
Chapter 3

The Life of Modern Homo Habilis
Mathematicus: Experimental
Computation and Visual Theorems

Jonathan M. Borwein

3.1 Introduction

The computer has in turn changed the very nature of mathematical experience, suggesting

for the first time that mathematics, like physics, may yet become an empirical discipline, a

place where things are discovered because they are seen.—David Berlinski1

In this chapter I want to talk, both generally and personally, about the use of tools

in the practice of modern research mathematics. To focus my attention I have

decided to discuss the way I and my research group members have used tools

primarily computational (visual, numeric and symbolic) during the past 5 years.

When the tools are relatively accessible I shall exhibit details; when they are less

accessible I settle for illustrations and discussion of process.

Long before current graphic, visualization and geometric tools were available,

John E. Littlewood, 1885–1977, wrote in his delightful Miscellany:

A heavy warning used to be given [by lecturers] that pictures are not rigorous; this has

never had its bluff called and has permanently frightened its victims into playing for safety.

Some pictures, of course, are not rigorous, but I should say most are (and I use them

whenever possible myself). (Littlewood, 1953, p. 53)

Over the past 5 years, the role of visual computing in my own research has

expanded dramatically. In part this was made possible by the increasing speed and

storage capabilities—and the growing ease of programming—of modern multi-core

computing environments (Borwein, Skerritt, & Maitland, 2013). But, at least as

much, it has been driven by my group’s paying more active attention to the

possibilities for graphing, animating or simulating most mathematical research

activities.

1 In “Ground Zero: A Review of The Pleasures of Counting, by T. W. Koerner,” 1997.
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3.1.1 Who I Am and How I Got That Way

In my academic lifetime, tools went from graph paper, log tables, slide rules and

slipsticks to today’s profusion of digital computational devices. Along the way

came the CURTA, HP programmable calculators, TI calculators, and other transi-

tional devices not to mention my grandfather’s business abacus. When a radically

new tool has come along, it can be adapted very quickly as was the case with the use

of log-tables in the early seventeenth century after Brigg’s 1616 improvement of

Napier’s 1614 logarithms and the equally rapid abandonment of slide-rule in the

1970s after 350 years of ubiquity. I feel obliged to record that well into the 1980s

business mathematics texts published compound interest tables with rates up to 5%
when mortgage rates were well over 20%.

Let me next reprise material I wrote for a chapter for the 2015 collection The
Mind of a Mathematician (Borwein, 2012).

I wish to aim my scattered reflections in generally the right direction: I am more

interested in issues of creativity á la Hadamard (Borwein, Liljedahl, & Zhai, 2010) than

in Russell and foundations, or Piaget and epistemology. . .and I should like a dash of

“goodwill computing” thrown in. More seriously, I wish to muse about how we work,

what keeps us going, how the mathematics profession has changed and how “plus ça

change, la plus ça reste pareil”,2 and the like while juxtaposing how we perceive these

matters and how we are perceived. Elsewhere, I have discussed at length my own

views about the nature of mathematics from both an aesthetic and a philosophical

perspective (see, e.g., Gold & Simons, 2008; Sinclair, Pimm, & Higginson, 2007).

I have described myself as ‘a computer-assisted quasi-empiricist’. For present
more psychological proposes I will quote approvingly from Brown (2009, p. 239):

. . .Like 0l’Man River, mathematics just keeps rolling along and produces at an accelerating

rate “200,000 mathematical theorems of the traditional handcrafted variety . . .annually.”
Although sometimes proofs can be mistaken—sometimes spectacularly—and it is a matter

of contention as to what exactly a “proof” is—there is absolutely no doubt that the bulk of

this output is correct (though probably uninteresting) mathematics.—Richard C. Brown

I continued: Why do we produce so many unneeded results? In addition to the

obvious pressure to publish and to have something to present at the next conference,

I suspect Irving Biederman’s observations below plays a significant role.

“While you’re trying to understand a difficult theorem, it’s not fun,” said Biederman,

professor of neuroscience in the USC College of Letters, Arts and Sciences. . . .“But once
you get it, you just feel fabulous.” . . .The brain’s craving for a fix motivates humans to

maximize the rate at which they absorb knowledge, he said. . . .“I think we’re exquisitely

tuned to this as if we’re junkies, second by second.”—Irving Biederman3

2 For an excellent account of the triumphs and vicissitudes of Oxford mathematics over eight

centuries, see Fauvel, Flood, and Wilson (1999). The description of Haley’s ease in acquiring

equipment (telescopes) and how he dealt with inadequate money for personnel is by itself worth

the price of the book.
3 Discussing his article in the American Scientist at www.physorg.com/news70030587.html.
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Mathematical tools are successful especially when they provide that rapid ‘fix’ of
positive reinforcement. This is why I switched from competitive chess to competitive

bridge. Being beaten was less painful and quicker, reward was more immediate.4

In Borwein (2012) I again continued: Take away all success or any positive

reinforcement and most mathematicians will happily replace research by

adminstration, more and (hopefully better) teaching, or perhaps just a favourite

hobby. But given just a little stroking by colleagues or referees and the occasional

opiate jolt, and the river rolls on. For a fascinating essay on the modern university

in 1990 I recommend Giametti (1990).

The pressure to publish is unlikely to abate and qualitative measurements of

performance5 are for the most part fairer than leaving everything to the whim of

one’s Head of Department. Thirty-five years ago my career review consisted of a

two-line mimeo “your salary for next year will be . . .” with the relevant number

written in by hand.

At the same time, it is a great shame that mathematicians have a hard time finding

funds to go to conferences just to listen and interact. Csikszentmihalyi (1997) writes:

[C]reativity results from the interaction of a system composed of three elements: a culture

that contains symbolic rules, a person who brings novelty into the symbolic domain, and a

field of experts who recognize and validate the innovation. All three are necessary for a

creative idea, product, or discovery to take place.—Mihalyy Csikszentmihalyi

We have not paid enough attention to what creativity is and how it is nurtured.

Conferences need audiences and researchers need feedback other than the manda-

tory “nice talk” at the end of a special session. We have all heard distinguished

colleagues mutter a stream of criticism during a plenary lecture only to proffer “I

really enjoyed that” as they pass the lecturer on the way out. A communal view of

creativity requires more of the audience.

And the computer as provider of tools can often provide a more sympathetic and

caring, even better educated, audience.

3.1.2 What Follows

We first discuss briefly in Sect. 3.2 what is meant by a visual theorem. In Sect. 3.3

we talk about experimental computation and then turn to digital assistance. In a key
Sect. 3.4 we examine a substantial variety of accessible examples of these three

concepts. In Sect. 3.5 we discuss simulation as a tool for pure mathematics.

In the final three sections, we turn to three more sophisticated sets of case

studies. They can none-the-less be followed without worrying about any of the

more complicated formulae. First in Sect. 3.6 comes dynamic geometry (iterative

4 I played twice against Cambridge on losing Oxford bridge teams.
5 For an incisive analysis of citation metrics in mathematics, I thoroughly recommend the IMU

report and responses at: http://openaccess.eprints.org/index.php?/archives/417-Citation-Statistics-

International-Mathematical-Union-Report.html.
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reflection methods Aragon & Borwein, 2013) and matrix completion problems6

(applied to protein conformation Aragon, Borwein, & Tam, 2014) (see Case

Studies I). In Sect. 3.7 for the second set of Case Studies, we then turn to numerical

analysis (see Case Studies II). I end in Sect. 3.8 with description of recent work

from my group in probability (behaviour of short random walks Borwein & Straub,

2013; Borwein, Straub, Wan, & Zudilin, 2012) and transcendental number theory
(normality of real numbers Aragon, Bailey, Borwein, & Borwein, 2013).

3.1.3 Some Early Conclusions

I have found it is often useful to make some conclusions early. So here we go.

1. Mathematics can be done experimentally (Bailey & Borwein, 2011a) (it is fun)

using computer algebra, numerical computation and graphics: SNaG computa-

tions. Tables and pictures are experimental data but you cannot stop thinking.

2. Making mistakes is fine as long as you learn from them, and keep your eyes open

(conquering fear).

3. You cannot use what you do not know and what you know you can usually use.

Indeed, you do not need to know much before you start research in a new area

(as we shall see).

4. Tools can help democratize appreciation of and ability in mathematics.

3.2 Visual Theorems and Experimental Mathematics

In a 2012 study On Proof and Proving (ICMI, 2012), the International Council on

Mathematical Instruction wrote:

The latest developments in computer and video technology have provided a multiplicity of

computational and symbolic tools that have rejuvenated mathematics and mathematics

education. Two important examples of this revitalization are experimental mathematics and

visual theorems.

3.2.1 Visual Theorems

By a visual theorem7 I mean a picture or animation which gives one confidence that

a desired result is true; in Giaquinto’s sense that it represents “coming to believe it

in an independent, reliable, and rational way” (either as discovery or validation) as

6 See http://www.carma.newcastle.edu.au/jon/Completion.pdf and http://www.carma.newcastle.

edu.au/jon/dr-fields11.pptx.
7 See http://vis.carma.newcastle.edu.au/.
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described in Bailey and Borwein (2011b). While we have famous pictorial exam-

ples purporting to show things like all triangles are equilateral, there are equally

many or more bogus symbolic proofs that ‘1þ 1 ¼ 1’. In all cases ‘caveat emptor’.
Modern technology properly mastered allows for a much richer set of tools for

discovery, validation, and even rigorous proof than our precursors could have ever

imagined would come to pass—and it is early days. That said just as books on

ordinary differential equations have been replaced by books on dynamical systems,
the word visual now pops up frequently in book titles. Unless ideas about visual-

ization are integrated into the text this is just marketing.

3.2.2 On Picture-Writing

The ordinary generating function associated with a sequence a0, a1, . . . , an, . . . is
the formal series8

AðxÞ :¼
X1
k¼0

akx
k ð3:1Þ

while the exponential generating function is

AðxÞ :¼
X1
k¼0

ak
xk

k!
: ð3:2Þ

Both forms of generating function are ideally suited to computer-assisted discovery.

George P�olya, in an engaging eponymous American Mathematical Monthly
article, provides three compelling examples of converting pictorial representations

of problems into generating function solutions (P�olya, 1956):

1. In how many ways can you make change for a dollar?
This leads to the (US currency) generating function

X1
k¼1

Pkx
k ¼ 1

ð1� x1Þð1� x5Þð1� x10Þð1� x25Þð1� x50Þ ,

which one can easily expand using a Mathematica command,

Series[1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)), {x, 0, 100}]

to obtain P100¼ 292 (242 for Canadian currency, which lacks a 50 cent piece).

P�olya’s illustration is shown in Fig. 3.1.

8 In computational cases we often use only the initial segment of the series and so we do not care

whether it converges or not.
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We look at a related generating function for counting additive partitions in

Example 3.4.6.

2. Dissect a polygon with n sides into n � 2 triangles by n � 3 diagonals and
compute Dn, the number of different dissections of this kind.

This is illustrated in Fig. 3.2 and leads to the fact that the generating function

for D3 ¼ 1,D4 ¼ 2,D5 ¼ 5,D6 ¼ 14,D7 ¼ 42, . . .

Fig. 3.1 P�olya’s illustration of the change solution (courtesy Mathematical Association of

America)

Fig. 3.2 The first few sets of dissections
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DðxÞ ¼
X1
k¼1

Dkx
k

satisfies

DðxÞ ¼ x 1þ DðxÞ½ �2,

whose solution is therefore

DðxÞ ¼ 1� 2x� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p

x
:

The Mathematica command

Series[((1 - 2 x) - Sqrt[1 - 4 x])/x, {x, 0, 10}]

returns

2xþ 4x2 þ 10x3 þ 28x4 þ 84x5 þ 264x6 þ 858x7

þ 2860x8 þ 9724x9 þ 33592x10 þ Oðx11Þ:

with list of coefficients

f0, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592g

and Dn+2 turns out to be the nth Catalan number 2n
n

� �
=ðnþ 1Þ. This can be

discovered using Sloane’s wonderful Online Encyclopedia of Integer Sequences
as illustrated in Fig. 3.3. Note that we only used the first six non-zero terms and

had four left to ‘confirm’ our experiment.

3. Compute Tn, the number of different (rooted) trees with n knots.9

This is a significantly harder problem so we say less:

The ordinary generating function of the Tn becomes a remarkable result due to

Cayley, namely

9Roots are now more commonly called vertices or nodes. For rooted labeled trees (and hence

labeled trees): http://www.math.ucla.edu/~pak/hidden/papers/Moon-counting_labelled_trees.pdf

is Moon’s monograph with a nice discussion of the history of Cayley’s formula, including the

fact that Cayley himself acknowledged that Borchardt had proved it earlier, and that it appeared

without proof in a work of Sylvester. A more modern (if not necessarily more relevant or accurate)

reference is http://en.wikipedia.org/wiki/Cayley.
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TðxÞ ¼
X1
k¼1

Tkx
k ¼ x

Y1
k¼1

ð1� xkÞ�Tk , ð3:3Þ

where remarkably the product and the sum share their coefficients. This can be

used to produce a recursion for Tn in terms of T1,T2, . . . , Tn�1, which starts:

T1 ¼ 1, T2 ¼ 1, T3 ¼ 2,T4 ¼ 4, T5 ¼ 9, T6 ¼ 20, . . ..

In each case, P�olya’s main message is that one can usefully draw pictures of the

component elements—(a) in pennies, nickels dimes and quarters (plus loonies in

Canada and half dollars in the USA), (b) in triangles and (c) in the simplest trees

(with the fewest knots).

