
Chapter 19

Connectivity in Mathematics Education:
Drawing Some Lessons from the Current
Experiences and Questioning the Future
of the Concept

Luc Trouche

19.1 Introduction

‘Connecting’ is certainly the best representative verb of the Internet era. It gave

matter to a lot of constructs, some grounded in research and some purely specula-

tive, ‘digital natives’ being an example of the later (Helsper & Eynon, 2010). The

noun coming from this verb, connectivity, is now used in a number of contexts. The

wiki based open content dictionary Wiktionary proposed three meanings: the state

of being connected, the ability to make a connection between two or more points in

a network in a graph, and a measure of concatenated adjacency (the number of ways

that points are connected to each other).

In this Chapter, I focus down on mathematics education issues grounded, as far

as possible (because we have not always a sufficient hindsight) in research. In the

mathematics education community, the 17th ICMI study (already evoked in

Chap. 12) evidenced a strong emergence of the notion of connectivity, constituting

the focus of a panel of the conference (Hoyles et al., 2010). The subject Index of this

ICMI study proceedings (Hoyles & Lagrange, 2010, p. 486) reveals a number of

occurrences, with different meanings: the first one is a technological one (the

potential, for a given artefact, or an environment, for connecting people to people

and/or to Internet); the second one is a social one (the state for people, of being

connected vs. the ability to make connections) to other people and/or to Internet; the

third one is a cognitive one (the state vs. the ability, for an individual, of connecting
different mathematical representations and meanings); the fourth one is a theoret-
ical one (the state, for theoretical frameworks, of being connected vs. the ability to

make connections to other theoretical frameworks).

Such a dispersion of meanings is a feature of an emerging concept, and of its

potential. As stated by Hoyles et al. (2010), p. 440: ‘[. . .] if and how connectivity, in

whatever form, transforms mathematical practices in school is a matter of future

investigation’. I will conceive this chapter with respect to the emerging situation of

this concept, looking at connectivity in the thread of my own experience as a
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teacher and researcher in mathematics education, over the last (at least) 30 years. It

seems to me that.

The first section looks at connectivity through the evolution of students’ con-
nections to other students, and to mathematics, over their classroom activities. The

second section considers connectivity through the evolution of teachers’ connec-
tions to other teachers, and to mathematics resources, over their documentation
work (Chap. 15). The third section, back to the ICMI study connectivity panel,

questions the notion of cognitive connectivity. The conclusion discusses the

dynamics of the concept of connectivity itself.

19.2 Connecting Students and Mathematics Through
Digital Artefacts

I present in this section three environments I successively work with, bringing out

the strong evolution of students activity according to the available connecting tools,
keeping in mind that an environment for mathematics learning is not only consti-

tuted by sole tools, but also by mathematical problems and teacher’ instrumental
orchestrations (Sect. 15.2.5).

19.2.1 The Sherpa Student Configuration

I could say that the environment based on the sherpa-student configuration

(Fig. 19.1) has grounded my reflection about the teacher’s role in computerised

environments. As a teacher (around 1990), confronted to the usages by students of

more and more powerful calculators (see Chap. 13), I wanted to make communicate

the small screens, i.e. to go against a spontaneous tendency of each student to keep

for him what he was doing, and thinking, with his own calculator. The opportunity

for doing that was offered by the calculator manufacturers, providing teachers with

a ‘view-screen’, that is: a tablet with a transparent screen, and a short cable
connecting it to a calculator (see Fig. 19.1). This device, posed on an overhead

projector, allows the calculator screen to be displayed on the classroom whiteboard,

or a screen, and then to be visible by the whole classroom. I underline the

expression ‘short cable’, because it was quite obvious, for the manufacturer, that

the calculator at stake was the teacher’s one: this device was intended to allow the

teacher to project his own calculator on the screen (it was then in this way that

the advertising pictures demonstrates its use). My idea was, instead of connecting to

the view-screen my calculator, to connect one of my students’ calculators.1 I name

1 To be noticed, shortly after its first appearance, the cable at stake became longer, allowing a

wider use of the view-screen: the material evolves for fitting the usages. . .
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him/her the sherpa-student, referring to the person who guides and who carries the

load during expeditions in the Himalaya Mountains. My intention was then to

underline the responsibility of this student helping the class to find its way towards

the solution of a given problem, and the difficulty of the task.
I presented (Trouche, 2004, p. 299) various exploitation modes of such a

configuration, and their possible consequences, in terms of instrumentation and

instrumentalisation processes (Sect. 10.4):

– Sometimes calculators are turned off (and so is the overhead projector): it is then a

matter of paper/pencil environment work.

– Sometimes both calculators and overhead projector are turned on and work is strictly

guided by the sherpa-student under the supervision of the teacher (students are supposed

to have exactly the same thing on their calculator screens as is on the projector screen).

Instrumentation and instrumentalisation processes are then strongly constrained.

– Sometimes calculators are on as well as the overhead projector and work is free for a

given time. Instrumentation and instrumentalisation processes are then relatively

constrained (by the type of activities and by referring to the sherpa student’s calculator
which remains visible on the big screen).

– Sometimes calculators are on and the projector is off. Instrumentation and instrumenta-

lisation processes are then only weakly constrained.

These various modes seems to illustrate what Healy (2002) termed filling out and filling

in, in the course of classroom social interaction:—when the sherpa-student’s initiative is

free, it is possible for mathematically significant issues to arise out of the student’s own
constructive efforts (this is a filling out approach);—when the sherpa-student is guided by

the teacher, it is possible for mathematically significant issues to become appropriated

during the student’s own constructive efforts (filling in approach).

Finally, the usage of such a configuration (Trouche, 2004) evidences that the

sole connection of one student’s calculator to the common classroom screen,

Fig. 19.1 The didactical configuration of the Sherpa-student (Trouche, 2004, p. 298)
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monitored by the teacher, contributes to foster the interactions between the stu-

dents’ instruments and their mathematical thinking. It was, for me, a first occasion

of analysing the strong potential of connectivity, understood actually in the three

first meanings of this word (see Introduction below): opening opportunities of

connections between one student and the whole class through a technological

device; opening opportunities of connections between students through the com-

mon classroom screen; and opening opportunities of connections between different

mathematical representations and meanings, each student having to combine what

appears on her calculators screen, and what appears on the classroom screen.

19.2.2 The Calculators Network Configuration

The second occasion for meeting connectivity happens 10 years after (around

2000), when, as a researcher, I analysed the potential of a new device,

TI-Navigator, providing wireless communications between students’ graphic cal-

culators and the teacher’s personal computer (Fig. 19.2). This device consists in an

amplification of the view-screen potential, as it allows the teacher to see, on her

screen, all the students’ screens; she can then decide to connect a given calculator

(or some of them), throughout her own computer, to the classroom screen.2 It leads

to a new organisation of the classroom workspace. A manufacturer advertising

(Fig. 19.2, left) proposed a configuration attached to a technical constraint: the

wireless connection works between hubs, each of them linking four calculators, and

the teacher’s computer. Then, a natural decision is to split the class into groups of

four students. The team of teachers I observed (Hoyles et al., 2010, p. 449) decided

Fig. 19.2 New supports for connecting students’ calculators and classroom screen (Hoyles et al.,

2010, p. 449)

2 Actually, in the context of the sherpa-student configuration, I used also to change, during a given

mathematical activity, the student playing this role, but, for doing this, I had to plug the cable in

another calculator, or to exchange the places occupied by two students. Not so easy to do on the fly.
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to slightly adapt this organisation (Fig. 19.2, right), aiming to structure the discus-

sion not only between each students group and the teacher, but between the

different groups through the common screen; it appears that the mathematical

activity was very sensitive to such an adaptation, that fostered the mathematical

discussions in the whole classroom. Actually, the drawing (Fig. 19.1, right) looks

like the spatial organisation of an orchestra, evidencing the role of the teacher

orchestrating the mathematical situation at stake, taking care of all the students’
instruments.

As for the view-screen (Sect. 19.2.1), the technical device does not give matter

for a sole teacher’s mode of use (the spatial organisation of students, above,

constitutes already a strong didactical choice). Actually, Ti-Navigator allows the

teacher to use two main configurations: the common coordinate system configura-

tion: displaying all of the pupils’ data, for example, points or curves, in a single

coordinate system (Fig. 19.3, left); the screen mosaic configuration: displaying, on
the class screen, all (or some) of the pupils’ calculator screens in quasi-real time

(Fig. 19.3, right).3

These two configurations have the common property of connecting all (or some

of) the students’ calculators to a common workspace, situated on the class screen.

The orchestration of such a device remains then in the teacher’s hands, having to

choose the relevant configuration corresponding to her didactical choice, and to

select students’ calculators to be ‘published’.
The mathematical problem giving matter to these screens was (Hoyles et al.,

2010, pp. 447–448): an isosceles triangle ABC has two sides AB and AC measuring

4 cm. What is its area? The students tried various values for the third slide BC,

drawing the corresponding triangles, measuring their height, and computing their

area. Then they send, via their calculators and the hub, the couples (length of BC;

area of ABC) to the common screen, obtaining, as a collective result, a cloud of

points (Fig. 19.3, left). Then they tried to model this phenomenon with a function,

Fig. 19.3 Two main configurations for the TI-Navigator configuration, examples (Hoyles et al.,

2010, pp. 447–448)

3 This application comes actually from the development, by Uri Wilenski, of the HubNet module,

see Sect. 19.4.1.
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obtaining different curves that the teacher decided to display on the common screen

(Fig. 19.3, right).

