc). We consider four configurations: MaxMaxCfg, MaxMinCfg, MinMaxCfg,
MinMinCfg, in each, the scheduler is either interested in maximizing or minimi-
zing the ECT or price. For each configuration we let ωECT and ωP vary from
0.9 to 0.1 with a 0.1 step. We omit 1 and 0 values since this would not mean a
multi-criteria decision any more. Thus, on each configuration we have 9 possible
settings of the Promethee method by combining ωECT and ωP .

Figure 4 presents the user satisfaction Θ for the considered configurations. On
the X-axis we have 11 user profiles obtained by varying wC and wM from 1 to 0
(100% to 0%) with a 0.1 step. While the left-hand side of the figures depict cost-
oriented user profiles, the right-hand side represent makespan-oriented profiles.

We notice that the best scheduler configurations are MaxMaxCfg and MaxMinCfg
with ωECT ≥ 0.7, where high levels of satisfaction are obtained, regardless of
the user profile. We notice that in MaxMinCfg we obtain the highest and more
stable user satisfaction. Therefore, it is worth scheduling with higher priority
the longer tasks and if possible on cheap infrastructures. We also notice that
for the MinMaxCfg setup the scheduler yields worst performance. Analyzing the
absolute values for this setup, we found the highest makespan and cost. In the
MinMinCfg setup we observe that good satisfaction levels are obtained only for
the cost-oriented user profile.

In this subsection we showed how can one select the best configuration of the
Promethee method for a certain hybrid DCI, and these experiments should be
repeated given that the parameters of the infrastructures change.
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(a) MaxMaxCfg (b) MaxMinCfg

(c) MinMaxCfg (d) MinMinCfg

Fig. 4. User satisfaction for various user profiles and configurations of the scheduler

4 Related Work

The European FP7 projects EDGeS[12] and EDGI[13] are representative exam-
ples of hybrid DCIs which mixes Clouds, Grids and Desktop Grids. These projects
have developed bridge technologies to allow BoT workflow to flow from Grid in-
frastructures to Desktop Grid. The SpeQuloS [14] system, developed in the con-
text of EDGI, uses private Cloud resources to provide quality of service to BoT
applications executed on Desktop Grid. In contrast, our work allows a broader
range of usage optimization of hybrid DCIs such as cost minimization.

GridBot [2] represents a first solution to combine several grids in a monolithic
platform for large-scale execution of grids, emphasizing on replication to handle
the job failures on DCIs. GridBot scheduling is policy-based, but considers a
fixed set of scheduling criteria.

Iosup et al. [15] employ a performance analysis of BoTs scheduling on large-
scale cluster infrastructures, given that multiple users submit simultaneously
BoTs to the system and the scheduling is driven by several policies. Kim [16]
presents multi-criteria scheduling of bag-of-tasks in order to reduce the power
consumption at the infrastructure level, while preserving the agreed SLA over
the whole bag-of-tasks. Muthuvelu et al. [17] works on deciding the granularity
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of tasks composing the BoTs towards economically and efficient usage of grid
resources, while satisfying the user QoS requirements. Users own a limited budget
for the execution of the BoTs and they also have a deadline constraint. Dealing
with cloud resources, Oprescu et al. [18] design a budget-constraint scheduler
for BoTs, estimating the costs and the makespan for various scenario before
executing the user-selected schedule.

However, the previously mentioned work only consider single DCI, while our
work addresses the issues of using hybrid DCIs. In addition, because our evalua-
tion include IDG, which suffer from a high volatility of the computing resources,
we take into consideration fault tolerance in our scheduling strategies.

5 Conclusion and Future Work

In this work we introduced the work of investigating our pull and Promethee
based scheduler for complex scenarios based on hybrid DCIs. We validated our
scheduler using three types of infrastructure: Internet Desktop Grids, Cloud and
Best Effort Grid. Our aim was to find the proper configurations of the Promethee
method in order to minimize the makespan and cost for the execution of a BoT
and increase user satisfaction. For this we conducted a statistical analysis in
order find an efficient preference function in terms of makespan. Therefore, we
found that the Linear function performs best, compared to other functions from
the decision-models literature and First-Come-First-Served scheduling. We also
found that Linear is less CPU-consuming compared to others (due to its lower
complexity).

Analyzing the user satisfaction, we concluded that it is worth scheduling the
longer tasks on more expensive and reliable infrastructures at the beginning of
the BoT execution. This approach yields high and constant user satisfaction
regardless the user profiles.

In future-work we plan to add new criteria in our scheduler (like the error
rate of hosts) and make it more sensitive to other user requirements. We also
intend to study the effectiveness of the scheduler by letting multiple users to
simultaneously submit BoTs. We also plan to integrate the scheduler within the
XtremWeb middleware, enlarging its infrastructure coverage.

Acknowledgments. This work was partly supported by grant POSDRU/89/
1.5/S/63663.We also thank our colleague Darie Moldovan for his help concerning
graphs and data interpretations.
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Abstract Cloud computing has the potential to improve resource effi-
ciency by consolidating many virtual computers onto each physical host.
This economization is based on the assumption that a significant per-
centage of virtual machines are indeed not fully utilized. Yet, despite the
much acclaimed pay-only-for-what-you-use paradigm, public IaaS cloud
customers are usually still billed by the hour for virtual systems of un-
certain performance rather than on the basis of actual resource usage.
Because ensuring and proving availability of defined performance for col-
located multi-tenant VMs poses a complex technical problem, providers
are still reluctant to provide performance guarantees. In lack thereof, pre-
vailing cloud products range in the low price segment, where providers
resort to overbooking and double selling capacity in order to maintain
profitability, thereby further harming trust and cloud adoption. In this
paper we argue that the predominant flat rate billing in conjunction
with the practice of overbooking and its associated mismatch between
actual costs and billed posts results in a substantial misalignment be-
tween the interests of providers and customers that stands in the way
of trustworthy and sustainable cloud computing. On these grounds, we
propose a hybrid IaaS pricing model that aims to avoid these problems in
a non-technical fashion by shifting to consumption based billing on top
of credible minimum performance. Requiring only measures that can be
obtained with a low degree of technical complexity as well as a moderate
amount of trust, the approach aspires to be more sustainable, practica-
ble and billable than common practice even without the use of complex
should-I verifiability.

1 Introduction

Virtualization enables cloud providers to run many virtual machines on each
physical host. Compared to running the same number of smaller physical ma-
chines, unitizing, i. e. selling portions of hosts, can already provide savings in
terms of power, space, hardware and maintenance costs. But even when, in ab-
solute terms, a unitized host is booked out it may be far from busy. This is due
to the fact that a significant percentage of users do not utilize their purchased
CPU capacity to the full. The possibility to overbook hosts, i. e. optimistically sell
more compute capacity than is actually available, promises additional revenue.

On occasion, e. g. [8], this overbooking practice is compared to the kind of
overbooking exercised by airlines: Airlines sell more tickets than are seats avail-
able on the airplane, based on the assumption that a well predictable percentage
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of passengers will cancel or not show up. By way of overbooking, a higher utiliza-
tion can be achieved. Yet, despite some similarities, there are distinct differences
in overbooking practice between cloud providers and airlines:

– In the event that their prediction fails and not enough seats are available, the
airline will first attempt to find volunteers that surrender their reservations
in exchange for agreed benefits or failing that, refund or re-route as well as
compensate passengers.

– If a flight was overbooked and not enough seats are available, this will become
obvious during boarding at the latest.

– In many regions the rights (e. g. to compensation) of flight passengers are
protected.

In contrast, a cloud customer cannot easily learn from resource shortages due
to overbooking. Cloud providers are reluctant to share information about per-
formance problems and rather have customers submit corroborated complaints
[2,4]. Moreover, performance guarantees are commonly limited to mere reacha-
bility. A cloud customer may suspect degraded performance; but to be sure he
would generally have to interrupt his workload and run a benchmark. But even
then, he has no way to determine whether the host his VM is running on has
been overbooked. Surprisingly, even for the provider, it is, for a virtualization
host under full load and with overbooking in effect, non-trivial to tell which of
the VMs receive their full nominal resource share: As long as the collective load
of all VMs stays below the host’s overall capacity, all VMs are sufficiently iso-
lated from one another and overbooking may not necessarily induce substantial
service degradation [18]. However, at the latest as soon as host capacity is uti-
lized to the full, isolation breaks down and some customers will likely not receive
their promised performance [15]. In this case it is hard to tell which VMs should
have received more CPU and which ones were actually idle [22]. Although a
mechanism for verifiable resource accounting has been proposed in theory, sev-
eral practical issues (e. g. performance impact and overhead of the monitoring
framework, accidental leakage of private information) remain unresolved [22].

Yet, despite these difficulties in determining whether a VM was offered a
certain performance, the predominant IaaS billing model is still flat, i. e. time
based, creating a mismatch between actual costs and billed posts that results in
a substantial misalignment between the interests of providers and customers.

Instead of revealing their business models and adapting offered cloud products
to match actual costs, providers do overbooking in the dark and pretend to not
care about work loads. As a consequence they are very reluctant to giving any
performance guarantees1 despite this is what customers have desired for a long
time [11]. Uncertainty and secrecy create a state of mistrust that further inhibits
cloud adoption.

In this paper we propose an alternative cost model that tries to avoid several of
these problems by aligning interests in the IaaS market and turning the current
model into a more cooperative one.
1 Commonplace statements, a virtual machine in a cloud product would match the

performance of some reference system, are meaningless in lack of any guarantees.
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The remainder of this paper is organized as follows: The following section
takes a game theoretic approach to model the status quo as an asymmetric non-
cooperative simultaneous game, exploring optimal strategies and global conse-
quences. In Section 3, our new cost model is presented. Section 4 deals with the
technical implementation of the model, particularly monitoring. Finally, Sec-
tion 5 points out related work and Section 6 concludes the paper.

2 Status Quo Analysis

Starting from a brief discussion of flat rates and their application to cloud com-
puting, we now model current billing practice from a game theoretic view to
highlight the problems associated with this model.

2.1 Flat Rates

In order to maintain competitiveness of service providers of all trades, it has
long been imperative to multiplex key resources between multiple customers.
Hence, besides direct costs of operation (e. g. energy consumed in the process of
serving a customer) specifically the proportional usage of means, e. g. expensive
hardware, is a key factor for profitability. Clearly, the more customers can be
served per monetary unit of means, the more profitable is the service provider.
Where the cost varies significantly subject to customer behavior, it stands to
reason to pass the usage associated costs on to the customer. Where the ex-
pected total utilization is self-limited or of subordinated economic impact a flat
rate may be feasible instead. The latter particularly applies to services where
human physiology limits consumption, e. g. all-you-can-eat buffets, free refills,
or free phone calls2. In the last decade, Internet service providers (ISPs) have
adopted the flat rate phone model for consumer Internet access. In the early
years of the world wide web, consumer Internet traffic used to be dominated
by the manual downloading of web pages (“surfing the web”) and thus limited
to human screen hours. However, with the advent of peer-to-peer file sharing, a
large portion, temporarily even the lion’s share of consumer Internet traffic, is
non-interactive bulk traffic [21]. As such, it is not anymore limited by human
physiology. Confronted with the consequences, ISPs are already starting to back
away from the flat rate model3.
2 American phone companies have been offering flat rate service options effectively

since the invention of the telephone in 1876, based on the rationale, that a human can
spend only so much time on the phone. While in principle it is possible to establish
a phone connection and then not use it, there is little benefit in it. On the contrary,
not being able to receive other calls in the mean time constitutes a disadvantage
that depreciates such practice. Accordingly, in [26] phone calls are associated with
both a benefit, modeled as a logarithm of call duration, and an opposed opportunity
cost, directly proportional to call duration.

3 The breaking of the flat rate model can currently be observed in Germany, where
the Deutsche Telekom has recently decided to cap its flat rate in response to soaring
data demand [5].
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Still public IaaS cloud providers are selling CPU flat fees as if they did not
care about consumption while at the same time hiding overbooking practice. Cus-
tomers are usually billed by the hour for virtual systems of specified performance,
no matter how they utilize them. However, at the latest since the introduction
of the decentralized currency bitcoins (BTC) [19], compute capacity has a direct
(however small) minimum benefit in money’s worth. Apart from that, by now
there exist hundreds of volunteer computing projects, such as Folding@home [6],
where excess compute capacity can be put to charitable use, providing a reputa-
tional benefit for corporates and individuals. But even without a direct reward,
idling his virtual CPU may not be a cloud consumer’s best option, as will be
shown below.

2.2 Strategic Analysis

We now model this situation from a game theoretic view to determine what
consequences can be drawn, both from the perspective of the cloud users and
from that of the provider: Let r, c be the revenues and costs, respectively, of a
cloud provider who lets her host, unitized to several consumers, initially without
overbooking. Let x be the benefit the cloud consumers get from running their
VMs unimpeded. This basic state is represented by the top-right cell (idle, don’t
overbook) of Table 1, showing a payoff matrix with all possible outcomes.

Table 1. Payoff matrix. The columns represent the provider’s choice to overbook
(b > 1) or not (b = 1); the rows represent the consumers’ disposition of spare capacity,
i. e. leaving it unused, monetizing it, or using it to verify VM performance.

provider
overbook don’t

consumers
idle x− δ, bidle · r − (c+ u) x, r − c

monetize x− δ + ε, bbusy · r − (c+ u) x+ ε, r − (c+ u)
benchmark x− δ + ρ, bbusy · r − (c+ u)− ρ x, r − (c+ u)

Since the consumers’ workload is assumed to contain substantial idle times,
the provider may decide to overbook her host by a factor of bidle > 1, in which
case her revenue is multiplied4 and her expenditures are augmented slightly by
additional resource usage dependent costs u > 0. In this case, the performance
of the customers’ VMs may be affected and their benefit x diminished by dis-
turbance δ, 0 < δ < x, as shown in cell (idle, overbook).

On the other hand, the consumers may decide to use their idle capacity to per-
form other work, earning them additional profit ε > 0. Because of the increased
load the provider’s ability to overbook is reduced to bbusy, 1 ≤ bbusy < bidle,
shown in cell (monetize, overbook).
4 While in theory higher values of b result in higher profit for the provider, we note

that there exists a limit as to what associated disturbance δ consumers will tolerate
[10] and accordingly limit b in our analysis to some arbitrary tolerable value.
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Alternatively, the consumers may run benchmarks that may prove they did
not receive full performance, in which case the provider reimburses them with
ρ, shown in cell (benchmark, overbook).

Irregardless of whether the provider overbooks, the consumers can always
achieve an equal or better outcome by either monetizing or benchmarking, i. e.
their strategy to idle is weakly dominated.

If the compensation ρ is higher than the additional revenue, i. e. ρ > (bbusy −
1)r, the provider is pressed to quit overbooking in case the consumers do bench-
mark. Otherwise, the provider’s strategy to overbook is strictly dominant.

For ε ≥ ρ the consumers strategy to monetize is strictly dominant.
For the more general case, the consumers’ and the provider’s best responses

are interdependent. The provider’s mixed strategy, specifically the probability
to overbook, σo, that makes the consumers indifferent is determined by equating
the expected utilities of monetizing, EUm, and benchmarking, EUb:

EUm = σo(x− δ + ε) + (1− σo)(x+ ε) = x− σoδ + ε

EUb = σo(x− δ + ρ) + (1− σo)x = x+ σo(ρ− δ) (1)

EUm = EUb ⇒ σo =
ε

ρ
.

Likewise, the consumers’ mixed strategy, i. e. the probability to benchmark, σb,
that makes the provider indifferent is determined by equating the expected util-
ities of overbooking, EUo, or not, EUd:

EUo = σb (bbusyr − (c+ u)− ρ) + (1− σb) (bbusyr − (c+ u))

= −ρ σb + bbusyr − c− u

EUd = σb (r − (c+ u)) + (1− σb) (r − (c+ u)) = r − c− u (2)

EUo = EUd ⇒ σb =
(bbusy − 1)r

ρ
.

This results in a mixed strategy Nash equilibrium at〈
σb =

(bbusy − 1)r

ρ
, σo =

ε

ρ

〉
. (3)

This means, the lower the compensation ρ is, the higher is the probability of
the provider overbooking and the more benchmarking the consumers must do to
avoid the overbooking-incurred performance penalty δ. For ρ ≤ ε the consumers
cannot keep the provider from overbooking but should at least monetize their
idle capacity. Note that under no circumstances the consumer is well advised
to leave it unused because that would not only get him neither monetization
nor compensation but also ensure the performance penalty from inevitable over-
booking. In fact, even by keeping the CPU busy with arbitrary nonsensical com-
putations, will he lower the probability of the provider further overbooking the
busy machine, and may thus get better performance once he needs it.

Ironically, the strategy to idle is the only one that would make the cloud more
resource efficient than classic computing. Instead, the billing practice, if purely
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Fig. 1. Vicious circle of flat rate billing and overbooking

economically responded to, results in a situation where, rather than improving
resource efficiency, the cloud is occupied by performing wasteful tasks that would
not be performed without cloud computing. It is another instance of the tragedy
of the commons [12], signifying that shared resources of value that can be utilized
at no cost will reliably lead to exhaustion of these resources.

Unfortunately, the situation will likely not remedy itself, as the actions appear
to be self-reinforcing. A causal loop diagram of the underlying vicious circle is
shown in Figure 1. Following the notation of [24], “R” denotes a positive rein-
forcement loop whereas negative reinforcement (or "balancing") is labeled “B”
and accompanied with green arrows annotated with a minus sign. As we have
shown, the flat rate billing drives utility maximizing consumers towards exhaust-
ing their idle capacity, thereby increasing load and costs for the provider, and
limiting her ability to overbook. The threat of free benchmarking, in conjunc-
tion with difficulties ensuring performance, described in Section 1, induces the
provider to limit her guarantees to bare connectivity rather than performance,
which suffers from high load and overbooking. This lowers the valuation of IaaS
cloud products compared to dedicated servers. In order to maintain profitability
she is forced resort to overbooking and double selling capacity. The inevitable
loss of trust in conjunction with the enduring absence of workable solutions to
strictly verifiable resource accounting leaves flat rate billing her only option.
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3 Proposed Solution

Despite this dilemma, we believe it takes little more than a change in perspective
and billing to align interest in the IaaS market and turn the current model into a
more cooperative one. Our goal is to break the vicious circle by coming up with
a sustainable economic model that is better balanced, technically realizable, and
more transparent and trustworthy. To this end we target the issues flat rate
billing, lack of guarantees, and overbooking.

Since it is, on the one hand, expensive to determine and prove whether a VM
receives guaranteed performance, but, on the other hand, such guarantees cannot
be avoided altogether, we propose to reduce the guaranteed performance to a
minimum that is credibly attestable with simple technical means. A provider is
thus able to collocate a high number of VMs with these minimum performance
requirements without the need for (and suspicion of) additional overbooking.
The main compute capacity is made available on a best-effort basis, billed by
CPU time. Following this approach, the cloud product is composed of

1. a flat rate part in which a certain performance is guaranteed to the customer
2. a flexible (consumption based) part in which resource usage beyond the flat

rate portion is billed.

This hybrid pricing model has several advantages:

– Consumers pay a flat fee only for the guaranteed minimum performance. All
additional CPU work is billed on a pay-for-what-you-use basis.

– Guaranteed performance is a premium that justifies a higher price than cur-
rent products, lacking SLAs, and thereby improves profitability and removes
the need to double-sell capacity through overbooking.

– Through elastic billing, providers can fully utilize host capacity without
breaching any SLAs and can thus avoid legal gray areas associated with
traditional overbooking.

– Providers will be eager to provide sufficient performance in order to increase
consumption. This alignment of interests removes pressure to expensively
prove performance availability and builds up trust.

– No CPU time is wasted with uneconomical computations, enabling the orig-
inally aspired cloud efficiency.

– Instead of constantly surveilling the ongoing capability to provide a defined
performance to all customers, monitoring is largely reduced to initial bench-
marking, ensuring availability, and recording resource consumption.

Our approach requires, on the one hand, a measure of performance and, on the
other hand, a measure of actual resource usage (work). The basis for both is
the virtualization host’s capacity, i. e. its abstract ability to perform a number
of tasks within a certain time. It depends on a wide variety of factors, includ-
ing CPU speed, architecture, memory access, storage and network bandwidths.
Clearly, different configurations will perform better at different tasks. However,
the utility and hardware abstraction aspects of cloud computing demand for dif-
ferent configurations to be made comparable, at least within application niches.
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In [7] we present such a hardware independent performance measure and show
how a virtualization host’s compute capacity C can be determined by concurrent
benchmarking. C determines the total performance

∑
P that can be guaranteed

to the entirety of consumer VMs: ∑
P ≤ C . (4)

The common measure CPU time tCPU denotes the cumulative time for which
one CPU was occupied processing the customer’s workload, including associated
overheads. Assuming for now that capacity C is reached with nCPU CPUs under
full load, work can be computed as the product of performance and CPU time,
divided by the number of CPUs

W =

∫
P dt =

C

nCPU
tCPU . (5)

4 Technical Considerations

Proving availability of performance for collocated multi-tenant VMs poses a
complex technical problem [13,15,23,9]. Our proposed approach aims to avoid
the issue by shifting the focus to consumption based billing on top of credible
minimum performance, thereby requiring only measures that can be obtained
with a low degree of technical complexity as well as a moderate amount of trust.
The specific measures required to this end will be discussed below.

4.1 Benchmarking

Through benchmarking, the total virtual performance (capacity C) of a host
is determined. In [7] we demonstrate how a hardware independent performance
quantification can be accomplished in an IaaS cloud context. To this end, several
scalable application benchmarks are run on multiple VMs simultaneously and
competing for resources. For each benchmark the VM with minimum perfor-
mance determines the benchmark score. One performance unit (PU ) is defined
as the minimum rating according to the weighted geometric mean of the indi-
vidual benchmarks on the one hand, and any explicitly defined requirements on
the other hand5.

4.2 Quota Enforcement

Using virtualization technology specific methods it must be ensured that each
VM is given its designated guaranteed amount of CPU time as well as IO and
network bandwidths. For instance, starting with libvirt6 version 0.9 it is possible
5 For example, 1PU could be defined as the conjunction of at least 2GiB RAM, 20GB

storage space, 1MB/s storage IO, 1Mbit/s LAN bandwidth, 100 kbit/s Internet
bandwidth, and a certain minimum application benchmark suite performance.

6 http://www.libvirt.org/

http://www.libvirt.org/
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to assign CPU shares and block IO weights that will determine how resources
will be distributed in face of full host utilization. Note that unless VMs compete
for resources, and the host is fully utilized, VMs are still allowed consume an
arbitrary amount of resources.

4.3 Base Portion Accounting

The flat rate or base part of the contract foresees that rigid slices of host ca-
pacity are provisioned to the consumers. At this, the billable duration results
directly from the contract, independent of actual VM usage. The host capacity
is known from benchmarking, the proper resource allocation ensured through
quota enforcement. All that remains is to verify availability of the VM during
the appointed time span. In an IaaS context, availability could, for instance, be
defined as error-free execution of the VM in conjunction with proper configura-
tion of (virtual) network devices.

4.4 Elastic Portion Accounting

For the elastic portion, the resource usage beyond the amount included in the
base portion must be recorded. This may include additional CPU time, stor-
age space, RAM, and Internet transfer volume. While the measurement of these
quantities is relatively straightforward and decidedly less costly than proving
performance availability over a period of time, certain issues must nevertheless
be regarded. [17] shows how, even without tampering with the operating system
kernel or the VM processes, a provider can still easily mount various attacks to
inflate the consumer’s CPU usage. But even in absence of deliberate attacks,
CPU time measurements of deterministic programs are sensitive to OS schedul-
ing granularity. Resource contention, such as cache misses or network congestion
may increase the computation footprint [22]. To maintain a comparable mea-
sure of work across different hardware and virtualization configurations it is
therefore essential to also measure pessimistic CPU time overhead during host
benchmarking.

4.5 Infrastructure Monitoring

Apart from the explicit measures describe above, the proper functioning and
Internet connectivity of the cloud platform infrastructure must be monitored
continuously. At this, conventional monitoring approaches can be applied.

