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Foreword

In our book Windows on Mathematical Meanings: Learning Cultures and
Computers, Celia Hoyles and I wrote:

The role of mathematics in underpinning social and economic life stretches back to the

dawn of the industrial revolution and beyond. Every aspect of modern society is infused

with the congealed mathematical labour of mathematicians, computer scientists, engineers

and so on. Yet at the same time, this mathematics is increasingly invisible to those who

merely share in, rather than construct, the artefacts of the culture . . . It is mathematics

which lies dormant inside the chips of vacuum cleaners, the warheads of missiles, and the

graphical displays of news broadcasts. Even the simple exchange of goods and commod-

ities, once relatively amenable to mathematisation, has been overwhelmed by the workings

of global markets which are dominated by invisible mathematical forces that are increas-

ingly out of control. (Noss & Hoyles, 1996, p. 253)

I am sure neither of the authors would claim any special prescience in predicting

the state of affairs we find ourselves in some 20 years later. It would be banal, now,

to force such an obvious point. In a world of CGI, mobile communications and

automated drone strikes, the importance of mathematics in our lives has never been

greater—or more greatly acknowledged. The world has truly changed, and with it,

the role of mathematics has become a critical force.

In school, while the importance of mathematics is widely appreciated, it is often

unclear what this implies or how this appreciation should manifest itself. Celia and I

argued that the computer could have some special role in changing that. Centrally,

our argument was to do with the possibility of employing computers to open up—to

make visible—the knowledge that drives the world, not just how to improve the

transmission of knowledge from teacher to student. Our friend and inspiration,

Seymour Papert, at the 17th ICMI Study Conference on Digital Technologies and

Mathematics Teaching and Learning: Rethinking the Terrain, encouraged mathe-

matics educators present to acknowledge the dependence of mathematical expres-

sion on tools and the ways in which mathematics is shaped by their use. Papert

challenged us to spend ‘just 10 %’ of our time focusing on the what rather on only

the how of mathematics teaching and learning. A necessary—though far from

vii



sufficient—condition for change is for computers to be ubiquitous, to be freely

available as a tool that is genuinely useful to accomplish worthwhile goals.

It is happening. Each of us—in the developed world at least—has a powerful

computer in our pocket. Yesterday, I attended the launch of the BBC’s Micro Bit
computer, which—according to its designers—is a ‘pocket-sized computer set to be

given to about one million UK-based children in October’. The details don’t matter:

a free computer for every child is around the corner. And at the same time, the UK

government has mandated the teaching of programming to all children—again, a

massive opportunity for developing new ways to use mathematics to accomplish

things that could not otherwise be done except by the very few.

So the publication of this book is timely in the extreme. Tools matter, and as the

authors of the book make clear, tools—and especially computers—cannot sensibly

be thought of as just passive artefacts that can be sprinkled on the mathematical

terrain. The computer points to possibilities. It sets us thinking about ways of

reasserting mathematics as a cultural practice, not merely a schoolish endeavour to

achieve technological know-how for the few, but to educate in the broadest sense.

Of course the advent of free computers is just the start. Computers sealed in their

boxes, programming courses that exclude the big ideas of mathematics and com-

puter science, failure to adequately support teachers, curricula that just miss the

point. . . I could make a very long list of possible negative outcomes. But I, like the

authors of this book, am optimistic. We can seize the moment to change what we

teach, to focus on Papert’s 10 %. This book will help.

Richard Noss
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Preface

Chapter 1 introduces the book, so we use this preface to comment on the genesis of

this book and the development of ideas during its writing.

This book originates in discussions at conferences between John and Luc.

We (meaning John and Luc at the moment) had similar backgrounds: a number

of years in high school mathematics teaching and then university work in mathe-

matics education. In both sites we’d done a lot of experimenting (both practical and

research) using digital technology. We shared prejudices for the types of tools/

systems we liked to use with our students: graph plotters, Logo, computer algebra

systems and similar tools/systems which our students could use to express mathe-

matical relationships rather than tools/systems that might go under the name of

‘computer-aided instruction’. When we first met, in the later 1990s, we’d read

papers of the other where we’d being trying to ‘get a theoretical handle’ on what

went on in high school mathematics classrooms when teachers and students used

these tools/systems. Our theoretical frameworks were not identical (John was

influenced by activity theory and Luc by instrumentation theory), but there was

plenty of room for productive dialogue; we were both also influenced by reading

papers of and talking to Michèle Artigue and Jean-baptiste Lagrange who were, in

turn, influenced by Yves Chevallard’s anthropological theory of the didactic and

Brousseau’s theory of didactical situations.

In the early years of the new millennium, an interesting thing happened—we

realised that much of our thought about digital technology and mathematics (edu-

cation) was a special case of tool use and mathematics (education). This realisation

probably came quite slowly, but once implanted the importance of tools (and later

the distinction between artefacts, instruments and tools) in mathematical activity

produced a way of viewing mathematics that was both simple and profound (at least

for us): of course mathematical activity is not possible without tools; why are

people writing about issues in learning and teaching mathematics and not mention-

ing the tools used in this learning and teaching? There were, of course, papers on

tool use in learning and teaching mathematics, but few of these were research
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papers which paid attention to the problématique of tool use and were targeted at an
international audience; and there was no book on tools and mathematics.

The first idea of this book was suggested by John to Luc and cemented over

several days in charming Montpellier about 4 years ago. During our discussions in

that visit, we sketched the structure of the book (quite similar to the final structure)

and decided we wanted to work with a research mathematician. John and Luc had

both read ‘popular’ papers by Jon and were intrigued by the ‘experimental math-

ematics’ he was putting forward. Working with a research mathematician would,

we thought, temper naı̈ve statements we might make about tools in the practice of

professional mathematicians, and Jon clearly had a lot of interesting things to say

about tools and mathematics. John approached Jon to write a chapter in the book,

Jon agreed to be involved, and ‘we’ now becomes ‘John, Luc and Jon’.

The first three chapters of this book to be completed were Chaps. 1–3 (more or

less in the form they appear in the final version). This was to establish a base for the

rest of the book. Jon’s chapter on experimental mathematics and his own research

was deemed especially important as something that could be referred to in the

chapters to be written. The chapters which follow were written over several years

with many drafts and many reviews and exchanges of ideas between the three of

us. We three have quite a lot in common, but there are significant differences too.

One set of exchanges concerned ‘a common voice’ in the chapters of this book, and

it resulted in ‘no, we should not attempt a common voice’ in the chapters. Each

‘solo’ chapter thus represents the views of the author alone. This, we think, respects

emerging theorising of scholarship on tools and mathematics.

Another set of exchanges concerned the ‘encyclopaedic’ scope of the book

(which has actually been toned down a little since the proposal was sent to the

publishers). We see the encyclopaedic nature of the book as both a strength and

weakness. We have, however, tried to vary the ‘scope’ of that which we explore

through the structure of the book. For example, with regard to the history of

mathematics, Chap. 4 has a ‘large scope’, but Chap. 5 focuses down on a specific

time and place in the history of mathematics. We acknowledge that we have tried to

cover too much (though, as the Interlude between Parts C and D mentions, we have

missed out some important issues). But this is the first book on the subject of tools

and mathematics, and we are content to err on the side of ‘surveying the scene’ and

leave it to others to fill in details we have missed.

We have written the book as a linear object to be read from cover to cover, but,

of course, readers may not read it this way. We think that most chapters, however,

work pretty well as ‘stand-alone’ chapters. Many chapters also have multiple

references to other chapters.

There are people we’d like to thank for input on this book (reviewing chapters

and technical help), and these include Naomi Borwein, Hazel Cathan, Nikolaos

Fotou, Ghislaine Gueudet, Celia Hoyles, Stefan Lesnianski, Richard Noss,

Christine Proust, Janine Rogalski, Kenneth Ruthven and Rudolf Straesser.

Kristiansand, Norway John Monaghan

Lyon, France Luc Trouche

Newcastle, Australia Jonathan M. Borwein
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Part I

Setting the Scene

This book, on tools and mathematics with specific regard to mathematics education,

is in four parts. Part I provides an introduction to the book and includes two chapters

on tool use in mathematics and two chapters addressing tool use in the history of

mathematics. Part II jumps forward in time, to developments in the second half of

the twentieth century to the present, to consider ‘modern’ developments related to

tools and mathematics and theoretical approaches concerned with understanding

the learning mathematics (with tools). Part III considers four substantive issues

related to tool use in mathematics education. Part IV looks to the future, a future we

expect to be shaped, in part, by increased use of digital tools.

Part I has six chapters. Chapters 1 and 6, respectively, provide an introduction to

the whole book and a review of issues arising in Chaps. 2–5. Chapters 2 and 3 focus

on tool use in mathematics. Chapter 2 takes one task, bisecting an angle, and

discusses mathematical and educational issues arising from doing this task with

four different tools. Chapter 3 considers tool use in the life of a research mathema-

tician with specific regard to the role of visual computing made possible by the

affordances of modern computing environments. Chapters 4 and 5 focus on tool use

in the history of mathematics. Chapter 4 presents an overview of sorts and looks

at tool us in four periods of time (as well as tool use in prehistory). Chapter 5 looks

at tool use at a particular moment in the development of mathematics and the

learning of mathematics, 2000 BCE in Mesopotamia.

There is much more that can be said about tools and mathematics than is covered

in the chapters in Part I, but we hope we have raised some crucial issue for the

reader to reflect on the importance of, and the diversity of, tool use in mathematics.
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Chapter 1

Introduction to the Book

John Monaghan and Luc Trouche

1.1 Introduction

This chapter sets the scene for the book. In Sect. 1.2 we state the purpose and scope

of this book. In Sect. 1.3 we make two attempts at answering the question ‘what is a
tool?’ In Sect. 1.4 we outline the structure of the book.

1.2 The Purpose and Scope of This Book

This book is an exploration of tools and mathematics and issues in mathematics

education related to tool use. There is much that can be said of mathematics without

explicit reference to tools and there is much that can be said of tools without

focusing on mathematics. We will explore such things when a consideration of

issues is relevant to mathematics and tools. Similarly, we will explore issues in

education when a consideration of such issues is relevant to mathematics education

and, in particular, tool use in mathematics education.

What is a tool? Answers to this question will emerge in the course of this book;

at this point we simply say ‘it is something you use or create to do something’.
There are many related words (implement, instrument, utensil, artefact. . .) but these
words often have different nuances for different people (we write more on this

shortly). Tools have been and are omnipresent in our lives; go into your kitchen and

look in wonder at the array of tools. Tool use is important in mathematics. In school

mathematics certain tools are valued, for example compass, protractor and ruler,

whilst other tools are controversial, for example the calculator. Chapter 3 shows

how tools are important in the life of a research mathematician.

What is mathematics? That’s a big question that we will skirt but, whatever it is,
tool use seems important for mathematics. We have heard it said (by colleagues and

by students) that ‘mathematics is a tool-box’. What is usually meant when people

© Springer International Publishing Switzerland 2016
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say something like this is that doing mathematics involves selecting an appropriate

algorithm to get an answer to a problem (or question or given task). This makes

sense at an ‘everyday level’ and also characterises much of what is done in school

mathematics: a student is set a problem, e.g. solve x2 � x� 2 ¼ 0, and selects an

appropriate tool from the tool-box, e.g. ‘factorise, x� 2ð Þ xþ 1ð Þ, and find the zeros
of the linear factors’ or ‘use the equation x ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�4�1� �2ð Þ
p

2�1
’. But the view that

mathematics is just a tool-box is a pretty impoverished view of mathematics. It does

not account for the structure of mathematics or the purposes of mathematics

(beyond solving an equation you have been told to solve) or rigour or how the

different solution strategies (tools) are related or what the solver, in selecting the

tool, focuses on in the question in order to select a tool. A view of mathematics that

will emerge in this book is that many of the actions of doing mathematics involve

selecting, using and creating tools but mathematics is more than just a tool-box.

This book will consider the past, the present, and the future. Mathematics has a

long (and glorious) past and tool use is part of the history of mathematics. This book

is not conceived as a history of mathematics and tools but it will explore selected

periods of the history of mathematics with regard to tool use and the development of

mathematics. The history of mathematics is also important to appreciate contro-

versial issues in mathematics in the present day (early twenty-first century) such as

the calculator debate. This book will explore ‘issues in current mathematics edu-

cation’ where tool use is an important (and often controversial) factor; the clash

between people’s valuations of old and new tools is often one reason (amongst

others) for controversies. This book will also tentatively consider the future of

mathematics education and the role of new tools and new ways of using tools in this

future. We say ‘tentatively’ because new tools often arise from serendipity and it is

somewhat foolish to say that things will develop in this way. Consider the case of

the hand-held digital calculator. Although the first such calculator was designed for

doing arithmetic, this design was realised because of advances in electronics, which

had nothing to do with educational interests, it was a case of ‘we now have the

technology to do this’.
A theme running through this book is the dialectical relationship between

mathematics, tool use, networks of artefacts (objects) and social activity. Perhaps

a tool can be used in isolation by a single person for his/her own benefit (e.g. spear

fishing) but it is common for a set of artefacts/tools to be used in social activity. For

example, the salesman who arrived at John’s house to make an estimate for

carpeting the rooms was involved in social intercourse, a sales transaction. He

arrived with a set of artefacts, a tape measure, a set of charts on carpet widths and a

cool electronic device that gave the width of the room at the touch of a button. In an

educational setting consider a high school lesson on quadratic functions. The

classroom will have a social structure which will conform, to some extent, with

the school’s social structure. The students will have a variety of artefacts on their

desks (pencil, ruler, graph paper, calculator) which they may use, alone or together,

at different times during the lesson. These networks of artefacts and the social

structure interact—the teacher may direct the students to use their graph paper or
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the students even may have to ask if they can use their calculator. Even a single

artefact may be viewed as a network of artefacts, e.g. a graphic calculator as an

arithmetic calculator, a graph plotter and a machine with built-in statistical

functions.

We have written this book because we are interested in tool use in mathematics

and mathematics education and because we feel there is a gap in the literature.

Having said this, we are aware of two twenty-first century books with the words

‘mathematics’ and ‘tools’ in the title: Symbolising, modelling, and tool use in
mathematics education (Gravemeijer, Lehrer, van Oers, & Verschaffel, 2002);

and Tools of American mathematics teaching, 1800-2000 (Kidwell, Ackerberg-

Hastings & Roberts, 2008). Gravemeijer et al. (2002) is a multi-authored publica-

tion resulting from a conference on symbolising and modelling in mathematics

education. Tool use in mathematics education is mainly considered from the point

of instructional design. Kidwell, Ackerberg-Hastings, and Roberts (2008) is an

historical work—the first author is the curator of the mathematics collections at

the National Museum of American History, Smithsonian Institution. The book

traces tools used in American mathematics teaching under four headings: tools of

presentation and general pedagogy; tools of calculation; tools of measurement and

representation; and electronic technology and mathematical learning. Both of these

books are important but we have set out to do something different: to examine the

dialectic between tool use and doing mathematics; to explore the complexities of

using tools in the learning and the teaching of mathematics; to consider philosoph-

ical positions regarding the aforementioned dialectic and complexities; to consider

current issues in mathematics education with regard to tool use; and to speculate on

future issues in mathematics education with regard to tool use.

The above we hope, sets out the overall scope of this book. Section 1.4 describes

the parts and chapters of this book. We now turn to an initial attempt (attempts

actually) at saying what a tool is.

1.3 What Is a Tool?

We gave a first, somewhat crude, definition above, ‘it is something you use to do

something’. We now refine our response to this question a little. We do this in two

subsections, each allowing one author to state his position on tools. A word of

explanation appears to be in order for presenting two views. We came together to

write this book because we share an interest in tool use in mathematics. We have

also, over the years, learnt through reading each other’s work and in talking to each
other about tool use in mathematics. But certainly learning through reading some-

one else’s work and talking to them is only possible if the two (or more) discussants

differ to some degree in their knowledge-base and/or their interpretation. We

choose to celebrate these differences rather than hide them.
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1.3.1 John’s Attempt to Address This Question

Rather than give a direct definition of the form ‘a tool is . . .’, I choose to make four

distinctions related to tools. I follow this with a comment on mathematical tools and

on the academic language surrounding discourse on the use of tools in current

mathematics education.

I first make a distinction between an artefact and a tool. An artefact is a material

object, usually something that is made by humans for a specific purpose, e.g. a

pencil. An artefact becomes a tool when it is used by an agent, usually a person, to

do something. The compass becomes a tool when it is used to draw a circle (which

is its intended purpose); the same artefact becomes a different tool when it is used to

stab someone. This establishes, for me, an irreducible bond between agent, purpose

and tool; it is not possible to comment on a tool, for example, ‘is it a good tool?’,
without considering the user and the purpose. After being used as a tool (for

whatever purpose), the compass returns to being an artefact. The materiality of an

artefact is not just that open to touch. An algorithm, e.g. for adding two natural

numbers, is an artefact and it is material in as much as it written and can be

programmed into a computer.

Secondly, I distinguish between an artefact/tool and ways of using the artefact/

tool. I illustrate this with an example, the algorithm referred to above. There are a

number of ways of enacting the traditional algorithm. Two ways are shown below

in the example 27 + 36.

27
+136
63

20 7
30 6
50 13 63

All the readers can see in the print above is a summary of the physical actions,

which will be executed in some temporal sequence. Behind these physical actions

are intentions, understandings and routines with regard to ways of using the

algorithm.

My third distinction is between ‘mental representations’1 of artefact/tool use and
material actions in artefact/tool use, but this distinction comes with an interrela-

tionship: to carry out material actions with an artefact/tool you need some form of

mental representation, which may be quite crude, of how to act with the artefact/

tool, but actions with the artefact/tool will provide feedback to the user which may

change the mental representation.

1 I use this term reluctantly and because I cannot think of a better one. I could have used the terms

‘schemas’, or ‘scripts’ or ‘mental models’ but these all come, to me, with more theoretical baggage

that ‘mental representations’. In using the latter term I simply wish to communicate that ‘there
must be something in the user’s mind before s/he uses the artefact/tool’ without getting into issues
in the philosophy of mind.
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My fourth distinction is between signs and tools. Signs, like tools, are artefacts

but a sign signifies/points to something whereas a tool does something. Having said

this, concatenations of signs can function as tools. On their own the artefacts ‘(‘,’)’,
‘�’, ‘+’, ’x’, ‘y’, ‘a’, ‘b’ and ‘2’ are signs but the artefact composed of these signs,

(x+ a)� (x+ b)¼ x2 + (a+ b)� x+ a� b, can function as a tool. In mathematics

education concatenations of signs such as y¼mx+ c are called ‘representations’
and y¼mx+c is referred to as an algebraic representation (which has related

graphical, numeric, and natural language representations). Representations can func-

tion as tools (they can be used to do something, usually something mathematical) but

they also have non-tool functions, e.g. to signify/point to a mathematical object.

Is there such a thing as a ‘mathematical tool’? My answer is that there are simply

artefacts which become tools in use, though there is a sense in which the compass is

a mathematical tool when it is used to draw a circle but it is not a mathematical tool

when it is used to stab someone. When artefacts are used for mathematical purposes

they generally (artefacts such as pencils are exceptions) incorporate mathematical

features, as we have seen in the examples above, e.g. a compass encapsulates the

equidistant relationship between the centre of a circle and points on the circumfer-

ence of that circle.

Prefixing the word ‘tool’with an adjective, as in ‘mathematical tool’, is common

in academic discourse. Examples include cultural tool, semiotic tool, cognitive tool,

ICT tool, dragging tool. My comments in the paragraph above apply to these terms

also. This subdivision of tools can be useful for communication, e.g. the term ‘ICT
tool’ does locate a certain subset of tools. But in general I find such categorisations

of tools unnecessary and, at times, ontologically confusing. A tool which is

designed as a cognitive tool only lives up to its name if, in practice, it transforms

the cognition of the user. A dragging tool is obviously an ICT tool and is also often a

semiotic tool and a cognitive tool. And what of cultural tools? A culture could be

defined as a co-ordinated set of artefacts (most of which function as tools), so is

there any tool which is not a cultural tool?

1.3.2 Luc’s Attempt to Address This Question

I would like to define a tool from one epistemological position, specified by four

dualities.

Using the word ‘artefact’ constitutes, indeed, an essential epistemological stance

that means: seeing the trace of humans on anything. Most of the objects, symbolic

as well as materials we use (in mathematics or elsewhere) are saturated in history

and culture, and, when using them, each human situates herself in a world of

culture. We inherit from our predecessors human knowledge encapsulated in the

objects they have created.

First duality, acting (performing a task, solving a problem) is both a process of

using and creating artefacts. John has given several examples of using artefacts but

creating artefacts, sometimes by serendipity, sometimes consciously, is also a
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necessity for action. A compass, or any given artefact, was once created and this

historical act of creation reappears every day in mathematics classes, even if we are

not aware of this.

Second duality, the relation between a user and an artefact consists in a double

shaping process. In one sense, the artefact shapes the way the user is acting (see

John examples in Chap. 2: the way we bisect an angle depends on the set of

available artefacts); in the reverse sense, the user shapes, along the course of her/his
situated action, the artefact that s/he appropriates. That is not obvious with very

simple artefacts (as a book for bisecting an angle), but we will make it clear for

more complex artefacts (for example, calculators) keeping the trace of their users

and usages.

Third duality, the process of using an artefact is both a process of producing
something and a process of constructing knowledge. The first process is generally

visible (we do bisect—when we succeed—an angle with a compass, there is a

tangible result), the second process is, at once, not (completely) visible, neither by

the user nor by the observer (we do learn something, even if we do not succeed in

performing the task, from the complex system artefact-task-social context of

action). But creation goes on, for example the creation of an ad hoc measuring

tool by students (see text above Fig. 2.6).

The last duality consists in an essential distinction between an artefact and an

instrument. Like John I will situate an artefact as a starting point, something

available for a user and an action oriented by a goal. When an artefact has been

appropriated by a user, I will name instrument the mixed entity composed of the

artefact and the associated knowledge (both the knowledge on the artefact, and the

knowledge on the task constructed when using this artefact). For example, a

compass, as an object I can see on a table, is an artefact. John’s compass, incorpo-

rated in his activity over time, for performing various tasks, became an instrument.

These four dualities finally constitute four windows on a same world of artefacts

seen as lived entities. And what about tools? To me, a tool is a thing somewhere on

the way from artefact to instrument.

1.4 The Structure of the Book

This book is in four Parts, I to IV. Part I is called ‘Setting the scene’. It includes this
introductory chapter followed by a chapter in which we execute one task with four

different tools; this allows us to raise a number of aspects about tool use in a

concrete manner. These first two chapters have been deliberately written without

references to the literature. We provide a large number of references in subsequent

chapters but we thought it would be useful to force ourselves to develop our

arguments from first principles (without reference to secondary sources) in these

two opening chapters.

We now introduce the rationale for Chap. 3, an account of the life of a working

research mathematician who makes considerable use of digital tools. This book was
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conceived by John Monaghan and Luc Trouche through face-to-face and distance

communication over several years. Both John and Luc are mathematics educators

who like a strong dose of mathematics in their mathematic education but they are

not research mathematicians. We felt the input of a research mathematician into this

book was important and Jon Borwein was an obvious person to approach; Jon is a

prominent experimental mathematician with a strong interest in educational mat-

ters. Jon was initially recruited for a single chapter but his involvement ended up

being influential in the overall shaping of this book. Jon labels himself ‘Homo

Habilis Mathematicus’, with reference to the co-evolution of tools and our species

(see Sect. 4.2). His chapter includes an exposition of what experimental mathemat-

ics is (and the essential role that tool use plays in determining the nature of

experimental mathematics) and the role of tools in a part of his working life (visual

theorems) circa 2014.

Chapters 4 and 5 consider the place of tools in the history of mathematics. The

co-history of tools and mathematics is vast and merits a specialist encyclopaedia

and these chapters do not attempt to be comprehensive. Chapter 4 introduces five

aspects of tool use that we consider important. (1) Tool use and phylogenesis, the

co-evolution of tools and our species. To set the record straight on ‘man the tool

user’ we also consider tool use in the non-human animal world. (2) Tools of ancient

Greek mathematics. The ‘obvious’ tools here, we think, are straight edges and

compasses. We argue, however, following the work of a prominent historian of

ancient Greek mathematics, that ‘not so obvious’ tools, the lettered diagram and the

mathematical language, were a part of the development of mathematics in this

culture. (3) An ancient Indian algorithm for computing square roots. This algorithm

was selected because it represents a different ancient approach to that of ancient

Greek deductions and has links with Chap. 3. (4) The use of the abacus for

calculations. We chose this to illustrate the mutual support of hand, mind, and

artefact in tool use. (5) A time and place (sixteenth century Europe) which

witnessed a rapid development in tools for calculations; our intention in this section

is to consider the statement ‘tools for doing mathematics beget further tools for

doing mathematics’. Chapter 4 is broad but Chap. 5 specialises in one time and

place, 2000 BCE in Mesopotamian. This period and place illustrate the role of

artefacts in both the development and in the teaching and learning of mathematics;

it is proposed that the process of creating artefacts and the process of creating

mathematics feed one another. The study of this period-place also suggests that new

artefacts for doing mathematics co-exist with old artefacts for doing mathematics

(something we may recognise in current mathematical practices). The creation and

use of artefacts for doing mathematics in this period-place also reveals two aspects

of masters of calculations, the teacher and the scholar, and these masters used

co-ordinated systems of artefacts in both aspects of their working lives.

Part I ends with Chap. 6, a reflection/discussion of issues arising in Chaps. 2–5.

Part II jumps forward in time to developments in the second half of the twentieth

century to the time of writing (2014). Chapter 7 opens this Part with a survey of

intellectual and technological developments with regard to the development of

digital artefacts and mathematics; scholarly work (e.g. theories of learning) with
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particular emphasis on work which considers tool use; and the ascent of mathe-

matics education as an academic field of inquiry. Chapters 8–10 present ‘case
histories’ of work, which impinges on an understanding of tool use in doing and

learning mathematics, in the field of mathematics education in this period:

constructionism; activity theory; and French didactics of mathematics. We were

aware from an early stage in the planning of this book that it was unrealistic to

attempt to cover every theoretical framework employed in mathematics education

research and we chose the three areas that we thought would be most productive in

terms of tool use. It only emerged in the course of writing that constructionism and

activity theory were not as fruitful, with regard to understanding tool use in the

doing and learning of mathematics, as we expected prior to writing—but this is

interesting in itself (but you can judge this for yourself).

The origins of constructionism are a man, Seymour Papert, and a programming

language, Logo. Papert’s book Mindstorms is a visionary text on a Piagetian base.

Papert’s ideas were central in debates in the 1980s on the role of programming in

mathematics education and ‘which programming language is the best’. Fifteen
years after Mindstorms its successor appeared, Noss & Hoyles’ Windows on
mathematical meanings. The Piagetian base had disappeared and was replaced by

a hybrid social constructivist/sociocultural approach, but the vision of new forms of

engaging in mathematics remained. Constructionism today continues as sociocul-

tural approach with a vision of human–machine interaction and design for mathe-

matical activity. As such it has the potential to make an interesting case history of

tool use and mathematics.

Chapter 9 considers activity theoretic approaches. Western academic mathemat-

ics education came to embrace activity theoretic approaches quite late (significant

work only from 1990) but then the seeming importance of such approaches really

took off. Activity theory has many forms and the ‘generations’ and variant foci of

these forms are our first consideration. This establishes a basis for a consideration of

the differing foci in activity theoretic studies in mathematics education in the last

20 years.

Chapter 10 considers the development of French didactics of mathematics

education. The aim is to consider this field with regard to tool use (which we

think we do) but to do this the work on tool use needs to be set in a wider setting of

mathematical, intellectual, and institutional developments in France. The chapter

has four themes: the roots of French didactics of mathematics; two important

theoretical frameworks (Brousseau’s theory of didactical situations and Vergnaud’s
theory of conceptual fields); Chevallard’s anthropological theory of didactics; and

approaches dedicated to artefacts and resources in mathematics education.

Part II ends with Chap. 11, a reflection/discussion of issues arising in Chaps. 7–10.

Part III considers selected issues in tool use in mathematics education. There are

many issues regarding tool use in mathematics education which could be consid-

ered. We have selected four that we consider to be particularly important: the

curriculum (and assessment and policy); the calculator debate; mathematics in the

real world; and the mathematics teacher and digital technology.
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Chapter 12 considers curriculum and assessment policies with regard to the

integration of digital technologies into the learning and teaching of mathematics.

With regard to curricula it focuses on interrelationships between tools and mathe-

matics curricula and argues that: school mathematics develops from ‘really used’
tools; the development of tools is related to the implemented as well as the intended

curricula. Assessment is viewed as a ‘problem area’ and the final section of the

chapter uses French policy on assessment as a case study to examine tensions that

can arise.

Chapter 13 considers the longstanding debate on the place and value of the

calculator in the learning, teaching and assessment of mathematics. The calculator

has inspired one of (if not the most) controversial debates regarding tool use in

mathematics education. After an introduction to the issues, actors and claims, this

debate will be viewed by a framework informed by Wertsch’s ten theses on

mediational means. The chapter ends with a consideration of the future of this

debate.

Chapter 14 focuses on mathematics in the real world and the problem of linking

this mathematics with school mathematics. This leads us to address questions

concerning the nature of mathematics. We consider the use of tools in leisure and

in working practices. Tool use is omnipresent in out-of-school mathematics but

school mathematics privileges specific tools. The chapter considers the problem of

‘suspension of sense making’ in school mathematics and opportunities for using

real-life artefacts to link in-school mathematics to out-of-school mathematical

activities. The increasing presence of digital technology in everyday life and

work opens up new opportunities (and problems) for linking in-school to out-of-

school mathematical activities.

Chapter 15 considers the teacher with regard to mathematical knowledge and the

use of technology. The teacher, once jokingly referred to as something that could be

replaced by teaching machines, is arguably more important in classrooms where

digital technology is a central feature than those without. But mathematics teachers,

en masse, are often reluctant to enact deep integration of digital technology in their

classrooms—why is this? A consideration of this question will include a critical

review of attempts to categorise forms of teacher knowledge and what teacher

should do.

Between Parts III and IV we insert an Interlude in which we reflect on issues in

mathematics education; the issues we have written chapters on and issues to which

we have not devoted a chapter.

Part IV looks to the future, a future we expect to be shaped, in part, by increased

use of digital artefacts. We explore three themes: tasks and tools; games; and

connectivity. Chapter 17 considers tasks and tools. Task design in mathematics

education is so very important but as a subject of study it is in its infancy. Using

different tools for what appears to be the same task involves the person doing the

task in different mathematical processes (as was seen in Chap. 2)—what are the

implications of this for the design of tasks with digital tools and for the design of

digit tools themselves?
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Chapters 18 and 19 look to emerging forms of activity made available through

the use of digital tools: connectivity and games. Chapter 18 considers the range of

games; artefacts and tools in games and gameplay; and research on games and

mathematics. The final section looks to future development. Chapter 19 considers

the different meanings and the potential of ‘connectivity’: connecting students in

their learning and connecting teachers in their professional development. It also

discusses the concept itself with regard to the future of mathematics education. The

book ends with an Epilogue, a reflection on matters for further thought and action.
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Chapter 2

Doing Mathematics with Tools: One Task,
Four Tools

John Monaghan

2.1 Introduction

In this second introductory chapter I illustrate a variety of mathematical and

educational issues arising from doing a single task with different tools. I will bisect

an angle using four tools, a straight edge and compass, a protractor, a dynamic

geometry system and a book, and reflect on what was done. The last one, a book,

sounds a bit strange but I hope you will soon appreciate it as a nice mathematical

tool (in some respects). You may like to stop and do this task before you read on.

2.2 Bisecting an Angle with a Straight Edge and a Compass

A compass has mathematical beauty in as much as it encapsulates the equidistant

relationship between the centre of a circle and points on the circumference of that

circle. Mathematics is many things and one of these is activity-with-relationships
and here is a tool that captures a simple, but fascinating and historically important,

relationship between pairs of points in a classic geometric figure. Properties of a

circle, however, are not essential in bisecting an angle with a compass (though the

whole circle can certainly be used); the compass is used to provide two equidistant

line segments from the vertex of the angle and another two (intersecting) equidis-

tant line segments from the end points of the initial line segments. The straight edge

also has a built-in mathematical feature, it is linear. Figure 2.1a shows a standard

school construction with all arc lengths (generating line segments) of the same

length. Figure 2.1b shows a slight variation, the radius of the second pair of arcs is

longer than the radius of the first pair of arcs.

Over the years I have asked hundreds of pre-service mathematics teachers why

this construction bisects the angle. Only a tiny handful have ever explained why. Do

you know why? Our answer depends on seeing congruent triangles. These may be
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more obvious if we redraw Fig. 2.1b to emphasise different mathematical objects

(and relationships), see Fig. 2.2. Line segments AB and AC are identical because

they have been constructed via arcs which have the same radii. Similarly, line

segments BD and CD are identical. AD is a common side. Thus triangles ABD and

ACD are congruent (side, side, side). Thus ∠BAD¼∠CAD.
I now comment on aspects of mathematics, tools, actions and thought involved

in this construction. Regarding tools: (1) There are two main physical tools used in

this construction, a straight edge and a compass. I opened this section by praising

the properties of the compass but the compass is of no use in this construction

without the straight edge (I have underlined the word ‘this’ because the theorem of

Mohr-Mascheroni proves that any construction made using a compass and straight

edge can be constructed using a compass alone). This, to me, illustrates an impor-

tant aspect of tool use (in mathematics or elsewhere), tools are rarely used in

isolation, they are almost always used with other tools (though mathematicians,

as in the case of the Mohr-Mascheroni theorem, value economy). Note that we also

need a tool for making marks, typically a pencil. (2) Neither the compass nor the

straight edge was designed to tackle the task of bisecting an angle, they just happen

to be useful. Design, including the design of tools, is an important part of mathe-

matics education but tools can be adapted for purposes other than their primary

design purpose (to draw a straight line and to draw a circle in the case of the straight

edge and the compass). (3) The user needs to know how to use the tools as physical

actions must be enacted to perform the task. The straight edge and, particularly, the

compass require quite advanced motor control to achieve a result approximating to

the ideal of lines without width and equal line segments. (4) The user also needs to

have an intention to use the straight edge and the compass for particularly ends.

Related to this, the mind (whatever that is), something internal to the user, and the

tools, things that are usually external to the user, need to be co-ordinated.

I now consider the educational aspects of mathematics in this task. (1) The task is

‘isolated’. Why should anyone except a mathematician want to bisect an angle?

Well, if that person is a student, then the task might be set as an exercise; this task

a b

Fig. 2.1 (a) Straight edge and compass bisection of an angle where pairs of arcs have the same

radii. (b) Straight edge and compass bisection of an angle where pairs of arcs have different radii

14 2 Doing Mathematics with Tools: One Task, Four Tools



may be set for the student to ‘learn some mathematics’ or it might be set in order for

the student to practice using a compass. Or the task might be a necessary step in

solving a bigger task, such as drawing the inscribed circle of a triangle. Indeed, an

interesting question is ‘to what problem is a bisected angle a solution?’ (2) As
mentioned above, the reason why this construction bisects the angle may not be

clear even to people preparing to teach mathematics. (3) Line segments BD and CD
(Fig. 2.2) are not explicit in either Fig. 2.1; the mathematical relationships which

the compass makes explicit and the mathematical relationships which may aid the

proof are subtlety different.

Before proceeding with the next tool for doing this task I go on to consider a

related task, trisecting an angle. In general, this task cannot be done with a straight

edge and a compass. Some angles can be trisected using a straight edge and a

compass; for example, an angle for which a straight edge and a compass construc-

tion is possible for one third of the angle (so 90� can be trisected using a straight

edge and a compass because 30� can be constructed in this way but 60� cannot be
trisected using a straight edge and a compass because 20� cannot be constructed in

this way). I will not go into details, which require a little bit of university level

algebra, but the interested reader can find explanations on another tool, the internet.

Some modern straight edges are clear plastic rulers with a line down the middle,

a result of the production process. Using this straight edge (not the numbers, which

themselves would allow an arbitrary angle to be trisected) we can trisect an

arbitrary angle. I refer to Fig. 2.3a.

Place the straight edge with the central line over the top of one of the line

segments forming the angle (position A in Fig. 2.3a) and draw the two parallel lines

by tracing along the straight edges. Now place the straight edge in position B, with
its top left corner meeting one side of the line segment forming the angle, the central

axis running through the intersection point of the angle and the top right corner

meeting the previously drawn line. Mark the three point C, D and E as shown.

I now consider points C,D and E together with the vertex of the angle,O, and the
point F such than ∠OFE¼ 90o (see Fig. 2.3b).

A

B

D

C

Fig. 2.2 Figure 2.1b

redrawn to focus on

congruent triangles
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Since CD, DE and EF have been constructed using the same ruler, they are equal in

length.

Since ∠CDO and ∠ODE are right angles, and segment OD is common, triangles

CDO and EDO are congruent (side, angle, side).

Therefore ∠COD¼∠EOD.
Similarly, since ∠ODE and ∠OFE are right angles and segment OE is common,

DO¼FO by Pythagoras’ theorem.

Position A

a

b

C
D

E

Position B

O

F

E

D

C

Fig. 2.3 (a) Two positions

of the straight edge with a

line down the middle. (b)
The relationships between

points marked on (a)
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Therefore triangles ODE and OFE are congruent (side, side, side).

As a result ∠DOE¼∠FOE and ∠COF has been trisected.

I went off on this little tangent on trisecting an angle to show how a little change

in one tool, a visible central axis, changed the mathematics that was possible with

the tool; note, however, that this feature, the central axis, is itself a mathematical

feature, a line of symmetry. Other points of interest are: (1) the compass was not

used in this trisection; (2) the change in the tool was the product of an accident, not

of design (the production process caused a visible central axis).

2.3 Bisecting an Angle with a Protractor

The protractor is generally circular or semi-circular in shape but, unlike the

compass, it does not rely on circle properties for its use (a circular shape is merely

convenient). Figure 2.4 shows a standard way to do this with a semi-circular

protractor. The centre of the protractor is placed at the vertex of the two lines

(generally aligning a zero of the protractor with one of the lines) and reading off the

degree where the other line crosses the protractor.

As before I comment on aspects of mathematics, tools, actions and thought

involved in this construction. I first note that the protractor can be regarded a single

tool or ‘two tools in one’, a straight edge and an angle measuring tool. It is also a

tool designed for the purpose at hand (to measure angles). However, to complete the

task, another tool is, arguably, needed: a tool to divide the numeric value of the

measured angle by 2. As with the straight edge and compass the user needs to:

perform physical actions to enact to the task (though these are arguably simpler than

those needed for the straight edge and compass construction); know how to use the

tool; have an intention to use it for the particular end; and internal thought and

external tool need to be co-ordinated (I shall not keep repeating these last three

points in this subsection).

With regard to the educational aspects of mathematics in this task I first note the

incorporation of arithmetic into the solution method. Arithmetic was not a feature

of the straight edge and compass solution. This is obvious but sometimes the

obvious is worthy of comment. To labour this point, arithmetic is not needed to

solve this geometric task (the straight edge and compass construction shows that it

can be posed and solved entirely within geometry); arithmetic is brought into the

solution because the tool, the protractor, essentially uses numbers. The use of

arithmetic, and manually reading a scale, also brings a theoretical inaccuracy

(an approximation) to the task. The straight edge and compass construction is

also open to manual error (which may be, depending on the user, be greater than

the error using a protractor) but the straight edge and compass construction is ‘ideal’
in a way that the protractor solution is not. This raises an aesthetic issue, this

‘construction’ is, to me, aesthetically inferior to the straight edge and compass

construction (but this ‘inferior’ method does come with a greater range of
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application, with the protractor there is no problem in trisecting or n-secting an

angle). The aesthetic dimension of the agent-tool dyad is, I hold, worthy of note.

The protractor solution does, however, ‘beat’ the straight edge and compass

construction with regard to transparency of the solution: the angle is bisected

because the degrees in the angle are halved. Is this a proof? Well, with a few

surrounding statements, I believe it can be turned into a proof! Furthermore, unlike

the straight edge and compass construction, seeing why the protractor solution

works does not require ‘seeing’ what is implicit (such as line segments BD and CD
in Fig. 2.2).

Is one tool ‘better’ than the other? I hedge my answer, yes and no: ‘yes’ if we
appeal to a value judgement such as mathematical aesthetics or transparency with

regard to reason; ‘no’ in as much as the answer depends on the valuation you adopt.

Value judgements, closely linked to aesthetics, are something we cannot ignore

when we consider tool use in mathematics. I now move on to a tool that invokes

extreme valuations, the computer or, more precisely, dynamic geometry systems.

2.4 Bisecting an Angle with a Dynamic Geometry System

Dynamic geometry systems (DGS) perform digital manipulations of ‘digital geo-
metric objects’ (points, lines, polygons, circles, etc.). There are many different

versions, with some similarities and some individual features. With this caveat I

present a method of bisecting an angle using GeoGebra, a popular freeware DGS at

the time of writing. GeoGebra also has a graph plotter, a basic computer algebra

system and a spreadsheet-like facility but I focus only on its DGS (which is

remarkably similar to that of the DGS Cabri).

Fig. 2.4 Positioning a protractor on the vertex of two lines to measure the angle

18 2 Doing Mathematics with Tools: One Task, Four Tools



I start my explanation at the point at which the lines meeting at a point and

forming the angle to be bisected have been ‘drawn1’ and the user has clicked on the
drop-down menu including ‘Angle Bisector’ (see Fig. 2.5). Once the user has

clicked on ‘Angle Bisector’ two actions can be used to produce the angle bisector:

clicking on the two line segments; clicking on the three points (in an order in which

the vertex is the middle point selected). Using the ‘Angle Bisector’ command is the

expected method in this DGS but other methods of producing a bisector are

possible, including methods ‘imitating’ the straight edge and compass and the

protractor methods; information and communications technology (ICT) often

allows a number of solution methods.

Again, I comment on aspects of mathematics, tools, actions and thought

involved in using this tool. The DGS could be considered as a set of tools, a tool-

box, and I have selected one tool from this set. It is possible to co-ordinate the use of

some DGSs with other digital tools but, in educational use, a DGS is generally used

as a self contained system. Although ‘geometry’ is the G in DGS and the surface

features are iconic, the system is digital, i.e. numeric. The method, the algorithm,

the DGS uses to perform the construction, i.e. bisecting an angle, is not transparent

to the user (this is sometimes referred to as a ‘black box’); this lack of transparency
is deeper than the lack of transparency of the straight edge and compass

Fig. 2.5 AGeoGebra screenshot at the point at which the user has clicked on the drop-down menu

including ‘Angle Bisector’

1 Perhaps we should replace the action word ‘draw’ with a computer equivalent, say, ‘C-draw’, as
the physical action of drawing on pencil & paper and on most (at the time of writing) ICT

environments, differ.
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construction of the angle bisector, one would have to find out about the algorithm

behind the DGS construction and how it was implemented in the specific DGS.

Another transparency aspect of DGS (and many other mathematical software

systems) is that the teacher can choose what functions are available for the student

or not. For example, s/he could hide the angle-bisector command, and other related

commands. In such a case it might be expected that teachers could force students to

employ geometric constructions. For example, with only the commands ‘line
segment’, ‘intersection point’ and compass, we can bisect an angle as shown in

Fig. 2.6. But students can be very inventive and I have found students who, in such a

situation, measure the given angle, then draw an approximate bisecting line,

measure the angle made by that line and then move the line until the second

angle measures half the first one.

It could be argued that the mathematical educational value of this

ICT-construction as a stand-alone task is virtually non-existent; the user has merely

learnt that a specific sequence of clicking actions results in the appearance of an

angle bisector. But potential mathematical educational value exists through the

action of ‘dragging’. In the straight edge and compass construction the geometric

Fig. 2.2 is static, it does not move relative to the paper on which it is constructed.

The D in DGS is ‘dynamic’ and once a dependent DGS object is constructed (the

angle bisector above is a dependent object, it depends on the line segments which

depend on the points) it is dragged when independent objects are dragged. This

feature has the potential to help users ‘see’ dependencies (which are mathematical

relationships) in constructions through the recognition of mathematical invariances.

A potential mathematical educational value also exists when this task is a

sub-task of a larger mathematical task such as constructing the inscribed circle to

a triangle (see Fig. 2.7a). The speed and accuracy with which angle bisectors of the

angles of a triangle can be constructed both arguably aid the user in not getting

bogged down in a sub-task of a larger task. Dragging can (when the geometric

object is constructed with appropriate mathematical relationships), again, help

users recognise mathematical invariances (see Fig. 2.7b). A further potential math-

ematical educational value can also exist in constructing the dependencies. For

example in the static straight edge and compass construction of the inscribed circle

Fig. 2.6 Bisecting an angle

using only the commands

‘line segment’, ‘intersection
point’ and compass

20 2 Doing Mathematics with Tools: One Task, Four Tools



to a triangle, the in-centre is located and the inscribed circle can be drawn with the

compass ‘by eye’, i.e. so that it looks like the inscribed circle. This method will not

result in dependencies which will successfully drag in a DGS; a radial point must be

constructed on a line segment of the triangle so that the line through this point and

the in-centre is perpendicular to the line segment the point lies on, if the construc-

tion is to successfully drag (this point can be seen in Figs. 2.7a, b).

But these are potential mathematical educational values, they won’t necessarily
be realised in practice. One aspect of realising these values is in users linking

actions with mathematical relationships.

2.5 Bisecting an Angle with a Book

I end with a description of a book as a mathematical tool to illustrate that an artefact

can be used for a very different purpose to that which it was designed and, related to

this, to illustrate that a tool to do mathematics does not need to be designed as a

mathematical tool. I first note that a book could be used to imitate a compass: using

one side of the book, use one end of this side as the point of the compass and the

other end of this side, together with a pencil, as the pencil end of the compass. This

is not how I will use a book in this example, I will use it as a kind of set square. You

need a large sheet of paper. I will explain Figs. 2.8a–d.

Figure 2.8a simply shows a book placed near the angle to be bisected. Figure 2.8b

shows the first construction line being drawn: the book is positioned so that one

corner of the book is at the vertex of the angle to be bisected and one side of the

book placed against one of the two rays describing the angle. This last procedure is

repeated with the second ray in Fig. 2.8c. Figure 2.8d shows the two construction

lines and the angle bisector (which joins the vertex to the point where the two

construction lines meet).

I have tried this, and other ‘constructions by the book’, construction with groups
of in-service teachers and most of them were able to explain why the construction

worked. The reason for this transparency with regard to the user seeing why the

construction works, I assume, is linked to the greater transparency of Fig. 2.2,

compared to Fig. 2.1, as discussed above.

Fig. 2.7 (a) A DGS construction of the inscribed circle to a triangle. (b) The result of ‘dragging’
(a)
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I am not suggesting wholesale advocacy of a new method of teaching geomet-

rical constructions but I must confess to having a certain affection for this unusual

mathematical tool. Constructions using a book can be quite interesting. For exam-

ple, the ‘A series’ of books, i.e. A4, have an inbuilt mathematical property, the ratio

of their sides is 2:√2. This property can be used to construct an octagon using an A

series book but the construction of an octagon by any book is not possible.

The examples in this chapter were chosen to show different tools being used to

perform a task, not to exhaust all possibilities. There are other means and tools

available to bisect an angle. Indeed it is possible to construct the bisector without an

obvious tool, by folding the sheet on which the angle is drawn. The tool in this case

is the sheet of paper coupled with knowledge of an axis of symmetry.

Fig. 2.8 Steps in bisecting an angle using a book
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Chapter 3

The Life of Modern Homo Habilis
Mathematicus: Experimental
Computation and Visual Theorems

Jonathan M. Borwein

3.1 Introduction

The computer has in turn changed the very nature of mathematical experience, suggesting

for the first time that mathematics, like physics, may yet become an empirical discipline, a

place where things are discovered because they are seen.—David Berlinski1

In this chapter I want to talk, both generally and personally, about the use of tools

in the practice of modern research mathematics. To focus my attention I have

decided to discuss the way I and my research group members have used tools

primarily computational (visual, numeric and symbolic) during the past 5 years.

When the tools are relatively accessible I shall exhibit details; when they are less

accessible I settle for illustrations and discussion of process.

Long before current graphic, visualization and geometric tools were available,

John E. Littlewood, 1885–1977, wrote in his delightful Miscellany:

A heavy warning used to be given [by lecturers] that pictures are not rigorous; this has

never had its bluff called and has permanently frightened its victims into playing for safety.

Some pictures, of course, are not rigorous, but I should say most are (and I use them

whenever possible myself). (Littlewood, 1953, p. 53)

Over the past 5 years, the role of visual computing in my own research has

expanded dramatically. In part this was made possible by the increasing speed and

storage capabilities—and the growing ease of programming—of modern multi-core

computing environments (Borwein, Skerritt, & Maitland, 2013). But, at least as

much, it has been driven by my group’s paying more active attention to the

possibilities for graphing, animating or simulating most mathematical research

activities.

1 In “Ground Zero: A Review of The Pleasures of Counting, by T. W. Koerner,” 1997.
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3.1.1 Who I Am and How I Got That Way

In my academic lifetime, tools went from graph paper, log tables, slide rules and

slipsticks to today’s profusion of digital computational devices. Along the way

came the CURTA, HP programmable calculators, TI calculators, and other transi-

tional devices not to mention my grandfather’s business abacus. When a radically

new tool has come along, it can be adapted very quickly as was the case with the use

of log-tables in the early seventeenth century after Brigg’s 1616 improvement of

Napier’s 1614 logarithms and the equally rapid abandonment of slide-rule in the

1970s after 350 years of ubiquity. I feel obliged to record that well into the 1980s

business mathematics texts published compound interest tables with rates up to 5%
when mortgage rates were well over 20%.

Let me next reprise material I wrote for a chapter for the 2015 collection The
Mind of a Mathematician (Borwein, 2012).

I wish to aim my scattered reflections in generally the right direction: I am more

interested in issues of creativity á la Hadamard (Borwein, Liljedahl, & Zhai, 2010) than

in Russell and foundations, or Piaget and epistemology. . .and I should like a dash of

“goodwill computing” thrown in. More seriously, I wish to muse about how we work,

what keeps us going, how the mathematics profession has changed and how “plus ça

change, la plus ça reste pareil”,2 and the like while juxtaposing how we perceive these

matters and how we are perceived. Elsewhere, I have discussed at length my own

views about the nature of mathematics from both an aesthetic and a philosophical

perspective (see, e.g., Gold & Simons, 2008; Sinclair, Pimm, & Higginson, 2007).

I have described myself as ‘a computer-assisted quasi-empiricist’. For present
more psychological proposes I will quote approvingly from Brown (2009, p. 239):

. . .Like 0l’Man River, mathematics just keeps rolling along and produces at an accelerating

rate “200,000 mathematical theorems of the traditional handcrafted variety . . .annually.”
Although sometimes proofs can be mistaken—sometimes spectacularly—and it is a matter

of contention as to what exactly a “proof” is—there is absolutely no doubt that the bulk of

this output is correct (though probably uninteresting) mathematics.—Richard C. Brown

I continued: Why do we produce so many unneeded results? In addition to the

obvious pressure to publish and to have something to present at the next conference,

I suspect Irving Biederman’s observations below plays a significant role.

“While you’re trying to understand a difficult theorem, it’s not fun,” said Biederman,

professor of neuroscience in the USC College of Letters, Arts and Sciences. . . .“But once
you get it, you just feel fabulous.” . . .The brain’s craving for a fix motivates humans to

maximize the rate at which they absorb knowledge, he said. . . .“I think we’re exquisitely

tuned to this as if we’re junkies, second by second.”—Irving Biederman3

2 For an excellent account of the triumphs and vicissitudes of Oxford mathematics over eight

centuries, see Fauvel, Flood, and Wilson (1999). The description of Haley’s ease in acquiring

equipment (telescopes) and how he dealt with inadequate money for personnel is by itself worth

the price of the book.
3 Discussing his article in the American Scientist at www.physorg.com/news70030587.html.
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Mathematical tools are successful especially when they provide that rapid ‘fix’ of
positive reinforcement. This is why I switched from competitive chess to competitive

bridge. Being beaten was less painful and quicker, reward was more immediate.4

In Borwein (2012) I again continued: Take away all success or any positive

reinforcement and most mathematicians will happily replace research by

adminstration, more and (hopefully better) teaching, or perhaps just a favourite

hobby. But given just a little stroking by colleagues or referees and the occasional

opiate jolt, and the river rolls on. For a fascinating essay on the modern university

in 1990 I recommend Giametti (1990).

The pressure to publish is unlikely to abate and qualitative measurements of

performance5 are for the most part fairer than leaving everything to the whim of

one’s Head of Department. Thirty-five years ago my career review consisted of a

two-line mimeo “your salary for next year will be . . .” with the relevant number

written in by hand.

At the same time, it is a great shame that mathematicians have a hard time finding

funds to go to conferences just to listen and interact. Csikszentmihalyi (1997) writes:

[C]reativity results from the interaction of a system composed of three elements: a culture

that contains symbolic rules, a person who brings novelty into the symbolic domain, and a

field of experts who recognize and validate the innovation. All three are necessary for a

creative idea, product, or discovery to take place.—Mihalyy Csikszentmihalyi

We have not paid enough attention to what creativity is and how it is nurtured.

Conferences need audiences and researchers need feedback other than the manda-

tory “nice talk” at the end of a special session. We have all heard distinguished

colleagues mutter a stream of criticism during a plenary lecture only to proffer “I

really enjoyed that” as they pass the lecturer on the way out. A communal view of

creativity requires more of the audience.

And the computer as provider of tools can often provide a more sympathetic and

caring, even better educated, audience.

3.1.2 What Follows

We first discuss briefly in Sect. 3.2 what is meant by a visual theorem. In Sect. 3.3

we talk about experimental computation and then turn to digital assistance. In a key
Sect. 3.4 we examine a substantial variety of accessible examples of these three

concepts. In Sect. 3.5 we discuss simulation as a tool for pure mathematics.

In the final three sections, we turn to three more sophisticated sets of case

studies. They can none-the-less be followed without worrying about any of the

more complicated formulae. First in Sect. 3.6 comes dynamic geometry (iterative

4 I played twice against Cambridge on losing Oxford bridge teams.
5 For an incisive analysis of citation metrics in mathematics, I thoroughly recommend the IMU

report and responses at: http://openaccess.eprints.org/index.php?/archives/417-Citation-Statistics-

International-Mathematical-Union-Report.html.
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reflection methods Aragon & Borwein, 2013) and matrix completion problems6

(applied to protein conformation Aragon, Borwein, & Tam, 2014) (see Case

Studies I). In Sect. 3.7 for the second set of Case Studies, we then turn to numerical

analysis (see Case Studies II). I end in Sect. 3.8 with description of recent work

from my group in probability (behaviour of short random walks Borwein & Straub,

2013; Borwein, Straub, Wan, & Zudilin, 2012) and transcendental number theory
(normality of real numbers Aragon, Bailey, Borwein, & Borwein, 2013).

3.1.3 Some Early Conclusions

I have found it is often useful to make some conclusions early. So here we go.

1. Mathematics can be done experimentally (Bailey & Borwein, 2011a) (it is fun)

using computer algebra, numerical computation and graphics: SNaG computa-

tions. Tables and pictures are experimental data but you cannot stop thinking.

2. Making mistakes is fine as long as you learn from them, and keep your eyes open

(conquering fear).

3. You cannot use what you do not know and what you know you can usually use.

Indeed, you do not need to know much before you start research in a new area

(as we shall see).

4. Tools can help democratize appreciation of and ability in mathematics.

3.2 Visual Theorems and Experimental Mathematics

In a 2012 study On Proof and Proving (ICMI, 2012), the International Council on

Mathematical Instruction wrote:

The latest developments in computer and video technology have provided a multiplicity of

computational and symbolic tools that have rejuvenated mathematics and mathematics

education. Two important examples of this revitalization are experimental mathematics and

visual theorems.

3.2.1 Visual Theorems

By a visual theorem7 I mean a picture or animation which gives one confidence that

a desired result is true; in Giaquinto’s sense that it represents “coming to believe it

in an independent, reliable, and rational way” (either as discovery or validation) as

6 See http://www.carma.newcastle.edu.au/jon/Completion.pdf and http://www.carma.newcastle.

edu.au/jon/dr-fields11.pptx.
7 See http://vis.carma.newcastle.edu.au/.
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described in Bailey and Borwein (2011b). While we have famous pictorial exam-

ples purporting to show things like all triangles are equilateral, there are equally

many or more bogus symbolic proofs that ‘1þ 1 ¼ 1’. In all cases ‘caveat emptor’.
Modern technology properly mastered allows for a much richer set of tools for

discovery, validation, and even rigorous proof than our precursors could have ever

imagined would come to pass—and it is early days. That said just as books on

ordinary differential equations have been replaced by books on dynamical systems,
the word visual now pops up frequently in book titles. Unless ideas about visual-

ization are integrated into the text this is just marketing.

3.2.2 On Picture-Writing

The ordinary generating function associated with a sequence a0, a1, . . . , an, . . . is
the formal series8

AðxÞ :¼
X1
k¼0

akx
k ð3:1Þ

while the exponential generating function is

AðxÞ :¼
X1
k¼0

ak
xk

k!
: ð3:2Þ

Both forms of generating function are ideally suited to computer-assisted discovery.

George P�olya, in an engaging eponymous American Mathematical Monthly
article, provides three compelling examples of converting pictorial representations

of problems into generating function solutions (P�olya, 1956):

1. In how many ways can you make change for a dollar?
This leads to the (US currency) generating function

X1
k¼1

Pkx
k ¼ 1

ð1� x1Þð1� x5Þð1� x10Þð1� x25Þð1� x50Þ ,

which one can easily expand using a Mathematica command,

Series[1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)), {x, 0, 100}]

to obtain P100¼ 292 (242 for Canadian currency, which lacks a 50 cent piece).

P�olya’s illustration is shown in Fig. 3.1.

8 In computational cases we often use only the initial segment of the series and so we do not care

whether it converges or not.
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We look at a related generating function for counting additive partitions in

Example 3.4.6.

2. Dissect a polygon with n sides into n � 2 triangles by n � 3 diagonals and
compute Dn, the number of different dissections of this kind.

This is illustrated in Fig. 3.2 and leads to the fact that the generating function

for D3 ¼ 1,D4 ¼ 2,D5 ¼ 5,D6 ¼ 14,D7 ¼ 42, . . .

Fig. 3.1 P�olya’s illustration of the change solution (courtesy Mathematical Association of

America)

Fig. 3.2 The first few sets of dissections
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DðxÞ ¼
X1
k¼1

Dkx
k

satisfies

DðxÞ ¼ x 1þ DðxÞ½ �2,

whose solution is therefore

DðxÞ ¼ 1� 2x� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p

x
:

The Mathematica command

Series[((1 - 2 x) - Sqrt[1 - 4 x])/x, {x, 0, 10}]

returns

2xþ 4x2 þ 10x3 þ 28x4 þ 84x5 þ 264x6 þ 858x7

þ 2860x8 þ 9724x9 þ 33592x10 þ Oðx11Þ:

with list of coefficients

f0, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592g

and Dn+2 turns out to be the nth Catalan number 2n
n

� �
=ðnþ 1Þ. This can be

discovered using Sloane’s wonderful Online Encyclopedia of Integer Sequences
as illustrated in Fig. 3.3. Note that we only used the first six non-zero terms and

had four left to ‘confirm’ our experiment.

3. Compute Tn, the number of different (rooted) trees with n knots.9

This is a significantly harder problem so we say less:

The ordinary generating function of the Tn becomes a remarkable result due to

Cayley, namely

9Roots are now more commonly called vertices or nodes. For rooted labeled trees (and hence

labeled trees): http://www.math.ucla.edu/~pak/hidden/papers/Moon-counting_labelled_trees.pdf

is Moon’s monograph with a nice discussion of the history of Cayley’s formula, including the

fact that Cayley himself acknowledged that Borchardt had proved it earlier, and that it appeared

without proof in a work of Sylvester. A more modern (if not necessarily more relevant or accurate)

reference is http://en.wikipedia.org/wiki/Cayley.
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TðxÞ ¼
X1
k¼1

Tkx
k ¼ x

Y1
k¼1

ð1� xkÞ�Tk , ð3:3Þ

where remarkably the product and the sum share their coefficients. This can be

used to produce a recursion for Tn in terms of T1,T2, . . . , Tn�1, which starts:

T1 ¼ 1, T2 ¼ 1, T3 ¼ 2,T4 ¼ 4, T5 ¼ 9, T6 ¼ 20, . . ..

In each case, P�olya’s main message is that one can usefully draw pictures of the

component elements—(a) in pennies, nickels dimes and quarters (plus loonies in

Canada and half dollars in the USA), (b) in triangles and (c) in the simplest trees

(with the fewest knots).

That said, I often find it easier to draw pictures from generating functions rather

than go in the other direction. In any event, P�olya’s views on heuristic reasoning

and his books on problem solving (P�olya, 1981, 1990) remain as engaging, if

idiosyncratic, today as when first published.10

Fig. 3.3 Using https://oeis.org/ to identify the Catalan numbers

10 I mention also Klein and Grothendieck’s desin d’enfant see www.ams.org/notices/200307/what-

is.pdf.
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3.2.2.1 Proofs Without Words

In Fig. 3.4 we reproduce three classic proofs without words—though most such

proofs benefit from a few words of commentary. In Fig. 3.5 we display three

modern (dynamic geometry) proofs without words from http://cinderella.de/files/

HTMLDemos/Main.html.11

Figure 3.4 shows from left to right the following three results:

1. Pythagoras theorem;

2. 1þ 3þ 5þ ð2n� 1Þ ¼ n2;
3. 1=2þ 1=4þ 1=8þ � � � ¼ 1.

The Pythagorean proof is from the Zhou Bi Suan Jing which dates from the Zhou

Dynasty (1046 BCE–256 BCE), and is one of the oldest recorded.

Figure 3.5 shows from left to right the following three results:

1. Pythagoras theorem;

2.
ffiffiffi
2

p
is irrational as suggested by Tom Apostol12;

3. How to inscribe three tangent circles in a triangle.

Fig. 3.4 Three classical proofs without words

Move the green point

Fig. 3.5 Three modern proofs without words

11 See also http://www.usamts.org/About/U_Gallery.php.
12 Assume the large triangle is the smallest 45∘ right-angled triangle with integer sides. The

complement of the brown kite is a smaller such triangle.
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Needless to say, the advantage of a modern construction—when there really is

one—is largely lost on the printed page, which does not allow one to see the

dynamics. We somewhat repair that damage in Fig. 3.6 by showing three illustra-

tions of different configurations for fractals—zoom-invariant objects—built on

circles of Apollonius.13 In this case we perturbed slightly the configuration on the

left to that in the middle and then the right, and see the different appearance of the

fractals produced by the same rules.

3.3 Experimental Mathematics

The same ICMI study (2012), quoting (Borwein & Devlin, 2008, p. 1), says enough

about the meaning of experimental mathematics for our current purposes:

Experimental mathematics is the use of a computer to run computations—sometimes no

more than trial-and-error tests—to look for patterns, to identify particular numbers and

sequences, to gather evidence in support of specific mathematical assertions that may

themselves arise by computational means, including search.

Like contemporary chemists—and before them the alchemists of old—who mix various

substances together in a crucible and heat them to a high temperature to see what happens,

today’s experimental mathematicians put a hopefully potent mix of numbers, formulas, and

algorithms into a computer in the hope that something of interest emerges.

3.3.1 Experimental Mathodology

I originally mistyped ‘mathodology’ intending ‘methodology’, but I liked the

mistake and have kept it. We started (Borwein & Devlin, 2008) with Justice Potter

Stewart’s famous 1964 comment on pornography: “I know it when I see it.”

Fig. 3.6 Three fractals generated by different Apollonian configurations

13 See http://en.wikipedia.org/wiki/Circles_of_Apollonius.
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A bit less informally, by experimental mathematics I intend, as discussed in

Borwein and Bailey (2008) and elsewhere:

1. Gaining insight and intuition;

• We illustrate this repeatedly below by drawing many simple functions.

Almost always, as in Example 3.4.3, we see things in a picture that were

not clear in our mind’s eye.
• Sometimes, as in Example 3.4.2, a new pattern jumps out that we were not

originally intent on studying. By contrast, in Example 3.4.9 we show how the

computer can tell you things, such as that a number is algebraic, that you can

then verify but probably would never find.

2. Discovering new relationships;

• Computers generate patterns we might well not see by hand. See Exam-

ples 3.4.2, 3.4.5, 3.4.6 and 3.4.10.

3. Visualizing math principles;

• Computers allow one to switch representations easily. This can be like

drawing a curtain open as in Example 3.3.4 or Example 3.4.6.

4. Testing and especially falsifying conjectures;

• See Example 3.4.1 where we conclude one equality is invalid and are led to a

proof of why another similar looking one holds.

• Examples 3.4.16 and 3.4.17 underscore that seemingly compelling patterns

can fail to be hold. Learning how to trust one’s judgement is a subtle context-

dependent matter.

5. Exploring a possible result to see if it merits formal proof;

• In a traditional Lemma–Theorem–Corollary version of deductive mathemat-

ics, one has to prove every step of a chain of arguments to get to the end.

Suppose there are six steps in a complicated result, and the third is a boring

but hard equation, whose only value is that it leads to step six. Then it is

appropriate to challenge step six a lot, before worrying about proving step

three.

6. Suggesting approaches for formal proof;

• For me this connotes computer-assisted or computer-directed proof and is

quite far from Formal Proof as was the topic of a special issue of the Notices
of the AMS in December 2008.

• See Examples 3.4.1 and 3.4.11 which look at how our tools change both

induction and integration.

7. Computing replacing lengthy hand derivations;

• Example 3.3.1 discusses this for matters like taking roots, or factoring large

numbers.
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• It also the case that many computations that used to be too lengthy to perform

by hand are no longer so. For instance, the Maple fragment

addðithprimeðkÞ, k ¼ 1::100000Þ;

returned the sum of the first 105 primes, 62660698721, in 0. 171 s. Adding a

million took much longer though! My preference on tests, rather than banning

calculators or computers, is to adapt the questions to make them computa-

tionally aware.14

8. Confirming analytically derived results.

• I illustrate this in Example 3.4.12 by confirming some exact results knowing

only their general structure.

All of these uses play a central role in my daily research life. We will see all of

these eight notions illustrated in the explicit examples of Sect. 3.3.2 and of Sect. 3.4.

3.3.2 When Science Becomes Technology

What tools we choose to use—and when—is a subtle and changeable issue.

Example 3.3.1 (When Science Becomes Technology). We ‘unpack’ methods when

we want to understand them or are learning them for the first time. Once we or our

students have mastered a new tool we ‘repack’ it. For instance,

22
7 þ 1 ¼ 340282366920938463463374607431768211457

which factors as

59649589127497217ð Þ 5704689200685129054721ð Þ:

If we are teaching or taking a course in factorization methods, we may well want to

know ‘how’ this was done. In most contexts, we are happy to treat the computer as a

reliable tool and to take the answer without further introspection.

In like fashion,

t :¼ 1:25992104989487316476721060728 . . . ¼
ffiffiffi
2

3
p

will be computed by most packages to the displayed precision. We can confirm this

since

14 Though how to stop things like a student scanning a question and then going to the toilet to

consult Wolfram Alpha is a never-ending issue.
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t3 ¼ 2:00000000000000000000000000001 . . .

If we wish to understand what the computer has done—probably by Newton’s
method, we must go further, but if we only wish to use the answer that is irrelevant.

The first is science or research, the second is technology. ♢

The William Lowell Putnam competition taken each year by the strongest North

American undergraduate students has conventionally had one easy question (out of

12) based on the current year.

Example 3.3.2 (A 1998 Putnam Examination Problem). The problem was

Let N be the positive integer with 1998 decimal digits, all of them 1; that is,

N¼ 1111. . .11. Find the thousandth digit after the decimal point of
ffiffiffiffi
N

p
.

This can be done by brute force

> evalf[10](sqrt(add(10^k,k¼0..1997))/10^1000;

which is not what the posers had in mind. ♢

Example 3.3.3 (A 1995 Putnam Examination Problem). The problem requests

Evaluate: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2207� 1

2207� 1
2207�...

8

s
ð3:4Þ

Express your answer in the form ðaþ b
ffiffiffi
c

p Þ=d, where a, b, c, d are integers.

Proof. If we call the repeated radical above α, the request is to solve for

α8 ¼ 2207� 1

2207� 1
2207�1=α8

,

and a solve request to a CAS will return

2207

2
þ 987

ffiffiffi
5

p

2

 !1=8

¼ 3þ ffiffiffi
5

p

2
: ð3:5Þ

We may determine the last reduction in many ways (1) via identify, (2) using the

inverse symbolic calculator (ISC), (3) using a resolvent computation to find the

quadratic polynomial satisfied by α as given by Eq. (3.5), or (4) by repeatedly

computing the square root. Indeed identify will return the answer directly from

(3.4) which already agrees with the limit to 20 places. □
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With access to computation the problem becomes too straight-forward. ♢

I next recall some continued fraction notation. Figure 3.7 shows the two most

common ways of writing a simple or regular continued fraction—in this case for π.
For any α> 0, this represents the process of going from

α ! α
0
:¼ 1

α� bαc

and repeating the process, while recording the integer part bαc each time. This is

usually painful to do by hand but is easy for our computer.

Example 3.3.4 (Changing Representations). Suppose I wish to examine the

numbers

α :¼ 0:697774657964007982006790592552

and

β :¼ 0:92001690001910008622659579993:

As floating point numbers there is nothing to distinguish them; but the Maple
instruction convert(alpha,confrac); returns the simple continued fraction
for α in compact form (Borwein and Bailey, 2008)

α ¼ ½0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, . . .�

while convert(beta,confrac); returns

β ¼ ½0, 1, 11, 1, 1, 94, 6, 2, 9, 2, 1, 5, 1, 6, 7, 3, 4, 24, 1, 8, 1, 2, 1, 2, 1, . . .�:

So, in this new representation, the numbers no longer look similar. As described

in Borwein and Bailey (2008), Borwein and Devlin (2008), and Bailey

and Borwein (2011a), continued fractions with terms in arithmetic progression

are well studied, and so there are several routes now open to discovering that

α ¼ I1ð2Þ=I0ð2Þ where for ν¼ 0, 1, 2, . . .

Fig. 3.7 The simple continued fraction for π (L) in compact form (R)
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Iνð2zÞ ¼ zν
X1
k¼0

ðz2Þk
k!ðνþ kÞ!:

For instance, on May 23, 2014, entering "continued fraction" "arith-

metic progression" into Google returned 23,700 results of which the first http://
mathworld.wolfram.com/ContinuedFractionConstant.html gives the reader all

needed information, as will the use of the ISC. My purpose here was only to

show the potential power of changing a representation. For example, the continued

fraction of the irrational golden mean
ffiffi
5

p þ1
2

¼ 1:6180339887499 . . . is

[1, 1, 1, . . .]. Figure 3.8 illustrates the golden mean, and also provides a proof

without words that it is irrational as we discuss further in the next section.

It is a result of Lagrange that an irrational number is a quadratic if and only if it

has a non-terminating but eventually repeating simple continued fraction. So

quadratics are to continued fractions what rationals are to decimal arithmetic.

This is part of their power. ♢

As the following serious quotation makes clear, when a topic is science and

when it is technology is both time and place dependent.

A wealthy (15th Century) German merchant, seeking to provide his son with a good

business education, consulted a learned man as to which European institution offered the

best training.“If you only want him to be able to cope with addition and subtraction,” the

expert replied, “then any French or German university will do. But if you are intent on your

son going on to multiplication and division – assuming that he has sufficient gifts – then you

will have to send him to Italy.”15

a

a

a+b

b
Fig. 3.8 The golden mean

aþ b : a ¼ a : b

15 Quoted from p. 577 of George Ifrah, “The Universal History of Numbers: From Prehistory to the

Invention of the Computer”, trans. from French, John Wiley, 2000. This was also quoted a century

ago by Tobias Dantzig.
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3.3.2.1 Minimal Configurations

Both the central picture in Fig. 3.5 and the picture in Fig. 3.8 illustrate irrationality

proofs. Traditionally, each would have been viewed as showing a reductio ad
absurdum. Since the development of modern set theory and of modern discrete

mathematics it is often neater to view them as deriving a contradiction from

assuming some object is minimal.

For example, suppose that the (a + b) � a rectangle was the smallest integer

rectangle representing the golden mean in Fig. 3.8, then the a � b rectangle cannot

exist. Because of the geometric simplicity of this argument, it is thought that this

may be the first number the Pythagoreans realized was irrational. Figure 3.5, by

contrast, illustrates a reductio. If we continue, we will eventually get to an impos-

sibly small triangle with integer sides. A clean picture for minimality is shown in

Fig. 3.9.

Example 3.3.5 (Sylvester’s Theorem, Bailey & Borwein, 2011b). The theorem

conjectured by Sylvester in the late nineteenth century establishes that given a
finite set of non-colinear points in the plane there is at least one ‘proper’ line
through exactly two points. The first proof 40 years later was very complicated.

Figure 3.10 shows a now-canonical minimality proof.

Fig. 3.9 A minimal

configuration for

irrationality of
ffiffiffi
2

p

Fig. 3.10 A minimal

configuration for

Sylvester’s theorem
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The objects used in this picture are pairs (L, p) where L is a line through at least

two points of the set and p is the closest point in the set but not on the line. We

consider the ðL, pÞwith p closest to L. We assert that L (the red horizontal line) has

only two points of the set on it. If not two points lie on one side of the projection of

p onL. And now the black line L0 throughp and the farther point on L, and p0 the red
point nearer to the projection constructs a configuration ðL0, p0Þ violating the

minimality of ðL, pÞ.
Subtle, ingenious and impossible to grasp without a picture! Here paper and

coloured pencil are a fine tool. ♢

3.3.3 Mathematical Discovery (or Invention)

Giaquinto’s attractive encapsulation: “In short, discovering a truth is coming to

believe it in an independent, reliable, and rational way” Giaquinto (2007, p. 50) has

the satisfactory consequence that a student can discover results whether known to

the teacher or not. Nor is it necessary to demand that each dissertation be original

(only that the results should be independently discovered).

Despite the conventional identification of mathematics with deductive reason-

ing, Kurt G€odel (1906–1978) in his 1951 Gibbs Lecture said: “If mathematics

describes an objective world just like physics, there is no reason why inductive

methods should not be applied in mathematics just the same as in physics”. He held

this view until the end of his life despite—or perhaps because of—the epochal

deductive achievement of his incompleteness results.

Also, one discovers that many great mathematicians from Archimedes and

Galileo—who apparently said “All truths are easy to understand once they are

discovered; the point is to discover them.”—to Gauss, Poincaré, and Carleson have

emphasized how much it helps to “know” the answer. Two millennia ago Archi-

medes wrote to Eratosthenes16 “For it is easier to supply the proof when we have

previously acquired, by the method, some knowledge of the questions than it is to

find it without any previous knowledge”. Think of theMethod as an ur-precursor to
today’s interactive geometry software—with the caveat that, for example, Cinder-
ella actually does provide certificates for much Euclidean geometry.

As 2006 Abel Prize winner Lennart Carleson describes in his 1966 ICM speech

on his positive resolution of Luzin’s 1913 conjecture (about the pointwise conver-

gence of Fourier series for square-summable functions) after many years of seeking

a counterexample he decided none could exist. The importance of this confidence is

expressed as follows:

The most important aspect in solving a mathematical problem is the conviction of what is

the true result. Then it took 2 or 3 years using the techniques that had been developed during

the past 20 years or so.

16 Introduction to his long-lost and recently re-constituted Method of Mechanical Theorems.
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3.3.4 Digital Assistance

By digital assistance I mean use of artefacts as:

1. Modern Mathematical Computer Packages—symbolic, numeric, geometric or

graphical. Symbolic packages include the commercial computer algebra pack-

ages Maple and Mathematica, and the open source SAGE. Primarily numeric

packages start with the proprietary MATLAB and public counterparts Octave and

NumPy, or the statistical package (R). The dynamic geometry offerings include

Cinderella, Geometer’s Sketchpad, Cabri and the freeware GeoGebra.
2. Specialized Packages or General Purpose Languages such as Fortran, C++,

Python, CPLEX, PARI, SnapPea and MAGMA.

3. Web Applications such as: Sloane’s Encyclopedia of Integer Sequences, the

ISC,17 Fractal Explorer, Jeff Weeks’ Topological Games, or Euclid in Java.18

4. Web Databases including Google, MathSciNet, ArXiv, GitHub, Wikipedia,

MathWorld, MacTutor, Amazon, Wolfram Alpha, the DLMF (Olver, Lozier,

Boisvert, & Clark, 2012) (all formulas of which are accessible in MathML, as

bitmaps, and in TE X) and many more that are not always so viewed.

All entail data-mining in various forms. Franklin (2005) argues Steinle’s
“exploratory experimentation” facilitated by “widening technology”, as in pharma-

cology, astrophysics, medicine and biotechnology, is leading to a reassessment of

what legitimates experiment; in that a “local model” is not now prerequisite.

Sørenson (2010) cogently makes the case that experimental mathematics—as

‘defined’ above—is following similar tracks.

These aspects of exploratory experimentation and wide instrumentation originate from the

philosophy of (natural) science and have not been much developed in the context of

experimental mathematics. However, I claim that e.g., the importance of wide instrumen-

tation for an exploratory approach to experiments that includes concept formation also

pertain to mathematics.

In consequence, boundaries between mathematics and the natural sciences and

between inductive and deductive reasoning are blurred and getting more so. (See

also Avigad, 2008.) I leave unanswered the philosophically vexing if mathemati-

cally minor question as to whether genuine mathematical experiments (as discussed
in Borwein & Bailey, 2008) exist even if one embraces a fully idealist notion of

mathematical existence. They sure feel like they do.

17Most of the functionality of the ISC is built into the “identify” function Maple starting with

version 9.5. For example, identifyð4:45033263602792Þ returns ffiffiffi
3

p þ e. As always, the experienced
will extract more than the novice.
18 A cross-section of such resources is available through www.carma.newcastle.edu.au/jon/portal.

html and www.experimentalmath.info.
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3.3.5 The Twentieth Century’s Top Ten Algorithms

The modern computer itself, being a digital repurposable tool, is quite different

from most of its analogue precursors. They could only do one or two things. The

digital computer, of course, greatly stimulated both the appreciation of and need for

algorithms and for algorithmic analysis.19 These are what allows the repurposing.

This makes it reasonable to view substantial mathematical algorithms as tools in

their own right.

At the beginning of this century, Sullivan and Dongarra could write “Great

algorithms are the poetry of computation”, when they compiled a list of the ten

algorithms having “the greatest influence on the development and practice of

science and engineering in the twentieth century”.20 Chronologically ordered,

they are:

#1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of

random processes, this algorithm offers an efficient way to stumble toward

answers to problems that are too complicated to solve exactly.

#2. 1947: Simplex Method for Linear Programming. An elegant solution to a

common problem in planning and decision-making.

#3. 1950: Krylov Subspace Iteration Method. A technique for rapidly solving

the linear equations that abound in scientific computation.

#4. 1951: The Decompositional Approach to Matrix Computations. A suite of

techniques for numerical linear algebra.

#5. 1957: The Fortran Optimizing Compiler. Turns high-level code into effi-

cient computer-readable code.

#6. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix

operation made swift and practical.

#7. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large

databases.

#8. 1965: Fast Fourier Transform (FFT). Perhaps the most ubiquitous algo-

rithm in use today, it breaks down waveforms (like sound) into periodic

components.

#9. 1977: Integer Relation Detection. A fast method for spotting simple equa-

tions satisfied by collections of seemingly unrelated numbers.

#10. 1987: Fast Multipole Method. A breakthrough in dealing with the complex-

ity of n-body calculations, applied in problems ranging from celestial mechan-

ics to protein folding.

19 The discussion in Guin, Ruthven, and Trouche (2005, Chap. 3) regarding the computer science

issues arising when using Maple bears rereading a decade later.
20 From “Random Samples”, Science page 799, February 4, 2000. The full article appeared in the

January/February 2000 issue of Computing in Science & Engineering.
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I observe that eight of these ten winners appeared in the first two decades of

serious computing, and that Newton’s method was apparently ruled ineligible for

consideration.21 Most of the ten are multiply embedded in every major mathemat-

ical computing package. The last one is the only one that occurs infrequently in my

own work.

Just as layers of software, hardware and middleware have stabilized, so have

their roles in scientific and especially mathematical computing. When I first taught

the simplex method more than 30 years ago, the texts concentrated on ‘Y2K’-like
tricks for limiting storage demands.22 Now serious users and researchers will often

happily run large-scale problems in MATLAB and other broad spectrum packages, or

rely on CPLEX or, say, NAG library routines embedded in Maple.
While such out-sourcing or commoditization of scientific computation and

numerical analysis is not without its drawbacks, I think the analogy with automo-

bile driving in 1905 and 2005 is apt. We are now in possession of mature—not to be

confused with ‘error-free’—technologies. We can be fairly comfortable that

Mathematica is sensibly handling round-off or cancellation error, using reasonable

termination criteria and the like. Below the hood, Maple is optimizing polynomial

computations using tools like Horner’s rule, running multiple algorithms when

there is no clear best choice, and switching to reduced complexity (Karatsuba or

FFT-based) multiplication when accuracy so demands. Though, it would be nice if

all vendors allowed as much peering under the bonnet as Maple does.

3.3.6 Secure Knowledge Without Proof

Given real floating point numbers

β, α1, α2, . . . , αn,

Helaman Ferguson’s integer relation method—see #9 of Sect. 3.3.5 above—called

unhelpfully PSLQ, finds a nontrivial linear relation of the form

a0β þ a1α1 þ a2α2 þ � � � þ anαn ¼ 0, ð3:6Þ

where ai are integers—if one exists and provides an exclusion bound otherwise.

This method is very robust. Given adequate precision of computation (Borwein and

Bailey, 2008) it very rarely returns spurious relations.

21 It would be interesting to construct a list of the ten most influential earlier algorithms.
22 ‘Y2K’ was geek-speak for the Year 2000 when there was concern that a trick used to save a

storage bit decades earlier was going to crash all computers. It turned out to be much less serious,

but who knew?
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If a0 6¼ 0, then (3.6) assures β is in the rational vector space generated by

α1, α2; , ; . . . ; , αnf g:

Moreover, as a most useful special case, if β :¼ 1, αi :¼ αi, then α is algebraic of
degree n (see Example 3.4.9).

Quite impressively here is an unproven 2010 integer relation discovery by

Cullen:

211

π4
¼?
X1
n¼0

ð1
4
Þnð12Þ7nð34Þn

1ð Þ9n
ð21þ 466nþ 4340n2 þ 20632n3 þ 43680n4Þ 1

2

� �12n

: ð3:7Þ

We have no idea why it is true but you can check it to almost any precision you

wish. In Example 3.4.10 we shall explore such discoveries.

3.3.7 Is ‘Free’ Software Better?

I conclude this section by commenting on open-source versus commercial software.

While free is very nice, there is no assurance that most open source projects such as

GeoGebra (based on Cabri and now very popular in schools as replacement for

Sketchpad) will be preserved when the founders and typically small core group of

developers lose interest or worse. This is still an issue with large-scale commercial

products but a much smaller one.

I personally prefer Maple to Mathematica as most of the source code is acces-

sible, whileMathematica is entirely sealed. This is more of an issue for researchers

than for educators or less intense users. Similarly, Cinderella is very robust, unlike

GeoGebra, and mathematically sophisticated—using Riemann surfaces to ensure

that complicated constructions do not crash. That said, it is the product of two

talented and committed mathematicians but only two, and it is only slightly

commercial. In general, software vendors and open source producers do not provide

the teacher support that has been built into the textbook market.

3.4 A Dozen or So Accessible Examples

Modern graphics tools change traditional approaches to many problems. We used to

teach calculus techniques to allow graphing of even reasonably simple functions.

Now one should graph to be guided in doing calculus.

Example 3.4.1 (Graphing to Do Calculus). Consider a request in a calculus text to

compare the function given by f ðyÞ :¼ y2logy (red) to each of the functions given by

3.4 A Dozen or So Accessible Examples 43



gðyÞ :¼ y� y2 and hðyÞ :¼ y2 � y4 for 0⩽y⩽1; and to prove any inequality that

holds on the whole unit interval.

The graphs of f, g are shown in the left of the picture in Fig. 3.11, and the graphs
of f, h to the right. In any plotting tool we immediately see that f and g cross but that
h⩾f appears to hold on [0, 1]. Only in a neighbourhood of 1 is there any possible

doubt. Zooming in—as is possible in most graphing tools—or re-plotting on a

smaller interval around 1 will persuade you that f(y)> h(y) for 0< y< 1. This is

equivalent to kðxÞ :¼ logðxÞ � 1þ 1=x > 0 and so that is what you try to prove.

Now it is immediate that k0(x)< 0 on the interval and so k strictly decreases to k
(1)¼ 0 and we are done. □

Likewise, computer algebra systems (CAS) now make it possible to find patterns

which we prove ex post facto by induction. Before CAS many of these inductive

statements might have been inaccessible.

Example 3.4.2 (Induction and Computer Algebra). We all know how to show

XN
k¼1

k ¼ nðnþ 1Þ
2

with or without induction. But what about

XN
k¼1

k5 ¼ ?

Consider the following three lines of Maple code.

> S:¼(n,N)->sum(k^n,k¼1..N):

> S5:¼unapply(factor(simplify(S(5,N))),N);

> simplify(S5(N)-S5(N-1));

The first line defines the sum
XN

k¼1
kn. The second finds this sum for n¼ 5 and

makes it into a function of N. We obtain:

Fig. 3.11 The functions

f and h (L) and f and g (R)
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XN
k¼1

k5 ¼ 1

12
N2 2 N2 þ 2 N � 1
� �

N þ 1ð Þ2: ð3:8Þ

The third line proves this by induction—on checking that S5(1)¼ 1. The proof can

of course be done by hand. Jakob Bernoulli (1655–1705) invented his Bernoulli
numbers23 and associated polynomials in part to evaluate such sums. Indeed, using

the same code with N¼ 10 we arrive at a proof that

XN

k¼1
k10 ¼N 2Nþ1ð Þ Nþ1ð Þ N2þN�1

� �
3N6þ9N5þ2N4�11N3þ3N2þ10N�5
� �

66

and so that

X100
k¼1

k10 ¼ 959924142434241924250,

and

X1000
k¼1

k10 ¼ 91409924241424243424241924242500:

This later computation by Bernoulli is accounted as the first case of real computa-

tional number theory. Likewise

X10000
k¼1

k10 ¼ 9095909924242414242424342424241924242425000:

We finish with interior palindromes in each of the three sums centered at the ‘3’ and
leave its explanation and other apparent patterns to the reader. Of course, unlike

Bernoulli, we could simply have added the three sums without finding the closed

form but then we would know much less. □

Large matrices often have structure that pictures will reveal but which numeric

data may obscure.

Example 3.4.3 (Visualizing Matrices). The picture in Fig. 3.12 shows a 25 �
25 Hilbert matrix on the left and on the right a matrix required to have 50%

sparsity and non-zero entries random in [0, 1].

The 4 � 4 Hilbert matrix in Maple is generated by with(LinearAlgebra);

HilbertMatrix(4); which code produces

23 If you are unfamiliar with them, just ask Maple, Mathematica or Wikipedia.
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1 1=2 1=3 1=4
1=2 1=3 1=4 1=5
1=3 1=4 1=5 1=6
1=4 1=5 1=6 1=7

2664
3775

from which the general definition should be apparent. Hilbert matrices are notori-

ously unstable numerically. The picture on the left of Fig. 3.13 shows the inverse of

the 20� 20 Hilbert matrix when computed symbolically and so exactly. The picture
in the middle shows the enormous numerical errors introduces if one uses 10 digit

precision, and the right shows that even if one uses 20 digits, the errors are less

frequent but even larger.

Representative Maple code for drawing the symbolic inverse is:

> with(plots):

> matrixplot(MatrixInverse(HilbertMatrix(20)),

heights ¼ histogram, axes ¼ frame, gap ¼ .2500000000,

color ¼ proc (x, y) options operator, arrow; sin(y*x) end proc);}

Fig. 3.12 The Hilbert matrix (L) and a sparse random matrix (R)
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Fig. 3.13 Inverse 20 � 20 Hilbert matrix (L) and 2 numerical inverses (R)

46 3 The Life of Modern Homo Habilis Mathematicus: Experimental Computation. . .



It is very good fun to play with pictures of very large matrices constructed to

have complicated block structure. Consider the sequence of 2n� 2nmatrices Q(n),
with entries only 0, 1, 2, 4 which start

2 1

0 1

� �
:

2 2 1 0

0 2 2 1

0 0 1 1

0 0 0 1

2664
3775,

2 2 2 1 0 0

0 2 4 2 1 0

0 0 2 2 2 1

0 0 0 1 1 1

0 0 0 0 1 2

0 0 0 0 0 1

26666664

37777775 ð3:9Þ

We cannot possibly present Q(100) as a symbolic or numerical matrix but Fig. 3.14

visually shows everything both about the matrix and its inverse. □

Let us continue with a different exploration of matrices.

Example 3.4.4 (Abstract Becomes Concrete). Define, for n> 1 the n � n matrices

A(n),B(n),C(n),M(n) by

Akj ¼ ð�1Þkþ1 2n� j

2n� k

� �
, Bkj ¼ ð�1Þkþ1 2n� j

k � 1

� �
,

Ckj ¼ ð�1Þkþ1 j� 1

k � 1

� �
(for k, j¼ 1, . . ., n) and set M :¼ Aþ B� C. For instance,

4 2

1
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180 180
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40
20

3
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0
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120column

columnrow row140
160

180
140

100

60

20

Fig. 3.14 The matrix Q(100) (L) continuing the pattern in (3.9) and its inverse (R)
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Mð7Þ ¼

1 0 0 0 0 0 0

26 �12 9 �7 5 �3 1

156 �78 55 �42 30 �18 6

572 �286 176 �120 80 �46 15

1430 �715 385 �220 126 �65 20

2574 �1287 627 �297 135 �56 15

3432 �1716 792 �330 120 �36 7

2666666664

3777777775
:

In my research (Borwein, Bailey, & Girgensohn, 2005, §3.3), I needed to show

M(n) was invertible. After staring at numerical examples without much profit,

I decided to ask Maple for the minimal polynomial of M(10) using

> MP:¼LinearAlgebra[MinimalPolynomial]: MP(evalm(M(10)),t);

and was surprised to get t2 þ t� 2. (One way to write B in Maple is

> B:¼n->matrix(n,n,(i,j)->(-1)^(j+1)*binomial(2*n-j,i-1));

and there are many other formats.) I got the same answer for M(30) and so I knew

MðnÞ2 þMðnÞ ¼ 2I for all n> 1 or equivalently that

M�1 ¼ M þ I

2
:

But why? I decided to explore A,B,C with the same tool and discovered that

A and C satisfied t2¼ 1 and B satisfied t3¼ 1. This led me to realize that A,B,C
generated the symmetric group on three elements and so to a computer discovered

proof that M was as claimed.

As an illustration of the robustness of such discoveries, if we change the i ¼ 1,

j ¼ 10entry inM(10) to ε 6¼ 0 from 0, we find the minimal polynomial is far from as

simple: t4 þ 2 t3 � 3 t2 � 4 tþ 4� 252 t2 þ 252 t� 504ð Þε, which also shows the
discontinuity at ε¼ 0. Similarly, for the 5 � 5 Hilbert matrix we get

� 1

266716800000
þ 61501 t

53343360000
� 852401 t2

222264000
þ 735781 t3

2116800
� 563 t4

315
þ t5 ¼ 0:

The constant term is of course giving minus the determinant. When I was a student

characteristic and minimal polynomials seemed to be entirely abstract and matrix

decompositions were in their infancy. Now they are technology. ♢

Example 3.4.5 (Hardy’s Taxi-Cab). Hardy when visiting Ramanujan in hospital in

1917 remarked that his taxi’s number, 1729, was very dull. Ramanujan famously

replied that it was very interesting being the smallest number expressible as a sum

of two cubes in two distinct ways (not counting sign or order):

1729 ¼ 123 þ 13 ¼ 103 þ 93:
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Let us ask “what is the second such number? As in Sect. 3.2.2, we can look at a

generating function—this time for cubes. The coefficients of C2(q) will be 0 when

n is not the sum of two cubes, 1 when n¼ 2m3, 2 when n ¼ m3 þ k3 for k 6¼ m. If
there are two distinct representations, the coefficient will be 4. TheMaple fragment

> C:¼convert((add(q^(n^3),n¼1..20)^2),polynom):C-(C mod 4):

outputs 4 q4104 þ 4 q1729 which both proves Ramanujan’s assertion and finds that

the second example is 4104 ¼ 153 þ 93 ¼ 23 þ 163. If we change 20–25 in our

code, we uncover the third such number. Alternatively entering just the first two

into the OIES produces sequence A001235 consisting of the ‘taxi-cab numbers’:
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656,

110808, . . . ♢

Example 3.4.6 (Euler’s Pentagonal Number Theorem). The number of additive
partitions of n, p(n), is generated by

PðqÞ ¼ 1þ
X
n⩾1

pðnÞqn ¼
Y
n⩾1

ð1� qnÞ�1: ð3:10Þ

Thus p(5)¼ 7 since

5 ¼ 4þ 1 ¼ 3þ 2 ¼ 3þ 1þ 1 ¼ 2þ 2þ 1

¼ 2þ 1þ 1þ 1 ¼ 1þ 1þ 1þ 1þ 1,

as we ignore “0” and permutations. Additive partitions are mathematically less

tractable than multiplicative ones as there is no analogue of unique prime factor-

ization nor the corresponding structure.

Partitions provide a wonderful example of why Keith Devlin calls mathematics

“the science of patterns”. They do sometimes enter the school curriculum through

the back-door in the guise of Cuisenaire rods (or réglets), as illustrated by a

staircase in Fig. 3.15.

Fig. 3.15 A 10 � 10

Cuisenaire staircase
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Formula (3.10) is easily seen by expanding ð1� qnÞ�1
and comparing coeffi-

cients. A modern computational temperament leads to:

Question: How hard is p(n) to compute—in 1900 (for MacMahon the “father of combina-

torial analysis”) or in 2015 (for Maple or Mathematica)?

Answer: The famous computation by Percy MacMahon of p(200)¼
3972999029388 at the beginning of the twentieth century, done symbolically and

entirely naively from (3.10) in Maple on a laptop, took 20min in 1991 but only

0.17 s in 2010, while the many times more demanding computation

pð2000Þ ¼ 4720819175619413888601432406799959512200344166

took just 2min in 2009 and 40.7 s in 2014.24 Moreover, in December 2008, the late

Richard Crandall was able to calculate p(109) in 3 s on his laptop, using the Hardy-

Ramanujan-Rademacher ‘finite’ series for p(n) along with FFT methods. Using these

techniques, Crandall was also able to calculate the probable primes p(1000046356)
and p(1000007396), each of which has roughly 35, 000 decimal digits.25

Such results make one wonder when easy access to computation discourages

innovation: Would Hardy and Ramanujan have still discovered their marvelous
formula for p(n) if they had powerful computers at hand? The Maple code

N:¼500; coeff(series(1/product(1-q^n,n¼1..N+1),q,N+1),q,N);

Twenty-five years ago computing P(q) inMaple was very slow, while taking the
series for the reciprocal of the series for

QðqÞ ¼
Y
n⩾1

ð1� qnÞ

was quite manageable!

Why? Clearly the series for Q must have special properties. Indeed it is

lacunary:

QðqÞ ¼ 1� q� q2 þ q5 þ q7 � q12 � q15 þ q22 þ q26 � q35 � q40 þ q51

þ q57 � q70 � q77 þ q92 þ Oðq100Þ: ð3:11Þ

24 The difficulty of comparing timings and the growing inability to look under the hood (bonnet) in

computer packages, either by design or through user ignorance, means all such comparisons

should be taken with a grain of salt.
25 See http://fredrikj.net/blog/2014/03/new-partition-function-record/ for a lovely description of

the computation of p(1020), which has over 11 billion digits and required knowing π to similar

accuracy.
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This lacunarity is now recognized automatically by Maple, so the platform works

much better, but we are much less likely to discover Euler’s gem:

Y1
n¼1

ð1� qnÞ ¼
X1
n¼�1

ð�1Þnqnð3nþ1Þ=2:

If we do not immediately recognize the pentagonal numbers, ð3ðnþ 1Þn=2Þ, then
Sloane’s online Encyclopedia of Integer Sequences26 again comes to the rescue

with abundant references to boot.

This sort of mathematical computation is still in its reasonably early days but the

impact is palpable. □

Example 3.4.7 (Ramanujan’s Partition Congruences). Ramanujan had access to

the first 200 values of p(n) thanks to MacMahon’s lengthy work which the follow-

ing Maple snippet reconstructs near instantly:

> N:¼200:L200:¼
sort([coeffs(convert(series(1/product(1-q^n,n¼1..N+1),q,N

+1),polynom))]);

The list starts 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297,

385, 490, 627. . . with p(0):¼ 1, and Ramanujan noted various modular patterns.

Namely p(5n + 4) is divisible by 5, and p(7n + 5) is divisible by 7. This is hard to see

from a list but a little software can help. The snippet below reshapes the beginning

of a list of n � m or more entries into an n � m matrix:

> reshape:¼proc (L, n, m) local k;

linalg[matrix](n, m, [seq(L[k], k ¼ 1 .. m*n)])

end proc

For instance, > reshape(L200 mod 5, 8,20) produces the first 160 entries of

the list with 20 columns in each of 8 rows as

1 1 2 3 0 2 1 0 2 0 2 1 2 1 0 1 1 2 0 0

2 2 2 0 0 3 1 0 3 0 4 2 4 3 0 3 2 2 0 0

3 3 4 1 0 4 3 4 3 0 1 3 4 1 0 1 3 4 0 0

2 0 1 4 0 3 0 4 0 0 3 0 3 4 0 4 1 3 4 0

1 2 0 4 0 2 2 3 4 0 3 4 2 2 0 4 4 0 1 0

2 1 4 0 0 4 1 4 4 0 1 3 1 3 0 1 3 1 3 0

0 1 2 1 0 2 2 0 0 0 0 4 4 2 0 1 0 1 1 0

0 3 0 2 0 4 4 3 2 0 3 2 1 4 0 2 4 4 2 0

266666666664

377777777775
:

We now see only zeroes in the columns congruent to 4 modulo 5 and discover the

first congruence 5jp(5n + 4). Similarly, > reshape(L200 mod 7, 8,21) reveals

26 A fine model for twenty-first century databases, it is available at https://oeis.org/.
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1 1 2 3 5 0 4 1 1 2 0 0 0 3 2 1 0 3 0 0 4

1 1 2 0 5 0 0 1 1 4 3 5 0 4 1 1 0 3 0 0 0

2 2 2 3 5 0 0 2 1 4 0 0 0 0 3 2 2 3 5 0 4

2 2 2 3 5 0 4 3 2 4 6 5 0 0 2 2 4 3 5 0 0

3 3 6 6 3 0 1 3 3 4 3 5 0 0 4 3 4 6 5 0 1

5 3 6 6 3 0 0 5 4 6 6 3 0 4 5 4 6 6 5 0 0

6 5 1 2 3 0 1 5 5 1 6 3 0 4 0 5 1 5 1 0 1

0 6 3 2 1 0 4 1 6 3 5 1 0 1 1 6 3 2 1 0 1

266666666664

377777777775
and ‘discovers’ the second congruence 5jp(7n + 5) for all n⩾0. The third congru-

ence 6jp(11n + 6) for all n⩾0 can be discovered by appropriate reshaping—and if

wished confirmed by taking more terms. These partition congruences are discussed

and the first two proved in Borwein and Borwein (1987, §3.5). ♢

Maple has since version 9.5 had a function called ‘identify’. It takes many tools

such as PSLQ (Sect. 3.3.6) and attempts to predict an answer for a floating point

number. A related ISC is on-line at http://isc.carma.newcastle.edu.au/. This lets you

enter a real number or a Maple expression and ask the computer “What is that

number?”

Another excellent example of how packages are changing mathematics is the

Lambert W function (Borwein et al., 2005), whose remarkable properties and

development are very nicely described in a fairly recent article by Hayes (2005),

Why W? Informally, W(x) solves

x ¼ WðxÞeWðxÞ:

As a real function, its domain is ð�1=e,1Þ. We draw W and the quite similar log

function on the left of Fig. 3.16. Its use can be traced back to Lambert (1728–1727),

and W as a notation was used by P�olya and Szeg€o in 1925. However, this very

useful non-elementary function only came into general currency after it was named

2
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0
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Fig. 3.16 (L) W and log (R) ðlogxÞ=x
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and then implemented in both Maple and Mathematica. It is hard to use or

popularize an un-named function. Now most CAS know the expansion

WðzÞ ¼
X1
k¼1

ð�kÞk�1

k!
zk

with radius of convergence 1/e.

Example 3.4.8 (Solving Equations with W). We first look at xy ¼ yx.

(a) Let us fix x> 0 and try to solve

xy ¼ yx for y > 0: ð3:12Þ

Of course, we seek a non-trivial solution with x 6¼ y such as x ¼ 2, y ¼ 4. The

Maple solve command returns

yðxÞ ¼ �x

logx

� �
W

�logx

x

� �
: ð3:13Þ

This may confuse initially more than help. If we take logarithms in (3.12) and

rearrange, we are trying to solve

logy

y
¼ z :¼ logx

x
ð3:14Þ

for y> 0.

The right of Fig. 3.16 shows that the function ðlogxÞ=x is positive only on

1 < x < 1 and then and only then has two solutions—except for x¼ e where
the maximum of 1/e occurs—and now in Maple solve(log(x)/x¼z,x)

returns �W �log zð Þ=z. This solution is shown on the left in Fig. 3.17 where

z implicitly must satisfy 0< z< 1/e. This yields (3.13), shown in the center of
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Fig. 3.17 (L) Solution to (3.13). (M) Solution to (3.12). (R) Quadratic Taylor approximation

around e
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Fig. 3.17, where we know now that x> 1 is requisite. For instance, y3 :¼ �3W

ð�ðlog 3Þ=3Þ=log 3 ¼ 2:478052685 . . . 6¼ 3 solves 3y3 ¼ ðy3Þ3:
Now, we may not know W but our computer certainly now does. For

instance, identify(0.56714329040978) returns W(1) and the Taylor

series for y(x) around e starts

yðxÞ ¼ e� sign x� eð Þ x� eð Þ þ 5 e�1 sign x� eð Þ þ 1ð Þ
6

x� eð Þ2

þ O x� eð Þ3
	 
 ð3:15Þ

as shown on the right of Fig. 3.17. For x> e, yðxÞ ¼ 1=ð3eÞ
11 e2 � 13 xeþ 5 x2ð Þ while for x< e we get the trivial solution x.

(b) A parametric form of the solution is x ¼ r1=ðr�1Þ, y ¼ rx ¼ rr=ðr�1Þ, for r> 1.

Equivalently with r ¼ 1þ 1=s, where s> 0, we have x ¼ ð1þ 1=sÞs,
y ¼ ð1þ 1=sÞsþ1

. This is shown in Fig. 3.18.

(c) Repeated exponentiation. How many distinct meanings may be assigned to

product towers for the n-fold exponentiation

x∗
x
n ¼ xx

xx���x
?

Recursions like x1¼ t> 0 and xn ¼ txn�1 for n> 0 have been subjected to

considerable scrutiny. We can check that the solution to tx¼ x is t� �W

�log tð Þ=log twhich solution exists for t2½e�e, e1=e�. ♢
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Fig. 3.18 Parametric

solutions of (3.12) separated

by y¼ e
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Example 3.4.9 (Finding Algebraic Numbers). Both Maple and Mathematica have

algorithms that can predict if a number is algebraic and even find its minimal

polynomial. We described this a little further in Sect. 3.3.6. For instance, using

identify—with no tuning of parameters—as with

> Digits:¼20:a:¼evalf(7^(1/2)+3^(1/2));identify(a);

returns ffiffiffi
7

p
þ

ffiffiffi
3

p

but

> Digits:¼20:a:¼evalf(2^(1/3)+3^(1/2));identify(a);

returns

2:9919718574637504583

meaning Maple could not identify the surd from 20 digits. The ISC at http://isc.

carma.newcastle.edu.au/advancedCalc runs tuned algorithms and will identify the

constant as shown in Fig. 3.19.

However:

> Digits:¼30:a:¼evalf(2^{1/3}+3^{1/2});identify(a);

returns

Fig. 3.19 Identifying 21=3 þ 31=2
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Root Of �Z6 � 9�Z4 � 4�Z3 þ 27�Z2 � 36�Z � 23, index ¼ 1
� �

which allows us to recover 21=3 þ 31=2. For example, we can factor in Qð ffiffiffi
3

p Þ using
the command:

> factor(_Z^6-9*_Z^4-4*_Z^3+27*_Z^2-36*_Z-23,sqrt(3));

which yields

� 3
ffiffiffi
3

p
�Z2 þ �Z3 þ 3

ffiffiffi
3

p
þ 9�Z � 2

	 

3

ffiffiffi
3

p
�Z2 � �Z3 þ 3

ffiffiffi
3

p
� 9�Z þ 2

	 

:

The quadratic formula now applies to determine that the only real roots of the sextic

polynomial are 21=3 � ffiffiffi
3

p
. □

We can do more exciting things of this kind.

Example 3.4.10 (What is that Number?). Let us illustrate it for the integral

RðaÞ :¼ Rða, aÞ ¼ 2

Z1
0

t1=a

1þ t2
dt ð3:16Þ

whose origins are described in Sect. 3.5. We plot R(a) in Fig. 3.20. (We used the

hypergeometric form given below. Maple will find this form if you input (3.16).)

Note that the graph is consistent with the fact thatR increases to the blue asymptote

Rð1Þ ¼ π
2
: You may be able to evaluate some other values by hand.

Most CAS will answer that the values of Rð1=mÞ, for 1⩽m⩽6, are

log2, 2� π

2
, 1� log2, � 4

3
þ π

2
, � 1

2
þ log2,

26

15
� π

2
:
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Fig. 3.20 The function RðaÞ
for 0< a< 30
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We then check that Rð1=7Þ ¼ 5
6
� log2 and Rð1=8Þ ¼ � 152

105
þ π

2
. From this it

should be plausible that

ð�1ÞnR 1

2nþ 1

� �
¼ log2þ an

ð�1ÞnR 1

2n

� �
¼ π

2
þ bn

for rational numbers an, bn. As experimental confirmation of this conjecture we can

check that

R 1

21

� �
¼ � 1627

2520
þ log2, R 1

20

� �
¼ � 22128676

14549535
þ π

2
:

If we ask the computer for Rð2Þ, we get a complicated (ostensibly

complex) expression that simplifies to
ffiffi
2

p
4

2 π þ log 17� 12
ffiffiffi
2

p� �� �
: If we try PSLQ

for a :¼ 2, 2=3, 2=5, . . . we discover that each such sum evaluates in terms of three

basis vectors:

1,
ffiffiffi
2

p
π and

ffiffiffi
2

p
logð1þ

ffiffiffi
2

p
Þ:

For instance,

R 11

2

� �
¼ 164

45
� πffiffiffi

2
p �

ffiffiffi
2

p
log 1þ

ffiffiffi
2

p	 

:

If, however, we leave out the constant term ‘1’, we find

Rð2Þ ¼ πffiffiffi
2

p �
ffiffiffi
2

p
log 1þ

ffiffiffi
2

p	 

but have no such luck as we need that pesky constant term.

Actually, Borwein, Crandall, and Fee (2004) give a closed form for every

instance of R p
q

	 

with p, q positive integers. □

We turn to another example where the CAS provides a proof that we would not

have been likely to arrive at without the current tools.

Example 3.4.11 (π Is Not 22/7). Even Maple or Mathematica ‘knows’ this since

0 <

Z 1

0

ð1� xÞ4x4
1þ x2

dx ¼ 22

7
� π, ð3:17Þ

though it would be prudent to ask ‘why’ it can perform the integral and ‘whether’ to
trust it?

3.4 A Dozen or So Accessible Examples 57



1. Assuming we trust our software, the integrand is strictly positive on (0, 1), see

Fig. 3.21, and so the answer in (3.17) is an area which is necessarily strictly

positive, despite millennia of claims that π is 22/7.

2. Quite accidentally, 22/7 is one of the early continued fraction approximation to

π—and is why it is a pretty reasonable approximation to π. These commence:

3,
22

7
,
333

106
,
355

113
, . . .

but no one has found a way to replicate (3.17) for these other fractions. Some

coincidences are just that—happenstance. Similarly, there is no good reason

why eπ � π ¼ 19:99909997918947576 . . ., but it is most impressive on a low

precision calculator.

3. We turn to proving π is not 22
7
with computational help. In this case, taking the

indefinite integral provides immediate reassurance. We obtainZ t

0

x4 1� xð Þ4
1þ x2

dx ¼ 1

7
t7 � 2

3
t6 þ t5 � 4

3
t3 þ 4 t� 4 arctan tð Þ

as differentiation and simplification—by hand or by computer—easily confirms.

Now the Fundamental theorem of calculus proves (3.17). A traditional proof

would probably have developed the partial fraction expansion and thence

performed the integral.

4. One can take this idea a bit further. Note that

R 1
0
x4 1� xð Þ4dx ¼ 1

630
: ð3:18Þ

0.003

0.002

0.001

0
0 0.2 0.4 0.6

x
0.8 1

Fig. 3.21 The integrand

in (3.17)
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Hence

1

2

Z 1

0

x4 1� xð Þ4dx <
Z 1

0

ð1� xÞ4x4
1þ x2

dx <

Z 1

0

x4 1� xð Þ4dx:

5. Combine this with (3.17) and (3.18) to derive: 223=71 < 22=7� 1=630 < π
< 22=7� 1=1260 < 22=7 and so re-obtain Archimedes’ famous

3
10

71
< π < 3

10

70
: ð3:19Þ

Note that by not cancelling the zeros on the right it is much easier to see that

1=7 > 10=71. All rules must be broken occasionally.

Even without using (3.19), a glance at Fig. 3.21 shows how small the error is.

Indeed the maximum occurs at 1/2 with maximum value a tiny 1/320.

Never Trust References In 1971 Dalziel published this development in Eureka,
a Cambridge student magazine of the period. Integral (3.17) was earlier on the

1968 William Lowell Putnam examination, an early 1960s Sydney honours exam,

and traces back to a 1944 paper by the self-same Dalzeil who opted not to

reference it 27 years later.27 The message here is that what might appear to be a

primary source may well not be, and even the author may not necessarily tell you

the whole truth. □

The take away from Examples 3.4.2 and 3.4.11 is that whenever a CAS can do a

definite sum, product or integral, it is well worth seeing if it can perform the

corresponding indefinite one.

I have built a little function ‘pslq’ in Maple that when input data for PSLQ

predicts an answer to the precision requested but checks it to ten digits more

(or some other precision). This makes the code a real experimental tool as it predicts

and confirms. One of my favourite uses of it is to quickly check answers for a

lecture in cases where I know the general form of an answer but cannot remember

all the details.

Example 3.4.12 (Preparing for Class). In all serious computations of π from 1700

(by John Machin) until 1980 some version of a Machin formula (Borwein and

Bailey, 2008) was used. This is a formula which writes

arctanð1Þ ¼ a1 � arctan 1

p1

� �
þ a2 � arctan 1

p2

� �
þ � � � þ an � arctan 1

pn

� � ð3:20Þ

for rational numbers a1, a2, . . . , an and integers p1, p2, . . . , pn > 1. When combined

with the Taylor series for arctan, namely

27 I am certainly guilt of some such sins herein.
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arctanðxÞ ¼
X1
n¼0

ð�1Þn
2nþ 1

x2nþ1:

This series when combined with (3.20) allows one to compute π ¼ 4arctanð1Þ
efficiently, especially if the values of pn are not too small.

For instance, Machin found

π ¼ 16 arctan
1

5

� �
� 4 arctan

1

239

� �
ð3:21Þ

while Euler discovered

arctanð1Þ ¼ arctan
1

2

� �
þ arctan

1

5

� �
þ arctan

1

8

� �
: ð3:22Þ

The code in Fig. 3.22 used 20 digits to confirm (3.22) to 30 digits. The input is a

Maple or numeric real, followed by a list of basis elements, and the third variable is

the precision to use. The code in Fig. 3.23 used 20 digits to likewise confirm (3.21)

to 30 digits.

The code in Fig. 3.24 used 20 digits to find another relation and confirm it to

30 digits. This is what happens if you mistype 1/3 for 1/5.

Fig. 3.22 Finding equation (3.22)

Fig. 3.23 Finding equation (3.21)

Fig. 3.24 Finding an unexpected equation
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If, however, as in Fig. 3.25, you use 1/9 instead of 1/8 you get a ‘mess’.
This shows that when no relation exists the code will often find a very good

approximation but will use very large rationals in the process. So it diagnoses

failure both because it uses very large coefficients and because it is not true to the

requested 30 places. □

We next find the limit of an interesting mean iteration—an idea we take up again

in Example 3.8.1. Recall that a mean M is any function of positive numbers

a and b which always satisfies min
�
a, b
�
⩽Mða, bÞ⩽max

�
a, b
�
: A mean is strict

if M(a, b)¼ a or M(a, b)¼ b implies a¼ b as is true for the arithmetic mean

Aða, bÞ :¼ aþb
2
, the geometric mean Gða, bÞ :¼ ffiffiffiffiffi

ab
p

or the harmonic mean

Hða, bÞ :¼ 2ab
aþb. Every mean clearly is diagonal meaning that M(a, a)¼ a.

Theorem 3.4.13 (Invariance Principle, Borwein & Borwein, 1987). Suppose M,N
are means and at least one is strict. The mean iteration given by anþ1 ¼ Mðan, bnÞ
and bnþ1 ¼ Nðan, bnÞ is such that the limit Lða, bÞ ¼ limnan ¼ limnbn exists
and is necessarily a mean. Moreover, it is the unique continuous and diagonal
mapping satisfying for all n:

L an, bnð Þ ¼ L anþ1, bnþ1ð Þ: ð3:23Þ

Proof. We sketch the proof (details may again be found in Borwein & Borwein,

1987, Chap. 8). One first checks that the limit, being a pointwise limit of means is

itself a mean and so is continuous on the diagonal. The principle follows since,

L being diagonal satisfies

lim
n
an ¼ Lðlim

n
an, lim

n
bnÞ ¼ L anþ1, bnþ1ð Þ ¼ L an, bnð Þ ¼ � � � ¼ Lða, bÞ,

as asserted. □

A simple but satisfying application of Theorem 3.4.13 is to show that with

a0 :¼ a > 0, b0 :¼ b > 0, the mean iteration

anþ1 ¼ an þ bn
2

, bnþ1 ¼ 2anbn
an þ bn

converges quadratically to
ffiffiffiffiffi
ab

p
.

Fig. 3.25 When no relation exists

3.4 A Dozen or So Accessible Examples 61

http://dx.doi.org/10.1007/978-3-319-02396-0_8


Example 3.4.14 (Finding a Limit). Consider the iteration that takes positive num-

bers a0 :¼ a, b0 :¼ b and repeatedly computes the mixed arithmetic-geometric

means:

anþ1 ¼ an þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

, bnþ1 ¼ bn þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

: ð3:24Þ

In this case convergence is immediate since janþ1 � bnþ1j ¼ jan � bnj=2. The
followingMaple function will compute the Nth step of the iteration to the precision
of the environment.

L:¼proc(a0,b0,n) local a,b,c,k;a:¼evalf(a0);b:¼evalf(b0); for

k to n do

c:¼evalf((a+sqrt(a*b))/2);b:¼evalf((b+sqrt(a*b))/2);a:¼c;

od;a;end;

If we set the precision at 14 digits and try identify(L(2,1,50)); we get

1=log2 and identify(L(3,1,50)); gives 2=log3. After checking that x¼ 4 gives

3=log4 and 5 behaves similarly, it seems worthwhile considering logðxÞLðx, 1Þ. We

only want a few digits so we plot FðxÞ :¼ Lðx, 1, 5Þlog x on [1/3, 3]. The result in

Fig. 3.26 is a straight line and strongly supports the conjecture thatLðx, 1Þ ¼ ðx� 1Þ=
log x in which case Lða, bÞ ¼ bða=b� 1Þ=logða=bÞ ¼ ða� bÞ=ðloga� logbÞ: Even
dull plots can be interesting. ♢

We are ready to prove our conjecture.