In Hoyles et al. (2010), p. 447, I draw some lessons of a long term use of

TI-Navigator by experienced teachers:

The work with the TI Navigator was found to foster an emergent real community of practice
(Wenger, 1998) in the classroom in which we could distinguish three fundamental aspects,

participation, reification, and the existence of shared resources, whose major elements are

summarised below:

– Participation with the engagement of students in the mathematical activity and debate.

– Reification with the collaborative creation of mathematical objects (a good example

being the collective creation of the graph of a function that gradually becomes an easily

identifiable object) (Fig. 19.3, right).

– Shared resources most notably the public shared board, which is a place where every

student can show her/his mathematical creation. Each student is confronted to her/his

production and those of other pupils.

– In traditional classrooms, speech or writing (when asked or allowed by the teacher)

directly on the board are the ways students can express themselves and share with

others. With TI Navigator, the situation is very different, for two main reasons:

– A new interactivity was fostered between the artefact and the student, and between

students themselves: students conveys their messages through the artefact; the artefact

acts on the students enabling them to extract themselves from their productions thus

freeing themselves to become more easily involved in peer exchanges. Thus the

common space became a space of debate and exchange that aimed to elaborate a social

‘mathematical truth’.
– Each student becomes detached from his/her production as a distance is created between

student and the expression of her/his creation; this distance seemed to improve the

reflection on practice. The student became involved in the class activity in a different

way as the tool maintained this distance between a student and the results s/he proposed

to the class and to the teacher.

As in the case of the sherpa-student configuration, we can notice here the three

aspects of connectivity (technological, social and cognitive), with, clearly, didac-

tical difficulties added for orchestrating mathematical activities in such environ-

ments: the teacher has to simultaneously manage all the students calculator
screens, and to take relevant decisions on the fly. She has then to have a deep

understanding of the didactical variables of the situation, in order to play on them,

according to the dynamics of the classroom activity. Hoyles, Noss, and Kent (2004)

give a good description of such a teacher’s expertise, based on the collaborative

work of a teachers’ team. I will go back, regarding connectivity, to teachers work in

Sect. 19.3.

19.2.3 Internet as a Connectivity Multiplier

The third occasion for meeting ‘connectivity for students’ happens 10 years after

(around 2010) when I was in charge of a e-culture teaching unit for students (third
university year) aiming to become mathematic teachers. The name itself of this unit
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(e-culture) indicates the major change happening at this time: the integration of

Internet for teaching. During the whole sessions, students were connected to

Internet and were free to use online software (mainly Geogebra). I integrated also

an application4 providing online collaborative sheets named Pad (Fig. 19.4),

allowing students to discuss together (each contributor being identified by a colour,

and students using also a chat for commenting their current work). It is up to the

teacher: to organise such a sheet for the whole class, or for pairs of students; to be

part, or not, of the discussion. Obviously, in such a context, all the tools are not

under the teacher’s control, as the students can use their own tools for communi-

cating between them. . . or with somebody else outside!

In this period, I welcomed a Mexican PhD student, aiming to analyse students’
work and associated orchestrations in the Internet era (Betancourt, 2014). It was for

me a good opportunity to look at connectivity through the eyes of an advanced

student.

Betancourt’s thesis is related to ‘learning of linear algebra supported by digital

resources’. In his work (Betancourt, 2014), he related a practical work he proposed,
in the context of this e-culture teaching unit, to the students working by pairs:

students working together, intentionally, did not seat next to each other, then they

had to use the Internet facilities to communicate. The mathematical problem at

Fig. 19.4 An interface allowing students to share their ideas (screen copy of a designer’s
advertising)

4 Framapad: https://framapad.org
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stake consists in modelling the process of a video downloading through Internet.

The two questions asked to the students, using an interface for analysing the

downloading process (Fig. 19.5), were: is the downloading velocity constant?

How, according to you, does the application compute, at any moment, the

remaining time for achieving the downloading (for example, Fig. 19.5, the

remaining time to download 16.2 Mo is 1.25 s).

The activity proposed to students (Betancourt 2014, p. 143) was divided in five

phases (Fig. 19.6): the teacher introducing the problem and the tools to be used;

each student downloading the video, getting data and integrating them in Geogebra;

discussing within the pair and trying to model the process; downloading again the

video for checking the model; final discussion and conclusion.

I cannot, in the frame of this chapter, analyse the content of the students’
activity, but I would like to underline some elements of structure over these five

phases, following the activity of a given student (Fig. 19.6):

– Phase 1: he lessens to the teacher, then interacted, using the pad, with his pair

colleague, expressing some doubts about the constant velocity of the

downloading process. At the end of this phase, he interacted with the teacher

(Betancourt, 2014, p. 121):

Fig. 19.5 Interface for following the video downloading (Betancourt, 2014, p. 82)

1 2

Successive phases of problem solving

3 4 5

Interacting with the teacher

Downloading the video

Using Geogebra

Communicating with a pad

Writing on his sheet

0mn 25mn 50mn

Time

75mn 100mn 120mn

Fig. 19.6 Structure of a student’s activity and tools used over 2 h (adapted from Betancourt, 2014,

p. 105)
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The student S: In my opinion, the velocity of the downloading process is not

constant.

The teacher T: Perhaps, but how could you justify this opinion for your colleagues?

S: The downloading velocity, at a given moment, depends on the number of persons

downloading the video at the same moment.

T: Perhaps, but how can you evidence this using the data you will pick up from the

analysis of the real downloading of the video?

– Phase 2 is dedicated to the analysis of the downloading process and the use of

Geogebra for displaying the data.

– During the following phases, the pad and Geogebra seem to be the essential

supports of the student’s reflection, combining individual mathematics manipu-

lations using the dynamic geometry software, and collective mathematical

discussion using the online writing tool.

The use of the Internet, compared to the calculators network configuration,

clearly changes the connectivity regulation. The students’ interactions are not

monitored via the teacher’s computer and displayed on the common workspace,

but the students’ pairs freely organised their work: on their own screen, it is up to

them to manage the part of their working space dedicated to Geogebra, and the part
dedicated to the Pad. With respect to the phases of the mathematics activity

orchestrated by the teacher, the two students can negotiate the organisation of

their working time, and eventually split their work in two parts, one for each

of them.

The question at stake—studying the behaviour of Internet through the velocity

of a downloading process—illustrates in some way the metamorphosis of the

mathematics learning landscape due to the emergence of Internet: Internet

appears as a multiplier of the teacher’s orchestration choices (he can organise

students in groups of two, three, or more; with students face-to-face, or at a

distance; he can use a common class working space, for showing to the whole

class the work of a group, or several groups of students. . . Internet appears as

rebalancing teacher and students’ responsibilities towards the progress of knowl-
edge in the classroom. Last but not least, Internet appears as a connectivity
multiplier, opening opportunities for connecting students to students (in this

example via a Pad) and for connecting students to Internet resources (in this

example Geogebra).

Actually, as underlined Betancourt (2010, p. 127), Geogebra was not the sole

resource to be exploited. Students tried also, using their browser, to get direct

answers to the problem at stake, with, as I noticed myself, keywords extracted

from the teacher’s question, as ‘modelling downloading process velocity’, aiming

to find a direct answer. . . But, doing that, in this case, they did not succeed to find

relevant resources.

The Betancourt’s experience, with the associated artefacts (essentially a Pad and
a dynamic geometry software), could induce the idea of a double connectivity level:

for manipulating mathematics objects, students work individually with a given

software; for discussing their methods and results, students work collectively.
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What happens effectively in this particular experience is due to the artefacts

available for the students. It could work differently with other artefacts. It was

the case, in the frame of the same e-culture teaching unit, sometimes after this first

experiment, when an invited researcher, Franck Bellemain (2014), proposed a new

activity based on a new collaborative dynamic geometry software, Tabulae.5 This

environment (Fig. 19.7) proposes a window combining a space (left) for the

individual student’s work, and a space (right) for designing collaboratively a

mathematical figure and exchanging comments. In such an environment, both

mathematical work and associated discussion can be done collaboratively.

In this section, from the sherpa-student configuration to the calculator network

configuration, and then to the Internet universe, I evidenced, over 20 years, the

emergence of connectivity at technological, social and cognitive levels, as a major

potential factor for renewing students’ mathematical activity. This connectivity

implies an added complexity for the teacher, that has to conceive and manage

orchestrations making profit of these new opportunities. In which way connectivity

could also benefit to teachers work? This is the purpose of the following section.