4.6 Auditing

Several service aspects are not amenable to direct validation by the customer.
In these cases the latter has to trust the statement of a certification authority
signifying that the operation is indeed performed in accordance with regulations.
One typical example is security. But obviously, all of the measures described
above are only meaningful if performed honestly and properly, to which auditing
can be the only assurance. However, because of the better alignment of interests,
i. e. by billing work rather than performance time, the pressure to cheat, e. g.
claim nonexistent performance, is greatly reduced.
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5 Related Work

Various billing models are employed by cloud providers. In the Amazon Elastic

Compute Cloud (Amazon EC2) [2] and for Windows Azure Virtual

Machines [4] the consumer is billed by the hour, irrespective of resource usage.
Both provide only guarantees regarding external connectivity, not performance.
Customer claims including sufficient evidence to support them will result in a
partial credit of the service fee, if validated. Amazon EC2 Spot Instances [1]
facilitates resource utilization by selling their available capacity in a spot market
fashion where supply and demand determine the instance price per hour. When
the spot price exceeds a customer’s bid his VMs will be terminated. In this
way, the Spot Instances model more openly embraces resource utilization and
consequent best-effort availability; however, instances are still billed flatly by the
hour. [14] presents a pay-as-you-consume pricing scheme that, while still time
based, compensates interference between VMs using a support vector machine
(SVM) based machine learning approach. Google App Engine [3] provides a
platform for running web applications on Google’s infrastructure. The consumer
is billed by resource usage (CPU hours, data store usage, channels opened, API
calls, etc.) exceeding a minimum quota. The SLA provides partial credit for
internal server errors encountered. Their API usage based billing approach avoids
many of the problems of CPU time billing but is limited to the PaaS model. The
use of CPU time for billing a grid user is anticipated in the OGF Usage Record
by including a CpuDuration field. However these values are incomparable if the
performance of the respective resource is unknown. In [20] the need to normalize
such resource consumption values across heterogeneous resources or platforms by
way of some notion of processing power is embraced. As the first composite unit
of measurement for the use of computing resources HP envisions the computon
as “a bundle of processing power, storage, and bandwidth that can be sold and
consumed" [25]. Originally intended for their Tycoon Distributed Market-

based Resource Allocation System [16] the approach is independently
pursued in [27]. A systematic study on the trustworthiness of conventional CPU
usage metering is presented in [17]. [22] proposes a systematic approach for
verifiable resource accounting by which cloud customers can be assured that (a)
their applications indeed physically consumed the resources they were charged
for and (b) that this consumption was justified based on an agreed policy. With
ALIBI [9], a minimal, trusted reference monitor underneath the service provider’s
software platform is proposed that observes resource allocation to VMs and
reports its observations to the customers, for verifiable reconciliation.

6 Conclusion

In this paper we have surveyed prevailing IaaS product pricing practice. We
found that—despite long held public desire for pay-only-for-what-you-use billing
and better performance certainty—CPU flat rate models are still the norm,
whereas performance guarantees are still rudimentary to nonexistent. We have
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modeled the situation as an asymmetric non-cooperative simultaneous game and
explored best strategies. Under given circumstances, consumers fare worst when
not using left-over capacity. Assuming utility maximizing consumers, this leads
to a situation where the clouds are occupied with wasteful computations, fore-
stalling the promise of energy efficient cloud computing. Providers are reluctant
to give performance guarantees and instead do overbooking, while at the same
time suffering from poor trust, appreciation, and profitability, self-reinforced by
a causal loop. On these grounds, we have presented an approach to break this
vicious circle by switching to a hybrid pricing model comprised of a flat rate
part in which a certain performance is guaranteed to the customer and flexible,
consumption based part in which resource usage beyond the flat rate portion is
billed. Because of the better alignment of interests the approach manages with
simpler benchmarking, monitoring, and accounting measures instead of expen-
sive should-I verifiability, as per [22].

Future work will focus on establishing a technical proof of concept as well as
elaborating performance and work measures.
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Abstract. With the increase in computing infrastructure commerciali-
zation through the pay-as-you-go model, competition among providers
puts the user as a decision agent on which is the best provider to comply
with his/her demands and requirements. Currently, users rely on ins-
tances offered as on-demand, reserved, and spot to decide which is the
best resource allocation model over the time. In this work, we present
substantial contributions to compose a PaaS architecture that leverages
different charging models, where we propose the use of a new charging
model called time-slotted reservation. Moreover, we developed an integer
linear program (ILP) to perform the scheduling of incoming requests ac-
cording to different QoS levels, proposing a mapping of those levels into
the charging models offered by IaaS providers. Simulations show the ap-
plicability of the ILP in the proposed model, being able to maximize the
number of requisitions executed following the user’s QoS requirements.

Keywords: Cloud Computing, Architecture, PaaS, IaaS, Charging
model, Scheduling.

1 Introduction

The increase in the pay-as-you-go model in Infrastructure as a Service (IaaS)
cloud providers allowed corporations to reduce the initial capital needed for IT
infrastructure. This popularization, not coincidently, comes as both higher band-
width is available over the Internet and virtualization technologies maturates.
In this sense, IaaS cloud providers such as Amazon, GoGrid, lixiscale, Windows
Azure, and Ninefold, offer different charging models to commercialize different
types of services. One of these services is the virtual machine (VM) leasing,
where the user can choose to lease a VM from a variety of hardware configu-
rations (processor speed, processor cores, RAM, storage, and so on). The main
charging models currently available are on-demand (OD), reserved (RE), and
spot (SP), which present differences in availability and charged price.

The competition among IaaS providers puts the user as a decision agent
that selects the provider that best matches the application demands and re-
quirements. When the user has many requests with different running times and
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quality of service (QoS) requirements, it is desirable to automate the decision-
making process of choosing what type of VM, and with which charging model,
should run each request.

In general, the resource allocation problem in IaaS providers can be tackled
with two different objectives: reduce costs to the client [1][2][3] or increase the
provider income guaranteeing the user satisfaction [4][5][6][7][8]. We are inter-
ested in the first objective, i.e., reducing the running costs for the client of public
cloud providers. A good application scheduling can reduce the allocation costs,
avoiding high budgets when running applications in the cloud.

In this work, we present substantial contributions to compose a PaaS ar-
chitecture that helps customers to schedule VM requests on different public
clouds. The architecture leverages different charging models, and we propose
the use of a new charging model, called time-slotted reservation, which enables
a better utilization for leased instances in the reserved (RE) charging model.
The proposed platform supports two levels of SLA. The first SLA level governs
the interaction between the user and the PaaS, while the second level governs the
the interaction of the PaaS with a set of IaaS providers, and therefore contains
charging models in use.

We consider that the platform belongs to an organization and receives requests
for VMs to be allocated to public clouds. In this sense, the main contributions
of this work are: a) a PaaS architecture with two SLA levels; b) a new charging
model called “time-slotted reservation-TS”; c) a mapping proposal between the
two SLA levels of the architecture; d) an Integer Linear Program (ILP) formu-
lation for scheduling; and e) analysis of experimental results.

In the next section we give an overview of the related work. The background
and problem formulation are provided in Section 3. A PaaS architecture is pro-
posed in Section 4. A detailed discussion on simulation set-up, metrics, and
experimental results is given in Section 5. Finally, Section 6 presents the conclu-
sions and the future work.

2 Related Work

The utilization of public clouds to extend the locally available computing power
has been widely explored recently [9][10]. Zhao et. al. [5] present CloudBay, a
platform to offer resources from different public clouds utilizing auction strate-
gies. Other auction strategies for marketing resources in clouds were proposed
[11][12].

Cloud federation was proposed by Toosi et. al. [6], where a provider uses
resources from other providers in the federation to meet the need for reserved
instances. The provider can trade reserved instances but also sell them in the
on-demand (OD) model. When the client wants to utilize the reserved instance,
the provider can look for an instance in the federation to serve the user.

Chen et. al. [7] developed a new utility model for measuring customer satis-
faction in the cloud. Based on the utility model, they designed a mechanism to
support utility-based SLAs in order to balance the performance of applications
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and the cost of running them. They presented two scheduling algorithms that
can effectively bid for different types of VM instances.

An ILP is presented by Genez et al. [2] to solve the scheduling problem for
dependent services in SaaS/PaaS with two SLA-levels. They utilize both RE and
OD models in the simulations. Similarly, but for a single SLA level, Bittencourt
et al. [3] propose an algorithm to schedule workflows which considers costs and
deadlines, to select VM configurations from public IaaS providers to expand the
available computational power locally available.

Assunção et al. [1] investigated the benefits that organizations can reach by
using cloud computing providers to increase the computing capacity of their local
infrastructure. They evaluated the cost of seven scheduling strategies used by
an organization that operates a cluster managed by virtual machine technology
and seeks to utilize resources from a remote IaaS provider to reduce the response
time of its user requests.

Although some work uses charging models, a few consider OD, RE and SP
charging models in scheduling. It is interesting to consider the utilization of
different charging models for different QoS categories. Besides, some work deals
with the provider perspective only, i.e., they aim to increase the provider profit.
In this work, we focus on decreasing the scheduling cost for the user.

3 Background and Problem Formulation

Users request VMs from an IaaS provider to run their applications, therefore
we define the user need for a single VM as a VM request. A user can perform
a number of requests to run applications that need different QoS levels. More
specifically, considering execution time as the main QoS parameter, in this work
we classify the VM requests into three QoS categories:

– Fixed-time request (FTRx): In this category, the start time is immediate
and the VM cannot be interrupted (preempted) during its execution.

– Floating-time request: (FTRt): The request may not start immediately, but
once it is started, it cannot be interrupted (preempted).

– Variable-time request (VTR): The request may not start immediately and
it can be interrupted (preempted), i. e., the execution of requests in this
category can be fragmented in smaller parts.

In the face of the wide availability of services offered by a variety of IaaS
providers, the user has the burden of choosing which resources from which
provider he/she should utilize. On the other hand, providers have SLAs com-
posed of different charging models utilized to lease the resources, which regulates
how and how much the user will pay for leasing a VM instance. In this context, a
user must choose VMs and charging models according to requests with different
QoS needs. We consider that VMs requests from the user must be allocated over
VMs from IaaS providers with the objective of achieving a low scheduling cost.
Moreover, the set of VMs considered during the scheduling process is already
leased, thus we are dealing with a pre-determined set of already rented VMs
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from various providers. Optimizing the use of currently leased VMs allows the
user/organization to determine which VMs are needed, reducing costs.

The problem tackled in this paper is stated as follows: Compute a schedule
S to a set R of VM requests over a set Ψ of VM instances from IaaS providers
with the objective of achieving the smallest allocation cost without violating QoS.

The R set is composed of n VM instance requests r = {k, d, dα, qos}, where
r(k) represents the instance type, r(d) represents the total time for which the
instance must be available to the user, r(dα) represents a relaxing over d, and
r(qos) = { FTRx | FTRt | VTR } corresponds to the QoS category of the
request. By definition, we have d = dα, ∀ r ∈ R such that r(qos) = {FTRx};
and d < dα, ∀ r ∈ R such that r(qos) = {FTRt, V TR}.

Each provider has a set of VM instances available to the user. From the user
perspective, it is necessary to verify how requests can be fulfilled, and at which
costs, utilizing the VMs from the providers. A request must be fulfilled with
the smallest cost without violating its maximum execution time. In this work,
we assume that tasks have no dependency among them. Figure 1 presents the
scenario we are considering in this work.

Fig. 1. Scenario for request submission

Given a set R of n requests, we must obtain a schedule S = {t, q, c, E},
composed, respectively, of: t, the total execution time of R; q, the number of
requests fulfilled; c, the lowest cost to the user and the scheduling containing the
instance; and E, the time at which each request is to be allocated. Moreover, we
denote, as follows, some definitions utilized in this paper. Let:

– R = {r1, r2, ..., rn}: set containing n requests;
– P = {p1, p2, ..., pv}: set of v providers;
– Ψi: set of instances available to the user in the provider pi;

– Ψ =
v⋃

i=1

Ψi:set of all instances available to the user;

– Bs1: set of PaaS charging models;
– Bs2

i : IaaS providers i charging models set;
– m: number of instances in Ψ .

4 Towards a PaaS Architecture

Considering the problem formulated in Section 3, we present substantial contri-
butions to compose a PaaS that receives a set of VM requests and performs the
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scheduling of these requests over a set of instances available from IaaS providers.
The objective is to compute a schedule that minimizes the execution costs to
the user 1. Next, we present the PaaS architecture, proposing a new charging
model and a mapping between the two levels of SLA, and an ILP to compute
the schedule in this architecture.

4.1 PaaS Architecture

The proposed architecture is composed of three layers: application, business,
and infrastructure. Figure 2 presents the platform architecture. The application
layer receives a set of requests R and performs their scheduling over the instan-
ces available to the PaaS utilizing a scheduling algorithm. The business layer is
composed of the allocation strategies and the charging models, both of which
utilized by the scheduler to allocate a request r in a provider pi. The business
models in this layer can be changed with no interference in the models made
available by the IaaS providers. The infrastructure layer is responsible for main-
taining information to manage and monitor the IaaS providers used by the PaaS.
We consider all requests are allocated to the IaaS providers.

Fig. 2. Architecture utilized in the VM scheduling

Two SLA levels are present in the platform. The first level acts in the in-
teraction between the user and the PaaS, while the second level is between the
interaction among the PaaS and the IaaS providers. Charging models belonging
to level 1 are located in the business layer, and charging models belonging to
the second level refer to the models adopted by the IaaS providers.

4.2 Increasing Instance Utilization

An RE instance imposes the payment of an initial surcharge to offer a discounted
price during the VM utilization. This strategy can be advantageous to the cus-
tomer only if he promotes a high utilization of the reserved instance, otherwise

1 The proposed PaaS can be extended to act as a Broker [13][8], where it could lease
VMs from the IaaS providers and offer them to the users. However, it would be
necessary to consider economic aspects to enable this broker to be profitable. At
this point, we do not consider this implementation as a profitable broker.
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the cost per time unit can end up larger than the one for the OD instance. For
example, Fig. 3 presents scenarios where the customer utilizes 10%, 20%, 40%.
60%, 80%, and 100% of the time of RE instances for 1 and 3 years, considering
prices and configurations from Amazon EC22. A one year usage of an OD in-
stance costs $1,051.20, while for 100% of utilization for an RE instance would
cost $644.22, including the initial surcharge. On the other hand, utilizing the RE
instance only 25% of the time would have a cost of $368.98. The same use (2,190
hours) in the OD charging model would cost $262.80. Therefore, low utilization
makes the RE instance to be more expensive than the OD instance. Moreover,
we can see from the limit economy line that, for current market prices, the cus-
tomer should utilize more than 40% of an instance reserved for one year, and
20% for an instance reserved for three years to them to be worthless.
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Fig. 3. Comparative costs for 1 and 3 years reservation against on demand instances

This analysis shows that the user can reduce costs by increasing utilization of
RE instances. Following this, we propose a new charging model called “Time-
slotted reservation - TS”, where the user schedules a VM utilization in slots of
time. In this model, requests cannot be interrupted. This enables better utiliza-
tion of RE instances, minimizing the cost per time unit. We added the new TS
charging model to Bs1, as well as the OD and SP models. Thus, we have that
Bs1 = {OD | TS | SP} is placed in the business layer of the architecture.

4.3 A Mapping Proposal between the Two SLA Levels of the
Architecture

As presented in Fig. 2, the platform is composed of two SLA levels. Conside-
ring the QoS categories (FTRx, FTRt, VTR), we define a conceptual model
of interaction between these QoS categories, the level-1 SLA set Bs1, and the
level-2 SLA set Bs2, as illustrated in Fig. 4(a). The conceptual model allows new
charging models to be incorporated without interfering in the charging models
currently available from IaaS providers.

2 From: Amazon - http://aws.amazon.com/ec2/pricing/ in 05/2013.

http://aws.amazon.com/ec2/pricing/
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Figure 4(b) presents a mapping proposal between the two levels in the con-
ceptual model. Other possibilities can be explored, mainly with the appearance
of new models. In this work we focused in the mapping from Fig. 4(b).

(a) Conceptual model (b) Mapping proposal

Fig. 4. a)Model of interaction between QoS categories and SLAs at levels 1 and 2. b)
Proposed charging model mapping between SLA1 and SLA2.

The presented mapping proposal has the objective of mapping a charging
model from Bs1 to another from Bs2. The SP model at level 2 has low availability
guarantee, and therefore it can receive only mappings from the SP model from
level 1. The OD and TS models at level 1 can be mapped to both OD and
RE models at level 2. However, there is a scheduling priority in the mapping of
RE over the OD, aiming at higher utilization (and thus lower prices) using the
RE charging model.

4.4 Requests Scheduling

The requests scheduling is obtained utilizing the ILP and two heuristics.

An Integer Linear Program (ILP) Formulation for Scheduling
The integer linear program solves the scheduling problem through the binary

variables w, x, y and z and the constants C, M and K as follows:

– wr: binary variable that assumes the value 1 if request r is executing; other-
wise it assumes the value 0;

– xr,ψ: binary variable that assumes the value 1 if request r is executing in
VM ψ on independent time t; otherwise it assumes the value 0;

– yr,t,ψ: binary variable that assumes the value 1 if request r is executing in
VM ψ on the time t; otherwise it assumes the value 0;

– zr,t,ψ: binary variable that assumes the value 1 if request r with r(qos) =
{FTRt} starts executing on time t in VM ψ; 0 otherwise;

– Ct,ψ: constant that assumes the cost per time unit for using the VM ψ.
– M: sufficiently large constant that assigns a weight for each request.
– K: sufficiently large constant used to ensure FTRt requests start once.
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We formulate the objective function F =
∑
r∈R

∑
t∈T

∑
ψ∈Ψ

(yr,t,ψ×Ct,ψ)−
∑
r∈R

(wr×

M) that computes the scheduling of R in Ψ aiming lower cost allocation. Thus,
we want to minimize F subject to:

r(dα)∑
t=1

yr,t,ψ = r(d) × xr,ψ ; ∀r ∈ R, ∀ψ ∈ Ψ (1)

∑
ψ∈Ψ

T∑
t=dα+1

yr,t,ψ = 0; ∀r ∈ R (2)

∑
ψ∈Ψ

xr,ψ = wr; ∀r ∈ R (3)

∑
r∈R

yr,t,ψ ≤ 1; ∀t ∈
[
1, r(dα)

]
, ∀ψ ∈ Ψ (4)

∑
r∈R

yr,t,ψ = 0; ∀t ∈ T ;ψ ∈ Ψ ;MF (r, ψ) = 0 (5)

r(d) −K × (1− zr,t,ψ) ≤
r(d)+t−1∑

s=t

yr,s,ψ ≤ r(d) +K × (1− zr,t,ψ) (6)

∀r ∈ R, ∀t ∈
[
1, r(dα) − r(d) + 1

]
, ∀ψ ∈ Ψ, r(qos) = {FTRx, FTRt}

L∑
t=1

zr,t,ψ = xr,ψ; ∀r ∈ R, ∀ψ ∈ (Ψod
⋃

Ψre) (7)

wr , xr,ψ, yr,t,ψ, zr,t,ψ ∈ {0, 1}; ∀r ∈ R, ∀t ∈ T , ∀ψ ∈ Ψ (8)

The ILP utilizes the binary variables wr , xr,ψ, yr,t,ψ, zr,t,ψ and constants K,
M and Ct,ψ to compute a schedule that minimizes the cost, but also utilizing
VM instances from the IaaS providers that guarantee the QoS of each request.
Moreover, it is built over the mapping presented in Fig. 4(b).

The constraints (C-1) and (C-3) specify that a request, if executed, must be
executed in r(d) time units and in a single VM. The constraint (C-2) specifies
that a request mustn’t be executed in t > r(dα), while the constraint (C-4)
specifies that a VM must perform one request per time. The constraint (C-
5) specifies that a request must be executed considering the proposed charging
model mapping between SLA1 and SLA2 presented in Fig. 4(b). The constraints
(C-6) and (C-7) are used to ensure FTRt requests are executed so atomic. The
constraint (C-1) ensures the atomicity for FTRx requests. The last constraint
(C-8), specifies that the variables of this ILP, called w, x, y, and z, will only
assume the binary values. MF() is a mapping function.
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The schedule generated is the best schedule that can be achieved with the
highest number of requests fulfilled. A request cannot be partially fulfilled. How-
ever, the number of VMs available may not suffice to run all requests. In this
case, the ILP returns the schedule with the highest number of requests that can
be fulfilled, and the smallest cost to run them.

The constant M is used to achieve the schedule with the highest number of
requests, since it establishes a weight for the variable wr. This means that the
larger the number of wr variables set to true, the smaller will be the ILP result.

Let Ct be the total cost returned by the ILP. Then, S.q = �−Ct

M � + 1 and
S.c = (S.q × M) − Ct. Let dm and ψm, respectively, be the largest execution
time among all requests r ∈ R and the largest execution cost per time unit
among all VMs ψ ∈ Ψ . Following this, S.q and S.t can be computed as stated
before only if M > dm × ψm. This is how the constant M must be defined,
otherwise it would compromise the result obtained by the ILP.

Heuristics. We implemented two heuristic algorithms to compute the schedul-
ing ofR over VMs of Ψ : 1-FIFO (First-in First-out) and 2-DO (Doubly Ordered):

1. FIFO: Performs the request scheduling using the strategy of allocation the
first request in the first VM possible, considering the time duration, the
relaxation and the QoS category. Let l be the highest value of dα among all
requests. The asymptotic complexity is O(nml).

2. DO: Order R in non-increasing order of size (execution time) and Ψ in non-
decreasing order of execution cost per time unit. Use the FIFO algorithm to
compute the scheduling. This is a straightforward adaptation of the Max-Min
algorithm [14], focusing on the execution of requests with greater duration in
VMs with lower cost. Its asymptotic complexity is O(nml+n logn+m logm).

5 Experimental Results

We implemented the platform proposed in this work using JAVA, and the sche-
duler using IBM ILOG CPLEX with default configuration. The mapping model
proposed in Fig. 4 was utilized in the scheduling. The simulations were run in a
dual-processor Xeon Quad-Core with 32GB of RAM. The metrics utilized were
the number of fulfilled requests and the scheduling cost.

The number of VMs in some cases can be insufficient to fulfill all requests,
when the execution cost of the R set must be analyzed considering only the
fulfilled requests. To minimize the execution cost and maximize the number of
fulfilled requests, we verified the scheduling result when relaxing the maximum
execution time of each request in FTRt and VTR categories. The experiments
were conducted with the requested time extended by 10%, 30%, 50%, and 100%.
We do not extend dα for FTRx requests since this would violate the QoS.
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5.1 Simulation Setup

We evaluated the number of fulfilled requests, execution costs, and we also as-
sessed the behavior of the scheduler in the platform when dα is varied. The
scenario has four providers with a total of m = 25 VMs, with characteristics
distributed as shown in Table 1.

Table 1. VMs configuration available to the PaaS users

Provider OD $ RE $ SP $ Provider OD $ RE $ SP $

1 3 10.00 2 5.00 3 1.00 2 3 11.00 1 6.00 1 2.00

3 2 12.00 2 7.00 2 3.00 4 2 13.00 3 8.00 1 4.00

Three experiments, E1, E2, and E3 were run, each one with 30 sets of requests,
Ei = {R1, R2, ..., R30}. dα was in the set {10%, 30%, 50%, 100%}. In each exper-
iment, the number of requests in each set was E1: |Rj | = 30, E2: |Rj | = 45, E3:
|Rj | = 60, 1 ≤ j ≤ 30. The r(d) of each request in each set Rj ∈ Ei is randomly
taken from the (1, 15) interval. The composition r(dα) is done by summing a
value t1 randomly taken from the same (1, 15) interval: r(dα) ← r(d) + t1. The
number of requests in the FTRx, FTRt, and VTR categories are, respectively,
20%, 40% e 40%. We defined M = 1.000.

5.2 Results

We have run the simulations to compare the three approaches: ILP, FIFO, and
DO. In the first experiment, E1, the number of requests is close to the number of
VMs available to the PaaS, while E2 and E3 have more requests than the number
of VMs available. Figure 5 presents the results obtained by the three algorithms
in the three experiments. The schedule cost found by the ILP is lower than
the costs found by FIFO and DO. Moreover, the ILP was able to fulfill more
requests than the other algorithms, satisfying the QoS of almost 100% of the
requests with the original dα.

Figures 5(g), 5(h) and 5(i), present the cost per fulfilled requests for the
schedules found in experiments E1 to E3. The ILP results presented lower costs
per request when compared to the FIFO and DO algorithms. In experiment
E1, the ILP reduced costs from 25% (0% relaxation) to 35% (100% relaxation)
in relation to FIFO, and from 6% to 3% in relation to DO. This difference is
enlarged with more requests, reaching 33% to 37% in relation to FIFO, and from
27% to 19% in relation to DO for experiment E3 (60 requests).