That said, I often find it easier to draw pictures from generating functions rather

than go in the other direction. In any event, P�olya’s views on heuristic reasoning

and his books on problem solving (P�olya, 1981, 1990) remain as engaging, if

idiosyncratic, today as when first published.10

Fig. 3.3 Using https://oeis.org/ to identify the Catalan numbers

10 I mention also Klein and Grothendieck’s desin d’enfant see www.ams.org/notices/200307/what-

is.pdf.
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3.2.2.1 Proofs Without Words

In Fig. 3.4 we reproduce three classic proofs without words—though most such

proofs benefit from a few words of commentary. In Fig. 3.5 we display three

modern (dynamic geometry) proofs without words from http://cinderella.de/files/

HTMLDemos/Main.html.11

Figure 3.4 shows from left to right the following three results:

1. Pythagoras theorem;

2. 1þ 3þ 5þ ð2n� 1Þ ¼ n2;
3. 1=2þ 1=4þ 1=8þ � � � ¼ 1.

The Pythagorean proof is from the Zhou Bi Suan Jing which dates from the Zhou

Dynasty (1046 BCE–256 BCE), and is one of the oldest recorded.

Figure 3.5 shows from left to right the following three results:

1. Pythagoras theorem;

2.
ffiffiffi
2

p
is irrational as suggested by Tom Apostol12;

3. How to inscribe three tangent circles in a triangle.

Fig. 3.4 Three classical proofs without words

Move the green point

Fig. 3.5 Three modern proofs without words

11 See also http://www.usamts.org/About/U_Gallery.php.
12 Assume the large triangle is the smallest 45∘ right-angled triangle with integer sides. The

complement of the brown kite is a smaller such triangle.
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Needless to say, the advantage of a modern construction—when there really is

one—is largely lost on the printed page, which does not allow one to see the

dynamics. We somewhat repair that damage in Fig. 3.6 by showing three illustra-

tions of different configurations for fractals—zoom-invariant objects—built on

circles of Apollonius.13 In this case we perturbed slightly the configuration on the

left to that in the middle and then the right, and see the different appearance of the

fractals produced by the same rules.

3.3 Experimental Mathematics

The same ICMI study (2012), quoting (Borwein & Devlin, 2008, p. 1), says enough

about the meaning of experimental mathematics for our current purposes:

Experimental mathematics is the use of a computer to run computations—sometimes no

more than trial-and-error tests—to look for patterns, to identify particular numbers and

sequences, to gather evidence in support of specific mathematical assertions that may

themselves arise by computational means, including search.

Like contemporary chemists—and before them the alchemists of old—who mix various

substances together in a crucible and heat them to a high temperature to see what happens,

today’s experimental mathematicians put a hopefully potent mix of numbers, formulas, and

algorithms into a computer in the hope that something of interest emerges.

3.3.1 Experimental Mathodology

I originally mistyped ‘mathodology’ intending ‘methodology’, but I liked the

mistake and have kept it. We started (Borwein & Devlin, 2008) with Justice Potter

Stewart’s famous 1964 comment on pornography: “I know it when I see it.”

Fig. 3.6 Three fractals generated by different Apollonian configurations

13 See http://en.wikipedia.org/wiki/Circles_of_Apollonius.
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A bit less informally, by experimental mathematics I intend, as discussed in

Borwein and Bailey (2008) and elsewhere:

1. Gaining insight and intuition;

• We illustrate this repeatedly below by drawing many simple functions.

Almost always, as in Example 3.4.3, we see things in a picture that were

not clear in our mind’s eye.
• Sometimes, as in Example 3.4.2, a new pattern jumps out that we were not

originally intent on studying. By contrast, in Example 3.4.9 we show how the

computer can tell you things, such as that a number is algebraic, that you can

then verify but probably would never find.

2. Discovering new relationships;

• Computers generate patterns we might well not see by hand. See Exam-

ples 3.4.2, 3.4.5, 3.4.6 and 3.4.10.

3. Visualizing math principles;

• Computers allow one to switch representations easily. This can be like

drawing a curtain open as in Example 3.3.4 or Example 3.4.6.

4. Testing and especially falsifying conjectures;

• See Example 3.4.1 where we conclude one equality is invalid and are led to a

proof of why another similar looking one holds.

• Examples 3.4.16 and 3.4.17 underscore that seemingly compelling patterns

can fail to be hold. Learning how to trust one’s judgement is a subtle context-

dependent matter.

5. Exploring a possible result to see if it merits formal proof;

• In a traditional Lemma–Theorem–Corollary version of deductive mathemat-

ics, one has to prove every step of a chain of arguments to get to the end.

Suppose there are six steps in a complicated result, and the third is a boring

but hard equation, whose only value is that it leads to step six. Then it is

appropriate to challenge step six a lot, before worrying about proving step

three.

6. Suggesting approaches for formal proof;

• For me this connotes computer-assisted or computer-directed proof and is

quite far from Formal Proof as was the topic of a special issue of the Notices
of the AMS in December 2008.

• See Examples 3.4.1 and 3.4.11 which look at how our tools change both

induction and integration.

7. Computing replacing lengthy hand derivations;

• Example 3.3.1 discusses this for matters like taking roots, or factoring large

numbers.
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• It also the case that many computations that used to be too lengthy to perform

by hand are no longer so. For instance, the Maple fragment

addðithprimeðkÞ, k ¼ 1::100000Þ;

returned the sum of the first 105 primes, 62660698721, in 0. 171 s. Adding a

million took much longer though! My preference on tests, rather than banning

calculators or computers, is to adapt the questions to make them computa-

tionally aware.14

8. Confirming analytically derived results.

• I illustrate this in Example 3.4.12 by confirming some exact results knowing

only their general structure.

All of these uses play a central role in my daily research life. We will see all of

these eight notions illustrated in the explicit examples of Sect. 3.3.2 and of Sect. 3.4.

3.3.2 When Science Becomes Technology

What tools we choose to use—and when—is a subtle and changeable issue.

Example 3.3.1 (When Science Becomes Technology). We ‘unpack’ methods when

we want to understand them or are learning them for the first time. Once we or our

students have mastered a new tool we ‘repack’ it. For instance,

22
7 þ 1 ¼ 340282366920938463463374607431768211457

which factors as

59649589127497217ð Þ 5704689200685129054721ð Þ:

If we are teaching or taking a course in factorization methods, we may well want to

know ‘how’ this was done. In most contexts, we are happy to treat the computer as a

reliable tool and to take the answer without further introspection.

In like fashion,

t :¼ 1:25992104989487316476721060728 . . . ¼
ffiffiffi
2

3
p

will be computed by most packages to the displayed precision. We can confirm this

since

14 Though how to stop things like a student scanning a question and then going to the toilet to

consult Wolfram Alpha is a never-ending issue.
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t3 ¼ 2:00000000000000000000000000001 . . .

If we wish to understand what the computer has done—probably by Newton’s
method, we must go further, but if we only wish to use the answer that is irrelevant.

The first is science or research, the second is technology. ♢

The William Lowell Putnam competition taken each year by the strongest North

American undergraduate students has conventionally had one easy question (out of

12) based on the current year.

Example 3.3.2 (A 1998 Putnam Examination Problem). The problem was

Let N be the positive integer with 1998 decimal digits, all of them 1; that is,

N¼ 1111. . .11. Find the thousandth digit after the decimal point of
ffiffiffiffi
N

p
.

This can be done by brute force

> evalf[10](sqrt(add(10^k,k¼0..1997))/10^1000;

which is not what the posers had in mind. ♢

Example 3.3.3 (A 1995 Putnam Examination Problem). The problem requests

Evaluate: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2207� 1

2207� 1
2207�...

8

s
ð3:4Þ

Express your answer in the form ðaþ b
ffiffiffi
c

p Þ=d, where a, b, c, d are integers.

Proof. If we call the repeated radical above α, the request is to solve for

α8 ¼ 2207� 1

2207� 1
2207�1=α8

,

and a solve request to a CAS will return

2207

2
þ 987

ffiffiffi
5

p

2

 !1=8

¼ 3þ ffiffiffi
5

p

2
: ð3:5Þ

We may determine the last reduction in many ways (1) via identify, (2) using the

inverse symbolic calculator (ISC), (3) using a resolvent computation to find the

quadratic polynomial satisfied by α as given by Eq. (3.5), or (4) by repeatedly

computing the square root. Indeed identify will return the answer directly from

(3.4) which already agrees with the limit to 20 places. □
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With access to computation the problem becomes too straight-forward. ♢

I next recall some continued fraction notation. Figure 3.7 shows the two most

common ways of writing a simple or regular continued fraction—in this case for π.
For any α> 0, this represents the process of going from

α ! α
0
:¼ 1

α� bαc

and repeating the process, while recording the integer part bαc each time. This is

usually painful to do by hand but is easy for our computer.

Example 3.3.4 (Changing Representations). Suppose I wish to examine the

numbers

α :¼ 0:697774657964007982006790592552

and

β :¼ 0:92001690001910008622659579993:

As floating point numbers there is nothing to distinguish them; but the Maple
instruction convert(alpha,confrac); returns the simple continued fraction
for α in compact form (Borwein and Bailey, 2008)

α ¼ ½0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, . . .�

while convert(beta,confrac); returns

β ¼ ½0, 1, 11, 1, 1, 94, 6, 2, 9, 2, 1, 5, 1, 6, 7, 3, 4, 24, 1, 8, 1, 2, 1, 2, 1, . . .�:

So, in this new representation, the numbers no longer look similar. As described

in Borwein and Bailey (2008), Borwein and Devlin (2008), and Bailey

and Borwein (2011a), continued fractions with terms in arithmetic progression

are well studied, and so there are several routes now open to discovering that

α ¼ I1ð2Þ=I0ð2Þ where for ν¼ 0, 1, 2, . . .

Fig. 3.7 The simple continued fraction for π (L) in compact form (R)
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Iνð2zÞ ¼ zν
X1
k¼0

ðz2Þk
k!ðνþ kÞ!:

For instance, on May 23, 2014, entering "continued fraction" "arith-

metic progression" into Google returned 23,700 results of which the first http://
mathworld.wolfram.com/ContinuedFractionConstant.html gives the reader all

needed information, as will the use of the ISC. My purpose here was only to

show the potential power of changing a representation. For example, the continued

fraction of the irrational golden mean
ffiffi
5

p þ1
2

¼ 1:6180339887499 . . . is

[1, 1, 1, . . .]. Figure 3.8 illustrates the golden mean, and also provides a proof

without words that it is irrational as we discuss further in the next section.

It is a result of Lagrange that an irrational number is a quadratic if and only if it

has a non-terminating but eventually repeating simple continued fraction. So

quadratics are to continued fractions what rationals are to decimal arithmetic.

This is part of their power. ♢

As the following serious quotation makes clear, when a topic is science and

when it is technology is both time and place dependent.

A wealthy (15th Century) German merchant, seeking to provide his son with a good

business education, consulted a learned man as to which European institution offered the

best training.“If you only want him to be able to cope with addition and subtraction,” the

expert replied, “then any French or German university will do. But if you are intent on your

son going on to multiplication and division – assuming that he has sufficient gifts – then you

will have to send him to Italy.”15

a

a

a+b

b
Fig. 3.8 The golden mean

aþ b : a ¼ a : b

15 Quoted from p. 577 of George Ifrah, “The Universal History of Numbers: From Prehistory to the

Invention of the Computer”, trans. from French, John Wiley, 2000. This was also quoted a century

ago by Tobias Dantzig.
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3.3.2.1 Minimal Configurations

Both the central picture in Fig. 3.5 and the picture in Fig. 3.8 illustrate irrationality

proofs. Traditionally, each would have been viewed as showing a reductio ad
absurdum. Since the development of modern set theory and of modern discrete

mathematics it is often neater to view them as deriving a contradiction from

assuming some object is minimal.

For example, suppose that the (a + b) � a rectangle was the smallest integer

rectangle representing the golden mean in Fig. 3.8, then the a � b rectangle cannot

exist. Because of the geometric simplicity of this argument, it is thought that this

may be the first number the Pythagoreans realized was irrational. Figure 3.5, by

contrast, illustrates a reductio. If we continue, we will eventually get to an impos-

sibly small triangle with integer sides. A clean picture for minimality is shown in

Fig. 3.9.

Example 3.3.5 (Sylvester’s Theorem, Bailey & Borwein, 2011b). The theorem

conjectured by Sylvester in the late nineteenth century establishes that given a
finite set of non-colinear points in the plane there is at least one ‘proper’ line
through exactly two points. The first proof 40 years later was very complicated.

Figure 3.10 shows a now-canonical minimality proof.

Fig. 3.9 A minimal

configuration for

irrationality of
ffiffiffi
2

p

Fig. 3.10 A minimal

configuration for

Sylvester’s theorem
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The objects used in this picture are pairs (L, p) where L is a line through at least

two points of the set and p is the closest point in the set but not on the line. We

consider the ðL, pÞwith p closest to L. We assert that L (the red horizontal line) has

only two points of the set on it. If not two points lie on one side of the projection of

p onL. And now the black line L0 throughp and the farther point on L, and p0 the red
point nearer to the projection constructs a configuration ðL0, p0Þ violating the

minimality of ðL, pÞ.
Subtle, ingenious and impossible to grasp without a picture! Here paper and

coloured pencil are a fine tool. ♢

3.3.3 Mathematical Discovery (or Invention)

Giaquinto’s attractive encapsulation: “In short, discovering a truth is coming to

believe it in an independent, reliable, and rational way” Giaquinto (2007, p. 50) has

the satisfactory consequence that a student can discover results whether known to

the teacher or not. Nor is it necessary to demand that each dissertation be original

(only that the results should be independently discovered).

Despite the conventional identification of mathematics with deductive reason-

ing, Kurt G€odel (1906–1978) in his 1951 Gibbs Lecture said: “If mathematics

describes an objective world just like physics, there is no reason why inductive

methods should not be applied in mathematics just the same as in physics”. He held

this view until the end of his life despite—or perhaps because of—the epochal

deductive achievement of his incompleteness results.