Fig. 19.7 An interface combining individual and collective geometrical work (Bellemain, 2014,

p. 31)

5 Developed by Luiz Carlos Guimar~aes at the LIMC laboratory (Laborat�orio de Pesquisa e

Desenvolvimento em Ensino de Matemática e Ciências, http://www.limc.ufrj.br/site/limc_

olaboratorio.html) in the Federal University of Rio de Janeiro.
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19.3 Connecting Teachers and Mathematics Teaching
Knowledge Through Internet Resources

In this section, I follow again the thread of my own experience for analysing the

potential and real effect of connectivity for ‘teachers working with teachers’. For
this purpose, I choose three entries: the experience, from 2000 to 2006, of a teacher

training organisation, the SFoDEM; the experience, from 2001, of a teacher online

organisation; and the recent experience (2014) of a MOOC aiming to develop the

usage of tools in mathematics teaching.

19.3.1 The SFoDEM, Monitoring Teachers
for Collaboratively Design Teaching Resources

The SFoDEM6 was developed in the region of Montpellier, France, from 2000 to

2006, by the local Institute of Research on Mathematics Teaching (IREM, http://

www.irem.univ-montp2.fr). The considerations for designing such on organisation

were that, in spite of many institutional actions and the enthusiasm of pioneering

teachers, in spite of the rapid evolution of technological tools and equipment,

integration of ICT into mathematics teaching was slowly increasing in France.

Guin and Trouche (2005), pp. 1023–1024 explained the SFoDEM objective, and

described its organisation:

[. . .] the main objective of SFoDEMwas to provide a continuous support for teachers in the

conception, appropriation and experimentation of pedagogical resources to get over the

crucial transition to the pedagogical act. This requires a collaboration to be built between

teachers with different teaching experiences aiming to support their day-to-day practice.

Various themes were chosen (transition from numerical to algebraic setting and ICT;

graphic and symbolic calculators; experiments of teaching sequences towards dynamic

geometric diagrams; simulation of random experiences; and cooperative problem solving

via Internet) to find invariants in distance training viable beyond the organization and these

studied themes [. . .]
SFoDEM is piloted by a leadership team of three researchers and its platform is

managed by an administrator. About 15 trainers are involved in the training network and

every year since September 2000, about 100 teachers volunteer to participate in this project.

The training committee (composed of the leadership team, the administrator and the

network of trainers) manages the coordination of the five themes: first experiments on

distance teaching have pointed out the necessity of compensating distance with an

established structured and controlled organization and showed the crucial role of planning

and regulation [. . .]. The organization alternates face-to-face meetings and distance periods

(the trainers of each theme have a face-to-face meeting each week, the training committee

each month, and each theme—trainers and trainees—meets four times a year).

6 SFoDEM stands for Suivi de Formation �a Distance des Enseignants de Mathématiques, what
could be translated by «Distant follow-up of Mathematics Teachers Training »
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The five themes reveal the feature of this period, a transition one between the

calculator era and the Internet era. In some sense, I could say that the SFoDEM

rested on social connectivity, teaching and training connectivity, and mathematics
connectivity to develop the integration of ICT in mathematics teaching. By social

connectivity I mean the efforts made for connecting: teachers with trainers on a

continuous way (both face-to-face and at distance); the leadership team; and the

training committee. By teaching and training connectivity, I mean the efforts made

for connecting the day-to-day teaching practice and the training one, the training

consisting in designing pedagogical resources to be experimented in each trainees’
classroom. By mathematics connectivity, I mean the efforts made for connecting

different mathematical fields (calculus, algebra, geometry and statistics) and dif-

ferent artefacts (calculators, dynamic geometry software, Internet) to find invariants

of a training organisation aiming to foster teachers’ use of ICT.
The SFoDEM objective was quite ambitious, justifying its long time duration. Its

pilots draw some main lessons in a CDRom (Guin, Joab, & Trouche, 2006),

organised in two parts: a design path, and a library of pedagogical resources:

– The design path organised in five steps untitled ‘Exploring’, ‘Defining’, ‘Think-
ing’, ‘Exchanging’, ‘Revising’, evidenced the central place of Internet for

supporting the collaborative design of resources. For example, the first step,

‘Exploring’, consists, before beginning a new design, in (Fig. 19.2): visiting the

main existing repositories, particularly the IREM one and the Mathenpoche one
(see Sect. 19.3.2); reading already published reports of designing/using

resources; searching with a browser and relevant keywords existing resources

able to inspire a new design. The four following steps (‘Defining’, ‘Thinking’,
‘Exchanging’, ‘Revising’) needed the use of an online platform dedicated to the

interactions between the members of the project. Finally the achievement of the

design path leaded to the development of a technological connectivity
(Fig. 19.8).

– The library of pedagogical resources evidences the importance of a common
model of pedagogical resources for facilitating both the design, the exchange
and the appropriation of a given resource. This common model was composed,

Fig. 19.8 The first step, ‘Exploring’ of the design path (Guin, Joab, & Trouche, 2006)
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at the end of the SFoDEM experiment, of: an identification sheet (including

metadata aiming to situate the resource in a larger repository), a student sheet

(explaining the mathematical task at stake), a teacher sheet (underlining didactical

challenges), scenarios of use and usage reports (enriched over the successive

implementation of the resource), traces of students work (evidencing some critical

points), a technical sheet (supporting the implementation of the resource in

different technological environments) and a CV (‘curriculum vitae’ of the

resource, tracing the main step of its evolution). Finally, the achievement of the

library of pedagogical resources leaded to what I could name a documentation
connectivity (documentation seized in the sense introduced Sect. 15.3.2): the

documentation connectivity of a given resource should be defined as its potential

for connecting it to different possible usages and associated traces, to different

technological possible environments, to different didactical difficulties, and for

relying it to its own genesis (where does the resource come from?) and to its

different designers.

Such a technological and a documentation connectivity do not develop on a

continuous way over the whole life on SFoDEM. Guin and Trouche (2005), p. 2024

underline some major difficulties:

– From a technological point of view: ‘this organisation has rapidly revealed that

schools equipment [in terms of Internet access] is frequently inadequate or

inaccessible’.
– From the trainers point of view: ‘usual trainers’ strategies were essentially based

on imitation strategies where trainees were asked to take the position of a

student’.
– From the process of design itself:

Moreover, initial resources provided by trainers, often expert resources, were too complex

for an experimentation by trainees in their own class. Then, there was an evolution towards

simpler resources, easier to implement and towards virtual workshops of trainees creating
resources from initial ideas, named ‘germs of resources’. This evolution may be considered

as an evolution from a top-down approach towards a bottom-up approach.

Finally, I retain, from the SFoDEM experience, three major lessons: obtaining

significant results in terms of integrating ICT in classroom practices needs a strong

organisation mobilising over the time researchers and trainers; in this process,

social connectivity, technological connectivity, and documentation connectivity

seem to jointly develop (other examples can be found in Gueudet & Trouche,

2011); the development of both technological and social connectivity seems to

rebalance the responsibilities of trainers and trainees with respect to the design of

resources (see the virtual workshops of trainees), recalling the phenomena arising in

connected classrooms (Sect. 19.2.3).

Some difficulties encountered seem to be linked to a period of transition
characterised both by the emergence of Internet (just beginning to be a tool

available in schools) and the emergence of online communities, not so easy

among teachers The following section proposes another case study of an online

community developing in the same period, but without any institutional support.
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19.3.2 Sésamath, Teachers Connecting Teachers

Sésamath is a French association created in 2001. It gathers in-service mathe-

matics teachers, aiming to ‘freely distribute resources for mathematics teach-

ing’. Its website front page (http://www.sesamath.net/) claims ‘mathematics for
everybody’, ‘working together, supporting one another, communicating!’. Its
growth has been quite rapid: today, it gathers 100 subscribers, 5000 teachers

participating in various projects, and its website proposes 45,000 digital

resources for mathematics teaching and welcomes about one million visits,

each month. One reason for this growth could be the existence of the French

network of IREM, which has, in some sense, paved the way since 1970 (see

Chap. 10). But the essential reason seems to be the way this association benefit

from the development of Internet and adapt its way of functioning to this

development.

The development of Sesamath follows a model (Fig. 19.9) evidenced, in the

same period, by other online teachers associations (Gueudet & Trouche, 2012):

– A first group of teachers gathers, for sharing, essentially via Internet,

resources.

– Then this founding group, I will call it the kernel, engages in a cooperative work

(it is generally the moment of the formal creation of the association), sharing not

only resources, but the work for designing them; doing that, it attracts a crown of

teachers interested in making profit of these resources, some of them proposing

their own resources for the benefit of the whole group.

– At last, the founding group deepens its cooperation for thinking together the

whole process of designing the resources and developing the association, mov-

ing towards a real community of practice (Wenger, 1998); doing that, it attracts

successive crowns of teachers, more or less close to the kernel, according to their

engagement in the community project.

Ways of passage
towards the center:
co-training,
co-responsibility
of some tasks...

Time

Collaboration

Cooperation
Cooperation

SharingSharing

Sharing

Fig. 19.9 Development of an online teachers community designing and sharing resources

(Gueudet & Trouche, 2012, p. 311)
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These crowns are not tight: the growing of the ‘rolling stone’ supposes, for the
collaborating kernel, to carefully think ways of passage from the distant crowns

towards the centre (Fig. 19.9).