Results showed in this section suggest that the presented charging model
allows a better utilization of RE instances, reducing costs from the user pers-
pective. Furthermore, the presented ILP was able to reduce costs and fulfill a
higher number of requests than FIFO and DO algorithms in IaaS VMs within
the PaaS proposal considering the TS charging model.
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Fig. 5. Results for experiments E1, E2, and E3

6 Conclusions and Future Work

We presented substantial contributions to compose a PaaS architecture and a
platform to schedule requests on a set of leased VMs from IaaS providers. We
proposed a mapping of currently existing charging models to three different
quality of service requirements from the users requests, also introducing the
Time-Slotted Reservation charging model. The objective of the proposal is to
allow a better utilization of the leased VMs from a set of IaaS providers in order
to reduce costs, avoiding the lease of new VMs and helping to determine if any
leased VM contracts could be finished. Moreover, we propose an integer linear
program (ILP) scheduler that considers the leased VMs, their costs, and the
quality of service of requests to maximize the number of fulfilled requests and
reduce costs. Indeed, the ILP presented better results than two heuristics used in
the comparison, allowing more requests to be fulfilled without QoS violation with
the use of the time-slotted reservation, but also reducing the cost per request.
As future work we consider the development of dynamic mappings between the
two SLA levels according to existing charging models and their prices.
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Abstract. Community networks are built with off-the-shelf communica-
tion equipment aiming to satisfy a community’s demand for Internet ac-
cess and services. These networks are a real world example of a collective
that shares ICT resources. But while these community networks success-
fully achieve the IP connectivity over the shared network infrastructure,
the deployment of applications inside of community networks is surpris-
ingly low. Given that community networks are driven by volunteers, we
believe that bringing in incentive-based mechanisms for service and ap-
plication deployments in community networks will help in unlocking its
true potential. We investigate in this paper such mechanisms to steer user
contributions, in order to provide cloud services from within community
networks. From the analysis of the community network’s topology, we
derive two scenarios of community clouds, the local cloud and the feder-
ated cloud. We develop an architecture tailored to community networks
which integrates the incentive mechanism we propose. In simulations of
large scale community cloud scenarios we study the behaviour of the
incentive mechanism in different configurations, where slices of homoge-
neous virtual machine instances are shared. Our simulation results allow
us to understand better how to configure such an incentive mechanism in
a future prototype of a real community cloud system, which ultimately
should lead to realisation of clouds in community networks.

Keywords: Incentive Mechanisms, Cloud Computing, Community Net-
works, Distributed Resource Sharing.

1 Introduction

Community networks aim to satisfy a community’s demand for Internet access
and services using open unlicensed wireless spectrum and off-the-shelf commu-
nication equipment. Most community networks originated in rural areas which
commercial telecommunication operators left behind when focusing the deploy-
ment of their infrastructure on urban areas. The lack of broadband access brought
together different stakeholders of such geographic areas to team up and invest,
create and run a community network as an open telecommunication infrastruc-
ture based on self-service and self-management by the users [1].
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These community networks are a real world example of a collective that shares
information and communication technology (ICT) infrastructure and human re-
sources. The ICT resources shared are the bandwidth of the wireless network
formed by the networking hardware belonging to multiple owners. This band-
width allows members of the community network obtaining access to the Internet
or use services and applications inside of the community network. The human
resources shared are the time and knowledge of the participants, needed to main-
tain the network and technically organize it for further growth.

Sharing of network bandwidth has early been identified as essential and is part
of the membership rules or peering agreements of many community networks,
which regulate the usage and growth of the network. The Wireless Commons
License (WCL) [2] of many community networks states that the network par-
ticipants that extend the network, e.g. contribute new nodes, will extend the
network in the same WCL terms and conditions, allowing traffic of other mem-
bers to transit on their own network segments. Since this sharing is done by all
members, community networks successfully operate as IP networks.

Today’s Internet, however, is more than bandwidth resources. Computing
and storage resources are shared through Cloud Computing, offering virtual ma-
chine instances over infrastructure services, APIs and support services through
platform-as-a-service, andWeb-based applications to end users through software-
as-a-service. These services, now common practice in today’s Internet, hardly
exist in community networks [3]. Services offered in community networks still
run on machines exclusively dedicated to a single member. Community network
members, however, do use commercial cloud solutions, for instance for network
administration, where sometimes a commercial storage service is used for node
data. Why have clouds not emerged inside of the community networks?

We argue that community cloud, a cloud infrastructure formed by community-
owned computing and communication resources, has many technical and social
challenges so that the main drivers of today’s contribution to community net-
works, voluntariness and altruistic behaviour, are not enough to successfully cope
with it. Our hypothesis is that for community cloud to happen, the members’
technical and human contribution needed for such a cloud, needs to be steered
by incentive mechanisms that pay back the users’ contribution with a better
quality of experience for them.

In this paper, we present an incentive mechanism tailored to community net-
works. The main contributions of this paper are the following:

1. From the analysis of the key socio-technical characteristics of community
networks, we identify two scenarios for community clouds, the local clouds
and federated clouds, for which a community cloud management system is
proposed.

2. We design an incentive mechanism that is part of the community cloud
architecture and evaluate its behaviour in simulations of community cloud
scenarios.

We elaborate our contributions in the following way: In section 2 we present
our system model and design. In section 3, we evaluate our incentive mechanism
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in a community cloud scenario. In section 4 we relate the work of other authors
with our results. We discuss open issues in section 5 on future work and in
section 6 we conclude our findings.

2 System Model and Design

Our incentive mechanism for community cloud targets real community networks
so it must be integrated into an architecture, design and implementation which
fits into these conditions and scenarios. In this section, we first analyse the topol-
ogy of community networks from which we develop two main cloud scenarios we
foresee for them. We then present the conceptual overview of a cloud manage-
ment system suitable for community networks, of which we identify the resource
assignment and regulation mechanism as a key component.

2.1 Topology of Community Networks

The community network generally has two different types of nodes, super nodes
(SN) and ordinary nodes (ON). Super nodes have at least two wireless links, each
to other super nodes. Most super nodes are installed in the community network
participant’s premises. A few super nodes, however are placed strategically on
third party location, e.g. telecommunication installations of municipalities, to
improve the community network’s backbone. Ordinary nodes only connect to a
super node, but do not route any traffic. A topological analysis of the Guifi.net
community network [4] indicates that from approximately 17,000 analysed nodes
of Guifi.net, 7% are super nodes while the others are ordinary nodes.

2.2 Community Cloud Scenarios

The scenario of local community cloud is derived from the topology of community
network and the observed characteristics of the strength of the social network
within community network zones. In the local community cloud, a super node
is responsible for the management of a set of attached nodes contributing cloud
resources. From the perspective of the attached nodes, this super node acts as a
centralized unit to manage the cloud services.

Multiple super nodes in a community network can connect and form feder-
ated community clouds [5]. The super node connects physically with other super
nodes through wireless links and logically in an overlay network to other SNs
that manage local clouds. SNs coordinate among each other and the requests
originating from one SN’s zone can therefore be satisfied by the resources allo-
cated from another SN’s zone.

2.3 Community Cloud Manager

The option we foresee for enabling a cloud in a community network is deploy-
ing a cloud management system tailored to community networks on a super node.
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We propose a conceptual overview for such a system in Figure 1 which consists
of the following.

– The ordinary nodes of the community network provide hardware resources
isolated as virtual machine (VM) instances and form the hardware layer of
the cloud architecture.

– The core layer residing in the super node contains the software for managing
the virtual machines on ordinary nodes.

– The cloud coordinator is responsible for the federation of the cloud resources
which are independently managed by different local community clouds. The
cloud coordinator components in different SNs connect with each other in a
decentralized manner to exchange relevant information about managing the
available resources.

– The front end layer provides the interface for accessing resources from the
cloud as Infrastructure-as-a-Service (IaaS).

The core of cloud management system is virtual machine manager that is
responsible for instantiating, scheduling and monitoring virtual machines on the
nodes. There are some cloud management systems available to manage public
and private clouds, for example OpenNebula [5] and OpenStack [6] are among
the most consolidated and popular open source tools. Such cloud management
systems are then tailored for community networks by extending them with im-
plementing the cloud coordinator and its services on top of them, to address the
particular conditions of community networks.

Fig. 1. Conceptual overview of the Community Cloud Manager
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2.4 Incentive Mechanisms in Community Cloud

Participants in a community network are mainly volunteers that act indepen-
dently and are not obliged to contribute. To ensure sustainability and growth of
the community cloud, incentive mechanisms are needed that encourage members
to contribute with their hardware, effort and time [7, 8]. When designing such
mechanisms, the heterogeneity of the nodes and communication links has to be
considered since each member brings in a widely varying set of resources and
physical capacity to the system.

Most peer-to-peer (P2P) systems implement incentive mechanisms based on
contribution where nodes are rewarded according to resources they donate to the
system [9]. We suggest an effort-based incentive mechanism for community cloud
where effort is defined as contribution relative to the capacity of a node [10]. This
mechanism is inspired by the Parecon economic model [11–13] which focuses
on social welfare by considering inequality among nodes. Nodes with different
capacity cannot have same contribution to the system but in this mechanism
they get same reward if they share as much as possible of their capacity as we
explain in the following.

Formulations. We first discuss here the criteria that a super node uses to
evaluate requests from ordinary nodes. When a node asks for a resource from
a SN, which in this case means to commit an instance of virtual machine for a
given duration, the SN first checks whether the ON’s credit is sufficient to cover
the cost of the transaction. The cost is proportional to the number of resources
requested Ri and the duration Ti for how long they are required.

transaction cost = γRi × ρTi (1)

where γ and ρ are nonzero coefficients for the amount and duration of resources
shared respectively.

If the requesting node does not have enough credit, the request is rejected.
Otherwise, the SN searches for nodes that have resources available. It selects as
many nodes as possible from its local zone as providers. If the demand cannot
be met locally, the SN forwards the request to super nodes in the federated
community cloud.

Now we consider how the SN manages the credits of the nodes that take
part in the transaction. For each node which contributed its resources to fulfil
the request, the SN calculates the transaction cost as shown above and adds it
to that node’s credits. The cost is deducted from the credits of the node that
consumed the resources. After the transaction is completed, the effort for each
node involved in the transaction is recalculated as in [10] by:

Ei =

{
crediti
εCi

if crediti
εCi

< 1

1 otherwise
(2)

where ε is nonzero coefficient for the capacity of the node. The effort of a node
expresses its relative contribution to the system, since the mechanism considers
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the capacity Ci of a node as well. This means that a node with low capacity puts
in more effort than a node with high capacity if they both donate same amount
of resources to the system.

The total amount of resources availableΩ in the system is sum of the resources
ωi shared by each node.

Ω =
all nodes∑

i

ωi (3)

And the maximum resource ΔRi a node can consume depends on its effort.

ΔRi = Ei × (Ω − ωi) (4)

Require: receive query from node i with the requested amount Ri and the time Ti

1: calculate(ΔRi)
2: if Ri <= ΔRi then
3: call Decision(i, Ri, Ti)
4: else
5: send(“rejected”, i)
6: end if
7: function DECISION(i, Ri, Ti)
8: if Ri <= Ω then
9: ProvidersList [n] ← high score first(ON List, Ri)
10: for each j in ProviderList [n] do
11: CostOfTransactionj→i ← Rr

j ∗ T t
j

12: update credits(CostOfTransactionj→i)
13: update database(ON List)
14: end for
15: else
16: SN ← low credit first(SN List,Ri, reserved ratio)
17: forward(SN,i, Ri, Ti )
18: end if

Fig. 2. Algorithm for handling requests from ordinary nodes

Algorithm for Requests Processing. Figure 2 shows algorithm for how a
SN handles request from a node in its zone. When SN receives request, it first
calculates that node’s allowance ΔRi to confirm whether it has enough credit
to fulfil the request. If not, the request is rejected, otherwise the algorithm calls
decision function which searches for available resources (lines 1–5).

The decision function first checks if enough resources are available in the local
zone (line 8), and selects the nodes that will provide the resources from its local
zone using high-score-first policy (line 9). The idea is to give preference to the
nodes that need credit the most for participating in the system. If SN cannot
satisfy request from its local nodes, it forwards request to one of its neighbouring
super nodes which is chosen using low-credit-first policy (lines 16–18). This allows
the zone with depleted credits to earn more so its nodes can be active the system
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again. After the provider nodes commit resources, SN calculates cost of the
transaction and updates the nodes’ credits, deducting credits from the requester
and increasing credits of the providers (lines 10–14).

Policies for Nodes Selection. When SN processes requests for resources,
there may be multiple nodes that can be providers so SN applies a selection
policy for prioritizing which nodes to choose. Similarly when SN forwards re-
quests to other SN zones, it also has to select between multiple zones that have
resources available. We evaluated a number of selection criteria that can be em-
ployed in above algorithm, and observed in experiments that low-credit-first and
high-score-first policies were better in terms of efficiency of the system. In the
following we explain these different policies and discuss the motivation behind
them.

– Low Credit First Selection. When nodes consume resources, their credit
gets spent and with time their credit may be too low to request any resources.
Such nodes can provide their resources to other nodes and earn credit al-
lowing them to participate in the system again. This policy gives priority to
nodes with low credit with the aim to ensure that most nodes participate in
the system and are not left out because of lack of credit.
When multiple SN zones participate in the system, same problem exists since
nodes in a particular zone may have all spent their credit and cannot request
any more resources. So the algorithm above gives preference to such zones by
applying low-credit-first policy when selecting other SNs to forward requests.

– High Score First Selection. One issue with the low-credit-first approach
is that it does not differentiate among nodes with low credit. Some of the
nodes may be inactive and not making any requests while others may be
getting their requests rejected because of inadequate credit. In this policy,
the SN tracks unsuccessful attempts by each node and assigns it a score
calculated as follows. Nodes with higher score get preference so they can
recover their credit.

scorei =
attemptsi
crediti

(5)

– Other Policies. We also considered following policies and compared their
effect on efficiency of the system.

• First-in-first-out (FIFO). In this simple policy, as soon as nodes have free
resources, they register their availability with SN which keeps on adding
them in a queue. When processing requests, the SN selects a node that
has been in the queue the longest.

• Random. In this policy, SN picks a node at random from the queue.
• High credit first. This is the opposite of low-credit-first policy and here
nodes with more credits are chosen first.
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3 Evaluation

In the past work [10], we studied incentive mechanisms for resource regulation
within a single SN zone which corresponds to local community cloud scenario.
Here we extend our simulator to study resource regulation across multiple SN
zones covering both local and federated community cloud scenarios. In addition
to simulations, we also implemented and deployed a prototype of the regulation
component of Cloud Coordinator on nodes of a real community network using the
Community-Lab testbed [14] provided by the CONFINE project [15]. However,
as only a handful of nodes are made available currently, the analysis of our
proposed system on greater scale using the real prototype system is too limited.
Therefore, we focus here on reporting results from the simulation experiments,
where our scenario could be extended to a community cloud consisting of 1,000
nodes.

3.1 Experiment Setup

We simulate a community network comprising of 1,000 nodes which is divided
into 100 zones and each zone has one super node and nine ordinary nodes. The
zones are distributed in a small world topology where each zone is neighbour to
10 other zones. This approximation holds well for real world community networks
as, for example, topology analysis of Guifi.net [4] shows that the ratio of super
node to ordinary nodes is approximately 1 to 10. Each ordinary node in the
simulation can host a number of VM instances that allows users’ applications
to run in isolation. Nodes in the zone have two main attributes, one is capacity
which is the number of available VM instances, and other is sharing behaviour
which is how many instances are shared with other nodes. Table 1 shows the
different configurations for each of the nine ONs in each zone. Nodes with low,
medium and high capacity host 3, 6 and 9 VM instances respectively and they
exhibit selfish, normal or altruistic behaviour sharing one-third, two-thirds or
all of their VM instances. For example, node ON2 has medium capacity with
6 instances and exhibits selfish behaviour reserving 4 instances for itself and
contributing only 2 to the system.

Table 1. Configuration for each node in a zone with shared and total instances

Node Behaviour Shared Small capacity Medium capacity Large capacity

Selfish 33% ON1 (1/3) ON2 (2/6) ON3 (3/9)

Normal 66% ON4 (2/3) ON5 (4/6) ON6 (6/9)

Altruistic 100% ON7 (3/3) ON8 (6/6) ON9 (9/9)

When the experiment runs, nodes make requests for resources proportional
to their capacity asking for two-thirds of their capacity. For instance nodes with
capacity of 3, 6 and 9 VM instances request 2, 4 and 6 instances respectively.
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Table 2. Success ration of nodes for different configurations with effort and contribu-
tion based incentives

Node Behaviour Incentives Small capacity Medium capacity Large capacity

Selfish
effort-based 54% 53% 50%

contribution-based 66% 59% 39%

Normal
effort-based 90% 91% 86%

contribution-based 97% 77% 66%

Altruistic
effort-based 97% 94% 86%

contribution-based 97% 85% 65%

Nodes request instances for fixed duration and after transaction is complete wait
briefly before making further requests.

3.2 Experimental Results

We evaluate the impact of the effort-based incentive mechanisms in the system in
simulation experiments and discuss the results below. We study the success ratio,
i.e. number of requests fulfilled versus total requests, and the overall resource
utilization in the system.

Ratio of Successful Requests. Table 2 shows the success ratio for requests
made by different nodes analysed both with the effort-based and contribution-
based incentive mechanisms. We first notice that the success ratio values decrease
as the capacity of the nodes increases. This is explained by the fact that nodes
with greater capacity request more instances and so have a higher chance getting
rejected either because there are not many resources available in the system or
because the requesting nodes do not have sufficient credit.

Moreover, when we compare success ratio for nodes as capacity increases,
we observe greater variation in the case of contribution-based incentives. For
instance, for the normal sharing behaviour the values range from 66% to 97% for
contribution-based incentives, but from 86% to 90% for effort-based incentives.
This is explained by the fact that contribution-based approach does not take
heterogeneity of nodes into account and penalizes nodes with low capacity as
they cannot contribute as much to the system as others. These results indicate
that effort-based incentives ensure fairness in the system since the nodes with
the same sharing behaviour are treated equally irrespective of their capacity.

Breakdown of Request Responses. Figure 3 shows the breakdown of suc-
cessful and rejected requests. The success ratio is higher for effort-based in-
centives. Moreover, contribution-based mechanism has greater share of requests
rejected because of lack of credit. This indicates that effort-based incentives
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Fig. 3. Breakdown of outcome of requests with effort and contribution based mecha-
nisms

result in better efficiency as more resources remain utilized. Another observation
is that majority of requests are fulfilled using resources from local zone with very
few requests forwarded to other zones.

Fig. 4. Resource utilization along 24 minutes of the experiment

Resource Utilization. Figure 4 shows the proportion of resources utilized in
the system along the execution of a 24 minutes experiment for effort and contri-
bution based approach. In the start all nodes have enough credit and the resource
utilization is high. Then it drops to below 60% at around the 12th minute. Then,
since most of the nodes completed their transactions and consumed their credits,
the utilization decreases significantly. The effort-based approach though achieve
a higher resource utilization during that time.
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Fig. 5. Success ratio comparison of provider ON selection strategies

Nodes Selection Policies. Figure 5 shows the effect of different node selection
policies on the success ratio when using effort-based incentives. High-credit-first
and first-in-first-out policies perform poorly since they do not consider the credits
of the nodes and so fail in ensuring a balanced distribution across the system.
The low-credit-first and high-credit-first policies perform better since they give
preference to nodes with low credit allowing them to earn more so that they can
be successful with their future requests.

4 Related Work

After the prevalence of public clouds [16], there is now increasing interest in
providing cloud services by harvesting excess resources from the idle machines
connected to the Internet [17]. Having different service level requirements and
conditions, different solutions for how resources are contributed to build clouds
have been found. Commercial clouds have dedicated resources that are financed
by the users who pay in hard currency to use the cloud services. Previous dis-
tributed multi-owned computing platforms like Seti@Home [18], HTCondor [19]
and Seattle [20] have relied on altruistic contribution of volunteer users. Plan-
etLab [21] requires for granting resource usage a prior fixed contribution before
the services are made available. None of these cases, however, correspond to the
concrete situation of community networks. In order to build a cloud platform
within a community network, there is a need to create incentives to encourage
active participation from the members of the community.

Various incentive mechanisms have been studied for P2P and decentralized
systems that address different requirements for ensuring a sustainable volunteer-
based system [9]. P2P systems like BitTorrent [22] incentivize using reciprocity
based schemes where users consume resources in proportion to their contribu-
tion. Most of these schemes do not take heterogeneity and varying capacity of
different nodes into account so nodes with limited capacity are at a disadvantage
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because they do not benefit as much from the system even though they may be
actively contributing to the system. Recent work in cloud systems have also em-
ployed similar reciprocity based schemes, for example, Cloud@Home project [23]
envisages ensuring Quality of Service (QoS) using a rewards and credit system.
Fixed contribution schemes [21] need centralized management which are not suit-
able and scalable for decentralized systems like community networks. Monetary
based schemes [24–27] are founded on economic models and need careful micro-
management which makes it complicated to implement for a large decentralized
system like community networks.

Regarding the different incentive schemes, our approach takes advantage of
elements of the monetary-payment scheme, in the sense that credits are used
to reflect the interchange of resources between consumers and providers. These
credits are part of the components of the incentive mechanism that we propose
for community clouds. We notice that none of the found related work focus on
wireless community networks such as targeted by us.

5 Future Work

We have investigated incentive mechanisms for community clouds based on recip-
rocal resource sharing. Our results indicate their impact on the efficiency of the
system and on regulating the resource assignments. The understanding gained
from the different experimental results helps in the design of the policies that
such incentive mechanism could follow in a future prototype of real community
cloud system.

Our results, however, have revealed new issues that are to be addressed in
the next steps towards a real cloud system. First, we have not yet investigated
the behaviour of the incentive mechanism for extended periods of time. Further
experiments are needed to study how the mechanism can be used for long du-
rations. Secondly, we have not yet investigated the incentive mechanism in a
prototype deployed in a real community network.

For the permanent operation of the cloud system with the incentive mecha-
nism, the mechanism needs to be able to adapt to the system state in runtime.
The mechanism will need to be able to take into account the evolution of the
system with regards to users, resources, and different kind of behaviours. There-
fore, parameters of the incentive mechanism will need to be defined as functions
of the system state in order to account and decide correctly on the current situa-
tion. In order to further develop this runtime adaptability, a two-fold approach,
which on one hand extends the simulations with refined system models and on
the other hand evaluates the performance of deployed prototype components, is
suggested to assure the realisation of an operative adaptive system.

A prototype of the incentive mechanism integrated in a cloud management
platform is needed to be able to obtain performance results from real users and
services. An operative modular system is needed that allows an easy modifica-
tion of its components according to the simulation results. The transfer of the
simulation results to the deployed system should be required, in order to assure
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that the simulated system model reflects the real system, and that the obtained
findings can actually be brought into the real system in a feasible way.

Finally, the deployment of several federated clouds with real users and real
usage should ultimately be undertaken. Such large-scale cloud deployments need
to have an extended implementation of a communication middleware for the co-
ordination in a network of super nodes, complemented by additional services,
to fully achieve an incentive-based resource assignment. For such systems, addi-
tional work is needed to develop in detail the feedback loop between the user’s
contribution and the experience the user obtains from the cloud services, needed
for the building and maintenance of a cloud in community networks.

6 Conclusion

Community clouds are motivated by the additional value they would bring to
community networks. Deploying applications in community clouds will boost
the usage and spread of the community network model as ICT infrastructure for
society. This paper builds upon the topology of community networks to derive
two community cloud scenarios, local community cloud and federated community
cloud. A community cloud architecture is then proposed which fits into these
scenarios. The need for an incentive mechanism in order to community clouds
to happen is stated, since for the contribution of any resources the motivation of
the users is needed. This incentive mechanism is specified and implemented in
a simulator in order to be able to perform assessments for large scale scenarios.
With simulation experiments we characterized the behaviour of different settings
of the incentive mechanism and evaluated the success ratio of nodes and resource
utilization. A deeper analysis of the behaviour allowed us to better understand
the influence of the different configuration options. The incentive mechanism has
been designed and evaluated taking into account the conditions of community
networks. Therefore, we expect our results to be transferable to a prototype of
a real community cloud system.
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Abstract. In recent years, the rise and rapid adoption of cloud com-
puting has acted as a catalyst for research in related fields: virtual-
ization, distributed and service-oriented computing to name but a few.
Whilst cloud computing technology is rapidly maturing, many of the
associated long-standing socio-technical challenges including the depend-
ability of cloud-based service composition, services manageability and
interoperability remain unsolved. These can be argued to slow down the
migration of serious business critical applications to the cloud model.
This paper reports on progress towards the development of a method to
generate cloud-based service compositions from requirements metadata.
The paper presents a formal approach that uses Situation Calculus to
translate service requirements into an Intention Workflow Model (IWM).
This IWM is then used to generate autonomic cloud service composition.
The Petshop benchmark is used to illustrate and evaluate the proposed
method.

1 Introduction

Over the last decade, the creation of value-added services by automating the
composition of existing ones has drawn a significant attention, as they are play-
ing an increasingly important role in application domains ranging from research
and healthcare to defense and aerospace. Much research already exists for au-
tomating service compositions from both functional and non-functional require-
ments. Nevertheless, for a number of reasons, automating the composition of
services is still a highly complex task: i) there is a growing number of services
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available, generating heterogeneity, and requiring the adoption of more sophis-
ticated catalogue search tools with support for publishing of and searching for
services; ii) some of the properties of services are required to be annotated with
knowledge representation to support catalogue registration and subsequent look-
up of services satisfying functional and non-functional requirements; iii) services,
as belonging to third-party organisations, are subject to unexpected behaviours,
such as failures or performance degradation. Overall, the automation of service
composition requires the adoption of several mechanisms throughout the com-
position lifecycle, but compositions themselves need to be adaptive enough and
amenable to changes in the environment.

