
Chapter 14

Tools and Mathematics in the Real World

John Monaghan

14.1 Introduction

This chapter has two main foci: (1) the use of mathematics in out-of-school1

mathematical practices; (2) making school mathematics relevant to activities

beyond mathematics classrooms (which I shall call ‘out-of-school’ mathematics/

practices). Both foci are important issues in mathematics education and both are

problematic issues. Both foci, of course, will be investigated with special regard to

tool use. This chapter has four sections. The two central sections address the two

main foci. The opening section sets the scene with an historical account of ways that

mathematics has been subdivided with regard to its application(s). The last section

considers problem issues.

14.2 Can Mathematics Be Subdivided with Regard to Its
Application(s)?

Mathematics has been subdivided in various ways over two millennia. A subdivi-

sion, with regard to the application of mathematics, that has been used in Western

mathematics for over 100 years, is that between pure and applied mathematics. This

sounds like a promising way into the two main foci of this chapter so I start by

considering this division: to what extent is it a real division; does tool use vary over

this division?

There is a sense in which the division pure and applied mathematics is a real

division between mathematical activity for intrinsic or extrinsic purposes. To take

an elementary example, if I am teaching (or writing about the teaching of) 456 + 78

using the standard written algorithm, then I will pay careful attention to the fact that

1 I use the term ‘school’ loosely to denote any educational institution.
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the ‘1’ I carry into the tens column (when I add 6 and 8) is not the number 1 but

1 unit of 10. But if I am doing this addition for a purpose other than doing

mathematics, say, in checking my accounts, then this explicit attention to place

value within a calculation is not important (in activity-theoretic terms, see Sect. 9.2,

the object of the activity is different). This has immediate implications for tool use

in mathematical activity. In the first activity the focus is on the correct use of a

specific mathematical tool (a specific algorithm). In the second activity the focus is

on obtaining the correct mathematical result and the tool I use to get the answer, as

long as it gives the correct answer, does not matter a great deal (an abacus or a

calculator or the standard written algorithm will do).2 But there is also a sense in

which the division between pure and applied mathematics is not a ‘natural’ division
but a cultural–historical division; and this leads to a brief tour into the history of

mathematics and mathematics education: the Ancient Greeks to the nineteenth

century (Sect. 14.2.1); the twentieth century (Sect. 14.2.2).

14.2.1 Subdivision of Mathematics over Time

Fauvel and Gray (1987, p. 56) write of the ancient Greek quadrivium, ‘the four-part
classification of mathematical sciences . . . into arithmetic, music, geometry and

astronomy’ and claim that this ‘came to constitute a major part of the liberal arts

curriculum of medieval universities’. This four-part classification, however, did

concern ‘pure’ mathematics for Plato writes (see Fauvel & Gray, 1987, p. 69) of

arithmetic, ‘what a subtle and useful instrument it is for our purpose, if one studies it

for the sake of knowledge and not for commercial ends’. In seventeenth century

Europe the division of mathematics was between pure and mixed mathematics.

Francis Bacon wrote in 1603 (see Fauvel & Gray, 1987, pp. 290–291):

To the pure mathematics are those sciences belonging which handle quantity determinate,

merely severed from any axioms of natural philosophy; and these are two, geometry and

arithmetic . . . Mixed hath for subject some axioms or parts of natural philosophy . . . For
many parts of nature can neither be invented with sufficient subtility . . . nor accommodated

unto use with sufficient dexterity, without the aid and intervening of mathematics; of which

sort are perspective, music, astronomy, cosmography, architecture, enginery, and divers

others . . . there cannot fail to be more kinds of them, as nature grows more disclosed.

This division was a part of Bacon’s tree of knowledge where the natural sciences
were divided into physics and metaphysics and metaphysics divided into pure and

mixed mathematics. Academic debate in the succeeding two centuries, according to

Brown (1991), was subject to local variation as new areas of mathematics devel-

oped but largely retained Bacon’s distinction. For example, in mid-eighteenth

century France, D’Alembert, writing in Diderot’s Encyclopédie, placed the new

2 I think this ‘use of a specific tool in pure mathematics’ and ‘use of a range of tools in applied

mathematics’ is a fairly common phenomena but I do not claim that it is a universal phenomenon.
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field of probability (analysis of games of chance) into mixed mathematics but he

placed the new field of calculus within pure mathematics.

The decline of the term ‘mixed mathematics’ occurred in the nineteenth century;
Brown (1991) notes that the eighth edition of the Encyclopedia Britannica
(1853–1860) used the pure-mixed classification but in the ninth edition

(1875–1889) this was changed to ‘pure’ and ‘applied’ mathematics. Behind these

classifications is ideology. There is a strong elitist ideology of ‘learned men’ behind
writings from Plato to D’Alembert. Brown (1991, p. 84) writes:

The mathematician was concerned with doing mathematics; the philosophe with analysing

its importance to society. Who best to write about “mixed mathematics” than the scholar

who was both a “geometer” and a “philosopher”? Neither Daniel Bernoulli, Euler,

Lagrange, nor Laplace could be considered men of letters. That left only Condorcet and

D’Alembert.

But ideology and mathematics shifted their foundations in Europe during the

nineteenth century. Non-Euclidean geometries emerged which eroded geometry’s
claim as an a priori constructive field and science was viewed through positivist

empirical eyes. ‘By 1875 theories were no longer “mixed” with experience, they

were “applied” to experience’ (Brown, 1991, p. 102).

14.2.2 Subdivisions of Mathematics in the Twentieth Century

So we enter the twentieth century with a division, in the West, between pure and

applied mathematics. In the Soviet Union, however, Vygotsky (cf Sect. 7.3)

introduced a division between everyday and scientific concepts. Vygotsky did not

introduce this distinction with mathematics in mind but it is, from a Vygotskian

perspective, applicable to mathematics; in practical everyday mathematical activity

an addition such as 456 + 78 will likely involve ‘things’ (such as units of currency)

but in mathematics addition comes with a history (the culture of mathematics) and

mathematicians add numbers, not things. As noted in Sect. 7.3, Scott, Mortimer,

and Ametller (2011, p. 6), in writing of Vygotsky’s distinction, note ‘scientific
concepts are taken to be the products of specific scientific communities and

constitute part of the disciplinary knowledge of that community’; ‘the world is

flat’ was once a scientific concept. In a cultural vein similar (but not identical) to

Vygotsky’s, Bishop’s (1988) study of mathematical enculturation differentiated

between ‘mathematics’ and ‘Mathematics’:

the mathematics which is exemplified by Kline’s Mathematics in Western Culture is a

particular variant of mathematics, developed through the ages by various societies. I shall

characterise it as ‘Mathematics’ with a capital ‘M’. (Bishop, 1988, p. 19)