In 2015, the current president of the Sesamath association, Hélène Gringoz,

summarised, during a meeting of a research project,7 the genesis of her association

The association was established on October 31st 2001, [. . .]. At the very beginning, it’s ten
Mathematics teachers who were very, very fan of technology in general, for example

calculator, or overhead projector. That was 15 years ago, so the computer was absolutely

not as developed as today. And these teachers created websites, and they created resources

they put on these websites for their own teaching. [. . .] They were actually teachers who

met because they create resources they missed for their own teaching, they create them

together and then put them available to all teachers. [. . .] For 15 years, it is this spirit that

will prevail: the creation of collaborative resources made available to all, it is really the

foundation of our association.

The creation of resources took different forms. The best known is Mathenpoche8:

i.e. the creation, in two years, of a set of interactive exercises that covered the range of

teaching level from 6th to 9th grade (the French middle school). And the first printed

edition of these exercises occurred in 2002 [. . .] And since, it works well, it was decided in
2005 to publish the first textbook, for the 7th grade [. . .] We were seen as precursors, as

people a bit wacky, quite innovative but not really serious [. . .] This situation changed in

2005, since our textbook covered 15 % of the market.9 And so, it became credible, since we

were followed by a number of teachers [. . .] Today, 15 years after its creation, Sésamath

hosts 45,000 resources, addressing all the teaching levels from 1st grade to the University.

At the beginning, we had to face the distribution of resources, it was very complicated,

Internet was not working very well. We were just teachers, and therefore, we trained each

other so that the distribution of resources goes as well as possible. [. . .] This led us to create
tools as mail servers, list servers, and a collaborative interface. When we began to write in

2003–2004, downloading a file was very heavy and the speed was very low. So, we created

in 2003 an interface that can store files and send links automatically via emails, in order to

avoid downloading them each time [. . .].
As the basis of our association is the distribution of resources, gradually came the idea

that all our online resources should be free [. . .].
Our development allows us to propose, to all the mathematics teachers, a new interface,

Labomep,10 a mathematics laboratory where teachers can appropriate Sésamath resources,

7 It was the ReVEA project (‘Living resources for learning and teaching’, www.anr-revea.fr). The
whole interview (audio) is available on the page presenting the ReVEA meeting http://ife.ens-

lyon.fr/ife/recherche/groupes-de-travail/revea-collectif. The translation has been made by the

author of this chapter.
8 http://mathenpoche.sesamath.net. The English translation of Mathenpoche should be «Maths in

the pocket »
9 To be noticed: the online version of the Sésamath textbook are, from the beginning, free. Their

printed versions are quite cheap (half the price of an ‘ordinary’ textbook), as the Sésamath authors

do not get royalties for their work. The royalties, as low as possible, go to the association, for

allowing it to hire the technicians necessary to develop its digital environment.
10 Labomep (http://www.labomep.net/fiches/fiche26.php), meaning ‘Laboratory for math in the

pocket’, is an interface opened for schools. Once a school is identified, each teacher, individually

or collectively with her colleagues, can design her own resources in combining Sésamath

resources. Then, she can, through the Sésamath interface, make these resources available for her

students.
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combine them with their own resources as they wish. That is the way we develop Sésamath

step by step, and that’s it: Sésamath offers now a portal, fifteen websites, resources for

classroom, for teacher and for student. . ..

The Sésamath president interview is very illuminating, bringing out the way the

association develops using the connecting Internet potential, and sometimes antic-

ipating it. A complementary analysis of Sésamath is given by Pepin, Gueudet,

Yerushalmy, Trouche, and Chazan (2015), evidencing how Sésamath develops a

collaborative design involving a number of teachers—the social connectivity point
of view—and improve its resources documentation connectivity over the design of

successive textbooks (Sect. 19.3.1):

The mode of design of these textbooks involves a large number of actors. Many teachers

(approximately one hundred, for each textbook) have contributed to its design, in a

collaborative and iterative way, as ‘authors of content’, or ‘designers of didactical scenar-
ios’, or ‘testers’, or ‘experimenters’ in classes (a single teacher could have several roles, or

change roles at different moments). The textbook resulting from this process is expected to

fit the wishes and needs of a large number of teachers.

Far from being a simple textbook, the Sesamath textbooks constitute a hybrid system of

resources for teaching (i.e., including a classical structure in chapters, online supplements,

animated corrections). Following their development helps to understand this systemic

aspect:

– The first model of Sesamath textbooks was a single static book, available both online

(under a pdf, but also an odt format, allowing teachers to make modifications) and in

hard copy, accompanied by separated animations on line, a set of Mathenpoche exer-

cises, etc. (i.e. a real resource system, see Figure 19.1).
– The second model was a flexible and dynamic digital textbook, which a teacher could

organize according to his/her needs, with animation and extra exercises integrated in

each chapter.

– The third model was both a flexible and dynamic digital textbook and a laboratory for

collaboratively adjusting the textbook to the needs and projects of the community

(school, team of teachers). This laboratory, named LaboMEP allows teachers to develop

and share their own lessons, but also to differentiate their teaching according to the

results of their students.

As for the SFoDEM case, social connectivity, technological connectivity, and

documentation connectivity jointly develop. Besides, some differences between the

SFoDEM and the Sésamath cases are clear: nor researcher, or trainers, or institu-

tional support in the second case. SFoDEM designed a limited numbers of resources

for a limited number of teachers; on the contrary, Sésamath aimed to cover, with its

resources, the whole range of the curriculum needs, and to be in touch with the

biggest number of teachers. For guarantying the quality of its resources, SFoDEM

relies on a careful didactical analysis by experts of the domain; Sésamath counts

upon the contribution of multiple users, allowing the resources to be enriched (and

sometimes corrected).

Roughly speaking, I could say that SFoDEM illustrates the web.1 connectivity
and Sésamath the web.2 connectivity, characterised by more interactivity, simplic-

ity and flexibility (O’Reilly, 2005). Is it possible to combine, in developing new

forms of connectivity, both the monitoring of experts and the implication of a huge

number of resources and users? It is one of the challenges of the MOOCs, I focus on

it in the following section.
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19.3.3 The MOOC Initiative, as a Connectivity Multiplier

I report in this section on my recent experience in MOOC, opening, for me, new

horizon for thinking the connectivity potential in mathematics education.

Opening Wikipedia this morning (10 June 2015), I got this definition for MOOC:

A massive open online course (MOOC/muk/) is an online course aimed at unlimited

participation and open access via the web. In addition to traditional course materials such

as filmed lectures, readings, and problem sets, many MOOCs provide interactive user

forums to support community interactions between students, professors, and teaching

assistants (TAs). MOOCs are a recent and widely researched development in distance

education which was first introduced in 2008 and emerged as a popular mode of learning in

2012 (http://en.wikipedia.org/wiki/Massive_open_online_course).

Recently introduced in distance education (Cisel & Bruillard, 2012, Bozkurt

et al., 2015), the MOOC have been, at the beginning, mainly developed by the most

prestigious universities, benefiting of the well recognised expertise of some of their

researchers (see for example the Stanford MOOC on mathematical thinking, taught

by Keith Devlin https://www.coursera.org/course/maththink). The rapid develop-

ment of this very new way of teaching/learning comes with the emergence of a lot

of questions (see Fig. 19.10, on the wikipedia), none of them being really solved, at

the time where these lines are written.

In 2014, based on the experience in this domain of the IREM network (see

Chap. 10) and the IFÉ (French Institute of Education), was launched the MOOC

eFAN Math (meaning: Teaching and Training Teachers for mathematics education

Fig. 19.10 Questioning the true nature of MOOC (2013 @mathplourde)
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in digital environments11). Its targeted audience was teachers and teacher educators

for primary or secondary schools and it aimed to support them for conceiving

lessons where instruments and software effectively support students’ mathematical

activity. For this purpose, it develops a directory of teaching projects, based on the

inputs of the participants, and enriched all over the 5 weeks MOOC duration. The

orchestration of these 5 weeks clearly expresses the intentions of eFAN maths:

– Week 0: presentation of the MOOC, and constitution of teaching projects teams

(the participants were supposed to come into the MOOC with a professional

question, as ‘how introduce symmetry with a dynamic geometry software?’
giving matter to such a team; or to join a team already constituted on a question

having sense for them).

– Week 1: presentation of a gallery of possible instruments for doing mathematics

(the participants may comment, or/and add new instruments); each teaching

project team has to decide which instruments could be used for developing its

projects.

– Week 2: presentation of task design processes for reaching a given didactical

objective in using a given set of instruments; each teaching project team has to

design a relevant task according to its goal and to reflect on the effects of the

selected technological environment on students mathematical thinking.

– Week 3: presentation of implementation processes of a given lesson in a given

technological environment; each project team has to discuss the teacher’s role in
term of orchestration.

– Week 4: presentation of processes and tools for sharing a given resource with

colleagues, for evaluating and revising it; each project team has to apply/discuss

them to the light of its members experiments.

Each week begins with two short videos: a first one summarising the activities

and issues of the previous week, the second one presenting the theoretical elements

grounding the activities of the week to come, the tools to be used by the teams, the

references to go further, and the work to be done. The description of projects in

progress were available for all, and opened to comments. All the teachers following

the MOOC had to answer, each week, a quiz questioning their understanding of the

main notions at stake. Two main tools supported the eFANMaths activities: the first

one, the FUN platform,12 is dedicated by the French Ministry of Higher Education

to the French MOOCs; it hosted the general structure of eFAN Maths,13 its videos

and its quiz. As the FUN platform could not provide tools for collaborative design, a

Moodle platform was opened for welcoming the work of the teaching projects

teams.

