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Abstract Adaptive landscape, proposed by Sewall Wright, has been used to find
optimized solutions of a system. The optimized solution of an evolutionary system
is when evolution maximizes or minimizes the value of some function of the trait
under consideration, thus providing an absolute measure of fixation for a biological
process in a probabilistic sense. We survey the role of adaptive landscape and
give some general results concerning the question of infinite potential escaping.
The results presented include complex dynamical behaviors manifested by adaptive
landscape with singularity in all parameters regimes. In addition, both metaphoric
and quantitative description of many complex biological phenomena is provided
by adaptive landscape, such as the rare event of transition between different stable
states.

1 Introduction

The concept of adaptive landscape was first proposed by Sewall Wright [1], in
attempting to visualize his shifting balance theory in evolutionary dynamics. Since
then, the metaphoric and visualizing part of this concept has been widely used in
population genetics and evolutionary biology [2–4]. Wright’s original landscape
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can be interpreted as the surface of selective fitness [5]. Its definition has two main
derivatives [6]: project the individual fitness over space of allele type or genotype or
phenotype, or project the mean fitness of a population over the frequencies of allele
type or genotype or phenotype. The primary goal of adaptive landscape in modern
science is understanding, i.e., creating orderly pictures of the world compatible with
our observations and can provide new predictions.

Evolutionary processes are highly nonlinear. We need to understand these
processes. Adaptive landscape, when used in visualizing evolutionary processes,
is remarkably suitable grasping the nature of nonlinearity conveniently.

The appeal of this approach is its analogy with a physical landscape, whose
gradient predicts a rolling marbles spatial trajectory [7]. But it is complex that
required to fully integrate the genetics with Darwinian natural selection. Geometric
representations of microevolutionary trajectories over adaptive landscape of one
or another are motivated by the desire to provide some heuristic intuition into the
process of microevolution. If we can extract the population genetics by investigating
the contours of such a topographic surface, we can visualize how an evolving
population will behave without always resorting to the algebraic heavy lifting. So the
notion of a landscape implies the existence of an exact potential function projected
over some space, its predictive utility comes from the implication that at each
instant, the system will shift its configuration by following the steepest gradient on
the potential function [7]. The predictive capability is the basis for the hypothetico-
deductive method [8].

Though the landscape has such good predictive property, it has suffered certain
conceptual and theoretical problems [9]. Biologically, there is an ongoing argument
about the heuristic value of Wright’s landscape diagrams [10]. Some think there
might not be anything like peaks separated by valleys at all [10], the problem of
how a population crosses an adaptive valley in its way from one adaptive peak to
another may be nonexistent [11]. Since then such a landscape has been known as
the fitness landscape in some parts of literatures. However, there are a considerable
amount of confusions on the definitions of fitness [12,13]. Mathematically, Pigliucci
and Kaplan argue that in the end it may be impossible to articulate the metaphor in
a way that is both conceptually coherent and practically fruitful [14].

To get further at the predictive side we need a more realistic handle on adaptive
landscape. Biologists [9, 15] noticed a framework was needed to construct adaptive
landscape. Recently considerable progress has been made on the evolutionary
dynamics of transiting the fitness valley for finite populations in the presence of
diverse evolutionary forces. de Vladar and Barton [15] used information entropy
to analyze the process of population evolution. It is pointed out that the method
works only for high mutation rates and breaks down for low mutation rates [15].
One of us proposed adaptive landscape can be quantified as potential function [13].
He identified gradual parameter changes that preserve the stationary distribution as
being reversible in the thermodynamic sense, this line of thinking does not lead
to any constraint on the increase in mean fitness that would correspond to the
constraint identified by Carnot in classical thermodynamics [16]. These theoretical
progress makes the utility of adaptive landscape to complex biological processes
and understanding these processes.
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In this chapter we address how the singular adaptive landscape indicates the
evolutionary dynamics and predicts how long the population stays at an adaptive
state. There are two reasons for embarking on such an effort. The first one is
practical. We want to manifest the reach of conceptually coherent and practically
fruitful adaptive landscape. In general, adaptive landscape appears working well,
notwithstanding its basically singularity. The next reason comes into play when we
want to know the escape problems from the infinite potential.

2 Technical Preliminaries

The tools for handling a dynamical system are diverse. Here we only base on
Fokker–Planck equation and some relevant knowledge about diffusion approxima-
tion, which is a widely used theory; however, there are some shortcomings about
diffusion theory such as addresses by [17].

2.1 Diffusion Approximation

In general, we first consider the deterministic effects of certain biological factors
for an evolutionary process. We expect to get some useful information for an
evolutionary process with infinite population size. But randomness always exists,
and population size is also finite, these result in the information lacked. We have to
consider the effect of stochastic factors. We briefly outline the diffusion approxima-
tion according to [18] in the following.

We only address one-dimensional process. That is, we only consider populations
with haploid individuals and one locus with two allele A and a and focus on the
evolution of allele A. At generation t the frequency of allele A is i=N , after driving
by deterministic and stochastic factors, at generation t C 1 the allele frequency
becomes j=N . Here the probability that allele frequency becomes j=N is

Pj .t C 1/ D
NX

iD0

Wij Pi .t/ (1)

where Wij is the transition probability from i=N to j=N . We replace the allele
frequency i=N by real number x, 0 � x � 1. And P.x; t C 1/ denotes the
probability of allele frequency x after t C 1 generations. Given that A starts out
at gene frequency x0 and additional Markov property, then

P.x; t C ıt/ D
X

ıx

W.x; t C ıt jx � ıx; t/P.x � ıx; t/: (2)
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We assume that P.x; t/ admits a density function �.x; t/, that is,

@P.x; t/

@x
D �.x; t/: (3)

In order to derive forward Fokker–Planck equation, we assume the following
properties hold.

1)

lim
ıt!0

1

ıt
p.z; t C ıt jx; t/ D 0 (4)

uniformly in x; z, and t for jx � zj � ".

2)

lim
ıt!0

1

ıt

Z
d z.z � x/p.z; t C ıt jx; t/ D M.x; t/ C o."/ (5)

3)

lim
ıt!0

1

ıt

Z
d z.z � x/2p.z; t C ıt jx; t/ D V.x; t/ C o."/ (6)

Equations (5) and (6) are uniform in x; z, and t .

4) All higher-order coefficients are o."/.