These cultural approaches do not directly address the distinction between pure

and applied mathematics but are concerned with the division between types of

mathematical activity. By the end of the twentieth century, with mathematics

education established as an academic discipline (see Sect. 7.2), scholars in this
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field made further divisions within mathematical activity. Blum and Niss (1991) is

an interesting example of this because it represents the collective thoughts of a

conference working group and presents ‘a pragmatic attempt to give some working

definitions’ (Blum & Niss, 1991, p. 37). It considers two types of mathematical

problems:

It is characteristic of an applied mathematical problem that the situation and the questions

defining it belong to some segment of the real world and allow some mathematical

concepts, methods and results to become involved. By real world we mean the “rest of

the world” outside mathematics, i.e. school or university subjects or disciplines different

from mathematics, or everyday life and the world around us. In contrast, with a purely

mathematical problem the defining situation is entirely embedded in some mathematical

universe. This does not prevent pure problems from arising from applied ones, but as soon

as they are lifted out of the extra-mathematical context which generated them they are no

longer applied. (Blum & Niss, 1991, pp. 37–38)

The starting point for Blum and Niss (1991) is a ‘real problem situation’:

This situation has to be simplified, idealized, structured, . . . This leads to a real model of the
original situation . . . [which has to be] has to be mathematized, i.e. its data, concepts,

relations, conditions and assumptions are to be translated into mathematics . . . [and] results
have to be re-translated into the real world . . . real problem situations can also be called

applications. . . mathematical models . . . can be seen as belonging to applied mathematics.

Of course, this definition does not imply a strict separation between “pure” and “applied”

mathematics. (Blum & Niss, 1991, pp. 38–40)

So, we are back to the division between pure and applied mathematics but the

division is not a strict one and there is also a slight difference between ‘applications’
and ‘modelling’. The translation and re-translation that Blum and Niss speak of is

often presented in a diagram, like the two leftmost columns in Fig. 14.1, in

mathematics education literature on applications and modelling of mathematics.

With reference to these two columns Fig. 14.1, the left column represents ‘reality’
(the real world) and the right column represents ‘mathematics’ (the mathematical

world). The diagram represents a cycle: situation!mathematical

model!mathematical results! real result! compare with the situation and

Situation
Mathematical

model
Computer
model

Technology
World

Computer
result

SyntaxTranslation

Validation Interpretation

Mathematical
world

Mathematical
result

Real
World

Real
result

Fig. 14.1 Siller and Greefrath’s (2010) extended modelling cycle
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note discrepancies! adjust mathematical model!mathematical results! etc. Of

the many comments that can be made on this modelling cycle, I make three. First, it

does appear (albeit in an oversimplified way) to approximate what goes on in

applied mathematical problem solving. But, second, what does it represent? Is it

supposed to be descriptive (of the work of mathematicians) or prescriptive (for

educational purposes)? Blum and Niss (1991) appear to regard it as descriptive,

‘This leads to a real model of the original situation’ (Blum & Niss, 1991, p. 38), but

my own experience of the first step is more akin to ‘situation $ mathematical

model’ than it is to ‘situation!mathematical model’ (i.e. there is a lot of ‘fiddling’
with the mathematical model). My third point regards tools and is simply that the

two column modelling cycle, which is what is usually offered, does not include

tools and I consider this further below.

It is curious, from the point of view of tool use in mathematics, that the word

‘tool’ does not feature in Blum and Niss’ account except within the context of

talking about computers as a tool. I use the word ‘curious’ in the sense that Arthur

Conan Doyle ascribes to Sherlock Holmes in theMemoirs of Sherlock Homeswhere
the detective is talking to a police inspector:

‘Is there any point to which you would wish to draw my attention?’
‘To the curious incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’
‘That was the curious incident,’ remarked Sherlock Holmes.

Computers are very interesting tools but it is curious that tools, other than

computers, are not mentioned in Blum and Niss (1991) when tools (measuring

artefacts, machinery for experiments, formulas as tools, etc.) are clearly important

in modelling and applications of mathematics. I shall mention similar omissions at

other points in this chapter, so I give it a name, ‘tool blindness’—not seeing

something until it hits you in the face. Computers are mentioned in the second

part of Blum and Niss (1991) in relation to ‘trends’ and ‘obstacles’:

• With regard to professional modelling ‘For several years it has been evident that
computers form a highly powerful tool for the numerical and graphical treatment

of mathematical applications and models’ (Blum & Niss, 1991, p. 52).

• With regard to mathematical education, computers allow ‘More complex

applied problems . . . relief from tedious routine . . . Problems can be analysed

and understood better by varying parameters . . . [and] Problems which are

inaccessible from a given theoretical basis . . .may be simulated numerically or

graphically’ (Blum & Niss, 1991, p. 58).

Siller and Greefrath’s (2010) also focus on the place of computers in modelling

(for educational purposes). They offer the first representation of the modelling cycle

(to my knowledge) that includes tools (computers), see Fig. 14.1.

Whilst it is nice, from my tool perspective, to see a recognition of the place of

technology in modelling, I am sceptical that there are three distinct worlds (as the

presentation may suggest). The practice of modelling (be it in-school of out-of-

school) is a reality. These three worlds seem to impose an ‘unreal’ partition of this
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practice.3 The resolution of this problem issue may be simply to jettison the

modelling cycle and look to real practice (in which tool use will be an integral

part of the practice). I return to this point in the final section of this chapter and now

consider out-of-school mathematical practices.

14.3 Out-of-School Mathematical Practices

Out-of-school mathematical practices cover an extensive field of activities and I

must pare this field to keep this section manageable. Section 14.3.1 sets the scene by

mapping the field. This mapping includes constructors (people who design tech-

nology) and operators (people who use technology) and Sects. 14.3.2 and 14.3.3

consider constructors and operators in turn. The final subsection looks at the place

of computers in out-of-school mathematical practices because computers hold a

prominent position in many of these practices in the twenty-first century.

14.3.1 Varieties of Out-of-School Mathematical Practices

There are many out-of-school mathematical practices—certainly too many to list. I

will first attempt a map of the field and then consider a subset of Western workplace

practices which have been a focus of research and address tool use and mathemat-

ics. My map of the field includes three divisions: leisure and work practices; levels

of involvement with tools; and Western vs. ‘other’ practices.
The distinction between leisure and work practices is not a precise one since

there are instances where such practices overlap (e.g. voluntary work). Leisure,

considered as non-paid activity, includes domestic and recreational activity.