11 The MOOC eFAN Maths was hosted by two French institutions: Ecole Normale Supérieure de

Cachan et Ecole Normale Supérieure de Lyon.
12 The platform FUN (France Université Numérique http://www.france-universite-numerique.fr/

moocs.html) is based on the open source technology EdX.
13 https://www.france-universite-numerique-mooc.fr/courses/ENSCachan/20007/Trimestre_3_

2014/about
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It is possible to draw some lessons from the point of view of the eFAN Maths

team, and from a questionnaire fulfilled by the participants (Gueudet, G. (coord.),

2015, Aldon, 2015). The eFAN pedagogical team was composed of 10 researchers

and an engineer coming from the IREM network or from the IFÉ. They all consider

this experience as very productive, but very time consuming (the estimate time for

the whole process of conception and implementation of this MOOC was, for the

whole team, 600 h), and needing to deeply renew the usual teacher training

organisation; they estimate also that the available tools (mainly the FUN platform)

were not at all adapted to the objective (interactivity and connectivity) of the

MOOC. eFAN Math gathered at its beginning 3250 subscribers; the numbers of

video downloading decreased from 2800 (first week) to 860 (fourth week);

169 teaching projects were developed and 500 participants were inscribed on the

Moodle platform dedicated to the work on these projects. In this sense, eFAN

Maths, compared to classical teacher training organisation, appears really as a

connectivity multiplier. Finally 161 participants answered the final questionnaire;

among them, 75 % estimated that eFAN Maths reached its objectives.

The decreasing number of participants is not surprising: for most of the MOOC,

one estimates that the number of participants following the whole training is about

10 %. It was the case for eFAN Maths, if one considers that ‘achieving the training’
corresponds to ‘achieving a teaching project’. The 161 answers to the questionnaire,
corresponding more or less to 50 % of the active participants, are then to be

considered carefully: 68 % of them wish a more focused training (closer to their

teaching, in primary vs. secondary schools, closer to their teaching needs); globally,

they wish to have more time for being able to fully conceive, share, experiment,

discuss, and revise a teaching project; they wish to have a more effective support

from the eFAN team when needed; they wish to dispose of more efficient collab-

orative tools for designing their projects and a more interactive platform for

exchanging with participants and with the pedagogical team.

Some more analyses are certainly needed, for knowing more about the quality of

the teaching projects developed during eFAN Maths (their documentation connec-

tivity, particularly from the point of view of ICT integration), the results for

teachers knowledge (in terms of cognitive connectivity), and practice. But some

results appear critical: the need for time and the complexity of the new equilibrium

to be found both in each teacher classroom and in the MOOC itself; the interest to

base the training on the design of resources meeting the real teachers needs.

The will for fitting as close as possible the local learners needs and to better

monitor their work needs could lead to move towards the notion of SPOC (Small

Private Online Courses), as proposes Fox (2013). Effectively, the eFAN experience

seems to evidence that, when teachers were working in the same school, they

benefit better for the training.

There are also some contradictory tendencies to balance (and decision to be

taken, see Fig. 19.10):
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– Dillenbourg, Fox, Kirchner, Mitchell, and Wirsing (2014) propose diverse

solutions for reinforcing social connectivity within a MOOC, balancing then

the interests of MOOC and SPOC:

How can we motivate MOOC learners and teachers when the teachers may be both

geographically distant and socially disconnected from the learners? MOOCs could, for

example, support reciprocal teaching, direct instruction, mastery learning, peer assessment

and instruction, small-group/community interactions such as dynamic regrouping of

learners to match learning styles and paces, and so on (p. 9).

– Social connectivity and technological connectivity are also to be carefully

combined, as notice Dillenbourg et al. 2014 (p. 5):

MOOCs take multiple forms. At one end of the spectrum is the xMOOC, which is

characterised by a rather tight structure, little social interaction and mainly computer-

marked assessments. At the other end is the cMOOC or Connectionist MOOC, which is

almost entirely free of pre-provided content and relies instead on very high social interac-

tivity to produce the course content and outcomes. Most current MOOCs lie between these

extremes, with some structure (weekly content in the form of video and quizzes) and some

important social interactions (discussions, peer-review of work, and so on).

Finally, looking back at the previous sections, the reader may realise how the

experiences of SFoDEM and Sésamath were announcing, in some ways, the

emergence of MOOCs, under their extreme tendencies, as new forms of fostering

teachers professional development on the basis of their collaborative work on

teaching resources. For these organisations to work effectively, technological

connectivity and social connectivity appear as necessary ingredients.

Internet, both for students (Sect. 19.2) and for teachers (Sect. 19.3) clearly

appears as a connectivity multiplier, from a technological as well as a social

point of view. To what extent this connectivity improves also teacher documenta-

tion, knowledge and practice, as well as students learning and mathematical

activity, is not a trivial question. I discuss, in the next section, the way the ICMI

study connectivity panel (Hoyles et al., 2010) addressed this issue, mainly from the

point of view of students.

19.4 Some Lessons from the ICMI Study
Connectivity Panel

The ICMI study connectivity panel, chaired by Celia Hoyles, was based on four

presentations (one of them has already been introduced in this chapter,

Sect. 19.2.2). I will focus in this section on two of them, the first one concerning

the effects of connectivity in a given classroom, the second one across classrooms. I

draw then some general lessons from the panel.

452 19 Connectivity in Mathematics Education. . .



19.4.1 Enacting Classroom Participatory Simulations

As I did Sect. 19.2.3, Uri Wilenski (Hoyles et al., 2010, pp. 452–455) exploits ‘a
neglected affordance of connectivity: the ability to give people a shared interactive

experience in classroom contexts’. For this purpose, he presents an outline of his

work with NetLogo,14 using the notion of connectivity in two senses.

The first sense is a macro-micro level connectivity:

In our many years of working with NetLogo in middle and secondary classrooms, we have

endeavoured to bring to students descriptions of complex systems at a micro-level and

connect those micro-level descriptions to macro-level and observable phenomena. Typi-

cally, when we have taught students about systems that can be constructed as complex, we

have concentrated on aggregate equations that summarize system behaviour. For example,

to describe the behaviour of ideal gases, we rely on equations such as PV¼ nRT. But agent-

based modelling enables students to more directly control and examine the behaviour of

elements of the system and connect this behaviour to the system emergent behaviour. Thus

in NetLogo’s GasLab model suite, students come to understand the ideal gas as composed

of Myriad interacting gas molecules and see PV¼ nRT as an emergent result of these

interactions. There are hundreds of NetLogo models we have used in classrooms. Students

examine a range of phenomena such as the spread of a disease through a population, or the

interaction of predator and prey in an ecosystem [. . .]

For example, for the interaction predator/prey (Fig. 19.11), students can vary

essential parameters as the number of sheep, the number of wolves, the quantity of

Fig. 19.11 The NetLogo interface for studying a model of predator and prey

14NetLogo (https://ccl.northwestern.edu/netlogo/) is a multi-agent programmable modelling envi-

ronment, developed at the Center for Connected Learning of the Northwestern University. It is an

extension of the Logo environment developed by Seymour Papert (http://en.wikipedia.org/wiki/

Seymour_Papert)
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grass, and observe the evolution of the process. The hypothesis is that the micro-

level connectivity managed by the application will facilitate students understanding

of the system behaviour. Wilenski observes that it was not so simple: ‘despite
considerable efforts to “lower the threshold” of entry into agent-based modelling, it

remains difficult for elementary students to master both the programing and model-

ling skills needed’. Even with the monitoring of a teacher, this approach ‘leaves the
student somewhat passive, as only a few can be engaged at any one time and they

are limited to discussion of model behaviour’.
These difficulties lead him to develop connectivity in a second sense, a techno-

logical one, through the added module HubNet, enabling ‘a host of devices to

connect to a logo simulation and control agents within that simulation’ (see

Fig. 19.12 a set of calculators connected to the teacher’s computer). The sole

modelling activity is then transformed into a participatory simulation, in which

each student may take part.15

Wilenski (Hoyles et al., 2010, p. 453) underlines the important benefits of such

an application for learning:

[. . .] the modelling activity:

• Becomes more engaging—especially for younger learners. It becomes a social activity

and captures much of the same draw as online games.

• Promotes greater student participation. Every student can be actively involved at the

same time. Because they often require continuous action on the part of the students, they

Fig. 19.12 The HubNet architecture (Hoyles et al., 2010, p. 454)

15 This application, through a cooperation with Texas Instruments, gave birth to the TI-Navigator

network, that we describe Sect. 19.2.2.
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are “in-the moment” motivated to participate. Such universal participation is very hard

to achieve in a traditional classroom.

• Enables a shared experience of a complex system. There are very few opportunities, in

the classroom or in life, for students to collectively witness the same complex system

unfolding. Focal attention to such a system is hard to achieve outside of the virtual and,

even when achieved, if the viewing does not connect the micro-level behaviour to the

macro-level outcomes, then only the appearance is shared, not the mechanisms of

action.

