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Preface

The chapters in this edited book are selected from the invited lectures in Conference
on Nonlinear Dynamics and Complexity, held at Jinan, Shandong, China, on July
23–29, 2012. The aims of this edited book are to collect recent advances in
nonlinear dynamics, including analytical solutions, chaos in Hamiltonian systems,
time-delay, uncertainty, and bio-network dynamics, and to stimulate further research
in nonlinear dynamics and complexity. The topics in this book cover:

(i) Nonlinear dynamics in complex networks
(ii) Fractional maps with memory

(iii) Accurate analytical solutions for complex motions
(iv) Spiking neural network dynamics and biological processes
(v) Scaling laws of human virtual motions and human actions in uncertainty

(vi) Time-delayed nonlinear systems and noise effects

During a workshop-extended conference, the comprehensive discussions on the
above topics were made, which were led by the invited recognized scientists.
From such discussions, the young scientists and students learned new methods,
ideas, and results. This workshop-extended conference was supported by China
National Foundation of Science (Funding Number 111171192), Doctoral Program
of China Ministry of Education (Funding Number 2012374110001), and Shandong
Provincial Key Program of Basic Mathematics at Shandong Normal University.

Herein, editors would like to thank all the financial supports from China, the
authors and reviewers, for supporting the conference and collection. We hope the
results presented in this edited book will be useful for other specialists in nonlinear
dynamics and complexity.

San Luis Potosi, Mexico Valentin Afraimovich
Edwardsville, IL, USA Albert C. J. Luo
Jínan, China, People’s Republic Xilin Fu
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From Long-Range Order to Complex Networks,
an Hamiltonian Dynamics Perspective

Sarah de Nigris and Xavier Leoncini

Abstract In this chapter we discuss the influence of a nontrivial network topology
on the thermodynamic behavior of an Hamiltonian model defined on it, the
XY -rotors model. We first focus on network topology analysis, considering the
regular chain and a Small World network, created with the Watt–Strogatz model.
We parametrize these topologies via � , giving the vertex degree k / N��1 and p,
the probability of rewiring. We then define two topological parameters, the average
path length ` and the clustering coefficient C and we analyze their dependence on
� and p. We conclude this part presenting an algorithm, the tree algorithm, which
enhances the calculation speed of ` and C . In the second part, we consider the
behavior of the XY model on the regular chain and we find two regimes: one for
� < 1:5, which does not display any long-range order and one for � > 1:5 in which
a second order phase transition of the magnetization arises. Moreover we observe
the existence of a metastable state appearing for �c D 1:5. Finally we illustrate in
what conditions we retrieve the phase transition on Small World networks and how
its critical energy "c.�; p/ depends on the topological parameters � and p.

1 Introduction

The concept of network can be found in systems which spread from sociology and
information science to biology and physics. We can take as fundamental and well-
known examples, among others, the Web or networks of cells, like the neurons.
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2 S. de Nigris and X. Leoncini

Despite the difference between those systems, some common features arise in these
real world networks as a high level of clustering and the “Small World” effect itself,
which we will detail in the following. These shared properties are, looking at the
heterogeneity of the examples, quite independent from the punctual nature of the
agents interacting on networks and thus a lot of work has been done to point out
how common topological features stem from simple assumptions which can be
taken regardless of the particular model considered. We would like to stress here
the importance of understanding and characterizing real world networks: actually
the dynamical processes taking place on the top of them are profoundly influenced
by the underlying structure and an enhanced knowledge of the latter could shed
light on the rise of phenomena like synchronization or phase transitions (for a
more complete overview, see [1]). We are thus dealing with two levels of analysis:
the microscopical scale, which takes into account the very specific nature of the
interaction between the agents on the network and the macroscopic one which is
connected to the collective behaviors as the phase transitions. Thus a useful frame to
understand the interplay between these two scales can be nonlinear dynamics, whose
approach naturally deals with describing emergent collective phenomena. Indeed
this approach could have the potential to turn the qualitative matching between
network structure and dynamical processes into quantitative and the present work
aims to inscribe itself on this line. To do so we chose a model for the network,
the Watts and Strogatz model for Small World networks [2], and a model for the
interaction, the XY model for rotators (see, for instance, [3, 4]). Our choice for
the network has essentially two motivations: first the Watts and Strogatz model
catches the two over mentioned topological features of many real world networks:
high clustering and small average distance between two nodes of the network. This
latter characteristic is “Small World” effect but, in fact, small world networks often
show also a high clustering and this fact justifies our choice for the network model.
Second, the operative algorithm provided by the model gives a natural way to tune
the topology of the network: as we will see in Sect. 2.3.1, we have a continuous
parameter with which it is possible to switch between two opposite topologies of
networks, the regular and the random one, passing through the proper Small World
topology. On the other hand, dealing with the interaction, theXY model for spins is
paradigmatic for the study of phase transitions: this is a Hamiltonian model for two-
dimensional vectors, described by an angle �i , interacting via their scalar product:
V.�i � �j / � 1 � .cos.�i � �j //. This model has been, over the years, the object
of several numerical studies, especially on 2 and 3-D lattices [5–10]; moreover, this
model displays, in the 2-D configuration with nearest neighbors interactions, quasi
long-range in the form of a phase transition affecting the decaying of the correlation
function, the Berezinskii–Kosterlitz–Thouless phase transition [4,11,12]. Moreover,
recently, it has been shown that the XY model can host true long-range order even
in the 1-D case, provided that the spin has a minimal number of interactions between
each other [13]. In the case of full coupling of the spins, we recover the Hamiltonian
Mean Field model (XY -HMF) which, as well as the XY model, has become
a test bench for theories on system with long-range interactions. In spite of the
simplicity of its definition, that we will detail in Sect. 3.2, both the equilibrium and
the out-of-equilibrium regimes have a rich phenomenology: we mention here, as an
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example among others, an equilibrium phase transition of a global order parameter,
the magnetization [3, 15]; while, concerning the out-of-equilibrium behavior, the
emergence of out of equilibrium stationary states (QSS) has attracted a lot of
attention especially since their length diverges with the system size [16–20]. The
purpose of this work is to establish a connection between the topological variations
of the network and the response of the equilibrium behavior of the HamiltonianXY
model we defined on it. Before starting with our analysis we would like to recall
that this issue has also been tackled in [21, 22] but, differently from our case, they
considered the XY model in the canonical ensemble via Monte Carlo simulations.
We sketch here, as a guide for the reader, the steps of our analysis: in Sects. 2 and
3, we describe, respectively, some concepts defining networks in general and the
XY model. Focusing on the latter, in Sect. 3.2, we make a digression on the XY -
HMF model since we will use it as a benchmark to understand the behavior of the
XY model on a network. In Sect. 2.3, we present in detail the characteristics of
a Small World network, in particular its topological parameters, and an algorithm
we developed to perform extensive and efficient calculations of these parameters.
Finally, Sect. 4 consists in the synthesis of the previous ones: using the tools we
introduced for the networks and numerical simulations, we will show symmetries
and differences between the equilibrium properties ofXY -HMF and theXY model
on a regular chain first (Sect. 4.1) and successively on complex Small World network
(Sect. 4.2) trying to specially highlight the role of topological complexity.

2 Introducing a Network

As explained in the introduction, we aim in this work to enlighten the influence of
network topology in the thermodynamical behavior of an Hamiltonian system. There
exist many famous examples which can illustrate, even with very simple models,
this influence and thus justify our interest. We can consider, for instance, the XY
model for spins, which we will introduce in the following section, on a 1-D linear
chain with a nearest neighbors interaction. Because of the low dimensionality of
the system, as an application of the Mermin–Wagner Theorem, it does not exhibit a
phase transition of the global magnetization. On the contrary, if we take in account
the same model on a 2-D network with a nearest neighbors interaction this one will
show a Kosterlitz–Thouless phase transition, i.e. a transition from a order phase
to a disordered one [23, 24]. Furthermore, considering the XY model in the full
coupling limit, we recover another well-known case, the XY -HMF model, which
displays a second order phase transition of the magnetization [25]. Those antipodal
behaviors are hence intimately correlated with the shape and the dimensionality of
the lattice connecting the particles and we shall introduce in the following some
basic definitions in order to specify it.
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2.1 Definitions

We encode the network connecting the particles in an adjacency matrix �i;j whose
elements are 1 if the particles i and j are connected, 0 if they are not:

�i;j D
(
1 ) i; j connected

0 ) i; j not connected
: (1)

We have, thus, a total number of links NLconnecting the N particles of the system
and these particles are located at the nodes, or vertices, of the network. We introduce
also a parameter � which quantifies the total number of links NL:

� D log.NL/

log.N /
; (2)

where � 2 Œ1; 2� and for the two limit cases we have:

� D
(
1 H) linear chain

2 H) fully coupled
: (3)

Finally we define the average number of links per particle, the degree k:

k D 22��N �

N
D 22��N ��1: (4)

The prefactor 22�� gives the “correct” value of k in the case of a linear chain (� D 1)
with closest neighbors interaction in which we have 2 links per vertex.1

2.2 The Regular Chain

Considering the example at the beginning of Sect. 2 and the definitions of Sect. 2.1,
it comes naturally to the mind to first consider the regular one-dimensional chain
as network topology (Fig. 1). At a first glance, this topology would seem trivial
but we already discussed that, in the two extremal cases of Eq. (3), the degree
is responsible for opposite thermodynamical behaviors. It is hence of interest
to precisely understand in what conditions the pure one-dimensional topology is
broken and the long-range order arises. Using � in Eq. (2) is then possible to tune
the range of interaction and investigate the parameter zone in between those two

1In the present discussion, the words “vertex” and “particle” are confounded since the particles are
located at the vertices of links.
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Fig. 1 Linear chain with (left) k D 2 and (right) k D 6

cases, the nearest neighbors and the full coupling interaction. In order to ensure
the rotational invariance and avoid border effects we imposed periodic boundary
conditions so that each spin possesses a symmetrical neighborhood of interaction
(Fig. 1) and the chain is effectively a ring. As a final practical observation, we remark
that, for fixed N and � , Eq. (4) gives a non-integer result; so to construct our ring
we take the integer part of Eq. (4).

2.3 The Small World Networks

2.3.1 General Characteristics

We introduced, in Sects. 2 and 2.2, some basic definitions of networks and the case
of the regular chain with the spin neighborhood is controlled via � . Moreover, at
the beginning of this section, we suggested that a complex topology could be the
key for interesting changes in the thermodynamical behavior2: at this point we shall
introduce some tools to quantify this complexity and we will focus our analysis on
a particular type of complex networks, the Small World Networks. We define as
“Small World effect” the property of some networks to have a logarithmic growth
of the average distance between two vertices< ` > with the system size:

< ` >� log.N /: (5)

In Eq. (5) we have that the average distance grows slower than linear with the system
size as it happens in regular networks. This is the signature of the presence of
shortcuts and, from the point of view of the statistical physics, these shortcuts can
imply the emergence of global coherence. The Small World effect has first been
detected in social networks [27] and it is often accompanied by a high clustering
coefficient of the network, as we will see in the following. The algorithm chosen
to produce such networks is issued from the seminal paper of Watts and Strogatz
[2] and it acts on a regular network rewiring randomly the links. In practice we
start from a regular network in which each vertex is connected to its k neighbors
and according to a fixed probability p each link is either left untouched or rewired.
Hence we have a parameter, the probability p, to tune the level of rewiring: for low
p values, the network is almost regular; on the other hand, for high p values, almost

2We recall, for instance, that it has been shown how the thermodynamics of the XY model on
random networks, hence topologically trivial, recovers the XY -HMF behavior [26].



6 S. de Nigris and X. Leoncini

Fig. 2 Transition from regular network (a) to a random one (c) increasing the probability p.
(b) corresponds to a Small World network

Fig. 3 (left) Configuration of maximal clustering coefficient (clique). (right) Configuration of
minimal clustering coefficient

all the links are rewired and the network is random. With this parameter p, we
can pass continuously between these two limit cases as shown in Fig. 2. Depending
on the system size, a parameter region can be found in which the network has the
two over mentioned features, high clustering coefficient and little average distance,
being then what is now called a Small World network.

2.3.2 Important Parameters

Before proceeding further, we shall recall the definition of these two quantities, the
clustering coefficient and average path length [27]. For the clustering coefficient
we have:

C D 1

N

X
i

ci ;

where:

ci D ei
1
2
ki .ki � 1/

: (6)

In Eq. (6), ki stands for the number of links connected to the vertex i, the
degree of the vertex. ei is the number of links existing between the ki neighbors
of the vertex (Fig. 3): the maximal number of couples between the neighbors is
1
2
ki .ki � 1/ and we count how many of this links effectively exist, ei . The fully

coupled configuration will have then c D 1 (Fig. 3) and it is called a clique. In
practice the clustering coefficient quantifies the average amount of clustering per
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Fig. 4 Path lengths starting from the blue vertex

vertex and it is, by definition, a local parameter. For a regular network, the clustering
coefficient has an analytical expression:

C0 D 3.k � 1/

2.2k � 1/ :

where k is the degree of each vertex. Considering now the network globally, we
define the average shortest path length as:

` D 1

N

X
i

`i ; (7)

with `i being the longest path attached to the vertex i . To quantify these paths, since
the network lacks a metric, we count the number of edges between two vertices.
Starting, for instance, from the i vertex, we have that its neighbors are at distance
d D 1, the neighbors of the neighbors are at d D 2, and so on (Fig. 4). Finally,
to ensure that the path taken is the shortest possible, we impose to consider each
vertex only once avoiding this way to come back on links already explored. For this
parameter too we can give an analytical expression in the case of a regular network:

`0 D N.N C 2k � 2/

4k.N � 1/
� N

4k
:

For bigN values and k finite, which is the typical configuration, `0 is linear with
the system size, while from Eq. (5), we have a logarithmic scaling for Small World
networks. We mentioned above the centrality of the topological characterization:
this centrality shall be justified now since the nature of the network (random, regular
or Small World) (cfr Fig. 2) can be related to the values of the clustering coefficient
c and the average path length Q̀. As shown in Fig. 5 it is possible to identify three
main zones: for low p values the two topological parameters are both high and
we are thus in the regular network region. On the other side, for high p values,
the network has low clustering coefficient and low average path length since it
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Fig. 5 Connectivity and average path length versus rewiring probability for � D 1:25 (up) and
for � D 1:5 (bottom). Stars refer to length while circles to the clustering coefficient

is completely random. The intermediate zone is the one of our interests: the network
is characterized by high clustering coefficient and low average path length having
thus the features of a Small World network. This region varies with the system size
since it is delimited by the fall of the average path length which is a global parameter.
So far we focused our attention on the effects of the addition of randomness, via
the probability p, in the regular networks. To complete now our analysis it is worth
recalling that, in Sect. 2.2, we introduced a parameter � whose role is controlling the
interaction range in the regular chain case. Consequently, the Small World networks
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Fig. 6 (a) Average path length for different � values and N D 214; (b) Scaling of the critical
probability varying �

we consider are parametrized by both p and � and even by an heuristic inspection
of Fig. 5, it is clear that the extensive parameter ` is heavily affected by � , while
the clustering coefficient which is intensive, does not seem to be much influenced
by � . Therefore to have a better insight on this effect we calculated numerically the
average path length `.N; �; p/ for several � values (Fig. 6a). It is hence possible to
define a threshold probability, pSW , at which `.N; �; p/ drops at the small values
typical of random networks: this drop, as explained previously, signals the passage
to the “Small World regime.” This probabilitypSW is expected to have the following
expression [28]:
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Fig. 7 Example of tree: starting from the vertex with the maximal degree k, we set at the first
level its neighbors fA1; : : : ; Akg, at the second level the neighbors fAj1 ; ::; Ajkg of the fAi g with

the condition Aji … fAig 8i; j and so on until having structured all the cluster

pSW � 1

NDkD
/
�
1

N

��
; (8)

in our caseD D 1 since we deal with one-dimensional chains. In Fig. 6 we show the
scaling with � of the estimated pSW from our simulations which is coherent with
Eq. (8). The condition in Eq. (8) comes from a simple statistical argument: since,
on average, the rewired links are NR D NDkDp, the expression in Eq. (8) ensures
that, once the Watt–Strogatz algorithm has been performed on the regular network,
at least one link would have been rewired, i.e. NR D NDkDpSW D 1. We can
hence conclude, from the evidence in Fig. 6, that the degree quantitatively affects
the passage to the Small-World regime, enhancing the creation of shortcuts.

2.4 The Tree Structure

In Sect. 2.3.1, we introduced two parameters, the clustering coefficient and the aver-
age shortest path length, which imply a high degree of knowledge of the network and
are thus computationally very expensive. More, to encode the information about the
links between particles, we used the adjacency matrix which containsN2 elements,
many of them irrelevant since zero. Because of this need of efficiency and enhanced
knowledge of the network, we thus developed a more organized structure, the tree,
to rearrange the data concerning the links. The idea is to start from the vertex with
the highest degree and to set at the first level its neighbors, at the second one the
neighbors of the neighbors, and so on for the next levels. Finally we have at the
nth level the nth generation of neighbors with the constraint to put in the next level
only vertices which have not previously been visited (Fig. 7). The search for the new
level stops when we have already explored all the cluster and the remaining vertices
are connected to another one. This algorithm somehow recalls the one described
in Sect. 2.3.1 for the average path length and we will see how they are related.
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Fig. 8 Application of Eq. (9): the head vertex is at d0 D 0; hence, its `0 is maximal, dmax . For the
second level, it is at d2 D 2 and, since there exist tree levels (dmax D 3), `2 D d2 D 2

Constructing the tree implies to access the detailed structure of the network: we
can deduce the degree and cluster distributions and know how many particles are on
the tree levels, characterizing completely the network (see Sect. 2.3.1). The second
aim we pointed was to improve the calculation efficiency of the over mentioned
topological parameters, the clustering coefficient and the average shortest path
length. For the clustering coefficient we have, from Sect. 2.3.1, that its calculation is
about counting triangles of links between a chosen vertex and its neighbors (Fig. 3).
Hence the number of checks we are supposed to perform looking for these triangles
will be a priori Nk.k � 1/ � O.N3/ because of the Eq. (4) of the degree k. On
the other hand, with the tree structure we have the additional information that these
links can exist only between particles on the same level or in levels at a distance
one: building the tree, we kept track of the links which affect the average path
length; hence, for the clustering coefficient, we cannot have a triangle of links on
two levels spaced by more than one step since, in this case, we would be looking
for links which are either already considered in the tree or inexistent (Fig. 13). The
restriction to a couple of levels instead of searching the whole adjacency matrix
implies a remarkable improvement in the calculation of the clustering coefficient,
allowing us to explore the behavior of this parameter for several sizes of the system,
values of p and � (see Sect. 2.3.1). For the average shortest path length, we decided
to take an approximation instead of considering for each vertex all the possible
paths which start from it. We considered the distribution of the level population as
a statistical weight for the average path and we chose to associate at each level a
distance defined as:

Q̀
i D max.di I dmax � di /;

where di is the distance of the i -level from the head of the tree and dmax is the total
length of the tree (Fig. 8). The average shortest path length is:

Q̀ D 1

N

X
i

Q̀
i ni ; (9)

ni being the population of the i -level. We observe that Q̀ calculated with Eq. (9)
remains smaller than the one calculated with the classical definition in Eq. (7): if we
re-write Eq. (9)
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Fig. 9 Tree corresponding to the calculation of the length in Eq. (9). The red links are the ones
“added” by the expression of Q̀

Q̀ D 1

N

X
j

njX
iD1

Q̀
j ;

it appears in a clearer way that Q̀ is a sum of N terms like ` in Eq. (7) and,
in fact, it corresponds to calculate ` on a network in which we added links to
connect completely the levels (Fig. 9). So, because of the increased number of
links which “constructs” new paths, Q̀ < `. In other words, if we calculated ` on
the completely connected tree of Fig. 9, we would obtain the same value than Q̀;
while, since normally ` is calculated on a less connected network, the paths `i of
Eq. (7) are longer. We discussed earlier in Sect. 2.3.1 that ` is important since its
drop, occurring at pSW , signals the crossover to the Small World regime. Hence,
to validate the approximation Q̀, it is of interest to compare the two threshold
probabilities pSW and QpSW , estimated, respectively, from the drop of ` and Q̀. Just
for comparison, we show in Fig. 10 that Q̀ and ` [2] for � D 1:5 have the same
qualitative behavior so that the estimate pSW and QpSW correspond. To be more
quantitative, we calculated QpSW .N; �/ in the N range considered in Fig. 11b for
� D 1:5; in Fig. 11a we show that QpSW .N; �/ displays the power law scaling of
Eq. (8): consequently, we conclude that Q̀ can be taken as a good indicator for ` to
estimate the interesting parameter regions for the networks.

2.4.1 Algorithm Performance

As sketched in Sect. 2.4, the introduction of the tree structure achieves two aims:
speeding up the calculation of the topological parameters and deepening the
knowledge of the network. The speed of calculation is crucial since to enlighten
clearly the influence of the network properties on the thermodynamical behavior we
need their complete characterization. First, focusing on the clustering coefficient,
we have that the improvement is given only by the reduced number of checks
and it is a consequence of the tree structure. In Fig. 12 we show the increasing
time of computation for different system sizes and values of gamma with the
two algorithms. In this case, the clustering coefficient is calculated as in Eq. (6)
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using the tree algorithms

and we obtain the gain in speed because, calculating the clustering coefficient of
the i th-vertex, we have a restriction in the choice of suitable connected vertices
(Fig. 13). On the other hand, for the average path length, we took the approximation
Q̀ which is justified by the fact that its scaling reproduces correctly the theoretical
one ` (Fig. 11). This approximation Q̀ implies, however, a remarkable change in the
times of calculation: from Eq. (7) we should explore, when considering a vertex,
every path attached to it, scrolling hence a good part of the network for each of
the neighbors. With the approximation Q̀, building the tree gives in an automatic
way the populations of the levels and their distance, allowing to calculate directly
Q̀ via Eq. (9). In Fig. 14 we show the curves of the computational time of the two
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algorithms: the difference between the two is of orders of magnitude when dealing
with big system sizes. This result along with the good scaling of Q̀ confirms the
validity of its choice in order to explore the network properties.

3 The Model for the Interaction: The XY Model

We have considered in Sects. 2.2 and 2.3, respectively, the regular chain topology
and the Small World one and investigated the passage from one to the other via
p and � . Now, as we sketched in the Introduction, the natural following step is
to define a form of interaction between the vertices and tackle the issue of the



16 S. de Nigris and X. Leoncini

Fig. 13 Calculating the clustering coefficient of 1, we first consider the link between 1 and 2; then,
we try to complete the triangle looking for the possible links with {3,4,5,6} (the red ones in figure).
These links are the only ones which can exist (encoded in the adjacency matrix) leaving untouched
the structure of the tree. For instance, the dashed links cannot exist since it would imply that the
vertices 1 and 2 should have been placed at the first level instead of the second when building
the tree

interface between the relative thermodynamic behavior of the dynamic model and
the network properties we introduced in the aforementioned sections. To achieve
this aim, we will study the XY model for rotors: in Sect. 3.1 we present the basic
equations of the XY model, while Sect. 3.2 is devoted to a digression concerning
the XY -HMF model, which is the full coupling limit of the XY model and which
has become over the years a paradigm for theories on long-range systems.

3.1 Basic Definitions

We consider an interaction between spins of the form:

V.�/ D J

2 hki
X
i;j

�i;j .1 � cos.�i � �j // (10)

with

hki D
X
i;j

�i;j =N (11)

and the �i i 2 Œ1; N � are angle variables associated with the spins. The coupling
constant J is chosen positive to have a ferromagnetic behavior and, without losing
generality, it can be set at 1. The phase space for the system is:

(
p 2� � 1;C1Œ

� 2 Œ��; �Œ
� D Œ��; �ŒN�� � 1;C1ŒN ;
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Fig. 14 Computational time for the two average path length algorithms: (up) for increasing system
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and the total Hamiltonian reads:

H D
X
i

p2i
2

C J

2 hki
X
i;j

�i;j .1 � cos.�i � �j //: (12)

Finally, for the Hamilton equations we have:

( P�i D @H
@pi

D pi

Ppi D � @H
@�i

D � J
hki .sin �i

P
�i;j cos �j � cos �i

P
�i;j sin �j /

: (13)
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Starting from the definitions in Sect. 2 we recall that, in [26], the authors already
took in account the case of a random network in which the degree k / N” � 1 links
per particle are randomly distributed and these particles interact via the potential
(Eq. 10). It has been found that the thermodynamical behavior of the system on
these networks recovers the case of the fully coupled model, i.e. the Hamiltonian
Mean Field model (XY -HMF), for all values of �; 1 < � � 2 [26]. We shall focus
on the thermodynamical behavior of theXY -HMF in Sect. 3.2; but we want to stress
here the implication of the result in [26]: actually introducing a “dilution,” given by
� , in the strength of the interaction does not affect the thermodynamical properties
in the TD limit when the network lacks any structure, being random. Hence we can
hypothesize that the influential characteristic on dynamics should be a nontrivial
topology of the network and, in the following, we will aim to shed light on this
influence.

3.2 The Mean Field Model (Globally Coupled)

Since the XY -HMF model properties are the paradigm to which we compare the
XY model on a network, we briefly recall in this section some of the principal
features of the XY -HMF. We recover this model from Eq. (10) in the case of global
coupling of the system, i.e. �i;j D 1 8i; j 2 Œ1; N �; i ¤ j :

V.�/ D J

2N

X
i;j

.1 � cos.�i � �j //; (14)

so the Hamiltonian of the system reads:

H D
X
i

p2i
2

C J

2N

X
i;j

.1 � cos.�i � �j //: (15)

From (15) we obtain the equations for the dynamics of a particle:

( P�i D @H
@pi

D pi

Ppi D � @H
@�i

D � J
N
.sin �i

P
j cos �j � cos �i

P
j sin �j /

(16)

and, defining a global order parameter, the magnetization as:

�!
M D

(
Mx D 1

N

P
i cos �i

My D 1
N

P
i sin �i

D M
�

cos�
sin �

�
; (17)

where M D
ˇ̌̌�!
M
ˇ̌̌
, we can rewrite the system in Eq. (16) in terms of M:
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( P�i D @H
@pi

D pi

Ppi D � @H
@�i

D �JM sin.� i � �/
: (18)

We observe that the potential in Eq. (14) belongs to the class of long-range ones.3

Consequently, the system lacks the property of additivity and this implies the
emergence of phenomena like phase transitions even in the 1-D case. For the
XY -HMF model it is possible to find the analytical expression of the equilibrium
magnetization [25]:

M D I1.ˇM/

I0.ˇM/
.M D jMj/;

where Ii are the Bessel functions of zeroth and first order and ˇ is the inverse
temperature. Varying the energy " per particle, the magnetization shows a second
order phase transition (Fig. 15) at " D 0:75, which is also confirmed by numerical
simulations. This transition is of capital importance since, in Sect. 4, we consider
how it varies in correspondence with the variation of the network topology. If
we consider a stationary state in which the magnetization is a constant, like the
equilibrium, Eq. (18) show an interesting feature of the model: in the thermo-
dynamic limit, the system behaves as uncoupled pendula. This implies that the
dynamics remarkably regularize with the increasing size, instead of becoming more
chaotic [29, 30]. The lack of additivity entails also the breaking of ergodicity:
depending on the initial conditions, the system reaches a stationary state (Quasi
Stationary State), different from the equilibrium, whose length 	QSS varies with the
size:

3Actually it is the first harmonic of the gravitational potential.
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	QSS � N˛; (19)

where the exponent ˛ has been estimated around 1.7 see, for instance, [20, 26]
for details and references. Hence the two limits t ! 1 and N ! 1 do not
commute and, eventually, the magnetization gets stuck on values different from the
equilibrium before relaxing for times diverging with the system size. This behavior
thus can be of great interest since, as a perspective, we could eventually observe an
influence on the non-equilibrium dynamics due to an initial inhomogeneity as the
presence of clusters in the network. On the other hand, the existence of the QSS
implies also that there is not a straight convergence to the equilibrium and this can
be a limit when performing simulations: considering the equilibrium properties, we
are forced to simulate the dynamics for times which are increasing with the system
size (cfr. Sect. 4) and then simulations can eventually require days of calculation.

4 Thermodynamical Properties on Networks

In Sect. 3.1 we introduced the dynamic equations of the XY model and, in
Sect. 3.2, we recalled that its full coupling limit, the XY -HMF model, undergoes
a second order phase transition, signalled by the order parameter of Eq. (17), the
magnetization. Now, since our purpose is to observe the influence of the network
structure on the XY model thermodynamics, we introduce a generalization of the
definition of theXY -HMF magnetization (Eq. 17) in order to embed the information
on the network. We consider as order parameter a “new” magnetization M:

M D j�!M j D
q
M2
x CM2

y

�!
M D

(
Mx D 1

N

P
i M

i
x

My D 1
N

P
i M

i
y

; (20)

where: (
Mi
x D 1

ki

P
j �i;j cos �j

M i
y D 1

ki

P
j �i;j sin �j

D Mi
�

cos�i
sin�i

�
: (21)

Equation (20) indeed is the generalization of the definition of the XY -HMF mag-
netization (Eq. 17): now, since each particle has a degree ki , its local magnetization
will be the sum of the contributions of its ki neighbors encoded in the adjacency
matrix �i;j (Eq. 21). We can rewrite the Hamilton equations in Eq. (13) using
Eq. (21):
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( P�i D @H
@pi

D pi

Ppi D � @H
@�i

D �JMi sin.�i � �i /
: (22)

We remark that, already at this early stage of discussion, a profound difference arises
with the XY -HMF case from the definition of a local magnetization: we see, from
Eq. (22), that the dynamics of a particle is driven by its k neighbors, differing hence
from one particle to another according to their degree. This can be also the case for
short and long range systems (see, for instance, [4, 31, 32]), but this is not the case
of the XY -HMF, in which the fully coupling guarantees that, in the thermodynamic
limit N �! 1, every particle feels the same mean field generated by the other
N � 1 � N particles. Interesting behaviors can stem from this inhomogeneity due
to the network structure: in the frame of this work, we addressed its influence on the
evolution of the total magnetization M; but we would like to mention that a study
relating the inhomogeneity to non-equilibrium properties is a perspective for further
investigations due to the peculiarities of the model, as the QSS (see Sect. 3.2).

4.1 XY Model on Regular Chain

The first network topology we will take into account is the regular chain described
in Sect. 2.2. As explained, the unidimensional spin chains can generate antipodal
behaviors according to the spin degree k: a phase transition for the full coupling
configuration (XY -HMF) while, on the other hand, no long-range order exists with
the nearest neighbors coupling. The gist on this section is hence to interpolate
between these two extrema, varying the coupling via the � parameter (Eq. 2) and
quantifying the emergence of the long-range order.

4.1.1 Simulations Procedure

We perform simulations integrating numerically the dynamic equations (Eq. 22)
using a fifth order optimal symplectic integrator [33]. Then, having integrated the
dynamics, we study the evolution of the total equilibrium magnetization M (Eq. 20)
where the bar denotes the temporal mean for 1 < � < 2. More in detail, we tune
the energy " D H=N in the interval " 2 Œ0:1I 0:9� and we take Gaussian initial
conditions for the .pi ; �i /. Then, having set the energy and the initial .pi ; �i /, we let
the dynamics evolve and we wait for the magnetization to reach a stationary state;
finally, we perform the average to have the equilibrium value. Actually the relaxation
to the equilibrium is a delicate passage of our analysis: as explained in Sect. 3.2,
the system can reach a stationary state in which the magnetization has a different
value from the equilibrium and the length 	QSS of these states (QSS) increases with
the system size as in Eq. (19). Therefore it is of crucial importance to check the
evolution of the magnetization before taking the temporal mean, when these states
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can arise. Another point a bit technical that is worth to detail before proceeding is
the numerical integration. We mentioned before the use of an optimal symplectic
integrator of fifth order [33]: this integrator minimizes the introduction of numerical
error. Indeed since we deal with an Hamiltonian system the energy is a conserved
quantity along with the total momentum, because of the translational invariance.
Hence, when integrating the dynamic equations with the symplectic integrator, we
check the conservation of these momenta and, thus, we control the correctness of
our simulation. Coming to the simulations results, as we explained at the beginning,
we address here the issue of the long-range emergence increasing with � the spin
coupling. We hence tune � in the interval .1; 2/ and in Fig. 16a we sum up in some
sense our findings.

4.1.2 Numerical Results

We observe the presence of three different behaviors of the equilibrium magneti-
zation: first, for � D 1:25 in the figure, the magnetization seems to vanish for all
the energies in the physical range; on the other hand, for � D 1:75 in Fig. 16a, the
magnetization undergoes a second order phase transition like the one of the XY -
HMF model. In the middle between the two, for � D 1:5, the magnetization for
each energy is lower than the � D 1:75 value but nevertheless remains finite and
bigger than the � D 1:25 case. This particular value of � , � D 1:5, signals in
fact the passage between two parameter zones � < 1:5 and � > 1:5, represented,
respectively, by � D 1:25 and � D 1:75 in the previous discussion. In the first
interval � < 1:5 the system behaves like a one-dimensional chain with nearest
neighbors coupling in which long-range order is not possible. The other case,
� > 1:5, is thermodynamically like the XY -HMF case displaying a second order
phase transition of the magnetization at "c D 0:75. Let us focus primarily on this
latter case, � > 1:5. Heuristically our result points out that in order to achieve a
global alignment and give a nonzero magnetization, each spin does not need to be
under the influence of all the others, like in the XY -HMF frame, but just a bunch of
connections, for instance � D 1:6, provides enough information to be representative
of the whole system state and ensure the global alignment. More from the technical
side, in Fig. 16a, the averages are taken when the magnetization is in a stationary
state whose fluctuations, monitored via the variance


2 D .M � M/2; (23)

show the scaling canonically associated with equilibrium:


2 / 1=N: (24)
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˝

2
˛
with the size for � D 1:75

In Fig. 16b, we control that this statement holds for each energy in the physical
range considered so to justify our previous claim of an equilibrium second order
phase transition. As a last remark on this part, we observe that, in Fig. 16a the
phase transition seems to take place at a different energy than the XY -HMF one,
"c D 0:75 but it is an artifact issued from the finite size of the simulations. Passing to
the analysis of the other interval � < 1:5, Fig. 17a confirms what anticipated before,
i.e. that the magnetization vanishes for each energy in the thermodynamic (TD)
limit since the residual values due to the finite size simulations decrease smoothly
with the increasing size. To further support this thesis, in Fig. 17b, we monitored the
magnetization for the lowest energy " D 0:1, which is the most likely to give a finite
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value in the TD limit, and it is consistent with the decreasing trend shown in Fig. 17a.
As for the � > 1:5 case, the variance scaling in Fig. 17c shows the expected behavior
of Eq. (24), suggesting that we are indeed observing the equilibrium state. Then in
the � < 1:5 regime the system behaves like if just the nearest neighbors coupling
was at play and thus no long-range order is possible. In practice, interpreting this
result in terms of information like before, the spins interact with a neighborhood
which could be non negligible i.e. for � D 1:4 but it does not bring enough
information on the whole system state to allow alignment coherence and a finite
magnetization. On the contrary our results point out that, in the TD limit, the spins
behave like if coherence was destroyed by spin waves and the magnetization thus
vanishes. To be more precise, this last statement should be supported by a further
analysis: we show that true long-range order is absent but still a certain degree of
coherence could eventually be retrieved in the spin correlation function

c.j / D 1

N

NX
iD1

cos.�i � �iCj ŒN �/ : (25)

If, as claimed, the spin were uncorrelated, we would expect an exponential decay
of c.j / with the spin distance; but we recall that the XY model in two dimensions
displays a power law decay of c.j / for low temperatures. This slow decay turns
into exponential for high temperatures, giving rise to the Berezinskii, Kosterlitz,
and Thouless (BKT) phase transition [23]. This peculiar phase transition is the
signature of quasi long-range order so, to eventually detect it in our frame, we
monitored the correlation function for low temperatures: in Fig. 17d it has the
exponential decay expected. This concludes our analysis, demonstrating that in the
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� < 1:5 range global coherence is not possible even in the slighter form of a BKT
transition. The last but not less interesting case that remains to be considered is
the one stemming from � D 1:5. We already discussed that the magnetization gets
stuck, for low energies 0:3 . " � 0:75, in a “middle” value which is inferior
to the mean field value but still nonvanishing in the TD limit (Fig. 16a). But, in
addition to this quantitative difference, the magnetization temporal behavior itself is
intrinsically different for � D 1:5: the “middle” value resulting from the temporal
mean originates from important oscillations of the magnetization whose amplitude
is orders of magnitude larger than in the other � regimes, as illustrated by Fig. 18a.
Naturally one would expect those oscillations to relax either in the t ! 1 or
in the N ! 1 limit. We hence performed simulations increasing the simulation
time and the size: in Fig. 18c the simulation time is ten times longer than what
was required in the � 7 1:5 regimes and still the oscillating behavior persists. The
increasing size limit fails as well in smoothing down the fluctuations: in Fig. 18c we
compare two time series for N D 212 and N D 218 and, in spite of the six order
of magnitude difference, the fluctuation amplitude remains unchanged. This latter
statement can be refined using the magnetization variance 
2 (Eq. 23) as before:
indeed, as displayed in Fig. 18d, the size influences very poorly the fluctuations
amplitude giving an almost flat behavior to 
2 in contrast to the scaling 
2 / 1=N

which characterized the � 7 1:5 configurations. We can hence interpretate this state
as a kind of bistable regime: the spin degree for � D 1:5, k / p

N , is too high
to let the magnetization vanish, but at the same time the spins are not “entangled”
enough to restore the mean field picture and display the phase transition. Therefore
the system gets trapped in this oscillating regime which seems persistent in time.
Moreover, if we consider the definition of the susceptibility �:

� � lim
N!1N
2;

we can deduce from the flat behavior of the variance that this fluctuating regime is
characterized by an infinite susceptibility. As a final observation, which could give
rise to interesting perspectives, we note that in Fig. 18c the oscillation period bears
the information on the increasing size: for the biggest case is evidently longer than
for the smaller system. This feature, mixing both the system size and an intrinsic
time scale, sounds reminiscent with the QSS duration of Eq. (19) for the XY -HMF
model so that it could be the trademark of a match between the out-of-equilibrium
behavior of these two models.