Example 3.4.15 (Carlson’s Logarithmic Mean). Consider the iterations with a0 :¼
a > 0, b0 :¼ b > a and

3

2

1

0
1 2 3

x
4

Fig. 3.26 The function

x�LðxÞlog x on [1/3, 3]
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anþ1 ¼ an þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

, bnþ1 ¼ bn þ
ffiffiffiffiffiffiffiffiffi
anbn

p
2

,

for n⩾0. If asked for the limit, you might make little progress. But suppose we have

just completed Example 3.4.14. Then we can see that answer is the logarithmic
mean

Lða, bÞ :¼ a� b

log a� log b
,

for a 6¼ b and a (the limit as a ! b) when a¼ b> 0. We check that

Lðanþ1, bnþ1Þ ¼ an � bn

2 log anþ
ffiffiffiffiffiffiffi
bnan

p
bnþ

ffiffiffiffiffiffiffi
bnan

p
¼ Lðan, bnÞ,

since 2log
ffiffiffiffi
an

pffiffiffiffi
bn

p ¼ log an
bn
. The invariance principle of Theorem 3.4.13 then confirms

that Lða, bÞ is the limit. In particular, for a> 1,

L a

a� 1
,

1

a� 1

� �
¼ 1

log a
,

which quite neatly computes the logarithm (slowly) using only arithmetic opera-

tions and square roots. ♢

And finally, we look at two examples that emphasize that no initial pattern is a

proof. They involve the highly oscillatory sinc function

sincðxÞ :¼ sin x

x

which is plotted in Fig. 3.27.

1.0

0.8

0.6

0.4

0.2

0

-0.2

-20 -10 10 20
x

Fig. 3.27 The sinc function
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Example 3.4.16 (Inductive Reasoning Has Its Limits). Consider

Jn :¼
Z 1

�1
sinc

�
xÞ � sinc x

3

	 

� � �sinc x

2nþ 1

� �
dx:

Then—as Maple and Mathematica are able to confirm—we have the following

evaluations:

J0 ¼
Z 1

�1
sinc

�
xÞ dx ¼ π,

J1 ¼
Z 1

�1
sinc

�
xÞ � sinc x

3

	 

dx ¼ π,

⋮

J6 ¼
Z 1

�1
sinc

�
xÞ � sinc x

3

	 

� � �sinc x

13

	 

dx ¼ π:

As explained in detail in Borwein et al. (2005, Chap. 2), the seemingly obvious

pattern is then confounded by

J7 ¼
Z �1

1
sinc

�
xÞ � sinc x

3

	 

� � �sinc x

15

	 

dx

¼ 467807924713440738696537864469

467807924720320453655260875000
π < π,

where the fraction is approximately 0. 99999999998529. . . which, depending on the

precision of calculation used, numerically might not even be distinguished from 1.

These integrals now called the Borwein integrals have gathered a life of their

own as illustrated in Fig. 3.28 and http://oeis.org/A068214/internal. □

STUFF THAT IS

BEAUTIFUL

MATH
PROOFS USING

CASE WORK

spikedmath.com
© 2012

ARITHMETIC

THE BORWEIN
INTEGRAL

Fig. 3.28 What is beauty?
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In case this caution against inductively jumping to conclusions was not con-

vincing, consider the next example.

Example 3.4.17 (Inductive Reasoning Really Has Its Limits). The following “stu-

dent’s dream” identity of a sum equalling an integral again engages the sinc

function:

X1
n¼�1

sincðnÞ sincðn=3Þ sincðn=5Þ� � �sincðn=23Þ sincðn=29Þ

¼
Z 1

�1
sincðxÞ sincðx=3Þ sincðx=5Þ� � �sincðx=23Þ sincðx=29Þ dx,

ð3:25Þ

where the denominators range over the odd primes up to 29, was first discovered

empirically.

Provably, the following is true: The analogous “sum equals integral” identity

remains valid for ‘29’ replaced by any one of more-than-the first 10176 primes but

stops holding after some larger prime, and thereafter the “sum less the integral” is

positive but much less than one part in a googolplex. An even stronger estimate is

possible assuming the generalized Riemann hypothesis (GRH) (Baillie, Borwein, &
Borwein, 2008). What does it mean for two formulas to differ by a quantity that can

never be measured in our assumed-to-be finite universe? □

3.5 Simulation in Pure Mathematics

Pure mathematicians have not frequently thought of simulation as a relevant tool

though it has a long lineage. An early and dubious example of simulation of π is

called Buffon’s needle. The Comte de Buffon (1700–1778) was an early vegetarian

and his claimed result is much too good—it gets too accurate a result for the sample

size (Fig. 3.29).

Fig. 3.29 Simulating π
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3.5.1 Monte Carlo Simulation of π

Stanislaw Ulam (1900–1984) can be considered the inventor of modernMonte Carlo
samplingmethods—named for the casino parlours of that city. See also the first of our

top ten algorithms in Sect. 3.3.5. Such simulations were crucial during the Manhattan

project when early computers were inadequate to perform the needed computations,

even though they intrinsically are not efficient. One expects to need n2 measurements

to get an accuracy of O(1/n). An easy illustration is simulation of π.

Example 3.5.1 (Why a Serial God Should Not Play Dice). Consider inscribing a

circle in a square pan of side one, and sprinkling a fine particle (e.g., salt or grain)

and counting the proportion of particles that fall in the circle. It should approximate

π/4 as that is the area of the circle.

If one can pour all the particles at once and uniformly over the square, this is a

fast and parallel method of estimating π. But if one has to do this in serial it is

painfully slow. One can do this at the computer by selecting pairs of pseudo-random

numbers in the square 0< x, y< 1 and counting how often x2 þ y2⩽1. Four times

that proportion should converge to π. ♢

Despite the slowness of the method, in the early days of personal computers I

implemented this on each new desktop or laptop. It was a terrible way to compute π
but a great way to test the random number generator. I would start the program and

after a few thousand trials would have roughly 3. 14. When I looked again the next

morning I might have converged to 3. 57. . . or some such because the built-in

random number generator was far from random.

3.5.2 Finding a Region of Convergence

The cardioid at the left of Fig. 3.30 was produced by a scatter plot while trying to

determine for which complex numbers z ¼ b=a an improper continued fraction due

to Ramanujan, Rða, bÞ, converged. It is given for complex numbers a and b by

4

2

0 1-1-2-3-4-5

-2

-4

Fig. 3.30 (L) cardioid discovered by simulation. (M) and (R) a fractal hidden in R
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Rða, bÞ ¼ a

1þ b2

1þ 4a2

1þ 9b2

1þ⋱

, ð3:26Þ

see Borwein et al. (2005, Ex. 53, p. 69).

As often I first tried to compute R(1, 1) and had little luck28—it transpires that for

a ¼ b2ℝ convergence is O(1/n) but is geometric for a 6¼ b. So what looks like the

simplest case analytically is the hardest computationally. We did eventually deter-

mine from highly sophisticated intermediate steps that:

Theorem 3.5.2 (Four Formulae for Rða, aÞ). For any a > 0

Rða, aÞ ¼ 2a
X1
k¼1

ð�1Þkþ1

1þ ð2k � 1Þa

¼ 1

2
ψ

3

4
þ 1

4a

� �
� ψ

1

4
þ 1

4a

� �� �

¼ 2a

1þ a
2F1

1

2a
þ 1

2
, 1

1

2a
þ 3

2

� 1

0BB@
1CCA

¼ 2

Z 1

0

t1=a

1þ t2
dt:

Here 2F1 is the hypergeometric function defined in (3.35). If you do not know the

ψ orΨ (‘psi’) function, you can easily look it up once you can say ‘psi’. Notice that

Rða, aÞ ¼ 2

Z 1

0

t1=a

1þ t2
dt

now allows us to evaluate Rð1, 1Þ ¼ log2 as discussed in Example 3.4.10.

The development of this theory exploited modular and theta functions. We used

the square counting theta functions θ3ðqÞ :¼
X1

n¼�1qn
2

and θ4ðqÞ :¼ θ3ð�qÞ. The
pictures on the right of Fig. 3.30 shows the level sets of the modulus of the ratio

θ4ðqÞ=θ3ðqÞ for q :¼ reiθ in the first quadrant; black regions have modulus

exceeding one. From this simple recipe comes beautiful fractal complexity.

After making no progress analytically, Crandall and I decided to take a some-

what arbitrary criterion for convergence and colour yellow the points for which the

fraction seemed to converge. Treating the iteration implicit in (3.26) as a black box,

we sampled one million starting points and reasoned that a few thousand

28 I could see that Rð1, 1Þ ¼ 0:693 . . . as is suggestive of log2 ¼ 0:6931471806 . . ..
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mis-categorizations would not damage the experiment. Figure 3.30 is so precise

that we could identify the cardioid. It is the points where

ffiffiffiffiffiffiffiffi
jabj

p
⩽ jaþ bj

2

and since for positive a, b the fraction satisfies

R aþ b

2
,
ffiffiffiffiffi
ab

p� �
¼ Rða, bÞ þ Rðb, aÞ

2

this gave us enormous impetus to continue our eventually successful hunt for a

rigorous proof (Borwein & Crandall, 2004; Borwein, Borwein, Crandall, & Mayer,

2007).

Example 3.5.3 (Digital Assistance, arctanð1Þ and a Black-Box). Consider for

integer n> 0 the sum

σn :¼
Xn�1

k¼0

n

n2 þ k2
:

The definition of the Riemann sum means that

lim
n!1 σn ¼ lim

n!1

X n�1

k¼0

1

1þ �k=n�2 1

n

¼
Z 1

0

1

1þ t2
dt ¼ arctanð1Þ:

ð3:27Þ

Even without being able to do this Maple will quickly tell you that

σ1014 ¼ 0:78539816339746 . . .

Now if you ask for 100 billion terms of most slowly convergent series, a computer

will take a long time. So this is only possible because Maple knows

σN ¼ � i

2
Ψ N � iNð Þ þ i

2
Ψ N þ iNð Þ þ i

2
Ψ �iNð Þ � i

2
Ψ iNð Þ

using the imaginary i, and it has a fast algorithm for our new friend the psi function.

Now identify(0. 78539816339746) yields
π

4
.

We can also note that

τn :¼
Xn
k¼1

n

n2 þ k2
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is another Riemann sum. Indeed, σn � τn ¼ 1
2n > 0. Moreover, experimentally it

seems that τ) increases and σn decreases to π/4.
If we enter “monotonicity of Riemann sums” into Google, one of the first entries

is http://elib.mi.sanu.ac.rs/files/journals/tm/29/tm1523.pdf which is a 2012 article

(Szilárd, 2012) that purports to show the monotonicity of the two sums. The paper

goes on to prove that if f: [0, 1]!R is continuous, concave and decreasing then τn

:¼ 1

n

Xn

k¼1
f

�
k

n

�
increases and σn :¼ 1

n

Xn�1

k¼0
f

�
k

n

�
decreases to

R 1
0
f ðxÞ dx.

Moreover, if f is convex and decreasing, then instead σn increases and τn decreases.
All proofs are based on looking at the rectangles which comprise the difference

between τn+1 and τn as in Fig. 3.31 (or the corresponding sums for σn). This is

Xn
k¼1

ðnþ 1� kÞ
nþ 1

f
k

nþ 1

� �
þ k

nþ 1
f

k þ 1

nþ 1

� �
� f

k

n

� �� �
: ð3:28Þ

In the easiest case, each bracketed term

δnðkÞ :¼ ðnþ 1� kÞ
nþ 1

f
k

nþ 1

� �
þ k

nþ 1
f

k þ 1

nþ 1

� �
� f

k

n

� �
has the same sign for all n and 1⩽k⩽n as happens for concave or convex and

decreasing (for increasing consider � f ).

But in Szilárd (2012) the authormistakenly asserts this for1=ð1þ x2Þwhich has an
inflection point at 1=

ffiffiffi
3

p
. It appears, on checking in a CAS, that δnðkÞ þ δnðn� kÞ⩾0

which will repair the hole in the proof. Indeed, this suggests we consider gðxÞ :¼

0 1k–1 k+1 k+1k k
n n nn+1 n+1

Fig. 3.31 Difference in the lower Riemann sums for 1=ð1þ x2Þ
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f ðxÞ þ f ð1� xÞ
2

which for f ðxÞ :¼ 1=ð1þ x2Þ is concave on [0, 1] and has the same

value for (3.28). The details of a correct result based on symmetric Riemann sums are
to be found in Borwein, Borwein, and Sims (2015). What a fine example of digital

assistance in action! ♢

I conclude this section by saying that most of my more sophisticated research

computing is an admixture of tools like the ones above—used appropriately and in

context. In the remainder of this chapter we look at mathematics originating in my

recent research. Details are given in the references but a reader who knows some

secondary school algebra, geometry and calculus should be able to follow the broad

brushes of what follows. We now turn to three sets of more sophisticated case

studies. Remember in each case the pictures are central.

3.6 Case Studies I: Dynamic Geometry

Dynamic or interactive geometry packages take points and lines as primitive

objects—usually in two dimensions—and add various conic sections and the like.

Once positioned the entire construction is moveable. Thence, the qualitative

‘generic’ properties of a configuration often become clear very quickly. In Cinder-

ella one can work in various geometries: Euclidean, hyperbolic spherical and more.

One can also export a construction as a Java html object useable in a web page. For

example, http://www.carma.newcastle.edu.au/jon/lm.html will illustrate much of

the next section’s discussion and many additional features.

3.6.1 Case Study Ia: Iterative Reflections

Let S � Rm. The (nearest point or metric) projection onto S is the (set-valued)

mapping, PSx :¼ argmins2S k s� x k : The reflection with respect to S is then the

(set-valued) mapping, RS :¼ 2PS � I: The projections and reflection are illustrated

in Fig. 3.32 for a convex set (where they are unique) and a non-convex set where

they need not be.

x

p

x

p2

p1

r1

r2

r

Fig. 3.32 Projections and reflections for a convex set (L) and for a non-convex set (R)
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Iterative projection methods have a long and successful history going back to von

Neumann,Wiener andmany others. The basicmodel (Aragon andBorwein, 2013;Ara-

gon et al., 2014) finds a point in A \ B assuming information about the projections on

A and B individually is accessible. Precisely we repeatedly compute

xnþ1 :¼ SA,Bxn where SA,B :¼ PBPA:

The corresponding reflection methods are more recent and often appear more

potent.

Theorem 3.6.1 (Douglas–Rachford (1956–1979)). Suppose A,B � Rm are closed
and convex. For any x0 2 Rm define

xnþ1 :¼ TA,Bxn where TA,B :¼ I þ RBRA

2
:

If A \ B 6¼ ∅, then xn ! x such that PAx2A \ B. Else if A \ B ¼ ∅, then k xn k
! 1.

In Fig. 3.33 we illustrate one step of ‘reflect-reflect-average’ as Douglas–

Rachford’s method is also called below.29

The method also can be applied to a good model for phase reconstruction,
namely for B affine and A a boundary ‘sphere’. In this case we have some few

local convergence results and even fewer global convergence results; but much

positive empirical evidence—both numeric and geometric—using tools such as

Cinderella, Maple and SAGE.

Is Fig. 3.34 showing a “generic visual theorem” establishing global convergence

off the (provably chaotic) y-axis? Note the error—scattered red points—from using

‘only’ 14 digit computation.

B

A

RBRAxn

RAxn

xn+1 = TA,Bxn

xn

A := {x ∈ Rm×n :||x|| £ 1}, B := {x ∈ Rm×n :áa,x  = b}.á

Fig. 3.33 One step of the Douglas–Rachford method

29 See also http://www.carma.newcastle.edu.au/jon/reflection.html and http://carma.newcastle.

edu.au/jon/expansion.html.

3.6 Case Studies I: Dynamic Geometry 71

http://www.carma.newcastle.edu.au/jon/reflection.html
http://carma.newcastle.edu.au/jon/expansion.html
http://carma.newcastle.edu.au/jon/expansion.html


Figure 3.35 illustrates that what we can prove (L) is frequently less than what we
can see (R). There is nothing new here. The French academy stopped looking at

attempts to solve the three classical ruler-and-compass construction problems of

antiquity—trisection of an angle, doubling the cube, and squaring the circle—

centuries before they were proven impossible during the nineteenth century.30

It is quite striking that an algorithm based on three simple operations of high-

school geometry can so effective solve complicated real-world problems.

3.6.2 Case Study Ib: Protein Conformation

We need three concepts. First, a matrix completion problem starts with a fixed class

of matricesA (say doubly stochastic, symmetric or positive semidefinite) and seeks

a matrix A2A consistent with knowledge of some prescribed subset of its entries.

Of course this is not always possible.

Fig. 3.34 Trajectories of a Cinderella applet showing 20, 000 starting points coloured by distance
from y-axis after 0, 7, 14, 21 steps

30 Indeed, changing the tools slightly makes all three constructions possible.
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Second, a distance matrix, with respect to metric d on a set X, is a symmetric

square n � n matrix (aij) with real entries aij :¼ d2ðpi, pjÞ for points

p1, p2, . . . , pN2X. It is Euclidean if X ¼ ℝN and dðx, yÞ ¼k x� y k is the metric

induced by the Euclidean norm (Gower, 1985).31 Note that aii¼ 0 for any distance

matrix.

A :¼

0 ??
4

9

3

4

?? 0
10

9

3

4

??
10

9
0

19

36

?? ??
19

36
0

2666666666664

3777777777775
B :¼

0 2 4=9 3=4

2 0
10

9
3=4

4=9
10

9
0

19

36

3=4 3=4
19

36
0

26666666664

37777777775
: ð3:29Þ

Expression (3.29) shows a partial Euclidean matrix A (left) and a completion

B (right) based on the four points given as columns

p1 :¼
1

0

1

24 35, p2 :¼
0

1

1

24 35, p3 :¼
1=3
0

1

24 35, p4 :¼
1=2
1=2
1=2

24 35:
Finally, proteins are large biomolecules comprising multiple amino acid chains.

For instance, RuBisCO (responsible for photosynthesis) has 550 amino acids

(making it smallish). Proteins participate in virtually every cellular process and

their structure predicts how functions are performed. NMR spectroscopy (the

1.4 1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

1.2

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 3.35 Proven region of convergence in grey

31 This paper uses a different normalization: aij ¼ �d2ðpi, pjÞ=2.
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Nuclear Overhauser effect, a coupling which occurs through space, rather than

chemical bonds) can determine a subset of interatomic distances without damage to

the sample (under 6Å typically constituting less than 8% of the distances).

Reconstructing a protein given only these short distance couplings can profitably

be viewed as a non-convex low-rank Euclidean distance matrix completion prob-

lem with points in ℝ3. We use only interatomic distances below 6Å and use our

reflection method to predict the other distances.

We illustrate with a numerical table.

Here

Rel:errorðdBÞ :¼ 10log10
k PC2

PC1
XN � PC1

XNk2
k PC1

XNk2
� �

,

RMSE :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
k bpi � ptruei k22
ofatoms

s
, Max :¼ max

1�i�m
k bpi � ptruei k2:

The points bp1,bp2, . . . ,bpn denote the best fitting of p1, p2, . . . , pn when rotation,

translation and reflection are allowed.

The numeric estimates above do not well-segregate good and poor reconstruc-

tions, as we discover by asking what the reconstructions look like. Two instances

are shown in Figs. 3.36 and 3.37.

The picture of ‘failure’ suggests many strategies for greater success, and the

method can be accelerated by lots of standard techniques now that we know it is

promising.32 The consequent set of more honed and successful results is described

in Borwein and Tam (2012).

Moreover, there are many projection methods, so it is fair to ask why use
Douglas–Rachford? The sets of images below in Figs. 3.38 and 3.39 show the

striking difference in the methods of averaged alternating reflections and that of

alternating projections. Yet the method of alternating projections works very well

Six proteins from a protein database: average (maximum) errors from five replications

Protein # Atoms Rel. error (dB) RMSE Max error

1PTQ 40 �83.6 (�83.7) 0.0200 (0.0219) 0.0802 (0.0923)

1HOE 581 �72.7 (�69.3) 0.191 (0.257) 2.88 (5.49)

1LFB 641 �47.6 (�45.3) 3.24 (3.53) 21.7 (24.0)

1PHT 988 �60.5 (�58.1) 1.03 (1.18) 12.7 (13.8)

1POA 1067 �49.3 (�48.1) 34.1 (34.3) 81.9 (87.6)

1AX8 1074 �46.7 (�43.5) 9.69 (10.36) 58.6 (62.6)

32 Video of the first 3000 steps of the 1PTQ reconstruction is at http://carma.newcastle.edu.au/

DRmethods/1PTQ.html.
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Fig. 3.36 1PTQ (actual) and 5000 DR-steps. Error of � 83. 6 dB (perfect)

Fig. 3.37 1POA (actual) and 5000 DR-steps. Error of � 49. 3 dB (mainly good!)

Fig. 3.38 Douglas–Rachford projection method reconstruction

Fig. 3.39 Alternating projection method reconstruction
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for optical abberation correction (originally on the Hubble telescope and now on

amateur telescopes attached to laptops). And we still struggle to understand why

and when these methods work or fail on different non-convex problems.

3.7 Case Studies II: Numerical Analysis

Famously, in 1962 Richard Hamming wrote in Numerical Methods for Scientists
and Engineers:

The purpose of computing is insight, not numbers.

This is even more true 50 years on. We turn to three examples of problems

arising in numerical analysis.

3.7.1 Case Study IIa: Trefethen’s 100 Digit Challenge

In the January 2002 issue of SIAM News, Nick Trefethen presented ten diverse

problems used in teaching modern graduate numerical analysis students at Oxford

University, the answer to each being a certain real number. Readers were chal-

lenged to compute ten digits of each answer, with a $100 prize to the best entrant.

Trefethen wrote, “If anyone gets 50 digits in total, I will be impressed.” To his

surprise, a total of 94 teams, representing 25 different nations, submitted results.

Twenty received a full 100 points (10 correct digits for each problem). Bailey, Fee

and I quit contentedly at 85 digits!

The problems and solutions are dissected most entertainingly in Bornemann,

Laurie, Wagon, and Waldvogel (2004) and are online at http://mathworld.wolfram.

com/Hundred-DollarHundred-DigitChallengeProblems.html. Quite full details on

the contest and the now substantial related literature are beautifully recorded on

Bornemann’s website http://www-m3.ma.tum.de/m3old/bornemann/challengebook/.

We shall examine the two final problems.

Problem #9. The integral IðaÞ ¼ R 2
0
½2þ sin ð10αÞ�xα sin α

2�x

� �
dx depends on the param-

eter α. What is the value α2 [0, 5] at which I(α) achieves its maximum?

The function I(α) is expressible in terms of a Meijer- G function. See Fig. 3.40.
This is a special function, invented in 1936, with a solid history that we use below.

While knowledge of this function was not common among contestants,

Mathematica and Maple both will figure this out; help files or a web search then

quickly informs the scientist. This is another measure of the changing environment.

It is usually a good idea—and not at all immoral—to data-mine, and find out what

your favourite one of the 3Ms knows about your current object of interest. For

example, Fig. 3.41 shows the beginning of Maple’s help file.
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I (a) = 4  p Γ (a) GÖ
3,0
2,4

a 2
a+2 a+3

2
1
2

2

16 1 1 0
2

,

, , ,
[sin (10 a) + 2].

Fig. 3.40 I(α)?

Fig. 3.41 Maple help file for Meijer-G
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This is a function that only a software package could love, let alone define

correctly, and it hums beneath the surface of a great many special function

computations. Another excellent example of how packages are changing mathe-

matics is the Lambert W function, already met in Example 3.4.8.

Problem #10. A particle at the center of a 10 � 1 rectangle undergoes Brownian motion

(i.e., 2-D random walk with infinitesimal step lengths) till it hits the boundary. What is the

probability that it hits at one of the ends rather than at one of the sides?

Bornemann starts his remarkable solution by exploring Monte-Carlo methods,
which are shown to be impracticable. A tour through many areas of pure and

applied mathematics produces huge surprises. Using separation of variables on a

related PDE on a general 2a � 2b rectangle, we learn that

pða, bÞ ¼ 4

π

X1
n¼0

ð�1Þn
2nþ 1

sech
πð2nþ 1Þ

2

a

b

� �
: ð3:30Þ

Equation (3.30) is very efficient computationally since sech decays exponen-

tially. Thence, using only the first three terms we obtain

pð10, 1Þ ¼ 0:00000038375879792512261034071331862048391007930055940724 . . .

to fifty flamboyant places. Thus, (3.30) is also a great example of learning to read

formula. It may look foreboding but it is not and one can quickly apprehend its

power.

Equation (3.30) and other delights ultimately lead to elliptic integrals and

modular functions and results in a proof that the answer is p ¼ 2

π
arcsin k100ð Þ

where

k100 :¼ 3� 2
ffiffiffi
2

p	 

2þ

ffiffiffi
5

p	 

�3þ

ffiffiffiffiffi
10

p	 

�

ffiffiffi
2

p
þ

ffiffiffi
5

4
p	 
2� �2

,

is an example of a so-called singular value which were much beloved by

Ramanujan.

In general for an a � b rectangle pða, bÞ ¼ 2
π arcsin kða=bÞ2

	 

.

No one (except perhaps harmonic analysts) anticipated a closed form—let alone

one like this. This analysis can be extended to some other shapes, and the compu-

tation has been performed by Nathan Clisby for self-avoiding walks.
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3.7.2 Case Study IIb: Algorithms for Polylogarithms

The classical polylogarithm of order s is defined by

LisðzÞ ¼ zþ z2

2s
þ z3

3s
þ � � �þ

¼
X 1

k¼1

zk

ks
:

ð3:31Þ

In particular Li1ðxÞ ¼ �logð1� xÞ and Lisð1Þ ¼ ζðsÞ ¼ 1þ 1=2s þ 1=3s þ � � � is

the famous Riemann zeta function. While (3.31) is only guaranteed for j z j< 1 the

functions Lis and ζ(s) may be continued analytically with many wonderful proper-

ties (Olver et al., 2012; Borwein et al., 2005).

For small z and most s it is easy to sum Lis(z) to high precision—as required in

our experimental mathematical-physics studies—from (3.31) but as we approach

the radius of convergence of 1 this becomes impracticable. Remarkably we have the

following result which is best as the modulus increases.

Theorem 3.7.1 (Polylogarithms). For s ¼ n a positive integer,

LinðzÞ ¼
X10

m¼0

ζðn� mÞ log
mz

m!
þ logn�1z

ðn� 1Þ!
	
Hn�1 � logð�logzÞ



: ð3:32Þ

For any complex order s not a positive integer,

LisðzÞ ¼
X
m	0

ζðs� mÞ log
mz

m!
þ Γð1� sÞð�logzÞs�1: ð3:33Þ

Here Hn :¼ 1þ 1
2
þ 1

3
þ � � � þ 1

n are the harmonic numbers and, and
X0

avoids

the singularity at ζ(1). In (3.32), jlogzj < 2π precludes use when

j z j< e�2π
 0. 0018674. For small j z j , however, it suffices to use the definition.

We found that (3.31) was faster than (3.32) whenever j z j< 1/4, for precisions

from 100 to 4000 digits. We illustrate this for Li2 in Fig. 3.42. Timings show

microseconds required for 1000 digit accuracy as the modulus goes from

0 to 1 with blue showing superior performance of (3.32). The regions record trials

of random z, such that �0:6 < Re ðzÞ < 0:4, � 0:5 < Im ðzÞ < 0:5. We do not yet

have an explanation for the wonderful regularity of the ‘eggs’ (drawn in

Mathematica) of Fig. 3.42 but it seems a general phenomenon for all orders s and
variable precisions. We may never be able to prove this but we can use it in our

algorithm design.

3.7 Case Studies II: Numerical Analysis 79



3.8 Case Studies III: Randomish Walks

I have no satisfaction in formulas unless I feel their arithmetical magnitude. Baron William

Thomson Kelvin.33

The first ‘random walk’ appears to have been drawn on the base-ten digits of π
by John Venn (1834–1923) in 1870. He ignored the digits ‘8’ and ‘9’ and assigned

the digits 0 through 7 to the vertices of a regular octagon.34 The modern study

started with questions by Pearson in (1905).

3.8.1 Case Study IIIa: Short Walks

The final set of studies expressedly involve random walks. Our group, motivated

initially by multi-dimensional quadrature techniques for higher precision than

Monte Carlo can provide, looked at the moments and densities of n-step walks of

unit size with uniform random angles (Borwein & Straub, 2013; Borwein

et al., 2012). Intensive numeric-symbolic and graphic computing led to some

striking new results for a century old problem. Here we mention only two. Let pn
be the radial density of the n-step walk (pnðxÞ � 2x

n e
�x2=n) so that

WnðsÞ :¼
Z n

0

tspnðtÞ dt

is the moment function and Wn :¼ Wnð1Þ is the expected distance travelled in n-
steps. The direct definition of Wn(s), for Re s>�1, is given by

Performance of equation (1) versus (3) for Li_2(z)
Time (µs)

100 000

Digits

Digits: 2000 a=0.706, b=1.208, e=0.66, f=–0.4775 Digits: 100 a=0.932, b=0.718, e=–0.64, f=–0.564

Major Axis (a)

Digits 100

Major Axis (a)

Minor Axis (b)

2000

Minor Axis (b)

Re[z] offset (f) Re[z] offset (f)

Eggcentricity (e) Eggcentricity (e)

80 000

60 000

40 000

20 000

0.2 0.4 0.6
|z|

Fig. 3.42 L: timing (3.32) (blue) and (3.31) (red) for Li2. M: blue region where (3.32) is faster for
100 digits. R: region for 2000 digits

33 In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave
Theory of Light.
34 See www.theguardian.com/science/alexs-adventures-in-numberland/gallery/2014/mar/14/pi-

day-pi-transformed-into-incredible-art-in-pictures/.
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WnðsÞ ¼
Z
½0,1�n

Xn

k¼1

e2πxki
sdðx1, . . . , xn�1, xnÞ

¼
Z
½0,1�n�1

1þXn�1

k¼1

e2πxki
sdðx1, . . . , xn�1Þ:

In particular W1 ¼ 1,W2 ¼ 4=π.
We show the radial densities for three and four step walks in Fig. 3.43 and draw

W4 in the complex plane in Fig. 3.45. These are hard to draw before good analytic

expressions such as (3.36) and (3.40).

3.8.1.1 The Three-Step Walk

After learning a good way to compute p3 numerically (using Bessel functions), we

soon discovered, from symbolic and numeric computation, that

σðxÞ :¼ 3� x

1þ x

is an involution on [0, 3] since

σðσðxÞÞ ¼
3� 3�x

xþ1

	 

1þ 3�x

xþ1

	 
 ¼ x,

and σ exchanges [0, 1] with [1, 3] and leaves 1 fixed. Moreover,

p3ðxÞ ¼
4x

ð3� xÞðxþ 1Þ p3ðσðxÞÞ: ð3:34Þ

Equation (3.34) implies that

3

4
p

0
3ð0Þ ¼ p3ð3Þ ¼

ffiffiffi
3

p

2π
, pð1Þ ¼ 1,

as we see in the picture.

Fig. 3.43 The densities and simulations for p3 (L) and for p4 (R)
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We then found and proved that in terms of the Gauss hypergeometric function

(Olver et al., 2012, 15.2.1) which is the analytic continuation of the sum (conver-

gent for j z j< 1)

2F1

a, b

c
jz� �

¼ 1þ ab

c
zþ aðaþ 1Þbðbþ 1Þ

cðcþ 1Þ2! z2 þ � � � ð3:35Þ

the density of a three-step walk is

p3ðαÞ ¼
2

ffiffiffi
3

p
α

π 3þ α2ð Þ 2F1

1

3
,
2

3
1

 α2 9� α2ð Þ2
3þ α2ð Þ3

0B@
1CA: ð3:36Þ

Example 3.8.1 (A Cubically Convergent Mean Iteration, Borwein & Bailey,
2008). I had earlier in 1991 used the same hypergeometric form appearing in

(3.36)

2F1

1
3
,
2
3

1

s3� �
¼
X
n⩾0

ð3nÞ!
ðn!Þ3

s

3

	 
3n
and knew it had remarkable properties. These translated into the result that, for

0< α< 3, we can compute

p3ðαÞ ¼
2
ffiffiffi
3

p

π

α

AG3 3þ α2, 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� α2Þ23

q� � ,

where AG3 is the cubically convergent mean iteration given by

AG3ða, bÞ :¼ lim
n
an ¼ lim

n
bn

with

anþ1 ¼ an þ 2bn
3

, bnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn � a

2
n þ anbn þ b2n

3

3

s
,

starting with a0 ¼ a, b0 ¼ b.
For instance, computing AG3(2, 1) to 80 places we see that the number of correct

digits triples with each step.

a1 ¼ 1:3333333333333333333333333333333333333333333333333333333333
333333333333333333333
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a2 ¼ 1:3286793795325315243698951083886145729965048937191842783184
241508276890234024826

a3 ¼ 1:3286793779464580086030451310205551942585258004224048242077
282610048171847485345

a4 ¼ 1:3286793779464580086030451309577743646584603595070873284535
457007522928987214688

a5¼ 1. 3286793779464580086030451309577743646584603595070873284535

457007522928987214689

♢

From (3.38) below, we eventually proved the stunning closed form:

W3 ¼ 16
ffiffiffi
43

p
π2

Γð1
3
Þ6 þ 3Γð1

3
Þ6

8
ffiffiffi
43

p
π4

,

in terms of π, 41/3 and Γð1=3Þ where the Gamma function is defined by

ΓðxÞ :¼
Z 1

0

tx�1e�t dt

for x> 0.

Example 3.8.2 (The Bohr–Mollerup Theorem). More usefully, by the Bohr–
Mollerup theorem, Γ is the unique function, G, mapping positive numbers to

positive numbers that satisfies (1) G(1)¼ 1, (2) Gðxþ 1Þ ¼ xGðxÞ and (3) is

logarithmically convex: logG is convex on ð0,1Þ. In particular, Γ agrees with the

factorial at integers—in that Γðnþ 1Þ ¼ n!. This result allows one to automate

proofs of many interesting facts such as the fact that the beta function is a ratio of

Gamma functions:

Bða, bÞ :¼
Z 1

0

ta�1ð1� tÞb�1
dt ¼ ΓðaÞΓðbÞ

Γðaþ bÞ : ð3:37Þ

This is usually proved by change of variable in a two-dimensional integral.

Instead, we define GðaÞ :¼ Γðaþ bÞBða, bÞ=ΓðbÞ and check that G satisfies

the three conditions of the Bohr–Mollerup theorem, see Borwein and Bailey (2008,

§5.4). ♢

3.8.1.2 The Four-Step Walk

Crucially, for Re s>�2 and s not an odd integer the corresponding moment
functions (Borwein & Straub, 2013), W3,W4 have Meijer-G representations
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W3ðsÞ ¼
Γð1þ s

2
Þffiffiffi

π
p

Γð� s
2
Þ G21

33

1, 1, 1
1

2
, � s

2
, � s

2

 1
4

0B@
1CA, ð3:38Þ

W4ðsÞ ¼ 2s

π

Γð1þ s
2
Þ

Γð� s
2
Þ G22

44

1, 1�s
2
, 1, 1

1

2
� s

2
, � s

2
, � s

2

10B@
1CA: ð3:39Þ

Surprisingly, from (3.39) we ultimately got a modular closed form:

p4ðαÞ ¼
2

π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� α2

p

α
Re3F2

1

2
,
1

2
,
1

2
5

6
,
7

6

 16� α2ð Þ3
108 α4

0B@
1CA: ð3:40Þ

Let me emphasize that we do not need to know about the Meijer-G function to

exploit (3.38) and (3.39). We need only read the help file we sampled in Fig. 3.41.

We illustrate this in Figs. 3.44 and 3.45. We leave it to the reader to consider which

representation carries more information.

As an illustration of the growing complexity of short walks we mention the

question of which paths will return to the starting point in exactly n steps. For n¼ 2

or 3 this is easy. For two steps one must retrace the first step and for 3 steps the path

must be an equilateral triangle. What about 4 and 5 steps?

Fig. 3.44 W3 plotted by

Mathematica from the

Meijer-G representation

(3.38). Each point is

coloured by argument.

Black is a zero and white is a
pole (infinity). These can

only occur where all four

quadrants meet

84 3 The Life of Modern Homo Habilis Mathematicus: Experimental Computation. . .



3.8.2 Case Study IIIb: Number Walks

Our final studies concern representing base-b representations of real numbers as

planar walks. For simplicity we consider only binary or hex numbers and use two

bits for each direction: 0¼ right, 1¼ up, 2¼ left, and 3¼ down (Aragon

et al., 2013). From this idea we eventually produced the 100-billion-step walk on

the hexadecimal-digits of π shown in Fig. 3.46. The colours move through the

spectrum (ROYGBIV and back to red.) We believe this to be the largest mathe-

matical illustration ever made. The picture in Fig. 3.46 can be explored on line at

http://gigapan.org/gigapans/106803.

3

2

1

0

–1

–2

–3
–6 –4 –2 0 2

Fig. 3.45 W4 plotted by

Mathematica from the

Meijer-G representation

(3.39). Each quadrant is

coloured differently. Black
is a zero and white is a pole
(infinity). These can only

occur where all four

quadrants meet

Fig. 3.46 A 108 Gigabit walk on Pi
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This idea also allows us to compare the statistics of walks on any real number to

those for pseudo-random walks35 of the same length. For now in Fig. 3.47 we

illustrate only the similarity between the number of points visited by 10, 000

million-step pseudo-random walks and for 20 billion bits of π chopped up into

10, 000 million-step walks.

All the statistics we have considered in Aragon et al. (2013) and elsewhere have

π behaving very randomly even though it is not, and even though it is not yet proven

normal in any base.

3.8.3 Case Study IIIc: Normality of Stoneham Numbers

A real constant α is b-normal if, given b	 2, everym-long string of digits appears in
the base-b expansion of α with precisely the expected limiting frequency 1/bm.
Borel showed that almost all irrational real numbers are b-normal in any base but no

really explicit numbers (e.g., e, π,
ffiffiffi
2

p
, ζð3Þ ) have been proven normal. The first

number proven 10-normal was the Champernowne number

C10 :¼ 0:1234567891011121314 . . .

which comes from concatenating the natural numbers. This number is clearly far

from random but as noted it is normal. What do the pictures tell us?

To complete our final study we shall detail the visual discovery of the next

theorem. It concerns the Stoneham numbers, first studied by Stoneham 40 years ago,

which are defined by αb,c :¼
X1

n¼1

1
cnbc

n (Fig. 3.48).

35 Python uses the Mersenne Twister as generator with a period of 219937 � 1 
 106002.
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Fig. 3.47 Number of points visited by 10, 000 million-step base-4 random walks (L) and by

equally many walks on π (R)
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Theorem 3.8.3 (Normality of Stoneham Constants). For coprime pairs b,c 	
2, the constant αb,c is b-normal, while if c < bc�1, αb,c is bc-nonnormal.

Since 3 < 23�1 ¼ 4, α2,3 is 2-normal but 6-nonnormal. This yields the first

concrete transcendental to be shown normal in one base yet abnormal in another.

Our final Fig. 3.49 illustrates this result.

There are clearly too many ’0’s base six (equivalently, too many steps to the

right). This is what we ultimately proved.

What is less obvious is that while the shape base-two of α2, 3 looks like that of a
random number, some colours are missing. Indeed, as was discovered from anima-

tions that can be viewed at http://walks.carma.newcastle.edu.au/, the walk repeats

itself and overwrites large portions!

Fig. 3.48 A pseudo-random walk (L) and a walk on C10 (R)

Fig. 3.49 α2, 3 is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?

3.8 Case Studies III: Randomish Walks 87

http://walks.carma.newcastle.edu.au/


3.9 Conclusion

In P�olya (1981) George P�olya wrote much that rings very true in the presence of our

current tools:

• This “quasi-experimental” approach to proof can help to de-emphasis a focus on rigor

and formality for its own sake, and to instead support the view expressed by Hadamard

when he stated “The object of mathematical rigor is to sanction and legitimize the

conquests of intuition, and there was never any other object for it.”36

• Intuition comes to us much earlier and with much less outside influence than formal

arguments which we cannot really understand unless we have reached a relatively high

level of logical experience and sophistication. Therefore, I think that in teaching high

school age youngsters we should emphasize intuitive insight more than, and long

before, deductive reasoning (P�olya, 1981, p. 2–128).
• In the first place, the beginner37 must be convinced that proofs deserve to be studied,

that they have a purpose, that they are interesting (P�olya, 1981, p. 2–128).
• The purpose of a legal proof is to remove a doubt, but this is also the most obvious and

natural purpose of a mathematical proof. We are in doubt about a clearly stated

mathematical assertion, we do not know whether it is true or false. Then we have a

problem: to remove the doubt, we should either prove that assertion or disprove it

(P�olya, 1981, p. 2–120).

We will do well to heed these observations and to think about the many ways our

experimental mathodology meshes with them.
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Chapter 4

Tools, Human Development
and Mathematics

John Monaghan

4.1 Introduction

As stated in Chap. 1, the chapters in Part I of this book serve as introductions to

different aspects of tool use in mathematics. Chapters 2 and 3 are set in the present

and concern, respectively, tool use in mathematics education and tool use in

research mathematics. This chapter and the next consider the past. The place of

tools in the history of mathematics is much too large a topic to cover in two

chapters, so we are selective. A principal rationale for the next chapter is to

illustrate that learning mathematics in ancient Mesopotamia was learning to use a

set of material and symbolic artefacts and that this learning had internal (mental)

and embodied aspects. The purpose of this chapter is to raise a number of issues that

I consider important with regard to tool use and mathematics: to locate tool use in

the development of the human species (phylogenesis, Sect. 4.2); to show that tool

use in a mathematical culture, ancient Greek mathematics, may go beyond the

obvious tools (Sect. 4.3); to examine an algorithm from ancient Indian mathematics

that bears some resemblances to Jon’s experimental mathematics described in

Chap. 3 (Sect. 4.4); to illustrate the mutual support of hand, mind and artefact in

expert use of an abacus (Sect. 4.5); and to examine a period (sixteenth-century

Europe) where there was a rapid advance in the development of mathematical tools

(Sect. 4.6). This chapter closes with a discussion (Sect. 4.7).

This chapter is a reflection on tools in pre-history and history by a mathematics

educator; I am not an anthropologist or an historian. My knowledge in the field I

write upon is limited and a further limitation is my Western background. But I

believe that my specialist academic niche provides a background for an interpreta-

tion of tool use in the past and I strongly believe that we must say something of the

past in this book before we consider tool use in mathematics in more recent times.

My preparation for writing this chapter includes a lifetime of ‘dabbling’ in the

history of mathematics, numerous articles I have read in the course of writing this

chapter and four books: Fauvel and Gray (1987)—a selection of readings
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(translated into English) from the history of mathematics with accompanying

commentary from the editors; Gibson and Ingold (1993)—an edited collection of

articles by anthropologists, archaeologists, linguists and psychologists on tools,

language and cognition in human evolution; Netz (1999)—an historical consider-

ation of the ‘shaping of deduction’ in ancient Greek mathematics. The fourth book

is the instruction manual that came with my Chinese abacus (Suan-pan); I cannot
reference because it does not name the publisher or year of publication.

4.2 Tool Use and Phylogenesis

Before considering the joint development of tools and the human species I note that

humans are not the only species to use tools. As this section concerns the fields of

animal behaviour and then anthropology, I use definitions from these fields of

animal behaviour: tool use is ‘the external deployment of an unattached environ-

mental object to alter more efficiently the form, position, or condition of another

object’ (Beck, 1980, p. 10); tool-making is ‘any modification of an object by the

user or conspecific so that the object serves more efficiently as a tool’ (Beck, 1980,
p. 11). This definition is different to the ones offered in Chap. 1 but it seems sensible

to work with definitions in these fields in this section.

Apes, especially chimpanzees, have been the focus of many studies of animal

tool use/making. Pruetz and Bertolani (2007) documents chimpanzees using sticks

to hunt bush babies. Boesch (1993) documents how chimpanzees collect nuts and

carry them to the root of a tree (which serves as an anvil) where they crack the nuts

using a wooden club or stone. This is premeditated (thoughtful) behaviour as both

nuts and clubs are carried to the anvil. It is also a traditional/cultural behaviour as

this practice is regional (not species-wide) and chimpanzees in regions practising

such nut cracking actively teach their young how to do it. Recognition of the fact

that humans are not the only species to use and make tools has been slow. In 1778

Benjamin Franklin coined the term man the tool-maker and it was really only Jane

Goodall’s 1963 photographs of chimpanzees making tools that dispelled the myth

that humans are unique in their tool-making (see Gibson, 1993a). But then our

recognition of similarities between animal and human behaviours is a mere

150 years old (Darwin’s The Descent of Man was published in 1871) and this

recognition has been gradual; for instance Vygotsky, writing in 1930, on tool use

said ‘It is a means by which human external activity is aimed at mastering and

triumphing over nature’ (Vygotsky, 1978, p. 55, my italics). The twentieth century

witnessed the development of the study of animal behaviour and tool use and tool-

making in many species has been documented.

Although apes have been a major focus of attention, tool use/making is not the

preserve of primates. Weir, Chappell, and Kacelnik (2002) report research that

‘raise the possibility that these birds may rival nonhuman primates in tool-related

cognitive possibilities’ (Weir et al., 2002, p. 981). The researchers conducted trials

where a New Caledonian crow was presented with food in a bucket in a transparent
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tube beyond the reach of her beak and a straight thin wire. In nine out of ten valid

trials she bent the wire (using sticky tape available or by holding one end with her

feet) to make a hook to raise the bucket and successfully get the food. In the wild,

New Caledonian Crows ‘are renowned for their complex tool-oriented behaviour,

which involves both tool use and manufacture’ (Kenward, Rutz, Weir, & Kacelnik,

2006, p. 1329) but the crow in the Weir et al. (2002) experiment was captive and

had ‘little exposure to and no prior training with pliant material’ (Weir et al., 2002,

p. 981). So much for the derogatory term ‘bird brained’! I now move on to tool use

and human development, phylogenesis.

The Descent of Man (Darwin, 1879) suggests that modern humans, Homo
sapiens,1 are descended from apelike beings but this descent was partially ordered,

not linear. Current knowledge on the family tree of our possible ancestors (see

Tattersall & Schwartz, 2000) over the last 5 million years shows branches that die

out and possible branches where current knowledge does not have definitive

evidence for evolutionary links between species. In the lower half of this 5 million

year time line is the genus Australopithecus and in the upper half is the genus

Homo. Both genuses have species which have died out and there are species for

which the genus is disputed. For example, there is debate (see Miller, 2000) whether

the species Homo habilis, celebrated by Jon in his title for Chap. 3 of this book, is

from the genus Australopithecus or the genus Homo.
Australopithecines had slightly larger cranial capacities than modern chimpan-

zees, walked upright, had complex social structures but there is no evidence that

they used tools; this does not mean that there was no tool use as fossil evidence from

wooden tools would be hard to come by. The earliest known tools, dated 2.6 million

years ago, are pebble tools (also known as Oldowan tools), a class of tools which

were stones shaped by other stones for the purpose of cutting or pounding. These

were made and used by early Homo species, who had larger cranial capacities than

Australopithecines.

But it should not be assumed that tool use/making resulted from the larger brains

of early hominids. Experts in the field have, for many years, argued for multiple and

complementary factors in hominid development. The anthropologist Sherwood

Washburn was an early advocate for the importance of tools in human develop-

ment. Washburn (1960) argues for the interrelations of tool use/making, brain size

and the development of the hand in hominid evolution. Washburn (1959) is careful

to use the word ‘speculations’ in his consideration due to the incomplete nature of

the fossil record. Washburn believes that ‘the form of the human hand is the result
of the new selective pressures which came in with the use of tools’ (Washburn,

1959, p. 24) and that ‘the tripling in the size of the brain came after man was a tool

user’ (Washburn, 1959, p. 25); evidence for the latter point being that ‘When the

brain increased in size, the area for the hand increased vastly more than that for the

foot’ (Washburn, 1959, p. 27). Washburn (1959) concludes that ‘it was bipedalism
which started man on his separate evolutionary career. But tool use was nearly as

1Homo sapiens is a specie in the genus Homo in the family Hominidae.
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early. . . . Tools changed the whole pattern of life bringing in hunting, cooperation,

and the necessity for communication and language’ (Washburn, 1959, p. 31).

But Washburn may be overstating the case for tools and Dunbar (1993) argues

that ‘Primates are, above all, social animals’ (Dunbar, 1993, p. 661), that evolution
in large groups depends on developing time-efficient methods of social bonding and

that language alone allows for this. Thus, the development of language and social

organisation was an important catalyst for the increase in brain size in human

evolution. Gibson’s (1993b) argument subsumes both those of Washburn and

Dunbar and argues for the interdependence of tool use, language, social structure

and information processing in human evolution. Her argument is worth an

expanded summary but we must remember that all of these arguments, though

evidence-based, are speculations.

Gibson (1993b) seeks to explain why ‘the linguistic and technological achieve-

ments of apes fall far short of human achievements’ (Gibson, 1993b, p. 251). Her
overall argument is in three parts:

1. Humans possess a greater information processing capacity than apes and apply
this to tool use, language and social behaviour. Apes are capable of symbolic

gestures but ‘the content of ape communications is “information sparse”’ (Gib-
son, 1993b, p. 253) and ‘apes rarely exhibit advanced planning of a series of

tool-using schemes’ (Gibson, 1993b, p. 255).
2. Tool use, language and social behaviour are mutually interdependent in humans

but not in apes. In humans: technology is inextricably linked with social

structures; tool use is cooperative and social; language and technology are

interdependent (paraphrase of pp. 256–257). Apes use tools and gestures and

have a social structure but these do not exhibit interdependence. For instance, a

social group of apes may take to the trees when a predator appears and throw

branches at the predator but they do not co-ordinate their branch throwing

activity.

3. Tool use and language are genetically canalised to appear early in the early
years of a human child but not in apes. Gibson compares young children’s and
chimpanzees’ tool-using and symbolic capacities and posits a canalisation in

humans leading to logicomathematical understanding and classification skills.

The evidence-base for this claim appears weaker than for the other claims.

As a mathematician interested in tool use/making I am drawn to Gibson’s
account but anthropology is a field with many interpretations of the place of

tools, language and social behaviour in human evolution. One thing is certain,

however, that early Homo sapiens did not spontaneously start using/making tools;

tool use is a part of human evolution. I now leave species other than Homo sapiens
and look at their pre-history.

The development of our species 100–150,000 years ago is what anthropologists

call a speciation event. The dominant hypothesis concerning Homo sapiens’ speci-
ation event is that it took place in central Africa and spread around the world over

100,000 years. In the decades following The Descent of Man (Darwin, 1879) it was
assumed (by those who gave credence to Darwin’s work) that something akin to a
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linear descent occurred (that one species replaced another) but in reality different

hominid species co-existed. Whilst wishing to avoid teleological arguments that our

species is the end of the line of descent, we are the only remaining species of the

Homo genus and we are the ones writing and reading this book. How Homo sapiens
came about is another area of debate; Darwin was a gradualist who emphasised

continuities in evolution but some, e.g. Tattersall (2002), believe the evidence

points to saltational change (i.e. sudden large-scale mutation).

Early Homo sapiens made and used pebble tools and stone tool use dominated

most of our 150,000 years on earth. There is a popular division of the periods of

Homo sapiens by the material used for their tools: the stone age, the bronze age and

the iron age. There are a number of problems with this division: modern humans

still use stone tools; the global diffusion of metallurgy was not uniform over time; it

is a rather Eurocentric division (e.g. Japan experienced the bronze age and the iron

age simultaneously); and it implies that people who remained in the stone age long

after others had gone beyond it were primitive (in the pejorative sense of the word).

Further to this, each regional ‘age’ had stages. Clarke (1969) proposes fivemodes of
stone technologies progressing from pebble tools to ground stone tools such as axes,

used for clearing forests for agriculture. Wood and bone tools were used with as

well as stone tools.

The origin of tool use for protomathematical purposes is shrouded in mystery.

Fauvel and Gray (1987) cite an African (modern Zaire) bone artefact dated

9000–6500 BC as ‘among the earliest evidence for protomathematical activity’
(Fauvel & Gray, 1987, p. 5). The bone has series of notches in columns, for

example: column 1 has 11, 13, 17 and 19 (prime numbers); column 3 has 11, 21,

19, 9 (10� 1, 20� 1). Its purpose is not known but it is suggested that it could have

been used as an early lunar phase counting tool. Similarly, the rocks at Stonehenge,

built between 3000 and 2000 BC in modern England, could have been used to

predict celestial events (eclipses, solstices and equinoxes). There is a theory (see

Fauvel & Gray, 1987, pp. 8–13) that around this time and place there was a standard

unit of length, the megalithic yard, but this is another area of controversy and one

where archaeologists appear sceptical of historians of mathematics who appear to

look for evidence to support their theories.

I have effectively finished the section on tool use and phylogenesis, for the

humans who constructed the bone artefact mentioned above and Stonehenge were,

physically, virtually the same as humans today. The area I have briefly surveyed is

full of controversy due to the patchwork nature of archaeological finds and the

difficulty in interpreting what has been found. But controversy and difficulties in

interpreting ‘evidence’ aside, work by thousands of archaeologists, anthropologists
(biological and social), primatologists and animal behaviour; researchers over the

last 150 years clearly shows us that tool use is something that is not just human and

was an important aspect of the development of our species. I now move on from

pre-history to history.
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4.3 Ancient Greece

To mathematicians, the mathematics (geometry) developed by the ancient Greeks is

one of the wonders of our history. But, as Fauvel and Gray (1987, p. 46) note,

. . . virtually nothing survives which was physically written by the mathematicians of

ancient Greece . . . The most substantial source describing the development of geometry

. . . is a passage from Proclus (fifth century AD). This is believed to have been largely based

on the lost History of Geometry by Eudemus (late fourth century BC) . . .

Greek geometry developed over a relatively short period, the first significant

figure was Thales (624–548 BCE
2) and the most significant later figure was Archi-

medes (287–212). Euclid is a significant name but he (or she3?) appears to simply

have methodologically compiled results (his/her Elements4)—this is not to belittle

this achievement. Very little is known about Euclid but the Elements were written
about 300 BCE and were, thereafter, a reference point for mathematicians (a point I

shall use in the discussion below). I shall focus on Euclid’s Elements in this section
as it serves my purpose to present tool use in ancient Greek mathematics in a

reasonably short number of pages.

The most noted artefacts associated with ancient Greek geometry are the straight

edge and the compass5 and the use of these artefacts as tools is implicit in the

opening proposition in the Elements: On a given finite straight line to construct an
equilateral triangle (Heath, 1926, p. 241) Fig. 4.1 shows a lettered diagram which

accompanies the construction and proof of this proposition. AB is the given straight

line and circles of radius AB are drawn with centres at the points A and B. The
circles meet at C and ABC forms an equilateral triangle. It is clear that a straight

edge and a compass are required for this construction.

The straight edge and the compass are a powerful pair of mathematical tools but

I will not consider them further here because: this pair of tools was considered in

Chap. 1; whilst the construction is very nice, the wonder of Greek mathematics is

more than a set of nice constructions, it includes a corpus of theorems which were

proved6 and I explore tool use in the proof of theorems.

To enable an exploration of tool use in the proof of theorems in a limited space,

I look at one of Euclid’s proposition in depth. A theorem that suits my purpose is

2 Before common era, a term preferred by scholars to BC (but virtually identical in terms of dates).
3 Almost all the mathematicians of ancient Greece were upper class males.
4 Thirteen strictly sequenced books of definitions, postulates, common notions and propositions.
5 Evidence suggests that ancient Greeks also ‘used pebbles for calculations on abaci . . . but in a

marginal role . . . never at the centre of mathematical activity’ (Netz, 1999, pp. 63–64).
6Without detracting from the wonder of Greek mathematics, there are mathematical problems

with its definitions and proofs. We do not consider these here. The interested reader may consult

Netz (1999).
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Proposition 5 from Book II.7 The following is Euclid’s statement, construction

(with diagram) and proof of Proposition 5 from Book II. Much of this is taken from

Netz (1999, pp. 9–11) which differs from established English language expositions,

for example Heath (1926), by placing text intended to aid reading, but which was

not in the original, in <pointy brackets>. I follow Netz in this manner to draw

attention to ‘formulae’ which I discuss in the commentary following Euclid’s work.

<Enunciation>
If a straight line is cut into equal and unequal <segments>, the rectangle contained

by the unequal segment of the whole, with the square on the <line> between the

cuts, is equal to the square on the half.

<Setting Out>
For let some line, the <line> AB, be cut into equal <segments> at the <point> C,
and into unequal <segments> at the <point> D.

<Goal>
I say that the rectangle contained by the <lines> AD, DB together with the square

on the <line> CD, is equal to the square on the <line> CB.

<Construction>
For on the <line> CB, let a square be set up<8>, the <square> CEFB

and let the <line> BE be joined,

and, through the<point>D, let the<line>DG be drawn parallel to either of the

<lines> CE, BF,
and, through the<point>H, again let the<line> KM be drawn parallel to either

of the <lines> AB, EF,
and again, through the <point> A, the <line> AK be drawn parallel to either of

the <lines><9> CL, BM.

<Diagram>
See Fig. 4.2.

A B

CFig. 4.1 Lettered diagram

accompanying Proposition

1, Book 1 (Heath, 1926,

p. 46)

7My reference here could be (Heath, 1926, p. 382) but I shall use Netz (1999) to describe the proof

of this proposition.
8 This makes implicit reference to Proposition I.46. We return to implicit references and expected

knowledge in our discussion of the ‘the tool box’ after the proof.
9 This makes implicit reference to Proposition I.31.
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<Proof>
<1> And since the complement<10> of CH is equal to the complement of HF
<2> let the <square> DM be added <as> common

<3> therefore the whole CM equals the whole DF
<4> But the <area> CM is equal to the <area> AL<11>

<5> since the <line> AC, too, is equal to the <line> CB
<6> therefore the <area> AL, too, is equal to the <area> DF.
<7> Let the <area> CH be added <as> common

<8> therefore the whole AH is equal to the gnomon<12> NOP
<9> But the <area> AH is the <rectangle contained> by the <lines> AD, DB
<10> for the <line> DH is equal to the <line> DB
<11> therefore the gnomon NOP, too, is equal to the<rectangle contained> by

the <lines> AD, DB
<12> Let the <area> LG be added <as> common

<13> which is equal to the <square> on the <line> CD
<14> therefore <the sum of> the gnomon NOP and the <area> LG are equal

to <the sum of> the rectangle contained by the <lines> AD, DB and the square on

the <line> CD
<15> but the gnomon NOP and the area LG,<as a> whole, is the square CEFB
<16> which is <the square> on the <line> CB
<17> therefore the rectangle contained by the<lines> AD, DB, with the square

on the <line> CD, is equal to the square on the <line> CB.

A C D B

MK L

E G F

H

Fig 4.2 Diagram central to Proposition 5 from Book II

10 The complement of a parallelogram would be expected to be known to readers. Line<1>makes

implicit reference to Proposition I.43.
11 Implicit reference to Proposition I.36.
12 The gnomon is defined in Definition II.2.
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<Conclusion>
Therefore if a straight line is cut into equal and unequal <segments>, the rectangle

contained by the unequal segment of the whole, with the square on the <line>
between the cuts, is equal to the square on the half; which it was required to prove.

4.3.1 Discussion of This Proof

As a twenty-first century mathematics educator I note that the argument is geomet-

rical and the proof is much easier (to me) using algebra; writing length AC as x and
length CD as y gives (Fig. 4.3):

The Proposition then states that (x2� xy) + (xy� y2) + y2 is equal to (xy� y2)
+ (x2� 2xy + y2) + y2 + (xy� y2); which is straightforward to show by collecting like

terms.

But this ancient Greek proof was written 2400 years ago and the Greek math-

ematicians did not have algebra. Although Euclid’s Elements is not quite the

paragon of rigour it is sometimes put up to be, the logic (the necessity of the

conclusion) of Proposition II.5 is, mathematically, quite beautiful because nothing

is superfluous. We, as mathematicians, might say that this is to be expected because

it is mathematics but the Greek mathematicians did not have the history and culture

that we do, they were pioneers, they were establishing cultural expectations for us.

4.3.2 Tools

I now use Proposition II.5 to discuss themes related to tool use raised in Netz13

(1999, p. 89), ‘Greek mathematical deduction was shaped by two tools: the lettered

A C

L

E G F

MH

D Bx y

x2 – xy x – y

x – y

x2 – 2xy+y2xy – y2

xy – y2y2 y

K

Fig. 4.3 Figure 4.2 with algebraic notation

13 ‘Netz’ in the following pages refers to ‘Netz (1999)’.
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diagram and the mathematical language’. I first outline what Netz means by this and

then consider his use of the term ‘tools’.
Between the death of Thales and the birth of Plato the Greeks developed an

alphabet, lettered scripts, media approximating to pen and paper and the epistle as a
means of textual distance communication. The number of mathematicians in

ancient Greece was not large and they were geographically dispersed and epistles

were used by mathematicians to communicate their results to fellow mathemati-

cians. When an audience was at hand, the media for communication probably

varied greatly (sand, wax tablets, wooden tablets, wooden tablets painted white).

‘Aristotle used the lettered diagram in his lectures’ (Netz, p. 15) but the medium

used is not known. Unlike modern whiteboards, it would not have been easy to

erase text, so lettered diagrams would have been prepared in advance for oral

communication of results. It is reasonable to believe that rulers (straight edges)

and compasses were used in the preparation of these lettered diagrams.

Euclid entered a world where lettered diagrams accompanied expositions of

mathematical results and in Proposition II.5 (and all Euclid’s works) we can see the
interdependence of lettered diagram and text. In the seven-part structure of the

proof of Proposition II.5 above (enunciation, setting out, goal, construction, dia-

gram, proof, conclusion) this interdependence can be seen in the central five parts.

Consider, for example, the setting out: For let some line, AB, be cut into equal
<segments> at C and into unequal <segments> at D. The diagram includes this

line and the four points A, B, C and D. The specific line in the diagram is a general

line (let some line) in the text. This generality is important for Euclid is presenting a

deduction of a general theorem. The diagram clearly does not make sense without

the text but the text does also not make sense without the diagram. For example, in

line 8 of the proof, therefore the whole AH is equal to the gnomon NOP, one needs
the diagram to locate the gnomon NOP.

To the modern mathematician, the insertion of letters into the diagram may

appear natural but this was over 2000 years ago and was original (though we do not

know the origin). Lettered diagrams would have been crucial for distant written

communication; in an oral communication of the setting out one could point and say

‘this point’. The letters are references (signifiers) and they refer to (signify)

geometrical objects. In terms of the definition of a tool in Sect. 1.3.1, the lettered

diagram in Proposition II.5 is a semiotic tool for the communication of a mathe-

matical result to a reader not physically present; it is a material artefact that is used

for a specific purpose. This semiotic tool is not just a teaching aid for, as mentioned

above, it is impossible to follow the proof without recourse to the lettered diagram

and, further to this, the logic of the proof depends on the lettered diagram, for

example ‘<3> therefore the whole CM equals the whole DF’.
The second of Netz’ tools is the mathematical language. Netz breaks this down

into the mathematical lexicon and the use of ‘formulae’. The following discussion

of this compresses 81 pages of detailed argument and evidence and, of course, does

not do justice to Netz’ scholarship (but it serves my purpose here).

With regard to the lexicon, Netz argues that Greek mathematics is ‘tiny, strongly
skewed towards particular objects . . . and is invariant within works and between
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authors’ and it has ‘very few synonyms, and even fewer homonyms’ (p. 108), i.e. it
‘operates on the principle of one-concept-one-word’ (p. 113). The mathematical

language uses repeated phrases, employing this minimalist lexicon, to highlight

relationships between concrete objects. Repetition can be seen in II.5: in the

construction the repeated use of ‘let the . . . be drawn’; and, in the proof, ‘let the
. . . be added’. We can also see minimalist descriptions of relationships between

concrete objects: in the construction, ‘through the D, let the DG be drawn parallel to

either of the CE, BF’; and, in the proof, ‘therefore the gnomon NOP and the LG are

equal to the rectangle contained by the AD, DB and the square on the CD’.
This minimalist lexicon is clearly a material cultural artefact. Netz argues that

this minimalist lexicon facilitates ‘self-regulating conventionality’ (p. 113). Math-

ematics educators may view this in terms of communities of practice for it is, I feel,
easy to imagine a novice of the time, who wants to become a mathematician,

appropriating and reproducing this minimalist lexicon.

Regarding ‘formulae’ Netz (p. 132) writes, ‘I count a group of words as

formulaic if it is semantically marked OR it is very markedly repeated’. In II.5,

‘let the . . . be drawn’ is marked by repetition and ‘the DG’ is semantically marked.

Netz list five types of semantic marking in Greek mathematics: object formulae

(such as ‘the DG’); construction formulae (such as ‘let the . . .’); second-order
formulae (such as ‘I say that . . .’); argumentation formulae (such as ‘therefore
. . .’); and predicate formulae (which includes relations, such as ‘the CM is equal to

the AL’).
Netz goes on to argue that there are formulae within formulae. This can be seen

in II.5, ‘therefore the gnomon NOP, too, is equal to the <rectangle contained> by

the <lines> AD, DB’. Further to this, there is structure in these nested formulae.

For example, using a nested functional representation, we could represent the line

of the proof cited in the last sentence as ‘argumentation formula(predicate formula

(object formula, object formula))’. In terms of tool_definition_1 in Chapter, for-

mulae are material artefacts that are used for a specific purpose, they are semiotic

tools for communicating the structure of mathematical relationships.

The text of II.5 can thus be viewed as a highly structured artefact where the

structure reflects the logical properties of the objects. This, together with the

minimalist lexicon assists an appreciation of the global logic of the proof. For

example, referring to the numbered statements in the proof, the argument can

represent by:

<1> & <2> ∴ <3>14

<5> ∴ <4>
<3> & <4> ∴ <6>
<6> & <7> ∴ <8>
<10> ∴ <9>

14 I have represented this using a symbol for ‘therefore’ instead of representing this as ‘<1> &

<2>! <3>’ as I am far from certain that implication in terms of mathematical logic (suggested

by the ‘!’ sign) is how the Greeks understood the relationship between ‘<1>, <2> and <3>’.

4.3 Ancient Greece 101



<8> & <9> ∴ <11>
<11> & <12> & <13>∴ <14>
<14> & <15> & <16>∴ <17>

4.3.3 Oral and Written Mathematics; Communities
of Practice

I end this section on Greek mathematics with a consideration of modern issues in

mathematics education, oral and written mathematics and communities of practice.

Putting mathematics aside for the moment, in reading about Greek ‘high cul-

ture’, I am struck by the importance of oral argument. For instance: the politics of

the Greek city states were conducted in public arenas where oration was the means

of argument; the dialogues of Plato are written (though somewhat contrived) forms

of spoken discourse. But where, if at all, is the oral in Greek mathematics? I

consider formulae. As Netz (see p. 128) notes, there are parallels between what

he calls formulae in Greek mathematics and formulae in Homeric plays, where

illiterate singers coped ‘with the necessity of singing long stretches of metrical text

without a script’ by developing a tool, formulae, ‘short phrases of given metrical

shapes’. Moreover, Netz hypothesises that:

propositions originated in many ways, but the most common was to draw a diagram, to

letter it, accompanied by an oral dress rehearsal—an internal monologue perhaps—

corresponding to the main argument; and then proceed to write down the proposition (p. 86)

But perhaps positing an oral/written duality is an ‘artefact’ of a twenty-

first century mind. As Netz (p. 163) notes, if the Greeks wrote ‘A +B¼C+D’
in English, then it would be ‘THEAANDTHEBTAKENTOGETHERAREEQUAL
TOTHECANDTHED’

Netz rejects the duality and writes:

Greek mathematical formulae are post-oral, but pre-written. They no longer rely on the

aural; they do not yet rely on the layout. They are neutral: rather than oral or written, they

are simply artefacts of language. (pp. 163–164)

I commented above on communities of practice and how a novice mathematician

might appropriate and reproduce the minimalist lexicon; this is true of formulae too.

Returning to Chap. 1 and the irreducible bond between agent, tool and purpose I

note that a tool, be it a compass or a formulae in Greek times, is useless to do, or to

advance, mathematics without someone using the tool for a purpose. But to

understand Proposition II.5, one needs more than tools. One also needs to know

the implicit references alluded to in footnotes <14> to <18>. Netz, following the
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Japanese scholar Saito, regards such implicit references as part of ‘the tool-box15’
of Greek mathematics. Netz (p. 216) provides an eloquent definition of the tool-box:

Every starting-point or argument whose truth is not obvious from the diagram or from some

other intuitive basis must reflect a more specialised knowledge. When there is no explicit

reference, this more specialised knowledge is assumed to be known to the audience.

Sometimes this is easily secured: the relevant piece of knowledge is known to the audience

because it was recently proved, in the same treatise . . . In other cases, the result invoked is

not proved in the same treatise. Such results are the tool box.

Netz appears to be describing a part of the craft knowledge of a ‘community of

practice’ in the sense that Lave and Wenger (1991) use this term, with various

layers of participation (and knowledge), from novice to master. One might quibble

about terms here for Netz writes ‘it is clear that different persons must have

internalised it [the tool box] to varying degrees’ (p. 217) whilst Lave and Wenger

write ‘membership in communities of practice, like participation, can be neither

fully internalised nor fully externalised’ (p. 54) but the parallels are striking. Kanes
and Lerman (2008, p. 320) state that ‘The nature and role of artefacts and tools is

hazy’ in Lave and Wenger’s exposition of communities of practice but it is clear

that artefacts and tools were an essential part of the ancient Greek community of

mathematical practice.

4.4 Ancient Indian Square Roots

In this section I consider an ancient Indian algorithm for computing square roots.16

This section is based on Bailey and Borwein (2012). I first remind the reader that an

algorithm is, by the definitions of artefact and tool given in Sect. 1.3.1, an artefact

which, when it is used to do something, becomes a tool. I present the algorithm and

its modern day version before discussing its origin and significance.

The text of the algorithm (in an English translation and with words not in the

original added in square brackets) is:

[1] In the case of a non-square [number], subtract the nearest square number; divide

the remainder by twice [the root of that number].

[2] Half the square of that [that is, the fraction just obtained] is divided by the sum

of the root and the fraction and subtract [from the sum].

[3] [The non-square number is] less [than the square of the approximation] by the

square [of the last term]. (Bailey & Borwein, 2012, pp. 649–650)

15 I use the term Saito coined and Netz followed but do not scrutinise the term with regard to

Chap. 1 definitions of tools. It can be assumed that the terms ‘tool box’ in this chapter and ‘tool-
box’ in Chap. 1 refer to different things.
16 The mathematical community considered also constructed algorithm for computing cube roots

but I restrict my focus to square roots in this section.
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The first two sentences present the algorithm; the third sentence provides a

means to check the answer. The first two sentences in modern notation, with q as

the number of which we are to find the square root and x0 as the initial approxima-

tion, are:

an ¼ q� x2n
2xn

xnþ1 ¼ xn þ an � a2n
2 xn þ anð Þ

Using this algorithm to find
ffiffiffiffiffiffiffiffi

123
p

with an initial approximation of 11, we calculate:

a0 ¼ 123� 112

22
¼ 1

11
, x0 þ a0 ¼ 11þ 1

11

a20
2 x0 þ a0ð Þ ¼

1=121

2 11þ 1

11

� � ¼ 1

2684

x1 ¼ x0 þ a0 � a20
2 x0 þ a0ð Þ ¼ 11þ 1

11
� 1

2684
¼ 29, 767

2684

Approximating 29, 767
2684

and
ffiffiffiffiffiffiffiffi

123
p

on my TI-92 calculator gives the same answer to

10 significant figures, 11.09053651—the algorithm is pretty accurate.

The algorithm was found in an ancient mathematical text known as the

Bakhshali manuscript. It was found in 1881 in the village of Bakhshali in the

present day Pakistan.

Among the topics covered in this document, at least in the fragments that have been

recovered, are solutions of systems of linear equations, indeterminate (Diophantine) equa-

tions of the second degree, arithmetic progressions of various types, and rational approx-

imations of square roots. (Bailey & Borwein, 2012, p. 648)

Indian/Hindu mathematics is one of the milestones in the history of mathematics

though it is ignored by Fauvel and Gray (1987). In the early centuries of the

common era (CE), Indian mathematicians introduced place value notation with a

symbol for zero but the early traces from physical artefacts are sketchy (see

Section 2 of Bailey and Borwein (2012) for details). The date of the Bakhshali

manuscript is debated (with claims between the third and twelfth century CE, the

seventh century being likely—see Section 4, Bailey and Borwein (2012) for

details).

The Bakhshali manuscript was much more adventurous than my example of

calculating
ffiffiffiffiffiffiffiffi

123
p

suggests. Bailey and Borwein (2012) present an example, arising

from an analysis of additive series:

Find an accurate rational approximation to the solution of 3x2

4
þ 3x

4
¼ 7000.
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The answer is
ffiffiffiffiffiffiffiffiffiffiffi

336009
p �3

6
. To compute

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

336009
p

the manuscript author takes an

initial estimate, x0, as 579 and obtains (as x1)
50753383762746743271936

7250483394675000000
, which agrees

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

336009
p

to 12 significant digits.

The Bakhshali manuscript did not, of course, use Arabic symbols and the

modern square root sign but ‘The digits are written left-to-right, and fractions are

written as one integer directly over another (although there is no division bar).

Zeroes are denoted by large dots’ (Bailey & Borwein, 2012, p. 648). Bailey and

Borwein (2012) goes on to prove that the Bakhshali square root algorithm is

quartically convergent.

The reason I include a section on this ancient Indian tool in this chapter is to

contrast ancient Greek tools (considered in the previous section) which lead to

deduction being a pillar of Western mathematics, with tools for experimental

mathematics that Jon laid out in Chap. 3. Bailey and Borwein (2012,

pp. 655–656) state this succinctly:

The Greek heritage that underlies much of Western mathematics, as valuable as it is, may

have unduly predisposed many of us against experimental approaches that are now facil-

itated by the availability of powerful computer technology. In addition, more and more

documents are now accessible for careful study—from Chinese, Babylonian, Mayan, and

other sources as well. Thus a renewed exposure to non-Western traditions may lead to new

insights and results, and may clarify the age-old issue of the relationship between mathe-

matics as a language of science and technology, and mathematics as a supreme human

intellectual discipline.

4.5 Abaci

I have wondered whether a very early mathematical act was a shepherd placing one

stone in a pile for each sheep entering a field and, later, taking one stone away for

each sheep leaving—one-to-one correspondence in order to ensure that all sheep

are accounted for. This is sheer speculation but there is evidence that stones/peebles

were used in early counting/arithmetic as we have seen in the section on Greek

mathematics. Indeed, the word ‘calculate’ is derived from the Latin word ‘calx’, a
stone and refers to the practice of using small stones as counters. Given the

cognitive demands on memory and the scarcity of writing materials it is hardly

surprising that stones (or notches or fingers or . . .) were used to aid counting and

arithmetic. If counting is sufficient to satisfy the demands of an activity, then the

medium is not particularly important as long as it is manageable. But if the demands

of the activity involve arithmetic, then a more advanced semiotic system is needed.

De Solla Price (1984) presents a survey of calculating machines with particular

emphasis on their role in the development of astronomy and notes different

developmental paths for commercial arithmetic and scientific calculation:

Astronomy needed ingenious mathematical constructions and mechanical devices, but the

keeping of accounts demanded but little elaboration of the primitive method of laying out

pebbles and shells. (De Solla Price, 1984, p. 34)
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Further to this the Greeks and Romans used the Babylonian sexagesimal system

(including their multiplication tables) for scientific calculations, not pebble

mathematics.

The word ‘abacus’ comes from the Greek αβαξ (a’bax) which is probably

derived from the Semitic word for dust (see Smith, 1958, p. 156), referring to a

table covered with dust or sand where marks could be drawn and erased. The dust

abacus gave way to tables with ruled lines on which counters were placed (Smith,

1958, p. 157). The origin of the counter abacus is obscure and Smith (1958, p. 159)

states that there is ‘some reason for believing that this form of the abacus originated

in India, Mesopotamia, or Egypt’.
Two abaci that remain in use today are the Chinese Suan-pan (dating from the

late twelfth century) and the Japanese soroban (which appeared after the Suan-
pan). I shall consider the Suan-pan. Figure 4.4 shows a 13 column Suan-pan. Note
the 2 by 13 bead top array and the 5 by 13 bead lower array. The soroban is similar

to the Suan-pan but the top array has only one bead on each column and the bottom

array has four beads on each column. Prior to a Suan-pan calculation, the top

(respectively lower) beads are placed against the top (respectively bottom) of the

frame. Beads are brought into operation by moving them towards the middle bar.

The Suan-pan represents denary place value in the standard written manner, left-to-

right, with columns representing powers of 10. Any column can represent units but,

as is common, I will take the unit column to be the rightmost column. In each

column the top (respectively bottom) beads represent 5 (respectively 1) of the

column power of ten; Fig. 4.4 thus represents the number 456.

The Suan-pan can be used for addition, subtraction, multiplication and division

(and, with some ingenuity, squares, cubes, square roots and cube roots) but, for

reasons of space, I will only deal with addition. To perform 3 + 4 on the Suan-pan,
first move 3 lower beads in the unit column to the middle. We have 4 to add on to

this but only 2 more lower beads. Move these 2 to the middle. We now have 5 in the

Fig. 4.4 A 13 column Suan-pan
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middle, replace these by 1 top bead by moving the 5 lower beads to the bottom of

the frame and moving one top bead to the middle. We can now move two lower

beads towards the middle to complete the addition. To perform 6 + 7 we move beads

in a similar manner but in this calculation (which I will not describe in detail) we

need to go to a new (left) column (when a column has 2 top beads to the middle,

replace them by 1 bottom bead to the middle in the adjacent left column). The

performance of more complex calculations (even 24 + 36) is going to get quite

tricky and this is where the Chinese secrets (hints or action guides) are taught/learnt
to make things manageable. I present the addition secrets in shorthand where: lower
5 means ‘move 1 top bead down to the middle’; cancel means ‘replace beads that
have already been moved to the middle to the neutral position’; raise means ‘move

a lower and/or top beads towards the middle’; and forward 10 means ‘move one

lower bead in the next column towards the middle’. The 17 secrets for addition

(in three sets) are shown in Table 4.1 below. I explain the first row (the explanation

for the other rows are similar).

1 lower 5, cancel 4 (1¼ 5� 4)

The number on the left is the result of a hand movement. Then the shorthand

‘lower 5, cancel 4’ is listed. The addition sum for the first secret of each set is

displayed in brackets.

Once the novice abacus user is familiar with these secrets, the addition sums

above become:

3 + 4 raise 3; lower 5, cancel 1

6 + 7 raise 6; raise 2, cancel 5, forward 10

24 + 36 raise 24; second column—lower 5, cancel 2; first column—cancel 4, forward 10

Table 4.1 The 17 secrets for
addition

1 Lower 5, cancel 4 (1¼ 5 – 4)

2 Lower 5, cancel 3

3 Lower 5, cancel 2

4 Lower 5, cancel 1

1 Cancel 9, forward 10 (1¼ 10 – 9)

2 Cancel 8, forward 10

3 Cancel 7, forward 10

4 Cancel 6, forward 10

5 Cancel 5, forward 10

6 Cancel 4, forward 10

7 Cancel 3, forward 10

8 Cancel 2, forward 10

9 Cancel 1, forward 10

6 Raise 1, cancel 5, forward 10 (6¼ 10 – 5 + 1)

7 Raise 2, cancel 5, forward 10

8 Raise 3, cancel 5, forward 10

9 Raise 4, cancel 5, forward 10
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From a mathematics education perspective there are a number of interesting

features of such use:

• The physical artefact is extremely complicated to use without the secrets, which
are specialised modes of action with the physical artefact. One could say the

abacus as a tool is a combination of the physical artefact and the secrets
(semiotic artefact).

• Related to the above point, Master abaci calculators go beyond memorising

these secrets, they are automated bodily (hand) operations. Master abaci calcu-

lators can do addition sums such as 83,492 + 239,497 + 23,098 very quickly but

they do not invoke ‘number bonds’, instead each digit becomes a specific hand

movement on a specific column.

• The secrets are, traditionally, what the Master teaches the Novice.

• Unlike the standard written algorithm for addition, addition on a Suan-pan
begins with the most significant digit.

4.6 Tools for Calculation in Europe Circa 1600

The need to perform accurate multi-digit arithmetic calculations was a reality in

sixteenth century Europe, not least in astronomy (as the De Solla Price (1984)

citation in the last section evidences). In this section I look at three calculation tools

that developed in fairly quick succession: prosthaphaeresis, logarithms and slide

rules. The need to calculate accurately in astronomy was twofold: European ships

were exploring the world and ships’ navigators charted courses using trigonometry

and the positions of specific stars and planets; astronomical theory was developing,

e.g. Tycho Brahe (1546–1601) was refining the Copernican theory of planetary

motion which involved detailed empirical observations and calculations of the

position of specific stars and planets.

Trigonometric functions and tables have a history that predates this period and is

not Europe-centred but ‘tables of the decimal sine, cosine, tangent and cosecant

functions were introduced in Western mathematics about 1450’ (Rosińska, 1987,
p. 419). Trigonometric tables are clearly a useful tool for, and were widely used by,

sixteenth century astronomers.17 But in the sixteenth century it was discovered that

they could be used to speed up arithmetic calculations by a method called

prosthaphaeresis (from Greek words for addition and subtraction). I shall explain,

via an example (see Table 4.2), the principles of this method before discussing it

further. I shall use the identity

cos a cos b�1

2
cos aþ bð Þ þ cos a� bð Þð Þ ð4:1Þ

17 I drop the prefix ‘European’ for the remainder of this section.
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in my example but prosthaphaeresis also uses other trigonometric identities. I shall

work to 5 significant figures in my example but the accuracy of this method depends

on the accuracy of the trigonometric tables and 7 figure trigonometric tables were

available in the sixteenth century. Note that sixteenth century astronomers would

have worked in degrees.

As a mathematician interested in tool use I think this is pretty cool. The steps

form an algorithm (a tool) which uses another tool (trigonometric tables) to simplify

a calculation. My example used three digit numbers but the power of this algorithm

can be appreciated if we imagine numbers with more than three digits. With

repeated use the algorithm can be executed quickly. The identities for the products

of sines, and of cosines, were published in 1588 but Thoren (1988) states that the

identity for the product of sines was discovered/invented in 1510. It is clear that

Tycho Brahe used prosthaphaeresis before 1588.

The next step in the ‘tools beget tools’ claim I am putting forward is the

introduction of logarithms, which is largely due to one person, John Napier, a

Scottish landlord and an amateur mathematician, with the publication in 1614 of

Mirifici Logarithmorum Canonis Descriptio. It appears (see Pierce, 1977) that

Napier learnt of prosthaphaeresis and began playing with the correspondence

between arithmetic and geometric progressions (APs and GPs). This can generate

logarithmic functions; I shall call one, made up for introductory purposes here, lg,
in the example below.

If we put the AP 2, 4, 6, . . . in term-wise correspondence with the GP 3, 9, 27, . . .
we can define: 2¼ lg(3), 4¼ lg(9), 6¼ lg(27), . . . lg obeys the laws of logarithms.

For example, lg(3� 9)¼ lg(3) + lg(9)¼ 2 + 4¼ 6. Similar logarithmic function can

be set up for other APs and GPs. Like prosthaphaeresis it allows the calculation of

products by way of addition. Note that this origin of logarithms is not connected

with the inverses of exponential operations as it is in the modern definition of a

logarithm.18

Table 4.2 Calculating 123� 456 using cos a cos b�1
2

cos aþ bð Þ þ cos a� bð Þð Þ
Example To calculate 123� 345 using (4.1)

Step 1 Rewrite the digits of the numbers to be multiplied

as numbers between �1 and 1 (and keep a note of

powers of 10 lost in this process)

0.123� 0.345

Note that 103� 103 has been

lost

Step 2 Find the inverse cosines of the numbers to be

multiplied

cos�1(.123)� 82.935o

cos�1(.345)� 69.818o

Step 3 Substitute the angles obtained in step 2 into (4.1),

use trigonometric tables to find the cosines and

calculate (using only addition and division by 2)

½ (cos(152.753) + cos(13.117))

�0.084867� 2¼ 0.042434

Step 4 Put back the powers of 10 lost in calculation 0.042434� 103� 103¼ 42,434

18 a ¼ logbc , c ¼ ba, b > 0 and b 6¼ 1:
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The example I introduced is not useful for calculations because of the large

‘gaps’ between the terms of the GP. Napier got over this problem by using a GP

with the first term 107 and a common ration of 0.9999999 (these numbers were

chosen as he was inspired by studying prosthaphaeresis and the best trigonometrical

tables he had were given to 7 decimal places). Napier used this logarithmic function

(which does not really have a base and, for which, the logarithm of 1 is not 0) to

construct a table of radicals; he made up the term ‘logarithm’ from Greek, logos

(ratio) and arithmos (number).

Napier’s publication came to the notice of the mathematician Henry Briggs and

the two met, in 1615. Napier and Briggs agreed to modify Napier’s logarithms so

that log(1)¼ 0 and log (10)¼ 1, i.e. to what we now know as base 10 logarithms.

The results were published in 1617 and the use of base 10 logarithmic tables quickly

caught on; within 10 years publications were appearing in other European coun-

tries. Indeed, Pierce (1977, p. 26) writes, ‘it has been postulated that logarithms

literally lengthened the life span of astronomers, who had been sorely bent and

broken early by the masses of calculations their art required’ and mathematical

folklore has it that Gauss memorised his table of logarithms.

Slide rules quickly followed in the wake of Napier and Brigg’s logarithms as the

mathematical principles are the same for both. E Gunter designed a ‘logarithmic

line of numbers’ in 1620 and W Oughtred designed the first proper slide rule in

1622 (see Smith, 1958 for details). The twentieth century slide rule that the reader

may be familiar with has many special built-in functions (a bit like a modern

scientific calculator) but if we restrict ourselves to multiplication, the principle of

operation is the same as Oughtred’s slide rule. I illustrate this in Fig. 4.5 which

shows how a slide rule is used to multiply 12� 23.

The two logarithmic scales are identical. The one of the lower scale is aligned

with 21 on the upper scale. One then reads along to 23 on the lower scale and reads

the number vertically above it on the upper scale (which is just over 280).

Note: the leftmost number of a logarithmic line is 1, not 0, because 100¼ 1; a

slide rule works on the digits, i.e. it does not differentiate between 12, 1.2, 0.12,

etc.—the user must calculate the order of magnitude of the answer; the answer is

rarely accurate to more than three significant figures (the calculation above is only

accurate to two significant figures).

Like tables of logarithms, slide rules became popular. My chain of tools for

calculation in Europe circa 1600 is now complete: trigonometric tables begat

prosthaphaeresis which inspired Napier’s logarithms and tables of radicals which

begat base 10 tables of logarithms which begat slide rules. I end this section with

educational comments.

It was not long before the use of tables of logarithms moved from scientific

communities to elementary arithmetic, evidenced by a reference to Brigg’s table of
logarithms in a 1646 edition of the early mathematics educator Robert Recorde’s
Ground of Artes (see Smith, 1958, p. 518). By the time that the electronic calcu-

lators appeared, adolescent schoolchildren throughout the world took their log
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tables to mathematics lessons for calculations other than practice on standard

written algorithms. It is instructive to reflect on the techniques that these almost

modern schoolchildren were taught. I present an example, 120� 0.45, using the

once common (to schoolchildren) four-figure tables of logarithms.

Children were taught to find the characteristic and mantissa (terms that Briggs

introduced in 1624). The mantissas of 120 and 0.45 are 0792 and 6532 and the

characteristics are 2 and�1 (representing 102 and 10�1). This makes the logarithms

of the two respective numbers 2.0792 and�0.3468 but�0.3468 is not suited for the

use of logarithmic table, so it is conceived as �1 + 0.6532, written as 1:6532 and

read as ‘bar 1 point 6532’. Whilst this is not difficult for a mathematician to

understand, it is difficult for a 11-year-old child to appreciate that it is useful to

consider 0.45 as 10�1 + 0.6532, and it can be presumed that the method was often

taught without a mathematical justification. To perform 120� 0.45 one calculates

2:0792� 1:6532 ¼ 2:426, then looks up 426 in the table of antilogarithms and

obtain the digits 2667 and then use the characteristic, 2, to get the answer, correct to

4 significant figures, 266.7.

As with the Suan-pan, once the techniques of using logarithmic tables are

mastered, they are quickly, and usually accurately, performed. Using logarithmic

tables is a written method of calculation in that the logarithms and antilogarithms of

numbers are written down. Further to this, hand calculations are also employed

(such as subtracting logarithms in performing a division).

Prior to the introduction of the electronic calculator, secondary students were

also taught how to use a slide rule and they were popular with scientists and

engineers. Indeed, I worked as a bridge designer in the 1970s and I used to carry

a slide rule with me ‘on site’ in case of non-trivial calculations/estimations were

needed. Some professions such as aviation science had specialist slide rules

designed for their specific needs. The slide rule does not require written methods,

like the Suan-pan it only requires hand–eye co-ordination (and a knowledge of the

artefact and appropriate techniques).

Fig. 4.5 Using a slide rule to calculate (estimate) 21� 23
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4.7 Discussion: Insights on Tool Use Over Time

I selected the foci in Sects. 4.2–4.6 above to add substance to the Sect. 1.3.1

definition of a tool as an artefact that is used by an agent to do something.

Section 4.2 shows that the agent does not need to be human. Further to this,

Sect. 4.2 provides evidence and arguments that tool use was an aspect of human

evolution. I find this interesting as someone who was persuaded, through the

writings of Vygotsky, that tool use ‘is a means by which human external activity

is aimed at mastering, and triumphing over, nature’ (Vygotsky, 1978, p. 55). Until I
became aware of the role of tools in human development I rejected tool use as

‘natural’. I remain convinced that most aspects of tool use for mathematical

purposes are ‘artefactual’ rather than ‘natural’ but tool use in evolution arguments

have tempered my views, there does appear to be something natural (hard-wired

into human biology) is using (at least some) tools. Further to this, Gibson’s (1993b)
argument regarding the interdependence of tool use, language, social structure and

information processing in human evolution appears to have something important to

say about protomathematics and tool use: that humans have a proclivity for tool use,

language, social structure and information processing (which includes

logicomathematical understanding) but none of these four attributes on their own

(or in pairs or in threes) is sufficient to explain our problem-solving abilities.

Section 4.3 introduces tools that may not strike one initially as tools. Before I

read Netz (1999) I did not consider the tools of ancient Greek mathematics to be

anything other than the compass and the straight edge. Netz makes a strong case for

the lettered diagram and the mathematical language being tools of ancient Greek

mathematics. Netz’s claim about language here is quite specific, it concerns the

mathematical lexicon and the use of what he calls ‘formulae’, and should not be

confused with ‘poetic claims’ such as ‘language is the tool of thought’. He also

makes a case that deduction (perhaps the most important legacy of ancient Greek

mathematics) was shaped by these two tools. But these tools are not sufficient on

their own and Netz brings Saito’s tool-box into his argument, the craft knowledge

of a community of mathematicians through which the tool use makes sense. These

themes (tools, language and community) have commonalities with Gibson’s
(1993b) four components. Both Gibson and Netz are trying to understand tool use

which developed over significant periods of time (rather than a moment in time,

which is often the time frame of mathematics education researchers). Gibson

behoves us to pay due regard to language, social structure and information

processing in consideration of tool use. The tools Netz considers are intertwined

with a specialist language and the ‘shaping of deduction’ he outlines depends on a

community which can make sense of specific tools through their joint practice

which includes knowledge of the tool box.
Section 4.4 allows us to view mathematical activity (and the place of tools in

mathematical activity) under different lens. The ‘shaping of deduction’ that Netz
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documents also shaped a view of mathematics as a deductive science. Bailey and

Borwein (2012, p. 655) argue that this heritage, ‘as valuable as it is, may have

unduly predisposed many of us against experimental approaches’. Joseph (2010,

p. xiii) goes further and states:

A Euro centric approach to the history of mathematics is intimately connected with the

dominant view of mathematics . . . as a deductive system .. [s]ome of the most impressive

work in Indian and Chinese mathematics . . . involve computations and visual demonstra-

tions that were not formulated with reference to any formal deductive system.

Similar (but not identical) views are expressed by some mathematics educators

in their consideration of the place of tools in mathematical activity:

the premise that Western culture establishes, in the range of human practices, a structural

opposition between activities considered to be ‘manual’ and activities considered to be

‘intellectual’. This opposition is not neutral. Western cultural axiology prioritises activities

of ‘the spirit’ . . . over the work ‘of the hand’ Bosch and Chevallard (1999, p. 89 translation
by M Bosch & J Monaghan)

The consideration of abaci in Sect. 4.5 provides complementary insights into

tool use. Although an abacus can be used, by a novice, as an external tool to perform

simple calculations, its use in the hands of a master for complex calculations

depends on the physical artefact being used in concert with the secrets. There are,
effectively, two distinct tools here corresponding with the novice (without secrets)
and the master (with secrets) ‘ways of using the artefact’ (cf. Sect. 1.3.1). The
secrets, moreover, are directly linked to body movements and the tool use by a

master irreducibly combines manipulating the artefact, dexterity and information

processing. This, I posit, is true of physical tools in general.

I bring this chapter to a close with a consideration of timescales and a compar-

ison of Sects. 4.5 and 4.6. Although abaci, in their various forms, developed over

millennia, the Suan-pan (and the soroban) reached their current state many centu-

ries ago. This stands in stark contrast to the rapid rise and fall of tools for

calculations circa 1600 outlined in Sect. 4.5. The history of tool use (in general

and in mathematics in particular) appears to be that old tools are replaced by new

tools; tools such as Suan-pan and the soroban are exceptions. I think De Solla Price
(1984, p. 34; cited above) hints at a reason for this general rule and the exceptions:

Astronomy needed ingenious mathematical constructions and mechanical devices, but the

keeping of accounts demanded but little elaboration of the primitive method of laying out

pebbles and shells. (De Solla Price, 1984, p. 34)

Scientific development, past and present, requires new tools and also often

provides the means to develop these new tools. The digital age we are now in has

parallels to the sixteenth century with new tools, digital and algorithmic rising and

being replaced. One of the reasons for writing this book was to try to better

understand mathematics and mathematics education in this digital age and an

awareness of the history of tools is useful in this search for an understanding.
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Chapter 5

The Development of Mathematics Practices
in the Mesopotamian Scribal Schools

Tablets and tokens, lists and tables, wedges
and digits, a complex system of artefacts for doing
and learning mathematics, 2000 years BCE

Luc Trouche

5.1 Introduction

This chapter proposes a view on a particular moment in the learning of mathemat-

ics, 2000 BCE in Mesopotamia: a moment particular regarding the medium, with the

development of writing and of systems of signs; particular regarding the develop-

ment of mathematics, with the development of a sexagesimal positional numerical

system, and of associated algorithms; particular regarding the places dedicated to

learning, with the development of scribal schools; and, last but not least, particular

regarding the supports, with the use of clay tablets ‘still alive’ today.

I will look at this particular moment through the eyes of a contemporary

researcher on mathematics education, aware of the difficulty of looking at the

past through the eyes of the present, and of the interest of enriching the present

didactical questions by an historical lighting.

5.2 A Critical Moment

The period of Mesopotamian mathematics is certainly a critical one: ‘The devel-

opment of scribal schools in the late third millennium and the early second

millennium in Mesopotamia corresponds to a switch in the medium used for the

accumulation and transmission of knowledge, from memorisation, the medium

became essentially written during this period’ (Proust, 2012a, p. 161). This switch

could be compared to another major one that of the translation from paper to digital

era (see Chaps. 2, 11, 13 and 17). This critical period is also a privileged one:

‘Concerning Mesopotamian scribal schools, the situation is exceptionally

favourable, due to the huge quantity of school tablets handed down to us. No

other educational system of the distant past is as well documented as that of

Mesopotamia’ (Proust, 2012a, p. 162). This situation is due to the material used
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for building the tablets: ‘The conservation of the unskilled writings of students is

partially accidental. It is due primarily to the nature of the writing medium, the clay,

a nearly indestructible material. It also ensues from the reuse of dry and waste

tablets as construction material. Trapped in walls, floors or foundations of houses,

tablets produced by students and subsequently discarded have escaped other forms

of destruction’ (Proust, 2012a, p. 163): 4000 years after, clay tablets are still alive,

speaking to whom is able to understand them. . .
I will evoke1 here four aspects of this rich mathematics teaching context: the

computation practices and their support; the set of artefacts necessary for doing

computations; the persistence of old artefacts (from the pre-writing period) in the

new context of scribal schools; the algorithms for calculating the reciprocal2 of a

regular number, evidencing, in this context, the mastering of a complex and

efficient system of artefacts.

5.3 The Computation Practices and Their Support
in Scribal Schools

In this section, I will situate the importance of scribal schools as an essential

structure for learning/teaching writing,3 the importance of writing as an essential

means for communicating and thinking, and I evidence the importance of artefacts

used for writing and computing. These three elements are interrelated: the scribes

were the persons mastering the art of writing, essential for writing and reading

administrative texts, or for calculating area and taxes; the Sumerian name for

‘tablet’ is DUB, for ‘scribe’ is DUB.SAR, meaning ‘the one who writes on tablets’;

for ‘scribal school’ is É.DUB.BA, meaning ‘the house of the tablets’. The schools

are well described by Veldhuis (1997) in his study of Elementary education at

Nippur (one of the main cities in this area for this period). From a number of literary

texts, scribal schools appear as an institution supported by aristocracy, focusing on

1We would like here to greatly thank Christine Proust, historian of mathematics specialist of this

period, for her precious advices, particularly about relevant references, and her careful re-reading

of this chapter; Ghislaine Gueudet, for her re-reading on an advanced version of the chapter.
2 Reciprocal of x stands here for 1/x.
3 The question of ‘who was allowed to attend a scribal school?’ is essential to evaluate the scope of

writing in society. Veldhuis (1997, p. 27) gives some information about it: ‘Admittance was not

restricted to members of clerical families. This is shown [. . .] by two kinds of evidence. First, the

teacher was not paid by state or temple, but by the parents of the pupil. Payment by the parents is

attested in the literary text called Schooldays. Payment by state or temple [. . .] would have left

traces in official documents, which is not the case. Second, a few girls attended school. Both points

are [. . .] indications of a certain freedom of choice, and a non-mechanistic procedure for admis-

sion. One must admit, however, that this freedom of choice must have been restricted to the happy

few’. This suggests that the transition from memorisation to writing concerns a quite restricted

sphere of the Mesopotamian society, that is not the case for translation era from paper to digital

support.
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the art of writing, and where the learning of computation is essential, see for

example the following text where the king Šulgi describes his childhood:

When I was young I learned at school the scribal art on the tablets of Sumer and Akkad.

Among the highborn no one could write like me.

Where people go for instruction in the scribal art there I mastered completely subtrac-

tion, addition, calculating, and accounting.

The fair Nanibgal Nisaba4 provided me lavishly with knowledge and understanding.

I am a meticulous scribe who does not miss a thing! (Veldhuis, 1997, p. 24)

Scribal schools appeared with the development of writing as an essential support

for communicating. We know from Goody (1977) the importance of writing for

cognitive and intellectual development. Speech has no spatial aspect, but writing

has. The writing conditions knowledge into formats in one dimension (list) or two

dimensions (tables), leading to what Goody names a ‘graphic reason’.5

The spatial aspect in this period took the form of clay tablets (see an example

Fig. 5.1), containing texts, lists and tables. Veldhuis (1997, p. 28) distinguished, for

the tablets coming from Nippur and concerning elementary learning, four types:

Type I tablets are large tablets containing a long text, continuously and densely

inscribed on the obverse and on the reverse6; Type II tablets contain different texts

on the obverse and on the reverse. On the obverse, a model was noted in an archaic

style by a master,7 and copied once or twice by a student; the copies were

sometimes traced and erased repeatedly.8 On the reverse, a dense text was written

by heart by a student; Type III tablets are small rectangular tablets containing a

short extract, often a multiplication table; Type IV tablets are small square or round

tablets, containing a short exercise.

The set of lists and tables to be learnt constitutes the basis of the Mesopotamian

curriculum, as it has been reconstructed by the historians (Table 5.1).

Students began by learning metrological lists9 and finished by learning the table

of roots. The analysis of the structure of clay tablets (see Fig. 5.1) evidences a part

4 Nisaba is the patroness of the scribal schools and the goddess of writing and mathematics.
5 Bachimont (2010) oppose this ‘graphic reason’ (linked to the writing era) to the ‘digital reason’ of

the digital era. The digital reason allows the gathering in the same space of heterogeneous

contents, and a multidimensional writing and reading (thanks to hyperlinks). Bachimont under-

lines the essential function of the supports of knowledge: they are not only the consequence, but
also the cause of knowledge.
6 Obverse and reverse stand, for the Assyriologists, for front and back of the tablet.
7We use the term of master following Proust’s choice: ‘Since we ignore the exact nature of the

scholars’ charge, I prefer to refer to them as ‘masters’ rather than as ‘teachers’, a term which could

implicitly suggest that teaching at the elementary level was their unique activity’ (Proust 2012a,

2012b, p. 163). The persons learning in scribal schools are called in this paper ‘students’, for

reasons of facility, instead of apprentice scribes.
8 In order to erase signs impressed in wet clay, scribes simply rub them lightly with their finger.

Tablets bear often fingerprints and erased signs covered by others.
9 The metrological lists are enumerations of measures of weight, area or length. The metrological

tables consist of the same items in the same order, but each measurement is associated with a

number written in sexagesimal place value notation: they constitute tables of conversion between

quantities and ‘pure’ numbers.
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allocated to the master (resp. to the student) and gives access to the mode of

learning lists and tables: ‘In a first step, the students learnt to write short excerpts,

reproducing a model on the obverse of tablets, then they memorised the pronunci-

ation, they recited the excerpt, and, in the last step, they reproduced by heart a large

part of the list by writing it on the reverse of a tablet. Learning therefore inextri-

cably combined writing and memorisation’ (Proust, 2012a, p. 171).

Let us analyse this crucial importance of the clay tablets (in addition of the

conservation for historians that I have mentioned in the introduction).

It appears clearly that the nature of this writing support conditions the student’s

work: the still fresh clay allows the student to write and erase what s/he wants to

change (see Fig. 5.1). The dimensions of the tablets of Type IV (from 6 to 8 cm2),

dedicated to the work at home are called ‘im-šu’ (meaning tablets for hand) allow

The obverse contains a Sumerian lexical list, including mathematical terms regarding volume calculations. The reverse 
contains a list of measures of capacity. The right side of the tablet, which contained student copies, is lost. Note the 
characteristic appearance of the fracture, which results from the fact that the right columns have been written and erased 
several times, becoming thinner and forming a ledge.

Fig. 5.1 School tablet (Type II) from Nippur, courtesy Istanbul Archaeological Museum

(Proust, 2012a, p. 168)

Table 5.1 Mathematical

curriculum in Nippur (Proust,

2012a, p. 170)

Metrological lists Capacity list

Weight list

Surface list

Length list

Metrological tables Capacity table

Weight table

Surface table

Length table

Height table

Division/multiplication tables Reciprocal table

Multiplication tables

Square table

Tables of roots Square root table

Cubic root table
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the student to bring them at home.10 Kramer gave access to a text evidencing the

importance of the tablet for student’s work:

Schoolboy, where did you go from earliest days

I went to school.

What did you do in school?

I read my tablet, ate my lunch,

prepared my tablet, wrote it, finished it; then

my prepared lines were prepared for me

(and in) the afternoon, my hand copies were prepared for me.

Upon the school’s dismissal, I went home,

entered the house, (there) was my father sitting.

I spoke to my father of my hand copies, then

read the tablet to him, (and) my father was pleased;

truly I found favour with my father. (Kramer, 1949, p. 205)

This text shows that one of the first things that a student had to do at school was

the preparation of the tablet.11 This tablet was also an essential support for the

interaction between master and student, and between the student and his/her father.

For deepening this analysis, we have to consider, instead of one artefact, a duo of
artefacts: a clay tablet, support of the writing and a calame12 (in sumerian GI.DUB.

BA, in akkadian qan tuppi(m), meaning ‘reed of/for tablet’). Unlike tablets, no

calame has been found till now. The existence of this artefact is attested by literary

texts:

You who speak as sweet as honey, whose name suits the mouth, longed-for husband of

Inana, to whom Enki gave broad wisdom as a gift! Nisaba, the woman radiant with joy, the

true woman, the scribe, the lady who knows everything, guides your fingers on the clay: she

makes them put beautiful wedges on the tablets and adorns them with a golden stylus.

Nisaba generously bestowed upon you the measuring rod, the surveyor’s gleaming line, the

yardstick, and the tablets which confer wisdom. (ETCSL, 2-5-5-2)

The existence of calames and their properties are also attested by the shape of

their traces on the tablets themselves. It was probably a piece of reed (Proust, 2007,

p. 81), sometimes of bone or ivory, of wood or of metal, especially pointed or

rounded at first, then with a flat triangular form, or beveled thereafter. The incision

of this artefact in fresh clay makes it difficult to draw lines and curves and

encourages the user to draw short segments. This gave the Mesopotamian cunei-

form writings a distinctive appearance (see Fig. 5.1). One must first plant a tip,

10 The importance of such handheld device for appropriation by students is certainly crucial, as

evidenced, in a recent period, for the purpose of mathematics teaching, by the use of handheld

calculators (Trouche & Drijvers, 2010).
11 The making of clay tablets, particularly those used in schools, was an important aspect of the

technology of writing in this period and this geographical era. Bread of fine clay for tablets have

been found, stored in jars (Suse), or cavities (palace of Mari). Clay is an abundant material in the

Mesopotamian alluvial plain. But the clay used for writing had to be very pure. They had to be

degreased and refined to prevent them from cracking as they dry (Charpin, 2002, p. 408).
12Calame (pen in Arabic) has been chosen by some historians to translate the Akkadian name.

Other translation used: stylus.
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giving the shape of a wedge, and then draw a line generally following (certain signs

being simple wedges). The incision of signs on a malleable media finally gives not a

flat writing like that obtained with ink and paper, but an embossed writing, and

signs should be read with lighting that allows the reader to identify all incisions in

order to avoid misinterpretation.13

The most used Mesopotamian numeration system, following the system used, in

this region, before the writing era, was sexagesimal. In mathematical texts, the

numbers are made of sequences of digits following a positional principle in base 60:

each sign noted in a given place represents 60 times the same sign noted in the

previous place (on its right).14 Using this duo of artefacts for writing numbers,

easily and without ambiguity, leads to the introduction of a minimum number of

well-contrasted signs, actually two signs were enough: ones (vertical wedges )

and tens (oblique wedges ),15 concatenated to represent the 59 digits used in the

sexagesimal system (as 0 did not exist in this period). Proust (2007) presents the

usual layout of these numbers, aggregated by a maximum three figures, to allow for

rapid reading (see Table 5.2).

Several wedges are thus combined for writing numbers, with precise rules:

– If vertical wedges are written at the right of oblique wedges, they are at the same

position; for example stands for 12 in our numeration system.16

– If vertical wedges are written at the left of oblique wedges, they are at an upper

position, for example stands for 130 (2� 60 + 10). It is transcribed by the

historians as 2.10.

– The concatenation has to be considered carefully: stands for 2, and

stands for 1.1 (i.e. 61 in our decimal positional system).

We are now able to analyse an exercise written on a tablet (Fig. 5.2).

13 Lavoie (1994) analyses also the importance of the artefact for writing in another context: the

passage of the quill of goose to the quill of iron in the primary schools, at the beginning of the

twentieth century, in Québec.
14 Among the Mesopotamian versions of sexagesimal numeration systems, there is only one which

is positional, and this is this one which has been developed/used in the scribal schools.
15 One can hypothesis that these two figures are the written transpositions of token used for

computing before the writing era, see Fig. 5.5.
16 In the Old Babylonian period, the cuneiform writing did not allow to distinguish 12 and 10.2.

This ambiguity of the notation created errors, and was corrected in later period by the use of a new

sign, to denote the absence of digit. In this improved system, stands for 12, and

stands for 10.2.)
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The layout of the tablet (Fig. 5.2) shows two distinct places: a place for

computation (in the upper left area), following the positional system, and a place

for quantification (in the lower right area), giving the text of the problem in terms of

unit of measure and area. Then the student’s work can be reconstituted:

– In the lower right place, using the metrological tables of lengths for converting

length measurements in numbers.

Table 5.2 The ergonomic display of the numbers (Proust, 2007, p. 74)

Units

1 2 3 4 5 6 7 8 9

Tens

10 20 30 40 50

Hand copy made by Proust, personal communication

Translation

2 šu-si the side of the 
square
What is its area?
Its surface is 1/3 še

[a šu-si (= a finger) is a 
length measuring unit
a še (= a grain) is an area 
measuring unit]

Interpretation

20 x 20 = 6.40

Tablet UM 29-15-192 (Neugebauer & Sachs 1984)

UM 29-15-192 -Transcription

20 x 20 = 6.40

2 šu-si → 20

6.40 → 1/3 še

Fig. 5.2 A tablet (type IV), its picture, hand-made copy, translation and interpretation (Proust,

2007, p. 193)

5.3 The Computation Practices and Their Support in Scribal Schools 123



– In the upper left place, using the multiplication tables for making the

multiplication.17

– Back to the lower right place, using the metrological tables of area for converting

the number in area measurement.

When I say ‘usingmetrological, or multiplication tables’, it has to be understood

in a large way: I have explained above the importance of reading and memorisation

of such tables, fundamental elements of scribal school practices. For performing

such computations (Fig. 5.2), students had certainly to mobilise memorised results

from their learning of tables.

I have described, in this section, a set of artefacts used for learning mathematics:

symbolic artefacts (as the sexagesimal positional numeration system), written

artefacts (as the wedges), material artefacts, some of them have been preserved

for us (as the clay tablets of different types), but evidence for some of them are

suggested by their traces (calames). Are we sure that this enumeration is exhaus-

tive? We will see in the following section that the answer is probably no.

5.4 Evidencing Computing Artefacts Complementing
the Usage of Tablets and Memory

For Proust (2012a, p. 173), ‘the resources of the masters [. . .] might have included a

complex system of written texts, memorised texts, calculation devices and various

communicational processes, but only the written artefacts reached us. We have then

to reconstruct a rich environment from truncated evidence’. This reconstruction can

rely on three arguments: the necessity of artefacts outside of the tablets for doing

intermediate computations, the interpretation of frequent similar errors in the

tablets, and the persistence of artefacts coming from the pre-writing era.

Firstly, the necessity of artefacts dedicated to these intermediate computations,

for too big multiplications. Some tablets (see Fig. 5.3) show indeed important

multiplications without any intermediate results.

We could imagine that such intermediate computation, supported by a given

algorithm, could have been made on a ‘draft tablet’, but such tablet had never been

found. We could also imagine that this draft could have been made on the tablet

bearing the problem itself, then erased: a careful analysis of the tablet suggests that

this was not the case here. One possibility is the presence of an artefact dedicated to

such computation, that is, not a clay tablet, but made of a material, which vanished

over time due to its nature (lexical evidence suggests that this device was made of

wood, cf. Lieberman, 1980).

17 An application ‘mesocalc’ has been developed par Mélès for doing such computations, which is

useful for a better understanding of this system and a reading of the tablets: http://baptiste.meles.

free.fr/site/mesocalc.html#multiplication.
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The second argument for the use of such a disappeared artefact comes from the

careful analysis of the display of the computation on the tablets. Proust (2000)

presents a table of successive doublings of the initial term 2.5 (see Table 5.3).

Something strange appears line 21, i.e. as soon as the writing of the number

exceeds 5 positions: this writing is split into two parts, separated by a sign

(a vertical wedge and an oblique one), and these two parts are separately doubled.

This writing of the big numbers in two parts needs afterwards a reattachment,
taking into account the relative sexagesimal positions of the digits, and this

reattachment could explain a number of errors found through tablets during the

whole cuneiform history. For example, the following error has been discovered in a

tablet (300 BCE), about the computation of the reciprocal of 1.16.53.12.11.15

(Proust, 2000, p. 4). The result displayed is 46.49.19.54.58.53.20, instead of

46.49.19.40.14.48.53.20 (the curious reader could use the application Mesocalc,

see Footnote 13, to check it. . .). The error could derived from a wrong reattachment

of separate reciprocal computation of two parts of the number, leading to

46.49.19.40 and 14.48.53.20: instead of concatenate these two numbers, the scribe

had added the two proximate digits, 40 and 14, giving 54 (otherwise an error of

copy could explain the writing of 58 instead of 48). The repetition of such error

could be explained by two computations using an artefact other than a tablet (and

therefore without writing), and then performing a mental operation of reattachment

of the two numbers leading to the written result (which is sometimes an error).

The third argument suggesting the existence of a non written artefact is the

persistence of ancient artefacts, the tokens, during the period of the cuneiform

writing. This persistence can be supported by the large presence of these artefacts

in the Ancient Near East just before—and during—the use of writing on clay

tablets. Tokens, that were small objects (Fig. 5.4), made of clay, modelled into

many shapes such as cones, spheres, cylinders, disks and tetrahedrons are used for

counting. Studying them brings us to a period 5000 years before the present day:

Fig. 5.3 An example of computation difficult to do mentally (Proust, 2007, p. 168)—picture:

courtesy Archaeological Museums of Istanbul
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Table 5.3 The successive doubling of 2.5: 2.5 times 2 makes 4.10, etc. (Proust, 2000, p. 300)

Line Obverse of the tablet Line Reverse of the tablet

1 2.5 21 10 + 6.48.53.20

2 4.10 22 12 + 13.37.46.40

3 8.20 23 40 + 27.15.33.20

4 16.40 24 1.20 + 54.31.6.40

5 33.20 25 2.40+ 1.49.2.13.20

6 1.6.40 26 5.20+ 3.38.4.26.40

7 2.13.20 27 10.40 + 7.16.8.53.20

8 4.26.40 28 21.20+ 14.32.17.46.40

9 8.53.20 29 42.40+ 29.4.35.33.20

10 17.46.40 30 1.25.20 + 58.9.11.6.40

11 35.33.20 31 2.50.40(+)1.56.18.22.13.20

12 1.11.6.40 32 5.41.20(+)3.52.36.44.26.40

13 2.22.13.20 33 11.22.40(+)7.45.13.28.53.20

14 4.44.26.40 34 22.45.20(+)15.30.26.57.46.40

15 9.28.53.20 35 45.30.40(+)31.0.53.55.33.20

16 18.57.46.40 36 1.13.1.20(+)1.2.1.47.51.6.40

17 37.55.33.20 37

18 1.15.51.6.40 38

19 2.31.42.13.20 39

20 5.3.24.26.40 40

Fig. 5.4 Complex tokens representing (above, from right to left) one sheep, one jar of oil, one

ingot of metal, one garment, (Below, from right to left) one garment, one honeycomb, from Susa,

Iran, ca. 3300 BC Courtesy Musée du Louvre, Département des Antiquités Orientales, Paris

(Schmandt-Besserat, 2009, p. 148)
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Tokens started to appear in the Fertile Crescent of the Near East, from Syria to Iran, around

7500 BC. This means that counting coincided with farming, and in particular, the redistri-

bution economy that derived from agriculture. Tokens were probably used to pool together

community surpluses for the preparation of the religious festivals that constituted the

lynchpin of the redistribution economy. The tokens helped leaders to keep track of the

goods in kind collected and their redistribution as offerings to the gods and the various

community needs. (Schmandt-Besserat, 2009, p. 146)

One could distinguish two major trends in the evolution of tokens:

– A first period of diversification, the tokens having to represent, on a symbolic

and imaginative way, the variety of ‘things’ to be counted (Fig. 5.4):

the number of token shapes, which was limited to about 12 around 7500 BC, increased to

some 350 around 3500 BC, when urban workshops started contributing to the redistribution

economy. Some of the new tokens stood for raw materials such as wool and metal while

others represented finished products, among them textiles, garments, jewelry, bread, beer

and honey. (Schmandt-Besserat, 2009, p. 148)

– A second period of abstraction, around 3000 BCE, linked to the emerging of

writing (Fig. 5.5):

plurality was no longer indicated by one-to-one correspondence. The number of jars of oil

was not shown by repeating the sign for “jar of oil” as many times as the number of units to

record. The sign for “jar of oil” was preceded by numerals—signs indicating numbers.

Surprisingly, no new signs were created to symbolize the numerals but rather the impressed

signs for grain took on a numerical value. The wedge that formerly represented a small

measure of grain came to mean “1” and the circular sign, formerly representing a large

measure of grain meant “10”. (Schmandt-Besserat, 2009, p. 148)

The shape of the signs, sketched with a pointed calame, is obviously very close

to the shape of the vertical and oblique wedge characteristics of the cuneiform

writing, the vertical wedges standing for one, and the oblique wedges standing for

ten. Nevertheless, it should be a mistake to imagine that the token had progressively

vanished for leaving room to writing on clay tablets. Till now the researchers

hypothesise that various forms of cohabitation had existed between token and

clay tablets. Some traces of this cohabitation had been evidenced: material cohab-

itation as for these kinds of spherical envelop (Fig. 5.6) containing inside circular

and wedge tokens, and keeping their traces on its surface18; symbolic cohabitation

18 The interpretation of this envelop cannot be done out of its cultural environment. A modern eye

could interpret this sphere full of token as a typical artefact for learning numbers in schools. At the

opposite, these clay purses have been interpreted by historians as accounting artefacts: ‘By 3300

BC, tokens were still the only accounting device to manage the redistribution economy that was

now administered at the temple by priestly rulers. The communal offerings in kind for the

preparation of festivals continued, but the types of goods, their amounts, and the frequency of

delivery to the temple became regulated, and non-compliance was penalized. The response to the

new challenge was the invention of envelopes where tokens representing a delinquent account

could be kept safely until the debt was paid. The tokens standing for the amounts due were placed

in hollow clay balls and, in order to show the content of the envelopes, the accountants created
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as evidenced by a double system of computation on clay tablets (see Fig. 5.2,

abstract numbers vs. quantities).