In recent years, the rise and rapid adoption of cloud computing has acted as
a catalyst for research in related fields: virtualization, distributed and service
oriented computing to name but a few. This has –amongst other benefits– led to
the adaptation of existing and emergence of new tools and techniques to support
the cloud computational and architectural model. Whilst cloud computing tech-
nology is rapidly maturing; many of the associated long-standing technical chal-
lenges such as the dependability of cloud-based service composition, and services
manageability and interoperability remain unsolved. In order to facilitate adap-
tive and elastic cloud service provisioning and management [2,1], autonomic sen
self-* design principles [12] are increasingly being adopted. Whereby, for instance,
policies are used to manage Quality of Service (QoS) enforcement [18], and/or
user services management [13]. However, as argued by Sloman [15], policy-based
autonomy has a number of limitations, including its lack of support for safe de-
liberation and adjustment to new situations encountered at runtime, which often
culminate in human intervention and manual policy adaptation. The authors be-
lieve that addressing this particular limitation will accelerate the migration of
serious business applications to cloud-based services.

For dynamic service compositions, most techniques developed in the past are
based on the automatic generation of plans (composition of services), taken from
AI planning theory, and deductive theorem proving. The general assumption of
such kind of methods is that each service can be specified by its preconditions
and effects in the planning context. For instance, a service can be seen as a
software component that takes the input data and produces the output data.
Thus, the preconditions and effects are the input and the output parameters
of the service respectively. If the user can specify the preconditions and effects
required by the composite service, a plan or process can be generated automat-
ically by logical theorem prover or AI planners without knowledge of predefined
workflow. During the planning, the business logic can provide constraints in the
planning setting. Extensive work is also underway to adapt dynamic configu-
ration. These approaches involve the use of autonomic computing principles,
developing intelligent control loops that collect information about the current
state of the system, make decisions and then adjust the system as necessary.
For example, the SmartFrog [8] framework and the work by Calinescu et al. [5]
support dynamic configuration to provide orchestration capabilities to start and
stop sub-systems and resources automatically. However, these approaches do not
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offer a task-level description language that can be used to link tasks to available
physical resources, process the output, and then make a decision accordingly.
Moreover, the existing approaches require a high-level of programming and/or
scripting skills, which pushes them beyond the skills set of any non-specialist
users.

To this end, this paper proposes the Intention Workflow Model (IWM) [3],
an autonomic service composition model designed for non-specialist users and
cloud environments. Unlike previous approaches, IWM offers non-specialist users
a front-end where both functional, and non-functional requirements can be spec-
ified without requiring any programming skill. Additionally, users can even
change the requirements during the actual execution. IWM specifications, in-
corporating both functional and non-functional requirements, can be used to
generate and deploy the desired autonomic cloud service composition or appli-
cation. In particular, at runtime, an IWM specification is translated into Situa-
tion Calculus, a logic formalism designed for representing and reasoning about
dynamic domains. Situation Calculus is used here to represent and reason about
the possible situations and actions mappings of a given system [17]. This provides
a reasoning framework that enables software service compositions and supports
their dynamic self-management [11].

Whenever a user changes any of the requirements or in the event of violation
of any non-functional requirement (i.e. triggered by monitoring the orchestration
of services of an actual composition), the composition structure can be automat-
ically modified in order to enforce requirements. For the non-functional ones, we
focus on requirements related to economic cost and performance.

The paper is organised as follows. Section 2 provides a brief overview of
research into methods for generating service compositions from requirements.
Section 3 describes the new transformation approach proposed in this work.
Section 4 presents the application of the proposed method to the widely used
Petshop benchmark e-business application. This is followed, in Section 5, by
general concluding remarks and a discussion of further work.

2 From Requirements to Cloud Service Composition

In Service-Oriented Architectures (SOA), complex systems are often composed
from multiple Internet accessible software services, which can be distributed
across many businesses and organisational domains and invoked via the ubiqui-
tous SOAP and/or REST services invocation models.

2.1 Interoperability in Complex-Service-Oriented Architectures

The Web Service-Business Process Execution Language (WS-BPEL) 1 is emerg-
ing as a key web services orchestration language. By design, WS-BPEL has no
support for formal or semi-formal modelling and analysis of a given process

1 http://www.oasis-open.org/

http://www.oasis-open.org/
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execution. In addition, in WS-BPEL the mechanisms for the execution and de-
ployment of a concrete service composition is left out of the standard and so
is often the concern of the designer’s implementation choice or his/her selec-
tion of a suitable BPEL execution engine. Thus, Van Sinderen et al. [14] adopt
the Model Driven Engineering (MDE) approach to generate executable service
compositions from high-level service requirements via a series of model transfor-
mations.

Along the same line of work, Spies et al. [16] presented an extended MDE
method, which, as depicted in Figure 1, takes an intentions model describing sys-
tem requirements in terms of actionable goals as its input. The Intention Model
(IM) is a key to the required autonomic behaviour of a system since it defines
normative principles (the ethics of the system), and not just reactive behaviour.
An operable definition of these intentions, for autonomic service governance and
regulation, is produced to provide the Platform Independent Autonomic Model
(PIAM). The operable definition of an IM can, in general, be provided in several
languages. A commonly used paradigm on this level is to use constraint and
rule frameworks on computation specific (but platform independent) levels so
as to enable model checking, verification and improvement for the subsequently
generated PSMs. Accordingly a number of approaches can be used here, such as
Object Constraint Language (OCL) or predicate transition networks.

Fig. 1. A Generic Services Implementation Modelling Framework [16]

Viewed from the perspective of a business process, an example of a PIAM
language is any declarative business process notation that primarily represents
the constraints and rules governing a service composition.
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Moving to the platform specific level, we need a modelling layer that is still
somewhat beyond actual executable process scripts and program code –the Plat-
form Specific Application Module (PSAM) layer. The reason for this is that
PIAM models objects upon transformation to a platform specific level which
are not specific enough to define executable behaviour. This has been addressed
in the PIAM related literature –behavioural conditions of a given service are
usually not sufficient to determine the necessary business execution properties
in all practical situations. The solution to this platform specific and yet not
fully executable modelling elements in our approach will be through the use of
WS-BPEL and web service templates.

According to the MDA/MDE process, model transformations are used to com-
pile a generic intention/assurance template model into a PSAM service descrip-
tion, which is not fully executable, but can become so given a specific context of
data types and operational implementation. Upon a suitable transformation, we
finally arrive at the executable stage of an Autonomic Computing (AC) level.
AC is conveniently characterized by a set of self-management capabilities as in-
troduced in [12] self-configuration, self-optimization, self-healing, self-protection.
These capabilities are often referred to briefly as self-* properties.

3 Theoretical Foundation

This paper stresses the benefits of taking a mathematical logical perspective, for
dependable adaptation based on formal reasoning; a propositional logic definition
of the domain also means that behaviours and associated service invocations
follow as a logical consequence from the specification. In this way, causal laws and
logical statements replace transition and state enumeration, allowing runtime
reasoning underpinned by a dynamic formal model.

3.1 Intention Workflow Model

In order to establish a formal base for the intention model used in this paper,
we provide its formal specification here. IWM consists of a set of process flow,
which is controlled via logic statements. The process flow and logic statement
together constitute a formal IWM of an application. For instance, a photograph
of a building or a house does not contain the information required by a builder
to ascertain and enforce the structural integrity of the building. However, when
provided with the blueprints (formal model) of the building, the builder can
model and adjust the design of the building accordingly/ similarly here, for
adaptation of a decision process to take place, its formal model is required to be
abstracted and exposed. IWM, therefore, can be thought of as consisting of a
flow sub-model and a logic sub-model. The flow sub-model provides the order in
which decisions are made and the links among them, whilst the logic sub-model
decides which path through the flow sub-model should be taken based on the
inputs to the intention decision process.
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Fig. 2. Flow and logic sub-models example in IWM (left). Automatically generated
workflow from IWM (right)

Figure 2 (left) describes the example of a decision process based on the sex of
a patient. If male, then return result 1, and according to the current flow, the pa-
tient will be provided with treatment A, otherwise, if female, the returned value
will be 2 and the patient is provided with treatment B. Here, the logic sub-model
of the IWM forms the basis of the decision taken, and the flow is transferred to
either A or B dependent on this decision. However, the logic sub-model itself has
no reference to either A or B. Instead, the logic sub-model returns a result (1
or 2), which is interpreted by the flow sub-model to produce an action (move to
A or B) accordingly. Consequently, adaptations can occur in the flow sub-model
without having any impact on the logic sub-model. This level of independency
between models means that both can be written and adapted separately, al-
lowing the logic that powers the decision process to remain assured and tested,
though the actions and consequences of the decision are open to change as well
as allowing the IWM adaptation to be more flexible and achievable. In this case,
the IWM can be defined suing 2-tuples structure: P =< T, cp >, where T rep-
resents a set of tasks, and cp represents a set of conditions required for a task to
be selected for execution or implementation. In effect, T represents the flow sub-
model of the process and cp represents the log sub-model of the process. Thus,
a task t, such that t ∈ T , is defined as a 3-tuples structure: T =< Σ, ct, Ω >

Where Σ represents a set of requirements that define the effect of the task,
and ct represents a set of conditions required for the requirements to be insti-
gated and selected, and Ω defines the set of instructions required to produce the
effects given in Σ. To accurately do this job, IWM processes are composed/mod-
ularised of sub-processes that may include a task or a set of tasks that should be
executed to achieve the desired behaviour. All the processes and sub-processes
are loosely coupled, to support the insertion, deletion and re-direction of any
of them at runtime. Figure 2 (right) highlights this characteristic, with two
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processes from the main workflow model calling the same sub-process. There are
different kinds of tasks in the intention workflow model, which are used to give a
precise definition for the process such as start point, end point, input and Data.
Formally, there is a set of tasks T where T = t1, t2, ..., tn, and a set of processes
P where P = p1, p2, ..., pm. For each pi ∈ P , either pi = T ′, where T ′ ⊂ T , or
∃pj ∈ P , with pi ⊂ pj , 1 ≤ i, j ≤ m.

Fig. 3. Significant classes for Neptune PetShop Example

3.2 Situation Calculus

Situation calculus provides a logical approach to modelling dynamic systems [10],
which views situations as action histories. Fluent values are initialised in the
starting situation (S0) and changed from situation to situation according to
effect axioms for each action. So, an initial situation, S0 is the start of the
Situation Calculus representation. An action, a, then changes this situation from
S0 to → do(a, S0) with the next action, a1 say, changing the situation to →
do(a1, do(a, S0)) with a2 giving do(a2, do(a1, do(a, S0))) and so on. Additionally
in S0 a set of fluents (predicates and functions) has an initial set of values.
Precondition axioms, poss(a, s), show when it is possible to perform action a in
situation s.
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3.3 Capturing Requirements

As depicted by Figure 3, to translate the formal model into executable require-
ments and ultimately compose and orchestrate a fully functional system, a prag-
matic weaving approach is proposed, composed of two parts: the Intention Work-
flow Model (IWM), which exists as a separate concern within the system and
is easily accessible and adapted, by the users at runtime, and the Provision,
Assurance and Auditing (PAA) framework, which reads and executes the IWM
and the emergent requirements expressed therein, using the logical model. The
PAA is out of the scope of this paper and a full description on the framework
can be found in [2,9,3].

The IWM encapsulates three main requirements within the two previously
described models (flow and logic), to automate service provision/composition.
Firstly, the workflow requirements in terms of what is happening; this is gener-
ally represented in XML using a flow attribute, which is embedded within each
task to direct the execution to the next task. The flow has two main subclasses:
move to and the decision. < moveto > directs the task to the next task, whereas
< Decision > causes workflow to invoke a specific task arising according given
requirements. Secondly, the business requirements are specified in the Neptune
language [11] to describe the desired system behaviour: This approach describes
why something has to happen according to the rules and requirements and auto-
mates the decision logic from the initial formal specification and uses a semantic
description. The NeptuneScript is used in the intention model to describe and
create executable functions that describe why something is done according to
the requirements.

Fig. 4. Neptune spec for Petshop example

Thirdly, there needs to be a technical requirement of the objects required to
provide the desired behaviour: The how aspect of the specification. For instance,
in a web services setting this may be the code, the name of the service, the type
of the service, the URL of the service, the execution engine, etc.
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3.4 Enacting the Computational Model

A computational model for Situation Calculus acts as a mechanism to allow
software to enact the intention model for safe composition, based on deliberating
on the effects of the service interactions and arrangements. The programming
language Neptune is also used to represent Situation Calculus. The Concept-
Aided Situated Prediction Action (CA-SPA) [17] policy format used in Neptune
provides the requisite construct here. By providing a situation and a prediction of
the required behaviour (or the state to move to), CA-SPA uses the introspective
nature of Neptune to determine the actions that need to take place to provide
the transition. The full description of Neptune language and CA-SPA are again
out of the scope of this work but can be found in [17].

3.5 Sensing and Knowledge

The representation of knowledge and beliefs in the Situation Calculus is achieved
by seeing the world states as action histories or situations with the concept of
accessible situations. So if s1 and s2 are situations then (s1, s2) ∈ Ki means that
in situation s2 service instance i considers s1 a possible situation with Ki an
accessibility relation for service instance i. That is, all fluents known to hold in
situation s2 also hold in s1. So an accessibility fluent may be specified: Ki(s1, s2)
meaning in situation s2 service instance i thinks s1 could be the actual situation.
So knowledge for service instance i (knowsi) can be formulated in a situation
as: knowsi(ϕ, s) ≡ ∀s1(Ki(s1, s) → ϕ(s1))[alternatively∀s1(Ki(s1, s) ∨ ϕ(s1))]

However to make any axiom complete, it is necessary to establish whether a
sensing action has taken place [7]. That was the action that occurred, to change
the situation to its successor, the perception of the value of a fluent. So the
change was a change in the semantic state of the service. Thus, it is necessary to
distinguish sensing actions by writing SR(senseϕ, s) to denote that the action
produced a result for ϕ. SR(senseϕ, s) = r = value of ϕ in s from the context.

4 Case Study: PetShop

PetShop is an architectural blueprint developed by Microsoft based on the orig-
inal Sun Microsystems PetStore benchmark for enterprise architecture and e-
business [6]. The application produced by the PetShop blueprint builds a web-
based service composition for browsing and purchasing pets, through a workflow
outlined in the next Figure (left).

This section outlines the adaptation steps when a new interactive process
or service is either injected to the above PetShop IWM or swapped at run-
time with another processes. The standard Microsoft PetShop blueprint process
model cannot be adapted at runtime (e.g. a new service cannot be added to the
PetShop process model), thus, this is a good basis to highlight the new approach
capability.

The procedures outlined in this paper have been applied to designing the
PetShop using a PetShop IWM, as shown in Figure 6, which can be accessed
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Fig. 5. Petshop examples: original workflow (left). Dynamically modified one (right).

and modified by the user via the PAA editor service [4]; this allows the user to
modify the entire workflow model and upload the modified version at runtime in
an assured manner, by following the Situation Calculus procedure described in
Section 3. An intermediate model saves all the IWM information that is shown
in the IWM meta-model (the IWM creator, IWM name, IWM owner, and the
guide key). This information is used to differentiate the requested IWM from the
other IWM models in the system. The agility behind this model is in providing
important data in the form of adaptable XML tags. These tags can be adapted
at runtime, by the user, using the PAA editor. Hence, the IWM model and the
other information can be adapted at runtime depending on the location of the
requested IWM.

4.1 Evaluation of Scalability

As previously stated it is possible to maintain assurance within a simple SOA or
cloud-based service model. However, when the services and their orchestration
become more complex, it is very difficult to automatically guarantee assurance.
For this reason it is proposed to test the Petshop benchmark system to ascertain
the scalability of this approach during its operation in comparison to the original
Microsoft PetShop. By introducing a new assured behaviour to PetShop via IWM
with PAA, the impact of the further interpretation of the new assured behaviour
can be contrasted against the performance impact of the introduction of the same
behaviour, performed manually, in the original Microsoft PetShop model. In this
case CPU load is considered.
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Fig. 6. IWM spec for Petshop example

Reasoning, using deduction, abduction, induction or inference, can then be
performed on the logical representation to supply receptors for perceived signals.
In this way new service interactions and compositions that cause no harm, and
may be beneficial, are allowed. For example the action history represented by:
do(a, do(a1, do(a, s))) with SR(a, s) �= SR(a, do(a1, do(a, s)))

Where SR(a, s) and a = sensef for some fluent f are as defined in Section 3
and a1 is some deterministic action that can be used to provide a new prediction
for the results of action a1 where the values of other fluents in situation s form
the action precondition axioms for a a1 as a context. In this way, action a1,
executing in the context of situation s, provides semantic interoperability for f .
So an event may be grounded by the system and a parameter for a safe response
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can be deduced, allowing assured adaptation at runtime. Thus, using the previ-
ously defined sensing and knowledge constructs from the Situation Calculus, the
service usage may be monitored via a CPU load sensor: A fluent heavyLoad(s)
is true if the CPU is working at over 60% capacity:

Fig. 7. Situation Calculus spec for Petshop example

Thus an action a1 may be assigned a predicted outcome via the construct: do(a,
do(a1, do(a, s))) with SR(a, s) �= SR(a, do(a1, do(a, s))) with a = senseCPULOAD

to deduce: knows(heavyLoad, s) and knows(heavyLoad, do(a1, s))
In this way the action a1 can form the action that returns a system to a

required predicted state, based on a grounded signal for heavy CPU load. Ad-
ditionally a mechanism needs to be included to determine the relevance of the
response. In this way correct responses are reinforced whilst poor results lead to
the perceived relevance of the deduced rule diminishing, eventually leading to
the response losing all significance to the system, in cases where the semantic
linking was detected in error. An example simple reward system, to ensure as-
sured and most appropriate response may consist of, for instance as depicted in
Figure 8.

Fig. 8. IWM spec for Petshop example

There may then be an action regenerateService(S) representing a class of
actions depending on the stimulus that caused the action to be considered for
enactment. For instance, in the previous example, it may be the case that a
new service instance is required because of either a heavy CPU load: regen-
erateService(S).heavyLoad or because of an unresponsive service: regenerate-
Service(S).unresponsive. Additionally, the rewarding of the action needs to be
moved to the successor state, as it is only here that the success of the prediction
can be determined. Thus, for example it may be stated using a reward for the
action performance to cumulatively influence a fitness function for the response,
as shown in Figure 9.
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Fig. 9. Reward of an action expressed in terms of Situation Calculus

In this formulation the more successful a prediction of response to stimulus
is, the higher the fitness value of the successor state axiom. Thus axioms that
fall below a certain threshold can be discarded whilst those with a higher fitness
can be treated as first class axioms with a corresponding increase in their reward
value compared to an axiom of equal merit but lower fitness. Thus the Semantic
interoperability problem is addressed by providing preinstalled, human level,
meaning to some initial signal set, which is then evolved through safe assured
adaptation in the runtime system. This may lead to the automatic derivation of
a script in Neptune as shown in Figure 10.

Fig. 10. Example of an automately derived Neptune script

Figure 11 below shows two systems executed to produce the same behaviour
over a timescale of cycles of a process execution. After 50,000 executions, a
new service requirement is introduced in the IWM model, and a task descrip-
tion updated accordingly. As new semantic linking and the previously described
deliberation takes place, performance is reduced and the time to complete the
process increases. It should be noted, however, that, as only one new requirement
is needed to be linked, the performance impact is less than that of the original
initiation at cycle 0, where many new requirements are introduced at the same
time. After the reconfiguration, linking and execution, performance returns to a
new standard, slightly slower than the original behaviour from 10,000 to 50,000.
This is due to the added time needed to execute the action. There is a slight
increase in execution time of the original PetShop (the lower plot) from 50,000,
due to the new behaviour introduced to the PetShop code to be executed. It can
be noted that after the execution of the new behaviour, however, the execution
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Fig. 11. Performance of dynamic assured PetShop system against benchmark

performance of PetShop, with assured service composition and integration, and
the original Microsoft PetShop are similar.

A new Petshop IWM shown in Figure 5 (right) shows that a new service
(Check Delivery) should be added and completed. The new service might be
injected to the original IWM from a public cloud or from a local server if it is
available there. The purpose of adding the new service to IWM is to ascertain
whether the customer is shipping to a UK based address or not. If the customer
is not UK-based, then the order-shipping task will be cancelled directly to the
end of the process model without moving to the order produces task.

5 Conclusion and Future Work

As has been discussed, the use of situation calculus to provide a formalised
model of both the enactment and specification of logic enables a powerful and
rich intention model for assured behaviour to be provided for composition and
arrangement of complex services configurations in Cloud-based systems or large
scale SOA-based systems. Using the techniques introduced in this paper, situ-
ation calculus can be both effectively represented, and enacted using an open
XML standard that is consumed by the IWM, Neptune and CA-SPA paradigms.
By being able to adapt and re-implement the situation calculus behind a system,
the intended adaptation can be safely and effectively produced, and enacted by
the software. In many cases there will typically be competing actions to move
from a situation to a predicted situation. The action that is preferred should be
the one of most benefit to the system. This ought to also provide a reinforcing
mechanism for certain rules and associated actions based on previous history
and monitoring. Further work is also required to integrate with and support
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established standards such as WSDL and WS-BPEL. This paper shows that this
approach could potentially be used with little loss in performance. Much wider
application is testing is still required.
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Abstract. This paper aims to highlight the importance of End-to-End
(E2E) service quality for cloud scenarios, with focus on telecom carrier-
grade services. In multi-tenant distributed and virtualized cloud infras-
tructures, enhanced resource sharing raises issues in terms of performance
stability and reliability. Moreover, the heterogeneity of business entities
responsible for the cloud service delivery, threatens the possibility of of-
fering precise E2E service levels.

Setting up proper Service-Level Agreements (SLAs) among the in-
volved players, may become overly challenging. However, problems may
be mitigated by a thoughtful intervention of standardization.

The paper reviews some of the most important efforts in research and
industry to tackle E2E service quality and concludes with some recom-
mendations for additional research and/or standardization effort required
to be able to deploy mission critical or interactive real-time services with
high demands on service quality, reliability and predictability on cloud
platforms.

Keywords: Cloud Computing, Service Quality, End-to-End SLA.

1 Introduction

Over the last few years virtualization and Cloud Computing technology found
their commercial success (e.g. Amazon EC2). This is surely tightly connected
with the continuous and steep evolution that Information and Communication
Technologies (ICT) have been recently undergoing. The wide availability of high-
speed network connections is causing an inescapable shift towards distributed
computing models where processing and storage of data can be performed mostly
in cloud computing data centers.

Cloud Computing introduces a novel model of computing that brings sev-
eral technological and business advantages: customers (a.k.a., tenants) can rent
cloud services on a pay-per-use model, without the need for big investments for
resources that have to be designed for peak workloads, whilst being at risk of
remaining under-utilized for most of the time; providers may offer cloud ser-
vices for rental, hosting them on big multi/many-core machines, where the big
infrastructure investments may easily be amortized over hundreds or thousands
of customers.
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This multi-tenancy nature of cloud infrastructures constitutes one of the ma-
jor levers over which a high level of efficiency in the management of the hosted
services may be achieved. Indeed, by leveraging to virtualization technologies,
which allow for easy and seamless migration of virtual machines (VMs) among
physical hosts, a provider may manage the physical infrastructure with a high
efficiency. Physical resources may easily be shared among multiple tenants when-
ever appropriate.

Unfortunately, this enhanced level of resource sharing brings a number of
disadvantages and challenges as well. Sharing the physical infrastructure leads
to an increased level of temporal interference among the hosted services. As a
consequence, one of the critical issues emerging in cloud infrastructures is the
stability in the performance level of the hosted services.

Cloud providers are not the only ones to which the current observable unstable
and unreliable performance of cloud services should be attributed. As it is well
known, the Internet, over which most of the cloud offerings are accessible current,
is entirely designed and deployed according to best-effort paradigms. Indeed, the
Internet has always been multi-tenant by its nature.

However, the requirements of cloud customers are very likely to evolve quickly,
as cloud technology is being more and more known and used worldwide. Many
enterprise applications that might take tremendous advantages from the cloud
model cannot be hosted on nowadays infrastructures due to their stringent per-
formance requirements that cannot be met in nowadays cloud computing infras-
tructures, accessible and interconnected through the best effort Internet. Think
of virtual desktop, Network Function Virtualization (NFV), professional on-line
multimedia editing and collaborative tools, on-line gaming, just to mention a
few.

Furthermore, virtualization is becoming increasingly interesting for telecom
operators (a.k.a. telcos) who are increasingly willing to switch from hardware-
based to software-based solutions.