Consider the time evolution of the expectation of a function f .z/ which is twice
continuously differentiable. Thus,

@t

Z
dxf .x/p.x; t jy; t 0/ (7)

D lim
ıt!0

1

ıt

�Z
dxf .x/

�
p.x; t C ıt jy; t 0/ � p.x; t jy; t 0/

��
(8)

D lim
ıt!0

1

ıt

�Z
dx

Z
dzf .x/p.x; t C ıt jz; t /p.z; t jy; t 0/ �

Z
dzf .z/p.z; t jy; t 0/

�

(9)

Expand f .x/ at position z:

f .x/ D f .z/ C f 0.z/.x � z/ C 1

2
f 00.z/.x � z/2 C o..x � z/2/ (10)
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Now substitute Eq. (10) with Eq. (9):

lim
ıt!0

1

ıt

�Z
dxdz

�
f .z/ C f 0.z/.x � z/ C 1

2
f 00.z/.x � z/2

�

�p.x; t C ıt jz; t /p.z; t jy; t 0/ �
Z

dzf .z/p.z; t jy; t 0/

�

D lim
ıt!0

1

ıt

�Z
dxdz

�
f .z/ C f 0.z/.x � z/ C 1

2
f 00.z/.x � z/2

�

�p.x; t C ıt jz; t /p.z; t jy; t 0/ �
Z

dxdzf .z/p.x; t C ıt jz; t /p.z; t jy; t 0/

�

D
Z

dz

�
lim

ıt!0

1

ıt

Z
dx

�
f 0.z/.x � z/ C 1

2
f 00.z/.x � z/2

�

�p.x; t C ıt jz; t /g p.z; t jy; t 0/

D
Z

dz

�
f 0.z/M.z; t / C 1

2
f 00.z/V .z; t /

�
p.z; t jy; t 0/

D
Z

dzf .z/

�
�@z

�
M.z; t /p.z; t jy; t 0/

�C 1

2
@zz
�
V.z; t /p.z; t jy; t 0/

��

z!xD
Z

dxf .x/

�
� @

@x

�
M.x; t/p.x; t jy; t 0/

�C 1

2
@xx

�
V.x; t/p.x; t jy; t 0/

��
: (11)

Then, we obtain the Kolmogorov forward equation (Fokker–Planck equation)

@t p.x; t jy; t 0/ D � @

@x

�
M.x; t/p.x; t jy; t 0/

�C 1

2

@2

@x2

�
V.x; t/p.x; t jy; t 0/

�
: (12)

Define M.x/ as the probability that x increases by systematic force that includes
mutation and selection. And define V.x/ as the probability that x changes because
of random drift, either decreasing by amount ıx with the probability V.x/=2 or
increasing by the amount ıx with the probability V.x/=2.

M.x/ D lim
ıt!0

1

ıt

Z 1

0

ıxW.x; t C ıt jx � ıx; t/d.ıx/; (13)

V.x/ D lim
ıt!0

1

ıt

Z 1

0

.ıx/2W.x; t C ıt jx � ıx; t/d.ıx/: (14)
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2.2 Relation for the Solutions of Between Forward
Fokker–Planck Equation and Backward
Fokker–Planck Equation

In most physical applications of Kolmogorov diffusion equations the coefficient
V.x/ is essentially positive. However, in certain applications we encounter equa-
tions such that V.x/ vanishes at one (or possibly both) of the boundaries or one of
the coefficients has no finite limit. Equations with coefficients such as described are
called singular diffusion equations.

The classification of boundaries depends on the Lebesgue integrability of the
function

g1.x/ D exp

�
�
Z x

x0

M.z/

V .z/
d z

�
(15)

where x0 2 .r1; r2/ is fixed, and related functions on a prescribed open interval
contained in .r1; r2/. The above function was introduced by Feller [19]. Let Ii .i D
1; 2/ denote the interval .x0; ri /. The function g1.x/ is Lebesgue integrable on Ii

(written g1.x/ 2 L.Ii /) if

Z

Ii

g1.x/dx < 1 (16)

i.e., the integral of g1.x/ over the interval Ii is bounded. Before giving the
classification criteria, we introduce the following functions:

g2.x/ D 1

V.x/g1.x/
h.x/ D g1.x/

Z x

x0

g2.z/d z (17)

Then Feller classifies the boundaries as the following

1. The boundary ri is regular if g1.x/ 2 L.Ii / and g2.x/ 2 L.Ii /.
2. The boundary ri is an exit boundary if g2.x/ … L.Ii / and h.x/ 2 L.Ii /.
3. The boundary ri is an entrance boundary if g2.x/ 2 L.Ii / and g2.x/

R x

x0 g1.z/
d z 2 L.Ii /.

4. In all other cases the boundary is called natural.

By utilizing the theory of semigroups, Feller has obtained the following results
which relate the existence and uniqueness problem of diffusion equations to that
of classifying the boundaries:

1. When none of the boundaries is regular, there exists exactly one fundamental
solution (or Green’s function) common to the forward and backward diffusion
equations, even though the initial value problem as such may have many
solutions.
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2. When one boundary is regular, or when both boundaries are regular, there exist
infinitely many common fundamental solutions.

3. When both boundaries are natural, the initial value problem for both forward
and backward diffusion equations is uniquely determined, and the solutions are
generated by a common fundamental solution.

4. When r1 is a natural boundary and r2 is an exit boundary, the initial value problem
for the backward diffusion equation has infinitely many solutions, but that for the
forward diffusion equations is uniquely determined.

5. When r1 is a natural boundary but r2 is a regular boundary, there exist infinitely
many solutions for the initial value problem for both the forward and backward
diffusion equations.

6. When neither boundary is natural, there are two sources for nonuniqueness, and
in these cases two lateral conditions must be imposed.

3 Construction of Adaptive Landscape

Diffusion theory is an elegant approximation for analyzing population evolution.
To construct adaptive landscape, we start from one-dimensional forward Fokker–
Planck equation:

@

@t
�.x; t/ D � @

@x
ŒM.x/�.x; t/� C 1

2

@2

@x2
ŒV .x/�.x; t/�: (18)

Among this M.x/ is the symbol for the average change in allele frequency [20, 21]
that occurs due to systematic force. The function V.x/ is the average square change
in allele frequency.

The diffusion process can also be expressed by the following symmetric equation

@t �.x; t/ D @xŒ�D.x/@x � f .x/��.x; t/ (19)

with

f .x/ D M.x/ � �D0.x/;

2�D.x/ D V.x/: (20)

With a prime denoting differentiation of a function with respect to its argument such
as D0.x/ � @xD.x/ where M.x/ and V.x/ is from Eq. (18). Adaptive landscape is
directly given when we consider natural boundary as Feller’s classification. It is

ˆ.x/ D
Z x

dx0 f .x0/
D.x0/

: (21)
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The symmetric Eq. (19) has two advantages. On the one hand, the adaptive
landscape is directly read out when the detailed balance is satisfied. On the
other hand, the constructive method is dynamical, independent of existence and
normalization of stationary distribution. We call f .x/ directional transition rate,
integrating the effects of M.x/ and the derivative of V.x/. Directional transition
rate can give equilibrium states when it appears in linear form.