This hypothesis has been recently validated by a very important discovery.

Excavations in South eastern Turkey have uncovered a corpus of tokens dating to

the first millennium BCE:

These tokens are found in association with a range of other artefacts of administrative

culture—tablets, dockets, sealings and weights—in a manner which indicates that they had

cognitive value concurrent with the cuneiform writing system and suggests that tokens were

an important tool in Neo-Assyrian imperial administration. (MacGinnis, Willis Monroe,

Wicke, & Matney, 2014, p. 289)

MacGinnis et al. (2014) show how these tokens, under different forms (Fig. 5.7)

could intervene in working with tablets, for administrative purposes, in a comple-

mentary way.

They represent a system of accounting that worked in conjunction with tablets to allow for a

more flexible type of record keeping that could be achieved by the use of tablets alone.

Specifically they provided a system of movable numbers that allowed for stock to be moved

and accounts to be modified and updated without committing anything to writing. At the

same time, because these tokens exist alongside a contemporary cache of administrative

documents, they illustrate the concurrent use of clay tokens and tablets. (MacGinnis et al.,

2014, p. 303)

Fig. 5.5 Pictographic tablet featuring an account of 33 measures of oil, (circular¼ 10,

wedges¼ 1) from Godin Tepe, Iran, ca. 3100 BC Courtesy Dr. T. Cuyler Young, Royal Ontario

Museum, Toronto, Canada (Schmandt-Besserat, 2009, p. 150)

markings by impressing the tokens on the wet clay surface before enclosing them’ (Schmandt-

Besserat, 2009, p. 149).
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It appears here two types of conjunction between tablets and token use: firstly the
tokens provide a system of movable numbers allowing updating without writing.
Secondly they could intervene for supporting, articulated with the use of tablets, a

given computation. This articulation could be mastered by a single agent, or via the

collaboration of different agents. MacGinnis et al. (p. 302) ‘assume that under the

trained scribes who wrote the cuneiform tablets were assistants helping to load and

Fig. 5.6 Envelope, tokens and corresponding markings, from Susa, Iran (Courtesy Musée du

Louvre, Département des Antiquités Orientales)

Fig. 5.7 A diversity of tokens intervening in computation (MacGinnis et al., 2014, p. 294)
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unload the grain and counting out transaction’, using tokens. Finally, the computa-

tion results of a flexible combination of artefacts and agents.19

This discovery constitutes clearly a proof of the co-existence of written (clay

tablets) and not written (token) artefacts for working with numbers during this

period. The hypothesis of a device combining wood and clay token is still to be

proved, beyond the different clues we have evoked in this section, but the reality of

the system of artefacts, mainly tablets and tokens, supporting the practices and the

learning of computation in scribal schools seems to be established. A last evidence

comes from the analysis of a crucial algorithm, this of reciprocal computation, what

we will examine in the next section.

5.5 Analysing the Algorithm for Calculating a Reciprocal,
a Way for Entering the Spirit of Mesopotomian
Computation

Calculating the reciprocal of A is essential for performing the division B/A as the

multiplication B�A�1. Analysing the algorithm supporting this calculation opens

an enlightening window on the Mesopotamian mathematics practices and knowl-

edge. The following example is extracted from the tablet CBS 1215 (Fig. 5.9),

which could come, according to an estimation of Proust (2012b), from the scribal

schools of southern Mesopotamia, during the Old Babylonian period (beginning of

the second millennium BCE). This is a multi-column tablet containing advanced

mathematics (which is therefore out of the classification in four types, see Sect.

5.3). The existence of such tablets, in scribal schools, evidences the fact that the

‘masters’ (see Footnote 5) were not only teaching elementary mathematics, but

worked also as scholars, for developing mathematics, exchanging texts between

masters across the different schools.

I reconstitute below, in modern terms, the computation displayed on this tablet,

analysed by Proust (2012b).20

The computation of a reciprocal only concerns regular numbers, i.e. in the

sexagesimal numeration, numbers that are products of powers of 2, 3, and 5:

only such numbers are present in the tablets displaying such a computation.

The goal of the algorithm is to decompose the regular number at stake as the

(continued)

19We have to keep in mind that the context described by MacGinnis et al. is an administrative one.

The computation, in such a context, can be based on highly specialised tasks assigned to different

agents, as the learning is not an objective of this activity.
20 For following the development of the computation, the reader could again use the application

Mesocalc (see Footnote 14).
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product (non unique) of regular numbers whose reciprocal is well known (this

algorithm lies therefore on the property: ‘the reciprocal of a product of

numbers is the product of the reciprocals of these numbers’).

The ‘well known reciprocals’ come from a table (Table 5.3) part of the

curriculum (see Table 5.1, Sect. 5.2). Note that the digit 0 is not used in this

sexagesimal numeration, therefore 2� 30¼ 60, i.e. 1.0, is noted as 1. The

reciprocal of 2 is therefore 30.

Let us calculate, following the tablet (Fig. 5.9), the reciprocal of

A¼ 25.18.45.

The second property supporting the algorithm is: ‘if a regular number

terminates the writing of A, then it is a regular factor in one decomposition

of A’.

(continued)

Table 5.4 Table of

reciprocal of usual regular

numbers, underlining the

couples used in the

computation of the reciprocal

of 25.18.45

n inv(n)

2 30

3 20

4 15

5 12

6 10

8 7.30

9 6.40

10 6

12 5

15 4

16 3.45

18 3.20

20 3

24 2.30

25 2.24

27 2.13.20

30 2

32 1.52.30

36 1.40

40 1.30

45 1.20

48 1.15

50 1.12

54 1.6.40

1.4 56.15

1.21 44.26.40
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Knowing that, we can now begin the computation (For following the

development of the computation, the reader could again use the application

Mesocalc (see Footnote 14)):

– First step, we isolate, in the final digits of A (thinking A as 25.15 + 3.45), a

number present in the table (3.45), which reciprocal is 16 (see Table 5.4).

– Second step, we try to write A as a product of n and 3.45; the number n is

therefore equal to A� 16 (which is the reciprocal of 3.35), i.e. n¼ 6.45. . .

And we apply again the same technic for 6.45.

– First step, we isolate, in the final digits of this number, a number present in

the table: 45, which reciprocal is 1.20 (see Table 5.4).

– Second step, we try to write 6.45 as a product ofm and 45; the number m is

therefore equal to 6.45� 1.20 (which is the reciprocal of 45), i.e. m¼ 9.

The number 9 is present in the table of reciprocals, here is therefore the end

of the algorithm.

Finally, the number A has been written as a product of three numbers belonging

to the table: A¼ 3.45� 45� 9, and the reciprocal of A is the product of the

reciprocal of these three numbers:

1/A¼ 16� 1.20� 6.40¼ 2.22.13.20.

Analysing the way of applying this algorithm (personal communication of

C. Proust), we could again question the presence of hidden artefacts, mobilising

tokens. Understanding the cutting of the number 25.18.45 is indeed easier if we

have in mind21 a ‘token-based representation’ instead of a written representation

(Fig. 5.8), i.e. if we consider a number, not as a succession of digits (here three

positions of wedges) but as a grouping of tokens.

This hypothesis of a hidden artefact is supported also by the examination of the

corresponding tablet displaying the computation (Fig. 5.9) in a very ergonomic

layout. This extract details the calculation of the reciprocal of 5.55.57.25.18.45 (the

curious reader could try to apply the algorithm from this number). The computation

I have presented above is just a part of this calculation (see inside the highlighted

rectangular). Following our observations in the previous section, we can imagine

that this kind of sophisticated computation is supported par ‘an artefact outside the

tablet’.

Finally, for performing efficient computations of this kind, the scribal school

masters and advanced students had to combine a set of material and symbolic

21Having in mind could mean ‘using tokens, eventually integrated in a wooden device, to assist the

computation’, as shown in Fig. 5.8; or ‘keeping the memory of old practices of computation based

on token’. Remember, in another context, the Bachelard’s sentence, concerning the man of the

twentieth century: ‘Même chez l’homme nouveau, il reste des vestiges du vieil homme. En nous, le

XVIIIe siècle continue sa vie sourde. . .’ (Bachelard, 1934).
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artefacts in their minds or/and in their hands. Learning to use these artefacts was, for

them, a part of learning mathematics, the two modes of learning supporting one

another (see the discussion of techniques and schemes in Chap. 10): conceptua-

lisation and instrumentation are completely nested (Trouche, 2000).

5.6 Conclusion and Discussion

We have proposed in this chapter to have a look on a very rich period for the

development of: mathematics; for learning mathematics; and for the learning on

how mathematics was learnt and taught. We can draw, from this examination,

supported by the historic research literature on this period, several observations.

Firstly, what appears clearly is the importance of artefacts for supporting
mathematics practices and learning. We could say that the process of creating

artefacts and the process of creating mathematics feed one another. The close

analysis, from their traces on clay tablets, of the mathematics practices leads to

Fig. 5.8 Cutting of 25.18.45 in 25.15 + 3.35, in the sexagesimal numeration (left) and in a token

representation (right)

Fig. 5.9 Extract of tablet CBS 1215 (Sachs, 1947, copy Robson, 2000, p. 23), left, and its

transcription, right, by Proust (2012b)
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the conjecture of the existence of disappeared wooden artefacts allowing to directly

manipulate numbers through tokens. The combination of these artefacts allowed for

the development of efficient methods of computation.

The second observation is that new artefacts do not necessarily make old ones
redundant. We know from history that phases of transition between an old and a

new artefact are phases of cohabitation, see the transition between abacus and

Indian digits in France (Fig. 5.10), or the shorter transition between slide rule and

calculator (Fig. 5.11). Once said that, it remains an important issue: is the use of old

artefacts a brake, delaying the integration of new artefacts (i.e. does the death of the

former condition the integration of the new artefact)? Or does the integration of a

new artefact lead to the establishment of a new equilibrium in the conduct of

computations? What we learn from the material of scribal schools, more than

1000 years after the invention of writing, is that writing did not replace, in schools,

memorisation and that tablets did not replace tokens: on the contrary the combina-

tion of different means supporting calculations seems to have led to a constitution

of a few articulated levels of mathematics practices: manipulating numbers through

tokens, memorising tables and intermediate results, developing and using highly

structured algorithms dedicated to specific mathematical tasks, expressed in a very

few lines for saving place on clay tablets. In a very different context, that of the

modern period of integration of powerful calculators in mathematics teaching, we

Fig. 5.10 The cohabitation

between computation with

Indian digits, and

computation with abacus,

during several centuries in

France (Hébert, 2004)
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find again what Artigue (2005) named ‘the intelligence of computing’, connected,

for her, to three structuring abilities:

– The relevant use of given repertoires, in the case of scribal schools, the tables.

– The flexibility of computing, that is the ability of switching between several

frames, semiotic registers (Mariotti and Maracci, 2012) or points of view (see

Chap. 8), in the case of scribal schools the switching between the writing on clay

tablets and the manipulation of tokens via wooden device; or the switching

between computations on numbers, and computations on quantities; or the

switching between a wedges-based representation and a token-based

representation.

– The ability to combine genericity and specificity, that is the ability, for each kind
of computation, to use both global properties of the computation, and specific

properties linked to the domain, what we have observed in the case computing a

reciprocal (see also, for the modes of reasoning beyond a given computation,

Høyrup, 2002).

This intelligence of computation may also be developed by the combination of

artefacts artificially reconstructed for pedagogical purpose: Maschietto and Soury-

Lavergne (2013) evidenced the interest of introducing, for studying the decimal
positional numeration system in primary schools, both a physical artefact

(a reconstruction of the first calculator designed by Pascal in 1652) and its digital

Fig. 5.11 The cohabitation between the slide rule and the calculators, two faces of a same artefact,

during several years in France (Trouche, 2005)
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counterpart (see Fig. 5.12). There is on one side a tablet—here a digital one—

allowing to turn the gear representing the units by clicking on an arrow, and on the

other side a tangible device allowing to directly manipulate the gear. The digital

tablet allows to combine two semiotic registers: digits (driven by the gears), and

tokens (see Fig. 5.12, 12 tokens displayed on the screen). The tablet and the tangible

device, even if they come from the same gear principle, lead to different gestures,

and then different representations of the process of constructing numbers. These

combinations of registers and gestures aim to support an essentially difficult

transition in the learning of the decimal positional numeration (Bednarz & Janvier,

1984), the transition between the conception of ‘a number as a sequence of digits

read from left to right’, and a conception of ‘a number as a sequence of digits giving

from right to left, the units, tens, hundreds, thousands, constituting the given

number’. When history and didactics meet. . .
The third observation concerns the analysis of the masters ‘resource system’ (see

Chap. 13), i.e. the set of ‘things’ which support their work in scribal schools. We

have some information on this system, considering two faces of the masters’ work:

the face ‘the master as a teacher’, via the students’ resources, a great variety of

tables enlightening the curriculum and the way of learning basic computation; the

face ‘the master as a scholar’, via tablets as CBS1215 (see Fig. 5.9), enlightening

the type of sophisticated mathematical work the master could perform and share.

There are a relatively few such tablets that had been found: that is easily under-

standable, as there are essentially tablets of unskilled students that had been trapped

in wall, and that had been then preserved till now (see Sect. 5.2). The tablets

integrating a rich mathematical content that had probably travelled in the whole

region, from school to school, what could explain the very standardised character of

the scribal school curriculum and teaching material. As for the missing artefacts

that the historical research supports the existence, we could pledge the reality of

missing ‘lived resources’ (Gueudet, Pepin, & Trouche, 2012) for scribal school

Fig. 5.12 A combination of two twin artefacts for learning mathematics, manipulation through a

digital tablet on the one side, direct manipulation on the other side (Maschietto & Soury-Lavergne,

2013)
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masters, including tablets aiming to generate tablets of exercises, tablets describing

the mode of combining artefacts, tablets describing the art of teaching, tablets with

masters epistolary correspondence. . .
There are probably, on this subject, fruitful possible interactions between histo-

rians and researchers in mathematics education, the study of the masters resources

in scribal schools enlightening the study of the master’s resources in today schools,

and vice versa, even if the contexts deeply differ.
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Chapter 6

Discussions of Part I Chapters

Luc Trouche, Jonathan M. Borwein, and John Monaghan

6.1 Introduction

This chapter could be taken as a breath in this book, giving a space for a reader’s
reflective point of view on the previous chapters. It is one of the moments where the

three authors have decided to question each other, from their own perspective

(mathematical, cultural, historical, epistemological. . .). In this chapter, I have the

initiative of this questioning. Here is the way I have proceeded: in the following

sections, I ask my questions either to John or Jon, and each of them has a special

place for developing his point of view, feeling free also to answer to a question that

is not addressed to him! After receiving their answers, I do not propose to ‘answer
the answers’, or provide a conclusion but provide some reflections arising from my

colleagues’ answers, wishing to empower the reader to enter the debate.

This chapter is organised in three sections. In the first one, I continue previous

interactions I had with Jon and John during the process of writing the chapters. In

the second one, I ask a set of new questions arising from re-reading the chapters

once when the book was in a state of near completion. Then comes my conclusion.

6.2 Interactions with John and Jon Follow-Up

During the design of the book, two discussions were particularly interesting. The

first one with John, about history, the second one with Jon, about proving ‘graphical
and numerical evidence’.
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6.2.1 Writing and Mathematics, a Dual Invention?

I had a discussion with John about the historical chapter: was it desirable to embrace

the whole history of tools in a single chapter, or was it better to focus on specific

periods? Finally, we decided to choose. . . both, with Chap. 4 dedicated to Tool,
human development and mathematics, and Chap. 5 dedicated to the Mesopotamian
scribal schools. Reading now these two chapters, I wonder if, with this organisa-

tion, we did not miss something. Actually, Chap. 4 skips from ‘Tools use and

phylogenesis’ (Sect. 4.2) to ‘Ancient Greece’ (Sect. 4.3), i.e. from Prehistory to

History. The essential element, distinguishing these two periods, is the invention of

writing (that could not be reduced to some inscriptions on a bone). To what extent

this invention is linked to mathematics? It is certainly a complex question:

• On the one hand, it seems to be clear that writing and information processing. . .
including mathematics, came together, as stated by Nissen, Damerow, and

Englund (1993): ‘This innovation [the writing] was quite certainly more than a

simple change in the means of storing information, or in the representation of

language. Observing that at the end of the third millennium BC, during the

so-called Ur III period, the human labour force was subjected to complete

administrative control made possible through the developed techniques of writ-

ing (see Chap. 11), we must realise that this level of centralisation would have

been impossible without the methods of information processing developed more

than 1000 years earlier’.
• On the other hand, themost ancient texts that are known (called ‘proto-cuneiforms’)

arewritten in an unknown language. The onlypart of them (constituting actually the

main part of the corpus) that has been understood is composed of computations and

have been deciphered by historian of mathematics: ‘It may surprise some that the

most important recent advances in the decipherment of the proto-cuneiform doc-

uments have been made by and in collaboration with mathematicians with no

formal training in Assyriology, J. Friberg and P. Damerow. But remembering

that the great majority of archaic texts are administrative records of the collection

and distribution of grain, inventories of dairy fats stored in jars of specific sizes, and

so on, that is, documents above all made to record in time quantifiable objects, it is

reasonable to expect that such documents would contain, no less than the accounts

of current institutions, evidence of mathematical procedures used in the archaic

period and that they would thus contain the seeds of the mathematical thinking

which developed during the third millennium’. (Englund, 1998, p. 111)1

So, the most ancient translated written texts seem to be mathematical texts

because there only understandable part was about mathematics. Anyway, there

seems to be a very strong relationship between the emergence of writing and the

emergence of mathematics. Could you develop on that, John?

1 Thanks to Christine Proust, historian of mathematics, who gave me the two references evoked in

this section.
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Emergence of Writing and Mathematics

John: As a mathematics educator my expertise is in the didactics of mathe-

matics. Because mathematics comes with a long tradition (culture) and doing

mathematics is a social and a cognitive activity my research is informed by

work in the history of mathematics, philosophy, psychology and sociology

but I am not an expert in these areas. I thus shy away from any pretence to

have a definitive answer to the question on the co-emergence of writing and

mathematics. But my reading in the history of mathematics provides support

for this co-emergence.

In Sect. 4.3.2, informed by Netz (1999), I note that the development of

ancient Greek mathematics was co-temporal with the development of an

alphabet, lettered scripts and media approximating to pen and paper. And

Netz (1999, p. 86) hypothesises that a common origin to mathematical

propositions was ‘to draw a diagram, to letter it, accompanied by an oral

dress rehearsal—an internal monologue perhaps—corresponding to the main

argument; and then proceed to write down the proposition’. Further to this,

and with reference to your statement, Luc, that ‘most ancient translated

written texts seem to be mathematical texts because there only understand-

able part was about mathematics’, Singh (2000), adds support to this state-

ment. In a discussion about a twentieth century attempt to decipher an ancient

Cretian text from 1450 to 1375 BCE, he writes, ‘Many of the tablets seemed

to contain inventories. With so many columns of numerical characters it was

relatively easy to work out the counting systems, but the phonetic characters

were far more puzzling’. (Singh 2000, p. 220)

6.2.2 Proving (What Appears As) Numerical and Graphical
Evidences

In 2014, I had a very challenging discussion with Jon about a mysterious

(to me) property. 20 years ago, I was studying with my students a

Riemann sum (see Tn right side). This sum converges towards I, and the

proof is quite easy to establish. Seeing the successive values of the sum

(0.500000, 0.650000, 0.697436, 0.720294, 0.733732. . .), and supported

by a strong visual support (the more numerous are the rectangle under the

curve, the better they fit this curve), it seems quite obvious that this sum is

increasing. Quite confident with that, I ask a student to prove it. . . and it

appeared quickly that it was not so obvious! I try to prove it myself. . .
and did not succeed. . . I ask a colleague, who also could not prove

it. Finally, after some new attempts, I renounced, but I kept always in

mind this open ended question. . . until I read the first version of Jon

Chapter (Example 5.3), where this example was presented, from the point

of view of the convergence, without questioning the monotonic point of

view. I questioned Jon at once: what about the increasing nature of this

sequence? There ensued an email interaction, see below.

I ¼
ð1
0

1

1þ x2
¼ π

4

Sn ¼
Xn�1

i¼0

n

i2 þ n2

Tn ¼
Xn

i¼1

n

i2 þ n2
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Luc to Jon: June 14th, 4:21

[. . .] to illustrate how a « simple » mathematical question could resist to a « naive »

thinking. I have « in me » the following question, since I was a teacher in an

university (see the formulas below). It is « visually obvious » that Tn< I< Sn,
and that both Sn and Tn converge towards I. And the students can prove this. If

we consider the table of values of the two sequences, it is again quite obvious

that Sn is decreasing, and that Tn is increasing. I asked once a student: can you

prove it? He was quite confident (at the beginning), me too. . . But he cannot do
that. . . neither me. What should be the answer of an experimental mathematician

facing this question?

Jon to Luc: June 14th, 5:08

I do not need to since I know it is a Riemann sum, but I could mention it.

Luc to Jon: June 14th, 6:30

Yes we do know that this sequence is a convergent one, and we do not need to know

any thing regarding its variation but. . . My question is a kind of aesthetic one,

the sequence appears to be decreasing, do I have some means to prove it or to

explore further this ‘potential’ property? I have just read your Example 5.3, but

you do not evoke the decreasing aspect of the sequence?

Jon to Luc: June 14th, 5:45 a.m

I will think on this....

Luc to Jon: Jun 14th, 8:24 p.m

Yes, it seemed to me very easy to prove that the Riemann sum was decreasing, as

the function 1/(1 + x2) is decreasing. . . Of course no direct relationship between

the behaviour of the function on [0, 1], and the behaviour of the corresponding

Riemann sum. Actually it is easy to prove that the sequence S(2n) is decreasing,
not at all the same easiness for S(n). . .

Jon to Luc: June 14th, 8:36

Yes the powers of two are easy, but I think the monotonicity of the whole sequence

is subtle. . .

Jon to Luc: June 19th, 13:37

Dear Luc, did this paper trigger your example? Szilard Andras (2012). Monotonic-

ity of Certain Riemann-Type Sums. The teaching of mathematics, 15(2),

113–120.

Sadly, the argument at the top of page 16 has an error and the proof does not work,

although it does work for the general results on convex and concave functions.

But 1/(1 + x2) is neither and the sufficient condition fails despite the claimed

proof to the contrary.
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Interesting. I checked in Maple and got a different condition to check.... I found

the article typing ‘monotonicity of Riemann sums’ into Google. Digital assistance

in action!

Luc to Jon: Jun 19th, 15:31

Thank you Jon (and digital assistance!). Interesting for convex and concave func-

tion, but, if I have well understood, the proof doesn’t work (top of the page 116)
and it remains to be done? Will try to find extra digital assistance!

Jon to Luc: June 19th, 20:05

Yes it is unproven. Did you know this paper?

Luc to Jon: Jun 20th, 1:49

No, I didn’t know. The paper is interesting, and the way of access too! Thank you.

As the reader could check, the current—and last—version of Jon’s
Chapter contains a complete proof of this property.

Then, my questions to Jon: could you tell the ‘end of the story’? To what extent

looking for proving a property is interesting for you, as the main result (the

sequence at stake is convergent) is already achieved? Could you develop on your

way of reflecting to a new problem?

What Is to Be Proven, and Why?

Jon: We eventually found a clean proof of much but not all that we wanted. In

particular (https://www.carma.newcastle.edu.au/jon/riemann.pdf) we proved

that2: if the function f is decreasing on the interval [0, 1] and its

symmetrisation f(x) + f(1�x) is concave, then Tn increases with n.
How much I care about a proof—once I know the result is true—is context

dependent; if it is just a step on a route, then I have little interest unless the

destination is interesting. This issue bedevils teaching proofs in classes as

often the thing the student is asked to generalise and prove is intrinsically

uninteresting. Why bother?

When I am given a new problem what do I do?

If it is a conjecture, I usually try to falsify it numerically, graphically or

symbolically. Even if the question is not directly computational, I look for a

consequence or a similar question which is. I find that the act of quantifying

the problem sufficiently to play with it in Maple or Mathematica is enor-

mously helpful. It forces a deeper understanding of the question, of

unintended ambiguity and much else.

(continued)

2 Interestingly we cannot prove the decreasing behaviour by our methods for the increasing case.
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If the computations lead to a counter-example, then great. If not, and they

add reassurance that the conjecture is probably true, I then let things slosh

around in my head for a few days. I hunt for similar things I have seen or

topics it reminds me of. I probably also then ask one of my network of

collaborators if they know more.

If after that no progress comes, I try to judge if more effort is needed. After

over 40 years, I trust my gut feelings. If my mind wants to keep worrying

about the problem, I let it. And so it goes. This can be a long process. One of

my post doctoral students and I are currently making sense and making an

article out of a set of overheads from a talk I gave in 1983 but never turned

into a paper.

6.3 And Some Fundamental Questions

Re-reading the chapters in this part of the book, I realised how complex were the

questions arising from the consideration of tools, mathematics and learning. My

reflections developed in two directions: What is mathematics? In the digital area,

what links can be established between mathematics and computer science?

6.3.1 Mathematics, What Else?

Chapter one opens with these two essential questions addressed by John and me:

what is a tool? What is mathematics? We can read in the first page of this chapter

‘[. . .] the view that mathematics is just a tool-box is a pretty impoverished view of

mathematics’. Re-reading that, I realised that this sentence (written by John and me)

witnessed perhaps an impoverished view on tools, and on tool-boxes, and perhaps a

view that is not in line with the purpose of the book, this purpose giving tools a great

potential for doing, evolving, thinking. . . What should be your comment, John, on

that?

Mathematics, As a Tool-Box

John: The statement ‘mathematics is just a tool-box’ appears to ignore

essential dimensions of what mathematics is, for example semiotic and social

dimension, and what is involved in doing mathematics. Doing mathematics is

usually directed at an outcome (an answer, a proof, a construction, etc.) in

which tool use is essential but there is ‘doing mathematics’ prior to this

outcome. For example, in extending and validating the pattern 1 + 2¼ 3, 4

(continued)
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+ 5 + 6¼ 7 + 8, 9 + 10 + 11 + 12¼ 13 + 14 + 15 there is ‘recognition’: the num-

bers are consecutive; the terms on either side of the equal sign have patterns

(the number of terms on the left hand side is 1 more than the right hand side,

the number of numbers increases by 1 each time); the leftmost number of the

nth equation is n2. At this point we can bring in a tool-box of sorts and

formulate a conjecture in algebraic terms.

Further to this, ‘mathematics is a tool-box’ is a metaphor. Metaphors are

important. They can be things of beauty in the literary arts and it is very

difficult to communicate (especially in instruction) without using metaphors

but ‘scientific inquiry’ should, I hold, try to eliminate metaphors whenever

possible. The term ‘tool’ is often used metaphorically. Vygotsky (1978, p. 53)

wrote of this, ‘Expressions such as “the tongue is the tool of thought” . . . are
usually bereft of any definite content and hardly mean more than what they

really are: simple metaphors . . .’ I’ve met ‘mathematical tool-box’ used as a

metaphor many times over the decades. The main occurrence is in under-

graduate mathematicians’ accounts of solving a problem—when their

accounts refer to looking into their mathematical tool-box and choosing the

appropriate algorithm or theorem or whatever to solve the problem. I think/

hope I’m very tolerant of students’ metaphorical reference to a tool-box and,

like many metaphors, there is a sense in which it ‘rings true’ but I think these
students have overlooked such things as ‘recognise’ and ‘formulate’ actions
which preface their use of a tool to solve their problem. Further to this, I think

much of school/institutional mathematics encourages students to view math-

ematics as a toolbox. For example, a question like ‘Factorise x2 + 3x+ 20 calls
for the ‘factorise tool’ a bit like ‘Dig that garden’ calls for a digging tool but

both directives will be (one hopes) embedded in a wider activity, otherwise

the actions following the directives are what Chevallard (2005) calls

‘monumental’ acts.
With regard to our general purpose, we are writing this book because we

think tool use is an essential part of mathematics (it is impossible to do

mathematics without tools) and there isn’t a book devoted to the place of

tools in mathematics but mathematics is more than just tool use.

Otherwise, Jon, you described yourself (Chap. 3, Sect. 1.2) as ‘a computer-

assisted quasi empiricist’. Reading this, I remembered the famous address of the

Russian mathematician Arnold at the discussion on teaching of mathematics in

Palais de la Découverte of Paris on 7 March 1997. His first sentence was: ‘Math-

ematics is a part of physics. Physics is an experimental science, a part of natural

science. Mathematics is the part of physics where experiments are cheap’.3 Jon, as
an experimental mathematician, what could you say about that?

3 See the whole address at http://pauli.uni-muenster.de/~munsteg/arnold.html (retrieved in 12th

February 2015).
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Mathematics, Experience, Experiment and Cheapness

Jon: This is a great aphorism. Yet it becomes less true as scientific experi-

ments have moved from in vivo to in silico. As I have discovered over the

years, mathematical problems can be as computationally demanding as any.

That said, governments and agencies are more likely to pay for global

warming models than for an attack on the Riemann Hypothesis. Moreover,

in particle physics, it is hard to see any experiments to validate string theory.

Some see this as an approaching crisis in Physics. At any rate, as I hope I

illustrated, there are indeed many cheap and insight-laden computer experi-

ments available to the working mathematician.

6.3.2 Mathematics and Computer Sciences

The French mathematician Jean-Pierre Kahane, who was always interested in the

questions of teaching,4 chaired the French CREM (Commission of Reflection on

Mathematics Teaching) from 1998 to 2002. This commission wrote a report

(Kahane, 2002), trying to define mathematics (our translation):

Mathematics is the oldest of the sciences and of whose values are more permanent.

However, the approach and means of study varied according to civilisations and

eras. Printing, navigation and astronomy contribute to shape the usual functions

and calculus.

Today, computer science creates both new ways and new areas of study, all the

sciences improve using mathematical tools and help to forge new, the link to the

physical strengthens, and mathematical research benefits from the intuition of

physicists.

The vision of mathematics has changed considerably over the last 50 years. Math-

ematical then seemed to have regained its unity on the basis of a solid construc-

tion of its foundations and structures. But she was impoverished. Then applied

mathematics have made a breakthrough. Currently, the movement of math

reveals a multitude of sources and impacts, together with a considerable work

in constituted mathematics.

Mathematics enriches themselves with problems, methods and concepts from other

sciences and practices, creating new concepts and theories, and provides mate-

rial to sometimes unforeseen applications. The mathematical models, allowing

simulations are everywhere, and mathematics develop through interactions with

other disciplines together by interactions within them. Thus mathematics is far

from being the affair of the only mathematicians.

4 He chaired the ICMI—International Commission on Mathematical Instruction—from 1983

to 1990.
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In the pumping process, distillation and irrigation they represent today, we must

take into account the mathematical activity engineers, physicists, computer

scientists, engineers, biologists, economists, chemists at the same time as that

of mathematicians in the strict sense. It is good to no longer think only in terms

of ‘mathematic’, ‘pure mathematics and applied mathematics’, but to consider

all ‘Mathematics’ in the variety of their actors and their users.

In this view of the ‘mathematics sciences’, it could be relevant, in the frame of

this book, to question the particular relationships between mathematics ‘them-

selves’ and computer sciences. These two fields develop complex interactions. A

number of curricula (for example: France, see Sect. 12.4.3) now integrate from the

primary and middle school elements of teaching on programing. There is then an

emerging debate (see Sect. 12.4.3) on the relationship between mathematics and

computer science teaching. Who should teach programing and algorithmic? The

mathematics teacher? And why, on the contrary, computer science teachers should

not teach mathematics? Or could we conceive mathematics and computer sciences

as a new scientific field giving matter to a new teaching in secondary mathematics?

What could you say on that, John and Jon?

Teaching Mathematics vs. Teaching Computer Science

John: I am more interested in Jon’s response to this than mine as he is a

research mathematician and the use of computers (and ideas/techniques from

computer science) is essential in his research but my experience in computer

science (other than simply using computers) is limited to teaching processor

architecture a long time ago. Further to this, computer experiments in school

mathematics, though ‘well intentioned’, are very different to the computer

experiments Jon reports on in Chap. 3. They are often of the form ‘use
software X to generate a pattern and use mathematics (possibly computer-

aided mathematics) to find mathematical relationships in the pattern gener-

ated’. A ‘didactical transposition’ (cf. Sect. 10.3) of sorts, from research

mathematics to school mathematics, has taken place.

But I see no reason why school mathematics could not evolve to include

aspects of computer science. There is an historical precedence for such an

evolution. School mathematics (at the senior level) in England (and in some

other countries influenced by British culture) includes Newtonian mechanics

as a part of mathematics. The reason for this appears to be simple, Newton

was an English mathematician and his mechanics was an important part of his

oeuvre.

Jon: There are various nascent curricular coding proposals in different

countries. At the school level, I share John’s concern that they are largely ill

considered. But my nine years old grandson is keen to learn to build his own

(continued)
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video games; any tools that ensure he learns some of the fundamentals of

programing while ‘designing’ his games could only do good.

At the university level, I would love to see computation deeply embedded

in the curriculum but to the degree that this is happening it is slow and

haphazard. Some years ago Penn State mandated the use of Maple in all

entry-level classes. Six weeks later the hottest selling item on campus was a

‘F**K Maple’ T-shirt. The administrators had forgotten to tell the teachers!

6.3.3 Mathematics and Tools, Serendipity, vs. Intentionality?

John (in Chap. 1) used the beautiful word of serendipity5 for describing the history

of tools. Thinking of serendipity, I have always in mind the history of the steam

engine:

A tool does not have a pre-assigned function. The ‘logical of use’ can deviate at any
time its trajectory. The twists of this sartorial give the history of technology,

material and intellectual, a baroque and poetic charm that closer, for our greatest

benefit and pleasure, its polar opposite: an anthology of wonderful. The first

steam engine was not designed by Savery in 1698 to drive a vehicle, but to draw

water from the bottom of a well (Debray, 2001, p. 106, our translation).

In the same time, a tool is also intentionally developed to meet a given need, to

support a given activity. Actually the design of tools cannot be thought indepen-

dently of their usages. Designing trajectories and usages trajectories appear

completely interrelated.6 Intentionality aims to meet a given necessity. We could

understand with this perspective the so-called Mohr–Mascheroni theorem

(Maschieroni, 1797), stating that each construction with a ruler and a compass

can be realised with a single compass: a compass is a more accurate tool than a

ruler. And that, perhaps, is the reason why this theorem had a practical interest.

I wonder, Jon, if, and how, you could identify, and feel, serendipity, intention-

ality, and necessity in your own activity of mathematician, as you state in your

chapter that ‘[mathematicians] produce so many unneeded results’. . .

5 Following Wikipedia (2015, February 12th), serendipity means a ‘fortunate happenstance’ or
‘pleasant surprise’. It was coined by Horace Walpole in 1754. In a letter he wrote to a friend

Walpole explained an unexpected discovery he had made by reference to a Persian fairy tale, The
Three Princes of Serendip. The princes, he told his correspondent, were ‘always making discov-

eries, by accidents and sagacity, of things which they were not in quest of’.
6 I described this dialectic (Chap. 10) as an interplay between instrumentation and instrumenta-

lisation processes.
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Serendipity, Intentionality, Necessity and Mathematical Activity

Jon: I can do no better than quote Pasteur who said correctly that ‘fate favours
the prepared mind’. One attractive role for an intelligent agent in the future is
to be aware of things that have been of interest in the past to a given

researcher. Then metaphorically, the computer could tap the researcher on

the shoulder when a potentially interesting phenomenon arose. It has often

seemed to me that one difference between good and excellent researchers is in

the ability to recall things in context.

I have also in mind the Descartes’ description of the drawing of an ellipse

(Fig. 6.1), linking one of its essential property to a practical way of drawing it:

L’ellipse ou l’ovale est une ligne courbe que les mathématiciens ont accoutumé de

nous exposer en coupant de travers un cône ou un cylindre, et que j’ai vu aussi

quelquefois employer par des jardiniers dans les compartiments de leurs par-

terres, o�u ils la décrivent d’une façon qui est véritablement fort grossière et peu

exacte, mais qui fait, ce me semble, mieux comprendre sa nature que la section

du cylindre ni du cône. (Descartes, 1637)

The development of tools (here a nail and a string), using—implicitly—a

mathematical property answers here to a practical (or aesthetic) necessity: drawing

a given shape.

I wonder, John, how you feel about serendipity, intentionality and necessity? Do

new tools really arise from serendipity? In Chap. 2, John, you describe the different

achievements of one given task (bisection of one angle) by four tools. Could you

describe this in terms of necessity? For what reason should we bisect an angle?Who

needed to do this? A gardener? A painter? Which tools have been designed, and by

whom, for achieving such a task?

Fig. 6.1 The gardener’s
ellipse
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Serendipity, Necessity and Tools

John: I said ‘new tools often arise from serendipity’. Yes, I stick by what I

said, though the word ‘often’ might be replaced by ‘sometimes’. I suspect I
was thinking of two things. The first is Wertsch’s (1998) 9th thesis on

mediational means: Mediational means are often produced for reasons
other than to facilitate mediated action. I will cite myself from Sect. 13.2:

Sometimes they [mediational means] are produced for the purpose for which
they are used but this is not always the case, sometimes they are a spin-off.
Wertsch cites fibreglass pole-vaulting poles. Fibreglass was developed by
the military for reasons that had nothing to do with pole-vaulting. But once
the material was produced it was available to be made into poles for pole-
vaulting.

We see spin-offs in mathematics classes at the moment in the form of

calculators and spreadsheets. Small(ish) electronic calculators, as far as I

have been able to ascertain, came about because advances in electronics

enabled the production of such devices (cf. Sect. 7.1), not because of a need

for such devices (though once they appeared they were put to use). Spread-

sheets (cf. Sect. 7.1) were developed for financial use; their use in school

mathematics could be said to be serendipitous (or not, depending on the value

one attaches to the use of spreadsheets in school mathematics, the attribution

of serendipity to something is a value judgement).

The second thing I was thinking was of the future, indeed, what I said in

context was:

This book will also tentatively consider the future of mathematics and the role
of new tools and new ways of using tools in this future. We say ‘tentatively’
because new tools often arise from serendipity and it is somewhat foolish
to say that things will develop in this way.

I am wary about predicting the future and one reason for this is that new

artefacts will appear and people will appropriate (some of) these and this

appropriation of new artefacts will impinge on future practices in ways I, at

least, cannot imagine prior to the new artefacts and practices appearing.

But the other side of spin-offs is ‘need’ (or, at least, the perception of

need). In Sect. 4.4 I write of the need to calculate accurately in astronomy in

the sixteenth century and the development of multi-digit trigonometrical

tables was an artefactual design to satisfy this need. Needs arise in mathe-

matics—to understand why something is so, to solve a problem, to prove a

theorem, etc.—and new mathematical algorithms are developed specifically

to satisfy these needs as Jon’s ‘top 10 twentieth century algorithms’ (cf. Sect.
3.5) aptly show. But with regard to your question about who first needed to

(continued)
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bisect an angle, I do not know the answer. The ancient Greeks could certainly

do this using a compass and straight edge but whether this came from a need

to understand or do something or whether it came about from serendipitous

doodling with a compass, I do not know if this is in historical records.

Tools as well as mathematics arrive as answers to humans needs or questions. It

has a practical consequence for teaching: as stated by Chevallard (2005), mathe-

matics has to be taught and learnt as such, and not as monuments left by the great

elders to the admiration of future generations.

6.3.4 Words, Images, Gestures and Proving

In Chap. 3, Jon underlines the power of visualisation for discovering new properties

and proving them. We know well the power of images. Debray (2013) remarks that:

‘magie et image ont même lettres’.7 I wonder if this centration on images was not a
reduced view of experiencing/feeling things. In French the deep dialectic between

experiencing and proving appears more clearly through the duo éprouver/prouver.

I have in mind two examples for illustrating this idea:

• First example, about the question ‘Is it possible to tile the plane with any

quadrilateral?’ The spontaneous students’ answers are ‘no!’, and the using of a

Dynamic Geometry Software appears not so easy for exploring such a question.

But, if they use cardboard templates, and if they move them on a table (Fig. 6.2),

they arrive, quite rapidly, to a solution, and this set of gestures convince them

that the answer is ‘yes’. In other words, the conviction is shaped by the activity,

not the final image.

• Second example, about what is finally, for me, as my best memory of my years

of teaching in a secondary school. My intention was to prove that the orthogonal

projection of a right angle on a plane is a right angle if and only if one of the sides

of the right angle is parallel to the plane. For this purpose (it was a quite long

time ago), without announcing the targeted knowledge, I ask my students to

come to school with four potatoes and a knife (I do not know if, today, it would

be possible to enter a classroom with a such dangerous tool. . .). Then I ask them
to cut their potatoes in order to have some cubes. And then comes the question: is

it possible for a plane section of a cube to be a right triangle? The students try

and try, and they felt the impossibility: ‘to obtain such a triangle, I am obliged to

curve the knife when cutting the potatoes’. . .

7 Such a playing on words cannot happen in English with the corresponding words “magic” and

“image”.
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In these two situations (proving a possibility vs. proving an impossibility), the

necessity of the result emerges from the acting, encompassing the seeing, but not

reduced to it.

What comments, John and Jon, do these examples inspire you?

Experiencing, Seeing, Proving

Jon: In the Collin’s Cobuild Dictionary (http://www.collinsdictionary.com/

dictionary/english-cobuild-learners), the verb to see has many meanings and

the optical is far from the most common usage. So image for me is really

subordinate to visualisation in a much broader sense. In that spirit we have not

exploited either haptics or movement nearly enough, nor indeed auditory

data. Moreover, there are times when a movie shows much more than a still

picture and others when it distracts. Sometimes the best visualisation is a

potato.

John: Manipulatives can be good for fun and for getting mathematical

ideas across to learners but DGS need not be that hard. Figure 6.3 shows a

GeoGebra screenshot of the mid-stage of the construction of a tessellation

(a stage that shows all the essential construction points, lines and vectors).

I’ve modelled my construction on Fig. 6.3 (think of C and E
0
1 being

vertices labelled ‘1’ in Fig. 6.2). E is the mid-point of AB and I’ve translated

the point E by the vector CE to get E
0
1. What you give the learner (the bare

problem or a partially constructed tessellation as in Fig. 6.4) depends on their

DGS and mathematics proficiencies.

(continued)

Fig. 6.2 Experiencing the tiling of a plan with given quadrilaterals
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But whatever one gives the learner as a starting point, the final results, a

tessellation that ‘sways’ as you drag any of the points A, B, C or D, is virtually
guaranteed to inspire ‘awe’ in the learner. There can be a kind of ‘experimental

proof’ in this dragging/swaying: try to drag a point so that the quadrilateral does
not tessellate. Trying to do this (which, of course, cannot be done) can also link

the two sets of manipulatives in Fig. 6.2. Figure 6.4 shows the final stage of my

construction and (on the left) one result of dragging.

I now move on to ‘seeing’/visualisation. The philosophy and the psychol-

ogy of perception are specialist and complex fields. They are important for

this book on tools and mathematics (and not only for Jon’s ‘visual theorems’).
A problem for us is that we three are not experts in these fields. My own views

on perception have been influenced by the work of the philosopher Marx

Wartofsky and the psychologists Eleanor and James Gibson. I came to

reading works of these scholars from my interest in tools and mathematics

and I report on the importance of their work for understanding tool use in

Sect. 7.2.1, so I do not repeat it here.

(continued)

A

B
E

E’1

C

D

Fig. 6.3 GeoGebra screenshot of the mid-stage of the construction of a tessellation

Fig. 6.4 The final stage of the construction and one result of dragging
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Work on visualisation has featured in mathematics education research and

scholarship for many decades. An early and, in my opinion, an important

paper is Eisenberg and Dreyfus (1991) which shows how diagrams can

structure students’ epistemic processes. The authors argue, however, that

this is only possible for students who are able to perceive the abstract

structure permeating the diagram. Visualisation thus benefits high achieving

students more than low achieving students.

To return to ‘seeing’ the theorem that any quadrilateral can produce a tessel-

lation, when one drags a construction like mine above in a DGS, visual images

can be ‘seen’ but mathematical relationships may not be seen; ‘seeing in a

mathematical way’ is, I hold, usually (always?) mediated by an artefact or a

teacher. An advantage of aDGS for ‘mathematical seeing’ is that physical actions
(what the hand drags) and what is seen are co-ordinated. The DGS thus affords

(inGibson’s sense of theword, see Sect. 7.2.1) seeingmathematical relationships.

6.4 Finally, How Mathematics Teaching Could Develop
Interest in Proving?

Following the previous discussions with John and Jon, I would like to evoke, among

other possible perspectives, two answers that support my own teaching.

6.4.1 Understanding Being and Reasons of Being

The first answer is: Provoking students’ curiosity for a result (is it true?) and its
reasons of being (why is it true?)

Jon evokes such an example, in the rubric ‘Proofs without words’ (Chap. 3,
Fig. 3.5). The objective is to find a synthetic formula for the sum of the first odd

numbers. The result emerge from a number pattern: 1 + 3¼ 4; 1 + 3 + 5¼ 9; 1 + 3

+ 5 + 7¼ 16. . . The sum of the n first odd numbers seems to be n2. The questions are
both: is it always true, and what is the reason of such an amazing result? There is of

course a lot of proofs, but the geometrical one is very interesting because it

evidences the law of building this result. To build a new border of a square

(Fig. 6.5), I need at each step two more tiles, i.e. I need to add the following odd

number (after 9, it will be 11). It may be a proof without any written words, but

certainly a proof combining a lot of mental words and written images (i.e. artefacts)

leading to this certainty: the result is true, because I have discovered its reason of being.

I would like to confront this first example with a second one that I had found in a

book of a man fascinated by numbers (Le Lyonnais, 1983). The geometrical context

is: given n distinct points on a circle, draw all the possible chords. These chords

determine a certain numbers An of regions on the circle. For example (see Fig. 6.6):
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A1¼ 1, A2¼ 2, A3¼ 4, A4¼ 8. . .A conjecture quite ‘natural’ is that, at each step, An

is multiplied by two. In other terms, (A1) should be a geometrical sequence whose

reason should be 2.

Number of points on the circle Number An of regions in the circle

1 1

2 2

3 4

4 8

5 16

6 ?

7 ?

1

3

5

7

9
Fig. 6.5 The sum of the

first odd numbers (see also

Fig. 3.5)

Fig. 6.6 Counting the number of sectors determined by chords in a disc
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Then the two interrelated questions are: is it always true? And why, if I add a

point, is the number of regions multiplied by two? These two questions feed one

another. If the curious reader counts the number of sectors for 6 points, s/he would

find that, instead of 32, the number is 31, leading to a reformulation of the two

questions at the heart of the proving process: what is the general formula, and what

is the rule of building such a sentence, its reason of being?

We will not answer here these questions, letting the reader thinking alone, or

looking for the book of Le Lyonnais. . . But what is important, at this step, is to

underline the complementary aspect of the two previous examples (Figs. 6.5 and

6.6): in the first case, what appears at once (the general rule) is true; in the second

case, it is wrong. In the two cases, looking for the reasons of being of the potential

rule is the motor of the mathematical activity. Meeting these two kinds of situation,

for a student, is certainly necessary to avoid the feeling that ‘what is true a sufficient
number of times is probably always true’. As long as the reasons of being of a result
have not been elucidated. . . the reasonable doubt remains.

6.4.2 Extending the Domain of the Validity of a Given Result

The second answer is: engaging students in a path allowing them to enlarge, at
each step, their view on a given mathematical landscape.

Fig. 6.7 Comparing two areas, and looking for invariants (Trouche, 1998b)
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I draw the following example from the work I did, during a whole year, with a

12th grade class experiencing an environment of symbolic calculators (Trouche,

1998a, 1998b). The question at stake was (Fig. 6.7):

One considers the function f : x� f xð Þ ¼ 2x3 � 3x, its curve F, and the tangent
T to its curve at the point A (�1, 1). T crosses again the curve F at a point B. The

tangent T0 to the curve F crosses again the curve F at a point C (we do not examine

here the existence and uniqueness of the points B and C, which are far from being

obvious). The students were asked to calculate two areas:

– The area a of the surface comprised between the straight lines x¼�1, x¼ 2, the

tangent T and the curve C.

– The area b of the surface comprised between the straight lines x¼�4, x¼ 2, the

tangent T0 and the curve C.

There is a certain relationship between a and b. Roughly speaking, b seems much

bigger than a. We could model this relationship with the quotient b/a. Is this

quotient a feature of the departure point A? The amazing thing is that the quotient

does not depend on A. . . Then, is it a feature of the third degree polynomial f? The
amazing thing is that the quotient does not depend on the coefficients of the third

degree polynomial f. . . Then, is it a feature of a polynomial function?. . . I let the
reader to engage herself in the exploring.

Advancing in the way of studying the property, extending its domain of validity,

the students are led to move from calculating to reasoning again on the shape and

property of mathematical objects.

6.4.3 Interacting with Objects and People

The third answer is: creating conditions for fruitful interactions between students
themselves as well as between students and mathematical objects.

I draw the following example from the work I did, in 2015, during a school of

high studies8 in Recife (Brazil, reference to come), with a group of master students.

During two months, a productive atmosphere develops, evidencing the potential of

social interactions for proving. The mathematical question was formulated in a

metaphorical way: ‘Find the mother inside the daughter’. . . In other terms: the

triangle ‘mother’ ABC (see Fig. 6.8) generates the triangle ‘daughter’ A0B0C0 by
three reflections about the points A, B and C (A0 being the symmetrical of A through

the reflection about B, etc.). Once removed ABC, is it possible to design the reverse

process, constructing ABC from A0B0C0, i.e. to find the mother inside the daughter?

This geometrical situation is quite well known, and there are many ways for

developing a given solution. The environment where the resolution took place, the

8 Escola de Altos Estudos: Dos artefatos aos instrumentos do trabalho matemático: a dualidade

essencial instrumentaç~ao-instrumentalizaç~ao (http://lematec.net/EAE/).
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dynamic geometrical software Geogebra, offers a lot of opportunities for

interacting with the mathematical objects, for example (see Fig. 6.9): after hiding

ABC, choosing randomly a point C1, one can construct A1, the mid-point of C1C0,
then B1, the mid-point of A1A0, then C2, the mid-point of B1B0. Of course, C2 is

not on C1. But it is possible to drag C1 to get it on C2. If we make the original

mother triangle ABC appear again, we can check that ABC and A1B1C1 are alike.

Obviously, the result is not stable: if we move the initiating point A, then A1 will

break away from A. Therefore, if the objective was to find a solution that resists

movement, the problem is not yet solved. Besides, this first construction opens

perspectives for going further (using successive reflections for example. . .)
The discussions among students lead to the emergence of number of solutions.

The Rodrigo’s solution came from an extension of the initial metaphor: after the

daughter triangle (see Fig. 6.10, what happens if one draws the grand-daughter

triangle? It appears (and the property resists if we move the point A) that the sides of

the mother triangle are respectively parallel to the sides of the grand-daughter

triangle. If it is true, it opens a way for constructing from A1B1C1 the triangle

A2B2C2, then the triangle ABC.

This new point of view gave students the idea of drawing parallel straight lines in

the original figure, splitting each side of the mother triangle in three segments of the

same length (Fig. 6.11). Extending this lattice outside the triangle gives the whole

Fig. 6.8 From the mother triangle to the daughter triangle

Fig. 6.9 From the mother triangle to the daughter triangle
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plan a structure allowing to understand the links mother–daughter triangle (and

recalling a tessellation point of view (see Figs. 6.2, 6.3 and 6.4).

We have proposed in this section some examples and guidelines for designing a

possible ‘interesting route’ in re-thinking mathematics teaching: provoking students’
curiosity for a result and its reasons of being, engaging students in a path allowing

them to enlarge, at each step, their view on a given mathematical landscape; creating
conditions for fruitful interactions between students themselves as well as between
students and mathematical objects. Situating ‘Constructing, computing, proving, and

understanding’ at the heart of the mathematics curriculum seems to be nowadays

an object of attention and research, as noticed by Hanna and de Villiers (2012): ‘there
has been an upsurge in research on the teaching and learning of proof at all grade

levels, leading to a re-examination of the role of proof in the curriculum and of its

relation to other forms of explanation, illustration and justification’.
We will focus, in the following chapters, on some crucial aspects of this

research, regarding the integration of tools in mathematics education, tools seen

as critical elements of mathematics laboratories (Maschietto & Trouche, 2010).

New technological environments lead indeed to new constraints, new opportunities
for the teacher (Trouche, 2000). It is particularly clear, in the previous examples, for

the dynamic geometry software (DGS). But. . . we have to keep in mind, as stated

by John (Sect. 6.2.4), that ‘when one drags a construction [. . .] in a DGS, visual
images can be seen, but mathematical relationships may not be seen; “seeing in a

mathematical way” is [. . .] usually (always?) mediated by an artefact or a teacher.

Fig. 6.10 From the mother triangle to the grand-daughter triangle

A

B C

A

B C

D

E

F
F

D

E

Fig. 6.11 Parallel straight lines, inside and outside the initial figure, structuring a set of geomet-

rical properties
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An advantage of a DGS for ‘mathematical seeing’ is that physical actions (what the
hand drags) and what is seen are co-ordinated’.

The following chapters will provide developments relevant to the use of tools in

mathematics (Chap. 7), offering some theoretical approaches allowing to analyse

students’ activity in advanced technological environments, and teachers’ role for

orchestrating (Sect. 10.4) situations of research.
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Lakatos, I. (1976). Proofs and refutations. The logic of mathematical discovery. Cambridge:

Cambridge University Press.

Le Lionnais, F. (avec la collaboration de Jean Brette). (1983). Les nombres remarquables. Paris:
Editions Hermann.

Maschieroni, L. (1797). La Geometria del Compasso. Pavia: Pietro Galeazzi.

Maschietto, M., & Trouche, L. (2010). Mathematics learning and tools from theoretical, historical

and practical points of view: The productive notion of mathematics laboratories, ZDM. The
International Journal on Mathematics Education, 42(1), 33–47.

Netz, R. (1999). The shaping of deduction in Greek mathematics. Cambridge: Cambridge

University Press.

Nissen, H. J., Damerow, P., & Englund, R. (1993). Archaic bookkeeping. Writing and techniques
of economic administration in the ancient near east. Chicago: University of Chicago Press.

Singh, S. (2000). The code book: The secret history of codes and code-breaking. London: Fourth
Estate.
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Part II

The Development and
Interpretation of Tools

Part I sets out a view on tools and tool use in mathematics at both the school level

and in mathematics research. It also presented a case for the importance of tools in

the development of our species and in the development of mathematics. Part II

jumps forward in time to the recent past (1960 to the early twenty-first century), and

the main focus is on how academics in the field of mathematics education have

interpreted tool use in mathematics. The decade from 1960 is an important period

with regard to tools. It witnessed tremendous advances in digital technology and is

also the period which ushered in mathematics education as an academic discipline.

Chapter 7 sets the scene and considers developments in mathematics, computing,

mathematics education, and scholarship relevant to understanding tools. Chapters

8–10 consider three schools of thought that we consider to be especially relevant to

tool use in mathematics education: constructionism, activity theory, and develop-

ments originating in France (not really a school of thought but, rather, several

schools of thought). Part II closes with Chap. 11 in which we discuss themes arising

in Chaps. 7–10.
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Chapter 7

Developments Relevant to the Use of Tools
in Mathematics

John Monaghan

7.1 Introduction

This chapter explores developments in mathematics, computing, mathematics

education and scholarship relevant to understanding tools from 1960 to the time

of writing. This exploration is biased in accentuating influences relevant to tools

and mathematics education. I am European and there is also a bias towards that with

which I am most familiar, Western influences. This opening chapter could be a

book in itself. To avoid this I describe a broad landscape and focus on selected

technological advances, ideas and people that I consider important. The chapter

begins with a section charting developments in mathematics, computing and edu-

cation followed by a section on intellectual trends relevant to understanding tools

and tool use. The final section focuses on the development of ideas in mathematics

education regarding tools and tool use.

7.2 Developments in Mathematics, Computing
and Education

The 1960s is interesting with regard to the joint development of mathematics and

computing. In mathematics Paul Cohen solved the continuum hypothesis (Cohen,
1963/1964) and Abraham Robinson introduced non-standard analysis (Robinson,
1966). Both of these advances were due to developments in mathematical logic.

Mathematical logic, coupled with advances in physics/electronics, was also behind

advances in technology. Mathematicians such as Alan Turing and Johnny von

Neumann were instrumental in the development of the computer pre-1960. Jon’s
top 10 algorithms (see Sect. 3.5) illustrate the co-development of mathematics and

computing and the quicksort algorithm (#7 in Jon’s list), developed in the early

1960s, remain the most used sorting method in databases. As we will see in Chap. 8,
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mathematicians also developed the first high level computer languages. The math-

ematics-computing influence was two way and in 1961 Shanks and Wrench com-

puted π to 100,000 d.p. using an inverse-tangent identity and a computer. By the

1970s the computer, as a tool, was an active agent in mathematics. In 1975 Benoit

Mandelbrot introduced the world to fractals and, soon after, was using computers to

plot images of Julia sets. In the following year a proof of the Four Colour Theorem

was published; this was significant because it was the first major proof in which a

computer was essential (for parts of the proof). Soon after the developments in

experimental mathematics with computers, which Jon describes in Chap. 2, started.

Borwein and Devlin (2008, p. 7) write of this period:

At the same time that the increasing availability of ever cheaper, faster, and more powerful

computers proved irresistible for some mathematicians, there was a significant, though

gradual, shift in the way mathematicians viewed their discipline. The Platonistic philoso-

phy that abstract mathematical objects have a definite existence in some realm outside of

humankind, with the task of the mathematician being to uncover or discover eternal,

immutable truths about those objects, gave way to an acceptance that the subject is the

product of humankind, the result of a particular kind of human thinking.

1967 heralded the first compact electronic calculator, Texas Instruments’ Cal-
Tech, though it used transistors and required mains power. Two years later Sharp’s
QT-8D appeared with semi-conductor technology replacing transistors. In 1972

Hewlett Packard introduced the first scientific calculator (with trigonometric and

algebraic functions) followed in 1974 by the first programmable calculator. Calcu-

lators were not designed for education purposes (their design was largely forced by

the technology available) and the early target for sales were business and scientific

workers. In 1985 the first graphic calculator, the Casio fx-7000G, appeared. The

mathematicians’ touch is evident in this, and some other early scientific calculators,

in that it used Reverse Polish Notation, i.e. 2� 3 is input as 2 3 �.

The development of semi-conductor technology also paved the way for small

computers, which came to be known as ‘micro computers’ in these early years.

These were, initially, often sold as kits to be assembled for amateur and profes-

sional ‘computer boffs’ to learn about microprocessors but the home and education

markets were soon targeted. The ability to link micro computers, equipped with

high level languages (rather than machine code), to a TV screen came around 1977

with three computers targeted at the home market: Radio Shack’s TRS-80, the

Apple II and the Commodore PET. Soon after this some mathematicians, such as

David Tall, started writing BASIC programmes for educational graphing with

sub-routines to provide such things as an ‘intelligent scale’ to the axes and the

ability to recognise asymptotes; Tall’s programmes were later marketed as

Supergraph (Tall, 1985). Simultaneously with this (though the origins pre-date

the advent of the micro computer) other mathematicians were developing educa-

tional ideas using the languages Lisp and Logo—this is discussed in some detail in

the next chapter.

The 1980s witnessed a burgeoning of computer applications for doing and

learning mathematics. The first interactive geometry system, the Geometric
Supposer, appeared in the early 1980s. The Geometric Supposer did not allow
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geometric objects to be dragged but Cabri, which first appeared in 1986, did allow

objects to be dragged and soon after the mathematical implications of ‘dragging’ for
learning geometry became (and remains) a focus for mathematics educators. Cin-
derella, which Jon refers to in Chap. 2, first appeared in the late 1990s. The first

computer algebra systems (CAS), Axiom and Reduce, were developed in the 1960s;
Maple and Mathematica (referred to in Chap. 3) were developed in the 1980s. The

first CAS aimed at student use (muMATH, later to become Derive) first appeared in
the late 1970s; by 1994 a version of Derive was available on a graphic calculator,

the TI-92 (which also included a version of Cabri). Statistics has been radically

transformed by advances in computing, not least because of the ability of computers

to handle large datasets. Recognition of the importance of computers for statistics is

evident in the establishment, in 1972, of a Statistical Computing Section of the

American Statistical Association. Two years later Generalized Linear Interactive

Modelling (GLIM) software appeared and was, thereafter, a tool for university

students. In 1993 the programming language R appeared which is used by profes-

sional statisticians today (2014) and is particularly suited to data mining. Statistical

functions were quickly introduced into early scientific and graphic calculators but

work on large data sets is more appropriate for computers than it is for calculators.

The first appearance of what would now be recognised as a spreadsheet was again

the early 1960s. It was, of course, developed for financial work, not mathematics,

but it has been appropriated by mathematics teachers at all levels of education. The

appropriation, by mathematics teachers, of a tool designed for finance may be

viewed as strange from within the mathematics community but is understandable

from the perspective of education as a leading contributor to a nation’s economic

future.

Developments in technology during the 1980s which would impact on education

in the 1990s and beyond were the internet, interactive whiteboards and touchscreen

technology. These developments affect all subject areas of education, not just

mathematics. With regard to mathematics it appears they do not so much affect

the subject matter itself (as a CAS might do) but they affect the means through

which students and teachers can access and present mathematical explanations and

ideas. It is clear that advances in digital technology, starting in the 1960s, ushered in

a period of tremendous growth in tools for education and for doing mathematics.

The development of technology and mathematical tools is ongoing but there is a

real sense in which mathematicians and mathematics educators are struggling to

understand the revolution (of sorts) which began in the 1960s. I draw a close to this

opening section with a summary of developments in mathematics education since

the 1960s.

There was considerable mathematics curriculum innovation in the 1960s origi-

nating in the birth of new mathematics in the previous decade. The 1960s was the

period of the cold war, which negatively influenced the exchange of ideas between

the two power blocs including Soviet work on activity theory (which we consider in

Chap. 7). In 1957 the Soviets put the first artificial satellite, Sputnik, into space.

Bybee (1997, p. 3) comments, ‘Sputnik made clear to the American public that it

was in the national interest to change education, in particular the curriculum in
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mathematics and science’. Further curriculum reform started in the 1980s due to

advances in digital technology. In the UK, for example, an influential government

report, wrote, ‘We devote a separate chapter to electronic calculators and computers

because we believe that their increasing availability at low cost is of the greatest

significance for the teaching of mathematics’ (Cockcroft, 1982, p. 109). Develop-
ments in mathematics education, however, were not just at the curriculum/policy

level, they were also at the organisational and academic levels.

At the organisational level the International Congress on Mathematical Educa-

tion, which is now held every 4 years under the auspices of the International

Commission on Mathematical Instruction of the International Mathematical

Union, held its first conference in 1969. This reflected the rise of national mathe-

matics education organisations. In the UK,1 for example, the Association of
Teachers of Mathematics was founded in 1962 from the Association for Teaching
Aids in Mathematics (a group who valued tool use!) and was effectively a break-

away group from the more ‘traditional’ Mathematical Association (MA) and, in

1971, the first issue of the MA’s professional journal, Mathematics in School,
appeared.

The 1960s was, effectively, the birth of academic mathematics education as a

research field, ‘In the 1960s and 1970s, research studies in mathematics education

grew not only in number but in scope as researchers increasingly moved across the

boundaries of disciplines and countries’. (Kilpatrick, 1992, p. 29), and the graphs

Kilpatrick produces for research studies and for these are approximately exponen-

tial (k> 0) for the 1960s. Further to this, the current two academic mathematics

education journals which are in the Social Science Index stem from this period:

Educational Studies in Mathematics first appeared in 1968 and the Journal for
Research in Mathematics Education first appeared in 1971. International academic

exchange led to the first conference of the International Group for the Psychology
of Mathematics Education in 1976 which continues as the main annual academic

mathematics education conference.

I now look at considerations of tools within the wider intellectual climate of the

times (1960 to the early twenty-first century).

7.3 Intellectual Trends Relevant to Understanding Tools
and Tool Use

I divide this section into three subsections. In the first I look at what behaviourism

had to say about tools and note its decline. I also introduce a construct—

affordances—that is now regarded as important for consideration of tools and

which rose as behaviourism declined as an influence. The second and longest

subsection looks at the work of two scholars whose work should not be ignored

1 Luc describes similar developments in France in Chap. 10.
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in any serious consideration of tools, Marx Wartofsky and Lev Vygotsky. The

section closes with a summary of theoretical approaches in which tools are regarded

as agents in activity.

7.3.1 The Decline of Behaviourism

I am sure that we can look at any period and claim that various established and

emerging ideas/approaches/paradigms competed in intellectual discourse, but the

period around 1970 in the West is the period I focus on and this was a period of

intellectual warfare. The century had been dominated in Western universities by

‘positivism’, founded on empiricism, and the psychological form of this was

behaviourism. A feature of all forms of positivism was breaking phenomena of

study into discrete parts which could be studied in isolation. Developments in

mathematics, specifically in meta-mathematics, went hand-in-hand with this pen-

chant for discrete study; Bertrand Russell’s ‘logical atomism’ being a case in point,
e.g. that non-logical expressions ‘have meaning if, and only if, either they or the

expressions that appear in their analyses (if any) signify existent things’ (Pears,
1972, p. 9). Behaviourism was interested in external actions and how these could be

initiated and channelled, stimulus–response. Tools were a means to initiate and

channel external responses. The work of Patrick Suppes is interesting in this respect

and I consider the legacy of behaviourism through a consideration of one of his

papers.

Suppes was a mathematician, a philosopher and a psychologist, who applied his

talents to issues in mathematics education. He was clearly interested in tools, as his

paper ‘Computer technology and the future of education’ (Suppes, 1968) shows. I
select him as an intelligent and well-meaning example of the late behaviourist

school of thought in mathematics education; and as someone who spoke of tool use

in education and used tools in his research in mathematics education without

entering into the niceties of the agent–tool dialectic.

In Suppes (1968) he speaks with enthusiasm that ‘individualised instruction once
possible only for a few members of the aristocracy can be made available to all

students’ (Suppes, 1968, p. 41). This is possible ‘because of its great speed of

operation, a computer can handle simultaneously a large number of students’
(Suppes, 1968, p. 41). Suppes does consider student–computer interaction, of

which there are three possible levels ‘individualised drill-and-practice systems . . .
tutorial systems and dialogue systems’ (Suppes, 1968, pp. 42–44). The last level is
viewed as speculative because of speech recognition ‘technical problems must first

be solved’ (Suppes, 1968, p. 44) but Suppes conducted experiments at the second

level where the ‘intention is to approximate the interaction of a patient tutor . . . As
soon as the student manifests a clear understanding of a concept on the basis of his

handling of a number of exercises, he is moved on to a new concept and new

exercises’ (Suppes, 1968, p. 43). I summarise this approach to tool use as the tool,

the computer, imitates a human instructor in techniques and understanding is
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judged by ‘correct’ responses to specific stimuli. Similar tutorial level systems are

common today (2014) and go under the name of ‘individualised learning systems’.
It is interesting to note that there is very little research, apart from reports from

parent companies, on student learning through interaction with such systems and

what there is, e.g. Baturo, Cooper, and Mc Robbie (1999), suggests that students

merely learn strategies which generate responses which produce correct answers.

A consideration of one paper by one author does not prove a claim about an

approach but I have faith in the claim that the legacy of behaviourism with regard to

tool use in mathematics education could be summed up as: useful as a means to

simulate or speed up the work of humans. By 1970, however, behaviourism was on

the decline as an intellectual force, even if ‘popular’ forms were thriving in

mathematics classrooms. I now consider two non-behaviourist academics who

were working in the 1970s on ideas relevant to tool use.

In a series of papers and books over three decades, from the 1950s to the 1980s,

the psychologists J.J. and E.J. Gibson developed a theory of visual perception that

was not tied to stimulus–response theory. Visual stimuli featured in their approach

but perceptual learning concerned ‘differentiating qualities of stimuli in the envi-

ronment rather than acquiring associated responses that cause greater differentia-

tion by enrichment of stimuli as a result of past experience’ (Greeno, 1994, p. 336).
The environment is central to their approach; environments afford some actions and

constrain others:

The affordances of the environment are what it offers the animal, what it provides or

furnishes . . . If a terrestrial surface is nearly horizontal . . . nearly flat . . . and sufficiently

extended (relative to the size of the animal) and if its substance is rigid (relative to the

weight of the animal), then the surface affords support. (Gibson, 1979, p. 127).

Depending on the computer, the computer screen as an environment, affords

clicking (anywhere on the screen) with a mouse or touching the screen with a finger

(or other object). To the Gibsons, an affordance (or constraint) is a feature of agent–

environment relation; it does not need to be perceived by the agent. An icon on a

computer screen is not an affordance, as Norman (1999, p. 40) notes:

The affordance exists independently of what is visible on the screen. Those displays are not

affordances; they are visual feedback that advertise the affordances; they are perceived

affordances.

A constraint of an environment is related to affordance in as much as it specifies

what the environment does not afford: a large dog cannot lie down in a small broom

closet; we cannot click with a mouse outside of the computer screen. Norman

(1999) distinguishes between physical, logical and cultural constraints. The last

example (mouse outside of the screen) is a physical constraint. Logical constraints

require reasoning to determine alternatives (clicking on three points in a specific

order to obtain the angle bisector in our dynamic geometry system (DGS) example

in chapter P1). Cultural constraints are conventions shared by a community of

users, e.g. dragging an object in a DGS. The constructs ‘affordances’ and ‘con-
straints’ have wide application in mathematics education, from investigations into

the extent to which tasks and questions afford participation in mathematics
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classrooms (Watson, 2007) to valuations of software for doing mathematics (Mon-

aghan & Mason, 2013). We pick up the thread of affordances and constraints in

later chapters but now, in this overview, turn to two people who made significant

contributions to an understanding of tools, Wartofsky and Vygotsky.

7.3.2 Two Approaches Which Take Tools Seriously

Western analytic philosophy, a key creator of positivism, was, by 1970, well into a

period of questioning its assumptions. A thriving twentieth century branch of

philosophy was the philosophy of science. A focal mid-twentieth century publish-

ing outlet for this branch was the series Boston Studies in the Philosophy of Science.
In this series every ‘ism’, from anarchism to positivism, was debated. Volume

48 was a collection of papers by the philosopher Marx Wartofsky. Chapter 11

(Wartofsky, 1979) is an essay on perception, representation and forms of action and

advances an interesting perspective on artefacts/tools. Wartofsky’s position with

regard to perception is anti-empiricist and views perceptions as ‘an historically
evolved faculty, and therefore based on the development of historical human

practice’ (Wartofsky, 1979, p. 189), i.e. humans, in different epochs, actually

perceive in different ways. Historical human practice or, to use a word favoured

by Marxists, ‘praxis’, is firstly ‘the fundamental activity of producing and

reproducing the conditions of species existence . . . human beings do this by

means of the creation of artefacts . . . the ‘tool’ may be any artefact created for

the purpose’ (Wartofsky, 1979, p. 200).

Wartofsky extends the artefact–tool idea to ‘the acquisition of skills, in the

process of production (. . .hunting . . . agriculture . . .) creates such skills as them-

selves “artifacts”’ (Wartofsky, 1979, p. 201). Wartofsky created a new ontology of

artefacts:

Primary artefacts are those directly used in this production; secondary artifacts are those

used in the preservation and transmission of the acquired skills or modes of action or praxis

by which this production is carried out. Secondary artefacts are therefore representations of
such modes of action (Wartofsky, 1979, p. 202)

Wartofsky goes on to describe a third kind of artefact, ‘artefacts of the imagi-

native construction of “off-line” worlds’ (Wartofsky, 1979, p. 208), where ‘online’
is ‘in praxis’, but the imagination is constrained by our experiences in our ‘online’
world. With regard to tool-design this is basically a statement that tool-design is

bounded by the designer’s past experience.
It was, unfortunately, many years before mathematics educators took note of

Wartofsky’s work but around the same time a book with a similar, but quite

independent, emphasis on the development of historical human practice was

published that would deeply influence mathematics educational thought on tool

use. This was the Soviet Lev Vygotsky’s Mind in Society. Vygotsky did not write

this as a book. He died 40 years before it was published. Four American academics
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compiled it as a collection of Vygotsky’s essays. Vygotsky, with colleagues, had a

tremendous influence on Soviet psychology but the cold war effectively meant that

Western and Soviet psychology largely developed without reference to the other. I

explore the details of the influence of Vygotsky and colleagues on mathematics

education in Chap. 9 but take the opportunity at this point to sketch the origins of

this school of thought in the 1920/1930s.

Today (2014) the founder of activity theory is considered to be Vygotsky but he

was not alone. His interests initially centred on literary studies and he was partic-

ularly interested in language, signs and ‘mediation’. Physical tools were not, unlike
the authors of this book, of interest in themselves, any interest was due to their

mediating qualities, ‘the basic analogy between sign and tool rests on their medi-

ating function that characterises each of them’ (Vygotsky, 1978, p. 54). The

difference between signs and tools rests on:

The tool’s function is to serve as the conductor of human influence on the object of activity;

it is externally oriented; it must lead to a change in objects . . . The sign, on the other hand,

changes nothing in the object of a psychological operation. It is a means of internal activity

aimed at mastering oneself; the sign is internally oriented. (Vygotsky, 1978, p. 55)

It is not unusual to see Vygotsky’s position on mediation to be represented by a

triangle (see Fig. 7.1):

There are at least three ways to misinterpret this diagram. The first is to regard

the object as a thing; it is not, the object is the raison d’etre of activity. The second
is as a form of behaviourism that takes account of ‘artefact mediation’. This is not
the case: the subject–object pair simply represents unmediated activity,

e.g. drawing a round shape in the sand with your finger; the subject–artefact–object

represents mediated activity, e.g. drawing a circle with a compass. The third is to

regard the subject as going through the mediating artefact to the object; this is

simplistic to the extent that it is wrong, as Cole (1998, p. 119) points out:

the incorporation of tools into the activity creates a new structural relation in which the

cultural (mediated) and the natural (unmediated) routes operate synergistically; through

active attempts to appropriate their surroundings to their own goals, people incorporate

auxiliary means (including, very significantly, other people) into their actions, giving rise to

the distinctive, triadic relationship of subject-medium-object.

mediating
artefact

subject object

Fig. 7.1 A representation

of Vygotsky’s position on

mediation
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Vygotsky’s interest in mediated activity centred on the shift from external

processes to internal (mental) processes, which he calls ‘internalisation’. He pro-

vides an enlightening example of the genesis of meaning in the act that becomes

pointing. A baby initially attempts to grasp something out of his/her reach. This

may look like s/he is pointing but s/he is not, s/he is trying to get the object. Then

along comes an adult who sees the attempt and brings the object within reach of the

baby. What is crucial here is that another human has come into the process of trying

to grasp the object. Over time, and with repetition, the act of trying to grasp

becomes a gesture of pointing. Vygotsky comments, ‘At this juncture there occurs
a change in that movement’s function: from an object-orientated movement it

becomes a movement aimed at another person, a means of establishing relations’
(Cole, 1998, p. 56). This leads him to claim:

Every function in the child’s cultural development appears twice: first, on the social level,

and later, on the individual level; first between people (interpsychological), and then inside
the child (intrapsychological). (Cole, 1998, p. 57)

This is a powerful and persuasive claim but, as Bereiter (1994, p. 21) states,

these lines

make an empirical claim, and one that is almost certainly too strong. There is ample

evidence . . . that young children work out a substantial knowledge of the physical world,

well before they could have gained much of it from the surrounding culture.

The word ‘culture’ in these quotes represents the phylogenetic accumulation of

knowledge and this is important in the Vygotskian distinction between ‘everyday’
and ‘scientific’ concepts. Vygotskians regard everyday concepts as those acquired

through our senses—the sun disappears from the sky and it is night—but scientific

concepts have a theory behind them, such as the axial rotation of the earth in an

orbit around the sun to explain night. A theory does not need to be correct for a

concept to be scientific, as Scott, Mortimer, and Ametller (2011, p. 6) point out:

. . . scientific concepts are taken to be the products of specific scientific communities and

constitute part of the disciplinary knowledge of that community. The term ‘scientific’ as
used by Vygotsky is not restricted to the natural sciences, but covers all comparable

communities such as those of history, philosophy, art and so on. As the agreed upon

products of specific communities, scientific concepts are not open to ‘discovery’ by the

individual but can only be learned through some form of tuition.

In Chap. 11 we shall see another criticism of Vygotsky’s account of

internalisation. My view is that Vygotsky pointed to something important but he

was engaged in early work. From the point of view of tool use in mathematics, the

opposite of internalisation, ‘externalisation’, the shift from internal processes to

external processes, is also important and this is something I mentioned, in so many

words, in my Sect. 1.3 definition of tools.

I take a brief pause at this point to make a disclaimer (of sorts) and move into the

field of semiotics. The chapter I am writing is about tools and this focus has biased

my presentation of Vygotsky’s thought for, as I say above, he was particularly

interested in language, signs—semiotic mediation—and his conceptualisation of

internalisation was fundamentally as a semiotic process. Given the mediational
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similarity (there is, indeed, an overlap) between signs and tools, it is appropriate to

consider their relationship.

In mathematics we tend to think of signs as ‘our symbols’: �, +,
Ð
, etc. In

linguistics the focus is on language(s) and the signs of interest are words, speech,

text, etc. But a sign in semiotics is just an arbitrary thing (a signifier) that signifies
something (the signified). Mathematics lessons are rife with signs as teachers and

learners attempt to communicate with each other not just through mathematical

symbols and words but also through pointing, gestures, intensity of speech, etc. The

signs used in this communication must have some common meanings to each

individual involved or communication would not be possible. This is particularly

tricky in mathematics instruction because teachers introduce new signs and tools

that initially have no meaning for the learner. Consider, for instance, the long

process (Vygotsky’s internalisation) of turning calculus into tools for doing math-

ematics, e.g.

ð
xdx ¼ x2

2
þ c considered as an algorithm. The individual signs,

e.g. dx, in this equation have a meaning that has been passed down by the culture

of mathematics but they are arbitrary and have no reference to the learner as s/he

starts learning calculus. Learning about this sign-tool takes place over a consider-

able period of time during which teacher and learner draw on formal signs which

have meaning to the learner including a great deal of pointing and gestures.

Vygotsky was not, as far as I know, interested in algorithms and mathematics

educators may not be interested in the writings of Vygotsky but semiotic mediation

is something that is central to mathematics teaching whatever one’s belief.

7.3.3 Tools as Agents

The final intellectual trend of this period I consider arises from scholarship into the

history, philosophy and sociology of science. The publication of Thomas Kuhn’s
The structure of scientific revolutions in 1962 (alongside work by other scholars), in
the words of Pickering (1995, p. 2), ‘opened the way for new waves of scholarship

. . .work on the sociology of scientific knowledge (SSK) has increasingly

documented the importance of the human and the social in the production and

use of scientific knowledge’. One of these waves of scholarship, originating from

the late 1970s is now called actor network theory (ANT); Latour (2005) is a fairly

recent exposition. ANT is a theory about how to study social phenomena—by

following the actors, where an actor is ‘anything that does modify a state of affairs

by making a difference’ (Latour, 2005, p. 71); ANT theorists would not look at a

mathematics lesson as a given social structure but would describe the structure in

terms of actors. It views social life as being in a state of flux and looks to the

performance of the actors in situations. Objects (artefacts/tools) can make a differ-

ence in activity and so can be actors, exerting agency, in the playing out of social

situations. Pickering (1995), who is ‘almost ANT’ in my opinion, examines the
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practices of late twentieth century physicists using machines to trace elementary

particles. He accepts ANT’s human and material agencies and adds ‘disciplinary
agency’ (in our discipline a + a¼ 2a regardless of what we might want it to be). He

proposes a ‘dance of agency where, in the performance of scientific inquiry, human,

material and disciplinary agencies ‘emerge in the temporality of practice and are

definitional of and sustain one another’ (Latour, 2005, p. 21). What ANT and

Pickering bring to a consideration of tool use in mathematics is that tools have

agency. This is a controversial claim but an interesting one that cannot be ignored in

a serious study of tool use.

I now move on to consider the development of ideas in mathematics education

regarding tools and tool use.

7.4 The Development of Ideas in Mathematics Education
Regarding Tools and Tool Use

I sketch the development of ideas in academic mathematics education regarding

tools (including, in some cases, an absence of regard to the role of tools) from the

early 1960s.2 The dominant approach in the West to what would now (2014) be

called ‘mathematics education’ or the ‘didactics of mathematics’ was behaviour-
ism. I have discussed this in the previous section and do not discuss it further here.

But there were notable others around. Zoltan Dienes conducted learning experi-

ments which centred on young children making and finding patterns in play-like

activity with manipulatives and concrete representations. Many schools purchased

‘Dienes blocks’, wooden cubes (units), 1 by 1 by 10 cuboids (tens), 1 by 10 by

10 cuboids (hundreds) and 10 by 10 by 10 cubes (thousands). These wooden

artefacts are tools (by my Sect. 1.3.1 definition of tools) when their overt purpose

is to instill conceptual understanding (of place value)—they are tools for learning

mathematics rather than as tools for doing mathematics. Dienes (1963) writes with

attention to detail and respect for learners about children’s mathematical activity

with manipulatives. His interest is on the learners’ appreciation of mathematical

structure (e.g. arranging blocks to appreciate that 122 ¼ 10� 10þ 4� 10þ 4� 1)

and their formation of abstraction and generalisation. His model of the abstraction–

generalisation process (see Dienes, 1963, p. 67) focuses on the mind and on

mathematics—the manipulatives do not enter the model and appear, to me, to be

mere props for mental operations (interpret, symbolise) that are part of his model. It

was several decades before the usefulness of manipulatives in the long-term

learning of mathematics was questioned (see Hart, 1989). Another notable figure

in the 1960s is Guy Brousseau whose classroom experiments included the use of

manipulatives. I do not discuss this here as this work is considered in Chap. 10. But

2 This sketch of the development of ideas cannot be comprehensive and is bounded by my

knowledge of the field.
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the most important figure, in terms of Western mathematics education, in the 1960s

was Jean Piaget.

Piaget, who was initially a biologist, was a contemporary of Vygotsky but unlike

Vygotsky he did not die young; his academic opus spanned many decades during

which time his influence increased. His main interest was children’s conceptions
and he explored, amongst other things, their conceptions of geometry, logic,

movement, number, space and the world. His interests centred on the development
of thought from birth to adolescence. He posited that humans develop through

stages and that growth within stages depended on schemes, ‘the structure or

organisation of actions as they are transferred or generalised by repetition in similar

or analogous circumstances’ (Piaget & Inhelder, 1969, p. 4). At any stage in the

development of the child ‘reality data are treated or modified in such a way as to

become incorporated into the structure of the subject’ (Piaget & Inhelder, 1969,

p. 5), this is assimilation. By repetition schemes are modified to fit with the child’s
new interpretation of reality, this is accommodation. This is a far cry from behav-

iourism. If behaviourism can be represented as ‘stimulus! response’, then Piaget’s
version can be represented as ‘stimulus$ response’. An interesting thing about

Piaget’s work is his neglect of the role of tools in cognitive development. This is

obviously noteworthy in a book on tools but it also appears a little strange as he did

pay specific attention to related things, signs (and semiotics in general) and objects.

Respect for Piaget’s work increased to an extent that he had ‘guru status’. A
prominent English mathematics educator of 1960s and 1970s was Kenneth Lovell

and if you take any of his academic papers, then you will find Piaget’s theory being
expanded on with regard to new mathematical ideas or experiments but with

virtually no criticism (to my knowledge) of Piaget’s assumptions or theory. The

nearest I have found to questioning Piaget in Lovell’s work is:

I believe that his position regarding the acquisition of certain kinds of new knowledge is of

more value to the mathematics teacher than any other position at the moment, although I

affirm with equal conviction that his theory does not cover all the facts and that one day it

will be replaced or subsumed by a more all-embracing one. (Lovell, 1972, p. 165)

I make this point on ‘guru status’ because it may help to explain the virtual

neglect on tools in pre-twenty-first century scholarship in mathematics education

that paid homage to Piaget. The most influential (epistemological) theory in

mathematics education in the 1980s was constructivism. Constructivists pay regular

homage to Piaget’s theory as the inspiration for their ideas, e.g. Von Glasersfeld

(1991, p. xiv) in speaking of constructivists, ‘They have taken seriously the

revolutionary attitude pioneered in the 1930s by Jean Piaget’. Leslie Steffe was

an early constructivist researcher. I consider a paper of his (Steffe, 1983) which

considers children’s algorithms as schemes. I select this paper because, in Chap. 1, I

argue that algorithms may be regarded as tools. Steffe pays homage to Piaget,

‘children’s methods can be viewed as schemes. This premise has justification in the

primordial seriation scheme studies by Inhelder and Piaget (1969)’ (Piaget &

Inhelder, 1969, p. 110). He considers operative and figurative schemes in the

algorithms developed by two young children. Educational resources (strips with
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ten squares and blocks) are used by the children but the paper makes no mention of

artefacts or tools.

During the 1980s constructivism divided into what are now called ‘radical’ and
‘social’ constructivism. The radical branch, of whom Steffe is an example, was

concerned with ontogenic development of the individual child. The social branch

was interested in microgenetic, i.e. child–environment, as well as ontogenic devel-

opment. During the 1980s Paul Cobb moved from a radical to the social branch and

early paper that could be called ‘social constructivist’ is Cobb (1987).3 The paper

investigates the sense young children make of statements such as 3 + 6¼ 9 and

9¼ 3 + 6 and notes conflicting models of early number development in the litera-

ture. Cobb uses clinical interviews (a research tool developed by Piaget) in

worksheet tasks and tasks which employ felt squares to hide numbers. Cobb

concludes that the ‘academic context’ of the task is crucial and influence children’s
goals, they tend ‘to use primitive finger patterns in worksheet situations . . . [as] . . .
these methods . . . constituted viable ways of operating in their classrooms’ (Cobb,
1987, p. 121) I have no criticisms of the conclusions reached by Cobb but, as with

Steffe (1983), I find it curious that no mention is made to tools (as finger patterns

may be regarded as arithmetic tools). Cobb, with various co-researchers, went on to

develop a specific form of social constructivism, sometimes referred to as the

‘emergent perspective’. An important paper from this perspective is Yackel and

Cobb (1996). This paper examines teacher–young children discussions and argu-

mentation in a classroom context and introduced a new construct to the field of

mathematics education, ‘sociomathematical norms’, ‘normative aspects of mathe-

matical discussions that are specific to students’ mathematical activity’ (Yackel &
Cobb, 1996, p. 458). The classroom is provided with various resources (centicubes

and an overhead projector) but the paper does not mention tools. This neglect has

been noticed by others, e.g. Hershkowitz and Schwarz (1999, p. 149) refer directly

to Yackel and Cobb (1996) when they write ‘. . . sociomathematical norms do not

arise from verbal actions only, but also from computer manipulations as commu-

nicative non-verbal actions’. In fairness to Cobb, however, by 2002 his output did

explicitly consider tool use.4 Cobb (2002) presents an analysis of seventh grade

statistical data analysis; students were given data sets in which ‘it would be

essential that they actually begin to analyse data in order to address a significant

question’ (Cobb, 2002, p. 176). The instructional strategy behind students’ data
analysis was supported with two ‘computer minitools’ developed to fit with the

instructional sequence. The paper explores how symbolising, modelling and tool

use interrelate in students’ data analysis.

3 This paragraph could be taken as an attack on Cobb’s work. This is not my intention and I hold

his opus on high regard. I focus on Cobb partly because he is a ‘major player’ in the mathematics

education community and because he developed as a researcher from a Piagetian base and, I

believe, this base led him to overlook the role of tools in his twentieth century publications.
4 Explicit reference by Cobb to tool use may have occurred prior to 2002 but I am not aware that

this is the case.
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During the 1980/1990s, however, influences of a non-Piagetian nature were

stirring which Lerman (2000, p. 23) calls ‘the social turn’:

the emergence into the mathematical education community of theories that see meaning,

thinking, and reasoning as products of social activity. This goes beyond the idea that social

interactions provide a spark that generates or stimulates an individual’s internal meaning

making activity. A major challenge for theories from the social turn is to account for

individual cognition and difference, and to incorporate the substantial body of research on

mathematical cognition, as products of social activity.

This was followed by what has been called ‘the sociopolitical turn’, which
Gutiérrez (2013, p. 40) describes as ‘theoretical [and methodological] perspectives

that see knowledge, power, and identity as interwoven and arising from (and

constituted within) social discourses’. There is, to my mind, overlap in these

‘turns’ which I illustrate via Lerman. The ‘substantial body of research’ which
Lerman goes on to cite includes situated cognition (e.g. Lave, 1988), Foucauldian

analyses (e.g. Walkerdine, 1988) and cross-cultural studies (e.g. Bishop, 1988);

Foucauldian analyses are clearly sociopolitical in essence.

I do not disagree with what Lerman says but I think another turn, ‘the techno-

logical turn’, was rotating in the same period and the moment of this turn was the

technological revolution that I describe in Sect. 7.2. Calculators and micro com-

puter applications became objects of great interest to mathematics educators and, to

paraphrase Lerman above, they began to ‘see meaning, thinking, and reasoning as

products of tool-based activity’. Further to this, many of these tool-focused

researchers were also influenced by the social turn (e.g. the first two authors of

this book). A recent (at the time of writing) paper (Morgan & Kynigos, 2014)

illustrates social and technological foci. The paper concerns digital artefacts and

external representations and I preface a consideration of the paper with some

comments on representations.

I use the term ‘external representation’ (ER) to refer to ‘a configuration of

symbols, images or concrete objects standing for some other entity’ (Fagnant &
Vlassis, 2013, p. 149). Some authors use the term ‘schematic representations’ or
just ‘representations’, but I like to make the external aspect explicit. An ER may be

presented to the learner (e.g. a Cartesian graph or a number line) or it may be

generated by the learner. The ER may or may not correspond to something

mathematical (e.g. a smiley face) and when two ERs which correspond to some-

thing mathematical they may do so in different ways. For example, the two images

in Fig. 7.2 could both represent ‘3� 4’ but the rectangular array may be presented

by a teacher to focus on the idea of a Cartesian product whereas the ‘dots in circles’
may be learner generated and focus on repeated addition.

Both ERs in Fig. 7.2 are artefacts and, if they are used in doing mathematics,

function as mathematical tools (by Monaghan’s Sect. 1.3 definition of a tool). Van

Dooren, Vancraenenbroeck, and Verschaffel (2013, p. 322) point out:

an external representation of a problem situation can be a beneficial heuristic . . . may lead

to a reduction of working memory load . . . to be effective, the external representation needs
to be a correct display of the problem situation
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Fagnant and Vlassis (2013) claim that ERs are central elements in expert

problem solving and this certainly seems to be the case in Jon’s Chap. 3, which is

awash with ERs and his claims about the visual theorems are essentially claims

about the central roles of ERs in expert problem solving. The history of mathemat-

ics is, in part, a history of external representations as Sect. 4.3 and Chap. 5

(on ancient Greek and on Babylonian mathematics) attest. Digital technology has

opened the way for new ERs, for example ‘sliders’ in dynamic graphing and

geometry packages. I now return to a consideration of Morgan and Kynigos

(2014) to illustrate differences in social and technological foci.

Morgan and Kynigos (2014) appear in a special issue of Educational Studies in
Mathematics on the ReMaths project (Representing Mathematics with digital

media: Working across theoretical and contextual boundaries). Basically what

ReMath did was get pairs (or groups) of researchers (and, often, mathematical

software designers) from different countries and using different theoretical frame-

works to try out each other’s software and interpret the other’s data (if possible)

from the perspective of a different framework. Morgan and Kynigos are one such

pair. The paper focuses on a digital artefact, MoPiX, designed for:

constructing animated models using the principles of Newtonian motion. The objects of the

MoPiX microworld were designed to behave in mathematically coherent ways providing an

environment . . . intended to allow students to construct orientations to concepts such as

velocity and acceleration consistent with conventional mathematical and physical princi-

ples (Morgan & Kynigos, 2014, p. 362)

Morgan represents the social turn:

a multimodal social semiotic perspective on representation . . . From this perspective, the

elements of spoken, written, diagrammatic or other forms of communication are not taken

to have a fixed relationship to specific objects or concepts . . . Rather, the resources offered
by language, diagrams, gestures and other modes are considered to provide a potential for

Fig. 7.2 Two external representations for ‘3� 4’
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meaning making. The term representation cannot therefore be taken to have an internal

reference to some individual mental image or structure. Nor can it be taken to refer to a

determined relationship between signifier (word, picture, symbol, etc.) and signified

(represented object or concept). As the elements of communication acquire meaning in

interactions within social practices, the notion of representation must also be understood

relative to specific social interactions and practices. (Morgan & Kynigos, 2014, p. 359)

Kynigos represents the technological turn via a constructionist framework (see

Chap. 8):

The role of representations is important in the sense that they are perceived as integral

components of artefacts-under-change and as a means for expressing, generating and

communicating meaning. The nature of representations and the kinds of use to which

they are put are at the centre of attention . . . artefacts can embody a wide range of

complexity and have been perceived and analysed as representations themselves . . . Unlike
the social semiotic perspective, digital artefacts are seen as representations designed by

pedagogues to embed one or more powerful ideas . . . representations are not seen simply as

objects to which some kind of meaning may be attached but as artefacts for tinkering with.

(Morgan & Kynigos, 2014, p. 360)

Morgan and Kynigos (2014) proceeds to analyse student work from perspective

of each framework. I do not detail these analyses and you do not get a prize for

guessing that the analyses differ. The two authors, however, agree that the two

approaches ‘are not on the whole incompatible and yield interpretations of the data

that have some similarities’ (Morgan & Kynigos, 2014, p. 375). There are also

instances where the two authors use a construct in a similar way, for instance, the

term ‘meaning’. But even here the constructionist approach sees meaning residing

in the individual and is often linked to ‘tinkering’ with artefacts, whereas, in the

multimodal social semiotic approach, ‘meaning is conceptualised as the establish-

ment of shared orientations through communication in interaction between indi-

viduals’ (Morgan & Kynigos, 2014, p. 377).

7.5 End Note and Anticipation of the Remaining Part II
Chapters

Morgan and Kynigos (2014) illustrate social and technological foci in twenty-first

century mathematics education research. It also illustrates two of the large number

of theoretical frameworks used twenty-first century mathematics education

research. This book on tools and mathematics is not the place for considering all

of these frameworks but we consider frameworks that appear, to us, to be partic-

ularly important with regard to conceptualising tool use in mathematics in

Chaps. 8–10. Chapter 8 focuses on constructionism, the framework that Kynigos,

above, uses. Chapter 9 concerns activity theory which is a continuation of the work

of Vygotsky. The flow of ideas in Chap. 7 did not provide a sensible place to outline

Radford (2014) but it is a paper that readers may like to follow up if they are

interested in representations because Radford (2014) is an activity theoretic critique
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of Morgan and Kynigos (2014) and has a lot of interesting things to say on ERs and

on artefacts. Chapter 10 outlines several frameworks that emerged in France around

the time of social and technological turns (late 1980s). In the 1990s researchers

centred around Michèle Artigue following the approaches of Chevallard and of

Rabardel were engaged in ground breaking research on the use of technology in

mathematics classrooms that challenged the hegemony of constructivist interpreta-

tions of the role of technology in the learning of mathematics.
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Chapter 8

Constructionism

John Monaghan

8.1 Introduction

Constructionism evolved through the work of Seymour Papert and his co-workers.

The first definition of constructionism appears to have been in Papert (1987):

The word constructionism is a mnemonic for two aspects of the theory of science education

underlying this project. From constructivist theories of psychology we take a view of

learning as a reconstruction rather than a transmission of knowledge. Then we extend the

idea of manipulative materials to the idea that learning is most effective when part of an

activity the learner experiences as constructing is a meaningful product.

Constructionism is an apt place to start our case studies of tool use in mathe-

matics education because of its longevity (relative to the life of mathematics

education as a field of inquiry), its influence in education software development

and its influence on design. From a scholarly perspective constructionism is inter-

esting because it is problematic: there is a sense in which it both is and is not a

learning theory; it began life adhering to Piagetian principles but leading construc-

tionist scholars, at the time of writing, can be located in the sociocultural field of

thought; tool use is central to its philosophy but constructionist scholars are often

not forthcoming about what a tool is. My aim in this chapter is to attempt to distill

the/a constructionist view(s) of tools in learning mathematics1 but this distillation

must be accompanied by an understanding of what constructionism is and this, I

hope, will emerge via a critical consideration of its history, achievements and the

claims of constructionists. To this end I structure this chapter as follows. Section 8.1

presents a brief history of constructionism. Section 8.2 positions the programming

language Logo (which is a very important player in the history of constructionism)

in the history of computer developments. Sections 8.3 and 8.4 respectively consider

1 I hesitated about inserting the word ‘mathematics’ after ‘learning’ because there is a sense (which
I hope will become apparent in the course of this chapter) in which constructionism is more than

just about learning mathematics.
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two influential constructionist books, Papert’s, 1980 book Mindstorms and Noss &

Hoyles’ 1996 book Windows on mathematical meanings. Section 8.5 attempts to

distill the/a constructionist view(s) of tools in learning mathematics.

8.2 A Brief History of Constructionism

Papert began academic life as a mathematician; he obtained two PhDs in mathe-

matics in the 1950s. In the late 1950s and early 1960s he worked with Piaget. In

1963 he moved to MIT and, a few years later, became director of the MIT Artificial

Intelligence Laboratory. In 1967 he designed, with Wally Fuerzeig, the first version

of the programming language Logo (from the Greek ‘logos’). Logo was to serve a

vision of education Papert developed whilst he was with Piaget. A small robot, the

floor turtle, was developed and Papert used this in his work with children. This was

the start of what came to be known as ‘turtle geometry’ which has a slightly

different orientation than school geometry. For example, an equilateral triangle is

typically constructed by programming the turtle to repeat three times the move ‘go
forward by a fixed amount and then turn 120� right’ (or left). This construction, with
this tool in this language, focuses on linear movement, rotation and external angles

of a triangle rather than the equal arc lengths and internal angle of a triangle that a

ruler and compass construction focuses on. I recall, as a school teacher in the 1980s,

that some of my colleagues did not like this alternative focus of turtle geometry,

though I did not see this as a comparative evaluation of new and old tools for

mathematics at the time. In 1980 Papert wrote a book, Mindstorms: Children,
computers, and powerful ideas, on this work with children. Healy and Kynigos

(2010, p. 63) aptly characterise Mindstorms as realising Papert’s ‘desire to use

computers as mathematically expressive media with which to design an appropri-

able mathematics fitted to the learner.’Mindstorms probably remains (at the time of

writing, 34 years later) the most widely read and influential text on computers in

mathematics education. It could be said that constructionism publicly started with

the publication of this book.

Papert went on to write and edit other books, Harel and Papert (1991) and Papert

(1993, 1996), but it is fair to say that, after Mindstorms, his main influence was

through projects, papers and through the work of others that he inspired. The project

he was working on at the time of his serious accident, shortly after giving a plenary

address at a mathematics education conference in Hanoi in 2006, was One Laptop
per Child, with the aim to manufacture and distribute an inexpensive (�$100 at the

time) computer for children in developing nations. In the field of mathematics

education he inspired the work of Celia Hoyles, Richard Noss, Andrea diSessa and

Uri Wilensky, amongst many others.

My guess that Mindstorms is the most widely read and influential text on

computers in mathematics education, could be followed by a guess that Windows
on mathematical meanings: Learning cultures and computers, Noss and Hoyles

(1996), is the second most widely read and influential text on computers in
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mathematics education. Windows on mathematical meanings established links

between constructionism and other theories of learning, design and practice. I

now flesh out this brief history with sections as described above.

8.3 Positioning Logo

My aim in this section is fourfold: (1) to position Logo with regard to other

programming languages; (2) to consider the aesthetic appeal of Logo to some

mathematicians; (3) to consider its appeal to the artificial intelligence community

as a medium for problem solving; (4) to relate all three issues above to a past debate

within the mathematics education community. I will assume that you, the readers

have some familiarity with at least one of the many versions of Logo; you can

download a version and get a self-help starter guide if this is not the case.

The first version of Logo was written in another programming language called

Lisp, standing for ‘list processing’. The first two programming languages were

FORTRAN (1957) and Lisp (1958). FORTRAN (for FORmula TRANslating) was

designed for numerical analysis and is an imperative language, the fundamental role

of the code of FORTRAN programs consists of sequences of ‘do this’ commands.

Lisp is a functional language, the fundamental role of the code of Lisp programs is

to evaluate a function, i.e. result¼ f(input values).

Lisp has a rather illustrious mathematical background going back to Alan

Turing’s Ph.D. supervisor Alonzo Church. Church developed a formal logical

system, lambda calculus, as a prelude to formalising the concept of computability

(Church, 1932). In lambda calculus functions are represented via lists (of a sort):

{F} (A) represents the value taken on by the function F when the independent variable takes

on the value A. The usual notation is F(A). . . . we treat a function of two variables as a

function of one variable whose values are functions of one variable, and a function of three

or more variables similarly. Thus, what is usually written F (A,B) we write {{F} (A)} (B),

and what is usually written F(A, B, C) we write {{{F} (A)} (B)} (C), and so on. (ibid., 352)

Further to this lambda calculus writes expressions in prefix form, i.e. x+ 1 is

written + x 1 and is able to differentiate between defining and calling a function. The
latter is done via its valid expressions, lambda terms: a variable, x, is a lambda term;

if t is a lambda term and x is a variable, then λx.t is a lambda term; if t and s are

lambda terms, then ts is a lambda term. λx.t is called a ‘lambda abstraction’ and
defines a function that takes x as its input and substitutes it into the lambda term t. ts,
however, calls on the function twith input s to produce what is commonly written as

t(s). Further to this, functions can operate on functions; for example λx.x represent
the identity function x! x and (λx.x)y represents the identity function applied to y.

The notation of the lambda calculus was the inspiration for Lisp. This is evident
in a Lisp code that defines the square function:
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lambda xð Þ *xxð Þð Þ

Lists are fundamental data structures for Lisp and a Lisp list is written inside a pair

of brackets with its elements separated by spaces; for example, 1 + 2 is written (+1

2). Lisp had an appeal to mathematicians and early versions of the computer algebra

system Derive were written in a version of Lisp. It also had an appeal, as a medium

for problem solving, to the nascent artificial intelligence community in the 1960s.

To appreciate this appeal I consider how Lisp and FORTRANmay be used to obtain

a solution that would count as ‘problem solving’ if a human did it. I select a classic

(origins in the eighth century) old problem, The wolf, the cabbage and the goat:

A man needs to bring a wolf, a goat, and a cabbage across the river. The boat is small and

can only carry one passenger at a time. If he leaves the wolf and the goat alone together, the

wolf will eat the goat. If he leaves the goat and the cabbage alone together, the goat will eat

the cabbage. How can he bring all three safely across the river?

It is hard to imagine using FORTRAN to solve this problem. The original

FORTRAN had 32 reserved words and 15 of these were for input/output statements

in the days of punched cards, tapes and drums. However, an expert early FOR-

TRAN programmer could possibly find a devious way to configure a matrix and use

IF statements and GOTO commands within DO loops to list all possible combina-

tions of a representation of the objects in the problem and, from this list, to

eliminate illegal (in terms of the problem) combinations. But FORTRAN was

designed for numerical analysis, not to solve problems such as this one.

In Lisp, however, the problem can be represented in terms of the elements on

each bank at given states: man (M), wolf (W), cabbage (C), goat (G), and boat (B).

These can be programmed in terms of lists with the initial conditions:

Leftbank¼ [M W C G B]2

Rightbank¼ [ ] (the empty list)

We would then want to create a procedure for possible moves, which could be a

list of lists, something like:

Possiblemoves ¼ [[M W B] [M C B] [M G B] [M B]]

And set up procedures for movement from bank to bank (two procedures for

each direction of travel) which would update the Leftbank and Rightbank lists by

deleting/augmenting elements from their lists depending on the moves. We would

also have to set up procedures for checking that the Leftbank and Rightbank lists

after any moves did not contain illegal elements such as [W G] and also set up

procedures to try all possible moves and keep a record of moves. I will stop this

account of the old problem here and note that a full explanation (with codes in both

Lisp and Logo) can be found in Bundy (1980).

2 Lisp code would actually be (SET LEFTBANK ‘(M W C G B)) but I will not present code in my

description.
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The above focus on machine problem solving, I hope, suggests why a functional

language such as Lisp was preferred over an imperative language such as FOR-

TRAN by early workers in the field of artificial intelligence. Before leaving this

consideration of machine problem solving I would like to make a point about tools

and what are the tools. Returning to my definition of a tool in Chap. 1 (that an

artefact becomes a tool when it is used to do something) a programming language is

not a tool but is simply an artefact but code written in a programming language and

executed by a computer is a tool. Is Lisp better than FORTRAN for problem

solving? The answer depends on the problem. Lisp is an appropriate medium for

generating code to solve problems such as the wolf, the cabbage and the goat
problem but FORTRAN is designed so that its code can function as a tool to provide

numeric solutions to problems in numerical analysis.

I now move to the educational arena. Logo was designed as an educational

programming language to teach concepts related to Lisp programming. The educa-

tional focus was extended to children when Papert introduced a floor turtle (a robot
with a retractable pen that could be programmed to draw mathematical shapes on

paper on the floor). The mathematical legacy of the lambda calculus in such

drawing is open for all ages: for the young, in realising a square repeat two actions

four times, as in

REPEAT 4[FORWARD 100 RIGHT 90]

And, for older children, in differentiating between defining and calling a func-

tion, as in

MAKE “SIDE 1

REPEAT 30[FD :SIDE RT 20 MAKE “SIDE :SIDE + 1]

In the early 1980s some school children were being introduced to code like that

above as well as BASIC code like that below:

For X ¼ 1 to 10

Print X*X

Next X

School children were taught ‘programming’ and the main computer languages

were the imperative language BASIC and the functional language Logo. Program-

ming was taught in some mathematics lessons and also in the new school subject

Computer Studies. To many teachers, I believe, BASIC and Logo were just two

languages but to others there were ‘values’ at stake—the kind of problems students

engage in technomathematical tasks mattered. This was the focus in the BASIC

vs. Logo debate that went on in the late 1980s and early 1990s in various countries. I
illustrate this debate by considering two articles published in a professional journal

for mathematics teachers, MacKernan (1992) and Noss (1992). These two articles

represented the tail end of a debate that had been conducted through the journal

Micromath.
MacKernan’s (1992) defends BASIC with the following arguments: ‘It is a

valuable tool for doing awkward or long-winded or repetitive calculations’ (ibid.,

8.3 Positioning Logo 185

http://dx.doi.org/10.1007/978-3-319-02396-0_1


p. 17); a FOR-NEXT loop which prints the square numbers from 1 to 10 is cited in

the National Curriculum algebra strand; it is easy to print hard copy in BASIC; and

Logo is good for shapes but BASIC is good for numbers. Noss (1992) is a response

to MacKernan (1992) and instead of arguing against MacKernan’s points he offers
‘a vision of what mathematics could be like using computers’ (ibid., p. 18). He
contrasts ‘school maths’ (with the implication that it is humdrum) with the power

and potential fasciation of ‘mathematics’, ‘the power of mathematics for

constructing explanations of how the physical and social world works is unparalled.

And I think that the computer can help with this task.’ (ibid., p. 19). Noss sees the
choice of programming language as central to this vision and sees the debate as

centring on:

a tool for solving problems or a means of expression . . . to incorporate far larger sections of
society into mathematical culture, we had better look . . . towards the computer as a medium

for expression rather than simply a convenient tool to ‘deliver’ . . . the National Curriculum
(ibid.).

This debate is useful for my purpose in this chapter (to distill a constructionist

view of tools) but a problem with debates (other than mathematical debates) is that

the law of the excluded middle rarely operates in the lived-in-world; only two views

are presented when, in fact, there are a myriad of phenomenologically valid points

of view. The MacKernan–Noss debate is not so much about tools per se but how

tools are and can be used (to preserve a past with a fixed number of mathematical

problems for which to use the tools or a creative future). Tools can be used for

problem posing as well as problem solving and this, in a nutshell, is what

Mindstorms is about.
My final words about Logo are, first, to note that virtually every article/book by a

Logo-enthusiast cited in this chapter has a note somewhere in it that says, in so

many words, ‘Logo isn’t perfect but it seems to be the best we have at the moment to

realise our vision’. Second, to note that there are many versions of Logo and it has

influenced other languages but a consideration of these is not necessary for this

chapter and I now move on to consider Mindstorms.

8.4 Mindstorms

Rather than present a linear description of Papert’s book I start this section by

jumping about (in the book and in time) to present my interpretation of Papert’s
mindset. I start with the final chapter, Images of the learning society, which begins,
‘THE VISION I HAVE PRESENTED is of a particular computer culture, a

mathetic one, that is, one that helps us not only to learn but to learn about learning’
(ibid., p. 177, capitals in the original). Mindstorms is a scholarly book in the

‘learned’ rather than the ‘scientific’ sense of the word ‘scholarly’. Papert developed
Logo, he spent years working with children using Logo, he was inspired by what

these children did and he wanted to present the reader with the vision that came
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from this inspiration. I now present Papert’s contextualisation of the events leading
up to Mindstorms via of a summary of Chap. 8 of Papert (1993) because I feel it is

important to attempt to communicate the genesis of Papert’s vision.
Chapter 8, Computerists, is a personal account of developments in computing,

artificial intelligence, educational computing and Papert’s place in these develop-

ments; I focus on the last two items in this list. ‘In the 1960s we were a small

handful . . . Patrick Suppes from philosophy and psychology, John Kemeny (who

invented BASIC) . . .’ (ibid., p. 160). Papert notes a classification by Taylor of the

modes of use of computers in education: tutor, tutee and tool. Papert notes that that

calculators, simulation programs and word processors are tools and that ‘tutor’
refers to ‘the most common image of the computer in education’ (ibid., p. 161). But
it is clear that ‘tutee’ is the term that captured Papert’s imagination, that we (or,

rather, a child) could teach a computer.

Papert then positions Suppes, Kemeny and himself with regard to Taylor’s
classification. Suppes (who was considered in Sect. 7.2), as the intellectual father

of computer aided instruction (CAI), focused on the tutor mode of use whereas

Kemeny focused on students programming computers and, in doing so, making the

computer program, in his words, a tool that aids learning. In terms of ‘modes of use’
Suppes and Kemeny are different but Papert notes a similarity, ‘They shared an

acceptance of School’ (ibid., p. 163), where ‘School’ refers to the institutionalised

transmission of knowledge3 (my paraphrase of pp. 1–21 of Papert, 1993). In School

learning is viewed with regard to facts and skills; in School learning was cold but

Papert’s vision was hot.
Papert returns to Debbie, a fourth grade student considered earlier in Papert

(1993), who overcame considerable problems with School fractions through Logo
programming:

I pose the educational goal not as giving her factlets but as encouraging her to make

connections between different elements of what she already knows: for example, intuitive

knowledge about fractions, knowledge about the “real world”, and knowledge about

strategies of learning. Making connections is something only Debbie can do. They have

to be her connections. (ibid., p. 165)

Papert goes on to reflect on his time with Piaget and ‘playful speculation about

what would happen if children could play at building little artificial minds’ (ibid.,
p. 169) and his subsequent (mid 1960s) realisation that children could do what

workers in artificial intelligence do, write programs that simulate what people do

and discuss differences between what machines and human can do. But he needed a

programming language that matched the needs and capabilities of children and this

was the impetus that led to the design of Logo and, later, a robot (eventually a floor
turtle) that could enact their programs. I now briefly present a linear description of

Papert’s book followed by a consideration of one of its critics.

3 This view of school mathematics as ‘institutionalised mathematics’ has links with Chevallard’s
anthropological theory of didactics which is considered in Chap. 10.
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The person and thought of Piaget permeates Mindstorms and his/its influence is

stated at the outset, ‘The powerful image of child as epistemologist caught my

imagination while I was working with Piaget’ (ibid., p. 19). Papert, however, was
less concerned than Piaget on the order/stages of development and more concerned

with ‘the influence of the materials a particular culture provides in determining that

order . . . the computer presence might have more fundamental effects on intellec-

tual development than did other new technologies’ (ibid., p. 20). Further to this

Piaget contrasted concrete and formal thinking but, with the computer, ‘Knowledge
that was accessible only through formal processes can now be approached con-

cretely’ (ibid., p. 21). Papert’s vision of liberation is a materialist one but one

founded on computers rather than tools per se, ‘computers of the very near future

will be the private property of individuals . . . Education will become more of a

private act . . . There will be new opportunities for imagination and originality’
(ibid., p. 37, my emphasis). The highlighted part of this vision statement has been

realised and I think Papert may have been the first person to publicly anticipate this

evolution of computers. Noss (2001, p. 22) makes a related point about Papert’s
vision, the computer ‘can be changed (even change itself) into any number of

forms’. So, maybe Papert did not comment on tools because the computer, as an

artefact, is capable of transformative change into many tools. The statement

following the highlighted text in Papert’s vision, however, has turned out different

to that which Papert anticipated, connectivity (considered in Chap. 18) has led to

education to become a more public act.

Papert goes on to consider what he calls Mathophobia, fear of learning, and he

believes that the computer can play a fundamental role in their liberation from this

fear and ‘our culture’s hard-edged separation between the verbal and the mathe-

matical’ (ibid., p. 45). He outlines the case of Jenny who did not understand English
grammar until she taught (programmed) it to Logo and, thereafter, went from an

average to high performing school student. He states that ‘every educated person

vaguely remembers that y¼ x2 is the equation of a parabola’ (ibid., p. 52) and goes

on to suggest:

The reason for what is included and what is not included in school math might be as crudely

technological as the ease of production of parabolas with pencils! This is what could change

most profoundly in a computer-rich world: The range of easily produced mathematical

constructs will be vastly expanded. (ibid., p. 52)

In turtle geometry Papert sees the potential for body syntonic learning, that is

learning ‘firmly related to children’s sense and knowledge about their own bodies’
(ibid., p. 63); and there is a sense in which he anticipated current (circa 2014)

thought about embodied cognition (e.g. Lakoff & Nú~nez, 2000) by several decades.
He presents many examples to illustrate this. An interesting example with regard to

tools is, ‘Let us imagine, then, as I have seen a hundred times, a child who demands:

How can I make the Turtle draw a circle?’ (ibid., p. 58). The instructor says ‘play
Turtle’ and the child repeats ‘move forward a little and turn a little’. Through
discussion, description and initial coding this eventually becomes:
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TO CIRCLE REPEAT [FORWARD 1 RIGHT 1]

Papert contrasts this way of creating a circle (equal curvature; differential

geometry) with the geometry of Euclid (constant distance between a centre point

and points on the circumference) and of Descartes, x� að Þ2 þ y� bð Þ2 ¼ R2. A

matter of interest to me, in writing this book on tools and mathematics, is that he

does not explicitly focus on the tools used in these three methods of creating a circle

(as we have done in a not too dissimilar example in Chap. 1 of this book). I shall

return to this in the last section of this chapter.

Papert goes on to discuss structured programming: breaking a problem down

into parts, describing these parts and programming these descriptions (akin to my

sketch of a Lisp solution to the ‘wolf, cabbage and goat’ problem). He presents the

case of a child, Keith, who wrote linear code (25 lines) to produce a stick man. It

didn’t work and ‘Keith was unable to figure out what had happened’ (ibid., p. 102).
Papert shows us how we can write a shorter program using a procedure for the legs

and arms and another procedure for the head. He contrasts Keith with Robert who

breaks problems/programs down, ‘I used to get mixed up by my programs. Now I

don’t bite off more than I can chew’ (ibid., p. 103). Papert argues that, over time

children get used to a structured way of thinking and debugging procedures rather

than long linear programs and in this work, unlike classroom work, ‘the teacher and
the learner can be engaged in real intellectual collaboration’ (ibid., p. 115). The aim
of this collaboration is to produce a ‘specific something’ and this leads on to the

idea of microworlds:

The Turtle World was a microworld, a “place,” a “province of Mathland,” where certain

kinds of mathematical thinking could hatch and grow with particular ease. (ibid., p. 125)

The learning theory behind the microworld concept inMindstorms is, of course,
Piaget’s genetic epistemology and, in particular, the concept of ‘assimilation’, of
absorbing new ideas into existing mental schemes. Hoyles (1993) traces the history

of the concept4 and cites Weir, that it ‘was first used by artificial intelligence

workers to describe a small, coherent domain of objects and activities implemented
in the form of a computer program5’ (ibid., p. 1). From this start they evolved,

through the work of Papert and colleagues, ‘Microworlds did not simplify and

trivialise structural features of the knowledge domain: rather, they aimed to facil-

itate the building of conceptual and strategic foundations’ (ibid., p. 3). Thereafter
they were taken up by (mainly) university mathematics educators who appropriated

‘Papert’s vision but with the specific intention of provoking change through com-

puter use within the practice of school mathematics’ (ibid., p. 4). This last stage is,
effectively, the narrative behind the next section of this chapter so I do not pursue it

further here but return to Papert.