Some of the world leading telecom operators have initiated [2] in early 2013 a
new standards group for virtualization of network functions at ETSI [3]. Aim is
to transform the way network operators architect networks by evolving standard
IT virtualization technology to consolidate main network equipment types onto
industry-standardized high-volume servers, switches and storage, which could
be located in data centers, network nodes and in end-user premises [2]. This
potentially offers some benefits, such as:

– Reduced CAPEX, lowering equipment cost
– Reduced OPEX
– Reduced time to market for new telecom services
– Increased scalability
– Reduced entry level/barrier for new players, and geographically targeted

services
– Multi tenancy, multi user, multi services, telecom/network operator resource

sharing/pooling
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Virtualization and cloud technologies allow for an unprecedented degree of
flexibility [2] in the management of the physical resources. However, they also
introduce further variability and unpredictability in the responsiveness and per-
formance of these virtualized network functions, which are often characterized by
well-specified service levels (i.e., reliability and QoS constraints such as latency
constraints) that have to be respected. Furthermore, end-to-end service quality
is increasing in importance and is paramount for real-time and/or interactive
services but especially for carrier grade telecommunication services such as for
instance IMS (IP Multimedia Subsystem).1

An end-user requesting a service does not really care or need to know if the
service requested and consumed is Cloud based or a traditionally hosted one.
An end user mainly cares about the price for a service and the expected and
received service quality – the end-to-end service quality.

This includes several issues, such as End-to-End service availability, End-to-
End service performance (e.g. latency, jitter, throughput), End-to-End service
reliability, End-to-End service accessibility and End-to-End service retainability.
More details about the above issues can be found in [5].

In a Cloud deployment case, the end-to-end service scenario can get quickly
very complex in terms of number of actors and providers involved in the end-
to-end service delivery chain and hence all the boundaries between, i.e., the
horizontal chain including User Equipment, Access Network, Core Network, Data
Center and the top-down chain across the various cloud layers from Software-as-
a-Service (SaaS) to Infrastructure-as-a-Service (IaaS). The scenario can easily
get more complex in case of services spanning across multiple data centers or for
instance 3rd party infrastructures involved in the DC (see Section 3 below).

Hence, in order to enable more telecom like applications and services to be
run in a distributed cloud environment, networked systems need to become more
intelligent and able to support end-to-end QoS by joint optimization across net-
working, computing and storage resources.

In order to provide the required end-to-end service quality for cloud based
services, a Service Level Agreement (SLA) framework is required to express the
required level of service quality and related Key Quality Indicators (KQIs), to
measure, monitor, correct or police, repair and finally to guarantee the required
level of service quality, when coupled with proper service engineering practices. A
chain of multiple SLAs is required covering the end-to-end scenarios. This results
in a complex system of multiple SLAs covering all the boundaries between actors
and providers.

Additionally, those SLAs have different levels of technical content as an SLA
between an end user and an application service provider might be quite different
from an SLA between a Cloud Service Provider (CSP) and a Network Service
Provider (NSP).

1 More information is available at:
http://www.3gpp.org/Technologies/Keywords-Acronyms/article/ims

http://www.3gpp.org/Technologies/Keywords-Acronyms/article/ims
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1.1 Proposition

This paper aims to highlight the importance of end-to-end service quality for
cloud services especially for the case of telecom carrier grade services. We will
mainly focus on the multi-tenancy aspects (as this enhanced level of resource
sharing raises some issues in terms of stability and reliability of cloud services)
as well as the area of Service Level Agreements for end-to-end scenarios.

Technology-wise, we have today some basic building blocks that may enable
cloud infrastructures to exhibit stable and predictable performance to customers.
Indeed, on the side of network provisioning, standards exist enabling the possibil-
ity to provide connectivity with end-to-end QoS guarantees, such as IntServ [12]
and DiffServ [11].

Similarly, on the side of computing technologies, platforms for real-time and
predictable computing are becoming increasingly accessible, not restricted to the
traditional area of real-time and embedded systems, but recently spreading also
extending into the area of predictable cloud computing [15,29].

However, one of the major obstacles that keeps hindering the potential for a
worldwide deployment of these technologies and especially for telecom services,
is the fact that, in many distributed and cloud computing scenarios, there is
not merely a single business entity responsible for the service delivery. Instead,
we may have multiple different, unrelated business entities with contrasting and
competing requirements, interacting for the provisioning of end-to-end cloud
services to customers and finally end users. For example, multiple cloud, storage
and network service providers may be involved for the delivery of a distributed
cloud service to a community of end users.

In this context, setting up proper SLAs among the involved players for de-
livering strong QoS guarantees to customers, may become overly challenging.
However, the main problems arising in such interactions may be mitigated by
proper SLA engineering techniques trying to fragment the overall problem into
simpler ones to be tackled separately, when possible, and a thoughtful interven-
tion of standardization.

The next section will present some of the related work existing in those areas
followed by some scenarios to explain the potential complexity of actors involved
at the present. Finally the paper identifies blank spots of required research and
standardization work in this area.

2 Related Work

This section shortly reviews existing standards and research efforts address-
ing end-to-end Cloud/Network service delivery with QoS considerations. Due
to space constraints, not each individual activity in this area can be mentioned.

2.1 Standards

ETSI. ETSI is currently involved in several activities related to the above men-
tioned issues. Of major importance towards the scope of end-to-end cloud ser-
vice quality provisioning is the work [3] started by the ETSI NFV Reliability
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& Availability sub group. A first report of that group is expected for late 2013.
ETSI NFV detected the importance of end-to-end considerations and kicked off
a Specification document in April 2013 on “NFV End to End Architecture Ref-
erence” (Work Item DGS/NFV-0010). A publication of a first version is planned
for autumn 2013. However, the issue of service quality for virtualized network
functions will be a key issue to work on inside the ETSI NFV activity and will
be probably touched on by several working and expert groups of the ETSI NFV
Group, such as, e.g., in the “Reliability and Availability WG”. The work of this
ETSI NFV consists of providing a pre-standardization study before considering
later a broader standards proposal in a new or existing standardization group.

The second related ETSI activity is the Technical Committee (TC) CLOUD
which aims to address issues associated with the convergence between IT (Infor-
mation Technology) and Telecommunications. The focus is on scenarios where
connectivity goes beyond the local network. TC CLOUD will also address inter-
operability aspects of end-to-end applications and develop formal test specifica-
tions to support them.2 The recent related Technical Report from TC CLOUD
is TR103125, V1.1.1, “Cloud, SLAs for Cloud Services” aiming to review pre-
vious work on SLAs including ETSI guides from TC USER and contributions
from EuroCIO members and to derive potential requirements for cloud specific
SLA standards. Connected to TC CLOUD is the third ETSI hosted and re-
lated activity, the Cloud Standards Coordination (CSC) task.3 ETSI has been
requested by the EC through the European Cloud Strategy [19] to coordinate
with stakeholders in the cloud standards ecosystems and devise standard road-
maps in support of EU policy in critical areas, such as security, interoperability,
data portability, reversibility and SLAs. Especially the subgroup dealing with
Cloud SLAs might produce a highly interesting output document in regard to
existing SLA standards when looking on use cases demanding end-to-end Cloud
service quality. The final report towards the European Commission is expected
for autumn 2013.

NIST. The Cloud Computing Group of the National Institute of Standards and
Technology (NIST) has published and is currently working on a series of reports
being of value to the topic of end-to-end cloud service quality.4

The NIST Cloud Computing Reference Architecture [20] contains a reference
architecture widely used by industry, also introducing actors such as the “Cloud
Broker”, which might play a major role in the end-to-end cloud service delivery
chain.

NIST Special Publication [21], in “Requirement 3: Technical Specifications for
High-Quality Service-Level Agreements”, highlights already the importance of
how to define reliability and how to measure it. This is amplified by “Requirement
10: Defined & implemented Cloud Service Metrics” on the industry need for
standardized Cloud Service Metrics.

2 More information at:
http://portal.etsi.org/portal/server.pt/community/CLOUD/310

3 More information at: http://csc.etsi.org/website/private_home.aspx
4 More information can be found at: http://www.nist.gov/itl/cloud/index.cfm

http://portal.etsi.org/portal/server.pt/community/CLOUD/310
http://csc.etsi.org/website/private_home.aspx
http://www.nist.gov/itl/cloud/index.cfm


End-to-End Cloud SLAs 233

NIST took this already to the next level and is especially addressing those
two requirements in the NIST Cloud Computing Reference Architecture and
Taxonomy Working Group (RATax WG) [22], in addition to other works on
SLA taxonomy and Cloud Metrics [23].

Finally, in an updated Version 2 of Special Publication 500-291 “NIST Cloud
Computing Standards Roadmap”, which is currently undergoing internal review
and approval process, NIST is also investigating on cloud Standards for Service
Agreements. However, regarding end-to-end service quality, the document refers
to considerations done recently by the TM Forum – more details on that in the
next paragraph.

TMF. The Tele Management Forum (TM Forum) has started recently some
effort on Multi Cloud Management which is potentially of high importance for
the end-to-end cloud service quality topic.

TM Forum has created a set of business and developer tools to help service
providers and all players in the multi-cloud value chain implement and manage
services that span across multiple partners. Organized as “packs”, these initial
tools focus on managing SLAs between partners [24].

Document TR178 [30] is a good starting point into that topic as this technical
report takes a wider view considering also related existing work at e.g. DMTF,
OGF, NIST, ITU-T, OASIS and other TMF related activities.

The report recommends a set of business considerations and architecture de-
sign principles that are required to support end-to-end Cloud SLA Management
with the aim to facilitate discussion regarding SLA consistency across Cloud De-
ployment Models and Services Models. TMF is currently planning the work on
a version 2 of that document until late 2013 in order to add especially a section
related to Cloud Metrics and Measurements. Furthermore, TM Forum started
to work on several Multi-Cloud Service Management Reports (TR194-TR197)
which are yet not finalized and published. Looking at the work started it appears
that this work is essential to follow and potentially extend when reasoning about
end-to-end cloud service quality matters. Some of the highlighted points will be
also reflected in Section 4.

OGF. The Open Grid Forum (OGF) developed two Web Services (WS) Agree-
ment Specifications. First, the GFD-R.192 WS Agreement Specification [45], a
protocol for establishing agreement between two WS parties, such as between a
service provider and consumer. And second, the GFD-R-P.193 WS-Agreement
Negotiation specification [46], a protocol for multi-round negotiation of an agree-
ment between two parties, such as between a service provider and consumer
which works on top of WS-Agreement.

Furthermore, OGF started the Open Cloud Computing Interface (OCCI)
working group,5 aiming to realize a set of open specifications, protocols and
APIs [39,40,43] for enhancing interoperability across various implementations re-
lated to the management of cloud infrastructures and services. Projects
aiming to provide an implementation of the OCCI specifications include the

5 More information is available at: http://www.opennebula.org/

http://www.opennebula.org/
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well-known OpenStack6 and OpenNebula.7 The currently available specifications
are GFD.183 OCCI Core [40], GFD.184 OCCI Infrastructure [39] and GFD.185
OCCI RESTful HTTP Rendering [43].

2.2 Research

IRMOS. The IRMOS European Project8 has investigated how to enhance ex-
ecution of real-time multimedia applications in distributed Service Oriented In-
frastructures and virtualized Cloud infrastructures. One of the core components
developed in IRMOS is the Intelligent Service-Oriented Networking Infrastruc-
ture (ISONI) [8,9]. It acts as a Cloud Computing IaaS provider for the IRMOS
framework, managing (and virtualizing) a set of physical computing, networking
and storage resources available within a provider domain. One of the key innova-
tions introduced by ISONI is its capability to ensure guaranteed levels of resource
allocation for individual hosted applications. In ISONI, each distributed appli-
cation is specified by a Virtual Service Network (VSN), a model describing the
resource requirements, as well as the overall end-to-end performance constraints.
A VSN is a graph whose vertexes represent Application Service Components
(ASCs), deployed as VMs, and whose edges represent communications among
them. In order for the system represented by a VSN to comply with real-time
constraints as a whole, QoS needs to be supported for all the involved resources,
particularly for network links, CPUs and storage resources. To this purpose,
VSN elements are associated with precise resource requirements, e.g., in terms
of the required computing power for each node and the required networking per-
formance (i.e., bandwidth, latency, jitter) for each link. These requirements are
fulfilled thanks to the allocation and admission control logic pursued by ISONI
for VM instantiation, and to the low-level mechanisms shortly described in what
follows (a comprehensive ISONI overview is out of the scope of this paper and
can be found in [4,8,9].

Isolation of Computing. In order to provide scheduling guarantees to individ-
ual VMs scheduled on the same system, processor and core, IRMOS incorporates
a deadline-based real-time scheduler [15,18,31] for the Linux kernel. It provides
temporal isolation among multiple possibly complex software components, such
as entire VMs (with the KVM hypervisor, a VM runs as a Linux process). It uses
a variation of the Constant Bandwidth Server (CBS) algorithm [10], based on
Earliest Deadline First (EDF), for ensuring that each group of processes/threads
is scheduled on the available CPUs for a specified time every VM-specific period.

Isolation of Networking. Isolation of the traffic of independent VMs within
ISONI is achieved by a VSN individual virtual address space and by policing the
network traffic of each deployed VSN. The two-layer address approach avoids
unwanted cross-talk between services sharing physical network links. Mapping
6 More information is available at: http://www.openstack.org/
7 More information is available at: http://www.opennebula.org/
8 More information is available at: http://www.irmosproject.eu

http://www.openstack.org/
http://www.opennebula.org/
http://www.irmosproject.eu
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individual virtual links onto diverging network paths allows for a higher utiliza-
tion of the network infrastructure by mixing only compatible traffic classes un-
der similar predictability constraints and by allowing selection of more than just
the shortest path. Traffic policing avoids the network traffic going through the
same network elements causes any overload leading to an uncontrolled growth of
loss rate, delay and jitter for the network connections of other VSNs. Therefore,
bandwidth policing is an essential building block to ensure QoS for the individual
virtual links. It is important to highlight that ISONI allows for the specification
of the networking requirements in terms of common and technology-neutral traf-
fic characterization parameters, such as the needed guaranteed average and peak
bandwidth, latency and jitter. An ISONI transport network adaptation layer ab-
stracts from technology-specific QoS mechanisms of the networks, like Differenti-
ated Services [11], Integrated Services [12,13] and MPLS [14]. The specified VSN
networking requirements are met by choosing the most appropriate transport
network, among the available ones. Other interesting results from the research
carried out in IRMOS include: algorithms for the optimum placement of dis-
tributed virtualized applications with probabilistic end-to-end latency require-
ments [16]; the use of neural networks for estimating the performance of Virtual
Machines execution under different scheduling configurations [18]; techniques for
reduced down-time in live-migration of VMs with time-sensitive workloads [37];
and others. The effectiveness of IRMOS/ISONI has been demonstrated for ex-
ample through an e-Learning demonstrator [15].

SLA. Within IRMOS, an SLA management framework spanning across the
three main cloud service models (SaaS, PaaS, IaaS) has been developed, through
a combined approach of SLAs with real-time attributes (and QoS attributes in
general) according to the needs of the service to be deployed and executed. A
set of tools has been developed which support the tasks of the different actors
(from application modeling down to resource virtualization) and an SLA life
cycle between them. In IRMOS the SLA life cycle is structured in three phases:

– Publication phase
– Negotiation phase
– Execution phase

More details can be found in [25]. This paper also describes in detail the
different types of dynamic SLAs among the different actors:

– Application SLA: agreement established between the Client as a business
customer and the Application Provider; this SLA contains the high-level
QoS parameters of the application required and defined by the Client.

– Technical SLA: agreement negotiated between the PaaS Provider and the
IaaS Provider. This agreement contains low-level QoS parameters associated
with the infrastructure.
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Within the IRMOS project an extensive SLA state of the art analysis has been
performed [26,27,28] also covering several other EC funded research projects such
as RESERVOIR and SLA@SOI.

SLA@SOI. The SLA@SOI EU Project9 developed an open-source framework
addressing [41] negotiation, provisioning, monitoring and adaptation of SLAs
through the entire cloud service life-cycle. The framework included [42] both
functional and non-functional characteristics of services, such as QoS constraints,
which can be formalized through an XML-based syntax.

OPTIMIS. The OPTIMIS EU Project 10 investigates on orchestration of cloud
services [1] specifically addressing how to deploy intelligently legacy applications
based on their preferences and constraints regarding trust, risk, eco-efficiency
and cost factors. For example, in [17], a model for optimum allocation of cloud
services is presented that considers a mix of trust, risk, eco-efficiency and cost
factors in the overall optimization goal. OPTIMIS also investigates on how to
properly leverage both private, hybrid, federated and multi cloud environments
for services development and deployment.

ETICS. The ETICS (Economics and Technologies for Inter-Carrier Services)
European Project investigated on the criticalities for the creation of a new ecosys-
tem of innovative QoS-enabled interconnection models between Network Service
Providers (NSPs) impacting all of the actors involved in the end-to-end service
delivery value-chain. ETICS investigated on novel network control, management
and service plane technologies for the automated end-to-end QoS-enabled service
delivery across heterogeneous carrier networks.

The business models analysis [6] and the overall architecture [7] results from
ETICS constitute fundamental building blocks allowing for the construction of
management of network Inter-Carrier Service Level Agreements.

EC – Expert Group. In July 2013 an Expert Group on Cloud SLA’s of the
European Commission published a report on “Cloud Computing Service Level
Agreements - Exploitation of Research Results” which provides a very detailed
insight and analysis on research results achieved by European and National
funded research projects [47].

3 Deployment Scenarios

Provisioning of cloud computing applications and services to end-users requires
complex interactions among a number of players and business entities. There
exist a nearly unlimited amount of scenarios with increasing number and type
of actors, the figure below shows the potential complexity:

9 More information is available at: http://sla-at-soi.eu/
10 More information is available at: http://www.optimis-project.eu

http://sla-at-soi.eu/
http://www.optimis-project.eu
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Fig. 1. end-to-end scenario(s)

The scenario includes for instance:

– One or more Cloud Service Providers (CSPs), including potentially Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS) providers.

– One or more Network Service Providers (NSP), including heterogeneous net-
works such as the Access Network and Core Network NSPs.

– One or more Application Service Providers (ASPs)
– The Cloud Customer and End User, who may be the same or different enti-

ties, depending on the context.
– A multitude of heterogeneous user equipment, requiring potentially different

access network technologies such as DSL, Wifi, LTE, . . .
– And finally a Broker serving as contact point and contractual partner for

the customer.

In early cloud deployments, NSPs played merely the role of providing connec-
tivity among data centers and end-users through their communication networks,
in a way that is service- and mostly also cloud-agnostic. As a consequence, deliv-
ering cloud based applications and services to end-users needs at least interac-
tions among Access Network NSP(s), Core Network NSP(s) and Cloud Service
Provider CSP(s). However, traditional data centers heavily centralized within
a few geographical locations fall short when constraints on response-times be-
come tight (e.g., real-time applications). Indeed, ensuring predictable and stable
QoS levels in such conditions becomes overly challenging and requires carefully
thought interactions among all these business entities.

Though, over the last years, such a picture has been undergoing quite a
change. On one hand, CSPs have been expanding their presence on the ter-
ritory by adding more and more data centers across the planet. Even though
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some of the most successful providers (e.g., Amazon EC2)11 have still nowadays
barely one or two data centers per continent, there are other efforts towards cre-
ating way more distributed data center architectures for provisioning of cloud
services [32,33,34], such as those leveraging “containerized” and modular data
center solutions [35,36].

On the other hand, Telecom operators have been deploying all over the planet
their ICT infrastructure in a completely distributed fashion (e.g., think of Ac-
cess Network NSPs). In a networking world that is heavily shifting from the
use of custom hardware boxes towards virtualized network functions realized
in software [2], the infrastructures of NSPs is evolving towards more and more
general-purpose hardware hosting virtualized software-based solutions, with the
need of addressing vertical and horizontal scalability of said solutions which are
typical of cloud-based solutions. As a consequence, NSPs are in the unique posi-
tion of needing to build internally scalable and heavily distributed infrastructures
for hosting virtualized network functions, while at the same time being poten-
tially able to reuse such infrastructure for the provisioning of general-purpose
cloud services but with a novel, heavily distributed, close-to-the-edge and un-
precedented low-latency infrastructure.

Generally speaking, distribution of cloud services so as to get closer to the edge
and the end users is a must, while low latency becomes more and more important
for users, whose requirements evolve at an amazing speed from needing a mostly
storage-only cloud to needing full fledged remote desktop-like solutions.

Moving cloud services closer to the edge mitigates partially the problems for
delivering cloud services with stable end-to-end QoS levels. Indeed, when in-
teracting users are geographically close, the variability in the network response
is highly reduced, mostly due to the reduction in the number of network seg-
ments and NSPs to traverse for closing a single round-trip interaction with the
cloud. However, for users distributed across geographically distant locations,
and for many cloud applications that already exist nowadays in which the in-
teractions among users spread across an unimaginable number of data items
spread all around the globe (e.g., think of collaborative tools such as video-
conferencing, shared boards, interactive real-time editing of office documents or
mastering of media contents), it is crucial that end-to-end QoS is still guar-
anteed through appropriate set-up of a properly interacting end-to-end cloud
service supply/delivery chain, especially for those services that are to be de-
livered in a professional way. This requires proper interfaces and standards to
allow, for example, the network management infrastructure (e.g., the OSS/BSS)
to tie together with cloud management systems (e.g., Cloud Orchestrator), and
possibly the existence of Cloud Brokering agents that, analogously to aggrega-
tor websites nowadays, are capable of interacting with all these systems to find
suitable solutions for customers, matching their needs.

Consider again Figure 1 which clearly shows the potential complexity and
especially the large amount of SLAs involved among all the actors. The customer
wants to have a single point of contract, meaning one SLA about the service with

11 More information is available at: http://aws.amazon.com/ec2

http://aws.amazon.com/ec2
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all characteristics and clearly defined quality metrics. In this set-up the Cloud
Broker facilitates meeting of such customer requirement. The Broker then based
on customer requirements as expressed in the SLA selects the right ASP as well
as CSPs and NSPs in order to fulfill those requirements. This could be done all
by the broker or in a more cascaded way. At the end, this whole process results
in a large number of SLAs in order to clearly define the accountability between
the actors when delivering the contractual defined and required QoS.

End-to-end QoS for cloud services can only be achieved through a careful
negotiation of service levels among all the providers, both in the network and in
the IT space. Furthermore it is required to have clearly defined quality metrics
to monitor and report and finally to trigger countermeasures in case of SLA
violation always with the overall target to keep the end-to-end service quality as
required.

4 Conclusion and Outlook

End-to-end service quality for cloud services is heavily dependent on SLA han-
dling in a multi-provider and multi-vendor setup, coupled with proper resource
management strategies in a challenging environment with heterogeneous and po-
tentially widely distributed resources. A major challenge for the management of
end-to-end Cloud SLAs is the aggregation of individual SLAs across the vertical
and horizontal end-to-end path with all their related metrics and KPIs (main
metric of interest for the Service Provider)/KQIs (main metric of interest for the
customer). TMF, as indicated above, started some work within the Multi-Cloud
Service Management Activity which required further work especially regard-
ing the integration/stacking of multiple SLAs. Furthermore additional research
and/or standardization effort is required, e.g., to:

– Define clear, measurable metrics to be used to quantify service quality needs
and expectations and to provide a common language between the multitude
of vendors and providers. Work has been started on this at QuEST EB9
Group, TMF and NIST at least. SLA metrics require appropriate defini-
tion and categorization to align with expressed SLA objectives as well as
to monitor for adherence to those objectives and report or trigger actions
when those objectives are not met. There will be no real SLA management
and hence no deployment for mission critical or interactive real-time services
without crystal clear defined metrics and the definition of how to measure,
report and manage them.

– Develop a more automated SLA management, as required to develop machine
readable SLAs in order to achieve faster provider discovery, comparison and
monitoring of service quality (see also related recommendations in [44], page
60, Section 6 Federation).

– Enhance the very complex end-to-end view across all the horizontal and
vertical layers and actors, in order to ensure not just service quality but
also issues like security and accountability for cloud based services (see also
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related recommendations in [44], page 61, Section 7 Programmability & Us-
ability and page 63, Section 9 Security).

– Design and engineer proper resource management and scheduling frame-
works for cloud computing infrastructures, enabling the possibility to ensure
proper levels of temporal isolation among VMs deployed by independent cus-
tomers (see also related recommendations in [44], page 60, Section 5 Multiple
Tenants).

– With the expected quick increase in number of available cloud data cen-
ter locations across the planet, it will become more and more challenging
to properly/optimally place but especially to dynamically relocate appli-
cations, VMs, data, across one or more cloud infrastructures, in order to
achieve desired and desirable trade-offs among efficiency in management of
the infrastructure and users’ quality of experience and expectations; more
research on scalable, adaptive resource management policies, coupled with
agile software infrastructures, is needed for handling the cloud computing
scenarios of tomorrow (see also related recommendations in [44], page 60,
Section 6. Federation and page 61, Section 7 Programmability & Usability).

– Deal with energy efficiency, a critical issue that needs to be addressed at
all levels of computing, from industrial deployments to research, and from
hardware to software; designing SLAs containing QoS constraints, but at
the same time capable of leaving a degree of flexibility to the CSP or other
involved entities enabling more energy-efficient management of resources,
need to be further investigated (see also related recommendations in [44],
page 61, Section 7 Programmability & Usability).