4.1.3 Analytical Calculation

In the previous section we showed strong numerical evidence that changing the
degree, via � , creates the conditions for establishing the mean field behavior
without, however, imposing the full coupling of the spins. A trace of such an effect
should be then encoded somehow in the system dynamics and, in this section, we
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˝

2
˛
with the size

for � D 1:5

present a calculation aiming to bridge the topological information about � in the
thermodynamic frame, calculating analytically the order parameter M. The first
crucial observation is that the low energies regime is the appropriate one to compute
the magnetization: when � < 1:5 it vanishes in the TD limit while, once crossed
� D 1:5, the magnetization tends to 1 as " ! 0. Hence in the low energies regime
the shift between the two phases is at its clearest and, moreover, this regime offers
a calculation advantage: we can assume the differences �i � �j are small so that
the free energy is maximized by the spin alignment. We can hence take the leading
order, developing the Hamiltonian:

H D
X
i

p2i
2

C J

4k

X
i;j

�i;j .�i � �j /2: (26)

In practice, we deal via Eq. (26), with a collection of harmonic oscillators connected
by the adjacency matrix. Then to compute the dynamics we make use of a procedure
illustrated in [4, 34], starting from the following observation: since at equilibrium
the momenta pi are Gaussian variables we can choose represent them as a sum of
random variables. The choice for this representation is a superposition ofN modes,
where the random variable is carried by the phase:

�i D PN�1
lD0 ˛l .t/ cos. 2�li

N
C �l /

pi D PN�1
lD0 P̨l .t/ cos. 2�li

N
C �l /

: (27)
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We recall that we have periodic boundary conditions for the chain so that Eq. (27)
in practice is the discrete Fourier transform. Moreover the linearity of the trans-
formation is ensured by summing over N modes and the two equations for the
angles and the momenta are connected by the first Hamilton equation pi D P�i . In
[4, 34], another interpretation of the random phases is given, which allows to make
the link between microscopic dynamics and the thermodynamics: a set of phases
f�lg can be considered as a trajectory in the phase space so that averaging on random
phases, hence on different sets f�lgm, could correspond to ensemble averaging. The
aim of this procedure is then to obtain averaged equations of motion which govern
the microscopic dynamics and at the same time carry some information about the
thermodynamic state. In this purpose, we inject Eq. (27) in the Hamiltonian (26) and
we obtain for the kinetic part K:

hKi
N

D 1

N

*X
i

p2i
2

+
D 1

4

X
l

P̨ 2l ; (28)

where h: : :i stands for the average over random phases. In Eq. (28) we used the
relation:

˝
cos.ki C �i /cos.kj C �j /

˛ D 1

2
ıi;j :

The definition of the regular chain given in Sect. 2.2 gives a peculiar adjacency
matrix: �i;j is a circulant so that it is diagonalizable and its spectrum f�lg has an
analytical expression:

�l D 2

k

k=2X
jD1

cos

�
2�lj

N

�
D 1

k

�
sinŒ.k C 1/l�=N �

sin.l�=N /
� 1

�
; (29)

where k is the spin degree of Eq. (4). Making use of this fact and of the identity

1

kN

X
i;j

�i;j �i �j D
X
l

�l

ˇ̌̌ O�l
ˇ̌̌2
; (30)

the potential will hence take the form:

V

N
D 1

4kN

X
i;j

�i;j .�i � �j /2 D 1

2

X
l

.1 � �l/
ˇ̌̌ O�l
ˇ̌̌2
: (31)

Equation (30) derives from the fact that the eigenvectors of a circulant matrix of size
N are the columns of the unitary discrete Fourier transform matrix of the same size.
Using the linear waves representation and averaging over the phases in Eq. (31), we
obtain:



30 S. de Nigris and X. Leoncini

hV i
N

D
*
1

2

X
l

.1 � �l/
ˇ̌̌ O�l ˇ̌̌2

+
D 1

4

X
l

.1 � �l/˛
2
l :

At this point, we can finally achieve our aim: the averaged equation of motion comes
from the second Hamilton equation applied on the averaged Hamiltonian hH i D
hKi C hV i:

d

dt

�
@ hH i
@ P̨l

�
D �@ hH i

@˛l
;

which gives

R̨l D �.1 � �l/˛l D �!2l ˛l : (32)

Equation (32) is then an equation for an harmonic oscillator where the frequency is
driven by adjacency matrix spectrum. From the thermodynamics we obtain another
relation to link the wave amplitudes f˛lg and frequencies f!lg: actually we have, at
equilibrium, the equipartition of the modes (pi ’s are Gaussian):

T D 1

N

X
i

˝
p2i
˛ D 1

2

X
l

˛2l !
2
l ) ˛2l D 2T

N.1� �l/
:

At this point we are able to compute M , given by Eq. (20): we substitute the
representation Eq. (27) and we average on the phases as before, obtaining [4]:

hMi D
Y
l

J0.˛l /.cos �0; sin �0/; (33)

where J0 is the zeroth order Bessel function and �0 is the average of the angles f�ig.
This latter is conserved since

P D d�0

dt
D 0;

where P is the total momentum, which is a constant of motion because of
translational invariance. P is set at P D 0 by our choice of initial conditions.
As the final step to evaluate Eq. (33), we recall that we are dealing with a low
temperatures approximation so we can consider that the amplitudes ˛2l to be small
at equilibrium and in the large system size limit [34]. This consideration allows
to develop at leading order the product of the Bessel functions and, taking the
logarithm of Eq. (33), we finally obtain:

ln .hM i/ D �
X
l

˛2l
4

D � T

2N

X
l

1

1 � �l
: (34)
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Fig. 19 (color online) Analytical magnetization hM i from Eq. (34) for T D 0:1 versus � . Theory
refers to the exact analytical solution of the XY -HMF model

In Fig. 19 we show, by evaluating numerically Eq. (34), that this approximated
expression retrieves the correct asymptotic behavior: the mean field one in the
� > 1:5 regime while it vanishes for � < 1:5. The transition becomes sharper
at �c D 1:5 by increasing the size: as we argued from the numerical simulations,
this analytical approach confirms too the critical signification of �c D 1:5. In
Eq. (34) we then realized our project of bridging the topological information in the
thermodynamics of the system via the matrix spectrum. This latter (Eq. 29) encodes
the network complexity, so that it actually realizes the purpose of matching these
two levels of description but at the same time it implies Eq. (34) to be evaluated
numerically.

4.2 XY Model on Small World Networks

In the analysis of Fig. 5, we showed in Sect. 2.3 how it is possible, with our model,
to interpolate continuously from a regular lattice to a totally random network and
we defined a “working zone,” i.e. an intermediate region of parameters in which
the network has the Small World properties of our interest. We now focus our
attention on the phase transition of the XY model on these Small World networks.
Technically, to perform our simulations, we follow the same procedure devised in
Sect. 4.1: we integrate the dynamic equations (Eq. 22) via the symplectic integrator
and we take the temporal mean of the magnetization M (Eq. 20) when it reaches
the equilibrium. In practice all the difference between the previous case of regular
chains and the present one of Small World networks is encoded in the adjacency
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Fig. 20 (up) Magnetization for N D 512; � D 1:25; (bottom) N D 2024; � D 1:25

matrix �i;j which, by the way, loses here the property of circularity. Nevertheless
a subtlety comes from the randomness introduced in the networks via p, implying
that networks with the same parameters can be shaped differently. We hence take as

order parameter
D
M
E

where the bar indicates, as usual, the temporal mean and h: : :i
stands for the mean over different network realizations with the same parameters.
We recall that our model for Small World networks is parametrized by � and p
(Sect. 2.3.1): we hence first focus on how the transition of the magnetization answers
to the tuning of the rewiring probability p for fixed � . We show in Fig. 20 the two
cases N D 512 and N D 2024 for � D 1:25, the system does not display a
transition for low values of p, which implies that the network still has not enough
shortcuts to achieve global coherence and it behaves as 1-D network. Increasing p,
the magnetization curve approaches the one ofXY -HMF (see Fig. 15): for p D 0:5

the two systems undergo a phase transition confirming that the degree of randomness
of the network introduces a long-range order via the shortcuts. Furthermore, refining
the analysis, we observe that for p D 0:5 the two cases have the same clustering
coefficient, which is an intensive parameter, but different average path length as
it is extensive (see Fig. 5). The transition, at its turn, seems to take place at two
different energies: �c � 0:67 for N D 512 and �c � 0:75 for N D 2024 like
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for the XY -HMF. This observation leaded us to investigate the case of fixed p and
different sizesN : what we aimed was thus to separate the contribution of the average
path length, which is affected by the change in size, and the clustering coefficient
which is not, to the shape of the transition. In Fig. 21, we chose four representative
values of the rewiring probability and we observe that the transition is at the same
temperature for all the sizes at which it occurs as summarized in Table 1. We set the
three lowest p values in order to have the same clustering coefficient, being in the
plateau region, since we aimed to check if the clustering coefficient influences the
value of "c quantitatively. This hypothesis was first motivated by the two simulations
at p1 D 0:005 and p4 D 0:05: for those probabilities, the system shows different
connectivities and different energies of transition. The results for p2 D 0:001 and
p3 D 0:0001 show, on the contrary, that the transition shifts independently from the
clustering coefficient, hence it is not the proper choice for an intensive parameter
leading quantitatively the energy of transition. Furthermore, we observe that we do
not have a phase transition for N D 2024 for and forN D 16192with p3 (Fig. 21).
This difference according to the system size confirms the role of the extensive
parameter, the average path length: the big sizes undergo the transition since their
average path length ` is low enough because of the shortcuts. On the contrary, for
sizes at which ` is still too high as for N D 2024; 16192, the transition cannot take
place since the topology is still near to the one of a regular 1-D network. To conclude
with the analysis of Fig. 21, we can resume our results in the following way: we
confirmed that the average path length determines the rise of the transition while
the clustering coefficient seems not to influence it decisively. The first is connected
to the intrinsic character of the network: the value of ` is related to the amount
of shortcuts that we introduced rewiring and, thus, it drives the passage from a
1-D network, which does not show phase transitions, to a mean field topology.
This guess is confirmed by the fact that the rise of a phase transition appears to
be connected to the system size so `, because of its extensive nature is the most
suitable candidate to lead this qualitative changein the network. On the other hand,
the clustering coefficient does not quantitatively affect the temperature of the phase
transition: being an intensive parameter, it was the first natural choice; moreover,
since it quantifies the local amount of clustering, we could heuristically foresee
that a high clustering coefficient entailed a lowering of the "c . But, interpreting our
numerical results, we observe that both the regular network and the Small World
one share the same high clustering coefficient while their thermodynamic behavior
is totally different. Hence the importance of the clustering coefficient is more related
to its fall for high p values which points out the topological transition between the
Small World regime and the random network case; on the other hand, in the plateau
region, the clustering coefficient does not see the passage from regular to Small
World and, as a consequence, it is not a complete topological descriptor. We recall
that in Sect. 2.3 we discussed how � influences the average path length ` and the
probability of crossoverpSW (Fig. 4a–b). Now, the natural extension of our previous
analysis is hence to investigate the thermodynamic response of the phase transition
to the variations of this parameter. In addition to this, we observe that Table 1 points
out a strong dependence of the critical energy on p. We then tackled this issue of
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Table 1 Critical energies "c
for different p values

p "c

0.0001 0.2
0.001 0.27
0.005 0.45
0.05 0.6

the � and p dependence of "c performing simulations for � < 1:5 and different
p values. Our choice of the � interval is motivated by the results on the regular
chain topology of Sect. 4.1: we demonstrated that, when � overcomes the �c D 1:5

threshold, the mean field behavior is at play and the second order phase transition
takes place at "c D 0:75. As displayed in Fig. 22a, the critical energy seems to have
the following scaling on p; � :

"c D log.g.�/pc/; (35)

with C � 0:1. This result indeed confirms what before argued: the topology of
the Small World network influences quantitatively the equilibrium properties of the
XY model, shifting the critical energy, and both parameters � and p are involved
in this interplay. Furthermore, in Fig. 22a there is a clear saturation effect: for each
� it exists a probability above which the critical energy acquires the mean field
value "c D "MF D 0:75. Hence it naturally appears another intrinsic threshold
probability pMF signalling the transition to the mean field frame: in practice tuning
appropriately p and � , we obtain a Small World network entailing a mean field
behavior of the XY model, so that it is thermodynamically equivalent to the
regular chain with � > 1:5. This new threshold pMF seems to have a power
law dependence on � (Fig. 22b) but it is necessary to observe that near �c D 1:5

the determination of pMF becomes particularly delicate: for the regular chain, we
demonstrated that it separates the “1-D zone” from the mean field one; so we would
expect pMF .�c D 1:5/ ! 0. In other words, at �c D 1:5 the system requires
a very small, morally vanishing, amount of randomness to achieve the mean field
behavior; nevertheless, since we deal with finite size simulations and our averages
are performed on a limited number of network realizations,pMF remains, in his turn
finite. In addition to this, the determination of pMF proves very delicate in general
way since it relies on the determination of the critical energy, which is as well a
tricky passage.

To conclude this part, we think that, as a further development, more refined
parameters should be considered to understand quantitatively the shown shift in
the phase transition: here, as an hypothesis, we could mention that heterogeneity is
one of the crucial characteristics of complex networks and hence parameters like
the degree and the clusters distributions could be more appropriate to pursue our
analysis.
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5 Conclusions

In this last section, we would like to resume the logical steps of our work and to give
a perspective of further developments. In Sect. 2 and in Sect. 3, we first introduced
some basic tools to define networks in general and our model for the interaction, the
XY model. More in detail we presented, in Sect. 3.2, a particular case of the XY
model, the XY -HMF model: we specially stressed the presence of a second order
phase transition which we retrieve, with some differences, in the more general XY
model on networks. Section 2.3 is devoted to Small World networks with particular
attention to their topological parameters, the clustering coefficient and the average
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path length. In this section we described a model, the Watts–Strogatz model, which
by the means of the rewiring probability p, allowed us to explore the topologies
of the three main configurations taken in account: random, regular, and Small
World networks. We hence developed an algorithm, described in Sect. 2.4, in order
to enhance efficiency calculating topological parameters. Actually this algorithm
structures in the tree the data encoded in the adjacency matrix and, in addition to
the increasing of the calculation speed, it gives a complete network characterization
as, for instance, details like the degree and clusters distributions. We would like
to stress here the importance of this development effort: understanding networks
complexity requires a profound knowledge of their structure; moreover, to achieve
making connections to the dynamical behavior, we should be able to access this
knowledge efficiently for a huge interval of parameters. Hence the numerical results
presented in Sect. 4.2, concerning the Small World network, are a consequence of
this computational improvement and, furthermore, the successive refined analysis
we could perform would stem from it. Finally, in Sect. 4, we presented the numerical
results of simulations. We first focused, in Sect. 4.1, on the regular chain topology:
using the � parameter, we increased the spin degree and we identified the threshold
above which the mean field behavior can be reestablished, �c D 1:5, from the
previous 1-D topology. Then, in the � > 1:5, we obtained the same phase transition
of the XY -HMF model, while for � < 1:5 no long-range order was displayed.
Furthermore, for �c D 1:5, we discovered a metastable state in which the order
parameter is affected by important fluctuations and which does not seem to relax
to equilibrium. Those numerical results were also analytically confirmed at the
end of Sect. 4.1. We then passed, in Sect. 4.2, to the Small network topology. We
highlighted the effect of the average path length l in giving the system global
coherence: we observe the rise of the phase transition only in regimes of low l which
imply the fundamental presence of shortcuts. These shortcuts are responsible for
the efficiency of information transmission throughout the network and they allow
the emergence of a collective behavior in a 1-D network. On the other hand, our
guess for the clustering coefficient to be the guide of quantitative changes in the
energy of transition is contradicted by our numerical results. As we explained, we
think it is not a complete topological descriptor: it is certainly useful, along with
l, to determine the Small World parameter zone but it lacks in precision when
we deal with a trial of quantification of the observed transition shifts. The final
part of Sect. 4.2 was dedicated to the interplay between the � and p parameters in
influencing critical energy "c.p; �/ of the phase transition. By extensive numerical
simulations we identified a logarithmic dependence of "c.p; �/ on p while � affects
it linearly. Finally our investigations showed a saturation phenomenon for which
"c ! "MF D 0:75 increasing the topological parameters � and p. Therefore,
at the end of Sect. 4.2, we defined the threshold probability pMF as the minimal
randomness to inject in our network to obtain the mean field regime at the same
energy of the XY -HMF model and we showed that it depends as a power law
on � . From these results, a widespread of successive investigations can originate
and, as a conclusion, we would like to sketch some of these research perspectives.
First the above discussion proved the necessity of a deeper understanding of the
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topological tools we already have and, probably, the definition of new ones which
should be able to encode properly the network complexity. Furthermore a refining
of the network model itself, the Watts–Strogatz model, could be an interesting path
to follow. This model, even if it is paradigmatic for its simplicity, has strong limits: a
Watts–Strogatz network is a Small World network, but a real Small World network
is not a Watt–Strogatz one in the sense that the latter has many peculiarities which
are not mirrored by the simple algorithm we utilized in this work; a more complex
model could hence be required. Concluding, we remark once more the interest in
pursuing these researches: networks and dynamical processes on them are object
of growing attention because of their widespread diffusion in real systems dealing
with different fields and, thus, understanding topological effects on these processes,
even in simple models like the ones presented here, might give a clue to interpret
real world phenomena as, for instance, disease spreading [27].
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Lyapunov Exponent Sign Reversal: Stability
and Instability by the First Approximation

G.A. Leonov and N.V. Kuznetsov

1 Introduction

This chapter is a concise and updated version of authors’ survey Time-Varying
Linearization and the Perron effects [52], devoted to the rigorous mathematical
justification of the use of Lyapunov exponents to investigate the stability, instability,
and chaos. In his thesis A.M. Lyapunov [57] proved that if the first approximation
system is regular and its largest Lyapunov exponent is negative, then the solution of
the original system is asymptotically stable. Then it was stated by O. Perron [62]
that the requirement of regularity is substantial: he constructed an example of
second-order system such that a solution of the first approximation system has
negative largest Lyapunov exponent while the solution of the original system with
the same initial data has positive largest Lyapunov exponent. The effect of Lyapunov
exponent sign reversal of solutions of the first approximation system and of the
original system under the same initial data, we shall call the Perron effect.

Later, [14, 58, 60, 63] there were obtained sufficient conditions of stability by
the first approximation for nonregular linearizations generalizing the Lyapunov
theorem. At the same time, according to [58]: “: : : The counterexample of Perron
shows that the negativeness of Lyapunov exponents is not a sufficient condition
of stability by the first approximation. In the general case necessary and sufficient
conditions of stability by the first approximation are not obtained.”

Recently, it was also shown [47, 52] that, in general, the positiveness of the
largest Lyapunov exponent is not a sufficient condition of instability by the first
approximation and chaos.

In the 1940s N.G. Chetaev [15] published the criterion of instability by the first
approximation for regular linearizations. However, in the proof of these criteria a
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flaw was discovered [48, 52] and, at present, a complete proof of Chetaev theorems
is given for a more weak condition in comparison with that for instability in the
sense of Lyapunov, namely, for instability in the sense of Krasovsky.

The discovery of strange attractors and chaos in the investigation of complex
nonlinear dynamical systems led to the use and study of instability by the first
approximation. At present, many specialists in chaotic dynamics use various
numerical methods for computation of Lyapunov exponent (see, e.g., [3, 8, 10, 12,
13,16,17,24,26–28,30,55,56,64,65,68,70–72,75–77,79], and others) and believe
that the positiveness of the largest Lyapunov exponent of linear first approximation
system implies the instability of solutions of the original system.

As a rule, the authors ignore the justification of linearization procedure and
use numerical values of exponents so obtained to construct various numerical
characteristics of attractors of the original nonlinear systems (Lyapunov dimensions,
metric entropies, and so on). Sometimes, computer experiments serve as arguments
for the partial justification of the linearization procedure. For example, some
computer experiments [61,67] show the coincidence of the Lyapunov and Hausdorff
dimensions of the attractors of Henon, Kaplan–Yorke, and Zaslavskii. But for B-
attractors of Henon and Lorenz, such a coincidence does not hold [46, 48].

So, the approach, based on linearizations along the nonstationary trajectories
on the strange attractors, requires justification. This motivates the development of
nonstationary theory of instability by the first approximation.

In this work for the discrete and continuous systems the results of stability by the
first approximation for regular and nonregular linearizations are given, the Perron
effects are considered, the criteria of stability and instability of flow and cascade
of solutions, and the criteria of instability in the sense of Lyapunov and Krasovsky
are demonstrated. Some recent consideration of Lyapunov exponents, stability, and
chaos can be found, e.g., [7, 18, 22, 31–33, 39, 53, 54, 59, 66, 69, 78]

2 Classical Definitions of Stability

Consider a continuous system

dx

dt
D F.x; t/; x 2 R

n; t 2 R

F.�; �/ W R
n � R ! R

n

(1)

and its discrete analog

x.t C 1/ D F
�
x.t/; t

�
; x 2 R

n; t 2 Z;

F .�; �/ W R
n � Z ! R

n:
(10)

Consider the solution x.t/ of system (1) or (10), given on the interval a < t <

C1.
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Definition 1. The solution x.t/ is said to be stable in the sense of Lyapunov
(Lyapunov stable) if for any " > 0 and t0 > a there exists a number ı D ı."; t0/

such that

1. all solutions y.t/; satisfying the condition

jy.t0/� x.t0/j < ı;

are defined in the interval t0 � t < C1;
2. for these solutions the inequality

jx.t/ � y.t/j < "; 8t � t0

is valid. If ı."; t0/ is independent of t0, then Lyapunov stability is called uniform.

Definition 2. The solution x.t/ is said to be asymptotically Lyapunov stable if it
is Lyapunov stable and for any t0 > a there exists a positive number  D .t0/

such that all solutions y.t/; defined in the interval t0 � t < C1 and satisfying the
condition

jy.t0/ � x.t0/j < ;

have the following property:

lim
t!C1 jy.t/ � x.t/j D 0:

In other words, for any "0 > 0 there exists a positive number T D T ."0; y.t0/; t0/
such that the inequality jx.t/�y.t/j < "0;8t � t0CT is valid. If x.t/ is uniformly
stable and.t0/ and T ."0; y.t0/; t0/ is independent of t0, then Lyapunov asymptotic
stability is called uniform.

Definition 3. The solution x.t/ is said to be exponentially stable if for any t0 > a

there exist positive numbers ı D ı.t0/, R D R.t0/, and ˛ D ˛.t0/ such that

1. all solutions y.t/, satisfying the condition

jy.t0/� x.t0/j < ı;

are defined in the interval t0 � t < C1;
2. the inequality

jy.t/ � x.t/j � R exp
� � ˛ .t � t0/

�jy.t0/ � x.t0/j; 8t � t0

is satisfied. If ı, R, and ˛ are independent of t0, then exponential stability is called
uniform.

Assuming ˛ D 0, one obtains the following definition.
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Definition 4. The solution x.t/ is said to be stable in the sense of Krasovsky
(Krasovsky stable) if for any t0 > a there exist positive numbers ı D ı.t0/ and
R D R.t0/ such that

1. all solutions y.t/, satisfying the condition

jy.t0/� x.t0/j < ı;
are defined in the interval t0 � t < C1;

2. the following inequality

jx.t/ � y.t/j � Rjy.t0/ � x.t0/j; 8t � t0

is valid. If ı and R are independent of t0, then stability in the sense of Krasovsky is
called uniform.

Hence, it follows that the stability of solution in the sense of Krasovsky yields its
stability in the sense of Lyapunov. Relations with uniform stability can be found in
[Willems, 1970].

Further without loss of generality, consider solutions with t0 D 0. Denote by
x.t; x0/ a solution of either system (1) or system (10) with the initial data x.0; x0/ D
x0, and suppose that all solutions x.t; x0/ of continuous system are defined on the
interval Œ0;C1/ and the solutions of discrete system are defined on the set N 0 D
0; 1; 2 : : : .

3 Characteristic Exponents, Regular Systems,
Lyapunov Exponents

The problem of the investigation of the solution x.t; x0/ can be reduced to the
problem of the stability of the trivial solution y.t/ 	 0 by transformation x D
y C x.t; x0/. Then one can consider systems (1) and (10) with a marked linear part.
In the continuous case one has

dx

dt
D A.t/x C f .t; x/; x 2 R

n; t 2 Œ0;C1/; (2)

where A.t/ is a continuous (n � n)-matrix, f .�; �/ W Œ0;C1/ � R
n ! R

n is a
continuous vector-function.

In the discrete case, one has

x.t C 1/ D A.t/x.t/C f
�
t; x.t/

�
; x.t/ 2 R

n; t 2 N 0; (20)

where A.t/ is an (n � n)-matrix, f .�; �/ W N 0 � R
n ! R

n.
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Suppose, in a certain neighborhood�.0/ of the point x D 0 the nonlinear parts
of systems (2) and (20) satisfy the following condition

jf .t; x/j � �jxj� 8t � 0; 8x 2 �.0/; � > 0; � > 1: (3)

We shall say that the first approximation system for (2) is the following linear
system

dx

dt
D A.t/x (4)

and that for discrete system (20) is the linear system

x.t C 1/ D A.t/x.t/: (40)

Consider a fundamental matrix X.t/ D �
x1.t/; : : : ; xn.t/

�
, consisting of the

linear-independent solutions fxi .t/gn1 of the first approximation system. For the
determinant of the fundamental matrix one has the Ostrogradsky–Liouville formula,
which in the continuous case is as follows

detX.t/ D detX.0/ exp

�Z t

0

TrA.	/d	

�
; (5)

and in the discrete one takes the form

detX.t/ D detX.0/
t�1Y
jD0

detA.j /: (50)

The fundamental matrices are often considered to satisfy the following condition

X.0/ D In;

where In is a unit .n � n/-matrix.
The following definitions and results are valid for continuous system as well

as for the discrete one. The proofs will be given, if necessary, for each situation
separately.

Consider the vector-function f .t/ such that lim
t!C1 sup jf .t/j ¤ 0.

Definition 5. The value (or the symbol C1; or � 1), defined by formula

X Œf .t/� D lim
t!C1 sup

1

t
ln jf .t/j;

is called a characteristic exponent (or upper characteristic exponent) of the vector-
function f .t/. The value
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lim
t!C1 inf

1

t
ln jf .t/j;

is called lower characteristic exponent.

The characteristic exponent is equal to that taken with inverse sign characteristic
number, introduced by [57].

Definition 6. The characteristic exponent of the vector-function f .t/ is said to be
exact if the finite limit

lim
t!C1

1

t
ln jf .t/j

exists.

Consider the characteristic exponents of solutions of linear system (4) or (40).

Definition 7 ([19]). A set of distinctive characteristic exponents of all solutions
(except a zero solution), being different from ˙1, of linear system is called its
spectrum.

Note that the number of different characteristic exponents is bounded by the
dimension of the considered space of system states. Imposing conditions on A.t/
one can get boundedness of characteristic exponents (see, e.g., [19, 20, 43]).

3.1 Regular Systems

Consider the normal fundamental systems of solutions [57].

Definition 8. A fundamental matrix is said to be normal if the sum of characteristic
exponents of its columns is minimal in comparison with other fundamental matrices.

For continuous systems [19] and discrete [20] the following result is well known.

Lemma 1. In all normal fundamental systems of solutions, the number of solutions
with equal characteristic exponents is the same. Each normal fundamental system
realizes a spectrum of linear system.

Thus, one can introduce the following definition.

Definition 9 ([19]). The set of characteristic exponents

�1; : : : ; �n

of a certain normal fundamental system of solutions is called a complete spectrum

and the number 
 D
nP
1

�i is a sum of characteristic exponents of linear system.
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Note that any fundamental system of solutions has a solution with the largest
characteristic exponent max

1�j�n �j .

Consider a class of regular systems, introduced by Lyapunov.

Definition 10. A linear system is said to be regular if for the sum of its character-
istic exponents 
 the following relation holds


 D lim
t!C1 inf

1

t
ln j detX.t/j:

Taking into account formula (5), in the continuous case one obtains a classical
definition [1, 19] of the regularity of system


 D lim
t!C1 inf

1

t

tZ
0

TrA.	/ d	:

Similarly, formula (50) gives a definition of regularity [20] in the discrete case


 D lim
t!C1 inf

1

t
ln

t�1Y
jD0

j detA.j /j:

Definition 11. The number

� D 
 � lim
t!C1 inf

1

t
ln j detX.t/j

is called an irregularity coefficient of linear system.

As was shown in [19], the systems with constant and periodic coefficients are
regular.

For continuous [19] and discrete systems [20, 25] the following is well known

Lemma 2 (Lyapunov inequality). Let all characteristic exponents of solutions of
linear system be < C1 ( or all characteristic exponents be > �1.) Then, for any
fundamental system of solutions X.t/ the following inequality

lim
t!C1 sup

1

t
ln j detX.t/j � 
X ; (6)

where 
X is a sum of characteristic exponents of the system of solutions X.t/, is
satisfied.

Thus, for regular systems there exists the limit lim
t!C1

1
t

ln j detX.t/j:
Note that also from the condition of regularity of linear system it follows [19]

that for its solutions x.t/ ¤ 0 there exist the limits



48 G.A. Leonov and N.V. Kuznetsov

lim
t!C1

1

t
ln jx.t/j:

Example 1 (Nonregular system with exact characteristic exponents). As was shown
in [11], the opposite, generally speaking, is not valid. Consider an example of
nonregular system, all characteristic exponents of which are exact [11]. Consider
system (4) with the matrix

A.t/ D
0
@0 1

0 .cos ln t � sin ln t � 1/

1
A ; t � 1 (7)

and its fundamental matrix X.t/

X.t/ D �
x1.t/; x2.t/

� D
0
@1 tR

1

e�.	/ d	

0 e�.t/

1
A ;

where �.t/ D t.cos ln t � 1/. In this case for the determinant of fundamental matrix
the following relation

lim
t!C1 inf

1

t
ln j detX.t/j D �2 (8)

is satisfied. Consider characteristic exponents of solutions. For x1.t/ one has

lim
t!C1 sup

1

t
ln jx1.t/j D lim

t!C1 inf
1

t
ln jx1.t/j D 0: (9)

Since e�.t/ � 1 for t � 1, one concludes that the characteristic exponent x2.t/ is
less than or equal to zero

lim
t!C1 sup

1

t
ln jx2.t/j � 0:

On the other hand, since the integral of e�.	/ is divergent, namely

C1Z
1

e�.	/ d	 D C1; (10)

for x2.t/ one has the following estimate

lim
t!C1 inf

1

t
ln jx2.t/j � 0:
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This implies that

lim
t!C1 sup

1

t
ln jx2.t/j D lim

t!C1 inf
1

t
ln jx2.t/j D 0: (11)

Thus, by (8), (9), and (11) the linear system with matrix (7) has exact character-
istic exponents but it is nonregular:

� D 2:

Let us prove that the integral of e�.	/ is divergent.
Suppose, tu.k/ D e2k�Cı.k/ and t l .k/ D e2k��ı.k/, where ı.k/ D e�k� , k D

1; 2 : : : . From the definition of t l .k/ and tu.k/ one obtains

tu.k/ � t l .k/ � e2k��ı.k/.e2ı.k/ � 1/ � e2k��ı.k/2ı.k/ � 2ek��1: (12)

In the case 	 2 �t l .k/; tu.k/	 for �.	/ the estimate

��.	/ � 	
�
1 � cos.ı.k//

� � tu.k/
ı2.k/

2
� 1

2
e2k�Cı.k/e�2�k � eı.k/

2
� e

2
(13)

is valid. Then one has

tu.k/Z
1

e�.	/d	 � �
tu.k/� t l .k/

�
e�e=2 � 2ek��1�e=2 ! C1

as k ! C1.

3.2 Lyapunov Exponents and Singular Values

Consider singular values (see, e.g., [9]) of the matrix X.t/.

Definition 12. The singular values f˛j
�
X.t/

�gn1 of the matrix X.t/ are the square
roots of the eigenvalues of the matrix X.t/�X.t/.

The following geometric interpretation of singular values is known: the numbers
˛j
�
X.t/

�
coincide with a principal semiaxis of the ellipsoid X.t/B , where B is a

ball of unit radius.

Definition 13 ([73]). The Lyapunov exponent �j is as follows

�j D lim
t!C1 sup

1

t
ln˛j

�
X.t/

�
: (14)
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In the case (14) the terms upper singular exponent are also used [5].
Let �1 and �1 be the largest Lyapunov exponent and the largest characteristic

exponent, respectively.

Lemma 3. For the linear systems the largest characteristic exponent is equal to the
largest Lyapunov exponent.

Proof. Recall that a geometric interpretation of singular values implies the relation
jX.t/j D ˛1

�
X.t/

�
. Here jX j is a norm of the matrix X , defined by formula

jX j D max
jxjD1

jXxj; x 2 R
n: Then the relation lim

t!C1 sup 1
t

ln jX.t/j D �1 yields

the relation �1 D �1.

Example 2 (Characteristic exponents do not coincide with Lyapunov exponents).
Consider [51] system (4) with the matrix

A.t/ D
0
@ 0 sin.ln t/C cos.ln t/

sin.ln t/C cos.ln t/ 0

1
A t > 1

and with the fundamental normal matrix

X.t/ D
0
@ e�.t/ e��.t/

e�.t/ �e��.t/

1
A ;

where �.t/ D t sin.ln t/. It is obvious that �1 D �2 D 1 and

˛1.X.t// D p
2max.e�.t/; e��.t//; ˛2.X.t// D p

2min.e�.t/; e��.t//:

This implies the following relations �1 D 1, �2 D 0. Thus, one has �2 ¤ �2.

Example 3 (Nemytskii–Vinograd counterexample). Consider [11] a continuous
system

dx

dt
D A.t/x

with the matrix

A.t/ D
�
1 � 4.cos2t/2 2C 2 sin 4t
�2C 2 sin 4t 1 � 4.sin 2t/2

�
:

In this case, its solution is the vector-function

x.t/ D
�
et sin 2t
et cos 2t

�
: (15)
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It follows that

det.A.t/� pIn/ D p2 C 2p C 1:

Therefore for the eigenvalues �1.t/ and �2.t/ of the matrix A.t/ one has

�1.t/ D �2.t/ D �1:

On the other hand, the characteristic exponent � of solution (15) is equal to 1.

This counterexample shows that all eigenvalues of the matrix A.t/ can have
negative real parts even if the corresponding linear system has positive characteristic
exponents.

It also shows that the formulas, obtained in the book [2], namely

�j D lim sup
t!C1

1

t

tZ
0

Re�j .	/ d	

are untrue.

4 The Perron Effects

In 1930, O. Perron [62] showed that the negativeness of the largest Lyapunov expo-
nent of the first approximation system does not always result in the stability of zero
solution of the original system. Furthermore, in an arbitrary small neighborhood of
zero, the solutions of the original system with positive Lyapunov exponent can be
found.

We now present the outstanding result of Perron [1930] and its discrete analog
[25, 41] (see, also, [4, 6, 21, 29, 34–38]).

Consider the following system

dx1

dt
D �ax1

dx2

dt
D �

sin.ln.t C 1//C cos.ln.t C 1//� 2a�x2 C x21

(16)

and its discrete analog

x1.t C 1/ D exp.�a/x1.t/
x2.t C 1/ D exp

�
.t C 2/ sin ln.t C 2/� 2a.t C 1/

�
exp

�
.t C 1/ sin ln.t C 1/� 2at

� x2.t/C x1.t/
2:

(160)
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Here a is a number satisfying the following inequalities

1 < 2a < 1C 1

2
exp.��/: (17)

The solution of the first approximation system for systems (16) and (160) takes the
form

x1.t/ D exp.�at/x1.0/
x2.t/ D exp

�
.t C 1/ sin.ln.t C 1//� 2at

�
x2.0/:

It is obvious that by condition (17) for the solution of the first approximation system
for x1.0/ ¤ 0; x2.0/ ¤ 0 one has

X Œx1.t/� D �a; X Œx2.t/� D 1 � 2a < 0:

This implies that a zero solution of linear system of the first approximation is
Lyapunov stable.

Consider the solution of system (16)

x1.t/ D exp.�at/x1.0/;
x2.t/ D exp

�
.t C 1/ sin.ln.t C 1//� 2at��

�
0
@x2.0/C x1.0/

2

tZ
0

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	

1
A :

(18)

Assuming t D tk D exp

��
2k C 1

2

�
�

�
� 1; where k is an integer, one obtains

exp
�
.t C 1/ sin.ln.t C 1//� 2at� D exp

�
.1 � 2a/t C 1

�
; .1C t/e�� � 1 > 0;

tZ
0

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	 >

>

g.k/Z
f .k/

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	 >

>

g.k/Z
f .k/

exp

�
1

2
.	 C 1/

�
d	 >

g.k/Z
f .k/

exp

�
1

2
.	 C 1/ exp.��/

�
d	 D

D exp

�
1

2
.t C 1/ exp.��/

�
.t C 1/

�
exp

� � 2�

3

�� exp.��/
�
;
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where

f .k/ D .1C t/ exp.��/ � 1;

g.k/ D .1C t/ exp

�
�2�
3

�
� 1:

Hence one has the following estimate

exp
�
.t C 1/ sin.ln.t C 1//� 2at�

tZ
0

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	 >

> exp

�
1

2
.2C exp.��/

��
exp

� � 2�

3

� � exp.��/
�
.t C 1/�

� exp

��
1 � 2aC 1

2
exp.��/�t� : (19)

From the last inequality and condition (17) it follows that for x1.0/ ¤ 0 one of the
characteristic exponents of solutions of system (16) is positive:

X Œx1.t/� D �a; X Œx2.t/� � 1 � 2aC e��=2 > 0: (20)

Thus, one obtains that all characteristic exponents of the first approximation
system are negative but almost all solutions of the original system (16) tend
exponentially to infinity as tk ! C1.

Consider now the solution of discrete system (160)

x1.t/ D x1.0/e
�at

x2.t/ D exp
�
.t C 1/ sin ln.t C 1/� 2at

��
�
�
x2.0/C x1.0/

2
t�1P
kD0

exp
� � .k C 2/ sin ln.k C 2/C 2a

��
;

(21)

and show that for this system inequalities (20) are also satisfied. For this purpose
one obtains the estimate similar to estimate (19) in the discrete case.

Obviously, for any N > 0 and ı > 0 there exists a natural number .t 0 D
t 0.N; ı/; t 0 > N/ such that

sin ln.t 0 C 1/ > 1� ı:

Then

exp
�
.t 0 C 1/ sin ln.t 0 C 1/� 2at 0� � exp

�
.1 � ı � 2a/t 0 C 1 � ı�: (22)
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Estimate from below the second multiplier in the expression for x2.t/. For
sufficiently large t 0 there exists a natural numberm

m 2
�
t 0 C 1

e�
� 2; t 0

�

such that

sin ln.mC 2/ � �1
2
:

Then one has

�.mC 2/ sin ln.mC 2/C 2a � t 0 C 1

2e�
:

This implies the following estimate

t 0�1X
kD0

exp
� � .k C 2/ sin ln.k C 2/C 2a

� � exp

�
.t 0 C 1/

1

2
e��

�
: (23)

From (22), (23), and condition (17) it follows that for x1.0/ ¤ 0 one of charac-
teristic exponents of solutions (21) of system (160) is positive and inequalities (20)
are satisfied.