Domestic activity includes practices which can have mathematical aspects such

as: cooking, following a new recipe (which is an artefact which is used and is thus a

tool by my Sect. 1.3 definition)—cooking also involves using a great many utensils

(tools), some of which (e.g. weighing scales) are ‘pre-mathematicised’; monitoring

household accounts, which is often facilitated by the tools available in e-banking;

and domestic repairs such as drilling a hole (finding the right drill size and ‘feeling
the right angle’ with your body). Recreational activity includes practices which can
have mathematical aspects includes: travelling, buying e-tickets online and

co-ordinating rail and flight schedules (artefacts); programming the recorder on

your TV-media unit; performing music; and playing games (see considered

in Chap. 19). Gameplay always has a mathematical aspect as games have rules

(which are artefacts, ‘mediational means’ in the language of Wertsch—see

3 Siller and Greefrath’s (2010, p. 2138) note, ‘The three different worlds shown in Fig. 2 are

idealized; they influence each other.’
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Sect. 13.3) and these rules include sequencing actions. Although some games

(e.g. soccer) can be played with only an epsilon of mathematical activity in a

similar way to which they were played 100 years ago, gameplay has increasingly

been influenced by digital technology. This is certainly so in the case of digital

games but it is also sometimes the case in games such as soccer where even some

amateur teams use performance analysis software, which provide statistics on

video-recorded motion analyses, to improve their gameplay.

My second division concerns levels of involvement with tools and I employ the

language of Skovsmose (2005). Skovsmose is interested in ‘critical mathematics’
and technology and distinguishes between ‘constructors’, ‘operators’ and ‘con-
sumers’. With regard to technology, constructors are professionals who design/

develop technology, operators are those who use/manipulate the technology and

consumers are people not involved in the construction or operation of the technol-

ogy but are affected by it. For example, a manager and a computer scientist

(constructors) may design/implement a new system of calculating wages, computer

operators run the wage system and the consumer is affected with wages and a pay

statement. My consideration of leisure practices above concern the consumer level

of involvement with tools but this level is also common in workplace practices,

especially amongst low paid workers. People’s encounters with tools/technology at
the consumer level is typically as ‘black-boxes’, a term originally from cybernetics

that refers to artefacts where the input–output relationship is hidden from the user. I

write at a time when an international banking crisis is having a profound negative

effect on the quality of life of many consumers of banking technology. Enabling

people to critically engage with black-boxes is important to critical mathematics.

This is one reason why mathematical modelling is considered important.

My third division concerns Western vs. ‘other’ practices. Western research in

mathematics education is dominated by Western researchers researching Western

contexts. A partial exception is what is commonly referred to as

‘ethnomathematics’. This was a new but rising area of research at the turn of the

Millennium but it met problems. Ethnomathematics investigates ‘indigenous,
socio-, informal, spontaneous, oral, hidden, implicit, and people’s mathematics’
(Gerdes, 1996, p. 909). Activities investigated, such as basket weaving in Mozam-

bique, are characterised as being both highly context bound and highly creative

(Gerdes, 1997). Ethnomathematics is not a non-Western phenomenon but concerns

traditions in any locality, though reports on ethnomathematical activities are often

written by people with a Western education reporting on the practices of those who

have not received a Western education. Dowling (1998, p. 14) considers that these

studies succeed in ‘celebrating non-European cultural practices only by describing

them in European mathematical terms, that is, by depriving them of their social and

cultural specificity’. Pais (2011) considers this and other criticisms of ethnomatics

as it has been researched. This and my Western background lead me to leave an

account of tool use in non-Western out-of-school practices to a more capable

author.
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14.3.2 Tool Use in Constructors’ Mathematical Practices

Frejd and Bergsten (2016) focus on constructors with specific regard to modelling.

They interviewed nine professionals (in both the commercial and academic sectors)

with Ph.D.s (all in the sciences, five in mathematics) and focused on three phases:

pre-construction, the reason for the modelling activity; construction, how the model

is developed; post-construction, the consequences of using the model. The analysis

reveals three types of modelling which they call ‘empirical’, theoretical’ and

‘applicational’; the use of computers was an essential feature in each type of

modelling. A defining characteristic of empirical modelling is data from empirical

observations though the data, of course, varied over contexts (e.g. financial risk and

workforce scheduling). The mathematical model in every case was implemented in

a computer system. Issues with the data (to feed into the computerised mathemat-

ical model) included: getting sufficient data; cleaning data; dealing with gaps

(e.g. for time series analysis); locating errors in the data. In my experience of

such things the time actually using the tool (computer) is a tiny proportion of the

time preparing the data for tool use but the tool is central to the activity.

Theoretical modelling involves:

. . . setting up new equations based on already theorised and established physical equations.

This is followed by the activation of computer resources for computational purposes to

solve the new equations with aim to get information about the ‘theorised’ equations.

(Frejd & Bergsten, 2016, p. 24)

Example problems in theoretical modelling include predicting climate change

and the design of a new material. At the heart of theoretical modelling is the

mathematical model and its implementation on a computer. In the problems cited

in Frejd and Bergsten (2016) this computer had to be ‘powerful’, as the designer of
models for new materials said, ‘The computer is our big tool, not least when it

comes to solving these quantum mechanics equations’ (Frejd & Bergsten, 2016,

p. 26).

Applicational modelling refers to ‘identifying situations where some mathemat-

ics or some established mathematical models can be directly applied’ (Frejd &

Bergsten, 2016, p. 26); this was an aspect of the work of all nine modellers. For

example, one of the nine modellers was a biologist who was looking into the spread

of diseases between oak trees. His starting point was differential equations:

Fourier transformations are really good and you can then rewrite anything as a sum of sine

functions. [. . .] This has been used by people at the department of systems control [. . .]
Basically it is knowledge about mathematical methods that do the work, and sometimes you

start with the problem and then you add a method [. . .] It is basically the same thing if bugs

fly between oak trees or if animals are transported in trucks. (Frejd & Bergsten, 2016, p. 27).

In the above summary of Frejd and Bergsten (2016) I focused on the construc-

tion phase where a mathematical model (an artefact) and various other mathemat-

ical tools, especially computers, were central features of the activity in all cases.

The discussion of the pre- and post-construction phases in Frejd and Bergsten

(2016), however, highlight that mathematical tool use is but a part of the activity
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of modelling. These modellers serve clients who are not necessarily able to under-

stand the model or computer use. In the pre-construction phase the client needs to

be convinced that the model will be useful for his/her purpose and in the post-

construction phase the client needs to be made aware, by the modeller, of the

potential and the limitations of the model. Communication/dialogue is also an

essential feature of professional modelling activity. I now turn to Skovsmose’s
(2005) ‘operators’.

14.3.3 Tool Use in Operators’ Mathematical Practices

Operators, people who use/manipulate rather than design/develop technology, are a

very large class in themselves which includes technicians (manual, e.g. plumbers,

and blue collar, e.g. insurance clerks), social service workers (e.g. nurses and

police), sales people and teachers (e.g. a mathematics teacher using mathematical

software). Skovsmose’s (2005) three categories (constructors, operators and con-

sumers) are wide categories and there are ‘grey areas’. For example technicians

may adapt given tools to their needs in a specific activity and clerks who operate

payroll systems are themselves customers of a payroll system. The categories are

nevertheless useful for focusing on tool use in out-of-school mathematical

practices.