Also, one discovers that many great mathematicians from Archimedes and

Galileo—who apparently said “All truths are easy to understand once they are

discovered; the point is to discover them.”—to Gauss, Poincaré, and Carleson have

emphasized how much it helps to “know” the answer. Two millennia ago Archi-

medes wrote to Eratosthenes16 “For it is easier to supply the proof when we have

previously acquired, by the method, some knowledge of the questions than it is to

find it without any previous knowledge”. Think of theMethod as an ur-precursor to
today’s interactive geometry software—with the caveat that, for example, Cinder-
ella actually does provide certificates for much Euclidean geometry.

As 2006 Abel Prize winner Lennart Carleson describes in his 1966 ICM speech

on his positive resolution of Luzin’s 1913 conjecture (about the pointwise conver-

gence of Fourier series for square-summable functions) after many years of seeking

a counterexample he decided none could exist. The importance of this confidence is

expressed as follows:

The most important aspect in solving a mathematical problem is the conviction of what is

the true result. Then it took 2 or 3 years using the techniques that had been developed during

the past 20 years or so.

16 Introduction to his long-lost and recently re-constituted Method of Mechanical Theorems.
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3.3.4 Digital Assistance

By digital assistance I mean use of artefacts as:

1. Modern Mathematical Computer Packages—symbolic, numeric, geometric or

graphical. Symbolic packages include the commercial computer algebra pack-

ages Maple and Mathematica, and the open source SAGE. Primarily numeric

packages start with the proprietary MATLAB and public counterparts Octave and

NumPy, or the statistical package (R). The dynamic geometry offerings include

Cinderella, Geometer’s Sketchpad, Cabri and the freeware GeoGebra.
2. Specialized Packages or General Purpose Languages such as Fortran, C++,

Python, CPLEX, PARI, SnapPea and MAGMA.

3. Web Applications such as: Sloane’s Encyclopedia of Integer Sequences, the

ISC,17 Fractal Explorer, Jeff Weeks’ Topological Games, or Euclid in Java.18

4. Web Databases including Google, MathSciNet, ArXiv, GitHub, Wikipedia,

MathWorld, MacTutor, Amazon, Wolfram Alpha, the DLMF (Olver, Lozier,

Boisvert, & Clark, 2012) (all formulas of which are accessible in MathML, as

bitmaps, and in TE X) and many more that are not always so viewed.

All entail data-mining in various forms. Franklin (2005) argues Steinle’s
“exploratory experimentation” facilitated by “widening technology”, as in pharma-

cology, astrophysics, medicine and biotechnology, is leading to a reassessment of

what legitimates experiment; in that a “local model” is not now prerequisite.

Sørenson (2010) cogently makes the case that experimental mathematics—as

‘defined’ above—is following similar tracks.

These aspects of exploratory experimentation and wide instrumentation originate from the

philosophy of (natural) science and have not been much developed in the context of

experimental mathematics. However, I claim that e.g., the importance of wide instrumen-

tation for an exploratory approach to experiments that includes concept formation also

pertain to mathematics.

In consequence, boundaries between mathematics and the natural sciences and

between inductive and deductive reasoning are blurred and getting more so. (See

also Avigad, 2008.) I leave unanswered the philosophically vexing if mathemati-

cally minor question as to whether genuine mathematical experiments (as discussed
in Borwein & Bailey, 2008) exist even if one embraces a fully idealist notion of

mathematical existence. They sure feel like they do.

17Most of the functionality of the ISC is built into the “identify” function Maple starting with

version 9.5. For example, identifyð4:45033263602792Þ returns ffiffiffi
3

p þ e. As always, the experienced
will extract more than the novice.
18 A cross-section of such resources is available through www.carma.newcastle.edu.au/jon/portal.

html and www.experimentalmath.info.
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3.3.5 The Twentieth Century’s Top Ten Algorithms

The modern computer itself, being a digital repurposable tool, is quite different

from most of its analogue precursors. They could only do one or two things. The

digital computer, of course, greatly stimulated both the appreciation of and need for

algorithms and for algorithmic analysis.19 These are what allows the repurposing.

This makes it reasonable to view substantial mathematical algorithms as tools in

their own right.

At the beginning of this century, Sullivan and Dongarra could write “Great

algorithms are the poetry of computation”, when they compiled a list of the ten

algorithms having “the greatest influence on the development and practice of

science and engineering in the twentieth century”.20 Chronologically ordered,

they are:

#1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of

random processes, this algorithm offers an efficient way to stumble toward

answers to problems that are too complicated to solve exactly.

#2. 1947: Simplex Method for Linear Programming. An elegant solution to a

common problem in planning and decision-making.

#3. 1950: Krylov Subspace Iteration Method. A technique for rapidly solving

the linear equations that abound in scientific computation.

#4. 1951: The Decompositional Approach to Matrix Computations. A suite of

techniques for numerical linear algebra.

#5. 1957: The Fortran Optimizing Compiler. Turns high-level code into effi-

cient computer-readable code.

#6. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix

operation made swift and practical.

#7. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large

databases.

#8. 1965: Fast Fourier Transform (FFT). Perhaps the most ubiquitous algo-

rithm in use today, it breaks down waveforms (like sound) into periodic

components.

#9. 1977: Integer Relation Detection. A fast method for spotting simple equa-

tions satisfied by collections of seemingly unrelated numbers.

#10. 1987: Fast Multipole Method. A breakthrough in dealing with the complex-

ity of n-body calculations, applied in problems ranging from celestial mechan-

ics to protein folding.

19 The discussion in Guin, Ruthven, and Trouche (2005, Chap. 3) regarding the computer science

issues arising when using Maple bears rereading a decade later.
20 From “Random Samples”, Science page 799, February 4, 2000. The full article appeared in the

January/February 2000 issue of Computing in Science & Engineering.
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I observe that eight of these ten winners appeared in the first two decades of

serious computing, and that Newton’s method was apparently ruled ineligible for

consideration.21 Most of the ten are multiply embedded in every major mathemat-

ical computing package. The last one is the only one that occurs infrequently in my

own work.

Just as layers of software, hardware and middleware have stabilized, so have

their roles in scientific and especially mathematical computing. When I first taught

the simplex method more than 30 years ago, the texts concentrated on ‘Y2K’-like
tricks for limiting storage demands.22 Now serious users and researchers will often

happily run large-scale problems in MATLAB and other broad spectrum packages, or

rely on CPLEX or, say, NAG library routines embedded in Maple.
While such out-sourcing or commoditization of scientific computation and

numerical analysis is not without its drawbacks, I think the analogy with automo-

bile driving in 1905 and 2005 is apt. We are now in possession of mature—not to be

confused with ‘error-free’—technologies. We can be fairly comfortable that

Mathematica is sensibly handling round-off or cancellation error, using reasonable

termination criteria and the like. Below the hood, Maple is optimizing polynomial

computations using tools like Horner’s rule, running multiple algorithms when

there is no clear best choice, and switching to reduced complexity (Karatsuba or

FFT-based) multiplication when accuracy so demands. Though, it would be nice if

all vendors allowed as much peering under the bonnet as Maple does.

3.3.6 Secure Knowledge Without Proof

Given real floating point numbers

β, α1, α2, . . . , αn,

Helaman Ferguson’s integer relation method—see #9 of Sect. 3.3.5 above—called

unhelpfully PSLQ, finds a nontrivial linear relation of the form

a0β þ a1α1 þ a2α2 þ � � � þ anαn ¼ 0, ð3:6Þ

where ai are integers—if one exists and provides an exclusion bound otherwise.

This method is very robust. Given adequate precision of computation (Borwein and

Bailey, 2008) it very rarely returns spurious relations.

21 It would be interesting to construct a list of the ten most influential earlier algorithms.
22 ‘Y2K’ was geek-speak for the Year 2000 when there was concern that a trick used to save a

storage bit decades earlier was going to crash all computers. It turned out to be much less serious,

but who knew?

42 3 The Life of Modern Homo Habilis Mathematicus: Experimental Computation. . .



If a0 6¼ 0, then (3.6) assures β is in the rational vector space generated by

α1, α2; , ; . . . ; , αnf g:

Moreover, as a most useful special case, if β :¼ 1, αi :¼ αi, then α is algebraic of
degree n (see Example 3.4.9).

Quite impressively here is an unproven 2010 integer relation discovery by

Cullen:

211

π4
¼?
X1
n¼0

ð1
4
Þnð12Þ7nð34Þn

1ð Þ9n
ð21þ 466nþ 4340n2 þ 20632n3 þ 43680n4Þ 1

2

� �12n

: ð3:7Þ

We have no idea why it is true but you can check it to almost any precision you

wish. In Example 3.4.10 we shall explore such discoveries.

3.3.7 Is ‘Free’ Software Better?

I conclude this section by commenting on open-source versus commercial software.

While free is very nice, there is no assurance that most open source projects such as

GeoGebra (based on Cabri and now very popular in schools as replacement for

Sketchpad) will be preserved when the founders and typically small core group of

developers lose interest or worse. This is still an issue with large-scale commercial

products but a much smaller one.

I personally prefer Maple to Mathematica as most of the source code is acces-

sible, whileMathematica is entirely sealed. This is more of an issue for researchers

than for educators or less intense users. Similarly, Cinderella is very robust, unlike

GeoGebra, and mathematically sophisticated—using Riemann surfaces to ensure

that complicated constructions do not crash. That said, it is the product of two

talented and committed mathematicians but only two, and it is only slightly

commercial. In general, software vendors and open source producers do not provide

the teacher support that has been built into the textbook market.

3.4 A Dozen or So Accessible Examples

Modern graphics tools change traditional approaches to many problems. We used to

teach calculus techniques to allow graphing of even reasonably simple functions.

Now one should graph to be guided in doing calculus.

Example 3.4.1 (Graphing to Do Calculus). Consider a request in a calculus text to

compare the function given by f ðyÞ :¼ y2logy (red) to each of the functions given by
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gðyÞ :¼ y� y2 and hðyÞ :¼ y2 � y4 for 0⩽y⩽1; and to prove any inequality that

holds on the whole unit interval.

The graphs of f, g are shown in the left of the picture in Fig. 3.11, and the graphs
of f, h to the right. In any plotting tool we immediately see that f and g cross but that
h⩾f appears to hold on [0, 1]. Only in a neighbourhood of 1 is there any possible

doubt. Zooming in—as is possible in most graphing tools—or re-plotting on a

smaller interval around 1 will persuade you that f(y)> h(y) for 0< y< 1. This is

equivalent to kðxÞ :¼ logðxÞ � 1þ 1=x > 0 and so that is what you try to prove.

Now it is immediate that k0(x)< 0 on the interval and so k strictly decreases to k
(1)¼ 0 and we are done. □

Likewise, computer algebra systems (CAS) now make it possible to find patterns

which we prove ex post facto by induction. Before CAS many of these inductive

statements might have been inaccessible.

Example 3.4.2 (Induction and Computer Algebra). We all know how to show

XN
k¼1

k ¼ nðnþ 1Þ
2

with or without induction. But what about

XN
k¼1

k5 ¼ ?

Consider the following three lines of Maple code.

> S:¼(n,N)->sum(k^n,k¼1..N):

> S5:¼unapply(factor(simplify(S(5,N))),N);

> simplify(S5(N)-S5(N-1));

The first line defines the sum
XN

k¼1
kn. The second finds this sum for n¼ 5 and

makes it into a function of N. We obtain:

Fig. 3.11 The functions

f and h (L) and f and g (R)
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XN
k¼1

k5 ¼ 1

12
N2 2 N2 þ 2 N � 1
� �

N þ 1ð Þ2: ð3:8Þ

The third line proves this by induction—on checking that S5(1)¼ 1. The proof can

of course be done by hand. Jakob Bernoulli (1655–1705) invented his Bernoulli
numbers23 and associated polynomials in part to evaluate such sums. Indeed, using

the same code with N¼ 10 we arrive at a proof that

XN

k¼1
k10 ¼N 2Nþ1ð Þ Nþ1ð Þ N2þN�1

� �
3N6þ9N5þ2N4�11N3þ3N2þ10N�5
� �

66

and so that

X100
k¼1

k10 ¼ 959924142434241924250,

and

X1000
k¼1

k10 ¼ 91409924241424243424241924242500:

This later computation by Bernoulli is accounted as the first case of real computa-

tional number theory. Likewise

X10000
k¼1

k10 ¼ 9095909924242414242424342424241924242425000:

We finish with interior palindromes in each of the three sums centered at the ‘3’ and
leave its explanation and other apparent patterns to the reader. Of course, unlike

Bernoulli, we could simply have added the three sums without finding the closed

form but then we would know much less. □

Large matrices often have structure that pictures will reveal but which numeric

data may obscure.

Example 3.4.3 (Visualizing Matrices). The picture in Fig. 3.12 shows a 25 �
25 Hilbert matrix on the left and on the right a matrix required to have 50%

sparsity and non-zero entries random in [0, 1].

The 4 � 4 Hilbert matrix in Maple is generated by with(LinearAlgebra);

HilbertMatrix(4); which code produces

23 If you are unfamiliar with them, just ask Maple, Mathematica or Wikipedia.
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1 1=2 1=3 1=4
1=2 1=3 1=4 1=5
1=3 1=4 1=5 1=6
1=4 1=5 1=6 1=7

2664
3775

from which the general definition should be apparent. Hilbert matrices are notori-

ously unstable numerically. The picture on the left of Fig. 3.13 shows the inverse of

the 20� 20 Hilbert matrix when computed symbolically and so exactly. The picture
in the middle shows the enormous numerical errors introduces if one uses 10 digit

precision, and the right shows that even if one uses 20 digits, the errors are less

frequent but even larger.