The adaptive landscape not only avoids the mismatch of the fixed points of the
force and those of extremals of steady state distribution, but also can be related to
the dynamical behaviors.

The stationary distribution for the diffusion approximation satisfying natural
boundary condition is given by

�.x; t D 1/ D 1

Z
exp

�
ˆ.x/

�

	
: (22)

Z D
Z C1

�1
dx exp

�
ˆ.x/

�

	
: (23)

It has the form of Boltzmman–Gibbs distribution [12], so the scalar function ˆ.x/

naturally acquires the meaning of potential energy [22]. The value of Z determines
the normalization of �.x; t D 1/ from the perspective of probability, and the finite
value of Z manifests the normalization of �.x; t D 1/. The stationary distribution
is not true in the face of infinite Z. It demonstrates absorbing phenomenon occurs at
the boundary. Together with the flux at the boundary, the true stationary distribution
could be got. The constant � holds the same position as temperature of Boltzmman–
Gibbs distribution in statistical mechanics. But it does not hold the nature of
temperature in Boltzmman–Gibbs distribution.

4 Two Applications

As the concept and their technical implementation described, below we shall show
the singular adaptive landscape describes internal equilibria for constant population
size and variable biological factors such as original Wright–Fisher process and
Muller ratchet.

4.1 Wright–Fisher Process

The simplest stochastic model of an evolving population dates from the 1930s
and was introduced independently by Ronald Fisher [23] and Sewall Wright [24].
In the model, constant organisms from one generation to the next generation are
considered, and each instance of a gene in one generation is an exact copy of one
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randomly chosen with replacement from previous generation [25]. Let us consider
first of all diploid organisms which carry two copies of each gene and reproduce
sexually. A new generation could be formed by each of the organisms producing two
infinite sets of gametes before dying. Among this process mutation, selection and
random drift could occur. Then random fixed size samples of these gametes survive
to become offspring organisms. A random mating diploid population evolving in
this way is often referred to as an ideal population. In reality, individuals do not
mate at random. Some factors such as individuals’ geographical locations and age
may also lead to deviations from an ideal population. Nevertheless, in some cases it
is found that the predictions of the ideal model are relevant [25].

Suppose we have an ideal population of individuals satisfying (i) Generations
are taken to be discrete, so that the population evolves by a discrete-step Markov
process. (ii) The population size is taken to be fixed, so that alleles compete only
against other alleles and not against an external environment. (iii) Random mating
is assumed. Concretely we consider a population of diploid sexual individuals with
population size being N and factors such as one locus with two alleles A1, A2.
The start point in a generation is taken to be the adult stage, after all mutation
and selection has occurred and selection immediately prior to reproduction. The
regulation of the population number is supposed to occur through nonoverlapping
generations and randomly picking N individuals from the population, then there are
always 2N alleles in the allele pool in any generation. The treatment is consistent
with [26].

We focus on the evolution of allele A1. Assume pi to represent the proportion or
relative frequency of allele A1 in generation t , that is pi D i=2N , i D 0; : : : ; 2N .
Mathematically under general diffusion approximation, frequency pi are treated as
continuous quantity x, and this also leads to the distribution of the frequency of
considered allele A1 being probability density.

4.2 Dynamics of Original Wright–Fisher Process

Adaptive landscape can be quantified as potential function. Potential function can
give both quantitative and qualitative description of behaviors near steady states or
metastable states. Great efforts have been spent to find such a potential function [13].
We here give specific potential function corresponding to diverse biological factors.
It is clear how our potential function is related to the dynamical trajectories.

4.2.1 Pure Drift Balance

In the past, people also come into notice the effect of random drift, for example,
[27] studied the effect through assuming that population fixed for a single genotype.
Krakauer and Plotkin [28] studied the effect of random drift through analyzing small
perturbations from the deterministic equilibrium. de Vladar and Barton [15] studied
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the same process, but the method of maximizing entropy cannot work because
of non-normalized stationary distribution. Waxman [29] studied the random drift
process by assuming Dirac function at the boundary. We here do not focus on
the boundary condition. To avoid the difficult boundary problem, here we show
our method is independent of the normalization of stationary distribution and can
directly get the population behaviors by adaptive landscape. We could address it
from the perspective of adaptive landscape. For random sampling variance being

V.x/ D x.1 � x/

2N
; (24)

at the same time the directional force reads

f .x/ D 2x � 1

4N
: (25)

In addition, we are interested in the dynamical property of adaptive landscape, so
we treat ˆ and ˆ=� no difference in this respect, that is, for convenience we can
take � D 1 of �D.x/. So adaptive landscape from Eq. (21) is expressed as

ˆ.x/ D � ln x.1 � x/: (26)

For biological understanding, no mutation equals to no driving force, without
driving force the stationary distribution should be plain. That is, each state has
the same chance to be ultimate state as neutral evolution, but in fact because of
inertia of driving force, there exists the effect of force in the system, this makes
the system move on. This is consistent with the expression of directional force
f .x/ in Eq. (20). The inertia of driving force can just balance out the effect
of random drift and let the population move on. Here from the expression of
adaptive landscape, two singular points with allele frequency x D 0 and x D 1

exist. The singularity means that the population lies at a stable or unstable state.
Positive infinity means the state with corresponding allele frequency stable, while
negative infinity means the state with corresponding allele frequency unstable. Here
the values of adaptive landscape for two singular points go to positive infinity.
These demonstrate that there are indeed two stable states in the process. The
adaptive landscape has U-shape.

Directional force actually gives the effects of driving force and random drift.
Two stable states with infinite potential occur in the process. The fixed point with
allele frequency x D 1=2 could be got through letting directional force being zero
directly. It is the critical point to decide the eventual stable state of an initial state.

4.2.2 Mutation-Drift Balance

So far we have been considering situations where the change in composition of
populations is caused by pure random drift. We now include the effect of mutation:



Adaptive Landscape with Singularity in Evolutionary Processes 173

an A1 allele may mutate with a probability � to an A2 allele, and an A2 allele may
mutate with a probability � to an A1 allele. These parameters are probabilities per
generation. In the process we assume there is no difference on viability because
of the absence of selection, the evolutionary process is only under the condition of
mutation and random drift with unchanged environment. We focus on the evolution
of the allele A1. Previous neutral evolution regarded these evolutionary processes as
neutral.