4 See Healy and Kynigos (2010) for a more recent history of the concept.
5 The wolf, the cabbage and the goat problem (see Sect. 8.2) is an example of this kind of

microworld.
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Papert describes a specific microworld with turtles which can be linked turtles

and, in which, the turtles obey turtle forms of Newton’s laws of motion (e.g. ‘Every
Turtle remains in its state of rest until compelled by a TURTLE COMMAND to

change that state,’ ibid., p. 127). His discussion of the Monkey problem is interest-

ing with regard to tools:

A monkey and a rock are attached to opposite ends of a rope that is hung over a pulley. The

monkey and the rock are of equal weight and balance one another. The monkey begins to

climb the rope. What happens to the rock? (ibid., p. 131)

Papert states that most MIT Physics undergraduates in their experience either

cannot address this problem or give an incorrect answer (I suspect that this remains

true in most universities):

. . . students ask themselves: “Is this a ‘conservation-of-energy’ problem?” “Is this a ‘lever-
arm’ problem?” and so on. They do not ask themselves: “Is this a ‘law-of-motion’
problem?” . . . conservation, energy, lever-arm, and so on, have become tools to think

with. They are powerful ideas that organise thinking and problem solving . . . For a student
who has had experience in a “laws-of-motion” microworld this is true of “law of motion”.

This student will not be blocked by asking the right question . . . but a student who sees laws
of motion only in algebraic terms will not even ask the question . . . (ibid., pp. 131–132)

The question ‘What happens to the rock?’ is an interesting one. It does not

provide a hint that the rock goes up symmetrically with the monkey and by this

deliberate omission the question can lead to some strange answers: it is a hard

question from an institutional mathematics perspective but it is, somehow, an easy

question if one is immersed in the laws of motion microworld. But for all its interest

I am not sure how the institutional “tools to think with” that Papert refers to are

tools.

There is more to Mindstorms than I have room to summarise but I feel I have

covered the overall philosophy behind the book and some salient constructs so I

will move on to reactions to the book. The first reaction I’d like to mention is my

own. I read the book shortly after it was published and I embraced its vision—it

provided a warrant for my work in mathematics classrooms at the time. Some years

later I was critical of its ‘scientific base’ but a few years later these criticisms were

relaxed as I realised it was a ‘vision statement’ and not a scientific text. Although I

am really not clear what ‘tool’ means to Papert there is a sense in which this is

unimportant. My aim in writing this book is to clarify (and communicate) my

understanding of the meaning and use of tools in mathematics and a part of my

quest is to look to at what others regard tools to be and their role in this thing called

‘mathematics’. This was not Papert’s aim.

Not surprisingly, there was no shortage of critiques of Mindstorms after its

publication. The most noted of these were by a pair of authors, Roy Pea and Midian

Kurland. Although comments on Papert (1980) are frequent in Pea and Kurland

(1984), it is not a review of Papert (1980) but a discursive consideration of

academic papers (circa 1984) concerned “about whether learning computer pro-

gramming promotes the development of higher mental functions” (ibid., p. 137).

Pea and Kurland published (together, alone and with others) a series of technical
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reports on the cognitive impact of computer programming (including Logo) on

children; Pea and Kurland (1984) is a grand overview of sorts and does not include

new primary data. The Conclusion calls for further research on: claims for the

cognitive effects of learning to program; the developmental role of contexts in

learning to program; what skilled programming is; levels of programming skill

development; and cognitive constraints on learning to program. I present an

extended extract from the Conclusion that summarises their findings:

First, there are no substantial studies to support the claim that programming promotes

mathematical rigor. . . .Secondly, there are no reports demonstrating that programming aids

children’s mathematical exploration. . . .Third, although Feurzeig et al. (1969) suggest that

the twelve 7- to 9-year-old children to whom they taught Logo came to ‘acquire a

meaningful understanding of concepts like variable, function and general procedure,’
they provide no evidence for the claim that programming helped the children gain insight

into these mathematical concepts. Finally, we ask whether programming has been shown to

provide a context and language that promotes problem solving beyond programming . . .
Planning in advance of problem solving, and evaluating and checking progress in terms of

goals, are important aspects of a reflective attitude to one’s own mental activities . . .
Results indicated that Logo programming experiences had no significant effects on plan-

ning performances, on any of the plan efficiency or planning process measures. (ibid.,

pp. 159–160)

This is pretty damning stuff. I do not intend to enter this debate and I move on to

Noss and Hoyles (1996).

8.5 Windows on Mathematical Meanings

As we saw in Chap. 5, the period, 1980–1996, between Mindstorms and Windows
on mathematical meanings (referred to by ‘WMM’ in the remainder of this chapter)

saw a significant rise in mathematics education as an academic field. As befits a

developing academic field, MWW has a methodological base that is far less open to

Pea and Kurland-like criticisms than Mindstorms was. Nevertheless, WMM can be

seen as the constructionist successor toMindstorms. Indeed, the Foreword toWMM

includes, ‘We owe our greatest intellectual debt to Seymour Papert, whose ideas

have provided continual inspiration’.
Like Mindstorms, WMM (1) synthesises years of work (including theorising) in

mathematics education with computers (very often with Logo) and (2) presents a

vision of learning mathematics. Chapter 5, Webs and situated abstractions, is, for
me, the theoretical heart of the book. ‘Webs’ and ‘situated abstractions’ are deep

constructs which cannot be easily summarised but elsewhere I have (with Fatih

Ozmantar) linked them with contextual (sociocultural) views on abstraction (see

Ozmantar & Monaghan, 2008). Nevertheless, a quick fix definition of these con-

structs may be useful to orientate the reader to their general nature. The idea of a

web goes back to Papert’s idea of making connections:
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We want to put forward a case for learning as the construction of a web of connections—

between classes of problems, mathematical objects and relationships, ‘real’ entities and

person-specific experiences. (WMM, p. 105)

The idea ‘situated abstraction’ stems from the tension between situated

(e.g. Lave, 1988) and decontextualised (e.g. Piagetian) approaches to knowledge

development and also a Papert-like belief that mathematics is not ‘school maths’
but ‘Mathematics . . . is activity-with-relationships’ (WMM, p. 124).

We intend by the term situated abstraction to describe how learners construct mathematical

ideas by drawing on the webbing of a particular setting which, in turn, shapes the way the

ideas are expressed. (WMM, p. 122, my emphasis)

The words ‘which, in turn’, to me, underline the dialectical materialist philoso-

phy behind WMM, the full title of which is Windows on mathematical meanings:
Learning cultures and computers. Dialectical materialism takes a view of the world

in a constant state of flux where unidirectional ‘cause and effect’ arguments are

replaced by interrelationships; the setting (culture) and the technology shape each

other. These introductory descriptions allow me to present an extract that, as near as

anything in WMM, encapsulates the place of tools in the vision of Noss and Hoyles:

Webbing and abstracting are complimentary. Situated abstraction describes how learners

construct mathematical ideas by breathing life into the web using the tools at hand, a

process which, in turn, shapes the ideas. Tools are not passive: in a microworld, for

example, the designer’s intentions are constituted in the software tools. These tools wrap

up some of the mathematical ontology of the environment and form part of the web of ideas

and actions embedded in it. Yet it is students who shape these ideas . . . A microworld

comprises tools to construct objects. But these tools are themselves objects which encap-

sulate relationships. This process/object duality is at the root of mathematical activity . . .
(WNN, p. 227)

In the remainder of this section I further explore this view of tools.

By 1996 the influence of Piaget on constructionism was waning and the influ-

ence of Vygotsky was waxing. WMM acknowledges this influence but not without

noting the special significance of mathematics:

For Vygotsky, learning is mediated by language and signs are representational tools

developed by social interactions . . . since the mathematics comprises a duality of objects

and relationships: there is a need to take into account how objects characterised and

represented, the tools by which we act on them as well as the language which describes

how they interrelate. This duality is evident in the origins of mathematics as a tool and as an

object of study communicated in particular linguistic forms. (WMM, p. 42)

Chapter 3 of WMM is called Tools and technologies and provides further

clarification of Noss and Hoyles’ view of tools. Due, I posit, to their view that

mathematics is activity-with-relationships (a view I share) they are interested in

languages and tools that allow mathematical relationships to be expressed. This
seems pretty important to me for the computer-strand theme of this book (the one

you are reading) as, amongst other things, a computer can be used, at one extreme,
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to ‘present’ mathematics to a learner and, at another extreme, as a medium for the

learner to ‘engage in’ mathematics by expressing mathematical relationships.6

Software which fails to provide the learner with a means of expressing mathematical ideas

also fails to open any window on the processes of mathematical learning. A student

working with even the very best simulation, is intent on grasping what the simulation is

demonstrating rather than attempting to articulate the relationships involved. It is the

articulation which offers some purchase on what the learner is thinking and it is in the

process of articulation that a learner can create mathematics. (WMM, p. 54)

Unlike Mindstorms, WMM considers systems (software and applications) other

than Logo as suitable media for articulating/expressing mathematical relationships.

They state a preference for Logo but clearly regard dynamic geometry systems as

expressive media in which, like Logo, mathematical relationships can be seen and,

further to this, there is a connection between gestures (through dragging) and

mathematical relationships. But any talk of ‘preferences’ with regard to WMM

clearly does not just concern the media but the manner of using the media: a learner

using a simulation package that allowed considerable tinkering with the parameters

in, say, simulating traffic flow, would be ‘better’ than a learner attending to the Logo
task ‘draw a square using the commands FORWARD, RIGHT and REPEAT’. I feel
that an emphasis on the manner of using the media is evidenced by the reference, in

WMM, to Illich’s (1973) construct of a convivial tool:

To the degree that he masters his tools, he can invest the world with his meaning; to the

degree that he is mastered by his tools, the shape of the tool determines his own self-image.

Convivial tools are those which give each person who uses them the greatest opportunity to

enrich the environment with the fruits of his or her vision . . . They allow the user to express

his meaning in action. (ibid., pp. 10–11)

Like Mindstorms, WMM provides numerous examples to illustrate learning in

expressive computational environments and I close this section by considering one

example which sheds light on WMM’s view of tools within microworlds to that of

two 14-year-old girls working on a dynamic geometry system (DGS). The DGS had

two flag-shaped figures on it and the girls were told that one flag was the reflection

of the other in a hidden line of symmetry. Their task was to find the ‘mirror line’, the
line of symmetry. The girls did not know how to construct the line and they dragged

one of the flags and observed the movement of the two flags. Within a short period

of time they had located the line of symmetry informally in as much as they could

indicate where the line of symmetry was with their fingers. Then one of the girls

dragged the extreme points of the flags together and they both exclaimed ‘that’s it’
and went on to explain, ‘the mirror line is what you see on the screen if you drag

points and their reflections together’. This statement evidenced a situated abstrac-

tion. But the girls did not stop here and went on to focus on the three objects on the

screen (the two flags and the mirror line) and the mathematical relationship between

6Curiously, in the BASIC vs. Logo debate presented earlier in this chapter, both MacKernan and

Noss argue within the ‘expressing mathematics’ pole, suggesting, of course, that the debate on how
to use digital tools in mathematics education is not unidimensional.
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these objects; this eventually led them to see that the mirror line could be

constructed by constructing the line formed by midpoints of lines connecting

corresponding points in the two flags.

This example/story of a mathematical construction is pleasant in itself (and it is

told with greater attention to detail in WMM than in my summary paragraph) but

what interests me with regard to tools is the discussion of this story, which I again

summarise.

A midpoint command in a DGS is an abstraction that:

wraps up much of the process of construction into a set of actions . . . which become part of

the web of ideas and action embedded in the medium . . . it is a tool to construct objects and
at the same time an object which encapsulates a relationship (WMM, p. 116)

Noss and Hoyles see ‘using the webbing of the medium’ in the girl’s solution and
ask if the midpoint strategy extends beyond the medium. They consider compass

and measurement constructions of the midpoint and state that the actions with these

different tools “are only ‘the same’ as the Cabri construction from a particular

perspective—one in which the midpoint is already understood”. Noss and Hoyles

suggest that generalising from one setting to another might be ‘to become aware

explicitly of the relationships wrapped up in the setting, to notice precisely what

elements of the computational web are interacting with one’s current state of

understanding’. They conclude, ‘Using the web as a tool is a necessary but not a

sufficient condition for this awareness to emerge’ (WMM, p. 117).

I see a continuation of the ideas sketched inMindstorms in this discussion of the
story but with constructs and attention to the niceties of tool use that extend the

frame of Mindstorms. The consideration of the midpoint command as a tool which

can be used to construct objects whilst being an object which encapsulates a

relationship illustrates an important aspect of ‘expressive tools’. The statement

that the different tools are only the same if the midpoint is already understood is

interesting; I feel ‘the same’ implicitly refers to a sort quasi mathematical equiva-

lence class with regard to understanding a concept (the actions are certainly not the

same). Finally, ‘using the web as a tool’ appears to be an extension of Papert’s
notion of ‘tools to think with’ in microworlds (discussed in the previous section in

the Monkey problem).

8.6 A Constructionist View of Tools?

In this closing section I attempt to characterise the view of tools inMindstorms and
in WMM.

In his essay on the internalisation of higher psychological functions Vygotsky

takes pains to emphasise similarities and differences between signs and tools. He

then writes:

Here we want to be as precise as possible. Leaning for support on the term’s figurative
meaning, some psychologists have used the word “tool” when referring to the indirect
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function of an object as the means for accomplishing some activity. Expressions such as

“the tongue is the tool of thought” or “aides de memoire” are usually bereft of any definite

content and hardly mean more that than what they really are: simple metaphors or more

colourful ways of expressing the fact that certain objects or operations play an auxiliary role

in psychological activity. (Vygotsky, 1978, p. 53)

Following Vygotsky I characterise phrases such as ‘the computer is a tool to

think with’ and ‘the midpoint command on a DGS is a tool to construct objects’ as,
respectively, ‘metaphorical’ and ‘precise’ use of the word ‘tool’.

In,Mindstorms, and thereafter, Papert is clearly very interested in programming

languages, computers, children, learning and the intersection of these four areas. I

do not think that he is particularly interested in tools per se. The word ‘tool’ is rarely
used in Mindstorms and, when it is, it is used in a metaphorical sense,

e.g. ‘conservation, energy, lever-arm, and so on, have become tools to think with.

They are powerful ideas that organise thinking and problem solving’ (Papert, 1980,
p. 132).

In WMM Noss and Hoyles retain the vision and foci of interest of Mindstorms
but, while there is occasional metaphorical use of the word ‘tool’,
e.g. ‘programming in its widest sense might be thought of as a tool for expressing

and articulating ideas’ (WMM, p. 57), the majority of references to the word ‘tool’
are precise. I summarise their view of tools as:

Their framework respects post-Vygotskian thought (learning is activity mediated by lan-

guage, signs and tools) but mathematical learning is special (and was not addressed by

Vygotsky) as it is essentially activity with relationships and tool are important in learners’
construction of mathematical relationships. Tools are not passive actors in learning in as

much as they can transform existing instructional regimes. Digital tools (for mathematics)

are especially important in such transformations because they display symbols. An impor-

tant division within such digital tools is between tools which allow the expression/articu-

lation of mathematical relationships and those which do not. Tools which are different with

respect to physical actions may be ‘the same’ to someone who already understands the

mathematics at hand in a task but are (or can be) different to the learner who is developing

an understanding with the use of a tool. Finally, tool use enters a dialectical relationship

with task, social relationships and context.

WMM certainly raised the level of consideration of tool use in mathematics.

Given the respect given to its authors in constructionist circles (and beyond), it

seems reasonable to assume the view of tools in WMM influenced many construc-

tionists but the appreciation of the subtleties of consideration of tool use in WMM is

likely to be uneven within the constructionist community and individuals in this

communities will have their own agendas. It would be foolish for me to assume that

some sort of telos operates in this community with regard to a developing under-

standing of tool use in mathematics education research. I think it is safe to say that a

constructionist view of tools remains, for the time being, that is described in WMM.
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Chapter 9

Activity Theoretic Approaches

John Monaghan

9.1 Introduction

Activity theory1 (AT) is an approach to the study of human practices—any human

practice and human practice in itself. It warrants a chapter in this book on tools and

mathematics because artefacts/tools2 are intrinsic to its approach and many math-

ematics educators use theoretic approaches to study mathematical practices. I first

consider this approach in general but then focus on the practices of doing, learning

and teaching mathematics, and the light that activity theoretic approaches shed on

tool use in these mathematical practices. The roots of AT go back to early Soviet

approaches and the section on Vygotsky in Sect. 7.2 serves as an introduction to

these roots. This chapter has four sections. Section 9.1 provides an overview of

AT. Section 9.2 traces early influences of AT in mathematics education research.

Section 9.3 considers foci of a set of mathematics education papers recent at the

time of writing. Section 9.4 explores emphases and tensions in papers considered in

Sects. 9.2 and 9.3.

1 As will soon become apparent, there are a number of schools of thought within what is called

‘activity theory’ and I use the term ‘activity theoretic approaches’ as a collective noun for these

different approaches.
2 A note for readers who are reading this as a ‘stand alone chapter’. In Sect. 1.3.1 I stated my

distinction between and artefact and a tool as, an artefact becomes a tool when it is used by an

agent to do something. I use this distinction in this chapter. For example, a compass as a metal

thing which holds a pencil and rests on a desk is an artefact but when it is picked up by someone to

draw a circle it is a tool. When its status is ambiguous I use the term ‘artefact/tool’.
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9.2 The Development of Activity Theory

It is important to start with a clarification of the word ‘activity’ as ‘activity’ is an
everyday word for ‘doing something’ and it is not always the same as the word

‘activity’ in AT. Activity became a focus for Vygotsky in the 1920s in his consid-

eration of consciousness as a problem for psychology. Kozulin (1986, pp. xxiii–

xxiv) explains:

The major objection Vygotsky had to the mentalist tradition was that it confined itself to a

vicious circle in which states of consciousness are “explained” by the concept of con-

sciousness. Vygotsky argued that if one is to take consciousness as a subject of study, then
the explanatory principlemust be sought in some other layer of reality. Vygotsky suggested

that socially meaningful activity (Tätigkeit) may play this role and serve as a generator of

consciousness.

Activity, going way back into our ancestors’ prehistory, can be conceived as that
which continues the species. Hunting, gathering, cooking and schooling are such

activities writ large. In AT ‘object orientated activity’ is the unit of analysis, that
which preserves the essence of concrete practice. The ‘object’ here is not the object-
thing but the object-raison d’etre; indeed if two individuals perform similar actions

but have different objects, then it can be said that they are involved in different

activities. Although activity theorists all agree that object orientated activity is the

unit of analysis, they argue amongst themselves about what constitutes this

‘essence’. The unit of analysis is a means to understand the Piaget vs Vygotsky
debate (see Monaghan, 2007). The cognitive activity (that Piaget was interested in)

of a student engaged in a mathematical activity is, to an activity theorist, only a part

of the unit of analysis which includes why the student is doing this mathematics,

who s/he is doing it with and what tools s/he is doing it with—and the why/who/

what cannot, to an activity theorist, be separated and analysed in themselves.

Such thinking was, though not through this example, present in the original work

of Vygotsky and this was continued after his death by Leont’ev who considered

individual and collective actions (usually with tools) and operations (things to be

performed or modes of using tools) involved in socially organized activity
(Leont’ev, 1978). Tool use here can be considered to include the primary, second-

ary and tertiary tools of Wartofsky (considered in Sect. 7.2.2); tool use is not, by

this thinking, an activity in itself though tool use and activity are dialectically

related (the activity shapes the tool use and the tool use shapes the activity).

Leont’ev emphasised that all activity is motivated (though the motive may not be

explicit) and transforming the object into an outcome is essential to the existence of

an activity; this has immediate implications for considerations of the role of the

mathematics teachers who may be mere facilitators to post-Piagetians but who are

central, to activity theorists, in ensuring that students realise the object of learning.

The upshot of learning is ‘change’, the student and the object are involved in a

dialectical transformation: the object transforms the activity of the student and at

the same time the object is transformed by the psychological reflective activity of

the student. Parallel with the work of Leont’ev was activity theoretic work in
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neurology but I do not consider this as it appears, to me, to have had little impact on

mathematics education or tool use to date.

The ideas of Leont’ev were barely known outside the Soviet Union until the

1980s. Around the same time Scandinavian work in AT, and that of Yrj€o Engestr€om
in particular, began to attract the attention of education researchers. Engestr€om
(1987) extends Vygotsky’s focus on mediation through signs and tools to multiple

forms of mediation and extends Leont’ev’s frame to ‘activity systems’ to include

the community and social rules underlying activity. These ideas are commonly

schematised as in Fig. 9.1 below.

Figure 9.1 is designed to show multiple forms of mediation, for example: the top

triangle (subject—mediating artefact—object) is the mediational triangle consid-

ered in Sect. 7.2; in the lower left triangle (subject—rules—community), social

rules (norms and conventions) are mediational means; in the lower right triangle

(division of labour—community—object) the division of labour mediates the

object-oriented actions of the community. Figure 9.1 as a whole is used, in specific

cases, to represent activity systems and the subsystems considered in this paragraph

should be considered only in relation to the activity system. Activity systems

research often examines interactive activity systems such as a hospital and an

outpatient clinic with a focus on the objects of activity in the two systems.

Engestr€om (2001) presents five principles for his form of AT: the activity system

as a whole as the unit of analysis; multi-voicedness, ‘multiple points of view,

traditions and interests’ (Engestr€om, 2001, p. 136); historicity, ‘Activity systems

take shape and get transformed over lengthy periods of time’ (Engestr€om, 2001);

contradictions, ‘as sources of change and development’ (Engestr€om, 2001, p. 137);

and ‘the possibility of expansive transformations . . . A full cycle of expansive

transformation may be understood as a collective journey through the zone of
proximal development of the activity’ (Engestr€om, 2001). It might be thought that

tool mediation attracts less attention in activity systems research than in those of

Mediating artefacts

Subject Object

Division of labourCommunityRules

Fig. 9.1 Engestr€om’s expanded mediational triangle
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Vygotsky and Leont’ev (and there is some truth in this) but activity systems

research emphasises tool use in the context of the whole system; and it is appro-

priate to take a paragraph to emphasise ‘tool use in context’ in all the above forms

of AT.

AT in Vygotsky, Leont’ev and Engestr€om’s forms is often referred to as

cultural–historical activity theory (CHAT). Cole (1996, p. 108) is an eloquent

proponent of CHAT and states that the central thesis is that ‘the structure and

development of human psychological processes emerge through culturally medi-

ated, historically developing, practical activity’ and these three components are

interrelated. I have addressed practical activity above but I feel a few words on

culture and on history are appropriate. ‘Culturally mediated’ includes tool media-

tion. The book you are reading is focused on tools and mathematics but CHAT is

focused on all tools in activity and language is ‘an integral part of the process of

cultural mediation’ (Cole, 1996). We downplay language as a tool in this book to

address our focus but we do not deny its place as the ‘tool of tools’ (Cole, 1996).
There is a sense in which the interrelated set of tools (with no special status given to

mathematical tools) used in collective activity is, to a CHAT researcher, the basis

for the culture of that collective. With regard to history, we are each born into a

culture based on a set of interrelated artefacts/tools, and our immersion in this

culture continues in our (mathematical) development/education. We attend school

where we have a teacher who was born into a prior form of our culture (who had a

teacher . . . who had a teacher . . .). Our teacher looks to our future (including what

tools she/he/society feels we need to master) but this vision of our future needs is

grounded on valuations of what should be preserved from the past. So, tool use is of

fundamental importance to CHAT researchers but this is tool use in the context of

cultural–historical activity.

Apart from scholars, such as Michael Cole, who could read Russian texts, AT

came to be known by Western scholars after the appearance of Vygotsky (1978),

Leont’ev (1978) and Wertsch (1981).3 The third book has not been mentioned until

now. It is a primer on AT edited by James Wertsch which contains a preface by

Cole, an introduction by Wertsch and translations of key Soviet AT texts grouped

under the headings: theoretical foundations; Vygotsky’s influence; the role of sign
systems; and empirical studies. AT (in its various forms) is used as a framework in

many fields of study. Three fields of study relevant to this book are human–

computer interaction (HCI; see Nardi, 1996), ergonomics (see Daniellou &

Rabardel, 2005) and education (see Daniels, 2002). Wertsch (1991, 1998) has

attracted the attention of mathematics educators interested in tool use because it

focuses, amongst other things, on the person-tool dialectic or, as he puts it, ‘the
irreducible bond between agent and mediational means’ (1997, p. 27); the bond in,
say, a person using a calculator, is irreducible because the act of calculating with a

3 I will focus on English language texts due to (1) the dominance of the English language in

Western academic writing, (2) English is my first language and (3) to keep this chapter to a

reasonable length.
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calculator cannot be reduced to what the human alone can do or to what the

calculator can do, the calculation is done by a human-with-calculator. Wertsch

emphasises that “the relationship between action and mediational means is so

fundamental that it is more appropriate, when referring to the agent involved, to

speak of ‘individual(s)-acting-with-mediational-means’ than to speak simply of

‘individual(s)’” (1991, p. 12). I now consider the genesis of activity theoretic

influences in mathematics education (mainly in English language writing).

9.3 The Genesis of the Influence of Activity Theory
in Mathematics Education Research

In this subsection I trace, to the best of my ability, the early influence of activity

theory in Western4 mathematics education research. I do this via two subsections.

In the first I consider two books from around 1990. I then consider the influence of

AT in academic journal papers.

9.3.1 Two Activity Theoretic Mathematics Education Books

I believe that the first English language text by aWestern mathematics educator was

a book on the politics of mathematics by the Norwegian Stieg Mellin-Olsen (1987).

This book focuses on the alienation of learners of mathematics and he employs the

approaches and constructs of Vygotsky and Leont’ev. Mellin-Olsen considers tools

in a broad sense, ‘both thinking-tools and communicative tools . . . Their function-
ality is dependent on whether they are experienced in the process of Activity or not’
(Mellin-Olsen, 1987, p. 48) and that language is the basic human thinking tool.

Three years after Mellin-Olsen (1987) the National Council of Teachers of Math-

ematics published a translation of a 1972 book by the Soviet educator Davydov.

The aspect of Davydov’s work that attracted most attention was his consideration of

abstraction and generalisation, as Jeremy Kilpatrick, in the Introduction to Davydov

(1990, pp. xv–xvi), wrote:

Much work on the learning of concepts and principles has assumed that such learning

occurs “from the ground up.” Students need to see many examples so that they can use

induction to form a generalization. The generalization reduces the diversity in the specific

examples. Davydov argues that we ought to conceive of learning differently. The specific

examples should be seen as carrying the generalizations within them; the generalization

process ought to be one of enrichment rather than impoverishment.

4 This caveat is important as the influence of AT in mathematics education research in (what was

known as) ‘communist bloc’ countries was long standing at the time AT started to influence

Western mathematics education research.
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Davydov’s views on abstraction, his ascent to the concrete, which refers to the

development of an idea via a dialectical to and fro between the concrete and the

abstract, was to become the basis for a well-respected framework of ‘abstraction in

context’ which stemmed from Hershkowitz et al. (2001). Fascinating as Davydov’s
work in this area is and despite his references to tools and social interactions, he

says virtually nothing of the place of tools in the formation of abstractions and

generalisations.

9.3.2 The Genesis of the Influence of AT in Academic
Journal Papers

The remainder of this section considers the early influence of AT in Western

mathematics education research journals.5 In planning this subsection I encoun-

tered two problems which I relate for the sake of intellectual transparency. First,

how do I overcome the bias of simply considering papers with which I am familiar?

My solution to this problem was to adopt a systematic means of considering paper.

The second problem is, how do I do this in a reasonably short word length? My

solution was to choose one primary source, the highly respected international

journal Educational Studies in Mathematics (ESM). I searched the ESM web site

using the keywords ‘activity’, ‘Vygotsky’, ‘Leont’ev’ and ‘Engestr€om’. I choose the
three names to ensure that I considered all the dominant approaches to AT. I

stopped my search when I had papers that I considered represented all current

approaches to AT employed by scholars in mathematics education research (at the

time of writing). The remainder of this subsection provides a summary (with

specific regard to tool use) of six papers from the period 1996 to 2003.

Two AT papers appeared in ESM in 1996, Bartolini Bussi (1996) and Crawford

(1996). Although Crawford (1996) does report research it is largely an exposition of

Vygotskian AT. It asks question such as ‘What difference does the use of tools such

as computers and calculators make to the quality of human activity?’ and states that
these, to Vygotsky, ‘are cultural artefacts’ (Crawford, 1996, p. 57) but the paper

does not explore the nature of tools further. Three aspects of this paper in a leading

academic journal suggest that AT was not, in 1996, widely known: the fact that the

paper has an expository style (such styles are often used when a subject matter is

new); there is no reference to Leont’ev or Engestr€om; the paper references only

three works (all books not journal papers) from the field of mathematics education

and these three books are only loosely associated with AT in having a social/

practice orientation (Lave, 1988; Papert, 1994; Walkerdine, 1988).

Bartolini Bussi (1996) also has an expository style (with regard to the AT of

Vygotsky and of Leont’ev) but its main focus is a report on a 3-year primary

5 I focus on academic journals as I regard them as a dominant media through which ideas are

circulated in academia.
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mathematics teaching experiment on geometric perspective which was part of a

wider project on mathematical discussion. The paper analyses the teaching exper-

iment ‘by means of the theoretical construct semiotic mediation (Vygotsky, 1978)

in an attempt to substantiate its crucial effect on pupils’ learning and metalearning’
(Vygotsky, 1978, p. 13) and ‘The theory of activity, actions and operations devel-
oped by Leont’ev (1978) is supposed to offer a suitable tool to either differentiate or
coordinate the analysis of long term and short term processes’ (Leont’ev, 1978,
p. 15). The design of the teaching experiment includes tasks, mathematical discus-

sions and ‘appropriation of existing cultural artefacts (e.g. devices, texts and so

forth’ (Leont’ev, 1978, p. 22). The word ‘tool’ has two uses in the paper: Leont’ev’s
theory as a tool for analysis (see the quote two above); ‘semiotic tools’. The term
‘semiotic tool’ is actually not defined in the paper but examples of semiotic tools are

provided. One such example is a ‘two column scheme’, ‘In the left column there

was reality, in the right column representation’ (Leont’ev, 1978, p. 26), which was

‘built collectively in a discussion orchestrated by the teacher’ (Leont’ev, 1978,
p. 33). The two column scheme was created to highlight invariant and non-invariant

properties of 3D objects in 2D representations; one column was for ‘reality’, the
other for ‘representation’. The two column scheme served to focus students’
attention not only on what has changed but on what has not changed (the cultural–

mathematical idea of invariance). Once the scheme had been created, it ‘acted as a

semiotic tool in perspective drawing for either producing or reading an image’
(Leont’ev, 1978, p. 33).

Bartolini Bussi (1996) and Crawford (1996) show that ‘AT had arrived’ in

mathematics education research in 1996 and Bartolini Bussi (1996) reveals a very

specific appropriation of the word ‘tool’. In 1998 there were two ESM papers that

considered tool use in very different ways to Bartolini Bussi (1996), Chassapis

(1998) and Pozzi, Noss, and Hoyles (1998), which I now consider.

Chassapis (1998) focuses on the processes by which children develop a formal

mathematical concept of the circle by using various instruments to draw circles. It

considers drawing circles: by hand; using circle tracers and templates; and using the

compass. The primary theoretical influences are Vygotsky (the similarities and

differences between signs and tools in activity; the difference between spontane-

ous/everyday and cultured/scientific concepts) and Soviet and Western interpreters

of Vygotsky, e.g.: Zinchenko, ‘tool-mediated action must be considered as the

primary unit of analysis for a Vygotskian account of human mental functioning’
(Chassapis, 1998, p. 276); andWertsch, that tools “have been developed in a culture

over extended periods of time and have become an integral part of human activity,

being ‘the ‘carriers’ of socio-cultural patterns and knowledge’” (Chassapis, 1998,

pp. 275–276). Chassapis (1998) stresses that:

The process of learning to use a tool, for example, an abacus, involves the construction of

an experiential reality that is consensual with that of others who know how to use an abacus.

As a consequence, when we use an abacus individually or while interacting with others, we

participate in a continual regeneration of a consensual reality which both constrains and

enables our individual ways of thinking and calculating. (Chassapis, 1998, p. 276)
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Chassapis (1998) concludes that children’s everyday concepts of a circle are

global and static curvature concepts, not that of a set of points equidistance from a

fixed point. These everyday concepts are in the realm of perceptual thinking and the

use of freehand circle drawing and of circle tracers and templates does not radically

change these everyday concepts. The use of the compass, however, ‘structures the
circle-drawing operation . . . may give rise to concepts constructed in the realm of

action-bound practical thinking . . . constituting a potential ground for the develop-

ment of analytical, more formal mathematical concepts of the circle’ (Chassapis,
1998, p. 292).

Pozzi, Noss, and Hoyles (1998) results from research on nursing. As the chapter

you are reading is on activity theoretic approaches, it is appropriate to mention that

this research is one of several studies by this team where the object of the research

activity is to understand mathematical practices in workplaces. The goal of this

paper is to address the question ‘how do resources enter into professional situations,

and how do they mediate the relationship between mathematical tools and profes-

sional know–how?’ (Pozzi et al., 1998, p. 110).The paper focuses on nurses

administering drugs and monitoring fluid balance. The opening paragraph of the

paper includes an unambiguous homage to the value of activity theory in such

work:

the entire corpus of work on activity theory, offers compelling evidence that individual and

social acts of problem solving are contingent upon structuring resources, including a range

of artefacts such as notational systems, physical and computational tools, and work pro-

tocols (Gagliardi, 1990). These artefacts are ‘crystallised operations’ (Leont’ev, 1978),
borne out of needs within a given set of social practices, and in turn playing their part in

shaping and restructuring future practices: artefacts exhibit an ongoing dialectic of pro-

ducing and being produced by activity. (Leont’ev, 1978, p. 105)

The paper’s conclusion is also framed in activity theoretic terms. Mathematics is

bound into nurse’s action, especially when there are concerns, for example that the

wrong dose of a drug may have been given, but nursing activity is not arithmetic

activity. Nursing activity includes mathematical artefacts/tools, such as rules for

drug dosages and fluid balance charts, but the use of these tools is but a part of the

activity of nursing.

Two years after the papers by Chassapis and Pozzi et al. ESM published an AT

paper, Radford (2000), that signalled a new emphasis in mathematics education

research, semiotic-cultural analysis. Radford’s focus is on the early algebraic

thinking (generalisation) which “is considered as a sign-mediated cognitive praxis”
(Radford, 2000, p. 237) where the term ‘sign’ includes symbols, words, gestures,

indeed anything that signifies. He grounds this conception in the work of Vygotsky,

Leont’ev6 and also Bakhtin (but a consideration of the later would be inappropriate

in my brief exposition). I select a long extract which gives a flavour of the radical

action/activity regard that Radford has towards signs in mathematics education:

6 Leont’evs actually, father and son.
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instead of seeing signs as the reflecting mirrors of internal cognitive processes, we consider

them as tools or prostheses of the mind to accomplish actions as required by the contextual

activities in which the individuals engage. As a result, there is a theoretical shift from what

signs represent to what they enable us to do . . . the signs with which the individual acts and
in which the individual thinks belong to cultural symbolic systems which transcend the

individual qua individual. Signs hence have a double life. On the one hand, they function as
tools allowing the individuals to engage in cognitive praxis. On the other hand, they are part

of those systems transcending the individual and through which a social reality is objecti-

fied. The sign-tools with which the individual thinks appear then as framed by social

meanings and rules of use and provide the individual with social means of semiotic

objectification . . . the conceptual and the signifying aspects of signs need to be studied in

the activity that the signs mediate in accordance to specific semiotic configurations

resulting from, and interwoven with, social meaning-making practices and cultural forms

of signification (Radford, 2000, p. 241).

Radford focuses on small groups of Grade 8 students engaged in tasks in which

they are to use circular counters (‘chips’) to generalise from visually presented

sequences representing linear algebraic expressions (e.g. 2n� 1). The role of the

teacher is not only for the students to get the answer but to see for themselves the

kind of answer they are to get. The analysis of the activity includes discourse

analysis as students struggle to express the general through the particular, ‘you
always add 1 to the bottom, right?’. I cannot summarise the paper in this paragraph

but I can point to Radford’s focus on the intersection of semiotic means which allow

the students to appropriate cultural forms (the use of letters):

Student: How many chips to have vertically . . . you would subtract 1 from how

many chips

Teacher: But now you have to say it without using words! Use letters! OK?

Student: You have to do 1 n minus . . .

There is a sense in which Radford both continues and breaks with the traditions

of cognitive studies in mathematics education, AT and semiotics: cognition is

reconceived as social and cultural sign-mediated cognitive praxis; Vygotsky’s
distinction between signs and tools is blurred; the classic semiotic approach

where sign, object and signified are regarded in isolation is replaced by an approach

which focuses on joint acts of symbolising in context.

I close this section on the genesis of the influence of activity theory in mathe-

matics education research by bringing the work of Engestr€om (and co-workers) into

the picture. The first mention of Engestr€om in ESM appears in Jaworski (2003).

This paper outlines a framework for ‘both insider and outsider research and

co-learning between teachers and educators in promoting classroom inquiry’
(Jaworski, 2003, p. 249). It is not essentially concerned with tool use in doing

mathematics though it does consider classroom inquiry as a ‘developmental tool’
(which may, in AT terms, be taken as ‘a mediational means to assist the develop-

ment of teachers and researchers in pursuit of their educational objectives’). The
paper has a brief afterword:

It seems important to mention the suggestion of one reviewer that discussion of knowledge

and learning relating to social and societal significance might be recast in terms of an
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activity theory perspective. Subsequent work on these ideas led to my development of a

mapping between the framework here and Engestr€om’s “mediational triangle”. (Jaworski,

2003, p. 276)

Barbara Jaworski ends the paper with ‘I plan to work further on these ideas’
which, as we shall see in the next section, she did. There are a number of issues

worthy of discussion arising from the papers considered above but I leave this until

the final section of this chapter and I now move on to consider activity theoretic

approaches in mathematics education in the early part of the twenty-first century

with, of course, particular regard to tool use.

9.4 Activity Theoretic Approaches in Mathematics
Education in the Twenty-First Century

Since the Jaworski paper, 2003, AT has exerted a strong influence on research in

mathematics education and it would be rather foolish of me to attempt a summary

of this research. Further to this, in selecting research reports to review I wished, as I

stated in the preamble to Sect. 9.2.2, to avoid bias by simply considering work with

which I am familiar, so I once again looked for a source. ESM would be a suitable

source but 2012–2013 saw the publication of a two-volume special edition of The
International Journal for Technology in Mathematics Education devoted to Activity
Theoretical Approaches to Mathematics Classroom Practices with the Use of
Technology and this seemed a closed but appropriate set of papers in which to

examine current AT research practices as it is likely, with its focus on technology,

to raise issues related to tool use.

I first describe the corpus of papers in this Special Issue. Of the 11 papers 5 are

more or less ‘straight AT’: Abboud-Blanchard and Cazes (2012), Chiappini (2012),
Jaworski, Robinson, Matthews, and Croft (2012), Ladel and Kortenkamp (2013),

and Maracci and Mariotti (2013). Another two, Robert (2012) and Abboud-

Blanchard and Vandebrouck (2012), are AT with a specific French interpretation.

A further three jointly consider several approaches (called ‘networking theories’):
Fuglestad (2013) networks AT and the instrumental approach; Kynigos and

Psycharis (2013) networks constructionism and the instrumental approach;

Lagrange (2013) networks AT and the anthropological theory of didactics. Mona-

ghan (2013) considers a socio-cultural theory, Valsiner’s ‘zone theory’, that shares
Vygotskian roots with AT. The diversity of papers illustrate that AT is open to

national variation and networking with related theories. I now summarise the

purportedly ‘straight AT’ papers with specific regard to artefacts/tools.

Chiappini (2012) focuses on the teaching and learning of mid-level algebra

(equations, functions, inequalities and equivalence associated with expressions

such as x2 � 2x� 4) with software, called Alnuset, with a visual ‘algebraic line’
and conventional algebraic notation, to draw students’ attention to the culture of

mathematics (see Fig. 9.1). Chiappini is a software designer as well as a
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mathematics educator and draws on work from Fig. 9.2, Alnuset’s algebraic line the
HCI strand of AT which employs the Gibsons’ construct of affordances (considered
in Sect. 7.2) with regard to ‘usability research both as an heuristic and an ad hoc

design principle to describe the potential of a (computer) system with regard to its

effectiveness’ (Chiappini, 2012, p. 135). There are two interpretations of

affordances (of a system for a user) in the HCI community which hinge on whether

the affordances are perceived or not; the significance of this difference for HCI

work lies in the potential for user actions. This difference leads to a distinction

between the usability of a system (how a task can be completed) and its usefulness

(how a system responds to user actions). Chiappini regards this distinction and, in

particular, the construct ‘usefulness’ as

important in educational contexts where students may not focus clearly on the objectives of

the task at hand and teachers’ goals do not necessarily coincide with those of their students
in a didactical activity mediated by a digital artefact. In particular, the notion of usefulness

makes it possible to evaluate the affordance provided by the system software: to promote in

students the emergence of the objectives for the solution of the task they are engaged in; to

support the development of the teacher’s cultural goals (development of knowledge,

meaning, principles and values of the discipline) that may also transcend those of the

task in which students are involved. (Chiappini, 2012, p. 135)

Chiappini seeks to employ this distinction to evaluate student–teacher use of

Alnuset and, to this end employs an HCI breakdown of affordances: perceived

affordances; ergonomic affordances, which allow ‘embodied actions involved in

solutions of tasks and sub-tasks peculiar to the context’ (Chiappini, 2012); and
cultural affordances, which concern

the cultural teaching/learning objectives underlying the system being used. Evaluation of

cultural affordances can be carried out through the analysis of how meanings, values and

principles underlying the action mediated by the use of the embodied actions, get to be

known through the artefact-mediated activity. (Chiappini, 2012).
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Fig. 9.2 A screen shot from Alnuset
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Chiappini’s framework can be viewed as an elaboration of Leont’ev’s activity–
action–operation triple specifically designed for the evaluation of mathematics

education with software systems. The final section of Chiappini (2012) develops

a framework to evaluate the cultural affordances of Alnusetwhich uses Engestr€om’s
expansive learning cycle in four phases. In terms of tools these are as follows.

1. The students are given a task (an open algebraic problem) and the artefacts/tools

embedded into the software provide output to student input, some of this output

surprises the student and produces cognitive conflict.

2. Tasks are then:

designed in order to exploit the visuo-spatial and deictic ergonomic affordance of the

algebraic line to allow students to explore the conditions, causes and explicative mecha-

nisms of conflicts . . . the teacher’s crucial task consists in the introduction of terms and

algebraic notions found in the visuo-spatial and deictic narration of the various problematic

situations (Chiappini, 2012, p. 139)

3. The teacher encourages the student to recast their work using Alnuset’s algebraic
manipulation facilities in order for them to mathematicise surprises encountered

in earlier work:

In this phase the teacher encourages both the establishment of the algebraic axiomatic

model in the student’s practice and the development of meta-cognitive processes involved

in the re-configuration in symbolic terms of the algebraic meanings expressed beforehand

in visuo-spatial and deictic terms. (Chiappini, 2012)

4. Students, with a transformed understanding of algebraic activity, and teachers,

with a transformed understanding of their students’ understandings, engage in

teacher-led whole class consolidation of their understandings.

There are strong parallels in this paper to Radford’s (2000) paper considered

above. Both emphasise the cultural–historical (one might say ‘unnatural’) objecti-
fication of mathematical knowledge. But there are differences too: Chiappini

employs Engestr€om’s expansive learning cycle; Radford places greater emphasis

on semiotics and does not employ digital technology.

Jaworski et al. (2012) focuses on an undergraduate mathematics module for

engineering students that employs inquiry-based tasks and a computer system

GeoGebra. The teachers had put a lot of effort into designing a module to enhance

student engagement in mathematics and the object of their research was to evaluate

this design from a learner and a teacher perspective; the paper focuses on the aspect

of this evaluation related to the use of GeoGebra. An initial evaluation using

student surveys revealed some positive comments in terms of better understanding

but also ‘Just because I understand maths better doesn’t mean I’ll do better in the

exam’. The AT analysis conducted put the GeoGebra aspect of the work in

perspective, ‘It is the whole with which we work and in which we participate’.
They analyse the whole from the perspective of both the students and the teachers

using separately both Leont’ev’s activity–action–operation triple and Engestr€om’s
expanded mediational triangle. Both analysis reveal differences between students

and teachers:
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Perhaps the most important difference is the object of activity (Engestr€om) or the motivat-
ing force (Leont’ev) for the two systems. Both are valid, but the fact that they are different

means that along with other factors—values placed on forms of understanding (the rules of
the enterprise) or whether GeoGebra is positively helpful in promoting learning (mediating

artefacts)—they result in the tensions observed. (Jaworski et al., 2012, p. 151)

This paper says virtually nothing with regard to tool use. There is no explicit

mention of tools in the paper and two instances where the word ‘artefact’ is used
(one in the quote above and one in relation to Engestr€om’s expanded mediational

triangle). At one level this is surprising in a paper considering the use of GeoGebra
in a mathematics module but the paper does take a holistic view of the module

(we shall return to this via a consideration of the unit of analysis later in this

chapter).

Ladel and Kortenkamp (2013) focuses on the design and use of a multi-touch-

table (a large touch-screen artefact that registers input from fingers, not just a finger)

to engage young children (5–7 years of age) in meaningful work with whole number

operations. The paper notes a feature of the child-technology environment which

has similarities to the Gibsons’ construct of affordances, they note that ‘such
technology . . . enables children to work with virtual manipulatives directly instead

of being mediated through another input device’ (Ladel & Kortenkamp, 2013, p. 3);

and they also note that ‘We want to restrict the students’ externalizing actions to

support the internalization of specific properties of the objects7 in consideration . . .
Thus the mediation through the artefact is characterized by restriction and

focussing.’
Ladel and Kortenkamp (2013) adapt Engestr€om’s expanded mediational triangle

in what they call an ‘artefact-centric activity theory’ model (ACAT, see Fig. 9.3).

They note that:

the artefact itself does not have agency and is only mediating . . .[but] the artefact changes
the way children act drastically and in non-obvious ways . . .we use Activity Theory not

only for analyzing the interaction between subject and object, but in addition for designing

the artefact. We adapted the activity system diagram of Engestr€om . . .We believe that Rules
. . . should also affect the design of the artefact, thus we need a new relation between these

two nodes. For clarity we omit the division of labor from the diagram. Because our focus

lies on the artefact, we are not considering the relations between the rules and subject,

object and community in this article, though they are important for a full activity system . . .
(Ladel & Kortenkamp, 2013, p. 3)

Ladel and Kortenkamp (2013) view students’ arithmetic work in the light of

Leont’ev’s activity–action–operation triple and conclude that ‘Through the lens of

ACAT that places the artefact in the center of attention we can locate the various

areas of didactic and pedagogic design that have to be taken into account’ (Ladel &
Kortenkamp, 2013, p. 7). In contrast to Ladel and Kortenkamp’s account of artefact
mediation Maracci & Mariotti (2013) present a very human-centred view of

mediation.

7 Ladel and Kortenkamp (2013) consistently use the word ‘object’ to mean a ‘thing’. This occurs
elsewhere in papers in this Special Issue. We consider this interpretation later in the chapter.
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Maracci and Mariotti (2013) outline the Theory of Semiotic Mediation (TSM)

with regard to ‘the use of artefacts to enhance mathematics teaching and learning,

with a particular focus on technological artefacts’ (Maracci & Mariotti, 2013,

p. 21). This paper continues a long line of papers on semiotic mediation originating

from Bartolini Bussi (1996) considered in the previous section. TSM draws on the

AT of Vygotsky and of Leont’ev but they are critical of research where ‘the
mediating function of the artefact is often limited to the study of its role in relation

to the accomplishment of tasks’ (Bartolini Bussi, 1996). TSM is essentially semi-

otic in that:

teaching-learning . . . originates from an intricate interplay of signs. . . individuals have to
be involved in semiotic processes leading to the explicit formulation of the meaning they

have developed in relation to an activity, in order to become conscious of such meanings . . .
mathematical meanings can be crystallized, embedded in artefacts and signs . . . (Bartolini
Bussi, 1996)

TSM also draws on the work of the socio-linguist Hasan who distinguishes

between the mediator, the thing (which may be a concept) that is mediated, the

mediatee and the circumstances for mediation. Following Hasan, Maracci and

Mariotti (2013), claim that:

The mediator is not the artefact itself but it is the person who takes the initiative and the

responsibility for the use of the artefact to mediate a specific content . . . artefacts are among

the constitutive elements of the “circumstances for mediation”. In fact, the modalities of

use of the artefacts, the tasks to be accomplished, the whole organization of the classroom

work, the classroom interactions among students and between them and the teachers are

constituents of the “circumstances for mediation”. (Bartolini Bussi, 1996, p. 22)

Fig. 9.3 A representation of the ACAT theory
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Leont’ev’s activity–action–operation triple provides a frame for studying cir-
cumstances for realising the desired semiotic mediation. To mediate the learning of

mathematics the teacher has to design specific circumstances, a didactical cycle,

aimed at fostering specific semiotic mediation processes: accomplishing a task with

the artefact; producing signs related to the artefact use; and classroom discussion. A

central aim of the didactical cycle is the ‘unfolding of the semiotic potential of the
artefact’ which I interpret as having similarities to what Radford (above) calls

‘objectification’: students sitting in a mathematics classroom at the beginning of a

(sequence of) lesson(s) are there to learn mathematics and do not know what they

are to learn; the central aim of the teacher is that the students appropriate cultural

(scientific) meanings. It is crucial that teachers design tasks which ‘lead students to
develop personal meanings related to the artefact use having the potential to evolve

towards mathematical meanings’ (Bartolini Bussi, 1996, p. 23). All three parts of

the didactical cycle are essential for personal meanings to become shared meaning

and for the teacher to shape these shared meanings into public scientific meanings.

Artefacts are an essential part of this cycle but they are not mediating agents in

the TSM.

Abboud-Blanchard and Cazes (2012) interprets research on Electronic-Exercise-

Bases (EEB), digitised mathematical exercises. The research was carried out over

3 years with 30 teachers with a focus on three phases of teachers’ use of EEBs, ‘the
preparation of the lesson, its progress and the reflexive return that the teacher makes

on this lesson’ (Abboud-Blanchard & Cazes, 2012, p. 142). The research questions

that the paper addresses are, ‘Why and how do teachers use EEB? What effect does

this use have on their teaching activity?’ (Abboud-Blanchard & Cazes, 2012,

p. 141). The paper uses Engestr€om’s expanded mediational triangle (unamended)

to interpret the data (teacher interviews and classroom observations). Like Ladel

and Kortenkamp (2013), the authors sometimes appear to use the word ‘object’ to
mean a ‘thing’, e.g. AT ‘studies a subject acting on an object to produce a result’
(Abboud-Blanchard & Cazes, 2012, p. 142). The paper does not use the word

‘artefact’ but does use the words ‘tool’ and ‘instrument’, for example in explaining

the terms of Engestr€om’s expanded triangle they write ‘The tool allows the subject
to exercise her/his activity. It is a set of tools or of instruments. The essential

instrument in this study is the EEB’ (Abboud-Blanchard & Cazes, 2012).

Abboud-Blanchard and Cazes are French researchers but, apart from the use of

the word ‘instrument’, there is nothing particularly French about Abboud-

Blanchard and Cazes (2012). In contrast, the final two papers I consider

(Abboud-Blanchard & Vandebrouck, 2012; Robert, 2012) do present ‘a French

take’ on AT. I would like to add here that I do not regard one’s nationality as

determining one’s theoretical framework: Chiappini, Mariotti and Maracci are all

Italian but their papers present differing foci within AT. But there is a specific line

of inquiry within French mathematics education research that takes its cue from

Leplat (1997). Leplat focused on the psychology of the workplace, viewing the

characteristics of the tasks and the characteristics of the workers in two dialectical

feedback loops with ‘activity’ in the middle, the ‘double approach’: a production

loop in which activity is object-oriented to the task(s) at hand; a construction loop in
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which activity is subject-oriented to the development or well-being of the workers.

Rogalski (2013, p.7) summarises this thus:

The situation is a determining factor of the activity, and is simultaneously itself modified by

the activity. This modification primarily affects the object of the activity, but can also

include modification of resources and constraints. Subjects, too, both determine the activity

and are modified in turn by their own activity.

Some (not all) double approach researchers also ‘network’ this approach with

Rabardel’s instrumentation theory and Chevallard’s anthropological theory of
didactics (considered in Chap. 10). I now consider the papers of Robert (2012)

and Abboud-Blanchard and Vandebrouck (2012).

Robert (2012) outlines the ‘double approach’ with regard to 10 years of research
on students’ and teachers’ activities in and out of mathematics classrooms. She

stresses that this work addresses AT ‘from a cognitive individual perspective, not as

a whole system . . . [not] the socio-cultural contexts of students and teachers’
(Robert, 2012, p. 151). The main foci of this work has been on students solving

exercises and teachers’ monitoring of student work (this is consistent with Leplat’s
characteristics of the tasks and of the workers). The focus on student work con-

tinues a French cognitive strand and Robert references Douady and Vergnaud and

stresses ‘knowledge’: old knowledge, new knowledge, knowledge to be used, states

of knowledge, reorganisation of knowledge, recognition of knowledge, lack of

knowledge, knowledge to be adapted, . . . Further to this:

student learning is tied to the quality of the so-called “scenario,” but it is also tied to the

precise way the students work on the corresponding tasks. So, the better we describe the

offered (proposed) tasks, the better we succeed in understanding students’ actual activities
(Robert, 2012, p. 155)

The focus on the teacher in this body of research is at a local and a global level.

At the local level this involves studying the ways that teachers interact with students

and their mathematical work and (with an implicit references to Leplat) distin-

guishes between procedural help (directed at the task completion) and constructive

help (with a focus on the students’ interpretations of the task). The global level

considers the management of student activities with respect to the craft knowledge

of the teacher-in-context. The local and global level are interrelated. Robert also

stresses (again with an implicit reference to Leplat) the interrelated productive

(students completing tasks) and affective dimensions of teaching. Robert (2012) is a

general introduction to the double approach and does not focus on the artefact/tools

used in mathematics classroom.

Abboud-Blanchard and Vandebrouck (2012) is written as a follow up to Robert

(2012) with a focus on teachers’ practices in technology-based lessons with partic-

ular regard to Leplat’s production and construction loops. The genesis of teachers’
practices with technology are considered to have ‘external aspects which corre-

spond to the evolutions of the teachers’ productive activity throughout technology-

based lessons, but also have internal aspects related to the constructive activity

which accompanies these evolutions’ (Abboud-Blanchard & Vandebrouck, 2012,

p. 159). It is assumed that teachers’ practices are stable and the evolution of these
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practices involves three levels: the micro level, which has similarities to Leont’ev’s
‘operations’; the local level, which refers teachers’ goals and actions; and the global
level, which refers teachers’ motives. Abboud-Blanchard and Vandebrouck (2012)

explanation of teachers’ technological geneses puts forward a two-stage process in

which these levels interact.

In the first stage the local level is regulated by the micro level. When a teacher

first uses a new tool in the classroom the ‘the automatic regulation of teaching

practice at the micro level allows the teacher to cope with difficulties emerging

during the technology session at the local level’ (Abboud-Blanchard &

Vandebrouck, 2012, p. 160) but this is usually short-lived and ‘some teachers feel

the need to build new specific practices with technology, while others will tend to

reduce the role of technology within their teaching’ (Abboud-Blanchard &

Vandebrouck, 2012). This stage concerns Leplat’s ‘production loop’ but ‘it gener-
ates constructive activity at the medium and long-term’ (Abboud-Blanchard &

Vandebrouck, 2012, p. 161) and this leads to the second stage.

The second stage has two parts. The first part concerns the movement from the

local to the global level and includes an evolution of the production loop and the

development of the construction loop, ‘There is a new balance between traditional

sessions and technology sessions, between collective work and individual phases of

students’ activity or between old and new mathematical knowledge in students’
activity’ (Abboud-Blanchard & Vandebrouck, 2012). The second part concerns the

movement from the local level to the micro level (the refinement of the teachers’
understanding of the artefacts/tools they are using in their classrooms). This part

develops over time as a teacher goes from ‘tinkering’ with an artefact, to using it as
a tool for personal mathematics, to ‘tinkering’ with an artefact in the classroom, to

assisting the technomathematical development of their students’ use of a new tool

for doing mathematics.

I now consider emphases and tensions in these papers together with the

approaches considered in the previous section.

9.5 Emphases and Tensions in Mathematics Education
Activity Theoretic Approaches

There are similarities in the approaches in the mathematics education papers

considered in Sects. 9.2 and 9.3. Every paper: pays homage to Vygotsky by

mentioning his works directly or indirectly (via Leont’ev or Engestr€om); places a

positive valuation on considering ‘practice’ (though what ‘practice’ involves

varies); attempts to describe (rather than prescribe) a practice (bar, possibly,

Chiappini, 2012). But there are also differences which I shall consider briefly

under the following interrelated categories: sign and tool; unit of analysis; cogni-

tion; the cultural–historical dimension; mediation.

I have mentioned (in Sects. 7.2 and 9.1) Vygotsky’s observation on the similarities

and differences between signs and tools. Vygotsky’s view of these similarities and
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differences is present in the early papers (Chassapis, 1998; Crawford, 1996; Pozzi

et al., 1998), is implicit in Bartolini Bussi (1996) and, as mentioned above,

Vygotsky’s view is extended and, to some extent blurred, in Radford (2000). But

when we consider the more recent IJTME papers there are differences and omissions.

Neither Jaworski et al. (2012) or Ladel and Kortenkamp (2013) consider signs or

tools in the body of the text, though the latter does place emphasis on artefacts.

Maracci and Mariotti (2013) make much of signs and artefacts but only mentions

tools once in a quote. In the three papers by French authors ‘sign’ is only mentioned

(twice) in Robert (2012). These differences, I feel, go beyond terminology used and

reflect differences in the basic fabric of scholastic mathematical activity.

I shall consider differences with regard to the unit of analysis and cognition

together as it seems important, to me, for mathematics education research, whether

cognition is an explicit part of the unit of analysis. Despite the importance of the

unit of analysis for AT research, not all papers explicitly consider the unit of

analysis. Considering the early ESM papers it is explicitly mentioned by Chassapis

(1998, p. 276), ‘tool-mediated action must be considered as the appropriate primary

unit of analysis’ and Radford (2000, p. 244) who used it to guide his data analysis,

‘situated discourse analysis whose elementary unit (i.e. the unit of analysis) was

constituted by the refined (i.e. contextualised and cadenced) identified salient

segments’. Cognition, mathematical thinking with signs/tools, is central in both

of these papers. Neither Bartolini Bussi (1996), Crawford (1996) or Pozzi

et al. (1998) explicitly mention the ‘unit of analysis’ but (1) Bartolini Bussi (1996)
clearly considers the long-term teaching and learning process as the unit of analysis,

and (2) in Crawford (1996) and in Pozzi et al. (1998) cognition is viewed in a wider

context where there is bi-directional ‘shaping’: ‘mathematical knowledge increas-

ingly shapes and is shaped by human activity’ (Crawford, 1996, p. 46);

In the past, the issue tended to be seen in purely cognitive terms . . .Now investigations tend

to focus on how activities are shaped by the social practices and goals of the working

culture, and to examine how this shaping informs our understanding of mathematical

behaviour and learning. Pozzi et al. (1998, p. 105).

There is no mention of ‘unit of analysis’ in any of the IJTME papers but my

reading of the seven papers puts them into four camps with regard to what this unit

might be and the place of cognition in this unit. The first is a ‘systems approach’
(Engestr€om’s model with reference to Leont’ev’s triple) where the implicit unit of

analysis is the activity system and, in which, cognition is an implicit part of this

system; I put the papers by Abboud-Blanchard and Cazes (2012) and Jaworski

et al. (2012) in this camp. The second camp is reflected in the papers by Robert

(2012) and Abboud-Blanchard and Vandebrouck (2012) which consider ‘Activity
Theory from a cognitive individual perspective, not as a whole system. It does not

address a more general point of view, involving the socio-cultural context of

students and teachers’ (Robert, 2012, p. 153). The third is the papers by Chiappini

(2012) and Ladel and Kortenkamp (2013). Both of these papers use the Engestr€om
model (adapted in the case of the second paper) where the model is the implicit unit

of analysis but, in which, individual cognition (with artefacts) is an intrinsic

component. The fourth camp is a singleton, the paper by Maracci and Mariotti
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(2013) where the implicit unit of analysis is the teacher-mediated didactical cycle

and cognition is an intrinsic component:

A didactical cycle, or an iteration of didactical cycles, can be seen as an activity whose

motive is to promote the generation of students’ personal signs related to the accomplish-

ment of a task through an artefact and their evolution towards desired mathematical signs.

(Maracci & Mariotti, 2013, p. 23)

With regard to the cultural–historical dimension, the papers considered, in my

opinion, fall into two camps: those that embrace this dimension (Bartolini Bussi,

1996; Chassapis, 1998; Chiappini, 2012; Crawford, 1996; Ladel & Kortenkamp,

2013; Maracci & Mariotti, 2013; Pozzi et al., 1998; Radford, 2000); and those that

appear to ignore this dimension (Abboud-Blanchard & Cazes, 2012; Abboud-

Blanchard & Vandebrouck, 2012; Jaworski et al., 2012; Robert, 2012). Those in

the first camp do not view mathematical activity as a ‘natural’ unfolding of

psychological development. Mathematics has a culture steeped in a history and,

in workplace mathematics:

Fluid balance charts, like many informational resources in the workplace, are not products

designed for the benefit of individuals; they are cultural products, in constant use by

members of a working community. (Pozzi et al., 1998, p. 115)

Radford’s (2000, p. 240) provides a non-ambiguous statement of the importance

of the cultural–historical dimension:

as long as the relation subject/object is seen as a non-culturally-mediated, direct one,

meaning construction appears to be the result of the relation that the isolated subject

entertains with the ahistorical object

I do not claim that those in the second camp view mathematical activity as a

‘natural’ unfolding of psychological development but they do not say that it is not this.

My final consideration of differences in the approaches in the mathematics

education papers considered in Sects. 9.2 and 9.3 concerns mediation. Mediation,

by people and/or language and/or sign/artefacts/tools, is a central concept in the

majority of papers considered except in Robert (2012), which does not mention

‘mediation’, and in Abboud-Blanchard and Cazes (2012) and Jaworski et al. (2012),
where consideration of ‘mediation’ is mainly restricted to mentioning its impor-

tance in the theoretical frameworks of Leont’ev and Engestr€om. But behind the

‘and/or’s in the previous sentence are different emphases with regard to mediator.

These emphases are most clearly marked in the papers by Ladel and Kortenkamp

(2013) and Maracci and Mariotti (2013). To Ladel and Kortenkamp (2013) artefact

mediation is in the centre of their model, which goes by the name of ‘artefact-
centric activity theory’ but to Maracci and Mariotti (2013, p. 22), ‘The mediator is

not the artefact itself but it is the person who takes the initiative and the responsi-

bility for the use of the artefact to mediate a specific content’. I suspect that behind
‘theoretic statements’ on mediation, there are the phenomena that interest us as

researchers. Ladel and Kortenkamp are clearly interested in the potential of their

artefacts, multi-touch-tables, to improve learning. Maracci and Mariotti, as noted

above, continues a line of papers on semiotic mediation that can be traced back to

Bartolini Bussi (1996) who focused on mathematical discussion, where human
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mediation is a central consideration. Further to this, they state that they follow

Hasan in formulating their interpretation of mediation. Hasan, as noted above, is a

socio-linguist who has based her academic career on the study of everyday dis-

course, for example, between mothers and daughters. Hasan is interested in such

things as daughters’ appropriation of the language of their mothers and Maracci and

Mariotti appear to have appropriated Hasan’s focus for mediation.

I feel that the differences considered above show that AT is a loose collection of

approaches (at least in mathematics education) and is not a unified theory. In

closing this section I would like to bring in my interests in tools and mathematics

and consider tensions in activity theoretic approaches with regard to Leont’ev’s
activity–action–operation triple. Artefacts/tools are important in each element of

the triple but the focus on artefacts/tools is different in each element. In the

operation element we may focus on the details of manipulating an artefact/tool.

Such a focus is likely to interest a mathematics educator who is convinced that a

calculator or a dynamic geometry system (DGS) or whatever can help students

do/learn mathematics by establishing relationships between mathematical objects

but that certain configurations (e.g. modes of dragging in a DGS) of the artefact/tool

are important to optimise learning. In the action element the mediating qualities of

an artefact/tool become paramount and mathematics educators may focus on the

transformation of actions by different artefacts/tools; the differences, for example,

in drawing the graph of a specific function using pencil, ruler and graph paper

compared to drawing the graph of the same function using GeoGebra. The human

part of this focus on action may be an individual or a group of individuals but when

we consider the activity element it is always a group. The analysis activity element

includes the operation and action elements but its consideration of mediation goes

beyond artefact or person mediation to ‘include the institutional contexts and

history of the systems of activities’ (Cole, 1996, p. 333) under investigation.
Although Leont’ev’s activity–action–operation triple is not supposed to be

ripped asunder, it can be difficult to combine the elements. Cole (1996,

pp. 332–334) considers similar matters in relation to Wertsch’s focus on mediated

action and Engestr€om’s focus on activity systems, he concludes:

Mediated action and its activity context are two moments of a single process, and whatever

we want to specify as psychological processes is but a moment of their combined proper-

ties. It is possible to argue how best to parse their contributions in individual cases, in
practice, but attempting such a parsing “in general” results in empty abstractions,

unconstrained by the circumstances to which they are appropriate. (Cole, 1996, p. 334)

LaCroix (2009) goes further than Cole (though not with regard to Wertsch) and

argues, in the context of an individual case, that Engestr€om’s approach and

Radford’s approach ‘do not sit well together’. The case concerns adult students

(pre-apprentices in the pipe-trades) learning to read fractions-of-an-inch on a

measuring tape (an essential trade-skill) in a course. LaCroix was a participant

observer and collected data from multiple sources over the 8 week course. He

analysed the data in two separate stages using Engestr€om’s approach and then

Radford’s approach and notes that the analysis from the point of view of Radford’s
approach sometimes required ‘frame-by-frame analysis of videotape to assess the
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role and co-ordination of spoken language with the use of artifacts and gestures’
(LaCroix, 2009, p. 856). Both analyses produced interesting results but:

[Engestr€om’s] foci, while useful for research in many contexts, run counter to mathematics

educators’ practical interests in teaching and learning activity, that is, individual students’
mathematical enculturation on a day-to-day, if not minute-to-minute basis . . . [Radford]
provides a way of defining and positioning mathematics as a cultural practice within

particular forms of activity . . . [Engestr€om] theorizes learning within activity theory as

change in the activity itself, Radford focuses on the learning of individuals as they come to

be part of an existing historical-cultural activity. (LaCroix, 2009, p. 859)

This statement is similar to my statement above on the phenomena that interest

researchers and is linked to my statement, early in this chapter, that activity

theorists argue amongst themselves about the appropriate unit of analysis. I think

that AT has contributed much to our understanding of tool use in mathematics but it

offers us nuanced understandings.
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Chapter 10

Didactics of Mathematics: Concepts, Roots,
Interactions and Dynamics from France

Luc Trouche

Abstract This chapter analyses specificities of the French field of ‘didactics of

mathematics’, questioning its reasons, tracing the geneses of concepts related to

artefacts and following influences on, and interactions with the international com-

munities of research. This complex genesis is traced in four sections: a first section

on the roots of the didactics of mathematics in France, a second section on two

founding theoretical frameworks (the theory of didactical situations of Brousseau,

and the theory of conceptual fields of Vergnaud), a third section on the anthropo-

logical approach of Chevallard, a fourth focusing on specific approaches dedicated

to artefacts and resources in mathematics education. Beyond historical and cultural

specificities, the chapter aims to evidence the potential of interactions between

teachers and researchers, as well as interactions between researchers in mathemat-

ics and mathematics education for improving our understanding of learning and

teaching issues in mathematics.

10.1 Introduction

In this chapter, I analyse specificities of the French field of ‘didactics of mathemat-

ics’, questioning its reasons, tracing the geneses of concepts related to artefacts, and
following influences on and interactions with the international communities of

research. Questioning the dynamics of the theoretical frameworks, that we bear

and that leads us, is complex, as each theory is a result of individual and collective

pathways (Trouche, 2009), which meet a set of sometimes critical facts and are

subject to multiple influences. I have organised this chapter in four sections, giving

voice to some main actors1 involved in these complex geneses: a first section on the

roots of the didactics of mathematics in France, a second section on two founding

theoretical frameworks (the theory of didactical situations of Brousseau, and the

1 I have chosen to give sometimes long quotations, keeping the words and the language—

sometimes in French—of these authors, in order to allow the reader to have a direct contact

with their works.

© Springer International Publishing Switzerland 2016

J. Monaghan et al., Tools and Mathematics, Mathematics Education Library,

DOI 10.1007/978-3-319-02396-0_10

219



theory of conceptual fields of Vergnaud), a third section on the anthropological

approach of Chevallard, a fourth focusing on specific approaches dedicated to

artefacts and resources in mathematics education.2

10.2 The Emergence of Didactics of Mathematics in France
as the Result of an Exceptional Conjunction
of Phenomena

It is impossible to summarise in a few lines a tumultuous history, made of contrary

motions. We will try to underline here some major facts and trends: the position of

mathematics teaching in the French educational debate, the role that mathemati-

cians took in this debate, the joint action of psychologists, mathematicians, and

teachers themselves in it, and finally, the creation of the IREM as a ‘total social
fact’.

10.2.1 A Strong and Questioned Position of Mathematics
as a Subject of Teaching

The position of mathematics in French curricula appears to be getting stronger over

time, if we consider, for setting the scene, three key moments: 1802, 1902 and 2002

(change of centuries of course, but also of economic, social and political condi-

tions). This position appears, however, largely questioned if we consider, beyond

these benchmarks, the discontinuity of the curricular development.

1802: Napoleon’s ordinance of 19 frimaire of Year XI (December 10, 1802)

stated: ‘The lycées will essentially teach Latin and mathematics’. For Gispert

(2014, p. 230), ‘In placing mathematics at the same level as Latin in the male

secondary curriculum, [this ordinance] took into account the new situation follow-

ing the French Revolution, in which mathematics had become a core aspect of an
intellectual education combining theory and practice’.

1902: a new reform, following a great survey launched by the French Parlia-

ment, reasserted these two structuring aspects of mathematics education (Gispert,

2014, p. 233):

– The educational importance of mathematics and science: ‘It was, for a time, the

end of the monopoly on classical humanities by the lycées, through the creation

of a modern curriculum that was on par—at least in theory—with the classical

curriculum. It also furthered the development of new disciplines such as the

living languages, sciences, and mathematics’.

2 I would like to thank Janine Rogalski and Rudolf Straesser for their comments and advices.
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– The importance of the experience for learning mathematics and connecting them

to sciences: ‘[In the first cycle], it was recommended to use the concrete

experience and induction as the first step necessary before the transition to

deductive reasoning. In the second cycle, it was necessary to introduce the

new and connected notions of functions and their variations: teaching has to

be now linked to physics and its need’.

2002: a report of the CREM3 Commission (appointed in 1999 by the French

Ministry of education for rethinking the teaching of mathematics for the new

century) stated ‘La mathématique est la plus ancienne des sciences et celle dont

les valeurs sont les plus permanentes’ (Kahane, 2002). It situates the mathematics

among the other sciences and underlines the necessity of connecting their teaching

in combining rigor and imagination.
Beyond this apparent continuity, the situation is more contrasted. First of all, in

two centuries, the school system underwent a true metamorphosis, from a school for

males and elite to a school for (almost) all, with compulsory education until

16 years of age. Secondly, there is often a large gap between the prescribed and

the real curriculum. For example, after the ordinance of 1802, Gispert (2014,

p. 230) notices that ‘actually the real teaching, after this ordinance, continues to

favour Latin and the classical humanities until the end of the nineteenth century,

and to separate theory and practice’: it appears that two kinds of mathematics

teaching existed, according to the social class and schooling structure (lycées

vs. primary schools): formation of the mind on one side, training for the practice

on the other side. Thirdly, questions at the heart of mathematics teaching appeared

very sensitive to social and political events (and the twentieth century was fertile in

such major events). Gispert (2014, p. 235) indicates, for example, ‘that the reform
of the beginning of the twentieth century was accused of being inspired by the

German model of the Realschule to the detriment of the specificity of a ‘French
spirit’ based on Latin and the classical humanities. In 1923, the Chamber, strongly

dominated by conservatives, voted for a new reform that revoked the 1902 pro-

grams and principles. Secondary instruction, including mathematics, was again

dominated for decades by a theoretical and abstract conception’. Contrary evolu-

tions happened at the end of the 1930s, under the left-wing regime of the Popular

Front.

Last but not least, mathematics teaching appears very sensitive to intellectual

and scientific pressure. A major event was the constitution, after the Second World

War, of the Bourbaki group of mathematicians, who wrote the manifesto The
Architecture of Mathematics, characterising mathematics as follows: ‘In the axi-

omatic conception, mathematics appears all in all as a reservoir of abstract forms—

the structures of mathematics; and one finds—without knowing well why—that

certain aspects of experimental reality mold themselves in some of the forms, as a

sort of pre-adaption’ (Bourbaki, 1962, p. 46, our translation). This theoretical

3 CREM: Commission de réflexion sur l’enseignement des mathématiques.

10.2 The Emergence of Didactics of Mathematics in France as the Result of an. . . 221



construct resonates with the structuralist movement: for example, Weil, a member

of Bourbaki, closely collaborates with the anthropologist Lévy-Strauss on the

structure of parenthood (Lévy-Strauss, 1949). As Brousseau (2012, p. 104) states:

Avec les espérances d’une après-guerre et l’aisance financière des trente glorieuses, des

propositions d’origines diverses, concernant entre autres, l’éducation (Langevin-Wallon),

la psychologie (Piaget), « la » mathématique (Bourbaki), la linguistique (Chomsky), etc. se

rassemblent sous une même bannière épistémologique : le structuralisme.

This synergy puts forward the position of mathematics in society ‘The new

mathematics and its structures were recognised not only by mathematicians but

even by scholars in other fields, in particular in the humanities, as a language and

scientific tool that were essential for having access to any knowledge’ (Gispert,
2014, p. 236) and led to a deep reform of mathematics teaching, the so-called

‘modern mathematics’. This reform concentrates on all the objectives of the

society: to be modern, to be in line with the development of science and to be

democratic:

In December 1966, in this context of profound institutional changes, the National Educa-

tion Ministry gave in to the demands of mathematics teachers and created a commission for

the study of teaching mathematics, led by André Lichnerowicz [. . .] The program of the

Commission was clear. It had to first work out new guidelines for teaching mathematics in

primary and secondary school and assess their viability by pilot experiments. [. . .] In force

as of the 1969 school year, the reform based itself on a critique of traditional mathematics

teaching (symbolized by classical geometry), considered too far removed from living

mathematics, that is to say mathematics as taught and done in universities since the

mid-1950s, with algebra of sets, probability theory, and statistics. Euclidian geometry

and calculus were no longer taught as such.

‘Convinced that mathematics has to act as a driving force in the development of

hard sciences and of human and social sciences as well, in citizens’ daily lives, and,
beyond that, in the modernisation of society, the proponents of the reform saw in

mathematics above all a new language that allowed all citizens to understand its

functioning. One of the principal challenges of these reformers was to offer to all

children, no matter what their academic future, the most modern mathematics’
(Gispert, 2014, p. 238).

This led to a very abstract teaching of mathematics and, in primary schools, to

the use of manipulatives (e.g. the famous Dienes blocks, cf. Dienes, 1970), and also

put less emphasis on classical mathematical instruments. Ten years later, after

considerable discussion, enlisting a large part of the society, this ambitious reform

was abandoned but mathematics remains as ‘the decisive discipline discriminating

between student academic orientations [. . .], a true subject of selection’ (Gispert,
2014, p. 237).

Despite, or perhaps because of these upheavals, mathematics teaching remains,

till this time, at the heart of the educational debate in France. One of the charac-

teristics of this debate was the place that mathematicians took in its animation that

is the purpose of the following section.
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10.2.2 An Important Role of the Mathematicians
in the Society, and Their Interest for Mathematics
Teaching

To take the same span than the previous section, we could underline that from the

time of Napoleon to the current period, the interest and influence of French

mathematicians for education was important: Monge, in the first case, creating

new institutions (as Ecole Normale and Ecole Polytechnique in 1794) and

programmes of teaching; Villani, in the second case, Fields medal 2010, frequently

advocating a renewing of mathematics teaching in the French media. Between these

two examples, we could follow a real continuity of mathematicians’ interventions
in France, on three complementary aspects: their international engagement for

discussing the issues of mathematics teaching, their engagement in the national

educational institutions for designing new curricula and their interventions related

to the use of tools.

The birth and the development of ICMI (International Commission on Mathe-

matical Instruction) evidences the engagement of—not only French—mathemati-

cians on teaching questions: ICMI was created in Roma in 1908 by the IV

International Congress of Mathematicians. ‘Its first president was Felix Klein, an

eminent mathematician and promoter of an important reform for teaching of

mathematics in Germany. A substantial role in establishing the commission was

played by David Eugene Smith, a professor at Teachers College of New York, who

was deeply interested in education and the history of mathematics. Thus the

commission was born of the closest collaboration between mathematicians and

educators’ (Menghini et al., 2008, p. 1). To be noticed: Henri Fehr (a Swiss

mathematician) and Charles Laisant (a French politician and mathematician) had

created the international research journal written in French L’Enseignement Mathé
matique in 1899, and from early on this journal became the official organ of ICMI in

1908. The use of the French language in this journal indicates the importance of this

language, at this time, as an international means for scientific communication. The

11th edition of this journal4 gave the composition of the commission, including

3 delegates from France among 34 members. Four French mathematicians were

elected president during the history of ICMI: Jacques Hadamard (1932–1936),

André Lichnerowicz (1963–1966), Jean-Pierre Kahane (1983–1999) and Michèle

Artigue (2007–2009), the first woman to occupy such a position. The first three

were mathematicians deeply interested in questions of education; the last one,

Artigue, is a didactician of mathematics, with a strong mathematics background5;

we will meet these names again below. We could consider such an evolution as

4 The digital copies of the journal can be found at http://www.unige.ch/math/EnsMath/EM_fr/

welcome.html.
5 Informations from the ICMI website http://www.mathunion.org/icmi/icmi/executive-committee/

past-executive-committees/.
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symbolic of the emergence of didactics of mathematics as a new recognised field of

research, we will go back to this point further.

We retain from this short evocation of the ICMI birth the interest of mathema-

ticians, not only for discussing general questions of teaching, but also for

implementing new curricula in their country. It was the case in Germany with

Klein, and the case in France for three essential moments (see Sect. 10.2.1): the

reform of 1902, the reform of the ‘Modern Math’ in 1967, and the reflection for a

new curriculum in 2002:

– Regarding the reform of 1902, the commission for designing the curricula in

sciences was chaired by a mathematician (Gaston Darboux). Poincaré, Borel and

Hadamard made lectures in the ‘Musée pédagogique’6 for supporting its imple-

mentation (Belhoste, 1990)

– The second moment was the reform of ‘Modern Math’ in 1967, led by a

commission chaired by André Lichnerowicz. We have seen in the previous

section that the implementation of such a reform was a true catastrophe. In

1967, as in 1902, the driven idea was to bring closer real mathematics and

mathematics taught,7 with the illusion that ‘closer to the real mathematics, closer

to the real need of their teaching’
– The third moment was the reflection of the CREM, chaired by Jean-Pierre

Kahane (Sect. 10.2.1). This commission gathered mathematicians, teachers,

but also didacticians (among them Michèle Artigue). Retaining the lesson of

the ‘Modern math’, this commission did not want to reform the whole curricula

at once, but offer some perspectives for thinking the teaching of mathematics on

the long term, conceiving its work in relation to the experience of the teachers on

the field:

La réflexion sur l’enseignement des mathématiques est donc, par nature, une réflexion �a
long terme [. . .]. Elle prend point d’appui sur ce que nous savons du mouvement des

sciences, et sur une vision implicite de l’avenir �a long terme: des possibilités sans nombre,

des dangers déj�a identifiés, et une multitude de problèmes auxquels l’humanité ne pourra

faire face qu’en mobilisant toutes les ressources de l’imagination, de la curiosité, de la

créativité, des capacités d’analyse critique et de raisonnement, et des connaissances

engrangées par les générations précédentes. La réflexion doit prendre en compte le

mouvement actuel de la science comme son histoire et tout ce qui doit être revisité de

son passé. Elle doit être ambitieuse, audacieuse, et en même temps tenir compte des

contraintes de terrain. Elle doit marier les analyses épistémologiques et didactiques. Au

6 The Musée pédagogique is the forerunner of the National Institute for Pedagogical Research,

which became in 2010 the French Institute of Education.
7 Note that this did not come, for the 1967 reform, from the whole Bourbaki group, but only from

its members interested in changing the teaching at a secondary level. Houzel (2004, p. 57) wrote,

on this particular question: “In the late 60s, a reform movement in secondary mathematics

education has been launched in most countries and this movement has unfortunately claimed

Bourbaki. From it, came what was called the ‘new math’, whose harmfulness is no longer in doubt.

But it is unfair to shift the burden to Bourbaki, whose only fault was to ignore the problem of

Dieudonné propaganda rather dangerous to teachers (our translation)”
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sein de la commission elle a bénéficié d’une grande variété d’expériences et de sensibilités.

Elle doit se poursuivre �a l’extérieur, et de façon permanente (Kahane, 2002).

This last moment differs from the two previous ones, in the way of thinking the

distance between the mathematics currently developed by the mathematicians and

the mathematics to be taught. This distance has been conceptualised further as the

didactical transposition, a major concept, developed by the didactician Chevallard

(see Sect. 10.4). To be noticed: another difference between the reforms of 1902 and

1967 on one side, and the reform of 2002 on the other side is that the propositions of

the CREM. . . had not been really applied, probably due to their financial as well as
didactical cost.

A last aspect of the mathematicians’ interventions concerns the use of tools and
the context of their use, reflecting a constructive point of view on mathematics and

its teaching.8 Poincaré (1904, p. 275) insisted on this aspect, supporting the
incessant use of mobile instruments in geometry teaching: ‘J’ai dit que la plupart

des définitions mathématiques étaient de véritables constructions. Dès lors, ne

convient-il pas de faire la construction d’abord, de l’exécuter devant les élèves,

ou, mieux, de la leur faire exécuter de façon �a préparer la définition ?’. Maschietto

and Trouche (2010, p. 34) evidence how this issue of tool use runs through most of

the issues of L’enseignement mathématique. They underline also (p. 39) the pro-

ductive notion of mathematics laboratory, as places to learn mathematics from

experiments (see Chap. 3), proposed by French mathematicians at the beginning of

the twentieth century, particularly Borel (1904) and rediscovered one century later:

for Kahane (2006), ‘The main feature of math laboratories is that they are places for

experiments. Experiments in mathematics need time and freedom. The pupils

should be provided with subjects to explore, they should not have a task to stick

to. They should feel free, not under pressure’. This proposition is clearly in line with
the pedagogical and philosophical tradition of active methods for learning

(cf. Dewey in USA, Freinet in France, Montessori or Pestalozzi in Italia), but also

with the spirit of Klein’s propositions in the first international movement for

reforming mathematics teaching, supporting it by the use of geometrical models
and artefacts (Schubring, 2010). In doing this, the mathematicians wished to bring

closer the mathematicians’ practices and the mathematics learning and teaching

practices. We will see further how this notion of mathematics laboratory meets the

notion of a-didactical situation of Brousseau (Sect. 10.3).

We have evidenced in this section the engagement of mathematicians to reform

mathematics teaching, bringing them closer to the contemporary mathematics and

the conditions of their production, with a growing awareness of the necessary

distance between ‘mathematics for mathematicians’ and ‘mathematics for teachers

and students’. This awareness is probably due to the lessons of history, particularly

8 It is indeed significant that the first ICMI study, 1985) was dedicated to the Influence of

Computers and Informatics on the Mathematics and its Teaching (Cornu & Ralston, 1992).
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the lesson of ‘Modern math’, and also to the interactions of a range of actors in the

field of mathematics teaching. This is the purpose of the following subsection.

10.2.3 A Joint Action of Teachers, Psychologists
and Mathematicians for Rethinking Mathematics
Education

We will evidence, in this section, the growing and convergent views of teachers,

psychologists and pedagogues, particularly in the francophone area, in the debate

on mathematics to be taught. Among scholars, a double movement took place in the

second half of the twentieth century.

The first movement was a convergence of interest between some mathemati-

cians, psychologists and philosophers, leading in 1950 to creation of a new orga-

nisation, CIEAEM (Commission Internationale pour l’Etude et l’Amélioration de
l’Enseignement des Mathématiques [International Commission for the Study of and

Improvement of Teaching Mathematics]), ‘in which French mathematicians played

an important role’ (Gispert, p. 236), due to the Bourbaki influence. The first book

coming from this new organisation is in French: L’Enseignement des mathé
matiques (Piaget et al., 1955). It is a collection of chapters written by a psychologist
(Piaget, first author, from Geneva), a logician (Beth, from Amsterdam), three—

French-mathematicians (Choquet, Dieudonné et Lichnerowicz) and a pedagogue

(Gategno, from London). The introduction makes clear the goal of the book, aiming

to enlighten what is possible to teach (the psychologist point of view), what has to

be taught (the mathematicians’ point of views) and how to teach it (the pedagogue

point of view). It should be pointed out that the book is a succession of chapters, not

really articulated; this reflection is driven without the inputs of the teachers, but

wishes ‘to attract the interest of high school teachers supposed to be thought-

provoking to them in a way that could renovate their teaching’ (Piaget et al.,

1955, p. 8). Teachers, however, will soon invade the scene. . .
The second movement was a specialisation of some mathematics scholars

towards the issues of education, taking them as a main interest of research

(cf. Sect. 7.2). Hans Freudenthal, chairing ICMI from 1967 to 1970, was the first

president considering mathematics education as a field of research in its own right.

It corresponded to his view of mathematics, seen ‘not primarily as a body of

knowledge, but as a human activity’ (Bass, 2008, p. 12), his view on mathematics

education, seen essentially as a development from the concrete to the general, and

his view on research on mathematics education to be developed as a new field, not

restricted to a statistical or psychological point of view. He drew all the conse-

quences of such a position in creating a journal, a conference, and an institute: he

founded in 1968 a journal dedicated to this question (Educational studies in
mathematics); he launched the first ICME (International Congress on mathematical

education) in 1969 in Lyon, as a manifestation of independence from IMU:
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Freudenthal’s bold and adventurous launching of ICME 1 (in Lyon) was essentially, and

characteristically, a unilateral action, for which he sought approval and authorization from

no one, not the Executive Committee of ICMI, nor that of IMU. And this provoked some

anger and concern about ICMI inside ILU. But ICME 1 was a great success. . . (Bass, 2008,
p. 12).

Finally, he founded in 1971 the Institute for the Development of Mathematical

Education (IOWO) at Utrecht University, which, after his death, was renamed the

Freudenthal Institute. Such creativity cannot be fully understood independently of

the social and political context of 1968, as we will see soon.

The intervention of teachers in the debate was certainly decisive. The French

APMEP (Association des Professeurs de Mathématiques de l’Enseignement Pub-
lic) [The Association of Mathematics Public School Teachers], was created in

1910, in a moment of academic, social and political upheaval (marked by the

creation of trade unions and associations9). A former president of this association,

Eric Barbazo, dedicated his Ph.D. (Barbazo, 2010) to its history, and evidenced the

engagement of this association, from its beginning, in the public debate, reflecting

the position of its members and the organisation of schooling. For example, in 1912

(the teaching of mathematics concerned at this moment an elite), in response to a

survey initiated in 1912 by the Chamber on the implementation of the reform of

1902 (see Sect. 10.2.1), ‘the Association expressed reservations concerning the

method of relying on the concrete in mathematics. It highlighted the potential

dangers of such a method and the harm that it could do if it was used to substitute

experience for proof more generally. Students should not be deprived of the

advantages they could obtain from the study of mathematics, which had always

been a school of logic’ (Gispert, 2014, p. 234).
Convinced that the Bourbaki’s ideas were a means for promoting ‘mathematics

for all’, The APMEP created a commission named ‘axiomatic and re-discovery’,
evidencing the double teaching necessity of ‘learning logic and structures’ and
‘favouring students activity’. Convinced that teacher education were a critical issue,
‘APMEP, together with the Société Mathématique de France, organised between

1955 and 1963, lectures for secondary school teachers on the notions of structures

that, for the most part, they had not seen in their studies’ (Gispert, 2014, p. 236).
The conjunction of the influence of the group Bourbaki, of the structuralist intel-

lectual spirit and of the pressure of APMEP towards the ministry of education leads

en 1967 to the constitution of the official commission Lichnerowicz, giving birth, in

1971, to the Modern Math reform (Sect. 10.2.1) and launching the ideas of

constituting new institutes, the IREM (Institute for research on mathematics teach-

ing) for supporting this radical reform. Actually the creation of the IREM is a more

complex story, concentrating on all the features of this period, as we will show in

the following section.

9 In 1910 was also created the association « L’école émancipée » [The emancipated school],

gathering pedagogical activist teachers and revolutionary syndicalists.
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10.2.4 The IREM as a Total Social Fact, and the Incubator
of the French Didactics of Mathematics

The creation of the IREM can be considered indeed as a total social fact (Mauss,

1966), i.e. a fact that informs and organises seemingly quite distinct practices and

institutions.

A first institution (and associated practices) is the APMEP. In 1958, the president

of this association, Gilbert Walusinski, already proposed the creation of Institutes
for training and pedagogical research, dedicated to the development of theoretical

as well as practical pedagogical research, and to the development of interactions

between teachers of different levels (from schools to university) for improving

teacher training, in the perspective of the ‘Ecole unique’.10

A second (emerging) institution is the collective (still not a community) of

research on mathematics education. In 1964 a young primary teacher of Bordeaux,

having a bachelor in mathematics, Guy Brousseau (who will be the ‘hero’ of the
following section of this chapter) asks Lichnerowicz for a question to be studied on

mathematics teaching (cf. Sect. 10.3). In order to gather the conditions of an

answer, he created, with the support of Lichnerowicz, a Center for research on
mathematics teaching, becoming later the COREM (Center of Observation and
Research on Mathematics Teaching). In the text describing the organisation of this

centre, established in Bordeaux, directed by two mathematicians and involving

himself, Brousseau writes:

Avant de chercher �a influencer l’enseignement, il convient d’abord de l’observer et de le

comprendre en n’agissant que de façon limitée, contrôlée a priori par des connaissance

scientifiques et a posteriori par des expériences reproductibles. L’important et le difficile

était de rendre possible l’établissement de rapports appropriés entre des chercheurs

mathématiciens et un système d’enseignement.11

The link between research and teacher training, the link between research and

experimentation, as well as the link between teachers of different levels and

between researchers from different scientific fields appear as the major features of

these centres that the Commission Lichnerowicz will retain later in its

recommendations:

It is necessary to progressively create, in each university, Institutes for Research on

mathematics teaching with the double objective of performing teacher training at all the

levels, to organize necessary experiments, in order to implement their conclusions as facts,

10 The democratic goal of the French republic was to move from a schooling system founded on

‘orders’ (schools for people vs. schools for upper classes) to a schooling system founded on

‘levels’ (primary level vs. secondary level), i.e. a same school for each student: ‘l’école unique’.
Several successive laws (1959, 1963, 1966) constituted a progress towards this objective, never

fully achieved.
11 http://faculty.washington.edu/warfield/guy-brousseau.com
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in a progressive way. The commission estimates that the IREM have to facilitate or provoke

the teamwork and to weave a network of teams in each academic region.12

It is well known that there is a long way from an institutional proposition, to its

implementation. What makes this implementation possible was certainly the social

and political pressure of 1968: the third institution involved in the creation of IREM

could be considered as the social movement, including teachers and trade unions.

Bass (2008, p. 13) confirms the essential role of the social pressure, of the APMEP

and its president at this time, Maurice Glaymann:

In 1968, at the time of the student demonstrations, Glaymann asked, and received an

audience with the new Minister of National Education, Edgar Faure. Faure has decided

to move things and Glaymann reiterates the APM proposition of creating IREMs. Faure,

after one week of reflection, to evaluate the cost of such an operation, proposed to create an

IREM in Paris and says that he has evaluated the coast to be 3 million francs. Glaymann

answers him that with the same budget, the APM thinks that three IREMs could be created.

This came to pass, Glaymann was named first director of the IREM at Lyon, and this, just in

time, put him in a position to offer to host the international congress on mathematics

education [in 1969] proposed by Frendenthal.

That is a point where a set of actors already evoked met.

Once created, the IREM developed as a network of Institutes in each university

in France. The centre of Brousseau, became the Centre of observation and research

on mathematics teaching, associated with primary schools, depending on the IREM

of Bordeaux. The IREM became then an incubator for a new field of research. The

dynamic of the research in IREM is well summarised by Artigue and Douady:

This evolution is due to the running of these institutes. IREM gather indeed teachers of

several levels and, thus they forced the research which was born in them to not be isolated

in an academic ghetto, but on the contrary to keep in touch with the schooling institution,

the classes, the teachers. The difficulties created by the new curricula [. . .] evidenced the

inadequacy of the points of view leading to the reform. They evidenced also the limits of

the research centred on action and innovation, the necessity for the didactics of mathemat-

ics, taking into account the neighbouring fields (psychology, epistemology, sociology,

linguistic, sciences of education) to constitute a theoretical field specifically fitted to its

problematic and to the methods of research that it developed (Artigue & Douady, 1986,

p. 70).

It is thus an exceptional conjunction of phenomenon (mathematical, pedagogi-

cal, scientific, intellectual, social and political) that leads, in this country and this

period, to the emergence of the French didactics of mathematics, as ‘a fragment of

the history of the IREM’ (Rouchier, 1978, p. 153). This emergence of didactics is

not a French exception: Biehler et al. (1994) evidence the richness of the interac-

tions between several national communities, facilitated by a network of interna-

tional scientific conferences and commissions, steering, at an international level,

Didactics of Mathematics as a Scientific Discipline.13 The interaction with the

12 Extract of the third part of the preliminary report of the commission Lichnerowicz, published in

the « Bulletin of APMEP », no. 258.
13 Artigue and Douady (p. 85) underline that “the expression didactics of mathematics has been
introduced by Klein in 1910”.
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German community has been particularly intense (Strässer, 1994). But there is no

doubt that there is a French specificity: the context of IREM, the number and diversity

of persons involved in this network, the particular status of mathematics in France

(where such institutes, exist only for mathematics) and the mathematical Bourbaki

context where the field was born, leads probably to a more theoretical structured

field. I propose, in the following parts of this chapter, a visit of this field (keeping in

mind the place of artefacts), aiming to evidence both its diversity and its unity,

confirming Kilpatrick’s point of view (1994, p. 90): « Aux yeux des américains, la

didactique des mathématiques française possède une remarquable unité ».

10.3 Two Founding Theoretical Frameworks: Brousseau’s
Theory of Didactical Situations; Vergnaud’ Theory
of the Conceptual Fields

From the 1970s, the growth of the French community of didactics of mathematics

was very rapid (Artigue & Douady, 1986, p. 71): first master teaching in 1975, a

national seminar in 1978, a new journal (Recherches en didactique des

mathématiques) and the first summer school in 1980, a first group of research

recognised by the CNRS14 in 1981.15 Referring to Brousseau and Vergnaud as

the founders of the field does not come only from a personal choice. The French

community of didactics of mathematics, 20 years after its birth, acknowledged this

role in a collective book: Vingt ans de didactique des mathématiques en France.
Hommage �a Guy Brousseau et Gérard Vergnaud (Artigue et al., 1994).16 It is,

indeed, impossible, in the frame of this chapter section, to summarise the scientific

contributions of these two preeminent researchers. I will only try to enlighten some

major aspects of their works in line with the tool focus of this book.

10.3.1 Guy Brousseau and the Critical Notions of ‘Situation’
and ‘Milieu’

The question Lichnerowicz asked to Brousseau was: ‘You ought to study the

limiting conditions for an experiment in the pedagogy of mathematics’ (Brousseau
et al., 2014, p. 172). Brousseau described his reaction: ‘my questions were not of the

type of ‘how many experimental and model classes should the administration set

up, and what would be the budget for that?’ But rather how to reconcile the

14 French national centre for scientific research.
15 This growth mirrors the growth of mathematics education as a field noted in Sect. 7.2.
16 I have chosen to give, in this section, recent references to the work of Brousseau and Vergnaud,

offering a more synthetic view on their work, but it has to be clear that the foundations of their

theories come from the 1970s.

230 10 Didactics of Mathematics: Concepts, Roots, Interactions and Dynamics from France

http://dx.doi.org/10.1007/978-3-319-02396-0_7


flexibility necessary in order to adapt the project to a class with a respect for

conventional conditions common to a whole cohort of schools—which notions

were indispensible and how to make them accessible’ (Brousseau et al., 2014,

p. 173). The decision resulting from this reflection was the creation of the

COREM (Sect. 10.2.4), which was linked to a primary school, ‘during 25 years

the most advanced laboratory of experimental didactics of mathematics’.17

Brousseau’s theoretical framework draws its substance from the work in this

laboratory.18 His major work, The theory of didactical situations, has been trans-

lated into English in 1997 (Brousseau, 1997), and its fundamental idea, Teaching
through situations, regarding the theme of fractions, gave matter to a recent book

(Brousseau et al., 2014). The fundamental idea of ‘situations’ is defined byWarfield

(2014), in a short book ‘inviting to didactics’: ‘A Situation describes the relevant

conditions in which a student uses and learns a piece of mathematical knowledge.

At the basic level, these conditions deal with three components: a topic to be taught,

a problem in the classical sense and a variety of characteristics of the material and

didactical environment of the action’.19

In this section, I would like to deepen this idea, focusing on three structuring

notions of Brousseau’s theory: a-didactical situations, didactical situations, and the
milieu, and I will do that through an example, then, a quotation from Brousseau.

The example is the emblematic situation of the puzzle, described by Brousseau

et al. (2014, p. 51). (Fig. 10.1)

Let me now introduce Brousseau’s main concepts (Brousseau et al. 2014):

A-didactical situations occur in the classroom, and have the goal of reproducing the

conditions of a real mathematical activity dealing with a determined concept: i.e. a math-

ematical situation. In the course of an a-didactical situation, the students are supposed to

produce a correct and adequate action or mathematical text without receiving any supple-

mentary information or influence.

With this definition in hand, a didactical situation can be defined as the actions taken by
a teacher to set-up and maintain an a-didactical situation designed to allow students to

develop some goal concept(s). In particular, the teacher sets up the milieu, which includes

the physical surroundings, the instructions, carefully chosen information, etc. The milieu

may, or may not include a material element (for example Cabri geometry), and other

cooperating or concurrent students, etc. but it does at the least include the savoirs20 of

the subject, and certain of her current connaissances.21 It is essential that the mi: lieu is

17 http://guy-brousseau.com/le-corem/
18 In a recent paper, Brousseau (2012) came back to the “psychological and didactical roots” of his

theory, acknowledging the importance, among other researchers, of Greco and Piaget. He has

developed a website http://faculty.washington.edu/warfield/guy-brousseau.com where could be

found various elements grounding his approach.
19 For distinguishing Brousseau’s notion from the non-specific, standard uses of the word ‘situa-
tion’, she chose to capitalize this as soon as it is used in the frame of the Theory of didactical

situations. I have not retained here such a convention: it is enough to consider that, in this section

related to Brousseau’s theory, the word ‘situation’ is used with respect to this theory.
20 In French in the text/
21 In French in the text.
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designed in a way that it only obeys “objective” necessities, and that the student be

convinced of that fact. Once that design is in place, the teacher’s mandate is limited to

making sure the students focus on the milieu and not on the teacher” (p. 203).

The previous example allows me to illustrate the three fundamental notions

proposed here by Brousseau:

– The a-didactical situation is constituted in the classroom by the problem of

enlarging a puzzle according to a given constraint (adding 3 cm at a given

dimension); the determined concept the students are dealing with is the concept

of proportionality

– The didactical situation is constituted by the actions taken by the teacher to set

up and maintain this a-didactical situation. This setting up lies on very subtle

adjustments (the initial dimensions of the puzzle pieces, the organisation of

students’ collective work, the cutting of time in successive phases. . .) are not

randomly chosen, but the result of a very careful analysis of numbers of

experiments in the frame of the COREM

– Themilieu of the situation is all the ‘things’ the students are acting on, and all the
‘things’ which are providing feedbacks to the students. In the situation at stake,

the puzzle, the ruler, the ‘savoir’ of the students on numbers, their ‘connaissance’
of the additive model. . . are part of the milieu

The feedbacks of the milieu allow the development of the a-didactical situation:

a student does not need a validation from the teacher, as the feedback from the

Fig. 10.1 One example of the Brousseau’s puzzles. ‘Instruction: Here are some puzzles. You are

going to make some similar ones, larger than the ones I am giving you, according to the following

rules: (a) The segment that measures 4 cm on the model must measure 7 cm on your reproduction.

(b) When you have finished, you must be able to take any figure made up from pieces from the

original puzzle and make the exact same figure with the corresponding pieces of the new puzzle.

(c) I will give a puzzle to each group of four or five students, and every student must either do at

least one piece or else join up with a partner and do at least two. Development: After a brief

planning phase in each group, the students separate to produce their pieces. The teacher puts

(or draws) an enlarged representation of the complete puzzle on the chalkboard’
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milieu (see Fig. 10.2) is enough to convince her that her method is wrong. And

finally the targeted knowledge—the proportionality—is the necessary way for

solving the problem.

It is not possible, in the frame of this section, to further develop the other

essential concepts constituting this theory (situation of devolution, of institutiona-

lisation, didactical contract. . .). But what I have presented here is, to me, the heart

of Brousseau theory, modelling the learning of mathematics as a social game, with

specific rules, the targeted knowledge constituting the optimal way for winning,

individually, and with the other students, the game.

The game develops through the interaction with a milieu. This notion of

‘milieu’, that Brousseau did not translate in English, is very interesting to be

analysed: a milieu seems to be always, and it will not be a surprise for the reader

of this book, ‘full of artefacts’. But it contains more, and is permanently fed by

interactions with other students. For me, a possible English translation of this term,

in line with further conceptualisations (Sect. 10.5.1), should be ‘the student’s
resources in the situation’.22

Fig. 10.2 The result of students’ action. One of the strategies and behaviours observed. ‘Almost

all the students think that the thing to do is to add 3 cm to every dimension. Even if a few doubt this

plan, they rarely succeed in explaining themselves to their partners and never succeed in convinc-

ing them at this point. The result, obviously, is that the pieces are not compatible’. [The authors

detailed some other students’ strategies: adding 3 cm to each segment on the outside square,

leading to obtain a rectangle measuring 17 cm� 20 cm; multiplying each measurement by 2 and

subtracting 1, as they observe that 4� 2� 1¼ 7. . .]. The results: ‘All the children have tried out at
least one strategy, and most have tried two. By the end of the class, they are all convinced that their

plan of action was at fault, and they are ready to change it so they can make the puzzle work. But

no one group is bored or discouraged. At the end of the session, they all are eager to find the right

way’ (Brousseau et al., 2014, p. 53)

22 This proposition results also of interactions with a French didactician, Alain Mercier I want to

thank here.
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10.3.2 Gérard Vergnaud, and the Conceptualisation Seen
as a Cognitive Mediated Process

Brousseau came from the community of mathematicians, Vergnaud came from

the community of developmental psychologists. But there were a number of

connections. Brousseau mentions that ‘the experimental designs imagined by

Piaget [were] directly inspired by his exchanges with the mathematician Gonseth’
(Brousseau et al., 2014, p. 192), and Piaget, situated at the borders of several

fields (epistemology, biology, logic) was, together with prestigious mathemati-

cians, a founding member of the CIEAEM (Sect. 10.2.3). But this original

difference between the two researchers could explain some major differences in

point of view, Vergnaud saw conceptualisation as a developmental process, and

according to a crucial importance to the connections between the operational
form of knowledge and the predicative one. I will present his theory focusing on

these two aspects.23

First of all, Vergnaud shared with Piaget the idea that even highly structured

concepts develop from the most elementary actions of a subject. These actions

apply in situations (opening a door, solving an equation, climbing stairs. . .), and
facing these situations lead the subject to develop schemes (the more or less flexible

ways of opening a variety of doors, etc.). Studying the processes of mathematics

learning leads Vergnaud to specify this notion of scheme:

The function of schemes, in the present theory, is both to describe ordinary ways of

doing, for situations already mastered, and give hints on how to tackle new situations.

Schemes are adaptable resources: they assimilate new situations by accommodating to

them. Therefore the definition of schemes must contain ready-made rules, tricks and

procedures that have been shaped by already mastered situations; but these components

should also offer the possibility to adapt to new situations. On the one hand, a scheme is

the invariant organisation of activity for a certain class of situations; on the other hand,

its analytic definition must contain open concepts and possibilities of inference. From

these considerations, it becomes clear that schemes comprise several aspects defined as

follows:

– The intentional aspect of schemes involves a goal or several goals that can be developed

in sub-goals and anticipations.

– The generative aspect of schemes involves rules to generate activity, namely the

sequences of actions, information gathering, and controls.

– The epistemic aspect of schemes involves operational invariants, namely concepts-in-

action and theorems-in-action. Their main function is to pick up and select the relevant

information and infer from it goals and rules.

– The computational aspect involves possibilities of inference. They are essential to

understand that thinking is made up of an intense activity of computation, even in

apparently simple situations; even more in new situations. We need to generate goals,

sub-goals and rules, also properties and relationships that are not observable.

23More on Vergnaud theory and publications can be found on the French mathematics didactics

website: http://www.ardm.eu/contenu/gérard-vergnaud-english.
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The main points I needed to stress in this definition are the generative property of

schemes, and the fact that they contain conceptual components, without which they would

be unable to adapt activity to the variety of cases a subject usually meets. I also feel the need

to add several comments in what follows. The dialectical relationship between situations

and schemes is so intricate that one sometimes uses an expression concerning situations to

refer to a scheme, for in-stance high jumping, or solving equations with two unknowns, as
well as an expression concerning schemes to refer to a situation, for instance ‘rule of three’
situations (the rule of three is a scheme, not a situation) (Vergnaud, 2009, p. 88).

What is certainly crucial for mathematical learning, is the conceptual component
of schemes, namely the operational invariants: concepts-in-action and theorems-

in-action, that is implicit properties, that are not necessarily true, but appear as

relevant in a certain domain. For example, when learning to multiply two integers,

students used to develop a strong theorem-in-action as ‘the product of two numbers

is a number bigger than the two initial numbers’; and a strong concept-in-action as

‘the multiplication is a machine for increasing numbers’. Other examples are given

in the case of symmetrical figures (Fig. 10.3), and further for the use of graphing

calculators (Sect. 10.5.1). Such operational invariants are relevant in a certain

domain (that is a reason for their resistance), and turn into obstacles as soon as

the mathematical context exceeds this domain.

A concept is, for Vergnaud (2009), related to a given subject and to a moment of

her conceptualisation, and it is defined by a triplet: a set of situations, a set of

operational invariants and a set of representatives. For a given student, the concept

of symmetry exists as soon as she is able to associate to this word a set of situations
(in or out of school), a set of operational invariants (for example, ‘the figure and its
image are separated by an axis’) and a set of representatives (figures drawn on

paper, objects that can be moved from either side of a rule, sentences for describing

such situations. . .). A concept is, in this frame, always associated to a set of

artefacts allowing it to be set in different situations. Noticeably, Vergnaud uses

the same word of ‘concept’, for designating something well recognised by a

scientific community, and for designating a subject’s temporary construction:

Vergnaud justified this ambiguity in arguing that a concept is always a living entity,

engaged in a genesis, personal or collective. A concept never lives in isolation, but

takes sense in the frame of a conceptual field, that Vergnaud (2009, p. 86), giving

the example of the conceptual field of the additive structures, defined as ‘a set of

situations and a set of concepts tied together’.
The second main idea of Vergnaud addresses the different forms of knowledge.

For him, there is a gulf between the operational form of knowledge, which allows

one to do something, and the predicative form of knowledge, which allows one to
state/justify what has been done, or what is to be done, as explained in the following
extract.

Some researchers even consider that the difficulty of mathematics is mainly a linguistic

difficulty. This view is wrong, because mathematics is not a language, but knowledge. Still,

understanding and wording mathematical sentences play a significant role in the difficulties

students encounter. To illustrate this point, let us take two situations (Fig. 10.3) in which

students have to draw the symmetrical shape of a given figure. These situations contrast

with each other, both from the point of view of the schemes that are necessary for the
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construction and from the point of view of the sentences that one may have to understand or

produce on these occasions. The first figure corresponds to a situation likely to be presented

to 8- or 10-year-old students, in which they have to complete the drawing of the fortress

symmetrically from the vertical axis

The second one could be typically given to 12- or 14-year-olds in France: construct a

triangle symmetrical to triangle ABC in relation to d (‘d’ here refers to the dotted line).

In the first case, there are some coordination difficulties because the child needs to draw

a straight line just above the dotted line, neither too high nor too low, and everybody knows

that it is not that easy with a ruler; there is the same kind of awkwardness for the departure

point and the arrival point. There are also conditional rules. For example, ‘one square to the
left on the part already drawn, one square on the right on the part to be drawn,’ or else ‘two
squares down on the figure on the left, two squares down on the right,’ or else ‘one square to
the right on the left figure, one square to the left on the one on the right,’ starting from a

reference point homologous to the point of departure on the left. These rules are not very

complex. Nevertheless they rely upon several concepts-in-action and theorems-in-action

concerning symmetry and conservation of lengths and angles. As all angles are right angles

and lengths are expressed as discrete units (squares), the difficulty is minimal.

In the second case, drawing the triangle A0B0C0, symmetrical to triangle ABC in relation

to line d, is much more complex, with the instruments usual in the classroom (ruler,

compass, set square). Even the reduction of the triangle to its vertices as sufficient elements

to complete the task is an abstraction that some students do not accept easily because they

see the figure as a non-decomposable whole. One step further, using d as the axis of

symmetry for segments AA0, BB0, CC0, is far from trivial. Why draw a circle with its centre

in A, and why should we be interested in the inter-sections of that circle with line d? One

can also use a set square and draw a perpendicular line from A to d, measure the distance

from A to d, go across line d to construct A0 at the same distance of A to d. But how can I

think of the distance to be the same when there is no line yet?

The epistemological jump from the first to the second situation is obvious. But there are

also big jumps between different sentences that are likely to be articulated on these

occasions. I will use French rather than English because of the syntax of definite articles

in French:

1. La forteresse est symétrique (‘The fortress is symmetrical’)
2. Le triangle A0B0C0 est symétrique du triangle ABC par rapport �a la droite d (‘Triangle

A0B0C0 is symmetrical to triangle ABC in relation to line d’).
3. La symétrie conserve les longueurs et les angles (‘Symmetry conserves lengths and

angles’).
4. La symétrie est une isométrie (‘Symmetry is an isometry’).

Fig. 10.3 Two figures associated to symmetry

236 10 Didactics of Mathematics: Concepts, Roots, Interactions and Dynamics from France



Between sentence 1 and sentence 2, there is already a qualitative jump: the adjective

symétrique moves from the status of a one-element predicate to the status of a three-

elements predicate (A is symmetrical to B in relation to C).

Between sentence 2 and sentence 3, the predicate symétrique is transformed into an

object of thought, la symétrie,which has its own properties: it conserves lengths and angles.
Nominalisation (i.e., to form a noun from another word class or a group of words) is the

most common linguistic process used to transform predicates into objects. In sentences

1 and 2, the idea of symmetry is a predicate (propositional function); in sentence 3, it has

become an object (argument). Lower-case ‘s’ is the kind of symbol used by logicians for

arguments, whereas upper-case ‘S’ is used for predicates. The two new predicates, con-

serving lengths and conserving angles, are thus properties of this new object ‘s’.
When we move from sentence 3 to sentence 4, a new transformation takes place; the

retention of lengths and angles then becomes an object of thought: isometry. This time the

predicate is the inclusion relationship between two sets: the set of symmetries S and the set

of isometries (Vergnaud, 2009, p. 90).

For Vergnaud, the predicative form of knowledge is a necessary means for

building knowledge, but not the main one: the operative form is more subtle, richer

than the predicative one. For him, solving a problem is the source and the criterion
of knowledge. Schemes appear thus at the centre of the Vergnaud theoretical

framework, as an essential link between gestures and thought. This importance

given to gestures and artefacts situates the work of Vergnaud at crossroads of

influences: Piaget of course, but also Vygotsky for the structuring place of medi-

ations (Vergnaud, 2000) and Bourdieu for the social founding of psychology

(Bronckart & Schurmans, 1999). Looking further, I could relate the notion of

scheme to Eastern culture, considering the dialectic interaction between hand and

mind, as in the following quote, which describes the gradual synthesis of ‘proper
gestures’ to a very complex scheme:

Entre force et douceur, la main trouve, l’esprit répond. Par approximations successives, la

main trouve le geste juste. L’esprit enregistre les résultats et en tire peu �a peu le schème du

geste efficace, qui est d’une grande complexité physique et mathématique, mais simple

pour celui qui le possède. Le geste est une synthèse (. . .). L’adulte ne se rend plus compte

qu’il lui a fallu accomplir un travail de synthèse pour mettre au point chacun des gestes qui

forment le soubassement de son activité consciente, y compris de son activité intellectuelle

(Tchouang Tseu, in Billeter, 2002).

Brousseau/Vergnaud: two different views on mathematics teaching, the first one

focusing on a micro-level (the interactions student-milieu through very finely tuned
didactical situations), the second one on a macro-level (the process of conceptua-

lisation, through the encountering of various situations, most of them at school,

drawing attention on intermediate forms of knowledge). Both views share an

understanding of learning mathematics through mathematical situations, from

interactions with specific resources (milieu vs. mediations).
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10.4 Chevallard and the Anthropological Theory
of Didactics

Roughly speaking, as the main source of inspiration of Brousseau (resp. Vergnaud)

was mathematical (resp. psychological), it could be said that the main source of

inspiration of Chevallard24 was anthropological. I will present in this section his

theory, focusing on two essential points: the concept of praxeology, and the

importance of tools. Then I will evidence some convergence and tensions,

contrasting Chevallard’s approach with Brousseau’s and Vergnaud’s ones.

10.4.1 A View on Mathematical Activity Through Artificial
Praxeologies, Products of Human Cultures

Chevallard, in developing his theoretical framework, the so-called ‘Anthropologi-
cal approach of didactics’ (ATD in the following), often evokes the work of the

French anthropologist Marcel Mauss (1872–1950), who introduces the notion of

total social fact for designating essential social phenomena:

These phenomena are at once legal, economic, religious, aesthetic, morphological and so

on. They are legal in that they concern individual and collective rights, organized and

diffuse morality; they may be entirely obligatory, or subject simply to praise or disapproval.

They are at once political and domestic, being of interest both to classes and to clans and

families. They are religious; they concern true religion, animism, magic and diffuse

religious mentality. They are economic, for the notions of value, utility, interest, luxury,

wealth, acquisition, accumulation, consumption and liberal and sumptuous expenditure are

all present. . . (1966, pp. 76–77).

For Chevallard, referring to the English anthropologist Douglas (1986), a given

institution constitutes a total social fact. The word institution stands here for each

social structure which allows—and impose to—its members, occupying various

positions in this structure, different ‘ways of doing’: a classroom, in this sense,

constitutes an institution, as well as a school, as well as the schooling system, in a

given country and at a given period.

Chevallard defines, in a given institution, a didactic fact:

What I shall henceforth call a didactic fact is any fact that can in some way be regarded as

the effect of a socially situated wish to cause someone to learn something. Let me add—this

is a more difficult point, on which I shall not dwell any longer—that a didactic fact is,

considered to be so only to the extent that it is effective in influencing the learning process

(2005, p. 22).