• Facilitates classroom discussion of the system and examination of “what-ifs”. Student

can suggest experiments with varying critical system parameters and/or agent-rules,

hypothesize the observed behavioural change, run the simulation and refine the

experiment.

• Scaffolds individual modelling and analysis. Once students have had several opportu-

nities to collectively model and analyse complex systems, they are much better prepared

(and motivated) to conduct such inquiry on their own. Often students have suggestions

for model experiments that do not get explored in class. These questions are potent seeds

of further student inquiry, experimentation and model revision.

What I retained from this rich experiment is the interest of combining different

level of connectivity: the technological connectivity (HubNet architecture) enables
all the students to participate in the same time to the construction of a given

phenomenon. This collective engagement (social connectivity) is stimulated by

the student’s awareness to be an actor of the mechanisms of action, and

co-responsible of the final result. The system insures the connection between the

micro-level and the macro-level, and the students, being involved in the whole

process, incorporates the interrelations between these two levels (cognitive con-
nectivity). All over the process, the teacher’s orchestration is needed for regulating

students’ activity. This is made possible by the presence of all the actors in the same

time in the same place. I analyse in the following section what could happen when

such on activity occurs in different places.

19.4.2 Exploiting Connectivity Across Classrooms

The Noss and Hoyles’s presentation (Hoyles et al., 2010, pp. 455–460) in the

connectivity panel addresses actually the question of connectivity within and across
classroom, through two projects co-directed by themselves: the Playground Project

and the Weblabs Project. I will focus in this section on the first one.

The Playground project,16 as its name indicates, aims to use the potential of

games for stimulating children (from 4 to 8 years old) engagement and learning

(about games and mathematics, see Chap. 18). Going beyond the simple ‘playing

16 Its website (http://playground.ioe.ac.uk) points out, on its front page: « The playground project

is building computer environments for 4–8 year-olds to play, design and create games. A

playground is a place to play with rules not just play by them. We aim to harness children’s

playfulness, creative potential and exploratory spirit, allowing them to enter into abstract and

formal ways of thinking » (see also Chap. 18).
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game’, it aims to add a new dimension where children build their own games. Due

to the age of the children, the project favours other modalities of interactions than

words: mainly speech and direct manipulation. The authors describe the way the

project allows children to design their own games:

Children populated their games with objects which had ‘behaviours’—sets of rules that

determine their action. Behaviours were defined using collections of iconic rules, which

could be viewed by opening a scroll of paper attached to an object (see Fig. 19.13 for rules

defining a monster’s behaviour). Each rule was expressed as a visible ‘sentence’ or string of
graphic icons, which combined a condition and a series of actions to be executed whenever

the condition was true. The icons representing the conditions and actions were represented

as ‘stones’, small concrete manifestations of the concept that could be strung together to

constitute a rule. Actions stones had a convex left side so that conditions with their concave

right side could naturally fit to their left. Any object could accept any number of these

iconic rules, all of which would be executed in parallel whenever the conditions for their

execution were satisfied. (Hoyles et al., 2010, p. 456).

When the game starts, I change my speed to 22.5

When a second and half is up, I change my direction plus 25�

When I am shot by a ray, I explode, I wait two second, I appear (every object has an empty rule

for making new rules)

The project gives then means for children for constructing, expressing, and
communicating their own games. It offered a language allowing them to define

rules in a synthetic and no ambiguous way. Once defined a game, the project leads

the children to discuss it on two successive phases: sharing the game through face-
to-face interactions in their own classrooms; sharing the game using Internet, either
synchronously or asynchronously with a remote classroom. The project findings

evidence that, over the two phases, ‘children collaboratively came to explain

phenomena arising from rules we characterised as either player (an agreed regula-

tion), or system (a formal condition and action for the behaviour of the game)’

Fig. 19.13 Stones combined for constituting rules defining a monster’ behaviour (Hoyles et al.,
2010, p. 455)
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(Hoyles et al., 2010, p. 457). These findings underline also major differences

between face-to-face an remote interactions:

We found that in face-to-face collaboration, the children centre their attention on narrative,

and addressed the problem of translating the narrative into system rules, which can be

‘programmed’ into the computer. This allows the children to debug any conflicts between

system rules in order to maintain the flow of the game narrative.

When we added remote communication to the system by enabling the sending and

receiving of games from within the Playground system, we found that children were

encouraged to add complexity and innovative elements to their games, not by the addition

of socially-constructed or ‘player’ rules but rather through additional system rules which

elaborate the formalism (games were created using two different kinds of programming

systems, neither of which employed textual modalities). This shift of attention to system

rules occurs at the same time, and perhaps as a result of, a loosening of the game narrative

that is a consequence of the remoteness of the interaction.

This phenomenon was particularly evident in the case of asynchronous interaction
where, stripped of even the semantics of gestures, our extremely young students found it

increasingly natural to try to communicate meaning via the various formalisms we pro-

vided. Thus a key historical claim for programming, that is offers a key motivation and

model for immersion in a formal system, came to life as children struggled to modify and

add rules of their programs that achieved the effects they desired. And it is worth stressing

that asynchronous communication, while somewhat less attractive to the students at the

time [. . .] allows students to reflect on, and therefore use more effectively, the formal rules

of their games.

The main result I retain here is that ‘The shift from narrative to system/formal

rules does, in fact, seem to be a direct result of the necessity to formalise, in the

absence of all the normal richness of interaction that characterises face-to-face

collaboration’ (Hoyles et al., 2010, p. 457). In this case, technical connectivity,
understood as providing children means to communicate via Internet, leads to

cognitive connectivity, leading the children to relate the implicit rules of the game

to formal ones, parts of a system of rules. The discussion among children connects

then a level of informal speech and a level of formal system of rules.

I would like to add extra personal comments.

The Playground project concerns a particular part of mathematics, linked to

programing. This part will probably strongly develop in the future, supported both

by the improvements of the software dedicated to ‘children and programing’ (see
for example Scratch17), and by the evolution of curricula, favouring interaction

between mathematics and programing (see Sect. 12.3.3).

Noss and Hoyles associate, in this experiment, ‘connection to Internet’, and
‘remote interaction’. Of course, this association is note a necessary one, as connec-

tion to Internet and face-to-face interaction may jointly develop (see Sect. 19.2.3 or

19.4.1).

As the authors underline themselves, their project began in the previous century,

where peer-to-per connectivity was quite limited. Today, the remote or face-to-face

17 Scratch: “Create stories, games, and animations, Share with others around the world” (https://

scratch.mit.edu), developed by the Massachusetts Institute of Technology, hosting 9,767,423

projects (on 12 June 2005)
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interactions could combine texts (under different formats, more or less formal, from

SMS to emails), pictures, as well as audio or video interactions.

However, I found useful to present, in the frame of this chapter, some lessons of

this experiment, evidencing that even a limited use of connectivity, reduced to peer-

to-peer interactions through the exchanges of texts via Internet could have impor-

tant effects. From this connectivity panel held in the ICMI study, some more

general lessons emerge, that I underline in the following section.

19.4.3 The ICMI Study Connectivity Panel,
Some Lessons and Perspectives

In this section, I would like to focus on the main lessons drawn by the connectivity

panel, then by the ICMI study itself.

Regarding the panel, Hoyles et al. (2010) retain both the potential of technolog-
ical connectivity and the conditions for exploiting it:

– The potential is seen for developing social and cognitive connectivity (essen-

tially regarding students):

Digital technologies are already changing the ways we think about interacting with

mathematical objects, especially in terms of dynamic visualisations and the multiple

connections that can be made between different kinds of symbolic representations. At the

same time, we are seeing rapid developments in the ways that it is possible for students to

share resources and ideas and to collaborate through technological devices both in the same

physical space and at a distance (p. 439).

The conditions for exploiting technological connectivity are quite largely

described: ‘Alongside overcoming not inconsiderable technical challenges,

establishing an appropriate set of socio-technical/mathematical norms that

prioritised collaboration [is] crucial regarding connectivity’ (p. 460). Some years

after, the point of view on technical challenges could seem quite optimistic. . . But
the necessity of changing the socio-technical/mathematical norms clearly appears:

the experiences presented during the panel stand at the fringes of the schooling

system, and one measures the necessary distance for implementing them in the

schooling system.

Among these conditions, even if this question was not addressed by all the

panellists, rethinking the teacher’s role in terms of new orchestrations appears

actually crucial:

[. . .] here we are delineating new, even more demanding roles for the teacher, to be

aware—across not only her own classroom but those in remote location—of the evolution

of discussion, the mathematical substance of what is and what is not discussed, and the need

all the while to find ways to keep students on task without removing the exploratory and fun

elements of the work. This is, surely, a demanding set of roles for the teacher (p. 460).