Representative Maple code for drawing the symbolic inverse is:

> with(plots):

> matrixplot(MatrixInverse(HilbertMatrix(20)),

heights ¼ histogram, axes ¼ frame, gap ¼ .2500000000,

color ¼ proc (x, y) options operator, arrow; sin(y*x) end proc);}

Fig. 3.12 The Hilbert matrix (L) and a sparse random matrix (R)
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Fig. 3.13 Inverse 20 � 20 Hilbert matrix (L) and 2 numerical inverses (R)
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It is very good fun to play with pictures of very large matrices constructed to

have complicated block structure. Consider the sequence of 2n� 2nmatrices Q(n),
with entries only 0, 1, 2, 4 which start

2 1

0 1

� �
:

2 2 1 0

0 2 2 1

0 0 1 1

0 0 0 1

2664
3775,

2 2 2 1 0 0

0 2 4 2 1 0

0 0 2 2 2 1

0 0 0 1 1 1

0 0 0 0 1 2

0 0 0 0 0 1

26666664

37777775 ð3:9Þ

We cannot possibly present Q(100) as a symbolic or numerical matrix but Fig. 3.14

visually shows everything both about the matrix and its inverse. □

Let us continue with a different exploration of matrices.

Example 3.4.4 (Abstract Becomes Concrete). Define, for n> 1 the n � n matrices

A(n),B(n),C(n),M(n) by

Akj ¼ ð�1Þkþ1 2n� j

2n� k

� �
, Bkj ¼ ð�1Þkþ1 2n� j

k � 1

� �
,

Ckj ¼ ð�1Þkþ1 j� 1

k � 1

� �
(for k, j¼ 1, . . ., n) and set M :¼ Aþ B� C. For instance,

4 2

1

0

-1

-2
20

40
60

80
100

120
140

160
180 180

160
140

120
100

80
60

40
20

3

2

1

0
20

40
60

80
100

120column

columnrow row140
160

180
140

100

60

20

Fig. 3.14 The matrix Q(100) (L) continuing the pattern in (3.9) and its inverse (R)
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Mð7Þ ¼

1 0 0 0 0 0 0

26 �12 9 �7 5 �3 1

156 �78 55 �42 30 �18 6

572 �286 176 �120 80 �46 15

1430 �715 385 �220 126 �65 20

2574 �1287 627 �297 135 �56 15

3432 �1716 792 �330 120 �36 7

2666666664

3777777775
:

In my research (Borwein, Bailey, & Girgensohn, 2005, §3.3), I needed to show

M(n) was invertible. After staring at numerical examples without much profit,

I decided to ask Maple for the minimal polynomial of M(10) using

> MP:¼LinearAlgebra[MinimalPolynomial]: MP(evalm(M(10)),t);

and was surprised to get t2 þ t� 2. (One way to write B in Maple is

> B:¼n->matrix(n,n,(i,j)->(-1)^(j+1)*binomial(2*n-j,i-1));

and there are many other formats.) I got the same answer for M(30) and so I knew

MðnÞ2 þMðnÞ ¼ 2I for all n> 1 or equivalently that

M�1 ¼ M þ I

2
:

But why? I decided to explore A,B,C with the same tool and discovered that

A and C satisfied t2¼ 1 and B satisfied t3¼ 1. This led me to realize that A,B,C
generated the symmetric group on three elements and so to a computer discovered

proof that M was as claimed.

As an illustration of the robustness of such discoveries, if we change the i ¼ 1,

j ¼ 10entry inM(10) to ε 6¼ 0 from 0, we find the minimal polynomial is far from as

simple: t4 þ 2 t3 � 3 t2 � 4 tþ 4� 252 t2 þ 252 t� 504ð Þε, which also shows the
discontinuity at ε¼ 0. Similarly, for the 5 � 5 Hilbert matrix we get

� 1

266716800000
þ 61501 t

53343360000
� 852401 t2

222264000
þ 735781 t3

2116800
� 563 t4

315
þ t5 ¼ 0:

The constant term is of course giving minus the determinant. When I was a student

characteristic and minimal polynomials seemed to be entirely abstract and matrix

decompositions were in their infancy. Now they are technology. ♢

Example 3.4.5 (Hardy’s Taxi-Cab). Hardy when visiting Ramanujan in hospital in

1917 remarked that his taxi’s number, 1729, was very dull. Ramanujan famously

replied that it was very interesting being the smallest number expressible as a sum

of two cubes in two distinct ways (not counting sign or order):

1729 ¼ 123 þ 13 ¼ 103 þ 93:
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Let us ask “what is the second such number? As in Sect. 3.2.2, we can look at a

generating function—this time for cubes. The coefficients of C2(q) will be 0 when

n is not the sum of two cubes, 1 when n¼ 2m3, 2 when n ¼ m3 þ k3 for k 6¼ m. If
there are two distinct representations, the coefficient will be 4. TheMaple fragment

> C:¼convert((add(q^(n^3),n¼1..20)^2),polynom):C-(C mod 4):

outputs 4 q4104 þ 4 q1729 which both proves Ramanujan’s assertion and finds that

the second example is 4104 ¼ 153 þ 93 ¼ 23 þ 163. If we change 20–25 in our

code, we uncover the third such number. Alternatively entering just the first two

into the OIES produces sequence A001235 consisting of the ‘taxi-cab numbers’:
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656,

110808, . . . ♢

Example 3.4.6 (Euler’s Pentagonal Number Theorem). The number of additive
partitions of n, p(n), is generated by

PðqÞ ¼ 1þ
X
n⩾1

pðnÞqn ¼
Y
n⩾1

ð1� qnÞ�1: ð3:10Þ

Thus p(5)¼ 7 since

5 ¼ 4þ 1 ¼ 3þ 2 ¼ 3þ 1þ 1 ¼ 2þ 2þ 1

¼ 2þ 1þ 1þ 1 ¼ 1þ 1þ 1þ 1þ 1,

as we ignore “0” and permutations. Additive partitions are mathematically less

tractable than multiplicative ones as there is no analogue of unique prime factor-

ization nor the corresponding structure.

Partitions provide a wonderful example of why Keith Devlin calls mathematics

“the science of patterns”. They do sometimes enter the school curriculum through

the back-door in the guise of Cuisenaire rods (or réglets), as illustrated by a

staircase in Fig. 3.15.

Fig. 3.15 A 10 � 10

Cuisenaire staircase
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Formula (3.10) is easily seen by expanding ð1� qnÞ�1
and comparing coeffi-

cients. A modern computational temperament leads to:

Question: How hard is p(n) to compute—in 1900 (for MacMahon the “father of combina-

torial analysis”) or in 2015 (for Maple or Mathematica)?

Answer: The famous computation by Percy MacMahon of p(200)¼
3972999029388 at the beginning of the twentieth century, done symbolically and

entirely naively from (3.10) in Maple on a laptop, took 20min in 1991 but only

0.17 s in 2010, while the many times more demanding computation

pð2000Þ ¼ 4720819175619413888601432406799959512200344166

took just 2min in 2009 and 40.7 s in 2014.24 Moreover, in December 2008, the late

Richard Crandall was able to calculate p(109) in 3 s on his laptop, using the Hardy-

Ramanujan-Rademacher ‘finite’ series for p(n) along with FFT methods. Using these

techniques, Crandall was also able to calculate the probable primes p(1000046356)
and p(1000007396), each of which has roughly 35, 000 decimal digits.25

Such results make one wonder when easy access to computation discourages

innovation: Would Hardy and Ramanujan have still discovered their marvelous
formula for p(n) if they had powerful computers at hand? The Maple code

N:¼500; coeff(series(1/product(1-q^n,n¼1..N+1),q,N+1),q,N);

Twenty-five years ago computing P(q) inMaple was very slow, while taking the
series for the reciprocal of the series for

QðqÞ ¼
Y
n⩾1

ð1� qnÞ

was quite manageable!

Why? Clearly the series for Q must have special properties. Indeed it is

lacunary:

QðqÞ ¼ 1� q� q2 þ q5 þ q7 � q12 � q15 þ q22 þ q26 � q35 � q40 þ q51

þ q57 � q70 � q77 þ q92 þ Oðq100Þ: ð3:11Þ

24 The difficulty of comparing timings and the growing inability to look under the hood (bonnet) in

computer packages, either by design or through user ignorance, means all such comparisons

should be taken with a grain of salt.
25 See http://fredrikj.net/blog/2014/03/new-partition-function-record/ for a lovely description of

the computation of p(1020), which has over 11 billion digits and required knowing π to similar

accuracy.
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This lacunarity is now recognized automatically by Maple, so the platform works

much better, but we are much less likely to discover Euler’s gem:

Y1
n¼1

ð1� qnÞ ¼
X1
n¼�1

ð�1Þnqnð3nþ1Þ=2:

If we do not immediately recognize the pentagonal numbers, ð3ðnþ 1Þn=2Þ, then
Sloane’s online Encyclopedia of Integer Sequences26 again comes to the rescue

with abundant references to boot.

This sort of mathematical computation is still in its reasonably early days but the

impact is palpable. □

Example 3.4.7 (Ramanujan’s Partition Congruences). Ramanujan had access to

the first 200 values of p(n) thanks to MacMahon’s lengthy work which the follow-

ing Maple snippet reconstructs near instantly:

> N:¼200:L200:¼
sort([coeffs(convert(series(1/product(1-q^n,n¼1..N+1),q,N

+1),polynom))]);

The list starts 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297,

385, 490, 627. . . with p(0):¼ 1, and Ramanujan noted various modular patterns.

Namely p(5n + 4) is divisible by 5, and p(7n + 5) is divisible by 7. This is hard to see

from a list but a little software can help. The snippet below reshapes the beginning

of a list of n � m or more entries into an n � m matrix:

> reshape:¼proc (L, n, m) local k;

linalg[matrix](n, m, [seq(L[k], k ¼ 1 .. m*n)])

end proc

For instance, > reshape(L200 mod 5, 8,20) produces the first 160 entries of

the list with 20 columns in each of 8 rows as

1 1 2 3 0 2 1 0 2 0 2 1 2 1 0 1 1 2 0 0

2 2 2 0 0 3 1 0 3 0 4 2 4 3 0 3 2 2 0 0

3 3 4 1 0 4 3 4 3 0 1 3 4 1 0 1 3 4 0 0

2 0 1 4 0 3 0 4 0 0 3 0 3 4 0 4 1 3 4 0

1 2 0 4 0 2 2 3 4 0 3 4 2 2 0 4 4 0 1 0

2 1 4 0 0 4 1 4 4 0 1 3 1 3 0 1 3 1 3 0

0 1 2 1 0 2 2 0 0 0 0 4 4 2 0 1 0 1 1 0

0 3 0 2 0 4 4 3 2 0 3 2 1 4 0 2 4 4 2 0

266666666664

377777777775
:

We now see only zeroes in the columns congruent to 4 modulo 5 and discover the

first congruence 5jp(5n + 4). Similarly, > reshape(L200 mod 7, 8,21) reveals

26 A fine model for twenty-first century databases, it is available at https://oeis.org/.
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1 1 2 3 5 0 4 1 1 2 0 0 0 3 2 1 0 3 0 0 4

1 1 2 0 5 0 0 1 1 4 3 5 0 4 1 1 0 3 0 0 0

2 2 2 3 5 0 0 2 1 4 0 0 0 0 3 2 2 3 5 0 4

2 2 2 3 5 0 4 3 2 4 6 5 0 0 2 2 4 3 5 0 0

3 3 6 6 3 0 1 3 3 4 3 5 0 0 4 3 4 6 5 0 1

5 3 6 6 3 0 0 5 4 6 6 3 0 4 5 4 6 6 5 0 0

6 5 1 2 3 0 1 5 5 1 6 3 0 4 0 5 1 5 1 0 1

0 6 3 2 1 0 4 1 6 3 5 1 0 1 1 6 3 2 1 0 1

266666666664

377777777775
and ‘discovers’ the second congruence 5jp(7n + 5) for all n⩾0. The third congru-

ence 6jp(11n + 6) for all n⩾0 can be discovered by appropriate reshaping—and if

wished confirmed by taking more terms. These partition congruences are discussed

and the first two proved in Borwein and Borwein (1987, §3.5). ♢

Maple has since version 9.5 had a function called ‘identify’. It takes many tools

such as PSLQ (Sect. 3.3.6) and attempts to predict an answer for a floating point

number. A related ISC is on-line at http://isc.carma.newcastle.edu.au/. This lets you

enter a real number or a Maple expression and ask the computer “What is that

number?”

Another excellent example of how packages are changing mathematics is the

Lambert W function (Borwein et al., 2005), whose remarkable properties and

development are very nicely described in a fairly recent article by Hayes (2005),

Why W? Informally, W(x) solves

x ¼ WðxÞeWðxÞ:

As a real function, its domain is ð�1=e,1Þ. We draw W and the quite similar log

function on the left of Fig. 3.16. Its use can be traced back to Lambert (1728–1727),

and W as a notation was used by P�olya and Szeg€o in 1925. However, this very

useful non-elementary function only came into general currency after it was named

2
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0
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y

x
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Fig. 3.16 (L) W and log (R) ðlogxÞ=x
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and then implemented in both Maple and Mathematica. It is hard to use or

popularize an un-named function. Now most CAS know the expansion

WðzÞ ¼
X1
k¼1

ð�kÞk�1

k!
zk

with radius of convergence 1/e.

Example 3.4.8 (Solving Equations with W). We first look at xy ¼ yx.

(a) Let us fix x> 0 and try to solve

xy ¼ yx for y > 0: ð3:12Þ

Of course, we seek a non-trivial solution with x 6¼ y such as x ¼ 2, y ¼ 4. The

Maple solve command returns

yðxÞ ¼ �x

logx

� �
W

�logx

x

� �
: ð3:13Þ

This may confuse initially more than help. If we take logarithms in (3.12) and

rearrange, we are trying to solve

logy

y
¼ z :¼ logx

x
ð3:14Þ

for y> 0.