Consider an example, which shows the possibility of the sign reversal of charac-
teristic exponents “on the contrary,” namely the solution of the first approximation
system has a positive characteristic exponent while the solution of the original
system with the same initial data has a negative exponent [47].

Consider the following continuous system [49]

Px1 D �ax1
Px2 D �2ax2
Px3 D �

sin.ln.t C 1//C cos.ln.t C 1//� 2a
�
x3 C x2 � x21

(24)

and its discrete analog

x1.t C 1/ D e�ax1.t/
x2.t C 1/ D e�2ax2.t/

x3.t C 1/ D exp
�
.t C 2/ sin ln.t C 2/� 2a.t C 1/

�
exp

�
.t C 1/ sin ln.t C 1/� 2at� x3.t/C x2.t/ � x1.t/

2

(240)
on the invariant manifold
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M D fx3 2 R
1; x2 D x21g:

Here the value a satisfies condition (17).
The solutions of (24) and (240) on the manifoldM take the form

x1.t/ D exp
� � at

�
x1.0/

x2.t/ D exp
� � 2at

�
x2.0/

x3.t/ D exp
�
.t C 1/ sin.ln.t C 1//� 2at�x3.0/;

x1.0/
2 D x2.0/:

(25)

Obviously, these solutions have negative characteristic exponents.
For system (24) in the neighborhood of its zero solution, consider the first

approximation system

Px1 D �ax1
Px2 D �2ax2
Px3 D �

sin.ln.t C 1//C cos.ln.t C 1//� 2a�x3 C x2:

(26)

The solutions of this system are the following

x1.t/ D exp
�� at

�
x1.0/

x2.t/ D exp
�� 2at

�
x2.0/

x3.t/ D exp
�
.t C 1/ sin.ln.t C 1//� 2at

��
�
�
x3.0/C x2.0/

tZ
0

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	

�
:

(27)

For system (240) in the neighborhood of its zero solution, the first approximation
system is as follows

x1.t C 1/ D exp.�a/x1.t/
x2.t C 1/ D exp.�2a/x2.t/
x3.t C 1/ D exp

�
.t C 2/ sin ln.t C 2/� 2a.t C 1/

�
exp

�
.t C 1/ sin ln.t C 1/� 2at

� x3.t/C x2.t/:

(260)

Then the solutions of system (260) take the form

x1.t/ D exp
� � at�x1.0/

x2.t/ D exp
� � 2at�x2.0/

x3.t/ D exp
�
.t C 1/ sin ln.t C 1/� 2at

��
�
�
x3.0/C x2.0/

2
t�1P
kD0

exp
� � .k C 2/ sin ln.k C 2/C 2a

��
:

(270)
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By estimates (19) and (23) for solutions (27) and (270) for x2.0/ ¤ 0 one obtains

X Œx3.t/� > 0:

It is easily shown that for the solutions of systems (24) and (26) the following
relations

�
x1.t/

2 � x2.t/
�� D �2a�x1.t/2 � x2.t/

�
are valid. Similarly, for system (260) one has

x1.t C 1/2 � x2.t C 1/ D exp.�2a/�x1.t/2 � x2.t/
�
:

Then

x1.t/
2 � x2.t/ D exp

� � 2at
��
x1.0/

2 � x2.0/
�
:

It follows that the manifold M is an invariant exponentially attractive manifold
for solutions of continuous systems (24) and (26), and for solutions of discrete
systems (240) and (260).

This means that the relation x1.0/2 D x2.0/ yields the relation x1.t/2 D x2.t/

for all t 2 R
1 and for any initial data one has

ˇ̌
x1.t/

2 � x2.t/
ˇ̌ � exp

� � 2at
�ˇ̌
x1.0/

2 � x2.0/
ˇ̌
:

Thus, systems (24) and (26) have the same invariant exponentially attractive
manifold M on which almost all solutions of the first approximation system (26)
have a positive characteristic exponent and all solutions of the original system (24)
have negative characteristic exponents. The same result can be obtained for discrete
systems (240) and (260).

The Perron effect occurs here on the whole manifold

fx3 2 R
1; x2 D x21 ¤ 0g:

To construct exponentially stable system, the first approximation of which has a
positive characteristic exponent we represent system (24) in the following way

Px1 D F.x1; x2/

Px2 D G.x1; x2/

Px3 D �
sin ln.t C 1/C cos ln.t C 1/� 2a�x3 C x2 � x21 :

(28)

Here the functions F.x1; x2/ and G.x1; x2/ have the form
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F.x1; x2/ D ˙2x2 � ax1; G.x1; x2/ D 
x1 � '.x1; x2/;

in which case the upper sign is taken for x1 > 0, x2 > x21 and for x1 < 0, x2 < x21 ,
the lower one for x1 > 0, x2 < x21 and for x1 < 0, x2 > x21 .

The function '.x1; x2/ is defined as

'.x1; x2/ D
(
4ax2 for jx2j > 2x21
2ax2 for jx2j < 2x21 :

The solutions of system (28) are regarded in the sense of Filippov [23]. By definition
of '.x1; x2/ the following system

Px1 D F.x1; x2/

Px2 D G.x1; x2/
(29)

on the lines of discontinuity fx1 D 0g and fx2 D x21g has sliding solutions, which
are given by the equations

x1.t/ 	 0; Px2.t/ D �4ax2.t/

and

Px1.t/ D �ax1.t/; Px2.t/ D �2ax2.t/; x2.t/ 	 x1.t/
2:

In this case the solutions of system (29) with the initial data x1.0/ ¤ 0, x2.0/ 2 R
1

attain the curve fx2 D x21g in a finite time, which is less than or equal to 2� .
This implies that for the solutions of system (28) with the initial data x1.0/ ¤ 0,

x2.0/ 2 R
1, x3.0/ 2 R

1; for t � 2� one obtains the relations F.x1.t/; x2.t// D
�ax1.t/, G.x1.t/; x2.t// D �2ax2.t/. Therefore, based on these solutions for t �
2� system (26) is a system of the first approximation for system (28).

System (26), as was shown above, has a positive characteristic exponent. At the
same time, all solutions of system (28) tend exponentially to zero.

The considered technique permits us to construct the different classes of nonlin-
ear continuous and discrete systems for which the Perron effects occur.

5 Stability Criteria by the First Approximation

Consider a normal fundamental matrix X.t/ of the linear part of the system, and let

ƒ D max
j
�j ; � D min

j
�j :
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Here f�j gn1 is a complete spectrum of linear system. We shall say that X.t/X.	/�1
is a Cauchy matrix. Represent the solutions of systems (2) and (20) in the Cauchy
form. In the continuous case one has

x.t/ D X.t/x.0/C
tZ

0

X.t/X.	/�1f
�
	; x.	/

�
d	; (30)

and in the discrete one

x.t/ D X.t/x.0/C
t�1X
	D0

X.t/X.	 C 1/�1f
�
	; x.	/

�
; t D 1; 2 : : : : (31)

The following result is well known and is often used.

Theorem 1. For any number " > 0 there exists a number C > 0 such that the
following inequalities

jX.t/X.	/�1j � C exp
�
.�C "/.t � 	/C .� C "/	

�
; 8 t � 	 � 0 (32)

jX.t/X.	/�1j � C exp
�
�.t � 	/C .� C "/	

�
; 8 	 � t � 0 ; (33)

where � is the irregularity coefficient, are satisfied.

Recall that by condition (3) the nonlinear part f .t; x/ of systems (2) and (20) in
a certain neighborhood�.0/ of the point x D 0 satisfies the following condition

jf .t; x/j � �jxj� 8t � 0; 8x 2 �.0/; � > 0; � > 1:

Let us describe the most famous stability criteria by the first approximation.
Consider the continuous case. Assume that there exists a number C > 0 and a

piecewise continuous functionp.t/ such that for the Cauchy matrixX.t/X.	/�1 the
estimate

jX.t/X.	/�1j � C exp

tZ
	

p.s/ ds; 8t � 	 � 0 (34)

is valid.

Theorem 2 ([51]). If condition (3) with � D 1 and the inequality

lim
t!C1 sup

1

t

tZ
0

p.s/ ds C C� < 0

are satisfied, then the solution x.t/ 	 0 of system (2) is asymptotically Lyapunov
stable.
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Proof. From (30) and the hypotheses of theorem one has

jx.t/j � C exp

0
@ tZ
0

p.s/ ds

1
A jx.0/j C C

tZ
0

exp

0
@ tZ
	

p.s/ ds

1
A �jx.	/j d	:

This estimate can be rewritten as

exp

0
@�

tZ
0

p.s/ ds

1
A jx.t/j � C jx.0/j C C�

tZ
0

exp

0
@�

	Z
0

p.s/ ds

1
A jx.	/j/ d	:

By Bellman–Gronwall Lemma the following estimate

jx.t/j � C jx.0/j exp

0
@ tZ
0

p.s/ ds C C�t

1
A ; 8t � 0

is satisfied. This completes the proof of theorem.

Consider a discrete analog of this theorem. In the discrete case it is assumed that
in place of inequality (34) one has

jX.t/X.	/�1j � C

t�1Y
sD	

p.s/; 8t > 	 � 0; (35)

where p.s/ is a positive function.
In the discrete case one has a similar theorem

Theorem 3 ([44, 52]). If condition (3) with � D 1 and the inequality

lim
t!C1 sup

1

t
ln

t�1Y
sD0

�
p.s/C C�

�
< 0 (36)

are satisfied, then the solution x.t/ 	 0 of system (20) is asymptotically Lyapunov
stable.

Corollary 1. For the first-order system (2) or (20) the negativeness of characteristic
exponent implies the asymptotic stability of its zero solution.

Assume that for the Cauchy matrix X.t/X.	/�1 the following estimate

jX.t/X.	/�1j � C exp
� � ˛.t � 	/C �	

�
; 8t � 	 � 0; (37)

where ˛ > 0, � � 0, is satisfied.

Theorem 4 ([14, 58, 60]). Let condition (3) with sufficiently small � and condition
(37) be valid. Then if the inequality
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.� � 1/˛ � � > 0 (38)

holds, then the solution x.t/ 	 0 is asymptotically Lyapunov stable.

Theorem 4 strengthens the well-known Lyapunov theorem [57] on stability by
the first approximation for regular systems.

5.1 Stability Criteria for the Flow and Cascade of Solutions

Consider system (1) or (10) where F.�; �/ is a twice continuously differentiable
vector-function. Consider the linearizations of these systems along solutions with
the initial data y D x.0; y/ from the open set �, which is bounded in R

n

d z

dt
D Ay.t/z; (39)

z.t C 1/ D Ay.t/z.t/: (390)

Here the matrix

Ay.t/ D @F.x; t/

@x
jxDx.t;y/

is Jacobian matrix of the vector-functionF.x; t/ on the solution x.t; y/. LetX.t; y/
be a fundamental matrix of linear system and X.0; y/ D In.

Assume that for the largest singular value ˛1.t; y/ of systems (39) and (390) for
all t the following estimate

˛1.t; y/ < ˛.t/; 8y 2 �; (40)

where ˛.t/ is a scalar function, is valid.

Theorem 5 ([43, 50]). Suppose the function ˛.t/ is bounded on the interval
.0;C1/. Then the flow (cascade) of solutions x.t; y/, y 2 ˝ , of systems (1) and
(10) is Lyapunov stable. If, in addition,

lim
t!C1˛.t/ D 0;

then the flow (cascade) of solutions x.t; y/, y 2 ˝ , is asymptotically Lyapunov
stable.
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Proof. It is well known that

@x.t; y/

@y
D X.t; y/; 8t � 0:

It is also known that for any vectors y, z, and a number t � 0 there exists a vector
w such that the relations

jw � yj � jy � zj;

jx.t; y/ � x.t; z/j �
ˇ̌̌
ˇ @x.t;w/@w

ˇ̌̌
ˇjy � zj

are satisfied. Therefore for any vector z from the ball centered at y and placed
entirely in � the following estimate

jx.t; y/ � x.t; z/j � jy � zj sup˛1.t;w/ � ˛.t/jy � zj; 8t � 0 (41)

is valid. Here the supremum is taken over all w from the ball fw W jw�yj � jy�zjg.
Estimate (41) gives at once the assertions of theorem.

Corollary 2. The Perron effects are possible on the boundary of the stable by the
first approximation solutions flow (cascade) only.

Consider the flow of solutions of system (16) with the initial data in a neighbor-
hood of the point x1 D x2 D 0: x1.0; x10; x20/ D x10, x2.0; x10; x20/ D x20.

Hence it follows easily that

x1.t; x10; x20/ D exp
�� at

�
x10:

Therefore for continuous system the matrix A.t/ of linear system takes the form

A.t/ D
� �a 0

2 exp
� � at�x10 r.t/

�
; (42)

where

r.t/ D sin.ln.t C 1//C cos.ln.t C 1//� 2a:

For the discrete system one has

A.t/ D
�

e�a 0

2 exp
� � at�x10 r.t/

�
; (420)

r.t/ D exp
�
.t C 2/ sin ln.t C 2/� 2a.t C 1/

�
exp

�
.t C 1/ sin ln.t C 1/� 2at

� :
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The solutions of system (39) and (390) with matrices (42) and (420), respectively, are
the following

z1.t/ D exp
�� at

�
z1.0/;

z2.t/ D p.t/.z2.0/C 2x10z1.0//q.t//:
(43)

Here

p.t/ D exp
�
.t C 1/ sin.ln.t C 1//� 2at

�
;

q.t/ D
tZ

0

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	

in the continuous case and

p.t/ D exp
�
.t C 1/ sin.ln.t C 1//� 2at

�
;

q.t/ D
t�1X
kD0

exp
� � .k C 2/ sin ln.k C 2/C 2a

�

in the discrete case.
As was shown above (20), if relations (17) are satisfied and

z1.0/x10 ¤ 0;

then the characteristic exponent of z2.t/ is positive.
Hence in an arbitrary small neighborhood of the trivial solution x1.t/ 	 x2.t/ 	

0 there exist the initial data x10; x20 such that for x1.t; x10; x20/, x2.t; x10; x20/
the first approximation system has the positive largest characteristic exponent (and
Lyapunov exponent �1).

Therefore in this case there does not exist a neighborhood � of the point x1 D
x2 D 0 such that uniform estimates (40) are satisfied. Thus, for systems (16), (160)
the Perron effect occurs.
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6 Instability Criteria by the First Approximation

6.1 The Perron–Vinograd Triangulation Method

One of the basic procedures for analysis of instability is a reduction of the linear part
of the system to the triangular form. In this case the Perron–Vinograd triangulation
method for a linear system [11, 19] turns out to be most effective.

Let Z.t/ D �
z1.t/; : : : ; zn.t/

�
be a fundamental system of solutions of linear

continuous system (4) or discrete system (40). Apply the Schmidt orthogonalization
procedure to the solutions zj .t/.

v1.t/ D z1.t/

v2.t/ D z2.t/ � v1.t/
�z2.t/

v1.t/

jv1.t/j2
: : : : : : : : : : : : : : :

vn.t/ D zn.t/ � v1.t/
�zn.t/

v1.t/

jv1.t/j2 � : : : � vn�1.t/�zn.t/
vn�1.t/

jvn�1.t/j2 :

(44)

Relations (44) yield the following relations

vi.t/
�vj .t/ D 0; 8j ¤ i; (45)

jvj .t/j2 D vj .t/
�zj .t/: (46)

If for the fundamental matrixZ.t/ the relationZ.0/ D In holds, one concludes that
V.0/ D �

v1.0/; ::; vn.0/
� D In.

Proceed now to the description of the triangulation procedure of Perron–
Vinograd.

Consider the unitary matrix

U.t/ D
�
v1.t/

jv1.t/j ; � � � ;
vn.t/

jvn.t/j
�
;

and make the change of variable: z D U.t/w in the linear system. In the continuous
case one obtains the system

dw

dt
D B.t/w; (47)

where

B.t/ D U.t/�1A.t/U.t/ � U.t/�1 PU .t/; (48)

and in the discrete case the system
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w.t C 1/ D B.t/w.t/; (470)

where

B.t/ D U.t C 1/�1A.t/U.t/: (480)

The unitarity of the matrix U.t/ implies that for the columns w.t/ of the
fundamental matrix

W.t/ D �
w1.t/; : : : ;wn.t/

� D U.t/�Z.t/; (49)

the relations jwj .t/j D jzj .t/j are satisfied.
By (44)–(46) one obtains that the matrixW.t/ has the upper triangular form with

the diagonal elements jv1.t/j,..,jvn.t/j, namely

W.t/ D

0
B@

jv1.t/j � � �
: : :

:::

0 jvn.t/j

1
CA : (50)

From the fact that W.t/ is an upper triangular matrix it follows that
W.t/�1; PW .t/ are also upper triangular matrices. Hence B.t/ is an upper triangular
matrix with the diagonal elements b1.t/,..,bn.t/:

B.t/ D

0
B@
b1.t/ � � �

: : :
:::

0 bn.t/

1
CA ; (51)

where in the continuous case bi.t/ D .ln jvi.t/j/� and in the discrete one

bi .t/ D jvi .t C 1/j
jvi .t/j :

Thus, it is proved the following

Theorem 6 (Perron triangulation). By means of the unitary transformation z D
U.t/w the linear system can be reduced to the linear system with the upper
triangular matrix B.t/.

Note that if jA.t/j is bounded for t � 0, then jB.t/j, jU.t/j, and j PU .t/j are also
bounded for t � 0. If in the discrete case, in addition, jA.t/�1j is bounded for t � 0,
then jB.t/�1j is also bounded for t � 0.

Lemma 4. The following estimate
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jvn.t/j
jvn.	/j � j detZ.t/j

j detZ.	/j
n�1Y
jD1

jvj .	/j
jzj .t/j ; 8t; 	 � 0 (52)

is valid.

Define the vector z0
i D zi � vi . Then the vector z0

i is orthogonal to the vector vi ,
where i � 2. Consider the angle included between the vectors zi and z0

i . Note that
from definition of the angle included between the vectors one has †.zi ; z0

i / � � . In
this case the following relation

jvi j D jzi j sin
�†.zi ; z0

i /
�
i � 2 (53)

is valid.
By (53) from (49) and (50) one has

j detZ.t/j D j detU.t/j
nY
iD1

jvi j D
nY
iD1

jzi j
nY

kD2
j sin

�†.zk; z0
k/
�j:

With the help of this relation in [74] the following criterion of system regularity
was obtained.

Theorem 7 ([74]). Consider a linear system with bounded coefficients and its
certain fundamental system of solutions Z.t/ D �

z1.t/; : : : ; zn.t/
�
. Let there exist

the exact characteristic exponents of jzi .t/j

lim
t!C1

1

t
ln jzi .t/j i D 1; : : : ; n (54)

and let there exist and be equal to zero the exact characteristic exponents of sines of
the angles †.zi ; z0

i /

lim
t!C1

1

t
ln
ˇ̌
sin
�†.zi ; z0

i /
�ˇ̌ D 0 i D 2; : : : ; n: (55)

Then the linear system is regular and Z.t/ is a normal system of solutions.
Conversely, if the linear system is regular and Z.t/ is a normal system of

solutions, then (54) and (55) are satisfied.

6.2 Instability Criterion by Krasovsky

Consider instability in the sense of Krasovsky for the solution x.t/ 	 0 of
continuous system (2) and of discrete system (20).
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Theorem 8 ([42, 45, 49]). If the relation

sup
1�k�n

lim
t!C1 inf

2
41
t

0
@ln

ˇ̌
detZ.t/

ˇ̌ �
X
j¤k

ln
ˇ̌
zj .t/

ˇ̌1A
3
5 > 1 (56)

is satisfied, then the solution x.t/ 	 0 is unstable in the sense of Krasovsky.1

Proof. One can assume, without loss of generality, that in (56) the supremum, taken
over k, is attained for k D n. Then by Lemma 4 with 	 D 0 from condition (56)
one obtains that there exists a number � > 1 such that for sufficiently large t the
following estimate

ln jvn.t/j � �t; � > 1 (57)

holds. Suppose now that the solution x.t/ 	 0 is stable by Krasovsky. This means
that in a certain neighborhood of the point x D 0 there exists a numberR > 0 such
that the estimate

jx.t; x0/j � Rjx0j; 8t � 0 (58)

is valid. Make use of the Perron–Vinograd change of variable

x D U.t/y (59)

to obtain a system with the upper triangular matrix B.t/ of the type (51).
1. Consider the continuous case. Using (59), from continuous system (2) one

obtains

dy

dt
D B.t/y C g.t; y/; g.t; y/ D U.t/�1f

�
t; U.t/y

�
: (60)

Thus, the last equation of system (60) takes the form

dyn

dt
D �

ln jvn.t/j
��
yn C gn.t; y/: (61)

Here yn and gn are the nth components of the vectors y and g, respectively.
Conditions (3) and (58) yield the estimate

ˇ̌
g
�
t; y.t/

�ˇ̌ � ~R�
ˇ̌
y.0/

ˇ̌�
: (62)

Note that the solution yn.t/ of (61) can be represented in the form

1Condition (56) can be weakened [40, 42, 52].
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yn.t/ D jvn.t/j
jvn.0/j

0
@yn.0/C

tZ
0

jvn.0/j
jvn.s/jg

�
s; y.s/

�
ds

1
A : (63)

Estimate (57) implies that there exists a number � > 0 such that the following
inequalities

tZ
0

jvn.0/j
jvn.s/j ds � �; 8t � 0 (64)

are valid. Take the initial condition x0 D U.0/y.0/ in such a way that yn.0/ D
jy.0/j D ı, where the number ı satisfies the inequality

ı > �~R�ı�: (65)

Then from (62)–(64) for sufficiently large t � 0 one obtains the following estimate

yn.t/ � t�.ı � �~R�ı�/; � > 1:

By (65)

lim
t!C1 inf yn.t/ D C1:

The latter contradicts the assumption on stability in the sense of Krasovsky of a
trivial solution of system (2).

2. Let us prove the theorem in the discrete case. By (59), from discrete system (20)
one has

y.t C 1/ D B.t/y.t/C g
�
t; y.t/

�
; (66)

where

g
�
t; y.t/

� D U.t C 1/�1f
�
t; U.t/y.t/

�
:

Then the last equation of system (66) takes the form

yn.t C 1/ D jvn.t C 1/j
jvn.t/j yn.t/C gn

�
t; y.t/

�
; (67)

where yn and gn are the nth components of the vectors y and g, respectively.
Conditions (3) and (58) give the following estimate

ˇ̌
g
�
t; y.t/

�ˇ̌ � ~R�
ˇ̌
y.0/

ˇ̌�
: (68)
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Note that the solution yn.t/ of (67) can be represented as

yn.t/ D jvn.t/j
jvn.0/j

0
@ t�1X
jD0

jvn.0/j
jvn.j C 1/jgn

�
j; y.j /

� C yn.0/

1
A : (69)

Estimate (57) implies that there exists a number � > 0 such that the following
inequality

t�1X
jD0

jvn.0/j
jvn.j C 1/j < �; t � 1 (70)

is satisfied. Taking the same initial data as in the continuous case (65), one obtains

lim
t!C1 inf yn.t/ D C1:

The latter contradicts the assumption on stability in the sense of Krasovsky of a
trivial solution of system (20).

This proves the theorem.

Remark. Concerning the method for the proof of theorem.
Assuming that the zero solution of the considered system is stable in the sense

of Lyapunov and using the same reasoning as in the case of stability in the sense of
Krasovsky, one need to prove in the continuous case the following inequality

yn.0/C
C1Z
0

jvn.0/j
jvn.s/jg

�
s; y.s/

�
ds ¤ 0: (71)

While the above inequality is easily proved in the case of stability in the sense of
Krasovsky, this becomes an intractable problem in the case of stability in the sense
of Lyapunov.

A scheme similar to that, considered above for reducing the problem to one scalar
equation of the type (61), was used by N.G. Chetaev [1990; 1948] to obtain instabil-
ity criteria. In the scheme, suggested by N.G. Chetaev for proving inequality (71),
a similar difficulty occurs. Therefore, at present, Chetaev’s technique permits us to
obtain the criteria of instability in the sense of Krasovsky only.

The method to obtain the criteria of instability in the sense of Lyapunov invites
further development. Such development under certain additional restrictions will be
presented in Theorem 10.

Corollary 3. Condition (56) of Theorem 8 is satisfied if the following inequality

� � � > 0 (72)

is valid, where � is the largest Lyapunov exponent, � is the irregularity coefficient.
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Note 1. An open problem is to prove Chetayev theorem on Lyapunov instability or
refute the assertion, i.e. to build an example of a regular (non-regular) system with
a positive Lyapunov exponent, which is stable in the sence of Lyapunov but unstable
in the sense of Krasovsky.

Recall here stability condition (38) of Theorem 4, which by Theorem 1 can be
represented as

.� � 1/ƒC � < 0: (73)

Since Theorems 2–4 give, at the same time, the criteria of stability in the sense of
Krasovsky, one can formulate the following

Theorem 9 ([49]). If

� <
��
.� � 1/

;

then the solution x.t/ 	 0 is stable in the sense of Krasovsky and if

� > �;

then the solution x.t/ 	 0 is unstable in the sense of Krasovsky.

For regular systems (the case � D 0), Theorem 9 gives a complete solution of
the problem of stability in the sense of Krasovsky in the noncritical case .ƒ ¤ 0/.

Note that for system (26) the relation � D ƒ C 2a C 1 holds. Therefore for
system (26) condition (72) is untrue.

Consider now Lyapunov instability of the solution x.t/ 	 0 of multidimensional
continuous system (2) and of discrete system (20).

Theorem 10 ([42, 49, 52]). Let for certain values C > 0; ˇ > 0; ˛1; : : : ; ˛n�1
.˛j < ˇ for j D 1; : : : ; n � 1/ the following conditions hold:

1.

jzj .t/j � C exp.˛j .t � 	//jzj .	/j;
8 t � 	 � 0; j D 1; : : : ; n � 1;

(74)

2.

1

.t � 	/ ln j detZ.t/j > ˇ C
n�1X
jD1

˛j ; 8 t � 	 � 0; (75)

and, if n > 2,
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3.

nY
jD1

jzj .t/j � C j detZ.t/j; 8t � 0: (76)

Then the zero solution of the system considered is Lyapunov unstable.

Corollary 4. For the first-order system (2) or (20) with bounded coefficients the
positiveness of lower characteristic exponent of the first approximation system
results in exponential instability of zero solution of the original system.

The problem arises naturally as to the weakening of instability conditions, which
are due to Theorems 8 and 10. However the Perron effects impose restrictions on
such weakening.

Consider continuous and discrete systems (1) and (10), respectively.
Suppose, for a certain vector-function �.t/ the following relations

j�.t/j D 1; inf
y2�

ˇ̌
X.t; y/�.t/

ˇ̌ � ˛.t/; 8t � t0 (77)

hold.

Theorem 11 ([42, 50]). Let for the function ˛.t/ the following condition

lim
t!C1 sup˛.t/ D C1 (78)

be satisfied.
Then the flow (cascade) of solutions x.t; y/; y 2 ˝ is Lyapunov unstable.

Proof. Holding a certain pair x0 2 � and t � t0 fixed, choose the vector y0 in any
ı-neighborhood of the point x0 in such a way that

x0 � y0 D ı�.t/: (79)

Let ı be so small that the ball of radius ı centered at x0 is entirely placed in �.
For any fixed values t , j and for the vectors x0, y0 there exists a vector wj 2 R

n

such that

jx0 � wj j � jx0 � y0j;

xj .t; x0/ � xj .t; y0/ D Xj .t;wj /.x0 � y0/: (80)

Here xj .t; x0/ is the j th component of the vector-function x.t; x0/, Xj .t;w/ is the
j th row of the matrix X.t;w/.
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By (80) one has

jx.t; x0/� x.t; y0/j D
sX

j

jXj .t;wj /.x0 � y0/j2 �

� ımaxfjX1.t;w1/�.t/j; : : : ; jXn.t;wn/�.t/jg �
� ımax

j
inf
�

jXj .t; x0/�.t/j D ı inf
�

max
j

jXj .t; x0/�.t/j �

� ıp
n

inf
�

jX.t; x0/�.t/j � ˛.t/ıp
n
:

This estimate and conditions (78) imply that for any positive numbers " and ı
there exist a number t � t0 and a vector y0 such that

jx0 � y0j D ı; jx.t; x0/� x.t; y0j > ":

The latter means that the solution x.t; x0/ is Lyapunov unstable.

Consider the hypotheses of Theorem 11.
The hypotheses of Theorem 11 is, in essence, the requirement that, at least, one

Lyapunov exponent of the linearizations of the flow of solutions with the initial
data from � is positive under the condition that the “unstable directions �.t/” (or
unstable manifolds) of these solutions depend continuously on the initial data x0.
Actually, if this property holds, then, regarding (if necessary) the domain � as the
union of the domains �i , of arbitrary small diameter, on which conditions (77)
and (78) are valid, one obtains Lyapunov instability of the whole flow of solutions
with the initial data from�.

Apply Theorem 11 to systems (24) and (240).
For the solutions x.t; t0; x0/ with the initial data t0 D 0,

x1.0; x10; x20; x30/ D x10;

x2.0; x10; x20; x30/ D x20;

x3.0; x10; x20; x30/ D x30

in the continuous case one has the following relations

x1.t; x10; x20; x30/ D exp.�at/x10;

@F.x; t/

@x
jxDx.t;0;x0/ D

0
@ �a 0 0

0 �2a 0

�2 exp.�at/x10 1 r.t/

1
A ; (81)

where

r.t/ D sin.ln.t C 1//C cos.ln.t C 1//� 2a:
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For discrete system one obtains

@F.x; t/

@x
jxDx.t;0;x0/ D

0
@ exp.�a/ 0 0

0 exp.�2a/ 0

�2 exp.�at/x10 1 r.t/

1
A ; (810)

where

r.t/ D exp
�
.t C 2/ sin ln.t C 2/� 2a.t C 1/

�
exp

�
.t C 1/ sin ln.t C 1/� 2at

� :

Solutions (39) and (390) with matrices (81) and (810), respectively, have the form

z1.t/ D exp.�at/z1.0/;

z2.t/ D exp.�2at/z2.0/;

z3.t/ D p.t/
�
z3.0/C .z2.0/� 2x10z1.0// q.t/

�
:

(82)

Here in the continuous case one has

p.t/ D exp
�
.t C 1/ sin.ln.t C 1//� 2at

�
;

q.t/ D
tZ

0

exp
� � .	 C 1/ sin.ln.	 C 1//

�
d	:

and in the discrete case

p.t/ D exp
�
.t C 1/ sin.ln.t C 1//� 2at

�
;

q.t/ D
t�1X
kD0

exp.�.k C 2/ sin ln.k C 2/C 2a/:

Relations (82) give

X.t; 0; x0/ D
0
@ exp.�at/ 0 0

0 exp.�2at/ 0

�2x10p.t/q.t/ p.t/q.t/ p.t/

1
A :

If it is assumed that
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�.t/ D
0
@01
0

1
A ;

then for� D R
n and

˛.t/ D
p

exp.�4at/C .p.t/q.t//2

relations (77) and (78) are satisfied (see estimate (19)).
Thus, by Theorem 11 any solution of system (24) is Lyapunov unstable.
Restrict ourselves to the consideration of the manifold

M D fx3 2 R
1; x2 D x21g:

In this case the initial data of the unperturbed solution x0 and the perturbed solution
y0 belong to the manifoldM :

x0 2 M; y0 2 M: (83)

The analysis of the proof of Theorem 11 (see (79)) implies that the vector-
function �.t/ satisfies the following additional condition: if (79) and (83) hold, then
the inequality �2.t/ ¤ 0 yields the relation �1.t/ ¤ 0.

In this case (77) and (78) are not valid since for either 2x10�1.t/ D �2.t/ ¤ 0 or
�2.t/ D 0 the value

jX.t; x0/j

is bounded on Œ0;C1/.
Thus, since in conditions (77) and (78) the uniformity with respect to x0 is

violated, for system (24) on the set M the Perron effects are possible under certain
additional restrictions on the vector-function �.t/.

7 Conclusion

We summarize the investigations of stability by the first approximation.
Theorems 5 and 11 give a complete solution for the problem on the flows and

cascade of solutions in the noncritical case when for small variations of the initial
data of the original system, the first approximation system preserves its stability (or
instability in the certain “direction” �.t/). Thus, the classical problem of stability by
the first approximation of nonstationary motions is completely proved in the general
case [58].
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The Perron effects of largest Lyapunov exponent sign reversal are possible
only on the boundaries of the flows that are either stable or unstable by the first
approximation. Thus, the difficulties, arising in studying the individual solutions,
are connected to the fact that these solutions can be situated on the boundaries
of the flows that are stable (or unstable) by the first approximation. In this case a
special situation occurs which requires the development of more complicated tools
for investigation. Such methods of investigation of the individual solutions are given
in the present study.

It is shown that Perron effects may occur on the boundaries of a flow of solutions
that is stable by the first approximation. Inside a flow, stability is completely deter-
mined by the negativeness of the characteristic exponents of linearized systems.
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Fractional Maps as Maps with Power-Law
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Abstract The study of systems with memory requires methods which are different
from the methods used in regular dynamics. Systems with power-law memory
in many cases can be described by fractional differential equations, which are
integro-differential equations. To study the general properties of nonlinear fractional
dynamical systems we use fractional maps, which are discrete nonlinear systems
with power-law memory derived from fractional differential equations. To study
fractional maps we use the notion of ˛-families of maps depending on a single
parameter ˛ > 0 which is the order of the fractional derivative in a nonlinear
fractional differential equation describing a system experiencing periodic kicks.
˛-families of maps represent a very general form of multi-dimensional nonlinear
maps with power-law memory, in which the weight of the previous state at time ti
in defining the present state at time t is proportional to .t � ti /

˛�1. They may be
applicable to studying some systems with memory such as viscoelastic materials,
electromagnetic fields in dielectric media, Hamiltonian systems, adaptation in
biological systems, human memory, etc. Using the fractional logistic and standard
˛-families of maps as examples we demonstrate that the phase space of nonlinear
fractional dynamical systems may contain periodic sinks, attracting slow diverging
trajectories, attracting accelerator mode trajectories, chaotic attractors, and cascade
of bifurcations type trajectories whose properties are different from properties of
attractors in regular dynamical systems.
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1 Introduction

Many natural and social systems are systems with memory. Their mathematical
description requires solving integro-differential equations and is quite complicated.
Maps with memory are used to model real systems with memory in order to derive
their basic properties.

1.1 Systems with Memory

Writing this text I am recalling the content of my latest papers. It is easy to recall
the content of my last paper but it becomes more and more difficult as I try to recall
papers that are more and more distant in time. Memory is a significant property
of human beings and is the subject of extensive biophysical and psychological
research. As it has been demonstrated in experiments, forgetting—the accuracy on
a memory task decays as a power law, � t�ˇ , with 0 < ˇ < 1 [37, 66, 87–89]. It is
interesting that fractional maps corresponding to fractional differential equations of
the order 0 < ˛ < 1 are maps with the power-law decaying memory in which the
power is �ˇ D ˛ � 1 and 0 < ˇ < 1 [20]. Human learning is closely related to
memory. It can also be described by a power law: the reduction in reaction times that
comes with practice is a power function of the number of training trials [1]. There
are multiple publications where power-law adaptation has been applied in describing
the dynamics of biological systems at levels ranging from single ion channels up to
human psychophysics [23, 43, 82, 83, 89, 96].

Power-law memory applies not only to the human being as a whole but also to the
hierarchy of its building blocks, from individual neurons and proteins to the tissue
of individual organs. It has been shown recently [47, 48] that processing of external
stimuli by individual neurons can be described by fractional differentiation. The
orders of fractional derivatives ˛ derived for different types of neurons fall within
the interval Œ0; 1�. For neocortical pyramidal neurons it is quite small: ˛ � 0:15.
Fluctuations within single protein molecules demonstrate a power-law memory
kernel with the exponent �0:51˙ 0:07 [57].

Viscoelastic properties of human tissues were demonstrated in many examples:
the brain and the central nervous system in general [10, 44, 49], the breast [12], the
liver [41,81], the spleen [61], the prostate [36,95], the arteries [13,14], the muscles
[31] (see also references for some other human and animal organ tissues [16,50,55,
60, 69]). Viscoelastic materials obey the following stress–strain relationship:


.t/ D E.�/
d˛�.t/

dt˛
; (1)

where 
 is the stress, � is the strain, ˛ is the order of the fractional derivative, and
t is time. In most of the cases for human tissues 0 < ˛ < 1 and is close to zero.
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In some cases, e.g. for modeling of the accurate placement of the needle tip into
the target tissue during needle insertion treatments for liver tumors, nonlinearity
of E.�/ should be taken into account [41]. In the last example a simple quadratic
nonlinearity and ˛ D 0:1 were used.

A Fourier transform of a fractional derivative is [40, 63, 67]

F fD˛g.t/I!g D .�i!/˛ Og.!/; (2)

where Og.!/ D F fg.t/I!g. As a result, whenever the term .!/˛ Og.!/ appears
in the frequency domain, there is a good chance that function g.t/ is a solution
of a fractional differential equation with a fractional derivative of the order ˛
and the corresponding system is a system with power-law memory. Well-known
examples of such systems are dielectrics. Electromagnetic fields in dielectric media
are described by equations with time fractional derivatives due to the “universal”
response—the power-law frequency dependence of the dielectric susceptibility in
a wide range of frequencies [73, 74, 77, 78]. Similarly, elastic wave attenuation in
biological tissue over a wide range of frequencies follows the power law ˛.!/ / !�

with � 2 Œ0; 2� [17, 34, 59, 71] which implies a fractional wave equation. The
establishment of accurate fractional wave-propagation models is important for many
medical applications [59].