Noss and Hoyles (1996) distinguish between ‘visible’ and ‘invisible’ mathemat-

ics in out-of-school activity. Visible mathematics is that which is immediately

recognised as being mathematics. This distinction is clearly context/person specific.

The mathematics in the work of the constructors considered in Frejd and Bergsten

(2016) was visible but it is common, when you ask an operator ‘What mathematics

is involved in your job?’, that they reply ‘None’ or ‘Very little’. Very often there is

mathematics in this job but they do not see it as mathematics, it is invisible to them,

often ‘hidden’ in tools they use. I shortly explore these general statements in some

detail in the context of research I was involved in but I first outline research by a

group that provides themes for a discussion of issues related to operators, mathe-

matics and tools.

Hoyles, Noss and Pozzi focused on operators in a series of publications (see

Noss, Hoyles, & Pozzi, 1998, for a summary) which examined mathematics in

nursing, banking and flying workplaces. In a report of nursing practice (Pozzi, Noss,

& Hoyles, 1998, considered in Sect. 9.2) they focus on drug administration and fluid

balance monitoring aspects of patient care. The research team made multiple

hospital visits to 12 experienced nurses over 4 months which resulted in 80 h of

observation.

They set out to observe activities which involved visible mathematics and the

mathematisation of the nurses’ professional practice. In all cases they

attempted to delve beyond simple arithmetic procedures to try to understand more complex,

but perhaps less visible parts of decision–making on the ward . . . [by separating] out
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episodes involving routine behaviour from those involving a breakdown in the normal

habits of nursing practice (Pozzi et al., 1998, pp. 107–108, italics added).

For example, drug administration appears to involve ratio and proportion but

proportional reasoning was replaced in routine practice by arithmetic rubrics. They

provide an example of a nurse preparing 85 mg of an antibiotic from a vial

containing 100 mg of the drug in 2 mL and using the formula (an artefact)
Amount you want

Amount you have got � Volume it is in. The formula, however, is not conceived ‘math-

ematically’ but as a strategy for calculations for specific drugs, ‘It was often heard

that “with amikacin you can double it and divide by a hundred” or “with

ondansetron, you only need to half it”’ (Pozzi et al., 1998, p. 110). I now turn to

an example where Pozzi et al. (1998) interpret a ‘breakdown’ situation. For reasons
of space I omit many of the details which can be found in Pozzi et al. (1998).

Two nurses are discussing a fluid balance chart (an artefact) of a patient who has

recently had a kidney transplant. The chart is not questioned by the nurses and it

comes with a mathematical structure: the rows record times; the columns record

fluids in and fluids out. Sam, an experienced nurse who is new to the ward asks ‘why
are you recording the difference between these two?’ and Al, the nurse who is not

new to the ward replies ‘Because then when I come to add it up, I add my hourly

totals. To get this one, that’s why I need to know that figure’ (Pozzi et al., 1998,
p. 113). Further dialogue around the numbers in the chart ensues, basically along

the lines of Al providing rationales for the calculations in the given chart and Sam

questioning how the numbers relate to the patient’s situation. Eventually Al sees

Sam’s point and concedes ‘I suppose you should write down the rate’.
In their summary, Pozzi et al. (1998) note:

Professional cultures contain a huge number of artefacts which are, like the nurses’ chart or
the nursing rule, already mathematised . . . workers rarely think mathematically without an

artefact to help them to organise or compute the data. In routine use, this mathematics is

invisible, and remains so—indeed, the functionality of artefacts often crucially depends on

this invisibility. But at times, people will need to understand the models which underlie

their artefacts, to sort out what is happening or what has gone amiss . . . As we saw in the

fluid balance episode, this typically occurs when there is a breakdown, and in such a

situation, people need to represent to themselves how the underlying structures work

(Pozzi et al., 1998, p. 118)

I think Pozzi et al. (1998) provides both a well-grounded evidence-base for its

claims and insightful comments on tool use in the practice of a group of operators

(nurses). But, taken alone, there is a danger that these claims for one practice may

be viewed as generic for operators in general. I now consider Magajna and

Monaghan (2003) which has similarities and differences to Pozzi et al. (1998).

Magajna and Monaghan (2003) is a case study of the mathematics and tool use

of six computer aided design and manufacture (CAD-CAM) technicians. It reports

on these technicians’ calculations of the internal volume of moulds they produce for

glass factories. The six technicians work as a team but three of them (constructors)

liaise with clients and three (technologists) liaise with machinists in their factory

who produce the metal moulds for glass bottles. The technicians were observed for
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60 h over 3 weeks. Constructors evaluate whether a mould for a bottle can be

manufactured, define the dimensions of the mould, design the bottle and the mould

and make technical drawings. Technologists define the surfaces to be cut, write the

programs for computer-numerically-controlled machines and, independently from

the constructors, determine the inner volume of the mould.

A mould consists of three parts which close around a piece of molten glass of a

given weight/volume. Compressed air is pumped into the molten glass which

adheres to the inner shape of the mould. When the glass is cooled, the three pieces

of the mould are separated and the bottle is released. The important job is to define

the inner shape of the mould and to cut them out using appropriate machines. There

are several volumes: of the bottle filled; of the glass; and the inner volume of the

mould. The relations between these volumes is obvious to the technicians and the

only volume they are concerned with is the inner volume of the mould. When they

spoke about a volume related to a bottle they meant the inner volume of the mould.

Getting the inner volume correct to a high degree of precision is essential for client

satisfaction. The technicians do not distinguish between exact and approximate

volumes as all calculations are approximate to them. Six methods of calculating the

volume of a shape were observed:

1. The constructors drew the 2D-profile on a computer system and then used a

program which automatically calculated the volume of the rotated shape.

2. The constructors represented the shape of the bottle in terms of horizontal cross-

sections at various heights and drew a sequence of cross-sections. The volume of

the part of the bottle between two horizontal sections with respective areas A and

B and the height h between the sections was calculated using the formula

V ¼ h Aþ ffiffiffiffiffiffi

AB
p þ B

� �

=3. The constructors did not know where this formula—

it was ‘a shop-floor tradition’.
3. The constructors calculated the volume of a bottle using a 3D-solid CAD.

4. The volumes of standard geometric shapes were calculated using school-learnt

formulae, e.g. to calculate the volume of a prism of height h, the constructor

drew its base on a computer to obtain its area, A, and then used the formula

V¼ hA.
5. The technologists obtained the volume of a shape using a 3D-surface modeller

integrated into the CAM software they used. The program they used calculated

the volume of a polyhedron with the vertices on the mesh points, but the

technologists ignored this.