– Tomorrow cloud applications will make more and more use of massive
amounts of data, and normal users of cloud applications will expect/pretend
that they can query amazingly huge data sets in one instant; resource man-
agement and scheduling for meeting QoS constraints and providing temporal
isolation in presence of “big-data” types of workloads presents a set of novel
challenges that have to be urgently addressed by research in the domain of
cloud computing and virtualized infrastructures (see also related recommen-
dations in [44], page 56, Section 1 Data Management).

As a final concluding remark, we highlighted in this paper some of the most
important efforts in research and industry to tackle end-to-end service quality,
but there is still significant work ahead in order to be able to deploy mission
critical or interactive real-time services with high demands on service quality,
reliability and predictability on cloud platforms.
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Abstract. Service markets allow users to discover, purchase, and utilize servic-
es offered on a specific platform. As service platforms grow in number of users 
and variety of offerings, it raises the question of whether this phenomenon con-
tinues to benefit users. Based on a literature review, the paper identifies usabili-
ty, service variety, and the number of personal connections accessible over the 
service platform as major determinants that contribute to the value to users. 
Based on survey data on the behavior of mobile service users, the relationship 
between user value and the determinants is analyzed and estimated. The results 
show positive correlations between all three determinants and the value. Using 
regressions, we estimate how much these determinates contribute to the user 
value. Mobile service users are satisfied with the usability of services of their 
chosen platforms, although the impact on the user value is the lowest. Users 
benefit the most from an increase in the number of their personal connections 
and the number of services they use.  

Keywords: Network Effect Theory, UTAUT, Value Creation, Service Plat-
forms, Survey, Multiple Regression. 

1 Introduction 

Service platforms can be considered one of today’s highly valued technologies. In 
recent years, there has been a rapid growth in the number of services being developed 
and offered over various platforms. By January 2013, Apple’s App Store contained 
750,000 registered services. Google's Android operating system runs on many devices 
and competes with the iPhone. It comes with more than 700,000 services as of April 
2013, that are offered through its software service market Play Store.  

The introduction of mobile service platforms made the development and offering 
of services simple and helped their integration into users’ daily lives [32]. From a 
business perspective, value creation is the main focus of service platform operators, 
both in the context of creating better value for customers purchasing their services as 
well as for their shareholders, who want to see their stake increase in value. Due to 
the novelty of technologies, delivery modes, and business models in service plat-
forms, the definition of their value system is at its early stage. Therefore, the question 
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whether the existing models from theories of network analysis and information sys-
tems explain the specific characteristics of the value creation process in service plat-
form markets needs to be addressed.   

Prior to the web services era, demand-side interdependencies in communication 
markets have been investigated in earlier literature [1]. Following these approaches, 
economic theories regarding information goods stated that usage of products in these 
markets is driven by the need for compatible (interoperable) products to exchange 
information and the need for complimentary products and services [2], [3]. The con-
cepts of complementarities and network effects are adopted into theoretical models 
for platform leadership and value creation in e-businesses in recent studies [4], [5]. 
These studies introduced direct and indirect network effects which come from the 
installed base and the availability of complimentary services as value drivers for both 
providers and consumers. However, they provide a general overview of network ef-
fect markets, investigating reactions to an aggregated number of users without consi-
dering variations of user choices. In addition to this, a complete value function needs 
to account for the benefits from actual use of functions. For this purpose, we adopt the 
measures of usability introduced through the Technology Acceptance Model (TAM) 
and later extended into the Unified Theory of Acceptance and Use of Technology 
(UTAUT) [6] [7]. This paper applies measures (i.e., perceived usefulness and per-
ceived ease of use) used in the UTAUT to capture the user value from the usability of 
a service platform. The paper addresses a research gap regarding the identification of 
determinants of a service platform user’s value and the introduction of a measurement 
method. In detail, it responds to the question of what aspects of a service platform 
determine a user’s value. It also addresses a question on how to estimate the value 
function of a service platform user. 

Our main hypothesis is that the value creation process in mobile service markets is 
significantly influenced by personal experiences of the users’ in relation to the usa-
bility of functions provided, size of personal networks built with other users, and the 
number of services a user chooses to utilize. In order to evaluate the relationships 
between service users’ value and a set of variables measuring their usage experience, 
the study applied multiple regressions on survey data.  

The contribution of our paper is that it builds an aggregated model based on a pre-
viously established research framework of IT usage and network effects [4], [5], [6], 
[7], [8], [9], [10], [11], [12]. Using this model, it presents an estimation of a value 
function of service platform users. The value function is computed empirically from 
the analysis of survey-based consumption data of service platform users. As the busi-
ness model of service platforms is dominated by advertisement-based, charge-free 
offerings, the paper suggests a value measure that takes into account this fact. The 
results of the analysis are used to discuss the extent of impact on service users’ value 
due to the ever increasing provision of new service offerings, improvements in usabil-
ity, and the ability to connect to a larger number of other users via the service plat-
form.  

In the following section, we will give a short overview of service marketplaces, 
approaches using network effect theory, the Unified Theory of Acceptance and Use of 
Technology (UTAUT), and related literature on value creation. Section 3 presents the 



246 N. Haile and J. Altmann 

 

model proposed. After describing the data collection in section 4, section 5 presents 
the results and discussion of the estimated data. Section 6 concludes the paper. 

2 Related Work 

2.1 Software Service Markets  

The term software services (services) is used to refer to software-as-a-service offer-
ings that run on computing devices such as smartphones, tablet personal computer, 
and notepads. They are made available through service platforms or service market-
places such as Apple App Store, Google Play Store, Windows Phone Store, BlackBer-
ry App World, and Amazon App Store. The software services are downloaded from 
the platform to the users’ devices, which run operating systems such as iOS, Android, 
Windows, and BlackBerry OS. The operating systems are free of charge or are ob-
tained through a perpetual license. The software services are usually produced by 
third-party developers and are offered via the platform for a share of the sales price 
(e.g., for about 20-30%). Today, multiple OS-native and third-party software service 
providers operate in the service market. iOS and Android hold the largest shares in the 
market as they are adopted by more than 500 million users each [13]. In detail, App 
Store of Apple contained 775,000 services as of January 2013 [14], Google Play Store 
of Google has 700,000 services as of April 2013 [15], Window Phone Store of Micro-
soft 130,000 services as of February 2013 [16], and BlackBerry World of RIM of-
fered 100,000 services as of March 2013 [17].  

2.2 Unified Theory of Acceptance and Use of Technology 

The Unified Theory of Acceptance and Use of Technology (UTAUT) focuses on 
identifying measures (factors, constructs) for a technology to be successfully adopted 
and used by the target market [7]. It is an integrated and updated presentation of the 
earlier Technology Acceptance Model (TAM) and the subsequent developments that 
have been made based on TAM [6].  

2.3 Network Effects Theory 

In empirical studies based on network effect theory, authors mainly put effort into 
proving the existence of network effects and estimating its value using regression 
analysis [18], [19], [20], [21]. Some of the studies use equilibrium analysis to explain 
problems such as market failure, competition, and path dependency of markets [2], 
[8], [9], [10], [11], [12], [22], [23]. Looking into these earlier studies of network ef-
fects, they provided a general theoretical framework showing responses of a potential 
market to an aggregated size of an installed base and complimentary products. Theo-
ries of network effects have also been adopted as value factors in web service markets 
in recent studies [4], [5]. 
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2.4 Value Creation  

Value creation describes the performance of businesses or the consumption decisions 
that increase the value of goods, services, or a business [24]. Creating value for a 
customer entails providing products and services that customers find consistently 
useful. In today's economy, such value creation is typically based on products and 
process innovation. Creating value for investors means delivering consistently high 
returns on their capital. This generally requires both strong revenue growth and attrac-
tive profit margins. These, in turn, can be achieved only if a company delivers sus-
tained value for customers [24]. 

There have been a number of studies performed on the value creation process and 
value factors in platform-based markets in general [4], [25], [26]. A few studies also 
exist on IT service markets [5], [27], [28], [31]. These studies focus on value creation 
in e-business [4], adoption of mobile Internet [25], mobile service ecosystem [26], IT 
service platforms [5], [27], and on the evaluation of service platform business models 
[28], [31]. 

The theories of network effect and UTAUT are used in this paper as sources of de-
terminants, explaining the value creation process. In constructing a service platform 
user’s value model, the paper employs two value drivers (namely installed base and 
complementary services), which have been introduced by the theory of network ef-
fects. In addition to this, the paper also adopts perceived usefulness and perceived 
ease of use from the UTAUT measures of usability.   

3 Model Specification 

3.1 Determinants of Value of Service Platform Users 

Identifying the major value determinants is important for modeling the value creation 
in service platforms. For this, we examined studies on the Technology Acceptance 
Model (TAM), its extended versions, the Unified Theory of Acceptance and Use of 
Technology (UTAUT), network effect theories for information goods markets, and 
the adoption of network effects concepts. We found that value creation in service 
platforms could be explained using three determinants: usability, service variety, and 
installed base. 

Usability. Adopting the concepts of UTAUT [7], usability of a service can be de-
scribed as the level of effort the user needs to access, understand, utilize the service 
platform and its offerings. It also entails the level, at which the service platform in-
cludes offerings that fulfill the user’s functionality requirements. Usability of a ser-
vice platform is enhanced by its functional and non-functional performance. Whether 
a user’s experience meets the expectations determines the value of the user (Table 1). 
In this model, the value for perceived usability as a latent variable was obtained from 
the interaction of two proxy measures (Table 2). Those measures are the users’ indi-
cation of their perceived level of usefulness (PER_USEFUL) and perceived level of  
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ease of use (PER_EASE_USE) of their service platform [6], [7]. The reciprocal of the 
product (equation 1) is taken to represent the perceived usability of user i in the value 
model: 

  _  _ _  (1) 

Table 1. Value determinants summary 

Determinant Definition Source 

Usability 

Degree of performance of a system to 
accomplish the required functions as 
well as degree of difficulty to under-
stand and use a system. 

[6],[7] 

Installed base 
Quantity of existing users of a sys-
tem. 

[2],[4],[5],[9],[10], 
[11],[12] 

Service variety 
Quantities of services interoperable 
(compatible) with the system used. 

[2],[3],[4],[5],[8],[29], 
[30],[9],[10],[11],[12] 

 

Service Variety. Services, which run over the same service platform, are developed 
using a common standard. If a user adopts a service platform, the user is offered basic 
functionalities, enabling him to run further and complementing services. The exis-
tence of complementarities makes a product or service a more attractive offering to 
users [2], [4], [5], [9], [10], [11], [12], [29], [30]. The use of additional services could 
cost more for the user though. Therefore, the variety of services available determines 
the quantity of services and service categories a user has access to over this platform 
(Table 1). In this model, service variety accessed by the user is measured by the total 
number of services the user subscribed to or stored in their smart device (S_TOTAL) 
and the average number of services used per day (S_DAILY_USE)(Table 2). The 
number of services a user chooses to install and to use daily are assumed to indicate 
their valuation of the variety of services their service platform offers. We normalized 
the value using the maximum number of services expected to be installed and used 
daily. The resulting level of use of service variety is in the range [0,1]. Therefore, 
service variety for user i is represented in the model as shown in equation 2: 

  S_TOTALi  S_DAILY_USEi    S_TOTALi  S_DAILY_USEi  (2) 

Installed Base. The installed base is the total number of a particular product or sys-
tem in the entire market or product segment. However, when calculating the installed 
base of a market, it is important to exclude products that have been replaced by tech-
nology upgrades or are no longer in use. Therefore, the installed base corresponds to 
the size of the actual end-user base, indicating its popularity (Table 1). The installed 
base measure is particularly important if the adoption of a new product depends on a 
product (e.g., device, software) that is already installed in the market [11].  
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Table 2. Summary of variables and measures used in the value model 

Variable Measure Description 

Usability 

Perceived Ease of use 
(PER_EASE_USE) 

Level of ease, at which a user can discover, pur-
chase, and utilize services on the service platform.  

Perceived usefulness 
(PER_USEFUL) 

The ability of services offered on the platform in 
relation to the user’s functional requirement.   

Service 
variety 

Number of services 
currently installed 
(S_TOTAL) 

Total number of services the user currently has 
installed on his device. 

Number of services used 
per day 
(S_DAILY_USE) 

The number of services the user uses frequently. 

Installed 
base 

Number of connections 
to other users 
(N_TOTAL) 

Total number of contacts a user has stored in their 
communication and social media services. 

Number of  active con-
nections to other users 
(N_RECENT_INTER) 

Number of other users the service user communi-
cates with frequently.  

In the context of service platform markets, one unit of an operating system acti-
vated corresponds to one user. The total number of devices with a certain operating 
system run by a single platform service user makes the installed base of the service 
platform. Current software service platforms are dominated by use scenarios which 
involve communication, collaboration, and exchange of information among users [5], 
[28], [30]. Thus, the number of other users that a user can connect with on a platform 
is an important determinant.  

Similarly, the installed base is represented by the number of total connections 
stored by the user (Table 2). The number of connections (N_TOTAL), which the user 
chose to make over their social media, communication, and entertainment services, is 
taken as the indicator of their valuation of the installed base. In addition, the frequen-
cy of interactions (N_RECENT_INTER) with a part of those connections is also con-
sidered. The installed base value is also normalized to generate a value in the range 
[0,1]. Therefore, we define the installed base for user i as shown in equation 3:  

 N_TOTALi  N_RECENT_INTERi    N_TOTALi  N_RECENT_INTERi   (3) 

3.2 Proposed Value Model 

We construct a value model consisting of the determinants identified in the previous 
section. The model assumes that service platform users get value from their expe-
rience of usability of the service platform, the variety of services (functionalities) that 
they can utilize, and the number of communications (connections) that they can make 
with other users. When deciding on the adoption of a service platform, a user i is  
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assumed to expect the value Vi(USABi, Si, Ni) of using the service platform to be 
greater or equal than the value of not using it. The value Vi is a function of USABi 
(equation 1), Si (equation 2), and Ni (equation 3).  

To indirectly measure the value V, we introduce two more measures (Table 3), 
namely the time spent on using services (C_TIME) and the monetary cost of using 
services (C_USAGE). In detail, C_USAGE is the amount of money the user spent on 
purchasing services, fees paid for upgrading and access to content such as movies, 
music and games per day. C_TIME is the cost of time the user spends on using the 
service platform daily. The total cost, which is a function of C_TIME and C_USAGE, 
represents a lower bound to the value V that a user gets. A user would never use a 
service platform, if the value V were lower than the cost spent. 

Table 3. Summary of the variable and measures used to estimate the user value in the model  

Variable Measure Description 

Total 
cost 

Time spent on using 
services (C_TIME) 

Amount of time a user spends on using services on 
average per day. 

Cost of using services 
(C_USAGE) 

Amount of money a user spends on using services 
on average per month. 

Based on these two measures of cost, the value of a user i can be estimated as 
shown in the following equation: 

 , , TOTAL_COST  _ , _  (4) 

where Vi, USABi, Si, and Ni are defined as described above. TOTAL_COSTi is a 
function of C_USAGEi and C_TIMEi. It calculates the sum of ln(C_USAGEi) and 
ln(C_TIMEi).  

Service platforms are dominated by advertisement-based service offerings. In such 
an environment using willingness-to-pay for service usage as the only indicator of 
value would undermine the results. Therefore, we add the cost of time the user spends 
daily utilizing services as well. Based on the user’s annual income, we estimate their 
approximate hourly income and use it as the cost of one hour of time spent.  

Based on this value model, multiple separate relationships between the platform 
users’ value (estimated through the total cost) and the explanatory variables can be 
measured. The value model (equation 5) is based on an additive logarithmic function. 

 _         (5) 

The coefficients β0, β1, β2, and β3 indicate the intercept and the amount of change in 
the total cost (i.e., the proxy for the value of service users) as a result of the change in 
one unit of usability (USAB), service variety used (S), and number of connections 
(N), respectively. It describes their individual relationship with the resulting value 
(TOTAL_COST), assuming the other variables constant.  
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4 Method 

4.1 Data Collection 

A user survey has been conducted from May 1st to May 31st 2013 to collect the data 
for the analysis. The survey was distributed to global smartphone users and adminis-
tered online, through social media and email. Anyone, who owned a smartphone, was 
eligible to respond to the survey. The survey questionnaire included 26 questions:  

In total, 183 responses have been received. The characteristics of our respondents 
are: 78 students (43%), 51 (28%) employees of private companies, 43 (23%) govern-
ment employees, and 11 (6%) self-employed. It is clearly a small sample to represent 
the whole population of mobile service users. However, it includes a good distribution 
of possible behaviors of new and experienced mobile service users: 140 (77%) of 
which have been smartphone users for more than a year. The respondents of the sur-
vey were users of different service platforms: 46 (25%) Apple iOS users, 98 (54%) 
Google Android users, 7 (4%) Microsoft Windows Mobile users, 27 (15%) RIM 
BlackBerry users, and 5 (3%) users of other platforms. Among the responses re-
ceived, 177 valid records are used in the analysis. Observations with 0 service usage 
per day were omitted. Table 4 shows the measurement types of the main variables 
collected by using the questionnaire.   

Table 4. Types of data collected for each variable considered in the study 

Variables Measures Measurement types used 

USAB 
PER_EASE_USE Likert scale (1-5) 

PER_USEFL Likert scale (1-5) 

S 
S_TOTAL 20 Intervals, Range (1-200) 

S_DAILY_USE 8 Intervals, Range (0-21) 

N 
N_TOTAL 15 Intervals, Range (1-1500) 

N_RECENT_INTER 10 Intervals, Range (1-100) 

V (Value) 
C_TIME 17 Intervals, Range (0-8) 

C_USAGE  6 Intervals, Range (0-25) 

5 Data Analysis Results 

5.1 Time Spent on Using Services 

The peak frequency on time spent on services is the range 0.5 hours to 1.0 hour. 35 
subjects (20%) indicated this range. The second highest frequency with 32 subjects 
(18%) is the range 1 hour to 1.5 hours. The distribution of the frequency on time spent 
has a lognormal shape (Figure 1). 
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Fig. 1. Average time spent on using services per day  

Only 71 of our respondents (31%) spent more than 2.5 hours a day on using any of 
the services on their smartphones.  

5.2 Correlation 

All explanatory variables (Usability (USAB), service variety (S), and installed base 
(N)), which have been identified in section 3, show positive correlations with each 
other as well as a significant correlation with the response variable (TOTAL_COST), 
representing the value to users (Table 5).  

Table 5. Correlation between determinants and total cost 

 USAB S N TOTAL_COST 
USAB 1    
S 0.66749 1   
N 0.49424 0.68236 1  
TOTAL_COST 0.47194 0.62693 0.60457 1 

The strongest positive correlation (0.682) is shown between the number of services 
installed on users’ smartphones (S) and the number of personal connections they have 
made over their communication and social media services (N). This correlation is in 
line with the fact that communication is the preferred functionality of services of 
many mobile platform users. The second highest positive correlation (0.667) is be-
tween usability of the platform (USAB) and service variety (S). In addition to this, 
TOTAL_COST (i.e., willingness-to-pay) and service variety show also a strong corre-
lation (0.626). In general, these results confirm that users are willing to pay (through 
money and time spent) for communication with personal contacts and for service 
variety.  
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5.3 Estimation of Coefficients 

Based on the data collected, we can estimate the coefficients of the model that is 
shown in equation 5 as follows: 

  _  1.04 0.85   6.22  4.66  (6) 

As shown in Table 6, the explanatory power of the model is satisfactory with an 
adjusted R2 of 0.44. The t-test detected statistically significant dependence of V on all 
3 independent variables (USAB, S, and N). Both the F-test and P-value are sufficient-
ly low to indicate good reliability of the model.  

All of the estimated parameters have a positive sign. The estimated rate of change 
of V with respect to USAB, if S and N are fixed, is between -0.877 and 2.587, with 
respect to S, if USAB and N are fixed, is between 3.118 and 9.327, and with respect to 
N, if USAB and S are fixed, is between 2.484 and 6.837. The detail results of the re-
gression are shown in Table 6 below. Service variety is estimated to be the strongest 
positive determinant of platform users’ willingness to spend time and money on 
usage, if other factors are fixed.   

Table 6. Model estimation results 

Regression Statistics 

Multiple R 0.674 

R Square 0.455 

Adjusted R Square 0.445 

Standard Error 1.758 

Observations 177 

  Coefficient 
Standard 

Error t Stat P-value 
Lower 

95% 
Upper  

95% 

Intercept 1.045 0.164 6.367 0.00 0.721 1.369 

USAB 0.855 0.877 0.974 0.33 -0.877 2.587 

S 6.222 1.573 3.956 0.00 3.118 9.327 

N 4.661 1.103 4.226 0.00 2.484 6.837 

While having a positive impact, a change on the level of usability does not cause a 
significant increase in the willingness-to-pay for service usage, assuming other factors 
fixed. Personal connections and service variety have been identified as the two impor-
tant determinants for service platform users. The rate of change of the total cost in 
response to one level increase in the number of personal connections to other users is 
significant (4.661), assuming other parameters fixed. The same goes for service varie-
ty. In this case, the rate of change is even 6.222. 
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6 Conclusion 

Motivated by the globally increasing attractiveness of software service platform use 
and the paralleled increasing interest of developers to offer more services over these 
platforms, this paper aimed at proposing a model explaining the value of software 
service platform users. We explained the relevance of the theoretical framework in 
service platform markets and analyzed their implications. We chose three explanatory 
variables: usability, service variety, and installed base. Each of those variables can 
reasonably contribute to the service users’ value. The dependent variable, user value, 
is proxied (substituted) through the cost of time that users spend on using the service 
platform and the spending on purchasing and using services. This is reasonable to 
assume as the user value needs to be higher than the cost that is incurred to a user. 
Otherwise, i.e., if the return in user value were lower, the user would not use the plat-
form at all. Therefore, the estimate gives a lower bound on the value.  

Based on a survey conducted among smartphone users, we estimated the coeffi-
cients of the value model. Most of its explanatory power of the model resides in the 
variable service variety and the variable installed base. It is remarkable that their ex-
planatory power is stronger than the explanatory power of the variable usability. 

Though efforts were made to include subjects revealing all possible behaviors in 
relation to the variables of interest, this study has limitations due to a small sample 
size. Further studies could be conducted involving a more representative sample size.  

Acknowledgments. This work has been funded by the Korea Institute for Advance-
ment of Technology (KIAT) within the ITEA 2 project 10014 EASICLOUDS. 