Above we concentrated on biological systems with memory in order to empha-
size the importance of the study of nonlinear fractional dynamical systems described
by fractional differential equations of the order 0 < ˛ < 2 and especially ˛ close
to zero which is a major subject of the following sections (Sects. 3.2 and 3.3). Now
we’ll list some (not all) other examples of systems with power-law memory. As has
been mentioned above, time fractional derivatives and correspondingly systems with
power-law memory in many cases are used to describe viscoelasticity and rheology
(for the original papers and reviews, see [4, 5, 8, 9, 51–54] and for nonlinear effects,
see [64,65,85,86]). Electromagnetic fields in dielectric media were also mentioned
above. Hamiltonian systems and billiards are also systems with power-law memory,
in which the fractal structure of the phase space and stickiness of trajectories in
time imply description of transport by the fractional (fractional time and space
derivatives) Fokker–Plank–Kolmogorov equation [90–93]. In some cases [38–40]
fractional differential equations are equivalent to the Volterra integral equations of
the second kind. Systems considered in population biology and epidemiology are
systems with memory and Volterra integral equations are frequently used to describe
such systems [6, 35]. Long-term memory provides more robust control in liner and
nonlinear control theory (see [7, 62]).

1.2 Maps with Memory

As in the study of regular dynamics, in the study of systems with memory use
of discrete maps significantly simplifies investigation of the general properties of
the corresponding systems. In some cases of kicked systems maps are equivalent
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to the original differential equations. Historically, maps with memory were first
considered as analogues of the integro-differential equations of non-equilibrium
statistical physics [26,27,32], with regard to thermodynamic theory of systems with
memory [30], and to model non-Markovian processes in general [28, 29]. The most
general form of a map with memory is

xnC1 D fnC1.xn; xn�1; : : : ; x0; P /; (3)

where xk areN -dimensional vectors, k;N 2 Z, k � 0, and P is a set of parameters.
It is almost impossible to derive the general properties of systems with memory from
Eq. (3) and simplified forms of maps with memory are used. The most commonly
used form is the one-dimensional map with long-term memory

xnC1 D
nX

kD0
V˛.n; k/GK.xk/; (4)

where V˛.n; k/ and ˛ characterize memory effects and K is a parameter. In many
cases weights are taken as convolutions with V˛.n; k/ D V˛.n � k/. The particular
form of Eq. (4) with constant weights

xnC1 D c

nX
kD0

GK.xk/ (5)

is called a full-memory map. It is easy to note that (5) is equivalent to

xnC1 D xn C cGK.xn/; (6)

which means that maps with full memory are maps with one-step memory in which
all memory is accumulated in the present state of a system and the next values of
map variables are fully defined by their present values. We won’t consider maps
with short memory in which the number of terms in the sum in Eq. (4) is bounded
(from k D n �M C 1 to k D n).

Initial investigations of long-term memory maps were done mostly on different
modifications of the logistic map and exponential memory. The general applicability
of their results to systems with memory in general is limited. Recently Stanislavsky
[70] considered the maps Eq. (4) with GK.x/ D Kx.1 � x/ (the logistic map) and
the weights V˛.n; k/ as a combination of power-law functions taken from one of
the algorithms of numerical fractional integration. He came to the conclusion that
increase in long-term memory effects leads to a less chaotic behavior.

First maps with power-law memory equivalent to fractional differential equations
were derived in [75, 76, 78–80] by integrating fractional differential equations
describing systems under periodic kicks. The method used is similar to the way
in which the universal map is derived in regular dynamics.
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1.3 Universal Map

In the following section (Sect. 2) we will modify the way presented in Sect. 1.3 to
derive the universal map in regular dynamics (see [11], and Chap. 5 from [90]) in
order to derive the universal fractional map.

The universal map can be derived from the differential equation

Rx CKG.x/

1X
nD�1

ı

 t
T

� .nC "/
�

D 0; (7)

where 0 < " < 1 and K is a parameter, with the initial conditions:

x.0/ D x0; p.0/ D Px.0/ D p0: (8)

This equation is equivalent to the Volterra integral equation of second kind

x.t/ D x0 C p0t �K
Z t

0

d	G.x.	//

1X
nD�1

ı

 	
T

� .nC "/
�
.t � 	/: (9)

Equation (9) for .nC "/T < t < .nC 1C "/T has a solution

x.t/ D x0 C p0t �KT

nX
kD0

G.x.T k C T"//.t � T k � T"/;

p.t/ D Px.t/ D p0 �KT

nX
kD0

G.x.T k C T"//: (10)

After the introduction of the map variables

xn D x.T n/; pn D p.T n/ (11)

Equation (10) considered for time instances tD(nC1)T gives

xnC1 D x0 C p0.nC 1/T �KT 2
nX

kD0
G.x.T k C T"//.n� k C 1 � "/;

pnC1 D p0 �KT
nX

kD0
G.x.T k C T"//: (12)

As it follows from Eq. (10), Px.t/ D p.t/ is a bounded function with the
discontinuities at the time instances of the kicks (at t D T k C T") and x.t/ is a
continuous function. This allows us to calculate G.x/ at the time instances of the
kicks. In the limit " ! 0 Eq. (12) gives
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xnC1 D x0 C p0.nC 1/T �KT 2
nX

kD0
G.xk/.n � k C 1/;

pnC1 D p0 �KT

nX
kD0

G.xk/: (13)

Equation (13) is a form of the universal map which allows further simplifications. It
can be written in a symmetric form as a map with full memory (see Sect. 1.2):

xnC1 D x0 C T

nC1X
kD1

pk;

pnC1 D p0 �KT

nX
kD0

G.xk/: (14)

As we saw in Sect. 1.2, maps with full memory are equivalent to maps with
one-step memory. Map Eq. (14) can be written as the iterative area preserving
(@.pnC1; xnC1/=@.pn; xn/ D 1) process with one-step memory which is called the
universal map:

pnC1 D pn �KTG.xn/; (15)

xnC1 D xn C pnC1T: (16)

This map represents the relationship between the values of the physical variables in
Eq. (7) on the left sides of the consecutive kicks. The standard map may be obtained
from the universal map by assuming G.x/ D sin.x/:

pnC1 D pn �K sinx; .mod 2�/;

xnC1 D xn C pnC1; .mod 2�/: (17)

Here we assumed T D 1 and consider this map on a torus (mod 2�).
Derivation of the fractional universal map in the next section (Sect. 2) follows

[20] and the analysis of this map for ˛ 2 .0; 1/ and ˛ 2 .1; 2/ in Sects. 3.2 and 3.3
follows [19–22].

2 Fractional Universal Map

The one-dimensional logistic map

xnC1 D Kxn.1 � xn/ (18)

be presented in the 2D form

pnC1 D �GlK.xn/;
xnC1 D xn C pnC1; (19)
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* *
Δ Τ ε Τ(ε−Δ)Τ

kT (k+1)T t

Fig. 1 The universal map is a relationship between values of x.t/ considered at the times kT
(small circles). The kicks occur at the time instances .kC "/T (vertical lines). With the time delay
T (distance between the squares and the circles) the function GK.x.t// is calculated at the time
instances t D .k C "�/T (stars)

where

GlK.x/ D x �Kx.1� x/: (20)

It can’t be written as a particular form of the universal map Eqs. (15) and (16).
In order to derive the logistic map from the universal map we’ll introduce the notion
of the n-dimensional universal map depending on a single parameter.

2.1 Universal Integer-Dimensional Maps

Solution of the one-dimensional analog of Eq. (7) would require calculations of
the function G.x/ at the time instances of the kicks T .n C "/ at which x.t/ is
discontinuous. To enable us to introduce the universal fractional map we’ll include
a time delay T into the argument of the function G.x.t// (see Fig. 1). In order
to extend the class of maps which are particular forms of the universal map we’ll
also consider K not as a factor but as a parameter. Let’s consider the following
generating equation:

Px CGK.x.t �T //

1X
nD�1

ı

 t
T

� .nC "/
�

D 0; (21)

where 0 < " < 1 and 0 <  < 1 with the initial condition:

x.0/ D x0: (22)

1D analog of Eq. (10) (for .nC "/T < t < .nC 1C "/T ) can be written as

x.t/ D x0 � T
nX

kD0
GK.xŒT .k C " �/�/: (23)
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From the fact that Px D 0 for t 2 .T .k C " � 1/; T .k C "// it follows that xŒT .k C
" �/� D x.T k/ and the corresponding 1D map can be written as a map with full
memory

xnC1 D x0 � T
nX

kD0
GK.xk/: (24)

From Sect. 1.2 it follows that this map can be written as the 1D form of the universal
map with one-step memory

xnC1 D xn � TGK.xn/: (25)

It would be impossible to derive the logistic map from Eq. (25) if K were a factor,
but from the present form the logistic map can be obtained by assuming

GK.x/ D GlK.x/ D 1

T
Œx �Kx.1� x/�: (26)

In [6, 72] Eq. (21) with no time delay, no delta functions, and GK.x/ defined
by Eq. (26) is used as one of the most general models in population biology and
epidemiology. Three terms in GK.x/ represent a growth rate proportional to the
current population, restrictions due to the limited resources, and the death rate. The
logistic map appears and plays an important role not only in population biology
but also in economics, condensed matter physics, and other areas of science [3,72].
In population biology and epidemiology time delays can be related to the time of
the development of an infection in a body until a person becomes infectious, or
to the time of the development of an embryo. For the importance of time delay in
many scientific applications of the logistic map, see, e.g., Chap. 3 from [72] and
Chap. 3 from [3]. Changes which occur as periodically following discrete events
can be modeled by the delta function.

The n-dimensional universal map can be derived from the following generating
equation:

dnx

dtn
CGK.x.t �//

1X
kD�1

ı


t � .k C "/

�
D 0; (27)

where n � 0, n 2 Z, and " >  > 0 in the limit " ! 0. This means that in the
general case time delay is not essential. Without losing the generality, in Eq. (27)
we assumed T D 1. The case T ¤ 1 is considered in [20] and can be reduced to
this case by rescaling the time variable and the map generating function GK.x/. In
Sect. 3 T denotes periods of trajectories. The 2D universal map Eqs. (15) and (16)
corresponds to n D 2 and the 1D universal map (25) corresponds to n D 1.
In the consistent introduction of fractional derivatives integer derivatives appear
as the limits when the order of a fractional derivative assumes an integer value.
Correspondingly, the general form of the n-dimensional universal map appears if
we assume an integer value of ˛ in the general form of the fractional universal map.
In the following sections we’ll consider the general forms of the fractional universal
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map which will be derived from Eq. (27) with integer n replaced by ˛ 2 R (˛ � 0).
The Riemann–Liouville universal map will be derived in Sect. 2.2 and the Caputo
universal map will be derived in Sect. 2.3.

2.2 Riemann–Liouville Universal Map

The generating fractional differential equation for the Riemann–Liouville universal
map can be written as

0D
˛
t x.t/CGK.x.t �//

1X
nD�1

ı


t � .nC "/

�
D 0; (28)

where " >  > 0, " ! 0, 0 � N � 1 < ˛ � N , ˛ 2 R, N 2 Z, and the initial
conditions

.0D
˛�k
t x/.0C/ D ck; k D 1; : : : ; N: (29)

The left-sided Riemann–Liouville fractional derivative 0D˛
t x.t/ is defined for t > 0

[40, 63, 67] as

0D
˛
t x.t/ D Dn

t 0I
n�˛
t x.t/ D 1

�.n � ˛/
dn

dtn

Z t

0

x.	/d	

.t � 	/˛�nC1 ; (30)

where n � 1 � ˛ < n, Dn
t D dn=dtn, and 0I

˛
t is a fractional integral.

For a wide class of functionsGK.x/ Eq. (28) is equivalent to the Volterra integral
equation of the second kind (t > 0) (see [38–40, 78])

x.t/ D
NX
kD1

ck

�.˛ � k C 1/
t˛�k

� 1

�.˛/

Z t

0

d	
GK.x.	 �//
.t � 	/1�˛

1X
kD�1

ı


	 � .k C "/

�
: (31)

Due to the presence of the delta function the integral on the right side of Eq. (31)
can be easily calculated [20, 75, 76, 78] for t > 0:

x.t/ D
N�1X
kD1

ck

�.˛ � k C 1/
t˛�k

� 1

�.˛/

Œt�"�X
kD0

GK.x.k C " �//

.t � .k C "//1�˛
‚.t � .k C "//; (32)
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where ‚.t/ is the Heaviside step function. In Eq. (32) we took into account that
boundedness of x.t/ at t D 0 requires cN D 0 and x.0/ D 0. After the introduction
(see [80])

p.t/ D 0D
˛�NC1
t x.t/ (33)

and

p.s/.t/ D Ds
t p.t/; (34)

where s D 0; 1; : : : ; N � 2, Eq. (32) leads to

p.s/.t/ D
N�s�1X
kD1

ck

.N � s � 1 � k/Š
tN�s�1�k

� 1

.N � s � 2/Š

Œt�"�X
kD0

GK.x.k C " �//.t � k/N�s�2; (35)

where s D 0; 1; : : : ; N �2. Assuming xn D x.n/, for " >  > 0 Eqs. (32) and (35)
in the limit " ! 0 give the equations of the Riemann–Liouville universal map

xnC1 D
N�1X
kD1

ck

�.˛ � k C 1/
.nC 1/˛�k

� 1

�.˛/

nX
kD0

GK.xk/.n � k C 1/˛�1; (36)

psnC1 D
N�s�1X
kD1

ck

.N � s � 1 � k/Š .nC 1/N�s�1�k

� 1

.N � s � 2/Š
nX

kD0
GK.xk/.n � k C 1/N�s�2: (37)

2.3 Caputo Universal Map

Similar to (28), the generating fractional differential equation for the Caputo
universal map can be written as

C
0 D

˛
t x.t/CGK.x.t �//

1X
nD�1

ı


t � .nC "/

�
D 0; (38)
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where " >  > 0, " ! 0, 0 � N � 1 < ˛ � N , ˛ 2 R, N 2 Z, and the initial
conditions

.Dk
t x/.0C/ D bk; k D 0; : : : ; N � 1: (39)

The left-sided Caputo fractional derivative C
0 D

˛
t x.t/ is defined for t > 0

[40, 63, 67] as

C
0 D

˛
t x.t/ D0 I

n�˛
t Dn

t x.t/ D 1

�.n � ˛/

Z t

0

Dn
	 x.	/d	

.t � 	/˛�nC1 ; (40)

where n � 1 < ˛ � n.
For a wide class of functionsGK.x/ Eq. (38) is equivalent to the Volterra integral

equation of the second kind (t > 0) (see [38–40, 78])

x.t/ D
N�1X
kD0

bk

kŠ
tk � 1

�.˛/

Z t

0

d	
GK.x.	 �//

.t � 	/1�˛
1X

kD�1
ı


	 � .k C "/

�
: (41)

Integration of this equation gives for t > 0

x.t/ D
N�1X
kD0

bk

kŠ
tk � 1

�.˛/

Œt�"�X
kD0

GK.x.k C " �//

.t � .k C "//1�˛
‚.t � .k C "//: (42)

After the introduction x.s/.t/ D Ds
t x.t/ the Caputo universal map can be derived in

the form (see [78])

x
.s/
nC1 D

N�s�1X
kD0

x
.kCs/
0

kŠ
.nC 1/k � 1

�.˛ � s/
nX

kD0
GK.xk/.n � k C 1/˛�s�1; (43)

where s D 0; 1; : : : ; N � 1.

3 ’-Families of Maps

We’ll call Eqs. (28) and (29) with various map generating functions GK.x/ the
Riemann–Liouville universal map generating equations and Eqs. (36) and (37) the
Riemann–Liouville˛-families of maps corresponding to the functionsGK.x/. We’ll
call Eqs. (38) and (39) with various map generating functions GK.x/ the Caputo
universal map generating equations and Eq. (43) the Caputo ˛-families of maps
corresponding to the functionsGK.x/.

Fractional maps Eqs. (36), (37), and (43) are maps with memory in which
the next values of map variables depend on all previous values. An increase in
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˛ corresponds to the increase in a map dimension. It also corresponds to the
increased power in the power-law dependence of weights of previous states which
imply increased memory effects. For ˛ D 1 and ˛ D 2 the corresponding maps
are given by Eqs. (25), (15), and (16) with T D 1 and GK.x/ instead of G.x/.
Equations (36), (37), and (43) with ˛ D 3 and variables y D p and z D Pp produce
the full-memory 3D Universal Map

xnC1 D z0
2
.nC 1/2 C y0.nC 1/C x0 � 1

2

nX
kD0

GK.xk/.n � k C 1/2;

ynC1 D z0.nC 1/C y0 �
nX

kD0
GK.xk/.n � k C 1/; (44)

znC1 D z0 �
nX

kD0
GK.xk/;

which is equivalent to the one-step memory (Sect. 1.2) 3D universal map

xnC1 D xn � 1

2
GK.xn/C yn C 1

2
zn;

ynC1 D �GK.xn/C yn C zn; (45)

znC1 D �GK.xn/C zn;

or

xnC1 D xn C ynC1 � 1

2
znC1;

ynC1 D yn C znC1; (46)

znC1 D �GK.xn/C zn;

which is a volume preserving map. This map has fixed points z0 D y0 D GK.x0/ D
0 and stability of these points can be analyzed by considering the eigenvalues � of
the matrix (corresponding to the tangent map)

0
@1 � 0:5 PGK.x0/ 1 0:5

� PGK.x0/ 1 1

� PGK.x0/ 0 1

1
A :

The only case in which the fixed points could be stable is PGK.x0/ D 0, when �1 D
�2 D �3 D 1. From Eq. (46) it follows that the only T D 2 points are the fixed
points.
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The investigation of the integer members of the ˛-families of maps is a subject
of ongoing research. From the examples of maps with the values of ˛ equal to
one, two, and three we see that integer values of ˛ correspond to the degenerate
cases in which map equations can be written as maps with full memory. They are
equivalent to ˛-dimensional one-step memory maps in which map variables at each
step accumulate information about all previous states of the corresponding systems.

Corresponding to the fact that in the ˛ D 2 case the 2D universal family of maps
produces the standard map if GK.x/ D K sin.x/ (see Eq. (17)) and in the ˛ D 1

case the logistic map results fromGK.x/ D x�Kx.1�x/ (see Eqs. (25) and (26)),
we’ll call:

• the Riemann–Liouville ˛-family of maps Eqs. (36) and (37) with GK.x/ D
K sin.x/ the standard ˛-RL-family of maps;

• the Caputo ˛-family of maps Eq. (43) with GK.x/ D K sin.x/ the standard
˛-Caputo-family of maps;

• the Riemann–Liouville ˛-family of maps with GK.x/ D x � Kx.1 � x/ the
logistic ˛-RL-family of maps;

• the Caputo ˛-family of maps with GK.x/ D x � Kx.1 � x/ the logistic
˛-Caputo-family of maps.

For ˛ D 0 the solution of Eq. (27) and correspondingly, the universal map is
identically zero. For ˛ < 1 the Riemann–Liouville ˛-families of maps Eqs. (36)
and (37) corresponding to the functionsGK.x/ satisfying the conditionGK.0/ D 0,
which is true for the standard and logistic ˛-RL-families of maps, also produces
identically zero.

3.1 Integer-Dimensional Standard and Logistic Maps

In general, properties of fractional maps converge to the corresponding properties of
integer maps when ˛ approaches integer values. To better understand the properties
of fractional maps we’ll start with the consideration of the integer members of the
corresponding families of maps.

3.1.1 One-Dimensional Logistic and Standard Maps

The one-dimensional logistic map Eq. (18) is one of the best investigated maps.
This map has been used as a playground for investigation of the essential property
of nonlinear systems—transition from order to chaos through a sequence of period-
doubling bifurcations, which is called cascade of bifurcations, and scaling properties
of the corresponding systems (see [2,15,24,42,84]). In our investigation of fractional
maps we’ll use the well-known stability properties of the logistic map (see [56]),
which for 0 < K < 4 are summarized in the bifurcation diagram in Fig. 2a. The
x D 0 fixed point (sink) is stable for K < 1, the .K � 1/=K fixed point (sink) is
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Fig. 2 (a) The bifurcation diagram for the logistic map x D Kx.1 � x/. (b) The bifurcation
diagram for the 1D standard map (circle map) Eq. (47)

stable for 1 < K < 3, the T D 2 sink is stable for 3 � K < 1 � p
6 � 3:449, the

T D 4 sink is stable when 3:449 < K < 3:544, and the onset of chaos as a result of
the period-doubling cascade of bifurcations occurs at K � 3:56995.

The one-dimensional standard map (˛ D 1) considered on a circle

xnC1 D xn �K sin.xn/; .mod 2�/ (47)

is a particular form of the circle map with zero driving phase. It has attracting fixed
points 2�n for 0 < K � Kc1.1/ D 2 and � C 2�n when �2 � K < 0 (for the
bifurcation diagram of the 1D standard map, see Fig. 2b). The antisymmetric T D 2

sink

xnC1 D �xn (48)

is stable for 2 < jKj < � , while xnC1 D xn C� two sinks (T D 2) are stable when
� < jKj < p

�2 C 2 � 3:445. The stable T D 4 sinks appear at jKj � 3:445 and
the sequence of bifurcations T D 4 ! T D 8 at K � 3:513, T D 8 ! T D 16 at
K � 3:526, and so on leads to the transition to chaos atK � 3:532. Antisymmetric
T D 2 trajectories (K D 2:4), T D 4 trajectories (K D 3:49), and two cases
of chaotic trajectories (K D 4:1 and K D 5:1) are presented in Fig. 3. In the 1D
standard map with K > 0 the full phase space x 2 Œ��; �� becomes involved in
chaotic motion (we’ll call this case “improper attractor”) when the maximum of the
function fK.x/ D x � K sin x is equal to � which occurs at Kmax1D D 4:603339

when xmax1D D �1:351817 (see Fig. 3c, d). Narrow bands with jKj above 2�jnj
(see Fig. 2b for K > 2�) are accelerator mode bands with zero acceleration within
which in the unbounded space (no mod 2�) x is increasing/decreasing with the rate
equal approximately to 2�jnj.
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Fig. 3 Attractors in the one-dimensional standard map; xn vs. xnC1 plots (seven trajectories with
different initial conditions in each plot): (a) K D 2:4; antisymmetric T D 2 sink. (b) K D 3:49;
T D 4 trajectories. (c) K D 4:1; proper attractor (width of the chaotic area is less than 2�).
(d) K D 5:1; improper attractor (width of the chaotic area is 2�)

3.1.2 Two-Dimensional Logistic and Standard Maps

The two-dimensional logistic map

pnC1 D pn CKxn.1 � xn/ � xn;
xnC1 D xn C pnC1 (49)

is a quadratic area preserving map. Its phase space contains stable elliptic islands
and chaotic areas (no attractors). Quadratic area preserving maps which have a
stable fixed point at the origin were investigated by Hénon [33] (for a recent review
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Fig. 4 Bifurcations in the 2D Logistic Map: (a) T D 1 ! T D 2 bifurcation at K D 5 (K D
5:05 on the figure). (b) T D 8 ! T D 16 bifurcation at K � 5:5319 (K D 5:53194 on the
figure)

on 2D quadratic maps, see [94]). To investigate the logistic ˛-families of maps
we need to know the evolution of the periodic points of the 2D logistic map with
the increase of the map parameter K . For K 2 .�3; 1/ the map Eq. (49) has the
stable fixed point .0; 0/ which turns into the fixed point ..K � 1/=K; 0/ stable for
K 2 .1; 5/. The T D 2 elliptic point

x D K C 3˙p
.K C 3/.K � 5/
2K

;

p D ˙
p
.K C 3/.K � 5/

K
(50)

is stable for �2p5 C 1 < K < �3 and 5 < K < 2
p
5 C 1. The period doubling

cascade of bifurcations (for K > 0) follows the scenario of the elliptic-hyperbolic
point transitions with the births of the double periodicity islands inside the original
island which has been investigated in [68] and applied to investigate the standard
map stochasticity at low values of the map parameter. Further bifurcations in the 2D
logistic map, T D 2 ! T D 4 at K � 5:472, T D 4 ! T D 8 at K � 5:527,
T D 8 ! T D 16 at K � 5:5319, T D 16 ! T D 32 at K � 5:53253, etc., and
the corresponding decrease in the areas of the islands of stability (see Fig. 4) lead to
chaos.

The two-dimensional standard map on a torus Eq. (17) (Chirikov standard map)
is one of the best investigated 2D maps. It demonstrates a universal generic behavior
of the area-preserving maps whose phase space is divided into elliptic islands of
stability and areas of chaotic motion (see, e.g., [11, 45]). Elliptic islands of the
standard map in the case of the standard ˛-families of maps with 1 < ˛ < 2

evolve into periodic sinks (see Sect. 3.3). Properties of phase space and appearance
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of different types of attractors in the fractional case, as in the case of the fractional
logistic map, are connected to the evolution (with the increase in parameter K)
of the 2D standard map’s islands originating from the stable (for K < 4) fixed
point (0,0). At K D 4 the fixed point becomes unstable (elliptic-hyperbolic point
transition [68]) and two elliptic islands around the stable for 4 < K < 2� period 2
antisymmetric point

pnC1 D �pn; xnC1 D �xn (51)

appear. At K D 2� this point transforms into two T D 2 points

pnC1 D �pn; xnC1 D xn � �; (52)

which are stable when 2� < K < 6:59. These points transform into T D 4

stable elliptic points at K � 6:59 and the period doubling cascade of bifurcations
leads to the disappearance of islands of stability in the chaotic sea at K � 6:6344

[11,45]. The 2D standard map has a set of bands forK above 2�n of the accelerator
mode sticky islands in which the momentum p increases proportionally to the
number of iterations k and the coordinate x increases as k2. The role of accelerator
mode islands (for K above 2�) in the anomalous diffusion and the corresponding
fractional kinetics is well investigated (see, for example, [90, 93]).

3.1.3 Three-Dimensional Logistic and Standard Maps

Equation (46) withGK.x/ D x�Kx.1�x/ (see Eq. (26)) produces the 3D logistic
map

xnC1 D xn C ynC1 � 1

2
znC1;

ynC1 D yn C znC1; (53)

znC1 D Kxn.1 � xn/� xn C zn:

Three-dimensional quadratic volume preserving maps were investigated in [46,58].
Everything stated in Sect. 3 for the 3D universal map is still valid for the 3D logistic
map.

The three-dimensional standard map with GK.x/ D K sin.x/

xnC1 D xn C ynC1 � 1

2
znC1; .mod 2�/;

ynC1 D yn C znC1; .mod 2�/; (54)

znC1 D �K sin.xn/C zn; ; .mod 4�/

has unstable fixed points .2�n; 2�m; 4�k/ and .2�n C �; 2�m; 4�k/ , n 2 Z,
m 2 Z, k 2 Z. Ballistic points K sin.x/ D �4�n, y D 2�m, z D 4�k, which
appear for jKj � 4� , are also unstable.
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Fig. 5 Phase space of the 3D standard map (54) withK D 3: (a) Three-dimensional phase space.
(b) A projection of the 3D phase space on the x-y plane

Stability of T D 2 ballistic points is defined by the eigenvalues of the matrix

0
@1 � 0:5K cos x1 1 0:5

�K cos x1 1 1

�K cos x1 0 1

1
A �

0
@1 � 0:5K cosx2 1 0:5

�K cosx2 1 1

�K cosx2 0 1

1
A :

For the period two on the torus ballistic points

z1; y1 D z1
2

� �.2nC 1/; K sin x1 D 2z1;

z2 D �z1; y2 D � z1
2

� �.2nC 1/; x2 D x1 � �.2n � 1/; (55)

where n 2 Z, the eigenvalues are

n
1;

1

8



8 �K2 cos2 x1 ˙K cosx1

p
K2 cos2 x1 � 16

�o
(56)

Ballistic T D 2 points are stable along a line defined by Eq. (55) for all values of z
satisfying the condition

K2 � 16 < 4z2 < K2: (57)

An example of the phase space for K D 3 in three dimensions and its projection
on the x-y plane is given in Fig. 5. For this value of K ballistic T D 2 points are
stable when �1:5 < z < 1:5 and the space around the line of stability presents
a series of islands (invariant curves), islands around islands, and separatrix layers.
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When K ! 0, the volume of the regular motion shrinks. When K is small, the line
of the stable T D 2 ballistic points exists for �K=2 < z < K=2. A different form
of the 3D volume preserving standard map was introduced and investigated in detail
in [18].

3.2 ˛-Families of Maps (0 < ˛ < 1)

As we mentioned at the end of Sect. 3, members of the logistic and standard
˛-families of maps corresponding to ˛ D 0 and RL-families’ members with
0 < ˛ < 1 are identically zeros. The only fractional logistic and standard maps
with 0 < ˛ < 1 which are not identically zeros are ˛-Caputo-families of maps. The
˛-Caputo-universal map (0 < ˛ < 1)

xnC1 D x0 � 1

�.˛/

nX
kD0

GK.xk/.n � k C 1/˛�1 (58)

in the limit ˛ ! 1 is identical to the one-dimensional universal map Eq. (25) and in
this limit properties of fractional maps are similar to properties of the corresponding
1D maps. Equation (58) with GK.x/ D x � Kx.1 � x/ is the logistic ˛-Caputo-
family of maps for 0 < ˛ < 1

xn D x0 C 1

�.˛/

n�1X
kD0

Kxk.1 � xk/� xk

.n � k/1�˛ (59)

and withGK.x/ D K sin.x/ is the standard ˛-Caputo-family of maps for 0 < ˛ < 1

xn D x0 � K

�.˛/

n�1X
kD0

sin xk
.n � k/1�˛ ; .mod 2�/ (60)

These maps are one-dimensional maps with power-law decreasing memory [20].
The bifurcation diagrams for these maps are similar to the corresponding diagrams
for the ˛ D 1 case (Fig. 2). A decrease in ˛ and the corresponding decrease in
weights of the earlier states (decrease in memory effects) leads to the stretchiness
of the corresponding bifurcation diagrams along the parameter K-axis and this
stretchiness increases as ˛ gets smaller (Fig. 6).

Within a band of values of K , above the value which corresponds to the
appearance of T D 4 trajectories, map trajectories are attracting cascade of
bifurcations type trajectories (CBTT) (see Fig. 7). On CBTT an increase in the
number of map iterations leads to the change in the map’s stability properties.
A trajectory which converges to a T > 4 periodic point or becomes a chaotic
trajectory (depending on the value of K) evolves according to a certain scenario:
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Fig. 6 Bifurcation diagrams for the logistic and standard ˛-Caputo-families of maps with 0 <
˛ < 1. In (a)–(f) the bifurcation diagrams obtained after performing 104 iterations on a single
trajectory with x0 D 0:1 for various values of K . (a), (c), and (e)—the logistic ˛-Caputo-family.
(b), (d), and (f)—the standard ˛-Caputo-family. In (a) and (b) ˛ D 0:8. In (c) and (d) ˛ D 0:3. In
(e) and (f) ˛ D 0:1
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Fig. 7 Cascade of bifurcations type trajectories in the logistic and standard ˛-Caputo-families of
maps with ˛ D 0:1. (a) The fractional logistic map with ˛ D 0:1 and K D 22:65. (b) The
fractional standard map with ˛ D 0:1 and K D 26:65

it first converges to a T D 4 point; then it bifurcates, always at the same place
for the given values of the parameter K and the order ˛, and converges to a T D 8

trajectory; then to a T D 16 trajectory; and so on. Power-law decaying memory with
power ˇ � 0:9 corresponding to small values of ˛ � 0:1 (see Sect. 1.1) appears
in biological applications. Attracting CBTT in, for example, adaptive biological
systems may represent not simply a change of a state of a biological system
according to a change in a parameter, but rather a change in the evolution of the
system according to the change in the parameter. Examples of CBTT in the logistic
and standard ˛-Caputo-families of maps with ˛ D 0:1 are presented in Fig. 7.

It also should be noted that bifurcation diagrams of the fractional maps depend
on the number of iterations used in their calculations. This is a consequence of
the existence of CBTT. Trajectories which after 100 iterations converged to a fixed
point in Fig. 8b after 10,000 iterations became T D 2 trajectories in Fig. 8a. With an
increase in the number of iterations the whole bifurcation diagram shifts to the left.

3.3 ˛-Families of Maps (1 < ˛ < 2)

For 1 < ˛ < 2 the logistic and standard ˛-families of maps assume the following
forms:

• The RL-standard map on a cylinder

pnC1 D pn �K sin xn; (61)

xnC1 D 1

�.˛/

nX
iD0

piC1V 1
˛ .n � i C 1/; .mod 2�/; (62)
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Fig. 8 Dependence of bifurcation diagrams of the fractional maps on the number of iterations on
a single trajectory used in their calculation. Bifurcation diagrams for the fractional logistic map
with ˛ D 0:1. (a) 10,000 iterations on each trajectory. (b) 100 iterations on each trajectory

where

V k
˛ .m/ D m˛�k � .m � 1/˛�k : (63)

This map requires the initial condition x0 D 0 and can’t be considered on a torus.
• The Caputo-standard map on a torus

pnC1 D pn � K
�.˛�1/

hPn�1
iD0 V 2

˛ .n � i C 1/ sinxi C sin xn
i
; .mod 2�/; (64)

xnC1 D xn C p0 � K
�.˛/

Pn
iD0 V 1

˛ .n � i C 1/ sinxi ; .mod 2�/: (65)

• The RL-logistic map

pnC1 D pn �Kxn.1 � xn/� xn; (66)

xnC1 D 1

�.˛/

nX
iD0

piC1V 1
˛ .n � i C 1/; (67)

which requires the initial condition x0 D 0.
• The Caputo-logistic map

xnC1Dx0Cp.nC1/k� 1
�.˛/

Pn
kD0Œxk�Kxk.1�xk/�.n�kC1/˛�1; (68)

pnC1 D p0 � 1
�.˛�1/

Pn
kD0Œxk �Kxk.1 � xk/�.n � k C 1/˛�2: (69)
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Fig. 9 Bifurcations in the standard ˛-families of maps with 1 < ˛ < 2. BelowK D Kc1 curve the
fixed point .0; 0/ is stable. It becomes unstable at K D Kc1 and gives birth to the antisymmetric
T D 2 sink which is stable for Kc1 < K < Kc2. A pair of the T D 2 sinks with xnC1 D xn � � ,
pnC1 D �pn is stable in the band aboveK D Kc2 curve. Cascade of bifurcations type trajectories
(CBTT) appear and exist in the narrow band which ends at the cusp at the top right corner of
the figure. .xc; pc/ is the point at which the standard map’s (˛ D 2) T D 2 elliptic points with
xnC1 D xn � � , pnC1 D �pn become unstable and bifurcate. In the area below Kc3 (above the
CBTT band) the chaotic attractor is restricted to a band whose width is less than 2� . On the upper
curves and above them the full phase space is chaotic

Here and in Eqs. (64) and (65) we assumed x 	 x0 and p 	 x1 in the Caputo
universal map Eq. (43).

The fractional standard maps Eqs. (61), (62), (64), and (65) are well investigated
(see [19–22]) and the logistic maps are the subject of ongoing research.

Evolution of trajectories in fractional maps depends on two parameters: the map
parameterK and the fractional order ˛. Figure 9 reflects this dependence in the case
of the standard ˛-families of maps with 1 < ˛ < 2.

3.3.1 T D 2 Antisymmetric Sink

It is obvious that the fractional standard and logistic maps have the fixed points
at the origin .0; 0/. But we’ll start the fractional maps’ phase space analysis
with the consideration of the T D 2 antisymmetric sinks. We’ll present most
of the analysis for the fractional RL-standard map (Fig. 9). Results of numerical
simulations suggest that the fractional Caputo-standard map has similar properties
and the results for the logistic map are submitted for publication.

The 1D standard map has the T D 2 antisymmetric sink Eq. (48) and the 2D
standard map has the T D 2 antisymmetric elliptic point Eq. (51). Numerical
experiments (Fig. 10) show that the antisymmetric T D 2 sinks persist in the
fractional standard maps with 1 < ˛ < 2. In the RL-standard map these sinks attract
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most of the trajectories with small p0. Assuming the existence of an antisymmetric
T D 2 sink

pn D pl.�1/n; xn D xl .�1/n; (70)

it is possible to calculate the coordinates of its attracting points .xl ; pl / and
.�xl ;�pl/. In the limit n ! 1 Eqs. (61) and (62) can be written as

pl D K

2
sin.xl /; (71)

xl D lim
n!1x2n D pl

�.˛/
lim
n!1

2n�1X
kD0

.�1/kC1V 1
˛ .2n � i/ D pl

�.˛/
V˛l .k/; (72)

where

V˛l D
1X
kD1

.�1/kC1V 1
˛ .k/: (73)

Finally, the equation for the xl takes the form

xl D K

2�.˛/
V˛l sin.xl /: (74)

The numerical solution of Eqs. (74) and (71) for K D 4:5 when 1 < ˛ < 2 is
presented in Fig. 10b–d. Figure 10e, f show how well this solution agrees with the
results of numerical simulations of individual trajectories. After 1,000 iterations
presented in Fig. 10e, f the values of deviations jpn � pl j and jxn � xl j are less
than 10�7.

The condition of the existence of a solution for Eq. (74)

K > Kc1.˛/ D 2�.˛/

V˛l
(75)

is the condition of the existence of the antisymmetric T D 2 sink. This sink exists
above the curve K D Kc1 in Fig. 9. For ˛ D 2 Eq. (75) produces the standard map
conditionK > 4 (see Sect. 3.1.2) and for ˛ D 1 it givesK > 2 (see Sect. 3.1.1).

3.3.2 Fixed Points

Numerical simulations show that as in the 1D and 2D cases, in the case of fractional
maps with 1 < ˛ < 2 the condition of the appearance of T D 2 trajectories
coincides with the condition of the disappearance of the stable fixed point. This



Fractional Maps as Maps with Power-Law Memory 103

−2 −1 0 1 2
−3

−1

1

3

p

x
0.5 1 1.5 2 2.5

1.5

2

2.5

p l
xl

1 1.4 1.8
1.5

1.9

2.3

p l

α
1 1.4 1.8

0.5

1

1.5

2

x l

α

0 400 800
−1

0

1 x 10−4

p−
2.

10
55

82

n
0 400 800

−1

0

1 x 10−4

x−
1.

21
05

62

n

a b

dc

e f

Fig. 10 The RL-standard map’s period 2 sink: (a) An example of the T D 2 attractor for K D
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result for the fractional standard map was demonstrated in [22] and for the fractional
logistic map was submitted for publication. Below we present two ways in which
stability of the RL-standard map’s .0; 0/ fixed point can be investigated.