To include mutation, one chooses two alleles from the current population to die
and replaces it with two types chosen. That is, when we pick alleles to be the parent
of a child in the next generation, the offspring can mutate with the probability � or �.
For example, if an allele A1 is chosen, there is a probability 1 � � that replacement
allele is also an A1 and of � that it is an A2. So with mutation, in the offspring
generation the frequency of allele A1 is

ptC1 D .1 � �/pt C �.1 � pt/: (27)

After diffusion approximation like pure random drift process, the average change of
allele frequency x: M.x/ and random sampling variance V.x/ are, respectively,

M.x/ D ��x C �.1 � x/; (28)

V.x/ D x.1 � x/

2N
; (29)

then f .x/, D.x/ in Eq. (20) are

f .x/ D ��x C �.1 � x/ � 1 � 2x

4N
(30)

� F.x � a/;

�D.x/ D x.1 � x/

4N
; (31)

with

F D 1 � 2N� � 2N�

2N
; a D 1 � 4N�

2 � 4N� � 4N�
: (32)

Here we also take � D 1. So the adaptive landscape corresponding to Eq. (21) reads

ˆ.x/ D 4N� ln x C 4N� ln.1 � x/ � ln x.1 � x/: (33)

There are three elements composed of adaptive landscape. The first and the
second elements represent the effect due to mutation. The last element is the effect
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due to random drift. There exist two singular points with allele frequency x D 0

and x D 1 from the expression of adaptive landscape. Singularity indicates the
state stable or unstable. We show below that the evolutionary behavior can still be
explored in terms of adaptive landscape. This method is insensitive to the singular
expression. Fixed points are derived by

ˆ0.x/ D 0: (34)

That is

.4N� � 1 C 4N� � 1/x � .4N� � 1/ D 0: (35)

Then we get only one fixed point with allele frequency x D a (its expression is Eq.
(32)), and it is also the zero point of f .x/. In another word, when directional force
is expressed in linear form, the fixed point can be read from its form directly.

We could investigate the dynamics by analyzing the relative position of the fixed
point and singular points. In the following we give the detailed information.

(i) a < 0

There are two regimes holding the same dynamical behavior. In one of the
regimes parameters satisfy � 2 .0; 1=4N / and � 2 .1=4N; .1 � 2N�/=2N /.
In another regime parameters satisfy � 2 .1=4N; 1/ and � 2 ..1 �
2N�/=2N; 1=4N /. There are two unstable states and one stable state in the process.
The states at the fixed point with allele frequency x D a and at the singular point
with allele frequency x D 0 are unstable while the state with allele frequency x D 1

is stable. This means the population tends to fix at the state with allele frequency
x D 1. Alleles composed of the population are likely to be allele A1.

(ii) a D 0

There are two regimes having the same dynamical behavior. In one of the regime
mutation rates satisfy � 2 .0; 1=4N / and � D 1=4N . In another regime mutation
rates satisfy � 2 .1=4N; 1/ and � D 1=4N . Among these regimes the fixed
point mixed the singular point with allele frequency x D 0. Among these cases
the factor which can dominate the process is mutation rate. If parameters satisfy
� 2 .0; 1=4N / and � D 1=4N , the probability of mutation from allele A2 to allele
A1 is greater. So there is only one stable state with allele frequency x D 1 and
one unstable state with allele frequency x D 0 in the process. If parameters satisfy
� 2 .1=4N; 1/ and � D 1=4N , the probability of mutation from allele A1 to allele
A2 is greater. So there is one stable state with allele frequency x D 0 and one
unstable state with allele frequency x D 1 in the process.

(iii) 0 < a < 1

Two regimes have the same dynamical behavior. In one of the regimes mutation
rates satisfy � 2 .0; 1=4N � and � 2 .0; 1=4N /. In another regime mutation rates
satisfy � 2 Œ1=4N; 1/ and � 2 .1=4N; 1/. The fixed point in the two regimes lies
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at the interval .0; 1/. Among these cases the factor which can determine stability
is mutation rate. If parameters satisfy � 2 .0; 1=4N � and � 2 .0; 1=4N /, the
probability of mutation from allele A2 to allele A1 and the probability of mutation
from allele A1 to allele A2 are very small. There is only one unstable state with
allele frequency x D a and two stable states with allele frequency x D 1 and x D 0

in the process. Ultimately which state the population tends to fix is determined by
the initial state. If its initial state with allele frequency is less than x D a, the
population would move to the state with allele frequency x D 0. If parameters
satisfy � 2 Œ1=4N; 1/ and � 2 .1=4N; 1/, the probability of mutation from allele
A2 to allele A1 and the probability of mutation from allele A1 to allele A2 are very
great. In one generation mutation number 2N.� C �/ is greater than one. None of
the two mutation directions can dominate the process. This results in individuals
with genotype of two different genes becoming much. There is one stable state with
allele frequency x D a and two unstable states with allele frequency x D 0 and
x D 1 in the process. Ultimately the population tends to fix at the state with allele
frequency x D a. The population moves to the stable state with genotype A1A2.

(iv) a D 1

There is only one point with the dynamical behavior. If parameters satisfy
.�; �/ D .1=4N; 1=4N /, the potential of the whole population is plain. In fact
any state has equal chance to be the ultimate state. That is, the effects of mutation
and random drift have no influence on the allele change. The effect of mutation is
offsetted by that of random drift. The evolution has no bias on any state. We call this
process new neutral evolution. Previous neutral evolution described the dynamical
processes in the absence of selection. It has bias on some special states such as the
case driven by unequal effects of mutation and random drift. Its description is not
completely neutral.

(v) a > 1

There are two regimes with the same dynamical behavior. In one of the regimes
parameters satisfy � 2 .0; 1=4N / and � 2 .1 � 2N�/=2N; 1�. In another regime
parameters satisfy � 2 .1=4N; 1=2N / and � 2 .0; .1 � 2N�/=2N �. Among these
cases stronger mutation rate from one of the two directions dominates the process.
If parameters satisfy � 2 .0; 1=4N / and � 2 Œ1 � 2N�/=2N; 1/, the probability
of mutation from allele A2 to allele A1 is greater. So there is one stable state with
allele frequency x D 1 and one unstable state with allele frequency x D 0 in the
process. Ultimately the population tends to fix at the state with allele frequency
x D 1. If parameters satisfy � 2 .1=4N; 1=2N / and � 2 .0; .1 � 2N�/=2N �,
the probability of mutation from allele A1 to allele A2 is greater. So there is one
stable state with allele frequency x D 0 and one unstable state with allele frequency
x D 1 in the process. Ultimately the population tends to fix at the state with allele
frequency x D 0.