References 

1. Rohlfs, J.: A Theory of Interdependent Demand for a Communications Service. The Bell 
Journal of Economics and Management Science, 16–37 (1974) 

2. Katz, M.L., Shapiro, C.: Network Externalities, Competition, and Compatibility. The 
American Economic Review 75(3), 424–440 (1985) 

3. Economides, N.: The economics of networks. International Journal of Industrial Organiza-
tion 14(6), 673–699 (1996) 

4. Amit, R., Zott, C.: Value Creation in E-business. Strategic Management Journal 22, 493–
520 (2001) 

5. Lee, S., Kim, T., Noh, Y., Lee, B.: Success Factors of Platform Leadership in Web 2.0 
Service Business. Service Business 4(2), 89–103 (2010) 

6. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly 13(3), 319–340 (1989) 

7. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User Acceptance of Information 
Technology: Toward a Unified View. MIS Quarterly, 425–478 (2003) 

8. Katz, M.L., Shapiro, C.: Technology Adoption in the Presence of Network Externalities. 
The Journal of Political Economy, 822–841 (1986) 

9. Katz, M.L., Shapiro, C.: Systems Competition and Network Effects. The Journal of Eco-
nomic Perspectives 8(2), 93–115 (1994) 



 Estimating the Value Obtained from Using a Software Service Platform 255 

 

10. Farrell, J., Saloner, G.: Standardization, compatibility, and innovation. The RAND Journal 
of Economics, 70–83 (1985) 

11. Farrell, J., Saloner, G.: Installed Base and Compatibility: Innovation, Product prean-
nouncements, and Predation. The American Economic Review, 940–955 (1986) 

12. Arthur, W.B.: Competing Technologies, Increasing Returns, and Lock-in by Historical 
Events. The Economic Journal 99(394), 116–131 (1989) 

13. Worldwide Smartphone OS share, http://www.icharts.net/chartchannel/ 
worldwide-smartphone-os-share-2012-q1-2013-q1_m3zryyngc  
(accessed on June 2013) 

14. Apple, http://www.apple.com/pr/library/2013/01/07App-Store- 
Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html  
(accessed on June 2013) 

15. Google Play, https://play.google.com/store/ (accessed on June 2013) 
16. Windows Phone Store, http://www.windowsphone.com/ 

en-us/store/overview (accessed on June 2013)  
17. Blackberry World, http://appworld.blackberry.com/webstore/ (accessed 

on June 2013) 
18. Hartman, R.S., Teece, D.J.: Product Emulation Strategies in The Presence of Reputation 

Effects and Network Externalities: Some Evidence From The Minicomputer Industry. 
Economics of Innovation and New Technology 1(1-2), 157–182 (1990) 

19. Church, J., Gandal, N.: Network Effects, Software Provision, and Standardization. The 
Journal of Industrial Economics 85–103 (1992) 

20. Gandal, N.: Hedonic Price Indexes for Spreadsheets and an Empirical Test for Network 
Externalities. The RAND Journal of Economics 25(1), 160–170 (1994) 

21. Economides, N., Himmelberg, C.: Critical Mass and Network Evolution in Telecommuni-
cations. In: Toward a Competitive Telecommunications Industry: Selected Papers from the 
1994 Telecommunications Policy Research Conference (1995) 

22. Besen, S.M., Farrell, J.: Choosing How to Compete: Strategies and Tactics in Standardiza-
tion. The Journal of Economic Perspectives 8(2), 117–131 (1994) 

23. Liebowitz, S.J., Margolis, S.E.: Path Dependence, Lock-in, and History. Journal of Law, 
Economics, & Organization 11(1), 205–226 (1995) 

24. Brandenburger, A.M., Stuart, H.: Value-Based Business Strategy. Journal of Economics 
and Management Strategy 5, 5–25 (1996) 

25. Kim, H.W., Chan, H.C., Gupta, S.: Value-Based Adoption of Mobile Internet: An Empiri-
cal Investigation. Decision Support Systems 43, 111–126 (2007) 

26. Basole, R.C., Karla, J.: Value Transformation in the Mobile Service Ecosystem: A Study 
of App Store Emergence and Growth. Service Science 4(1), 24–41 (2012) 

27. Haile, N., Altmann, J.: Value Creation in IT Service Platforms through Two-Sided Net-
work Effects. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, 
vol. 7714, pp. 139–153. Springer, Heidelberg (2012) 

28. Smedlund, A.: Value Co-creation in Service Platform Business Models. Service 
Science 4(1), 79–88 (2012) 

29. Zhu, F., Iansiti, M.: Entry into Platform-Based Markets. Strategic Management Jour-
nal 33(1), 88–106 (2012) 

30. Gawer, A., Cusumano, M.A.: How Companies Become Platform Leaders. MIT Sloan 
Management Review 49(2), 28–35 (2008) 

31. Gebregiorgis, S.A., Altmann, J.: IT Service Platforms: Their Value Creation Model and 
the Impact of Their Level of Openness on Their Adoption. TEMEP Discussion Paper 
201295 (2012) 

32. Kim, J., Ilon, L., Altmann, J.: Adapting Smartphones as Learning Technology in a Korean 
University. Transactions of the SDPS. Journal of Integrated Design and Process Science 
(2013) 



An Experiment in SLA Decision-Making

Ulrik Franke1, Markus Buschle2, and Magnus Österlind2
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Abstract. Decision-making with regard to availability service level
agreements (SLAs) is investigated. An experimental economics approach
was used to elicit the preferences for different SLA alternatives from the
subjects (N = 16), all professionally working with IT management. A
previously published scenario on downtime costs in the retail business
was used in the experimental setup. Subjects made 18 pairwise choices
under uncertainty. After the experiment, they were paid based on one
of their choices, randomly selected. The subjects rarely behaved as ex-
pected utility maximizers in the experiment. This raises questions about
company SLA management in real situations, and calls for further re-
search.

Keywords: Service Level Agreements, Availability, SLA Management,
Decision-making, Experiment.

1 Introduction

Today, IT is increasingly being provisioned as a service. Distributed systems tech-
nology provides the basis of the ”cloud”, where enterprises can buy advanced IT
services ”off the shelf”, gaining flexibility and scalability. However, the economic
implications are just as important to investigate as the technology [1].

A key non-functional property of IT services bought and sold is availability.
Annual costs of unplanned downtime were in the billion dollar range already 15
years ago [2], and have hardly improved since. Stock prices fall when business
operations are disrupted by IT incidents [3, 4], and reliability costs rank as an
important IT frustration for executives [5]. However, to maintain high availability
today, IT executives need proper service level agreements (SLAs). Such contracts
link business operations to the IT services bought off the shelf.

How to write proper SLAs is interesting both to academia and practitioners.
Management by contract [6] can be said to be at the heart of this research
area, along with the primacy of the business perspective [7, 8] and the fact that
negotiations have to take place between parties with asymmetric information [9].
Gartner [10] and ITIL [11] offer practical advice on availability SLA writing.
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The research question of this paper is: Do practitioners deviate from expected
utility when procuring availability SLAs, and if so, how? Previous work identifies
many potential deviations, e.g. bounded rationality [12, 13] and overconfidence
[14]. This study extends previous theoretical work [15] with an empirical investi-
gation. Our results show that practitioners do not necessarily behave as expected
utility maximizers – indeed, they do so quite rarely in our experiment.

1.1 Outline

The remainder of the paper is structured as follows: Section 2 covers related work.
Section 3 presents the availability investment model used in the experiment.
Data collection methods are detailed in Section 4, followed by results in Section
5. Section 6 relates the outcome to previous findings and discusses the results.
Finally, Section 7 offers some concluding remarks.

2 Related Work

Optimal SLA management is a growing field. [16] offers models for optimal
service-window scheduling to minimize business impact, but does not address un-
planned outages. [17] derives optimal SLA strategies, but does not focus on avail-
ability. [18] considers SLA specifications, but without quantitative risk analysis.
[19] investigates the service procurer’s optimization problem, but does not empir-
ically study human decision-making. Neither does the game theoretic approach
of [20]. Technically oriented work such as frameworks for bridging SLA templates
[21] or intelligent SLA negotiation agents [22] are important for well-designed
SLAs, but does not further our understanding of human decision-making.

Turning to decision-making research, [23] presents a game theoretic framework
for SLA negotiation. A bargaining process is envisioned, where an equilibrium
between client and service provider is found by counter-offers. This is different
from our study, where the client is offered a take-it-or-leave-it contract.

[24] presents a study on decision-making for duplex gambles where 34 under-
graduate statistics students played hypothetical gambles. The study shows that
in the loosing form of gambles (like those in our study, where the decision maker
cannot gain money from the gamble) a majority of respondents (78%) maximize
the expected value of the gamble, being highly consistent. A similar study with
42 undergraduate psychology students is presented in [25], with results again
showing that most respondents are maximizing the expected value.

3 The Decision-Making Problem

SLAs govern many non-functional requirements, but our focus is on availability.
The average availability can be computed as the Mean Time To Failure (MTTF)
divided with the total time of operation, i.e. the sum of MTTF and the Mean
Time To Repair/Restore (MTTR) [26]:

A =
MTTF

MTTF +MTTR
(1)
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Availability is a good experimental topic for many reasons: Requirements are
easy to understand, there is a tangible economic impact, and it is often at the
heart of SLAs. In the experiment (cf. Section 4), participants were subjected to
a decision-making problem re-used from [15], where more details can be found.

3.1 A Simple Investment Model

Availability investments have diminishing returns. Each additional hour of up-
time comes at a higher cost. This is modeled by Eq. (2)

A = f(A0, c) = 1− (1−A0)e
−αc (2)

where A ∈ [0, 1] is the availability resulting from an investment c ≥ 0 made at an
initial availability level A0 ∈ [0, 1], where α ∈ (0, 1) determines the shape of the
function. Though simplified, it reflects some important real world characteristics.

An estimated average cost of 1 hour of downtime is the following [27]:

Empl. costs/hour ·% Empl’s affected by outage
+ Avg. Rev./hour ·% Rev. affected by outage
= Estimated average cost of 1 hour of downtime

(3)

If this cost is multiplied with the number of hours per operating year (e.g. 365
days · 24 hours for 24/7 systems) a maximum potential loss L is found. With
availability A, the annual loss is (1−A)L, e.g. A = 95% entails a loss of 0.05L.
In this simplified model, hourly cost is independent of outage duration.

By adding downtime costs and investment costs a net cost function is found:

Net cost = (1 − f(A0, c))L+ c (4)

This net cost function has a level of investment c∗ that minimizes the cost:

c∗ =
ln(α · L · (1−A0))

α
(5)

3.2 The Variance of Outage Costs

A better model does away with averages and lets the outage cost depend on the
time of occurrence, giving each hour a separate random cost variable Li. The
expected total cost becomes a sum over the set Out of hours when outages occur:

Net cost = (1 − f(A0, c))
∑

i∈Out

E[Li] + c (6)

In the stochastic model, net cost variance becomes important. As shown in
[15], the variance depends a lot on whether the outage hours are consecutive or
non-consecutive, assuming that the covariance of consecutive hours is larger than
that of non-consecutive. In practice, this is often the case: two consecutive outage
hours in a retail business before Christmas probably have a greater covariance
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than one hour from before Christmas and one hour from a February Monday
morning. Thus, the number of outages becomes important for the variance of
downtime costs. In our model, this is modeled by a homogeneous Poisson process
(HPP). The probability that a failure occurs n times in the time interval [0, t] is

P (N(t) = n) =
(λt)n

n!
e−λt for n ∈ N (7)

N(t) belongs to the Poisson distribution: N(t) ∈ Po(λt). λt is the expected
number of outages in a year: the product of λ, the intensity of the HPP [occur-
rences/time] and t, the length of the time interval.

3.3 An Actual Dataset of Revenue Data

The final component of the model is a dataset based on [28], a report from
the Swedish Retail Institute, with statistics on the revenue distribution in the
Swedish retail sector. Hourly and monthly data is given in Tables 1 and 2.
Based on these statistics, a dataset of 13 hours times 365 days was generated
and normalized, reflecting relative hourly revenues over the operating year.

Table 1. Hourly retail sector revenue distributions (normalized) for normal and pay
weeks [28]

Mo. Tu. We. Th. Fr. Sa. Su. Sum

Normal week
(Pay week)
09.00-12.00 1 (2) 2 (2) 2 (2) 3 (3) 4 (4) 4 (3) 2 (2) 18 (18)
12.00-16.00 3 (3) 3 (3) 4 (3) 5 (5) 8 (8) 9 (9) 6 (6) 37 (37)
16.00-22.00 5 (5) 5 (5) 7 (6) 10 (11) 10 (11) 4 (5) 3 (4) 44 (47)
Total 10 (10) 10 (10) 12 (11) 18 (19) 22 (23) 17 (17) 11 (12) 99 (100)

Table 2. Monthly retail sector revenue distribution (normalized) over a year [28]

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

7 7 8 8 8 8 8 8 8 8 8 11

As seen in the tables, there is a lot of variance: A payment system outage
during a single high revenue hour might cost as much as a dozen low revenue hour
outages, if no transactions can be made with the payment system down. In the
experiment, downtime costs are calculated by Eq. (6), substituting expectations
with hourly costs from the normalized dataset described in Tables 1 and 2. To
summarize, the subjects thus face two important features of availability SLA
decision-making: diminishing marginal returns on investment, and variance of
outage costs. While the data might not be representative of all industries (cf.
[15] for a further discussion), its variance offers an interesting case. The problem
is easy to understand, but the stochastic model makes it hard to solve.
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4 Data Collection Method

To empirically investigate the preferences of IT professionals with regard to
availability SLAs, an experimental economics approach was used with 16 research
subjects. All of the subjects work in the intersection of business and IT, some
with a focus on availability. The subjects participated in an evening course on
Enterprise Architecture for practitioners in the field of enterprise IT. Based on
their background, the subjects are more likely to be on the procuring than the
providing side of an SLA, though this was not explicitly investigated.

First, the subjects were introduced to the problem presented in Section 3. Di-
minishing returns on investments were introduced to the subjects using textbook
diagrams [29, 11] and a table [30]. The importance of variance was illustrated
with the following thought-provoking wording on a PowerPoint slide: ”99.9%
availability 24-7 means almost 9 hours of annual downtime. Case 1: A single 9
hour outage. Case 2: 100 separate 5 minute outages. Which one do you prefer?”
Then, Tables 1 and 2 – background facts in the experiment – were shown and
remained on display throughout the session. It was explicitly pointed out that
the decision-making problem is a simplified one, not aiming to capture the entire
complexity of real systems and their availability, but rather to investigate the
behavior of IT decision-makers under uncertainty.

The subjects were asked 18 questions, with no pre-test. Each question repre-
sented a binary choice between two SLA scenarios. Each scenario had an SLA
price, a resulting minimum availability (percent) (by Eq. (2)) and a number
of expected outages (by Eq. (7)). The subjects were asked to procure the pay-
ment service for a retail store with revenue streams/downtime costs according to
Tables 1 and 2 and Eq. (6). The translated questionnaire can be found in Fig. 1.

Each subject received an initial endowment of 300 Swedish kronor (SEK) for
each of the 18 questions. The subjects received the information that one percent
unavailability would correspond to 47.45 hours of annual downtime with average
cost of 100 SEK. As a motivation for making wise decisions, following the data
collection an answer from each subject was selected at random, its outcome
simulated according to Section 3 and the resulting amount was paid out. The
subjects did not have calculators. All data was fully anonymized before analysis.

The 18 questions were grouped into 3 categories. In the first category the
questions were phrased as follows:

1. Do you prefer to pay 6 SEK for 99% availability with 1 expected outage or
12 SEK for 99 % availability with 2 expected outages?

2. Do you prefer to pay 12 SEK for 99% availability with 2 expected outages
or 18 SEK for 99 % availability with 3 expected outages?

i.e. both alternatives always offered 99% availability, but the first alternative
was cheaper with fewer outages. This pattern was followed until:

6. Do you prefer to pay 60 SEK for 99% availability with 10 expected outages
or 120 SEK for 99 % availability with 20 expected outages?
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1.

□
Pay 6 SEK for 99% 
availability with 1 
expected outage  

 

□ 

Pay 12 SEK for 
99% availability 
with 2 expected 
outages  

2.

□
Pay 12 SEK for 
99% availability 
with 2 expected 
outages 

 

□ 

Pay 18 SEK for 
99% availability 
with 3 expected 
outages  

3.

□
Pay 18 SEK for 
99% availability 
with 3 expected 
outages 

 

□ 

Pay 30 SEK for 
99% availability 
with 5 expected 
outages 

4.

□
Pay 30 SEK for 
99% availability 
with 5 expected 
outages 

 

□ 

Pay 48 SEK for 
99% availability 
with 8 expected 
outages  

5.

□
Pay 48 SEK for 
99% availability 
with 8 expected 
outages 

 

□ 

Pay 60 SEK for 
99% availability 
with 10 ex-
pected outages  

6.

□
Pay 60 SEK for 
99% availability 
with 10 expected 
outages 

 

□ 

Pay 120 SEK for 
99% availability 
with 20 ex-
pected outages  

 

7.

□
Pay 0 SEK for 99% 
availability with 2 
expected outages  

 

□ 

Pay 15 SEK for 
99.53% availabil-
ity with 2 ex-
pected outages  

8.

□
Pay 15 SEK for 
99.53% availabil-
ity with 2 ex-
pected outages 

 

□ 

Pay 30 SEK for 
99.78% availabil-
ity with 2 ex-
pected outages 

9.

□
Pay 30 SEK for 
99.78% availabil-
ity with 2 ex-
pected outages 

 

□ 

Pay 45 SEK for 
99.89% availabil-
ity with 2 ex-
pected outages 

10.

□
Pay 45 SEK for 
99.89% availabil-
ity with 2 ex-
pected outages 

 

□ 

Pay 60 SEK for 
99.95% availabil-
ity with 2 ex-
pected outages 

11.

□
Pay 60 SEK for 
99.95% availabil-
ity with 2 ex-
pected outages 

 

□ 

Pay 75 SEK for 
99.98% availabil-
ity with 2 ex-
pected outages 

12.

□
Pay 75 SEK for 
99.98% availabil-
ity with 2 ex-
pected outages 

 

□ 

Pay 90 SEK for 
99.99% availabil-
ity with 2 ex-
pected outages  

 

13.

□
Pay 0 SEK for 99% 
availability with 20 
expected outages 

 

□
Pay 15 SEK for 
99.53% availabil-
ity with 20 ex-
pected outages 

14.

□
Pay 15 SEK for 
99.53% availability 
with 20 expected 
outages 

 

□
Pay 30 SEK for 
99.78% availabil-
ity with 20 ex-
pected outages 

15.

□
Pay 30 SEK for 
99.78% availability 
with 20 expected 
outages 

 

□
Pay 45 SEK for 
99.89% availabil-
ity with 20 ex-
pected outages 

16.

□
Pay 45 SEK for 
99.89% availability 
with 20 expected 
outages 

 

□
Pay 60 SEK for 
99.95% availabil-
ity with 20 ex-
pected outages 

17.

□
Pay 60 SEK for 
99.95% availability 
with 20 expected 
outages 

 

□
Pay 75 SEK for 
99.98% availabil-
ity with 20 ex-
pected outages 

18.

□
Pay 75 SEK for 
99.98% availability 
with 20 expected 
outages 

 

□
Pay 90 SEK for 
99.99% availabil-
ity with 20 ex-
pected outages 

Consider the 18 questions below. Every question is a choice between two alternatives. 

For every question your initial capital is 300 SEK that you should invest in order to get the most out of. One question will be se-
lected randomly. simulated and paid out!  

One percent unavailability corresponds to 47.45 hours downtime.  47.45 hours downtime cost 100 SEK on average. 

Fig. 1. The questionnaire used (translation)

In the second category the questions were phrased as follows:

7. Do you prefer to pay 0 SEK for 99% availability with 2 expected outages or
15 SEK for 99.53 % availability with 2 expected outages?

In this case the number of outages was always 2, but the first alternative was
cheaper with a lower availability. This pattern was again followed until:

12. Do you prefer to pay 75 SEK for 99.98% availability with 2 expected outages
or 90 SEK for 99.99 % availability with 2 expected outages?

In the third and final category the questions were phrased as follows:

13. Do you prefer to pay 0 SEK for 99% availability with 20 expected outages
or 15 SEK for 99.53 % availability with 20 expected outages?

The number of outages was 20, but the first alternative was cheaper with a
lower availability. The availability numbers were the ones of the second category.

The subjects were allowed as much time as they needed in order to complete
the questionnaire. The authors were available to answer questions related to the
subjects’ understanding of the questions.

5 Results

A visual guide to the different behaviors described below is offered in Fig. 2.
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5.1 Category 1

Expected Behavior. The expected reward is the same in all alternatives: 1%
expected unavailability means an expected loss of 100 SEK. Thus, a decision-
maker that maximizes expected utility would always chose the cheapest alterna-
tive, i.e. never be willing to pay to spread unavailability over a greater number
of outages. Such maximization of expected utility would be consistent with the
findings of [24] and [25]. However, because of the large variance in the outage
costs, a more risk-averse decision-maker would be willing to pay to reach a certain
number of outages, determined by her level of risk aversion. Once that number
is reached, she would not be willing to pay more for an even greater number of
outages. Thus, there would be a unique turning-point, below which a risk-averse
decision-maker would pay for more outages, and above which she would not pay
for more outages. The expected utility maximizer and the risk-averse agent are
the two types of decision-makers discussed in [15].

Observed behavior 7 participants (44%) maximized the utility by always
choosing the cheapest alternative. 5 participants (31%) behaved as risk-averse
decision-makers and exhibited turning-points. One participant had a turning-
point at 3 outages, two at five outages, one at eight outages and one at ten
outages. 4 participants (25%) exhibited non-monotonic preferences in the sense
that they, at some point, were not willing to pay to go from n to n+m outages,
but were willing to pay to go from n+m to n+ k outages, where k > m.

5.2 Categories 2 and 3

Expected Behavior. The expected reward changes with the alternatives: Each
basis point (i.e. one hundredth of a percentage point) of expected unavailability
has an expected cost of 1 SEK. Thus, a decision-maker that maximizes expected
utility would always pay for increased availability at a rate of more than 1
basis point per SEK, and never pay for increased availability at a rate of less
than 1 basis point per SEK. In the given case, the utility-maximizer would pay
30 SEK to reach 99.78%, but not 45 SEK to reach 99.89%. However, a moderately
risk-averse decision-maker might forgo this principle in the category 2 questions
(where two expected outages make for large variance), but not in the category
3 questions (where twenty expected outages make for small variance).

Observed Behavior. 1 participant (6%) behaved as a consistent utility maxi-
mizer, with a turning-point at 30 SEK in both cases. 1 participant (6%) behaved
as a risk-averse utility maximizer, with a turning-point at 45 SEK in category
2 and 30 SEK in category 3. 3 participants (19%) behaved as flawed but con-
sistent utility maximizers, with equal but non 30 SEK turning points in both
cases. 4 participants (25%) exhibited extreme behavior (not illustrated in Fig. 2)
in always choosing to pay for more availability (2 participants) or never choosing
to pay for more availability (2 participants). 1 participant (6%) exhibited non-
monotonic preferences in both categories 2 and 3. 1 participant (6%) behaved
as a utility maximizer (30 SEK turning-point) in category 2, but was extreme
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in category 3 by always choosing to pay for more availability. 1 participant (6%)
behaved as a flawed utility maximizer (15 SEK turning-point) in category 2,
but exhibited non-monotonic preferences in category 3. 2 participants (11%) be-
haved as risk-averse utility maximizers in category 2 (turning-points at 45 SEK),
but exhibited non-monotonic preferences in category 3. 2 participants (11%) be-
haved as risk-averse utility maximizers in category 2 (turning-points at 45 and
75 SEK), but were extreme in category 3 (one always choosing to pay for more
availability, one never choosing to pay for more availability).

The results are summarized in Table 3. The payments, following random se-
lection and simulations, ranged from a maximum of 261 SEK to a minimum of
123 SEK, with a median of 236 SEK and an mean of 216 SEK.

Table 3. A summary of the results. EUM = expected utility maximizer (i.e. no risk
aversion of risk seeking), FUM = flawed utility maximizer (i.e. a non-optimal turn-
ing point), RUM = risk averse utility maximizer (i.e. paying more than a strict ex-
pected utility maximizer to decrease variance), Non-mon = non-monotonic preferences
(i.e. multiple turning points), Extreme = always choosing to pay for more availability
or never choosing to pay for more availability (not illustrated in Fig. 2).

Participant Category 1 Category 2 Category 3

1 EUM FUM Non-mon
2 Non-mon EUM Extreme
3 Non-mon Non-mon Non-mon
4 EUM Extreme Extreme
5 Non-mon Extreme Extreme
6 RUM Extreme Extreme
7 EUM Extreme Extreme
8 EUM FUM FUM
9 Non-mon FUM FUM

10 EUM FUM FUM
11 RUM RUM EUM
12 EUM EUM EUM
13 RUM RUM Extreme
14 RUM RUM Extreme
15 EUM RUM Non-mon
16 RUM RUM Non-mon

6 Analysis

The experimental evidence is somewhat surprising, as few participants behave as
(risk-averse) expected utility maximizers, whereas many exhibit non-monotonic
or extreme preferences. Very few individuals were consistent with the ideal (risk-
averse) utility maximizers hypothesized before the experiment; in essence only
participants 11 and 12. The behavior of the respondents is different from those
presented in [24, 25], especially the high amount of inconsistent respondents.
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Fig. 2. Categories of behaviors found. This figure provides a visual guide to illustrate
the different behaviors – the text of the questionnaire is more legible in Fig. 1.

As noted above, previous work has identified many deviations expected utility
maximization. However, all the subjects were professionals, managing enterprise
IT in their line of work. Therefore, their deviations from expected utility in de-
cisions relating to SLAs are interesting. It might be the case that the incentives
were simply too low to properly motivate the subjects (unfortunately, it is pro-
hibitively costly to use realistically large incentives), especially as the subjects
did not have calculators (though for all 18 questions, a mere three calculations
suffice to find the appropriate turning-point in each category). Indeed, compa-
nies might always do their math properly in real situations with higher stakes.
However, at least some practitioners self-report that their companies are imma-
ture in SLA writing [31], and thus might not be much better utility-maximizers
than the individual decision-makers in the experiment. Furthermore, knowledge
gaps can exist even between knowledgeable procurers and service providers, af-
fecting SLA quality [32]. In light of the large deviations from expected utility, it
would be interesting to redo the experiment on a larger student sample to see
whether professional experience matters.

It is worth elaborating on two reasons why the expected utility is appropriate
for the enterprise IT service SLA setting. First, expected (monetary) utility
is appropriate because of the corporate context. Second, SLA decision-making
does not aim to replicate decisions or decision-making principles of any actual
individuals. It aims to do what is in the best interest of the enterprise. To this
end, it is often a distributed process, in the sense that someone investigates
business-side requirements, someone maps dependencies between IT services,
someone does ROI calculations, and someone negotiates with service-providers,
before someone (nominally) finally makes the decision and signs the contract.
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This distributed nature of decision-making is both a strength and a weakness
of the experimental setup. The strength is that all of the participants were
relevant, in the sense that even though they professionally belong to different
parts of the decision-making chain; they all have a role in it. The weakness
is that decisions are rarely taken by a single individual. Still, a more complex
(collaborative) experimental setup might have unnecessarily clouded the results.

The small number of participants (N = 16) clearly deserves a remark, as
it limits the reliability. Follow-up experiments, with a larger number of par-
ticipants, would obviously be desirable. However, it should be noted that this
weakness of reliability is related to a strength of validity: all of the participants
were actual IT management professionals, lending the result a greater credibility.
Validity is further increased by the realistic data-set (re-used from [15]).