The right of Fig. 3.16 shows that the function ðlogxÞ=x is positive only on

1 < x < 1 and then and only then has two solutions—except for x¼ e where
the maximum of 1/e occurs—and now in Maple solve(log(x)/x¼z,x)

returns �W �log zð Þ=z. This solution is shown on the left in Fig. 3.17 where

z implicitly must satisfy 0< z< 1/e. This yields (3.13), shown in the center of

2.7
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∞
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2.6

2.5

2.4

2.3

2.2
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Fig. 3.17 (L) Solution to (3.13). (M) Solution to (3.12). (R) Quadratic Taylor approximation

around e
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Fig. 3.17, where we know now that x> 1 is requisite. For instance, y3 :¼ �3W

ð�ðlog 3Þ=3Þ=log 3 ¼ 2:478052685 . . . 6¼ 3 solves 3y3 ¼ ðy3Þ3:
Now, we may not know W but our computer certainly now does. For

instance, identify(0.56714329040978) returns W(1) and the Taylor

series for y(x) around e starts

yðxÞ ¼ e� sign x� eð Þ x� eð Þ þ 5 e�1 sign x� eð Þ þ 1ð Þ
6

x� eð Þ2

þ O x� eð Þ3
	 
 ð3:15Þ

as shown on the right of Fig. 3.17. For x> e, yðxÞ ¼ 1=ð3eÞ
11 e2 � 13 xeþ 5 x2ð Þ while for x< e we get the trivial solution x.

(b) A parametric form of the solution is x ¼ r1=ðr�1Þ, y ¼ rx ¼ rr=ðr�1Þ, for r> 1.

Equivalently with r ¼ 1þ 1=s, where s> 0, we have x ¼ ð1þ 1=sÞs,
y ¼ ð1þ 1=sÞsþ1

. This is shown in Fig. 3.18.

(c) Repeated exponentiation. How many distinct meanings may be assigned to

product towers for the n-fold exponentiation

x∗
x
n ¼ xx

xx���x
?

Recursions like x1¼ t> 0 and xn ¼ txn�1 for n> 0 have been subjected to

considerable scrutiny. We can check that the solution to tx¼ x is t� �W

�log tð Þ=log twhich solution exists for t2½e�e, e1=e�. ♢

12
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5 6

Fig. 3.18 Parametric

solutions of (3.12) separated

by y¼ e
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Example 3.4.9 (Finding Algebraic Numbers). Both Maple and Mathematica have

algorithms that can predict if a number is algebraic and even find its minimal

polynomial. We described this a little further in Sect. 3.3.6. For instance, using

identify—with no tuning of parameters—as with

> Digits:¼20:a:¼evalf(7^(1/2)+3^(1/2));identify(a);

returns ffiffiffi
7

p
þ

ffiffiffi
3

p

but

> Digits:¼20:a:¼evalf(2^(1/3)+3^(1/2));identify(a);

returns

2:9919718574637504583

meaning Maple could not identify the surd from 20 digits. The ISC at http://isc.

carma.newcastle.edu.au/advancedCalc runs tuned algorithms and will identify the

constant as shown in Fig. 3.19.

However:

> Digits:¼30:a:¼evalf(2^{1/3}+3^{1/2});identify(a);

returns

Fig. 3.19 Identifying 21=3 þ 31=2
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Root Of �Z6 � 9�Z4 � 4�Z3 þ 27�Z2 � 36�Z � 23, index ¼ 1
� �

which allows us to recover 21=3 þ 31=2. For example, we can factor in Qð ffiffiffi
3

p Þ using
the command:

> factor(_Z^6-9*_Z^4-4*_Z^3+27*_Z^2-36*_Z-23,sqrt(3));

which yields

� 3
ffiffiffi
3

p
�Z2 þ �Z3 þ 3

ffiffiffi
3

p
þ 9�Z � 2

	 

3

ffiffiffi
3

p
�Z2 � �Z3 þ 3

ffiffiffi
3

p
� 9�Z þ 2

	 

:

The quadratic formula now applies to determine that the only real roots of the sextic

polynomial are 21=3 � ffiffiffi
3

p
. □

We can do more exciting things of this kind.

Example 3.4.10 (What is that Number?). Let us illustrate it for the integral

RðaÞ :¼ Rða, aÞ ¼ 2

Z1
0

t1=a

1þ t2
dt ð3:16Þ

whose origins are described in Sect. 3.5. We plot R(a) in Fig. 3.20. (We used the

hypergeometric form given below. Maple will find this form if you input (3.16).)

Note that the graph is consistent with the fact thatR increases to the blue asymptote

Rð1Þ ¼ π
2
: You may be able to evaluate some other values by hand.

Most CAS will answer that the values of Rð1=mÞ, for 1⩽m⩽6, are

log2, 2� π

2
, 1� log2, � 4

3
þ π

2
, � 1

2
þ log2,

26

15
� π

2
:

1.4
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t

30

Fig. 3.20 The function RðaÞ
for 0< a< 30
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We then check that Rð1=7Þ ¼ 5
6
� log2 and Rð1=8Þ ¼ � 152

105
þ π

2
. From this it

should be plausible that

ð�1ÞnR 1

2nþ 1

� �
¼ log2þ an

ð�1ÞnR 1

2n

� �
¼ π

2
þ bn

for rational numbers an, bn. As experimental confirmation of this conjecture we can

check that

R 1

21

� �
¼ � 1627

2520
þ log2, R 1

20

� �
¼ � 22128676

14549535
þ π

2
:

If we ask the computer for Rð2Þ, we get a complicated (ostensibly

complex) expression that simplifies to
ffiffi
2

p
4

2 π þ log 17� 12
ffiffiffi
2

p� �� �
: If we try PSLQ

for a :¼ 2, 2=3, 2=5, . . . we discover that each such sum evaluates in terms of three

basis vectors:

1,
ffiffiffi
2

p
π and

ffiffiffi
2

p
logð1þ

ffiffiffi
2

p
Þ:

For instance,

R 11

2

� �
¼ 164

45
� πffiffiffi

2
p �

ffiffiffi
2

p
log 1þ

ffiffiffi
2

p	 

:

If, however, we leave out the constant term ‘1’, we find

Rð2Þ ¼ πffiffiffi
2

p �
ffiffiffi
2

p
log 1þ

ffiffiffi
2

p	 

but have no such luck as we need that pesky constant term.

Actually, Borwein, Crandall, and Fee (2004) give a closed form for every

instance of R p
q

	 

with p, q positive integers. □

We turn to another example where the CAS provides a proof that we would not

have been likely to arrive at without the current tools.

Example 3.4.11 (π Is Not 22/7). Even Maple or Mathematica ‘knows’ this since

0 <

Z 1

0

ð1� xÞ4x4
1þ x2

dx ¼ 22

7
� π, ð3:17Þ

though it would be prudent to ask ‘why’ it can perform the integral and ‘whether’ to
trust it?

3.4 A Dozen or So Accessible Examples 57



1. Assuming we trust our software, the integrand is strictly positive on (0, 1), see

Fig. 3.21, and so the answer in (3.17) is an area which is necessarily strictly

positive, despite millennia of claims that π is 22/7.

2. Quite accidentally, 22/7 is one of the early continued fraction approximation to

π—and is why it is a pretty reasonable approximation to π. These commence:

3,
22

7
,
333

106
,
355

113
, . . .

but no one has found a way to replicate (3.17) for these other fractions. Some

coincidences are just that—happenstance. Similarly, there is no good reason

why eπ � π ¼ 19:99909997918947576 . . ., but it is most impressive on a low

precision calculator.

3. We turn to proving π is not 22
7
with computational help. In this case, taking the

indefinite integral provides immediate reassurance. We obtainZ t

0

x4 1� xð Þ4
1þ x2

dx ¼ 1

7
t7 � 2

3
t6 þ t5 � 4

3
t3 þ 4 t� 4 arctan tð Þ

as differentiation and simplification—by hand or by computer—easily confirms.

Now the Fundamental theorem of calculus proves (3.17). A traditional proof

would probably have developed the partial fraction expansion and thence

performed the integral.

4. One can take this idea a bit further. Note that

R 1
0
x4 1� xð Þ4dx ¼ 1

630
: ð3:18Þ

0.003

0.002

0.001

0
0 0.2 0.4 0.6

x
0.8 1

Fig. 3.21 The integrand

in (3.17)
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Hence

1

2

Z 1

0

x4 1� xð Þ4dx <
Z 1

0

ð1� xÞ4x4
1þ x2

dx <

Z 1

0

x4 1� xð Þ4dx:

5. Combine this with (3.17) and (3.18) to derive: 223=71 < 22=7� 1=630 < π
< 22=7� 1=1260 < 22=7 and so re-obtain Archimedes’ famous

3
10

71
< π < 3

10

70
: ð3:19Þ

Note that by not cancelling the zeros on the right it is much easier to see that

1=7 > 10=71. All rules must be broken occasionally.

Even without using (3.19), a glance at Fig. 3.21 shows how small the error is.

Indeed the maximum occurs at 1/2 with maximum value a tiny 1/320.

Never Trust References In 1971 Dalziel published this development in Eureka,
a Cambridge student magazine of the period. Integral (3.17) was earlier on the

1968 William Lowell Putnam examination, an early 1960s Sydney honours exam,

and traces back to a 1944 paper by the self-same Dalzeil who opted not to

reference it 27 years later.27 The message here is that what might appear to be a

primary source may well not be, and even the author may not necessarily tell you

the whole truth. □

The take away from Examples 3.4.2 and 3.4.11 is that whenever a CAS can do a

definite sum, product or integral, it is well worth seeing if it can perform the

corresponding indefinite one.

I have built a little function ‘pslq’ in Maple that when input data for PSLQ

predicts an answer to the precision requested but checks it to ten digits more

(or some other precision). This makes the code a real experimental tool as it predicts

and confirms. One of my favourite uses of it is to quickly check answers for a

lecture in cases where I know the general form of an answer but cannot remember

all the details.

Example 3.4.12 (Preparing for Class). In all serious computations of π from 1700

(by John Machin) until 1980 some version of a Machin formula (Borwein and

Bailey, 2008) was used. This is a formula which writes

arctanð1Þ ¼ a1 � arctan 1

p1

� �
þ a2 � arctan 1

p2

� �
þ � � � þ an � arctan 1

pn

� � ð3:20Þ

for rational numbers a1, a2, . . . , an and integers p1, p2, . . . , pn > 1. When combined

with the Taylor series for arctan, namely

27 I am certainly guilt of some such sins herein.
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arctanðxÞ ¼
X1
n¼0

ð�1Þn
2nþ 1

x2nþ1:

This series when combined with (3.20) allows one to compute π ¼ 4arctanð1Þ
efficiently, especially if the values of pn are not too small.

For instance, Machin found

π ¼ 16 arctan
1

5

� �
� 4 arctan

1

239

� �
ð3:21Þ

while Euler discovered

arctanð1Þ ¼ arctan
1

2

� �
þ arctan

1

5

� �
þ arctan

1

8

� �
: ð3:22Þ

The code in Fig. 3.22 used 20 digits to confirm (3.22) to 30 digits. The input is a

Maple or numeric real, followed by a list of basis elements, and the third variable is

the precision to use. The code in Fig. 3.23 used 20 digits to likewise confirm (3.21)

to 30 digits.

The code in Fig. 3.24 used 20 digits to find another relation and confirm it to

30 digits. This is what happens if you mistype 1/3 for 1/5.

Fig. 3.22 Finding equation (3.22)

Fig. 3.23 Finding equation (3.21)

Fig. 3.24 Finding an unexpected equation
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If, however, as in Fig. 3.25, you use 1/9 instead of 1/8 you get a ‘mess’.
This shows that when no relation exists the code will often find a very good

approximation but will use very large rationals in the process. So it diagnoses

failure both because it uses very large coefficients and because it is not true to the

requested 30 places. □

We next find the limit of an interesting mean iteration—an idea we take up again

in Example 3.8.1. Recall that a mean M is any function of positive numbers

a and b which always satisfies min
�
a, b
�
⩽Mða, bÞ⩽max

�
a, b
�
: A mean is strict

if M(a, b)¼ a or M(a, b)¼ b implies a¼ b as is true for the arithmetic mean

Aða, bÞ :¼ aþb
2
, the geometric mean Gða, bÞ :¼ ffiffiffiffiffi

ab
p

or the harmonic mean

Hða, bÞ :¼ 2ab
aþb. Every mean clearly is diagonal meaning that M(a, a)¼ a.

Theorem 3.4.13 (Invariance Principle, Borwein & Borwein, 1987). Suppose M,N
are means and at least one is strict. The mean iteration given by anþ1 ¼ Mðan, bnÞ
and bnþ1 ¼ Nðan, bnÞ is such that the limit Lða, bÞ ¼ limnan ¼ limnbn exists
and is necessarily a mean. Moreover, it is the unique continuous and diagonal
mapping satisfying for all n:

L an, bnð Þ ¼ L anþ1, bnþ1ð Þ: ð3:23Þ

Proof. We sketch the proof (details may again be found in Borwein & Borwein,

1987, Chap. 8). One first checks that the limit, being a pointwise limit of means is

itself a mean and so is continuous on the diagonal. The principle follows since,

L being diagonal satisfies

lim
n
an ¼ Lðlim

n
an, lim

n
bnÞ ¼ L anþ1, bnþ1ð Þ ¼ L an, bnð Þ ¼ � � � ¼ Lða, bÞ,

as asserted. □

A simple but satisfying application of Theorem 3.4.13 is to show that with

a0 :¼ a > 0, b0 :¼ b > 0, the mean iteration

anþ1 ¼ an þ bn
2

, bnþ1 ¼ 2anbn
an þ bn

converges quadratically to
ffiffiffiffiffi
ab

p
.

Fig. 3.25 When no relation exists
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Example 3.4.14 (Finding a Limit). Consider the iteration that takes positive num-

bers a0 :¼ a, b0 :¼ b and repeatedly computes the mixed arithmetic-geometric

means:

anþ1 ¼ an þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

, bnþ1 ¼ bn þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

: ð3:24Þ

In this case convergence is immediate since janþ1 � bnþ1j ¼ jan � bnj=2. The
followingMaple function will compute the Nth step of the iteration to the precision
of the environment.