This definition of a-didactical fact is very powerful, and leads to a very general

definition of didactics: ‘Didactics should, in my view, be defined as the science of

24 Chevallard offers, on his website, most of his publications: http://yves.chevallard.free.fr.
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the diffusion of knowledge in any social group, such as a class of pupils, society at

large, etc.’ (Chevallard, 2005, p. 22).
Didactics, as a science, analyses didactical facts in a structured way, as elements

of local or global praxeologies. Chevallard defines a praxeology in the following:

What exactly is a praxeology? We can rely on etymology to guide us here—one can analyse

any human doing into two main, interrelated components: praxis, i.e. the practical part, on

the one hand, and logos, on the other hand. “Logos” is a Greek word which, from

pre-Socratic times, has been used steadily to refer to human thinking and reasoning—

particularly about the cosmos. Let me represent the “praxis” or practical part by P, and the

“logos” or noetic or intellectual part by L, so that a praxeology can be represented by

[P/L]. How are P and L interrelated within the praxeology [P/L], and how do they affect one

another? The answer draws on one fundamental principle of ATD—the anthropological

theory of the didactic—, according to which no human action can exist without being, at

least partially, “explained”, made “intelligible”, “justified”, “accounted for”, in whatever

style of “reasoning” such an explanation or justification may be cast. Praxis thus entails

logos which in turn backs up praxis. For praxis needs support—just because, in the long

run, no human doing goes unquestioned. Of course, a praxeology may be a bad one, with its

“praxis” part being made of an inefficient technique—“technique” is here the official word

for a ‘way of doing’—, and its “logos” component consisting almost entirely of sheer

nonsense—at least from the praxeologist’s point of view! (2005, p. 23).

A praxeology is made of four components: a set of tasks, a set of techniques, as a

way of accomplishing these tasks, a set of technologies, as discourses justifying the

techniques, and a theory accounting for these technologies. Let me illustrate this

with an example drawn from Chevallard (2005) (Fig. 10.4).

This deep idea of a socially and culturally built mathematics world is essential to

understand Chevallard’s frame, as evidenced in the following quotation:

Why do mathematicians seem so attracted to triangles for example? Why does geometry

tell us about angles, lines and rays, or about crossing lines and parallel lines? Why does

geometry make room for the notions of acute angle, obtuse angle, and reflex angle? If you

are tempted to answer: “Mathematicians are interested in all these entities simply because

there do exist crossing lines, rays, acute angles, reflex angles, etc., that is, just because these

‘things’ are out there, in the natural world, waiting for us to study them”, then you have

been infected with the evil “monumentalistic” doctrine that pervades contemporary school

epistemology. If indeed you accept such a poor, unspecific reply, it is more than likely that

you have secretly espoused a naturalistic view of the human world—including the math-

ematical world—, forgetting that almost everything out there, as well as everything in our

minds, is socially contrived. A straight line is a concept, not a reality outside us. It is

something created in order to make sense of the outside world and to allow us to think and

act more in tune with that reality (Chevallard, 2005, p. 26).

This anthropological point of view enlightens the seminal Chevallard’s work on
didactical transposition as a social construct:

The transition from, knowledge regarded as a tool to be put to use, to knowledge as something

to be taught and learnt, is precisely what I have termed the didactic transposition of

knowledge [. . .] Although long-established, teaching, or the project to have someone learn
some knowledge and know it, is therefore a peculiar undertaking. The very first predicament

that faces this undertaking is related to its definition as a social reality. In defining itself,

teaching must draw on culturally accepted concepts. Essentially it defines itself as a process

by which people who do not know some knowledge will be made to learn it, and thereby

come to know it. Such is the social contract by which the teaching institution, whatever its

concrete institutional forms, binds itself to society (Chevallard, 1988, p. 6).
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This point of view leads also Chevallard, with Marianna Bosch, to pay attention

to tools in/for mathematics doing, learning as well as teaching activity.

10.4.2 The Tools at the Heart of Mathematical Activity

In the following quotation, Bosch and Chevallard evidence, in contrast to the

dominant ‘western cultural axiology’, the importance of tools, materia, ls, visual,

audible or tactile, conditioning mathematics activity. Far from being isolated, they

constitute a complex of working tools, at the heart of the mathematicians as well as

of the students’ activity:

Writing, symbols, words, speech, gestures and graphic objects used in mathematical

activity—or what we call, due to their material and perceptible characteristics, ostensive

objects—are reflected in very different ways in mathematics education research work,

according to the concept of mathematical activity that is implicitly or explicitly assumed

by researchers. In the framework of the anthropological approach, ostensive objects, in

dialectical interaction with non-ostensive objects (notions, concepts, ideas, etc.), appear as

the raw material of tasks, techniques, technologies and theories of the different praxeolog-

ical organisations (praxeologies) mathematical knowledge is made of. This conceptua-

lisation, which highlights the instrumental value of ostensive objects side by side with their

semiotic value, allows us to evidence how specific praxeologies may be affected by generic

constraints concerning the ostensive dimension, for example the difficulties of writing or

If I had to write the number...

and therefore that

so that A = 

in standard form (i.e. a + b

is a non-zero root of a quadratic equation, and I can know how to
generate this equation, which is (x – 1)2 = 3, or x2 – 2x = 2. It then follows that

3, where a, b are rational numbers), I can know that

x = 1 + 3

16
= 4(7– 4

x4 3) = 28 – 16 3.

4
= 9 – 6x + x2 = 9 – 4x + 2 = 11 – 4(1+

x4 3) = 7 – 4 3,

3

2
= 1 – = 1 – (x – 2) = 3 – x,

x2
2

2

x

A =
1+

4

Fig. 10.4 A task carried out in the frame of a given praxeology (Chevallard, 2005, p. 24). The task

consists in writing a given number under the form aþ b
ffiffiffi

3
p

. The technique consists in seeing each

number x ¼ aþ b
ffiffiffi

3
p

as a root of the equation x� að Þ2 ¼ 3b2. The technology consists in knowing

that Qþ Q
ffiffiffi

3
p

is a field. The theory is that of algebraic structures
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the supposed transparency attributed to verbal discourse. Similarly, the problem of ‘loss of
meaning’which affects certain types of ostensive manipulations is easier to approach in this

framework when it is considered with regard to the technological and theoretical needs of

the corresponding praxeological organisations.

Our inquiry allows a presentation in more simple terms. It starts from the premise that

Western culture establishes, in the range of human practices, a structural opposition

between activities considered to be ‘manual’ and activities considered to be ‘intellectual’.
This opposition is not neutral. Western cultural axiology prioritises activities of ‘the spirit’
(in English ‘mind’, in Spanish ‘mente’) over the work ‘of the hand’, that is to say, the work
that involves the body—with the exception of those ‘body parts’ that are located ‘in the

head’ . . .
It goes without saying that what is regarded as ‘mathematics’ is considered to be of the

first type of activities, that is, working ‘with the head’ with notional tools, reasoning, ideas,
insights and very little material elements. In fact, the few material instruments used in

school mathematics (paper and pencil, blackboard and chalk, ruler and compass, calcula-

tor, computer) are generally regarded as simple ‘aids’, sometimes as an indispensable aid

but not actually a part of the activity itself. Other objects, if not material at less sensitive

(writings, formalisms, graphics, words, speeches, etc.), activated by mathematicians can

sometimes play a specific role in the activity, but they are assumed to play the role of

‘signs’, replacing other objects they are supposed to represent.

We now understand that mathematics does not spontaneously appear as an activity in

the true (economic) sense of the word; an act or intervention which involves actors and

material objects, as instruments which extend the human body to increase its capacity

(in strength, accuracy, etc.), or as external objects against which the action is realised. The

current conceptualisation of mathematical activity tends to repress the place of material

tools which are part of the activity and, if it takes into account particular objects such as

discourse, writing and graphs, the focus is not on these objects themselves (and how to

handle them), but on what they are supposed to refer to, what they ‘represent’ or ‘signify’,
in short, their meaning To do mathematics it is necessary to have words, writings, figures

and symbols, but what is important would be beyond words and writing. The dominant

point of view in this respect can be considered as idealistic in the sense that it seems to only

take into account one aspect of the concrete observable mathematical activity: its signifying

function, the production of concepts.

Detaching ourselves from this common vision we suggest considering how mathemat-

ical activity is conditioned by the material, visual, audible and tactile instruments it puts

into play. It is known that the absence of a concept can block the development of

mathematical ‘thinking’, at both the historical level of a community and at the individual

levels of a researcher or a student. One may ask to what extent is this absence merely an

absence of an idea, a way of ‘thinking’ or ‘conceiving’ the world, or the absence of a

complex of work tools (which are, for the most part, material in nature), the availability or

absence of which could change in a ‘catastrophic’ manner the performance of the activity.

We believe that the didactic analysis of the development of mathematical knowledge—in

history as well as in the life of a person or a class—cannot consider this dimension as

secondary, assigning it to a purely instrumental function in the construction of concepts”25

(Bosch & Chevallard, 1999, pp. 89–90).

What is a ‘complex of working tools’ is to be explained in more depth.

Chevallard distinguishes two kinds of objects: ostensive objects (which can be

concretely manipulated), and non-ostensive objects. For example the notation ‘log’,

25 Translation resulting from interactions between Marianna Bosch and John Monaghan.
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the word ‘logarithm’, as well as the graphical representation of the function

logarithm are ostensive objects; the notion of logarithm is a non-ostensive object.

Looking at an example (Fig. 10.5) to illustrate the difference of these objects and

their joint mobilisation in the mathematical activity:

For Chevallard, ostensive and non-ostensive objects are intrinsically articulated,

at each level of the mathematical activity (expressing a task, using a technique,

explaining a technique, integrating a technology in the frame of a theory). In this

approach, tools are not relegated to a lower level of mathematical activity: manip-

ulative, concepts and theorems are permanently and jointly involved in this activity.

10.4.3 Some Convergence and Tensions, and a Productive
Atmosphere

These three theoretical frameworks share some fundamental ideas, grounding the

French community of mathematics didactics: each teaching and learning analysis

starts from the mathematical content of what is to be learnt; student learning is

viewed as an individual and a social activity; and interactions with objects (milieu,

tools, instruments. . .) are viewed as crucial for developing this activity.

However some essential tensions can be distinguished:

– While Brousseau analyses what should be done for teaching mathematics,

Chevallard analyses what can be done, or cannot be done, according to institu-

tional constraints; I could illustrate this tension through the pair didactical
contract (Brousseau)/social contract (Chevallard); a-didactical situation

(Brousseau)/tasks and techniques (Chevallard).

– While Vergnaud situates the knowledge as an individual and social cognitive

construct in progress, Chevallard relates to knowledge as a social and historical

construct; I could illustrate this tension through the pair conceptual fields

(Vergnaud)/praxeologies (Chevallard); schemes (Vergnaud)/techniques

(Chevallard).

(x3 + x + 1) + (x2 + 4x) =

1 + 5x + x(x2 + x)

Fig. 10.5 A co-activation of ostensive and non-objective objects for transforming an algebraic

expression. The technique used for transforming the first expression into the second one needs to

mobilise: (a) Several ostensive objects, belonging to different registers: written ones (parentheses,
figures, letters. . .), oral ones (small discourses like ‘x plus 4x equals 5x’), sign languages (for

gathering the terms of the same degree (The notion of ostensive objects is close to the notions of

representatives introduced by Vergnaud (Sect. 10.3.1). For a discussion on this point, see

Chevallard (2005, p. 31)). . .. (b) Non-ostensive objects guiding the usage of the ostensive ones:

the notions of: ‘terms having the same degree’, ‘factorisation’, ‘reminders of order 2’. . .
Chevallard (1995)
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For the three approaches, addressing the interrelations between tools and knowl-
edge appears as a node of complexity: they are caught by Brousseau with the notion

of milieu, by Vergnaud with the notion of schemes (and the dialectic relationship

between gestures and operational invariants), by Chevallard with the notion of

ostensive objects (and the dialectic relationship between ostensive and

non-ostensive objects).

Noticeably, these interrelations between tools and knowledge motivate several

conceptualisations in this productive atmosphere of an emerging scientific emerg-

ing field:

– Douady (1987) defined the tool-object dialectic as ‘a cyclic process organising
the role of the teacher and the pupils, in which mathematical concepts appear

successively as tools for the solution of a problem and as objects with a place in

the construction of an organised knowledge’.
– Duval (2006) defines a semiotic register as a system of signs allowing a

transformation of representations (Fig. 10.6).

Working with registers is especially important in mathematics as they are the

only way for accessing mathematics objects. For Duval, internal representations

come from a process of internalisation of external representations. The notions of

semiotic registers seem to be close to the Chevallard’s notion of ostensive objects

(see Sect. 10.4.2), but where Duval analyses difficulties in terms of structure of

semiotic registers, Chevallard relates to the structure of mathematics,

i.e. praxeologies26;

– Balacheff (1996), studying the new problems arising from the computational

tools, evidences the necessity to take into account a new transposition (after the

Chevallard’s didactical transposition, see Sect. 10.4.1) the computational trans-
position: ‘Let us call computational transposition the process which leads to the

specification and then the implementation of a knowledge model. Computational

transposition refers to the work needed to fit the requirements of symbolic

representation and computation’.
– Finally, I would like to mention the work Robert and Rogalski (2002), the

so-called double approach (ergonomics and didactics), taking into account

both the teacher’s didactical goals (aiming to organise students’ activity towards
the learning of mathematics) and professional constraints (linked to the Activity

theory, see Sect. 9.4). This approach leads to determine five components of

teachers’ activity: cognitive, mediative, institutional, social and personal, and to

analyse teachers’ activity both in class and out of class (preparing lessons,

discussing with colleagues).

These interconnected conceptualisations opened the way for further theoretical

developments, both for these theories themselves, and for new frames to emerge:

26 For a discussion on this point, see Bosch and Chevallard (1999, p. 29).
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– Brousseau’s description of a didactical situation as ‘the actions taken by the

teacher to set up and maintain an a-didactical situation’ (Sect. 10.3.1) inspired
me for introducing the notion of instrumental orchestration (Sect. 15.4).

– The variety of concepts introduced for taking into account teachers’ resources
suggest the need for developing a unified framework; this is discussed in the next

chapter.

Intellectual geneses are also individual geneses: Vergnaud was the supervisor of

the Ph.D. of Rabardel, who developed the notion of scheme in the context of

instrumented activity, and proposed a new approach with regard to artefacts, as

we will see in the following section.

Fig. 10.6 Classification of four types of registers that can be mobilised in mathematical processes

(Duval, 2006, p. 110). He distinguishes four types of semiotic registers (see Fig. 10.6) and analyses

the problems of understanding in mathematics learning, from a cognitive point of view, through

the difficulties of using these registers. Using semiotic registers means either doing a treatment
(i.e. moving from one representation in a given register to another one in the same register, or a

conversion (i.e. moving from one register to another one). Doing conversion is often a source of

difficulties, because no two distinct semiotic registers will have the same structure

244 10 Didactics of Mathematics: Concepts, Roots, Interactions and Dynamics from France

http://dx.doi.org/10.1007/978-3-319-02396-0_15


10.5 The Instrumental Approach as a Search of New
Theoretical Tools for Analysing Tools in Mathematics
Education

In this section, I would like to evidence how the proliferation of very new tools in

mathematics education motivated the emergence of a new theoretical framework in

France, nourished by the soil of the existing interrelated frameworks we have just

described. Then, zooming out, I will relate these ideas to an international survey to

show how the French situation resonates with wider international trends.

10.5.1 The Emergence of the Instrumental Approach

The proliferation of graphic calculators imported in classrooms by students them-

selves aroused a lot of debates in society, and analyses in the community of

mathematics education (cf. Sect. 13.2). The study of students’ mathematical activ-

ity, using such material, brings up (what appears as) new phenomena, evidencing

the influence of tools on conceptualisation. In my Ph.D. dedicated to this question

(Trouche, 1997), I pick up several such phenomena, among these the influence of
images on conceptualisation (see Fig. 10.7).

This phenomenon and other similar examples (Guin & Trouche, 1999) led me to

look for new concepts, taking into account the potential of tools for mathematics

education. In a living scientific community, a new approach rarely emerges from

the initiative of a single researcher: it emerges for answering to practical needs.

Noticeably, at a French summer school on the integration of complex calculators in

The computation of →+∞ ( ) + ( ) in a graphic calculator environment

The students had to compute this limit. For the students working without graphic calculators, it was clear that the limit was
+ ∞, as the logarithm function grows towards + ∞, and the sin function oscillates between – 1 and + 1.

For the students using a graphing calculator (having the same knowledge, about the functions at stake, as the previous
students), this limit cannot exist, due to the oscillations of the function (see screen copies below).

Asking the students for justifying their answers, the ones regularly working with a graphing calculator argued that:

- “the function tending towards + ∞ are functions strongly increasing from a given value of the variable (what could be
interpreted in term of concept-in-action”, § 10.2.1);

- “if a function has a limit, it is necessarily monotonous from a given value of the variable”, what could be interpreted in
term of theorem-in-action, § 10.2.1).

Such phenomena evidenced the deep influence of such tools on conceptualisation, and pleaded for considering them as
essential components of the didactical milieu (§ 10.2.1).

Fig. 10.7 A standard view of a function on a graphic calculator screen (Guin & Trouche, 1999,

p. 198)
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1997, Michèle Artigue and myself (Artigue, 1997; Trouche, 1997), independently,

borrowed the same essential concepts of artefacts and instruments, instrumentation
and instrumentalisation (Vérillon & Rabardel, 1995), for our respective communi-

cations, installing the first milestones of what will become ‘the instrumental

approach of mathematics didactics’. Guin and Trouche (1999) describe this first

attempt for developing a new frame:

Verillon and Rabardel’s studies focusing on learning processes involving instruments in the

area of cognitive ergonomy are based on this idea. If cognition evolves through interaction

with the environment, accommodating to artefacts may have an effect on cognitive

development, knowledge construction and processing, and the nature itself of the knowl-

edge generated (Vérillon & Rabardel, 1995, p. 77). They suggest models and concepts to

analyse the instrumented activity of children confronted with tasks involving artefacts.

Verillon and Rabardel stress the difference between the artefact (a material object) and

the instrument as a psychological construct: “The instrument does not exist in itself, it

becomes an instrument when the subject has been able to appropriate it for himself and has

integrated it with his activity” (Vérillon & Rabardel, 1995, p. 84). The subject has to

develop the instrumental genesis and efficient procedures in order to manipulate the

artefact. During this interaction process, he or she acquires knowledge, which may lead

to a different use of it. Similarly, the specific features of instrumented activity are specified:

firstly, the constraints inherent to artefacts; secondly, the resources artefacts afford for

action; and finally, the procedures linked to the use of artefacts. The subject is faced with

constraints imposed by the artefact to identify, understand and manage in the course of this

action: some constraints are relative to the transformations this action allows and to the way

they are produced. Others imply, more or less explicitly, a prestructuration of the user’s
action.

The reorganisation of the activity resulting from the introduction of instruments also

affords new possibilities of action which are offered to the user; they may provide new

conditions and new means for organising action. Thus, it can be argued that, because the

instrument is not given but must be worked out by the subject, the educational objectives

stated above require the analysis of the instrumented activity of artefacts involved in the

learning processes.

It seems quite natural that mathematics education has borrowed from cognitive ergo-

nomics ways of thinking appropriation processes of artefacts. These concepts basically

distinguish on one hand what was given to the subject (artefacts, historically and culturally

situated) and on the other hand, what was built by the subject (the instruments) during its

finalized activity finalized. To be taken into account the long and complex process (the

genesis) supporting the construction, combination of two developments, instrumentation

and instrumentalisation.

What appears as essential, in this preliminary construction:

– The distinction between an artefact (a product of human activity,27 that a subject

can appropriate for performing a given task) and an instrument (resulting from

this appropriation process).

– The distinction of two processes, structuring the instrumental genesis, from an

artefact to an instrument: a process of instrumentation, directed from the artefact

27 Contrary to what is said in the previous quote of Guin and Trouche (1999), corresponding to a

previous step of the genesis instrumental approach of didactics, an artefact is not necessarily

material. It can be also symbolic, as an algorithm, or a language. Its structural characteristic is to be

a result of human activity, and to be potentially engaged in new activity.
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towards the subject, and a process of instrumentalisation, directed from the

subject towards the artefact.

This distinction leads to a careful analysis of artefacts, their constraints and

potentialities (to be related to affordances, see Chap. 7): in which way does the

computational transposition (Sect. 10.4.3) transform the knowledge involved?

What are the gestures favoured by the artefacts and in which way do they influence

the student’s knowledge in progress? The discussion was deepened through discus-
sions in the French community of mathematics education, particularly during the

summer school of this community in 1999, through a lecture by Rabardel (2000).

This allowed scholars to establish links between this approach and other existing

approaches (Fig. 10.8).

This link was made easier, as Rabardel himself situates his work in the thread of

Vergnaud (Sect. 10.3.2), framed by the couple scheme/situation. Defining an

instrument as a mixed entity with two components (artefact and schemes) leads to

describe the instrumented action schemes, and the operational invariants involved

in them, and to think the dialectics between technical and conceptual work
(Artigue, 2002). We had also to re-think the design of situations, particularly
a-didactical ones (Sect. 10.3.1) according to the constraints of the artefact and the

targeted knowledge. At least, we had to take into account the institutions in which

the artefacts were integrated, and, beyond experimental classes, re-think the con-

ditions for an integration of artefacts in ordinary settings. In ordinary settings,

artefacts rarely live alone: several artefacts are engaged in students’ activity,

making necessary to study the system of instruments they develop.

Finally, the instrumental approach appears as a new frame fully integrated in a

network of theoretical approaches, marked by the theory of didactical situations, the

anthropological approach of didactics and the theory of the conceptual fields. These

interrelations appeared also in the theoretical developments arising in the French

community at the end of the last century, giving more importance to the teacher’s

Fig. 10.8 A representation

of an instrumental genesis

(Trouche, 2004, p. 289)
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role, even in the a-didactical situation: Chevallard (1997) elaborates on the

‘familière et problématique’ figure of the teacher, Margolinas (2002), working in

the frame of Brousseau’s theory, analyses the different situations and milieus of a
teacher, and Trouche proposed the concept of orchestration (Sect. 15.3) for model-

ling the teacher’s role in rich technological environments.

But a theoretical approach never develops in an isolated national frame. The

instrumental approach was discussed in the Third Computer Algebra in Mathemat-

ics Education Symposium held in Reims in 2003, and this discussion gave birth to

two papers (Hoyles et al., 2004; Trouche, 2004). This led a number of scholars to

give more importance to the instrumentalisation process, i.e. to the creative power

of students developing their own instruments from the available artefacts. After

focusing on the importance of artefacts as supports of activity and mediators of

knowledge (i.e. the instrumentation processes), it implies to rebalance the relation-

ships constituting the instrumental geneses. It resonates with an Engestr€om’s
remark, revisiting the work of Vygotsky and his colleagues: ‘it seems to be all

but forgotten that the early studies led by Vygotsky, Leont’ev, and Luria not only

examined the role of artifacts as mediators of cognition, but was also interested in

how children created artifacts of their own to facilitate their performance’
(Engestr€om et al., 1999, p. 26). This discussion was further developed in a journal

issue dedicated to the work of Celia Hoyles (Trouche & Drijvers, 2014).

After having grounded the instrumental approach in the ‘French field’, I would
like to link, beyond the local interaction during the CAME symposium, French and

international trends in the field of mathematics education, and that is the purpose of

the following section.

10.5.2 Zoom Out, Where the National Characteristics Join
International Trends (and Vice Versa)

In this section I draw on a meta-study of a comprehensive corpus of publications,

driven by a French team (Lagrange et al., 2003), supported by the French Ministry

of research. This study addresses the field of research and innovation in the world-

wide field of the integration of ICT in mathematics education from 1994 to 1998. In

contrast with classical meta-studies,28 this study did not focus only on the findings

of publications, but considered also characteristics like the questions addressed,

approaches, cognitive theoretical background, etc. The authors expected that

‘analysing this material would help to identify as many as possible aspects of the

complexity of the integration, some of them widely addressed and others less

considered by the literature’ (p. 241). I draw on this study in order to have a

means for comparing the evolutions in the French and the international community

28 For example, Hembree and Dessart (1986), see Sect. 13.2.
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of mathematics education in the field of information and communication technol-

ogy (ICT).

The study proceeded in four stages. The first stage consisted in gathering all the
references related to ICT and mathematics education in a variety of international

sources (the Zentralblatt für Didaktik der Mathematik database, four international

journals on mathematical education, seven international journals on computers for

mathematics learning, books with chapters on technology and mathematics educa-

tion, etc.) as well as French works (professional and research journals, dissertations,

research and official reports, etc.); this resulted in a corpus of 662 published works.

The second stage consisted in a first sorting of this large corpus, distinguishing the

type of analysis (presentation of a technological product, experimentation-

innovation, research report or general reflection), the mathematical field, the type

of technology, and the country of the first author. Figure 10.9 shows that: research

publications were not in a majority. The literature about ICT includes classroom

innovation and pure speculation as well as research studies; a number of papers did

not specify a mathematical field, focusing on the support of technology in ‘general’
mathematical learning.

The third stage consists in a reduction of the corpus, removing papers which had

insufficient substance (for example: technical descriptions, or simple description of

an innovative classroom activity), whilst keeping a large enough selection to

respect the diversity of approaches and to avoid biases, resulting in a corpus of

79 papers. The fourth stage was dedicated to an in-depth analysis of this corpus. For

each of these papers, one participant of the project established a detailed review

showing the following characteristics: problematic,29 theoretical background,

details of the questions addressed, methodology used, specific findings and an

appreciation by the reviewer. This analysis led the authors to distinguish seven

different orientations for characterising these papers, named ‘dimensions’. For each
of these dimensions, a set of indicators was designed, resulting into a grid

(Fig. 10.10).

Using a statistical procedure based on a cluster analysis, we obtained clusters of

papers sharing specific indicators. The procedure also selected one or two papers at

the centre of each cluster, which were the publications statistically best represented.

In each cluster, French and international papers were represented.

Globally, the 1994–1998 literature appeared to restrict its analysis to potential-

ities of ICT itself (easier and more varied representations, new aspects of mathe-

matical knowledge, etc.) rather than questions raised by its insertion into the

‘ordinary’ mathematics teaching. The general picture of ICT in the teaching and

learning of mathematics emerging from this analysis is that of a field where

29 The notion of ‘problematic’ comes from the French ‘problématique’, well defined by Edward

Said: ‘The idea of beginning, indeed the act of beginning [a research], necessarily involves an act

of delimitation by which something is cut out of a great mass of material, separated from the mass,

and made to stand for, as well as be, a starting point, a beginning; [. . .] such notion of inaugural

delimitation is Louis Althusser’s idea of the problematic, [. . .] is something given rise to by

analysis’ (Said 1978, p. 24).
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publications about innovative use or new tools and applications dominated.

Research studies differed with regard to the way they considered the potentialities

of ICT, but they converged in a focus on the student, the cognitive role of ICT (third

dimension) and in an emphasis on epistemological and semiotic aspects (first and

second dimensions). The other dimensions appeared as emergent:

Fig. 10.9 Elements of description of the first corpus (Lagrange et al., 2003, p. 242)

Fig. 10.10 The dimensions of analysis and their indicators (Lagrange et al., 2003, p. 247)
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– The institutional dimension gathers papers focusing on the difficult viability of

technology in schools. Papers with a pioneer spirit started from today’s difficul-
ties to motivate the use of tomorrow’s technology, while others looked for

reasons in more permanent characteristics of technology and of the educational

institutions

– The instrumental dimension gathers papers analysing constraints, evidencing

complexity of appropriation processes, conjecturing relationships between ges-

tures and conceptualisation

– The situational dimension gathers a few papers taking into account new econ-

omy of problem solving, and new situations to be though for integrating tech-

nologies; changes to be made in the curriculum, and the need for thinking about

the use of technology together with other learning situations

– Very few papers considered the teacher dimension

It is amazing to realise that the ‘dimensions’ distinguished by the French team

were close to the theoretical frameworks they were close to: the cognitive dimen-

sion with Vergnaud, the institutional dimension with Chevallard, the instrumental

dimension (the ‘French instrumental approach’) and the situational dimension with

Brousseau. But this shows that the French papers were not isolated: they share in

each of these dimensions elements of analyses, and through the cross references,

they feed other theoretical frames as well as being fed by them.

It is also interesting to analyse evolutions along the period covered by the

survey. The authors ‘discerned a long-term motion towards awareness of a more

complex integration and the subsequent necessity of new dimensions of analysis. It

is confirmed by what we know of the institutional and instrumental dimensions in

today’s research studies and of the emerging reflections on the teacher’ (p. 260).
They noticed a growing interest for the Brousseau theory of situations (Sect. 10.3.1)

which could ‘help when looking in depth into changes in the learning situations and
when showing precisely what is at stake in these new situations’ (Sutherland &

Balacheff, 1999, p. 259). They note that ‘elements of evolution appear in the

convergence towards dialectical approaches to issues like visualisation and

contextualisation. These approaches contribute to the development of new dimen-

sions by helping to better consider the institutional contextualisation of knowledge

as well as the schemes attached to the use of a technological tool in their instru-

mental dimension’ (p. 259). Evoking Mariotti (2002), the authors provide evidence

that, just after this period, the instrumental dimension experienced a strong devel-

opment. Regarding the complexity of teaching and learning situations with ICT,

researchers became more cautious. The authors note that ‘Interesting research

studies start from the observation of teachers struggling to integrate ICT into the

real teaching’ (Monaghan, 2001, p. 259).

Thus the period 1992–1998 appeared as a period of transition, from a naive point

of view on integration to a more balanced point of view, to which the instrumental

approach gives means of expression: for preparing the ICMI study on mathematics

education and technology, the introductory document (Hoyles & Lagrange, 2006)

proposed as one of the key publications, the book by (Guin et al., 2005) which
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constitutes precisely both a presentation and a discussion of this approach at an

international level.

10.6 Elements for Discussion

In this chapter, I have tried to explain the exceptional conjunction of phenomena

leading, from 1970, to a strong development of theoretical frameworks in mathe-

matics didactics in France. This productivity had been acknowledged by interna-

tional distinctions (the Felix Klein medal to Guy Brousseau and Michèle Artigue,

and the Hans Freudenthal medal to Yves Chevallard). Beyond this national context,

we have shown that these constructs draw their sap from various theoretical

traditions, and resonate with international trends.

The instrumental approach appears as a theoretical construction, starting from

taking into account of ‘artefacts for doing mathematics’, and developing thanks to

the theoretical ground provided by the other frames. In the field of ICT in mathe-

matics education, interaction between the French community and the international

one have strongly developed, due probably to the novelty of phenomena arising

with the rapid evolution of technologies.

The instrumental approach, in the thread of these interactions, has deeply

evolved:

– The evolution can be related to a concept, for example the concept of orches-
tration, enriched by Drijvers et al. (2010), see also Chap. 15.

– The evolution can also touch the relationships between concepts: the upheavals

of digital resources and of Internet led in 2007 to expand the vision beyond

technology, to the set of resources that sustain the activities of teachers, includ-

ing textbooks (Sträßer, 2009). It leads Gueudet and Trouche (2009, see also

chap. 15) to substitute the dialectic resources-documents to the dialectic artefact-

instrument. This new model has resulted in the documentational approach that

also induces other openings: considering the documentary work of the teacher in

a variety of places and long time involving new methodological developments;

new concepts are emerging, for example the notion of the teacher resource
system, paving the way for new theoretical fruitful interactions (for example, for

analysing the structure of the resource system, a successful track seems to be the

study in terms of praxeologies, Sect. 10.4.1).

The interactions between frameworks allow more generally to deepen the

concepts at stake. It was the case for the interactions between: the instrumental

approach and the semiotic approach (Maschietto & Trouche, 2010); the instrumen-

tal approach and the ontological semiotics approach (Drijvers, Godino, Font, &

Trouche, 2012); the documentational approach and the double approach

(Sect. 10.4.3, Gueudet & Vandebrouck, 2011). This work was, at an international

level, theorised as a set of possible strategies to grow the theories themselves

(Prediger, Arzarello, Bosch, & Lenfant, 2008), see Chap. 11.
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The documentational approach has developed a methodology of reflective

investigation (Chap. 15), involving the gaze of the teacher on its own resources,

and providing new tools to the researcher for analysing teachers’ work. We could

all struggle through this self-confrontation with our own resources in research. The

representation that I have, at this point, of my own resource system is pretty close to

that of the worker Demarcy, looking at his working place at the factory, as

‘heterogeneous supports, improvised vices for stalling pieces. . .’ (Linhart, 1978).
What is true for a researcher is also probably for a community. Research commu-

nities in mathematics education, especially the part thereof that look to technology

have long been committed to this cross questioning of theoretical tools, far beyond

the French research communities (Trouche & Drijvers, 2014). A history far from

being finished. . .
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Rabardel, P. (2000). Eléments pour une approche instrumentale en didactique des mathématiques.
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Chapter 11

Discussion of Issues in Chapters in Part II

John Monaghan, Luc Trouche, Jonathan M. Borwein, and Richard Noss

11.1 Introduction

This chapter is the second ‘space for reflection’ in this book; an opportunity for Jon
and Luc to comment on John’s three chapters and Luc’s chapter. Richard Noss, a

noted scholar and designer in the constructionist tradition in the area of mathemat-

ics and digital tools, has kindly agreed to join the discussion that led to this

reflective chapter.

To structure the discussion John designed seven questions under four headings

and Jon, Luc and Richard responded as they saw fit. The bulk of the text below

presents the questions and the responses. ‘I/my’ refers to John and the questions

follow the sequence of chapters in Part II.

11.2 Space for Alternative Conceptions
on the Development of Tools

Chapter 7 provides a ‘potted history’ of the development: of tools; in understanding

of the place of tools in activity; in mathematics education (of tool use in this field).

Chapter 7 is my interpretation and, as such, is open to bias from my experiences,

understandings and interests. In Sect. 7.2 I focus on the period from the 1960s to the

present as a period which witnessed a flowering of ideas and technological devel-

opments relevant to tool use in mathematics education. My temporal focus here

may simply reflect my own development as it was the period when I grew up.

Question 1

Is the period from the 1960s to the present a period which witnessed a flowering of

ideas and technological developments relevant to tool use in mathematics and

mathematics education?
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Responses

Richard: Well it’s certainly true that the sixties represented the beginning of

time: the first point at which anyone could reasonably claim that computer-

use might mediate learning of anything, let alone maths. I think one can

reasonably make the case that although tools were a topic in what there

was in maths education (of course much less than now—and mercifully so

perhaps), it was the computer—its expressive power and now its ubiq-

uity—that has disrupted mathematical learning design and teaching prac-

tice to the point where ‘tool’ is hardly broad enough to characterise it.

Luc: To answer this question, we have to distinguish between mathematics

and mathematics education. “For me, there are four elements leading to

‘the flowering of ideas and technological developments relevant to tool use

in mathematics education’: the evolution of tools as supports of thinking,

the evolution of schooling, the evolution of ‘who is using tools’? and the

evolution of perspectives in mathematics education”. For example:

• Evolution of tools as supports of thinking: see the creation of writing

and the developments of tools for mathematics learning in the scribal

schools or the invention of printing

• Evolution of schooling: the necessity of addressing a large audience of

heterogeneous students leads to the introduction of blackboards in

school (and subsequent discussions on their legitimacy, as they replace

oral interaction by written interactions)

• Evolution of ‘who is using tools’: the discussion is all the more impor-

tant that the first users of tools are far from the math teachers (see the

discussion on the abacus or on calculators in classroom)

• Evolution of perspectives in mathematics education: see the beginning

of the twentieth century, where the mathematicians pleaded for a more

active way of teaching mathematics

The feature of the period ‘from the 1960’ is that it meets these four

evolutions: digital metamorphosis, generalisation of instruction, ‘digital
natives’, inquiry-based mathematics teaching. Probably the first time in

history where these four conditions meet with such an intensity.

Jon: I think the current cascade of new technological resources has much to

offer and the ride has just begun. I hope I have illustrated this in my

Chapter on homo habilitation mathematicus. That said, as I have

responded in question 3, I suspect the long-term consequences remain to

be identified. Moreover larger sociotechnological issues dominate which

technologies flourish—if Facebook or Google sees the merit in a current

tool then it will be developed but if not it is very hard for the community to

find the level of resources needed to ensure successful robust and acces-

sible implementation.
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Remaining in Sect. 7.2, I am rather scathing about Piaget on tools, that he said

nothing about them. Maybe Piaget had so many other important things to say that he

simply didn’t have time to focus on tools. Further to this, I ascribe a form of ‘tool
blindness’ to researchers who continued work along Piagetian lines (starting from

radical constructivists)—maybe I am simply unaware of post-Piagetian research on

tool use in ontogenetic development.

Question 2

Am I being unfair on Piaget and post-Piagetians?

Responses

Richard: Well yes, you’re being a bit unfair, although the failure to concep-

tualise tools (or contexts) limits the generalizability of Piaget’s findings.
This is the key contribution of Papert’s work.

Luc: Yes, a bit unfair. Actually, for Piaget, learning comes from interactions

with objects in various contexts. He probably underestimates the impor-

tance of mediations (of tools as well of institutions, mainly schools). This

is the key contribution of Vygotsky’s work.

11.3 On Theory and Theories

In mapping the content of this book, Luc and I took an early decision that there were

three ‘movements’ in mathematics education that were particularly interesting with

regard to tool use: constructionism; activity theory (AT); and work originating in

twentieth century French didactics. I shall come on to questions specific to each of

these movements in the next section but here I would like to consider the place and

importance of ‘theories’ (constructionism and activity theory could be called

‘theories’ and the chapter on French didactics outlines several approaches that

could be called ‘theories’). Before framing my question I’d like to note that I

think ‘theoretical considerations’ (including stating epistemological and ontologi-

cal assumptions and principles regarding what it is to do and to learn mathematics)

are important but (1) the theories used in mathematics education are quite different

things to theories in the physical sciences and (2) theories do not exist without

people to interpret them and different people may interpret a theory in different

ways. I mention this simply to note that I do not see theories in mathematics

education as being without problems.
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Question 3

To what extent is a theory needed to understand tool use in mathematical activity?

Responses

Richard: I don’t know the answer to this question but I’m sure that anyone

attempting to answer it ought first to have read diSessa and Cobb (2004).

Luc: A complex question, that I could subdivide into different issues: is a

theory needed to understand a specific aspect of human activity? Is a

theory needed to understand this specific aspect of human activity that is

‘tool use in mathematical activity’? Is a theory needed to understand this

more specific activity that is ‘tool use in mathematics education’? Is a

specific theory needed to understand this specific aspect of human activity

that is ‘tool use in mathematical activity’? And, at least, what does ‘to
understand’ mean?

Some elements of a personal point of view:

• Each human, aiming to accomplish a given activity needs to understand
it. No need for a theory, but effective need for developing a reflective

point of view on this activity (supported by social practices, in school,

in a community of practice, etc.).

• The purpose of a science is not only to understand a given phenomenon,

but to make it socially understandable.

• In this perspective, different theories could allow one to understand

what is at stake in ‘tool use in mathematical activity’ (as in this book). . .
• I do not think that a single theory is able to grasp the whole complexity

of tool use in mathematical activity: personally, when I think ‘didacti-
cal situations’, I have in mind the theory of didactical situations; when I

think ‘institutions’, I have in mind the anthropological theory of didac-

tics (ATD), when I think ‘mediation’, I have in mind Vygotskian

theory. . .
• This kind of theoretical ubiquity is viable only if, for the particular topic

I am working on—as it happens, the interaction between teachers and

resources, I am able to build a kind of theoretical ecosystem, combining

diverse theoretical approaches, being aware that this combination is

relevant only within the perimeter of the topic I am working on.

Jon: To ‘understand’ I suppose one must have a theory. But as with the logical

foundations of mathematics which are central to the interests of mathe-

matical philosophers and logicians, explicit theorising has little direct

impact on either mathematics teachers or researchers.

As long as education faculties function largely independently from

mathematics departments and as long as evidence-based educational the-

ory remains unusual, I do not expect things to change. There will be

(continued)
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periodic edicts from ministries of education and changes to curricula in

university, none of which will have the intended impact. Eventually,

various tools will become embedded in educational practice whether or

not their impact is understood and whether or not the teachers are suffi-

ciently expert to properly exploit their use. Since the media and technol-

ogies are still in rapid evolution, it may well be impracticable to expect

more. Have we as educators yet properly integrated the Gutenberg revo-

lution into our teaching style?

I also suspect that for profound cultural reasons the answer to this

question looks quite different in each of, say, Hong Kong, France and

Australia.

11.4 Constructionism and Activity Theory

I had an interesting experience in writing the chapters on constructionism and on

activity theory. I felt I knew them (and the mathematics education literature related

to tool use they stimulated) quite well before I started each chapter and I expected

them both to say a great deal about tool use in mathematics. But in my reading, and

the subsequent synthesis of this reading for each chapter, I was a little disappointed

with what they had to say about tools. I summarise these little disappointments as

follows:

11.4.1 Constructionism

Mindstorms is a fascinating book but it says very little about tools per se. Windows
on mathematical meanings (WMM) gives greater insight into tool use in mathe-

matical activity than anything that went before and, oddly, after—that is, the

constructionist community (of which Richard is a part) post WMM (1996) did

not take ‘the place of tools in learner meaning making in mathematical activity’
beyond anything done in WMM.

11.4.2 Activity Theory

I did not find an AT view on tools in mathematical activity but, instead, found

multiple AT views on tools in mathematical activity. In retrospect I should not have

been surprised because the ‘unit of analysis’matters a great deal in consideration of
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tool use (basically that AT provides and insight on tool use when the unit of analysis

has mediated action tools but when the unit of analysis is the activity system itself,

AT does not provide great insight on tool use).

Question 4 (for Richard)

Is my ‘little disappointment’ with constructionism (from a tool use perspective)

justified?

Richard’s Response
Yes it is justified. Constructionism isn’t really a ‘theory’ in the sense of, say,

constructivism or ‘evolution’ or ‘string theory’ (yes I know science and

social science have different criteria and meaning for the word). But it is

true that the constructionist community has so far manifestly failed to

situate the idea into the broader theoretical culture—a great failing of

‘Windows’ too: one day we will finally say more!

I also had a question on activity theory but there was only a short comment from

Richard, ‘I alternate between thinking it’s mainly obvious and that it’s used too

formulaically to be useful (triangles!!)’.

11.5 On French Didactics

I found the chapter on French schools of thought fascinating in terms of the context

provided. I have followed these schools of thought for several decades, so there was

little new for me in terms of what theoretical frameworks say, but in terms of

contextualising these frameworks within wider mathematical and educational

movements I learnt a great deal. Of the many questions I could ask I have selected

two. These questions are rather specialised and so I do not really expect anyone

except Luc to answer them.

My first question relates to similarities and differences constructionism

(as advanced in Windows on mathematical meanings—WMM), the theory of

didactical situations (TDS) and the ATD with regard to the place of tools in learner

meaning making in mathematical activity. My interpretation of the similarities and

differences in these three frameworks is briefly summarised as follows. All three

frameworks are centrally interested in learners’mathematical actions. In WMM the

focus is on the joint design of tasks and tools, which allow learners to make

connections/mathematical relationships. In TDS the teacher designs the milieu

(which includes tools) to facilitate learners formulating and validating a

pre-determined mathematical understanding. ATD is also interested in the milieu

(which includes ostensives) but individual meaning making is viewed via institu-

tional practices which overshadows individual meaning making.
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Question 5

What is your reaction to my summary?

Luc’s Response
I certainly agree with John’s implied point that constructionism and

didactiques are fully compatible as theories, although this might be

because they belong to different forms of theory (see the diSessa and

Cobb paper mentioned above).

• Two nuances: For the TSD, the milieu is not done once for ever.

Students interact with the milieu, and, in this measure, contribute to

its design. In the tread of this theory, Sensevy (2009) and his colleagues

developed a theory of the joint action of a teacher and her students, all

of them having a responsibility to the progression of the knowledge in a

given classroom.

• For the ATD, instead of ‘institutional practices’, I would speak of

‘institutional constraints’, that influence the relationships of the indi-

viduals to knowledge and the way they accomplish tasks, using various

ostensives.

My second question on French didactics concerns the instrumental approach and

its relation to Leont’ev’s approach to activity theory (activity–actions–operations).

A strength of the instrumental approach is that it makes few assumptions but has a

wide field of application. Leont’ev’s approach to activity theory can be used, as was
seen in Chap. 9, to shed light on the relationship between learners and their

environments including the process by which an artefact becomes a tool for

learners. The instrumental approach has the potential to enhance our understand-

ings of the action and operation aspects of Leont’ev’s approach without compromis-

ing any of its basic assumptions.

Question 6

What is your reaction Luc? Can the instrumental approach and Leont’ev’s approach
to activity theory be ‘networked’?

Luc’s Response
Before answering to your question, I would like to be sure to correctly

understand what do you mean by ‘the instrumental approach makes few

assumptions’. For me, precisely, it can be used ‘to shed light on the

relationship between learners and their environments including the process

by which an artefact becomes a tool for learners’. Perhaps we need to

distinguish the Rabardel’s approach, and the result of its appropriation by

some French didacticians?

(continued)
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For my own experience, the limitation of the instrumental approach is in its

consideration of social processes (even if Rabardel himself, in his seminal

book in 1995, evokes social schemes, or a social part of schemes). This

‘missing resource’ leads my doctoral students, who aimed to capture social

processes, to use other theoretical frameworks, as communities of practice

(Sabra, 2011) or activity theory (Hammoud, 2012). The communities of

practice framework were useful for its concepts of participation and

reification whilst the activity theory framework was useful for its notion

of rules and division of labour. In a recent paper Gueudet et al. (2015), we

have used both the documentational approach of didactics and CHAT to

study the collective design of an e-textbook, analysing both the activity

system of the community of designers, and the documentational genesis of

the designed resources.
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Contribution au développement de l’approche documentaire du didactique. PhD, University
Lyon 1.

Rabardel, P. (1995). Les Hommes et les Technologies, une Approche Cognitive des Instruments
Contemporains. Paris: Armand Colin.

Sabra, S. (2011). Contribution �a l’étude du travail documentaire des enseignants de mathé
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Part III

Selected Issues with Regard to
Tool Use in Mathematics

The chapters in this part consider selected issues in tool use in mathematics

education. There are many issues regarding tool use in mathematics education

which could be considered. The issues selected (the curriculum, the calculator

debate, mathematics in the real world, and the mathematics teacher) were debated

(thrashed out!) by John and Luc over 2 days in the initial planning of this book.

There is, then, a sense in which they reflect personal bias and also compromise. But

these issues are, we maintain, important issues.

Chapter 12 considers curriculum and assessment policies with regard to the

integration of digital technologies into the learning and teaching of mathematics.

With regard to curricula, it focuses on interrelationships between tools and math-

ematics curricula and argues that: school mathematics develops from ‘really used’
tools; the development of tools is related to the implemented as well as the intended

curricula. Assessment is viewed as a ‘problem area’, and the final section of the

chapter uses French policy on assessment as a case study to examine tensions that

can arise.

Chapter 13 considers the longstanding debate on the place and value of the

calculator in the learning, teaching, and assessment of mathematics. The calculator

has inspired one of (if not the most) the controversial debates regarding tool use in

mathematics education. After an introduction to the issues, actors, and charges, this

debate will be viewed by a framework informed by Wertsch’s ten theses on

mediational means. The chapter ends with a consideration of the future of this

debate.

Chapter 14 focuses on mathematics in the real world and the problem of linking

this mathematics with school mathematics. This leads us to address questions

concerning the nature of mathematics. We consider the use of tools in leisure and

in working practices. Tool use is omnipresent in out-of-school mathematics, but

school mathematics privileges specific tools. The chapter considers the problem of

‘suspension of sense making’ in school mathematics and opportunities for using

real-life artefacts to link in-school mathematics to out-of-school mathematical

activities. The increasing presence of digital technology in everyday life and
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work opens up new opportunities (and problems) for linking in-school to out-of-

school mathematical activities.

Chapter 15 considers the teacher with regard to mathematical knowledge and the

use of technology. The teacher, once jokingly referred to as something that could be

replaced by teaching machines, is arguably more important in classrooms where

digital technology is a central feature than those without. But mathematics teachers,

en masse, are often reluctant to enact deep integration of digital technology in their

classrooms—why is this? A consideration of this question will include a critical

review of attempts to categorise forms of teacher knowledge and what teacher

should do.
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Chapter 12

Integrating Tools as an Ordinary Component
of the Curriculum in Mathematics Education

Luc Trouche

12.1 Introduction

We have evidenced the importance of tools for meeting the needs of computation in

society (and for the development of culture itself); the development of computation

tools and the development of writing appearing deeply interrelated (Chaps. 4 and

5). The crucial importance of tools for mathematicians themselves has been illus-

trated in Chap. 3. I would like, in this chapter, to focus on the use of tools for doing

mathematics in the part of a society dedicated to learning: schools.

The use of tools in school mathematics can be seen through the curriculum,

understood as the vision that a given society has of/for its school. This vision is the

result of interrelated pressures of multiple agents (politicians, tools manufacturers,

pedagogues, mathematicians, parents. . .), what Chevallard (1987) names the ‘noo-
sphère’. The curriculum designers have indeed—theoretically—to take into

account many factors: school equipment, equity, teachers training. . .
This use of tools depends also on the actors directly involved in school mathe-

matics, mainly teachers and students, who can import proscribed tools into math-

ematics classes, or, on the contrary, be reluctant towards tools prescribed by the

curriculum (see Chap. 13, the ‘calculator debate’). We have thus to distinguish

between the intended, implemented, achieved and even the hidden curriculum

(Kelly, 1977).

I would like to show, in this chapter, how tools condition the development of

these different curricula. Mathematics learning indeed develops ‘under the

umbrella’ of the ‘really used’ tools: the fact that the computation clay tablets, in

Mesopotamian tribal schools (Sect. 5.2), were used as a construction material,

‘trapped in walls, floors and foundations’ of schools, gives us a nice metaphoric

illustration of this structuring effect of tools.

Each curriculum develops as a complex structure with some ‘tools-sensitive’
points. Among them, the question of assessment constitutes certainly a keystone; I

will try to justify this.
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This chapter is organised in three sections setting the scene: the first section

proposes a vertical (historical) point of view, aiming to evidence the continuity of

some issues over the time; the second gives an horizontal (international compara-

tive) point of view, aiming to evidence, beyond the national peculiarities, some

common features; the third section proposes a case study, the French policy on

assessment, seen as paradigmatic. The conclusion addresses some questions and

draws some perspectives for further studies.

12.2 An Ancient Story

I wish to analyse, in this section, interactions, over the time,1 between the develop-

ment of curricula in mathematics and the evolution of tools. I analyse these interac-

tions, firstly, as a ‘mechanical’ effect of news tools on the curriculum in mathematics;

deepening this analysis, I evidence secondly a tension between the evolution of

curricula and the integration of tools; finally, these tensions led to rebalance the

needs for experiencing tools at the fringe of curriculum, and the needs for integrating
them as an ordinary, even if it is crucial, component of this curriculum.

12.2.1 A ‘Mechanical’ Effect of Tools on Curriculum
in Mathematics

Tools, being historically and culturally situated artefacts, emerge in a given society,

and vanish, with the associated usages. Naturally, what happens in a given society,

after a time of transition, happens in its school. The effects of the change of a tool on

the mathematics curriculum may be very strong when this tool occupies a central

place in the process of learning. It is the case for the tools dedicated to writing as

clay tablet and calame in scribal schools (see Chap. 5). Lavoie (1994) shows also

the consequences of the introduction of the iron quill (instead of the goose quill) for
the learning of arithmetic in the nineteenth century in Québec: the easier writing

allowed younger students to do computations by hand (instead of mentally),

allowed them then to do longer computations, and at last, led to an earlier intro-

duction of arithmetic in the curriculum.2

1 For this analysis ‘over the time’, I have chosen, in this section, some particular moments

appearing as critical: moments of transition for tools or/and curricula. This choice leads to jump

over time, giving perhaps to the reader the impression of surfing over history: references are given

for having means to analyse in more depth continuities and breaks.
2 Such evolutions, linked to the writing tools, could also be analysed in the case or the transition

from ‘pen and pencil’ to ‘keyboard and screen’, and then from ‘keyboard and screen’ to ‘touch
screen’ (see Chap. 17).
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For a more recent period, I have evidenced (Table 12.1) the gradual effect of the

integration of simple calculators, then of graphic calculators, on the prescription for

numerical computation and graphic representation (see Sect. 12.4.1 for the taken-

into-account of tool during the examinations).

Table 12.1 Evolution of curriculum (12th grade, scientific class), following the evolution of tools

(Trouche, 2005, p. 25)

Year Prescriptions for tools

Prescriptions for numerical

computation

Prescriptions for graphic

representations

1966 Use of numerical tables of

standard functions and slide

rules

Notably a specific chapter

on numerical computation

No reference to repre-
sentative curve except for
exponential and logarithm

functions

1971 Use of numerical tables,

slide rules and computing

machines

Numerical calculations are

included in the chapter

The expression graphic
representation appears
in connection with gen-
eral study of functions

Real numbers, numerical

computation, complex

numbers

1982 Calculators will be widely
used

No chapter specific to

numerical computation: it is

integrated into other

chapters

Usual use of graphic rep-
resentation will be pro-

moted, because it plays a

significant role in the

behaviour of functions

1986 Calculators will be system-

atically used (a basic model
is sufficient)

Numerical problems and

methods play an essential

role in the understanding of

mathematical notions

Graphic representations
must hold a very impor-
tant place in the

curriculum

1991 Calculators with statistical

functions are recommended

Idem. Idem.

On the other hand, graphi-

cal screens are not
required

1998 Graphic calculators are

prescribed
Numerical topics are intro-

duced as an additional spe-

cialist option in

mathematics

Favouring argumenta-
tion supported by graphs

2002 The power for investigation

of computer tools and the

existence of high-

performance calculators,

frequently at students’ dis-
posal, represent welcome

progress and their impact

on mathematical education

is significant. This evolu-

tion has to be supported by

using these tools, particu-

larly in the phases of dis-

covery and observation by

students

Numerical topics form a

domain with which infor-

matics strongly interacts;

use of various means of

computation will be bal-

anced: by hand, with the

help of a spreadsheet or a

calculator
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Considering this evolution, I concluded:

The introduction of graphic calculators leads to graphical representations being taken more

and more into account: “A geometrical vision of problems will be developed in calculus,

because geometry supports intuition with its language and its representation procedures”.

Consequently, we should notice that the graphic frame is privileged in the calculus part of

curriculum, as for example in the following comment: “Deeper work is suggested on the

limit of sequences, easier to tackle than the function limit at a point: the objective is

ambitious, so it is advisable to remain reasonable in implementing it and to favour

arguments supported by graphs”. One may conjecture that the type of tool favoured has

an influence on the frame of work: with scientific calculators, the numerical frame is

favoured, whereas it is the graphical one with a graphic calculator (Trouche, 2005, p. 26).

I have entitled this sub-section ‘mechanical effects of tools on curriculum’ for
enlightening the importance of these effects, but we have to keep in mind that:

– As I state in Chap. 5 (Sect. 5.6) ‘new artefacts do not necessarily make old ones

redundant’, and phases of transition are often phases of cohabitation.
– The evolutions of the intended curriculum do not lead ‘mechanically’ to evolu-

tions of the achieved curriculum (see Chap. 15).

Actually, even regarding the intended curriculum, the relationships between

tools and curriculum are far for being a one-way relationship, as I will underline

in the following section.

12.2.2 Critical Tensions Between Evolution of Curriculum
and Integration of Tools

It is difficult sometimes to know if tools move from society to school (tools

conditioning then mathematics teaching), or if the needs of mathematics teaching

call for new tools to be introduced for learning and teaching purpose (mathematics

teaching conditioning the development of tools). Again, I will illustrate this with

regard to Mesopotamian scribal schools: I have explained (Sect. 5.3) how the

incisions of signs, with a ‘calame’ (a stiletto), on a malleable media—a clay

tablet—result in an embossed writing, and that signs should be read with lighting

that allows the reader to identify all incisions in order to avoid misinterpretation.

Then one can hypothesis that the scribal schools took place in open air, outside any

house: ‘It is now agreed that much teaching, reading and writing was necessarily

done outside in the courtyard rather than indoors; this can be inferred not only from

the need for bright light that most Assyriologists recognise from their own experi-

ence with tablets but also from telling passages of the E-dubba literature’ (George,
2005, pp. 130–131). It is difficult to decide if this kind of writing imposes school to

stand ‘out of the walls’, or if the way of meeting people and discussing in open air,

in this geographic area, allows such a writing to be invented. . . There is clearly a

dialectical relationship between the birth of a form of schooling (seen at large,

including a form of curriculum) and the birth of a form of writing.
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Four thousand years after the scribal schools, if we look at schools in Africa,

standing outside, using slates for writing, we could consider them as a remote echo

of the scribal schools. Four thousand years after also, looking, in the developed

countries, at the use of tablets by students out of school, we can remark on some

main differences: light has to come from outside in the clay tablets case, light comes

from inside in the digital tablet case; the teacher is ‘in the circle’ in the Mesopo-

tamian case, this is not necessarily the case today . . .
Dialectical relationships between tools and curriculum are particularly visible at

each moment of renewing mathematics teaching. It was the case at the beginning of

the twentieth century, in France and Germany, following the reflections of prom-

inent mathematicians (Poincaré and Klein), leading to deep reforms of science and

mathematics teaching. The French reform (1902 in France, see Sect. 10.2.1)

underlined the importance of experience for learning mathematics and science.

Maschietto and Trouche (2010) relate, in an article written in the journal

‘L’enseignement des mathématiques’3 just before this reform:

Integrating tools [geometrical instruments, striped and squared papers. . .] into mathematics

teaching appears as interesting both from a practical and pedagogical points of view:

These devices could become a precious help from a practical point of view with some

improvements, which will probably happen. Moreover, the explanations of what underlies

these devices enable the sticking into the mind, the fixing in memory, the concentration of

students’ action on some theories, which become in this way more visible. Here there is, on

a pedagogical point of view, a set of questions, which are of the highest interest for all the

teachers (Maschietto & Trouche, 2010, p. 35).

The integration of (sometimes ancient) tools into mathematics teaching and the

evolution towards a more active way of learning mathematics appear thus closely

linked. And the questions related to these two evolutions are interrelated. It appears

clearly at the occasion of the foundation of ICMI, in 1908, in their proceedings:

In elementary teaching, one can mention by, for instance, the folding of paper, the open air

activities, the usage of simple instruments for measuring the geometry of observation, etc.,

practical and approximate computations (degree of precision, logarithms with different

numbers of decimals, the usage of slide rules, etc.), the general question of graphics in

algebra, the more widespread use of squared paper. Mathematics laboratories have been

recently evoked. What has been done in this direction? With what results? (Maschietto &

Trouche, 2010, p. 35).

Ferdinand Buisson was the director of the French primary teaching from 1879 to

1896. He coordinated, with more than 350 collaborators, an impressive editorial

project, ‘Le dictionnaire de pédagogie et d’instruction primaire’, which had two

editions, 1887 and 1911 (Buisson, 1911), setting the scene, from the noosphère’s
point of view, of what was to be taught and how, and witnesses major controversies.

3 Founded at the end of the nineteenth century, the journal ‘L’enseignement mathématique’was the
place where mathematicians exchanged ideas about teaching. It became the official journal of the

International Commission for Mathematical Instruction from its creation in 1908 (http://www.

unige.ch/math/EnsMath/).
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One of them is about the use of abacus for learning mathematics, a controversy

which was replayed in the twentieth century (see Chap. 13, the ‘calculator debate’):

What matters, however, is to determine in what way and to what extent the use of the

abacus is to be approved. It met serious opponents. One of them, Mr. Rambert, professor at

the Institute of Technology in Zurich, said about abacuses contained in ViennaWorld’s Fair
(1873): “The abacus corrupts the teaching of arithmetic. The main purpose of this teaching

is to exercise, in early childhood, the faculties of abstraction, to teach her to see through the

eyes of the mind. Putting things in front of the body it goes directly against the spirit of this

teaching. Nature has given children their ten fingers as a natural abacus; instead to give

them a second, she must learn to do without the former. It is said that the abacus gives much

ease teachers for explanations. I think so. We quickly counted on the abacus as 10 and

10 are 20; but the child who relies only on the abacus lost his time, while the one who

counted by head made the most useful exercise. We need a complement and corrective to

teaching by sight; it is the mental calculation, which will give them. »

The discerning and critical spirit has perhaps confused here abacuses with calculators.

We have done elsewhere our express reservations about calculating machines, as ingenious

they are. A judge of great authority, Mr. Sonnet, perfectly said: “Mental mathematics is the

basis of any instruction regarding the calculation; any machine that pretends to supplement

the mental calculation goes against the purpose of teaching.” But the abacus is not an

arithmometer: it facilitates the work of the student, but it does not remove it; and indeed it is

only intended for very young children;

As well observed MA Lenient in a series of studies on the abacus, “pointing to the child,

making him see the results of addition, subtraction, multiplication or division, the abacus

reduces the effort and fatigue of the child; but by the testimony of his eyes, he graves in his

mind and in his memory all these results that he has to memorise. The abacus prepares and

initiates mental calculation: we never thought it could be replaced. »

We want the child gets used to “see with her mind,” that’s fine; but it is still necessary
that he first learns to learn with his eyes. Before the abstract, the concrete; before the

formula, the image; before the pure idea, the sensible idea: it is the general law of a true

pedagogy (Buisson 1911, entry ‘abacus’—le boulier in French, our translation).

Thus, the discussion about tools and curriculum cannot be summarised as ‘Are
new tools to be integrated in mathematics teaching and how’. The relationship

between tools and curriculum is a dialectical one (Sect. 10.5), the issue at stake is

‘how is it possible to profit from the available artefacts for achieving the goals

assigned to mathematics teaching and learning in a given curricula’. In this per-

spective, Chevallard (1992) analysed ‘the integration and viability of digital tools’
in mathematics teaching; he stated that the question was not, following the evolu-

tion of tools, to change the content of mathematics to be taught, but to rethink the
way they were taught, taking into account the conditions and constraints of the

educational system. Thinking the way for renewing a given curriculum leads one to

think the evolution of a whole system, and not only of its fringes.

12.2.3 From a Naı̈ve Idea of ‘Tools Improving Mathematics
Education’ to a More Balanced Point of View

Focusing on recent history—the digital area—is interesting for at least two reasons:

the digital revolution affects simultaneously mathematics, tools for doing
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mathematics and tools for communicating; and this revolution rapidly develops

over the time, offering more and more complex tools for mathematics doing and

teaching—for human thinking. Therefore it leads to very intensive discussions in

the mathematics education community, opening a window for analysing some

dramatic evolutions over a short period of time: it clearly appears a trend from

studies focusing on natural influences of tools on mathematics and its teaching to

studies focusing on complexity of curricular evolutions.
Even if they have not the ambition to give official recommendations for the

teaching of mathematics, the ‘ICMI studies’4 constitute certainly a precious means

to know how the international community of mathematicians and mathematics

educators understands a given problem, and think of the curriculum in mathematics.

They aim to give a state of the art on a problem that is ‘ripe for a serious

international study’ (Kahane, 2008, p. 19). Two ICMI studied addressed the issues

of tools in mathematics teaching: the first one in 1985—and it was also the first

ICMI study—(Cornu & Ralston, 1992), the second one in 2006 (Hoyles &

Lagrange, 2010). Looking at them allows us to highlight the main problems at

stake, and the evolutions.

The titles of these two studies are: ‘The influence of computers and informatics
on mathematics and its teaching’ on the one hand, ‘Mathematical education and
digital technologies: Rethinking the terrain’ on the other hand. These titles are

significant of the evolutions happening in 21 years between the two conferences:

– Technological evolutions: the first title evokes computers and informatics, while

the second title evokes digital technologies

– Didactical evolution: the first title focused at first on mathematics themselves,

while the second title focuses only on mathematics education

– Epistemological evolution: the first title mentions a one-way influence of com-

puters on mathematics teaching, while the second title situates at the same level

of mathematics education and technologies

Looking at the content of the two studies itself, some major features appear:

– The first ICMI study focused on mathematics teaching at the university level,

while the second study addresses the whole curriculum from primary schools

onwards

– In the first study, technologies are considered as given, while in the second one

technologies are considered as open to improvements through their usages, the

questions of design being addressed as a central challenge

– Questions of teacher education are addressed in the two studies, but the second

one seems to have a wider scope, taking into account the whole system, from

pre-service education to professional development programmes, the final objec-

tive being to make teachers capable to master technology in their mathematics

classrooms

4 The ICMI studies are launched by the International Commission on Mathematical Instruction,

see http://www.mathunion.org/icmi/conferences/icmi-studies/introduction/.
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– In the first study, the teacher mainly appears alone in her classroom, while the

ideas of communities (of learners, teachers), networks and collaboration

strongly appear in the second study

– The issues of assessment are quite marginal in the first ICMI study (the word

itself does not appear in its table of contents), whereas a whole section (of 4) is

dedicated to this issue in the second ICMI study.

Following the ideas evoked at the creation of ICMI in 1908 (Sect. 12.2.2), the

two ICMI studies underlined that technology—computers—had greatly increased

the possibilities of observation and conjecturing in mathematics was changing the

way of teaching mathematics and had the potential to bring school mathematics

closer to the conditions of researching in mathematics. In this perspective, the

learning of mathematics, in the context of laboratories activity, seems to be close

to the work of a ‘computer-assisted quasi-empiricist mathematician’, as Jon

describes himself in Chap. 3.

Besides, the second study had a more balanced point of view, distinguishing

between potential and actual use, intended and achieved curriculum, and focusing

on access, equity and social–cultural issues. In the same period, the necessary

didactical transposition, from the experimentation approaches of a mathematician

in a mathematics laboratory to the experimentation approaches of teachers and

students in classroom are also carefully analysed (Lagrange, 2005).

These evolutions seen through the eyes of the two ICMI studies can be con-

firmed by the meta survey (Lagrange, Artigue, Laborde, & Trouche, 2003) of the

research literature on mathematics and technology, taking into account the period

1992–1998 (just ‘in the middle’ of the two ICMI studies, cf. Sect. 10.5.2), evidenc-

ing, during this period, emergent dimensions: the institutional dimension (focusing

on the difficult viability of technology in school), the instrumental dimension

(analysing constraints, evidencing complexity of appropriation processes) and the

situational dimension (taking into account the new economy of problem solving,

and thinking the curriculum as a whole).

After this historical view, evidencing some major trends, I would like to propose

now a cross-national view on the current curricular situations, researchers speaking

to institutions.

12.3 International Situation, Specificities, Invariants
and Challenges

Researchers speaking to institutions: I refer in this section to two reports written by

researchers for enlightening educational policies. We have chosen recent reports

(for the reasons evoked Sect. 12.2.3), covering the whole mathematics curriculum

(basic education in the first case, upper secondary education in the second case),

addressing a large range of curricula all over the world, and written by experts in the

field of ICT in mathematics education. In the first part, I lean on a report realised in
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2011 for UNESCO by Michèle Artigue, former president of ICMI, in the second

part, I rest on a report realised in 2014 by four researchers, experts in this field

(Drijvers, Monaghan, Thomas, & Trouche, 2014) for International Baccalaureate

(http://www.ibo.org). This report raises the issue of assessment, which is important

to consider as the assessment of a curriculum is an integral part of a curriculum;

assessment will be analysed in the third part of this section.

12.3.1 Main Common Challenges for Technology in/for
Basic Mathematics Education

The report coordinated by Artigue (2011) is in response to a request of UNESCO. It

concerns basic mathematics education, and leans on the literature of research and

the contribution of a range of experts, well aware of the curricular situation and

challenges faced by their own country. The audience targeted by this report is,

beyond the policy makers, the actors of mathematics education: ‘It will be of use

not only to decision-makers wanting to mainstream quality SME (Science and

Mathematics Education) education into their systems, but also to stakeholders

who wish to participate in the change process’ (p. 3).
Technology appears, from the beginning, as a question of major interest, as the

UNESCO Assistant Director-General for Education underlines:

All the experts agreed that the last decade has witnessed the development of a substantial

body of knowledge on SME and the production of valuable tools and resources, many of

which are now widely accessible thanks to technological advances (p. 3)

The technological issues indeed appear at a number of places in the report, and

one of its sections is dedicated to technology and mathematics, underlining two

major shared challenges:

– Questioning the gap between the potential of technology for the teaching and

learning of mathematics and their weak effective use in basic mathematics;

trying to reduce this gap, particularly in developing new modes of teacher

training:

These technologies [calculators, spreadsheet, dynamic geometry software and micro

worlds such as Logo] have undeniably enriched opportunities for experimentation, visual-

ization and simulation and have modified relations with calculation and geometrical

figures. They have brought school mathematics closer to the outside world by making it

easier to process more complex data and to handle more realistic problems. However, in

spite of their undeniable potential for enhancing the teaching and learning of mathematics

and their many positive achievements, they have to date had little effect even in education

systems that strongly encourage their use. Recent work on teachers’ practices in computer

environments is beginning to give insights into this situation, and forms of training properly

adapted to teachers’ needs are being considered. Nevertheless, the issue of widespread

effective use of these technologies in basic mathematics education remains for the moment

unresolved (Artigue, 2011, p. 35).
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– Questioning thegapbetween the abundance of burgeoning Internet resources and the

lackofresourceswellfitted to teachers’needsandcapacityofuse; trying toreduce this
gapbysupporting thedevelopmentof collaborative tools and teachers communities5:

Recent developments, such as those relating to the growth of collaborative learning tools,

the Internet and mobile technologies, have given rise to different opportunities with

differing impacts, as evidenced by the option of using technology to support forms of

collaborative mathematics learning by students, free online access to a range of resources,

new options for organising distance education and support for the collaborative production

and sharing of resources, for the emergence of communities of teachers and researchers and

for networking and remote exchanges between students and teachers (Artigue, 2011, p. 36).

The emergence of Internet as ‘a potential active partner in the field of teaching

mathematics’ appears, in this period, in other reports, for example the report

Knowledge and Training of Secondary School Mathematics Teachers supervised
by the Israel Academy of Sciences and Humanities, written in the frame of the

Initiative for Applied Education Research.

Continuing and even increasing support for the existing Internet site at the National Center for

Secondary School Math Teachers. The site is a rich resource that supports the professional

development of teachers and the formation of a community of teachers. It is very important to

continue to develop the Internet site and to use it to increase internal communication within

the community of teachers and between the community of teachers and other professional

communities. Today it is clear that the Internet is an active tool accompanying the teaching of

mathematics in Israel and abroad, and that due to its great potential it should be transformed

from a tool that accompanies the learning process into an active partner in the field of

teaching mathematics in general (Gutfreund & Rosenber, 2012, p. 109).

Some years later, these two challenges pointed out by these reports seem to be

still relevant, questioning national policies, that try to find solutions, not always the

same ones, as I will analyse in the following part.

12.3.2 Diverse Answers for Common Challenges

I will draw in this part from the recent report Use of Technology in Secondary
Mathematics written to the request of the International Baccalaureate by a team of

four researchers coordinated by one of the author of this book, John Monaghan

(Drijvers et al., 2014). The International Baccalaureate (IB) commissioned these

researchers to write this report:

to provide insights into the use and integration of technology into curriculum, classroom

practice and impact on learning in secondary mathematics courses and inform possible

direction and focus for the coming curriculum review of IBDP (international baccalaureate

diploma program) mathematics (Drijvers et al., 2014, p. 3).

5 To be underlined: two annexes of the report are dedicated to such communities: the IREM

network (see Chap. 6), and the Sesamath association (see Chap. 15).
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The scope is thus different of the UNESCO report, which was dedicated to the

basic mathematics education. The IB report concerns an upper level, where the

mathematics is more advanced. The IB proposed a set of questions to be addressed,

some of them related to IB priorities, other of a more general scope, about

curriculum, assessment and implementation strategies. These questions were

answered by the authors regarding their own countries, or the countries they had

close association with. Six curricula were thus examined: England, France, the

Netherlands, New Zealand, Singapore and Australia. For each country, a wide

range of both curricular documents and research papers6 supported the team

members’ assessments. I will retain here, for reasons of space, only the results

concerning the four countries of the authors, with the hypothesis that one knows

better the curricular situation of his own country.

I will examine here the issues related to curriculum, and implementation strat-

egies, and in the following part (Sect. 12.3.3) the issues related to assessment.

About curriculum, the researchers interpreted these questions as such:

Q1. Is the use of ICT explicitly part of the mathematics curricula? If yes, how is this

addressed and described?

Q2. Do the opportunities that ICT offers impact on curriculum choices (e.g.,

integration by parts no longer needed, approximate solutions rather than exact

ones, . . .)?
Q3. Is ICT used in mathematics classes on a regular basis? If yes, what type of

technology (IWB, GDC, laptop, desktop, . . .)? Who uses it, the teacher or the

student? Are there specific computer labs in schools, or do regular classes have

ICT facilities?

Q4. Is there any funding, e.g. by governmental institutions, for ICT integration? Or

other kinds of resources?

Q5. Do textbooks anticipate the availability of ICT?

Q6. Are Internet resources used in mathematics courses? Are there any plans to

extend the use of digital technology in mathematics classes in the nearby future?

If yes, what kind of plans? What kind of technology? Are graphic display

calculators (GDCs) being replaced by other hardware such as tablets or

smartphones?

For each answer, official-intended curriculum and real-implemented curriculum

were distinguished. The authors were aware that these countries were all developed

ones. The objective was not to design a global map of the integration of ICT in

school mathematics, but to analyse the level of development being more or less the

same, the differences and communalities of curricular choices regarding the inte-

gration. I present (Table 12.2) what appear as the more significant authors’ answers
regarding the interaction ICT-curriculum.

6 The selected research papers were written from the years 2000 to 2014 (exceptions were made for

key papers) from journals rated as A* and A (and some rated as B) in a recent European rating of

mathematics education journals (Drijvers et al., 2014, p. 8).

12.3 International Situation, Specificities, Invariants and Challenges 277



Table 12.2 Comparison between fur countries (extracts from Drijvers et al., 2014)

About mathematics, curriculum and technology

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

England Three private organisations (AQA,

Edexcel and OCR) called Examination

Boards (EB) publish GCE curricula

and associated examinations. An aim

of all AS/A-level specification

includes ‘acquire the skills to use

technology such as calculators and

computers effectively, to recognise

when such use may be inappropriate

and to be aware of limitations’ and the

assessment objectives includes ‘use
contemporary technology and other

permitted resources . . . understand
when not to use such technology, and

its limitations’

There is great variation. All students

have, at least, a scientific calculator

and many have a GDC. Schools, and

teachers within schools, vary to the

extent in which they embrace the use

of technology. The writer has anec-

dotal evidence to suggest where tech-

nology is used extensively it is often

‘local’, that is a particular teacher
shows students how to use a GDC to

solve a specific type of question

[AS and A-level stand for Advanced

Supplementary and Advanced level]

France The national curriculum is under the

authority of the Ministry of Education

« At a large scale, teachers consider

that the new curriculum supports ICT

integration. More and more teachers

see ICT as real pedagogical tools

ICT is explicitly part of the curriculum

at each level, for example, for grade

11: « using software, tools for visuali-

sation or simulation, of computing

(both CAS and scientific) and of pro-

gramming, deeply changes the nature

of teaching in favouring inquiry-based

learning » (Inspectors report)

However ICT usages change

according to the high school. DGS are

more and more used in classes, but

there is not really analysis of their

effects

In addition, the inspectors are very

supportive for ICT integration in

teaching: « a reasonable use of differ-

ent kinds of software is particularly

fitted to mathematics teaching: it is the

case for calculators, spreadsheet, CAS

and DGS » (Inspectors report)

Teachers are waiting for an assess-

ment of such tools during the final

official examination (baccalauréat) »

(Inspectors report)

The

Netherlands

The official curricula—or rather

targeted learning objectives and goals,

as there are no time schedules or other

prescriptions—are described in

so-called syllabi available at www.

examenblad.nl. The syllabi address

different domains. The first domain,

called Skills, mentions the use of ICT

in general terms, e.g. ‘The candidate
can, also through the use of ICT,

gather, select, process, judge and

In the reality of the mathematics

classroom, ICT seems to be used more

and more

Pisa 2012 findings and national stud-

ies show that ICT infrastructures are

relatively good in Dutch schools

However, exact data for mathematics

teaching seem to be lacking

(continued)
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The four responses reveal some differences:

– Difference of nature between the different curricula, sometimes designed by

private organisation (the case of England), sometimes by the Ministry; some-

times delivered under the form of a description of the teacher’s work, sometimes

delivered under the form of general standards

– Some curricula (New Zealand) seem to evoke at large the use of ‘technology’
whereas other curricula (France) designate specific tools (DGS, CAS,

Table 12.2 (continued)

About mathematics, curriculum and technology

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

present information’ and, under the
heading of Algebraic skills, ‘The can-
didate can [. . .] perform operations

with, but also without ICT means such

as a graphing calculator’. The domain-

specific descriptions also in some

places refer to the use of ICT, for

example in the domain Differential and

integral calculus: ‘In appropriate situ-

ations, the candidate can set up an

integral, calculate its exact value and

approximates it using ICT’

New Zealand The written curriculum (http://

nzcurriculum.tki.org.nz/National-Stan

dards/Mathematics-standards) is

divided into eight levels (with eight the

highest) for the subject Mathematics

and Statistics, with Achievement

Objectives for each level. It is very

short, comprising four pages in total,

and makes general statements such in

calculus:

This depends on the individual school

and teacher

Level 7: Sketch the graphs of func-

tions and their gradient functions and

describe the relationship between

these graphs

Level 8: Form differential equations

and interpret the solutions

The only explicit mention of technol-

ogy is in Level 7 Statistics:

‘. . .calculating probabilities, using

such tools as two-way tables, tree

diagrams, simulations, and

technology’

CAS Computer Algebra System, GDC Graphic Display Calculator, ICT Information and Commu-

nication Technologies, IWB Interactive White Board
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calculators. . .), the reason being, perhaps, that in the second case there are a

larger number of available technologies for teachers

– Some curricula (The Netherlands) make explicit the usage of technology for

performing a given task, whereas in other curricula (New Zealand) these usages

are left implicit (one can conjecture that ‘Sketch the graphs of functions and their
gradient functions and describe the relationship between these graphs’ is made

by using a GDC)

– Some curricula (England) underline the possible inappropriate use of technol-

ogies, and their limitations, whereas other curricula (France) underline the

reasonable use and the potential of technologies

Beyond these differences, linked to cultural and historical differences, there are

also commonalities, signs of a period of transition: in the four countries, the general

use of technology in mathematics classrooms is globally increasing, with huge

differences between schools and teachers. The integration of technology seems to

remain ‘local’, ‘that is a particular teacher shows students how to use a GDC to

solve a specific type of question’ (the case of England), and the teachers are

reported (France) to be not always able to analyse the effects of the technology

used. The taking into account of the technology during the final examinations seems

to be a key point for a larger integration in classroom (Sect. 12.3.3).

One may remark that, if the description of the official curriculum is quite easy,

the description of the real one is much more difficult: the answers lean on institu-

tional reports (inspectors), or personal experience. There is clearly a lack of

research analysing the real integration of technology in mathematics classroom at

a large scale.7

The second point I would like to examine is about implementation strategies.
The researchers interpreted the IB questions as such:

Q1. Is there a debate going on concerning the use of ICT in mathematics classes? If

yes, what are the main issues and opinions?

Q2. Is there support for teachers’ professional development with respect to inte-

grating ICT in their teaching? If yes, is this technically oriented, or also

pedagogical?

Q3. Is ICT used for supporting ICT integration, for example blended teacher

education (pre- and in-service), online courses for professional development,

MOOCs?

Q4. Are there any future plans to implement new curricula with a different role for

ICT than is the case at present? If yes, how would you describe this changing

role?

7 To be noticed: the French Ministry of education and research has launched a large study for

analysing the use of educational resources in four disciplines (mathematics, english, physics/

chemistry and technology): the ReVEA project (Ressources vivantes pour l’enseignement et

l’apprentissage) will develop from 2014 to 2018.
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Q5. Please add other comments and information that you consider relevant but that

is not addressed in the questions

I present (Table 12.3) what appear as the more significant authors’ answers
regarding the implementation strategies, focusing on teacher training, appearing as

crucial in a time of transition.

The four answers echo the challenges underlined by recent international reports

(Sect. 12.3.1): the need, for profiting from the potential of ICT, to develop new

modes of teacher training and to sustain teachers’ collaborative work:

In all countries there are some supported initiatives for teacher professional development

concerning the use of ICT. These initiatives, however, seem to be incidental, local and

small-scale, rather than structural and widespread. Exceptions seem to be the work done by

NCETM andMEI (EN). In the frame of research projects, small-scale PD initiatives exist in

most countries. Online resources for teacher support are available in all countries, but the

initiative to their use is mostly left over to schools and teachers (Drijvers et al., 2014, p. 33).

There are, of course, clear differences between countries having a centralised

national curriculum (France and the Netherlands) and countries with a partition of

responsibilities between local and national authorities, as well as between public

and private initiatives. In the second case, it appears more difficult to analyse the

reality of teacher development programmes. Even if some phenomena appear more

clearly in one country than in the other ones, I analyse these as the demonstration of

tensions, which seem to be characteristics of a period of transition:

– The tensions between the top-down development of CPD programmes and the

bottom-up development of teachers associations designing resources of their

own

– The tensions between a back-to-basis trend, aiming to avoid the uncertainty of

the digital area, and an innovative trend, searching in the ICT potential the seeds

for improving both students’ learning and teachers’ competencies

– The tensions between CPD organised for better using of a given technology, and

CPD organised for better teaching in using a range of technologies

– The tensions between testing advanced methods for teacher education and fitting

to average competencies of teachers

– The tensions between developing distance learning (one educator speaking to a

number of teachers) and developing collaborative teachers’ work deeply linked

to local experiences

The word ‘blended’ (for learning, or teaching, or training) seems to be a right

word for describing these tensions, resulting in provisional balances.

I have tried, in this part, to compare curricula and technology implementation

strategies in four countries, analysing the communalities and variation in terms of

institutional differences and tensions characterising a period of transition. I would

like now to compare the curricular situation regarding the way of assessing stu-

dents’ learning.
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Table 12.3 Supporting teachers in integrating ICT and professional development (extracts from

Drijvers et al., 2014, with some updating, regarding the most recent events, as the French MOOC)

About implementation strategies

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

England There are many professional develop-

ment (PD) providers in England. In

2005 the National Centre for Excel-

lence in the Teaching of Mathematics

(NCETM) was established and one of

its main briefs was to co-ordinate and

validate the diverse provisions of

PD. Some of this PD relates to the use

of technology in mathematics but the

writer is not aware of any relating to

technology in 16–19 mathematics

other than offers for bespoke PD and

the MEI. MEI’s provision includes a

yearlong part-time course, Teaching

Advanced Mathematics, for 11–16

teachers who are starting to teach

16–19 academic stream mathematics;

technology is integrated into this

course

Cornerstone Mathematics (www.

cornerstonemaths.co.uk) concerns

11–14 rather than 16–19 mathematics

but it is worthy of comment as it aims

to integrate digital technology into

mathematics lessons to present math-

ematical ideas using dynamic repre-

sentations and simulations. A pilot

study, involving 19 teachers and

490 students, is being ‘scaled up’ to
100 schools across England (see

Hoyles, Noss, Vahey, & Roschelle,

2013)

MEI Mathematics in Education and
Industry (MEI) is a private foundation,

which publishes textbooks and runs

CPD

Two independent organisations have a

strong interest in technology in 16–19

academic mathematics education are:

– Technology for Secondary/College
Mathematics (see http://www.tsm-

resources.com/), centred on the soft-

ware Autograph and provides train-

ing, resources and an annual

residential workshop

– Wolfram Research, the founders of
Mathematica support the use of tech-

nology in mathematics education and

organises events for teachers (see

http://www.wolfram.com/events/cam

bridge-feb-2014/)

France Specific CPD programmes had been

developed by the Ministry of Educa-

tion, aiming to train teachers with/for

ICT: Pairform@nce first (2006–2013)

http://national.pairformance.educa

tion.fr/, then on the basis of an

appraisal of this programme, a new

programme, more flexible, developed

from 2014 M@gister, both based on

the collaborative work of teachers, and

Potential and constraints of the

Pairform@nce programme have been

analysed by Gueudet and Trouche

(2011b). Several features of this

programme are underlined: the links

between teacher education and class-

room practices, teachers collaborative

work as a necessary condition for ICT

integration, interrelations between

teachers resource system, collective

(continued)
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Table 12.3 (continued)

About implementation strategies

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

on a combination of face-o-face and

distant training

resource systems, and institutional

resource systems

The Ministry of research and higher

education has created a new structure

(FUN: France Université Numérique)

dedicated to the design and imple-

mentation of MOOCs; among them a

MOOC dedicated to ‘Teaching and

Training mathematics with ICT’

It remains quite marginal among

teachers, and the new programme

M@gister can be analysed as a tenta-

tive of scaling-up

Innovations come also from the field.

The emergence of large teachers online

association, collaboratively designing

resources, as Sesamath, appears as a

sign of the digital metamorphosis

The first MOOC dedicated to ICT

integration in mathematics has gath-

ered about 3000 teachers and reveals

the complexity for involving, during a

6-weeks session, distant teachers in a

collaborative work

Sesamath is considered as a new way

of professional development, helping

teachers to face digital challenges

The

Netherlands

As the GCD is already around for

many years, there is no PD focusing on

that. For other ICT tools, it is very

limited and only small scale. For using

the IWB, there has been some training,

rather button oriented. There are no

national PD courses for using ICT in

mathematics education. In research

projects or pilot PD courses, a blended

approach is sometimes used, with

Moodle like environments combined

with face-to-face meetings. Pre-service

teacher education does make use of

online content

The new curricula make a case for

‘mathematical thinking activity’. The
question is if ICT can be used for this,

or if it is detrimental. Of course, the

answer depends on the type of ICT,

and above all on the type of task and

the type of use

The new curricula that will be

implemented in 2015 are a compro-

mise between the back-to-the-basic

movement, which is not in favour of

ICT, and more twenty-first century like

ideas that match better with ICT

integration

New Zealand There are a lot of curriculum resources

online to assist teachers, but little on

the use of ICT

Teachers’ professional development

with respect to integrating ICT is

organised only on an ad hoc basis,

often organised locally by the teacher

organisations. No central government

or Ministry of Education assistance

PD Professional Development, CPDCourses for Professional Development,MOOCMassive open

Online Courses, GCSE General Certificate for Secondary Education
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12.3.3 The Sensitive Point of Assessment

Assessment, particularly ‘high-stakes’ assessment, is a sensitive point for a given

curricula because, even if a teacher is not concentrating only on ‘teaching to the

test’, s/he is aware that the content as well as the shape of an examination reflect the

expectation of a given institution, and of a given society. Assessments reflect also

the values that this institution and this society bestows on the tools supporting

learning and teaching. A final assessment reflects also the state of the current

teaching: assessment designers aim to evaluate what is really taught. This assess-

ment thus cannot be more advanced than what is estimated to be learnt through

average teaching. Therefore one can say: ‘such a final exam, such a teaching’ and it
is all the more true in the secondary level.

I will still rely on Drivers et al. report. The researchers interpreted the IB

questions as such:

Q1. Are there national examinations for mathematics? If yes, how are they set up

(duration, one or more parts, . . .)
Q2. Is the use of ICT allowed during the national examination? If yes, which types

of technology? What are criteria? Are specific types or brands allowed?

Q3. If GDCs are allowed, do they need to be reset before the start of the examina-

tion? Are additional applications and text files allowed? Is press-to-test mode

used? How are all these regulations controlled in schools?

Q4. Are tasks phrased in such a way that the student knows if algebraic/exact

answers are required, or if approximations found with the GCD will do? Are

there ‘magic words’ to indicate this?

Q5. Is the use of ICT during examinations rewarded, in the sense that the student

gets credits for appropriate use, or for answers that are found by just using ICT?

Or are tasks designed in such way that technology just supports the solution

process, or that is of no value at all?

I present (Table 12.4) what appear as the more significant authors’ answers
regarding the assessment, focusing on the requested use of ICT, conditioning the

actual use in the courses preparing this examination.

Drijvers et al. analyse these results as follows (remember that the original report

addressed the situation of six countries: England EN, France FR, The Netherlands

NL, New Zealand, Singapore, and Australia state of Victoria VI):

All six countries have high stakes national examinations. There are differences between the

countries in session time, marking schemes and grading procedures. In VI, the examination

of the Mathematical Methods CAS course takes place in two sessions, a 1-hour

non-calculator session and a 2-hours CAS calculator session. In NL, the national exami-

nation grade only determines half of the final grade, the other half being the result of local

school examinations. The latter provides opportunities for other assessment formats,

including the integration of digital technology.

All six countries allow the use of calculators during (some/most) examinations; in EN,

NL, NZ and SG these are GDCs without CAS facilities In FR and VI, as well as in some EN

MEI and some NZ level 3 courses, CAS calculators are allowed. In all countries, criteria are
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Table 12.4 The roles assigned to ICT for mathematics assessment during the final examinations

(from information provided by Drijvers et al., 2014)

About assessment

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

England All of the modules have timed

examinations

Core 1 examinations appear to be a

vehicle for the examination of paper

and pencil techniques, e.g. simple

co-ordinate geometry, simplification

of surd forms and simple calculus

techniques

In all (except Core 1 Pure Mathemat-

ics) examinations, students may use a

scientific calculator or a GDC

(no CAS) without retrievable informa-

tion stored (including databanks; dic-

tionaries; formulas; text). Some words

(as ‘show’) indicate that GDC is not

appropriate: ‘Show that the equation of

the tangent at A(8,0) is y + 8x¼ 64’

The writer has been in Examination

Board meetings dedicated to finalising

the wording of examination questions

and mark schemes where specific

questions are revised so as to not dis-

advantage students without GDCs

MEI has a unit Further Pure with
Technology where ‘Students are
expected to have access to software for

the teaching, learning and assessment

that features a graph-plotter, spread-

sheet, CAS and programming lan-

guage. For the examination, each

student will need access to a computer

with the software and no communica-

tion ability’

France There is a national examination at the

end of grade 12 (baccalauréat), open-

ing doors of the university

Some tasks need a calculator to be

performed (performing an algorithm,

or computing an approximate value),

corresponding to a kind of mechanical

use of a calculator

All kinds of calculators are allowed

(including CAS) on two conditions:

their use has to be autonomous

(no Internet connexion, no connexion

with other calculators), and no printer.

They do not need to be reset. So it is

possible to have downloaded specific

applications or text files

Some new tasks appear, in order to

avoid the use of a GDC (for example:

analysing a curve that is done), intro-

ducing a new spirit (more inquiring)

in the examination

NB: mathematics assessment has been
subject to deep changes, and will
change again in 2016, see Sect. 12.4

(continued)
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Table 12.4 (continued)

About assessment

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

The

Netherlands

There are national final examinations

for the different mathematics courses

(www.examenblad.nl)

If a student would bring a CAS cal-

culator, this probably would not be

noticed by the examination officers.

So control is weak

The use of a GCD is allowed (no CAS).

Specific types are permitted. The list of

these types is updated yearly. Main

criteria are: no communication and no

printing options

The increasing capacities of GCD

apps now question the current policy

(e.g. ZoomMath, see http://www.

zoommath.com/). The assessment

authorities have installed a committee

to assess the situation and to advise on

future strategies

GCDs do not need to be reset, so

additional apps or text files can be used

during the examination. The ministry’s
argument for this is that resetting in

school practice is hard to carry out,

also because students programme reset

simulation programmes and expert

math teachers are not always around

during the examination

This list of magic words always raises

discussion, as, in spite of efforts to

communicate this clearly, teachers

seem to miss this, do not explain these

conventions to their students and, as a

result, want to grade the examinations

against the guidelines. Debate. . .

There is an official list of ‘magic

words’. For example, ‘calculate the
exact value’ or ‘prove’ means that no

GDC facilities may be used, whereas

‘calculate’ means that GDC facilities

(including procedures such as calc

intersect or zeros or nderiv) may be

used

Now that GDCs are so common, there

is a tendency to less reward their use

than was the case shortly after their

introduction. Also, the requirement

for a student to describe the tech-

niques used is not as tight as it used to

be. All together, the role for the GCD

in the examination is decreasing

In application tasks, the focus is on

modelling, or on mathematisation, and

the resulting equations or other math-

ematical problem can be solved using

the GDC. If by-hand techniques are to

be assessed, the above-mentioned

magic words are used, and there usu-

ally is less context or application in

such tasks

New Zealand There are nation al examinations at Levels 1, 2 and 3. None of the standards

speak about technology directly, the comments are in the additional notes

Level 1: calculators not allowed in Mathematics standards 91027, but all

approved scientific or graphing calculators may be used for standards 91028,

9103, and 91037 (a GCD is an advantage in 91028)

For levels 2 and 3: Candidates must bring an approved calculator (preferably a

graphing calculator). Candidates who do not have access to graphing calculators

will be disadvantaged

They have to be reset. Any calculator used in NZQA examinations must be

silent, hand-held, non-printing and must contain its own power source. It MUST

(continued)
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that communication (including internet access) and printing facilities are not allowed. In

the EN MEI Further Pure with technology courses, students are expected to have computer

access during the examination.

Four countries (NL, NZ, SG, VI) provide a list of approved calculators, whereas the

other two (EN, FR) do not. In three countries (EN, NZ, SG), the calculator’s memory needs

to be cleared. This is phrased in different ways. In the three other countries, there is no need

to clear the memory (NL, FR, VI). An argument for this may be that a calculator reset in

school practice is hard to check, also because students program reset simulation programs

and expert math teachers are not always around during the examination. As a result,

students can bring specific applications (including CAS capabilities, e.g., the ZoomMath

app for TI devices) or text files (e.g., with examination papers from earlier years). This

leads to debate on the calculator’s memory size (FR) and CAS capabilities (NL). Where

GDCs are allowed, some phrasing conventions are established to make clear to the student

if exact by-hand results of GDC approximations are expected (Drijvers et al., p. 31).

The authors summarise the national ICT rewarding policies as such:

– EN: Calculator allowed rather than expected;

– FR: Calculator needed for some algorithmic work, but not rewarded. Type of

tasks has changed;

– NL: Calculator needed for procedures such as finding numerical solutions of

equations. Credits assigned to this seem to decrease over the years (Drijvers

et al., p. 32).

I would like to add some extra reflections arising from this survey:

– It appears that the integration of ICT in mathematics assessment increases the

divide (Sect. 12.3.1) between the technology potential and its actual use: instead

of developing experimentation, visualisation, experimentation, conjecturing

abilities, it seems to induce the development of mechanical behaviour (for

example, in Table 12.4: automatic answer to ‘magic’ words)
– The objectives of the ICT regulation during examinations seem to radically

oppose the epistemology of tools (see Chap. 4): whereas tools develop for giving

new means to human activity, the institution seeks to limit as far as possible the

power of tools (see in Table 12.4 ‘It MUST NOT be able to wirelessly transmit

Table 12.4 (continued)

About assessment

Country

Answers regarding the official,

intended curriculum

Answers regarding the real,

implemented curriculum

NOT be able to wirelessly transmit or receive information to or from another

source; be used to bring in stored information; be used as a dictionary

Some kind of intermediate working is expected rather than simply a final answer

from the Calculator. For example: When graphing calculators are used to solve a

problem, candidates must provide evidence of their differentiation and integra-

tion skills. Find the area enclosed between the graph of y¼ sin(2x), the x-axis,
and the lines x ¼ π

6
and x ¼ π

3
. Give the result of any integration needed to solve

this problem

The central aim seems to be to set calculator neutral examinations where there is

no advantage in the calculator. In practice this is not really accomplished
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or receive information to or from another source; be used to bring in stored

information; be used as a dictionary’. . .)
– We assist thus to a kind of competition between the development of tools, more

and more powerful, and the development of institutional regulation, more and

more restrictive, that goes up to avoid the use of available tools (giving for

example a curve printed on a paper, with the legend: ‘a GCD has provided such a

curve’. . .)

Such a situation is not viable over the time. A tool, deprived of its substance,

loses its legitimacy, as has happened in The Netherlands ‘now that GDCs are so

common, there is a tendency to less reward their use than was the case shortly after

their introduction. Also, the requirement for a student to describe the techniques

used is not as tight as it used to be’ (Table 12.4). Making viable tools in a given

institution—here the final assessment—we need to rethink the assessment itself,

and finally the whole curricula.

I have analysed, in this section, the educational policies, and the related didac-

tical issues, for curricula, assessment, and ICT implementation, in four countries, at

a given moment of the digital evolution. In the following part, I will focus on one of

these countries, France, to examine in more depth how she faced these challenges

from the beginning of this century.

12.4 Tools in Mathematics Examinations, a Tumultuous
French History

I have, in the previous sections, analysed the interactions between tools and

curriculum with two lenses: an historical one, examining major trends over the

years, and a geographical one, comparing four countries. I would like to focus now

on assessment, on a (quite) short period (since 2000) and a single country (France).

France is, among the countries we have analysed (Sect. 12.3), the only one allowing

all kinds of calculators in its national examinations. The analysis in more depth of

the evolutions of these regulations over time could thus inform us on the opportu-

nities and difficulties resulting of such on opening. Regarding France, I have

already ‘set the scene’ (Sect. 10.2). I analyse now the issues of using tools in

mathematics examinations, choosing three angles: the continuous evolution of the

official regulation, trying to integrate tools without changing the spirit of the

examination; a tentative for a radical change of the examination mode, aiming to

take profit of the full potential of technology; and the current curricular projects,

proposing successive steps with a perspective of profound evolution. In so doing, I

will justify the title of the article (Gueudet & Trouche, 2011a) dedicated to ICT in

French mathematics education: Development of Usages, Institutional Hesitations

and Research Questions.
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12.4.1 Calculators in French Baccalauréat, Three
Successive Regulations

What follows has to be related to the calculator debate (Chap. 13), this debate

condenses a number of issues regarding the vision of mathematics, of mathematics

learning and tools. The calculator (named ‘pocket calculators’ in the regulation of

1986), imported into classes by students themselves, had, at the beginning, a very

weak legitimacy and are, since this importation, regularly questioned. The three

successive regulations were decided by the French Ministry, in 1986, 1999 and

2015 (about each 15 years), and these changes are linked, as I described it in

Sect. 12.2.1, to curricular changes. The curricular policy is an incarnation of institu-

tional prescriptions: I have chosen then to give the full text giving these requirements.

The first regulation (Table 12.5) was decided in 1986. It corresponds to a deep

change in the French curriculum: from 1980 France progressively abandoned the

‘modern math’ reform (Sect. 10.2.1), linked to a very abstract view of mathematics.

With this abandonment came a renewing of geometry teaching and use of graphical

representations, clearly appearing in the curriculum (cf. below an extract of

Table 12.1 related to the mathematics curriculum for 12th grade preparing to the

baccalauréat):

Year Prescriptions for tools

Prescriptions for numerical

computation

Prescriptions for graphic

representations

1982 Calculators will be

widely used

No chapter specific to numeri-

cal computation: it is inte-

grated into other chapters

Usual use of graphic repre-
sentation will be promoted,

playing a significant role in a

function

1986 Calculators will be

systematically used

(a basic model is
sufficient)

Numerical problems and
methods play an essential
role in the understanding of

mathematical notions

Graphic representations
must hold a very important
place in the curriculum

The regulation for the calculator use (Table 12.5) in the baccalauréat are

coherent with this curriculum, stating that ‘numerical problems and methods play

an essential role’, and that ‘graphic representations must hold a very important

place in the curriculum’.
It may be strange, today, to discover that the limitation of the tool potentiality

was seen through the limitation of it size (to be noticed: the height of the device was

Table 12.5 Calculator’s regulation during the French examinations in 1986 (circulaire n� 66-228
du 28 juillet 1986)

All the pocket calculators, including programmable and alphanumeric calculators, are allowed,

provided that their functioning is autonomous, and they do not use printing. In order to limit the

devices to a reasonable size, their surface should not exceed 21 cm� 15 cm. In order to prevent

any cheating risk, exchanging calculators during the examination is forbidden, as well as the

reading of the instructions of use supplied by the manufacturers
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not restricted, opening the way for using, during the examination a computing

tower: that never happened, but this semi-limitation was, during this time, a subject

of jokes among mathematics teacher). . . It is significant of this period the power of

computers was distinguished according to its size (the essential difference between

a ‘pocket calculator’ and a computer).

This regulation was strongly criticised, as it appears that ‘symbolic calculators’,
including CAS and DGS, developing from 1990, could respect this limitation of

size. These discussions lead to a second regulation, in 1999 (Table 12.6),

abandoning the size restriction, and allowing all types of calculators, including

symbolic calculators. The evolution of this regulation comes with new evolution of

the curriculum (cf. below an extract of Table 12.1 related to mathematics curricu-

lum for 12th grade): graphic calculators are henceforth prescribed, and the very

sensitive (for each mathematics curriculum) argumentation activity may now lean

on the analysis of graphs.

Year

Prescriptions for

tools

Prescriptions for numerical

computation

Prescriptions for graphic

representations

1991 Calculators with

statistical functions

are recommended

Numerical problems and methods

play an essential role in the

understanding of mathematical

notions

Graphic representations
must hold a very impor-
tant place in the curriculum

One the other hand,

graphical screens

are not required

1998 Graphic calculators

are prescribed
Numerical topics are introduced

as an additional specialist option

in mathematics

Favouring argumentation
supported by graphs

Table 12.6 Calculator’s regulation during the French examinations in 1999 (circulaire n� 99-186
du 16 novembre 1999)

Mastering the use of calculators is an important goal for the education of all students because it is

an effective tool as part of their studies and in professional, economic and social life. This is why

their use is provided in many educational programmes and their use should be widely permitted

in examinations and competitions

The authorised equipment includes all pocket calculators including programmable calculators,

alphanumeric or graphic display providing that their functioning is autonomous, and they do not

use printing

As part of the regulation of examinations and competitions, it is up to those responsible for the

design of the examination to decide, for each event, whether the use of all calculating instruments

(calculators, numerical tables, abacus) is allowed or not. This needs to be clarified ahead of the

text of the examination

The authors of subjects take all necessary steps to encourage owners not too sophisticated

equipment, providing, for example, candidate documents with subjects

The candidate uses only one machine on the table. However, if it comes to experience failure,

another can replace it

In order to prevent any cheating risk, exchanging calculators during the examination is forbid-

den, as well as the reading of the instructions of use supplied by the manufacturers as well as the

exchange of information via the calculator’s transmission functionalities [. . .]

290 12 Integrating Tools as an Ordinary Component of the Curriculum. . .



This ‘spirit’ clearly appears in the 1999 regulation (Table 12.6), that not only

allows this type of material, but encourages its use: ‘their use should be widely

permitted in examinations and competitions’. Besides this, regulation appears also

as a text of compromise, with respect to the pedagogical liberty of the examination

designers: it was up to you to decide if they allow, or not, the students’ calculators.
Compromise was present also regarding the power of the calculators: all types of

calculators are allowed, but, at the same time, it is recommended to avoid too

sophisticated equipment, and the examination designers can provide candidates

with documents (meaning: documents displaying the results that a CAS could

provide: the derivative or a limit of a function for example). The regulator encour-

ages the use of calculator, and, at the same time, it provides material making

pointless such calculator. . .
As for the changes in 1986, these new changes, both in the curricula and in the

regulation of tools in examination, do not come from nowhere. They are linked to

reflection in the communities of mathematicians and mathematics educators about

what has to be taught, and under which forms. This reflection wanted to answer new

questions: how mathematics should be taught in universities facing increasing

number of students (increasing in the first year of the French universities mathe-

matics courses, from 5000 students in 1986 to 30,000 in 1994)? How should the

curriculum be adapted for the expansion of computer science, the new needs of a

number of disciplines for mathematics, the development of very powerful means of

computation, the taking into account of the ‘mathematics for citizen’? A new

commission was appointed, in 1999, by the French ministry, mainly composed of

mathematicians and mathematics educators, and chaired by Jean-Pierre Kahane,

member of the French Academy of sciences (Sect. 10.2.3). From its beginning, its

members discussed interactions between mathematics and computer science, and of

the integration of ICT in mathematics education (Kahane, 2002). During its third

meeting (27th November 1999), Michèle Artigue proposed orientations for

addressing the issues of computation in mathematics teaching:

– In order to structure the reflection, she proposes to choose a common thread: the

distinction between exact and approximate computation, these two dimensions

being present from the first contacts with the world of computing and of the

notions of number, size, measure and dimension

– She wishes too to give a particular attention to the influence of tools both to the

issues related to computing and the way to address them; to the diversity of

forms taken by computing according to the different mathematical domains8

The 1999 changes in calculator regulations, as well the curricular changes, echo

these reflections running in the mathematics education community.

8 See the report of the history of this commission, the CREM (Commission de Recherche sur

l’Enseignement des Mathématiques), written in 2006 by its secretary J.-C. Duperret: see http://

educmath.ens-lyon.fr/Educmath/ressources/etudes/crem/.
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From 1999, this regulation was applied (Sect. 12.3.3). It appears that calculators

(graphic as symbolic) were allowed at each session of the baccalauréat. This

normalisation had some positive effects: calculators appear as usual tools for

learning and teaching mathematics (and, as such, were integrated into teacher

training and teacher recruitment competition). The nature of the problems to be

solved during the baccalauréat evolved slowly, integrating for example some

reflective questions on the shape of curves, but. . . avoiding most of the time the

use of tools. Thus the potential of tools was rarely used. At the same time the

calculators developed, particularly regarding their connectivity potentialities (see

Chap. 18), and it became more and more difficult to control the transmission of

information from a candidate to another candidate (or to outside).

Therefore this regulation appears difficult to keep under this form. When I was

writing this chapter, I received the information of a new regulation (Table 12.7), to

be applied for the 2018 baccalauréat session.

This regulation represents a deep evolution: development of a new kind of

calculators, including an examination mode; an examination mode erasing calcu-

lator memory and removing the communication potential; GCD, CAS and DGS

allowed, as far as they are compatible with this examination mode. We could

hypothesise that the availability of such a calculator dedicated to the examination

Table 12.7 Calculator’s regulation during the French examinations in 2015 (note n� 2015-056
du 17 mars 2015)

[. . .] The use of the calculator is allowed if the subject of the examination explicitly forecast

it. The flyleaf of the subjects has to indicate whether the use of the calculator is permitted or

prohibited.
Is considered ‘calculator’ any autonomous electronic device, without any distant communication

functionality, whose essential function is performing mathematical or financial computation,

achieving graphs, statistical studies, and all treatments of mathematical data through charts or

diagrams.
Authorised materials are: non-programmable calculators without alphanumeric memory; calcu-

lators with alphanumeric memory and/or graphic display including a feature of ‘examination

mode’ meeting the following specifications:
– Temporary disabling access to the calculator memory or permanent erasure of this memory
– The blocking of any data, whether through Wi-Fi, Bluetooth or any other remote communi-

cations device;
– The presence of a f lashing signal on the high side of the calculator, attesting the transition to

‘examination mode’
– The non-reversibility of the ‘examination mode’ for the duration of the event. The output of the
‘examination mode’ requires a physical connection, via a cable, to a computer or a calculator.

The ‘Examination Mode’ should only be activated by the applicant for the duration of the test,

under instruction of the room supervisor when the subject of the event allows the use of the

calculator. The candidate uses only one machine on the table. However, if it comes to experience

failure, another can replace it. To prevent the risk of fraud are barred exchanges between

candidates machines, consulting manuals supplied by the manufacturers as well as the exchange

of information via the calculators transmission functions. The use of improper calculator

technical features leads to a disciplinary procedure. Is prohibited the use of any plug-in module

or extension and any cable, whatever the length, and connectivity [. . .]
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may lead the designers of the baccalauréat to really adapt their questions to one

mathematical environment including, as a regular tool. A new survey could be done

on the implementation of this new regulation!

I have presented the successive official regulations of tool use in the French

baccalauréat, from 1986 to 2015. I have to mention now what happens at the fringe

of the system, in the thread of the reflections arising at the beginning of the twenty-

first century. The alternative, for the stakeholders, was to adapt tools (i.e. restricting
their potential) to the context of the current baccalauréat (one individual working

session, aiming to assess the mathematical knowledge of a given student), or to
change the mode of assessment for profiting from the potential of tools. This second

way was experimented In France, in some volunteer classes, from 2007 to 2009, as I

will explain in the following part.

12.4.2 The ‘Mathematics Practical Test’ in the French
Baccalauréat, a Promising Parenthesis

From 1996, the necessity of renewing the modes of mathematics assessment

appears in the noosphère (Sect. 10.4). A commission chaired by an inspector,

Paul Attali, addresses both the issues of introducing the calculators in baccalauréat

and of opening the kind of problems proposed to students during this examination.9

A pilot study (for 5000 students) was organised to check the feasibility of such new

modes of assessment. The analysis of this pilot study reveals the interest of teachers

and students, and the difficulties linked to the implementation of such an examina-

tion (questions of materials, space and time needed). The inspectors’ reflection go

on to improve the organisation of the examination.

In 2007, in the light of this reflection, a mathematics practical test (‘épreuve
pratique de mathématiques’) is introduced, for a limited number of students (5000

students) in the French scientific baccalauréat, by the Inspectors of mathematics

(‘Inspection générale de l’Education nationale, groupe de mathématiques’). Its
designers describe its motivation thus:

Thinking about the introduction of a practical test in mathematics bachelor S is situated in a

threefold context:

– A still marginal and disparate use of ICT in the teaching of mathematics even if such use

is a displayed program objective;

– A calculator’s use in the written examinations is increasingly problematic;

– A will to develop and evaluate scientific skills that are not just of writing, such as the

ability to conjecture, to take initiative and use ICT (Fort, 2007, p. 3).

The purpose of the test is to assess students’ skills in the use of calculators and

specific software in mathematics, i.e. to assess students’ ability to mobilise ICT to

9 See the evocation of this experiment in the History of the CREM: http://educmath.ens-lyon.fr/

Educmath/ressources/etudes/crem/.
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solve a mathematical problem. It needs to conceive problems where the use of ICT

(programmable graphing calculator, computers and specific software, spreadsheet,

spreadsheet grapher, DGS, CAS) intervenes significantly in solving the given

problem.

The examination takes place in the school attended by the student, in a room

equipped with computers and calculators (a list of material is nationally

established). Students, in groups of 4 in each examination room, individually face

the same problem, monitored by a teacher observer–examiner. This teacher has to

note, for the four students, the relevance of their use of ICT, their capacity to take

initiative, to conjecture properties from observed regularities, to search for proofs.

The teacher can also assist a student who meets a technical barrier.

A bank of examination subjects is developed at a national level. Each subject

includes:

1. A description for supplying the national public list of examination situations

2. A ‘student sheet’ giving the statement and stating what is expected of the

candidate (see Table 12.8)

3. A ‘teacher sheet’ describing the author’s intentions, considerations on the ICT

environment, and comments on assessment

4. An ‘assessment form’ designed to be fulfilled by the teacher which is placed in

the candidate’s file (see Table 12.9)

These subjects must meet three constraints: consistency between the assessment

objectives: skills developed correspond to those developed by mathematics curric-

ulum (skills related to different parts of the programme or ‘transversal skills’);
consistency of assessment (the teacher monitoring four students, must note the

moments of assessing students’ work, and give a means for quick checking);

consistency of notation (balancing between the assessment of ICT part and the

more theoretical one, depending on the subject itself).

Table 12.8 Example of a student sheet for the mathematics practical test (Fort, 2007, p. 10)

Expression of the term of rank n of a recursive sequence
Consider the recursive sequence (un) of first term u0¼ 0 and such that for any natural number n,
un+1¼ un+ 2n� 11
1. Using a spreadsheet or a calculator, calculate and plot the first 20 terms of the sequence. Has

the cloud of points obtained a particular feature? If so, which?
Call the examiner in order to check the conjectured feature

2. n is given, one can calculate the value of un if one knows un�1. We would now be able to

calculate, for any value of non-zero natural number n, the value of un without knowing the value
of un�1. To do so would require a formula giving un as a function of n
(a) Using the observations made in the first question, conjecture a formula giving, for any

value of the integer n, un as a function of n
Call the examiner in order to check the conjectured formula

(b) Prove that formula
Production requested

– The cloud of points asked in question 1 and the conjectured feature
– The proof of strategy chosen to question 2, and the steps of this proof
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The student sheet (Table 12.8) is totally unusual: it solicits explicitly the use of

ICT, asks for answers leaning only on the observation of the results provided by

ICT. In addition, the students may ask, during the examination itself, the teacher if

they are doing the problem in the right way. We are here close to the situation of a

scientific laboratory, where the important thing is to organise the research well, to

proceed according to this organisation, not to find a result at once. One essentially

evaluates the process, not the result.

Table 12.9 Example of an assessment form for the mathematics practical test (Fort, 2007, p. 12)

General recommendations

We will not try to note each competency. For the final mark, the overall performance of the

candidate will be taken into account within the following frame of reference:

– The ability to experiment (which takes into account dialectically performance in the use of

tools and the faculty to propose conjectures) must represent three-quarters of the final mark

– The ability to report results derived from this experiment (proof, argumentation. . .) represent
the remaining quarter

– The ability to take initiative and to take advantage of interaction with the examiner will be

considered substantially

It is not necessary for a competency to be fully mastered for being considered as granted

Competencies assessed Elements allowing to situate the student
(to be completed by the examiner)

The student is able to experiment; to test . . . she uses
appropriately the calculator or computer tools. . . It is
able of emitting a conjecture consistent with her

trials

The student takes advantage of indications, which

may be provided orally

The student is able to represent the situation

(dynamic figure, spreadsheet, curve . . .) using ICT

The student takes advantage of indications, which

may be provided orally

Following a possible oral questioning, the student is

able to refine the explorations in using ICT effec-

tively. She reveals a reflective thinking, with a pos-

sible return to his conjecture

The student takes advantage of indications, which

may be provided orally

The student evidences some mathematical knowl-

edge and know-how on the subject

The student provides a correct resolution of the

exercise and is able to formulate a critical review of

her observations

Additional notes
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The assessment form (Table 12.9) confirms the ‘experimentation spirit’
(Sect. 12.2.3) of the practical test, where the following competencies are evaluated:

interaction with the teacher, experimenting, taking advantage of the available tool,

proving and critical thinking.

This mode of assessment is indeed in line with the objectives of its initiators:

‘develop and evaluate scientific skills that are not just of writing, such as the ability
to conjecture, to take initiative and use ICT’. What were its effects?

The report of the inspectors coordinating this experiment was quite enthusiastic

(what is not often the case for an institutional report on an innovative pilot study):

The practical test in mathematics as it was experienced this year introduced two

innovations:

– An effective integration of ICT in solving a mathematical question;

– Original assessment methods compared to normal practice in the discipline.

These innovations have had several consequences:

– They induce a different relationship of students to mathematics, because: this event is a

place which can be assimilated to an experimental activity where the student can do

various tests using the ICT within the frame of the problem at stake [. . .];
– They encourage different teaching practices, leaving the possibility of a greater role of

the investigation processes;

– They involve different assessment practices: assessing the candidate during activity,

appreciate his efforts, his qualities to experiment, perseverance or taste to seek, to take

initiatives.

Furthermore,

– This experiment has received a favourable opinion of the educational community;

– It did not raise any particular problems in its organization, as well as having educational

material;

– It has generated interest on the part of high school mathematics teachers who partici-

pated in the experiment, where they saw there, among others, the opportunity to update

their practices;

– It has generated real enthusiasm from students who have discovered other approaches of

mathematical activity [. . .]

The generalization of this test, which remains under the programs, should push math-

ematics education towards greater consistency with its purpose: how mathematics, with the

tools currently available to them, solve problems, develop experimentation, taste and

practice of research? This modernization of mathematics education responds to the evolu-

tion of the professional practice of the discipline (Fort, 2007, p. 16).

The website EducMath opened a discussion,10 in 2007, questioning different

actors (researchers, teachers, responsible for the schooling system at different

levels) about this new model of assessment. Michèle Artigue asked: ‘this new

practical test seeks to assess, via the use of ICT, students’ competencies for

conjecturing from a careful observation of processes, engaging in a manner of

10 See http://educmath.ens-lyon.fr/Educmath/en-debat/epreuve-pratique/.
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proving, communicating their results. Does this new practical test constitute a

possible way for such an assessment?’
The answers raised some weaknesses of this new model: the preparation of such

a test needs some material that the high schools do not always have; this preparation

needs also time, that teachers do not always have; the notion of competencies

remains too vague (do we assess ICT competencies, or mathematics competencies

using ICT); the experimental aspect of mathematics seems to be quite vague, and

the quality of the problems proposed in this frame appears quite unequal; a real

assessment of ‘solving problems with ICT’ should require assessors to follow the

students’ work over a year; the evaluation, by the teacher, of the students’ activity,
‘on the fly’, appears quite complex and need specific training; the difficulty, for the

students, is to write down the uncertain phases of their research, often the most

interesting part of the mathematical activity.

Despite these critiques, most of the answers to Artigue’s questions converge to
underlining the interest of this model, and the necessity for going on, making sure

that some essential conditions are considered, in terms of schools equipments,

teachers’ training, time for preparing this test and balancing experimental and

more formal aspects of mathematics teaching and learning.