In the vicinity of the fixed point .0; 0/ the equation for the deviation of a
trajectory from the fixed point can be written as

ıpnC1 D ıpn �Kıxn; (76)

ıxnC1 D 1

�.˛/

nX
iD0

ıpiC1V˛.n � i C 1/: (77)

Based on the results of Sect. 3.3.1 let’s look for a solution in the form

ıpn D p0

n�1X
iD0

pn;i


 2

V˛l

�i
 K

Kc1.˛/

�i
; .n > 0/; (78)

ıxn D p0

�.˛/

n�1X
iD0

xn;i


 2

V˛l

�i
 K

Kc1.˛/

�i
; .n > 0/; (79)

where pn;i and xn;i satisfy the following iterative equations

xnC1;i D �
nX

mDi
.n �mC 1/˛�1xm;i�1; .0 < i � n/; (80)

pnC1;i D �
nX

mDi
xm;i�1; .0 < i < n/; (81)

for which the initial and boundary conditions are

pnC1;n D xnC1;n D .�1/n; pnC1;0 D 1; xnC1;0 D .nC 1/˛�1: (82)

To verify the convergence of the alternating series Eqs. (78) and (79) we apply the
Dirichlet’s test by considering the totals

Sn D
n�1X
iD0

xn;i


 2

V˛l

�i
; In D

n�1X
iD0

pn;i


 2

V˛l

�i
: (83)

They obey the following iterative rules

Sn D n˛�1 � 2

V˛l

n�1X
iD1
.n � i/˛�1Si ; In D 1 � 2

V˛l

n�1X
iD1

Si ; (84)

where S1 D 1. Numerical simulations demonstrate that values of Sn and In converge
to the values .�1/nC1S1 and .�1/nC1I1 presented in Fig. 11b. Figure 11c, d show
an example of the typical evolution of Sn and In over the first 20,000 iterations.
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There is still no strict mathematical proof of the convergence. From the boundedness
of Sn and In the convergence of ıpn and ıxn requires the following condition

K

Kc1.˛/
< 1; (85)

which, as we expected, is exactly opposite to the condition of the existence of the
antisymmetric T D 2 sink Eq. (75). Hundreds of runs of computer simulations
confirmed that the transition from the stable fixed point .0; 0/ to the stable
antisymmetric T D 2 sink in both the RL-standard map and the Caputo-standard
map occurs on the curveK D Kc1 as depicted in Fig. 11a.

The second way to investigate stability of the .0; 0/ fixed point is by using
generating functions [25], which in the case of convolutions allows transformations
of sums of products into products of sums. After the introduction

QW˛.t/ D K

�.˛/

1X
iD0
Œ.i C 1/˛�1 � i˛�1�t i ; QX.t/ D

1X
iD0

ıxi t
i ; QP .t/ D

1X
iD0

ıpi t
i

(86)
system Eqs. (76) and (77) can be written as

QX.t/ D p0 QW˛.t/

K

t

1 � t


1 � QW˛.t/

� ; (87)

QP .t/ D p0
1C QW˛.t/

1 � t


1 � QW˛.t/

� : (88)

We see that the original problem can be solved by investigating the asymptotic
behavior at t D 0 of the derivatives of the analytic functions QX.t/ and QP .t/. This is
still a complex unresolved problem.

When K < Kc1 and the fixed point is stable, in phase space it is surrounded
by a finite basin of attraction, whose width w depends on the values of K and
˛. For example, for K D 3 and ˛ D 1:9 the width of the basin of attraction is
1:6 < w < 1:7. Numeric simulations of thousands of trajectories with p0 < 1:6

performed by the authors of [22], of which only 200 (with 1:5 < p0 < 1:6)
are presented in Fig. 11e, show only converging trajectories, whereas among 50
trajectories with 1:6 < p0 < 1:7 in Fig. 12a there are trajectories converging to
the fixed point as well as some trajectories converging to attracting slow diverging
trajectories, whose properties will be discussed in the following section (Sect. 3.3.3).
Figure 11e shows fast converging trajectories. In the case K D 2 and ˛ D 1:4 in
addition to the fast converging trajectories and attracting slow diverging trajectories
there exist attracting slow converging trajectories (Fig. 11f).
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Fig. 11 Stability of the fixed point .0; 0/ in the RL-standard map with 1 < ˛ < 2: (a) The fixed
point is stable below the curve K D Kc.˛/. (b) Values of S1 and I1 obtained after 20,000
iterations of Eq. (84). The values of S1 and I1 increase rapidly when ˛ ! 2; for example,
S1 � 276 and I1 � 552 after 20,000 iterations when ˛ D 1:999. (c) An example of the
typical evolution of S1 and I1 over the first 200 iterations for 1 < ˛ < 2. This particular figure
corresponds to ˛ D 1:8. (d) Deviation of the values Sn and In from the values S1 � 2:04337

(continued)
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3.3.3 Attractors Below Cascade of Bifurcations Band

In the following most of the statements are conjectures made on the basis of the
results of numerical simulations performed for some values of parametersK and ˛
which then were verified for additional parameter values.

The structure of the fractional standard map’s phase space preserves some
features which exist in the ˛ D 2 case. For example, for K < Kc1 stable higher
period points, which exist in the standard map, still exist in the fractional standard
maps (Fig. 12), but they exist in the asymptotic sense and they transform from
elliptic points into sinks and (in the case of the RL-standard map) into attracting
slow (pn � n2�˛) diverging trajectories. In the area preserving standard map stable
fixed and periodic points are surrounded by islands of regular motion which in
the case of fractional maps turn into basins of attraction associated with sinks or
slowly diverging attracting trajectories. In the standard map islands are surrounded
by chaotic areas. For K < Kc1 and 1 < ˛ < 2 in the fractional standard maps
there are no chaotic or regular trajectories. Chaos exists in the following sense: two
initially close trajectories that start in an area between basins of attractions at first
diverge, but then converge to the same or different attractors.

There are differences not only between properties of the regular and fractional
standard maps but also between phase space structures of the RL- and Caputo-
standard maps. There is more than one way to approach an attracting periodic or
fixed point of the RL-standard map. In Fig. 13 the examples of three trajectories,
two for the RL-standard map and one for the Caputo-standard map, are used
to demonstrate the differences in the rates of convergence. In the RL-standard
map trajectories starting from attractors’ basins of attractions demonstrate fast
convergence with

ıxn � n�1�˛; ıpn � n�˛ (89)

and trajectories with the initial conditions from chaotic areas demonstrate slow
convergence:

ıxn � n�˛; ıpn � n1�˛: (90)

There is only one type of convergence in the Caputo-standard map:

ıxn � n1�˛; ıpn � n1�˛: (91)

(continued)

J
and I1 � 3:37416 for ˛ D 1:8 during the first 20,000 iterations (this type of behavior remains
for 1 < ˛ < 2). (e) Evolution of trajectories with p0 D 1:5C 0:0005i , 0 � i < 200 for the case
K D 3, ˛ D 1:9. The line segments correspond to the nth iteration on the set of trajectories with
close initial conditions. The evolution of the trajectories with smaller p0 is similar. (f) 105 iterations
on both of the two trajectories for K D 2, ˛ D 1:4. The one at the bottom with p0 D 0:3 is a
fast converging trajectory. The upper trajectory with p0 D 5:3 is an example of an attracting slow
converging trajectory in which p100;000 � 0:042
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Fig. 12 The RL- and Caputo-standard maps’ phase spaces for K < Kc1: (a) The RL-standard
map with the same values of parameters as in Fig. 11e but p0 D 1:6 C 0:002i , 0 � i < 50.
(b) The Caputo-standard map with the same values of parameters as in Fig. 11e but p0 D 1:7 C
0:002i , 0 � i < 50. (c) 400 iterations on the RL-standard map trajectories with p0 D 4C 0:08i ,
0 � i < 125 for the case K D 2, ˛ D 1:9. Trajectories converge to the fixed point and two types

(continued)
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The same rates of convergence were observed also for antisymmetric (see Sect. 3.3.1
and Fig. 15) and xnC1 D xn � � , pnC1 D �pn period two (T D 2) points (Fig. 16).

From Fig. 15a, b one can see that phase portraits on cylinders of the fractional
standard maps with K D 3 and ˛ D 1:9 contain, in addition to the .0; 0/ fixed
point, attracting slow diverging trajectories (RL-case), or fixed points (Caputo-case)
approximately equally spaced along the p-axis. This result agrees with the fact
that the standard map with K D 3 has only one central island. More complex
structures of the fractional standard maps’ phase spaces, for K D 2 with T D 4

sinks (Fig. 15c, d) and for K D 0:6 with T D 2 and T D 3 sinks (Fig. 15e, f), can
be explained by the presence of the islands with the same periodicity in the standard
map with the sameK . Numerical evaluations (see Fig. 14) lead to the suggestion that
attracting slow diverging trajectories which converge to trajectories along the p-axis
(x ! xlim D 0) in the area of parameters of their stability for large n demonstrate
the following asymptotic behavior

pn D Cn2�˛: (92)

The constant C can be evaluated for 1:8 < ˛ < 2. Consider a trajectory on a cylinder
with xlim D 0, T D 1, and constant step in x in the unbounded space 2�M , where
M is an integer. Then from Eq. (62) follows

(continued)

J
of attracting slow diverging trajectories: with xlim D 0 (T D 1) and T D 4. (d) 100 iterations on
the Caputo-standard map trajectories with p0 D �3:14C 0:0314i , 0 � i < 200 for the same case
as in (c) (K D 2, ˛ D 1:9) but considered on a torus. In this case all trajectories converge to the
fixed point or T D 4 sink. (e) 400 iterations on trajectories with p0 D 2 C 0:04i , 0 � i < 50

for the RL-standard map case K D 0:6, ˛ D 1:9. Trajectories converge to the fixed point and two
attracting slow diverging trajectories (T D 2 and T D 3). (f) 100 iterations on the Caputo-standard
map trajectories with p0 D �3:14C 0:0314i , 0 � i < 200 for the same case as in (e) (K D 0:6,
˛ D 1:9) considered on a torus. In this case all trajectories converge to the fixed point, period two
and period three sinks
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Fig. 13 Different types of convergence of trajectories to the fixed point in the RL-standard
map ((a) and (b)) and the Caputo-standard map (c): (a) Time dependence of the coordinate and
momentum for the fast converging trajectory with K D 2, ˛ D 1:4 and the initial conditions
x0 D 0 and p0 D 0:3 from Fig. 11f. (b) The same as in (a) but for the attracting slow converging
trajectory with the initial conditions x0 D 0 and p0 D 5:3. (c) x and p time dependence for the
Caputo-standard map with K D 2, ˛ D 1:4, and the initial conditions x0 D 0 and p0 D 0:3
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Fig. 14 Evaluation of the behavior of the attracting slow diverging trajectories: (a) Momenta for
two trajectories with xn � 2�n in unbounded space (in this example K D 2). The solid line is
related to a trajectory with ˛ D 1:9 and its slope is 0.1. The dashed line corresponds to a trajectory
with ˛ D 1:5 and its slope is 0.5. (b) Deviation of momenta from the asymptotic formula for
two trajectories with xn � 2�n in unbounded space, ˛ D 1:9, and K D 2. The dashed line has
p0 D 7 and the solid one p0 D 6. (c) Relative deviation of the momenta for the trajectories in (b)
from the asymptotic formula. (d) Deviation of the x-coordinates for the trajectories in (b) from the
asymptotic formula

xnC1 � xn D 1

�.˛/

nX
kD1

.pkC1 � pk/V
1
˛ .n � k C 1/C p1

�.˛/
V 1
˛ .nC 1/: (93)

For large n the last term is small (� n˛�2) and the following holds

nX
kD1
.pkC1 � pk/V

1
˛ .n� k C 1/ D 2�M�.˛/: (94)

It can be shown, assuming pn � n2�˛ , that for values of ˛ > 1:8 the terms in the
last sum with large k are small and in the series representation of V 1

˛ .n � k C 1/

only terms of the highest order in k=n can be kept. In this case, Eq. (94) leads to the
approximations
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pn � p0 C 2�M�.˛/n2�˛

˛ � 1
; xn � �2�M.2� ˛/�.˛/

K.˛ � 1/n˛�1 : (95)

In the caseK D 2, ˛ D 1:9 Fig. 14b–d show for two trajectories withM D 1 (initial
momenta p0 D 6 and p0 D 7) approaching an attracting slow diverging trajectory
the deviation from the asymptotic formula Eq. (95) and the relative difference with
respect to Eq. (95).

As for K < Kc1, in the case Kc1.˛/ < K < Kc2.˛/ asymptotic existence
and stability of the antisymmetric sink (Sect. 3.3.1) is a result of the gradual
transformation of the standard map’s elliptic point with the decrease in the order
of derivative from ˛ D 2 (see Fig. 15). Convergence of trajectories follows
Eqs. (89)–(91).

The standard map’s antisymmetric T D 2 trajectory becomes unstable when
K D 2� and at the point .�=2; 0/ in phase space a pair of T D 2 trajectories with
xnC1 D xn � � , pnC1 D �pn appears. Numerical simulations of the fractional
standard maps (see Fig. 16) show that they demonstrate similar behavior. With the
assumption that the RL-standard map Eqs. (61) and (62) have an asymptotic solution

pn D .�1/npl ; xn D xl � �

2
Œ1 � .�1/n� (96)

it can be shown from Eq. (61) that the relationship pl D K=2 sin.xl / (Eq. (71)) is
valid in this case too.

Numerical simulations similar to those presented in Fig. 13 show that for K >

Kc2 (see Fig. 9) the RL-standard map has the asymptotic behavior

pn D .�1/npl C An1�˛; (97)

where A is the same for both even and odd values of n.
After substituting (97) in (62) in the limit n ! 1 one can derive

sin.xl / D ��.˛/

KV˛l
; (98)

which has solutions when

K > Kc2 D ��.˛/

V˛l
(99)

(see Fig. 9). The value of A can also be calculated:

A D 2xl � �

2�.2� ˛/ : (100)

Results of the analytic estimations Eqs. (98)–(100) are in good agreement with the
direct numerical simulations of the fractional standard maps.
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Fig. 15 Stable antisymmetric xnC1 D �xn, pnC1 D �pn period T D 2 trajectories for K D
4:5: (a) 1,000 iterations on each of 25 trajectories for the standard map with K D 4:5. The only
feature is a system of two islands associated with the period two elliptic point. (b) RL-standard
map stable T D 2 antisymmetric sink for ˛ D 1:8. 500 iterations on each of 25 trajectories:
p0 D 0:0001 C 0:08i , 0 � i < 25. Slow and fast converging trajectories. (c) Caputo-standard
map stable T D 2 antisymmetric sink for ˛ D 1:8. 1,000 iterations on each of ten trajectories:
p0 D �3:1415C 0:628i , 0 � i < 10
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Fig. 16 Stable xnC1 D xn � � , pnC1 D �pn period T D 2 trajectories for K > Kc2:
(a) 500 iterations on each of 50 trajectories for the standard map withK D 6:4. The main features
are two accelerator mode sticky islands around points .�1:379; 0/ and .1:379; 0/ which define
the dynamics. Additional features—dark spots at the top and the bottom of the figure (which
are clear on a zoom)—two systems of T D 2 tiny islands associated with two T D 2 elliptic
points: .1:379; �/, .1:379 � �;��/ and .� � 1:379; �/, .�1:379;��/. (b) Two RL-standard
map’s stable T D 2 sinks for K D 4:5, ˛ D 1:71. 500 iterations on each of 25 trajectories:
p0 D 0:0001 C 0:08i , 0 � i < 25. (c) Two Caputo-standard map’s stable T D 2 sinks for
K D 4:5, ˛ D 1:71. 1,000 iterations on each of ten trajectories: p0 D �3:1415 C 0:628i ,
0 � i < 10

3.3.4 Cascade of Bifurcations Band

At K � 6:59 in the standard map T D 2 points become unstable and stable T D 4

elliptic points appear. Further increase in K results in the period doubling cascade
of bifurcations which leads to the disappearance of the corresponding islands of
stability in the chaotic sea at K � 6:6344 (see Sect. 3.1.2). The cusp in Fig. 9a
points to a point ˛ D 2 and 6:59 < K� < 6:63. Inside the band leading to the cusp
a new type of attractors, cascade of bifurcations type trajectories (CBTT), appears
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Fig. 17 Cascade of bifurcations type trajectories in the RL-standard map: (a) ˛ D 1:65;K D 4:5;
one intermittent trajectory in phase space. (b) Time dependence of the coordinate x (x of n) for
the case (a). (c) ˛ D 1:98;K D 6:46; zoom of a small feature for a single intermittent trajectory
in phase space. (d) ˛ D 1:1;K D 3:5; a single trajectory enters the cascade after a few iterations
and stays there during 500,000 iterations

(see Fig. 17). The lower boundary of the band approximately corresponds to the
transition from the T D 2 sink xnC1 D xn � � , pnC1 D �pn to the T D 4

sink and the upper boundary corresponds to the transition to chaos. At ˛ D 1 the
lower and upper boundaries correspond to the T D 2 ! T D 4 transition and
the transition to chaos in the 1D standard map (see Sect. 3.1.1). In CBTT period
doubling cascade of bifurcations occurs on a single trajectory with a fixed value
of the map parameter. A typical CBTT’s behavior is similar to the behavior of
trajectories in Hamiltonian dynamics in the presence of sticky islands: occasionally
a trajectory enters a CBTT and then leaves it and enters the chaotic sea (Fig. 17a, b).
With the decreases in ˛ the relative time trajectories spend in CBTT increases.
CBTT are barely distinguishable near the cusp (Fig. 17c) and trajectories spend
relatively little time in CBTT. A trajectory enters a CBTT after a few iterations
and stays there over the longest computational time we were running our codes—
500,000 iterations when ˛ is close to one.
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Fig. 18 “Proper” and “improper” attractors in the RL-standard map. 3,000 iterations on ten
trajectories with the initial conditions x0 D 0, p0 D 0:001C 1:65i , i D 0; 1; : : : 9: (a) A “proper”
chaotic attractor forK D 4:2, ˛ D 1:1. (b) An “improper” chaotic attractor forK D 4:4, ˛ D 1:1

The CBTT in Fig. 17 were obtained for the RL-standard map. In many cases it
is difficult to find CBTT in phase space of the Caputo-standard map but they look
almost the same for both fractional maps on the x vs. n plot (see Fig. 17b).

Results of numerical simulations submitted for publication show that not CBTT
but inverse (in time) CBTT are present within the CBTT band (from the T D 2 !
T D 4 transition to the transition to chaos) of the fractional logistic maps.

3.3.5 More Fractional Attractors

In the one-dimensional standard map with K > 0 the “proper” chaotic attractor
exists for 3:532 < K < 4:603339 (see Sect. 3.1.1). This is the interval between the
upper boundary of the CBTT band for ˛ D 1 andK D Kc3.1/ in Fig. 9. In the area
between K D Kc3.˛/ curve and the upper border of the CBTT band (in Fig. 9) the
fractional chaotic attractors are proper (see Fig. 18a) and above K D Kc3.˛/ the
entire phase space is chaotic (Fig. 18b).

The standard map has a set of bands for K above 2�n of the accelerator
mode sticky islands in which momentum increases proportionally to the number of
iterations n and coordinate increases as n2 (see Sect. 3.1.2). In the one-dimensional
standard map the corresponding bands demonstrate cascades of bifurcations (see
Fig. 2b) for jKj above 2�jnj. The acceleration in those bands is zero and x increases
proportionally to n (see Sect. 3.1.1).

Accelerator mode attractors in the case 1 < ˛ < 2 are not fully investigated. The
standard map’s accelerator mode islands evolve into the accelerator mode (ballistic)
attracting sticky trajectories when ˛ is reduced from 2 for the values of K which
increase with the decrease in ˛ (Fig. 19b). When the value of ˛ increases from 1, the
corresponding ballistic attractors evolve into the cascade of bifurcation type ballistic
trajectories (see Fig. 19a) for the values ofK which decrease with the increase in ˛.
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Fig. 19 RL-standard map’s accelerator mode attractors. 25,000 iterations on a single trajectory
with the initial conditions x0 D 0, p0 D 0:1: (a) CBTT-type accelerator mode attractor for K D
5:7, ˛ D 1:03. (b) Accelerator mode attractor for K D 7:6, ˛ D 1:97

This could mean that corresponding features in the one- and two-dimensional maps
(at least for K D 2�) are not connected by the continuous change in ˛.

3.4 ˛-Families of Maps (2 < ˛ < 3)

Fractional maps for ˛ > 2 are not yet investigated. Here we’ll present the first
results [20] for the RL-standard map.

WithGK.x/ D K sin.x/ in Eqs. (36) and (37), the RL-standard map for 2 < ˛ �
3 can be written as

p1nC1 D p1n �K sin.xn/;

pnC1 D p1n C pn �K sin.xn/; .mod 2�/; (101)

xnC1 D p0

�.˛ � 1/
.nC 1/˛�2 C 1

�.˛/

nX
kD0

p1kC1V 1
˛ .n � k C 1/; .mod 2�/:

In our simulations we did not find a stable fixed point even for small values of K
(see Fig. 20c). Simulations show that for this map there are attractors in the form of
the attracting multi-period lines with constant x (see Fig. 20a, b, and d). For most of
the values of the map parameters the phase space is highly chaotic.

This case and the transition from the 2D standard map to the 3D standard map is
not yet fully investigated.
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Fig. 20 RL-standard map for 2 < ˛ < 3: (a) 3D phase space for K D 1, ˛ D 2:01 obtained on
a single trajectory with x0 D p0 D 0 and p10 D 0:01. (b) Projection of the phase space in (a) on
the x-y plane. (c) Projection of the phase space for K D 0:2, ˛ D 2:01, x0 D p0 D 0 on the x-y
plane obtained using 20 trajectories with different initial values of p10 . (d) The same as in (c), but
for K D 4 and ˛ D 2:9

4 Conclusion

The systems with long-term memory that are most frequently encountered in nature
are systems with power-law memory. In many applications, including biological
applications, the exponent in power law, � t�ˇ , is 0 < ˇ < 1. This is true, in
particular, for adaptive systems and for viscoelastic properties of human tissues.
These systems can be described by nonlinear fractional differential equations with
fractional derivatives of the order ˛ D 1�ˇ with 0 < ˛ < 1. Fractional differential
equations can be modeled by discrete nonlinear maps with power-law memory.
We studied maps which model fractional differential equations with 0 < ˛ < 2

and, correspondingly, �1 < ˇ < 1. Decrease in ˇ and, correspondingly, increase in
˛ means an increase in the memory effects—older states have higher weights in the
definition of the present state of a system.

In Sect. 3 we showed that an increase in memory effects leads to more compli-
cated and chaotic behavior. As can be seen in Fig. 6, systems with small ˛ are more
stable. At the values of system parameters, corresponding to the periodic behavior
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and transition to chaos, behavior of such systems follows a well-defined cascade
of bifurcations pattern (Fig. 7). This type of evolution may mean a slow adaptation
when a system changes its state long after a change in a parameter occurred.

Increase in memory effects with the transition from 0 < ˛ < 1 to 1 < ˛ < 2

leads to increased diversity in systems’ behavior. Systems with 1 < ˛ < 2

may demonstrate periodic sinks, attracting slow diverging trajectories, attracting
accelerator mode trajectories, chaotic attractors, and cascade of bifurcations and
inverse cascade of bifurcations type attracting trajectories. An intermittent cascade
of bifurcations type behavior (Fig. 17a, b) may correspond to a scenario of the evo-
lution of chronic diseases, to some mental disorders, or to the evolution of some
social systems.

The way in which systems with power-law memory approach fixed and periodic
points (Eqs. (89)–(91)) can be used to identify systems with memory in an analysis
of experimental data.
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Period-1 Motions in a Quadratic Nonlinear
Oscillator

Albert C.J. Luo and Bo Yu

Abstract Analytical solutions for period-1 motions in a periodically forced,
quadratic nonlinear oscillator are presented through the Fourier series solutions with
finite harmonic terms, and the stability and bifurcation analyses of the corresponding
period-1 motions are carried out. The parameter map for excitation amplitude and
frequency is developed for different period-1 motions. For a better understanding of
complex period-1 motions in such a quadratic nonlinear oscillator, trajectories and
amplitude spectrums are illustrated numerically.

1 Introduction

To obtain analytical solutions of nonlinear dynamical systems is an important issue
for a better understanding of nonlinear behaviors and multiplicity. So far, one
cannot find an efficient way to determine complex periodic motions in nonlinear
dynamical systems yet. In the nineteenth century, Poincare [1] further developed the
perturbation theory for celestial bodies. In 1920, van der Pol [2] used the method of
averaging to determine the periodic solutions of oscillation systems in circuits. In
1964, Hayashi [3] used perturbation methods, averaging method, and principle of
harmonic balance to determine the approximate solutions of nonlinear oscillators.
In 1973, Nayfeh [4] presented the multi-scale perturbation method and applied such
a perturbation method for obtaining approximate solutions of periodic motions in
nonlinear oscillations of structures (also see, Nayfeh and Mook [5]). In 1997, Luo
and Han [6] studied the stability and bifurcations of periodic solutions of Duffing
oscillators through the first order harmonic balance method. In 2008, Peng et al. [7]
presented the approximate period-1 solution for the Duffing oscillator by the HB3
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method and compared with the fourth-order Runge–Kutta method. In 2011, Luo and
Huang [8] discussed approximate solutions of periodic motions in nonlinear systems
through the harmonic balance method. In 2012, Luo and Huang [9] developed the
approximate analytical solutions of period-m motions and chaos. In Luo [10], the
methodology and procedure for analytical solutions of periodic motions in general
nonlinear systems were presented. Such a method will be used to develop analytical
solutions of periodic motions in a quadratic nonlinear system under a periodic
excitation. Such an oscillator can be used to describe ship motion under periodic
ocean waves. The analytical solutions will include enough harmonic terms to give
an appropriate solution of period-1 motion from which the analytical bifurcations
and period-m motions can be achieved.

2 Analytical Solutions

As in Luo and Yu [11, 12], consider a periodically forced, nonlinear oscillator as

Rx C ı Px C ˛x C ˇx2 D Q0 cos�t (1)

where ı is the linear damping coefficient. ˛ and ˇ are linear and quadratic
spring coefficients, respectively. Q0 and � are excitation amplitude and frequency,
respectively. In Luo [10], the standard form of Eq. (1) can be written as

Rx C f .x; Px; t/ D 0 (2)

where

f . Px; x; t/ D ı Px C ˛x C ˇx2 �Q0 cos�t: (3)

The analytical solution of period-1 motion for the above equation is

x�.t/ D a0.t/C
NX
kD1

bk.t/ cos .k�t/C ck.t/ sin .k�t/ (4)

where a0(t), bk(t) and ck(t) vary slowly with time. The first and second order of
derivatives of x� (t) are

Px.t/ D Pa0.t/C
NX
kD1

. Pbk C k�ck/ cos .k�t/C . Pck � k�bk/ sin .k�t/ ; (5)
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Rx.t/ D Ra0.t/C
NX
kD1

� Rbk C 2 .k�/ Pck � .k�/2bk
	

cos .k�t/

C � Rck � 2 .k�/ Pbk � .k�/2ck
	

sin .k�t/ :

(6)

Substitution of Eqs. (4)–(6) into Eq. (1) and averaging for the harmonic terms of
cos(k�t) and sin(k�t) (k D 0, 1, 2, : : : ) gives

Ra0 C F0.a0;b; c; Pa0; Pb; Pc/ D 0

Rbk C 2.k�/ Pck � .k�/2bk C F1k.a0;b; c; Pa0; Pb; Pc/ D 0

Rck � 2.k�/ Pbk � .k�/2ck C F2k.a0;b; c; Pa0; Pb; Pc/ D 0

k D 1; 2; � � � ; N
(7)

where

F0.a0;b; c; Pa0; Pb; Pc/ D ı Pa0 C ˛a0 C ˇa0
2 C ˇ

2

NX
lD1
.bl

2 C cl
2/

F1k.a0;b; c; Pa0; Pb; Pc/ D ı. Pbk C ckk�/C ˛bk C 2ˇa0bk C f1k

F2k.a0;b; c; Pa0; Pb; Pc/ D ı. Pck � bkk�/C ˛ck C 2ˇa0ck C f2k

(8)

and

f1k D ˇ

NX
lD1

NX
jD1

Œ.blbj C clcj /ı
k
j�l C 1

2
.blbj � cl cj /ı

k
jCl � �Q0ı

1
k;

f2k D ˇ

NX
lD1

NX
jD1

blcj .ı
k
jCl C ıkj�l � ıkl�j /:

(9)

Define

z , .a0;bT; cT/
T

D .a0; b1; � � � ; bN ; c1; � � � ; cN /T 	 .z0; z1; � � � ; z2N /T;
z1 D Pz D . Pa0; PbT; PcT/

T

D . Pa0; Pb1; � � � ; PbN ; Pc1; � � � ; PcN /T 	 .Pz0; Pz1; � � � ; Pz2N /T
(10)

where

b D .b1; b2; � � � ; bN /T and c D .c1; c2; � � � ; cN /T: (11)
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Equation (7) can be expressed in the form of vector field as

Pz D z1 and Pz1 D g .z; z1/ (12)

where

g .z; z1/ D
0
@�F0 .z; z1/

�F1 .z; z1/� 2k1�Pc C k2�2b
�F2 .z; z1/C 2k1� Pb C k2�2c

1
A (13)

and

k1 D diag .1; 2; � � � ; N / and k2 D diag
�
1; 22; � � � ; N 2

�
F1 D .F11; F12; � � � ; F1N /T and F2 D .F21; F22; � � � ; F2N /T
for N D 1; 2; � � � ;1:

(14)

Introduce

y 	 .z; z1/ and f D .z1; g/
T (15)

Equation (12) becomes

Py D f .y/ : (16)

The steady-state solutions for periodic motion in Eq. (1) can be obtained by
setting Py D 0, i.e.,

F0
�
a�
0 ;b

�; c�; 0; 0; 0
� D 0;

F1
�
a�
0 ;b

�; c�; 0; 0; 0
���2k2b� D 0;

F2
�
a�
0 ;b

�; c�; 0; 0; 0
���2k2c� D 0:

(17)

The (2N C 1) nonlinear equations in Eq. (17) are solved by the Newton–Raphson
method. In Luo [10], the linearized equation at the equilibrium point y� D (z� ,0)T is
given by

Py D Df
�
y��y (18)

where

Df
�
y�� D @f .y/ =@yjy� D

�
0.2NC1/�.2NC1/ I.2NC1/�.2NC1/

G.2NC1/�.2NC1/ H.2NC1/�.2NC1/

�
(19)

and

G D @g
@z

D �
G.0/;G.c/;G.s/

�T
(20)
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G.0/ D .G
.0/
0 ; G

.0/
1 ; � � � ; G.0/

2N /;

G.c/ D .G.c/
1 ;G

.c/
2 ; � � � ;G.c/

N /
T
;

G.s/ D .G.s/
1 ;G

.s/
2 ; � � � ;G.s/

N /
T

(21)

for N D 1, 2, � � � 1 with

G.c/

k D .G
.c/

k0 ; G
.c/

k1 ; � � � ; G.c/

k.2N//;

G.s/

k D .G
.s/

k0 ; G
.s/

k1 ; � � � ; G.s/

k.2N//
(22)

for k D 1, 2, � � � N. The corresponding components are

G
.0/
r D �˛ır0 � ˇg.0/2r ;

G
.c/

kr D .k�/2ırk � ˛ırk � ık�ırkCN � ˇg.c/2kr ;
G
.s/

kr D .k�/2ırkCN C ık�ırk � ˛ırkCN � ˇg.s/2kr
(23)

where

g
.0/
2r D 2a0ı

r
0 C bkı

r
k C ckı

r
kCN (24)

g
.c/

2kr D 2bkı
0
r C 2a0ı

r
k C

NX
iD1

NX
jD1

Œbj .ı
k
j�i C ıki�j C ıkiCj /ıri

C cj .ı
k
j�i C ıki�j � ıkiCj /ıriCN �

(25)

g
.s/

2kr D 2ckı
r
0 C 2a0ı

r
kCN C

NX
iD1

NX
jD1

cj .ı
k
iCj C ıkj�i � ıki�j /ıri

C bi .ı
k
iCj C ıkj�i � ıki�j /ırjCN

(26)

for r D 0, 1, � � � 2N.

H D @g
@z1

D �
H.0/;H.c/;H.s/

�T
(27)

where

H.0/ D .H
.0/
0 ;H

.0/
1 ; � � � ;H .0/

2N /;

H.c/ D .H.c/
1 ;H

.c/
2 ; � � � ;H.c/

N /
T
;

H.s/ D .H.s/
1 ;H

.s/
2 ; � � � ;H.s/

N /
T

(28)

for N D 1, 2, � � � 1, with
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H.c/

k D .H
.c/

k0 ;H
.c/

k1 ; � � � ;H .c/

k.2N//;

H.s/

k D .H
.s/

k0 ;H
.s/

k1 ; � � � ;H .s/

k.2N//
(29)

for k D 1, 2, � � � N. The corresponding components are

H
.0/
r D �ıır0;

H
.c/

kr D �2k�ırkCN � ıırk;

H
.s/

kr D 2k�ırk � ıırkCN

(30)

for r D 0, 1, � � � , 2N.
The corresponding eigenvalues are determined by

ˇ̌
Df

�
y�� � �I2.2NC1/�2.2NC1/

ˇ̌ D 0: (31)

From Luo [10], the eigenvalues of Df(y�) are classified as

�
n1; n2; n3

ˇ̌
n4; n5; n6

�
(32)

where n1 is the total number of negative real eigenvalues, n2 is the total number
of positive real eigenvalues, n3 is the total number of zero eigenvalues; n4 is the
total pair number of complex eigenvalues with negative parts, n5 is the total pair
number of complex eigenvalues with positive real parts, n6 is the total pair number
of complex eigenvalues with zero real parts. If Re(�k)< 0 (k D 1, 2, � � � , 2(2N C 1)),
the approximate steady-state solution y� with truncation of cos(N�t) and sin(N�t)
is stable. If Re(�k)> 0 (k 2 f1, 2, � � � , 2(2N C 1)g), the truncated approximate steady-
state solution is unstable. The corresponding boundary between the stable and
unstable solution is given by the saddle-node bifurcation and Hopf bifurcation.

3 Analytic Predictions

The exact steady-state solutions of periodic motions in the nonlinear oscillator can
be obtained through the infinite harmonic terms. Unfortunately, it is impossible
to compute the exact solution of periodic motions in such oscillator. Thus, one
uses the truncated solutions to obtain the approximate solutions of the nonlinear
oscillator with enough precision (AN � "), where the number N is the total number
of harmonic terms used in the approximate solution and " is prescribed the precision
(i.e., "D 10� 8). If more terms are used in the Fourier series solution of periodic
motions, the better prediction of the periodic motions can be obtained. However,
the computational workload will dramatically increase. It is very important that
the suitable precision " is selected. The eigenvalue analysis of such approximate,
analytical solutions can be done through dynamics of time-varying coefficients in
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the Fourier series expression of periodic motion, and the stability and bifurcation
analysis can be completed. The equilibrium solution of Eq. (12) can be obtained
from Eq. (17) by using Newton–Raphson method, and the stability analysis will be
discussed.

The curves of amplitude varying with excitation frequency� are illustrated. The
harmonic amplitude and phase are defined by

Ak 	
q
b2k C c2k and 'k D arctan

ck

bk
: (33)

The corresponding solution in Eq. (4) becomes

x�.t/ D a0 C
NX
kD1

Ak cos .k�t � 'k/: (34)

Consider system parameters as

ı D 0:05; ˛ D 10:0; ˇ D 5:0;Q0 D 4:5 (35)

Without losing generality, as in Luo and Yu [11], the analytical approximate
solutions for periodic motion based on two harmonic terms (HB2) are presented
first. The constant term a0, the first and second harmonic term amplitudes A1 and A2

are presented in Fig. 1a–c, respectively. In Fig. 1, the stable and unstable solutions of
period-1 motion for the quadratic nonlinear oscillator with excitation are predicted
analytically. The period-1 motion possesses four branches of solutions for different
frequency range. The stability and bifurcation analysis are completed. For the HB2
analytical solutions, eigenvalue analysis provides the possible conditions of stability
and bifurcation. The acronyms “HB”, “SN,” and “UHB” are used to represent
the Hopf bifurcation, saddle-node bifurcation, and unstable Hopf bifurcation,
respectively. Solid and dashed curves represent the stable and unstable period-1
motions, respectively. The corresponding phase angles versus excitation frequency
are presented in Fig. 2a–c. The corresponding stability and bifurcation points
are labeled. To consider effects of excitation amplitude, Q0 D 1.5, 2.5, 3.5, 4.0, 5.0
are employed to show the response harmonic frequency–amplitude curves. The
stability range for period-1 motions can be observed clearly in Fig. 3a–c. The red
dashed curves and the black solid curves are unstable and stable periodic solutions,
respectively. The arrow direction represents how the curves changes with excitation
frequency. In Fig. 3b, for the second harmonic term, A2< 10� 3 for �> 6. For
�< 6, more harmonic terms should be considered to get a good prediction of
period-1 motion. Thus, the 30 harmonic terms (HB30) for period-1 motion will
be considered.

As in Luo and Yu [12], the analytical prediction of period-1 motions based
on 30 harmonic terms (HB30) is presented in Fig. 4a–f. In Fig. 4a, the constant
term of period-1 motion is presented. For �< 2.0, there are many branches of
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period-1 motions and bifurcations, and they have similar structures. The unstable
Hopf bifurcation is observed, which is also called the subcritical Hopf bifurcation.
The stable Hopf bifurcation is also called the supercritical Hopf bifurcation. For
�> 1.0, the curves of constant terms varying excitation frequency is very simple. In
Fig. 4b, the harmonic amplitude A1 versus excitation frequency� is presented, and
the frequency-amplitude curves for�> 1.0 are very clearly presented. However, for
�< 2.0, many branches of period-1 solutions are crowded, but the similar structures
for each branch of period-1 motion are observed. In Fig. 4c, the frequency-amplitude
curve for harmonic amplitude A2 is presented. For �> 5.0, A2< 3 � 10� 3 from the
zoomed window and for�2 (2.0,5.0), A2 2 (10� 4,0.3) is observed. For�2 (0,2.0),
A2�100 with many branches of period-1 motion and they become more crowded.
The aforementioned three plots are based on linear scale. Once the amplitude
quantity level changes with the power laws, it is very difficult to present the changes
of the amplitude with excitation frequency. For�2 (0,2.0), the harmonic amplitudes
in the frequency-amplitude curves of period-1 motions are more crowded. Thus,
the common logarithm scale is used to plot the harmonic amplitude. The overview
of amplitude quantity levels can clearly be observed. In Fig. 4d, the harmonic
amplitude A3 is plotted through the common logarithm scale because quantity level
changes too big for �2 (0.0,7.0). The braches of period-1 motions in �2 (0,2.0)
are obviously presented and the zoomed window for �2 (2.0,7.0) shows that
the harmonic amplitude quantity level changes very clear with A3 2 (10� 7,10� 2).
Similarly, the harmonic amplitude A4 varying with excitation frequency is presented
in Fig. 4e, and for �2 (2.0,7.0) the harmonic amplitude A4 lies in the range
of A4 2 (10� 10,10� 3). For �< 2, the harmonic amplitude A4 is A4 2 (10� 4,100).
Due to the limitation of the number of pages, the harmonic amplitude A30 for
�2 (0.0,1.0) is presented in Fig. 4f with A20 2 (10� 15,100) and for �> 1.0, the
harmonic amplitude A30< 10� 15 can be ignored. For excitation frequency close
to zero, more harmonic terms should be included to the analytical expression
in the Fourier series solution of period-1 motion. To obtain the entire picture of
period-1 motion, the parameter map (�,Q0) is presented in Fig. 5a, b. For �< 2.5,
the parameter map is zoomed, which shows the similar bifurcation and stability
patterns. The solid and dashed curves are for stable and unstable Hopf bifurcations,
respectively. The dash–dotted curve is for the saddle-node bifurcation. The notation
SmUn (m, n D 0, 1, 2, � � � ) represents m stable solutions and m unstable solutions for
period-1 motions in the corresponding region.