6. Once the mould was made, its volume was measured by weighing the water

it held.

I now consider similarities and differences between this research and that of

Pozzi et al. (1998). Both studies provide evidence that the operators under scrutiny

rarely engage in mathematics without the use of an artefact/tool. Pozzi et al. (1998,

p. 115) add, ‘the use of artefacts never fully structures activity. People are not

necessarily slaves to the tools they use’ but Magajna and Monaghan (2003, p. 119)

state, of the technicians in their study:

14.3 Out-of-School Mathematical Practices 343



The mathematics they were really doing, their work mathematics, was inextricably joined

with the technology they used. The geometry elements in their designs always represented

technological entities and the calculations they performed were grounded in technology.

Our practitioners used mathematical tools, including software, as ‘black-boxes’. They were
not observed to reason about the mathematics hidden in these tools and if a tool-based

method did not work, they simply chose another method or overcame the problem by

technological means.

A second difference is that Pozzi et al. (1998) concerns ‘breakdowns’; as cited
above, ‘at times, people will need to understand the models which underlie their

artefacts . . . this typically occurs when there is a breakdown’ (Pozzi et al., 1998,
p. 118). Magajna andMonaghan do not dispute that this did occur in observations of

the nurses but did not find this to be the case in their study. In breakdown situations

their practitioners either chose another method to overcame the problem by tech-

nological means:

participants’ reactions to 16 cases of non-trivial mathematics-related errors were observed.

In 14 out of the 16 cases the error was due to a mistake in a computer generated geometric

construction. Analysis revealed the following causes of errors: poor understanding of some

detail in a construction command (11 cases), undocumented details about construction in

the software (3 cases), a misunderstanding between participants (1 case) and difficulty in

visualising the shape (1 case). In such breakdown situations the participants never reasoned

about possible mathematics-related causes of the error, e.g. whether they understood the

mathematical aspect of the applied construction. In most cases the geometric error was left

unresolved and a solution was found by technological means (8 cases). (Pozzi et al., 1998,

pp. 113–114)

This comparison of these two studies suggests that the differences observed/

interpreted in these two studies are likely to result from the particularities of the

different workplaces observed and that further studies on tool use in other work-

places are needed.

14.3.4 Computers in Out-of-School Mathematical Practices

I end this section with a consideration of the place of computers in workplace

mathematics. Although a computer is just another tool (or ‘set of tools’—see Sect.

1.2), the prominence of computers in the workplace in the twenty-first century

merits special consideration. This prominence is evident in the above discussion of

constructors. It is also evident in Magajna and Monaghan’s (2003) study of

CAD-CAM technicians/operators. Studies in trends in workplace skills provide

evidence that ICT is an increasingly important part of employment:

There has been a striking and continued increase since 1986 in the number of jobs in which

advanced technology is used. There has also been a marked increase over the last four years

in the proportion of jobs in which computing is considered to be an essential or very

important component of the work. Over 70 percent of people in employment now make use

of some type of automated or computerised equipment, and computerised equipment is

seen by 40 percent as essential to their work. (Felstead, Gallie, & Green, 2002, p. 12)
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Researchers who have addressed this issue are, again, Celia Hoyles and Richard

Noss (with colleagues). Noss and Hoyles (2009) reconsider modelling to address

the advance of ICT in twenty-first century work practices, ‘With the ubiquity of IT,

employees now require new kinds of mathematical knowledge that are shaped by

the systems that govern their work’ (Noss & Hoyles, 2009, p. 76). Behind this paper

are two reports which I now consider.

Hoyles, Wolf, Molyneux-Hodgson, and Kent (2002) reports on research into

mathematical skills used/needed in seven areas of employment spanning engineer-

ing, financial services and health care. It coined the term ‘mathematical literacy’
which arose from the required skills and made four recommendations. ICT (‘IT’ in
the language of the Report) is not the sole focus but it is a major focus: mathemat-

ical literacy is defined by a list of 12 skills of which the first 2 are ‘Integrated
mathematics and IT skills; an ability to create a formula (using a spreadsheet if

necessary)’ (Hoyles et al., 2002, p. 5); all the recommendations bar the last one on

communication refer to IT:

That IT and mathematical skills are interdependent . . .Developing models of new forms of

training for all employees which reflect mathematical literacy that is integrated with IT

competence . . . To investigate the development of training programmes which will be

effective in the workplace by achieving a balance between physical experiences and

software packages (Hoyles et al., 2002, pp. 3–4)

The IT dimension of Hoyles et al. (2002) was further developed in Hoyles (2007)

under the term, ‘Technomathematical literacies (TmL), that is, being able to reason

with quantitative or symbolic data processed by information technology as part of

decision-making or the communication process’ (Hoyles, 2007, p. 16). A construct

introduced in Hoyles (2007) is ‘technology-enhanced boundary object’ (TEBO).
The construct ‘boundary object’ was introduced in Star and Griesemer (1989) and

has been widely used in social science research since its introduction. A boundary

object is an artefact created in one community of practice and travels to a distinct

community of practice. Boundary objects abound in all practices including math-

ematics (e.g. Sloane’s online Encyclopedia of Integer Sequences, see Chap. 3) and
mathematics education (a new version of a mathematics curriculum devised by

Ministry workers and sent to teachers). An interesting feature of boundary objects is

that the meanings ostensibly embedded in them by their creators are re-interpreted

by members of the receiving community. Hoyles (2007) TEBOs were linked to

TmLs and workplace learning opportunities, ‘Learning opportunities incorporated

interactive software tools that modelled elements of the work process, or were

reconstructions of the symbolic artefacts from workplace practice . . . TEBOs . . .
involving many cycles of collaborative design’ (Hoyles, 2007, p. 18).

Hoyles (2007) provides an example of a packaging factory making plastic film

by an extrusion process. The computer control and monitoring system, it is claimed,

served as a boundary object between managers, engineers and shop-floor machine

operators. The computer system captures data on the stages in the process and

presents this data in graphical form but shop-floor operators rarely looked at them.

The research team identified a TmL:
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Understanding systematic measurement, data collection and display; appreciation of the

complex effects of changing variables on the production system as a whole; being able to

identify key variables and relationships in the work flow; and reading and interpreting time

series data, graphs and charts (Hoyles, 2007, p. 21)

The research team in collaboration with employees developed a TEBO, a

computer simulation of the production process with a goal to achieve stable running

of the extrusion process. The hands-on TEBO training was viewed by a process

engineer as a superior learning opportunity for operators than prior observational

style training. From the perspective of tool use in mathematics it is an interesting

case of using a tool (a computer model) in workplace training to simulate another

workplace tool (the computer system that monitors the actual process).