We theoretically analyze the dynamical behavior of the population and give the
critical point in parameters space. Furthermore we can get the cause of the evolution
clearly.
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4.2.3 Selection-Drift Balance

The process in the presence of selection, and random drift is much complex. We only
focus on some special cases to show how the process is characterized by adaptive
landscape. Natural selection works when genotypes have different fitnesses [30].
But the dynamics of selection depends on relative fitness. Suppose we denote the
relative fitness of selection on genotype A1A1 by 1 C s, A1A2 by 1 C sh, A2A2

by 1. Here s is called selection coefficient, a measure of the fitness of A1A1 relative
to that of A2A2 and h is called heterozygote effect [30], a measure of the fitness of
the heterozygote relative to the selective difference between the two homozygotes.
We here assume 0 < s < 1, A1A1 is fitter than A2A2. Let x be the frequency of
allele A1, then we can define mean fitness as

! D x2.1 C s/ C 2x.1 � x/.1 C sh/ C .1 � x/2: (36)

For the case of selection-random drift, the average frequency change of allele A1 is

M.x/ D x.1 � x/

2!

d!

dx
: (37)

For convenience we only assume additive fitness, put differently, it depicts the
important evolutionary process parameter satisfying h D 1=2: additive selection-
random drift process. So according to Eq. (20)

f .x/ D M.x/ � �D0.x/ (38)

D sx.1 � x/

2.1 C xs/
� 1 � 2x

4N
:

Potential function, namely, adaptive landscape derived analogous to Eq. (21) (� D 1)
reads

ˆ.x/ D 2N ln.1 C xs/ � ln x.1 � x/: (39)

As we can see, there are two singular points with allele frequency x D 0 and x D 1

from the expression of adaptive landscape. Singularity means the population stable
in the process.

Analogous to analysis of mutation-random drift balance, we get the fixed point
from

ˆ0.x/ D 0: (40)

They are

x1;2 D 2 C .2N � 1/s �p
.2N � 1/2s2 C 4s C 4

4s.N � 1/
: (41)
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After some trivial calculation, we can get the relative positions of fixed points and
singular points. They must satisfy the relation 0 < x1 < 1 < x2 under the condition
0 < s < 1. We can get two stable states with allele frequency x D 0 and x D 1

from the expression of adaptive landscape. In fact because of the relative positions
of these points, there is only one stable state with allele frequency x D x1. It is the
critical state that divides the effect regimes into two stable states. This case describes
that many alleles with very small effect on fitness are close to additive. That is, the
heterozygote fitness is the arithmetic mean of the fitness of the two homozygotes.

4.3 Escape Time from Infinite Potential

Because the metastability is such an important phenomenon, it is expected to
compute the life time of metastable states. It is an open question that when the
metastable states become unstable based on potential function, such as represented
by Kramers’ escaping rate formulae [31].

For escape time, it is defined that the object leaves from one potential basin of
an stable state and never comes back. If we take the initial state as a potential peak,
the exit state as a potential valley. Then the mean first passage time can approximate
escape time in general bell-shaped potential. Here we estimate the average escape
time by computing mean first passage time for two cases. One is of mutation,
random drift, the result is the same as [32]. The other is of selection and random
drift.

If we assume transition process occurs in the presence of weak mutation and
random drift under the condition of 4N� ! 0; 4N� ! 0, the corresponding
potential is U-shape. When first the population lies at the basin of stable state with
allele frequency x D 0, then it arrives at the state with allele frequency x D a, and
bounces back and forth and eventually reaches the state with allele frequency x D 1.
Because the potential difference is infinite and adaptive landscape has U-shape, the
time it climbed over the potential is very longer. General mean first passage time
about a population leaving .0; a/ under the circumstance of initial Dirac distribution
satisfies

.f .x/ C �D0.x//@xT .x/ C �D.x/@2
xT .x/ D �1: (42)

Further we set

T 0.0/ D 0; (43)

T .a/ D 0: (44)

Then we get

T .x/ D
Z a

x

1

�D.y/
exp.�ˆ.y//dy

Z y

0

exp.ˆ.z//d z: (45)

Here ˆ.x/ D R x

0
f .x0/=D.x0/dx0.� D 1/ is adaptive landscape.
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In general, when the landscape is sharply peaked at x D a, the main contribution
to the integral Eq. (45) is due to a small region near x D a. But here there is a fat
potential valley rather than a thin one. This results in the contribution to the integral
Eq. (45) from a big region around x D a, and at the same time ˆ0.a/ D 0, the
probability from x D 0 to x D a equals to that from x D a to x D 1. So the escape
time from x D 0 to x D 1 can be approximated to two mean first passage time from
x D 0 to x D a. Because escape time is when the population leaves the basin of
stable state with allele frequency x D 0, the escape time in the presence of weak
mutation and random drift is computed as

T � 2 � TMFP T .0 ! a/

D 8N

Z a

0

y�4N�.1 � y/�4N�dy

Z y

0

z4N��1.1 � z/4N��1d z

D 2.a � 0/

�
C 8N�

�

1X

nD1

anC1

n C 1

nY

kD2

�
k � 1 C 4N�

k

	

C8N.1 � 4N�/

1X

nD1

anC1

.n C 1/.n C 4N�/

nY

kD2

�
k � 4N�

k

	

D 1

�
C 4N�

�

1X

nD1

2�n

n C 1

nY

kD2

�
k � 1 C 4N�

k

	

C4N.1 � 4N�/

1X

nD1

2�n

.n C 1/.n C 4N�/

nY

kD2

�
k � 4N�

k

	
: (46)

Another way to get the escape time is that approximated mean first passage time
from x D 0 to x D 1. It is

�1 � TMFP T .0 ! 1/

D 4N

Z 1

0

y�4N�.1 � y/�4N�dy

Z y

0

z4N��1.1 � z/4N��1d z

D 1

�
C 4N�

�

1X

nD1

1

n C 1

nY

kD2

�
k � 1 C 4N�

k

	

C4N.1 � 4N�/

1X

nD1

1

.n C 1/.n C 4N�/

nY

kD2

�
k � 4N�

k

	
: (47)

These results demonstrate that the stable state with infinite potential has the
probability to be unstable. It gives a quantitative measure of escape with infinite
potential. From Eqs. (46) and (47), we can see the results are the same if the first
element 1=� approximates the escape time.
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If we assume transition process occurs in the presence of weak selection and
random drift under the condition of 4Ns ! 0, we can get the escape time leaving
the basin of stable state with allele frequency x D 0 by the same procedure. It is

�2 � TMFP T .0 ! 1/

D 4N

Z 1

0

4N

y.1 � y/
e�2N ln.1Cys/Cln y.1�y/dy

Z y

0

e2N ln.1Czs/�ln z.1�z/d z

! 1: (48)

Because the integral about the variable y is not integral at y D 0. Here infinite
potential indeed means infinite escape time. So the above two infinite potentials
have different meanings. One is true infinite, the other is false infinite.