An improvement of the questionnaire would be to include baseline questions
on binary choices between a sure thing (e.g. 100 SEK) and a lottery (e.g. lottery
1: 200 SEK with 40% probability, 0 SEK with 60% probability or lottery 2:
200 SEK with 60% probability, 0 SEK with 40% probability). This would clarify
each subject’s tendency to maximize expected utility or to avoid risk. A question
related to professional experience would also have been interesting.

7 Conclusions

This paper presents an investigation of availability SLA decision-making with
subjects from the IT management profession. The scenario required the subjects
to make pairwise choices between alternatives, under uncertainty. Subjects were
incentivized by a payment based on one of their choices, randomly selected.

The results indicate that decision-makers rarely maximize expected utility.
Some previous work indicated that they would, whereas there are also many
deviations identified in the literature. The implications for company SLA man-
agement in real situations require more research. The sample size (N = 16) is
small and reliability thus moderate, whereas validity is high due to the back-
ground of the participants and the realistic data-set (re-used from [15]) used in
the payment simulations.

In addition to re-doing our experiment with a larger number of participants,
an interesting direction for future work is to investigate whether decision-support
systems of various kinds could help improve SLA decision-making. Another in-
teresting approach for future experiments would be to have research subjects act
both as IT service providers and procurers, playing out a negotiation scenario.
It would also be interesting to investigate the impact of varying years of expe-
riences; how do experienced professionals compare with their less experienced
colleagues, or with inexperienced students?
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Abstract. The Learned Hand’s rule, comparing security investments
against the expected loss from data breaches, can be used as a simple
tool to determine the negligence of the company holding the data. On the
other hand, companies may determine their investments in security by
maximizing their own net profit. We consider the well known Gordon-
Loeb models as well as the more recent Huang-Behara models for the
relationship between investments and the probability of money loss due
to malicious attacks to determine the outcome of the application of three
forms of Hand’s rule: status quo (loss under no investments), ex-post
(loss after investment), transitional (loss reduction due to investment).
The company is always held negligent if it does not invest in both the
status quo and the transitional form. In the ex-post form, it is instead
held negligent just if the potential loss is below a threshold, for which
we provide the exact expression.

Keywords: Security, Privacy, Investments, Negligence, Hand’s Rule.

1 Introduction

A company holding its customers’ data is bound to protect them against data
breaches. If its efforts (if any) are not enough, and data breaches do take place,
it is reasonable to suspect that the company could have tried harder to protect
those data and has therefore been negligent. It may be hard to prove a negligent
behaviour, since that would imply a survey of the protection measures taken by
the company, a survey of the attacks that may be reasonably expected, and an
analysis of the actual attack responsible for the breach.

However, the application of a well-known principle, established seventy years
ago by Judge Learned Hand, can be used to declare negligence. According to
Hand’s rule a company is held negligent if the cost of protection would have
been lower than the expected loss (i.e., the product of the potential loss by its
probability of occurrence). In [8] and [9], it has been proposed to apply Hand’s
rule to information security breaches.

But how do companies determine their security budget? If they suffer direct
losses due to data breaches, it has been suggested that they should invest so as

J. Altmann, K. Vanmechelen, and O.F. Rana (Eds.): GECON 2013, LNCS 8193, pp. 268–279, 2013.
c© Springer International Publishing Switzerland 2013



Negligence in Security Investments 269

to maximize their expected net profit. This is the approach taken by Gordon
and Loeb in [4] and, more recently, by Huang and Behara in [5]. Both go suggest
models for the relationship between security investments and the probability of
money loss due to attacks, and use those models to derive the optimal amount of
security investments. In [3], [2], and [7], a sanctioning regime is analysed to spur
companies (not suffering direct losses, but sharing the losses suffered by their
customers) to invest in security, and a game between customers and companies
is devised to arrive at the optimal amount of security investments.

Coupling a negligence detection tool as Hand’s rule with the investment strat-
egy dictated by such models allows us to analyse if such strategies, in addition
to being optimal for the company, are also recommended (or actually urged) by
Hand’s rule, so that the company is held negligent if it has not invested as much
as recommended by that strategy.

In this paper, we apply Hand’s rule under profit maximizing investing strate-
gies. We consider both the Gordon-Loeb and Huang-Behara models and examine
the outcome of Hand’s rule under the resulting strategies. Hereafter, we refer
to the company responsible for protecting the data as the company for short,
though its customers may be other companies as well as individuals. We consider
three alternative interpretations of Hand’s rule, differing for the definition of the
loss term: status quo or ex-ante (full expected loss i no investment is made),
ex-post (full expected loss if investment is made), and transitional (reduction
of the expected loss due to the investment). In the status quo and transitional
forms, we find that the company is always declared negligent if it does not invest
in security. Instead, in the ex-post form, we prove that the company is declared
negligent if the potential losses lie below a threshold (which we determine).

The paper is organized as follows. In Section 2, we describe the origin of
Hand’s rule and its transposition to security investments. In Sections 3 and 4,
we apply Hand’s rule to the strategies deriving respectively from Gordon-Loeb’s
model and Huang-Behara’s model.

2 Hand’s Rule for Negligence

Investments in information security help reduce the probability of data breaches
and the subsequent losses. Poor investments (or the sheer lack of them) signal
the unwillingness to counteract security attacks and mitigate customers’ losses.
According to the Learned Hand’s rule for negligence, a comparison of the invest-
ments against the losses suffered by customers helps reveal the negligence of the
company. In this section, we describe such rule and see how it can be applied in
the context of information security.

In the United States v. Carroll Towing Co. decision in 1947, Judge Learned
Hand proposed a test to determine whether a legal duty of care has been breached
(i.e., if a negligent behaviour has been put in place). Though the case concerned
an improperly secured barge, which had drifted away from a pier and caused
damage to several other boats, the rule stated in that context is of general
applicability. The rule states that if the cost B of taking precautions is lower
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than the expected loss that would have been avoided by taking those precautions,
and due care has not been taken, then we have a case of negligence. The test
can be expressed through the inequality

B < PL, (1)

where L is the money loss, and P its probability (see Section II.G of [1]).
It has been suggested that Hand’s rule can be applied to information security.

In [8] it is argued that companies have a duty to provide reasonable informa-
tion security practices under the common law of torts (notwithstanding con-
tractual devices such as hold harmless clauses and indemnification agreements),
and Hand’s rule is the best analytical approach to establish such legal liability.
Noticing again the failure of traditional tort negligence suits to hold breached
retailers accountable for data breaches, Schneider proposed a set of remedies to
deter negligent handling of customer data and Hand’s rule as an approach to
determine the level of care imposed on companies [9]. Assuming that both the
probability of loss and the loss itself can be estimated with enough accuracy, the
application of Hand’s rule in the context of information security is quite straight-
forward. Here the party whose negligence has to be ascertained is the company
holding the data and in charge of protecting them. The cost B of protection is
represented here by the investment in security.

However, the original formulation of Hand’s rule assumes that the expense
removes the event leading to damage, so that the company faces a binary choice:
either to spend and be sure that there is no damage or not to spend and accept
the chance that the damaging event takes place. As noted by Markovits [6],
Hand’s rule can be generalized, allowing for the possibility that investments
reduce the probability of loss occurrence but do not eliminate it. The definition
of the right-hand side of the inequality (1) must be defined precisely, since it
can lead to ambiguities. We consider here the following alternative definitions
for the loss to use in the inequality (1):

– Status quo (ex-ante);
– Ex-post;
– Transitional.

In the status quo form, the investment is compared against the expected
loss that would be faced if the service provider does not invest in security. The
rationale for this form of Hand’s inequality is that whatever the investment
decided by the service provider, we compare it against what would happen if
the service provider is inactive. In the ex-post form, the investment is compared
against the expected loss resulting after the investment is made. Finally, what
investments accomplish is to reduce the expected loss, so that it is likewise
reasonable to compare the investment against that reduction of the expected
loss. Since we now consider the effect due to the transition from a no-investment
decision to the commitment to invest, we call this third form as transitional.

We recognize now that the expected loss is not an independent variable, since
the probability of loss depends on the amount of investments in security. As com-
panies invest more in security, the left-hand term of the inequality (1) increases,
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while the right-hand term (the expected loss) decreases: the test is more likely to
be passed (the company is not held negligent) as investments grown (larger in-
vestments signal the willingness of the company to protect its customers’ data).
However, it leaves us with the problem of deciding the amount of investments for
which the test has to be applied. In this paper, we assume that the company sets
its level of security investments through some utility maximization procedure.

The regions of negligence resulting from the application of Hand’s rule in its
three forms are shown in Fig. 1. The broken curves represent the expected loss
in the ex-ante and ex-post forms (right hand-side of the inequality). The solid
line (bisectrix) represents the equality of expected loss and investments. The
negligence region is the area where the solid line is below the broken curve. In the
status quo form, the expected loss is determined in the absence of investments:
it is a fixed value, irrespective of the actual investment. In the ex-post form,
the expected loss is a decreasing function of the investment. In the transitional
form, we have instead to compare the distance between the two broken curves
with the height of the solid line. The status quo is the least tolerant of the three
(it gives the widest region of negligence).
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Fig. 1. Regions of negligence as determined by Hand’s rule

3 Gordon-Loeb’s Model for Breach Probability

After the description of Hand’s rule in Section 2, we can now apply the rule by
employing a model relating the probability that the loss due to a data breach
takes place and the investment in security. We consider two couples of models,
proposed respectively by Gordon and Loeb in [4], and Huang and Behara in [5].
In this section, we deal with the couple of models by Gordon and Loeb (hereafter
referred to as the GL1 and GL2 models for short). We first describe the models
and then find out whether the investments suggested by those models lead the
company to being considered negligent if it does not comply.

Gordon and Loeb propose two broad classes of function to describe the rela-
tionship between the probability P of money loss and the investments I in secu-
rity. Though in Gordon and Loeb’s paper the loss is considered to be suffered by
the company responsible for data protection, this assumption encompasses the
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case where the loss is suffered by the customer and the company is held liable
for that loss. The functions proposed by Gordon and Loeb are respectively

PGL1 =
V

(αI + 1)β

PGL2 = V αI+1,

(2)

where α > 0 and β ≥ 1 are two measures of the productivity of information secu-
rity investments, and V is the probability of loss in the absence of investments.
The probability of loss is decreasing in both α and β.

If the loss due to the data breach is L, and the probability of an attack is T ,
the expected loss is

X∗ = LTP∗, (3)

where the asterisk means that we can apply the formula to the GL1 as well as
the GL2 model.

Gordon and Loeb adopt as a figure of merit the expected net benefit ENBIS,
i.e., the reduction in the expected loss due to the investment minus the invest-
ment itself:

ENBIS = [V − P∗]TL− I. (4)

The optimal amount Î to invest in security is that maximizing ENBIS:

Î = argmax
I

ENBIS. (5)

In [4], Gordon and Loeb obtain the following results for the two models:

ÎGL1 =
(αβV TL)

1
β+1 − 1

α
,

ÎGL2 =
− ln(−αV TL lnV )

α lnV
.

(6)

We can now see how a company investing in security according to the outcome
of Gordon-Loeb’s model behaves with respect to Hand’s rule. In this case, the
negligence rule states that the company is held negligent if Î∗ < X∗ = LTP∗ and
the company fails to invest the amount Î∗. Since we have Î < V TL/e < V TL
(Proposition 3 in [4]), the company is to be held negligent according to the status
quo form if it does not comply with that investment.

For the ex-post form under the first model by Gordon-Loeb, we can instead
prove the following theorem

Theorem 1. Under the GL1 model in the ex-post form of Hand’s rule, the com-

pany is held negligent iff the potential loss is L < 1
αβV T

(
β−1
β

)− 1
β+1

Proof. Under the GL1 model, where the probability of loss conditional on an
attack is PGL1 in Equation (2), Hand’s rule declares the company to be negligent
if the following inequality holds

ÎGL1 <
V TL

(αÎGL1 + 1)β
. (7)
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By replacing Equation (6) for ÎGL1, and after some manipulation, Hand’s in-
equality (7) becomes

(αβV TL)
1

β+1 − 1 <
αV TL

(αβV TL)
β

β+1

. (8)

If we pose λ = αβV TL, the above inequality can be written as

λ
1

β+1 − 1 <
λ/β

λ
β

β+1

=⇒ λ− 1
β+1 >

β − 1

β
, (9)

whose solution is

λ <

(
β − 1

β

)− 1
β+1

. (10)

If we now replace λ by its full expression, we get

L <
1

αβV T

(
β − 1

β

)− 1
β+1

. (11)

Theorem 1 provides an upper bound for the expected loss to declare negli-
gence. In Fig. 2, we show how that upper bound moves for two sample values of
the αV T product: Hand’s rule becomes more tolerant as β grows (the regions of
non negligence - above the curves - get larger).

For the transitional form of Hand’s rule, we can prove the following theorem

Theorem 2. Under the GL1 model in the transitional form of Hand’s rule,
the company is always held negligent if it does not invest, excepting when the
potential loss is L = 1/(αβV T )

Proof. Under the GL1 model, where the probability of loss is given by Equation
(2), Hand’s rule in the transitional form declares the company to be negligent
if the investment is lower than the reduction of the loss due to the investment
itself, i.e., if the following inequality holds

ÎGL1 < V TL− V TL

(αÎGL1 + 1)β
. (12)

By replacing Equation (6) for ÎGL1, the inequality becomes

(αβV TL)
1

β+1 − 1 < αV TL

[
1− 1

(αβV TL)
β

β+1

]
. (13)

If we pose λ = αβV TL, the above inequality can be written as

λ
1

β+1 − 1 <
λ

β

(
1− 1

λ
β

β+1

)
=⇒ (β + 1)λ

1
β+1 − β − λ < 0. (14)
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We now have to examine the behaviour of the function

h(λ) = (β + 1)λ
1

β+1 − β − λ, (15)

which makes up the left-hand term of the inequality (14). Its derivative is

∂h

∂λ
=

1

λ
β

β+1

− 1

⎧⎨
⎩

> 0 if λ < 1
= 0 if λ = 1
< 0 if λ > 1

(16)

The left-hand term of (14) is first an increasing function of λ, reaches its maxi-
mum at λ = 1 and then decreases. Since its maximum is

h(1) = β + 1− β − 1 = 0, (17)

we have h(λ) ≤ 0 (with a single zero in λ = 1), and the Hand’s rule is always
satisfied strictly, excepting the single point λ = 1 → L = 1/(αβV T ), where the
investment exactly equals the reduction of the loss.

Though Theorem 2 identifies a case where the company is not held negligent if
it does not invest, we have to consider that this case corresponds to a single value
of the potential loss, whose chance of occurrence is extremely low, even in that
case, the investment equals the expected loss. Though Hand’s rule would not be
satisfied in a tight sense, and the favor rei principle would lead the company to
escape the negligence conviction, the chance of occurrence of that situation is so
low that we can consider the company to be negligent for all practical cases.

For the second model by Gordon and Loeb, we can instead prove the following
result

Theorem 3. Under the GL2 model in the ex-post form of Hand’s rule, the com-
pany is held negligent according to Hand’s rule iff the potential loss is L <

e
−αV T lnV

Proof. Under the GL2 model, where the probability of loss conditional on an
attack taking place is given by PGL1 in Equation (2), Hand’s rule declares the
company to be negligent if the following inequality holds

ÎGL2 < V αÎGL2+1TL. (18)

By replacing Equation (6) for ÎGL2, and after some manipulation, Hand’s rule
(23) becomes

− ln(−αV TL lnV )

α lnV
< V TL · V − ln(−αV TL ln V )

α lnV . (19)

If we pose λ = −αV TL lnV , the above inequality can be written as

− lnλ

α lnV
< − λ

α lnV
V − lnλ/ lnV , (20)
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which can be put in the form

lnλ < λV − lnλ/ lnV −→ λ < e. (21)

If we replace λ by its full expression, we finally get

−αV TL lnV < e −→ L >
e

αV T lnV
. (22)

Again, we can use the results of Theorem 3 to see how Hand’s rule tightens
when the model parameters change. In Fig. 3, we report the upper bound on
the potential loss for two sample values of the αT product, as a function of the
vulnerability V (the probability of loss in the absence of investments). We observe
a characteristic very wide bathtub behaviour. Since a larger upper bound of the
potential loss implies a tighter behaviour (negligence is declared for a wider set
of cases), we see here that Hand’s rule gets extremely tight both for the lowest
and highest values of vulnerability.
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Fig. 2. Maximum potential loss for negli-
gence under GL1 model (ex-post form)
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Fig. 3. Maximum potential loss for negli-
gence under GL2 model (ex-post form)

If we consider the loss reduction due to the investments rather than the actual
loss (the transitional form), the liability of the company can instead be proven
for any value of the potential loss, as stated in the following theorem

Theorem 4. Under the GL2 model in the transitional form of Hand’s rule, the
company is held negligent according to Hand’s rule if it does not invest, unless
the potential loss is L = 1/(αV T lnV )

Proof. Under the GL2 model in the transitional form, where the probability of
loss conditional on an attack taking place is given by PGL1 in Equation (2),
Hand’s rule declares the company to be negligent if the loss reduction due to
the investments is larger than the investments themselves, as embodied by the
following inequality

ÎGL2 < V TL− V αÎGL2+1TL. (23)
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By replacing Equation (6) for ÎGL2, and after some manipulation, Hand’s rule
(23) becomes

− ln(−αV TL lnV )

α lnV
< V TL

[
1− V − ln(−αV TL lnV )

α lnV

]
. (24)

If we pose λ = −αV TL lnV , the above inequality can be written as

− lnλ

α ln V
< − λ

α lnV

[
1− V − lnλ/ lnV

]
. (25)

If we multiply both sides by the positive quantity −1/(α lnV ), the inequality
becomes

lnλ < λ
[
1− V − lnλ/ lnV

]
. (26)

By exploiting the identity V = elnV and moving all the terms to the left hand-
side, the inequality becomes

lnλ− λ+ 1 < 0. (27)

We have now to analyse the behaviour of the function h(λ) = lnλ−λ+1, which
represents the left handside of this inequality. Its derivative is

∂h

∂λ
=

1

λ
− 1, (28)

for which we observe straightforwardly that

∂h

∂λ

⎧⎨
⎩

> 0 if λ < 1
= 0 if λ = 1
< 0 if λ > 1

(29)

The function h(λ) is first an increasing function of λ, reaches its maximum at
λ = 1 and then decreases. Since its maximum is

h(1) = ln(1)− 1 + 1 = 0, (30)

we have h(λ) ≤ 0 (with a single zero in λ = 1), and the Hand’s rule is always
satisfied strictly, excepting the single point λ = 1 → L = 1/(αV T lnV ), where
the investment exactly equals the reduction of the loss.

Again, since Theorem 4 states negligence excepting a single case, the same
considerations made for Theorem 2 apply.

4 Huang-Behara’s Model for Breach Probability

After investigating the models by Gordon and Loeb, we now turn to the models
recently proposed by Huang and Behara. In this section, we show that their
models can be seen as special cases of those proposed by Gordon and Loeb, so
that we can exploit the results obtained in Section 3.
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In [5], Huang and Behara propose again a couple of models for the probabil-
ity that a loss occurs conditioned on an attack taking place. While Gordon and
Loeb’s models are stated with reference to their functional form, Huang and Be-
hara distinguish between targeted and opportunistic attacks. Targeted attacks
are directed at specific information systems; examples of targeted attacks are
denial of service, website defacement, or a purposeful penetration into a banking
system to transfer large amount of money by hackers. Instead, opportunistic
attacks are created and released by attackers to look for and infect, opportunis-
tically, any reachable and accessible information system via a network; examples
of opportunistic attacks are viruses, worms, spyware, phishing, and spam e-mail.

For the two types of attacks, Huang and Behara propose the following ex-
pressions for the probability P of money loss conditioned on attack taking place,
labelled respectively as Ptarget for targeted attacks and Popp for opportunistic
attacks:

Ptarget =
V

k1I + 1

Popp = V k2I+1,

(31)

where 0 ≤ k1, k2 ≤ 1.
By comparing Equation (31) with Equation (2), we find them strikingly sim-

ilar. Actually, Huang-Behara’s targeted model is equivalent to Gordon-Loeb’s
Type 1 model and Huang-Behara’s opportunistic model is equivalent to Gordon-
Loeb’s Type 2 model (with k1 = α and k2 = α) if the following positions hold:

β = 1,

0 ≤ α ≤ 1.
(32)

The equivalence is completed by the fact that Huang and Behara derive the
optimal amount of security investment through the same criterion as Gordon
and Loeb, i.e., by maximizing ENBIS.

If we want to investigate how the company behaves with respect to Hand’s
rule, we can therefore exploit the results obtained for the models by Gordon and
Loeb.

For targeted attacks, we can state the following results.

Corollary 1. Under Huang-Behara’s model for targeted attacks, the company
is always held negligent in the status quo and ex-post form if it does not invest.

Proof. We start with the proof for the ex-post form. With the positions (32),
Hand’s rule in the ex-post form given in Theorem 1 can be expressed as

k1V TL < lim
β→1

1

β

(
β − 1

β

)− 1
β+1

= ∞. (33)

Hence, the inequality is satisfied (and negligence is declared) for any finite value
of the potential loss L. Since Hand’s rule is always tighter for the status quo
form (i.e., it declares negligence for a larger range of values for the potential
loss), negligence is always declared a fortiori for the status quo form.



278 M. Naldi, M. Flamini, and G. D’Acquisto

Corollary 2. Under Huang-Behara’s model for targeted attacks, the company
is always held negligent in the transitional form of Hand’s rule if it does not
invest, unless the potential loss is L = 1/(αV T ).

Proof. In the transitional form, Theorem 2 holds irrespective of the value of β.
Hence, it holds true when β = 1, so that the service provider is always held
negligent (if it does not invest), excepting the single case where the potential
loss is L = 1/(αV T ), where the investment equals exactly the loss reduction.

Similarly for opportunistic attacks, we can exploit the equivalence with Gordon-
Loeb’s Type 2 model and prove the following results.

Corollary 3. Under Huang-Behara’s model for opportunistic attacks, the com-
pany is held negligent in the ex-post form of Hand’s rule iff L < −e/(k2V T lnV ).

Proof. With the positions (32), Hand’s rule in the ex-post form given in Theorem
3 can be expressed as

L < −e/(k2V T lnV ). (34)

Corollary 4. Under Huang-Behara’s model for opportunistic attacks, the com-
pany is always held negligent in the transitional form of Hand’s rule if it does
not invest, unless the potential loss is L = 1/(αV T lnV ).

Proof. Since Theorem 4 holds true irrespective of the value of α, it holds true
when 0 < α < 1. Hence, the provider is always held negligent (if it does not
invest), unless L = 1/(αV T lnV ).

For the status quo form, we know from Proposition 3 in [4] (recalled in Section
3) that the company is always held negligent under Gordon-Loeb’s model, and
therefore under Huang-Behara’s model as well.

5 Conclusions

We have investigated how companies optimizing their investments in security
could be held negligent according to Hand’s rule, which compares the invest-
ment in security against the expected loss. We have considered a prominent
couple of models proposed by Gordon and Loeb for the relationship between
investments and the probability of loss in the case of an attack and a new couple
of models proposed by Huang and Behara for the same purpose. The models by
Huang and Behara (proposed for targeted and opportunistic attacks) appear to
be just special cases of those proposed by Gordon and Loeb. We have observed
that Hand’s rule can be applied in several forms, depending on the way the ex-
pected loss is defined. We have considered three forms, which we have named the
ex-ante (status quo), ex-post, and transitional form. If we compare the optimal
investment against the expected loss in the absence of investment security (the
status quo form), the company is always held negligent if it does not invest.
Instead, if we consider the expected loss obtained as a result of the investment
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itself (the ex-post form), we have proved that the company would be held neg-
ligent if not investing when the potential loss (assumed to be known) is below
a suitable threshold. In the transitional form, we have proved that the company
is always held negligent if it does not invest, unless the loss has a precise single
value (which we have determined). For all practical cases, the company would
be declared negligent under Hand’s rule for two of the three forms we have con-
sidered, and conditionally negligent (depending on the loss value) for the third
one. Since the amount to invest has been evaluated as that maximizing the net
benefit of the company, our findings represent as additional spur for the company
to invest in security. Such a decision would spare the company a conviction in
the case of a trial, should Hand’s rule be applied in court as a negligence test.
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Fabra, Javier 90
Fedak, Gilles 161
Flamini, Marta 268
Franke, Ulrik 256
Freitag, Felix 197

Haas, Christian 149
Haile, Netsanet 244
Hasan, Ragib 29
Hernández, Sergio 90

Katsaros, Gregory 74
Kauffman, Robert J. 16

Khan, Amin M. 197
Kimbrough, Steven O. 149

León, Xavier 106
Litan, Cristian 161
Luoma, Eetu 1

Ma, Dan 16
Madeira, Edmundo R.M. 185
Maier, Andreas 173
Mehta, Deepak 44
Moca, Mircea 161

Naldi, Maurizio 268
Navarro, Leandro 106

Oberle, Karsten 228
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