L:¼proc(a0,b0,n) local a,b,c,k;a:¼evalf(a0);b:¼evalf(b0); for

k to n do

c:¼evalf((a+sqrt(a*b))/2);b:¼evalf((b+sqrt(a*b))/2);a:¼c;

od;a;end;

If we set the precision at 14 digits and try identify(L(2,1,50)); we get

1=log2 and identify(L(3,1,50)); gives 2=log3. After checking that x¼ 4 gives

3=log4 and 5 behaves similarly, it seems worthwhile considering logðxÞLðx, 1Þ. We

only want a few digits so we plot FðxÞ :¼ Lðx, 1, 5Þlog x on [1/3, 3]. The result in

Fig. 3.26 is a straight line and strongly supports the conjecture thatLðx, 1Þ ¼ ðx� 1Þ=
log x in which case Lða, bÞ ¼ bða=b� 1Þ=logða=bÞ ¼ ða� bÞ=ðloga� logbÞ: Even
dull plots can be interesting. ♢

We are ready to prove our conjecture.

Example 3.4.15 (Carlson’s Logarithmic Mean). Consider the iterations with a0 :¼
a > 0, b0 :¼ b > a and

3

2

1

0
1 2 3

x
4

Fig. 3.26 The function

x�LðxÞlog x on [1/3, 3]
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anþ1 ¼ an þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

, bnþ1 ¼ bn þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

,

for n⩾0. If asked for the limit, you might make little progress. But suppose we have

just completed Example 3.4.14. Then we can see that answer is the logarithmic
mean

Lða, bÞ :¼ a� b

log a� log b
,

for a 6¼ b and a (the limit as a ! b) when a¼ b> 0. We check that

Lðanþ1, bnþ1Þ ¼ an � bn

2 log anþ
ffiffiffiffiffiffiffi
bnan

p
bnþ

ffiffiffiffiffiffiffi
bnan

p
¼ Lðan, bnÞ,

since 2log
ffiffiffiffi
an

pffiffiffiffi
bn

p ¼ log an
bn
. The invariance principle of Theorem 3.4.13 then confirms

that Lða, bÞ is the limit. In particular, for a> 1,

L a

a� 1
,

1

a� 1

� �
¼ 1

log a
,

which quite neatly computes the logarithm (slowly) using only arithmetic opera-

tions and square roots. ♢

And finally, we look at two examples that emphasize that no initial pattern is a

proof. They involve the highly oscillatory sinc function

sincðxÞ :¼ sin x

x

which is plotted in Fig. 3.27.

1.0

0.8

0.6

0.4

0.2

0

-0.2

-20 -10 10 20
x

Fig. 3.27 The sinc function
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Example 3.4.16 (Inductive Reasoning Has Its Limits). Consider

Jn :¼
Z 1

�1
sinc

�
xÞ � sinc x

3

	 

� � �sinc x

2nþ 1

� �
dx:

Then—as Maple and Mathematica are able to confirm—we have the following

evaluations:

J0 ¼
Z 1

�1
sinc

�
xÞ dx ¼ π,

J1 ¼
Z 1

�1
sinc

�
xÞ � sinc x

3

	 

dx ¼ π,

⋮

J6 ¼
Z 1

�1
sinc

�
xÞ � sinc x

3

	 

� � �sinc x

13

	 

dx ¼ π:

As explained in detail in Borwein et al. (2005, Chap. 2), the seemingly obvious

pattern is then confounded by

J7 ¼
Z �1

1
sinc

�
xÞ � sinc x

3

	 

� � �sinc x

15

	 

dx

¼ 467807924713440738696537864469

467807924720320453655260875000
π < π,

where the fraction is approximately 0. 99999999998529. . . which, depending on the

precision of calculation used, numerically might not even be distinguished from 1.

These integrals now called the Borwein integrals have gathered a life of their

own as illustrated in Fig. 3.28 and http://oeis.org/A068214/internal. □

STUFF THAT IS

BEAUTIFUL

MATH
PROOFS USING

CASE WORK

spikedmath.com
© 2012

ARITHMETIC

THE BORWEIN
INTEGRAL

Fig. 3.28 What is beauty?
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In case this caution against inductively jumping to conclusions was not con-

vincing, consider the next example.

Example 3.4.17 (Inductive Reasoning Really Has Its Limits). The following “stu-

dent’s dream” identity of a sum equalling an integral again engages the sinc

function:

X1
n¼�1

sincðnÞ sincðn=3Þ sincðn=5Þ� � �sincðn=23Þ sincðn=29Þ

¼
Z 1

�1
sincðxÞ sincðx=3Þ sincðx=5Þ� � �sincðx=23Þ sincðx=29Þ dx,

ð3:25Þ

where the denominators range over the odd primes up to 29, was first discovered

empirically.

Provably, the following is true: The analogous “sum equals integral” identity

remains valid for ‘29’ replaced by any one of more-than-the first 10176 primes but

stops holding after some larger prime, and thereafter the “sum less the integral” is

positive but much less than one part in a googolplex. An even stronger estimate is

possible assuming the generalized Riemann hypothesis (GRH) (Baillie, Borwein, &
Borwein, 2008). What does it mean for two formulas to differ by a quantity that can

never be measured in our assumed-to-be finite universe? □

3.5 Simulation in Pure Mathematics

Pure mathematicians have not frequently thought of simulation as a relevant tool

though it has a long lineage. An early and dubious example of simulation of π is

called Buffon’s needle. The Comte de Buffon (1700–1778) was an early vegetarian

and his claimed result is much too good—it gets too accurate a result for the sample

size (Fig. 3.29).

Fig. 3.29 Simulating π
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3.5.1 Monte Carlo Simulation of π

Stanislaw Ulam (1900–1984) can be considered the inventor of modernMonte Carlo
samplingmethods—named for the casino parlours of that city. See also the first of our

top ten algorithms in Sect. 3.3.5. Such simulations were crucial during the Manhattan

project when early computers were inadequate to perform the needed computations,

even though they intrinsically are not efficient. One expects to need n2 measurements

to get an accuracy of O(1/n). An easy illustration is simulation of π.

Example 3.5.1 (Why a Serial God Should Not Play Dice). Consider inscribing a

circle in a square pan of side one, and sprinkling a fine particle (e.g., salt or grain)

and counting the proportion of particles that fall in the circle. It should approximate

π/4 as that is the area of the circle.

If one can pour all the particles at once and uniformly over the square, this is a

fast and parallel method of estimating π. But if one has to do this in serial it is

painfully slow. One can do this at the computer by selecting pairs of pseudo-random

numbers in the square 0< x, y< 1 and counting how often x2 þ y2⩽1. Four times

that proportion should converge to π. ♢

Despite the slowness of the method, in the early days of personal computers I

implemented this on each new desktop or laptop. It was a terrible way to compute π
but a great way to test the random number generator. I would start the program and

after a few thousand trials would have roughly 3. 14. When I looked again the next

morning I might have converged to 3. 57. . . or some such because the built-in

random number generator was far from random.

3.5.2 Finding a Region of Convergence

The cardioid at the left of Fig. 3.30 was produced by a scatter plot while trying to

determine for which complex numbers z ¼ b=a an improper continued fraction due

to Ramanujan, Rða, bÞ, converged. It is given for complex numbers a and b by

4

2

0 1-1-2-3-4-5

-2

-4

Fig. 3.30 (L) cardioid discovered by simulation. (M) and (R) a fractal hidden in R
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Rða, bÞ ¼ a

1þ b2

1þ 4a2

1þ 9b2

1þ⋱

, ð3:26Þ

see Borwein et al. (2005, Ex. 53, p. 69).

As often I first tried to compute R(1, 1) and had little luck28—it transpires that for

a ¼ b2ℝ convergence is O(1/n) but is geometric for a 6¼ b. So what looks like the

simplest case analytically is the hardest computationally. We did eventually deter-

mine from highly sophisticated intermediate steps that:

Theorem 3.5.2 (Four Formulae for Rða, aÞ). For any a > 0

Rða, aÞ ¼ 2a
X1
k¼1

ð�1Þkþ1

1þ ð2k � 1Þa

¼ 1

2
ψ

3

4
þ 1

4a

� �
� ψ

1

4
þ 1

4a

� �� �

¼ 2a

1þ a
2F1

1

2a
þ 1

2
, 1

1

2a
þ 3

2






� 1

0BB@
1CCA

¼ 2

Z 1

0

t1=a

1þ t2
dt:

Here 2F1 is the hypergeometric function defined in (3.35). If you do not know the

ψ orΨ (‘psi’) function, you can easily look it up once you can say ‘psi’. Notice that

Rða, aÞ ¼ 2

Z 1

0

t1=a

1þ t2
dt

now allows us to evaluate Rð1, 1Þ ¼ log2 as discussed in Example 3.4.10.

The development of this theory exploited modular and theta functions. We used

the square counting theta functions θ3ðqÞ :¼
X1

n¼�1qn
2

and θ4ðqÞ :¼ θ3ð�qÞ. The
pictures on the right of Fig. 3.30 shows the level sets of the modulus of the ratio

θ4ðqÞ=θ3ðqÞ for q :¼ reiθ in the first quadrant; black regions have modulus

exceeding one. From this simple recipe comes beautiful fractal complexity.

After making no progress analytically, Crandall and I decided to take a some-

what arbitrary criterion for convergence and colour yellow the points for which the

fraction seemed to converge. Treating the iteration implicit in (3.26) as a black box,

we sampled one million starting points and reasoned that a few thousand

28 I could see that Rð1, 1Þ ¼ 0:693 . . . as is suggestive of log2 ¼ 0:6931471806 . . ..
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mis-categorizations would not damage the experiment. Figure 3.30 is so precise

that we could identify the cardioid. It is the points where

ffiffiffiffiffiffiffiffi
jabj

p
⩽ jaþ bj

2

and since for positive a, b the fraction satisfies

R aþ b

2
,
ffiffiffiffiffi
ab

p� �
¼ Rða, bÞ þ Rðb, aÞ

2

this gave us enormous impetus to continue our eventually successful hunt for a

rigorous proof (Borwein & Crandall, 2004; Borwein, Borwein, Crandall, & Mayer,

2007).

Example 3.5.3 (Digital Assistance, arctanð1Þ and a Black-Box). Consider for

integer n> 0 the sum

σn :¼
Xn�1

k¼0

n

n2 þ k2
:

The definition of the Riemann sum means that

lim
n!1 σn ¼ lim

n!1

X n�1

k¼0

1

1þ �k=n�2 1

n

¼
Z 1

0

1

1þ t2
dt ¼ arctanð1Þ:

ð3:27Þ

Even without being able to do this Maple will quickly tell you that

σ1014 ¼ 0:78539816339746 . . .

Now if you ask for 100 billion terms of most slowly convergent series, a computer

will take a long time. So this is only possible because Maple knows

σN ¼ � i

2
Ψ N � iNð Þ þ i

2
Ψ N þ iNð Þ þ i

2
Ψ �iNð Þ � i

2
Ψ iNð Þ

using the imaginary i, and it has a fast algorithm for our new friend the psi function.

Now identify(0. 78539816339746) yields
π

4
.

We can also note that

τn :¼
Xn
k¼1

n

n2 þ k2
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is another Riemann sum. Indeed, σn � τn ¼ 1
2n > 0. Moreover, experimentally it

seems that τ) increases and σn decreases to π/4.
If we enter “monotonicity of Riemann sums” into Google, one of the first entries

is http://elib.mi.sanu.ac.rs/files/journals/tm/29/tm1523.pdf which is a 2012 article

(Szilárd, 2012) that purports to show the monotonicity of the two sums. The paper

goes on to prove that if f: [0, 1]!R is continuous, concave and decreasing then τn

:¼ 1

n

Xn

k¼1
f

�
k

n

�
increases and σn :¼ 1

n

Xn�1

k¼0
f

�
k

n

�
decreases to

R 1
0
f ðxÞ dx.

Moreover, if f is convex and decreasing, then instead σn increases and τn decreases.
All proofs are based on looking at the rectangles which comprise the difference

between τn+1 and τn as in Fig. 3.31 (or the corresponding sums for σn). This is

Xn
k¼1

ðnþ 1� kÞ
nþ 1

f
k

nþ 1

� �
þ k

nþ 1
f

k þ 1

nþ 1

� �
� f

k

n

� �� �
: ð3:28Þ

In the easiest case, each bracketed term

δnðkÞ :¼ ðnþ 1� kÞ
nþ 1

f
k

nþ 1

� �
þ k

nþ 1
f

k þ 1

nþ 1

� �
� f

k

n

� �
has the same sign for all n and 1⩽k⩽n as happens for concave or convex and

decreasing (for increasing consider � f ).

But in Szilárd (2012) the authormistakenly asserts this for1=ð1þ x2Þwhich has an
inflection point at 1=

ffiffiffi
3

p
. It appears, on checking in a CAS, that δnðkÞ þ δnðn� kÞ⩾0

which will repair the hole in the proof. Indeed, this suggests we consider gðxÞ :¼

0 1k–1 k+1 k+1k k
n n nn+1 n+1

Fig. 3.31 Difference in the lower Riemann sums for 1=ð1þ x2Þ
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f ðxÞ þ f ð1� xÞ
2

which for f ðxÞ :¼ 1=ð1þ x2Þ is concave on [0, 1] and has the same

value for (3.28). The details of a correct result based on symmetric Riemann sums are
to be found in Borwein, Borwein, and Sims (2015). What a fine example of digital

assistance in action! ♢

I conclude this section by saying that most of my more sophisticated research

computing is an admixture of tools like the ones above—used appropriately and in

context. In the remainder of this chapter we look at mathematics originating in my

recent research. Details are given in the references but a reader who knows some

secondary school algebra, geometry and calculus should be able to follow the broad

brushes of what follows. We now turn to three sets of more sophisticated case

studies. Remember in each case the pictures are central.

3.6 Case Studies I: Dynamic Geometry

Dynamic or interactive geometry packages take points and lines as primitive

objects—usually in two dimensions—and add various conic sections and the like.