4.4 Muller Ratchet

Muller’s ratchet proposed in 1964 [33] that the genome of an asexual population
accumulates deleterious mutations in an irreversible manner. It is a mechanism that
has been suggested as an explanation for the evolution of sex [34]. For asexually
reproducing population, without recombination, chromosomes are directly passed
down to offsprings. As a consequence, the deleterious mutations accumulate so that
the fittest class loses. For sexually reproducing population, because of the existence
of recombination between parental genomes, a parent carrying high mutational
loads can have offspring with fewer deleterious mutations. The high cost of sexual
reproduction is thus offsetted by the benefits of inhibiting the ratchet [35]. Muller’s
ratchet has been received growing attention.

Here in one-dimensional case, we consider one locus with two alleles (for
example, A and a), that is, there are two classes in the haploid asexual population,
one class with allele A while the other with allele a, supposed mutation from allele
A to a is deleterious. We assume fixed population size of N , which means we have
N alleles in all. We also assume that N > 1. Generations are non-overlapping.
The lifecycle of the individuals in the population is from adults to juveniles, during
which we consider irreversible mutation, selection, and random drift. The frequency
of the allele A for generation t is p while that of allele a is 1 � p. Let � be the
probability that an offspring of an adult with allele A is an individual with allele a,
labeled by M1;0, that is M1;0 D �. Analogously, M0;0 D 1��, M0;1 D 0, M1;1 D 1.
The relative viability of individuals with allele A is �0 D 1 while that of individuals
with allele a is �1 D 1�� where � can be treated as an effective selection coefficient
associated with deleterious mutations. So the values of parameters for � and � are
from 0 to 1. Then in generation t C 1, when selection and deleterious mutation are
active, the probability that the offspring of a parent with allele A is chosen to be with
allele a is �p.1 � �/, the probability that the offspring with allele A is .1 � �/p,
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the probability that the offspring of a parent with allele a is still with allele a is
.1 � �/.1 � p/. So the frequency of allele A in generation t C 1 is

p0 D .1 � �/p

1 � � C �.1 � �/p
: (49)

After using diffusion approximation, frequency p is treated as continuous quantities
x, and this leads to the distribution of the frequency for the allele A being the
probability density. Let �.x; t/ be the probability density of the frequency for the
allele A being x at time t . Then it obeys the dynamical equation

@

@t
�.x; t/ D � @

@x
ŒM.x/�.x; t/� C 1

2

@2

@x2
ŒV .x/�.x; t/�; (50)

and according to the definition of M.x/ and V.x/, the explicit expressions of
them are

M.x/ D .1 � �/x

1 � � C �.1 � �/x
� x

D xŒ.� � �/ � �.1 � �/x�

1 � � C �.1 � �/x
; (51)

V.x/ D x.1 � x/

N
: (52)

So according to Eq. (21) (� D 1), we have adaptive landscape as the following

ˆ.x/ D 2N�.1 � �/

1 � ��
ln.1 � x/ � ln x.1 � x/

C2N.1 � �/

1 � ��
ln.1 � � C x�.1 � �//: (53)

From the expression of adaptive landscape ˆ.x/, we may find there are two singular
points with allele frequency x D 0 and x D 1 of adaptive landscape, characterized
by infinite value. Infinity means the state relative stable or unstable in the system.

4.5 Dynamics of Muller Ratchet

To understand the mechanism of Muller’s ratchet, a full characterization of dynam-
ical process is a prerequisite for obtaining more accurate decaying time. Here we
study the dynamical behavior by investigating the positions and relative stabilities
of all fixed points as [36]. We further derive the parameter regions for all possible
cases.
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According to general analysis of a dynamical system, letting

ˆ0.x/ D 0; (54)

we get

2�.1 � �/.N � 1/x2 C .2N.� � �/ C 3� � �� � 2/x C .1 � �/ D 0: (55)

We solved Eq. (55) and found two fixed points. If we denote

˛ D 2 � 3� C �� C 2N� � 2N�; (56)

ˇ D 8�.1 � �/.N � 1/.1 � �/: (57)

They are

x1;2 D ˛ �p
˛2 � ˇ

4�.1 � �/.N � 1/
: (58)

For two singular points with allele frequency x D 0 and x D 1, if allele frequency
x goes to 1, and parameter satisfies � 2 .�; .2N� � 1/=.2N� � �//, then the value
of adaptive landscape ˆ.1/ goes to �1, so the population is unstable at the state
with allele frequency x D 1. When allele frequency x moves to 1, and selection
satisfies � 2 ..2N� � 1=.2N� � �/; 1/, the value of adaptive landscape ˆ.1/ tends
to C1, so the population is stable at the state with allele frequency x D 1. For
allele frequency x goes to 0, the value of adaptive landscape ˆ.0/ goes to C1 in
almost parameters regimes except � D 1, so the population is always stable at the
state with allele frequency x D 0. When selection satisfies � D 1, the viability of
the suboptimal class is zero, so the population stays at the initial state.

Here we address dynamical behaviors by the positions of two real inequivalent
fixed points with allele frequency x1 < x2 first.

For convenience, we denote

�1 D .2C2��10N�C4N 2�C2N�2C4.1��/
p

N.N �1/..2N �1/��1/

.��2N C1/2
:

1. We find two different real fixed points in two regimes. When parameters
satisfy � 2 .0; 2=.2N � 1 C 2

p
N.N � 1/// and � 2 .�; 1/, parameters

satisfy � 2 .2=.2N � 1 C 2
p

N.N � 1//; 1/ and � 2 .�1; 1/ two differ-
ent real fixed points occur. Among them parameters regimes do not include
� 2 ..2N � 1/=4N.N � 1/; 1/ and � D .2N� � 1/=.2N� � �/.

We discuss the relative positions for the fixed points and the singular points with
allele frequency x D 0, x D 1 and stabilities of them in the following.
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(i) 1 < x1 < x2

In one of the regimes parameters satisfy � 2 .1=.2N � 1/; 2=.2N � 1 C
2
p

N.N � 1//� and � 2 .�; .2N� � 1/=.2N� � �//, in another regime parameters
satisfy � 2 .2=.2N � 1 C 2

p
N.N � 1//; .2N � 1/=4N.N � 1// and � 2

.�1; .2N� � 1/=.2N� � �//, the fixed points satisfy 1 < x1 < x2. At the same
time the state with singular point x D 1 is unstable. There is one stable state with
allele frequency x D 0 in the system. The population tends to evolve to the stable
state.