Finally, the panellists shared the awareness that connectivity was a promising

field of research, specially regarding the cognitive aspect, i.e. implications
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for learning, quoting Moreno-Armella, Hegedus, and Kaput (2008), suggesting how

‘networks can link private cognitive efforts to public social displays thus—poten-

tially at least—enhancing student’s metacognitive ability to reflect upon their own

work to reference to others’.
The connectivity panel was part of the 17th ICMI study aiming to ‘rethink the

terrain’ of technology and mathematics education. The theme of connectivity

appears certainly, within this study, as the one where further research was the

most needed, as stated by Artigue in her concluding chapter (Hoyles & Lagrange,

2010, p. 473):

The way digital technologies can support and foster today collaborative work, at the

distance or not, between students or between teachers, and also between teachers and

researchers, and the consequences that this can have on student’s learning processes, on

the evolution of teachers’ practices is certainly one essential technological evolution that

educational research has to systematically explore in the future [. . .] most of this space is

still for us nearly terra incognita. We observe an intense creativity, which very often

develops independently of research and this is a very stimulating situation. But we also

have to be careful. As stressed by Richard Noss in the panel on connectivity, connectivity

does not necessarily imply collaborative work and collaborative work does not necessarily

imply better mathematics learning, or, I would add, better mathematics teaching. We are

submerged by an avalanche of information, data and possibilities of connection and the way

this avalanche can be organized, treated and transformed into knowledge or means for

productive action is an open problem.

Since the time of this ICMI study (2006 for the conference, 2010 for its pro-

ceedings), connectivity has developed, at least at a technological level, for the

students (Sect. 19.2.3) as well as for the teachers (Sect. 19.3.3). Which new lessons

and perspectives could be drawn in this new situation? I propose some answers, and

some new questions in the next discussion section.

19.5 Discussion

I call this section ‘Discussion’ rather than ‘Conclusion’ because the forms of

connectivity are evolving so rapidly that I can offer no conclusion. I would like

to underline the strong current evolutions, in terms of technologies and usages, then

to question the links between connectivity and mathematics, and, last but not least,

address the theoretical needs for analysing, in such contexts, mathematics learning

and teaching processes.

19.5.1 Internet Uses as a Connectivity Multiplier
and a Seamless Learning Tool

I had structured the two first parts of this chapter looking at the evolutions from the

students’ side, then from the teacher’s side. For understanding the processes at
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stake, I have to embrace in our analyses the two sides in their interrelations. We

showed (Gueudet & Trouche, 2012, pp. 313–316), in the case of Pierre, a teacher

member of the Sésamath association, the synergy resulting of the interrelations

between Pierre’s work in/for his association, Pierre’s work in/for his class and

students’ usages:

He evinces a strong collective involvement both in his school and in Sesamath: he is

‘teacher in charge of technology’, treasurer of the school cooperative, responsible of the

school’s chess club. These activities are not all dedicated to mathematics. In Sésamath, as

of 2008, he was a member of the board for 5 years. This meant that he spent approximately

1 h a day reading emails and participating in forums ‘that engage the association life’. He
was also a member of a Sésamath project developing a grade 6 textbook, which is still in

progress at this time. He was, finally, the pilot of a new Sésamath project entitled

‘mathematics files for primary schools’.
Documentation work takes place within each of these collective involvements and each

of them is part of Pierre’s work, as he said: ‘Consuming time in collective activities is a

component of my teaching activity’. He particularly emphasizes the importance of the

primary school project (‘it gives a better understanding of what my pupils know when

arriving at secondary school’), the Sésamath board (‘it makes me aware of the questions

asked to the profession as a whole’) and the ‘grade 6 textbook’. It is actually this last

project, which appeared as fostering Pierre’s documentation. For all the duration of the

project (2 years), Pierre decided to have only grade 6 classes (three classes, for 6 h teaching

in it), to ‘align’ his documentation work with the community documentation. Thus, the

documentation work that Pierre accomplished in 2008–2009 for the grade-6 level concen-
trated his main efforts, and connected individual and community documentation [. . .]

To this collaborative documentation corresponds a collaborative form of teaching [. . .].
Using online resources is an important feature of Pierre’s documentation work, within or

without his students (for preparing his teaching or collaborating in Sésamath projects).

Within his classroom, a connected computer, a projector and an interactive whiteboard

(IWB) are used to work with online resources. For example at the beginning of each lesson,

the teacher opens Pronote, an application allowing displaying the students list, to note the

absentees, to memorize what has been done, and what is still to do. . . Another example of

this continuous Internet use: the teacher exploits Google to do any arithmetic operation

exceeding students’ capacities of mental computation (it was amazing to observe that

handheld calculators remain in students’ schoolbags!). For continuing to interact with his

students outside of the classroom, he developed a collaborative website on which he

regularly uploads mathematics problems (that he calls ‘enigma’). Students try to solve

them and write their solutions on a forum (Gueudet & Trouche, 2012, pp. 313–316).

The use of Google is particularly significant of these interrelations: Pierre uses

Google for doing computations, because actually it corresponds to the students’
usages. As they are more and more connected to Internet, at home, as well as in

school, often through their mobile phones, they tend to use Google as an universal

machine: they use the same procedure to answer to a geographical question (‘what
is the number of inhabitants of such a city?’) and to a mathematical one (‘what is the
result of 45 times 59’?): in the two cases, Google is required to provide the answer.
In such a procedure, the constructive aspect of mathematics practices (‘yes, I can
compute 45� 59’) is lost. It looks like if each result of any question was lying

somewhere on the shelves and I had just to go to the relevant shelve and take it: that

is the efficiency of Google to do that for us. It is also well known also that, Sesamath

providing a wide number of resources covering the whole curriculum, some
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teachers restrict sometimes their documentation work to ‘search on the shelves of

Sésamath’what fits their needs of the day. This is of course not the sole aspect of the
Internet usages, and there are a lot of productive aspects as I evidenced in Sects. 19.2

and 19.3, but this way of searching direct answers to direct questions is a real

economical effect of being continuously connected to a wide repository of

resources. The institutions try to control this continuous connectivity (see for

example, Sect. 12.3.3, the development of ‘machines to the test’, excluding during

the examination at least any connection between a calculator and ‘outside’), but
removing connectivity cannot be the sole answer: the development of new envi-

ronments for communicating based on Internet appeals new kind of orchestrations:

the case of MOOC (Sect. 19.3.3) evidences the interest, and the complexity, of such

reflections on Internet as a connectivity multiplier.
Another aspect appearing in the description of Pierre’s work is the dilution of the

frontiers between working in school and working out of school, the teacher and his

students interacting through a website and Internet resources (as LaboMep, see

Sect. 19.3.2). It happens during the time of schooling and curriculum knowledge,

but I happens also, from a general point of view, after the time of schooling,

considering lifelong education. It leads to the notion of seamless learning (Wong,

Milrad, & Specht, 2015),

[Researchers] propose seamless learning as a learning approach characterized by the

continuity of the learning experience across a combination of locations, times, technolo-

gies, or social settings, (perhaps) with the personal mobile device as a mediator. The basic

rationale is that it is not feasible to equip students and knowledge workers with all the skills

and knowledge they need for lifelong learning solely through formal learning (or any one

specific learning context). Henceforth, student learning should move beyond the acquisition

of curriculum knowledge and be complemented with other approaches in order to develop

the capacity to learn seamlessly (p. xvii).

We are at the beginning of the analysis of this kind of learning: Chaps. 15 on

teachers work with digital tools, 17 on the design tasks, 18 on using games open

windows on leaning/teaching with Internet.

19.5.2 Connectivity and Mathematics

I have presented in various sections of this chapter (Sects. 19.2.2, 19.4.1 and 19.4.2)

the potential of technological connectivity for linking different aspects of the

teachers and students’ mathematical activities, what I have named documentation

connectivity, cognitive connectivity or micro and macro level connectivity. I would

like to examine now to which extent mathematics practicing, learning and teaching

requires connectivity and in which sense.

We have already met the necessity of ‘connecting things’ for learning and
teaching mathematics in two senses: connecting different representations of math-
ematical objects through a specific activity of treatments and conversions, as a

central activity for conceptualising (see the work of Duval, Sect. 12.3.3);
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connecting ostensives and non ostensives, the last ones guiding the usage of first

ones (see the work of Chevallard, Sect. 12.3.2).

More generally, if we consider that doing mathematics is solving problem, it

appears clearly that doing this needs to connecting different point of views on

objects and processes (see examples of proofs in Chap. 6; see Jon’s examples on

visual theorems, Sects. 3.2.1 and 3.4).

In a discussion between the three authors of the first draft of this chapter John

asked Jon:

I imagine that now, compared to the beginning of your professional life, that you might

send out a Maple (or whatever) file to colleagues and say something to the effect “Look at

this, there’s something strange going on ‘under the hood’”. Are conjectures more of a

shared ‘thing’ than they were 40 years ago?

Jon replied:

Life is vastly different than forty years ago. I think to a significant degree this is covered in

Chap. 3. It is certainly covered in an article “The Future of Mathematics 1965 to 2065.”

https://www.carma.newcastle.edu.au/jon/future.pdf. This just appeared as part of the

MAA100th anniversary book. When David Bailey and I wrote our book Mathematics by
Experiment between 2001 and 2004, it was already possible to be scholarly without ever

visiting the library and when we revised the book in 2007 this was even more true. The level

of connectivity is limited largely by one’s imagination and willingness to contact people/

remember what resources may be available. The sociology of this—as with social media—

has not yet stabilised. Perhaps it never will. So I am routinely sent stacks of papers by

isolated researchers asking me to help them publish them along with even more intrusive

requests. Yet on balance this is a wonderful time to be working in a subject which—despite

the public image of a solitary researcher staring at a blackboard—has always thrived on and

needed human interaction.