On the basis of the positive institutional appraisal, and the support of the

mathematics education community, the experience was reproduced during the

two following years, involving more and more high schools: 25,000 in 2008,

50,000 in 2009 (the total number of students attending the French baccalauréat is

about 150,000). At the time where the generalisation of this model appeared certain,

the French Ministry announced its ‘suspension’: the main argument was that this

generalisation would require the Ministry to revise the general equilibrium of the

baccalauréat, leading to a modification of the conditions of assessment for all the

disciplines. Therefore it was necessary to wait for a global reform of the

baccalauréat, allowing the integration of the mathematical practical test as one

major element of the evolution of the whole examination process. It was then the

end of this promising parenthesis. Six years after, here we are: the baccalauréat has

not really changed, and the mathematical practical test is still suspended.

Some lessons can be drawn from this experimentation: the deep interrelations

between the evolution of tools and the evolution of curricula; the interest, for

renewing the teaching, to plan to change the assessing modes; the difficulty, in a

centralised system, to change a part of it without considering it as a whole. Above

all, it reveals the possibility of engaging teachers in a profound evolution of their

teaching, thenceforth this evolution lies on well-prepared experimentations,

conducted in close relationships with all the actors.

Seven years on, the French actors of mathematics teaching are engaged in a new

challenge, as I will show in the following part.
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12.4.3 French New Curricular Perspectives
and ‘Mathematics Strategy’

In 2014 the French Ministry of Education made two decisions for addressing

important issues impacting on mathematics teaching: the first one concerns the

creation of a Higher Council for Teaching Programmes (CSP, for ‘Conseil
supérieur des programmes’), the second one concerns the development of a ‘math-

ematics strategy’. New opportunities for re-opening the parenthesis of new modes

of assessment?

The first decision, the creation of CSP, came with a new way of conceiving
teaching programmes. The CSP was created in the thread of the French law for

rebuilding the school of the Republic. This law aims to face the major challenges of

education, giving to all students a ‘common core of knowledge, competencies and

culture’,11 insuring quality of education and equity of access. It wishes to answer to
a demand of transparency in the process of elaborating new teaching programmes;

to a need of coherence between the contents taught, the common core, the assess-

ment process and teacher education.

Its missions are defined on the Ministry website:

It provides advices and makes proposals on:

– The general design of education provided to students in schools, colleges and

high schools, and the introduction of digital technology in teaching methods and

the construction of knowledge

– The contents of the common core of knowledge, skills and culture, and school

programmes, ensuring their consistency and their articulation in cycles, and the

validation procedures for the acquisition of this base

– The nature and content of the tests of examinations leading to national diplomas

of secondary education and the baccalauréat and the adaptability and develop-

ment of these tests for students with a disability or disorder Health invalidating

– The nature and content of the tests of teacher recruitment exam for first and

second degrees, the possibilities of adaptation and development of these tests for

candidates with a disability or a disabling health disorder, as well as goals and

overall design of initial and continuing training for teachers

Three major features appear: the will to articulate the teaching of the different

disciplines (from a disciplinary programme approach to a more integrated curric-

ular approach); the importance given to the digital technologies for rethinking the

teaching methods and the construction of knowledge, and the will to establish a real

coherency between teaching methods and modes of assessment.

11 This common core, proposed by the CSP to the discussion among teachers, is composed of five

domains: languages for thinking and communicating; methods and tools for learning; the educa-

tion of the person and of the citizen; observing and understanding the world; Representing the

world and human activity.
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New programmes are currently under discussion, following these principles.

This process of renewing begins in pre-primary school and primary school. The

programmes are organised by ‘cycles’. For example, the fourth cycle concerns

grades 6, 7 and 8. It is composed of three parts: the common competencies targeted

by this cycle; the contributions of each discipline to the achievement of these

competencies; and the structured programme for each discipline. Regarding math-

ematics and tools: the first part of the programme underlines the importance of

creativity, abstraction and modelling, using ICT tools; the second part underlines

the responsibility of the different scientific disciplines for learning to move from

one language to another one (including programming languages), to move from one

representation to another one, to develop inquiry-based approach; the third part of

the programme underlines the major components of mathematical activity

(searching, modelling, representing, reasoning, computing and communicating),

needing the use of DGS, spreadsheet, and calculators. A major change is the

introduction of ‘programming and algorithmic’, giving occasions for individual

and collective student work.

The following step will be the renewing of the high school programmes,

combined with the renewing of baccalauréat, reconnecting perhaps, 15 years

after, with the pioneering experimentation of the mathematics practical test. . . It
is certainly difficult to decide to analyse this in terms of ‘loss of time’, or, at the
contrary, in terms of ‘insuring the conditions of the success of an innovation’:
beginning by the basis (the pre-primary school) and conceiving the teaching system

as a whole (changing in an articulated way the curricula and modes of assessment

for all the disciplines), and the preliminary experimentation, in 2007, of this

practical test paved probably the way for a—later—‘scaling-up’ (cf. 12.1.3).
The second institutional decision impacting mathematics curricula is the imple-

mentation of a ‘mathematics strategy’. This strategy12 is motivated by the ‘French
mathematics divide’: good results of the French researchers at an international level
(see for example the Fields medals) and real difficulties for mathematics teaching

(middling results in the international comparison test, decreasing number of stu-

dents engaging in mathematics studies).

This strategy leans on three axis: an updating of teaching programmes (including

new links to be established with research in mathematics and mathematics educa-

tion), improving teachers’ education (including an encouragement for student

teachers to engage in mathematics courses and teaching careers) and promoting a

new image for mathematics (including the development of a national portal for

mathematics teaching and learning resources).

Regarding the teaching programme, the mathematics strategy proposes, partic-

ularly, the introduction of ‘algorithmic’, a renewing of mathematics teaching thanks

to the introduction of computer science, the use of DGS and programming, the

12 See the presentation of the mathematics strategy on the French Ministry website: http://

cache.media.education.gouv.fr/file/12_Decembre/30/2/DP-l-ecole-change-avec-vous-strategie-

mathematiques_373302.pdf.
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development of open problem solving and learning games, the development of links

with the other sciences, all elements fully coherent with the current work of

the CSP.

This strategy comes with an effort to mobilise the mathematics and mathematics

education communities13 via a national initiative ‘Living Mathematics Forum’,
which aims to make more visible a number of initiatives promoting an alternative

image of mathematics (including a large place to experimental aspects in techno-

logically rich environments). This common mobilisation recalls the productive

atmosphere around mathematics teaching developed in the 1970s (see Sect. 10.2).

The challenge is to maintain this mobilisation which depends on both political

choices (keep the promise of supporting students’ engagement towards mathemat-

ics teaching careers) and of collective choices: the development of a portal for

mathematics resources appears crucial for making available new resources, meeting

the new programme requirement and supporting teachers’ engagement in uncertain

zones of their practices. It is too early to know if a synergy can be realised between

the renewing of the teaching programme and the mathematics strategy but these

two processes seem to be a development from the promising parenthesis of 2007,

being grounded in cumulative reflections on ICT in mathematics which have

developed in the field.

Finally, I have qualified this French period as a tumultuous one due to the

successive regulation changes, and the brutal ending of a promising experience.

But, with some hindsight, it appears mainly as a productive period, evidencing the

profound dialectic between experiencing innovative assessment modes and

generalising innovation related to the integration of ICT in mathematics.

During this period, ICT usages have developed. The issues of their position in

the final assessment at the end of high school appears as sensitive ones. The

calculator’s regulation during the examination reveals the educational policy

regarding mathematics teaching and ICT, echoing the discussions in the community

of mathematics education and its evolution with the curriculum. Using the full

potential of ICT in this final assessment leads to deep changes in the mode of

examination. These changes lead to modification of the attitudes of both teachers

and students towards the evaluation, the students’ activity during the examination

and the nature of what is evaluated. Consequently, it has the potential to influences

future modes of teaching and learning mathematics to become more problem

oriented. The institutional hesitations to scale-up the experimentations, even in

the case of positive results, reveal institutional awareness of the complexity of the

new equilibrium to be reached: what is possible with volunteer teachers is not

necessary possible with the whole population of teachers. This experimentation

raises a range of questions of research about competencies in using ICT

vs. competencies in doing mathematics with ICT; ways of assessing them; teacher

education; teacher’s role in an evaluation process.

13 Particularly in the frame of the French Commission on Mathematics Teaching (CFEM).
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12.5 Conclusion/Discussion

Aiming to draw on this historical and geographical travel through curricula and

tools in school mathematics, I would like to underline some main tensions:

– A first tension between the evolution of mathematics curriculum and the inte-

gration of tools. The digital metamorphosis conditions the knowledge itself, the

way it may be taught; the curriculum may also constrain the tools themselves,

see the development of calculators-to-the-test following the French institutional

prescription (Sect. 12.4.2)

– A second tension between the intended and the implemented curriculum: there is

no easy prescription for using digital tools and their real integration in class-

rooms practices

– A third tension between changing the ways to teach a given mathematics

programme, and the ways to change the programme to be taught. Actually, a

real integration of ICT leads both to change in the curriculum (rebalancing

experimental phases and more formal phases, towards mathematics laboratory,

Sect. 12.2.2) and to introduce elements of computer sciences articulated to

mathematics

– A fourth tension between training teacher in using ICT, and training teacher for
using ICT, both objectives being more and more present in the new way of

developing teacher education (Gueudet & Trouche, 2011b)

– A fifth tension between the evolution of curriculum and the evolution of assess-

ment. The real curriculum is strongly conditioned by the way students are

evaluated, particularly for the final examination. . . and this final evaluation has

to take into account the real curriculum conditioning what the students have

learnt; the dual evolution of curriculum and assessment needs to be carefully

managed

– A sixth tension between experimentation of new way of assessment and scaling-

up towards a generalisation of this innovation. The evolutions, on such a

sensitive subject, need time and the creation of a set of conditions which allows

positive innovation to ‘take root’

Concerning the role of technology in national mathematics examinations,

Drijvers (2009) distinguishes between four assessment policies: (1) technology is

(partially) not allowed; (2) technology is allowed, but offers no advantage; (3) tech-

nology is recommended and useful, but its use is not rewarded; and (4) technology

is required and its use is rewarded. With the fourth of these policies, Trouche,

Drijvers, Gueudet, and Sacristan (2013, p. 764) underline that ‘conceptual skills,
such as interpretation, reasoning, mathematisation, justification and modelling are

examined. However, designing appropriate examination tasks for such goals is not

trivial’.
Designing appropriate examination tasks constitute one aspect of a larger issue

that is designing appropriate tasks, both coherent with the curriculum and taking

profit of the full potential of tools (see Chap. 17). One can observe, at least in
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France, an increasing institutional awareness of the urgent need of teachers for new

resources (see the French ‘mathematics strategy’). Here stands a seventh tension

between a top-down process, providing teachers with official resources, and a

bottom-up process, sharing resources between teachers (Pepin, Gueudet, &

Trouche, 2015).

These tensions may be productive ones, leading to a reconsideration of the

essence of mathematics teaching. A challenge for the stakeholders, the communi-

ties of mathematicians and mathematics educators. The French experience evi-

dences the interest of a joint reflection, combining the analysis of innovations

(limited in space and time) and the design of new curricula.
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Chapter 13

The Calculator Debate

John Monaghan

13.1 Introduction

Questions about the use of calculators in the learning and/or assessment of math-

ematics have been raised for many decades and this, in the opinion of us three

authors, warrants a chapter on the calculator in this part of the book devoted to

issues with regard to tool use in mathematics. I chose the slightly emotive title ‘The
calculator debate’ for this chapter, over a more neutral title such as ‘hand-held
computational technology’, because the digital artefact known as ‘the calculator’
does, it appears, stir the emotions of many people (on both sides of the debate on the

affordances and constraints of this artefact for school students learning mathemat-

ics). This affective dimension of tool use in mathematics is not an issue that should

be ignored in this book. This artefact, the calculator, is, by my Sect. 1.3.1 definition

of a tool, only a tool when it is used to do something and it can be used for

non-arithmetic purposes including such as drawing a straight line or as a paper-

weight. The often extreme valuations (positive and negative) of this artefact as an

arithmetic tool are interesting and one of the aims of this chapter is to explore these

valuations. Extreme valuations of artefacts for the study of arithmetic are not,

historically, restricted to the calculator debate. Buisson (1911), a dictionary of

pedagogy and instruction, in a section on the use of the abacus in primary mathe-

matics,1 reports on a late nineteenth century abacus debate and cites a professor at

the Polytechnic of Zurich:

Le boulier corrompt l’enseignement de l’arithmétique. La principale utilité de cet

enseignement est d’exercer de bonne heure, chez l’enfant, les facultés d’abstraction, de
lui apprendre �a voir de tête, par les yeux de l’esprit. Lui mettre les choses sous les yeux de la

chair, c’est aller directement contre l’esprit de cet enseignement.

1 See http://www.inrp.fr/edition-electronique/lodel/dictionnaire-ferdinand-buisson/document.

php?id¼2204.
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The abacus corrupts the teaching of arithmetic. The main purpose of this teaching is to

exercise in early childhood the faculties of abstraction, to teach him to see in the head,

through the eyes of the mind. It put things in front of the body, goes directly against the

spirit of this teaching.2

I structure this chapter in three sections. In Sect. 13.2 I position ‘the calculator’
within ‘portable hand-held computational technology’ and I briefly review: calcu-

lator use; the research literature on the use of the calculator; and the ‘calculator
debate’. In Sect. 13.3 I consider the calculator with regard to Wertsch’s (1998) ten
properties of mediated action. The last section speculates on a possible future of the
calculator debate.

13.2 Hand-Held Computational Technology

When I say ‘calculator’ in this chapter I use an everyday term to refer to an

everyday object and I start by attempting to put some precision on a tacit under-

standing of this term. Two ways to position the calculator within portable hand-held

computational technology are: diachronically, over time; synchronically, at a

moment in time. I shall attempt to do both and I start with the synchronic descrip-

tion so as to have a working definition of what I mean by ‘the calculator’.
By ‘hand-held computational technology’ I refer to digital electronic artefacts

with batteries that can be held in a human hand. There are an awful lot of these

around: electrical probes; weighing scales; etc. These are calculators but they are

not what one regards as ‘calculators’ so I limit the domain to such artefacts which

can execute arithmetic operations. This still leaves a lot of artefacts: mobile phones;

small tablet computers; etc. These again are calculators but they are not really what

one regards as ‘calculators’ so I further limit the domain to artefacts in which the

main purpose is for the user to execute/evaluate mathematical operations/functions.

This last definition captures, I feel, what is meant by the term ‘calculator’ but the
definition has lost its extensionality, by which I mean that the first two definitions

referred only to the external properties of the artefact but the last one, which

captures the meaning of the everyday word, includes human motives for using

the artefact.

I thus take a calculator to be a hand-held digital electronic artefact with batteries

whose main purpose is for the user to execute/evaluate mathematical operations/

functions. This gives us a set of plastic and metal artefacts: arithmetic calculator;

scientific calculator; graphic calculator; and symbolic calculator. The calculator

debate concerns all types of calculator but it is usually centred on the first two.

There are two main differences between arithmetic and scientific calculators.

(1) Arithmetic calculators execute arithmetic operations as they are written whereas

scientific calculators execute the expression entered prior to pressing the ‘enter’ or

2 Translated by Luc Trouche.
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‘¼’ key. This makes no difference for expressions such as 2� 3 + 4 but it does for

the expression 2 + 3� 4 where the arithmetic calculator will give the wrong answer

(20 instead of 14) according to the conventions of mathematics. (2) Scientific

calculators have a number of mathematical and statistical functions embedded

within keys that arithmetic calculators do not have. Calculators can be viewed as

composite tools instead of unitary tools, by which I mean: an arithmetic calculator

can be viewed as a tool for four-function arithmetic, for storing intermediate results

(via the memory key), for calculating percentages, etc.; the scientific calculator can

be viewed as including all the tools of an arithmetic calculator as well as being a

tool for doing trigonometry and a tool for statistical calculations, etc. The graphic

calculator can be viewed as including all the tools of a scientific calculator as well

as being a tool for displaying graphs of functions, etc. The symbolic calculator can

be viewed as including all the tools of a graphic calculator as well as being a tool for

algebraic manipulation and for calculating derivatives and integrals, etc. There are

many interesting issues specific to the use of graphic and symbolic calculators such

as their potential for multiple forms of representation but this chapter mainly

focuses on arithmetic and scientific calculator.

Diachronically the calculator is simply a recent, in historical time, aid to

calculation. Our species has, for millennia, used tools for calculations and in

Chap. 4 I considered abaci, the method of prosthaphaeresis, logarithms and slides

rules. The quote above from Buisson (1911) concerning abaci shows that calcula-

tors are not alone in generating debate on the use of tools for doing arithmetic. I now

move on to consider calculator use.

A consideration of calculator use could be lengthy but my purpose here is a

‘broad brush stroke’ account of the dimensions of calculator use. I start by

distinguishing in-school and out-of-school use. In an educational institution, a

school, a learner may be directed by another (a teacher) to use or not use a

calculator. This is control of the use of an artefact in a public place and there are

many examples of this: no smoking; no parking; no ball games; etc. A student has

greater personal agency on the use of artefacts outside of school (where they can

ignore a demand ‘do not use a calculator’ in a homework assignment). In adult work

activity, restrictions on calculator use are rare but the object of the activity in a

workplace setting is rarely on learning mathematics. In the late twentieth century

calculator use in the workplace was common in shops, offices and engineering sites.

This continued into the twenty-first century but calculator use is increasingly

replaced by the use of more advanced digital technology.

I now consider in-school use of calculators. I begin with my own impressions of

use (seven dimensions) and then report on a recent survey.

1. Age of the learners: There are often restrictions on the use of calculators with

young children. When calculator use is allowed young children are often

presented with an arithmetic calculator. Scientific calculators are the norm in

secondary schools; implicit and/or explicit restrictions on use may still be

applied but these are generally less stringent than they are in primary schools.
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2. Tasks: Many tasks from the pre-calculator period have not changed as a direct

result of the introduction of calculators. Where calculators have replaced tables

of logarithms, the numbers used in tasks are not so likely to be designed for ease

of calculation. Some tasks are specifically designed for calculator use (see 6 and

7 below).

3. Attributes of the teacher: Apart from school and/or curricula exhortations to use

or not use a calculator, the use of a calculator in a classroom is largely deter-

mined by the teacher. There is great variation over mathematics teachers in their

attitude to and their understanding of calculator use.

4. Regions: Calculator use varies over nations and, in federations, over states (see

Tables 13.1 and 13.2 below).

5. Date: There is some variation in calculator use over time in different regions

(restrictions on use may be relaxed at a later date).

6. Curriculum: Although there have been a large number of school-based projects

in which the use of calculators is a prominent feature, national curricula have

incorporated few new areas of mathematical content to account for calculator

use. Numerical analysis (e.g. trial and improvement methods) is an exception.

7. Assessment: Calculator use in high-stakes assessment varies over nations and, in

federations, over states. There is variation in grade restrictions (e.g. allowed after

a certain age/grade) and examination papers (allowed, not allowed and two

levels of papers, one allowed and one not). In calculator allowed papers there

is variation as to whether calculators are permitted (no designed change of tasks)

or expected (some tasks are changed to facilitate use of calculator).

Table 13.1 Example: fourth-grade calculator policies

Australia Statements/policies vary by state. In most cases calculator use is encouraged

but not mandated during mathematic instruction . . .

Austria Calculators are not used until grade 5

Belgium

(Flemish)

Students learn to use the calculator effectively in mathematics instruction

Botswana Calculator use is permitted in examinations but not encouraged by teachers

Denmark Calculator use is permitted in examinations

Source: Mullis et al. (2012, pp. 78–79)

Table 13.2 Example: eighth-grade calculator policies

Syrian Arab

Republic

It is forbidden to use calculators on exams because mental arithmetic keeps

student intellect alive. . . .Most students and schools do not have calculators

Tunisia The use of calculators is permitted to solve simple problems or mathematical

operations in instruction

Turkey Calculator use is allowed in instruction for some objectives in the curriculum

United Arab

Emirates

Calculators are allowed during mathematics classes but not during

examinations

United States Statements/policies vary by state. Some states have standards for calculator

use in instruction and most states have standards for use in assessments . . .

Source: Mullis et al. (2012, pp. 80–81)
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TIMMS 2011 Encyclopedia (Mullis et al., 2012) provides the most recent survey

available at the time of writing. It provides tables (called Exhibits) on ‘National
Policies Regarding Use of Calculators in Mathematics Instruction and assessment’
at grades 4 and 8. Exhibit 21 (fourth grade, pp. 78–79) reports on 52 countries of

which 17 have no policy. Exhibit 22 (eighth grade, pp. 80–81) reports on 45 coun-

tries of which 8 have no policy. Both show variation with regard to my dimensions

1, 3, 4 and 7. For example, the stated policies (other than ‘no policy’) of the first five
countries in Exhibit 21 and the last five countries in Exhibit 22 are replicated in

Tables 13.1 and 13.2.

Calculator use in instruction and assessment globally clearly shows variation.

This variation could cause us to question the meaningfulness of the term—if there

are many different calculator uses, then is the term/construct ‘calculator use’ a valid
construct? From the perspective on artefact and tools developed in Chap. 1 of this

book, the calculator is an artefact that becomes a tool when it is used to do

something (in a particular way). From this perspective the calculator (be it arith-

metic, scientific, graphic or symbolic) becomes a myriad of tools through different

usages and the term ‘calculator use’ becomes a collective term for these different

tools. I now move on to the research literature on calculator use.

A thorough consideration of the research literature on the use of the calculator

would be lengthy and my aim, as with calculator usage above, is to provide a ‘broad
brush stroke’ based on my knowledge of the literature (which is open to claims of

bias). I first note two trends in research on calculator use and then consider different

types of research. The first trend is that most research on calculator use has been on

school-based use. The second trend concerns the date of school-based research.

Most research: on arithmetic and scientific calculators was conducted in the 1980s

and 1990s: research on graphic and symbolic calculators was largely conducted in

the 1990s and the early years of the twenty-first century. I conjecture that reasons

for this are (1) graphic and symbolic calculators appeared after arithmetic and

scientific calculators and (2) the twenty-first century has witnessed a marked

increase in the availability and use of computers in school and researchers have

largely turned their attention away from calculator use.

‘Research on calculator use’, like ‘calculator use’, is a term/construct that has

several meanings ranging from randomised control experiments to scholarly (or -

experience-informed) inquiry. Taking research as including all these forms leads to

a range of types of publications on calculator use. Within this range I report on:

experiments; descriptions of classroom activities and their consequences; meta-

studies and explorations of student–calculator actions/activity.

Hedren (1985) reports on a longitudinal study of eight form 4 to form 6 (students

developed from age 10 to age 12 over the course of the project) classes in Sweden.

The quasi-experiment aspect of the study was only a part of this research which also

included questionnaires, interviews with teachers and classroom observations.

These eight classes, who could use calculators at any point in their lessons, formed

the experimental group; three similar classes formed the control group. The form

4 pre-test items covered mental arithmetic, algorithms and word problems; the

difference between the results of experimental and control classes was very small.
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The form 6 post-test items included similar content but the items were designed by

an independent group. The experimental classes scored significantly better in

47 items but significantly worse in 9 items. Hedren (1985, p. 175) states that

experimental ‘pupils did not get worse results overall in mental arithmetic [and]

. . . achieved a better ability to solve word problems’. With regard to the latter, ‘We

maintain that these positive results are due to our pupils’ greater opportunities to
concentrate on the process of problem solving when they used their hand-held

calculators for calculations’. In the conclusion Hedren (1985, p. 178) states ‘we
have drawn conclusions on the basis of the observed differences in test results, we

cannot eliminate the possibility that the results might have been caused by factors

other than the use of calculators’.
Quesada and Maxwell (1994) report on a USA pre-calculus college study

conducted over three semesters. Students in the experimental group used a graphic

calculator and a textbook written for the use of this calculator. Students in the

control group used a scientific calculator and a traditional textbook. Data consisted

of student responses to four tests, a final examination and weekly quizzes. 90+% of

final examination questions were identical over the groups. One hundred and

ninety-nine students in the experimental group and 335 students in the control

group were included in the qualitative analysis. ‘Statistical results obtained in this

study indicated that the test scores of the experimental groups were significantly

higher than those of the control groups’ (Quesada & Maxwell, 1994, p. 212).

However, ‘It is not clear what really causes the improvement in scores when the

graphing calculator is used’ (Quesada & Maxwell, 1994, p. 214). Both Hedren

(1985) and Quesada and Maxwell (1994) end with caveats concerning the expla-

nation for the results. This is a common feature of research which relies on

statistical methods.

Shuard, Walsh, Goodwin, and Worcester (1991) report on the calculator-aware

number (CAN) curriculum and teacher development project, a British project that

worked in collaboration with primary teachers in the 1980s. It is an example of a

report on classroom activities and their consequences; the research element of this

work is a by-product of the development work. It was a radical project in that, at a

time when it was estimated that 80 % of primary mathematics time in Britain was

devoted to pencil-and-paper practice with standard written algorithms. CAN advo-

cated that: standard written algorithms should not be taught; children should have a

calculator at all times; and they should be the ones who decide when calculator use

is appropriate. Project teachers developed new tasks for children. The following is a

teacher-designed task focused on place value for 6-year-old children.

Put a number inside a square. Then put a number at each corner so that the four

‘corner’ numbers add up to the number in the square.

Examples of children’s work include:

173 in the square and 100, 70, 3 and 0 at the corners; 44444444 in the square and

11111111 at each corner (CAN project children started working with large

numbers early in their education).
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The CAN project did not simply downgrade one set of tools (traditional algo-

rithms) and upgrade another set of tools (calculator methods) but also placed a great

deal of emphasis on investigational work and mental calculations. CAN, its leaders

proclaimed, witnessed ‘a great flowering of mental calculation’ (Shuard et al., 1991,
p. 12) and non-experiment test results purported to show CAN project children

outperforming non-CAN similar age children on a host of items including many for

which a calculator did not appear useful (see Shuard et al., 1991, pp. 59–63 for

details). Ruthven (1998), considered below, suggests reasons for the ‘great
flowering of mental calculation’.

Hembree and Dessart (1986) is a meta-study of 79 research reports which

focuses on the effects of calculators on student achievement and attitude. The

paper attends to criteria for the selecting and coding of the studies it considers,

and also to the methods of analysis. The conclusions are calculator enthusiasts’
dream and include:

In Grades K-12 (except Grade 4), students who use calculators in concert with traditional

instruction maintain their pencil-and-paper skills without apparent hard. Indeed, a use of

calculators can improve the average student’s basic skills with paper and pencil, both in

basic operations and in problem solving . . . Students using calculators possess a better

attitude toward mathematics and an especially better self-concept in mathematics than

noncalculator students. This statement applies across all grade and ability levels. (Hembree

& Dessart, 1986, p. 96)

These conclusions are, I believe, one reason why Hembree and Dessart (1986)

remains a highly cited paper on calculator use. Whilst I do not doubt the scientific

integrity of the researchers, I feel it should be pointed out that: my comments on

difficulties in explaining results of research which relies on statistical methods

applies to this meta-study; the conclusion report on statistically significant results

and there are a number of ‘results’ which are not reported as they are not statisti-

cally significant (including results on conceptual understanding); this meta-study

reports on research reports and such data can be subject to the Hawthorne effect
(that the novelty of being involved in a research project may have encouraged

teachers of classes using calculators to put extra effort into their lessons).

Ruthven (1998) is a micro-study of the mental, written and calculator strategies

of a sample of students’ upper primary (10–11 years of age) schoolchildren and is

an example of research which explores student–calculator actions/activity. The

study also throws some light on CAN’s ‘great flowering of mental calculation’.
Students were drawn from six schools, three of which had participated in the CAN

project but CAN terminated before the student sample started at the schools. The

contextual information on the schools makes it clear that the legacy of CAN

remained in the post-CAN schools and not in the other schools. Ruthven (1998)

reports on student responses to four arithmetic word problems such as Stamps:

A second-class stamp costs 19p.

How much would 5 second-class stamps cost?

How much change would you get from £5?
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The paper catalogues students’ strategies. For example, Stamps resulted in six

mental strategies, two written strategies and one calculator strategy (noting, how-

ever, that the trichotomy mental-written-calculator is simplistic and written strate-

gies serve two cognitive functions, recording and spatially schematising). Ruthven

(1998) then proceeds to quantitative analysis and my account skips to the part of

this which aims:

To explore more systematically how pupil characteristics might be associated with use of

written column or calculator methods, aggregate levels of use were collapsed into three

categories—no use, single use (on one problem only) and multiple use (on two or more

problems)—and modelled using logistic regression . . . (Ruthven, 1998, p. 35)

Table 13.3 replicates part of the raw data from Ruthven (1998, p. 36) on students

strategies in all problems. I have not included indices from logistic regression but I

have marked ‘interesting’ percentages.
Twice the proportion (38 %) of students from post-CAN schools, compared to

students from school which were not in the CAN project, employed only mental

strategies in all four problems. Over twice the proportion (52 %) of students from

schools which were not in the CAN project, compared to students from post-CAN

schools, made multiple use of written or calculator strategies in all four problems.

Ruthven comments on these figures:

The greater use of mental strategies by pupils in the post-project schools is of particular

interest, as it is consistent with the more positive attitude to mental calculation found

amongst such pupils in the macro-study. (Ruthven, 1998, p. 37)

From my position, as someone with a particular interest in tool use in mathe-

matics, this result is interesting because it shows that familiarity with a mathemat-

ical tool (a calculator) does not necessarily lead to a reliance on this tool in problem

solving. Indeed, it can lead to a proclivity for mental arithmetic methods and

perhaps even a ‘great flowering of mental calculation’. It also questions policy

statement such as ‘It is forbidden to use calculators on exams because mental

arithmetic keeps student intellect alive’ (see Table 13.2 above).

Whilst research on calculator use is ‘mixed’ along several dimensions and does

not ‘prove results’, the vast body of research points to in-school calculator use does
more ‘good’ in terms of learning mathematics than ‘bad’. But if one has a strong

opinion on a subject (global warming, the economy or a tool such as the calculator)

Table 13.3 Students use of written and calculator media, from Ruthven (1998)

Medium and level of use Non-project students Post-CAN students

No written use 15 24

Multiple written use 5 3

No calculator use 13 14

Multiple calculator use 9 4

No written or calculator use 5 (19 %) 11 (38 %)

Multiple written or calculator use 14 (52 %) 7 (24 %)

All pupils 27 29
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research may have little or no influence on that opinion. On this note I turn to the

calculator debate.

What I call ‘the calculator debate’ is a series of questions or, more often,

statements about calculator use in education and, in particular, in mathematics

lessons and examination. The statements are sometimes categorical, ‘calculators
should not be used in examinations’, and sometimes qualified, ‘calculators should
not be used until students have mastered written methods’. The national policy

statements (other, perhaps, than ‘no policy’) in Tables 13.1 and 13.2 above are

premised on national debates on calculator use and Exhibits 21 and 22 in Mullis

et al. (2012) show wide variation across countries in the 2011 resolution of the

calculator debate. The statements made in this debate: sometimes appear to be

made in ignorance but are often carefully constructed arguments; sometimes focus

on the calculator alone but often focus on the calculator in concert with innovative

(or traditional) means of teaching mathematics. A local version of the latter hit the

world news in the late twentieth century as California’s math wars. Jackson (1997)

reports on these ‘wars’ that centred on Reform Mathematics, of which calculators

were only a part. Jackson (1997) reports that the anti-reformers believe ‘the
reformers have swung too far in the direction of “discovery learning” in which

students discover mathematical ideas on their own rather than the teacher telling

them’ (Jackson, 1997, pp. 695–696). The debates/wars continue to rage (though

with less publicity than the California’s one). Indeed, as I write (2014) a ban

(initially announced in 2012) in my country (England) on calculator use in math-

ematics examinations for 11-year-olds, has just been enacted. The reason that the

Education and Childcare Minister Elizabeth Truss gave was that ‘children were not
getting the rigorous grounding in mental and written arithmetic they needed to

progress’ (Department for Education, 2012) but this rationale is tied up with

concern for England’s performance and ranking in international mathematics tests

• Tests for 10- and 12-year-olds in Massachusetts do not allow calculators. In

Hong Kong, calculators are not allowed in tests for 9- and 11-year-olds. Ele-

mentary students learn how to perform basic arithmetic operations without using

a calculator.

• Pupils in Massachusetts, Singapore and Hong Kong outperform pupils in

England in international league tables at age 10 and age 14 . . . (Department

for Education, 2012)

But constructed arguments can also lead to polar position as we shall now see.

Gardiner (1995) and Ralston (1999) have a number of similarities: they were

written at about the same time; they are written by mathematicians with a keen

interest in school mathematics education; they are accounts based on premises

which value the culture of mathematics. But these two papers represent polar

positions in the calculator debate. I now outline the argument in each paper.

Gardiner (1995) starts by listing four unresolved issues: what should be taught;

why is it important; how should it be taught; what level of fluency is expected?

Mathematics rests on the language of expressions and the fact that the objects and

methods of mathematics are absolutely exact. A curriculum which embraces
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calculator use abandons exact forms/objects such as π and √2 and turns them into

‘algorithms to be evaluated’ (Gardiner, 1995, p. 528). This does not mean that

mathematics must not use √2� 1.414 but that ‘what should be taught’ should

differentiate between √2 and 1.414, ‘the “¼” symbol conveys a moral message

. . . not only. . . exactly equal’ (Gardiner, 1995) but the person who writes it should

be able to explain the transformation. The ‘¼’ button on the calculator is a

‘completely different animal . . . [it is] like the magician’s utterance [abracadabra],
to focus attention on the effect, and hence distract the observer from looking for the

true cause’ (Gardiner, 1995). The calculator ceases to be a calculating aid and

becomes a tool which ‘controls, obscures, and distorts the meaning of the symbols

and the operations’ (Gardiner, 1995, p. 529). The calculator, to Gardiner, is not the

sole culprit for the perceived sins of the curriculum he attacks, hand-in-hand with

the calculator are artefacts which reduce the need for mathematical thought (tasks

which consistently require only one step to obtain a solution) and artefacts which

undermine the need for fluency in the language of expressions (formula books).

Ralston (1999) is in part I reaction to the math wars and Ralston claims that

paper-and-pencil arithmetic (PPA) should ‘no longer be a goal of elementary school

mathematics’ (Ralston, 1999, p. 173). Ralston argues that:

• PPA is not a useful life skill ‘in a world where arithmetic is almost universally

done using calculators’ (Ralston, 1999, p. 177)
• PPA is not useful for professional mathematical pursuits because multi-digit

arithmetic in these pursuits is done using calculators or computers

• Expertise in PPAmethods does not promote expertise in calculator methods (and

vice versa), so ‘halfway houses are almost certain to be ineffective’ (Ralston,
1999, p. 176)

So ‘the argument in favour of learning PPA stands or falls insofar as this skill is

necessary to learn subsequent mathematics’ (Ralston, 1999, p. 177).
Ralston notes the importance of mental arithmetic and of algorithms for ele-

mentary mathematics but he argues that skill in PPA does not help mental arith-

metic and the latter ‘require that (personal) algorithms be developed and learned’
(Ralston, 1999, p. 183). Ralston goes on to outline an elementary curriculum, which

he considers mathematically challenging where ‘mental arithmetic and calculators

should not be the only tools . . . Manipulatives and other arithmetic models . . .
should continue to play an important role’ (Ralston, 1999, p. 185).

I expect that there are many unstated opinions (based on the authors’ past

experience) under the surface of the arguments that Gardiner and Ralston construct

that lead to their polar positions but reading these two papers at face-value I am

struck by their valuations of algorithms (which are artefacts). Gardiner clearly

values specific algorithms above others and his dislike of calculators is partly due

to the fact that calculators appear to undermine the algorithms he values. Ralston,

on the other hand, values algorithms per se and ‘it may be doubted that any real

flavour of algorithms is imparted by the teaching of most PPA’ (Ralston, 1999,
p. 183).
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I end this opening section of this chapter here, with a dispute amongst mathe-

maticians. Perhaps mathematicians are too close to our subject to be neutral on the

calculator debate. With this I turn to the writings of James Wertsch, who is not a

mathematician.

13.3 Properties of Mediated Action

Chapter 2 of Wertsch (1998) examines ten ‘basic claims that characterise mediated

action and cultural tools’ (Wertsch, 1998, p. 25). As I said in Chap. 1, I see the

prefix ‘cultural’ as unnecessary as I do not see how any tool can be a cultural but the

term ‘cultural tool’ has widespread use and I am content to regard it as a synonym

for ‘mediational means’ or just ‘tool’. I also do not see Wertsch’s ten claims as

exhaustive but Wertsch does not claim they are. But I do consider them well-

considered and apply to all forms of mediated action. It is thus interesting to view

the calculator, as a mediational means, in terms of general properties of any

mediational means; the claims provide a means to view the particular (the calcu-

lator) in terms of the general (mediational means). I position Wertsch’s book and

his Chap. 2 before applying it to the calculator debate.

Wertsch is an educator but not a mathematics educator. His theoretical frame-

work is sociocultural and he was an important figure in the 1980s in introducing

Soviet activity theory in the West; see Wertsch (1981) which was considered in

Chap. 9 of the book you are reading. Wertsch (1998) has six chapters: Chaps. 1 and

2 are introductory; Chaps. 3–6 consider narrative as a cultural tool for representing

the past and this leads to a sociocultural analysis of official (Soviet) and unofficial

histories of Estonia. Chapter 1 considers the task of sociocultural analysis, which he

states is ‘to understand how mental functioning is related to cultural, institutional,

and historical context’ (Wertsch, 1998, p. 3).Wertsch argues that this task is holistic

and should go beyond the confines of individual disciplines. Ironically, given the

focus on tools in the book you are reading, he writes:

Dissatisfaction has grown with analyses that limit their focus . . . various traditions in the

human sciences have had different and incommensurable ideas about the essence of human

nature. Some traditions have viewed humans as political animals, others have argued that

our essence lies in tool-using activities, still others define us as symbol-using animals

(Wertsch, 1998, p. 3)

He takes academic inspiration for his quest from the writings of Vygotsky,

Bakhtin and Kenneth Burke. In Chap. 2 he reformulates the task of a sociocultural

approach to be:

to explicate the relationships between human action, on the one hand, and the cultural,

institutional, and historical contexts in which this action occurs . . . this involves focusing
on agents and their cultural tools—the mediators of action (Wertsch, 1998, p. 24)

In the remainder of this section I state each claim in bold italics; summarise the

claim; consider the implications for calculator use in mathematics education.
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In stating Wertsch’s claims I repeat some claims about artefacts and tool use made

in earlier chapters of the book you are reading to retain the integrity of Wertsch set

of claims.

13.3.1 Mediated Action Is Characterised by an Irreducible
Tension Between Agent and Mediational Means

Wertsch’s analysis of mediated action focuses on humans (agents) and mediational

means (cultural tools). This is not to say that there are not other aspects which

can/should be considered but this dyad, agent(s)-and-mediational-means, is, in the

language I used in Chap. 9, his unit of analysis. A focus solely on either part of this

dyad loses does not permit an analysis of human actions.

Consider the learner action of keying in 123� 45¼ on a calculator and getting

5535. Did the child get the answer 5535?—Wertsch would answer ‘no’. Did the

calculator get the answer 5535?—Wertsch would answer ‘no’. Did the child–

calculator dyad get the answer 5535?—Wertsch would answer ‘yes’. Wertsch

would give similar responses if ‘calculator’ was replaced by ‘standard written

algorithm’ or ‘tables of logarithms’ or . . . From this child–calculator dyad position

it is meaningless to say that a calculator is either beneficial or detrimental for the

learning of mathematics because such statements consider just one part of the

essential dyad. It is, however, meaningful to speak of ‘banning calculator use’
because, with regard to this claim, this statement effectively means ‘banning
learner-with-calculator actions’. It could be (and is!) argued that some learner-

with-calculator actions are beneficial or detrimental for learners at specific stages in

their mathematical development and a calculator ban amounts to ‘throwing out the

good with the bad’.
Gibsons’ affordances (considered in Sect. 7.3.1) is a relevant construct to

introduce under this claim because the affordances of the environment are what it

offers the agent (for good or bad); Wertsch focuses down to the agent-mediational

means aspect of this environment. In mathematics similar (but not identical)

artefacts can offer the child different affordances (dependent on the task). Consider

the following task:

Copy and complete the following equations:

1 + 2¼ _

4 + 5 + 6¼ 7 + _

Write the next three equations.

Write down any patterns you notice.

The visual affordances of most arithmetic and scientific calculators for this task

are different. In keying in, for example, 4 + 5 + 6 on an arithmetic calculator the

terms are lost as one key in the numbers and the final display is just 15. This does

not happen on a scientific calculator, 15 is displayed but the expression 4 + 5 + 6 is
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also displayed. This may or may not be important for a child attempting the task but

it does indicate that the child–calculator dyad can be extended to the child–

calculator-task triad and the type of calculator used in the task is worthy of note.

This is related to what Bartolini Bussi and Mariotti (2008) call the semiotic
potential of an artefact, the potential of an artefact to focus learners on relationships
between signs.

13.3.2 Mediational Means Are Material

Wertsch (1998) notes that many mediational means have ‘a clear-cut materiality in

that they are physical objects that can be touched and manipulated . . . and they

continue to exist as physical objects even when not incorporated into the flow of

action’ (Wertsch, 1998, p. 30) but ‘In some instances, mediational means do not

have materiality in the way that prototypical primary artifacts do’ (Wertsch, 1998,

p. 31). Language is the prime example of the second kind but the materiality of

language is evident in its acoustic properties (language can be recorded).

Establishing the materiality of mediational means is important to Wertsch because:

The external, material properties of cultural tools have important implications for under-

standing how internal processes come into existence and operate. Such internal processes

can be thought of as skills in using particular mediational means. The development of such

skills requires acting with, and reacting to, the material properties of cultural tools. Without

such materiality, there would be nothing to act with or react to, and the emergence of

socioculturally situated skills would not occur. (Wertsch, 1998, p. 31).

This claim is important as terms such as ‘conceptual tool’ and ‘psychological
tool’ are not uncommon in the mathematics education literature (e.g. Douady,

1985); my point here is not to proscribe such terms but to make their link the

material world clear. The claim is not important to the calculator debate as the

materiality of the calculator is not questioned. I would, however, add a rider to

Wertsch’s claim: behind the use of any material form of a tool there is also an ideal
form of the tool.3 Before an agent uses a tool, the agent must have an idea, which

may be quite rudimentary, of what the tool is to be used for and how to act with the

tool. The ideal form of a tool is not a Platonic ideal form but simply what an agent

conceives prior to action with an artefact at a particular time. The ideal form of a

calculator will vary across children and, in an individual child, will likely vary over

the course of their mathematical development with a calculator. See Cole (1996,

pp. 117–118) for further considerations about ideal and material forms of tools.

3 This rider has similarities to (but is not identical to) Luc Trouche’s distinction between an artefact
and an instrument—see Luc’s definition of a tool in Sect. 1.3.
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13.3.3 Mediated Action Typically Has Multiple Simultaneous
Goals

The main point behind this claim is that ‘mediated action typically serves multiple
purposes . . . [which] are often in conflict . . . [and] mediated action cannot be

adequately interpreted if we assume it is organised around a single, neatly identi-

fiable goal’ (Cole, 1996, p. 32). This point is related to Leont’ev’s distinction

between ‘goals’ and ‘motives’ considered in Chap. 9. Wertsch considers the case

of pole-vaulting where the obvious goal is to cross the bar but other goals may

include impressing an audience or beating a particular opponent or many other

things. Beyond the individual, a pole-vaulting event is set in a social setting which

brings in collective goals.

In this section Wertsch considers calculations. The goal of performing a multi-

plication may be to get the right answer but this goal varies and/or splits into distinct

artefact specific goals in different contexts. In a workplace context the right answer

is usually an end-in-itself but in an educational context the goal is usually related to

obtaining the goal with or without a specific artefact, such as using a standard

algorithm or not using a calculator. Further to this, ‘the goal of obtaining the right

answer needs to be coordinated with other aspects of the sociocultural setting’
(Cole, 1996, p. 34) such as, in an educational context, a test situation or practicing

an algorithm in a classroom or conceptual understanding. In such settings ‘the goal
of the agent and the affordances of the mediational means [may] come into conflict’
(Cole, 1996, p. 33). For example, the calculator does not afford developing the

skills required to perform standard written algorithms.

With this claim Wertsch also illustrates that the calculator debate is but an

instance of many disputes in society about the use of specific mediational means.

For example, in sporting events, ‘excellence’ is often really ‘excellence with regard
to a specific and standard artefact’. For example, in the shot put, the weight of the

shot is 7.26 kg for men and 4 kg for women and there are many other rules (e.g. the

athlete must not wear gloves). Calls for bans on specific artefacts are fairly common

over sporting history: fibreglass poles in pole-vaulting; specific types of tennis

rackets; and specific types of golf balls. These calls for bans on the use of specific

mediational means are associated with the affordances and constraints of the

mediational means and the goals of the mediated action. Quite often the calls for

bans celebrate the constraints of the old and castigate the affordances of the new.

13.3.4 Mediated Action Is Situated on One or More
Developmental Paths

This claim is an elaboration of Vygotsky’s (1978, pp. 64–65) assertion that, ‘the
historical study of behaviour is not an auxiliary aspect of theoretical study, but

rather forms its very base’; the irreducible tension between agents and mediational
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means ‘always have a particular past and are always in the process of undergoing

further change’ (Wertsch, 1998, p. 34). Wertsch contrasts aircraft design in the

1960s (with slide rules and drafting equipment) and in the 1990s (with computers)

and asks ‘What developed?’ (Wertsch, 1998, p. 35). His answer is threefold: any

developed intelligence goes hand-in-hand with development of mediational means;

we cannot interpret development without some idea of a telos (end point); but

development is not determined by a preordained end point, development is contin-

gent on all sorts of things.

This claim provides means to understand the views of some players in the

calculator debate. As we saw in the first part of this book, written methods,

including ‘standard algorithms’, are simply a part of the history of human methods

of calculating. Oral means and semiotic tools (abaci, tables of logarithms, . . .) have
always been a part of our means of calculating and these have, over the centuries,

been in a constant state of development. Some players (those who suggest banning

calculators in some form) in the calculator debate do not appear to appreciate this

historical development and/or implicitly consider that the end point ‘arrived’ with
the standard written algorithms for calculation. Some other players in the debate

appear to be taken with a sort of positive sense of the telos, that calculators are a

positive force for development. I have been careful in the above to say ‘some’, I do
not loosely attribute naivety to players in the debate. My own view is that this telos/
development aspect of the calculator debate is important but complicates matters. It

is important to know where we came from to understand where we are now (with

regard to means to perform calculations) and to consider where we might be going.

But we are simply at one point along a developmental path and the complication is

that (1) there is no pre-determined telos but (2) we need to consider a telos to

consider where the path might go.

13.3.5 Mediational Means Constrain as well as Enable
Action

This claim is an elaboration of the Gibsons’ construct of affordances and constraints
to mediated action, ‘even if a new cultural tool frees us from some earlier limitation

of perspective, it introduces new ones of its own’ (Wertsch, 1998, p. 39). Aca-

demics, Wertsch argues, who consider mediated action, ‘can often be seen as falling
into one of two basic camps, depending on whether one takes a “half-full” or “half-

empty” perspective’ (Wertsch, 1998). Regardless of one’s perspective, ‘the con-

straints imposed by cultural tools are typically recognised only in retrospect

through a process of comparison’ (Wertsch, 1998, p. 40).

The half-full and half-empty perspectives are often clearly marked in the

calculator debate: Ralston is a half-full author and Gardiner is a half-empty author

though I do not believe either fails to see the other perspective (they simply do not

value the other perspective). Regarding constraints being recognised only in
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retrospect, I do not feel this really applies to the calculator debate; the accuracy

constraints of log tables and, especially, slide rules were recognised long before the

digital calculator arrived. But drawing attention to the Gibsons’ construct of

affordances and constraints is, however, almost always relevant in debates on

mediated action. The Gibsons’, in their many writings on affordances and con-

straints of agent–environment dyads, often note that these can be regarded as ‘bad’
or ‘good’. ‘Bad’ and ‘good’ are, clearly, value-laden terms and not common terms

in academic writing but they are common terms in public debates.

13.3.6 New Mediational Means Transform Mediated Action

Wertsch cites Vygotsky (1981, p. 137), ‘by being included in the process of

behaviour, the psychological tool [sign] alters the entire flow and structure of

mental operations’ and argues that this can be understood via consideration of the

different genetic domains of phylogenesis, sociocultural history, ontogenesis and
microgenesis. But, regardless of the genetic domain, ‘the introduction of a new

mediational means creates a kind of imbalance in the systematic organisation of

mediated action, an imbalance that sets off changes in other elements . . . Indeed, in
some cases an entirely new form of mediated action appears’ (Wertsch, 1998,

p. 43). I consider mental operations, genetic domains and imbalance in turn with

regard to the calculator.

With regard to the flow of mental operations, consider teaching a class of

children aged 7–8 how to write a fraction as a decimal. Shuard et al. (1991, p. 21)

report on one CAN project teacher doing this with ¼. The teacher said ‘The way we
write it, it contains the numbers 1 and 4. What can you do with 1 and 4 on a

calculator?’ One child wrote:

4 + 1¼ 5 1 + 4¼ 5

4� 1¼ 4 1� 4¼ 4

4� 1¼ 3 1� 4¼�3

4� 1¼ 4 1� 4¼ 0.25

He then said ‘I think a quarter is 0.25’ and checked it in two ways:

0.25 + 0.25 + 0.25 + 0.25¼ 1

0.25� 4¼ 1

This example is unspectacular inasmuch as the mathematics education literature

teems with examples of students’ idiosyncratic ways of tackling tasks with a wide

variety of tools. But the example nicely illustrates the Vygotsky-Wertsch point that

a new tool alters the flow of mental operations. Shuard et al. (1991) do not provide

details of the child’s actions beyond those I replicate above but it is reasonable to

think that the child combined a systematic ‘operation search’ on the calculator,

using the signs 1, 4, ¼, +, �, � and �, and then focused on 1� 4¼ 0.25. We have

no idea what he was thinking at this point but whatever it was the focus of the
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thought was produced by child–calculator dyad. His subsequent ‘double check’ on
his hypothesis also used the calculator. I say ‘used the calculator’ but it appears to
me that this may be a weak term, the calculator appears to not only influence the

flow of mental operations but to be an integral part of the mental operations. This

phenomena often goes by the name ‘distributed cognition’ in the literature (Hutch-

ins & Klausen, 1992), cognition in action is distributed over human and non-human

agents. Notice that I have now edged into ascribing agency (in some form) to a tool.

I shall put a stop on this speculation at this point as the example does not support

further exploration but we shall come back to this issue at various points in the

remainder of this book.

I now consider genetic domains and the imbalance which sets off changes in

other elements. The first appearance of the digital calculator was in the genetic

domain of sociocultural history—a new artefact/tool4 appeared in society. Mathe-

matics (used by workers in the field of electronics) contributed to this appearance

but the appearance was not a part of mathematics education of the time. Before long

this influenced the microgenetic actions of students engaged in arithmetic tasks,

such as the actions of the student considered immediately above. Such moves from

sociocultural history to microgenetic actions are not unique to the calculator, the

introduction of tables of logarithms (considered in Chap. 4) led to a similar

movement over genetic domains. This move from sociocultural history to

microgenetic actions will occur as long as the new artefact/tool is used (in the

case considered here, is used in mathematics) but the influence of this use on

ontogenetic development is only possible if the use is sustained over a considerable

period of time. The CAN project is an example of sustained calculator use over time

and Ruthven’s (1998) study appears to provide evidence of students’ ontogenetic
development, the use of the calculator appears to have influenced the development

of students’ mental calculation strategies. One could speculate on the influence on

phylogenetic development, as Prenksy (2001) does with the ascription of twenty-

first century children as digital natives, but this is a speculation too far for me at this

moment in time.

The imbalance that Wertsch talks about, with regard to calculators, can be

viewed as a fallout from the move from sociocultural history to microgenetic

actions but it can also be viewed in terms of Leont’ev’s (1978) triple (operations,

actions, activity; considered in Chap. 9), calculator use by students transforms not

only students’ actions but their operations (keystrokes in place of written signs) and
the activity of learning arithmetic itself. This imbalance can lead to fundamental

‘what are we doing?’ questions amongst those concerned with mathematics instruc-

tion—and we see differing responses to this question in Gardiner (1995) and

Ralston (1999). The introduction of the calculator into mathematics classes also

created curriculum and assessment imbalances. At the time the CAN project started

the primary mathematics curriculum at the school level (almost all focused on

4 I use the term’ artefact/tool’ in compliance with my distinction between artefacts and tools, an

artefact becomes a tool in use.
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arithmetic facts and algorithms) in England was organised with regard to

age-related constraints on the size and type of numbers involved (e.g. learn whole

number addition facts up to 20). The CAN project simply did away with this

organisation, ‘Most children enjoy using the largest numbers they can handle

confidently. Many CAN activities encourage children to use numbers of their

own choice’ (Shuard et al., 1991, p. 13). In assessment the imbalances border at

time on being absurdities such as ‘Calculators are allowed during mathematics

classes but not during examinations’ (see Table 13.2 above). This says, in other

words, the tool used for learning is not allowed in the examination of this learning.

If a similar rule was applied to learning to drive, using the indicator for signalling

turning in learning to drive a car but using hand signals when sitting a driving test, it

would strike many people as strange.

13.3.7 The Relationship of Agents Towards Mediational
Means Can Be Characterised in Terms of Mastery

This claim (and the next) address Wertsch’s interpretation of mediated action with

regard to ‘internalisation’:

. . . the process of internalisation consists of a series of transformations:

(a) An operation that initially represents an external activity is reconstructed and begins
to occur internally . . .

(b) An interpersonal process is transformed into an intrapersonal one . . .
(c) The transformation of an interpersonal process into an intrapersonal one is the result

of a long series of developmental events . . .Vygotsky (1978, pp. 56–57).

With obvious respect towards Vygotsky, as a founder of sociocultural analysis,

Wertsch (1998) is nevertheless critical of much discourse which invokes the term

‘internalisation’:

It encourages us to engage in the search for internal concepts . . . [and] entails a kind of

opposition, between external and internal processes, that all too easily leads to the kind of

mind-body dualism that has plagued philosophy and psychology for centuries . . . it seems

that many different interpretations [of internalisation] clutter the conceptual landscape and

that these are tied to different exemplars. (Wertsch, 1998, pp. 48–49)

Wertsch uses the word ‘exemplars’ in the sense of Kuhn (1970) in a passage

where Kuhn is reacting to the view that, in students learning, ‘Scientific knowledge
is embedded in theory and rules; problems are supplied to gain facility in their

application’ (Kuhn, 1970, p. 187). Kuhn argues that this view is wrong, ‘at the start
and for some time after, doing problems is learning consequential things about

nature. In the absence of such exemplars, the laws and theories [the student] has

previously learned would have little empirical content’ (Kuhn, 1970, p. 188). The
exemplars that Wertsch considers concern mediated action and he finds the word

‘mastery’ (know how) appropriate to this domain as it comes with less conceptual
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baggage than ‘internalisation’. Further to this, it is not clear to Wertsch how many

(most) forms of mediated action could be fully internalised (though some internal

transformation may, of course, accompany mediated action).

I include this claim of Wertsch for completeness; it does not appear particularly

relevant to the calculator debate as I am not aware of participants in the debate

making positive or negative claims with regard to the internalisation of calculator

use. For example, it is difficult to imagine how multiplying 343� 822 with a

calculator (or, indeed, with a standard algorithm) could be internalised. Mastery

does appear to be a better word as we can be clear whether or not a student has

mastered an arithmetic algorithm with a specific tool. With regard to clarity of

exposition the ‘anti-calculator’ subset in the calculator debate appear to have the

upper hand; the minister’s statement cited above, that ‘children were not getting the
rigorous grounding in mental and written arithmetic they needed to progress’
(Department for Education, 2012) may be open to criticism but it is a clear

statement with regard to mastery.

13.3.8 The Relationship of Agents Towards Mediational
Means Can Be Characterised in Terms
of Appropriation

In addition to being characterized by level of mastery, the relationship of agents to

mediational means may be characterized in terms of “appropriation.” In most cases, the

process of mastering and appropriating cultural tools are thoroughly intertwined, but . . .
this need not be the case. The two are analytically and, in some cases, empirically distinct.

(Wertsch, 1998, p. 53).

Wertsch uses the term ‘appropriation’ in the sense of Bakhtin, ‘taking something

that belongs to others and making it one’s own’ (Wertsch, 1998, p. 53) Bakhtin’s
interest was language:

The word in language is half someone else’s. It becomes “one’s own” only when the

speaker populates it with his own interpretation, his own accent, when he appropriates the

word, adapting it to his own semantic and expressive intention. Prior to this moment of

appropriation, the word does not exist in a neutral and impersonal language . . . but rather it
exists in other people’s mouths, in other people’s contexts, serving other people’s intentions
. . . (Bakhtin, 1981, p. 293)

But appropriation is also a relevant construct with regard to non-linguistic

artefacts. There are many such artefacts that people appropriate: bicycles; clothes;

guns; musical instruments; . . .; and calculators. Appropriation of an artefact can be

viewed as a continuum, from non-appropriation to complete appropriation and all

points between these poles. A cyclist may be someone who simply uses a bicycle

but a positive assertion ‘I am a cyclist’ is likely to reflect a person who enjoys

cycling, is proud that s/he is not polluting the atmosphere and may make modifi-

cations to their bicycle—being a cyclist to such a person is a part of their identity. I
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have never heard anyone say ‘I am a calculatorist’ but there are people who are

proud of their calculator, set up special modes and have preferred sequences of

keystrokes for certain types of problem. But it is difficult to imagine using a

calculator being a part of someone’s identity, this artefact, unlike bicycles or

computers (with ‘geeks’), does not seem to lend itself to intense positive personal

ownership. I have, however, in the course of classroom-based research over the

decades encountered students (generally high attaining students) who pride them-

selves on avoiding calculator use. Appropriation of (or aversion to) artefacts is not

just an individual ‘choice’ as trends (peer pressure) in clothes, music and gadgets

amongst different age group shows. In the case of the calculator a student may be

influenced by the calculator debate itself, ‘My teacher/parents say that calculators

make you bad at maths’.
I posit that appropriation and mastery of calculators (and other artefacts) are, in

general, interrelated in as much as low/high appropriation is often paired with a

low/high level of mastery. An artefact that has been widely appropriated and

mastered in the twenty-first century is the mobile phone. This artefact is not just a

phone but a source of games, apps and enables the owner to access the internet—it

is widely used and used for different purposes. The calculator is used for mathe-

matics and this use is often restricted to a small set of its possible functionalities. I

have seen students use an arithmetic calculator for arithmetic operations but they do

not know what the memory button does, and students use a scientific calculator for

trigonometric questions but they do not know what the statistical functions on the

calculator are for. Mastery of their calculators in these students is localised to

specific uses/functionalities and this is not likely to generate appropriation of the

calculator as a useful tool for doing mathematics. Sheryn (2005), which reports on

research which monitored the use of graphic calculators (GC) by six senior school

students studying academic stream mathematics over 9 months, found similar

behaviours, ‘None of the six students were extremely proficient with their GC at

the end of the year although some were confident using a very limited selection of

features of the GC’. (Sheryn, 2005, p. 106) and goes on to say ‘I have seen that only
a few students appropriate their GC’ (Sheryn, 2005, p. 107).

Low mastery and appropriation of calculators by students appears to set a serious

problem for the ‘pro-calculator’ subgroup in the calculator debate. It may be that

without large-scale integration of calculators coupled with the virtual abolishment

of standard written algorithms (such as those enacted in CAN or proposed by

Ralston), the majority of students will fiddle with keys they know to be useful for

specific types of problems.

13.3.9 Mediational Means Are Often Produced for Reasons
Other Than to Facilitate Mediated Action

Wertsch’s eight claims above concern how mediational means are taken up and

used. In this claim he considers how and why they are produced. Sometimes they
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are produced for the purpose for which they are used but this is not always the case,

sometimes they are a spin-off. Wertsch cites fibreglass pole-vaulting poles.

Fibreglass was developed by the military for reasons that had nothing to do with

pole-vaulting. But once the material was produced it was available to be made into

poles for pole-vaulting. Werstch also cites the QWERTY keyboard which was

designed to slow down typists on manual typewriters so that the keys did not

stick (a common phenomenon in nineteenth century pre-QWERTY keyboard

typing). In mathematics education two of the most commonly used digital technol-

ogies have similar design histories: spreadsheets, which were designed for finance;

the calculator which, as we have seen in Chap. 7, was produced because the

technology to produce it was available.

It is tempting to throw out Wertsch’s claim with ‘So what, the technology is

available, let’s use it’ but a consideration of the production of mediational means

can provide insights into old and new mediational means. I now consider the

standard written method of adding positive integers and contrast it with a calculator

method and mental methods. A statement which many people on both poles of the

calculator debate would agree with, though the valuations behind the agreement

would differ, is ‘calculator use does not reinforce skill with the traditional written

method’. Let us take 363 and 448. The standard written method starts with the least

significant digits, adds these (11), records the least significant digit of this addition

(1) in the unit column and ‘carries’ the most significant digit of this addition (1) into

the tens column, etc. The calculator method is key in 363, +, 448, ¼. This clearly

does not reinforce the written method because it was not designed to do this (the

technology to reproduce the visual design was not available when the first calcu-

lators were produced). Now let us consider performing 363 + 448 without writing

anything down. Where do you start? Most likely with the most significant digits,

which is the opposite to the standard written method. The standard written method

appears to work against the mental method whereas the calculator method could be

said to be neutral. The methods children use will, in general, be tied to the context of

use. Selter (2001) investigates primary children’s use of mental, informal written

and standard algorithms in addition and subtraction tasks up to 1000 and found ‘The
written algorithms became the main method after they had been introduced not least

because a high amount of time was devoted to them during the lessons’ (Selter,
2001, p. 166). But Threlfall (2002), which focuses on mental calculations of similar

aged children, reports on an orally presented task to 53 children, 45 + 48. Threlfall

records eight solution types, none of which starts with the least significant digit. The

point of relaying the information above is to point out differing perceptions of

mediational means with regard to the time of their production. The written method

itself was produced for a specific technology, pen and paper. It was produced so

long ago that it is tempting to think that it is, somehow ‘natural’ but it is not, it is
‘artefactual’ just like the calculator method. The gulf between initial production of

this written method and current consumption may also lead to a belief that it

encourages skill in ‘mental methods’ but it appears that this is not so. The produc-
tion of the calculator is more recent than the standard written method and there
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appears to be a belief that it is detrimental for skill in ‘mental methods’ but it
appears that this is not so.

The production of mediational means develops over time. The production of

twentieth century calculators resulted in linear output that did not highlight place

value as both the written and mental methods above do. I write this in 2014 and I do

not have a calculator that will highlight place value in the calculation of 363 + 448

but I do have an ipod (which is smaller than most calculators) with an app that will
do this (see Fig. 13.1). The explanation of Fig. 13.1 is as follows: in frame (a) I have

tapped the screen to obtain a visual representation of 363; in frame (b) I have tapped

the screen to obtain a visual representation of 448 below the representation of 363;

frame (c) shows the visual representation after I have ‘swiped’ the units column to

the tens column; frame (d) shows the visual representation after I have ‘swiped’ the
tens column to the hundreds column; By the time you are reading this such a

calculator may exist. The production of future calculators may change the tenor of

the calculator debate.

Fig. 13.1 Four images from the app Place Value Chart. Instructions Tap the screen to create

tokens. Move tokens from field to field by dragging. Moving from a lower place to a higher place is

only possible if you have enough tokens. Moving tokens from a higher place to a lower place is

always possible. Moving one token, one field to the right will result in ten tokens there. Remove

tokens by shaking the device or moving single tokens to the top
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13.3.10 Mediational Means Are Associated with Power
and Authority

A gun is associated with power and authority though, returning to Wertsch’s first
claim, it is the dyad man-with-a-gun that may wield power and authority. But

Wertsch is interested in more subtle examples and cites scholars who ‘have argued
that the rise of print media and literacy have had a transformatory effect on how

power is organised and exercised in society’ (Threlfall, 2002, p. 65). In the field of

education Freire (1993), amongst others, has attacked ‘transmission teaching’ as a
means to control a population’s thoughts and actions. Wertsch again looks to

Bakhtin and language and how words can encourage or silence communication.

The phrase ‘knowledge is power’ is not just appropriate to government level spies,

instrumental sheet music often comes with suggested fingering but instrumental

virtuousi often keep their fingerings to key pieces a secret. Mathematics is not

immune from power relations: the linguistic artefact initiation-response-evaluation

(what is x + x?-2-good) can be used to wield power in the classroom; and mathe-

maticians, not school children, determine what counts as an elegant solution to a

problem.

A classical text on authority is Weber (1947) who posited three types of

authority (and responses to that authority): legal (rational obedience to the law);

traditional (loyalty); and charismatic (devotion). Perhaps if Weber was alive today

he would add a fourth type, ‘artefactual’ (obedience to digital technology). Amit

and Fried (2005) examined two 8th grade mathematics teachers and their classes

through observations and interviews. This study found evidence of the authority of

friends and shared authority but ‘The teacher’s tremendous authority, in every sense

of the word, was evident in all of the student interviews in both Danit’s and Sasha’s
class’ (Amit & Fried, 2005, p. 155).

Calculators in the mathematics classrooms have the potential to level out some

power relations with regard to knowledge. The teacher is traditionally the possessor

of knowledge in the mathematics classroom but, in a subset of mathematical

problems, a calculator can give a student equal authority to the teacher as both

can press a few keys and obtain the solution to 363 + 448. In the case of symbolic

calculators, the student-with-a-calculator may sometimes have more authority than

the teacher with traditional tools, e.g. solving

ð
1

1þ x2
dx requires about the same

number of keystrokes as solving 363 + 448. This issue is not, to my knowledge,

raised in the literature around calculator use in the classroom; perhaps this aspect of

power associated with this mediational means is invisible to many.

One aspect of the calculator debate is about the authority associated with

different mediational means for doing mathematics though ‘authority’ is usually

implicit in the normative language of the debate, ‘Once the moral imperative of the

“¼” symbol (exactness in principle) is lost, mathematics becomes no more than an

experimentally based bag of tricks’ (Gardiner, 1995, p. 529). A more overt aspect of

the calculator debate associated with authority and mediational means are the
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various proposals to ban calculator use (legal authority). In the language of medi-

ational means this is using one mediational means, a law, to proscribe the use of

another mediational means, a calculator. This is a very common relationship

between mediational means and accounts for a great many laws in every nation

(laws on vehicles, on firearms, . . .). It is interesting that a digital artefact used in the
mathematics classroom is singled out for this treatment. A compass is potentially

more dangerous to the physical well-being of students but the perceived ‘mental

dangers’ for students appear to be seen by some as more dangerous than these

physical dangers. In stressing this point I am not suggesting that it is wrong for

people to suggest a ban on calculators but not compasses, I am merely noting that it

appears to class calculator use a mental hazard like pornography.

13.4 A Future for the Calculator Debate?

Wertsch’s claims do not, of course, resolve the calculator debate but they help us to

see the calculator debate in the wider perspective of the influence of tools on and in

practices. ‘Tool-X’ in the following could be ‘calculators’ or ‘fibreglass poles’ or
many other tools.

Tool-X came along at a certain period in time and people started doing things with it. Tool-

X was, over time, incorporated into a specific practice but it came into practice that

pre-dated the arrival of tool-X. When used, tool-X transformed that practice. Some people

did not value the new practice as they valued the old practice though some preferred it.

When an artefact appears and someone does something with it, they do it for a

reason but that is not to say that this reason for using the artefact was built into the

artefact; it does not even mean there is a reason for the existence of the artefact

other than it could be produced. When the artefact is used this use may be ascribed

as ‘good’ (or ‘bad’) for, say, developing mathematical understanding but in reality:

all artefacts have affordances and constraints; expecting an artefact used in doing

mathematics to have any ‘natural’ link to the way the mind works is probably

expecting too much. The use of a new artefact transforms mediated action. From the

point of view of mathematics education, this transformation is at the heart of the

calculator debate, whether the transformation is appreciated or not (and the forms of

this appreciation will differ, even on one side of the debate, say the ‘anti-calculator’
side, over the participants, e.g. mathematicians and politicians).

Wertsch’s ten claims were not intended to be exhaustive. I would add three

claims about mediational means relevant to the calculator debate: (i) a given

mediational means enables action only in concert with other mediational means;

(ii) mediational means exert agency; (iii) many mediational means have a finite

useful lifespan. With regard to (i), calculator use in a classroom is coordinated with

the use of other artefacts: tasks; black/whiteboards; computers; textbooks; pencil

and paper; the structure of the lesson (the time sequence and the spatial arrangement

of desks). All of these things have the potential to interrelate. With regard to (ii) I
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first note that all artefacts exert agency of some form. In some cases this is minimal

and takes the form of ‘resistance’ (Latour, 2005), an artefact offers resistance when
the artefact won’t let me do what I want to do. At the other extreme, computer-

management learning (CML), which, incidentally ‘have a minimal effect on student

mathematics achievement’ (Cheung & Slavin, 2011, p. 17) are often programmed

to give students a sequence of tasks which is determined by the students’ test result;
a CML (in concert with the design team) can exert a strong agency over the

students. The calculator falls between these two extremes. My third claim (consid-

ered in the paragraph below) is, perhaps, the most relevant for the future of the

calculator debate as it implies that the debate may simply go away.

There are mathematical tools that have withstood the test of time since they were

first produced. The compass and the straight edge are examples. But tools that aid

calculation have been replaced, at least at the global level (the abacus is still used in

some, generally Far Eastern, educational practices and tables of logarithms and

slide rules are occasionally used by history of mathematics enthusiasts). Given this

history it may be reasonable to assume that the calculator will be replaced—but by

what? In my discussion of Wertsch’s fourth claim, mediated action is situated on

one or more developmental paths, I stated that there is no pre-determined telos but
we (mathematicians and mathematics educators) need to consider a telos in order to
take the issue of calculator use in mathematics education forward. This is compli-

cated for reasons related to what Engels (1894/1968, p. 694) states, ‘Men make their

history themselves, only they do so in a given environment, which conditions it, and

on the basis of actual relations already existing’. But existing artefacts can give us a
vision for future artefacts. I refer to Wartofsky’s (1979; considered in Sect. 7.3.2)

‘tertiary artefacts’, ‘artefacts of the imaginative construction of “off-line” worlds’
(Wartofsky, 1979, p. 208). Even though our thoughts are bounded by our experi-

ence, these experiences allow us to imagine a world beyond our experiences.

Figure 13.1 shows the output of an artefact that allowed me to imagine a touch-

screen future artefact with visual output that could replace current calculator

technology. The artefact which produced Fig. 13.1 was produced by Ulrich

Kortenkamp, and is a feature of Ladel and Kortenkamp (2013, discussed in

Chapter 9) who was inspired to produce the app on the basis of his work (his

‘online praxis’ in the language of Wartofsky) with young children engaging with

mathematics on touch-screen technology. Such an artefact could (only could) bring

the pole divisions in the calculator debate closer together or even make the

calculator debate in its current form a thing of the past.
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Chapter 14

Tools and Mathematics in the Real World

John Monaghan

14.1 Introduction

This chapter has two main foci: (1) the use of mathematics in out-of-school1

mathematical practices; (2) making school mathematics relevant to activities

beyond mathematics classrooms (which I shall call ‘out-of-school’ mathematics/

practices). Both foci are important issues in mathematics education and both are

problematic issues. Both foci, of course, will be investigated with special regard to

tool use. This chapter has four sections. The two central sections address the two

main foci. The opening section sets the scene with an historical account of ways that

mathematics has been subdivided with regard to its application(s). The last section

considers problem issues.

14.2 Can Mathematics Be Subdivided with Regard to Its
Application(s)?

Mathematics has been subdivided in various ways over two millennia. A subdivi-

sion, with regard to the application of mathematics, that has been used in Western

mathematics for over 100 years, is that between pure and applied mathematics. This

sounds like a promising way into the two main foci of this chapter so I start by

considering this division: to what extent is it a real division; does tool use vary over

this division?

There is a sense in which the division pure and applied mathematics is a real

division between mathematical activity for intrinsic or extrinsic purposes. To take

an elementary example, if I am teaching (or writing about the teaching of) 456 + 78

using the standard written algorithm, then I will pay careful attention to the fact that

1 I use the term ‘school’ loosely to denote any educational institution.
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the ‘1’ I carry into the tens column (when I add 6 and 8) is not the number 1 but

1 unit of 10. But if I am doing this addition for a purpose other than doing

mathematics, say, in checking my accounts, then this explicit attention to place

value within a calculation is not important (in activity-theoretic terms, see Sect. 9.2,

the object of the activity is different). This has immediate implications for tool use

in mathematical activity. In the first activity the focus is on the correct use of a

specific mathematical tool (a specific algorithm). In the second activity the focus is

on obtaining the correct mathematical result and the tool I use to get the answer, as

long as it gives the correct answer, does not matter a great deal (an abacus or a

calculator or the standard written algorithm will do).2 But there is also a sense in

which the division between pure and applied mathematics is not a ‘natural’ division
but a cultural–historical division; and this leads to a brief tour into the history of

mathematics and mathematics education: the Ancient Greeks to the nineteenth

century (Sect. 14.2.1); the twentieth century (Sect. 14.2.2).

14.2.1 Subdivision of Mathematics over Time

Fauvel and Gray (1987, p. 56) write of the ancient Greek quadrivium, ‘the four-part
classification of mathematical sciences . . . into arithmetic, music, geometry and

astronomy’ and claim that this ‘came to constitute a major part of the liberal arts

curriculum of medieval universities’. This four-part classification, however, did

concern ‘pure’ mathematics for Plato writes (see Fauvel & Gray, 1987, p. 69) of

arithmetic, ‘what a subtle and useful instrument it is for our purpose, if one studies it

for the sake of knowledge and not for commercial ends’. In seventeenth century

Europe the division of mathematics was between pure and mixed mathematics.

Francis Bacon wrote in 1603 (see Fauvel & Gray, 1987, pp. 290–291):

To the pure mathematics are those sciences belonging which handle quantity determinate,

merely severed from any axioms of natural philosophy; and these are two, geometry and

arithmetic . . . Mixed hath for subject some axioms or parts of natural philosophy . . . For
many parts of nature can neither be invented with sufficient subtility . . . nor accommodated

unto use with sufficient dexterity, without the aid and intervening of mathematics; of which

sort are perspective, music, astronomy, cosmography, architecture, enginery, and divers

others . . . there cannot fail to be more kinds of them, as nature grows more disclosed.

This division was a part of Bacon’s tree of knowledge where the natural sciences
were divided into physics and metaphysics and metaphysics divided into pure and

mixed mathematics. Academic debate in the succeeding two centuries, according to

Brown (1991), was subject to local variation as new areas of mathematics devel-

oped but largely retained Bacon’s distinction. For example, in mid-eighteenth

century France, D’Alembert, writing in Diderot’s Encyclopédie, placed the new

2 I think this ‘use of a specific tool in pure mathematics’ and ‘use of a range of tools in applied

mathematics’ is a fairly common phenomena but I do not claim that it is a universal phenomenon.
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field of probability (analysis of games of chance) into mixed mathematics but he

placed the new field of calculus within pure mathematics.

The decline of the term ‘mixed mathematics’ occurred in the nineteenth century;
Brown (1991) notes that the eighth edition of the Encyclopedia Britannica
(1853–1860) used the pure-mixed classification but in the ninth edition

(1875–1889) this was changed to ‘pure’ and ‘applied’ mathematics. Behind these

classifications is ideology. There is a strong elitist ideology of ‘learned men’ behind
writings from Plato to D’Alembert. Brown (1991, p. 84) writes:

The mathematician was concerned with doing mathematics; the philosophe with analysing

its importance to society. Who best to write about “mixed mathematics” than the scholar

who was both a “geometer” and a “philosopher”? Neither Daniel Bernoulli, Euler,

Lagrange, nor Laplace could be considered men of letters. That left only Condorcet and

D’Alembert.

But ideology and mathematics shifted their foundations in Europe during the

nineteenth century. Non-Euclidean geometries emerged which eroded geometry’s
claim as an a priori constructive field and science was viewed through positivist

empirical eyes. ‘By 1875 theories were no longer “mixed” with experience, they

were “applied” to experience’ (Brown, 1991, p. 102).

14.2.2 Subdivisions of Mathematics in the Twentieth Century

So we enter the twentieth century with a division, in the West, between pure and

applied mathematics. In the Soviet Union, however, Vygotsky (cf Sect. 7.3)

introduced a division between everyday and scientific concepts. Vygotsky did not

introduce this distinction with mathematics in mind but it is, from a Vygotskian

perspective, applicable to mathematics; in practical everyday mathematical activity

an addition such as 456 + 78 will likely involve ‘things’ (such as units of currency)

but in mathematics addition comes with a history (the culture of mathematics) and

mathematicians add numbers, not things. As noted in Sect. 7.3, Scott, Mortimer,

and Ametller (2011, p. 6), in writing of Vygotsky’s distinction, note ‘scientific
concepts are taken to be the products of specific scientific communities and

constitute part of the disciplinary knowledge of that community’; ‘the world is

flat’ was once a scientific concept. In a cultural vein similar (but not identical) to

Vygotsky’s, Bishop’s (1988) study of mathematical enculturation differentiated

between ‘mathematics’ and ‘Mathematics’:

the mathematics which is exemplified by Kline’s Mathematics in Western Culture is a

particular variant of mathematics, developed through the ages by various societies. I shall

characterise it as ‘Mathematics’ with a capital ‘M’. (Bishop, 1988, p. 19)

These cultural approaches do not directly address the distinction between pure

and applied mathematics but are concerned with the division between types of

mathematical activity. By the end of the twentieth century, with mathematics

education established as an academic discipline (see Sect. 7.2), scholars in this
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field made further divisions within mathematical activity. Blum and Niss (1991) is

an interesting example of this because it represents the collective thoughts of a

conference working group and presents ‘a pragmatic attempt to give some working

definitions’ (Blum & Niss, 1991, p. 37). It considers two types of mathematical

problems:

It is characteristic of an applied mathematical problem that the situation and the questions

defining it belong to some segment of the real world and allow some mathematical

concepts, methods and results to become involved. By real world we mean the “rest of

the world” outside mathematics, i.e. school or university subjects or disciplines different

from mathematics, or everyday life and the world around us. In contrast, with a purely

mathematical problem the defining situation is entirely embedded in some mathematical

universe. This does not prevent pure problems from arising from applied ones, but as soon

as they are lifted out of the extra-mathematical context which generated them they are no

longer applied. (Blum & Niss, 1991, pp. 37–38)

The starting point for Blum and Niss (1991) is a ‘real problem situation’:

This situation has to be simplified, idealized, structured, . . . This leads to a real model of the
original situation . . . [which has to be] has to be mathematized, i.e. its data, concepts,

relations, conditions and assumptions are to be translated into mathematics . . . [and] results
have to be re-translated into the real world . . . real problem situations can also be called

applications. . . mathematical models . . . can be seen as belonging to applied mathematics.

Of course, this definition does not imply a strict separation between “pure” and “applied”

mathematics. (Blum & Niss, 1991, pp. 38–40)

So, we are back to the division between pure and applied mathematics but the

division is not a strict one and there is also a slight difference between ‘applications’
and ‘modelling’. The translation and re-translation that Blum and Niss speak of is

often presented in a diagram, like the two leftmost columns in Fig. 14.1, in

mathematics education literature on applications and modelling of mathematics.

With reference to these two columns Fig. 14.1, the left column represents ‘reality’
(the real world) and the right column represents ‘mathematics’ (the mathematical

world). The diagram represents a cycle: situation!mathematical

model!mathematical results! real result! compare with the situation and

Situation
Mathematical

model
Computer
model

Technology
World

Computer
result

SyntaxTranslation

Validation Interpretation

Mathematical
world

Mathematical
result

Real
World

Real
result

Fig. 14.1 Siller and Greefrath’s (2010) extended modelling cycle
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note discrepancies! adjust mathematical model!mathematical results! etc. Of

the many comments that can be made on this modelling cycle, I make three. First, it

does appear (albeit in an oversimplified way) to approximate what goes on in

applied mathematical problem solving. But, second, what does it represent? Is it

supposed to be descriptive (of the work of mathematicians) or prescriptive (for

educational purposes)? Blum and Niss (1991) appear to regard it as descriptive,

‘This leads to a real model of the original situation’ (Blum & Niss, 1991, p. 38), but

my own experience of the first step is more akin to ‘situation $ mathematical

model’ than it is to ‘situation!mathematical model’ (i.e. there is a lot of ‘fiddling’
with the mathematical model). My third point regards tools and is simply that the

two column modelling cycle, which is what is usually offered, does not include

tools and I consider this further below.

It is curious, from the point of view of tool use in mathematics, that the word

‘tool’ does not feature in Blum and Niss’ account except within the context of

talking about computers as a tool. I use the word ‘curious’ in the sense that Arthur

Conan Doyle ascribes to Sherlock Holmes in theMemoirs of Sherlock Homeswhere
the detective is talking to a police inspector:

‘Is there any point to which you would wish to draw my attention?’
‘To the curious incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’
‘That was the curious incident,’ remarked Sherlock Holmes.

Computers are very interesting tools but it is curious that tools, other than

computers, are not mentioned in Blum and Niss (1991) when tools (measuring

artefacts, machinery for experiments, formulas as tools, etc.) are clearly important

in modelling and applications of mathematics. I shall mention similar omissions at

other points in this chapter, so I give it a name, ‘tool blindness’—not seeing

something until it hits you in the face. Computers are mentioned in the second

part of Blum and Niss (1991) in relation to ‘trends’ and ‘obstacles’:

• With regard to professional modelling ‘For several years it has been evident that
computers form a highly powerful tool for the numerical and graphical treatment

of mathematical applications and models’ (Blum & Niss, 1991, p. 52).

• With regard to mathematical education, computers allow ‘More complex

applied problems . . . relief from tedious routine . . . Problems can be analysed

and understood better by varying parameters . . . [and] Problems which are

inaccessible from a given theoretical basis . . .may be simulated numerically or

graphically’ (Blum & Niss, 1991, p. 58).

Siller and Greefrath’s (2010) also focus on the place of computers in modelling

(for educational purposes). They offer the first representation of the modelling cycle

(to my knowledge) that includes tools (computers), see Fig. 14.1.

Whilst it is nice, from my tool perspective, to see a recognition of the place of

technology in modelling, I am sceptical that there are three distinct worlds (as the

presentation may suggest). The practice of modelling (be it in-school of out-of-

school) is a reality. These three worlds seem to impose an ‘unreal’ partition of this
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practice.3 The resolution of this problem issue may be simply to jettison the

modelling cycle and look to real practice (in which tool use will be an integral

part of the practice). I return to this point in the final section of this chapter and now

consider out-of-school mathematical practices.

14.3 Out-of-School Mathematical Practices

Out-of-school mathematical practices cover an extensive field of activities and I

must pare this field to keep this section manageable. Section 14.3.1 sets the scene by

mapping the field. This mapping includes constructors (people who design tech-

nology) and operators (people who use technology) and Sects. 14.3.2 and 14.3.3

consider constructors and operators in turn. The final subsection looks at the place

of computers in out-of-school mathematical practices because computers hold a

prominent position in many of these practices in the twenty-first century.

14.3.1 Varieties of Out-of-School Mathematical Practices

There are many out-of-school mathematical practices—certainly too many to list. I

will first attempt a map of the field and then consider a subset of Western workplace

practices which have been a focus of research and address tool use and mathemat-

ics. My map of the field includes three divisions: leisure and work practices; levels

of involvement with tools; and Western vs. ‘other’ practices.
The distinction between leisure and work practices is not a precise one since

there are instances where such practices overlap (e.g. voluntary work). Leisure,

considered as non-paid activity, includes domestic and recreational activity.

Domestic activity includes practices which can have mathematical aspects such

as: cooking, following a new recipe (which is an artefact which is used and is thus a

tool by my Sect. 1.3 definition)—cooking also involves using a great many utensils

(tools), some of which (e.g. weighing scales) are ‘pre-mathematicised’; monitoring

household accounts, which is often facilitated by the tools available in e-banking;

and domestic repairs such as drilling a hole (finding the right drill size and ‘feeling
the right angle’ with your body). Recreational activity includes practices which can
have mathematical aspects includes: travelling, buying e-tickets online and

co-ordinating rail and flight schedules (artefacts); programming the recorder on

your TV-media unit; performing music; and playing games (see considered

in Chap. 19). Gameplay always has a mathematical aspect as games have rules

(which are artefacts, ‘mediational means’ in the language of Wertsch—see

3 Siller and Greefrath’s (2010, p. 2138) note, ‘The three different worlds shown in Fig. 2 are

idealized; they influence each other.’
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Sect. 13.3) and these rules include sequencing actions. Although some games

(e.g. soccer) can be played with only an epsilon of mathematical activity in a

similar way to which they were played 100 years ago, gameplay has increasingly

been influenced by digital technology. This is certainly so in the case of digital

games but it is also sometimes the case in games such as soccer where even some

amateur teams use performance analysis software, which provide statistics on

video-recorded motion analyses, to improve their gameplay.

My second division concerns levels of involvement with tools and I employ the

language of Skovsmose (2005). Skovsmose is interested in ‘critical mathematics’
and technology and distinguishes between ‘constructors’, ‘operators’ and ‘con-
sumers’. With regard to technology, constructors are professionals who design/

develop technology, operators are those who use/manipulate the technology and

consumers are people not involved in the construction or operation of the technol-

ogy but are affected by it. For example, a manager and a computer scientist

(constructors) may design/implement a new system of calculating wages, computer

operators run the wage system and the consumer is affected with wages and a pay

statement. My consideration of leisure practices above concern the consumer level

of involvement with tools but this level is also common in workplace practices,

especially amongst low paid workers. People’s encounters with tools/technology at
the consumer level is typically as ‘black-boxes’, a term originally from cybernetics

that refers to artefacts where the input–output relationship is hidden from the user. I

write at a time when an international banking crisis is having a profound negative

effect on the quality of life of many consumers of banking technology. Enabling

people to critically engage with black-boxes is important to critical mathematics.

This is one reason why mathematical modelling is considered important.

My third division concerns Western vs. ‘other’ practices. Western research in

mathematics education is dominated by Western researchers researching Western

contexts. A partial exception is what is commonly referred to as

‘ethnomathematics’. This was a new but rising area of research at the turn of the

Millennium but it met problems. Ethnomathematics investigates ‘indigenous,
socio-, informal, spontaneous, oral, hidden, implicit, and people’s mathematics’
(Gerdes, 1996, p. 909). Activities investigated, such as basket weaving in Mozam-

bique, are characterised as being both highly context bound and highly creative

(Gerdes, 1997). Ethnomathematics is not a non-Western phenomenon but concerns

traditions in any locality, though reports on ethnomathematical activities are often

written by people with a Western education reporting on the practices of those who

have not received a Western education. Dowling (1998, p. 14) considers that these

studies succeed in ‘celebrating non-European cultural practices only by describing

them in European mathematical terms, that is, by depriving them of their social and

cultural specificity’. Pais (2011) considers this and other criticisms of ethnomatics

as it has been researched. This and my Western background lead me to leave an

account of tool use in non-Western out-of-school practices to a more capable

author.
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14.3.2 Tool Use in Constructors’ Mathematical Practices

Frejd and Bergsten (2016) focus on constructors with specific regard to modelling.

They interviewed nine professionals (in both the commercial and academic sectors)

with Ph.D.s (all in the sciences, five in mathematics) and focused on three phases:

pre-construction, the reason for the modelling activity; construction, how the model

is developed; post-construction, the consequences of using the model. The analysis

reveals three types of modelling which they call ‘empirical’, theoretical’ and

‘applicational’; the use of computers was an essential feature in each type of

modelling. A defining characteristic of empirical modelling is data from empirical

observations though the data, of course, varied over contexts (e.g. financial risk and

workforce scheduling). The mathematical model in every case was implemented in

a computer system. Issues with the data (to feed into the computerised mathemat-

ical model) included: getting sufficient data; cleaning data; dealing with gaps

(e.g. for time series analysis); locating errors in the data. In my experience of

such things the time actually using the tool (computer) is a tiny proportion of the

time preparing the data for tool use but the tool is central to the activity.

Theoretical modelling involves:

. . . setting up new equations based on already theorised and established physical equations.

This is followed by the activation of computer resources for computational purposes to

solve the new equations with aim to get information about the ‘theorised’ equations.

(Frejd & Bergsten, 2016, p. 24)

Example problems in theoretical modelling include predicting climate change

and the design of a new material. At the heart of theoretical modelling is the

mathematical model and its implementation on a computer. In the problems cited

in Frejd and Bergsten (2016) this computer had to be ‘powerful’, as the designer of
models for new materials said, ‘The computer is our big tool, not least when it

comes to solving these quantum mechanics equations’ (Frejd & Bergsten, 2016,

p. 26).

Applicational modelling refers to ‘identifying situations where some mathemat-

ics or some established mathematical models can be directly applied’ (Frejd &

Bergsten, 2016, p. 26); this was an aspect of the work of all nine modellers. For

example, one of the nine modellers was a biologist who was looking into the spread

of diseases between oak trees. His starting point was differential equations:

Fourier transformations are really good and you can then rewrite anything as a sum of sine

functions. [. . .] This has been used by people at the department of systems control [. . .]
Basically it is knowledge about mathematical methods that do the work, and sometimes you

start with the problem and then you add a method [. . .] It is basically the same thing if bugs

fly between oak trees or if animals are transported in trucks. (Frejd & Bergsten, 2016, p. 27).

In the above summary of Frejd and Bergsten (2016) I focused on the construc-

tion phase where a mathematical model (an artefact) and various other mathemat-

ical tools, especially computers, were central features of the activity in all cases.

The discussion of the pre- and post-construction phases in Frejd and Bergsten

(2016), however, highlight that mathematical tool use is but a part of the activity
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of modelling. These modellers serve clients who are not necessarily able to under-

stand the model or computer use. In the pre-construction phase the client needs to

be convinced that the model will be useful for his/her purpose and in the post-

construction phase the client needs to be made aware, by the modeller, of the

potential and the limitations of the model. Communication/dialogue is also an

essential feature of professional modelling activity. I now turn to Skovsmose’s
(2005) ‘operators’.

14.3.3 Tool Use in Operators’ Mathematical Practices

Operators, people who use/manipulate rather than design/develop technology, are a

very large class in themselves which includes technicians (manual, e.g. plumbers,

and blue collar, e.g. insurance clerks), social service workers (e.g. nurses and

police), sales people and teachers (e.g. a mathematics teacher using mathematical

software). Skovsmose’s (2005) three categories (constructors, operators and con-

sumers) are wide categories and there are ‘grey areas’. For example technicians

may adapt given tools to their needs in a specific activity and clerks who operate

payroll systems are themselves customers of a payroll system. The categories are

nevertheless useful for focusing on tool use in out-of-school mathematical

practices.

Noss and Hoyles (1996) distinguish between ‘visible’ and ‘invisible’ mathemat-

ics in out-of-school activity. Visible mathematics is that which is immediately

recognised as being mathematics. This distinction is clearly context/person specific.

The mathematics in the work of the constructors considered in Frejd and Bergsten

(2016) was visible but it is common, when you ask an operator ‘What mathematics

is involved in your job?’, that they reply ‘None’ or ‘Very little’. Very often there is

mathematics in this job but they do not see it as mathematics, it is invisible to them,

often ‘hidden’ in tools they use. I shortly explore these general statements in some

detail in the context of research I was involved in but I first outline research by a

group that provides themes for a discussion of issues related to operators, mathe-

matics and tools.

Hoyles, Noss and Pozzi focused on operators in a series of publications (see

Noss, Hoyles, & Pozzi, 1998, for a summary) which examined mathematics in

nursing, banking and flying workplaces. In a report of nursing practice (Pozzi, Noss,

& Hoyles, 1998, considered in Sect. 9.2) they focus on drug administration and fluid

balance monitoring aspects of patient care. The research team made multiple

hospital visits to 12 experienced nurses over 4 months which resulted in 80 h of

observation.

They set out to observe activities which involved visible mathematics and the

mathematisation of the nurses’ professional practice. In all cases they

attempted to delve beyond simple arithmetic procedures to try to understand more complex,

but perhaps less visible parts of decision–making on the ward . . . [by separating] out
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episodes involving routine behaviour from those involving a breakdown in the normal

habits of nursing practice (Pozzi et al., 1998, pp. 107–108, italics added).

For example, drug administration appears to involve ratio and proportion but

proportional reasoning was replaced in routine practice by arithmetic rubrics. They

provide an example of a nurse preparing 85 mg of an antibiotic from a vial

containing 100 mg of the drug in 2 mL and using the formula (an artefact)
Amount you want

Amount you have got � Volume it is in. The formula, however, is not conceived ‘math-

ematically’ but as a strategy for calculations for specific drugs, ‘It was often heard

that “with amikacin you can double it and divide by a hundred” or “with

ondansetron, you only need to half it”’ (Pozzi et al., 1998, p. 110). I now turn to

an example where Pozzi et al. (1998) interpret a ‘breakdown’ situation. For reasons
of space I omit many of the details which can be found in Pozzi et al. (1998).

Two nurses are discussing a fluid balance chart (an artefact) of a patient who has

recently had a kidney transplant. The chart is not questioned by the nurses and it

comes with a mathematical structure: the rows record times; the columns record

fluids in and fluids out. Sam, an experienced nurse who is new to the ward asks ‘why
are you recording the difference between these two?’ and Al, the nurse who is not

new to the ward replies ‘Because then when I come to add it up, I add my hourly

totals. To get this one, that’s why I need to know that figure’ (Pozzi et al., 1998,
p. 113). Further dialogue around the numbers in the chart ensues, basically along

the lines of Al providing rationales for the calculations in the given chart and Sam

questioning how the numbers relate to the patient’s situation. Eventually Al sees

Sam’s point and concedes ‘I suppose you should write down the rate’.
In their summary, Pozzi et al. (1998) note:

Professional cultures contain a huge number of artefacts which are, like the nurses’ chart or
the nursing rule, already mathematised . . . workers rarely think mathematically without an

artefact to help them to organise or compute the data. In routine use, this mathematics is

invisible, and remains so—indeed, the functionality of artefacts often crucially depends on

this invisibility. But at times, people will need to understand the models which underlie

their artefacts, to sort out what is happening or what has gone amiss . . . As we saw in the

fluid balance episode, this typically occurs when there is a breakdown, and in such a

situation, people need to represent to themselves how the underlying structures work

(Pozzi et al., 1998, p. 118)

I think Pozzi et al. (1998) provides both a well-grounded evidence-base for its

claims and insightful comments on tool use in the practice of a group of operators

(nurses). But, taken alone, there is a danger that these claims for one practice may

be viewed as generic for operators in general. I now consider Magajna and

Monaghan (2003) which has similarities and differences to Pozzi et al. (1998).

Magajna and Monaghan (2003) is a case study of the mathematics and tool use

of six computer aided design and manufacture (CAD-CAM) technicians. It reports

on these technicians’ calculations of the internal volume of moulds they produce for

glass factories. The six technicians work as a team but three of them (constructors)

liaise with clients and three (technologists) liaise with machinists in their factory

who produce the metal moulds for glass bottles. The technicians were observed for
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60 h over 3 weeks. Constructors evaluate whether a mould for a bottle can be

manufactured, define the dimensions of the mould, design the bottle and the mould

and make technical drawings. Technologists define the surfaces to be cut, write the

programs for computer-numerically-controlled machines and, independently from

the constructors, determine the inner volume of the mould.

A mould consists of three parts which close around a piece of molten glass of a

given weight/volume. Compressed air is pumped into the molten glass which

adheres to the inner shape of the mould. When the glass is cooled, the three pieces

of the mould are separated and the bottle is released. The important job is to define

the inner shape of the mould and to cut them out using appropriate machines. There

are several volumes: of the bottle filled; of the glass; and the inner volume of the

mould. The relations between these volumes is obvious to the technicians and the

only volume they are concerned with is the inner volume of the mould. When they

spoke about a volume related to a bottle they meant the inner volume of the mould.

Getting the inner volume correct to a high degree of precision is essential for client

satisfaction. The technicians do not distinguish between exact and approximate

volumes as all calculations are approximate to them. Six methods of calculating the

volume of a shape were observed:

1. The constructors drew the 2D-profile on a computer system and then used a

program which automatically calculated the volume of the rotated shape.

2. The constructors represented the shape of the bottle in terms of horizontal cross-

sections at various heights and drew a sequence of cross-sections. The volume of

the part of the bottle between two horizontal sections with respective areas A and

B and the height h between the sections was calculated using the formula

V ¼ h Aþ ffiffiffiffiffiffi

AB
p þ B

� �

=3. The constructors did not know where this formula—

it was ‘a shop-floor tradition’.
3. The constructors calculated the volume of a bottle using a 3D-solid CAD.

4. The volumes of standard geometric shapes were calculated using school-learnt

formulae, e.g. to calculate the volume of a prism of height h, the constructor

drew its base on a computer to obtain its area, A, and then used the formula

V¼ hA.
5. The technologists obtained the volume of a shape using a 3D-surface modeller

integrated into the CAM software they used. The program they used calculated

the volume of a polyhedron with the vertices on the mesh points, but the

technologists ignored this.

6. Once the mould was made, its volume was measured by weighing the water

it held.

I now consider similarities and differences between this research and that of

Pozzi et al. (1998). Both studies provide evidence that the operators under scrutiny

rarely engage in mathematics without the use of an artefact/tool. Pozzi et al. (1998,

p. 115) add, ‘the use of artefacts never fully structures activity. People are not

necessarily slaves to the tools they use’ but Magajna and Monaghan (2003, p. 119)

state, of the technicians in their study:

14.3 Out-of-School Mathematical Practices 343



The mathematics they were really doing, their work mathematics, was inextricably joined

with the technology they used. The geometry elements in their designs always represented

technological entities and the calculations they performed were grounded in technology.

Our practitioners used mathematical tools, including software, as ‘black-boxes’. They were
not observed to reason about the mathematics hidden in these tools and if a tool-based

method did not work, they simply chose another method or overcame the problem by

technological means.

A second difference is that Pozzi et al. (1998) concerns ‘breakdowns’; as cited
above, ‘at times, people will need to understand the models which underlie their

artefacts . . . this typically occurs when there is a breakdown’ (Pozzi et al., 1998,
p. 118). Magajna andMonaghan do not dispute that this did occur in observations of

the nurses but did not find this to be the case in their study. In breakdown situations

their practitioners either chose another method to overcame the problem by tech-

nological means:

participants’ reactions to 16 cases of non-trivial mathematics-related errors were observed.

In 14 out of the 16 cases the error was due to a mistake in a computer generated geometric

construction. Analysis revealed the following causes of errors: poor understanding of some

detail in a construction command (11 cases), undocumented details about construction in

the software (3 cases), a misunderstanding between participants (1 case) and difficulty in

visualising the shape (1 case). In such breakdown situations the participants never reasoned

about possible mathematics-related causes of the error, e.g. whether they understood the

mathematical aspect of the applied construction. In most cases the geometric error was left

unresolved and a solution was found by technological means (8 cases). (Pozzi et al., 1998,

pp. 113–114)

This comparison of these two studies suggests that the differences observed/

interpreted in these two studies are likely to result from the particularities of the

different workplaces observed and that further studies on tool use in other work-

places are needed.

14.3.4 Computers in Out-of-School Mathematical Practices

I end this section with a consideration of the place of computers in workplace

mathematics. Although a computer is just another tool (or ‘set of tools’—see Sect.

1.2), the prominence of computers in the workplace in the twenty-first century

merits special consideration. This prominence is evident in the above discussion of

constructors. It is also evident in Magajna and Monaghan’s (2003) study of

CAD-CAM technicians/operators. Studies in trends in workplace skills provide

evidence that ICT is an increasingly important part of employment:

There has been a striking and continued increase since 1986 in the number of jobs in which

advanced technology is used. There has also been a marked increase over the last four years

in the proportion of jobs in which computing is considered to be an essential or very

important component of the work. Over 70 percent of people in employment now make use

of some type of automated or computerised equipment, and computerised equipment is

seen by 40 percent as essential to their work. (Felstead, Gallie, & Green, 2002, p. 12)
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Researchers who have addressed this issue are, again, Celia Hoyles and Richard

Noss (with colleagues). Noss and Hoyles (2009) reconsider modelling to address

the advance of ICT in twenty-first century work practices, ‘With the ubiquity of IT,

employees now require new kinds of mathematical knowledge that are shaped by

the systems that govern their work’ (Noss & Hoyles, 2009, p. 76). Behind this paper

are two reports which I now consider.

Hoyles, Wolf, Molyneux-Hodgson, and Kent (2002) reports on research into

mathematical skills used/needed in seven areas of employment spanning engineer-

ing, financial services and health care. It coined the term ‘mathematical literacy’
which arose from the required skills and made four recommendations. ICT (‘IT’ in
the language of the Report) is not the sole focus but it is a major focus: mathemat-

ical literacy is defined by a list of 12 skills of which the first 2 are ‘Integrated
mathematics and IT skills; an ability to create a formula (using a spreadsheet if

necessary)’ (Hoyles et al., 2002, p. 5); all the recommendations bar the last one on

communication refer to IT:

That IT and mathematical skills are interdependent . . .Developing models of new forms of

training for all employees which reflect mathematical literacy that is integrated with IT

competence . . . To investigate the development of training programmes which will be

effective in the workplace by achieving a balance between physical experiences and

software packages (Hoyles et al., 2002, pp. 3–4)

The IT dimension of Hoyles et al. (2002) was further developed in Hoyles (2007)

under the term, ‘Technomathematical literacies (TmL), that is, being able to reason

with quantitative or symbolic data processed by information technology as part of

decision-making or the communication process’ (Hoyles, 2007, p. 16). A construct

introduced in Hoyles (2007) is ‘technology-enhanced boundary object’ (TEBO).
The construct ‘boundary object’ was introduced in Star and Griesemer (1989) and

has been widely used in social science research since its introduction. A boundary

object is an artefact created in one community of practice and travels to a distinct

community of practice. Boundary objects abound in all practices including math-

ematics (e.g. Sloane’s online Encyclopedia of Integer Sequences, see Chap. 3) and
mathematics education (a new version of a mathematics curriculum devised by

Ministry workers and sent to teachers). An interesting feature of boundary objects is

that the meanings ostensibly embedded in them by their creators are re-interpreted

by members of the receiving community. Hoyles (2007) TEBOs were linked to

TmLs and workplace learning opportunities, ‘Learning opportunities incorporated

interactive software tools that modelled elements of the work process, or were

reconstructions of the symbolic artefacts from workplace practice . . . TEBOs . . .
involving many cycles of collaborative design’ (Hoyles, 2007, p. 18).

Hoyles (2007) provides an example of a packaging factory making plastic film

by an extrusion process. The computer control and monitoring system, it is claimed,

served as a boundary object between managers, engineers and shop-floor machine

operators. The computer system captures data on the stages in the process and

presents this data in graphical form but shop-floor operators rarely looked at them.

The research team identified a TmL:
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Understanding systematic measurement, data collection and display; appreciation of the

complex effects of changing variables on the production system as a whole; being able to

identify key variables and relationships in the work flow; and reading and interpreting time

series data, graphs and charts (Hoyles, 2007, p. 21)

The research team in collaboration with employees developed a TEBO, a

computer simulation of the production process with a goal to achieve stable running

of the extrusion process. The hands-on TEBO training was viewed by a process

engineer as a superior learning opportunity for operators than prior observational

style training. From the perspective of tool use in mathematics it is an interesting

case of using a tool (a computer model) in workplace training to simulate another

workplace tool (the computer system that monitors the actual process).

14.4 Links Between In-School and Out-of-School
Mathematical Practices

This section has two subsections. The first presents a case that linking in-school and

out-of-school mathematical practices is an incredibly difficult undertaking. The

second looks at research that has sought ways into making links between in-school

and out-of-school mathematical practices.

14.4.1 Difficulties in Linking In-School and Out-of-School
Mathematical Practices

The application of school mathematics to everyday and work settings is one of the

main rationales for the place of mathematics in national curricula: ‘This fact in

itself could be thought to provide a sufficient reason for teaching mathematics’
(Cockcroft, 1982, paragraph 1). Last century there was a perception, that I believe

was widespread, that people, as students, learnt mathematics in school and applied

this same mathematics, when appropriate, in out-of-school settings. In the UK, for

example, the Mathematical Association wrote, concerning the teaching of arith-

metic in schools, ‘The arithmetic rules and processes needed in the practice of

double entry book-keeping are, in the main, those with which the pupils of

secondary schools are familiar . . . The corresponding arithmetic work may be

[there follows a list of topics]’ (Mathematical Association, 1952, p. 73).

This perception commonly goes by the name ‘transfer’ (of knowledge or of

learning). In the late twentieth century a number of studies presented data and

theories of learning/doing mathematics that ranged from regarding transfer as

highly problematic to rejecting it outright as a myth. In this section I first consider

two studies/theories that question transfer. I then consider the school mathematics
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and attempts to make links between in-school and out-of-school mathematical

practices.

A book that generated a great deal of interest (ranging from revelation to

outrage) in the mathematics education community is Lave (1988). Lave presented

data that people could do mathematics ‘better’ in supermarkets than in a test; her

examples were arithmetic, the cost of items in a supermarket and equivalent ‘sums’
in a paper and paper test. Lave had a theory, which came to be called ‘situated
cognition’, that supported her data, that claimed that how one thinks is tied to the

practice one is engaged in. ‘Situated cognition’ is probably an unfortunate name

from Lave’s viewpoint as she is scathing of traditional cognitive research on

‘knowledge’:

the effect on cognitive research of “locating” problems in “knowledge domains” has been

to .separate the study of problem solving from analysis of the situations in which it occurs

. . . “knowledge domain” is a socially constructed exoticum, that is, it lies at the intersection
of the myth of decontextualized understanding and professional/academic specializations

(Lave, 1988, p. 42)

To Lave (1988) learning in and out of school are different social practices and

there is no reason to expect learning in one social practice to influence another

social practice. But Lave’s, 1988 exposition is not illuminating from the point of

tool use in mathematics because tool use in learning does not feature in this account.

Indeed, of the wider literature on communities of practice (which includes Lave’s,
1988 account), Kanes and Lerman (2008) write, ‘a theory of mediation is needed

. . ..The nature and . . ..role of artefacts and tools is hazy’ (Kanes & Lerman, 2008,

p. 320).

Lave (1988) regards the perception of transfer of learning across social practice

as a myth. Around the same time as Lave developed her theory, Saxe (1991)

developed an approach that viewed transfer as problematic but not necessarily

impossible.

Saxe (1991) uses a model, developed in ethnographic research into the transfor-

mation of mathematical practices of Papua New Guinean tribespeople, to examine

the candy-selling practices of Brazilian street children, and then to explore links

between in-school and out-of-school mathematical practices. Saxe’s model has

three components: analysis of practice-linked goals; form-function shifts in cogni-

tive development; the interplay of learning across contexts (i.e. ‘transfer’). It
suffices for this section of this chapter to focus on the first component where of

‘practice-linked goals’ means ‘emergent goals’—‘must do’ things that arise in

practice and can interrupt that practice is they are not resolved. For example, buying

something in a shop in a foreign country may induce the emergent goal ‘determine

the values of these coins in my wallet’. Emergent goals may or may not be related to

mathematics; the agent is not necessarily aware of emergent goals. Saxe claims that

four ‘parameters’ impinge on the resolution of emergent goals:

• Activity structures, ‘general tasks that must be accomplished in the practice- and

task-linked motives’ (Saxe, 1991, p. 17)
• Social interactions, relationships between participants
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• Conventions and artefacts, ‘the cultural forms that have emerged over the course

of social history’ (Saxe, 1991, p. 18)
• Prior understandings, which ‘constrain and enable the goals they construct in

practices’ (Saxe, 1991, p. 18)

I have found Saxe’s model useful in examining in-school and out-of-school

mathematical practices (see Magajna & Monaghan, 2003; Monaghan, 2004; Mon-

aghan, 2007b) since it affords an analysis of practice to consider the dialectic

between mathematics, tool use, networks of artefacts and social activity (which

was discussed in Part I of this book). When Saxe (1991) gets to examining learning

across contexts (transfer), this model allows him to explore aspects of ‘transfer’
rather than make general claims as to its existence or not.

I provided these brief accounts of two late twentieth century frameworks related

to the perception of transfer to establish a background assumption in twenty-first

century academic mathematics education, that transfer, and making links between

in-school and out-of-school mathematical practices, is problematic. The issue is

ongoing. Although Lave’s (1988) ‘situated view’ of transfer was that it is a myth,

Engle (2006) presents a situated view of transfer as ‘framing’—‘making references

to both past contexts and imagined future ones . . .[to] make it clear to students that

they are not just getting current tasks done, but are preparing for future learning’
(Engle, 2006, p. 456), and forms of learner participation. A research question

awaiting a researcher is whether framing tool use in mathematics learning can be

used to promote intercontextuality.

Neither Lave (1988) nor Saxe (1991) explore school mathematics classroom

practices to any depth and it is appropriate to consider this practice at this juncture.

There are differences between countries (Mullis, Martin, Foy, & Arora, 2012),

within countries (Noyes, 2012) and within schools (Noyes, 2012) in school math-

ematics classroom practices but a common feature of mathematics classrooms is

that they consist of a set of learners and a teacher (or teachers) who have come

together, ostensibly for the teacher to help the learners engage in mathematics. It is

important to that the age/experience of the children is taken into account though it

should not be assumed that young children cannot engage in ‘applied mathematics’.
Mathematical practices in classrooms are distinct from those of mathematicians

(pure or applied). Sect. 10.4 details Chevallard’s notion of ‘didactical transposi-
tion’; this is neatly encapsulated by Lagrange (2005, p. 69) ‘mathematics in

research and in school can be seen as a set of knowledge and practices in transpo-

sition between two institutions, the first one aiming at the production of knowledge

and the other at its study.’ Strange things such as the suspension of sense-making
(see, for example, Verschaffel, Greer, & De Corte, 2000) can happen in mathemat-

ics classrooms. For example studies in various countries have presented primary

school children with ‘There are 26 sheep and 10 goats on a ship. How old is the

Captain?’ and a common answer is ‘36’. There is, of course, a sense to this answer,
‘this is a mathematics class and there are two numbers in this question, I’ll add
them’, but this sense works against the sense needed to link in-school and out-of-

school mathematics. School mathematics here is seen as a sort of ‘game’.
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Verschaffel, Greer, and de Corte (2002, p. 262) cite a 13-year-old student who,

when asked by an interviewer why she did not make use of realistic consideration in

her solution to a problem, responded:

I know all these things but I would never think to include them in a math problem. Math

isn’t about things like that. Its about getting sums right and you don’t need to know outside

things to get sums right.

And school mathematics is often such a game. In disturbing research by Cooper

and Dunne (2000) the researchers presented upper primary and lower secondary

school children with ‘esoteric’ (e.g. 2x+ 1¼ 17, find x), realistic mathematics

questions and analysed responses with regard to the children’s social class. The

working class children held their own very well, against children with parents in the

professions, in the esoteric questions but performed comparatively poorly in the

realistic questions. An interpretation of this data is that working class children took

the realistic questions seriously but the other children knew it was just a game and
this disadvantaged the working class children. For example, a question about the

price of a soft drink and a bag of popcorn in a cinema was a disguised simultaneous

equations question and children drawing on knowledge of actual cinema prices

would get the answer wrong. But even when it is not seen as a game, school

mathematics is almost always done in a mathematics lesson and this ‘situation’
appears to matter. Monaghan (2007b) reports on a study where a company director

came into a mathematics class (students aged 14–15) and gave them a problem he

was working on (about how to use a GPS position to register when one of his

haulage vehicles had arrived at its destination). The research picked up the follow-

ing exchange between two students:

Student 1 Shall we draw this as a graph?

Student 2 Why?

Student 1 ‘Cos that’s normally what you do with co-ordinates.

The company director wanted a solution to a real problem. He expected that

mathematics could be used in the solution but Student 1 expected to use a particular

approach due to the mathematical content.

14.4.2 Attempts at Linking In-School and Out-of-School
Mathematical Practices

I now focus discussion towards artefact/tool use in attempts to link in-school and

out-of-school mathematics. The widespread use of artefact/tools in out-of-school

mathematics documented in the first half of this chapter suggests that this focus may

have potential to make links between in-school and out-of-school mathematics. I

first note, in my experience, a restrictive vision with regard to tools in the applica-

tions of mathematics in schools. In 2005, at the outset of a project in my locality

concerned with linking in- and out-of-school mathematics, I sent out a
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questionnaire to local schools with a series of questions on this topic (this is

reported in Monaghan & Sheryn, 2006). One question was:

Does your department use any special resources for linking school mathematics to out-of-

school mathematical activity? Anything from surveying equipment, to catalogues to com-

puter software, please specify.

Fifty-two percent of the schools stated that they did not use any special

resources. The remainder mentioned occasional use of resources. Twelve percent

stated that they had holidays and shopping catalogues. Other resources mentioned

were trundle wheels and clinometers. There appears to be a bit of a tool blindness
(not consciously recognising the use of tools in activity) here as none of the schools

mentioned software and I knew that many of them did use spreadsheets in math-

ematics work. Nevertheless, it does not appear that artefact/tools (resources) are

viewed as important in the applications of mathematics. Tool blindness (or, at least,

partial vision) appears in research too. Masingila, Davidenko, and Prus-

Wisniowska (1996) employs Saxe’s framework; it reports on three workplace

mathematics studies (dietetics, carpet laying and restaurant management). Selected

problems from these contexts were given to pairs of secondary students who were

observed and questioned as they solved the problems. They found differences in

‘the goals of the activity, the conceptual understanding of persons in each context,

and flexibility in dealing with constraints’. Although the paper discusses the role of
artefacts/tools in workplace mathematics in its presentation of the theoretical

framework, it says surprisingly little about artefacts/tools in its comparison of

workplace and in-school problem solving and when it does, it does so in quite

general terms, for example:

For both the restaurant manager and the interior designer, solving the problems were

necessary parts of their jobs. They used mathematics as a tool to help them solve problems

and not as the goal of the problem. The students, however, seemed to view the problems as

mathematical exercises and immediately started using algorithms that they thought would

be appropriate. (Masingila et al., 1996, p. 182)

Even when they explicitly consider Saxe’s parameter concerned with artefacts

they merely mention, with regard to carpet laying, ‘students may invent notation to

indicate when objects are the same size and shape, in the course of working in a

measurement context, before they have formalised the concept of congruence’
(Masingila et al., 1996, p. 196).

Two school-based studies that do focus on genuine artefacts are Lowrie (2011)

and Bonotto (2013), though the artefacts in question in both papers are not math-

ematical tools.4 Lowrie’s focus is twofold, the use of genuine artefacts and collab-

orative learning in solving realistic mathematics problems. The children were a

Grade 6 class (11–12 years old) from an Australian primary school. The artefacts

4 This is not meant to belittle the mathematical potential of artefacts that are not mathematical

tools. Many artefacts of this kind enable what the Freudenthal school (see Freudenthal, 1991) call

‘horizontal mathematization’; mathematics can be extracted from the artefact and the artefact can

be mathematically structured by the agent.
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used were brochures, menus, bus timetables, photographs and a real map from a

local theme park. The children worked in small groups to plan a group trip to the

theme park, ‘plan the day’s events with appropriate details and budgetary consid-

erations . . . use the map as your main reference point’ (Bonotto, 2013, pp. 4–5). The
artefacts were judged to have learning potential, they:

Encouraged the children to make connections to real-life experiences . . . [children] sourced
a great deal of visual, spatial and graphical information from the artefacts . . . established a

strong motivational intention for the open-ended task. (Lowrie, 2011, pp. 7–8)

With regard to collaborative learning, however, there was considerable variation

in the: quality of the solution; the authenticity of the solution; the manner in which

the group work (collaboratively or with one student dominating). Lowrie’s inter-
pretation of this is interesting:

These artefacts establish a sense of problem solving ‘integrity’ . . . helps to establish

meaningful engagement between peers . . .However, as the students accessed and used

personal knowledge to solve problems, they were less likely to monitor and manage

collaborative group goals. (Lowrie, 2011, p. 14)

So the use of genuine artefacts has great potential for applied problem solving in

schools but the solutions by individuals in groups are often rich, complex and varied

and many of these students found it difficult to simultaneously focus on the

complexity of their own solution and that of their peers. It is useful when research

alerts us to matters such as these which may not be obvious.

Bonotto (2013) has similarities to Lowrie (2011), the age of the children and the

types of artefacts, but focuses on artefacts as a source of real-life problem-posing

(I will only refer to problem-posing when necessary as it is not my focus in this

chapter). The study was in two parts. The first part was exploratory, ‘to evaluate . . .
the products of the problem-posing process when it is implemented in situation

involving the use of suitable artifacts, with its related mathematics, and particular

teaching methods’ (Bonotto, 2013, p. 42). The evaluation was largely positive:

children had no difficulty translating typical everyday data, present in the artefacts, into

problems suitable for mathematical treatment . . . [but] it was decided to modify some of the

data of the problem in order to render the resolution of the problem more straightforward.