(ii) 1 D x1 < x2

In the regions parameters satisfy � 2 .1=.2N � 1/; .2N � 1/=4N.N � 1// and
� D .2N� � 1/=.2N� � �/, the two fixed points satisfy allele frequency x1 D 1,
1 < x2. The state with allele frequency x D 1 is unstable. There is only one stable
state with allele frequency x D 0 in the system.

(iii) 0 < x1 < 1 < x2

In one of the regimes parameters satisfy � 2 .0; 1=.2N � 1// and � 2 .�; 1/,
in another regime parameters satisfy � 2 .1=.2N � 1/; 1/ and � 2 ..2N� �
1/=.2N� � �/; 1/, the fixed points satisfy 0 < x1 < 1 < x2. There is only one
unstable state with allele frequency x D x1 in the system, and two stable states
with allele frequency x D 1 and x D 0 exist in the system. The population tends
to evolve to which stable state dependent on the position of the initial state. If the
initial state with allele frequency is greater than x1, the population tends to evolve
to the stable state with allele frequency x D 1.

(iv) 0 D x1 < 1 < x2

In the regime parameters satisfy � 2 .0; 1/ and � D 1, the fixed points satisfy
allele frequency x1 D 0, 1 < x2. When selection rate satisfies � D 1, the process
stays at the initial state. Because for this case the viability of the sub-fittest class
is zero.

(v) 0 D x1 < x2 < 1

The case 0 D x1 < x2 < 1 is impossible. For x1 D 0, the other parameter must
satisfy � D 1, at the same time x2 must be greater than one.

(vi) 0 < x1 < x2 < 1

In one of the regimes parameters satisfy � 2 ..2N � 1/=4N.N � 1/; .2N �
1/=.4N � 3// and � 2 .�1; .2N� � 1/=.2N� � �//, in another regime parameters
satisfy � 2 ..2N � 1/=.4N � 3/; 1/ and � 2 .�1; .2N� � 1/=.2N� � �//, the
fixed points satisfy 0 < x1 < x2 < 1. The state with allele frequency x1 is unstable
while that with allele frequency x2 is stable. There are two stable states with allele
frequency x D 0 and x D x2 and two unstable states with allele frequency x D 1

and x D x1 in the system. The population evolves to which stable states dependent
on the initial position.
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(vii) x1 < 0 or x2 < 0

The case x1 < 0 is impossible, and the case x2 < 0 is impossible.

2. Then we discuss the case of two equivalent real fixed points with allele frequency
x2 D x1.

In the regimes of parameters satisfying � 2 .2=.2N � 1 C 2
p

N.N � 1//; 1/

and � D �1, we find two same fixed points with allele frequency

x1;2 D ˛

4�.1 � �/.N � 1/
: (59)

(i) 1 < x1;2

In the regimes of parameters satisfying � 2 .2=.2N �1C2
p

N.N � 1//; .2N �
1/=4N.N � 1// and � D �1, there are two same fixed points satisfying 1 < x1;2,
and they are unstable. There is one stable state with allele frequency x D 0 in the
process.

(ii) 1 D x1;2

At the two points of ..2N �1/=4N.N �1/; 2N=.2N �1/2/ and ..2N �1/=.4N �
3/; .4.N �1/.3�6N C4N 2/C8.N �1/.4N �3/

p
N.N � 1/=.4N � 3//=.2N �

1/2/, there are two same fixed points satisfying x1;2 D 1, and they are unstable.
There is one stable state with allele frequency x D 0 in the process.

(iii) 0 < x1;2 < 1

In one of the regimes parameters satisfy � 2 ..2N � 1/=4N.N � 1/; .2N �
1/=.4N � 3//, � D �1, in another regime parameters satisfy � 2 ..2N � 1/=.4N �
3/; 1/ and � D �1, there are two same fixed points satisfying 0 < x1;2 < 1, and they
are unstable. There is one stable state with allele frequency x D 0 in the process.

3. Finally we consider two imaginary fixed points jx1j D jx2j where the j:j denotes
the length for an imaginary points.

In the regime of parameters satisfying � 2 .2=.2N � 1 C 2
p

N.N � 1//; 1/ and
� 2 .�; �1/, there are two imaginary fixed points in the system. There is only one
stable state with allele frequency x D 0. The population always evolves to the stable
state.

4.6 Estimation of Single Click Time

To evaluate the single click time and show the further power of adaptive landscape,
in the following we will demonstrate how the single click time from one relative
stable state to another is derived for Muller ratchet. We also start from backward
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Fokker–Planck equation as general treatment [37, 38], backward Fokker–Planck
equation corresponding to Eq. (50) under natural boundary condition can be
expressed in the following form

@t �.x; t/ D .f .x/ C �D0.x//@x�.x; t/ C �D.x/@2
x�.x; t/: (60)

General single click time dependent on initial Dirac function satisfies

.f .x/ C �D0.x//@xT .x/ C �D.x/@2
xT .x/ D �1: (61)

The general solution corresponding to Eq. (61) is

T .x/ D
Z x

0

dy
1

�D.y/
exp.�ˆ.y//

Z 1

y

d z exp.ˆ.z//; (62)

here ˆ.x/ D R x
dx0.f .x0/=D.x0//.� D 1/.

Here the evolutionary process occurs when x 2 Œ0; 1�. We are more interested
in the escape time between the two stable states with allele frequency x D 0 and
x D 1. Here the adaptive landscape has rich structure which contains escaping
from finite and infinite potential. In the escaping from finite potential process, there
are two important states x�, x�

0 . Interval .0; 1/ contains a potential well at x� and
a potential barrier at x�

0 . The single click time is composed of two elements, one
denotes forming process of fittest class, the other describes losing process of fittest
class. In general, the time spent on forming process is much smaller than that spent
on losing process. So the escape time approximates to the time spent on losing
process. Because we assume that near x�

0 we can write

ˆ.x/ � ˆ.x�
0 / � 1

2

�
x � x�

0

˛0

	2

: (63)

and near x�

ˆ.x/ � ˆ.x�/ C 1

2

�
x � x�

ˇ0

	2

: (64)

At the same time, if the central maximum of ˆ.x/ is large compared with 1=N ,
then exp.ˆ.z// is sharply peaked at x�

0 , while exp.�ˆ.y//=D.y/ is very small near
y D x�. Equation (62) is evaluated as

T1!0 �
Z 0

x�

dy
1

D.y/
exp.�ˆ.y//

Z x�

0

1

d z exp.ˆ.z//

� 2	˛0ˇ0 exp.ˆ.x�
0 / � ˆ.x�//

D.x�/

/ 1

D.x�/
exp.ˆ.x�

0 / � ˆ.x�//: (65)
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From the expression of Eq. (65), the single click time is not sensitive to the boundary
assumption with x D 0 and x D 1, it is closely related to the potential difference
ˆ.x�

0 / � ˆ.x�/.
In the higher mutation rates regime, where x�

0 equals to a stable state x2, x�
corresponds to the unstable state x1 that the population lies between the adaptive
states 0 and x2. The potential barrier ˆ.x2/ � ˆ.x1/ is finite. The difference of
potential is

ˆ.x2/ � ˆ.x1/ D 2N�.1 � �/ � 1 C ��

1 � ��
ln

�
1 � x2 � x1

1 � x1

	
� ln

�
1 C x2 � x1

x1

	

C2N.1 � �/

1 � ��
ln

�
1 C �.1 � �/.x2 � x1/

1 � � C x1�.1 � �/

	

D 2N�.1 � �/

1 � ��
ln

 
1 � 2

p
˛2 � ˇ

˛ �p
˛2 � ˇ

!