14.4 Links Between In-School and Out-of-School
Mathematical Practices

This section has two subsections. The first presents a case that linking in-school and

out-of-school mathematical practices is an incredibly difficult undertaking. The

second looks at research that has sought ways into making links between in-school

and out-of-school mathematical practices.

14.4.1 Difficulties in Linking In-School and Out-of-School
Mathematical Practices

The application of school mathematics to everyday and work settings is one of the

main rationales for the place of mathematics in national curricula: ‘This fact in

itself could be thought to provide a sufficient reason for teaching mathematics’
(Cockcroft, 1982, paragraph 1). Last century there was a perception, that I believe

was widespread, that people, as students, learnt mathematics in school and applied

this same mathematics, when appropriate, in out-of-school settings. In the UK, for

example, the Mathematical Association wrote, concerning the teaching of arith-

metic in schools, ‘The arithmetic rules and processes needed in the practice of

double entry book-keeping are, in the main, those with which the pupils of

secondary schools are familiar . . . The corresponding arithmetic work may be

[there follows a list of topics]’ (Mathematical Association, 1952, p. 73).

This perception commonly goes by the name ‘transfer’ (of knowledge or of

learning). In the late twentieth century a number of studies presented data and

theories of learning/doing mathematics that ranged from regarding transfer as

highly problematic to rejecting it outright as a myth. In this section I first consider

two studies/theories that question transfer. I then consider the school mathematics
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and attempts to make links between in-school and out-of-school mathematical

practices.

A book that generated a great deal of interest (ranging from revelation to

outrage) in the mathematics education community is Lave (1988). Lave presented

data that people could do mathematics ‘better’ in supermarkets than in a test; her

examples were arithmetic, the cost of items in a supermarket and equivalent ‘sums’
in a paper and paper test. Lave had a theory, which came to be called ‘situated
cognition’, that supported her data, that claimed that how one thinks is tied to the

practice one is engaged in. ‘Situated cognition’ is probably an unfortunate name

from Lave’s viewpoint as she is scathing of traditional cognitive research on

‘knowledge’:

the effect on cognitive research of “locating” problems in “knowledge domains” has been

to .separate the study of problem solving from analysis of the situations in which it occurs

. . . “knowledge domain” is a socially constructed exoticum, that is, it lies at the intersection
of the myth of decontextualized understanding and professional/academic specializations

(Lave, 1988, p. 42)

To Lave (1988) learning in and out of school are different social practices and

there is no reason to expect learning in one social practice to influence another

social practice. But Lave’s, 1988 exposition is not illuminating from the point of

tool use in mathematics because tool use in learning does not feature in this account.

Indeed, of the wider literature on communities of practice (which includes Lave’s,
1988 account), Kanes and Lerman (2008) write, ‘a theory of mediation is needed

. . ..The nature and . . ..role of artefacts and tools is hazy’ (Kanes & Lerman, 2008,

p. 320).

Lave (1988) regards the perception of transfer of learning across social practice

as a myth. Around the same time as Lave developed her theory, Saxe (1991)

developed an approach that viewed transfer as problematic but not necessarily

impossible.

Saxe (1991) uses a model, developed in ethnographic research into the transfor-

mation of mathematical practices of Papua New Guinean tribespeople, to examine

the candy-selling practices of Brazilian street children, and then to explore links

between in-school and out-of-school mathematical practices. Saxe’s model has

three components: analysis of practice-linked goals; form-function shifts in cogni-

tive development; the interplay of learning across contexts (i.e. ‘transfer’). It
suffices for this section of this chapter to focus on the first component where of

‘practice-linked goals’ means ‘emergent goals’—‘must do’ things that arise in

practice and can interrupt that practice is they are not resolved. For example, buying

something in a shop in a foreign country may induce the emergent goal ‘determine

the values of these coins in my wallet’. Emergent goals may or may not be related to

mathematics; the agent is not necessarily aware of emergent goals. Saxe claims that

four ‘parameters’ impinge on the resolution of emergent goals:

• Activity structures, ‘general tasks that must be accomplished in the practice- and

task-linked motives’ (Saxe, 1991, p. 17)
• Social interactions, relationships between participants
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• Conventions and artefacts, ‘the cultural forms that have emerged over the course

of social history’ (Saxe, 1991, p. 18)
• Prior understandings, which ‘constrain and enable the goals they construct in

practices’ (Saxe, 1991, p. 18)

I have found Saxe’s model useful in examining in-school and out-of-school

mathematical practices (see Magajna & Monaghan, 2003; Monaghan, 2004; Mon-

aghan, 2007b) since it affords an analysis of practice to consider the dialectic

between mathematics, tool use, networks of artefacts and social activity (which

was discussed in Part I of this book). When Saxe (1991) gets to examining learning

across contexts (transfer), this model allows him to explore aspects of ‘transfer’
rather than make general claims as to its existence or not.

I provided these brief accounts of two late twentieth century frameworks related

to the perception of transfer to establish a background assumption in twenty-first

century academic mathematics education, that transfer, and making links between

in-school and out-of-school mathematical practices, is problematic. The issue is

ongoing. Although Lave’s (1988) ‘situated view’ of transfer was that it is a myth,

Engle (2006) presents a situated view of transfer as ‘framing’—‘making references

to both past contexts and imagined future ones . . .[to] make it clear to students that

they are not just getting current tasks done, but are preparing for future learning’
(Engle, 2006, p. 456), and forms of learner participation. A research question

awaiting a researcher is whether framing tool use in mathematics learning can be

used to promote intercontextuality.

Neither Lave (1988) nor Saxe (1991) explore school mathematics classroom

practices to any depth and it is appropriate to consider this practice at this juncture.

There are differences between countries (Mullis, Martin, Foy, & Arora, 2012),

within countries (Noyes, 2012) and within schools (Noyes, 2012) in school math-

ematics classroom practices but a common feature of mathematics classrooms is

that they consist of a set of learners and a teacher (or teachers) who have come

together, ostensibly for the teacher to help the learners engage in mathematics. It is

important to that the age/experience of the children is taken into account though it

should not be assumed that young children cannot engage in ‘applied mathematics’.
Mathematical practices in classrooms are distinct from those of mathematicians

(pure or applied). Sect. 10.4 details Chevallard’s notion of ‘didactical transposi-
tion’; this is neatly encapsulated by Lagrange (2005, p. 69) ‘mathematics in

research and in school can be seen as a set of knowledge and practices in transpo-

sition between two institutions, the first one aiming at the production of knowledge

and the other at its study.’ Strange things such as the suspension of sense-making
(see, for example, Verschaffel, Greer, & De Corte, 2000) can happen in mathemat-

ics classrooms. For example studies in various countries have presented primary

school children with ‘There are 26 sheep and 10 goats on a ship. How old is the

Captain?’ and a common answer is ‘36’. There is, of course, a sense to this answer,
‘this is a mathematics class and there are two numbers in this question, I’ll add
them’, but this sense works against the sense needed to link in-school and out-of-

school mathematics. School mathematics here is seen as a sort of ‘game’.
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Verschaffel, Greer, and de Corte (2002, p. 262) cite a 13-year-old student who,

when asked by an interviewer why she did not make use of realistic consideration in

her solution to a problem, responded:

I know all these things but I would never think to include them in a math problem. Math

isn’t about things like that. Its about getting sums right and you don’t need to know outside

things to get sums right.