Once positioned the entire construction is moveable. Thence, the qualitative

‘generic’ properties of a configuration often become clear very quickly. In Cinder-

ella one can work in various geometries: Euclidean, hyperbolic spherical and more.

One can also export a construction as a Java html object useable in a web page. For

example, http://www.carma.newcastle.edu.au/jon/lm.html will illustrate much of

the next section’s discussion and many additional features.

3.6.1 Case Study Ia: Iterative Reflections

Let S � Rm. The (nearest point or metric) projection onto S is the (set-valued)

mapping, PSx :¼ argmins2S k s� x k : The reflection with respect to S is then the

(set-valued) mapping, RS :¼ 2PS � I: The projections and reflection are illustrated

in Fig. 3.32 for a convex set (where they are unique) and a non-convex set where

they need not be.

x

p

x

p2

p1

r1

r2

r

Fig. 3.32 Projections and reflections for a convex set (L) and for a non-convex set (R)
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Iterative projection methods have a long and successful history going back to von

Neumann,Wiener andmany others. The basicmodel (Aragon andBorwein, 2013;Ara-

gon et al., 2014) finds a point in A \ B assuming information about the projections on

A and B individually is accessible. Precisely we repeatedly compute

xnþ1 :¼ SA,Bxn where SA,B :¼ PBPA:

The corresponding reflection methods are more recent and often appear more

potent.

Theorem 3.6.1 (Douglas–Rachford (1956–1979)). Suppose A,B � Rm are closed
and convex. For any x0 2 Rm define

xnþ1 :¼ TA,Bxn where TA,B :¼ I þ RBRA

2
:

If A \ B 6¼ ∅, then xn ! x such that PAx2A \ B. Else if A \ B ¼ ∅, then k xn k
! 1.

In Fig. 3.33 we illustrate one step of ‘reflect-reflect-average’ as Douglas–

Rachford’s method is also called below.29

The method also can be applied to a good model for phase reconstruction,
namely for B affine and A a boundary ‘sphere’. In this case we have some few

local convergence results and even fewer global convergence results; but much

positive empirical evidence—both numeric and geometric—using tools such as

Cinderella, Maple and SAGE.

Is Fig. 3.34 showing a “generic visual theorem” establishing global convergence

off the (provably chaotic) y-axis? Note the error—scattered red points—from using

‘only’ 14 digit computation.

B

A

RBRAxn

RAxn

xn+1 = TA,Bxn

xn

A := {x ∈ Rm×n :||x|| £ 1}, B := {x ∈ Rm×n :áa,x  = b}.á

Fig. 3.33 One step of the Douglas–Rachford method

29 See also http://www.carma.newcastle.edu.au/jon/reflection.html and http://carma.newcastle.

edu.au/jon/expansion.html.
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Figure 3.35 illustrates that what we can prove (L) is frequently less than what we
can see (R). There is nothing new here. The French academy stopped looking at

attempts to solve the three classical ruler-and-compass construction problems of

antiquity—trisection of an angle, doubling the cube, and squaring the circle—

centuries before they were proven impossible during the nineteenth century.30

It is quite striking that an algorithm based on three simple operations of high-

school geometry can so effective solve complicated real-world problems.

3.6.2 Case Study Ib: Protein Conformation

We need three concepts. First, a matrix completion problem starts with a fixed class

of matricesA (say doubly stochastic, symmetric or positive semidefinite) and seeks

a matrix A2A consistent with knowledge of some prescribed subset of its entries.

Of course this is not always possible.

Fig. 3.34 Trajectories of a Cinderella applet showing 20, 000 starting points coloured by distance
from y-axis after 0, 7, 14, 21 steps

30 Indeed, changing the tools slightly makes all three constructions possible.
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Second, a distance matrix, with respect to metric d on a set X, is a symmetric

square n � n matrix (aij) with real entries aij :¼ d2ðpi, pjÞ for points

p1, p2, . . . , pN2X. It is Euclidean if X ¼ ℝN and dðx, yÞ ¼k x� y k is the metric

induced by the Euclidean norm (Gower, 1985).31 Note that aii¼ 0 for any distance

matrix.

A :¼

0 ??
4

9

3

4

?? 0
10

9

3

4

??
10

9
0

19

36

?? ??
19

36
0

2666666666664

3777777777775
B :¼

0 2 4=9 3=4

2 0
10

9
3=4

4=9
10

9
0

19

36

3=4 3=4
19

36
0

26666666664

37777777775
: ð3:29Þ

Expression (3.29) shows a partial Euclidean matrix A (left) and a completion

B (right) based on the four points given as columns

p1 :¼
1

0

1

24 35, p2 :¼
0

1

1

24 35, p3 :¼
1=3
0

1

24 35, p4 :¼
1=2
1=2
1=2

24 35:
Finally, proteins are large biomolecules comprising multiple amino acid chains.

For instance, RuBisCO (responsible for photosynthesis) has 550 amino acids

(making it smallish). Proteins participate in virtually every cellular process and

their structure predicts how functions are performed. NMR spectroscopy (the

1.4 1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

1.2

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 3.35 Proven region of convergence in grey

31 This paper uses a different normalization: aij ¼ �d2ðpi, pjÞ=2.
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Nuclear Overhauser effect, a coupling which occurs through space, rather than

chemical bonds) can determine a subset of interatomic distances without damage to

the sample (under 6Å typically constituting less than 8% of the distances).

Reconstructing a protein given only these short distance couplings can profitably

be viewed as a non-convex low-rank Euclidean distance matrix completion prob-

lem with points in ℝ3. We use only interatomic distances below 6Å and use our

reflection method to predict the other distances.

We illustrate with a numerical table.

Here

Rel:errorðdBÞ :¼ 10log10
k PC2

PC1
XN � PC1

XNk2
k PC1

XNk2
� �

,

RMSE :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
k bpi � ptruei k22
ofatoms

s
, Max :¼ max

1�i�m
k bpi � ptruei k2:

The points bp1,bp2, . . . ,bpn denote the best fitting of p1, p2, . . . , pn when rotation,

translation and reflection are allowed.

The numeric estimates above do not well-segregate good and poor reconstruc-

tions, as we discover by asking what the reconstructions look like. Two instances

are shown in Figs. 3.36 and 3.37.

The picture of ‘failure’ suggests many strategies for greater success, and the

method can be accelerated by lots of standard techniques now that we know it is

promising.32 The consequent set of more honed and successful results is described

in Borwein and Tam (2012).

Moreover, there are many projection methods, so it is fair to ask why use
Douglas–Rachford? The sets of images below in Figs. 3.38 and 3.39 show the

striking difference in the methods of averaged alternating reflections and that of

alternating projections. Yet the method of alternating projections works very well

Six proteins from a protein database: average (maximum) errors from five replications

Protein # Atoms Rel. error (dB) RMSE Max error

1PTQ 40 �83.6 (�83.7) 0.0200 (0.0219) 0.0802 (0.0923)

1HOE 581 �72.7 (�69.3) 0.191 (0.257) 2.88 (5.49)

1LFB 641 �47.6 (�45.3) 3.24 (3.53) 21.7 (24.0)

1PHT 988 �60.5 (�58.1) 1.03 (1.18) 12.7 (13.8)

1POA 1067 �49.3 (�48.1) 34.1 (34.3) 81.9 (87.6)

1AX8 1074 �46.7 (�43.5) 9.69 (10.36) 58.6 (62.6)

32 Video of the first 3000 steps of the 1PTQ reconstruction is at http://carma.newcastle.edu.au/

DRmethods/1PTQ.html.
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Fig. 3.36 1PTQ (actual) and 5000 DR-steps. Error of � 83. 6 dB (perfect)

Fig. 3.37 1POA (actual) and 5000 DR-steps. Error of � 49. 3 dB (mainly good!)

Fig. 3.38 Douglas–Rachford projection method reconstruction

Fig. 3.39 Alternating projection method reconstruction
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for optical abberation correction (originally on the Hubble telescope and now on

amateur telescopes attached to laptops). And we still struggle to understand why

and when these methods work or fail on different non-convex problems.

3.7 Case Studies II: Numerical Analysis

Famously, in 1962 Richard Hamming wrote in Numerical Methods for Scientists
and Engineers:

The purpose of computing is insight, not numbers.

This is even more true 50 years on. We turn to three examples of problems

arising in numerical analysis.

3.7.1 Case Study IIa: Trefethen’s 100 Digit Challenge

In the January 2002 issue of SIAM News, Nick Trefethen presented ten diverse

problems used in teaching modern graduate numerical analysis students at Oxford

University, the answer to each being a certain real number. Readers were chal-

lenged to compute ten digits of each answer, with a $100 prize to the best entrant.

Trefethen wrote, “If anyone gets 50 digits in total, I will be impressed.” To his

surprise, a total of 94 teams, representing 25 different nations, submitted results.

Twenty received a full 100 points (10 correct digits for each problem). Bailey, Fee

and I quit contentedly at 85 digits!

The problems and solutions are dissected most entertainingly in Bornemann,

Laurie, Wagon, and Waldvogel (2004) and are online at http://mathworld.wolfram.

com/Hundred-DollarHundred-DigitChallengeProblems.html. Quite full details on

the contest and the now substantial related literature are beautifully recorded on

Bornemann’s website http://www-m3.ma.tum.de/m3old/bornemann/challengebook/.

We shall examine the two final problems.

Problem #9. The integral IðaÞ ¼ R 2
0
½2þ sin ð10αÞ�xα sin α

2�x

� �
dx depends on the param-

eter α. What is the value α2 [0, 5] at which I(α) achieves its maximum?

The function I(α) is expressible in terms of a Meijer- G function. See Fig. 3.40.
This is a special function, invented in 1936, with a solid history that we use below.

While knowledge of this function was not common among contestants,

Mathematica and Maple both will figure this out; help files or a web search then

quickly informs the scientist. This is another measure of the changing environment.

It is usually a good idea—and not at all immoral—to data-mine, and find out what

your favourite one of the 3Ms knows about your current object of interest. For

example, Fig. 3.41 shows the beginning of Maple’s help file.
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I (a) = 4  p Γ (a) GÖ
3,0
2,4

a 2
a+2 a+3

2
1
2

2

16 1 1 0
2

,

, , ,
[sin (10 a) + 2].

Fig. 3.40 I(α)?

Fig. 3.41 Maple help file for Meijer-G
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This is a function that only a software package could love, let alone define

correctly, and it hums beneath the surface of a great many special function

computations. Another excellent example of how packages are changing mathe-

matics is the Lambert W function, already met in Example 3.4.8.

Problem #10. A particle at the center of a 10 � 1 rectangle undergoes Brownian motion

(i.e., 2-D random walk with infinitesimal step lengths) till it hits the boundary. What is the

probability that it hits at one of the ends rather than at one of the sides?

Bornemann starts his remarkable solution by exploring Monte-Carlo methods,
which are shown to be impracticable. A tour through many areas of pure and

applied mathematics produces huge surprises. Using separation of variables on a

related PDE on a general 2a � 2b rectangle, we learn that

pða, bÞ ¼ 4

π

X1
n¼0

ð�1Þn
2nþ 1

sech
πð2nþ 1Þ

2

a

b

� �
: ð3:30Þ

Equation (3.30) is very efficient computationally since sech decays exponen-

tially. Thence, using only the first three terms we obtain

pð10, 1Þ ¼ 0:00000038375879792512261034071331862048391007930055940724 . . .

to fifty flamboyant places. Thus, (3.30) is also a great example of learning to read

formula. It may look foreboding but it is not and one can quickly apprehend its

power.

Equation (3.30) and other delights ultimately lead to elliptic integrals and

modular functions and results in a proof that the answer is p ¼ 2

π
arcsin k100ð Þ

where

k100 :¼ 3� 2
ffiffiffi
2

p	 

2þ

ffiffiffi
5

p	 

�3þ

ffiffiffiffiffi
10

p	 

�

ffiffiffi
2

p
þ

ffiffiffi
5

4
p	 
2� �2

,

is an example of a so-called singular value which were much beloved by

Ramanujan.

In general for an a � b rectangle pða, bÞ ¼ 2
π arcsin kða=bÞ2

	 

.

No one (except perhaps harmonic analysts) anticipated a closed form—let alone

one like this. This analysis can be extended to some other shapes, and the compu-

tation has been performed by Nathan Clisby for self-avoiding walks.
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3.7.2 Case Study IIb: Algorithms for Polylogarithms

The classical polylogarithm of order s is defined by

LisðzÞ ¼ zþ z2

2s
þ z3

3s
þ � � �þ

¼
X 1

k¼1

zk

ks
:

ð3:31Þ

In particular Li1ðxÞ ¼ �logð1� xÞ and Lisð1Þ ¼ ζðsÞ ¼ 1þ 1=2s þ 1=3s þ � � � is

the famous Riemann zeta function. While (3.31) is only guaranteed for j z j< 1 the

functions Lis and ζ(s) may be continued analytically with many wonderful proper-

ties (Olver et al., 2012; Borwein et al., 2005).

For small z and most s it is easy to sum Lis(z) to high precision—as required in

our experimental mathematical-physics studies—from (3.31) but as we approach

the radius of convergence of 1 this becomes impracticable. Remarkably we have the

following result which is best as the modulus increases.

Theorem 3.7.1 (Polylogarithms). For s ¼ n a positive integer,

LinðzÞ ¼
X10

m¼0

ζðn� mÞ log
mz

m!
þ logn�1z

ðn� 1Þ!
	
Hn�1 � logð�logzÞ



: ð3:32Þ

For any complex order s not a positive integer,

LisðzÞ ¼
X
m	0

ζðs� mÞ log
mz

m!
þ Γð1� sÞð�logzÞs�1: ð3:33Þ

Here Hn :¼ 1þ 1
2
þ 1

3
þ � � � þ 1

n are the harmonic numbers and, and
X0

avoids

the singularity at ζ(1). In (3.32), jlogzj < 2π precludes use when

j z j< e�2π
 0. 0018674. For small j z j , however, it suffices to use the definition.