4 Illustrations

To illustrate the approximate analytical solutions of periodic motion in such
a quadratic nonlinear oscillator, numerical simulations are carried out by the
symplectic scheme. The initial conditions for numerical simulation are computed
from the approximate analytical solutions. The numerical results are depicted by



132 A.C.J. Luo and B. Yu

Excitation Frequency, 

Co
ns

ta
nt

 T
er

m
, a

0

-2.0

-1.5

-1.0

-0.5

0.0
HBUHB

HB
HB

UHB

HB SN

0.0 0.5 1.0
-2.0

-1.0

0.0

...

a

b

c
Excitation Frequency, 

H
ar

m
on

ic
 A

m
pl

itu
de

, A
1

0.0

0.4

0.8

1.2

1.6

HB

UHB HB

HB

UHB
HB

SN

Excitation Frequency, 

0.0 2.0 4.0 6.0

0.0 2.0 4.0 6.0

0.0 2.0 4.0 6.0

H
ar

m
on

ic
 A

m
pl

itu
de

, A
2

0.0

0.4

0.8

1.2

1.6

5.0 5.5 6.0 6.5 7.0
0.000

0.001

0.002

UHB
HB

HB

HB

UHB
HB

SN

Ω

Ω

Ω

Fig. 4 Analytical prediction of period-1 motions based on 30 harmonic terms (HB30): (a) a0,
(b)–(f) Ak (k D 1, 2, � � � , 4, 30). Parameters (ıD 0.05, ˛D 10.0, ˇD 5.0, Q0 D 4.5)



Period-1 Motions in a Quadratic Nonlinear Oscillator 133

Excitation Frequency, 
0.0 0.5 1.0 1.5 2.0

H
ar

m
on

ic
 A

m
pl

itu
de

, A
3

0.001

0.01

0.1

1

2.0 4.0 6.0
1e-7

1e-6

1e-5

1e-4

1e-3

1e-2
HB HB

UHB

UHB
SN

SN

HB

HB

SN

HB

HB

d

e

f
Excitation Frequency, 

0.0 0.5 1.0 1.5 2.0

H
ar

m
on

ic
 A

m
pl

itu
de

, A
4

0.0001

0.001

0.01

0.1

1

2.0 4.0 6.0
1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

HB

HB

UHB

HB

SNSN

HB

HB

HBSN

UHB

Excitation Frequency, 
0.0 0.2 0.4 0.6 0.8 1.0

H
ar

m
on

ic
 A

m
pl

itu
de

, A
30

1.0e-15
1.0e-14
1.0e-13
1.0e-12
1.0e-11
1.0e-10

1.0e-9
1.0e-8
1.0e-7
1.0e-6
1.0e-5
1.0e-4
1.0e-3
1.0e-2
1.0e-1
1.0e+0

HB

SN

SNSN

HB

HB

Ω

Ω

Ω

Fig. 4 (continued)



134 A.C.J. Luo and B. Yu

Excitation Frequency, 
0.0 2.0 4.0 6.0 8.0

Ex
ci

ta
tio

n 
A

m
pl

itu
td

e,
 Q

0

0.0

3.0

6.0

9.0

12.0

U2

SU

SU3 S2U2

U4

HBUHBHB

SNHB
...

Excitation Frequency, 

0.0 0.5 1.0 1.5 2.0 2.5

Ex
ci

ta
tio

n 
A

m
pl

itu
td

e,
 Q

0

0.0

2.0

4.0

6.0

8.0

S2U4

S2U6

SU3

SU5SU7

U2U4

U6

U8

. . .

S2U2

U10

SNHB

Ω

Ω

a

b

Fig. 5 Analytical parameter map for period-1 motions based on 30 harmonic terms (HB30): (a)
overview, (b) zoomed view. Parameters (ıD 0.05, ˛D 10.0, ˇD 5.0)

solid curves, but the analytical solutions are given by red circular symbols. The big
filled circular symbol is the initial conditions.

As in Luo and Yu [12], the displacement, velocity, trajectory, and amplitude
spectrum of stable period-1 motion are presented in Fig. 6 for �D 5.8 with initial
conditions (x0 � � 0.197945, Px0 � 0:013202). This analytical solution is based on
four harmonic terms (HB4) in the Fourier series solution of period-1 motion. In
Fig. 6a, b, for over 40 periods, the analytical and numerical solutions match very
well. In Fig. 6c, analytical and numerical trajectories match very well. In Fig. 6d,
the amplitude spectrum versus the harmonic order is presented. a0 � � 9.032271e -
3, A1 � 0.189645, A2 � 7.213358e - 4, A3 � 2.335642e - 6, A4 � 6.654057e - 9. The
second harmonic term (A2�10� 3) and higher order harmonic terms are very small
and ignorable. Such solution can be easily obtained even if the perturbation method
or traditional harmonic balance is used.
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Table 1 Input data for numerical illustrations (ıD 0.05, ˛D 10.0, ˇD 5.0,
Q0 D 4.5)

Figure number � Initial condition x0; Px0 Type Harmonics terms

Figure 7a, b 3.6 (�1.801123, 0.092939) P-1 HB7 (stable)
Figure 7c, d 1.101 (0.155338, �2.175708e�3) P-1 HB14 (stable)
Figure 7e, f 0.98 (�0.245784, 0.098412) P-1 HB21 (stable)
Figure 8a, b 0.735 (0.815054, �0.196194) P-1 HB21 (stable)
Figure 8c, d 0.6 (0.137234, 0.181059) P-1 HB21 (stable)
Figure 8e, f 0.477 (0.781392, �0.2295502) P-1 HB32 (stable)

Since there are many branches of period-1 motions, only the trajectory
and amplitude spectrums are plotted to look into regularity and complexity of
period-1 motions. From the bifurcation trees, period-2 and period-4 motions
will be presented through trajectories and amplitude spectrums. The input
data for numerical simulations are presented in Table 1. In Fig. 7a–f, the
trajectories and harmonic amplitude spectrums of period-1 motions are presented
for �D 3.6, 1.101, 0.98. In Fig. 7a, b, the seven harmonic terms (HB7) are
used in the analytical solution of period-1 motion for �D 3.6. The analytical
and numerical simulations match very well with a cycle. For this periodic
motion, the second order harmonic term becomes more important except the
first harmonic term. The harmonic amplitude distributions are a0 D � 0.2280,
A1�100, A2�5 � 10� 2, A3�2 � 10� 3, A4�7 � 10� 5, A5�2 � 10� 6, A6�8 � 10� 8

and A7�2.5 � 10� 9. The second and third harmonic terms will have relatively
important contributions on the analytical solution of such a period-1 motion. In
Fig. 7c, d, the 14 harmonic terms (HB14) are employed in the analytical solution
of period-1 motion for �D 1.101. The analytical and numerical simulations
match very well with two cycles, which is on the second solution branch of
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Fig. 7 Phase plane and amplitude spectrums of stable period-1 motions, (a, b): �D 3.6 with
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Parameters (ıD 0.05, ˛D 10.0, ˇD 5.0, Q0 D 4.5)
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period-1 motion. The harmonic amplitude distributions are a0 � � 0.106346,
A1�6 � 10� 1, A2�7.6 � 10� 2, A3�2 � 10� 1, A4 6 � 10� 2, A5�4 � 10� 3,
A6�3 � 10� 3, A7�1.4 � 10� 3, A8�2.2 � 10� 4, A9�2.4 � 10� 5, A10�2.2 � 10� 5,
A11�5.3 � 10� 6, A12�2.9 � 10� 7, A13�2.5 � 10� 7, A14�9.3 � 10� 8. In Fig. 7e,
f, the 21 harmonic terms (HB21) are used in the analytical solution of period-1
motion for �D 0.98. The analytical and numerical simulations match very well
with three cycles, which is still on the second solution branch of period-1 motions.
The harmonic amplitude distributions are a0 � � 0.178142, A1,3�5 � 10� 1,
A2�1.8 � 10� 1, A4�2.2 � 10� 1, A5�6 � 10� 2, A6,7�1.5 � 10� 2, A8�6.3 � 10� 3,
A9�8.3 � 10� 4, A10�4.5 � 10� 4, A11�3.5 � 10� 4, A12�1.1 � 10� 4, A13�8 � 10� 6,
A14�1.2 � 10� 5, A15�6.6 � 10� 6, A17�1.7 � 10� 8, A18�2.5 � 10� 7, A19�1.1 � 10� 7,
A20�2.3 � 10� 8, A21�3.8 � 10� 9. From the amplitude distribution, it is observed
that many higher order harmonic terms contribute significantly on the period-1
motion.

To further look into the complexity of period-1 motion, in Fig. 8a–f, the
trajectories and harmonic amplitude spectrums of period-1 motions are presented
for �D 0.735, 0.6, 0.477. The three period-1 motions are on three different
branches of period-1 motions. The analytical and numerical solutions match
very well for the three period-1 motions. The trajectory of period-1 motion
with 21 harmonic terms (HB21) in the Fourier series solution for �D 0.735
has four cycles in Fig. 8a. The main amplitude distributions for �D 0.735 in
Fig. 8b are a0 � � 0.141771, A1�5.5 � 10� 1, A2�4.9 � 10� 2, A3�2.3 � 10� 1,
A4�3.3 � 10� 1, A5�2.3 � 10� 1, A6�6.7 � 10� 2, A7�1.0 � 10� 2. For very
higher order harmonic terms, A17�5.1 � 10� 7, A18�2.6 � 10� 6, A19�3.9 � 10� 6,
A20�1.9 � 10� 6, A21�4.1 � 10� 7. In Fig. 8c, the trajectory of period-1 motion
with 21 harmonic terms (HB21) in the Fourier series motion with 21 harmonic
terms solution for �D 0.6 experiences five cycles. In Fig. 8d, the main amplitude
distributions for �D 0.6 are a0 � � 0.095182, A1�5.4 � 10� 1, A2�7.5 � 10� 2,
A3�4.9 � 10� 2, A4�1.4 � 10� 1, A5,6�1.5 � 10� 1, A7�4.2 � 10� 2. For higher
order harmonic terms, A16�1.6 � 10� 5, A17�2.9 � 10� 5, A18�2.4 � 10� 5,
A19�8.5 � 10� 6, A20�2.1 � 10� 6, A21�9.6 � 10� 7. In Fig. 8e, the trajectory of
period-1 motion with 32 harmonic terms (HB32) in the Fourier solution for
�D 0.477 possesses six cycles. In Fig. 8f, the main amplitude distributions for
�D 0.477 are a0 � � 0.075150, A1�5.8 � 10� 1, A2�9.8 � 10� 2, A3�1.0 � 10� 1,
A4�1.9 � 10� 1, A5�2.4 � 10� 1, A6�7.3 � 10� 2, A7�2.8 � 10� 1, A8�1.6 � 10� 1,
A9�1.7 � 10� 2. For the zoomed window with higher order harmonic ampli-
tudes, A26�2 � 10� 6, A27�3.8 � 10� 6, A28�9.1 � 10� 5, A29�2.5 � 10� 6,
A30�1.8 � 10� 6, A31�9.1 � 10� 7, A32�4.8 � 10� 7. The complexity of period-1
motions is strongly dependent on the harmonic amplitude contributions. With
reduction of excitation frequency, more harmonic terms should be included in the
Fourier series solution of period-1 motion.
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Fig. 8 Phase plane and amplitude spectrums of stable period-1 motions for lower frequency: (a, b)
�D 0.735 with (x0 � 0.815054, Px0 � �0:196194; HB21). (c, d): �D 0.6 with (x0 � 0.137234,
Px0 � 0:181059; HB21), (e, f): �D 0.477 with (x0 � 0.781392, Px0 � �0:229502; HB32).
Parameters (ıD 0.05, ˛D 10.0, ˇD 5.0, Q0 D 4.5)
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Map-Based Approach to Problems of Spiking
Neural Network Dynamics

Oleg V. Maslennikov and Vladimir I. Nekorkin

1 Introduction

Mathematical modeling of phenomena in living systems by using discrete-time
systems has a long history. In particular, in the 1940s N. Wiener and A. Rosenblueth
developed a cellular automaton system for modeling the propagation of excitation
pulses in the cardiac tissue. Cellular automata are regular lattices of elements
(cells), each having a finite number of specific states. These states are updated
synchronously at discrete time moments, according to some fixed rule. Recently, a
new class of discrete-time systems has aroused considerable interest for studying
cooperative processes in large-scale neural networks: systems of the coupled
nonlinear maps. The state of a map varies at discrete time moments as a cellular
automaton, but unlike the latter, takes continuous values. Map-based models hold
certain advantages over continuous-time models, i.e. differential equation systems.
For example, for reproducing oscillatory properties in continuous-time systems one
needs at least two dimensions, and at least three dimensions for chaotic behavior. In
discrete time both types of dynamics can be described even in a one-dimensional
map. Such a benefit is especially important when modeling complex activity
regimes of individual neurons as well as large-scale neural circuits composed of
various structural units interacting with each other. For example, to simulate in
continuous time the regime of chaotic spike-bursting oscillations, one of the key
neural behaviors, one needs to have at least a three-dimensional system of nonlinear
differential equations. On the other hand, there are discrete-time two-dimensional
systems [1, 2] adequately reproducing this oscillatory activity as well as many
other dynamical regimes. For example, the model of Chialvo [3] allows to simulate,
among other things, the so-called normal and supernormal excitability. The model

O.V. Maslennikov • V.I. Nekorkin (�)
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
e-mail: vnekorkin@neuron.appl.sci-nnov.ru

V. Afraimovich et al. (eds.), Nonlinear Dynamics and Complexity,
Nonlinear Systems and Complexity 8, DOI 10.1007/978-3-319-02353-3__5,
© Springer International Publishing Switzerland 2014

143

mailto:vnekorkin@neuron.appl.sci-nnov.ru


144 O.V. Maslennikov and V.I. Nekorkin

of Rulkov [4, 5] has several modifications, one of which is adjusted to simulate
different spiking and bursting oscillatory regimes, the other can generate the so-
called sub-threshold oscillations, i.e., small-amplitude oscillations below a threshold
of excitability. Here we propose the authors’ model [6–9] of neural activity in the
form of a two-dimensional map and describe some activity modes which it can
reproduce. We show that the model is fairly universal and generates many regimes of
neuronal electrical activity. Next, we present the results of modeling the dynamics of
a complex neural structure, the olivo-cerebellar system (OCS) of vertebrates, using
our basic discrete-time model of neural activity.

2 Discrete-Time Model of Neural Activity

Consider the following two-dimensional map [6]:

xnC1 D xn C F .xn/ � ˇH .xn � d/ � yn; (1a)

ynC1 D yn C " .xn � J / : (1b)

Here the variable x describes qualitatively the membrane potential dynamics of
a nerve cell, y is responsible for the total effect of all ionic currents (the so-called
recovery variable). The positive parameter " determines a time scale of the recovery
variable, the parameters ˇ, d, J control the shape of a signal generated. Note that the
model is based on a discrete version of the FitzHugh–Nagumo model, well known
in neurodynamics, with a cubic nonlinearity F(x) and the Heaviside step function
H(x) additionally added:

F.x/ D x .x � a/ .1 � x/ ; H.x/ D
�
1; x � 0;

0; x < 0:
(2)

The nullclines [the curve y D F(x) �ˇH(x � d) and the line x D J] (1) relates to
the system of (1a) and (1b). (x, y) are shown qualitatively in Fig. 1.

2.1 Regular Regimes of Neural Activity

One of the basic properties of a neuron in a resting state is its ability to generate an
action potential, when being stimulated by a sufficiently strong pulse of the injected
current (the property of excitability). The stable equilibrium (fixed point) O in the
system (1) corresponds to a resting state of a neuron. There are two thresholds on
the phase plane, actually determined by the unstable invariant curves W1

u and W2
u

(more precisely, by thin layers composed of slow trajectories localized in the vicinity
of these invariant curves), where W u

1 D.x; y/ W yDF.x/C:::; Jmin<x<d;W u
2 D

.x; y/ W y D F.x/ � ˇ C :::; d < x < Jmax . The system does not fire a spike in
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Fig. 1 The nullclines of the map (1)

response to weak stimuli which are insufficient for overcoming the first threshold
(W1

u), only a small-amplitude (sub-threshold) signal is generated [Fig. 2a, b (i)].
Stronger stimuli sufficient for overcoming the second threshold (W2

u) result in a
large-amplitude trajectory, entering the basin of attraction of the stable invariant
curve W2

s, where W s
2 D .x; y/ W y D F.x/ � ˇ C :::; x > Jmax , and terminating

in the stable fixed point O. Such behavior on the phase plane corresponds to the
generation of an action potential (or spike) [Fig. 2a, b (ii)].

Another important regime observed in the system is sub-threshold oscillations. A
stable closed invariant curve Cth on the phase plane (Fig. 2c), emerged as a result of
the Neimark–Sacker bifurcation when the fixed point loses its stability, corresponds
to them. These quasi-sinusoidal oscillations (Fig. 2d) below the threshold of
excitation are of great importance, in particular, in functioning of the OCS [10],
which will be discussed further.

The next regular neuronal mode, reproduced in the system, is periodic spike
oscillations. It is shown [6] that one of the conditions for their appearance is the
relative smallness of the parameter ˇ. As this takes place, a new type of trajectories,
which move between the layers of slow motions, localized in the vicinity of the
two stable curves W1

s ŒW s
1 D .x; y/ W y D F.x/C :::; x < Jmin� and W2

s, without
changing their direction around the discontinuity line x D d, becomes possible. As
a result, a stable closed invariant curve Csp (Fig. 2e) appears on the phase plane
corresponding to the periodic spike oscillations (Fig. 2f).

It is shown in [10] that another type of spiking activity is observed in the model
(1) in addition to the preceding one. In this case, a discontinuous attractor Asp

emerges on the phase plane (Fig. 2g) which determines such sharp spike oscillations
(Fig. 2h).

2.2 Chaotic Regimes of Neural Activity

It is found in [6] that there can be different chaotic attractors in the system (1).
One of these attractors, Ath, is shown in Fig. 3a, and the corresponding mode of
neural activity in Fig. 3b. In this mode, action potentials are generated alternating
with sub-threshold oscillations. The dynamical mechanism of these oscillations
lies in the fact that the invariant curve W2

u separates trajectories of (1) into two
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Fig. 2 Phase portraits (the left column) and corresponding waveforms (the right column) of the
regular regimes of neural activity in the model (1): (a, b) excitable regime; (c, d) subthreshold
oscillations; (e, f) periodic spike oscillations; (g, h) another type of spiking.

streams in the vicinity of the discontinuity line x D d. The first stream consists of
trajectories in the vicinity of x D d. The second stream is formed by trajectories,
overcoming the second threshold and reaching the neighborhood of W2

s. As a result
of this separation, trajectories circulate changing chaotically their direction from
one stream to another, forming the attractor Ath.

One of the main important dynamical regimes, observed in various neuronal
structures, is chaotic spike-bursting oscillations. This regime with different charac-
teristics is reproduced in a wide range of parameters. The relaxation chaotic attractor
Asb on the phase plane (Fig. 3c) determines this mode; the corresponding waveform
is shown in Fig. 3d. Due to the importance of chaotic spike-bursting oscillations we
focus on the dynamical mechanism for their appearance.
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Fig. 3 Phase portraits (the left column) and corresponding waveforms (the right column) of the
chaotic regimes of neural activity in the model (1): (a, b) alternating spiking and subthreshold
activity; (c, d) spike-burting oscillations.

2.3 Spike-Bursting Oscillations

Chaotic spike-bursting oscillations can be divided into two phases: fast and slow
(see Fig. 3c, d). Consider the formation of these two-scale oscillations. First, let
"D 0, and therefore, the variable y D y0 D const and plays the role of a parameter in
(1a). Depending on the value of y0, the map of fast motions

xnC1 D xn C F .xn/ � ˇH .xn � d/� y0 (3)

can exhibit both regular and chaotic dynamics (Fig. 4). In case of the former, the
only attractor of the map (3) is the stable fixed point xs. The quasi-static decrease of
the parameter y0 causes that the equilibrium xs merges with the unstable fixed point
xu at some bifurcation value and disappears (the tangent or saddle-node bifurcation
occurs).

In the case of chaotic dynamics, the Eq. (3) behaves like a Lorentz-type map
and has an invariant interval containing a chaotic attractor. The quasi-static increase
of the parameter y0 causes that this attractor undergoes internal bifurcations, and
finally, at some value y0 D ycr

0, a boundary crisis [11] occurs. One of the attractor’s
boundaries merges with an unstable fixed point xu, and the attractor collapses.

Now let "¤ 0. In this case, the family of the stable fixed points of (3) forms the
stable invariant curve W1

s on the phase plane (x, y) in the region x< J. The family of
one-dimensional chaotic attractors forms a transient chaotic set in the region x< J.
Suppose that initially a trajectory starts in the neighborhood of W1

s. The variable
y decreases slowly along this curve, and the variable x is supported in the quasi-
equilibrium state according to the equations
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Fig. 4 Dynamics of the map (1) for different values y0 corresponding to the existence of (a) a
unique stable fixed point; (b) two fixed points, stable and unstable; (c) two fixed points and a
chaotic attractor; (d) a unique chaotic attractor.

Fig. 5 Trajectories on the plane (x, y) in the stationary case (black) and a typical trajectory in the
dynamical case when the variable y increases slowly in time (gray)

y D y C " .x � J / ; y D F.x/: (4)

This phase forms a slow regular area of the two-dimensional chaotic attractor,
corresponding to the passive phase of spike-bursting oscillations.

In the vicinity of somevalue of y, when the stable W1
s and unstable W1

u curves
merge, the trajectory leaves the layer of slow motions and enters the basin of
attraction of the transient chaotic set. Since the trajectory is now in the region x> J,
then the variable y is slowly increasing. Iterating the map (1a) numerically, we found
that chaotic oscillations persist after the value y0 D ycr

0, corresponding to the crisis
of the chaotic attractor in the static case "D 0 (Fig. 5). The effect of delay of the
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Fig. 6 Histograms of (a) the coordinates of escaping from the chaotic region and (b) time delays.
The parameter "D 10�5, the critical value ycr

0 � 0.02

disappearance of chaotic oscillations takes place.1 This phase of motions forms the
fast chaotic area of the attractor, which corresponds to the active phase or the phase
of depolarization of spike-bursting oscillations.

We dwell on the effect of the delay of chaotic motion disappearance.
Consider an ensemble of trajectories with different initial conditions at y< ycr

0,
taken within the invariant interval, the boundaries of which are defined by the values
b(y0) and c(y0) (see Fig. 5). Let us study how the trajectories leave the region of
chaotic motions when y slowly increases. When y> ycr

0 the criterion of escaping
from the chaotic area is the fact that a trajectory is below the curve W1

u (Fig. 5).
Since the trajectories of chaotic attractors are characterized by high sensitivity to
initial conditions, then they escape from the region of chaotic motions at different
values ydelay of the slow variable y. It is clear that the time delay Tdelay for ceasing of
chaotic motions depends on the initial conditions.

Figure 6 shows the histograms of the coordinates of escaping and time delays
for N D 2.5 � 105 initial conditions. The time delay is measured starting from the
intersection of the value y D ycr

0 by trajectories. The histograms show that these
quantities are distributed in a random manner, but these are the most likely values
(different from ycr

0 for ydelay and different from zero for Tdelay). Also, the time delay
can be characterized by the curve showing how the number of trajectories in the
region of chaotic motions decreases in time.

Figure 7 shows the logarithm of this number versus time, having a quadratic
shape. Note that for most of the transient chaotic sets described in the literature
[11], the logarithm of the number of phase points in the chaotic region (or a similar
characteristic—the logarithm of the survival probability) decreases in time linearly.
In this case the most probable value of the time delay in the chaotic region is zero.
In other words, for these sets there is no such effect as the delay of chaotic motion

1Note that in the theory of dynamic bifurcations [12], i.e., bifurcations occurring during a slow
drift of the control parameters, the effect of stability loss delay is now studied only for the case of
regular attractors: equilibrium states and limit cycles.
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Fig. 7 The logarithm of the
number of trajectories in the
chaotic region as a function
of time, when y varies slowly
with the constant rate
"D 10�5. The initial moment
n D 0 is taken at y D ycr

0. The
plot is well approximated by
the curve ln N(n) D ln
N0 – ›n2

disappearance. On the contrary, in (1) this effect determines the duration of the
active phases of spike-bursting oscillations (see Fig. 3d) fluctuating around some
mean, depending on the average time delay.

3 Dynamics of the OCS

The formation of oscillatory structures (patterns), namely, neural groups that
synchronously generate action potentials against the background of a relative rest
of the neurons outside the group, is one of the most important forms of collective
electrical activity of neural networks. Such forms of activity have been detected
experimentally in different neural structures, including the structures in visual [13]
and somatosensory [14] cortex, in the temporal lobe [15], in the inferior olives [16],
etc. However, despite the significant progress and success in modern experimental
neurophysiological studies of neural systems, the results achieved with the help
of these studies still remain limited. For now, the research results do not give a
complete understanding of the operation of large-scale neural networks and circuits
requiring simultaneous record of the activity of a very large number of neurons
which often belong to different structural units.

In particular, the mechanisms of the appearance and disappearance of the
electrical activity patterns in large neural systems composed of several interacting
structural units, i.e., neural subsystems, each being formed by cells of a certain
type, remain unclear in many cases. Modeling can be one of the possible ways of
identifying such mechanisms. Here we show some results of modeling the OCS,
which is a special part of brain in vertebrates. A large number of experimental
data point out the important role of this system in the implementation of the motor
function of the body, i.e., control of motor systems, adaptation of motion under
varied external conditions, and motor learning [17, 18]. Neurons of the OCS are
combined into highly ordered groups, each playing its own functional role. The
exclusive importance of this system stimulates its study by researchers of different
directions [18–27] and modeling of its properties for the creation of artificial
neuromorphic structures simulating the capabilities of the biological prototype.



Map-Based Approach to Problems of Spiking Neural Network Dynamics 151

Fig. 8 Structure of the
discrete model of the
olivo-cerebellar system. 1 is
the layer of inferior olive (IO)
neurons, which is the main
layer, 2 is the layer of
Purkinje cells (PC), and 3 is
the layer of cerebellar nuclei
(CN) neurons

In our research we rely on the concept which R. Llinas, a neurophysiologist from
the Medical School of the University of New York, proposed (see, in particular
[24]) for functioning of the OCS. A decisive role in this concept is assigned to
the processes of the formation and destruction of the electrical activity clusters
in this neural network. Note that the previous works [28–31] utilized continuous
models of structural units of the OCS, which were based, with varying degrees of
completeness, on the Hodgkin–Huxley formalism. Here we discuss the structure
and dynamics of the OCS discrete-time model. It is important to mention that in our
model, all kinds of the OCS neurons, despite their different functional properties,
have been described using the same system of nonlinear maps and only choosing
appropriately the parameters of this model.

Our model consists of three layers (Fig. 8). The first one is the layer of inferior
olive (IO) neurons, which we will call the main layer since its dynamics is output
in our model. The second layer consists of Purkinje cells (PC). The third layer
comprises the cerebellar nuclei (CN) neurons. The neighboring elements of the main
layer are coupled with each other via electrical synapses having the property of
plasticity. Each inferior olive neuron with indexes i, j has an axon, the so-called
climbing fiber branching in two (see Fig. 8). Both axonal branches (collaterals)
terminate with excitatory synapses, one on a Purkinje neuron with the number (i, j)
and another on the nuclei neuron (i, j). Each Purkinje cell (i, j) has an axon ending
with an inhibitory synapse on the corresponding nuclei neuron with indexes i, j.
Thus, each nuclei neuron receives signals of different types via its synaptic inputs,
namely, excitatory from the inferior olive neurons and inhibitory from the Purkinje
cell. In turn, each nuclei neuron (i, j) has an axon with inhibitory synaptic ends
which suppress the electrical couplings of the corresponding inferior olive neuron
(i, j) with the neighboring elements of the main layer, i.e. with the neurons (i � 1, j),
(i C 1, j), (i, j � 1), and (i, j C 1).

The complete system of maps describing the dynamics of the models looks as
follows:

xIOi D xIOi C F
�
xIOi

� � 0:9H �
xIOi � 0:85�� yIOi C I IOi ; i D 1::N 2; (5)

yIOi D yIOi C 0:005
�
xIOi � 0:049

�
; i D 1::N 2; (6)
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I IOi D
mX
jD1

gIOi;j



xIOj � xIOi

�
; i D 1::N 2;m D 4; (7)

gIOi;j D �gIOi;j C ı
�
1 �H

�
vi C vj � vthresh

�	
; i; j D 1::N 2; (8)

vi D xFi ; the last element of the CN -axon; (9)

xFi D xFi C F
�
xFi
� � yFi C IFi ; i D 1::7N 2; (10)

yFi D yFi C 0:011
�
xIOi � 0:04� ; i D 1::7N 2; (11)

IFi D 0:15

mX
jD1



xFj � xFi

�
; i D 1::7N 2;m D 1; 2; or 3; (12)

xPCi D xPCi C F
�
xPCi

� � 0:5H .x � 0:6/� yPCi C IPCi ; i D 1::N 2; (13)

yPCi D yPCi C 0:001
�
xPCi � 0:045

�
; i D 1::N 2; (14)

IPCi D �0:3H


x
PC;pre
i � 0:48

� �
xPCi C 0:6

�
; i D 1::N 2; (15)

x
PC;pre
i D xFi ; the last element of the IO � axon; (16)

xFi D xFi C F
�
xFi
� � yFi C IFi ; i D 1::15N 2; (17)

yFi D yFi C 0:011
�
xIOi � 0:04

�
; i D 1::15N 2; (18)

IFi D 0:15

mX
jD1



xFj � xFi

�
; i D 1::15N 2;m D 1 or 2; (19)

xCNi D xCNi C F
�
xCNi

� � 0:6H
�
xCNi � 0:6

�� yCNi C I exci C I inhi ; i D 1::N 2;

(20)
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I exci D �0:2H .x1 � 0:3/ �xCNi � 0:6� ; i D 1::N 2; (21)

I inhi D �0:2H .x2 � 0:7/ �xCNi C 0:2
�
; i D 1::N 2; (22)

x1 D xFi ; the last element of the IO � axon; (23)

x2 D xFi ; the last element of the PC � axon; (24)

xFi D xFi C F
�
xFi
� � yFi ; i D 1::N 2; (25)

yFi D yFi C 0:011
�
xIOi � 0:04� ; i D 1::N 2; (26)

where the maps (5–9) correspond to the dynamics of the layer of inferior olive
neurons, (10–12) to the axons of inferior olive neurons, (13–16) to the layer of
Purkinje cells, (17–19) to the axons of Purkinje cells, (20–24) to the layer of nuclei
neurons, (25 and 26) to their axons. We dwell on the individual parts of the system.

3.1 Inferior Olive Neurons

The inferior olive neurons have a number of exclusive dynamical properties [24–27].
Firstly, in a resting state the membrane potential of these cells is in the mode
of sub-threshold oscillations. These are quasi-sinusoidal oscillations with a small
amplitude and frequency about 10 Hz. The action potential is generated at the peak
of these oscillations once the membrane potential reaches some threshold value.
Secondly, the inferior olive neurons interact with each other via electrical synapses,
i.e., gap junctions, and the strength of this coupling is dynamically varied through
the agency of glomerulus which is a special mechanism. The electrical synapse is
controlled by the activity of the cerebellar nuclei neurons.

One of the key properties of inferior olive neurons reproduced in the model (1) is
their ability to switch from the sub-threshold oscillation mode to the action potential
generation mode on the oscillation peaks during the action of varying synaptic
current Isyn (see Fig. 9).

3.2 Purkinje and Deep Cerebellar Nuclei Neurons

In accordance with our scheme of the OCS (Fig. 8), the Purkinje and deep cerebellar
nuclei neurons are the elements of the second and third layers, respectively. When
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Fig. 9 (a) The waveform and (b) the corresponding phase portrait of the system (1) during the
action of the variable synaptic current for JIO D 0.049, "D 0.005

Fig. 10 Dynamical properties of (a) the Purkinje model neurons and (b) cerebellar nuclei neurons

modeling these cells, we took into account their key properties which give the main
contribution to the operation of the OCS. In the model of a Purkinje cell (13 and
14), we took into account the generation of the so-called complex spike excited by a
climbing fiber (see Fig. 10). In other words, an element of the second layer is a sys-
tem in the excitable mode, which generates a burst of spikes during the excitation.

The model of a cerebellar nuclei neuron reflects the following property of the
latter. This neuron turns into the active spiking state during excitation via the
synaptic terminal of the corresponding collateral of the axon of the inferior olive
neuron and comes back to the resting state during inhibition of the synaptic terminal
of the axon of the Purkinje cell (see Fig. 10b). In other words, the element of the
third layer is a bistable system having two states. For a qualitative modeling of
these properties it suffices to have a one-dimensional map (20) for the variable xCN

characterizing the membrane potential of the cell.

3.3 Axons

Axons, or nerve fibers, are represented in the model in the form of chains of elements
coupled electrically with the nearest neighbors. Each element is in excitable
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mode, generating an action potential during excitation. Successive excitation of the
neighboring elements of the chain models the propagation of a pulse along the nerve
fiber. Note that such a model is not only applicable for describing the dynamics of
the linear fibers, but also, as in our model, is able to reproduce the propagation of
a pulse through bifurcating axons (see, e.g., [32]). The system of maps describing
such an element is given above numbered (10 and 11), (17 and 18), (25 and 26).
Synaptic current is equal to the sum over the nearest neighboring elements of the
chain, the number of which can amount to one (at the end of the fiber), two (in
the middle of the fiber), and three (at the branching point). This term describes
the electrical coupling, whose strength is characterized by the parameter c. It is
noteworthy that the representation of a nerve fiber as a chain of discrete elements is
not just convenient for analysis by mathematical abstraction. Many types of nerve
fibers, in particular, myelinated axons, including those in the OCS, in fact consist of
individual blocks separated by the so-called nodes of Ranvier.

3.4 Dynamical Coupling Between the Inferior Olive Neurons

As was mentioned above, the inferior olive neurons interact via gap junctions,
or electrical synapses. The strength of this coupling is controlled by GABAergic
synapses (GABA—gamma-aminobutyric acid) of the axons of the cerebellar nuclei
cells, i.e., the electrical synapses are plastic. This control is inhibitory: in the absence
of control pulses, the coupling strength is equal to some positive value, which results
in synchronization of sub-threshold oscillations of the interacting inferior olive
neurons. On the contrary, the coupling is suppressed and the electrical coupling
between neurons breaks if the signal is fed. The equations for the dynamical
coupling between two inferior olive neurons, which is controlled by the signals
coming from the cerebellar nuclei neurons, is given above numbered (7–9).

3.5 Qualitative Description of the Model Dynamics

Let the membrane potential of one of the inferior olive neurons reaches a threshold
value at some instant of time. This results in the action potential excitation in the
neural axon. Propagating along both branches of the climbing fiber, this spike evokes
activity in the Purkinje and cerebellar nuclei neurons, i.e. in the corresponding
elements of the second and third layer. A short series of fast spikes, i.e. a complex
spike, is generated in the Purkinje cell and a long sequence of action potentials is
excited in the cerebellar nuclei neuron. A complex spike in the Purkinje cell causes
the inhibitory action potential to propagate through the axon to the nuclei neuron.
A long spike series in the latter is interrupted due to the inhibition by the action
potential coming from the Purkinje neuron. A burst of spikes transmitted through
the axon of the nuclei neuron to synaptic couplings of the corresponding inferior
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Fig. 11 Dynamics of the activity clusters in the inferior olive layer with 30 � 30 elements with
electrical interaction between the neighboring elements and the feedback loop. The maximal
coupling (a) gmax D 0.005 and (b) 0.02

olive neuron leads to the suppression of the latter. Thus, synaptic couplings of the
inferior olive neuron with the neighboring elements of the main layer break for a
time equal to the duration of the burst generated in the nuclei neuron.

3.6 Spontaneous Activity Structures in the OCS

The cluster formation in the inferior olive layer of the model studied is controlled
primarily by the maximal strength of coupling gmax between them. A physiological
prototype of this parameter is the concentration of the GABAergic antagonist,
whose release is controlled by inhibitory synapses of the cerebellar nuclei neurons.
A higher degree of suppression of the coupling corresponds to the smaller value
gmax, and vice versa. Another important parameter is duration of the break of
synaptic couplings between the inferior olive neurons. In our model, we change this
characteristic time by changing the length of the Purkinje cell axons terminating at
the nuclei neurons. The time of propagation of action potentials along these axons,
as was mentioned above, depends on their length. The faster the action potential
reaches the nuclei neuron, the sooner the neural activity is suppressed and the
shorter the depolarization phase of the neural oscillation is. Therefore, the electrical
coupling of the corresponding inferior olive neuron with the neighboring neurons of
the main layer breaks during a shorter time.

Figure 11 shows snapshots of the activity clusters in an ensemble of inferior
olive neurons for the case where coupling between the elements of the layer is
dynamically controlled through a feedback loop as it is described above. The
clusters are shown for the case with the Purkinje cell axons composed of 15 elements
and the maximal strength of coupling between the inferior olive neurons (a)
gmax D 0.005 and (b) gmax D 0.02. It is seen even from a visual comparison that for a
small value of gmax the size of clusters is also small (Fig. 11a), and the characteristic
time for their spatial position to change is equal approximately to the oscillation
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period. In case with a larger value of the maximal strength of coupling between the
elements (Fig. 11b), the cluster size increases on average, and their spatial position
remains constant during several oscillation periods. These qualitative results are
confirmed by quantitative characteristics, as will be shown below.