And school mathematics is often such a game. In disturbing research by Cooper

and Dunne (2000) the researchers presented upper primary and lower secondary

school children with ‘esoteric’ (e.g. 2x+ 1¼ 17, find x), realistic mathematics

questions and analysed responses with regard to the children’s social class. The

working class children held their own very well, against children with parents in the

professions, in the esoteric questions but performed comparatively poorly in the

realistic questions. An interpretation of this data is that working class children took

the realistic questions seriously but the other children knew it was just a game and
this disadvantaged the working class children. For example, a question about the

price of a soft drink and a bag of popcorn in a cinema was a disguised simultaneous

equations question and children drawing on knowledge of actual cinema prices

would get the answer wrong. But even when it is not seen as a game, school

mathematics is almost always done in a mathematics lesson and this ‘situation’
appears to matter. Monaghan (2007b) reports on a study where a company director

came into a mathematics class (students aged 14–15) and gave them a problem he

was working on (about how to use a GPS position to register when one of his

haulage vehicles had arrived at its destination). The research picked up the follow-

ing exchange between two students:

Student 1 Shall we draw this as a graph?

Student 2 Why?

Student 1 ‘Cos that’s normally what you do with co-ordinates.

The company director wanted a solution to a real problem. He expected that

mathematics could be used in the solution but Student 1 expected to use a particular

approach due to the mathematical content.

14.4.2 Attempts at Linking In-School and Out-of-School
Mathematical Practices

I now focus discussion towards artefact/tool use in attempts to link in-school and

out-of-school mathematics. The widespread use of artefact/tools in out-of-school

mathematics documented in the first half of this chapter suggests that this focus may

have potential to make links between in-school and out-of-school mathematics. I

first note, in my experience, a restrictive vision with regard to tools in the applica-

tions of mathematics in schools. In 2005, at the outset of a project in my locality

concerned with linking in- and out-of-school mathematics, I sent out a
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questionnaire to local schools with a series of questions on this topic (this is

reported in Monaghan & Sheryn, 2006). One question was:

Does your department use any special resources for linking school mathematics to out-of-

school mathematical activity? Anything from surveying equipment, to catalogues to com-

puter software, please specify.

Fifty-two percent of the schools stated that they did not use any special

resources. The remainder mentioned occasional use of resources. Twelve percent

stated that they had holidays and shopping catalogues. Other resources mentioned

were trundle wheels and clinometers. There appears to be a bit of a tool blindness
(not consciously recognising the use of tools in activity) here as none of the schools

mentioned software and I knew that many of them did use spreadsheets in math-

ematics work. Nevertheless, it does not appear that artefact/tools (resources) are

viewed as important in the applications of mathematics. Tool blindness (or, at least,

partial vision) appears in research too. Masingila, Davidenko, and Prus-

Wisniowska (1996) employs Saxe’s framework; it reports on three workplace

mathematics studies (dietetics, carpet laying and restaurant management). Selected

problems from these contexts were given to pairs of secondary students who were

observed and questioned as they solved the problems. They found differences in

‘the goals of the activity, the conceptual understanding of persons in each context,

and flexibility in dealing with constraints’. Although the paper discusses the role of
artefacts/tools in workplace mathematics in its presentation of the theoretical

framework, it says surprisingly little about artefacts/tools in its comparison of

workplace and in-school problem solving and when it does, it does so in quite

general terms, for example:

For both the restaurant manager and the interior designer, solving the problems were

necessary parts of their jobs. They used mathematics as a tool to help them solve problems

and not as the goal of the problem. The students, however, seemed to view the problems as

mathematical exercises and immediately started using algorithms that they thought would

be appropriate. (Masingila et al., 1996, p. 182)

Even when they explicitly consider Saxe’s parameter concerned with artefacts

they merely mention, with regard to carpet laying, ‘students may invent notation to

indicate when objects are the same size and shape, in the course of working in a

measurement context, before they have formalised the concept of congruence’
(Masingila et al., 1996, p. 196).

Two school-based studies that do focus on genuine artefacts are Lowrie (2011)

and Bonotto (2013), though the artefacts in question in both papers are not math-

ematical tools.4 Lowrie’s focus is twofold, the use of genuine artefacts and collab-

orative learning in solving realistic mathematics problems. The children were a

Grade 6 class (11–12 years old) from an Australian primary school. The artefacts

4 This is not meant to belittle the mathematical potential of artefacts that are not mathematical

tools. Many artefacts of this kind enable what the Freudenthal school (see Freudenthal, 1991) call

‘horizontal mathematization’; mathematics can be extracted from the artefact and the artefact can

be mathematically structured by the agent.
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used were brochures, menus, bus timetables, photographs and a real map from a

local theme park. The children worked in small groups to plan a group trip to the

theme park, ‘plan the day’s events with appropriate details and budgetary consid-

erations . . . use the map as your main reference point’ (Bonotto, 2013, pp. 4–5). The
artefacts were judged to have learning potential, they:

Encouraged the children to make connections to real-life experiences . . . [children] sourced
a great deal of visual, spatial and graphical information from the artefacts . . . established a

strong motivational intention for the open-ended task. (Lowrie, 2011, pp. 7–8)

With regard to collaborative learning, however, there was considerable variation

in the: quality of the solution; the authenticity of the solution; the manner in which

the group work (collaboratively or with one student dominating). Lowrie’s inter-
pretation of this is interesting:

These artefacts establish a sense of problem solving ‘integrity’ . . . helps to establish

meaningful engagement between peers . . .However, as the students accessed and used

personal knowledge to solve problems, they were less likely to monitor and manage

collaborative group goals. (Lowrie, 2011, p. 14)

So the use of genuine artefacts has great potential for applied problem solving in

schools but the solutions by individuals in groups are often rich, complex and varied

and many of these students found it difficult to simultaneously focus on the

complexity of their own solution and that of their peers. It is useful when research

alerts us to matters such as these which may not be obvious.

Bonotto (2013) has similarities to Lowrie (2011), the age of the children and the

types of artefacts, but focuses on artefacts as a source of real-life problem-posing

(I will only refer to problem-posing when necessary as it is not my focus in this

chapter). The study was in two parts. The first part was exploratory, ‘to evaluate . . .
the products of the problem-posing process when it is implemented in situation

involving the use of suitable artifacts, with its related mathematics, and particular

teaching methods’ (Bonotto, 2013, p. 42). The evaluation was largely positive:

children had no difficulty translating typical everyday data, present in the artefacts, into

problems suitable for mathematical treatment . . . [but] it was decided to modify some of the

data of the problem in order to render the resolution of the problem more straightforward.