We found that (3.31) was faster than (3.32) whenever j z j< 1/4, for precisions

from 100 to 4000 digits. We illustrate this for Li2 in Fig. 3.42. Timings show

microseconds required for 1000 digit accuracy as the modulus goes from

0 to 1 with blue showing superior performance of (3.32). The regions record trials

of random z, such that �0:6 < Re ðzÞ < 0:4, � 0:5 < Im ðzÞ < 0:5. We do not yet

have an explanation for the wonderful regularity of the ‘eggs’ (drawn in

Mathematica) of Fig. 3.42 but it seems a general phenomenon for all orders s and
variable precisions. We may never be able to prove this but we can use it in our

algorithm design.
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3.8 Case Studies III: Randomish Walks

I have no satisfaction in formulas unless I feel their arithmetical magnitude. Baron William

Thomson Kelvin.33

The first ‘random walk’ appears to have been drawn on the base-ten digits of π
by John Venn (1834–1923) in 1870. He ignored the digits ‘8’ and ‘9’ and assigned

the digits 0 through 7 to the vertices of a regular octagon.34 The modern study

started with questions by Pearson in (1905).

3.8.1 Case Study IIIa: Short Walks

The final set of studies expressedly involve random walks. Our group, motivated

initially by multi-dimensional quadrature techniques for higher precision than

Monte Carlo can provide, looked at the moments and densities of n-step walks of

unit size with uniform random angles (Borwein & Straub, 2013; Borwein

et al., 2012). Intensive numeric-symbolic and graphic computing led to some

striking new results for a century old problem. Here we mention only two. Let pn
be the radial density of the n-step walk (pnðxÞ � 2x

n e
�x2=n) so that

WnðsÞ :¼
Z n

0

tspnðtÞ dt

is the moment function and Wn :¼ Wnð1Þ is the expected distance travelled in n-
steps. The direct definition of Wn(s), for Re s>�1, is given by

Performance of equation (1) versus (3) for Li_2(z)
Time (µs)

100 000

Digits

Digits: 2000 a=0.706, b=1.208, e=0.66, f=–0.4775 Digits: 100 a=0.932, b=0.718, e=–0.64, f=–0.564

Major Axis (a)

Digits 100

Major Axis (a)

Minor Axis (b)

2000

Minor Axis (b)

Re[z] offset (f) Re[z] offset (f)

Eggcentricity (e) Eggcentricity (e)

80 000

60 000

40 000

20 000

0.2 0.4 0.6
|z|

Fig. 3.42 L: timing (3.32) (blue) and (3.31) (red) for Li2. M: blue region where (3.32) is faster for
100 digits. R: region for 2000 digits

33 In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave
Theory of Light.
34 See www.theguardian.com/science/alexs-adventures-in-numberland/gallery/2014/mar/14/pi-

day-pi-transformed-into-incredible-art-in-pictures/.
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WnðsÞ ¼
Z
½0,1�n





Xn

k¼1

e2πxki




sdðx1, . . . , xn�1, xnÞ

¼
Z
½0,1�n�1





1þXn�1

k¼1

e2πxki




sdðx1, . . . , xn�1Þ:

In particular W1 ¼ 1,W2 ¼ 4=π.
We show the radial densities for three and four step walks in Fig. 3.43 and draw

W4 in the complex plane in Fig. 3.45. These are hard to draw before good analytic

expressions such as (3.36) and (3.40).

3.8.1.1 The Three-Step Walk

After learning a good way to compute p3 numerically (using Bessel functions), we

soon discovered, from symbolic and numeric computation, that

σðxÞ :¼ 3� x

1þ x

is an involution on [0, 3] since

σðσðxÞÞ ¼
3� 3�x

xþ1

	 

1þ 3�x

xþ1

	 
 ¼ x,

and σ exchanges [0, 1] with [1, 3] and leaves 1 fixed. Moreover,

p3ðxÞ ¼
4x

ð3� xÞðxþ 1Þ p3ðσðxÞÞ: ð3:34Þ

Equation (3.34) implies that

3

4
p

0
3ð0Þ ¼ p3ð3Þ ¼

ffiffiffi
3

p

2π
, pð1Þ ¼ 1,

as we see in the picture.

Fig. 3.43 The densities and simulations for p3 (L) and for p4 (R)
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We then found and proved that in terms of the Gauss hypergeometric function

(Olver et al., 2012, 15.2.1) which is the analytic continuation of the sum (conver-

gent for j z j< 1)

2F1

a, b

c
jz� �

¼ 1þ ab

c
zþ aðaþ 1Þbðbþ 1Þ

cðcþ 1Þ2! z2 þ � � � ð3:35Þ

the density of a three-step walk is

p3ðαÞ ¼
2

ffiffiffi
3

p
α

π 3þ α2ð Þ 2F1

1

3
,
2

3
1




 α2 9� α2ð Þ2
3þ α2ð Þ3

0B@
1CA: ð3:36Þ

Example 3.8.1 (A Cubically Convergent Mean Iteration, Borwein & Bailey,
2008). I had earlier in 1991 used the same hypergeometric form appearing in

(3.36)

2F1

1
3
,
2
3

1





s3� �
¼
X
n⩾0

ð3nÞ!
ðn!Þ3

s

3

	 
3n
and knew it had remarkable properties. These translated into the result that, for

0< α< 3, we can compute

p3ðαÞ ¼
2
ffiffiffi
3

p

π

α

AG3 3þ α2, 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� α2Þ23

q� � ,

where AG3 is the cubically convergent mean iteration given by

AG3ða, bÞ :¼ lim
n
an ¼ lim

n
bn

with

anþ1 ¼ an þ 2bn
3

, bnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn � a

2
n þ anbn þ b2n

3

3

s
,

starting with a0 ¼ a, b0 ¼ b.
For instance, computing AG3(2, 1) to 80 places we see that the number of correct

digits triples with each step.

a1 ¼ 1:3333333333333333333333333333333333333333333333333333333333
333333333333333333333
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a2 ¼ 1:3286793795325315243698951083886145729965048937191842783184
241508276890234024826

a3 ¼ 1:3286793779464580086030451310205551942585258004224048242077
282610048171847485345

a4 ¼ 1:3286793779464580086030451309577743646584603595070873284535
457007522928987214688

a5¼ 1. 3286793779464580086030451309577743646584603595070873284535

457007522928987214689

♢

From (3.38) below, we eventually proved the stunning closed form:

W3 ¼ 16
ffiffiffi
43

p
π2

Γð1
3
Þ6 þ 3Γð1

3
Þ6

8
ffiffiffi
43

p
π4

,

in terms of π, 41/3 and Γð1=3Þ where the Gamma function is defined by

ΓðxÞ :¼
Z 1

0

tx�1e�t dt

for x> 0.

Example 3.8.2 (The Bohr–Mollerup Theorem). More usefully, by the Bohr–
Mollerup theorem, Γ is the unique function, G, mapping positive numbers to

positive numbers that satisfies (1) G(1)¼ 1, (2) Gðxþ 1Þ ¼ xGðxÞ and (3) is

logarithmically convex: logG is convex on ð0,1Þ. In particular, Γ agrees with the

factorial at integers—in that Γðnþ 1Þ ¼ n!. This result allows one to automate

proofs of many interesting facts such as the fact that the beta function is a ratio of

Gamma functions:

Bða, bÞ :¼
Z 1

0

ta�1ð1� tÞb�1
dt ¼ ΓðaÞΓðbÞ

Γðaþ bÞ : ð3:37Þ

This is usually proved by change of variable in a two-dimensional integral.

Instead, we define GðaÞ :¼ Γðaþ bÞBða, bÞ=ΓðbÞ and check that G satisfies

the three conditions of the Bohr–Mollerup theorem, see Borwein and Bailey (2008,

§5.4). ♢

3.8.1.2 The Four-Step Walk

Crucially, for Re s>�2 and s not an odd integer the corresponding moment
functions (Borwein & Straub, 2013), W3,W4 have Meijer-G representations
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W3ðsÞ ¼
Γð1þ s

2
Þffiffiffi

π
p

Γð� s
2
Þ G21

33

1, 1, 1
1

2
, � s

2
, � s

2




 1
4

0B@
1CA, ð3:38Þ

W4ðsÞ ¼ 2s

π

Γð1þ s
2
Þ

Γð� s
2
Þ G22

44

1, 1�s
2
, 1, 1

1

2
� s

2
, � s

2
, � s

2




10B@
1CA: ð3:39Þ

Surprisingly, from (3.39) we ultimately got a modular closed form:

p4ðαÞ ¼
2

π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� α2

p

α
Re3F2

1

2
,
1

2
,
1

2
5

6
,
7

6




 16� α2ð Þ3
108 α4

0B@
1CA: ð3:40Þ

Let me emphasize that we do not need to know about the Meijer-G function to

exploit (3.38) and (3.39). We need only read the help file we sampled in Fig. 3.41.

We illustrate this in Figs. 3.44 and 3.45. We leave it to the reader to consider which

representation carries more information.

As an illustration of the growing complexity of short walks we mention the

question of which paths will return to the starting point in exactly n steps. For n¼ 2

or 3 this is easy. For two steps one must retrace the first step and for 3 steps the path

must be an equilateral triangle. What about 4 and 5 steps?

Fig. 3.44 W3 plotted by

Mathematica from the

Meijer-G representation

(3.38). Each point is

coloured by argument.

Black is a zero and white is a
pole (infinity). These can

only occur where all four

quadrants meet
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3.8.2 Case Study IIIb: Number Walks

Our final studies concern representing base-b representations of real numbers as

planar walks. For simplicity we consider only binary or hex numbers and use two

bits for each direction: 0¼ right, 1¼ up, 2¼ left, and 3¼ down (Aragon

et al., 2013). From this idea we eventually produced the 100-billion-step walk on

the hexadecimal-digits of π shown in Fig. 3.46. The colours move through the

spectrum (ROYGBIV and back to red.) We believe this to be the largest mathe-

matical illustration ever made. The picture in Fig. 3.46 can be explored on line at

http://gigapan.org/gigapans/106803.

3

2

1

0

–1

–2

–3
–6 –4 –2 0 2

Fig. 3.45 W4 plotted by

Mathematica from the

Meijer-G representation

(3.39). Each quadrant is

coloured differently. Black
is a zero and white is a pole
(infinity). These can only

occur where all four

quadrants meet

Fig. 3.46 A 108 Gigabit walk on Pi
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This idea also allows us to compare the statistics of walks on any real number to

those for pseudo-random walks35 of the same length. For now in Fig. 3.47 we

illustrate only the similarity between the number of points visited by 10, 000

million-step pseudo-random walks and for 20 billion bits of π chopped up into

10, 000 million-step walks.

All the statistics we have considered in Aragon et al. (2013) and elsewhere have

π behaving very randomly even though it is not, and even though it is not yet proven

normal in any base.

3.8.3 Case Study IIIc: Normality of Stoneham Numbers

A real constant α is b-normal if, given b	 2, everym-long string of digits appears in
the base-b expansion of α with precisely the expected limiting frequency 1/bm.
Borel showed that almost all irrational real numbers are b-normal in any base but no

really explicit numbers (e.g., e, π,
ffiffiffi
2

p
, ζð3Þ ) have been proven normal. The first

number proven 10-normal was the Champernowne number

C10 :¼ 0:1234567891011121314 . . .

which comes from concatenating the natural numbers. This number is clearly far

from random but as noted it is normal. What do the pictures tell us?

To complete our final study we shall detail the visual discovery of the next

theorem. It concerns the Stoneham numbers, first studied by Stoneham 40 years ago,

which are defined by αb,c :¼
X1

n¼1

1
cnbc

n (Fig. 3.48).

35 Python uses the Mersenne Twister as generator with a period of 219937 � 1 
 106002.
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Fig. 3.47 Number of points visited by 10, 000 million-step base-4 random walks (L) and by

equally many walks on π (R)
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Theorem 3.8.3 (Normality of Stoneham Constants). For coprime pairs b,c 	
2, the constant αb,c is b-normal, while if c < bc�1, αb,c is bc-nonnormal.

Since 3 < 23�1 ¼ 4, α2,3 is 2-normal but 6-nonnormal. This yields the first

concrete transcendental to be shown normal in one base yet abnormal in another.

Our final Fig. 3.49 illustrates this result.

There are clearly too many ’0’s base six (equivalently, too many steps to the

right). This is what we ultimately proved.

What is less obvious is that while the shape base-two of α2, 3 looks like that of a
random number, some colours are missing. Indeed, as was discovered from anima-

tions that can be viewed at http://walks.carma.newcastle.edu.au/, the walk repeats

itself and overwrites large portions!

Fig. 3.48 A pseudo-random walk (L) and a walk on C10 (R)

Fig. 3.49 α2, 3 is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?
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3.9 Conclusion

In P�olya (1981) George P�olya wrote much that rings very true in the presence of our

current tools:

• This “quasi-experimental” approach to proof can help to de-emphasis a focus on rigor

and formality for its own sake, and to instead support the view expressed by Hadamard

when he stated “The object of mathematical rigor is to sanction and legitimize the

conquests of intuition, and there was never any other object for it.”36

• Intuition comes to us much earlier and with much less outside influence than formal

arguments which we cannot really understand unless we have reached a relatively high

level of logical experience and sophistication. Therefore, I think that in teaching high

school age youngsters we should emphasize intuitive insight more than, and long

before, deductive reasoning (P�olya, 1981, p. 2–128).
• In the first place, the beginner37 must be convinced that proofs deserve to be studied,

that they have a purpose, that they are interesting (P�olya, 1981, p. 2–128).
• The purpose of a legal proof is to remove a doubt, but this is also the most obvious and

natural purpose of a mathematical proof. We are in doubt about a clearly stated

mathematical assertion, we do not know whether it is true or false. Then we have a

problem: to remove the doubt, we should either prove that assertion or disprove it

(P�olya, 1981, p. 2–120).

We will do well to heed these observations and to think about the many ways our

experimental mathodology meshes with them.
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