3.7 Measurement of the Degree of Spatial Order

For a quantitative description of the collective activity of the inferior olive neurons,
we apply the theory of Markov random fields [16]. This method, initially developed
to characterize the spatial order of two-dimensional matrices, is used for analysis of
the experimental data obtained by optical visualization of sections of the brain and
multi-electrode measurement of neuron activity. In our case, this method is used for
analysis of the numerical data obtained within the model considered.

We introduce the Markov parameter which for a two-dimensional square lattice
of elements is determined as follows. Denote by xi,j the values of the membrane
potentials of the neurons located at the lattice sites with the numbers (i, j). Then for
estimation of the degree of clustering in this layer we calculate the parameter

� D

X
i;j2�

xi;j yi;j �
0
@X
i;j2�

xi;j

1
A
0
@X
i;j2�

yi;j

1
A =m

X
i;j2�

y2i;j �
0
@X
i;j2�

yi;j

1
A
2

=m

; (27)

where yi,j D xi�1,j C xiC1,j C xi,j�1 C xi,jC1. Here, � denotes one of the two sub-
lattices that form the initial lattice, whose elements are distributed relative to each
other as white and black squares of the chessboard, and m is the number of elements
in �. The final value � results after taking the mean arithmetic value of this
parameter for both sub-lattices.

The quantitative meaning of � is as follows. The more the absolute value of � is
different from zero, the higher the level of spatial order of the layer is. This means
that if the values of the potentials of the elements are randomly distributed, then �
tends to zero. The case is opposite when the potentials are the same for all elements,
i.e., all the elements of the lattice form one cluster. Then � takes its maximal value.
The more the parameter � is different from zero, the larger is the characteristic size
of the clusters in the lattice.

Figure 12 shows temporal dependences of the Markov parameter � and the
corresponding histograms of probability of its distribution for two values of the
coupling parameter gmax. It follows from the latter that for small values of gmax the
quantity � varies over relatively wide limits, but the absolute values of � are close
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Fig. 12 (a, c) The Markov parameter � for the elements of the inferior olive layer as a function of
time. (b, d) Histograms of the distribution probability of the parameter �. The maximal strength of
coupling gmax is 10�3 (a, b) and 10�2 (c, d)

to zero (Fig. 12a, b). As the coupling parameter gmax increases, the mean value of �
also increases and the variance of � decreases (Fig. 12c, d).

This result is in good agreement with the experimental measurements of the
Markov parameter for different levels of blocking the electrical coupling between
the inferior olive neurons. For a weak coupling between neurons, the layer is divided
into a set of clusters of a smaller size, and the picture of such a division changes
drastically with time. As the coupling is enhanced, the clusters increase in size and
the spatial configuration of the synchronous activity of the layer does not disappear
with time.

3.8 Stimulated Activity Patterns

For a motor control, the OCS not only generates but also preserves in time
the spatiotemporal structures (patterns), or activity patterns, and changes them
depending on the input signals. According to these signals, sub-groups of inferior
olive neurons with synchronous or phase-shifted oscillations are formed, and this
spatial structure is preserved for several periods of oscillation. When a new pattern
comes, oscillations of the elements are rearranged in accordance with it. Such
behavior of the system is the basis for control of the motor function of the body [24].
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Fig. 13 Dynamics of a stimulated activity pattern in a layer of inferior olive neurons with 30 � 30
elements. The feedback is activated, the maximal strength of electrical coupling is gmax D 0.02,
and the axon length of the Purkinje cells is equal to 18 elements

Figure 13 shows the dynamics of the activity clusters in a layer of inferior olive
neurons. The initial values of the variables xIO were randomly chosen. Then an
external stimulus in the form of a spatiotemporal activity pattern is fed to the layer.
As an example, this pattern is taken in the form of five clusters shaped as circles. The
stimuli acting on the elements of all clusters have the same amplitude and duration.
The difference is that stimulation acts on the different clusters in different instants of
time, thereby creating a phase shift of oscillatory activity between the clusters of a
pattern. Since the spikes are generated at the peaks of sub-threshold oscillations, the
phase shift of sub-threshold oscillations corresponds one-to-one to the phase shift
of the action potentials transmitted into the climbing fiber and then to the Purkinje
and cerebellar nuclei neurons.

4 Conclusion

In conclusion, models of neural activity in the form of maps are an effective tool for
studying the dynamics of individual neurons as well as complex neural circuits.

We have shown that using the same two-dimensional map (1) and only choosing
appropriately its parameters, one can get a wide range of different modes of neural
activity from the simple excitable regime to chaotic spike-bursting oscillations.
Thanks to this universality, we were able to develop a model of a very complex
neural structure, the OCS, using the map (1) as a basic element. In our discrete-time
model of the OCS three layers of neurons interact with each other through axonal
connections, and the propagation of nerve impulses along the axons is modeled by
the chains of excitable elements. Dynamical properties of individual elements of
the system are examined, and the parameters corresponding to the dynamics, that
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is adequate to the biological prototypes, are found. A model of dynamic coupling
between the inferior olive neurons is proposed and the pattern formation processes
in the layer they form are explored. The relation between the size of synchronous
activity patterns and the maximal coefficient of electrical coupling is established. It
is shown that stimulated activity patterns of a certain configuration can be formed
in the system and can be reset by an external stimulus. The latter property underlies
the neuronal systems of the motor function control.
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Adaptive Landscape with Singularity
in Evolutionary Processes

Shuyun Jiao, Song Xu, and Ping Ao

Abstract Adaptive landscape, proposed by Sewall Wright, has been used to find
optimized solutions of a system. The optimized solution of an evolutionary system
is when evolution maximizes or minimizes the value of some function of the trait
under consideration, thus providing an absolute measure of fixation for a biological
process in a probabilistic sense. We survey the role of adaptive landscape and
give some general results concerning the question of infinite potential escaping.
The results presented include complex dynamical behaviors manifested by adaptive
landscape with singularity in all parameters regimes. In addition, both metaphoric
and quantitative description of many complex biological phenomena is provided
by adaptive landscape, such as the rare event of transition between different stable
states.

1 Introduction

The concept of adaptive landscape was first proposed by Sewall Wright [1], in
attempting to visualize his shifting balance theory in evolutionary dynamics. Since
then, the metaphoric and visualizing part of this concept has been widely used in
population genetics and evolutionary biology [2–4]. Wright’s original landscape
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can be interpreted as the surface of selective fitness [5]. Its definition has two main
derivatives [6]: project the individual fitness over space of allele type or genotype or
phenotype, or project the mean fitness of a population over the frequencies of allele
type or genotype or phenotype. The primary goal of adaptive landscape in modern
science is understanding, i.e., creating orderly pictures of the world compatible with
our observations and can provide new predictions.

Evolutionary processes are highly nonlinear. We need to understand these
processes. Adaptive landscape, when used in visualizing evolutionary processes,
is remarkably suitable grasping the nature of nonlinearity conveniently.

The appeal of this approach is its analogy with a physical landscape, whose
gradient predicts a rolling marbles spatial trajectory [7]. But it is complex that
required to fully integrate the genetics with Darwinian natural selection. Geometric
representations of microevolutionary trajectories over adaptive landscape of one
or another are motivated by the desire to provide some heuristic intuition into the
process of microevolution. If we can extract the population genetics by investigating
the contours of such a topographic surface, we can visualize how an evolving
population will behave without always resorting to the algebraic heavy lifting. So the
notion of a landscape implies the existence of an exact potential function projected
over some space, its predictive utility comes from the implication that at each
instant, the system will shift its configuration by following the steepest gradient on
the potential function [7]. The predictive capability is the basis for the hypothetico-
deductive method [8].

Though the landscape has such good predictive property, it has suffered certain
conceptual and theoretical problems [9]. Biologically, there is an ongoing argument
about the heuristic value of Wright’s landscape diagrams [10]. Some think there
might not be anything like peaks separated by valleys at all [10], the problem of
how a population crosses an adaptive valley in its way from one adaptive peak to
another may be nonexistent [11]. Since then such a landscape has been known as
the fitness landscape in some parts of literatures. However, there are a considerable
amount of confusions on the definitions of fitness [12,13]. Mathematically, Pigliucci
and Kaplan argue that in the end it may be impossible to articulate the metaphor in
a way that is both conceptually coherent and practically fruitful [14].

To get further at the predictive side we need a more realistic handle on adaptive
landscape. Biologists [9, 15] noticed a framework was needed to construct adaptive
landscape. Recently considerable progress has been made on the evolutionary
dynamics of transiting the fitness valley for finite populations in the presence of
diverse evolutionary forces. de Vladar and Barton [15] used information entropy
to analyze the process of population evolution. It is pointed out that the method
works only for high mutation rates and breaks down for low mutation rates [15].
One of us proposed adaptive landscape can be quantified as potential function [13].
He identified gradual parameter changes that preserve the stationary distribution as
being reversible in the thermodynamic sense, this line of thinking does not lead
to any constraint on the increase in mean fitness that would correspond to the
constraint identified by Carnot in classical thermodynamics [16]. These theoretical
progress makes the utility of adaptive landscape to complex biological processes
and understanding these processes.



Adaptive Landscape with Singularity in Evolutionary Processes 165

In this chapter we address how the singular adaptive landscape indicates the
evolutionary dynamics and predicts how long the population stays at an adaptive
state. There are two reasons for embarking on such an effort. The first one is
practical. We want to manifest the reach of conceptually coherent and practically
fruitful adaptive landscape. In general, adaptive landscape appears working well,
notwithstanding its basically singularity. The next reason comes into play when we
want to know the escape problems from the infinite potential.

2 Technical Preliminaries

The tools for handling a dynamical system are diverse. Here we only base on
Fokker–Planck equation and some relevant knowledge about diffusion approxima-
tion, which is a widely used theory; however, there are some shortcomings about
diffusion theory such as addresses by [17].

2.1 Diffusion Approximation

In general, we first consider the deterministic effects of certain biological factors
for an evolutionary process. We expect to get some useful information for an
evolutionary process with infinite population size. But randomness always exists,
and population size is also finite, these result in the information lacked. We have to
consider the effect of stochastic factors. We briefly outline the diffusion approxima-
tion according to [18] in the following.

We only address one-dimensional process. That is, we only consider populations
with haploid individuals and one locus with two allele A and a and focus on the
evolution of allele A. At generation t the frequency of allele A is i=N , after driving
by deterministic and stochastic factors, at generation t C 1 the allele frequency
becomes j=N . Here the probability that allele frequency becomes j=N is

Pj .t C 1/ D
NX
iD0

Wij Pi .t/ (1)

where Wij is the transition probability from i=N to j=N . We replace the allele
frequency i=N by real number x, 0 � x � 1. And P.x; t C 1/ denotes the
probability of allele frequency x after t C 1 generations. Given that A starts out
at gene frequency x0 and additional Markov property, then

P.x; t C ıt/ D
X
ıx

W.x; t C ıt jx � ıx; t/P.x � ıx; t/: (2)
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We assume that P.x; t/ admits a density function �.x; t/, that is,

@P.x; t/

@x
D �.x; t/: (3)

In order to derive forward Fokker–Planck equation, we assume the following
properties hold.

1)

lim
ıt!0

1

ıt
p.z; t C ıt jx; t/ D 0 (4)

uniformly in x; z, and t for jx � zj � ".
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Z
d z.z � x/2p.z; t C ıt jx; t/ D V.x; t/C o."/ (6)

Equations (5) and (6) are uniform in x; z, and t .

4) All higher-order coefficients are o."/.

Consider the time evolution of the expectation of a function f .z/ which is twice
continuously differentiable. Thus,

@t
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dxf .x/
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Z
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(9)

Expand f .x/ at position z:

f .x/ D f .z/C f 0.z/.x � z/C 1

2
f 00.z/.x � z/2 C o..x � z/2/ (10)
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Now substitute Eq. (10) with Eq. (9):

lim
ıt!0

1

ıt

�Z
dxdz

�
f .z/C f 0.z/.x � z/C 1

2
f 00.z/.x � z/2

�

�p.x; t C ıt jz; t /p.z; t jy; t 0/ �
Z
dzf .z/p.z; t jy; t 0/



D lim
ıt!0

1

ıt

�Z
dxdz

�
f .z/C f 0.z/.x � z/C 1

2
f 00.z/.x � z/2

�

�p.x; t C ıt jz; t /p.z; t jy; t 0/ �
Z
dxdzf .z/p.x; t C ıt jz; t /p.z; t jy; t 0/



D
Z
dz

�
lim
ıt!0

1

ıt

Z
dx

�
f 0.z/.x � z/C 1

2
f 00.z/.x � z/2

�

�p.x; t C ıt jz; t /gp.z; t jy; t 0/

D
Z
dz

�
f 0.z/M.z; t /C 1

2
f 00.z/V .z; t /

�
p.z; t jy; t 0/

D
Z
dzf .z/

�
�@z

�
M.z; t /p.z; t jy; t 0/	C 1

2
@zz
�
V.z; t /p.z; t jy; t 0/	

z!xD
Z
dxf .x/

�
� @

@x

�
M.x; t/p.x; t jy; t 0/	C 1

2
@xx

�
V.x; t/p.x; t jy; t 0/	 : (11)

Then, we obtain the Kolmogorov forward equation (Fokker–Planck equation)

@tp.x; t jy; t 0/ D � @

@x

�
M.x; t/p.x; t jy; t 0/	C 1

2

@2

@x2

�
V.x; t/p.x; t jy; t 0/	 : (12)

Define M.x/ as the probability that x increases by systematic force that includes
mutation and selection. And define V.x/ as the probability that x changes because
of random drift, either decreasing by amount ıx with the probability V.x/=2 or
increasing by the amount ıx with the probability V.x/=2.
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0
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2.2 Relation for the Solutions of Between Forward
Fokker–Planck Equation and Backward
Fokker–Planck Equation

In most physical applications of Kolmogorov diffusion equations the coefficient
V.x/ is essentially positive. However, in certain applications we encounter equa-
tions such that V.x/ vanishes at one (or possibly both) of the boundaries or one of
the coefficients has no finite limit. Equations with coefficients such as described are
called singular diffusion equations.

The classification of boundaries depends on the Lebesgue integrability of the
function

g1.x/ D exp

�
�
Z x

x0

M.z/

V .z/
d z


(15)

where x0 2 .r1; r2/ is fixed, and related functions on a prescribed open interval
contained in .r1; r2/. The above function was introduced by Feller [19]. Let Ii .i D
1; 2/ denote the interval .x0; ri /. The function g1.x/ is Lebesgue integrable on Ii
(written g1.x/ 2 L.Ii /) if

Z
Ii

g1.x/dx < 1 (16)

i.e., the integral of g1.x/ over the interval Ii is bounded. Before giving the
classification criteria, we introduce the following functions:

g2.x/ D 1

V.x/g1.x/
h.x/ D g1.x/

Z x

x0

g2.z/d z (17)

Then Feller classifies the boundaries as the following

1. The boundary ri is regular if g1.x/ 2 L.Ii / and g2.x/ 2 L.Ii /.
2. The boundary ri is an exit boundary if g2.x/ … L.Ii / and h.x/ 2 L.Ii /.
3. The boundary ri is an entrance boundary if g2.x/ 2 L.Ii / and g2.x/

R x
x0 g1.z/

d z 2 L.Ii /.
4. In all other cases the boundary is called natural.

By utilizing the theory of semigroups, Feller has obtained the following results
which relate the existence and uniqueness problem of diffusion equations to that
of classifying the boundaries:

1. When none of the boundaries is regular, there exists exactly one fundamental
solution (or Green’s function) common to the forward and backward diffusion
equations, even though the initial value problem as such may have many
solutions.
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2. When one boundary is regular, or when both boundaries are regular, there exist
infinitely many common fundamental solutions.

3. When both boundaries are natural, the initial value problem for both forward
and backward diffusion equations is uniquely determined, and the solutions are
generated by a common fundamental solution.

4. When r1 is a natural boundary and r2 is an exit boundary, the initial value problem
for the backward diffusion equation has infinitely many solutions, but that for the
forward diffusion equations is uniquely determined.

5. When r1 is a natural boundary but r2 is a regular boundary, there exist infinitely
many solutions for the initial value problem for both the forward and backward
diffusion equations.

6. When neither boundary is natural, there are two sources for nonuniqueness, and
in these cases two lateral conditions must be imposed.

3 Construction of Adaptive Landscape

Diffusion theory is an elegant approximation for analyzing population evolution.
To construct adaptive landscape, we start from one-dimensional forward Fokker–
Planck equation:

@

@t
�.x; t/ D � @

@x
ŒM.x/�.x; t/� C 1

2

@2

@x2
ŒV .x/�.x; t/�: (18)

Among this M.x/ is the symbol for the average change in allele frequency [20, 21]
that occurs due to systematic force. The function V.x/ is the average square change
in allele frequency.

The diffusion process can also be expressed by the following symmetric equation

@t�.x; t/ D @xŒ�D.x/@x � f .x/��.x; t/ (19)

with

f .x/ D M.x/ � �D0.x/;

2�D.x/ D V.x/: (20)

With a prime denoting differentiation of a function with respect to its argument such
as D0.x/ 	 @xD.x/ where M.x/ and V.x/ is from Eq. (18). Adaptive landscape is
directly given when we consider natural boundary as Feller’s classification. It is

ˆ.x/ D
Z x

dx0 f .x0/
D.x0/

: (21)
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The symmetric Eq. (19) has two advantages. On the one hand, the adaptive
landscape is directly read out when the detailed balance is satisfied. On the
other hand, the constructive method is dynamical, independent of existence and
normalization of stationary distribution. We call f .x/ directional transition rate,
integrating the effects of M.x/ and the derivative of V.x/. Directional transition
rate can give equilibrium states when it appears in linear form.

The adaptive landscape not only avoids the mismatch of the fixed points of the
force and those of extremals of steady state distribution, but also can be related to
the dynamical behaviors.

The stationary distribution for the diffusion approximation satisfying natural
boundary condition is given by

�.x; t D 1/ D 1

Z
exp

�
ˆ.x/

�

�
: (22)

Z D
Z C1

�1
dx exp

�
ˆ.x/

�

�
: (23)

It has the form of Boltzmman–Gibbs distribution [12], so the scalar function ˆ.x/
naturally acquires the meaning of potential energy [22]. The value of Z determines
the normalization of �.x; t D 1/ from the perspective of probability, and the finite
value of Z manifests the normalization of �.x; t D 1/. The stationary distribution
is not true in the face of infiniteZ. It demonstrates absorbing phenomenon occurs at
the boundary. Together with the flux at the boundary, the true stationary distribution
could be got. The constant � holds the same position as temperature of Boltzmman–
Gibbs distribution in statistical mechanics. But it does not hold the nature of
temperature in Boltzmman–Gibbs distribution.

4 Two Applications

As the concept and their technical implementation described, below we shall show
the singular adaptive landscape describes internal equilibria for constant population
size and variable biological factors such as original Wright–Fisher process and
Muller ratchet.

4.1 Wright–Fisher Process

The simplest stochastic model of an evolving population dates from the 1930s
and was introduced independently by Ronald Fisher [23] and Sewall Wright [24].
In the model, constant organisms from one generation to the next generation are
considered, and each instance of a gene in one generation is an exact copy of one
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randomly chosen with replacement from previous generation [25]. Let us consider
first of all diploid organisms which carry two copies of each gene and reproduce
sexually. A new generation could be formed by each of the organisms producing two
infinite sets of gametes before dying. Among this process mutation, selection and
random drift could occur. Then random fixed size samples of these gametes survive
to become offspring organisms. A random mating diploid population evolving in
this way is often referred to as an ideal population. In reality, individuals do not
mate at random. Some factors such as individuals’ geographical locations and age
may also lead to deviations from an ideal population. Nevertheless, in some cases it
is found that the predictions of the ideal model are relevant [25].

Suppose we have an ideal population of individuals satisfying (i) Generations
are taken to be discrete, so that the population evolves by a discrete-step Markov
process. (ii) The population size is taken to be fixed, so that alleles compete only
against other alleles and not against an external environment. (iii) Random mating
is assumed. Concretely we consider a population of diploid sexual individuals with
population size being N and factors such as one locus with two alleles A1, A2.
The start point in a generation is taken to be the adult stage, after all mutation
and selection has occurred and selection immediately prior to reproduction. The
regulation of the population number is supposed to occur through nonoverlapping
generations and randomly pickingN individuals from the population, then there are
always 2N alleles in the allele pool in any generation. The treatment is consistent
with [26].

We focus on the evolution of allele A1. Assume pi to represent the proportion or
relative frequency of allele A1 in generation t , that is pi D i=2N , i D 0; : : : ; 2N .
Mathematically under general diffusion approximation, frequency pi are treated as
continuous quantity x, and this also leads to the distribution of the frequency of
considered allele A1 being probability density.

4.2 Dynamics of Original Wright–Fisher Process

Adaptive landscape can be quantified as potential function. Potential function can
give both quantitative and qualitative description of behaviors near steady states or
metastable states. Great efforts have been spent to find such a potential function [13].
We here give specific potential function corresponding to diverse biological factors.
It is clear how our potential function is related to the dynamical trajectories.

4.2.1 Pure Drift Balance

In the past, people also come into notice the effect of random drift, for example,
[27] studied the effect through assuming that population fixed for a single genotype.
Krakauer and Plotkin [28] studied the effect of random drift through analyzing small
perturbations from the deterministic equilibrium. de Vladar and Barton [15] studied
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the same process, but the method of maximizing entropy cannot work because
of non-normalized stationary distribution. Waxman [29] studied the random drift
process by assuming Dirac function at the boundary. We here do not focus on
the boundary condition. To avoid the difficult boundary problem, here we show
our method is independent of the normalization of stationary distribution and can
directly get the population behaviors by adaptive landscape. We could address it
from the perspective of adaptive landscape. For random sampling variance being

V.x/ D x.1 � x/

2N
; (24)

at the same time the directional force reads

f .x/ D 2x � 1

4N
: (25)

In addition, we are interested in the dynamical property of adaptive landscape, so
we treat ˆ and ˆ=� no difference in this respect, that is, for convenience we can
take � D 1 of �D.x/. So adaptive landscape from Eq. (21) is expressed as

ˆ.x/ D � ln x.1 � x/: (26)

For biological understanding, no mutation equals to no driving force, without
driving force the stationary distribution should be plain. That is, each state has
the same chance to be ultimate state as neutral evolution, but in fact because of
inertia of driving force, there exists the effect of force in the system, this makes
the system move on. This is consistent with the expression of directional force
f .x/ in Eq. (20). The inertia of driving force can just balance out the effect
of random drift and let the population move on. Here from the expression of
adaptive landscape, two singular points with allele frequency x D 0 and x D 1

exist. The singularity means that the population lies at a stable or unstable state.
Positive infinity means the state with corresponding allele frequency stable, while
negative infinity means the state with corresponding allele frequency unstable. Here
the values of adaptive landscape for two singular points go to positive infinity.
These demonstrate that there are indeed two stable states in the process. The
adaptive landscape has U-shape.

Directional force actually gives the effects of driving force and random drift.
Two stable states with infinite potential occur in the process. The fixed point with
allele frequency x D 1=2 could be got through letting directional force being zero
directly. It is the critical point to decide the eventual stable state of an initial state.

4.2.2 Mutation-Drift Balance

So far we have been considering situations where the change in composition of
populations is caused by pure random drift. We now include the effect of mutation:



Adaptive Landscape with Singularity in Evolutionary Processes 173

an A1 allele may mutate with a probability � to an A2 allele, and an A2 allele may
mutate with a probability � to an A1 allele. These parameters are probabilities per
generation. In the process we assume there is no difference on viability because
of the absence of selection, the evolutionary process is only under the condition of
mutation and random drift with unchanged environment. We focus on the evolution
of the allele A1. Previous neutral evolution regarded these evolutionary processes as
neutral.

To include mutation, one chooses two alleles from the current population to die
and replaces it with two types chosen. That is, when we pick alleles to be the parent
of a child in the next generation, the offspring can mutate with the probability� or �.
For example, if an allele A1 is chosen, there is a probability 1 � � that replacement
allele is also an A1 and of � that it is an A2. So with mutation, in the offspring
generation the frequency of allele A1 is

ptC1 D .1 � �/pt C �.1� pt/: (27)

After diffusion approximation like pure random drift process, the average change of
allele frequency x: M.x/ and random sampling variance V.x/ are, respectively,

M.x/ D ��x C �.1 � x/; (28)

V.x/ D x.1 � x/

2N
; (29)

then f .x/, D.x/ in Eq. (20) are

f .x/ D ��x C �.1 � x/ � 1 � 2x
4N

(30)

	 F.x � a/;

�D.x/ D x.1 � x/

4N
; (31)

with

F D 1 � 2N�� 2N�

2N
; a D 1 � 4N�

2 � 4N�� 4N�
: (32)

Here we also take � D 1. So the adaptive landscape corresponding to Eq. (21) reads

ˆ.x/ D 4N� lnx C 4N� ln.1 � x/ � ln x.1 � x/: (33)

There are three elements composed of adaptive landscape. The first and the
second elements represent the effect due to mutation. The last element is the effect
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due to random drift. There exist two singular points with allele frequency x D 0

and x D 1 from the expression of adaptive landscape. Singularity indicates the
state stable or unstable. We show below that the evolutionary behavior can still be
explored in terms of adaptive landscape. This method is insensitive to the singular
expression. Fixed points are derived by

ˆ0.x/ D 0: (34)

That is

.4N�� 1C 4N� � 1/x � .4N� � 1/ D 0: (35)

Then we get only one fixed point with allele frequency x D a (its expression is Eq.
(32)), and it is also the zero point of f .x/. In another word, when directional force
is expressed in linear form, the fixed point can be read from its form directly.

We could investigate the dynamics by analyzing the relative position of the fixed
point and singular points. In the following we give the detailed information.

(i) a < 0

There are two regimes holding the same dynamical behavior. In one of the
regimes parameters satisfy � 2 .0; 1=4N / and � 2 .1=4N; .1 � 2N�/=2N/.
In another regime parameters satisfy � 2 .1=4N; 1/ and � 2 ..1 �
2N�/=2N; 1=4N/. There are two unstable states and one stable state in the process.
The states at the fixed point with allele frequency x D a and at the singular point
with allele frequency x D 0 are unstable while the state with allele frequency x D 1

is stable. This means the population tends to fix at the state with allele frequency
x D 1. Alleles composed of the population are likely to be allele A1.

(ii) a D 0

There are two regimes having the same dynamical behavior. In one of the regime
mutation rates satisfy � 2 .0; 1=4N / and � D 1=4N . In another regime mutation
rates satisfy � 2 .1=4N; 1/ and � D 1=4N . Among these regimes the fixed
point mixed the singular point with allele frequency x D 0. Among these cases
the factor which can dominate the process is mutation rate. If parameters satisfy
� 2 .0; 1=4N / and � D 1=4N , the probability of mutation from allele A2 to allele
A1 is greater. So there is only one stable state with allele frequency x D 1 and
one unstable state with allele frequency x D 0 in the process. If parameters satisfy
� 2 .1=4N; 1/ and � D 1=4N , the probability of mutation from allele A1 to allele
A2 is greater. So there is one stable state with allele frequency x D 0 and one
unstable state with allele frequency x D 1 in the process.

(iii) 0 < a < 1

Two regimes have the same dynamical behavior. In one of the regimes mutation
rates satisfy � 2 .0; 1=4N � and � 2 .0; 1=4N /. In another regime mutation rates
satisfy � 2 Œ1=4N; 1/ and � 2 .1=4N; 1/. The fixed point in the two regimes lies
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at the interval .0; 1/. Among these cases the factor which can determine stability
is mutation rate. If parameters satisfy � 2 .0; 1=4N � and � 2 .0; 1=4N /, the
probability of mutation from allele A2 to allele A1 and the probability of mutation
from allele A1 to allele A2 are very small. There is only one unstable state with
allele frequency x D a and two stable states with allele frequency x D 1 and x D 0

in the process. Ultimately which state the population tends to fix is determined by
the initial state. If its initial state with allele frequency is less than x D a, the
population would move to the state with allele frequency x D 0. If parameters
satisfy � 2 Œ1=4N; 1/ and � 2 .1=4N; 1/, the probability of mutation from allele
A2 to allele A1 and the probability of mutation from allele A1 to allele A2 are very
great. In one generation mutation number 2N.�C �/ is greater than one. None of
the two mutation directions can dominate the process. This results in individuals
with genotype of two different genes becoming much. There is one stable state with
allele frequency x D a and two unstable states with allele frequency x D 0 and
x D 1 in the process. Ultimately the population tends to fix at the state with allele
frequency x D a. The population moves to the stable state with genotype A1A2.

(iv) a D 1

There is only one point with the dynamical behavior. If parameters satisfy
.�; �/ D .1=4N; 1=4N /, the potential of the whole population is plain. In fact
any state has equal chance to be the ultimate state. That is, the effects of mutation
and random drift have no influence on the allele change. The effect of mutation is
offsetted by that of random drift. The evolution has no bias on any state. We call this
process new neutral evolution. Previous neutral evolution described the dynamical
processes in the absence of selection. It has bias on some special states such as the
case driven by unequal effects of mutation and random drift. Its description is not
completely neutral.

(v) a > 1

There are two regimes with the same dynamical behavior. In one of the regimes
parameters satisfy � 2 .0; 1=4N / and � 2 .1 � 2N�/=2N; 1�. In another regime
parameters satisfy � 2 .1=4N; 1=2N / and � 2 .0; .1 � 2N�/=2N �. Among these
cases stronger mutation rate from one of the two directions dominates the process.
If parameters satisfy � 2 .0; 1=4N / and � 2 Œ1 � 2N�/=2N; 1/, the probability
of mutation from allele A2 to allele A1 is greater. So there is one stable state with
allele frequency x D 1 and one unstable state with allele frequency x D 0 in the
process. Ultimately the population tends to fix at the state with allele frequency
x D 1. If parameters satisfy � 2 .1=4N; 1=2N / and � 2 .0; .1 � 2N�/=2N �,
the probability of mutation from allele A1 to allele A2 is greater. So there is one
stable state with allele frequency x D 0 and one unstable state with allele frequency
x D 1 in the process. Ultimately the population tends to fix at the state with allele
frequency x D 0.

We theoretically analyze the dynamical behavior of the population and give the
critical point in parameters space. Furthermore we can get the cause of the evolution
clearly.
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4.2.3 Selection-Drift Balance

The process in the presence of selection, and random drift is much complex. We only
focus on some special cases to show how the process is characterized by adaptive
landscape. Natural selection works when genotypes have different fitnesses [30].
But the dynamics of selection depends on relative fitness. Suppose we denote the
relative fitness of selection on genotype A1A1 by 1 C s, A1A2 by 1 C sh, A2A2
by 1. Here s is called selection coefficient, a measure of the fitness of A1A1 relative
to that of A2A2 and h is called heterozygote effect [30], a measure of the fitness of
the heterozygote relative to the selective difference between the two homozygotes.
We here assume 0 < s < 1, A1A1 is fitter than A2A2. Let x be the frequency of
allele A1, then we can define mean fitness as

! D x2.1C s/C 2x.1 � x/.1C sh/C .1 � x/2: (36)

For the case of selection-random drift, the average frequency change of allele A1 is

M.x/ D x.1 � x/
2!

d!

dx
: (37)

For convenience we only assume additive fitness, put differently, it depicts the
important evolutionary process parameter satisfying h D 1=2: additive selection-
random drift process. So according to Eq. (20)

f .x/ D M.x/ � �D0.x/ (38)

D sx.1 � x/

2.1C xs/
� 1 � 2x

4N
:

Potential function, namely, adaptive landscape derived analogous to Eq. (21) (� D 1)
reads

ˆ.x/ D 2N ln.1C xs/ � lnx.1 � x/: (39)

As we can see, there are two singular points with allele frequency x D 0 and x D 1

from the expression of adaptive landscape. Singularity means the population stable
in the process.

Analogous to analysis of mutation-random drift balance, we get the fixed point
from

ˆ0.x/ D 0: (40)

They are

x1;2 D 2C .2N � 1/s 
p
.2N � 1/2s2 C 4s C 4

4s.N � 1/ : (41)
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After some trivial calculation, we can get the relative positions of fixed points and
singular points. They must satisfy the relation 0 < x1 < 1 < x2 under the condition
0 < s < 1. We can get two stable states with allele frequency x D 0 and x D 1

from the expression of adaptive landscape. In fact because of the relative positions
of these points, there is only one stable state with allele frequency x D x1. It is the
critical state that divides the effect regimes into two stable states. This case describes
that many alleles with very small effect on fitness are close to additive. That is, the
heterozygote fitness is the arithmetic mean of the fitness of the two homozygotes.

4.3 Escape Time from Infinite Potential

Because the metastability is such an important phenomenon, it is expected to
compute the life time of metastable states. It is an open question that when the
metastable states become unstable based on potential function, such as represented
by Kramers’ escaping rate formulae [31].

For escape time, it is defined that the object leaves from one potential basin of
an stable state and never comes back. If we take the initial state as a potential peak,
the exit state as a potential valley. Then the mean first passage time can approximate
escape time in general bell-shaped potential. Here we estimate the average escape
time by computing mean first passage time for two cases. One is of mutation,
random drift, the result is the same as [32]. The other is of selection and random
drift.

If we assume transition process occurs in the presence of weak mutation and
random drift under the condition of 4N� ! 0; 4N� ! 0, the corresponding
potential is U-shape. When first the population lies at the basin of stable state with
allele frequency x D 0, then it arrives at the state with allele frequency x D a, and
bounces back and forth and eventually reaches the state with allele frequency x D 1.
Because the potential difference is infinite and adaptive landscape has U-shape, the
time it climbed over the potential is very longer. General mean first passage time
about a population leaving .0; a/ under the circumstance of initial Dirac distribution
satisfies

.f .x/C �D0.x//@xT .x/C �D.x/@2xT .x/ D �1: (42)

Further we set

T 0.0/ D 0; (43)

T .a/ D 0: (44)

Then we get

T .x/ D
Z a

x

1

�D.y/
exp.�ˆ.y//dy

Z y

0

exp.ˆ.z//d z: (45)

Here ˆ.x/ D R x
0
f .x0/=D.x0/dx0.� D 1/ is adaptive landscape.
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In general, when the landscape is sharply peaked at x D a, the main contribution
to the integral Eq. (45) is due to a small region near x D a. But here there is a fat
potential valley rather than a thin one. This results in the contribution to the integral
Eq. (45) from a big region around x D a, and at the same time ˆ0.a/ D 0, the
probability from x D 0 to x D a equals to that from x D a to x D 1. So the escape
time from x D 0 to x D 1 can be approximated to two mean first passage time from
x D 0 to x D a. Because escape time is when the population leaves the basin of
stable state with allele frequency x D 0, the escape time in the presence of weak
mutation and random drift is computed as

T � 2 � TMFPT .0 ! a/

D 8N

Z a

0

y�4N�.1 � y/�4N�dy
Z y

0

z4N��1.1 � z/4N��1d z

D 2.a � 0/
�

C 8N�

�

1X
nD1

anC1

nC 1

nY
kD2

�
k � 1C 4N�

k

�

C8N.1� 4N�/

1X
nD1

anC1

.nC 1/.nC 4N�/

nY
kD2

�
k � 4N�

k

�

D 1

�
C 4N�

�

1X
nD1

2�n

nC 1

nY
kD2

�
k � 1C 4N�

k

�

C4N.1� 4N�/

1X
nD1

2�n

.nC 1/.nC 4N�/

nY
kD2

�
k � 4N�

k

�
: (46)

Another way to get the escape time is that approximated mean first passage time
from x D 0 to x D 1. It is

	1 � TMFPT .0 ! 1/

D 4N

Z 1

0

y�4N�.1 � y/�4N�dy
Z y

0

z4N��1.1 � z/4N��1d z

D 1

�
C 4N�

�

1X
nD1

1

nC 1

nY
kD2

�
k � 1C 4N�

k

�

C4N.1� 4N�/

1X
nD1

1

.nC 1/.nC 4N�/

nY
kD2

�
k � 4N�

k

�
: (47)

These results demonstrate that the stable state with infinite potential has the
probability to be unstable. It gives a quantitative measure of escape with infinite
potential. From Eqs. (46) and (47), we can see the results are the same if the first
element 1=� approximates the escape time.
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If we assume transition process occurs in the presence of weak selection and
random drift under the condition of 4Ns ! 0, we can get the escape time leaving
the basin of stable state with allele frequency x D 0 by the same procedure. It is

	2 � TMFPT .0 ! 1/

D 4N

Z 1

0

4N

y.1 � y/
e�2N ln.1Cys/Cln y.1�y/dy

Z y

0

e2N ln.1Czs/�ln z.1�z/d z

! 1: (48)

Because the integral about the variable y is not integral at y D 0. Here infinite
potential indeed means infinite escape time. So the above two infinite potentials
have different meanings. One is true infinite, the other is false infinite.

4.4 Muller Ratchet

Muller’s ratchet proposed in 1964 [33] that the genome of an asexual population
accumulates deleterious mutations in an irreversible manner. It is a mechanism that
has been suggested as an explanation for the evolution of sex [34]. For asexually
reproducing population, without recombination, chromosomes are directly passed
down to offsprings. As a consequence, the deleterious mutations accumulate so that
the fittest class loses. For sexually reproducing population, because of the existence
of recombination between parental genomes, a parent carrying high mutational
loads can have offspring with fewer deleterious mutations. The high cost of sexual
reproduction is thus offsetted by the benefits of inhibiting the ratchet [35]. Muller’s
ratchet has been received growing attention.