(Bonotto, 2013, p. 43)

The second study had three phases: presentation of the artefact (a brochure for an

amusement park); a problem-posing activity; a problem-solving activity. Two

classes from different primary schools participated. There were similarities and

differences between these classes. Whilst all but one of the 189 mathematical

problems posed were mathematical one school generated 58 problems whilst the

other generated 131 problems. About three quarters of problems from each school

were solvable. The school which generated more problems also had a greater

variety of types of problems and more ‘original problems’, ‘Original problems

include inverse problems, and problems containing almost all the information on

the artefact’ (Bonotto, 2013, p. 50). This may suggest that problem-posing from an
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artefact is related to the nature of the teaching children have experience (and this

seems a reasonable hypothesis).

Lowrie (2011) and Bonotto’s (2013) study provide evidence that artefacts can be
useful in generating links between in-school and out-of-school mathematics,

though both raise issues for further research. A further aspect of artefacts in

generating such links is the production of artefacts. This, as we saw in Chap. 8,

ties in with constructionist thinking, ‘we extend the idea of manipulative materials

to the idea that learning is most effective when part of an activity the learner

experiences as constructing is a meaningful product’ (Papert, 1987, abstract).

Monaghan (2007a) reports on the production of artefacts within secondary school

mathematical activities designed to link in-school and out-of-school mathematics

activities. In this 2-year study eight teachers worked with the researchers (and often

an out-of-school expert) to co-design school-based projects on out-of-school

themes. Of 20 project designs 13 were implemented and in 4 of these the production

of artefacts was the student outcome: ‘designing a mathematical garden’ involved
transforming a garden including making a sundial; ‘designing shelf-ready packag-

ing’ involved making a cardboard template of the packaging which was suitable for

assembly on a production line; ‘writing a rap song’ with specialist music software

resulted in electronic music; ‘setting up your own business’ involved producing a

business plan on a spreadsheet which was suitable to send to a bank. In all of these

projects, artefacts were used to produce new artefacts, which is the case in many

out-of-school practices.

14.5 A Consideration of the Issues

The distinction between pure and applied mathematics, the use of mathematics in

out-of-school practices and linking in-school and out-of-school mathematical prac-

tices are substantial and ongoing issues and it would be foolish of me to expect my

tool-focused consideration of these issues in this chapter to bring a resolution to any

of them. But a lot of detail has been presented in the three sections above and it is

appropriate to consider the punch line of this scholarship and research. I structure

this section by considering the ‘problem issues’ (problems of interpretation and

problems of apparent gaps in understanding/research).

I started this chapter suggesting that there is a sense in which the division

between pure and applied mathematics is a real division between mathematical

activity for intrinsic or extrinsic purposes but also a sense in which the division

between pure and applied mathematics is a cultural–historical division (and then I

took a quick historic tour of ways of conceptualising divisions in mathematical

activity). This is a problem issue—what, if anything, is the distinction between pure

and applied mathematics?

I think the key to understanding this problem is recognition that there exists the

practice of doing mathematics and interpretations of this practice. If we return to

Jon’s Chap. 3, an account of the practice of doing mathematics, we can see what
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might be called ‘pure’ (Case Study Ia: Iterative Reflections) and what might be

called ‘applied’ (Case Study Ib: Protein Confirmation) mathematics but Jon does

not employ these terms in his discussion of these case studies, he just reports on

mathematics research (and the significant use of tools in this practice). This appears

to be true of non-experimental mathematicians as it is for experimental mathema-

ticians. This ‘problem issue’ is a problem issue for (some) interpreters (philoso-

phers, historians and mathematics educators), not for (most) practitioners. But the

interpreters, it seems, do play a role in determining the education (and thus the

practice) of future practitioners in as much as they play a significant role in

determining the structure of mathematics curricula (from Greek to medieval to

modern times). With regard to tool use in mathematics, there appears, to use a term

I coined above, tool blindness in many practitioners and interpreters. This does not

appear important in the case of practitioners as they will use tools whether they

realise it or not but it is important in the case of interpreters who have a say in

structuring curricula (if their interpretations of the appropriate tools for doing

mathematics are out of synch with the tools future practitioners need).

The second problem issue I raise is ‘the modelling cycle’ discussed in Sect. 14.2.
I outlined my problems with this cycle above: it is oversimplified; it is not clear

what it represents; and the usual presentation of this cycle does not attend to tool

use. The Siller and Greefrath (2010) version of this cycle partially attends to tool

use but raises complications by positing three worlds. I suggest that it may be useful

to ignore the modelling cycle and simply look to practice and this appears to be an

approach of current research, for example Noss and Hoyles (2009). I hope that this

book will contribute to a focus on tool use (including computers but not just

computers) in these practices. But if this leads to a new interpretation of out-of-

school mathematical practices, then we should not view this as the final interpre-

tation. Any interpretation will, from a cultural–historical perspective, be an interim

interpretation in the developmental path of our understanding of the divide between

‘pure’ and ‘applied’ mathematics, a step on the way from the ancient Greek

quadrivium, to pure and mixed mathematics, to pure and applied mathematics to

. . . another understanding.
The third problem issue I raise is the difficulty of characterising tool use in out-

of-school mathematical practices. Contributing to this problem issue are: the sheer

number of out-of-school mathematical practices and the variation in both the tools

used and the way tools are used in these practices; research into these practices

requires contextual data, often obtained by time consuming ethnographic methods,

so surveys of tool use may have limited value; mathematical tools are often

invisible to practitioners and researchers. Section 14.3 only considered three studies

in any depth. These studies all pointed to the importance of tool use in out-of-school

mathematical practices but they do offer differing interpretations of tool use in

practice. I am not worried about these differences but they suggest that we have

barely scratched the surface of understanding tool use in practice.

Finally I raise a set of problem issues related to school mathematics. School

mathematics is/can be viewed as a game and when this game is applied to linking

mathematics to the real world it often results in the suspension of sense making and
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can disadvantage certain classes of children (Cooper & Dunne, 2000). Schools and

classrooms are institutions and we should not expect ‘real-life’ reasoning to arise

‘naturally’ (Monaghan, 2007b) in them or that learning will ‘naturally’ transfer out
of them. Tools and genuine artefacts appear to hold some hope that school math-

ematics can be related to real-life activities but many teachers and some researchers

appear to have a form of tool blindness. But an awareness of problem issues can be

a prelude to attempts to address problem issues.

References

Bishop, A. (1988).Mathematical enculturation: A cultural perspective on mathematics education.
Dordrecht, The Netherlands: Kluwer.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications,

and links to other subjects—State, trends and issues in mathematics instruction. Educational
Studies in Mathematics, 22(1), 37–68.

Bonotto, C. (2013). Artifacts as sources for problem-posing activities. Educational Studies in
Mathematics, 83(1), 37–55.

Brown, G. I. (1991). The evolution of the term “mixed mathematics”. Journal of the History of
Ideas, 52, 81–102.

Cockcroft, W. H. (1982). Mathematics counts. London: HM Stationery Office.

Cooper, B., & Dunne, M. (2000). Assessing children’s mathematical knowledge: Social class, sex
and problem-solving. Buckingham, England: Open University Press.

Dowling, P. (1998). The sociology of mathematics education: Mathematical myths, pedagogic
texts. Washington, DC: Falmer Press.

Engle, R. (2006). Framing interactions to foster generative learning: A situative explanation of

transfer in a community of learners classroom. The Journal of the Learning Sciences, 15(4),
451–498.

Fauvel, J., & Gray, J. (1987). The history of mathematics: A reader. Milton Keynes, England: The

Open University.

Felstead, A., Gallie, D., & Green, F. (2002). Work skills in Britain 1986–2001. London: DfES.
Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational

Studies in Mathematics, 91(1), 11–35.
Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht, The Neth-

erlands: Kluwer.

Gerdes, P. (1996). Ethnomathematics and mathematics education. In A. J. Bishop, K. Clements,

C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education
(pp. 909–943). Dordrecht, The Netherlands: Kluwer.

Gerdes, P. (1997). Survey of current work on ethnomathematics. In A. Powell & M. Frankenstein

(Eds.), Ethnomathematics: Challenging eurocentrism in mathematics education
(pp. 331–372). Albany, NY: SUNY Press.

Hoyles, C. (2007). Understanding the system: Techno-mathematical literacies in the workplace
(ESRC End of Award Report, RES-139-25-0119). Swindon, Scotland: ESRC.

Hoyles, C., Wolf, A., Molyneux-Hodgson, S., & Kent, P. (2002). Mathematical skills in the
workplace. London: Science, Technology and Mathematics Council.

Kanes, C., & Lerman, S. (2008). Analysing concepts of community of practice. In A. Watson &

P. Winbourne (Eds.), New directions for situated cognition in mathematics education
(pp. 303–328). New York: Springer.

354 14 Tools and Mathematics in the Real World



Lagrange, J. B. (2005). Curriculum, classroom practices, and tool design in the learning of

functions through technology-aided experimental approaches. International Journal of Com-
puters for Mathematical Learning, 10(2), 143–189.

Lave, J. (1988). Cognition in practice. Cambridge, England: Cambridge University Press.

Lowrie, T. (2011). “If this was real”: Tensions between using genuine artefacts and collaborative

learning in mathematics tasks. Research in Mathematics Education, 13(1), 1–16.
Magajna, Z., & Monaghan, J. (2003). Advanced mathematical thinking in a technological work-

place. Educational Studies in Mathematics, 52(2), 101–122.
Masingila, J., Davidenko, S., & Prus-Wisniowska, E. (1996). Mathematics learning and practice in

and out of school: A framework for connecting these experiences. Educational Studies in
Mathematics, 31(1–2), 175–200.

Mathematical Association. (1952). The teaching of arithmetic in schools: A report prepared for
the Mathematical Association. London: G. Bell & Sons.

Monaghan, J. (2004). Teachers’ activities in technology-based mathematics lessons. International
Journal of Computers for Mathematical Learning, 9(3), 327–357.

Monaghan, J. (2007a). Linking school mathematics to out-of-school mathematical activities
(ESRC End of Award Report, RES-000-22-0739). Swindon, Scotland: ESRC.

Monaghan, J. (2007b). Linking school mathematics to out-of-school mathematical activities:

Student interpretation of task, understandings and goals. International Electronic Journal of
Mathematics Education, 2(2), 50–71.

Monaghan, J., & Sheryn, L. (2006). How do secondary teachers make mathematics applicable?

Mathematics in School, 35(4), 13.
Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in

mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston

College.

Noss, R., & Hoyles, C. (1996). The visibility of meanings: Designing for understanding the

mathematics of banking. International Journal of Computers for Mathematical Learning, 1,
3–31.

Noss, R., & Hoyles, C. (2009). Modeling to address techno-mathematical literacies in work. In

R. Lesh, C. Haines, P. Galbraith, & A. Hurford (Eds.), Modeling students’ mathematical
modeling competencies (pp. 75–86). New York: Springer.

Noss, R., Hoyles, C., & Pozzi, S. (1998). ESRC end of award report: Towards a mathematical

orientation through computational modelling project. Mathematical Sciences Group, Institute

of Education, London University, London.

Noyes, A. (2012). It matters which class you are in: Student-centred teaching and the enjoyment of

learning mathematics. Research in Mathematics Education, 14(3), 273–290.
Pais, A. (2011). Criticisms and contradictions of ethnomathematics. Educational Studies in

Mathematics, 76, 209–230.
Papert, S. (1987). Constructionism: A new opportunity for elementary science education. DRL

Division of Research on Learning in Formal and Informal Settings. Retrieved from http://nsf.

gov/awardsearch/showAward.do?AwardNumber¼8751190

Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in practice, mathematics in use. Educational
Studies in Mathematics, 36(2), 105–122.

Saxe, G. B. (1991). Culture and cognitive development: Studies in mathematical understanding.
Hillsdale, NJ: Laurence Erlbaum Associates.

Scott, P., Mortimer, E., & Ametller, J. (2011). Pedagogic link-making: A fundamental aspect of

teaching and learning scientific conceptual knowledge. Studies in Science Education, 47(1),
3–36.

Siller, H. S., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In

Proceedings of the Sixth Congress of the European Society for Research in Mathematics
Education (pp. 2136–2145).

Skovsmose, O. (2005). Travelling through education. Uncertainty, mathematics, responsibility.
Rotterdam, The Netherlands: Sense.

References 355

http://nsf.gov/awardsearch/showAward.do?AwardNumber=8751190
http://nsf.gov/awardsearch/showAward.do?AwardNumber=8751190
http://nsf.gov/awardsearch/showAward.do?AwardNumber=8751190


Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects:

Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social
Studies of Science, 19, 387–420.

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The
Netherlands: Swets & Zeitlinger.

Verschaffel, L., Greer, B., & de Corte, E. (2002). Everyday knowledge and mathematical

modelling of school word problems. In K. Gravemeijer, R. Lehrer, B. van Oers, &

L. Verschaffel (Eds.), Symbolizing, modelling and tool use in mathematics education
(pp. 257–276). Dordrecht, The Netherlands: Kluwer.

356 14 Tools and Mathematics in the Real World



Chapter 15

Mathematics Teachers and Digital Tools

John Monaghan and Luc Trouche

Abstract This chapter considers mathematics teachers’ appropriation and class-

room use of digital tools. The first section considers teachers—who are they, how

are they conceived in the literature and what aspects of teachers have been studied?

The second section examines twenty-first century research on mathematics teachers

using digital tools. This sheds light on the complexity of mathematics teachers’
appropriation and classroom use of digital tools but what we find is that our focus is

too narrow and we need to consider digital tools within the range of resources use in

planning and realising their lessons, which leads us to the third section, mathemat-

ics teachers using resources. We end with a review of the current state of under-

standing and an agenda for future research.

15.1 Introduction

This chapter tackles a complex issue, mathematics teachers’ appropriation and

classroom use of digital tools. We say ‘complex’ because we have both seriously

applied ourselves to understanding this issue over two decades and we have both

found it to be complex (in terms that will emerge in this chapter). It is fairly easy for

someone to say what they think teachers should do but analysing the reasons1 for

what teachers actually do is a different and difficult task. The first section below

does not begin with tools but with teachers—who are they, how are they conceived

in the literature and what aspects of teachers have been studied? We then look at

twenty-first century research on mathematics teachers using digital tools. This

sheds light on the complexity of mathematics teachers’ appropriation and class-

room use of digital tools but what we find is that our focus is too narrow and we

need to consider digital tools within the range of resources use in planning and

realising their lessons, which leads us to the third section in this chapter. We end

1 ‘Reasons’ may not be the best term if it suggests some explicit logic behind actions; ‘agencies at
play’ in an institutional setting may be a better term, suggesting a range of factors influencing

teachers’ actions.
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with a review of the current state of understanding and an agenda for future

research.

15.2 Constructing the Mathematics Teacher

Almost everyone reading this chapter will have spent hundreds of hours in school

mathematics lessons led by specialist teachers. Given this, it is not unreasonable

that we may think there is some essential quality to being a mathematics teacher.

Our view, however, is that this is not the case, mathematics teachers are mathe-

matics teachers by virtue of their employment—they are (usually) paid to instruct a

set of people in the subject we call mathematics. This employment usually takes

place in an institution called a classroom within an institution often called a school

within a larger context (for example secondary teaching), etc. The locations of their

employment, each with an ensemble of social relations and, we hasten to add, an

ensemble of artefacts, contribute to the social construct known as ‘mathematics

teachers’. Chevallard’s anthropological theory of didactics (considered in Sect.

10.4) sheds further light on our view of mathematics teaching: teaching is a

praxeology2 (an idiosyncratic practice) with a logos and a praxis specific to an

institution; the mathematics taught is not the mathematics Jon writes about in

Chap. 3 but is a transposed form of this mathematics (Chevallard & Bosch,

2014), mathematics which has been adapted for study in an institution.

The adjective ‘professional’ is often linked with teachers (e.g. teacher profes-

sional development) but the status of ‘a teacher in a given institution’ is not

equivalent to a lawyer’s status in the judiciary, or a doctor’s status in a medical

institution. Etzioni (1969) refers to teaching (as well as nursing and social work), as

semi-professions: ‘Their training is shorter, their status is less legitimated, their

right to privileged communication is less established, there is less of a specialised

body of knowledge, and they have less autonomy from supervision or societal

control than “the” professions’ (1969, p. v). This may ring less true in 2015 than it

did in 1969 but, in the context of mathematics teachers’ classroom use of digital

tools, there is a sense in which, say, when a teacher faces a given problem (for

example, integrating calculators in her teaching), s/he looks, in general, neither for

solutions relevant to all colleagues, nor for an institutional solution; the solution to

the problem is likely to be an individual one. In this sense teaching is more a craft

than a profession.

Academics have attempted to describe teachers (in general, not just mathematics

teachers) within the paradigmatic constructs of their age (e.g. behaviourism, con-

structivism, etc.) as we are doing in this chapter. Olson (1992, p. 1) outlines

Western attempts in the second half of the twentieth century:

2Actually a set of praxeologies realised in different institutions.
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The systems model used organisational theory to understand and manage change. It is

concerned with the techniques of change. The ecological model studies the work environ-

ment of the teacher and recommends how that environment should be changed so that

teachers can work effectively. The cognitive model concentrates on how teachers process

information from their environment—it searches for schemes teachers can follow to bring

about learning. In each model, predictive social science is the basis for the quest for the

effective teacher.

In the same period academics in the field of mathematics education investigated

teachers’ attitudes but, as Hannula (2012), in writing about attitude in mathematics

generally (not just teachers’ attitudes), says with regard to two classic texts from

1989 to 1992 discussing attitudes, beliefs and emotions, if we try to combine these

two views, ‘we see that attitude is at the same time a parent and a sibling to

emotions and beliefs. . . This apparent mismatch highlights the different usages of

terminology in the field’ (Hannula, 2012, p. 140). A study of teachers’ attitudes to
using Logo that rejects classic views is Moreira and Noss (1995) who looks at the

evolution of two teachers’ attitudes towards Logo and the use of Logo in an INSET
course and in their classrooms. They argue that there is a dialectic between attitudes

towards the use of computers in the classroom and the classroom situations them-

selves: that the situations of use structure the attitudes and the attitudes structure the

situations of use. Moreira and Noss’ position resonates with our view of teachers’
attitudes to the use of digital tools in mathematics teaching; these attitudes are not

well formed pre-existing entities that somehow reside in the teachers’minds but are

a part of the unit of analysis (cf. Sect. 9.2) of teachers’ activities.
An important touchstone in academic study of teachers is two papers by

Shulman (1986, 1987) which introduced the construct ‘pedagogical content knowl-
edge’ (PCK), which has had a considerable influence on the academic study of

teaching and teachers (both in general and in mathematics education). PCK is a

powerful construct but one that is open to many interpretations: at a trivial level it is

the intersection of ‘content knowledge’ and ‘pedagogical knowledge’; at a deeper

level it describes Chevallard’s didactical transposition in a positive light, as the

transformation of personal content knowledge into knowledge that can be appro-

priated by learners. Mishra and Koehler (2006) added technology3 knowledge to

the mix in their construct technological pedagogical content knowledge (TPCK);

like PCK, TPCK is open to many interpretations (see Ruthven, 2014, for a critique).

PCK, is an artefact and, as an artefact becomes a tool when it is used to do

something (see Sect. 1.3), so PCK becomes a range of tools for the academic

study of teachers and teaching. For example, Williams (2011, p. 161), in an activity

theory framework, regards PCK as a ‘boundary object between reflection on

3Mishra and Koehler (2006), like many authors, use the term ‘technology’ (short for ‘digital
technology’). We prefer, in this book, the term ‘digital tool’ but realise that we are ‘nit picking’.
We adopt the following usage in this chapter: when we are developing our own line of thought we

shall use the term ‘digital tool’ but when we are discussing literature that uses the term ‘technol-
ogy’, then we shall use the term ‘technology’.
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teaching and the practice of teaching’ and Williams uses this in his analysis of

audits of teachers’ understanding of their students’ knowledge.
Deborah Ball (with various colleagues) is, at the time of writing, the mathemat-

ics educator most closely associated with ‘teacher knowledge’ and her work, with

colleagues, builds on that of Shulman. Figure 15.1 shows a multi-part classification

of knowledge for mathematics teaching (from Hill, Schilling & Ball, 2008, p. 377).

This division of knowledge, however, is not without its critics, for example Watson

(2008, p. 1) states ‘I try to think about mathematical knowledge in teaching as a way

of being and acting, avoiding categorisation and acquisition metaphors of knowl-

edge’. Further to this, though not as a direct attack on the division in Fig. 15.1,

Rowland and Ruthven (2011, p. 2) state:

. . . much work in this field has treated mathematical knowledge for teaching as residing

solely with the classroom teacher. We aim to follow an approach which recognises the part

played by textbooks and other tools and resources in classroom teaching and learning

An explicit focus on knowledge and tools which is strangely absent in the most

current discourse on teacher knowledge is ‘instrumental genesis’ introduced by

Guin and Trouche (1999). This has been discussed in Chap. 10 but it is worth

revisiting here. ‘Instrument’ here, as Luc said in Sect. 1.3, is a composite entity

composed of the artefact and the associated knowledge (both the knowledge of the

artefact, and the knowledge of the task constructed when using this artefact). The

artefact and the agent (or agents) are interrelated: the artefact shapes the actions of

the agent, instrumentation; the user shapes the use of the artefact, instrumenta-
lisation. The process of turning an artefact into an instrument is called ‘instrumental

genesis’. The agent brings her/his knowledge and the artefact brings its potential-

ities and constraints to the artefact agent interaction. Important constraints are:

internal (linked to hardware); command (linked to the syntax required for use);

organisation (linked to the artefact-user-interface). Instrumental genesis is a process

that students and teachers will go through whenever they meet a new tool (digital or

not); it is, moreover, a process without a unique end point, the process occurs in a

zone of proximal development. Instrumental genesis can be used to provide a

Fig. 15.1 A classification

of knowledge for

mathematics teaching

(from Hill, Schilling &

Ball, 2008)
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critique of Mishra and Koehler’s (2006) TPCK when we consider software that is

explicitly mathematical since content knowledge resides in both the agent and the

artefact and technological knowledge is knowledge that develops in instrumental

genesis. Instrumental genesis also leads to a model of analysing teachers’ use of

digital tools in classrooms, which leads us to the next section.

15.3 Twenty-First Century Research on Mathematics
Teacher Using Digital Tools

Monaghan (2004, p. 329) advances the view that ‘the 1990s witnessed a progressive
if somewhat uneven realisation that teachers teaching with technology is a complex

issue’. He cites professional and academic literature, circa 1990, that appears to

view technology as somehow miraculously transforming teachers’ classroom roles

when they use technology:

Teacher exposition leads naturally to discussion between teacher and pupils with the

computer display as a focus. (Mathematical Association, 1992, p. 18)

. . .classroom roles must and do shift. It is no longer possible for teachers to serve as ex

cathedra authorities . . . Teachers and students must and do learn to listen carefully to and

assess the qualities of one another’s arguments. (Schwartz, 1989, p. 57)

Monaghan’s view is complemented by a meta-study of ICT technologies in

mathematics education in the period 1992–1998 (Lagrange, Artigue, Laborde, &

Trouche, 2003, see also Sect. 10.5.2) which notes that the majority of papers

reviewed in the meta-study were optimistic and few focused on the everyday

practice of integrating digital technology into teaching and learning. The paper,

however, noted:

a long term motion towards awareness of a more complex integration and the subsequent

necessity of new dimensions of analysis. It is confirmed by what we know of the institu-

tional and instrumental dimensions in today’s research studies and of the emerging reflec-

tions on the teacher (Lagrange et al., 2003, p. 260)

In 2001 three papers appeared which addressed ordinary teachers’ practices with
digital technology in their classrooms. Kendal and Stacey (2001) reports on work

with Australian teachers to implement the same high school calculus module but

found they did this in different ways. The paper claims teachers privilege

(a construct from Wertsch, 1991) techniques and uses of digital technology which

resonate with their pre-use-of-technology ways of working in the classroom.

Laborde (2001) documents changes (made over several years) that teachers make

in the tasks they use in classrooms with a dynamic geometry system. Monaghan

(2001) details teachers’ ways of working in classrooms with technology and states

that changes in routines from classroom without digital technology are often the

result of the material conditions of their work, e.g. teachers spent more time

(respectively less time) speaking to two or more students (rather than individuals)

in technology lessons (respectively lessons without digital technology) but this
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could be explained by the fact that the availability of computers (for the teachers he

observed) forced students to work with two or more to a computer.

These papers, along with papers emanating in French research (see Chap. 10 and

the papers by Artigue, 2002; Guin & Trouche, 1999 and in particular) and socio-

cultural studies (see Chap. 9), helped establish an international dialogue which

influenced a subset of papers on teachers’ practices with technology in their

classrooms in the first decade of the twenty-first century. Sections 15.3.1–15.3.5

trace five of these strands: a pedagogical model; time; emergent goals; zones of free

movement and promoted actions; and instrumental orchestration. We choose these

strands because they represent complementary aspects of mathematics teachers

working with digital tools. We present the ideas in these strands, including the

theoretical frameworks, by considering representative papers in each strand.

15.3.1 A Pedagogical Model

Ruthven and Hennessy (2002) construct what they call a practitioner model of the

use of computer-based tools and resources to support mathematics teaching and

learning from teachers’ accounts of their practices and experiences in using tech-

nology in their classrooms. The theoretical framework is sociocultural and the

writings of Wertsch and Bakhtin (see Chap. 13) are cited as influential. The data

thematically analysed are transcripts of group interviews with mathematics teachers

in each of seven state schools. The interviews sought to illicit ‘how teachers

conceive their incorporation of use of computer tools and resources into main-

stream mathematics teaching’ (Ruthven & Hennessy, 2002, p. 50). The main

mathematics software teachers used were graphing packages, Logo, spreadsheet
and software designed to teach or test a topic. Ruthven and Hennessy (2002)

isolated ten interrelated themes associated with teachers’ use of software, which

they grouped into three groups:

Four themes depend most directly on exploiting affordances of ICT: Ambience enhanced in
changing the general form and feel of classroom activity; Tinkering assisted in helping to

correct errors and experiment with possibilities in carrying out tasks; Routine facilitated in

enabling subordinate tasks to be carried out easily, rapidly and reliably; and Features
accentuated in providing vivid images and striking effects which highlight properties and

relations. Three further themes depend in turn on these processes: Restraints alleviated in

mitigating factors inhibiting student participation such as the laboriousness of tasks . . .;
Motivation improved in generating student enjoyment and interest, and building student

confidence; and Attention raised in creating the conditions for students to focus on

overarching issues. Three final themes depend again on preceding processes: Engagement
intensified in securing the commitment, persistence and initiative of students in classroom

activity; Activity effected in maintaining the pace and productivity of students within

classroom activity; Ideas established in supporting the development of student understand-

ing and capability through classroom activity. (Ruthven & Hennessy, 2002, p. 81)

The model is not based on observations of teachers’ practice but does seek a

tentative model of practice. The first group of four themes, which focuses on

362 15 Mathematics Teachers and Digital Tools

http://dx.doi.org/10.1007/978-3-319-02396-0_10
http://dx.doi.org/10.1007/978-3-319-02396-0_9
http://dx.doi.org/10.1007/978-3-319-02396-0_13


affordances of the digital tools for teaching and learning mathematics, is clearly an

academic interpretation of perceived practice.

15.3.2 Time

Assude (2005) has links with Laborde (2001) in as much as it is focused on

teachers’ use of the dynamic geometry system Cabri and ‘time’ but, whereas

Laborde focused on changes in tasks teachers set over chronological time, Assude

focuses on time management. It is difficult to describe the theoretical framework in

a few words it approximates to a fusion of the anthropological theory of didactics

and sociocultural theory. The paper is based on the work of two primary teachers

teaching geometry (plane figures) in two consecutive years (the first year without

Cabri, the second year with Cabri). Data collected included teachers’ lesson

preparation notes, students’ exercise books and recorded classroom observations.

Two constructs, ‘didactic time’ and ‘time capital’ are central to the paper. Didactic

time is related to ‘the process of transformation of a body of knowledge into a

knowledge which can be taught’ (Laborde, 2001, p. 185), i.e. the ‘didactical
transposition’ (see Chap. 8). Didactic time is linear and sequential

(i.e. knowledge is broken down and taught in some order). Time capital is time as

it is measured by a clock and the suffix ‘capital’ suggests that teachers have a fixed
curriculum time allocation to teach a given topic. The pace of a lesson/course can

be viewed as ‘the rate at which didactic time advances relative to the time capital

allotted to it’ (Laborde, 2001, p. 186) and the statement ‘that was a fast-paced’
lesson can be understood in terms of this ratio. Assude (2005) presents tables which

show the number of hours devoted to different parts of the geometry work in the

2 years (with and without Cabri). The aim of the work in these years was the same

but the content was not identical: the second year included, for example, 3 h for

students to become familiar with Cabri; the number of hours spent on specific

topics varied over the 2 years. Overall, however, the tasks given to students in both

years were similar and teachers exercised control over didactic time though there

were changes in the pace of the lessons. The use of Cabri did influence the pace of

parts of the geometry work. For example, in a unit on quadrilaterals:

A construction activity was much slower than an activity in which previously constructed

figures were analysed . . .the relation between the pupils’ working time and didactic time is

not economical relative to time capital, because didactic time hardly moves forward; pupils

must have sufficient command of the software in order to do the constructions, which is not

necessarily the case for analysis (Assude, 2005, p. 194)

Assude (2005) goes on to describe teachers’ strategies which ‘allowed teachers

to save their time capital in working with Cabri and, as a result, this software could

be integrated in the day-to-day work of the class’ (Assude, 2005, p. 201).
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15.3.3 Emergent Goals

Monaghan (2004) is an interpretation of the Monaghan (2001) in terms of Saxe’s
(1991) sociocultural four parameters model of practice linked goals.4 The context

was a project where 13 state secondary school mathematics teachers with limited

prior experience of using technology in mathematics lessons attempted extensive

use of technology in their lessons for a school year. Over the 13 teachers the

following digital tools were used: spreadsheet; graphic packages and calculators;

computer algebra systems (CAS); and dynamic geometry systems. The stated aim

of Monaghan (2004) is ‘to find an holistic way to examine teachers’ practice . . .
because of a conviction that the whole undertaking involves a fusion of many

factors and analyses suffer if these factors are taken in isolation’ (Monaghan, 2004,

p. 327). Data collected included teacher journals with lesson plans, various inter-

views and four video-taped lessons of each teacher spread out over the year (the first

of a lesson without digital tools). Monaghan (2004) goes through each of Saxe’s
parameters in turn. With regard to activity structures, all the initial lessons had a

similar format: teacher exposition and examples followed by students doing ques-

tions from a textbook but here was considerable variation in the format in the

lessons incorporating the use of digital tools and the tasks given to students in these

lessons differed from the textbook tasks in the initial lessons. Student work on some

of these tasked appeared, to the teacher, to be focused on the technology rather than

‘on maths’ and this caused some teachers to question ‘is this maths?’. With regard

to prior understandings teachers had a clear understanding of how a ‘normal lesson’
and lesson plans were, more often than not, notes on mathematical content to be

covered. But in lessons with digital tools:

Back to being like a student teacher to be honest because I felt happier writing things down.

I think it’s a kind of a confidence thing. When you’re just teaching a normal lesson without

ICT you don’t, you’re prepared for any eventuality without realising it but when you’re
doing ICT and it’s the first time you’ve done a topic like that you’re not. (Monaghan, 2004,

p. 337)

With regard to conventions and artefacts, we restrict the summary to software

and hardware. Mathematical software is not a uniform category to teachers. For

example, a teacher who is a graphing software and a CAS viewed graphing software

as a tool to do straightforward tasks that fitted in with his ‘normal’ lesson ideas but

the CAS was a ‘monster’ that could do virtually anything and forced him to rethink

his lesson planning. Hardware had a differential effect on the organisation of

teaching. For example, teachers who did not have computers in their class (and so

had to book a computer room) tended to have ‘all or nothing’ computer-based

lessons. Monaghan (2004) notes many changes with regard to social interactions as

the result of incorporating digital tools but, as noted above, these are often the result

4 This was outlined in Chap. 14. A brief resume is: the parameters activity structures, social

interactions, conventions and artefacts and prior understandings interact and influence, and can

interrupt, emergent goals arising in practice.
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of the material conditions of their work. Monaghan (2004) then looks at interrela-

tionships between these parameters, which are extensive. The following quote from

a project teacher (one of a pair in one school) shows a dialectic between activity

structure (task), prior understandings (start with structured tasks) and artefacts

(printers):

We started by giving the students structured tasks to do such as solving simultaneous

equations graphically. We then moved on to less structured work—usually an investigation.

. . . These investigations were much more successful with set 1 than with set 2 . . .As a result
of these difficulties we adapted the assignments to reduce the number of printouts and to

make the tasks more prescriptive. (Monaghan, 2004, p. 349)

Monaghan (2004) concludes that the integration of technology into classroom

practice is a complex transformation of practice and that teachers varied consider-

ably in the extent to which they could successfully adapt (in their own evaluations)

to this transformation.

Lagrange and Erdogan (2009) elaborate on Monaghan’s use of Saxe’s frame-

works by linking (networking) it to the anthropological theory of didactics (cf. Sect.

10.4) and ‘values’.5 Lagrange and Erdogan (2009) focus on two experienced

secondary teachers using spreadsheet in their secondary school classes. One of

these teachers, Mrs. PEX (experienced in the use of technology), is positively

disposed towards using spreadsheet, the other, Mrs. PSCEP (sceptical), is not. The

purpose of the paper, ‘is to highlight episodes marked by improvisation and

uncertainty as a central feature of teachers’ classroom activity involving technol-

ogy’ (Lagrange & Erdogan, 2009, p. 65). Like Monaghan (2004) they note the

influence of Saxe’s four parameters on each teacher’s work. We focus on one

situation, the Birthday Situation (see below), from Lagrange and Erdogan (2009)

which both teachers chose to make into a task from a set of situations offered to

them (though in Mrs. PSCEP this ‘choice’ had ‘strings attached’—the curriculum

was such that she was expected to use technology in her lessons and it seems that

she chose this situation as the best of a bad lot).

Birthday Situation: Sabine has just been born; Her grandmother opens a credit account for

her, makes a first 100€ deposit and decides to make each year a new deposit of the same

amount plus double Sabin’s age.

Both teachers turned this situation into a task with sub-tasks leading to ‘How
much money will Sabine have on her 18th birthday?’Mrs. PEX’s version of the task
does not refer to spreadsheets. Mrs. PSCEP’s version of the task (from a textbook)

makes specific reference to ‘spreadsheet algebra’, e. g, ‘Which of the following

formulas should we write in cell B3 . . . 1)¼B2+ 2*A3 . . .’ (Lagrange & Erdogan,

2009, p. 73). Lagrange and Erdogan’s (2009) account of Mrs. PSCEP’s lesson shows
that Mrs. PSCEP was often surprised with the student work resulting from the task

and ‘became aware that her activity format of individual interaction with the

5 Pragmatic values which concern the range of application of a technique and epistemic values

which concern the role of techniques in promoting mathematical understanding.
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students was not adapted for this question’ (Lagrange & Erdogan’s, 2009, p. 75). In
Mrs. PEX’s class the work the students worked, worked in two teams and could

decide what tool to use to do the task. The idea of using a spreadsheet emerged in

whole class discussion on the first sub-task and the students suggested using a

spreadsheet.

Lagrange and Erdogan’s (2009) provide a wealth of detail regarding the devel-

opment of each lesson which we leave the interested reader to pursue though we do

note that the development of work in Mrs. PEX’s class was not without tensions. We

now jump to their summary comments in terms of Saxe’s model, the anthropolog-

ical theory of didactics and ‘values’. The activity structure, following the different

task, in each class were different and this difference appeared to be accentuated by

the two teachers’ views of ‘mathematics with technology’: Mrs. PSCEP—learn the

notions and notations and then apply them; Mrs. PEX—explore, discuss and

synthesise. For Mrs. PSCEP the spreadsheet was a tool for applications but for

Mrs. PEX it was a ‘tool to introduce exploration and modelling’ (Lagrange &

Erdogan’s, 2009, p. 79). Regarding social interactions, Mrs. PEX privileged team-

work whereas Mrs. PSCEP privileged individual work which led to unwanted

emergent goals of keeping individual students on the execution of the task in the

way she determined it should be done. With regard to techniques Lagrange and

Erdogan’s (2009) note that:

The teachers attached great importance to techniques for their epistemic values, but

speaking to the students, they rather insisted on a supposed pragmatic value. Students

were not convinced. It seems that teachers prefer to give superficial reasons rather than

discuss in depth the interest of a technique. (Lagrange & Erdogan’s, 2009, p. 81)

15.3.4 Zones of Free Movement and Promoted Actions

We now consider work on teachers and technology that employ Valsiner’s socio-
cultural constructs zone of free movement (ZFM) and zone of promoted actions

(ZPA). Valsiner (1987) introduces these zones in relation to Vygotsky’s zone of

proximal development (ZPD) to explain how adults shape an environment for a

child’s expected proximal development. The ZFM characterises the child–environ-

ment relationship, what the child can and cannot do in an environment. The ZPA

concerns the ‘set of activities, objects, or areas in the environment, in respect of

which the child’s actions are promoted’ (Valsiner, 1987, pp. 99–100). These two

zones interact and ‘work jointly as the mechanisms by which canalisation of

children’s development is organised’ (Valsiner, 1987, p. 101). Valsiner is a child

psychologist but these constructs do appear useful for conceptualising both students

and teachers in mathematics classrooms with or without technology: what actions

are available (or constrained) in a classroom? What actions are promoted or not?

Goos (2005) applies Valsiner’s zone theory to novice teachers, and their iden-

tities as teachers, in the context of using technology in their early teaching expe-

riences. Goos views novice teachers’: ZPD as including their experience in working
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with technology and their knowledge on how to integrate technology into mathe-

matics teaching; ZFM as including access to hardware, software and teaching

materials, support from colleagues and curriculum and assessment requirements;

ZPA as including university-based education, practicum and professional develop-

ment. Much of Goos (2005) considers the case of Geoff who was encouraged to use

technology in the university element of his course. Geoff was an experienced

computer user and was enthusiastic towards integrating technology into his teach-

ing, ‘make things easier to understand because . . . it’s dynamic and not static’
(Goos, 2005, p. 47). In his practicum placement it appeared that Geoff had a number

of apparent constraints on his movements and actions with regard to the integration

of technology into his lessons:

the ZPA offered by this supervision excluded technology, and thus was not well matched

with the ZPD that defined the direction in which Geoff hoped his teaching would develop

. . . In Figure 3 we see that the university ZPA is distinct from the school ZPA and thus

largely outside the school’s ZFM (Goos, 2005, p. 48)

Nevertheless, Geoff was able to reconfigure the ZFM with a low attaining class,

‘a class that nobody cares about’ (Goos, 2005, p. 49), to include the university ZPA
(which he wanted to enable). Goos (2005) adds that Geoff, ‘was able to construct

his practice as a pre-service teacher of low status mathematics students to develop

further his emerging identity as a teacher for whom technology was an important

pedagogical resource’.
Goos (2005) follows Geoff into his first year of teaching in a school which,

unlike his practicum school, promoted the use of technology. Goos (2005) reports

on a successful lesson where Geoff presented a graphing task that involved captur-

ing student data in ‘walking contests’ using a motion detector linked to a graphics

calculator and displayed using a view-screen. Goos (2005, p. 51) comments:

Geoff’s ZFM appeared to afford teaching actions consistent with his beliefs about mathe-

matics . . . Furthermore, the ZPA offered by his teaching colleagues seemed to be consistent

with both his development as a teacher (i.e., his ZPD) and the ZPA offered by his

pre-service course, in that new graduates teaching at the school were actively supported

in integrating technology into their practice . . . Geoff’s pedagogical identity was afforded

by the apparent relationships between his ZPD, ZFM, and ZPAs.

However, when Geoff attempted to extend his use of technology to computers,

the school constrained Geoff’s practice because the computer rooms were not

available for him to use with his class:

These components of Geoff’s ZFM tended to undermine his goal of infusing technology as

a partner in assessment tasks as well as learning activities . . . these factors led to a

contraction of Geoff’s ZFM in ways that tended to exclude some of the pedagogical

practices promoted by his pre-service course (Goos, 2005, p. 52)

There is a sense in which studies, such as Goos (2005), of the ZFM and the ZPA

in relation to a teachers’ ZPD provide a meta-level analysis of the study of the

Gibson’s affordances and constraints with regard to the use of digital tools by

teachers. We now move on to instrumental orchestration, which ends our
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consideration of papers and ideas which influenced scholarship on teachers’ prac-
tices with technology in their classrooms in the first decade of the twenty-first

century.

15.3.5 Instrumental Orchestration

The term ‘orchestration’ is a widely used metaphor in academic literature

concerned with digital technology and education. Kennewell (2001), for example

focuses on the Gibsons’ affordances and constraints, ‘The role of the teacher is to
orchestrate the affordances and constraints in a setting in order to maintain a gap

between existing abilities and those needed to achieve the task outcome’
(Kennewell, 2001, p. 107). But in the field of mathematics education, at the time

of writing, ‘orchestration’ is most widely associated with ‘instrumental orchestra-

tion’, which is an extension of Guin and Trouche’s (1999) instrumental genesis

applied to teaching and learning. Trouche (2004) introduces the term:

to point out the necessity . . . of external steering of students’ instrumental genesis . . . An
instrumental orchestration is defined by didactical configurations (i.e. the layout of the

artifacts available in the environment . . .) and by exploitation modes of these configurations

(Trouche, 2004, p. 296).

Instrumental orchestrations can be enacted at different levels: of the artefact; of

the instrument; of the relationship between the user and the instrument(s). Trouche

(2004) focuses on modes of use of an algebraic calculator with regard to a specific

configuration which he calls Sherpa-student-orchestration (see also Sect. 19.2.1).

This configuration includes individual students with calculators linked to a view-

screen and involves one student (the Sherpa), displaying his/her calculator work to

the class and ‘Sherpa-student-orchestration’ was, for a number of years, the prime

example of instrumental orchestration.

Drijvers, Doorman, Boon, Reed, and Gravemeijer (2010) extend the repertoire

of instrumental orchestrations. The context of this extension is a project which

explored teaching mathematics in technology-rich environments with the teachers

who had limited experience in using digital tools in their secondary school class-

rooms. The mathematics to be taught centred on constructing function within a

Realistic Mathematics Education framework. Tasks were presented in Java applets

embedded in an e-learning environment. The research focuses on describing the

types of instrumental orchestrations the teachers enacted in their classrooms.

Drijvers et al. (2010) add ‘didactical performance’ to Trouche’s (2004) didactic

configurations and exploitation modes:

A didactical performance involves the ad hoc decisions taken while teaching on how to

actually perform in the chosen didactic configuration and exploitation mode: what question

to pose now, how to do justice to (or to set aside) any particular student input, how to deal

with an unexpected aspect of the mathematical task or the technological tool, or other

emerging goals. (Drijvers et al., 2010, p. 215)
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Didactical performance constitutes a critical enrichment of the instrumental

orchestration model, allowing to see an orchestration ‘as an artefact for a teacher,

evolving through successive phases of design and implementation in classroom

situations’ (Trouche & Drijvers, 2010, p. 676).

Data collection included analysis of videotapes of 38 lessons by 3 teachers in

5 classes. Qualitative data analysis focused on the whole class and the unit of

analysis was the whole class use of technology in the execution of a task. Six

orchestration types were identified:

Technical-demo orchestration concerns the demonstration of tool techniques by the

Teacher . . . Explain-the-screen orchestration concerns whole-class explanation by the

teacher, guided by what happens on the computer screen . . .In the Link-screen-board
orchestration, the teacher stresses the relationship between what happens in the technolog-

ical environment and how this is represented in conventional mathematics of paper, book

and blackboard . . .The Discuss-the-screen orchestration concerns a whole-class discussion
about what happens on the computer screen . . .In the Spot-and-show orchestration, student

reasoning is brought to the fore through the identification of interesting DME student work

during preparation of the lesson, and its deliberate use in a classroom discussion . . .In the

Sherpa-at-work orchestration, a so-called Sherpa-student uses the technology to present his
or her work, or to carry out actions the teacher requests. (Trouche & Drijvers, 2010,

pp. 219–220)

The six orchestration types are not seen as exhaustive (simply those observed)

and ‘are not isolated, but part of orchestrational sequences’ (Trouche & Drijvers,

2010, p. 220). Drijvers et al. (2010) present a table showing orchestration types used

by three teachers which shows that different teachers have orchestration types

which they appropriate and others which they never or rarely used (and these

vary over the teachers). Drijvers et al. (2010) comments on the didactical config-

uration and exploitation mode associated with each orchestration type and didac-

tical performance is considered later in the paper in a detailed analysis of a

classroom episode involving Spot-and-show orchestration; we do not summarise

these descriptions for reasons of space. Drijvers et al. (2010) notes that the teacher

dominates the discourse in first three orchestration types listed above and calls these

‘teacher-centred’ whilst students have opportunity to contribute in the last three

orchestration types listed above and calls these ‘student-centred’.
This analysis of how teachers use technology is clearly important but, as the

researchers would surely agree, they capture the teachers’ ways of classroom work

with technology in specific contexts. Specifics that apply to Drijvers et al. (2010)

include: secondary school mathematics; the software is ‘expressive’ in the sense

defined in Chap. 8. It is likely that primary school teachers using mathematical

software which is not expressive will orchestrate learning in ways not listed by

Drijvers et al. (2010).
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15.3.6 On the Complexity of Integrating Digital Tools into
Classroom Practice

We opened this chapter stating that we consider mathematics teachers’ appropria-
tion and classroom use of digital tools to be a complex issue and think that

Sects. 15.3.1–15.3.5 reveal different dimensions of this complexity. We also

think all of the above approaches to viewing mathematics teachers using digital

technology are important because they focus on real issues in teachers’ actual

practice in using digital tools in ordinary classrooms. An argument could be

made that the constructs introduced in Sects. 15.3.1–15.3.5 are complementary

but different. Should we be looking to ‘network6’ them? It may be possible and

Lagrange & Monaghan (2009) consider this with Saxe’s approach and the ATD.

But, as is often the case in research, a line of inquiry leads to new lines of inquiry

rather than a resolution of the original line of inquiry. Work on mathematics

teachers using digital technology continues at the time of writing but Gueudet

and Trouche (2009) opened a new line of enquiry, which we address in the next

section.

15.4 Mathematics Teachers Using Resources

Opening a new line of enquiry, if not artificial, supposes a certain number of raisons
d’être. We present in this section these ‘raisons d’être’, then this new line of inquiry,

namely the documentational approach, and conclude by a short visit of the work in

progress: as mentioned above, the emerging of a new line of enquiry opens new

questions to be explored.

15.4.1 Some ‘raisons d’être’ of a New Line of Inquiry

In the case of the documentational approach, we mention, a posteriori, three raison
d’être: a dramatic evolution of learning environments; a maturation of reflection

carried by a research community; and the crossing of several scientific fields

favoured by the existence of boundary objects.

The first reason is the dynamics of the technological changes. We have presented

(Chap. 5) the dramatic evolution of the practice, teaching and learning of mathe-

matics after the invention of writing. The development of scribal schools and the

transmission of knowledge through clay tablets create the conditions for new

6Networking theoretical approaches is a term used by the Congress of European Research on

Mathematics Education (CERME), see, for example, Kidron, Bikner-Ahsbahs, Monaghan,

Radford, and Sensevy (2012).
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equilibrium between language and written signs, between memorisation and use of

written supports. The digital metamorphosis of the supports of knowledge, today,

creates also the conditions for a dramatic evolution of the practice (cf. Sect. 4.5), of

the teaching and the learning of mathematics. Students and teachers are perma-

nently exposed to an abundance of ‘machines’ (cf. Chap. 5) having the potential to

answer—and sometimes to pose—complex mathematics questions and to ‘show’
representations of mathematical objects and processes. These machines do not

necessarily have the appearance of a mathematical artefact: you can use Google

to compute a multiplication or to search for a proof. Hyperlinks open a new

multidimensional space for thinking, and they modify deeply the usual relationship

with the 2D organisation of a paper page. Reading and writing become two

interrelated actions (meaning that usage and design of resources are completely

interrelated). Last, and not least, each Internet resource gives access to a number of

artefacts, of different levels, for a teacher. Look at, for example, the front page of

the GeoGebra tube (Fig. 15.2). This resource gives access to software (Geogebra),

to a great number of mathematical activities (98,484 at the beginning of the

afternoon whilst writing this section and 98,510 at the end of the afternoon) and

to a community (forum, technical help. . .).
Traditional artefacts supporting teachers’ work, such as textbooks, are evolving

towards e-textbooks (Pepin, Gueudet, Yerushalmy, Trouche, & Chazan, to appear),

giving access to a lot of dynamic resources. Such textbooks are not only conceived

by specialists (designers, teachers educators, . . .) but also by teachers themselves,

gathered in associations of free designers (see in France, for example, the experi-

ence of Sésamath in Sabra & Trouche, 2011, Sect. 19.3.2). In this context, the

mediation of teachers’ activity is not only supported by artefacts (such as com-

passes, calculators, . . .), but also by a lot of ‘things’ (a colleague’s e-mail, a

comment on a forum. . .) that are currently named ‘resources’ (we will elaborate

further on this word). And the right level of analysis is not a closed set of resources

(for example a textbook and a calculator) that could be identified for supporting

teacher activity, but rather a resource system which is constantly evolving through

interactions of the teacher with her/his environment.

The second raison d’être is the internal evolution of a community of research

(which, of course, is not independent of the technological evolution). We have

presented in Chap. 10 the emergence of the instrumental approach, in the context of

the French school of thought. At the beginning, the instrumental approach was

mainly considered with regard to the genesis of instruments for students in the

course of their situated activity. Rapidly (cf. Sect. 15.3.5), however, the crucial role

of teachers for monitoring students’ instrumental geneses appeared, and this led to

the conceptualisation of instrumental orchestration. At the beginning, teachers’
work was considered as a sequence of choices and design: choice of a didactical

goal, choice of a didactical situation, in the sense of Brousseau (Chap. 10), choice

of a technological environment, design of an orchestration. In this new situation,

however, the analysis of teachers’ work leads to a more flexible view:
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• An Internet resource often proposes a didactical situation, a technological

environment, and elements of orchestration, in various orders (in the case of

Geogebra, Fig. 15.2, the choice of a technological environment opens the way

for finding ideas of mathematical activities and instrumental orchestrations)

• Instrumental orchestrations have to be conceived as living entities, permanently

renewed by didactical performances (Sect. 15.2)

This view leads to a conception of a teacher working with/for resources, the

word ‘resource’ having to be understood in a broad sense.

Finally understanding teachers’ work requires analysing their resource system
(Ruthven, 2012), a complex and living entity, made of ‘things’ that do not constitute
a uniform category: artefacts; didactical situations; environments; seeds of instru-

mental orchestrations and resources coming from interactions with colleagues and

students. These evolutions are evident if we compare two chapters dedicated to

technology in mathematics education in two successive Handbooks, both written by

a team having the instrumental approach as a main reference: the words ‘resource’,
‘collective’ or ‘community’ never appear in Lagrange et al. (2003); in Trouche,

Drijvers, Gueudet, and Sacristan (2013), the same words appear 40 times (for

‘resource’), 15 times (for ‘collective’) and 20 times (for ‘community’).
The schema (Fig. 15.3), published in the Third Handbook on Mathematics

Education, summarises major evolutions of the research, giving more attention to

the creative role of the teacher (resources from top-down to bottom-up), to the

collective context of her/his engagement, the essential question becoming the

integration of new resources in the whole resource system of a teacher.

Fig. 15.2 The front page of Geogebra Tube, a resource. . . full of resources for a teacher as well as
for a student
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The third raison d’être is the interaction with three other conceptualisations, or

lines of enquiry, not exactly in a networking perspective, but in a perspective of

mutual enrichment. The first one is the conceptualisation of a resource (Adler,

2000), understood as all that have the potential to re-source teacher activity,

enlarging the consideration of teacher environment from artefacts to cultural, social

and human resources. The second one is the conceptualisation of curricular

resources (Remillard, 2005), analysing teachers’ work with mathematics curricula

as ‘following, interpreting, subverting the text’. This view of a dialectical relation-

ship between teachers and mathematical content through a curriculum appears

clearly in the two schemas proposed by Ball (Fig. 15.4).

The third one is the conceptualisation of a document, in the field of information

architecture (Pedauque, 2006), as a social construct, dedicated to a given usage,

opening a possible distinction between what is available for supporting activity

(a resource) and what is appropriated for achieving this activity (a resource). We

expand on this ‘document’ construct in the next section.

15.4.2 The Documentational Approach of Didactics

The mere presence of raisons d’être is not enough for something to appear. An

effort is needed for drawing on the consequences of theoretical evolutions and

establishing links with other theoretical frames. An occasion to do this was pro-

vided by a French summer school on didactics, in 2007, when Gueudet and Trouche

were asked to give a lesson on ‘didactical situations and documents for the teacher’.
The reflections for preparing this course led to the so-called documentational

Supporting
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Collective
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access

Fig. 15.3 The evolution of

the major trends of the

research in ICT in

mathematics education

(Trouche et al., 2013)
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approach of didactics, presented to an international audience in Gueudet and

Trouche (2009) (Fig. 15.5).

The documentational approach, enlarging the instrumental approach (Sect. 15.2)

mainly conceptualises teacher’s work as an interplay between a teacher and a set of
resources, guided by a teaching goal (for example: introducing the notion of

derivative for a tenth grade class). This goal actually constitutes a class of situa-

tions: such an introduction could mobilise different kinds of examples, animations,

exercises. . . This interplay combines instrumentation and instrumentalisation

(Sect. 15.2). Through successive preparations, implementations in class and revi-

sions, a hybrid entity emerges, composed of the resources (adapted and

recombined) and a scheme (a way of using these resources). This hybrid entity is

named a document (as something documenting teacher’s activity), and the process

leading, from a set of resources to a document, is named a documentational genesis.
The notion of scheme has been introduced by Piaget (Sect. 7.3), and defined by

Vergnaud (1998) as the invariant organisation of activity (Sect. 10.3). The docu-

ment is structured by knowledge—called operational invariants—explicit and

implicit knowledge about mathematics, pedagogy and technology and knowledge

obtained by a teacher’s initial trials in using the resources gathered for achieving a

given goal. Giving a short example of a documentational genesis is not easy, as such

a genesis takes time, and mobilises a number of resources and actors (mainly

students, colleagues), and needs to be understood to have a number of elements

of contexts. Such developed descriptions can be found in Gueudet and Trouche

(2009). The extract below provides a brief summary of a case of documentational

genesis.

Frédéric has taught for 15 years to students from grades 6 to 10. During the interview, he

presented to us a mathematical task designed to introduce the square root in grade 9. This

task deals with the areas of squares: several side-lengths are given, students must compute

the areas, then place the points with coordinates (length, area) on a graph, draw a curve

teacher leader, developers,
curriculum designers

teachers

teachers

teacher

contentlearners
learners

learners
learners

environments

environments

content

teacher

Fig. 15.4 A first view (left) on the relationships between a teacher and the curricular resources,

and a second view (right), more complex, taking into account interactions between teachers and

with curriculum designers
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through these points, and use the curve to find approximate values of the side-length for

given areas. These approximate values are then compared with the values obtained with a

calculator, using the square root key. Frédéric declared that he had used this task for more

than 10 years (it had changed along the years, and was initially used in grade 8 before a

curriculum change; but the features described above were always present). For the class of

professional situations: ‘Preparing the introduction of the square root in grade 9’, Frédéric
now draws on a set of resources comprising the original textbook extract; the student sheet

proposed the year before, with notes on it about changes he thought of when using it in

class; a slide with the points and the curve joining them; but also the students’ calculators.
We claim that Frédéric developed a scheme of utilization of this set of resources for this

class of situations. This scheme entails general operational invariants: ‘a new notion must

be introduced through a mathematical task that yields evidence of the meaning of this

notion’; and invariants linked with the mathematical content: ‘searching for the side-length
of a square for a given area gives evidence of the meaning of square root’; ‘the square root
is the reverse process of squaring’; ‘the calculator square root key supports the introduction
of the symbol’ (Gueudet & Trouche, 2009, p. 205)

This extract reveals only a part of the underlying model and it should be kept in

mind that:

• Unlike an ordinary birth, documentational genesis is never ending, because a

document is always evolving through implementations in new contexts. This

evolution impacts the resources themselves, and the scheme, i.e. the way the

usages are used and the teacher knowledge itself. Thus following a documenta-

tional genesis along the time is exactly following a teacher’s development from a

novice level to an expert level

• Mentioning only ‘a teacher’ is restrictive as each documentational genesis

involves several actors, and interactions between teachers are certainly essential

(Gueudet, Pepin & Trouche 2013). These interactions intervene at different

levels: for enlarging the possible choice of resources as well as for enlarging

the possible choice of usages

Fig. 15.5 A schematic representation of a documentational genesis (Gueudet & Trouche, 2009)
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In this model, the teacher resource system is constituted by all the resources that

a teacher has integrated and worked with, to constitute the matter of her/his

teaching.

15.4.3 Work in Progress

This approach is still in progress, as a lot of major questions are still open:

• Question of methodology: as a resource system is the teacher property, assem-

bling very different things, how is it possible to have access, at least to a part of

it, to describe and analyse it? A methodology of reflective investigation
(Gueudet & Trouche, 2009) has been designed, mobilising teachers’ views of
their own resources, through different tools (mainly logbooks, guided tours and

schematic representations of the resource system, see an example Fig. 15.6)

• What about the structure of a resource system? Are there particular resources

playing a particular role (as pivotal resources)?

• What relationships hold between a teacher’s resource system and the resource

system of a collective s/he is involved in? (see Sabra & Trouche, 2011)

• How does the resource system vary over different phases of education, for

example primary, secondary and tertiary teaching? (see Gueudet, Buteau,

Mesa, & Misfeldt, 2014 in the case of higher education)

15.5 Retrospect and Prospects

Mathematics teachers’ use of digital tools is an area in need of much further

research. Section 15.2 suggests this research must go beyond studies focused on

teachers’ knowledge and teachers’ attitudes. Section 15.3 provides many frames

and constructs which shed light on teachers’ use of digital tools. Section 15.4 makes

a case that research should view teachers’ use of digital tools in the wider perspec-

tive of documentational genesis but there is still a case for a consolidation

(a ‘networking’) of the frames and constructs outlined in Sect. 15.3. In this closing

section we consider two matters central to the purpose of this book. The first

addresses the question ‘is there anything special about teachers’ use of digital

tools?’ The second looks to the future and speculates on new forms of teacher

education and teacher professional development in the ‘digital age’.
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15.5.1 Is There Anything Special About teachers’ Use
of Digital Tools?

Our response to this question is ‘no and yes’. We begin by expanding on the ‘no’
aspect of our response by summarising Larry Cuban’s historical work on teachers

and technology in the USA in the twentieth century. Cuban (1986) traces the

introduction and establishment of film and radio, television and computers in

American classrooms from 1920 to the 1980s. This book opens with a 1927

photograph7 of an aerial geography lesson. This is a fascinating picture with regard

to artefacts/tools: with a new artefact (an airplane) in which to study physical

geography (by looking out of the windows), the individual wooden student desks

of the period are arranged so that the students face the teacher, who is pointing to a

globe. Our interpretation of this opening is to make the point that the artefacts of the

past shape the instructional use of the artefacts of the future. Cuban (1986) traces

the earlier use of film (1910), optimism for the potential of the artefact for education

and the establishment of the use of films in classrooms (1930s). By the 1950s,

Cuban’s evidence suggests, ‘most teachers used films infrequently in classrooms’
(Cuban, 1986, p. 17). Cuban’s interpretation of reports on classroom use of films

points to four ‘obstacles’: teachers’ lack of skills; costs; accessibility; fitting a film

to a lesson. Similar patterns later emerged for radio and then television; his

comments on computers are less well formed as the educational use of computers

was in the ‘establishment’ stage at the time of writing. Cuban (1986, p. 109)

concludes, ‘The search for improving classroom productivity through technological

innovations has yielded very modest changes in teacher practice’. We see this in

Fig. 15.6 A schematic representation of her resource system drawn by a teacher (Sabra &

Trouche, 2011)

7 The photograph is available on https://iamliterate.wikispaces.com/Social+Studies+IRP.
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some (not all!) of the mathematics lessons we have observed, for example a teacher

presenting a PowerPoint ‘demonstration’ on a topic to a class. Such a demonstration

uses a computer in place of a board on which one may write but the only significant

difference between the two may be the presentation medium. In noting this we are

not blaming these teachers, like the teacher in the 1927 photograph of an aerial

geography lesson, they are using a new artefact in a manner that makes sense to

them in terms of their past use of artefacts. So the ‘no’ part of our response is simply

that there need not be anything special about teachers’ use of digital tools.
We now address the ‘yes’ aspect of our response. Our argument that there is

something special about teachers’ using digital tools basically boils down to ‘the
opportunity for there to be something special; digital tools are there if teachers have

a vision for them to be special’. Constructionists (amongst others) have a vision that

there is something special about digital tools and we preface our ‘yes’ response by
returning to three statements made by constructionist in Chap. 8. Two statements

from Sect. 8.4: a microworld is a place where ‘the teacher and the learner can be

engaged in real intellectual collaboration’ (Papert, 1980, p. 115). Noss (2001, p. 22)
point about Papert’s vision, that the computer ‘can be changed (even change itself)

into any number of forms’ The third statement (from Sect. 8.5) concerns Noss and

Hoyles (1996) distinction between media to present mathematics to a learner and

media which encourages a learner to express mathematical relationships.

Taken together these statements provide a vision for new roles for teachers when

expressive tools are used by their students. We illustrate this with a fairly pedestrian

example, constructing a kite in a dynamic geometry system. Our experience with

this task is that students often start by simply drawing a shape (using the software)

which looks like a kite (a bit of dragging their points to destroy the kite-like shape

convinces students that this is not sufficient). A little prompting on the properties of

a kite allows students to construct a kite that remains a kite under any amount of

dragging. In a large class several distinct constructions are produced and this can

lead to the teacher asking ‘Can you construct a kite like Jean’s one?’8 and later a

challenge ‘Construct a kite in as many different ways as you can’. This challenge
has, in our experience, produced legitimate constructions (using different tools on

the DGS tool-bar) that we had not expected and we have sat down with students

saying ‘How did you do that’. Figure 15.6 shows some different ways to construct a

kite. From left to right the construction are made by: reflecting the point A in the

line BC; constructing the perpendicular bisector KL to the line segmentHI; marking

two points (E and F) on the circumference of a circle (centre D) and constructing

the angle bisector of ∠EDF; reflecting a triangle in one of its sides (Fig. 15.7).

Classroom teachers do not need to be aware of the constructionist statements or

an advanced knowledge of mathematics to work with a class in this way but they

need a willingness to work in this way. We stop short, however, of saying that

teachers should have a willingness to work in this way; Cuban (1989) says,

8 Comments such as this are provided as possible comments which can be provided, not as

exemplar comments.
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in response to exhortations for teachers to work this was in their classrooms, such

visions ‘are out of synch with organisational realities and go well beyond what

ordinary, well-intentioned, good-hearted people can do’ (Cuban, 1989, p. 221).

15.5.2 New Forms of Teacher Education and Teacher
Professional Development

Going beyond the ordinary exhortations for teachers to work differently supposes

one to be aware of the complexity of ICT integration (Guin & Trouche, 1999) and

of the institutional conditions for helping teachers to deal with. Teacher education,
appears then as a key issue (Artigue, 1998) for the integration of computer tech-

nologies. Gueudet and Trouche (2011), a consideration of in-service teacher edu-

cation and ICT, underline that usual training strategies were essentially based on the

transmission of ‘expert resources’, mostly organised in a short period (about

3 days), isolated from school practice and they do not allow for continuous support
to be provided during the necessary adaptation of resources to each teacher’s usage
context. To overcome these problems, innovative programmes had been developed,

from the 1990s, in the US (Allen, Wallace, Cederberg, & Pearson, 1996), relying on

teachers’ networks, designing, with the help of experts, situations of use for

dynamic geometry software (DGS); this perspective, of teachers empowering
teachers appeared powerful, both for integrating DGS and for promoting new

inquiry-based teaching practices. Trouche & Guin (Allen et al., 1996) have taken

up this idea, conceptualising collaborative work on resources as a way of teacher

education on technology in developing an innovative teacher training programme

named SFoDEM (Sect. 19.3.1).

Fig. 15.7 Different ways of

constructing a kite using a

dynamic geometry system
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The development of ICT itself provides new means for providing this continuous

support for ICT integration, based on teacher collaboration, design, implementation

and revision of resources. From this perspective Gueudet and Trouche (2011)

analyse a French innovative program, Pairform@nce.9 Grounded on the work

on/for resources, this experiment is presented as an illustration of the documenta-

tional approach (Sect. 15.4).

Pairform@nce, aims to develop in-service teachers’ skills in using ICT in class

and proposes training paths for all topics, from primary to secondary school levels.

These training paths are available on an online platform. Each path is structured in

seven stages: (1) Introduction to the training session, (2) Selection of teaching

contents and organisation of teacher teams, (3) Collaborative and self-training,

(4) Collaborative design of a lesson, (5) Test of this lesson in each trainee’s class,
(6) Shared reflection about feedback of class tests, (7) Evaluation of the training

session. Gueudet and Trouche (2011) focus on trainees, analysing their collective

involvement in a training path dedicated to DGS and its effects on practice and

knowledge. The trainees are lower secondary school teachers, teaching from grade

6 to 9.

The training takes place during 13 weeks and consists of three face-to-face

one-day workshops. Between these workshops, continuous work is done using

e-mail and the distant training platform (see the agenda Table 15.1).

Gueudet and Trouche (2011, pp. 409–410) draw some lessons from the imple-

mentation of the DGS training session

In the [DGS] path, the collective documentation work is the key feature retained in an

objective of professional development. The resources proposed, in particular: the scenario,

observation and report grids, and the examples of lessons aim at supporting the documen-

tation work of the teams of trainees. The implementation of the scenario elaborated by each

team as lesson in class, and the revision of this scenario, following a design-in-use

principle, are also essential features of the path. All this could be organised in a distance

training, using a platform. The work in presence was nevertheless also essential in the

[DGS]-training; it permitted indeed to discuss about important features of an inquiry-based

lesson using dynamic geometry, in particular: presentation of the task, appropriation of the

problem by the students; design of an experiment by the students using the DGS, formu-

lation and test of conjectures; argumentation, organisation of a debate; articulation between

experimentation and proof. These elements were discussed during each one of the three

workshops: about the examples of lessons presented by the trainers (workshop 1), about the

scenarios built by the teams (workshop 2), about the lessons designed by the teams

(workshop 3). We consider that the intertwining of such discussions and of scenarios

design by the teams of trainees contributed to the development of the trainees practices.

Regarding the development of the trainees practices, Gueudet and Trouche

noticed the first use of the computer lab (thanks to the collective work); the

coordination, through the use of software, of multiple representations for learning

the concept of function; the careful presentation of the task to students; and teachers

taking into account the appropriation of the DGS by the students. What is

9 Pairform@nce stands for ‘training ( formation in French) based on collaborations with colleagues
(pairs in French)’. The symbol @ evokes the importance of Internet in this program.
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interesting also to note is that the support of ICT (here a distant platform) is not

enough for integrating ICT; the combination of face-to-face and distant collabora-

tion appears as crucial. The nature of ICT supporting teachers’ collaboration is also
important: 5 years after the Pairform@nce experience, the French Ministry is

developing (in 2014) a new program (named M@gister), based on a new platform,

more flexible, and giving more responsibilities to teams for organising their own

paths (varying the successive stages, beyond the initial seven stages).

New forms of activity with digital tools enabled by connecting these tools also

provide teachers with opportunities to engage in new forms of action in their

classrooms, and with their colleagues, giving new opportunities for teacher profes-

sional development. We return to these issues in Chap. 19.

Table 15.1 Agenda of training as planned by the DGS path

Week 1 Week 2

Weeks 3

and 4 Week 5 Weeks 6–12 Week 13

Questionnaire

sent via e-mail

by the trainers,

filled by the

trainees:

equipment,

experience

with DGE,

expectations

Workshop 1 Design,

by the

teams of

trainees,

of a sce-

nario for

one of the

problems

texts

proposed

Workshop 2 Design and

experimentation

of the lessons by

the teams of

trainees

Workshop 3

Presentation

of the train-

ing (princi-

ples, agenda,

platform)

Presentation

by the teams

of trainees

and discus-

sion of the

scenarios

Presentation

by the teams

of trainees

and discus-

sion of the

lessons

Constitution

of the teams

(4 teachers in

2 different

schools)

Choice of a

lesson theme

At least one

implementation

in class by a

member of the

team, observed

by another

member

Presentation

by the

trainers and

discussion of

two examples

of lessons

Beginning of

the lesson

design

The three grids

(scenario,

observation,

report) are filled

and uploaded on

the platform

Presentation

of three

grids:

description

of scenario,

observation

of a lesson,

final report

Proposition

of two prob-

lem texts by

the trainers

The weeks mentioned in grey correspond to distant work of the trainers and teams of trainees

(Gueudet & Trouche, 2011, p. xx)
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Chapter 16

Interlude

John Monaghan, Luc Trouche, and Jonathan M. Borwein

These pages are, after Chaps. 6 and 11, the third ‘space for reflection’ in this book

and our focus is on issues in mathematics education related to tool use; issues that

we address and issues which we have not addressed (at least as the focus for a

chapter in the book). Part III focused on the curriculum, the calculator debate,

mathematics in the real world and the mathematics teacher. Part IV, with an eye to

the future, focuses on task design, games and connectivity. We structure our

reflections in two unequal sections: a short section on futurology and the selection

of issues in Part IV; a consideration of issues on which we have not explicitly

focused.

We approach ‘futurology’with caution—we hold that we can only imagine from

that of which we have current experience1 (anticipating even medium terms future

is a fools’ game). In a similar vein Borwein (2015) cites David Bailey:

How could anyone, even ten years ago, have predicted that by now almost everyone above

the age of eight would now be on Facebook for minutes (or hours!) of every day? How

could anyone have predicted twenty years ago that almost every person above the age of

eight would have their own personal supercomputer, systems far more powerful (and

useful!) than the Cray supercomputers of the time?

Of the future scenarios which we could imagine we settled on three issues which

feature in (some) current practice: tasks; games; and connectivity. We selected

these because:

• Task design in mathematics education is very important but as a subject of study

it is in its infancy. Using different tools for what appears to be the same task

involves the person doing the task in different mathematical processes. We

explore this in Chap. 17.

• Although games are not new (in themselves or as means to enable learning),

digital tools offer new ways to exploit games for learning. Chap. 18 explores a

1Wartofsky (1979) said basically the same thing but expressed this in terms of ‘tertiary artefacts’
(imaginative constructions, see Sect. 7.2.2) which have their basis in real (non-imagined) praxis.
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future potential of games and to provide opportunity for engaging in mathemat-

ical activity, with a specific focus on the role of artefacts in gameplay.

• ‘Connectivity’, with regard to internet connection, is a widely used term but

quite often with extreme (good/bad) valuations. In Chap. 19 we explore various

meanings of the term and the potential of connectivity to support students’
learning of mathematics and teachers’ professional development.

Of issues on which we have not explicitly focused we comment, in turn, on four:

the future of mathematics; equity; identity; and who uses tools. In the first two we

summarise recent texts which have addressed this issue.

Borwein (2015) addresses the future of mathematics (with extreme caution!).

After noting that mathematics will continue to be important and that some things

will not change much he notes that the need to make our subject accessible is more

pressing than 50 years ago. With regard to tools he notes:

• INRIA’s prototype Dynamic Dictionary of Mathematical Functions, http://

ddmf.msr- inria.inria.fr/, points to a future in which mathematical knowledge

is generated algorithmically and extensibly, rather than from lookup tables.

• The future of mathematics is intimately coupled to computing and more empha-

sis on algorithms and constructive methods.

• Automatic theorem proving is already important and one can anticipate a time in

the distant future when all truly consequential results are so validated; interac-

tive theorem proving will become increasingly important.

Activity around mathematics is also likely to change. Collaborative research

(which can be exaggerated) is likely to increase. Experimental mathematics raises

numerous issues of computational reproducibility and there will be increased need

for researchers to keep a record of workflow, computer hardware and software

configuration, or parameter settings. In a hopeful (rather than an expectant) mood

he envisions the development of comprehensive computation and publishing sys-

tem with features that allow one to manipulate mathematics while reading it and

which ensures published mathematics is rich and multi-textured, allowing for

reading at a variety of levels.

Jon’s view on the future of mathematics is, of course, informed by his experi-

mental mathematics. Reading the reflections of Cédric Villani, the 2010 Fields

Medalist we realise how the work of each mathematician is sensitive to the tools

available for writing and communicating. Speaking of TEX, the software developed

by Donald Knuth for writingmathematics, Villani (2012, p. 62) notes: ‘thanks to this
software, Knuth is probably the living person who changed the most the daily life of

mathematicians’. Villani also writes on the extensive use of email in advancing, in a

community of mathematicians, ideas towards a proof of a conjecture and how this

seems to foster the emergence of a new kind of collective intelligence. Digitalisation

impacts indeed all the spheres of the mathematics community.

Section 4 of Hoyles and Lagrange (2010) is devoted to issues of access and

equality. With regard to regional differences with regard to access to digital

technology they note progress with regard to a 1986 report but note differences
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both across and within countries. They note similarities at the policy level of

recognising the importance for curricula to address the use of digital technologies

in school mathematics but conclude that:

. . .conditions of schooling, social stratification, even within early developing countries, and
political conditions mitigate strongly against all students benefiting from the possibility for

meaningful learning of mathematics which digital technologies have to offer. (Julie et al.,

2010, p. 381)

With regard to gender and the learning of mathematics with technology, research

shows disparities, ‘in some countries the gender gap favouring males may be

closing, while in other countries, where there have been little or no gender differ-

ences in the past, the gap may be widening’ (Forgasz et al., 2010, p. 385).
Who we are (our identity) is interrelated with the tools we use. This can be seen

in the need of many young people to get the latest mobile phone. It can also be seen

in us three authors: John and Luc wrote their chapters for this book in Word but

Jon’s chapter was written in TeX (mathematicians write in TeX). With regard to

tools for mathematics John and Luc are both proponents of graphic calculators

(partly due to the appearance of these artefacts at a formative stage of their

professional lives) but students today may view graphic calculators as ‘old tech-

nology’ (such a perception even appeared at the turn of the millennium, see Rodd &

Monaghan, 2002), not ‘cool’ things to be seen with. Issues of identity emerge in

mathematics lessons too and ‘who one is’ in a mathematics class has a tool

dimension. John recalls a high achieving calculus class he visited many years

ago. The class was doing work using a computer algebra system. There was one

girl who was clearly not enjoying the work. John asked the teacher about her, who

told him that she was the best mathematician in the class. John talked to the girl. She

did not like using Derive and did not use it except when the classwork was directed
towards Derive use. This disposition towards Derive, we hold, is interrelated with

her identity as a mathematician. She was a ‘high flying’ mathematics student. Her

judged ability was not mathematical ability in a vacuum, it was ability in using

traditional paper and pencil mathematical tools and signs and Derive was able to do
what she was good at—who likes a tool that threatens who you are?

The final issue we broach in this interlude is ‘who uses tools?’ This is actually a
non-question as everyone uses tools. Our focus in this section concerns the use of

specific tools in mathematical activity in specific contexts. This was raised, in

non-academic contexts, in Sect. 14.2.1 with regard to Skovsmose’s (2005) distinc-
tion between ‘constructors’, ‘operators’ and ‘consumers’. All of these groups of

people use tools (related to specific activities) but the control they have over the

tools used can, and often does, vary: operators in production engineering, for

example, may be forbidden to change specific settings of tools they operate.

In school contexts a limited set of tools for mathematics (ruler, compass, protrac-

tor, calculator, specific algorithms) is currently the norm in most countries and

student use (or not) of these tools is often dictated by the teacher (who themselves

are often constrained by curricular regulations). These comments are ‘common

knowledge’ to those in education but we are not aware of research on this issue.
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Anecdotal evidence from England suggests that the increased use of digital tools

in classrooms is largely teacher-only use of digital tools. John reports on two

experiences to support this hypothesis. The first arises from classroom observations

since Interactive White Boards (IWBs) became common in classrooms. In John’s
opinion, a very large proportion of the use of IWBs is teacher use of IWBs with

PowerPoint (rather than interactive mathematics software) and the result is ‘teacher
demonstration’. The second experience is an ongoing project in which teachers of

academic stream, 16–19-year-old students, have been observed. A summary sheet

to each lesson observation records information on whether mathematics software

was used and, if so, then who used it. In the first round of observations 122 lessons

were observed. Remarkably, mathematics software was used in exactly half (61) of

these lessons but in 45 of the 61 lessons, the software was used by the teacher alone.

Teacher demonstration, of course, is important for student learning but, if these

figures reflect a wider phenomenon, then students are not being granted wide access

to tools to explore mathematical relationships.

Observations like those above challenge us to explain this practice. It could be

that there are, in specific situations, tools that are in the hands of the teacher (like

the IWB)) and tools that are in the hands of the student. The first ones may stay

in the teacher’s hand even though their purpose is to direct student activity. If,

however, teachers use these tools to collaborate with their peers (see Chap. 19), they

may be more keen to share their tools with the students.
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Part IV

The Future?



Chapter 17

Tasks and Digital Tools

John Monaghan and Luc Trouche

17.1 Introduction

‘Tasks’ in this chapter refers to what teachers plan and design for triggering and

supporting learners’ activity. Given the focus of this book we are, of course,

interested in mathematical tasks and the roles of tools in the design and execution

of tasks. To keep this chapter manageable we focus on ‘scholastic tasks’
(as opposed to vocational training tasks which have a mathematical element) and

do not attend to tasks designed to instruct students in the use of a tool (though such

tasks are often necessary before a mathematical tasks can be presented). The design

of tasks with digital tools often involves the design or the adaption of a digital tool

(for example, a teacher configuring a spreadsheet for the purpose of mathematical

instruction). Tool design and/or adaption is not an explicit focus of this chapter but

it will be considered when it is an essential aspect of task design.

In the language of mathematics teaching the ‘tasks’ go by a number of names:

exercises, investigations, problem solving, modelling. Tasks are also subdivided

into, for example: open and closed tasks; tasks for the consolidation of skills and for

concept development. Further to this there is a dialectic between task, tool and

person in learning mathematics. We attended to the task-tool aspect of this dialectic

in Chap. 2 of this book which considers how one task, bisecting an angle, can be

done using four tools: a straight edge and compass, a protractor, a dynamic

geometry system and a book. We noted that each tool has affordances and con-

straints with regard to what might be learnt in using each tool to do the task. The

person-task aspect of this dialectic has several dimensions including the person’s
engagement in the task and the ability of the person to realise the task (i.e. not too

easy or too hard). The person-task aspect of this dialectic also has several dimen-

sions including what Wertsch (1998) (see Sect. 13.2) refers to as mastery and

appropriation of the mediational means.

Tasks are extremely important in mathematics learning and teaching. Watson

et al. (2013, p. 10) state that tasks ‘are the mediating tools for teaching and learning

© Springer International Publishing Switzerland 2016

J. Monaghan et al., Tools and Mathematics, Mathematics Education Library,

DOI 10.1007/978-3-319-02396-0_17

391

http://dx.doi.org/10.1007/978-3-319-02396-0_2
http://dx.doi.org/10.1007/978-3-319-02396-0_13


mathematics and the central issues are how tasks relate to learning, and how tasks

are used pedagogically.’ The use of the word ‘tool’ in this quotation fits with

Monaghan’s Sect. 1.3.1 definition of a tool, an artefact that is used to do something;

a task is an artefact that is used by a teacher to promote learning. It is, then,

surprising that is was only recently (at the time of writing) that the first ICMI

study on task design (Margolinas, 2013) in mathematics education took place.

There is a danger that tasks and tool-use are seen in isolation; tool-use in a task is

a part of an often extended period of ‘instrumental genesis’ (see Sect. 10.4) and time

spent by a student on any task is but a moment in a longer term instructional

sequences. That said, our focus in this chapter is on tasks and tool-use, with the

caveat that tasks are parts of teaching sequences and tool-use is a part of instru-

mental genesis being taken as read.

This chapter is in the last part of our book where we look to the future of learning

and teaching mathematics. Digital tools will, without doubt, be important tools in

this future and are the major focus in this chapter. In the first section we provide a

set of examples that illustrate a range of issues related to tasks and digital tools. In

the second section we review academic literature which sheds light on the dialectic

between task, tool and person in learning mathematics. The first two sections are

somewhat biased towards tasks in ‘ordinary’ classrooms (tasks for learning) and

issues relating to tasks using mathematical software. In the final section we look at

task-tool issues in larger-than-the-individual classroom research and in assessment;

we also comment of avenues for further development.

17.2 Tasks and Digital Tool: Examples

The purpose of this section is to raise issues to consider with regard to tasks and

digital tools. We begin with two tasks and two (sets of) tools which show that a

mismatch between tasks and tools can exist. We follow this with further examples

which show: a move from procedural to conceptual tasks with digital tools;

differences with regard to the mathematics in a task over different digital tools;

and an increase in the solution methods with digital tools.

17.2.1 A Mismatch Between Tasks and Tools Can Exist

The two tasks below (Fig. 17.1) could be suitable for pre-calculus work on

functions. John selected these tasks to illustrate a mismatch and they are, perhaps,

‘English’ classroom tasks. The first task is made up for the purposes of this example

but is generic of many ‘Sketch the graph of . . .’ tasks typically given to students.

The second task, designed by a teacher, was observed in a classroom using

computer graph plotters to explore the graphical effect of the parameters in

y ¼ ax2 þ bxþ c.
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Task 1: Sketch the graph of y ¼ x3 � x2 þ 2x� 1.

Task 2: Reflect the quadratic functions (in Fig. 17.1) in the grid below in the x-axis.

We outline possible student actions (ignoring errors that could be made) in doing

each task using digital technology and pencil and graph paper and make reference

to ‘techniques’ (see Sect. 10.3.1).
Task 1 can be approached in a number of ways using pencil and paper. A

sophisticated approach is to rewrite and factorise the expression x3 � x2 þ 2x� 1,

x3 � x2 þ 2x� 1 ¼ x3 � x2 � 2xþ 1ð Þ ¼ x3 � x� 1ð Þ2 and then use the known

graphical representation of y ¼ x3 and y ¼ x� 1ð Þ2 as references from which to

sketch y ¼ x3 � x2 þ 2x� 1. The actions here are algebraic (rearranging and

factorising) and then graphic (sketching and then coordinating known functions).

Students may adopt this approach if techniques which privilege these algebraic and

graphic actions have been taught recently (or have been internalised, see Sects. 7.2

and 13.2). A less sophisticated approach students may use is to construct a table of

x and y values (a technique), select suitable scales, draw axes on graph paper, plot

the points and sketch the graph by interpolating values between points. The

techniques here involved in this second approach are generic to much that goes

by the name of sketching graphs.

In Task 1, using graphing software, students may start by inputting the functional

equation into the input bar (typing digital-mathematics) and then pressing an

appropriate key (keying). Further actions (dragging and zooming in or out) may

be needed to ensure the graph can be seen. The actions (in brackets) require

techniques (quite different techniques to the techniques used in the pencil and

paper approach).

Fig. 17.1 Two tasks on the graphs of quadratic functions
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In Task 2, using pencil and graph paper, students may simply draw the reflection

(drawing).

In Task 2 using graphing software students may start by determining the

functional equation of each graph (attending to salient features of each graph).

They may then find a means to express the reflection as a function (expressing a

geometric feature algebraically). They are then likely to input the functional

equation into the input bar (typing) and then press an appropriate key (keying). If

the student cannot immediately determine the functional equation of a graph, then

the student may recognise salient features (for example, that a in y ¼ ax2 þ bxþ c
is 1), ‘try out’ a specific function of this form and use the computer-generated graph

as feedback from which to try out another specific function of this form.1

It seems to us that there are a lot more mathematical actions (and arguably

mathematical thinking) in Task 1 when it is done using pencil and graph paper but

that the opposite is the case for Task 2. This is what we mean when we say that a

mismatch between tasks and tools can exist. Lagrange has argued in various papers

(see, for example, Lagrange, 1999), techniques do not disappear when tasks are

done with digital technology, they are, rather, transformed and replaced (in Task

1 using graphing software the technique of inputting a functional equation appears).

We shall consider the relationship between techniques and tasks in further detail in

Sect. 17.3.2 below but for now simply state that this transformation of techniques

presents problems for classroom teachers who are charged with ensuring that a

specific curriculum is taught (as most are) because of a mismatch in techniques

required for tasks with digital tools and techniques privileged in mathematics

curricula.

17.2.2 From Procedural to Conceptual Tasks
with Digital Tools

We now move on to our other three examples. The first concerns a need, at times,

to move from procedural to conceptual tasks with digital tools and this need spans

the years of schooling. Johnson (1981) illustrates this with regard to arithmetic and

calculators. He considers tasks when a concept has already been taught and ‘the
calculator activity is planned to provide an opportunity to practice or apply the

concepts and/or relationships which have been studied’ (Johnson, 1981, p. 28). For
example, the first of a set of ten exercises on estimation is:

(37 ○ 21) ○ 223¼ 1000, where the circle represents a missing operation: +, �,

�, �.

A similar task which could be given to learners is ‘estimate (37� 21) + 223’. A
calculator is pretty pointless for this task because using a calculator negates the

need for estimation. Johnson’s task is designed to highlight operations: (37� 21)

1 This is an example of instrumentalisation (see Sect. 10.4.1).
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+ 223 is very different to (37 + 21)� 223, and the calculator provides feedback to

the students on the effect of operations. The design principle implicit in Johnson’s
task is ‘move from procedures to obtain a result (which becomes trivialised with the

digital technology) to a focus on the mathematical relationships which produce a

given result’. Once this principle is appropriated by a teacher this principle can be

applied to tasks related to other areas of mathematics and tools:

• Scientific calculators □30� + cos 44� ¼ 1.2967 (to 4dp)

• Symbolic calculators dy
dx sin□ � cos xð Þ ¼ 2 cos x cos 2x� sin x sin 2x

□ denotes a missing symbol

17.2.3 Differences with Regard to the Mathematics
in a Task Over Different Digital Tools

The second example concerns differences with regard to the mathematics in a task

over different digital tools.2 Perks, Prestage and Hewitt (2002), for example,

consider the task, ‘find a line that passes through the point (4, 3) and has a gradient

of 2’ with a graph plotter, a dynamic geometry system and a spreadsheet. Suppose

the students know that the graph has the form y¼ 2x+ c. With a graph plotter

students obtain practice typing y¼ 2x . . . into the computer/graphic calculator.

They are likely to use a trial and improvement approach (y¼ 2x+ 1 is too high,

try¼ 2x� 1). The task may focus students’ attention on the parallel lines and/or that
different values of c translate the lines. A ‘lucky guess’ of y¼ 2x� 5 would

effectively diminish the educational value of the task and it might be better to

turn the task into a two-person game of ‘find my line’.
Perks et al. (2002) then illustrate a dynamic geometry system solution to the task

with the software Geometer’s Sketchpad. They click on two points and they choose
the menu option that draws the straight line between these two points, which

displays the equation of the line in the form y¼ 2x+ c. They then move the points

around the screen and note:

The dynamic quality of the package gives a very different feeling to the task . . . the
mathematics here is about the relationship between the way the line changes and the

numbers in the equation. It allows:

� A feel for rotation’ and gradient in relation to a particular point;

� A feel for the constant in relation to a particular point;

� Working on small changes in m and c. (Perks et al., 2002, p. 31)

Perks et al. (2002) then illustrate a spreadsheet solution to the task where the task

consists in setting up a table of values (as shown in columns A and B in Fig. 17.2)

where the B column cells are calculated from A, C and D column class as shown in

the formula line in Fig. 17.2. The student highlights the table and inserts a graph.

2 This subsection has a similar focus to Chap. 2 but here the focus is on different digital tools.
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Perks et al. (2002) stress that different areas of mathematics are highlighted in

the different types of software with the same task. This point is reinforced when we

consider that different software exhibits different mathematical forms. For exam-

ple, if you connect the points (4, 3) and (2,�1) with a line in Geometer’s Sketchpad
it displays the equation of the line in the form y¼ 2x� 5 but if you do this in

GeoGebra (which includes a dynamic geometry system) it displays the line in the

form 2x� y¼ 5.

17.2.4 An Increase in the Solution Methods
with Digital Tools

The third example concerns an increase in possible solution methods with digital

tools. Consider solving a quadratic equation, say x2 þ 4x� 1 ¼ 0. Traditional

methods of solution include factoring (and solving the factors), completing the

square, using the formula and graphical means. Arithmetic/scientific calculators

add trial and improvement methods. Graphic calculators (or packages) add new

graphical means. Symbolic calculators (or packages) add new algebraic means.

These tools allow tasks-which-suit-the-tool to be given to students (as in

Sect. 17.2.1). For example, the task below could be set for students to do with

GeoGebra (see Fig. 17.3).

1. Write f xð Þ ¼ x2 þ 4x� 1 in the form f xð Þ ¼ x� 1ð Þ2 þ s. Hence or otherwise
draw the graph of f(x).

Fig. 17.2 A spreadsheet method of attacking the task
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2. Reflect the graph of f(x) in the line x¼ 0. Call this g(x). Sketch the graph of g(x).

3. Write g(x) in the form g xð Þ ¼ x� pð Þ2 þ q and compare the completing the

square forms of f(x) and g(x).

4. Make an hypothesis about the reflection of a function h xð Þ ¼ x� mð Þ2 þ n in the
line x¼ 0.

17.3 Tasks and Tools: The Development of Ideas
and New Opportunities

This section explores scholarly work on tasks and tools in mathematics education.

Although we expressed surprise in the opening of this chapter that we had to wait

until 2013 for an ICMI study on task design, the academic literature on tasks is far

from non-existent. This section has three subsections: the first two explore the

development of ideas in the literature; the third applies ideas from the literature to

explore new opportunities for task design with digital tools. Sect. 17.3.1 sets the

scene with an overview of theoretical and practical approaches to task design. Tools

are not always an explicit feature in these approaches but if you delve into these

approaches you will find tools at the root of tasks. Sect. 17.3.2 explores a subset of

the approaches outlined in Sect. 17.3.1 further with an explicit focus on digital

tools. Sect. 17.3.3 explores new opportunities for task design with digital tools with

regard to: students’ contributions; teacher collaboration; exploitation of resource

systems (cf. Sects. 10.5 and 15.3); and teacher assessment.

Fig. 17.3 A screenshot from GeoGebra related to the task above
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17.3.1 Academic Literature on Tasks: An Overview

In this subsection we briefly revisit Chaps 8–10 (constructionism, activity theory

and French didactics), and visit work using variation theory, Realistic Mathematics

Education (RME) and tasks suitable for small group learning.

Chapter 8 considered constructionism in which task design is a central feature.

Constructionist tasks are invariably set in a microworld (cf. Sect. 8.3) and software
that enables the user to express (cf. Sect. 8.4) mathematical relationships. The task

itself is often only partially specified so that the user can pose, as well as solve,

problems. Tasks are designed to stimulate ‘situated abstractions’:

Situated abstraction describes how learners construct mathematical ideas by breathing life

into the web using the tools at hand, a process which, in turn, shapes the ideas. Tools are not

passive: in a microworld, for example, the designer’s intentions are constituted in the

software tools. These tools wrap up some of the mathematical ontology of the environment

and form part of the web of ideas and actions embedded in it. Yet it is students who shape

these ideas . . . A microworld comprises tools to construct objects. But these tools are

themselves objects which encapsulate relationships. (Noss & Hoyles, 1996, p. 227)

Chapter 9 considered activity theory (AT) where task was a constant theme

though not a focal point. Tasks are important in AT because AT focuses on the

object of activity, and tasks are a part of this object (and sometimes the object in

school mathematics lessons). AT is also a theory that views context as paramount,

so tasks in AT are appropriately viewed in context. AT theory also pays homage to

Vygotsky’s zone of proximal development (ZPD) which, in terms of tasks, can be

viewed as the zone in which a task is challenging for the learner but not impossible;

a task in which the learner, in mathematics, must be assisted (mediation) to

appropriate cultural forms of reasoning.3 This said, however, AT does not give

mathematics education an explicit theory of tasks and task design though the

human–computer interaction strand of AT does explicitly address artefact design

related to tasks:

Artefacts should be designed to enable efficient transformation into instruments. . . the
importance of designing flexible, open artefacts that can be modified by users and adjusted

for various tasks, including unanticipated tasks and the need for designers to take into

account the actual transformation of practices and the real needs of users over the course of

appropriating an artefact.4 (Kaptelinin & Nardi, 2006, p. 110)

Chapter 10 considered French schools of thought in mathematics education and

the schools of thought associated with Brousseau, with Chevallard and with

Rabardel all have important things to say about tasks. Tasks are a prominent feature

in Brousseau’s Theory of Didactical Situations (TDS) and the didactical contract
(where the teacher hands over responsibility to the student) depends on an appro-

priate task, ‘The teacher must see to it that the student solves the problems set for

3 The ZPD is a much deeper construct than this sentence suggests. Abdul Hussain, Monaghan, and

Threlfall (2012) discuss complexities in the ZPD.
4 This approach has many similarities to’ instrumentalisation’ (see Sect. 10.4).
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him, so that both of them can assess whether he has accomplished his task’
(personal communication from Brousseau cited in Warfield, 2006, p. 34).

Brousseau designed his tasks (by iterative refinement of classroom experiments)

so that students could fully engage in the situations of action, formulation and

validation. Brousseau evidences how the choices of some elements of the task

(parameters, type of material)—the didactic variables—can deeply modify stu-

dents’ activity and learning. Tasks are a named part of Chevallard’s anthropological
theory of didactics (ATD). The central features of ATD are praxeologies (idiosyn-

cratic practices which reside in institutions) which consist of four elements (T, τ, θ,
Θ) in two pairs: T/τ (tasks/techniques) concerns the practice part of the praxeology
and θ/Θ (technology/theory) is related to the theory and the discourse which

describes, justifies and interprets the practice. By this view tasks are set by

mathematics teachers because they allow students to engage in techniques

privileged in the institution (school). Task design by this view is not a simple

matter of making a ‘nice task’ but of analysing the praxeology and the types of tasks
that can be set in an institution. Bosch and Chevallard (1999) draw attention to the

role of tools (within the wider category of ‘ostensifs’) in this approach (see Sect.

10.3.2). Rabardel’s contribution to work on tasks and tools was the basis for the

instrumental approach in mathematics education (see Sect. 10.4) provides

artefactual insights on Brousseau’s construct of didactic variables (considered

further in the next subsection).

A comparably new (last 10 years at the time of writing) approach to task analysis

and design is the use of variation theory (which focuses on variation in people’s
perceptions of phenomena). John Mason and Anne Watson (various papers) are the

mathematics educators most closely associated with this approach. An early paper

on this theme encapsulates the appeal of this theory for task design:

Marton’s identification of ‘dimensions of variation’ offers a way to look at exercises in

terms of what is available for the learner to notice . . . This approach offers a structured and
structural approach to exposing underlying mathematical form. We find it useful to

consider dimensions of possible variation as experienced by a learner or by a teacher in

any given situation (what could change and still the situation remains much the same), since

this varies both between learners and even within one person at different times. . . . By
asking the highly mathematical question ‘what changes and what stays the same?’, and by

examining the nature of the changes offered, we can be precise about what an exercise

affords the learner. (Watson & Mason, 2004, p. 108)

The ‘exercise’ becomes the designed artefact in this approach. An exercise can

be thought of (and often is) as a series of mathematical tasks related to a technique.

The ‘dimensions of variation’ approach requires that the individual tasks in the

exercise are not merely related but, sequentially, provide variation.

RME is both a theoretical framework and a practical approach to designing

mathematical learning activities that entered the public domain with Freudenthal

(1973). The ‘realistic’ in the title refers to mathematics education being realistic to

the learners’ experience, not to real-life applications and modelling (though in

practice there is likely to be a large overlap in these two realities). Task design

from these principles should endeavour to, ‘invite students to develop “their own”
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mathematics . . . [with] guidance from the teacher . . . find such meaningful phe-

nomena that beg to be organised and structured by the targeted mathematical

knowledge’ (Drijvers, Boon, Doorman, Bokhove, & Tacoma, 2013, p. 56). Further

to this the tasks should gradually mathematicise an experientially real (for the

student) situation to become a mathematical object, ‘the challenge is to find suitable
situations that ask for the development of such models, and allow for a process of

progressive abstraction’ (Drijvers et al., 2013).
Sahlberg and Berry (2003) address the question ‘what kinds of mathematical

tasks are suitable for small group learning?’ Table 17.1 is an extract from this book.

Prior to the appearance of this table in Sahlberg and Berry (2003) a number of

concrete mathematical tasks are analysed resulting in the categories in the left

column and the descriptions in the right column. The middle column, ‘equal
exchange’, describes the extent to which the task affords equal contributions from

all members of a student group tackling the task. For example ‘Solve 2x� 3¼ 17’
would be in their ‘drilling basic skills’ category and the statement ‘very limited’
refers to the situation where one or more students know(s) the answer and tell(s) the

other group members.

Table 17.1 A classification of mathematical tasks with regard to their suitability for collaborative

student group work

Category

Type of exchange

model Nature of task

Drilling basic skills I Very limited Closed in terms of method and outcomes

Applying a formula or

algorithm II

Limited in how to

proceed and checking

results

Typically closed in terms of outcomes and

also the methodology

Measuring and

collecting data I—IIA

Provides some

opportunities

Some openness in terms of methodology but

rather closed in terms of outcomes

For equal exchange

of ideas and opinions

Real problem solving

IIB–III

Equal exchange Real problems are those encountered in

everyday life. They may or may not involve

mathematical models. Openness of these

tasks may vary from rather closed to open

Mathematical

modelling III

Several opportunities

for rich equal

exchange

Modelling tasks are typically real problems

that require mathematical principles and

formulas in order to be solved. Tasks are

open in terms of procedures and outcomes

Mathematical investi-

gations IVA

Several opportunities

for rich equal

exchange

Basic investigations are often closed in terms

of outcomes but open to various methods.

Extended investigations are typically open

tasks

Designing projects

and studies in

mathematics V

Rich equal exchange Projects and studies are the most open

mathematical tasks. The openness includes

the setting of questions and selection of

methods

From Sahlberg and Berry (2003), p. 74
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Sahlberg and Berry (2003) does not consider tools but tools and artefacts can be

‘read into’ the categorisation (e.g. algorithms in the first two categories, measuring/

data collection in the third category, designing artefacts in the last category).

The above focuses on the academic literature but, as discussed in Sect. 15.3,

tasks are not only designed by academics but also by teachers. Such tasks rarely

have a theoretical foundation but this, of course, does not relegate them as somehow

inferior to tasks which have a theoretical underpinning. As Sect. 15.3 further shows,

advances in digital tools (such as GeoGebra Tube) provide a medium in which

teachers can publish and exchange tasks. There are also publications, such as

Mason and Johnston-Wilder (2006), which aim to help teachers develop their skills

in writing tasks for their students.

17.3.2 Academic Literature on Tasks with Digital Tools

In this subsection we revisit themes from the previous subsection with particular

regard to digital tools. We begin with activity theory and French didactics and end

by relating these approaches to task design to other approaches.

Chapter 9 concluded by saying that although AT has contributed much to our

understanding of tool-use in mathematics, it offers us nuanced understandings and a

similar statement, in our opinion, holds with regard to tasks-with-tools. We illus-

trate this by considering two ‘camps’ within AT, one represented by Chiappini

(2012) and the other by two papers, Robert (2012) and Abboud-Blanchard and

Vandebrouck (2012).5

Affordances are central in Chiappini’s account. The affordances of a tool is

regularly referred to by mathematics educators in relation to software but Chiappini

is interested in cultural affordances because he is a cultural historical activity

theorist and he is interested in how tool-use can bring learners to focus on the

cultural ideas of mathematics. His attentions, then turn to the design of mathemat-

ical software which, through its affordances and constraints, promotes the emer-

gence of student solutions to tasks. The task to Chiappini is not an end in itself but,

when tackled on the software provide output to student input and some of this

output should surprise the student and produce cognitive conflict. Tasks should be

designed to allow the student to exploit the affordances of the software ‘to allow

students to explore the conditions, causes and explicative mechanisms of conflicts’
(Chiappini, 2012, p. 139) and a role of the teacher is to assist in the process of

raising students’ consciousness of these conflicts. There is much more to Chiappini

(2012) than I have stated here6 but this summary suffices to contrast this approach

to that below.

5All three papers were summarised in Sect. 9.3.
6 See Sect. 9.3 or, better still, Chiappini (2012), for details.
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Central to Robert (2012) and Abboud-Blanchard and Vandebrouck’s (2012)

activity theoretic approach is a production loop in which students’ actions/activity
is focused on the solution of a task and a construction loop concerned with the

construction of knowledge in the student. This leads to a focus on the description of

the ways that students work on tasks-with-tools in classrooms and to design, via

analysis of these descriptions (over time through iterative refinement) classroom

tasks with regard to both production and construction. Many different types of tasks

are possible but exercises, the resolution of which involves specific knowledge to be

learned, are the main interest. But the focus is not just student-task as the teacher is

central to students completing tasks (the productive component) and student under-

standing resulting from this (the constructive component) and an important aspect

of the design of tasks-with-tools is the development of the teacher to enable

productive and constructive student activity.

Both approaches can be said to adhere to AT principles and there are some

similarities (e.g. both include a concern with tasks whose resolution involves

specific knowledge to be learned) but the range of possible tasks described by

each camp differs significantly. Our point in arguing this is merely to note that there

is not a single AT approach to task design in mathematics education. We now move

on to consider three approaches within French didactics.

We start with Brousseau’s TDS. There is a sense in which TDS (the fundamental

situations, the didactical contract, the student-mathematics-milieu dialectic) con-

tinues to permeate almost all French mathematics education research (even when

the researchers explicitly align themselves to another theoretical framework). For

that reason we consider Joubert’s (2013) appropriation of TDS as a framework for

tasks-with-digital-tools design, as Joubert is not French.

Joubert (2013) uses TDS as a basis to formulate principles of task design for

mathematical tasks which expect the use of mathematical computer software. She

notes that TDS requires that the intended learning (by doing the task) is clear and

‘the design of the task should attend to the mathematics embodied in the tools, and

to working out how this might mediate the learning’ (Joubert, 2013, p. 73). She
notes that TDS views epistemological obstacles are key to learning and should be

built into tasks-with-digital-tools. Further to this, TDS regards feedback from the

milieu to the student as crucial for learning and when the computer software is part

of the milieu, then the task designer must focus on student feedback from the

software including how the student might engage with this feedback. It is also

important for Joubert that task designers explicitly attend to the situations of action,

formulation and validation: in the situation of formulation in, say, using the

computer to draw graphs, ‘students may be able to notice characteristics of families

of graphs, develop conjectures based on their observations and test their conjectures

on the computer’ (Joubert, 2013, pp. 75–76); in a situation of validation students

may provide ‘an explanation to justify a prediction that a computer-generated graph

will have particular intercepts by noticing a relationship between the intercepts and

the equations of graphs generated previously’ (Joubert, 2013, p. 76) and the task

designer should work to ensure that students’ attempts at validations are based on
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mathematical relationships and not just screen images. We now move on to

consider Rabardel’s theory.
It is important, here, to situate the role of Rabardel’ s theory (see Sect. 10.4) on

the French school of thought. Rabardel intervened at the French summer school of

didactics of mathematics and his lecture (Rabardel, 1999) deeply influenced sub-

sequent conceptualisations. In line with his conceptualisation of ‘what an instru-

ment is’ (see Sect. 10.4), as a developing structure appropriate to a given learner, he
extended the Vygotsky’s notion of proximal zone, evidencing the need for a teacher

to know the potential of the artefacts to be used for the targeted activities, and the

stages of students’ instrumental geneses, before designing the task (Fig. 17.4).

Trouche (2004), following this perspective, proposes a task aiming to introduce

what is called in France ‘the theorem of the compared increasing of the power and

the exponential functions’. His work was tried out on a group of students each using
a symbolic calculator (a TI-92). An a priori analysis of the constraints of the tool
revealed that, both in the approximate computation mode and in the graphical mode

(see Fig. 17.5), the calculator ‘shows’ that the equation ex¼ x10 has three solutions,
but ex¼ x20 has only two solutions (while there is a third solution, as ex will

Fig. 17.4 What are the conditions bearing on the teacher’s didactical choices, i.e. the task design,
according to Rabardel (1999), p. 212, our translation

Fig. 17.5 Some screen copies of the calculator used by the students, opening some windows on

the mathematical task (Trouche, 2004, p. 302)
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necessarily become greater than x20). In the phase of instrumental genesis that the

students were in at the time, the students privileged the graphic mode to search for a

function limit to solve an equation. In this phase of their learning of functions,

students imagined that what will occur in the behaviour of two functions outside of

the graphic window of the calculator would simply be an extension of the behaviour

visible in the window; thus the students imagined that the graph of x10n will

‘always’ be above the graph of the exponential function for integers n� 2. The

task given to the students was: How many solutions has the equation ex¼ x10n? The
task clearly exploits the limitations of the calculator, giving the right solution for

n¼ 1, then wrong solutions for n> 1.

This subtle reflection on the didactic variables (in this case, the value of the

integer n), depending on the didactical situation and of the available tools, is at the

heart of didactical engineering that has been developed in the TDS. This didactical

engineering could be defined as an experimental basis for task design. Artigue

(2005) developed two cases of didactical engineering, for introducing the equiva-

lence of algebraic expressions and for introducing the derivative and details of three

levels that are used in this process:

• The surprise level: this plays on the effect of surprise produced by unexpected

results so as to destabilise erroneous conceptions, to promote questioning, to

motivate mathematical work;

• The multiplicity level: this plays on the potential offered by technology for

producing a great number of results very quickly, so as to promote the search

for regularities and invariants and to motivate mathematical work aiming to

understand these;

• The dynamic level: this plays on the dynamic potential of graphic representa-

tions to overcome the evident limitations of paper-and-pencil work and to

promote a dynamical way of approaching mathematical concepts and problems,

the potential of which is now widely acknowledged (Artigue, 2005, p. 286).

We now move on to the ATD. Michèle Artigue and Jean-Baptiste Lagrange,

amongst others, have worked on the implications of ATD for learning and teaching

with digital tools and we focus on their work on the task-technique praxeology pair.

Techniques help to distinguish and reorganize tasks. For instance different techniques exist

for the task “find the intervals of growth of a given function” depending on what is known

about the function. If the function is differentiable the task can then be related to the task

“find the zeroes” of another function. In other cases, a search based on a more direct

algebraic treatment can be more effective. (Lagrange, 2005, p. 116)

They view the relationship between techniques and conceptual understanding as

complex and argue that digital tools do not provide a means to bypass techniques in

our endeavours to construct situations which lead students to conceptual under-

standing (see Lagrange, 2000, for the details of this argument). Lagrange (1999)

notes that: technical work does not disappear when doing mathematics with digital

tools, it is transformed; novices progressively become skilled in techniques by
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doing, talking about, and seeing the limits of techniques; and diminishing the role of

techniques encourages teachers to avoid talking about them. Artigue (2002) distin-

guishes between the pragmatic and epistemic values of techniques. Pragmatic

values concern the range of application of a technique and epistemic values concern

the role of techniques in promoting mathematical understanding. Lagrange (2005)

provides an example with expressions of the form aþb
ffiffi

2
p

cþd
ffiffi

2
p , where a, b, candd are

integers: The standard technique of multiplying top and bottom by c� d
ffiffiffi

2
p

has

pragmatic value in writing any such expression in a form that has a rational

denominator and potential epistemic value in developing students’ knowledge of

properties of quotients and radicals. The lessons for tasks design is that designers

need to take techniques seriously and consider the potential values of techniques

inherent in a task.

Thomas and Lin (2013) addresses designing tasks-with-digital-tools where the

techniques students employ have potential epistemic value for the students. They

note that tasks such as Task 1 in Sect. 17.2 above, ‘have little or no epistemic

value,7 since solving these with “black box” technology use does not assist students

to focus on, or understand, the constructs of mathematics’ (Thomas & Lin, 2013,

p. 112) and they ask ‘What should be considered when constructing tasks

employing technology that have epistemic value?’ (Thomas & Lin, 2013). They

suggest that tasks should require ‘dynamic multiple representations. . . and versatile
interactions between representations . . . integrating technological and by-hand

techniques’ (Thomas & Lin, 2013, p. 113). An application of this principle to

Task 1 (Sect. 17.2.1) could result in the following task:

1. Show that x3 � x2 þ 2ax� a2 can be written in the form x3 � x� að Þ2.
2. In GeoGebra, set up a slider for a and produce the graph of

y ¼ x3 � x2 þ 2ax� a2. By changing the values on your slider, investigate

conditions on a, such that the resulting graphs have two local extrema.

3. Using calculus, or otherwise, explain why the conditions on a hold.

We end this subsection by noting that academic work on task design under the

theoretical frameworks considered in this and the preceding subsections ‘feed off’
each other. Although one must ‘connect theories’ with care (see Prediger,

Arzarello, Bosch, & Lenfant, 2008), theories do not exist without people who

interpret these theories. Academics involved in task design work together on

‘issues’—a case in point being this chapter, written by two academics who have

‘a lot in common’ but do not have identical theoretical frameworks.

7 Earlier in the paper Thomas & Lin refer to the ‘epistemic value of techniques’. Their reference
here to the ‘epistemic value of a task’ can be taken as shorthand for the ‘epistemic value of the

techniques required to solve the task’.
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17.3.3 New Opportunities for Task Design with Digital Tools

We present here what appears as three main opportunities for task design with

digital tools: involving students in this design, involving teachers in a new way for

designing textbooks, involving users in the improving of tasks.

Involving students in the design of task was the main objective of 1-year work of

Trouche (1998), resulting in a book written with his students: ‘Practicing mathe-
matics with symbolic calculators, conjecturing and proving, 37 variations on a
given problem’. 37 variations stands for the ways the 37 students engage in a given
task, contributing actually to its design. This creativity is clearly supported by the

potential of the technological environment for varying the representation of math-

ematical objects, doing complex computations, as evidenced in Fig. 17.6.

Finally, the various students’ contributions lead to the emergence of an extended

possible task. What is always the case in a solving problem process is all the more

true in technological enriched environment,8 needing of course a set of didactical

Fig. 17.6 Various calculators screen copies illustrating different students’ works for solving the

same task (Trouche, 1998, pp. 33–43)

8 See the European project MC2 (http://www.mc2-project.eu), focusing on social creativity in the

design of digital media intended to enhance creativity in mathematical thinking.
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conditions, in terms of new orchestrations, for allowing students to develop their

own creativity (Trouche, 1998).

The second opportunity involved teachers in new ways of designing textbooks.

The digital environments afforded new means for connecting teachers: we will

come back to this essential feature in Chap. 19. It allowed for the development of

teacher associations, sharing in a first step their resources, and co-designing in a

second step their resources and associated tasks, until a common construct of a

whole set of resources: a textbook.

Gueudet, Pepin, and Trouche (2013) compare two modes of the design of a

textbook: the first one is a ‘classical one’, by a small team of experts (teacher

trainers and researchers); the second one is a new one by a large team of teachers

gathered in an online association, drawing their expertise from their joint experi-

ences. They underline differences at six levels:

The modes of design: more collaborative in the first case, more co-operative in the
second;

The nature of the structure: the first book is a single whole, with an organised

structure (organised by the team of experts); the second is an atomistic system
that can be arranged differently by different users;

The organisation of the content: more didactically original, linked to the didactical

choices of a ‘homogeneous’ team in the first case; more aligned with the

institutional instructions in the second;

The content: more open to a variety of ways for solving a given problem in the first

case; more driven by an expert solution in the second;

The integration into the whole grades 1–9 mathematics curriculum; links with

primary school more taken into account in the first case than in the second; and

The links to the users; the textbook provided as a final product given to the teachers
in the first case; and as a proposal to be enriched by teachers’ contributions in the
second.

These modes of design evidences, with regard to digital environments, the

emergence of new modes for designing tasks, with their strength and weakness.

Linking designers and users appears as new means for improving tasks, as we wish

to evidence now, as an essential potential of digital environments.

Improving the quality of mathematical tasks given to students in dynamic

geometry environments was one of the main goals of the Intergeo European

project,9 renewing the usual contract between a designer of a mathematical task

and a user:

An implicit contract binds the needs of the author and the needs of the teacher. The later

needs resources of good quality and the former needs recognition for the work that was put

in creating the resource.

9 Interoperable and Interactive Geometry for Europe http://i2geo.net/xwiki/bin/view/Main/About
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Users are bound by interest, not interest for money, but interest for knowledge. The use

of the platform, although provided for free, in the sense that you don’t have to pay for it, is
not provided without moral obligations. Respect for the work of others is the main pillar of

our philosophy. Tokens of respect is the currency that we exchange in the intergeo project.

That means that:

• If you upload an educational resource, it should have some interesting facets;

half-baked resources are ok if it is explicitly labelled as an idea begging for

improvement by others. It means as well to respect fellow teachers’ opinions on
your work; if they invested time reporting on your resource, please consider it in

good faith as venues for improvement for your resource. If you don’t act on it, or
if you disagree with the opinions of users, don’t be upset if others modify them

whenever the license allows them to do so. The project is here to foster your

resources like growing evolving organisms.

• If you use an educational resource in your classroom, you are expected to report
on that use. We are expecting this quality report from users, in order for the

project to be useful for everybody; and authors are expecting this feedback from

their fellow teachers, as a sign of respect. It is especially the case for groups

releasing their work. Please consider that we value your feedback and you

should value it as well, not giving it lightly but giving it eagerly.

Respect for good work means as well that quality reviews are not always praises. When

reporting, you should assume good faith from the author and should be constructive in your

critics but weak points should be pointed out for the author to be able to iron them out

(http://i2geo.net/xwiki/bin/view/About/Quality)

The digital tools are used here at different levels (mainly dynamic geometry

software and the Intergeo platform, allowing designers and users to communi-

cate). Trgalová and Jahn (2011) analyse the process of evaluating resources via a

questionnaire that the users had to fulfil, taking into account different levels of

quality (ergonomics, technical, mathematical as well as didactical). They evi-

dence both the potential of this process, and the conditions for making this

potential effective:

Importantly, the review from peers comes usually only after some delay, so the feedback

provided by the review might not match the author’s need for improving his/her

resource. We can thus conclude that the quality assessment process has the potential to

improve the resource quality, but it seems not to be fully effective. [. . .] These results

show that the repository and the tools developed within the Intergeo project can be used

efficiently in the framework of teacher training initiatives in which their appropriation by

the participating teachers can be accompanied and facilitated by tutors’ interventions
(p. 985).

The opportunities provided by digital tools open new questions and new means

for connecting communities in mathematics education (we return to this in

Chap. 19).
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17.4 Tasks and Digital Tools: Issues

In this final section we look at task-tool issues in larger-than-the-individual class-

room research and in assessment. We also comment of avenues for further

development.

We have, over the decades, been involved in various mathematics curriculum

and assessment development projects that have involved the creation of new kinds

of tasks (see, for example, Monaghan, Pool, Roper, & Threlfall, 2009). The

consideration of tasks in such work requires careful consideration of where teachers

and students are, with regard to tasks and tools, at the outset of the project and their

target states at the end of the project. It would be improper to expect teachers and

students to work effectively with new types of tasks with new tools in a short period

of time; teachers and students need time to accommodate new tasks and tools into

their daily mathematical routines and the time needed can run into years. Laborde

(2002) documents the evolution of teachers’ tasks with a dynamic geometry system

(Cabri) over several years. The teachers’ initial classroom tasks-with-Cabri were
not connected with the ‘traditional’ tasks (prior to and running into the project

work) but over the project the ‘role’ of Cabri, in the tasks teachers designed,

evolved: tasks in which Cabri facilitates the material aspects of the task; Cabri as
facilitating the mathematical task; tasks modified when given in Cabri: tasks only
existing in Cabri.