(Bonotto, 2013, p. 43)

The second study had three phases: presentation of the artefact (a brochure for an

amusement park); a problem-posing activity; a problem-solving activity. Two

classes from different primary schools participated. There were similarities and

differences between these classes. Whilst all but one of the 189 mathematical

problems posed were mathematical one school generated 58 problems whilst the

other generated 131 problems. About three quarters of problems from each school

were solvable. The school which generated more problems also had a greater

variety of types of problems and more ‘original problems’, ‘Original problems

include inverse problems, and problems containing almost all the information on

the artefact’ (Bonotto, 2013, p. 50). This may suggest that problem-posing from an
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artefact is related to the nature of the teaching children have experience (and this

seems a reasonable hypothesis).

Lowrie (2011) and Bonotto’s (2013) study provide evidence that artefacts can be
useful in generating links between in-school and out-of-school mathematics,

though both raise issues for further research. A further aspect of artefacts in

generating such links is the production of artefacts. This, as we saw in Chap. 8,

ties in with constructionist thinking, ‘we extend the idea of manipulative materials

to the idea that learning is most effective when part of an activity the learner

experiences as constructing is a meaningful product’ (Papert, 1987, abstract).

Monaghan (2007a) reports on the production of artefacts within secondary school

mathematical activities designed to link in-school and out-of-school mathematics

activities. In this 2-year study eight teachers worked with the researchers (and often

an out-of-school expert) to co-design school-based projects on out-of-school

themes. Of 20 project designs 13 were implemented and in 4 of these the production

of artefacts was the student outcome: ‘designing a mathematical garden’ involved
transforming a garden including making a sundial; ‘designing shelf-ready packag-

ing’ involved making a cardboard template of the packaging which was suitable for

assembly on a production line; ‘writing a rap song’ with specialist music software

resulted in electronic music; ‘setting up your own business’ involved producing a

business plan on a spreadsheet which was suitable to send to a bank. In all of these

projects, artefacts were used to produce new artefacts, which is the case in many

out-of-school practices.

14.5 A Consideration of the Issues

The distinction between pure and applied mathematics, the use of mathematics in

out-of-school practices and linking in-school and out-of-school mathematical prac-

tices are substantial and ongoing issues and it would be foolish of me to expect my

tool-focused consideration of these issues in this chapter to bring a resolution to any

of them. But a lot of detail has been presented in the three sections above and it is

appropriate to consider the punch line of this scholarship and research. I structure

this section by considering the ‘problem issues’ (problems of interpretation and

problems of apparent gaps in understanding/research).

I started this chapter suggesting that there is a sense in which the division

between pure and applied mathematics is a real division between mathematical

activity for intrinsic or extrinsic purposes but also a sense in which the division

between pure and applied mathematics is a cultural–historical division (and then I

took a quick historic tour of ways of conceptualising divisions in mathematical

activity). This is a problem issue—what, if anything, is the distinction between pure

and applied mathematics?

I think the key to understanding this problem is recognition that there exists the

practice of doing mathematics and interpretations of this practice. If we return to

Jon’s Chap. 3, an account of the practice of doing mathematics, we can see what
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might be called ‘pure’ (Case Study Ia: Iterative Reflections) and what might be

called ‘applied’ (Case Study Ib: Protein Confirmation) mathematics but Jon does

not employ these terms in his discussion of these case studies, he just reports on

mathematics research (and the significant use of tools in this practice). This appears

to be true of non-experimental mathematicians as it is for experimental mathema-

ticians. This ‘problem issue’ is a problem issue for (some) interpreters (philoso-

phers, historians and mathematics educators), not for (most) practitioners. But the

interpreters, it seems, do play a role in determining the education (and thus the

practice) of future practitioners in as much as they play a significant role in

determining the structure of mathematics curricula (from Greek to medieval to

modern times). With regard to tool use in mathematics, there appears, to use a term

I coined above, tool blindness in many practitioners and interpreters. This does not

appear important in the case of practitioners as they will use tools whether they

realise it or not but it is important in the case of interpreters who have a say in

structuring curricula (if their interpretations of the appropriate tools for doing

mathematics are out of synch with the tools future practitioners need).

The second problem issue I raise is ‘the modelling cycle’ discussed in Sect. 14.2.
I outlined my problems with this cycle above: it is oversimplified; it is not clear

what it represents; and the usual presentation of this cycle does not attend to tool

use. The Siller and Greefrath (2010) version of this cycle partially attends to tool

use but raises complications by positing three worlds. I suggest that it may be useful

to ignore the modelling cycle and simply look to practice and this appears to be an

approach of current research, for example Noss and Hoyles (2009). I hope that this

book will contribute to a focus on tool use (including computers but not just

computers) in these practices. But if this leads to a new interpretation of out-of-

school mathematical practices, then we should not view this as the final interpre-

tation. Any interpretation will, from a cultural–historical perspective, be an interim

interpretation in the developmental path of our understanding of the divide between

‘pure’ and ‘applied’ mathematics, a step on the way from the ancient Greek

quadrivium, to pure and mixed mathematics, to pure and applied mathematics to

. . . another understanding.
The third problem issue I raise is the difficulty of characterising tool use in out-

of-school mathematical practices. Contributing to this problem issue are: the sheer

number of out-of-school mathematical practices and the variation in both the tools

used and the way tools are used in these practices; research into these practices

requires contextual data, often obtained by time consuming ethnographic methods,

so surveys of tool use may have limited value; mathematical tools are often

invisible to practitioners and researchers. Section 14.3 only considered three studies

in any depth. These studies all pointed to the importance of tool use in out-of-school

mathematical practices but they do offer differing interpretations of tool use in

practice. I am not worried about these differences but they suggest that we have

barely scratched the surface of understanding tool use in practice.

Finally I raise a set of problem issues related to school mathematics. School

mathematics is/can be viewed as a game and when this game is applied to linking

mathematics to the real world it often results in the suspension of sense making and

14.5 A Consideration of the Issues 353



can disadvantage certain classes of children (Cooper & Dunne, 2000). Schools and

classrooms are institutions and we should not expect ‘real-life’ reasoning to arise

‘naturally’ (Monaghan, 2007b) in them or that learning will ‘naturally’ transfer out
of them. Tools and genuine artefacts appear to hold some hope that school math-

ematics can be related to real-life activities but many teachers and some researchers

appear to have a form of tool blindness. But an awareness of problem issues can be

a prelude to attempts to address problem issues.
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