Indeed, in responding to one of the questions I posed in Chap. 6, Jon performed

an Internet search.

Moving on (but keeping in the domain of mathematics) doing mathematics,

since the first written practices (see Chap. 5 and Proust, 2014), has always dealt with

highly structured texts. Reading such texts leads one to combine different registers

of activity: learning, solving, classifying, archiving, exploring or inventing. Digital

tools give us new means for combining these different registers. This links to my

construct ‘cognitive connectivity’ (the internal—in the mind—rather than the

external—in action—side of connectivity). Noss and Hoyles (1996), I posit, had

similar ideas when, 20 years ago, they compared mathematical connectivity to the

functioning of the Web, introducing the notion of webbing:

Like the web of mathematical ideas, the Web (we will use a capital to denote the electronic

network), is too complex to understand globally—but local connections are relatively

accessible. At the same time, one way—perhaps the only way—to gain an overview of

the Web is to develop for oneself a local collection of familiar connections, and build from

there outwards along lines of one’s own interests and obsessions. The idea of webbing is

meant to convey the presence of a structure that learners can draw upon and reconstruct for

support—in ways that they choose as appropriate for their struggle to construct meaning for

some mathematics (Noss & Hoyles, 1996, p. 108).
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The question is then how the use of the web could support mathematical

connectivity. Trouche and Drijvers (2014, p. 6) proposes an approach combining

the concepts of webbing and orchestration:

In the webbing approach, conceptualization appears as a coordination process, ‘the process
by which the student infers meaning by coordinating the structure of the learning system

(including the knowledge to be learned, the learning resources available, prior student

knowledge and experience and constructing their own scaffolds by interaction and feed-

back)’ (Hoyles et al., 2004, p. 319). In the instrumental orchestration approach, conceptu-

alization appears as a command process, characterized by the conscious attitude to

consider, with sufficient objectivity, all the information immediately available not only

from the calculator, but also from other sources and to seek mathematical consistency

between them (Guin & Trouche, 1999). ‘Very sophisticated artefacts such as the artefacts

25 available in a computerized learning environment give birth to a set of instruments. The

articulation of this set demands from the subject a strong command process. One of the key

elements for a successful integration of these artefacts into a learning environment is the

institutional and social assistance to this individual command process. Instrumental orches-

trations constitute an answer to this necessity.’ (Trouche, 2004, p. 304). It seems that there

is a kind of intended internalization from an instrumental 30 orchestration, seen as an

external process of monitoring students’ instruments by the teacher, to an internal orches-

tration, seen as a process of self-monitoring the individual and personal instruments by a

student. Coordination and control are certainly two facets of mathematical activity, partic-

ularly in a technological rich environment, and the two approaches seem to privilege, each,

one of these facets.

With the notion of internal coordination and control comes a new reflection on

curriculum resources. Recent analyses of e-textbooks, i.e. textbooks making profit

of the digital potentialities, mainly from the point of view of connectivity, underline

the necessity, for insuring their quality, to take into account connectivity and

coherence (Pepin et al., 2015).

19.5.3 New Theoretical Needs

Describing recent experiences and, regarding for example interactive collaborative

mathematical interface (Sect. 19.2.3) or MOOCs (Sect. 19.3.3), I was aware, as I

said previously, that we are just at the beginning of the analysis of the connectivity

aspects and effects. For developing analyses on new phenomena, sometimes new

theoretical frames are needed in order to define new concepts and system of

concepts. Taking into account connectivity as a major intellectual challenge has

led to the creation of the connectivism frame, thus defined by Wikipedia (https://en.

wikipedia.org/wiki/Connectivism):

Connectivism is a hypothesis of learning which emphasizes the role of social and cultural

context. Connectivism is often associated with and proposes a perspective similar to

Vygotsky’s’ zone of proximal development’ (ZPD), an idea later transposed into

Engestr€om’s activity theory (see Chap. 9). The relationship between work experience,

learning, and knowledge, as expressed in the concept of ‘connectivity, is central to

connectivism, motivating the theory’s name.
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The definition of this theory as ‘a learning theory for the digital age’ (Siemens,

2005) indicates the emphasis that connectivism gives to technology’s effect on how
people live, communicate and learn. This is not the choice I had made until now, but

I am sure that the development of this new domain will benefit to the other domains

of research interested in connectivity.

Actually, for lighting the questions at stake, I am trying a theoretical networking

approach as presented by Prediger, Arzarello, Bosch, and Lenfant (2008) (see also

Chap. 9), connecting theoretical frameworks for understanding connectivity. In the

case of teacher’s work, it gave matter to the documentational approach (Sect.

15.3.2), crossing the domain of architecture information (Salaün, 2012) and instru-

mental approach. This approach is used in the frame of a French national project

(www.anr-revea.fr) for analysing the evolution of teachers work with resources in a

time of digital transition.

In the community of mathematics education, other theoretical approaches should

be exploited in order to understand connectivity. My own view is that Sfard’s
construct ‘commognition’ is important in this regard. Sfard (2010), p. 432 defines

thinking as:

the individualized version of interpersonal communication—as a communicative interac-

tion in which one person plays the roles of all interlocutors. The term commognition, a
combination of communication and cognition comes to stress that inter-personal commu-

nication and individual thinking are two varieties of the same phenomenon.

According to this perspective, developing social and reflective connectivity is

developing opportunities for improving mathematical thinking.

Finally, looking at connectivity in the mathematics education community leads

to develop an interdisciplinary program of research, that is before us.

References

Aldon, G. (2015). MOOC, Formations �a distance, formations hybrides. MathemaTICE 46.
Retrieved from http://revue.sesamath.net.

Bellemain, F. (2014). Analyse d’environnements de géométrie dynamique collaborative du point
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Proust, C. (2014). Textes mathématiques cunéiformes: des listes pour apprendre, résoudre,
classer, archiver, explorer ou inventer. Retrieved from https://hal.archives-ouvertes.fr/hal-

01139604/document

Salaün, J.-M. (2012). Vu, lu, su. Les architectes de l’information face �a l’oligopole du Web. Paris,
France: La Découverte.

References 465

http://dx.doi.org/10.1007/s11858-011-0313-x
http://www.springerlink.com/content/13733h7321658734/
http://www.springerlink.com/content/13733h7321658734/
http://www.math.univ-montp2.fr/sfodem/
http://www.math.univ-montp2.fr/sfodem/
http://ermeweb.free.fr/CERME4/CERME4_WG9.pdf
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
https://hal.archives-ouvertes.fr/hal-01139604/document
https://hal.archives-ouvertes.fr/hal-01139604/document


Sfard, A. (2010). Thinking as communicating. human development, the growth of discourses, and
mathematizing. Cambridge University Press.

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of
Instructional Technology and Distance Learning. 2(1). Retrieved from http://www.itdl.org/

Journal/Jan_05/article01.htm

Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized

learning environments: guiding students’ command process through instrumental orchestra-

tions. International Journal of Computers for Mathematical Learning, 9, 281–307.
Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital

tools in mathematics education, Teaching Mathematics and Its Applications: International
Journal of the Institute of Mathematics and its Applications, 33(3), 193–209, doi: 10.1093/
teamat/hru014, Retrieved from http://teamat.oxfordjournals.org/cgi/reprint/hru014?

ijkey¼P83FxYUzECbG67e&keytype¼ref

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge Uni-

versity Press.

Wong, L.-H., Milrad, M., & Specht, M. (Eds.) (2015). Seamless learning in the age of mobile
connectivity. New York: Springer.

466 19 Connectivity in Mathematics Education. . .

http://www.itdl.org/Journal/Jan_05/article01.htm
http://www.itdl.org/Journal/Jan_05/article01.htm
http://dx.doi.org/10.1093/teamat/hru014
http://dx.doi.org/10.1093/teamat/hru014
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref

	Chapter 19: Connectivity in Mathematics Education: Drawing Some Lessons from the Current Experiences and Questioning the Futur...
	19.1 Introduction
	19.2 Connecting Students and Mathematics Through Digital Artefacts
	19.2.1 The Sherpa Student Configuration
	19.2.2 The Calculators Network Configuration
	19.2.3 Internet as a Connectivity Multiplier

	19.3 Connecting Teachers and Mathematics Teaching Knowledge Through Internet Resources
	19.3.1 The SFoDEM, Monitoring Teachers for Collaboratively Design Teaching Resources
	19.3.2 Sésamath, Teachers Connecting Teachers
	19.3.3 The MOOC Initiative, as a Connectivity Multiplier

	19.4 Some Lessons from the ICMI Study Connectivity Panel
	19.4.1 Enacting Classroom Participatory Simulations
	19.4.2 Exploiting Connectivity Across Classrooms
	19.4.3 The ICMI Study Connectivity Panel, Some Lessons and Perspectives

	19.5 Discussion
	19.5.1 Internet Uses as a Connectivity Multiplier and a Seamless Learning Tool
	19.5.2 Connectivity and Mathematics
	19.5.3 New Theoretical Needs

	References