In addition to the ‘evolutionary time’ required for new tasks-with-tools to ‘settle
in’, if the project is extended beyond the initial project schools, then one should not
expect the new tasks-with-tools work in the next wave of schools to mirror the

development of schools/teachers/students in the original project schools. Apart

from expected individual variation in patterns of work, it is often the case that

less ‘development work’ goes into next wave schools. Extending project work

beyond classrooms and/or schools involved in one stage of a project is referred to

as ‘scaling up’.
Roschelle, Tatar, Shechtman, and Knudsen (2008) examine scaling up in rela-

tion to Jim Kaput’s SimCalc project work which focuses on the mathematics of

change and variation. SimCalc is designed to engage students in tasks (‘realistic’ in
the sense of RME) that enable students to make connections between representa-

tions and to use software to facilitate this. Teacher professional development is an

integral part of the SimCalc project. Roschelle et al. (2008) view scaling up as more

than involving a larger number of schools in the project and a central construct is

‘robustness’, ‘the consistency of the innovation’s benefits for student learning when
deployed consistently to a wide variety of students, teachers, and settings’
(Roschelle et al., 2008, p. 151). Robustness includes ensuring that the instrumental

genesis students and teachers experience provides them with tools which enable

them to tackle challenging tasks. In discussing scaling up in the state of Texas they

comment:
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we realized that the existing Texas curriculum only presented students with proportionality

tasks in which they were given three numbers and asked to find a fourth. If we simply taught

students to use a formula with three slots instead of a formula with four slots, we would

have accomplished nothing. (Roschelle et al., 2008, p. 159)

Hoyles, Noss, Vahey, and Roschelle (2013) discusses scaling up the work

described in Roschelle et al. (2008) in England and focus on a unit of work,

which was expected to last 8–10 h of classroom time, focused on coordinating

algebraic, graphic, tabular and natural language representations of linear functions

with regard to motion (position, time and speed/velocity). An independent evalu-

ation of the project was positive. With regard to tasks Hoyles et al. (2013), p. 1066

comment that ‘teacher ownership fall short of the re-design of tasks themselves to

exploit the use of technology to give sense to mathematical concepts’ though 15 of

the 17 teachers in the project ‘used their professional judgement to repackage the

material by choosing to teach disparate pieces together, or to decompose one idea

into many’ (Hoyles et al., 2013). Teacher appropriation of tasks in scaling up

projects, including teacher re-design of initial project tasks, is clearly an area for

future work in the professional development of mathematics teachers. We now turn

to assessment.

There are many types of assessments and divisions within assessment. We will

consider: formative (feedback to students on their learning intended to enhance

learning) and summative (which grades students’ work at the end of a learning

sequence) assessment; portfolio work and timed ‘unseen’ examinations; assessment

by technology and assessment by people (teachers or examiners) of student work in

which they use technology.

Formative assessment in the mathematics classroom will always be of students

using tools and quite often it will make little difference whether these tools are

digital or not. In cases where there is a difference this can be positive or negative:

students working with, say, a calculator, may only record a result, arguably making

formative assessment more difficult; however, students may be working with digital

technology that records their digital actions and this may benefit formative assess-

ment. The size of the digital technology can be important as it is easier for a teacher

to view, and thus comment on student work on a large screen than on a small screen.

Formative assessment by technology will vary with the sophistication and the

pedagogic design of the technology. There is a range of software for automated

feedback on student work on a computer that ranges from simply stating whether an

answer is correct or not to that with a sophisticated design. Bokhove (2013) reports

on an example of the latter type in tasks focused on the algebraic solution of

quadratic equations. Task design is informed by Watson and Mason’s (2004)

dimensions of variation (considered in Sect. 17.3.1 above) and the constructivist

idea that learning happens when the learner finds a task very difficult (which

Bokhove refers to as a ‘crisis’). Task items are of three types:

Pre-crisis items: In the initial items students are confronted with equations they have

experience with . . . Crisis item: Students are then confronted with an intentional crisis

. . . Post-crisis items: After the crisis item students are offered help . . . feedforward

information (Bokhove, 2013, p. 22)
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The degree of post-crisis help gradually decreases.

Students’ mathematical project work (portfolio work) is only, as far as I know,

marked by people. A wide range of mathematical software can be used in students’
portfolio work and in statics the internet is a source of large data sets and the use of

these is highly likely to enhance the authenticity of the work (and in turn brings a

need to use statistical software to analyse the data sets). Lumb, Monaghan, and

Mulligan (2000) report on students’ portfolio work in a numeric analysis module

where the use of a computer algebra system was encouraged but most of the

students chose to use spreadsheets, graph plotters or graphics calculators. Lumb,

Monaghan and Mulligan’s example raises two immediate issues; this highlights the

importance of student agency in determining the software to use in portfolio work.

When portfolio work is used for summative assessment of the computer, in the form

of the internet, raises problems for potential plagiarism.

Tasks which make use of digital technology by students in summative assess-

ment raises a host of issues, many of which are problematic (see Chap. 11 for a

consideration of problems perceived with the use of calculators in examinations).

There is also a danger in higher level mathematics examinations that the use of

symbolic calculators may make examination more difficult as procedural tasks

(such as ‘differentiate sin 2x cos x’) which most students can do, may be removed

from examinations (see Monaghan, 2000). The tasks set in a summative assessment

which allows digital technology may be as before or may change. In the 1990 the

International Baccalaureate Organisation (IBO) incorporated graphic calculators

into the curriculum and assessment of the Diploma Programme. They instigated a

two-stage strategy: graphic calculator allowed; graphic calculators expected.

Assessment tasks in the second stage were designed to make use of the affordances

that graphic calculators offered students in these items but Brown (2010), a study of

graphic calculator, questions in three high-stakes examinations including IBO, did

not find major changes in the examination questions due to technology. In defence

of the people and organisations behind innovations that do not appear to be greatly

innovative in digital technology in mathematics assessment we note that it is

difficult for people who have matured mathematically with one set of tools to

turn to a new set of tools. The problematic issue of examination tasks is supported

by Drijvers (2009) review of the use of digital technology in national mathematics

examinations in Western Europe.

Some students are sitting entire examination on computers and this is likely to

increase. An interesting study in this field with regard to tasks is Threlfall, Pool,

Homer, and Swinnerton (2007) which reports on a comparison of pencil and paper

(P&P) with ‘equivalent item’ computer-based (ICT) mathematics assessment on

standard test items for children aged 11 and 14 years in work sponsored by the

English government assessment agency. 400 students at each age level were given

24 items (12 P&P and 12 ICT). Facilities (% correct) for each question/format were

calculated. 17 of the 24 items had very similar facilities in P&P and ICT formats but

seven items differed. I report on two of these, Circles and Shapes. The table below
shows the age of the students and the facilities.
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Age of student Question P&P facility (%) ICT facility (%)

11 Circles 64.4 88.1

14 Shapes 49.0 14.6

Circles states ‘Here is a grid with eight circles on it’. The P&P item states ‘Draw
two more circles to make a symmetrical pattern’. The ICT item states ‘Move the

two extra circles on to the grid to make a symmetrical pattern’. The same pattern

was displayed in both P&P and ICT items (see Fig. 17.7a).

In Shapes the P&P item presents a blank 1 cm2 square grid paper and states

‘Draw a triangle that has an area of 9 cm2’. The ICT item presents Fig. 17.7b and

states, ‘Move the red dots to make a triangle that has an area of 9 cm2’.
Threfall et al. explain response differences between the P&P and ICT formats in

terms of affordances and attunements:

On paper, the circles cannot actually be drawn until after a decision has been made about

where they should go . . . The pupil needs to decide that it will look right without being able
to try it . . . On computer, the pupil can put the two circles on and make a judgement by

recognition—does this arrangement look symmetrical? . . . Here the affordance of the

computer medium enables easier success—by recognition of symmetry . . .
[in Shapes] It seems that the computer affordance to enable exploratory action was not

as useful as might be supposed. . . . On the paper and pencil question . . . most pupils began

by drawing a horizontal line, and then building a triangle up from it . . . and many pupils

evaluated size by counting squares. . . . The computer version of Shapes seems to require a

more analytic and strategic approach to the problem than the paper version does. On paper

. . . the affordances of the medium, starting with a plausible line, then seeing what it leads

to. In the absence of a similar attunement to the computer affordances . . . pupils probably
had to consider the problem in terms of the formula for the area of a triangle. (Threlfall

et al., 2007, p. 345)

More studies of this type would be useful for mathematics educators to assess the

impact of different forms of tasks on students’ responses in P&P and ICT media.

We now move towards closing considerations in this chapter.

Designing tasks-with-digital-tools which enable learning which we, as mathe-

maticians, value is a relatively new field with a great many issues and, indeed,

Fig. 17.7 (a) The pattern displayed in circles; (b) the pattern displayed in the ICT version of

Shapes
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problems; it is a field in which we have a lot to learn. Research in this area has been

broad and sometimes it is good to narrow down but perhaps now is not the time to

do that. Consider, for instance, the research reported in Sect. 17.3.2. There are many

different frameworks represented in this research. Sometimes different frameworks

taken together can be a problem but the different frameworks reported on in

Sect. 17.3.2 appear to be feeding off each other and providing new insights. We

are far from having ‘the answer’ and we want as many insights as possible. Two

areas that we would like to see more research on is ‘tasks which enable students to

go under the bonnet’ and cultural affordances.

In Sect. 3.3.5 Jon writes:

Below the hood, Maple is optimizing polynomial computations using tools like Horner’s
rule, running multiple algorithms when there is no clear best choice, and switching to

reduced complexity (Karatsuba or FFT-based) multiplication when accuracy so demands.

Though, it would be nice if all vendors allowed as much peering under the bonnet as

Maple does.

And it would be nice if students could go at least a little ‘under the bonnet’ with
their software. This is effectively a design principle in tasks by constructionist

educators. Kynigos (2007) even goes as far as building bugs into his ‘half-baked
microworlds’ so that the user needs to go under the bonnet to rectify the bugs.

Going under the bonnet is a way of viewing the mathematical functions, the

mathematical relationships, embedded in the software. The opposite of going

under the bonnet is just accepting what is and this seems contrary to the nature of

being a mathematician who wants to know why it is. Going under the bonnet as Jon

does require a great deal of experience and insight but ‘how does the computer do

___’ tasks could generate a great deal of mathematics whilst simultaneously leading

students to a greater understanding of the tools they use to do mathematics.

The cultural affordances of software for mathematics learning is a new area

opened up by Chiappini (2012) which appears important but not greatly appreci-

ated. Mathematics has a culture. a2 � b2has a cultural significance in mathematics

and there is a sense in which Maple recognises this cultural significance but a

spreadsheet (with C1¼A1�A1�B1�B1) does not. This has implication for the

kinds of tasks we can ask students to do in different systems. In Maple I can design a

task, as Kieran and Drijvers (2006) do, to investigate factorisations of x2 � 1, x3 � 1,

x4 � 1, x5 � 1, . . . and get a lot of mathematics out of this task; in a spreadsheet the

task is pretty pointless, you just get a lot of numbers.
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Chapter 18

Games: Artefacts in Gameplay

John Monaghan

18.1 Introduction

Games, and in particular digital games, are perceived by some to be an important

part of the future of mathematics education. This chapter explores the potential of

games as a resource for learning mathematics. This book focuses on tool use in

mathematics, so the place of tools (or, rather, ‘artefacts’, as shall be discussed later)
in games permeates this chapter. The chapter is in four sections: the first section

considers the range of games. The second section considers artefacts in games and

gameplay. The third section addresses games in mathematics education. The final

section looks to possible future development.

18.2 The Range of Games

Games are not new. Dice and board games are known to have been played 5000

years ago (Schwartz, 2006). But new forms of games are developing with technol-

ogy and this co-development (of games and technology) is an interest of this

chapter.

Before launching into the range of games I would like to give ‘my take’ on two

terms, ‘games’ and ‘gameplay’. In Sect. 14.2 I said ‘games have rules . . . and these
rules include sequencing actions’. The first part of this statement has links to

Wittgenstein’s (1953) idea of characterising games via rules. I think this charac-

terisation is insightful but it neglects ontogenesis and the origin of games in playful

activity. I now turn to the second part of this statement, that rules have sequencing

actions. The sequencing (which do not need to be linear) of actions according to the

rules, to me, makes playing a game, at least, a proto-mathematical activity. Apart

from the sequencing of rules, games have a range of mathematical features built

into them. The card game ‘poker’, for example, requires that players recognise: five
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cards per person; similarity of numbers/pictures or suits; and the linear sequence of

winning hands. The card game ‘snap’, however, merely requires that players

recognise similarity of numbers/pictures. But beyond the game itself there is the

gameplay, how one plays a game.1 Poker, for example, can be played by picking

cards up and placing them down at the appropriate point in the game but it can be

played by estimating the probability of drawing a specific card after discarding a

card in the player’s hand.2 Much of the mathematics in a game, I contend, will be in

the gameplay. With this distinction between a game and gameplay made I move on

to the range of games with the rider that I will, for brevity, often refer to ‘games’
when, according to this distinction, I should refer to ‘games and gameplay’.

There are too many games to list (even by ‘type of game’) in an intentionally

short chapter but I list some types of games. Sport has many games, most of them

are competitive games (a player/team’s objective is to win the game and the rules

may then determine that the game is over). The artefacts used in these games may,

like the soccer ball, have interesting mathematical features but there appears to be

little scope for developing mathematics in the gameplay of a game like soccer

though mathematics may be developed about the gameplay—the physicist Stephen

Hawking used logistic regression to calculate the probability of England winning

the 2014 World Cup. At the other extreme, some card, dice and board games

(e.g. bridge, backgammon and chess) require significant mathematising during

gameplay (at least for intermediate-and-above level players).

Another type of game in the annals of ludology (the study of games) is educa-

tional games. The ascription ‘educational’ to a game has nothing to do with

gameplay but concerns the avowed purpose of the game. But in practice, of course,

an educational game may not have the desired educational consequences and

student activity with non-educational gameplay can, as we shall see, be viewed

positively from the point of view of mathematics education. Educational games is a

wide category that includes games to reinforce basic skills (at one extreme) and

serious games (in professional training) and epistemic games (designed to get users

to ‘think like’ a doctor or architect or . . .) at the other extreme.

Other categories of games are defined by their intended audience (e.g. children’s
games), their expected venue (e.g. party games), the surface they are played on

(e.g. table top games) and the artefact(s) required to play the game (e.g. dice games

and video games). And these categories of games branch out into a wide variety of

games. Video games, for example, include digitised versions of a large number of

pre-video games as well as introducing games. Video games are so called because

of their display screen and are played on many electronic devices—an early (1958)

game simulated tennis using two analogue control devices linked to an oscillo-

scope. They vary over: ‘platform’ (device required to play them); genre; purpose

1 This distinction between ‘game’ and ‘gameplay’ is, perhaps, an English language distinction as

the word ‘jeu’ in French is used for both terms.
2 Decision making in a wide range of games is studied in the mathematical theory of games but this

is not a focus in this chapter.
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(ranging from amusement to training); and number of players (ranging from single

player to massively multiplayer). Simulation video games is a sub-category of

video games but a super-category in itself including life simulation, vehicle simu-

lation and sport simulation—and each of these can be sub-divided according to

whether the game is designed for amusement or professional purposes.

I’d like to note, however, that board games are not necessarily dying out as a

result of video games—see The Guardian (2007) for a report on an apparent revival

of traditional games as well as the establishment of new non-digital games such as

Settlers of Catan.
This section was intended to ‘set the scene’ but what a big scene it is. It is so big

that a consideration of the conditions under which gameplay may promote the

acquisition or construction of mathematical concepts or skills must be addressed in

specific contexts with specific games.

18.3 Artefacts and Mathematics in a Sample of Games

I now consider artefacts in games and gameplay. The primary focus on artefacts is

because artefacts appear to have a wider application in gameplay than tools, though

the Sect. 1.2.1 defines that an artefact becomes a tool when it is used by an agent to

do something, means that the artefacts I mention often function as tools in

gameplay. I start with a consideration of the types of artefacts in gameplay and

then move on to issues of learning mathematics through gameplay. The types of

artefacts I consider are: rules; artefacts essential to gameplay; artefacts linked to

gameplay; and player constructed artefacts. There is a myriad of interrelations

between these categories of artefacts.

Rules are artefacts and are the principal mediational means of gameplay. Rules,

as mentioned above, are sequential though not necessarily linearly ordered. The

rules may involve numbers (poker: deal five cards), spatial arrangement and

movement of pieces (chess) or players (soccer) and/or logic (pontoon: if your

total hand totals more than 21, then you lose). In some games the rules unfold

during gameplay. An example is checkers (or draughts), when a piece is ‘crowned’
it has a greater number of possible moves. An extreme example is the card game

FluxxTM where the basic rules are ‘pick up a card and place a card down’ but cards
that are picked up introduce new rules. In zero-player games, those which can be

played without human agency, rules take on additional importance: the evolution of

Conway’s Game of Life is completely determined by the initial state of the cells and

the rules; all that snakes and ladders requires of the players is that they follow the

rules. When someone (a teacher or student) designs a game, it is essential that the

rules are internally consistent (a move is not both allowed and forbidden) and, when

the game is competitive, that there are clear criteria which determine a ‘win’.
Games often require an artefact for gameplay, a special board or a computer,

though, these may have minimum requirements, e.g. some card and dice games

merely require a surface that is approximately flat. The boards in board games often
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have geometric features: squares on chess boards (and the board itself is a square);

hexagons for Settlers of Catan (and the board itself is a hexagon). In games such as

Monopoly, gameplay requires paying special attention to mathematical rules which

come into play when a player lands on a particular cell on the board, such as

calculate the rent to be paid when landing on an opponent’s property with two

houses on it (and this calculation requires accessing data on an artefact, the card for

the property). When the artefact for gameplay is digital (a computer, a game

console or mobile phone) it may simply replicate the non-digital artefact for

gameplay (i.e. gameplay may take place on a virtual chess board) but the artefact

in games for more than one player can often be (or provide) a player itself. This is a

significant development in games and gameplay. Games have been played for over

5000 years and the players, until the arrival of digital artefacts, were human. The

virtual players, through programming, have access to search strategies and memory

far exceeding human players and for this reason game designers often build in

difficulty levels (from easy to expert) for virtual players and this, of course, can

impinge on the human player gameplay.

Artefacts can also be linked to a game or gameplay. These artefacts can be a part

of the game/gameplay or about the gameplay such as books and online advice on

how to play games. Table 18.1 is from a site3 which helps on strategies for the turn-

based strategy video game Civilisation. Table 18.1 is an extract from a part of the

site dealing with terrains to cultivate in the opening moves of the game.

The purpose of the table is to help players optimise the squares they ‘settle’ at the
start of the game. Examples of linked-artefacts that are part of the game/gameplay

are betting chips/money in card games such as poker and the doubling cube in

backgammon. The use of these two linked-artefacts is related to the difference

between ‘friendly’ and ‘aggressive’ games of poker and backgammon. In both cases

the artefacts are incorporated into the aggressive gameplay and there are special

rules for their use. These two linked-artefacts are interesting with regard to the

mathematics and gameplay as they can provoke a player to explicitly

mathematicise their chances of winning the game and the longer term consequences

of accepting a raised bid in poker or a ‘doubled game’ in backgammon. This is an

example of what was called a ‘breakdown situation’ in Sect. 14.2. Linked-artefacts

(e.g. joysticks) are not unusual in digital gameplay but I am not aware of instances

in digital gameplay (other than digital games which imitate non-digital games)

where linked-artefacts provoke breakdown situations.

There are a variety of gaming situations in which players construct artefacts

during gameplay. It is not unusual for people of all ages to construct (make up) their

own game and this involves constructing the rules and other artefacts with which to

play the game. Some commercial games expect players to construct tools.

Minecraft is a very popular (at the time of writing) digital sandbox survival game

(a game where players construct the virtual environment in which their avatars

reside). As the gameplay unfolds over virtual time it is important that the player

3 http://www.civfanatics.com/content/civ3/strategy/cracker/civ3_starts/index.htm
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constructs virtual tools, such as axes to cut down trees, in order to survive. The

Playground project (considered in the next section) combines both of the above

aspects of tool construction, it provides ‘a computational ‘world’ on top of

ToonTalk [a programming language] where children can find the resources and

tools they need to build games’ (Adamson, 2002, p. 9). Tool construction can occur

during games in which tool construction is not an expectation. The board game

Settlers of Catan has resources on hexagons which are assigned a number (from 2 to

12) and I have seen players create a table, with numbers as rows and resources as

columns, to keep a record of their resources; in the next section I report on research

where a boy created a tool to ensure that the virtual house he was constructing was

symmetrical. A further, and common, player constructed tool is the gameplay

strategy. In some games the strategy is explicitly mathematical. For example,

there is a game in the 1980s MicroSmile series of computer games (designed for

use in school mathematics lessons) in which players win by being the first to obtain

a cumulative score of 100 by rolling a virtual D6 die. Players may roll the die as

many times as they like but if they get a 6, then their cumulative score for the series

of rolls the 6 occurs in is void. Players must play one strategy (such as ‘roll the die
3 times’ or ‘stop when the total for a series of rolls is 12’) throughout a game. The

aim of the game, then, is to find a good strategy.

The die game above is an example of focusing students towards developing a

strategy that is effective. Focusing students towards specific or restrictive use of

tools in gameplay can be done in a number of ways. I illustrate this with a game

whose origins I do not know. The context of the gameplay is a mathematics class

with the focus on multiplication (or division) of a number by a number between

0 and 1. The game is to be played by pairs of students with one calculator between

them. A two digits prime number is entered into the calculator. The players may

only multiply by a number and in each turn the players cannot change the number

that is already displayed on the calculator. The winner is the first person to get to

100� 0.1. The table below displays initial possible opening moves of two players:

Input Player 1’s input Player 2’s input Output

71 �1.2 85.2

85.2 �1.2 102.24

102.24 �0.98 100.195

Digital tool use (a calculator) is an essential feature of this game but the

functionality of the tool is intentionally restricted. Limiting the functionality of a

tool can sometimes be effected by hiding features of the tool. Green Globs is a

computer graphics from the 1980s (see Dugdale, 1982) where points (green globs)

are marked on a Cartesian grid and the players must ‘hit’ the points with linear or

quadratic (or whatever) graphs. The game can be played on the mathematical

software GeoGebra (see Fig. 18.1) but a challenge for students would be to play

the game without the Line through two points tool (which can be ‘hidden’).
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18.4 Games in Mathematics Education

The previous section provided some examples of the use of games in school

mathematics but these were provided to illustrate the artefacts in gameplay.

The purpose of this section is to provide an overview of games used (or having

the potential to be used) in school mathematics in order to locate the potential (and

the potential problems) of games, and digital games in particular, as a resource for

learning mathematics. This section is divided into two subsections for presenta-

tional reasons: the first subsection presents a selective chronological overview

(including, but not exclusively, research); the second subsection presents specific

research findings and considers ‘understandings’ that specific types of research can
provide us with.

18.4.1 The Use and Potential of Games in Mathematics
Education

‘Educational games’ in the twenty-first century is a software category but

non-digital games have been used in education for some time: in nineteenth century

Germany Froebel’s kindergarten ‘included singing, dancing, and games’ (Kidwell,
Ackerberg-Hastings, & Roberts, 2008, p. 142)4; in my experience (my own

Fig. 18.1 Green globs on GeoGebra

4 Froebel also made extensive use of mathematical artefacts: wooden cubes and ‘tables marked

with a grid of lines, much like graph paper; each square in the grid was the size of the face of one of

the small cubes. Arranging cubes on the grid produced pleasing patterns’ (Kidwell et al., 2008).
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teaching and many classrooms where I have been an observer) games are a regular

feature of some (and an occasional feature of many) English mathematics class-

rooms. I provide four examples of approaches to educational games and gameplay,

related to mathematics, in the literature in the last 50 years.

Zoltan Dienes was considered in Sect. 7.3 as an influential early

non-behaviourist mathematics education researcher. The first chapter of Dienes

(1963) is ‘On the function of play in mathematical thinking’ and provides ‘a number

of examples to illustrate ways in which play-energy may be transformed into higher

cognitive activity’ (Dienes, 1963, p. 54). He considers a distinction between

primary (related to instincts) and secondary play (related to planned activity) but

sees this as a ‘gradually changing degree of awareness, rather than of a dichotomy’
(Dienes, 1963, p. 22). Secondary play can be rule-bound or manipulative and ‘Rule-
bound play is essentially ‘playing a game’ (Dienes, 1963, p. 24). The use of rule-

bound play is illustrated in a series of educational games in which artefacts are a

central feature.

Brousseau’s theory of didactical situations was outlined in Sect. 10.2. Brousseau
designed ‘didactical situations’, classroom activity based on three ‘situations’: of
action; of formulation; of validation. An early activity which he wrote a great deal

about was the Race to 20, which is a variant of the game Nim:

the first player writes either 1 or 2, then on successive turns players alternate writing

numbers, each of which must be either 1 or 2 greater than the one previously written. The

objective is to be the one who writes “20”. (Warfield, 2006, p. 19)

In the situation of action the students play the game. In the situation of formu-

lation the students develop (winning) strategies. In the situation of validation they

attempt to justify their strategies mathematically. Race to 20 is a game appropriated

for educational purposes; it can, by the way, be played using artefacts such as

matchsticks.

In contrast to designing or appropriating games for mathematical purposes, the

Shell Centre (1987–1989) Design a Board Game is a resource box. This is not a

game but a set of resources that enable students to play games (in mathematics

lessons), reflect on their games, design their own games, and play these games. The

focus of the mathematics here is not so much in the gameplay but in the design of

games.

My last example, Devlin (2011), looks to the future. It is an impassioned plea

from a mathematician5 to teachers to take the mathematical learning potential of

video games seriously; not as an alternative to other forms of education but as an

enhancement. He draws on situated cognition (see Sect. 7.3), ideas about identity

and Gee’s (2003) video game learning principles to argue that video gameplay is

motivating and provides challenge and reward. He does not focus on a specific area

of mathematics in which video games are particularly suited (though he notes an

age range, middle school mathematics) and argues that video games which involve

5A co-author of a book (Borwein & Devlin, 2008) discussed in Sect. 3.1 with a co-author of

this book.
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mathematical thinking can be designed and can provide players with mathematical

challenges and rewards, ‘the video game . . . gives the mathematics meaning by

embedding it in a real context’ (Devlin, 2011, p. 175).

18.4.2 Research on the Use of Games in Mathematics
Education

The purpose of this section is not to provide a comprehensive review of research on

games in mathematics education but to point to the types of research and the

consideration of artefacts in gameplay in this research. I begin with a few words

on research on games in education and games (in general) in mathematics education

before focusing on research concerned with digital games.

Research on games in education (educational games and games not designed for

educational purposes) is an early twenty-first century boom industry and new

academic journals6 devoted to this field have appeared. Scholarly work in mathe-

matics education often draws on this more general field. For example, Lowrie

(2015) reviews research mathematics and visuospatial reasoning in digital

gameplay and draws on both mathematics education and general research to

reach the conclusion that ‘Digital games appear to accommodate . . . the visuospa-
tial- reasoning skills to interpret and manage information systems than traditional

classroom practices and pedagogies’ (Lowrie, 2015, p. 90). However, mathematics

has its own culture, and it would be naı̈ve, for example, to assume that a cell in a

game in the general shape of a square communicates any of the properties of a

‘mathematical square’ to game players; this is merely to caution that research on

games in education should be viewed critically when regarding mathematics

education.

In the field of mathematical education, research into games and learning

pre-dates digital games (see, for example, Bright, Harvey, & Wheeler, 1985 as

well, of course, Dienes and Brousseau who are considered above). The National

Council of Teachers of Mathematics (2004) claim that mathematical games ‘can
foster mathematical communication. . .can motivate students and engage them in

thinking about and applying concepts and skills’ (http://www.nctm.org/

fractiontrack/) refers to games in general. But research in mathematics education

can, in turn, inform research on games in mathematics education. For example,

Nilsson (2007) examines ways in which 12–13-year-old students handle chance in

dice game situations. The students play four games with standard cubical dice but

not the standard numbers: game 1—the numbers 1, 1, 1, 2, 2, 2 on each dice; game

2—the numbers 2, 2, 2, 4, 4, 4 on one die and 3, 3, 3, 5, 5, 5 on the other; game 3—

the numbers 1, 1, 1, 2, 2, 2 on each die; game 4—the numbers 2, 2, 2, 2, 4, 4 on one

6 For example, Game Studies: the International Journal of Computer Game Research. See http://
gamestudies.org/0902/about
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die and 3, 3, 3, 3, 5, 5 on the other. All games have a board for playing—a cuboid

with the numbers 1–12 marked—and a set of counters. Two teams (pairs of

students) compete. They are to distribute their markers on the board at the start of

the game and throw the dice (in turn) and sum the total on the dice. If the total

corresponds to a number with one of their counters on, then the team may remover

one counter. The first team to remove all of their counters wins. In the first

(respectively second) two games the students get 24 (respectively 36) counters.

The research focus was to explore students’ probabilistic reasoning, including their
(informal) construction of the sample spaces, in each game. The result of student

gameplay suggests that students: can discern impossible totals from possible totals;

have difficulty in taking the order of the dice into account (e.g. (1, 2) and (2, 1) are

viewed as identical); and are prompted to make false assumptions by employing

school mathematics (e.g. there are three possible totals in game 1, there are

24 counters and 24 � 3¼ 8, so put 8 counters on each of the cuboid paces marked

2, 3 and 4). Nilsson (2007) concludes that ‘a competitive attitude and confirmative

feedback does not always provide for probabilistic explorations’ (Nilsson, 2007,
p. 312) and this is a conclusion worth keeping in mind when we consider the

mathematics that can/cannot be picked up in gameplay that is ostensibly

mathematical.

A strand of research on games in mathematics education are quantitative studies

of the effects of digital educational games on student achievement and/or attitudes

and/or other constructs. Studies that I am aware of to date do not appear to be

converging to a consensus of these effects. For example, with regard to attitude/

motivation, Lopez-Morteo and L�opez (2007) report on an electronic collaborative

learning environment which includes games which was used by high school

students and conclude that the environment ‘positively affected students’ attitudes
towards mathematics’ (Lopez-Morteo & L�opez, 2007, p. 639). Kebritchi, Hirumi,

and Bai (2010) report on the effects of software designed for algebra instruction and

‘no significant differences were found in students’ motivation between students

who played and did not play the games’ (Kebritchi et al., 2010, p. 436). This is

supported by some reviews of research with regard to achievement, for example

Hays (2005). This lack of consensus is not really surprising for, as Bright

et al. (1985) stated of mathematical games in general, ‘games can be used to

teach a variety of content in a variety of instructional settings. . .there is no

guarantee that every game will be effective’ (Bright et al., 1985, p. 133). Further
to this, ‘it appears that assumptions that students will see the usefulness of math-

ematics games in classrooms are problematic’ (Bragg, 2006, p. 233). With regard to

the use of artefacts in games, quantitative studies (other than those, if they exist,

which study the gameplay itself) are not enlightening simply because artefacts are

used in gameplay and quantitative studies examine the effects of gameplay and not

the gameplay itself. With this I turn to qualitative studies and present two

contrasting (one where tool use was planned, the other where tool use arose from

the gameplay) examples related to the use of artefacts (used as tools in these two

examples) in gameplay.
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In the Playground Project (Adamson, 2002; Goldstein, Kalas, Noss, & Pratt,

2001; Hoyles, Noss, Adamson, & Lowe, 2001) 6–8-year-old children (in schools

but not in lesson time) played with, changed and created their own games using

child-friendly (non-textual) programming languages, Imagine and ToonTalk. The
programs provide screen robots with possible actions which define how objects in

the games behave, e.g. a screen tiger is programmed with the command ‘When

joystick button 1 is pressed, I jump up 30’ (Goldstein et al., 2001, p. 275). A design

principle is that children can inspect and change the actions available to the robots.7

The theoretical framework is constructionism (see Chap. 8) where ‘designing,
creating and debugging meaningful “external” artefacts is a source of learning’
(Adamson, 2002, p. 8). I focus on the aspect of the research concerned with rules, as

this has been a recurring theme in this chapter, and the research question ‘How is

children’s understanding and expression of rules mediated by a programming

language in which the rules are available for inspection and change?’ (Hoyles

et al., 2001, p. 170). The concept of a rule here involves three concepts of the

game: the Game Formal—the rules that the children have created as computer code;

the Game Outside—the game that people see; the Game Inside—the game, with

rules, that exists inside the children’s heads. These three games are not necessarily

identical, ‘An essential ability for the programming of games is to transform ideas

belonging to the Game Inside into the formal rules of the Game Formal that

instantiate the Game Outside’ (Goldstein et al., 2001, p. 278), and this ‘ability’,
Hoyles et al. (2001) argue, is developed through gameplay. Children may not be

able to predict the consequences of the rules they have programmed but when they

observe (and attempt to explain) screen actions they begin, it is conjectured, a

developmental path towards this ability though this ‘does not necessarily lead to a

formal understanding of all the rule’s implications’ (Hoyles et al., 2001, p. 175) but
continued ‘playing with the rule and observing its implications, begins the process

of appreciating the logic of the implied consequences of a new rule’ (Hoyles et al.,
2001 p. 176).

There are several types of artefacts/tools available to children in their work in

this project: the programming language; screen objects; programmable actions that

children program into the screen objects; and the formal rules that ensue from these

actions. These interact with the children’s developing conceptions of these rules as

prototype formal systems. The research focus in this project differs from that in

most (all?) quantitative studies in that the focus is the development of these basic

formal systems, and not the acquisition of mathematical content or motivation. I

now consider a qualitative study where specific tool use arose from the gameplay

rather than by design.

Avraamidou, Monaghan, and Walker (2012) report on the game play of an

11-year-old boy, Costas, as he built virtual houses in the commercial-off-the-shelf

7 This has links to ‘peering under the bonnet, as Maple does’ (Sect. 3.5).
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life simulation game The Sims in his bedroom; the theoretical framework draws on

Saxe’s (1991) four-parameter model of emergent goals in practice (see Sect.

14.3.1). In The Sims the goal is determined by the player and usually involves

providing a virtual family with life’s necessities—a house, education, jobs, recre-

ation, etc. The player receives a limited sum of virtual money at the start of the

game but must ensure that the family has an income in order to survive. The game

has three modes: live (watch a family grow up over virtual time), buy (houses and
artefacts) and build (houses and artefacts) and I report on a build set of Costas’
actions where he has built two trial houses and now wants to build his ‘dream
house’ within a specific budget. The Sims has a number of in-built house construc-

tion tools, e.g. square tiles that determine the floor area, rectangles for walls, etc.

Gee and Hayes (2010) claim that in The Sims buildmode ‘tools require one to use a
good deal of geometry to get all the angles and shapes to fit perfectly together’
(p. 114). I consider specific aspects surrounding tool use in Costas’ third attempt at

building his dream house. It should be noted that Costas has a strong desire to make

the house symmetric and that he encountered problems in ensuring that his first two

houses were symmetric (and these problems resulted in a loss of virtual money).

Costas’ goals mainly emerged through a combination of house building tools,

mathematics and everyday knowledge. For example, he created the sides of the

house to be an even number of The Sims length units long because virtual doors

available were two units long and he discovered that he could not build a central

door in a wall an odd number of units long. Costas wanted to make a swimming

pool on the side of his 18 by 18 unit house. Costas comments:

Since the other houses were too big when I added extra rows for the pool, I am thinking of

cutting the (unwanted) cubes8 differently this time. I think I will draw a line in the middle

like I did with the cubes before, and then start cutting from left and right. (Avraamidou

et al., 2012, p. 14).

The Sims does not allow one to draw a line in the middle so Costas created a

two-cube (two square tiles) artefact, that he painted black and placed on the ninth

and tenth unit lengths of the 18 by 18 unit house, to act as an indicator of a middle

line whilst he ‘cut cubes’. Avraamidou et al. (2012) argue that the creation and use

of this artefact/tool is a mathematical abstraction in the sense of Hershkowitz,

Schwarz, and Dreyfus (2001).

The Playground project and the report by Avraamidou et al. (2012) provide

evidence that designed and emergent artefacts can foster the development of

mathematical actions and thought in gameplay. However, the mathematics behind

these actions and thoughts (in these two studies and, I suspect, quite generally) is

not mathematics which is ‘privileged’ (Wertsch, 1991) in curriculum documents.

This is an issue explored in the last section.

8 ‘cubes’ is Costas’ term for the square floor tiles available in The Sims build mode.
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18.5 Implications for the Future

Although there is potential for mathematical learning in the gameplay of many

games, there are also many problems. Although one might expect that games will

motivate learners, research on student motivation is mixed—positive effects in

some studies, no significant differences in other studies. Similar mixed results

exist in research on student achievement through gameplay and this may simply

be down to the games investigated—some games, for reasons we do not (yet) know,

do promote measurable mathematical thinking in some learners, other games do

not. An additional problem with regard to achievement and mathematical thinking

is that mathematical thinking promoted in gameplay is often not related to the

mathematics privileged by mathematics curricula. Costas’ use of the two-cube

artefact he constructed is (for an 11-year-old) creative but it cannot, as far as I

know, be mapped onto mathematics in a curriculum document; Bourgonjon

et al. (2013) argue that even when teachers recognise learning opportunities pro-

moted by games they are reluctant to use them in their teaching if there is no explicit

connection to curricula. This last statement could be phrased ‘teachers do not see

the curricula warrants’ of games but another problematic warrant with regard to

many games is the mathematical warrant of the game itself. I unpack what I have

just said by returning to Brousseau, Nim and the situations of action, formulation

and validation (discussed in Sect. 18.4.1). Brousseau’s experimental classroom

work was designed to ensure that all three situations were realised by students.

The situation of validation is important to the culture of mathematics as it is in this

situation that students attempt to justify their formulations mathematically. Math-

ematically acceptable formulations can be realised, by teacher mediation, in class-

rooms but in gameplay the warrant for a formulation may be (and, I believe, usually

is) ‘my strategy worked’, which is not a mathematical warrant.

A possible avenue for future work on games as a resource for learning mathe-

matics is the design of games that encourage reflective mathematisation of

gameplay by the gamers as this may lead to mathematical warrants for a formula-

tion, strategy or action. A focus on the artefacts/tools involved in gameplay may be

useful in such designs. Examples above which approximate to this future scenario

are: Brousseau’s version of Nim; the use of the doubling cube in Backgammon; the

use of external partially mathematicised artefacts such as that displayed in

Table 18.1; funnelling students towards specific use of tools such as in the calcu-

lator multiplication game; Nilsson’s dice games; the explicit focus on rules in the

Game Formal/Game Outside/Game Inside in the Playground project.

Further development towards the design of games which may promote mathe-

matics with explicit connections to curricula may be provided through a consider-

ation of the affordances and constraints of games (and artefacts/tools associated

with gameplay) for formulations that ‘fit’ with the culture of mathematics. This is

related to what Turner and Turner (2002) call ‘cultural affordances’:
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A cultural affordance (CA) is a feature or set of features which arises from the making,

using or modifying of the artefact and in doing so endowing it with the values of culture

from which it arises. (Turner & Turner, 2002, p. 94).

The Turners developed this construct in their design of professional training

simulation software for maritime and offshore work practices but it has been

applied in the design of software for high school algebra (see Chiappini, 2012;

see Sect. 9.2.2). The construct is not straightforward to apply to student use of

mathematical software (see Monaghan & Mason, 2013) but holds out potential for

the design of games that encourage mathematical warrants for strategies and actions

in gameplay.
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Chapter 19

Connectivity in Mathematics Education:
Drawing Some Lessons from the Current
Experiences and Questioning the Future
of the Concept

Luc Trouche

19.1 Introduction

‘Connecting’ is certainly the best representative verb of the Internet era. It gave

matter to a lot of constructs, some grounded in research and some purely specula-

tive, ‘digital natives’ being an example of the later (Helsper & Eynon, 2010). The

noun coming from this verb, connectivity, is now used in a number of contexts. The

wiki based open content dictionary Wiktionary proposed three meanings: the state

of being connected, the ability to make a connection between two or more points in

a network in a graph, and a measure of concatenated adjacency (the number of ways

that points are connected to each other).

In this Chapter, I focus down on mathematics education issues grounded, as far

as possible (because we have not always a sufficient hindsight) in research. In the

mathematics education community, the 17th ICMI study (already evoked in

Chap. 12) evidenced a strong emergence of the notion of connectivity, constituting

the focus of a panel of the conference (Hoyles et al., 2010). The subject Index of this

ICMI study proceedings (Hoyles & Lagrange, 2010, p. 486) reveals a number of

occurrences, with different meanings: the first one is a technological one (the

potential, for a given artefact, or an environment, for connecting people to people

and/or to Internet); the second one is a social one (the state for people, of being

connected vs. the ability to make connections) to other people and/or to Internet; the

third one is a cognitive one (the state vs. the ability, for an individual, of connecting
different mathematical representations and meanings); the fourth one is a theoret-
ical one (the state, for theoretical frameworks, of being connected vs. the ability to

make connections to other theoretical frameworks).

Such a dispersion of meanings is a feature of an emerging concept, and of its

potential. As stated by Hoyles et al. (2010), p. 440: ‘[. . .] if and how connectivity, in

whatever form, transforms mathematical practices in school is a matter of future

investigation’. I will conceive this chapter with respect to the emerging situation of

this concept, looking at connectivity in the thread of my own experience as a
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teacher and researcher in mathematics education, over the last (at least) 30 years. It

seems to me that.

The first section looks at connectivity through the evolution of students’ con-
nections to other students, and to mathematics, over their classroom activities. The

second section considers connectivity through the evolution of teachers’ connec-
tions to other teachers, and to mathematics resources, over their documentation
work (Chap. 15). The third section, back to the ICMI study connectivity panel,

questions the notion of cognitive connectivity. The conclusion discusses the

dynamics of the concept of connectivity itself.

19.2 Connecting Students and Mathematics Through
Digital Artefacts

I present in this section three environments I successively work with, bringing out

the strong evolution of students activity according to the available connecting tools,
keeping in mind that an environment for mathematics learning is not only consti-

tuted by sole tools, but also by mathematical problems and teacher’ instrumental
orchestrations (Sect. 15.2.5).

19.2.1 The Sherpa Student Configuration

I could say that the environment based on the sherpa-student configuration

(Fig. 19.1) has grounded my reflection about the teacher’s role in computerised

environments. As a teacher (around 1990), confronted to the usages by students of

more and more powerful calculators (see Chap. 13), I wanted to make communicate

the small screens, i.e. to go against a spontaneous tendency of each student to keep

for him what he was doing, and thinking, with his own calculator. The opportunity

for doing that was offered by the calculator manufacturers, providing teachers with

a ‘view-screen’, that is: a tablet with a transparent screen, and a short cable
connecting it to a calculator (see Fig. 19.1). This device, posed on an overhead

projector, allows the calculator screen to be displayed on the classroom whiteboard,

or a screen, and then to be visible by the whole classroom. I underline the

expression ‘short cable’, because it was quite obvious, for the manufacturer, that

the calculator at stake was the teacher’s one: this device was intended to allow the

teacher to project his own calculator on the screen (it was then in this way that

the advertising pictures demonstrates its use). My idea was, instead of connecting to

the view-screen my calculator, to connect one of my students’ calculators.1 I name

1 To be noticed, shortly after its first appearance, the cable at stake became longer, allowing a

wider use of the view-screen: the material evolves for fitting the usages. . .
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him/her the sherpa-student, referring to the person who guides and who carries the

load during expeditions in the Himalaya Mountains. My intention was then to

underline the responsibility of this student helping the class to find its way towards

the solution of a given problem, and the difficulty of the task.
I presented (Trouche, 2004, p. 299) various exploitation modes of such a

configuration, and their possible consequences, in terms of instrumentation and

instrumentalisation processes (Sect. 10.4):

– Sometimes calculators are turned off (and so is the overhead projector): it is then a

matter of paper/pencil environment work.

– Sometimes both calculators and overhead projector are turned on and work is strictly

guided by the sherpa-student under the supervision of the teacher (students are supposed

to have exactly the same thing on their calculator screens as is on the projector screen).

Instrumentation and instrumentalisation processes are then strongly constrained.

– Sometimes calculators are on as well as the overhead projector and work is free for a

given time. Instrumentation and instrumentalisation processes are then relatively

constrained (by the type of activities and by referring to the sherpa student’s calculator
which remains visible on the big screen).

– Sometimes calculators are on and the projector is off. Instrumentation and instrumenta-

lisation processes are then only weakly constrained.

These various modes seems to illustrate what Healy (2002) termed filling out and filling

in, in the course of classroom social interaction:—when the sherpa-student’s initiative is

free, it is possible for mathematically significant issues to arise out of the student’s own
constructive efforts (this is a filling out approach);—when the sherpa-student is guided by

the teacher, it is possible for mathematically significant issues to become appropriated

during the student’s own constructive efforts (filling in approach).

Finally, the usage of such a configuration (Trouche, 2004) evidences that the

sole connection of one student’s calculator to the common classroom screen,

Fig. 19.1 The didactical configuration of the Sherpa-student (Trouche, 2004, p. 298)
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monitored by the teacher, contributes to foster the interactions between the stu-

dents’ instruments and their mathematical thinking. It was, for me, a first occasion

of analysing the strong potential of connectivity, understood actually in the three

first meanings of this word (see Introduction below): opening opportunities of

connections between one student and the whole class through a technological

device; opening opportunities of connections between students through the com-

mon classroom screen; and opening opportunities of connections between different

mathematical representations and meanings, each student having to combine what

appears on her calculators screen, and what appears on the classroom screen.

19.2.2 The Calculators Network Configuration

The second occasion for meeting connectivity happens 10 years after (around

2000), when, as a researcher, I analysed the potential of a new device,

TI-Navigator, providing wireless communications between students’ graphic cal-

culators and the teacher’s personal computer (Fig. 19.2). This device consists in an

amplification of the view-screen potential, as it allows the teacher to see, on her

screen, all the students’ screens; she can then decide to connect a given calculator

(or some of them), throughout her own computer, to the classroom screen.2 It leads

to a new organisation of the classroom workspace. A manufacturer advertising

(Fig. 19.2, left) proposed a configuration attached to a technical constraint: the

wireless connection works between hubs, each of them linking four calculators, and

the teacher’s computer. Then, a natural decision is to split the class into groups of

four students. The team of teachers I observed (Hoyles et al., 2010, p. 449) decided

Fig. 19.2 New supports for connecting students’ calculators and classroom screen (Hoyles et al.,

2010, p. 449)

2 Actually, in the context of the sherpa-student configuration, I used also to change, during a given

mathematical activity, the student playing this role, but, for doing this, I had to plug the cable in

another calculator, or to exchange the places occupied by two students. Not so easy to do on the fly.
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to slightly adapt this organisation (Fig. 19.2, right), aiming to structure the discus-

sion not only between each students group and the teacher, but between the

different groups through the common screen; it appears that the mathematical

activity was very sensitive to such an adaptation, that fostered the mathematical

discussions in the whole classroom. Actually, the drawing (Fig. 19.1, right) looks

like the spatial organisation of an orchestra, evidencing the role of the teacher

orchestrating the mathematical situation at stake, taking care of all the students’
instruments.

As for the view-screen (Sect. 19.2.1), the technical device does not give matter

for a sole teacher’s mode of use (the spatial organisation of students, above,

constitutes already a strong didactical choice). Actually, Ti-Navigator allows the

teacher to use two main configurations: the common coordinate system configura-

tion: displaying all of the pupils’ data, for example, points or curves, in a single

coordinate system (Fig. 19.3, left); the screen mosaic configuration: displaying, on
the class screen, all (or some) of the pupils’ calculator screens in quasi-real time

(Fig. 19.3, right).3

These two configurations have the common property of connecting all (or some

of) the students’ calculators to a common workspace, situated on the class screen.

The orchestration of such a device remains then in the teacher’s hands, having to

choose the relevant configuration corresponding to her didactical choice, and to

select students’ calculators to be ‘published’.
The mathematical problem giving matter to these screens was (Hoyles et al.,

2010, pp. 447–448): an isosceles triangle ABC has two sides AB and AC measuring

4 cm. What is its area? The students tried various values for the third slide BC,

drawing the corresponding triangles, measuring their height, and computing their

area. Then they send, via their calculators and the hub, the couples (length of BC;

area of ABC) to the common screen, obtaining, as a collective result, a cloud of

points (Fig. 19.3, left). Then they tried to model this phenomenon with a function,

Fig. 19.3 Two main configurations for the TI-Navigator configuration, examples (Hoyles et al.,

2010, pp. 447–448)

3 This application comes actually from the development, by Uri Wilenski, of the HubNet module,

see Sect. 19.4.1.
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obtaining different curves that the teacher decided to display on the common screen

(Fig. 19.3, right).

In Hoyles et al. (2010), p. 447, I draw some lessons of a long term use of

TI-Navigator by experienced teachers:

The work with the TI Navigator was found to foster an emergent real community of practice
(Wenger, 1998) in the classroom in which we could distinguish three fundamental aspects,

participation, reification, and the existence of shared resources, whose major elements are

summarised below:

– Participation with the engagement of students in the mathematical activity and debate.

– Reification with the collaborative creation of mathematical objects (a good example

being the collective creation of the graph of a function that gradually becomes an easily

identifiable object) (Fig. 19.3, right).

– Shared resources most notably the public shared board, which is a place where every

student can show her/his mathematical creation. Each student is confronted to her/his

production and those of other pupils.

– In traditional classrooms, speech or writing (when asked or allowed by the teacher)

directly on the board are the ways students can express themselves and share with

others. With TI Navigator, the situation is very different, for two main reasons:

– A new interactivity was fostered between the artefact and the student, and between

students themselves: students conveys their messages through the artefact; the artefact

acts on the students enabling them to extract themselves from their productions thus

freeing themselves to become more easily involved in peer exchanges. Thus the

common space became a space of debate and exchange that aimed to elaborate a social

‘mathematical truth’.
– Each student becomes detached from his/her production as a distance is created between

student and the expression of her/his creation; this distance seemed to improve the

reflection on practice. The student became involved in the class activity in a different

way as the tool maintained this distance between a student and the results s/he proposed

to the class and to the teacher.

As in the case of the sherpa-student configuration, we can notice here the three

aspects of connectivity (technological, social and cognitive), with, clearly, didac-

tical difficulties added for orchestrating mathematical activities in such environ-

ments: the teacher has to simultaneously manage all the students calculator
screens, and to take relevant decisions on the fly. She has then to have a deep

understanding of the didactical variables of the situation, in order to play on them,

according to the dynamics of the classroom activity. Hoyles, Noss, and Kent (2004)

give a good description of such a teacher’s expertise, based on the collaborative

work of a teachers’ team. I will go back, regarding connectivity, to teachers work in

Sect. 19.3.

19.2.3 Internet as a Connectivity Multiplier

The third occasion for meeting ‘connectivity for students’ happens 10 years after

(around 2010) when I was in charge of a e-culture teaching unit for students (third
university year) aiming to become mathematic teachers. The name itself of this unit
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(e-culture) indicates the major change happening at this time: the integration of

Internet for teaching. During the whole sessions, students were connected to

Internet and were free to use online software (mainly Geogebra). I integrated also

an application4 providing online collaborative sheets named Pad (Fig. 19.4),

allowing students to discuss together (each contributor being identified by a colour,

and students using also a chat for commenting their current work). It is up to the

teacher: to organise such a sheet for the whole class, or for pairs of students; to be

part, or not, of the discussion. Obviously, in such a context, all the tools are not

under the teacher’s control, as the students can use their own tools for communi-

cating between them. . . or with somebody else outside!

In this period, I welcomed a Mexican PhD student, aiming to analyse students’
work and associated orchestrations in the Internet era (Betancourt, 2014). It was for

me a good opportunity to look at connectivity through the eyes of an advanced

student.

Betancourt’s thesis is related to ‘learning of linear algebra supported by digital

resources’. In his work (Betancourt, 2014), he related a practical work he proposed,
in the context of this e-culture teaching unit, to the students working by pairs:

students working together, intentionally, did not seat next to each other, then they

had to use the Internet facilities to communicate. The mathematical problem at

Fig. 19.4 An interface allowing students to share their ideas (screen copy of a designer’s
advertising)

4 Framapad: https://framapad.org
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stake consists in modelling the process of a video downloading through Internet.

The two questions asked to the students, using an interface for analysing the

downloading process (Fig. 19.5), were: is the downloading velocity constant?

How, according to you, does the application compute, at any moment, the

remaining time for achieving the downloading (for example, Fig. 19.5, the

remaining time to download 16.2 Mo is 1.25 s).

The activity proposed to students (Betancourt 2014, p. 143) was divided in five

phases (Fig. 19.6): the teacher introducing the problem and the tools to be used;

each student downloading the video, getting data and integrating them in Geogebra;

discussing within the pair and trying to model the process; downloading again the

video for checking the model; final discussion and conclusion.

I cannot, in the frame of this chapter, analyse the content of the students’
activity, but I would like to underline some elements of structure over these five

phases, following the activity of a given student (Fig. 19.6):

– Phase 1: he lessens to the teacher, then interacted, using the pad, with his pair

colleague, expressing some doubts about the constant velocity of the

downloading process. At the end of this phase, he interacted with the teacher

(Betancourt, 2014, p. 121):

Fig. 19.5 Interface for following the video downloading (Betancourt, 2014, p. 82)

1 2

Successive phases of problem solving

3 4 5

Interacting with the teacher

Downloading the video

Using Geogebra

Communicating with a pad

Writing on his sheet

0mn 25mn 50mn

Time

75mn 100mn 120mn

Fig. 19.6 Structure of a student’s activity and tools used over 2 h (adapted from Betancourt, 2014,

p. 105)
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The student S: In my opinion, the velocity of the downloading process is not

constant.

The teacher T: Perhaps, but how could you justify this opinion for your colleagues?

S: The downloading velocity, at a given moment, depends on the number of persons

downloading the video at the same moment.

T: Perhaps, but how can you evidence this using the data you will pick up from the

analysis of the real downloading of the video?

– Phase 2 is dedicated to the analysis of the downloading process and the use of

Geogebra for displaying the data.

– During the following phases, the pad and Geogebra seem to be the essential

supports of the student’s reflection, combining individual mathematics manipu-

lations using the dynamic geometry software, and collective mathematical

discussion using the online writing tool.

The use of the Internet, compared to the calculators network configuration,

clearly changes the connectivity regulation. The students’ interactions are not

monitored via the teacher’s computer and displayed on the common workspace,

but the students’ pairs freely organised their work: on their own screen, it is up to

them to manage the part of their working space dedicated to Geogebra, and the part
dedicated to the Pad. With respect to the phases of the mathematics activity

orchestrated by the teacher, the two students can negotiate the organisation of

their working time, and eventually split their work in two parts, one for each

of them.

The question at stake—studying the behaviour of Internet through the velocity

of a downloading process—illustrates in some way the metamorphosis of the

mathematics learning landscape due to the emergence of Internet: Internet

appears as a multiplier of the teacher’s orchestration choices (he can organise

students in groups of two, three, or more; with students face-to-face, or at a

distance; he can use a common class working space, for showing to the whole

class the work of a group, or several groups of students. . . Internet appears as

rebalancing teacher and students’ responsibilities towards the progress of knowl-
edge in the classroom. Last but not least, Internet appears as a connectivity
multiplier, opening opportunities for connecting students to students (in this

example via a Pad) and for connecting students to Internet resources (in this

example Geogebra).

Actually, as underlined Betancourt (2010, p. 127), Geogebra was not the sole

resource to be exploited. Students tried also, using their browser, to get direct

answers to the problem at stake, with, as I noticed myself, keywords extracted

from the teacher’s question, as ‘modelling downloading process velocity’, aiming

to find a direct answer. . . But, doing that, in this case, they did not succeed to find

relevant resources.

The Betancourt’s experience, with the associated artefacts (essentially a Pad and
a dynamic geometry software), could induce the idea of a double connectivity level:

for manipulating mathematics objects, students work individually with a given

software; for discussing their methods and results, students work collectively.
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What happens effectively in this particular experience is due to the artefacts

available for the students. It could work differently with other artefacts. It was

the case, in the frame of the same e-culture teaching unit, sometimes after this first

experiment, when an invited researcher, Franck Bellemain (2014), proposed a new

activity based on a new collaborative dynamic geometry software, Tabulae.5 This

environment (Fig. 19.7) proposes a window combining a space (left) for the

individual student’s work, and a space (right) for designing collaboratively a

mathematical figure and exchanging comments. In such an environment, both

mathematical work and associated discussion can be done collaboratively.

In this section, from the sherpa-student configuration to the calculator network

configuration, and then to the Internet universe, I evidenced, over 20 years, the

emergence of connectivity at technological, social and cognitive levels, as a major

potential factor for renewing students’ mathematical activity. This connectivity

implies an added complexity for the teacher, that has to conceive and manage

orchestrations making profit of these new opportunities. In which way connectivity

could also benefit to teachers work? This is the purpose of the following section.

Fig. 19.7 An interface combining individual and collective geometrical work (Bellemain, 2014,

p. 31)

5 Developed by Luiz Carlos Guimar~aes at the LIMC laboratory (Laborat�orio de Pesquisa e

Desenvolvimento em Ensino de Matemática e Ciências, http://www.limc.ufrj.br/site/limc_

olaboratorio.html) in the Federal University of Rio de Janeiro.

442 19 Connectivity in Mathematics Education. . .

http://www.limc.ufrj.br/site/limc_olaboratorio.html
http://www.limc.ufrj.br/site/limc_olaboratorio.html


19.3 Connecting Teachers and Mathematics Teaching
Knowledge Through Internet Resources

In this section, I follow again the thread of my own experience for analysing the

potential and real effect of connectivity for ‘teachers working with teachers’. For
this purpose, I choose three entries: the experience, from 2000 to 2006, of a teacher

training organisation, the SFoDEM; the experience, from 2001, of a teacher online

organisation; and the recent experience (2014) of a MOOC aiming to develop the

usage of tools in mathematics teaching.

19.3.1 The SFoDEM, Monitoring Teachers
for Collaboratively Design Teaching Resources

The SFoDEM6 was developed in the region of Montpellier, France, from 2000 to

2006, by the local Institute of Research on Mathematics Teaching (IREM, http://

www.irem.univ-montp2.fr). The considerations for designing such on organisation

were that, in spite of many institutional actions and the enthusiasm of pioneering

teachers, in spite of the rapid evolution of technological tools and equipment,

integration of ICT into mathematics teaching was slowly increasing in France.

Guin and Trouche (2005), pp. 1023–1024 explained the SFoDEM objective, and

described its organisation:

[. . .] the main objective of SFoDEMwas to provide a continuous support for teachers in the

conception, appropriation and experimentation of pedagogical resources to get over the

crucial transition to the pedagogical act. This requires a collaboration to be built between

teachers with different teaching experiences aiming to support their day-to-day practice.

Various themes were chosen (transition from numerical to algebraic setting and ICT;

graphic and symbolic calculators; experiments of teaching sequences towards dynamic

geometric diagrams; simulation of random experiences; and cooperative problem solving

via Internet) to find invariants in distance training viable beyond the organization and these

studied themes [. . .]
SFoDEM is piloted by a leadership team of three researchers and its platform is

managed by an administrator. About 15 trainers are involved in the training network and

every year since September 2000, about 100 teachers volunteer to participate in this project.

The training committee (composed of the leadership team, the administrator and the

network of trainers) manages the coordination of the five themes: first experiments on

distance teaching have pointed out the necessity of compensating distance with an

established structured and controlled organization and showed the crucial role of planning

and regulation [. . .]. The organization alternates face-to-face meetings and distance periods

(the trainers of each theme have a face-to-face meeting each week, the training committee

each month, and each theme—trainers and trainees—meets four times a year).

6 SFoDEM stands for Suivi de Formation �a Distance des Enseignants de Mathématiques, what
could be translated by «Distant follow-up of Mathematics Teachers Training »
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The five themes reveal the feature of this period, a transition one between the

calculator era and the Internet era. In some sense, I could say that the SFoDEM

rested on social connectivity, teaching and training connectivity, and mathematics
connectivity to develop the integration of ICT in mathematics teaching. By social

connectivity I mean the efforts made for connecting: teachers with trainers on a

continuous way (both face-to-face and at distance); the leadership team; and the

training committee. By teaching and training connectivity, I mean the efforts made

for connecting the day-to-day teaching practice and the training one, the training

consisting in designing pedagogical resources to be experimented in each trainees’
classroom. By mathematics connectivity, I mean the efforts made for connecting

different mathematical fields (calculus, algebra, geometry and statistics) and dif-

ferent artefacts (calculators, dynamic geometry software, Internet) to find invariants

of a training organisation aiming to foster teachers’ use of ICT.
The SFoDEM objective was quite ambitious, justifying its long time duration. Its

pilots draw some main lessons in a CDRom (Guin, Joab, & Trouche, 2006),

organised in two parts: a design path, and a library of pedagogical resources:

– The design path organised in five steps untitled ‘Exploring’, ‘Defining’, ‘Think-
ing’, ‘Exchanging’, ‘Revising’, evidenced the central place of Internet for

supporting the collaborative design of resources. For example, the first step,

‘Exploring’, consists, before beginning a new design, in (Fig. 19.2): visiting the

main existing repositories, particularly the IREM one and the Mathenpoche one
(see Sect. 19.3.2); reading already published reports of designing/using

resources; searching with a browser and relevant keywords existing resources

able to inspire a new design. The four following steps (‘Defining’, ‘Thinking’,
‘Exchanging’, ‘Revising’) needed the use of an online platform dedicated to the

interactions between the members of the project. Finally the achievement of the

design path leaded to the development of a technological connectivity
(Fig. 19.8).

– The library of pedagogical resources evidences the importance of a common
model of pedagogical resources for facilitating both the design, the exchange
and the appropriation of a given resource. This common model was composed,

Fig. 19.8 The first step, ‘Exploring’ of the design path (Guin, Joab, & Trouche, 2006)
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at the end of the SFoDEM experiment, of: an identification sheet (including

metadata aiming to situate the resource in a larger repository), a student sheet

(explaining the mathematical task at stake), a teacher sheet (underlining didactical

challenges), scenarios of use and usage reports (enriched over the successive

implementation of the resource), traces of students work (evidencing some critical

points), a technical sheet (supporting the implementation of the resource in

different technological environments) and a CV (‘curriculum vitae’ of the

resource, tracing the main step of its evolution). Finally, the achievement of the

library of pedagogical resources leaded to what I could name a documentation
connectivity (documentation seized in the sense introduced Sect. 15.3.2): the

documentation connectivity of a given resource should be defined as its potential

for connecting it to different possible usages and associated traces, to different

technological possible environments, to different didactical difficulties, and for

relying it to its own genesis (where does the resource come from?) and to its

different designers.

Such a technological and a documentation connectivity do not develop on a

continuous way over the whole life on SFoDEM. Guin and Trouche (2005), p. 2024

underline some major difficulties:

– From a technological point of view: ‘this organisation has rapidly revealed that

schools equipment [in terms of Internet access] is frequently inadequate or

inaccessible’.
– From the trainers point of view: ‘usual trainers’ strategies were essentially based

on imitation strategies where trainees were asked to take the position of a

student’.
– From the process of design itself:

Moreover, initial resources provided by trainers, often expert resources, were too complex

for an experimentation by trainees in their own class. Then, there was an evolution towards

simpler resources, easier to implement and towards virtual workshops of trainees creating
resources from initial ideas, named ‘germs of resources’. This evolution may be considered

as an evolution from a top-down approach towards a bottom-up approach.

Finally, I retain, from the SFoDEM experience, three major lessons: obtaining

significant results in terms of integrating ICT in classroom practices needs a strong

organisation mobilising over the time researchers and trainers; in this process,

social connectivity, technological connectivity, and documentation connectivity

seem to jointly develop (other examples can be found in Gueudet & Trouche,

2011); the development of both technological and social connectivity seems to

rebalance the responsibilities of trainers and trainees with respect to the design of

resources (see the virtual workshops of trainees), recalling the phenomena arising in

connected classrooms (Sect. 19.2.3).

Some difficulties encountered seem to be linked to a period of transition
characterised both by the emergence of Internet (just beginning to be a tool

available in schools) and the emergence of online communities, not so easy

among teachers The following section proposes another case study of an online

community developing in the same period, but without any institutional support.
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19.3.2 Sésamath, Teachers Connecting Teachers

Sésamath is a French association created in 2001. It gathers in-service mathe-

matics teachers, aiming to ‘freely distribute resources for mathematics teach-

ing’. Its website front page (http://www.sesamath.net/) claims ‘mathematics for
everybody’, ‘working together, supporting one another, communicating!’. Its
growth has been quite rapid: today, it gathers 100 subscribers, 5000 teachers

participating in various projects, and its website proposes 45,000 digital

resources for mathematics teaching and welcomes about one million visits,

each month. One reason for this growth could be the existence of the French

network of IREM, which has, in some sense, paved the way since 1970 (see

Chap. 10). But the essential reason seems to be the way this association benefit

from the development of Internet and adapt its way of functioning to this

development.

The development of Sesamath follows a model (Fig. 19.9) evidenced, in the

same period, by other online teachers associations (Gueudet & Trouche, 2012):

– A first group of teachers gathers, for sharing, essentially via Internet,

resources.

– Then this founding group, I will call it the kernel, engages in a cooperative work

(it is generally the moment of the formal creation of the association), sharing not

only resources, but the work for designing them; doing that, it attracts a crown of

teachers interested in making profit of these resources, some of them proposing

their own resources for the benefit of the whole group.

– At last, the founding group deepens its cooperation for thinking together the

whole process of designing the resources and developing the association, mov-

ing towards a real community of practice (Wenger, 1998); doing that, it attracts

successive crowns of teachers, more or less close to the kernel, according to their

engagement in the community project.

Ways of passage
towards the center:
co-training,
co-responsibility
of some tasks...

Time

Collaboration

Cooperation
Cooperation

SharingSharing

Sharing

Fig. 19.9 Development of an online teachers community designing and sharing resources

(Gueudet & Trouche, 2012, p. 311)
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These crowns are not tight: the growing of the ‘rolling stone’ supposes, for the
collaborating kernel, to carefully think ways of passage from the distant crowns

towards the centre (Fig. 19.9).

In 2015, the current president of the Sesamath association, Hélène Gringoz,

summarised, during a meeting of a research project,7 the genesis of her association

The association was established on October 31st 2001, [. . .]. At the very beginning, it’s ten
Mathematics teachers who were very, very fan of technology in general, for example

calculator, or overhead projector. That was 15 years ago, so the computer was absolutely

not as developed as today. And these teachers created websites, and they created resources

they put on these websites for their own teaching. [. . .] They were actually teachers who

met because they create resources they missed for their own teaching, they create them

together and then put them available to all teachers. [. . .] For 15 years, it is this spirit that

will prevail: the creation of collaborative resources made available to all, it is really the

foundation of our association.

The creation of resources took different forms. The best known is Mathenpoche8:

i.e. the creation, in two years, of a set of interactive exercises that covered the range of

teaching level from 6th to 9th grade (the French middle school). And the first printed

edition of these exercises occurred in 2002 [. . .] And since, it works well, it was decided in
2005 to publish the first textbook, for the 7th grade [. . .] We were seen as precursors, as

people a bit wacky, quite innovative but not really serious [. . .] This situation changed in

2005, since our textbook covered 15 % of the market.9 And so, it became credible, since we

were followed by a number of teachers [. . .] Today, 15 years after its creation, Sésamath

hosts 45,000 resources, addressing all the teaching levels from 1st grade to the University.

At the beginning, we had to face the distribution of resources, it was very complicated,

Internet was not working very well. We were just teachers, and therefore, we trained each

other so that the distribution of resources goes as well as possible. [. . .] This led us to create
tools as mail servers, list servers, and a collaborative interface. When we began to write in

2003–2004, downloading a file was very heavy and the speed was very low. So, we created

in 2003 an interface that can store files and send links automatically via emails, in order to

avoid downloading them each time [. . .].
As the basis of our association is the distribution of resources, gradually came the idea

that all our online resources should be free [. . .].
Our development allows us to propose, to all the mathematics teachers, a new interface,

Labomep,10 a mathematics laboratory where teachers can appropriate Sésamath resources,

7 It was the ReVEA project (‘Living resources for learning and teaching’, www.anr-revea.fr). The
whole interview (audio) is available on the page presenting the ReVEA meeting http://ife.ens-

lyon.fr/ife/recherche/groupes-de-travail/revea-collectif. The translation has been made by the

author of this chapter.
8 http://mathenpoche.sesamath.net. The English translation of Mathenpoche should be «Maths in

the pocket »
9 To be noticed: the online version of the Sésamath textbook are, from the beginning, free. Their

printed versions are quite cheap (half the price of an ‘ordinary’ textbook), as the Sésamath authors

do not get royalties for their work. The royalties, as low as possible, go to the association, for

allowing it to hire the technicians necessary to develop its digital environment.
10 Labomep (http://www.labomep.net/fiches/fiche26.php), meaning ‘Laboratory for math in the

pocket’, is an interface opened for schools. Once a school is identified, each teacher, individually

or collectively with her colleagues, can design her own resources in combining Sésamath

resources. Then, she can, through the Sésamath interface, make these resources available for her

students.
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combine them with their own resources as they wish. That is the way we develop Sésamath

step by step, and that’s it: Sésamath offers now a portal, fifteen websites, resources for

classroom, for teacher and for student. . ..

The Sésamath president interview is very illuminating, bringing out the way the

association develops using the connecting Internet potential, and sometimes antic-

ipating it. A complementary analysis of Sésamath is given by Pepin, Gueudet,

Yerushalmy, Trouche, and Chazan (2015), evidencing how Sésamath develops a

collaborative design involving a number of teachers—the social connectivity point
of view—and improve its resources documentation connectivity over the design of

successive textbooks (Sect. 19.3.1):

The mode of design of these textbooks involves a large number of actors. Many teachers

(approximately one hundred, for each textbook) have contributed to its design, in a

collaborative and iterative way, as ‘authors of content’, or ‘designers of didactical scenar-
ios’, or ‘testers’, or ‘experimenters’ in classes (a single teacher could have several roles, or

change roles at different moments). The textbook resulting from this process is expected to

fit the wishes and needs of a large number of teachers.

Far from being a simple textbook, the Sesamath textbooks constitute a hybrid system of

resources for teaching (i.e., including a classical structure in chapters, online supplements,

animated corrections). Following their development helps to understand this systemic

aspect:

– The first model of Sesamath textbooks was a single static book, available both online

(under a pdf, but also an odt format, allowing teachers to make modifications) and in

hard copy, accompanied by separated animations on line, a set of Mathenpoche exer-

cises, etc. (i.e. a real resource system, see Figure 19.1).
– The second model was a flexible and dynamic digital textbook, which a teacher could

organize according to his/her needs, with animation and extra exercises integrated in

each chapter.

– The third model was both a flexible and dynamic digital textbook and a laboratory for

collaboratively adjusting the textbook to the needs and projects of the community

(school, team of teachers). This laboratory, named LaboMEP allows teachers to develop

and share their own lessons, but also to differentiate their teaching according to the

results of their students.

As for the SFoDEM case, social connectivity, technological connectivity, and

documentation connectivity jointly develop. Besides, some differences between the

SFoDEM and the Sésamath cases are clear: nor researcher, or trainers, or institu-

tional support in the second case. SFoDEM designed a limited numbers of resources

for a limited number of teachers; on the contrary, Sésamath aimed to cover, with its

resources, the whole range of the curriculum needs, and to be in touch with the

biggest number of teachers. For guarantying the quality of its resources, SFoDEM

relies on a careful didactical analysis by experts of the domain; Sésamath counts

upon the contribution of multiple users, allowing the resources to be enriched (and

sometimes corrected).

Roughly speaking, I could say that SFoDEM illustrates the web.1 connectivity
and Sésamath the web.2 connectivity, characterised by more interactivity, simplic-

ity and flexibility (O’Reilly, 2005). Is it possible to combine, in developing new

forms of connectivity, both the monitoring of experts and the implication of a huge

number of resources and users? It is one of the challenges of the MOOCs, I focus on

it in the following section.

448 19 Connectivity in Mathematics Education. . .



19.3.3 The MOOC Initiative, as a Connectivity Multiplier

I report in this section on my recent experience in MOOC, opening, for me, new

horizon for thinking the connectivity potential in mathematics education.

Opening Wikipedia this morning (10 June 2015), I got this definition for MOOC:

A massive open online course (MOOC/muk/) is an online course aimed at unlimited

participation and open access via the web. In addition to traditional course materials such

as filmed lectures, readings, and problem sets, many MOOCs provide interactive user

forums to support community interactions between students, professors, and teaching

assistants (TAs). MOOCs are a recent and widely researched development in distance

education which was first introduced in 2008 and emerged as a popular mode of learning in

2012 (http://en.wikipedia.org/wiki/Massive_open_online_course).

Recently introduced in distance education (Cisel & Bruillard, 2012, Bozkurt

et al., 2015), the MOOC have been, at the beginning, mainly developed by the most

prestigious universities, benefiting of the well recognised expertise of some of their

researchers (see for example the Stanford MOOC on mathematical thinking, taught

by Keith Devlin https://www.coursera.org/course/maththink). The rapid develop-

ment of this very new way of teaching/learning comes with the emergence of a lot

of questions (see Fig. 19.10, on the wikipedia), none of them being really solved, at

the time where these lines are written.

In 2014, based on the experience in this domain of the IREM network (see

Chap. 10) and the IFÉ (French Institute of Education), was launched the MOOC

eFAN Math (meaning: Teaching and Training Teachers for mathematics education

Fig. 19.10 Questioning the true nature of MOOC (2013 @mathplourde)
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in digital environments11). Its targeted audience was teachers and teacher educators

for primary or secondary schools and it aimed to support them for conceiving

lessons where instruments and software effectively support students’ mathematical

activity. For this purpose, it develops a directory of teaching projects, based on the

inputs of the participants, and enriched all over the 5 weeks MOOC duration. The

orchestration of these 5 weeks clearly expresses the intentions of eFAN maths:

– Week 0: presentation of the MOOC, and constitution of teaching projects teams

(the participants were supposed to come into the MOOC with a professional

question, as ‘how introduce symmetry with a dynamic geometry software?’
giving matter to such a team; or to join a team already constituted on a question

having sense for them).

– Week 1: presentation of a gallery of possible instruments for doing mathematics

(the participants may comment, or/and add new instruments); each teaching

project team has to decide which instruments could be used for developing its

projects.

– Week 2: presentation of task design processes for reaching a given didactical

objective in using a given set of instruments; each teaching project team has to

design a relevant task according to its goal and to reflect on the effects of the

selected technological environment on students mathematical thinking.

– Week 3: presentation of implementation processes of a given lesson in a given

technological environment; each project team has to discuss the teacher’s role in
term of orchestration.

– Week 4: presentation of processes and tools for sharing a given resource with

colleagues, for evaluating and revising it; each project team has to apply/discuss

them to the light of its members experiments.

Each week begins with two short videos: a first one summarising the activities

and issues of the previous week, the second one presenting the theoretical elements

grounding the activities of the week to come, the tools to be used by the teams, the

references to go further, and the work to be done. The description of projects in

progress were available for all, and opened to comments. All the teachers following

the MOOC had to answer, each week, a quiz questioning their understanding of the

main notions at stake. Two main tools supported the eFANMaths activities: the first

one, the FUN platform,12 is dedicated by the French Ministry of Higher Education

to the French MOOCs; it hosted the general structure of eFAN Maths,13 its videos

and its quiz. As the FUN platform could not provide tools for collaborative design, a

Moodle platform was opened for welcoming the work of the teaching projects

teams.

11 The MOOC eFAN Maths was hosted by two French institutions: Ecole Normale Supérieure de

Cachan et Ecole Normale Supérieure de Lyon.
12 The platform FUN (France Université Numérique http://www.france-universite-numerique.fr/

moocs.html) is based on the open source technology EdX.
13 https://www.france-universite-numerique-mooc.fr/courses/ENSCachan/20007/Trimestre_3_

2014/about
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It is possible to draw some lessons from the point of view of the eFAN Maths

team, and from a questionnaire fulfilled by the participants (Gueudet, G. (coord.),

2015, Aldon, 2015). The eFAN pedagogical team was composed of 10 researchers

and an engineer coming from the IREM network or from the IFÉ. They all consider

this experience as very productive, but very time consuming (the estimate time for

the whole process of conception and implementation of this MOOC was, for the

whole team, 600 h), and needing to deeply renew the usual teacher training

organisation; they estimate also that the available tools (mainly the FUN platform)

were not at all adapted to the objective (interactivity and connectivity) of the

MOOC. eFAN Math gathered at its beginning 3250 subscribers; the numbers of

video downloading decreased from 2800 (first week) to 860 (fourth week);

169 teaching projects were developed and 500 participants were inscribed on the

Moodle platform dedicated to the work on these projects. In this sense, eFAN

Maths, compared to classical teacher training organisation, appears really as a

connectivity multiplier. Finally 161 participants answered the final questionnaire;

among them, 75 % estimated that eFAN Maths reached its objectives.

The decreasing number of participants is not surprising: for most of the MOOC,

one estimates that the number of participants following the whole training is about

10 %. It was the case for eFAN Maths, if one considers that ‘achieving the training’
corresponds to ‘achieving a teaching project’. The 161 answers to the questionnaire,
corresponding more or less to 50 % of the active participants, are then to be

considered carefully: 68 % of them wish a more focused training (closer to their

teaching, in primary vs. secondary schools, closer to their teaching needs); globally,

they wish to have more time for being able to fully conceive, share, experiment,

discuss, and revise a teaching project; they wish to have a more effective support

from the eFAN team when needed; they wish to dispose of more efficient collab-

orative tools for designing their projects and a more interactive platform for

exchanging with participants and with the pedagogical team.

Some more analyses are certainly needed, for knowing more about the quality of

the teaching projects developed during eFAN Maths (their documentation connec-

tivity, particularly from the point of view of ICT integration), the results for

teachers knowledge (in terms of cognitive connectivity), and practice. But some

results appear critical: the need for time and the complexity of the new equilibrium

to be found both in each teacher classroom and in the MOOC itself; the interest to

base the training on the design of resources meeting the real teachers needs.

The will for fitting as close as possible the local learners needs and to better

monitor their work needs could lead to move towards the notion of SPOC (Small

Private Online Courses), as proposes Fox (2013). Effectively, the eFAN experience

seems to evidence that, when teachers were working in the same school, they

benefit better for the training.

There are also some contradictory tendencies to balance (and decision to be

taken, see Fig. 19.10):
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– Dillenbourg, Fox, Kirchner, Mitchell, and Wirsing (2014) propose diverse

solutions for reinforcing social connectivity within a MOOC, balancing then

the interests of MOOC and SPOC:

How can we motivate MOOC learners and teachers when the teachers may be both

geographically distant and socially disconnected from the learners? MOOCs could, for

example, support reciprocal teaching, direct instruction, mastery learning, peer assessment

and instruction, small-group/community interactions such as dynamic regrouping of

learners to match learning styles and paces, and so on (p. 9).

– Social connectivity and technological connectivity are also to be carefully

combined, as notice Dillenbourg et al. 2014 (p. 5):

MOOCs take multiple forms. At one end of the spectrum is the xMOOC, which is

characterised by a rather tight structure, little social interaction and mainly computer-

marked assessments. At the other end is the cMOOC or Connectionist MOOC, which is

almost entirely free of pre-provided content and relies instead on very high social interac-

tivity to produce the course content and outcomes. Most current MOOCs lie between these

extremes, with some structure (weekly content in the form of video and quizzes) and some

important social interactions (discussions, peer-review of work, and so on).

Finally, looking back at the previous sections, the reader may realise how the

experiences of SFoDEM and Sésamath were announcing, in some ways, the

emergence of MOOCs, under their extreme tendencies, as new forms of fostering

teachers professional development on the basis of their collaborative work on

teaching resources. For these organisations to work effectively, technological

connectivity and social connectivity appear as necessary ingredients.

Internet, both for students (Sect. 19.2) and for teachers (Sect. 19.3) clearly

appears as a connectivity multiplier, from a technological as well as a social

point of view. To what extent this connectivity improves also teacher documenta-

tion, knowledge and practice, as well as students learning and mathematical

activity, is not a trivial question. I discuss, in the next section, the way the ICMI

study connectivity panel (Hoyles et al., 2010) addressed this issue, mainly from the

point of view of students.

19.4 Some Lessons from the ICMI Study
Connectivity Panel

The ICMI study connectivity panel, chaired by Celia Hoyles, was based on four

presentations (one of them has already been introduced in this chapter,

Sect. 19.2.2). I will focus in this section on two of them, the first one concerning

the effects of connectivity in a given classroom, the second one across classrooms. I

draw then some general lessons from the panel.
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19.4.1 Enacting Classroom Participatory Simulations

As I did Sect. 19.2.3, Uri Wilenski (Hoyles et al., 2010, pp. 452–455) exploits ‘a
neglected affordance of connectivity: the ability to give people a shared interactive

experience in classroom contexts’. For this purpose, he presents an outline of his

work with NetLogo,14 using the notion of connectivity in two senses.

The first sense is a macro-micro level connectivity:

In our many years of working with NetLogo in middle and secondary classrooms, we have

endeavoured to bring to students descriptions of complex systems at a micro-level and

connect those micro-level descriptions to macro-level and observable phenomena. Typi-

cally, when we have taught students about systems that can be constructed as complex, we

have concentrated on aggregate equations that summarize system behaviour. For example,

to describe the behaviour of ideal gases, we rely on equations such as PV¼ nRT. But agent-

based modelling enables students to more directly control and examine the behaviour of

elements of the system and connect this behaviour to the system emergent behaviour. Thus

in NetLogo’s GasLab model suite, students come to understand the ideal gas as composed

of Myriad interacting gas molecules and see PV¼ nRT as an emergent result of these

interactions. There are hundreds of NetLogo models we have used in classrooms. Students

examine a range of phenomena such as the spread of a disease through a population, or the

interaction of predator and prey in an ecosystem [. . .]

For example, for the interaction predator/prey (Fig. 19.11), students can vary

essential parameters as the number of sheep, the number of wolves, the quantity of

Fig. 19.11 The NetLogo interface for studying a model of predator and prey

14NetLogo (https://ccl.northwestern.edu/netlogo/) is a multi-agent programmable modelling envi-

ronment, developed at the Center for Connected Learning of the Northwestern University. It is an

extension of the Logo environment developed by Seymour Papert (http://en.wikipedia.org/wiki/

Seymour_Papert)
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grass, and observe the evolution of the process. The hypothesis is that the micro-

level connectivity managed by the application will facilitate students understanding

of the system behaviour. Wilenski observes that it was not so simple: ‘despite
considerable efforts to “lower the threshold” of entry into agent-based modelling, it

remains difficult for elementary students to master both the programing and model-

ling skills needed’. Even with the monitoring of a teacher, this approach ‘leaves the
student somewhat passive, as only a few can be engaged at any one time and they

are limited to discussion of model behaviour’.
These difficulties lead him to develop connectivity in a second sense, a techno-

logical one, through the added module HubNet, enabling ‘a host of devices to

connect to a logo simulation and control agents within that simulation’ (see

Fig. 19.12 a set of calculators connected to the teacher’s computer). The sole

modelling activity is then transformed into a participatory simulation, in which

each student may take part.15

Wilenski (Hoyles et al., 2010, p. 453) underlines the important benefits of such

an application for learning:

[. . .] the modelling activity:

• Becomes more engaging—especially for younger learners. It becomes a social activity

and captures much of the same draw as online games.

• Promotes greater student participation. Every student can be actively involved at the

same time. Because they often require continuous action on the part of the students, they

Fig. 19.12 The HubNet architecture (Hoyles et al., 2010, p. 454)

15 This application, through a cooperation with Texas Instruments, gave birth to the TI-Navigator

network, that we describe Sect. 19.2.2.
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are “in-the moment” motivated to participate. Such universal participation is very hard

to achieve in a traditional classroom.

• Enables a shared experience of a complex system. There are very few opportunities, in

the classroom or in life, for students to collectively witness the same complex system

unfolding. Focal attention to such a system is hard to achieve outside of the virtual and,

even when achieved, if the viewing does not connect the micro-level behaviour to the

macro-level outcomes, then only the appearance is shared, not the mechanisms of

action.

• Facilitates classroom discussion of the system and examination of “what-ifs”. Student

can suggest experiments with varying critical system parameters and/or agent-rules,

hypothesize the observed behavioural change, run the simulation and refine the

experiment.

• Scaffolds individual modelling and analysis. Once students have had several opportu-

nities to collectively model and analyse complex systems, they are much better prepared

(and motivated) to conduct such inquiry on their own. Often students have suggestions

for model experiments that do not get explored in class. These questions are potent seeds

of further student inquiry, experimentation and model revision.

What I retained from this rich experiment is the interest of combining different

level of connectivity: the technological connectivity (HubNet architecture) enables
all the students to participate in the same time to the construction of a given

phenomenon. This collective engagement (social connectivity) is stimulated by

the student’s awareness to be an actor of the mechanisms of action, and

co-responsible of the final result. The system insures the connection between the

micro-level and the macro-level, and the students, being involved in the whole

process, incorporates the interrelations between these two levels (cognitive con-
nectivity). All over the process, the teacher’s orchestration is needed for regulating

students’ activity. This is made possible by the presence of all the actors in the same

time in the same place. I analyse in the following section what could happen when

such on activity occurs in different places.

19.4.2 Exploiting Connectivity Across Classrooms

The Noss and Hoyles’s presentation (Hoyles et al., 2010, pp. 455–460) in the

connectivity panel addresses actually the question of connectivity within and across
classroom, through two projects co-directed by themselves: the Playground Project

and the Weblabs Project. I will focus in this section on the first one.

The Playground project,16 as its name indicates, aims to use the potential of

games for stimulating children (from 4 to 8 years old) engagement and learning

(about games and mathematics, see Chap. 18). Going beyond the simple ‘playing

16 Its website (http://playground.ioe.ac.uk) points out, on its front page: « The playground project

is building computer environments for 4–8 year-olds to play, design and create games. A

playground is a place to play with rules not just play by them. We aim to harness children’s

playfulness, creative potential and exploratory spirit, allowing them to enter into abstract and

formal ways of thinking » (see also Chap. 18).

19.4 Some Lessons from the ICMI Study Connectivity Panel 455

http://dx.doi.org/10.1007/978-3-319-02396-0_18
http://playground.ioe.ac.uk/
http://dx.doi.org/10.1007/978-3-319-02396-0_18


game’, it aims to add a new dimension where children build their own games. Due

to the age of the children, the project favours other modalities of interactions than

words: mainly speech and direct manipulation. The authors describe the way the

project allows children to design their own games:

Children populated their games with objects which had ‘behaviours’—sets of rules that

determine their action. Behaviours were defined using collections of iconic rules, which

could be viewed by opening a scroll of paper attached to an object (see Fig. 19.13 for rules

defining a monster’s behaviour). Each rule was expressed as a visible ‘sentence’ or string of
graphic icons, which combined a condition and a series of actions to be executed whenever

the condition was true. The icons representing the conditions and actions were represented

as ‘stones’, small concrete manifestations of the concept that could be strung together to

constitute a rule. Actions stones had a convex left side so that conditions with their concave

right side could naturally fit to their left. Any object could accept any number of these

iconic rules, all of which would be executed in parallel whenever the conditions for their

execution were satisfied. (Hoyles et al., 2010, p. 456).

When the game starts, I change my speed to 22.5

When a second and half is up, I change my direction plus 25�

When I am shot by a ray, I explode, I wait two second, I appear (every object has an empty rule

for making new rules)

The project gives then means for children for constructing, expressing, and
communicating their own games. It offered a language allowing them to define

rules in a synthetic and no ambiguous way. Once defined a game, the project leads

the children to discuss it on two successive phases: sharing the game through face-
to-face interactions in their own classrooms; sharing the game using Internet, either
synchronously or asynchronously with a remote classroom. The project findings

evidence that, over the two phases, ‘children collaboratively came to explain

phenomena arising from rules we characterised as either player (an agreed regula-

tion), or system (a formal condition and action for the behaviour of the game)’

Fig. 19.13 Stones combined for constituting rules defining a monster’ behaviour (Hoyles et al.,
2010, p. 455)
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(Hoyles et al., 2010, p. 457). These findings underline also major differences

between face-to-face an remote interactions:

We found that in face-to-face collaboration, the children centre their attention on narrative,

and addressed the problem of translating the narrative into system rules, which can be

‘programmed’ into the computer. This allows the children to debug any conflicts between

system rules in order to maintain the flow of the game narrative.

When we added remote communication to the system by enabling the sending and

receiving of games from within the Playground system, we found that children were

encouraged to add complexity and innovative elements to their games, not by the addition

of socially-constructed or ‘player’ rules but rather through additional system rules which

elaborate the formalism (games were created using two different kinds of programming

systems, neither of which employed textual modalities). This shift of attention to system

rules occurs at the same time, and perhaps as a result of, a loosening of the game narrative

that is a consequence of the remoteness of the interaction.

This phenomenon was particularly evident in the case of asynchronous interaction
where, stripped of even the semantics of gestures, our extremely young students found it

increasingly natural to try to communicate meaning via the various formalisms we pro-

vided. Thus a key historical claim for programming, that is offers a key motivation and

model for immersion in a formal system, came to life as children struggled to modify and

add rules of their programs that achieved the effects they desired. And it is worth stressing

that asynchronous communication, while somewhat less attractive to the students at the

time [. . .] allows students to reflect on, and therefore use more effectively, the formal rules

of their games.

The main result I retain here is that ‘The shift from narrative to system/formal

rules does, in fact, seem to be a direct result of the necessity to formalise, in the

absence of all the normal richness of interaction that characterises face-to-face

collaboration’ (Hoyles et al., 2010, p. 457). In this case, technical connectivity,
understood as providing children means to communicate via Internet, leads to

cognitive connectivity, leading the children to relate the implicit rules of the game

to formal ones, parts of a system of rules. The discussion among children connects

then a level of informal speech and a level of formal system of rules.

I would like to add extra personal comments.

The Playground project concerns a particular part of mathematics, linked to

programing. This part will probably strongly develop in the future, supported both

by the improvements of the software dedicated to ‘children and programing’ (see
for example Scratch17), and by the evolution of curricula, favouring interaction

between mathematics and programing (see Sect. 12.3.3).

Noss and Hoyles associate, in this experiment, ‘connection to Internet’, and
‘remote interaction’. Of course, this association is note a necessary one, as connec-

tion to Internet and face-to-face interaction may jointly develop (see Sect. 19.2.3 or

19.4.1).

As the authors underline themselves, their project began in the previous century,

where peer-to-per connectivity was quite limited. Today, the remote or face-to-face

17 Scratch: “Create stories, games, and animations, Share with others around the world” (https://

scratch.mit.edu), developed by the Massachusetts Institute of Technology, hosting 9,767,423

projects (on 12 June 2005)
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interactions could combine texts (under different formats, more or less formal, from

SMS to emails), pictures, as well as audio or video interactions.

However, I found useful to present, in the frame of this chapter, some lessons of

this experiment, evidencing that even a limited use of connectivity, reduced to peer-

to-peer interactions through the exchanges of texts via Internet could have impor-

tant effects. From this connectivity panel held in the ICMI study, some more

general lessons emerge, that I underline in the following section.

19.4.3 The ICMI Study Connectivity Panel,
Some Lessons and Perspectives

In this section, I would like to focus on the main lessons drawn by the connectivity

panel, then by the ICMI study itself.

Regarding the panel, Hoyles et al. (2010) retain both the potential of technolog-
ical connectivity and the conditions for exploiting it:

– The potential is seen for developing social and cognitive connectivity (essen-

tially regarding students):

Digital technologies are already changing the ways we think about interacting with

mathematical objects, especially in terms of dynamic visualisations and the multiple

connections that can be made between different kinds of symbolic representations. At the

same time, we are seeing rapid developments in the ways that it is possible for students to

share resources and ideas and to collaborate through technological devices both in the same

physical space and at a distance (p. 439).

The conditions for exploiting technological connectivity are quite largely

described: ‘Alongside overcoming not inconsiderable technical challenges,

establishing an appropriate set of socio-technical/mathematical norms that

prioritised collaboration [is] crucial regarding connectivity’ (p. 460). Some years

after, the point of view on technical challenges could seem quite optimistic. . . But
the necessity of changing the socio-technical/mathematical norms clearly appears:

the experiences presented during the panel stand at the fringes of the schooling

system, and one measures the necessary distance for implementing them in the

schooling system.

Among these conditions, even if this question was not addressed by all the

panellists, rethinking the teacher’s role in terms of new orchestrations appears

actually crucial:

[. . .] here we are delineating new, even more demanding roles for the teacher, to be

aware—across not only her own classroom but those in remote location—of the evolution

of discussion, the mathematical substance of what is and what is not discussed, and the need

all the while to find ways to keep students on task without removing the exploratory and fun

elements of the work. This is, surely, a demanding set of roles for the teacher (p. 460).

Finally, the panellists shared the awareness that connectivity was a promising

field of research, specially regarding the cognitive aspect, i.e. implications
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for learning, quoting Moreno-Armella, Hegedus, and Kaput (2008), suggesting how

‘networks can link private cognitive efforts to public social displays thus—poten-

tially at least—enhancing student’s metacognitive ability to reflect upon their own

work to reference to others’.
The connectivity panel was part of the 17th ICMI study aiming to ‘rethink the

terrain’ of technology and mathematics education. The theme of connectivity

appears certainly, within this study, as the one where further research was the

most needed, as stated by Artigue in her concluding chapter (Hoyles & Lagrange,

2010, p. 473):

The way digital technologies can support and foster today collaborative work, at the

distance or not, between students or between teachers, and also between teachers and

researchers, and the consequences that this can have on student’s learning processes, on

the evolution of teachers’ practices is certainly one essential technological evolution that

educational research has to systematically explore in the future [. . .] most of this space is

still for us nearly terra incognita. We observe an intense creativity, which very often

develops independently of research and this is a very stimulating situation. But we also

have to be careful. As stressed by Richard Noss in the panel on connectivity, connectivity

does not necessarily imply collaborative work and collaborative work does not necessarily

imply better mathematics learning, or, I would add, better mathematics teaching. We are

submerged by an avalanche of information, data and possibilities of connection and the way

this avalanche can be organized, treated and transformed into knowledge or means for

productive action is an open problem.

Since the time of this ICMI study (2006 for the conference, 2010 for its pro-

ceedings), connectivity has developed, at least at a technological level, for the

students (Sect. 19.2.3) as well as for the teachers (Sect. 19.3.3). Which new lessons

and perspectives could be drawn in this new situation? I propose some answers, and

some new questions in the next discussion section.

19.5 Discussion

I call this section ‘Discussion’ rather than ‘Conclusion’ because the forms of

connectivity are evolving so rapidly that I can offer no conclusion. I would like

to underline the strong current evolutions, in terms of technologies and usages, then

to question the links between connectivity and mathematics, and, last but not least,

address the theoretical needs for analysing, in such contexts, mathematics learning

and teaching processes.

19.5.1 Internet Uses as a Connectivity Multiplier
and a Seamless Learning Tool

I had structured the two first parts of this chapter looking at the evolutions from the

students’ side, then from the teacher’s side. For understanding the processes at
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stake, I have to embrace in our analyses the two sides in their interrelations. We

showed (Gueudet & Trouche, 2012, pp. 313–316), in the case of Pierre, a teacher

member of the Sésamath association, the synergy resulting of the interrelations

between Pierre’s work in/for his association, Pierre’s work in/for his class and

students’ usages:

He evinces a strong collective involvement both in his school and in Sesamath: he is

‘teacher in charge of technology’, treasurer of the school cooperative, responsible of the

school’s chess club. These activities are not all dedicated to mathematics. In Sésamath, as

of 2008, he was a member of the board for 5 years. This meant that he spent approximately

1 h a day reading emails and participating in forums ‘that engage the association life’. He
was also a member of a Sésamath project developing a grade 6 textbook, which is still in

progress at this time. He was, finally, the pilot of a new Sésamath project entitled

‘mathematics files for primary schools’.
Documentation work takes place within each of these collective involvements and each

of them is part of Pierre’s work, as he said: ‘Consuming time in collective activities is a

component of my teaching activity’. He particularly emphasizes the importance of the

primary school project (‘it gives a better understanding of what my pupils know when

arriving at secondary school’), the Sésamath board (‘it makes me aware of the questions

asked to the profession as a whole’) and the ‘grade 6 textbook’. It is actually this last

project, which appeared as fostering Pierre’s documentation. For all the duration of the

project (2 years), Pierre decided to have only grade 6 classes (three classes, for 6 h teaching

in it), to ‘align’ his documentation work with the community documentation. Thus, the

documentation work that Pierre accomplished in 2008–2009 for the grade-6 level concen-
trated his main efforts, and connected individual and community documentation [. . .]

To this collaborative documentation corresponds a collaborative form of teaching [. . .].
Using online resources is an important feature of Pierre’s documentation work, within or

without his students (for preparing his teaching or collaborating in Sésamath projects).

Within his classroom, a connected computer, a projector and an interactive whiteboard

(IWB) are used to work with online resources. For example at the beginning of each lesson,

the teacher opens Pronote, an application allowing displaying the students list, to note the

absentees, to memorize what has been done, and what is still to do. . . Another example of

this continuous Internet use: the teacher exploits Google to do any arithmetic operation

exceeding students’ capacities of mental computation (it was amazing to observe that

handheld calculators remain in students’ schoolbags!). For continuing to interact with his

students outside of the classroom, he developed a collaborative website on which he

regularly uploads mathematics problems (that he calls ‘enigma’). Students try to solve

them and write their solutions on a forum (Gueudet & Trouche, 2012, pp. 313–316).

The use of Google is particularly significant of these interrelations: Pierre uses

Google for doing computations, because actually it corresponds to the students’
usages. As they are more and more connected to Internet, at home, as well as in

school, often through their mobile phones, they tend to use Google as an universal

machine: they use the same procedure to answer to a geographical question (‘what
is the number of inhabitants of such a city?’) and to a mathematical one (‘what is the
result of 45 times 59’?): in the two cases, Google is required to provide the answer.
In such a procedure, the constructive aspect of mathematics practices (‘yes, I can
compute 45� 59’) is lost. It looks like if each result of any question was lying

somewhere on the shelves and I had just to go to the relevant shelve and take it: that

is the efficiency of Google to do that for us. It is also well known also that, Sesamath

providing a wide number of resources covering the whole curriculum, some
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teachers restrict sometimes their documentation work to ‘search on the shelves of

Sésamath’what fits their needs of the day. This is of course not the sole aspect of the
Internet usages, and there are a lot of productive aspects as I evidenced in Sects. 19.2

and 19.3, but this way of searching direct answers to direct questions is a real

economical effect of being continuously connected to a wide repository of

resources. The institutions try to control this continuous connectivity (see for

example, Sect. 12.3.3, the development of ‘machines to the test’, excluding during

the examination at least any connection between a calculator and ‘outside’), but
removing connectivity cannot be the sole answer: the development of new envi-

ronments for communicating based on Internet appeals new kind of orchestrations:

the case of MOOC (Sect. 19.3.3) evidences the interest, and the complexity, of such

reflections on Internet as a connectivity multiplier.
Another aspect appearing in the description of Pierre’s work is the dilution of the

frontiers between working in school and working out of school, the teacher and his

students interacting through a website and Internet resources (as LaboMep, see

Sect. 19.3.2). It happens during the time of schooling and curriculum knowledge,

but I happens also, from a general point of view, after the time of schooling,

considering lifelong education. It leads to the notion of seamless learning (Wong,

Milrad, & Specht, 2015),

[Researchers] propose seamless learning as a learning approach characterized by the

continuity of the learning experience across a combination of locations, times, technolo-

gies, or social settings, (perhaps) with the personal mobile device as a mediator. The basic

rationale is that it is not feasible to equip students and knowledge workers with all the skills

and knowledge they need for lifelong learning solely through formal learning (or any one

specific learning context). Henceforth, student learning should move beyond the acquisition

of curriculum knowledge and be complemented with other approaches in order to develop

the capacity to learn seamlessly (p. xvii).

We are at the beginning of the analysis of this kind of learning: Chaps. 15 on

teachers work with digital tools, 17 on the design tasks, 18 on using games open

windows on leaning/teaching with Internet.

19.5.2 Connectivity and Mathematics

I have presented in various sections of this chapter (Sects. 19.2.2, 19.4.1 and 19.4.2)

the potential of technological connectivity for linking different aspects of the

teachers and students’ mathematical activities, what I have named documentation

connectivity, cognitive connectivity or micro and macro level connectivity. I would

like to examine now to which extent mathematics practicing, learning and teaching

requires connectivity and in which sense.

We have already met the necessity of ‘connecting things’ for learning and
teaching mathematics in two senses: connecting different representations of math-
ematical objects through a specific activity of treatments and conversions, as a

central activity for conceptualising (see the work of Duval, Sect. 12.3.3);
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connecting ostensives and non ostensives, the last ones guiding the usage of first

ones (see the work of Chevallard, Sect. 12.3.2).

More generally, if we consider that doing mathematics is solving problem, it

appears clearly that doing this needs to connecting different point of views on

objects and processes (see examples of proofs in Chap. 6; see Jon’s examples on

visual theorems, Sects. 3.2.1 and 3.4).

In a discussion between the three authors of the first draft of this chapter John

asked Jon:

I imagine that now, compared to the beginning of your professional life, that you might

send out a Maple (or whatever) file to colleagues and say something to the effect “Look at

this, there’s something strange going on ‘under the hood’”. Are conjectures more of a

shared ‘thing’ than they were 40 years ago?

Jon replied:

Life is vastly different than forty years ago. I think to a significant degree this is covered in

Chap. 3. It is certainly covered in an article “The Future of Mathematics 1965 to 2065.”

https://www.carma.newcastle.edu.au/jon/future.pdf. This just appeared as part of the

MAA100th anniversary book. When David Bailey and I wrote our book Mathematics by
Experiment between 2001 and 2004, it was already possible to be scholarly without ever

visiting the library and when we revised the book in 2007 this was even more true. The level

of connectivity is limited largely by one’s imagination and willingness to contact people/

remember what resources may be available. The sociology of this—as with social media—

has not yet stabilised. Perhaps it never will. So I am routinely sent stacks of papers by

isolated researchers asking me to help them publish them along with even more intrusive

requests. Yet on balance this is a wonderful time to be working in a subject which—despite

the public image of a solitary researcher staring at a blackboard—has always thrived on and

needed human interaction.

Indeed, in responding to one of the questions I posed in Chap. 6, Jon performed

an Internet search.

Moving on (but keeping in the domain of mathematics) doing mathematics,

since the first written practices (see Chap. 5 and Proust, 2014), has always dealt with

highly structured texts. Reading such texts leads one to combine different registers

of activity: learning, solving, classifying, archiving, exploring or inventing. Digital

tools give us new means for combining these different registers. This links to my

construct ‘cognitive connectivity’ (the internal—in the mind—rather than the

external—in action—side of connectivity). Noss and Hoyles (1996), I posit, had

similar ideas when, 20 years ago, they compared mathematical connectivity to the

functioning of the Web, introducing the notion of webbing:

Like the web of mathematical ideas, the Web (we will use a capital to denote the electronic

network), is too complex to understand globally—but local connections are relatively

accessible. At the same time, one way—perhaps the only way—to gain an overview of

the Web is to develop for oneself a local collection of familiar connections, and build from

there outwards along lines of one’s own interests and obsessions. The idea of webbing is

meant to convey the presence of a structure that learners can draw upon and reconstruct for

support—in ways that they choose as appropriate for their struggle to construct meaning for

some mathematics (Noss & Hoyles, 1996, p. 108).
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The question is then how the use of the web could support mathematical

connectivity. Trouche and Drijvers (2014, p. 6) proposes an approach combining

the concepts of webbing and orchestration:

In the webbing approach, conceptualization appears as a coordination process, ‘the process
by which the student infers meaning by coordinating the structure of the learning system

(including the knowledge to be learned, the learning resources available, prior student

knowledge and experience and constructing their own scaffolds by interaction and feed-

back)’ (Hoyles et al., 2004, p. 319). In the instrumental orchestration approach, conceptu-

alization appears as a command process, characterized by the conscious attitude to

consider, with sufficient objectivity, all the information immediately available not only

from the calculator, but also from other sources and to seek mathematical consistency

between them (Guin & Trouche, 1999). ‘Very sophisticated artefacts such as the artefacts

25 available in a computerized learning environment give birth to a set of instruments. The

articulation of this set demands from the subject a strong command process. One of the key

elements for a successful integration of these artefacts into a learning environment is the

institutional and social assistance to this individual command process. Instrumental orches-

trations constitute an answer to this necessity.’ (Trouche, 2004, p. 304). It seems that there

is a kind of intended internalization from an instrumental 30 orchestration, seen as an

external process of monitoring students’ instruments by the teacher, to an internal orches-

tration, seen as a process of self-monitoring the individual and personal instruments by a

student. Coordination and control are certainly two facets of mathematical activity, partic-

ularly in a technological rich environment, and the two approaches seem to privilege, each,

one of these facets.

With the notion of internal coordination and control comes a new reflection on

curriculum resources. Recent analyses of e-textbooks, i.e. textbooks making profit

of the digital potentialities, mainly from the point of view of connectivity, underline

the necessity, for insuring their quality, to take into account connectivity and

coherence (Pepin et al., 2015).

19.5.3 New Theoretical Needs

Describing recent experiences and, regarding for example interactive collaborative

mathematical interface (Sect. 19.2.3) or MOOCs (Sect. 19.3.3), I was aware, as I

said previously, that we are just at the beginning of the analysis of the connectivity

aspects and effects. For developing analyses on new phenomena, sometimes new

theoretical frames are needed in order to define new concepts and system of

concepts. Taking into account connectivity as a major intellectual challenge has

led to the creation of the connectivism frame, thus defined by Wikipedia (https://en.

wikipedia.org/wiki/Connectivism):

Connectivism is a hypothesis of learning which emphasizes the role of social and cultural

context. Connectivism is often associated with and proposes a perspective similar to

Vygotsky’s’ zone of proximal development’ (ZPD), an idea later transposed into

Engestr€om’s activity theory (see Chap. 9). The relationship between work experience,

learning, and knowledge, as expressed in the concept of ‘connectivity, is central to

connectivism, motivating the theory’s name.
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The definition of this theory as ‘a learning theory for the digital age’ (Siemens,

2005) indicates the emphasis that connectivism gives to technology’s effect on how
people live, communicate and learn. This is not the choice I had made until now, but

I am sure that the development of this new domain will benefit to the other domains

of research interested in connectivity.

Actually, for lighting the questions at stake, I am trying a theoretical networking

approach as presented by Prediger, Arzarello, Bosch, and Lenfant (2008) (see also

Chap. 9), connecting theoretical frameworks for understanding connectivity. In the

case of teacher’s work, it gave matter to the documentational approach (Sect.

15.3.2), crossing the domain of architecture information (Salaün, 2012) and instru-

mental approach. This approach is used in the frame of a French national project

(www.anr-revea.fr) for analysing the evolution of teachers work with resources in a

time of digital transition.

In the community of mathematics education, other theoretical approaches should

be exploited in order to understand connectivity. My own view is that Sfard’s
construct ‘commognition’ is important in this regard. Sfard (2010), p. 432 defines

thinking as:

the individualized version of interpersonal communication—as a communicative interac-

tion in which one person plays the roles of all interlocutors. The term commognition, a
combination of communication and cognition comes to stress that inter-personal commu-

nication and individual thinking are two varieties of the same phenomenon.

According to this perspective, developing social and reflective connectivity is

developing opportunities for improving mathematical thinking.

Finally, looking at connectivity in the mathematics education community leads

to develop an interdisciplinary program of research, that is before us.
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Proust, C. (2014). Textes mathématiques cunéiformes: des listes pour apprendre, résoudre,
classer, archiver, explorer ou inventer. Retrieved from https://hal.archives-ouvertes.fr/hal-

01139604/document

Salaün, J.-M. (2012). Vu, lu, su. Les architectes de l’information face �a l’oligopole du Web. Paris,
France: La Découverte.

References 465

http://dx.doi.org/10.1007/s11858-011-0313-x
http://www.springerlink.com/content/13733h7321658734/
http://www.springerlink.com/content/13733h7321658734/
http://www.math.univ-montp2.fr/sfodem/
http://www.math.univ-montp2.fr/sfodem/
http://ermeweb.free.fr/CERME4/CERME4_WG9.pdf
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
https://hal.archives-ouvertes.fr/hal-01139604/document
https://hal.archives-ouvertes.fr/hal-01139604/document


Sfard, A. (2010). Thinking as communicating. human development, the growth of discourses, and
mathematizing. Cambridge University Press.

Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of
Instructional Technology and Distance Learning. 2(1). Retrieved from http://www.itdl.org/

Journal/Jan_05/article01.htm

Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized

learning environments: guiding students’ command process through instrumental orchestra-

tions. International Journal of Computers for Mathematical Learning, 9, 281–307.
Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital

tools in mathematics education, Teaching Mathematics and Its Applications: International
Journal of the Institute of Mathematics and its Applications, 33(3), 193–209, doi: 10.1093/
teamat/hru014, Retrieved from http://teamat.oxfordjournals.org/cgi/reprint/hru014?

ijkey¼P83FxYUzECbG67e&keytype¼ref

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge Uni-

versity Press.

Wong, L.-H., Milrad, M., & Specht, M. (Eds.) (2015). Seamless learning in the age of mobile
connectivity. New York: Springer.

466 19 Connectivity in Mathematics Education. . .

http://www.itdl.org/Journal/Jan_05/article01.htm
http://www.itdl.org/Journal/Jan_05/article01.htm
http://dx.doi.org/10.1093/teamat/hru014
http://dx.doi.org/10.1093/teamat/hru014
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref
http://teamat.oxfordjournals.org/cgi/reprint/hru014?%20ijkey=P83FxYUzECbG67e&keytype=ref


Epilogue

We use these last pages to reflect on matters for further thought and action. Chapters

2–18 describe many aspects of tool use in mathematics and mathematics education

and discuss a number of issues surrounding this use but this book, we feel, should be

seen as a beginning, not as an end, as there is so much about tools and mathematics

which these chapters do not cover, and links between ideas and phenomena which

remain to be made and/or clarified. We structure our comments under the themes:

history; theory; the nature of mathematics; and action.

We made brief forays into the history of mathematics in Part I: Chap. 4 surveyed

prehistory and selected historical topics; Chap. 5 detailed the development of tool

use in Mesopotamian scribal schools. But there is so much we have not commented

on. An encyclopaedia of the history of tools in mathematics would be a useful

publication. We comment on how we would like such an encyclopaedia to be

conceptualised by comparing (with a focus on tools) four books on the history of

mathematics: Fauvel and Gray’s (1987), The history of mathematics: A reader;
Kidwell et al.’s (2008), Tools of American mathematics teaching; Netz’s (1999),
The shaping of deduction in Greek mathematics; and Joseph (2010), The Crest of
the Peacock: Non-European Roots of Mathematics.

Kidwell et al. (2008) is a wonderful source and the primary focus is on tools

for school mathematics but it is restricted (for good reasons) to: the USA; the

period 1800–2000; and mathematics teaching. Further to this, it focuses on tools

with scant mention of developments in mathematics or conceptions of mathematics.

Fauvel and Gray (1987) is also a wonderful source (of original mathematics, with

commentary, in English translation) but it focuses on people and concepts with

scant (virtually none) mention of tools. Further to this it appears to view ‘mathe-

matics’ as that which Bishop (1988, p. 19)—see Sect. 14.1.2—calls ‘Mathematics’
(with a capital M) ‘the mathematics which is exemplified by Kline’s Mathematics
in Western Culture’. Netz (1999) is subtitled ‘A study in cognitive history’.
It approximates more closely than Kidwell et al. (2008) or Fauvel and Gray

(1987) do to our vision of an encyclopaedia because, in tracing the shaping

of deduction in ancient Greek mathematics it pays close attention to people,
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concepts and the tools which interacted with people in the shaping of mathematical

concepts. Our vision of an encyclopaedia of the history of tools in mathematics

would take the positive features of these three books and temper the potential bias

towards ‘Mathematics’ by ensuring that the history that Joseph (2010) writes on is

part of mathematics.

In Part II we described a number of theoretical approaches that inform an

understanding of tool use in mathematics education. All of these approaches

provide insights but none alone provides a definitive means to understand the

role of tool use in mathematics education. We hope that this book will be a source

for future discussions between theorists of many persuasions as we seek to further

understand tool use in mathematics education. There are problems and potential

in this hope. Problems are related to the fact that it would be naı̈ve to take a little bit

of this theory and a little bit of that theory and hope that something sensible

comes out; against there is ongoing work on strategies for connecting theories

(see Prediger et al., 2008 for the genesis of this work). Further to this the ‘theories’
of which we write in Part II are quite different to theories in mathematics or physics,

they do not develop ‘laws’ but are evolving ways of understanding didactical

phenomena; and the hope expressed above is for a better understanding of the

role of tool use in mathematics education. One possible direction for future

connecting of theories towards an understanding of tool use in mathematics edu-

cation is to consider how different theoretical approaches contribute to what

Wertsch (1998) calls ‘genetic domain’: phylogenesis; sociocultural history; onto-
genesis; and microgenesis (these were briefly discussed in Sect. 13.2). Insights on

tool use in these domains will differ in emphases (respectively—prehistory and

history, cultural dimensions, individual development and individual or group inter-

action with tools in specific activities). There is a sense in which mathematics

education research concerned with tool use has focused on the microgenetic domain

and needs to view the ‘bigger picture’.
We now turn to what tool use may teach us about the nature of mathematics.

When we started writing this book we (or maybe just John) had an expectation that

the process of writing would result in us having something substantial to say on the

nature of mathematics (with regard to tool use) and the implications of this

substantial statement for the learning of mathematics. But we find ourselves at

the end of the book being somewhere between having little to say (other than tool

use is essential for doing and for learning mathematics) and making a clear

statement on the nature of mathematics and learning mathematics with regard to

tool use. The following are footnotes (of a sort) to what may become such a

statement; the foci are Jon’s experimental mathematics (see Chap. 3) and the

didactical transposition (see Sect. 10.3).

Experimental mathematics arose through tool use. The word ‘through’ is impor-

tant here. Jon used (and uses) tools at hand (digital tools) to attack mathematical

problems. Over time his (with other mathematicians) approach got the name

‘experimental mathematics’. This approach builds on prior mathematics but digital

experimentation adds a ‘little something else’ that doesn’t quite fit with
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Mathematics.1 What we have here is a sort of ‘branch line’ of mathematics2 (which

could become the ‘main line’ of mathematics in a possible future) whose establish-

ment was enabled by certain tools but which cannot be reduced to tool use

(it includes forms of reasoning including visualising).

We now put experimental mathematics aside for a moment and turn attention to

learning mathematics and ‘school mathematics’. We accept that there is a didactical

transposition, in the words of Lagrange (2005, p. 69) ‘mathematics in research and

in school can be seen as a set of knowledge and practices in transposition between

two institutions, the first one aiming at the production of knowledge and the other at

its study’. So a problem about addressing ‘what tool use may teach us about the

nature of mathematics’ is that it depends on which (parts or approaches of)

mathematics one is talking about. A further problem concerns the culture (or,

rather, the cultures) of mathematics. Bishop’s ‘Mathematics’ (with a capital M) is

steeped in Western culture but mathematics is, at least, steeped in Eastern and

Western culture. We have, in this book, explored tool use in different cultural

settings but we have not explored fundamental differences between different

traditions in mathematics. The Nine Chapters (Chemla & Shuchun, 2004), origi-

nating from China first century BCE, evidences strong relationships between

mathematical knowledge, problems, solving techniques, and tools. Analysing the

differences between different cultural approaches to tool use in mathematics is

work that remains to be done.

Our final thought turn to action and a question which Luc posed to John and Jon

as we approached the final stages of producing this book: Who is empowered by

knowledge on tool use in mathematics? This question challenges us as practical

educators. We came to writing this book on tools and mathematics as academics

and the book is written for an academic audience. As academics we default to

noting the affordances and constraints of specific tools for specific purposes in

specific contexts. But we wouldn’t have written this book if we didn’t have views on
‘good’ and ‘bad’ tool use and a vision of mathematics for the masses (we’ll come

clean, all three of us think, with a caveat here and there, that digital tools that allow

people to explore mathematical relationships are a good thing). So why are we

writing a book for academics instead of a book for the masses? A good question and

a partial response is that books are not always the most effective way to educate/

empower people.

So what groups of people could be empowered by knowledge on tool use in

mathematics? Valero (2009, p. LV) argues

1Mathematics with a capital M here refers to what Bishop (1988, p. 18) calls ‘Mathematics’, ‘the
mathematics which is exemplified by Kline’s Mathematics in Western Culture’.
2We are referring to a thing called ‘mathematics’ here (not with a capital M) but the ensuing

discussion (which considers forms of mathematics) makes the idea that there is a thing called

‘mathematics’ somewhat suspect.
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‘that the time has come to open possibilities of defining both research practices and

educational practices in a way that allows tackling in serious, rigorous and systematic

ways the social, cultural and political complexity of mathematics education in our contem-

porary societies’

and mentions: academics (mathematicians and mathematics educators); policy

makers; teacher educators; international agencies; technical developers; employers;

school staff including mathematics teachers, students and their families. To this we

would add online teacher associations and hybrid communities of teachers and

researchers (cf. Chap. 18).

We think that all of these groups can be empowered by seeing the importance of

tools in mathematical activity (and appreciate the affordances and constraints of

specific tools in specific contexts). Most of these groups will not be empowered

directly by this book but we hope that this book empowers those who read it to

produce materials or activities that can influence people in other groups; and to

produce materials or activities under formats that, perhaps, could not be imagined at

the time when we wrote these last words.
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