� ln

 
1 � 4.˛2 � ˇ/

.˛ �p
˛2 � ˇ/2

!
C 2N.1 � �/

1 � ��

� ln

 
1 C 2

p
˛2 � ˇ

4N � 6 � 6N� C 7� � �� C 2N� Cp
˛2 � ˇ

!
;

(66)

where ˛ and ˇ are the same as Eqs. (56) and (57). According to classical derivation,
corresponding to Eq. (62) the single click time approximates to

T1!0 D lim
x!1

Z x

0

dy
1

�D.y/
exp.�ˆ.y//

Z 1

y

d z exp.ˆ.z//

� 2N

Z x�

0

.1 � y/2N�.��1/=.1���/

.1 � � C y�.1 � �//2N.1��/=.1���/
dy

�
Z 1

x�

0

z�1.1 � z/.���1�2N�.��1//=.1���/

�.1 � � C �z.1 � �//2N.1��/=.1���/d z

� 1

D.x�/
exp.ˆ.x2/ � ˆ.x1//

� N.N � 1/2�2.1 � �/2

.˛ �p
˛2 � ˇ/.4�.N � 1/.1 � �/ � ˛ Cp

˛2 � ˇ/
: (67)

The approximated single click time varies with mutation rates. The single click time
T1!0 increases with population size N in certain regime, decreases with mutation
rates � and selection rates � in the parameters regime � 2 .2N=4N.N � 1/; 1/ and
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� 2 .�1; .2N��1/=.2N���//. When mutation rate holds constant, with selection
rates increasing, the difference of potential between two fixed points decreases, the
viability of suboptimal class decreases, the population evolves to the fittest class. On
the other hand, when selection holds constant, with deleterious mutation increasing,
the population of suboptimal class increases, the difference of potential between two
fixed points decreases.

For the lower mutation rates regime, where the potential barrier is infinite. The
landscape has U-shape. The single click time can also be estimated under the
condition of weak mutation and weak selection, x� corresponds to the fixed point
x1 that the population lies at the lowest potential.

TEscape.1 ! 0/ � TMFP T .1 ! 0/

� 2N

Z 1

0

.1 � y/2N�.��1/=.1���/

.1 � � C y�.1 � �//2N.1��/=.1���/
dy

�
Z 1

x�

0

z�1.1 � z/.���1�2N�.��1//=.1���/

�.1 � � C �z.1 � �//2N.1��/=.1���/d z

� 1 � ��

�.1 � �/
: (68)

From expression of Eq. (68), the single click time goes to infinity with mutation rates
tending to zero in the parameters regimes of � 2 .0; 1=.2N � 1// and � 2 .�; 1/.
The results of the single click time are not sensitive to the population size.

Analogous to the derivation of TEscape.1 ! 0/, we can calculate

T0!1 D lim
x!0

Z 1

x

dy
1

�D.y/
exp.�ˆ.y//

Z y

0

d z exp.ˆ.z//

� lim
x!0

2N

Z 1

x

.1 � y/2N�.��1/=.1���/

.1 � � C y�.1 � �//2N.1��/=.1���/
dy

�
Z y

0

z�1.1 � z/.���1�2N�.��1//=.1���/

�.1 � � C �z.1 � �//2N.1��/=.1���/d z

� 2N

Z 1

0

.1 � y/2N�.��1/=.1���/

.1 � � C y�.1 � �//2N.1��/=.1���/
dy

�
Z y

0

.z�1 C : : :/d z

! 1: (69)

From expression of Eq. (69), the single click time goes to infinity with mutation
rates being zero.
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Our results show that the expected time to loss of the fittest class can be predicted
for a wide range of parameter values that appear to be biologically relevant.
Furthermore our results show that the time is insensitive to population size in the
presence of weak mutation and weak selection. This tells us that the ratchet process
may occur in finite but not small populations.

5 Discussion

Adaptive landscape introduced by Sewall Wright, a re-emerging powerful concept
in systems biology, is used as a tool to describe complex biological processes.
In the past Prugel-Bennett and Shapiro, Rattray took analogies between popula-
tion evolution and statistical physics and proposed maximum polymorphism to
approximate polygenic system. Their method does not ensure that the arbitrary
entropy measure converges to the correct stationary distribution, though it makes
accurate prediction. Barton group uses information entropy measure to analyze the
process of population evolution analogous to statistical thermodynamics. It points
out that the method works only for high mutation rates and breaks down for low
mutation rates [15], though this method ensures the convergence to the correct
stationary distribution by maximizing introduced entropy. In a word, past methods
of constructing adaptive landscape must need the normalization of stationary
distribution. The present chapter manifests the nonlinear and complex dynamics
of the evolutionary system by adaptive landscape analytically. Especially it can
describe the dynamical behavior under the action of random drift. Waxman and
Loewe [26] studied the same process, but they put Dirac function at boundary. This
results in the solution not satisfying the equation. The theoretical results suggest
our constructive potential function may be a reasonable candidate to quantify the
adaptive landscape and investigate the complex biological processes.

Recently, Zhou and Qian [39] also constructs landscape function to study the
complex dynamical property by discrete and diffusion Moran process. They also
meet the dilemma diffusion approximation and mismatch between fixed points
and extrema of adaptive landscape. But this mismatch can be explained in our
constructive method. Our method does not need the existence and normalization of
the stationary distribution. Our constructive method is independent of the stationary
distribution. Our method investigates the long-term dynamical property of the
system and reduces the complexity of calculating stochastic differential equations.
Our adaptive landscape can give a new definition of neutral evolutionary, that is,
the population is under the equal action of mutation and random drift. And the
analytical results of mutation-random drift balance are consistent with the results in
general textbook [21]. Whatever its shape and its singularity, the adaptive landscape
characterizes globally the complex dynamical behaviors for a system.
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