Here in one-dimensional case, we consider one locus with two alleles (for
example, A and a), that is, there are two classes in the haploid asexual population,
one class with allele A while the other with allele a, supposed mutation from allele
A to a is deleterious. We assume fixed population size of N , which means we have
N alleles in all. We also assume that N > 1. Generations are non-overlapping.
The lifecycle of the individuals in the population is from adults to juveniles, during
which we consider irreversible mutation, selection, and random drift. The frequency
of the allele A for generation t is p while that of allele a is 1 � p. Let � be the
probability that an offspring of an adult with allele A is an individual with allele a,
labeled byM1;0, that isM1;0 D �. Analogously,M0;0 D 1��,M0;1 D 0,M1;1 D 1.
The relative viability of individuals with allele A is �0 D 1 while that of individuals
with allele a is �1 D 1�
 where 
 can be treated as an effective selection coefficient
associated with deleterious mutations. So the values of parameters for � and 
 are
from 0 to 1. Then in generation t C 1, when selection and deleterious mutation are
active, the probability that the offspring of a parent with alleleA is chosen to be with
allele a is �p.1 � 
/, the probability that the offspring with allele A is .1 � �/p,
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the probability that the offspring of a parent with allele a is still with allele a is
.1 � 
/.1 � p/. So the frequency of allele A in generation t C 1 is

p0 D .1 � �/p

1 � 
 C 
.1 � �/p
: (49)

After using diffusion approximation, frequencyp is treated as continuous quantities
x, and this leads to the distribution of the frequency for the allele A being the
probability density. Let �.x; t/ be the probability density of the frequency for the
allele A being x at time t . Then it obeys the dynamical equation

@

@t
�.x; t/ D � @

@x
ŒM.x/�.x; t/�C 1

2

@2

@x2
ŒV .x/�.x; t/�; (50)

and according to the definition of M.x/ and V.x/, the explicit expressions of
them are

M.x/ D .1 � �/x

1 � 
 C 
.1 � �/x
� x

D xŒ.
 � �/� 
.1 � �/x�
1 � 
 C 
.1 � �/x ; (51)

V.x/ D x.1 � x/

N
: (52)

So according to Eq. (21) (� D 1), we have adaptive landscape as the following

ˆ.x/ D 2N�.1� 
/

1 � 
�
ln.1 � x/ � lnx.1 � x/

C2N.1� �/

1 � 
� ln.1 � 
 C x
.1 � �//: (53)

From the expression of adaptive landscapeˆ.x/, we may find there are two singular
points with allele frequency x D 0 and x D 1 of adaptive landscape, characterized
by infinite value. Infinity means the state relative stable or unstable in the system.

4.5 Dynamics of Muller Ratchet

To understand the mechanism of Muller’s ratchet, a full characterization of dynam-
ical process is a prerequisite for obtaining more accurate decaying time. Here we
study the dynamical behavior by investigating the positions and relative stabilities
of all fixed points as [36]. We further derive the parameter regions for all possible
cases.
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According to general analysis of a dynamical system, letting

ˆ0.x/ D 0; (54)

we get

2
.1 � �/.N � 1/x2 C .2N.�� 
/C 3
 � 
� � 2/x C .1 � 
/ D 0: (55)

We solved Eq. (55) and found two fixed points. If we denote

˛ D 2 � 3
 C 
�C 2N
 � 2N�; (56)

ˇ D 8
.1 � �/.N � 1/.1 � 
/: (57)

They are

x1;2 D ˛ 
p
˛2 � ˇ

4
.1 � �/.N � 1/
: (58)

For two singular points with allele frequency x D 0 and x D 1, if allele frequency
x goes to 1, and parameter satisfies 
 2 .�; .2N�� 1/=.2N���//, then the value
of adaptive landscape ˆ.1/ goes to �1, so the population is unstable at the state
with allele frequency x D 1. When allele frequency x moves to 1, and selection
satisfies 
 2 ..2N�� 1=.2N���/; 1/, the value of adaptive landscapeˆ.1/ tends
to C1, so the population is stable at the state with allele frequency x D 1. For
allele frequency x goes to 0, the value of adaptive landscape ˆ.0/ goes to C1 in
almost parameters regimes except 
 D 1, so the population is always stable at the
state with allele frequency x D 0. When selection satisfies 
 D 1, the viability of
the suboptimal class is zero, so the population stays at the initial state.

Here we address dynamical behaviors by the positions of two real inequivalent
fixed points with allele frequency x1 < x2 first.

For convenience, we denote


1 D .2C2��10N�C4N 2�C2N�2C4.1��/pN.N�1/..2N�1/��1/
.��2NC1/2 :

1. We find two different real fixed points in two regimes. When parameters
satisfy � 2 .0; 2=.2N � 1 C 2

p
N.N � 1/// and 
 2 .�; 1/, parameters

satisfy � 2 .2=.2N � 1 C 2
p
N.N � 1//; 1/ and 
 2 .
1; 1/ two differ-

ent real fixed points occur. Among them parameters regimes do not include
� 2 ..2N � 1/=4N.N � 1/; 1/ and 
 D .2N�� 1/=.2N�� �/.

We discuss the relative positions for the fixed points and the singular points with
allele frequency x D 0, x D 1 and stabilities of them in the following.
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(i) 1 < x1 < x2

In one of the regimes parameters satisfy � 2 .1=.2N � 1/; 2=.2N � 1 C
2
p
N.N � 1//� and 
 2 .�; .2N�� 1/=.2N���//, in another regime parameters

satisfy � 2 .2=.2N � 1 C 2
p
N.N � 1//; .2N � 1/=4N.N � 1// and 
 2

.
1; .2N� � 1/=.2N� � �//, the fixed points satisfy 1 < x1 < x2. At the same
time the state with singular point x D 1 is unstable. There is one stable state with
allele frequency x D 0 in the system. The population tends to evolve to the stable
state.

(ii) 1 D x1 < x2

In the regions parameters satisfy � 2 .1=.2N � 1/; .2N � 1/=4N.N � 1// and

 D .2N� � 1/=.2N� � �/, the two fixed points satisfy allele frequency x1 D 1,
1 < x2. The state with allele frequency x D 1 is unstable. There is only one stable
state with allele frequency x D 0 in the system.

(iii) 0 < x1 < 1 < x2

In one of the regimes parameters satisfy � 2 .0; 1=.2N � 1// and 
 2 .�; 1/,
in another regime parameters satisfy � 2 .1=.2N � 1/; 1/ and 
 2 ..2N� �
1/=.2N� � �/; 1/, the fixed points satisfy 0 < x1 < 1 < x2. There is only one
unstable state with allele frequency x D x1 in the system, and two stable states
with allele frequency x D 1 and x D 0 exist in the system. The population tends
to evolve to which stable state dependent on the position of the initial state. If the
initial state with allele frequency is greater than x1, the population tends to evolve
to the stable state with allele frequency x D 1.

(iv) 0 D x1 < 1 < x2

In the regime parameters satisfy � 2 .0; 1/ and 
 D 1, the fixed points satisfy
allele frequency x1 D 0, 1 < x2. When selection rate satisfies 
 D 1, the process
stays at the initial state. Because for this case the viability of the sub-fittest class
is zero.

(v) 0 D x1 < x2 < 1

The case 0 D x1 < x2 < 1 is impossible. For x1 D 0, the other parameter must
satisfy 
 D 1, at the same time x2 must be greater than one.

(vi) 0 < x1 < x2 < 1

In one of the regimes parameters satisfy � 2 ..2N � 1/=4N.N � 1/; .2N �
1/=.4N � 3// and 
 2 .
1; .2N�� 1/=.2N�� �//, in another regime parameters
satisfy � 2 ..2N � 1/=.4N � 3/; 1/ and 
 2 .
1; .2N� � 1/=.2N� � �//, the
fixed points satisfy 0 < x1 < x2 < 1. The state with allele frequency x1 is unstable
while that with allele frequency x2 is stable. There are two stable states with allele
frequency x D 0 and x D x2 and two unstable states with allele frequency x D 1

and x D x1 in the system. The population evolves to which stable states dependent
on the initial position.



Adaptive Landscape with Singularity in Evolutionary Processes 183

(vii) x1 < 0 or x2 < 0

The case x1 < 0 is impossible, and the case x2 < 0 is impossible.

2. Then we discuss the case of two equivalent real fixed points with allele frequency
x2 D x1.

In the regimes of parameters satisfying � 2 .2=.2N � 1 C 2
p
N.N � 1//; 1/

and 
 D 
1, we find two same fixed points with allele frequency

x1;2 D ˛

4
.1 � �/.N � 1/
: (59)

(i) 1 < x1;2

In the regimes of parameters satisfying� 2 .2=.2N �1C2pN.N � 1//; .2N �
1/=4N.N � 1// and 
 D 
1, there are two same fixed points satisfying 1 < x1;2,
and they are unstable. There is one stable state with allele frequency x D 0 in the
process.

(ii) 1 D x1;2

At the two points of ..2N�1/=4N.N�1/; 2N=.2N�1/2/ and ..2N�1/=.4N�
3/; .4.N �1/.3�6N C4N 2/C8.N �1/.4N �3/pN.N � 1/=.4N � 3//=.2N �
1/2/, there are two same fixed points satisfying x1;2 D 1, and they are unstable.
There is one stable state with allele frequency x D 0 in the process.

(iii) 0 < x1;2 < 1

In one of the regimes parameters satisfy � 2 ..2N � 1/=4N.N � 1/; .2N �
1/=.4N � 3//, 
 D 
1, in another regime parameters satisfy � 2 ..2N � 1/=.4N �
3/; 1/ and 
 D 
1, there are two same fixed points satisfying 0 < x1;2 < 1, and they
are unstable. There is one stable state with allele frequency x D 0 in the process.

3. Finally we consider two imaginary fixed points jx1j D jx2j where the j:j denotes
the length for an imaginary points.

In the regime of parameters satisfying � 2 .2=.2N � 1C 2
p
N.N � 1//; 1/ and


 2 .�; 
1/, there are two imaginary fixed points in the system. There is only one
stable state with allele frequency x D 0. The population always evolves to the stable
state.

4.6 Estimation of Single Click Time

To evaluate the single click time and show the further power of adaptive landscape,
in the following we will demonstrate how the single click time from one relative
stable state to another is derived for Muller ratchet. We also start from backward
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Fokker–Planck equation as general treatment [37, 38], backward Fokker–Planck
equation corresponding to Eq. (50) under natural boundary condition can be
expressed in the following form

@t�.x; t/ D .f .x/C �D0.x//@x�.x; t/C �D.x/@2x�.x; t/: (60)

General single click time dependent on initial Dirac function satisfies

.f .x/C �D0.x//@xT .x/C �D.x/@2xT .x/ D �1: (61)

The general solution corresponding to Eq. (61) is

T .x/ D
Z x

0

dy
1

�D.y/
exp.�ˆ.y//

Z 1

y

d z exp.ˆ.z//; (62)

hereˆ.x/ D R x
dx0.f .x0/=D.x0//.� D 1/.

Here the evolutionary process occurs when x 2 Œ0; 1�. We are more interested
in the escape time between the two stable states with allele frequency x D 0 and
x D 1. Here the adaptive landscape has rich structure which contains escaping
from finite and infinite potential. In the escaping from finite potential process, there
are two important states x�, x�

0 . Interval .0; 1/ contains a potential well at x� and
a potential barrier at x�

0 . The single click time is composed of two elements, one
denotes forming process of fittest class, the other describes losing process of fittest
class. In general, the time spent on forming process is much smaller than that spent
on losing process. So the escape time approximates to the time spent on losing
process. Because we assume that near x�

0 we can write

ˆ.x/ � ˆ.x�
0 / � 1

2

�
x � x�

0

˛0

�2
: (63)

and near x�

ˆ.x/ � ˆ.x�/C 1

2

�
x � x�

ˇ0

�2
: (64)

At the same time, if the central maximum of ˆ.x/ is large compared with 1=N ,
then exp.ˆ.z// is sharply peaked at x�

0 , while exp.�ˆ.y//=D.y/ is very small near
y D x�. Equation (62) is evaluated as

T1!0 �
Z 0

x�

dy
1

D.y/
exp.�ˆ.y//

Z x�

0

1

d z exp.ˆ.z//

� 2�˛0ˇ0 exp.ˆ.x�
0 /�ˆ.x�//

D.x�/

/ 1

D.x�/
exp.ˆ.x�

0 /�ˆ.x�//: (65)
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From the expression of Eq. (65), the single click time is not sensitive to the boundary
assumption with x D 0 and x D 1, it is closely related to the potential difference
ˆ.x�

0 /�ˆ.x�/.
In the higher mutation rates regime, where x�

0 equals to a stable state x2, x�
corresponds to the unstable state x1 that the population lies between the adaptive
states 0 and x2. The potential barrier ˆ.x2/ � ˆ.x1/ is finite. The difference of
potential is

ˆ.x2/ �ˆ.x1/ D 2N�.1� 
/ � 1C 
�

1 � 
� ln

�
1 � x2 � x1

1 � x1
�

� ln

�
1C x2 � x1

x1

�

C2N.1 � �/
1 � 
�

ln

�
1C 
.1 � �/.x2 � x1/

1� 
 C x1
.1 � �/

�

D 2N�.1� 
/

1 � 
� ln

 
1 � 2

p
˛2 � ˇ

˛ �p
˛2 � ˇ

!

� ln

 
1 � 4.˛2 � ˇ/

.˛ �p
˛2 � ˇ/2

!
C 2N.1� �/

1 � 
�

� ln

 
1C 2

p
˛2 � ˇ

4N � 6 � 6N
 C 7
 � 
�C 2N�Cp
˛2 � ˇ

!
;

(66)

where ˛ and ˇ are the same as Eqs. (56) and (57). According to classical derivation,
corresponding to Eq. (62) the single click time approximates to

T1!0 D lim
x!1

Z x

0

dy
1

�D.y/
exp.�ˆ.y//

Z 1

y

d z exp.ˆ.z//

� 2N

Z x�

0

.1 � y/2N�.
�1/=.1�
�/

.1 � 
 C y
.1 � �//2N.1��/=.1�
�/
dy

�
Z 1

x�

0

z�1.1 � z/.
��1�2N�.
�1//=.1�
�/

�.1 � 
 C 
z.1 � �//2N.1��/=.1�
�/d z

� 1

D.x�/
exp.ˆ.x2/ �ˆ.x1//

� N.N � 1/2
2.1 � �/2
.˛ �p

˛2 � ˇ/.4
.N � 1/.1 � �/ � ˛ Cp
˛2 � ˇ/

: (67)

The approximated single click time varies with mutation rates. The single click time
T1!0 increases with population size N in certain regime, decreases with mutation
rates � and selection rates 
 in the parameters regime � 2 .2N=4N.N � 1/; 1/ and
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 2 .
1; .2N��1/=.2N���//. When mutation rate holds constant, with selection
rates increasing, the difference of potential between two fixed points decreases, the
viability of suboptimal class decreases, the population evolves to the fittest class. On
the other hand, when selection holds constant, with deleterious mutation increasing,
the population of suboptimal class increases, the difference of potential between two
fixed points decreases.

For the lower mutation rates regime, where the potential barrier is infinite. The
landscape has U-shape. The single click time can also be estimated under the
condition of weak mutation and weak selection, x� corresponds to the fixed point
x1 that the population lies at the lowest potential.

TEscape.1 ! 0/ � TMFPT .1 ! 0/

� 2N

Z 1

0

.1 � y/2N�.
�1/=.1�
�/

.1 � 
 C y
.1 � �//2N.1��/=.1�
�/
dy

�
Z 1

x�

0

z�1.1 � z/.
��1�2N�.
�1//=.1�
�/

�.1 � 
 C 
z.1 � �//2N.1��/=.1�
�/d z

� 1 � 
�
�.1 � 
/

: (68)

From expression of Eq. (68), the single click time goes to infinity with mutation rates
tending to zero in the parameters regimes of � 2 .0; 1=.2N � 1// and 
 2 .�; 1/.
The results of the single click time are not sensitive to the population size.

Analogous to the derivation of TEscape.1 ! 0/, we can calculate

T0!1 D lim
x!0

Z 1

x

dy
1

�D.y/
exp.�ˆ.y//

Z y

0

d z exp.ˆ.z//

� lim
x!0

2N

Z 1

x

.1 � y/2N�.
�1/=.1�
�/

.1 � 
 C y
.1 � �//2N.1��/=.1�
�/ dy

�
Z y

0

z�1.1 � z/.
��1�2N�.
�1//=.1�
�/

�.1 � 
 C 
z.1 � �//2N.1��/=.1�
�/d z

� 2N

Z 1

0

.1 � y/2N�.
�1/=.1�
�/

.1 � 
 C y
.1 � �//2N.1��/=.1�
�/ dy

�
Z y

0

.z�1 C : : :/d z

! 1: (69)

From expression of Eq. (69), the single click time goes to infinity with mutation
rates being zero.
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Our results show that the expected time to loss of the fittest class can be predicted
for a wide range of parameter values that appear to be biologically relevant.
Furthermore our results show that the time is insensitive to population size in the
presence of weak mutation and weak selection. This tells us that the ratchet process
may occur in finite but not small populations.

5 Discussion

Adaptive landscape introduced by Sewall Wright, a re-emerging powerful concept
in systems biology, is used as a tool to describe complex biological processes.
In the past Prugel-Bennett and Shapiro, Rattray took analogies between popula-
tion evolution and statistical physics and proposed maximum polymorphism to
approximate polygenic system. Their method does not ensure that the arbitrary
entropy measure converges to the correct stationary distribution, though it makes
accurate prediction. Barton group uses information entropy measure to analyze the
process of population evolution analogous to statistical thermodynamics. It points
out that the method works only for high mutation rates and breaks down for low
mutation rates [15], though this method ensures the convergence to the correct
stationary distribution by maximizing introduced entropy. In a word, past methods
of constructing adaptive landscape must need the normalization of stationary
distribution. The present chapter manifests the nonlinear and complex dynamics
of the evolutionary system by adaptive landscape analytically. Especially it can
describe the dynamical behavior under the action of random drift. Waxman and
Loewe [26] studied the same process, but they put Dirac function at boundary. This
results in the solution not satisfying the equation. The theoretical results suggest
our constructive potential function may be a reasonable candidate to quantify the
adaptive landscape and investigate the complex biological processes.

Recently, Zhou and Qian [39] also constructs landscape function to study the
complex dynamical property by discrete and diffusion Moran process. They also
meet the dilemma diffusion approximation and mismatch between fixed points
and extrema of adaptive landscape. But this mismatch can be explained in our
constructive method. Our method does not need the existence and normalization of
the stationary distribution. Our constructive method is independent of the stationary
distribution. Our method investigates the long-term dynamical property of the
system and reduces the complexity of calculating stochastic differential equations.
Our adaptive landscape can give a new definition of neutral evolutionary, that is,
the population is under the equal action of mutation and random drift. And the
analytical results of mutation-random drift balance are consistent with the results in
general textbook [21]. Whatever its shape and its singularity, the adaptive landscape
characterizes globally the complex dynamical behaviors for a system.

Acknowledgments The critical discussion with Prof. Zhu Xiaomei is appreciated. We also thank
Jiang Pengyao, Wang Yanbo, and other members in the lab for their constructive comments.



188 S. Jiao et al.

References

1. Wright S (1932) The role of mutation, inbreeding, crossbreeding and selection in evolution.
Proc Int Congr Genet 1:356–366

2. Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution
30:314–334

3. Arnold SJ, Pfrender ME, Jones AG (2001) The adaptive landscape as a conceptual bridge
between micro and macroevolution. Genetica 112–113: 9–32

4. Wright S (1988) Surfaces of selective value revisited. Am Nat 131:115–123
5. Wright S (1967) Surfaces of selective value. Proc Natl Acad Sci 131:165–172
6. Provine WB (1986) Sewall Wright and evolutionary biology. University of Chicago Press,

Chicago, IL
7. Weinreich DM, Sindi S, Watson RA (2013) Finding the boundary between evolutionary basins

of attraction, and implications for wrights fitness landscape analogy. J Stat Mech Theor Exp
01:P01001

8. Gyllenberg M, Metz JAJ, Service R (2011) When do optimisation arguments make evolution-
ary sense? In: Fabio ACC Chalub, Jos Francisco Rodrigues (eds) The mathematics of Darwin’s
legacy. Springer, Basel, pp 233–288

9. Ao P (2009) Global view of bionetwork dynamics: adaptive landscape. J Genet Genom 36:
63–73

10. Kaplan J (2008) The end of the adaptive landscape metaphor? Biol Philos 23:625–638
11. Gavrilets S (1997) Evolution and speciation on holey adaptive landscapes. Trends Ecol Evol

12:307–312
12. Ao P (2008) Emerging of stochastic dynamical equalities and steady state thermodynamics

from Darwinian dynamics. Comm Theor Phys 49:1073–1090
13. Ao P (2005) Laws in Darwinian evolutionary theory. Phys Life Rev 2:117–156
14. Pigliucci M, Kaplan J (2006) Making sense of evolution: the conceptual foundations of

evolutionary thoery. University of Chicago Press, Chicago, IL
15. de Vladar HP, Barton NH (2009) Statistical mechanics and the evolution of polygenic

quantitative traits. Genetics 181:997–1011
16. Coe JB, Barton NH (2009) On the application of statistical physics to evolutionary biology.

J Theor Biol 259:317–324
17. Assaf M, Mobilia M (2011) Fixation of deleterious allele under mutation pressure and finite

selection intensity. J Theor Biol 275:93–103
18. Bharucha-Reid AT (1960) Elements of the theory of Markov processes and their applications.

McGraw-Hill, New York
19. Feller W (1954) Diffusion processes in one dimension. Trans Am Math Soc 77:1–31
20. Kimura M (1964) Diffusion models in population genetics. J Appl Prob 1:177–232
21. Ewens WJ (2004) Mathematical population genetics. Springer, New York
22. Ao P (2004) Potential in stochatic differential equation: novel construction. J Phys Math Gen

37:25–30
23. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford
24. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159
25. Blythe RA, McKane AJ (2007) Stochastic models of evolution in genetics, ecology and

linguistics. J Stat Mech Theor Exp 2007:P07018
26. Waxman D, Loewe L (2010) A stochastic model for a single click of Muller’s ratchet. J Theor

Biol 264:1120–1132
27. Van Nimwegen E, Crutchfield JP, Huynen M (1999) Neutral evolution of mutational robust-

ness. Proc Natl Acad Sci 96:9716–9720
28. Krakauer DC, Plotkin JB (2002) Redundancy, antiredundancy, and the robustness of genomes.

Proc Natl Acad Sci 99:1405–1409
29. Waxman D (2007) Singular solutions of the diffusion equation of population genetics. J Theor

Biol 247:849–858



Adaptive Landscape with Singularity in Evolutionary Processes 189

30. Gillespie JH (2004) Population genetics: a concise guide. The Johns Hopkins University Press,
Baltimore

31. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica 7:284–304

32. Xu S, Jiao SY, Jiang PY, Yuan B, Ao P (2012) Escape from infinite adaptive peak. In:
Proceedings of Sixth International Conference on System Biology, 268–273, Xi’an, 18–20
August (2012)

33. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res Fund Mol
Mech Mutagen 1:2–9

34. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, England
35. Etheridge A, Pfaffelhuber P, Wakolbinger A (2009) How often does the ratchet click? Facts,

heuristics, asymptotics. In: Bath J, Mörters P, Scheutzow M (eds) Trends in stochastic analysis.
Springer, Basel, pp 233–288

36. Jiao SY, Ao P (2012) Absorbing phenomena and escaping time for Muller’s ratchet in adaptive
landscape. BMC Syst Biol S1:S10

37. Van Kampen NG (1992) Stochatic processes in physics and chemistry. North Holland,
Amsterdam

38. Ø ksendal B (2003) Stochatic differential equations: an introduction with applications.
Springer, Berlin

39. Zhou D, Qian H (2011) Redundancy, antiredundancy, and the robustness of genomes. J Theor
Biol 99:1405–1409



Scaffolding of Complex Systems Data

Philippe Blanchard and Dimitri Volchenkov

Abstract Complex systems, in many different scientific sectors, show coarse-grain
properties at different levels of magnification. Discrete data sequences generated
by such systems call for the relevant tools for their classification and analysis.
We show that discrete time scale-dependent random walks on the graph models of
relational databases can be generated by a variety of equivalence relations imposed
between walks (e.g., composite functions, inheritance, property relations, ancestor–
descendant relations, data queries, address allocation and assignment polices). The
Green function of diffusion process induced by the random walks allows to define
scale-dependent geometry. Geometric relations on databases can guide the data
interpretation. In particular, first passage times in a urban spatial network help to
evaluate the tax assessment value of land. We also discuss a classification scheme
of growth laws which includes human aging, tumor (and/or tissue) growth, logistic
and generalized logistic growth, and the aging of technical devices. The proposed
classification permits to evaluate the aging/failure of combined new bio-technical
“manufactured products,” where part of the system evolves in time according
to biological-mortality laws and part according to technical device behaviors.
Moreover it suggests a direct relation between the mortality leveling-off for humans
and technical devices and the observed small cure probability for large tumors.

1 Introduction

There is an impressive number of experimental verifications, in many different sci-
entific sectors, that coarse-grain properties of systems, with simple laws with respect
to fundamental microscopic algorithms, emerge at different levels of magnification
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providing important tools for explaining and predicting new phenomena. Discrete
data sequences obtained from observations of complex systems consisting of many
interacting elementary parts are ubiquitous in the real world. The most of such
systems are often considered computationally irreducible [52, 53] which means
that the only way to decide about their evolution is to let them evolve in time.
By capturing how the individual data units in the observed data sequences are
related to each other, we can convert it into a relational database subjected to further
investigations.

In our work, we, first, propose a method of feature extraction for relational
databases by introducing different equivalence relations on the set of walks over its
graph model (Sect. 2) following [49], and, second, describe the generalization of the
classification scheme of growth and aging of complex systems (Sect. 3) following
[13]. In Sect. 2.1, we discuss a general process of data interpretation based on the
implicit introduction of certain equivalence relation on the set of walks defined
on the database. In Sect. 2.2, we show that every equivalence relation specifies a
stochastic matrix describing transitions of a discrete time scale-dependent random
walk over the database such that equivalent walks correspond to equiprobable
random walks. The main motivation for introducing a scale-dependent random
walks originates from the basic observation that databases can include information
about processes evolving in different spatial and temporal scales, and they can be
structurally composed of different segments at different scales. This implies that
real-world systems, in contrast to idealized mathematical models, may appear in
different ways depending on the scale of observation. While analyzing the data from
unknown sources, there is no way to know a priori what scales are appropriate for
describing the interesting structures in that. Hence, the only reasonable approach is
to consider descriptions at multiple scales in order to be able to capture the unknown
scale variations that may occur. Scale-dependent random walks can play the role of
suitable guidance structures, or “scaffolds” of the real world data. Given a scale-
dependent random walk defined by a transition matrix, we define the geometry of
self-avoiding diffusion on the graph model (see Sect. 2.3). In Sect. 2.4, we give an
example of application of the diffusion geometry in estimation of tax assessment
value of land in Manhattan.

Further, in Sect. 3 we focus our attention on the problem of growth and aging
statistics arising in many a priori unrelated systems showing similar emergent
properties. The understanding of aging and of late-life mortality is still an open
problem and many interesting models have been proposed to explain the similar
behavior in metabolic systems and in technical devices [22]. Moreover, a unifying
language for the description of performance of metabolic and technical production
and distribution has been recently suggested [4] to implement the idea that the
robustness of metabolic systems with respect to environmental changes could
represent a useful model for technical systems. A very important example is the
Gompertz law (GL) [25] which applies to human mortality tables (i.e. aging) and
tumor growth [39, 45, 50]. A general classification scheme for phenomenological
universalities in growth laws has been given in [14]. The generalization of the
classification scheme of growth laws, including human aging, tumor (and/or tissue)
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growth, logistic and generalized logistic growth, and the aging of technical devices,
has been addressed in [13]. In Sect. 3, we consider two applications of the proposed
approach: (a) a method to evaluate the aging/failure of combined new bio-technical
“manufactured product,” where part of the system evolves in time according to
biological-mortality laws and part is a technical device; (b) an interpretation of
the “tumor size effect,” i.e. the small cure probability for large tumor[5, 34, 44],
in analogy with the late-life mortality in aging. The generalized growth problem
is discussed in Sect. 3.1. The general classification scheme of growth laws is
considered in Sect. 3.2. We conclude in the last section (Sect. 4).

2 Geometry of Equivalence Partitions of Walks
on a Relational Database

2.1 Equivalence Partitions of Walks on a Relational Database

The analysis of data collected over the real-world systems starts with the abstraction
of independent entities capable of representing some data aspect distinguishable
from other aspects over the complexity of a domain. By capturing how the entities
are allied to one another by the binary relationships, one converts the data into
a relational database. In a graph model of the relational database, entities and
binary relationships can be thought of as vertices (nodes or states) V and edges
(arcs or relationships) E � V � V , respectively. We suppose that the database is
finite that is jV j D N and jE j D E . The relationships between the vertices V are
characterized by the set of edge utility functions,

S E D fA jA W E ! S g ;

with the domain E and the codomain S � R
C that associate with each relation a

positive, real measure of its performance. For example, a characteristic functionA W
E ! f0; 1g defined as A.e/ D 1, if e 2 E , and A.e/ D 0 otherwise, represents the
Boolean valued relationships between vertices, the adjacency matrix of the graph
model.

We call a succession of n adjacent edges e1 � e2 � : : : en�1 connecting a series
of vertices in the graph model as a walk of length n � 1. The edge utility product
function

An W E � E � : : : � E ! S

characterizes the total aggregated utility of all n�walks W n over the database.
Walks on a relational database can correspond to a composite function acting from
the source to the destination, a variety of inheritance, property-subproperty, and
ancestor–descendant relationships between vertices, data queries (in the process of
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information retrieval), the address allocation and assignment policies (in the process
of data storage), a coding function on a space of genetic algorithms into a space of
chromosomes, etc.

The process of data interpretation (or classification) is always based on the
implicit introduction of certain equivalence relations (i.e., reflexive, symmetric, and
transitive) on W n. Different equivalence relations over sequences of identification
characteristics lead to different concepts of taxonomic categories. For example,
the definition of “species” as a group of organisms capable of interbreeding
and producing fertile offspring is a well-known wicked problem in biology. The
decision upon which species an organism belongs to crucially depends upon a
pragmatic choice based on the particularities of the species of concern and is by no
means immutable, as new data may indicate that one previously described species
actually includes two or more separately evolving groups, each of which could
justifiably be recognized as a separate species. Moreover, the standard definition (of
reproductive isolation) that works well for some organisms (mostly eukaryotes) can
be useless for others (prokaryotes). Species appear to us as typical natural kinds (for
example, the species that we call “giraffe” is a category of things that people have
recognized have a lot in common with each other); however, when biologists turn to
understand species evolutionarily they are revealed as changeable and without sharp
boundaries [30].

Given an equivalence relation R is given, we define the equivalence class of a
walk w 2 W n under R to be the set

W n
R .w/ D fvj 2 W n and wRvg :

Then the set of all possible equivalence classes (the quotient set) of W n by R is

W n=R D fW n
R .w/j W n

R .w/ � W n and w 2 W ng :

The projection

pR.w/ W W n ! W n=R

assigning an equivalence class W n
R .w/ to each w 2 W n describes the partition of

W n into W n=R by R. It is worth a mention that a function TR W W n ! S such
that wRv implies

TR.w/ D TR.v/

can be chosen to be a probability to follow the walk w 2 Wn, so that all walks
equivalent to w by R are equiprobable.
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It is known from the theorem on projections [8] that there is exactly one function
gR W W n=R ! S , for which TR D gR ı pR, so that the following diagram
commute:

Let us denote the set of all functions TR W W n ! S which respect R for each set
S as

FE .S / D fTRjTR W W n ! S and wRv ) TR.w/ D TR.v/g :
Then the projectionpR 2 FE .S /, and any function TR 2 FE .S / constant on each
equivalence class factors uniquely through pR [8]. If TR is the probability to follow
a walk among all walks W n, the projection pR equals the probability to choose the
walk over its equivalence class W n

R .w/, and g.n/R is the total utility of walks in the
equivalence class.

2.2 Equivalence Partitions and Scale-Dependent
Random Walks

Given a probability measure on the set W n, every equivalence relation over
walks specifies a stochastic matrix describing transitions of a discrete time scale-
dependent random walk between vertices V such that equivalent walks correspond
to equiprobable random walks.

For example, two walks, w and v, can be regarded as equivalent by wRxv if they
start at the same vertex x 2 V , or as equivalent by wRyv if they end at the same
vertex y 2 V . The utility functions for the equivalence classes W n

Rx
and W n

Ry
are

g
.n/
Rx

D ıxiA
n
i;j ; g

.n/
Ry

D ıj;y
�
A>�n

i;j

where ıa;b is the Kronecker symbol. Then the projections describing the partitions
of the set Wn into the quotient sets, W n=Rx and W n=Ry are given by

p
.n/
Rx

D D�1
n ; p

.n/
Ry

D D�1
n

where
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Dn D diag

 
NX
iD1

An1;i ; : : : ;

NX
iD1

AnN;i

!

and

D0
n D diag

 
NX
iD1

�
A>�n

i;1
; : : : ;

NX
iD1

�
A>�n

i;N

!

are the diagonal matrices of aggregated utilities, for each equivalence class. The
transition probabilities while following the walks that belongs to the equivalence
classes W n

Rx
and W n

Ry
are given by the following stochastic matrices,

T
.n/
Rx

D D�1
n An; and T

.n/
Ry

D �
A>�n D0�1

n ; (1)

respectively. The matrices defined in Eq. (1) coincide if the matrix A is symmetric.
The elements of the left eigenvectors belonging to the biggest eigenvalue of T .n/Rx

and

T
.n/
Ry

are nothing else but the centrality measures defined as the fractions of n-walks
starting at the vertex x, or ending at y,

�
.n/
Rx
.x/ D

P
j2V A

n
x;jP

i;j2V A
n
i;j

; �
.n/
Ry
.y/ D

P
j2V

�
A>�n

j;yP
i;j2V

�
A>�n

i;j

: (2)

In the case of an undirected graph, W n
Rx

	 W n
Ry

, the first centrality measure,

�
.1/
Rx

D �
.1/
Ry

D deg.x/

2E
;

is the well-known stationary distribution of the nearest-neighbor random walks.
To illustrate a dramatic dissimilarity of random walks for different values of n,

we performed a simple simulation of two different random walks spread from the
lower left corner of the square 30 � 30 containing a number of obstacles along
the main diagonal. In Fig. 1a, we have presented a contour density plot of random
walkers after 100 iterations, in accordance with the usual nearest neighbor random
walk transition T .1/Rx

. The contour density plot of random walkers after 100 iterations

for T .10/Rx
is shown in Fig. 1b.

While the random walks T .10/Rx
(Fig. 1b) have already reached the stationary

distribution, and its density stopped changing by t D 100, the random walks T .1/Rx
(Fig. 1a) still undergo a transient process, and their density is far from fixed. Random
walks T .1/Rx

cover all available space uniformly, including the spaces between

obstacles. In contrast to them, the random walks T .10/Rx
are “repelled from obstacles,”

as their density between the obstacles is minimal, and they do not penetrate beyond
the obstacle at the upper right corner of the square.
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Fig. 1 Two different random walks spread from the lower left corner of the square 30 � 30

containing a number of obstacles along the main diagonal. (a) The contour density plot of random
walkers after 100 iterations, in accordance with the usual nearest neighbor random walk transition
T
.1/
Rx

. (b) The contour density plot of random walkers after 100 iterations for T .10/Rx

Provided the matrix A is irreducible, the Perron–Frobenius theorem (see, for
example, [26]) states that its dominant eigenvalue ˛ > 0 is simple, and the
corresponding left and right eigenvectors can be chosen positive,

A� D ˛�; �i > 0; and '>A D ˛'T ; 'i > 0:

As n ! 1, the elements of the transition matrices (Eq. 1) tend to the constant row
matrices,

limn!1


T
.n/
Rx

�
x;y

D
h

'xP
x2V 'x

i
xD1;:::;N D limn!1



�
.n/
Rx
.x/
�
;

limn!1


T
.n/
Ry

�
x;y

D
h

�yP
y2V �y

i
yD1;:::;N

D limn!1


�
.n/
Ry
.y/
�
:

(3)

The intersection of the equivalence relations,Rx\Ry , is also an equivalence relation
on W n. The total utility function for the equivalence class W n

Rx\Ry is

g
.n/
Rx\Ry D ıx;i ıy;j A

n
i;j :

Then the uniform probability to follow a walk w 2 W n among all equivalent walks
(from x to y) equals

p
.n/
Rx\Ry D 1

˛n
�y

�x
;

and therefore the transition probability to follow such a walk is

T
.n/
Rx\Ry D Anx;y�y

˛n�x
: (4)
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It is clear that since X
y2V

Anx;y�y D ˛n�x;

it is always X
y2V

T
.n/
Rx\Ry D 1:

It is interesting that the stochastic matrices defined by Eq. (4) for any n share the
same Perron eigenvector,

�Rx\Ry .i/ D 'i�i ;

i 2 V . As n ! 1, the elements of the transition matrix (Eq. 4) tend to the constant
row matrix,

lim
n!1



T
.n/
Rx\Ry

�
x;y

D lim
n!1

˛n�x'y�y

˛n�x
D �

'y�y
	
yD1;:::;N D �Rx\Ry .y/: (5)

The stochastic matrices defined by Eqs. (1) and (4) satisfy the Chapman–Kolmogorov
equation

P .n/
x;y D

X
v2V

P .	/
x;vP

.t�	/
v;y ; 0 < 	 < t;

which relates the probabilities

P
.t/
i;j D �

T .n/
�t
i;j

of the t > 0 transitions between the states i and j .

2.3 Self-Avoiding Diffusion Geometry of Undirected Graphs

Given a random walk defined by a transition matrix T on a finite connected
undirected weighted graph G.V ;E /, all vertices and their subsets can be char-
acterized by certain probability distributions and characteristic times [10]. The
stationary distribution of random walks (the left eigenvector of the transition matrix
T belonging to the maximal eigenvalue � D 1) determines a unique measure
on V with respect to which the transition operator T becomes self-adjoint and is
represented by a symmetric transition matrix OT . The use of self-adjoint operators
(such as the normalized graph Laplacian) becomes now standard in spectral graph
theory, [16] and in studies devoted to random walks on graphs, [36]. Diagonalizing
the symmetric matrix OT , we obtain

OT D �M�>;
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where � is an orthonormal matrix,

�> D ��1;

andM is a diagonal matrix with entries

1 D �1 > �2 � : : : � �N > �1
(here, we do not consider bipartite graphs, for which �N D �1). The rows

 k D f k;1; : : : ;  k;N g
of the orthonormal matrix � are the real eigenvectors of OT that forms an orthonor-
mal basis in Hilbert space H .V /;  k W V ! SN�1

1 ; k D 1; : : : N , where
SN�1
1 is the N � 1-dimensional unit sphere. We consider the eigenvectors  k

ordered in accordance with the eigenvalues they belong to. For eigenvalues of
algebraic multiplicitym > 1, a number of linearly independent orthonormal ordered
eigenvectors can be chosen to span the associated eigenspace. The first eigenvector
 1 belonging to the largest eigenvalue �1 D 1 (which is simple) is the Perron–
Frobenius eigenvector that determines the stationary distribution of random walks
over the graph nodes,

 21;i D �i :

The diffusion process is described by the irreducible Laplace operator

L D 1� T

which has the one-dimensional null space spanned by the vector � . As being
a member of the multiplicative group under the ordinary matrix multiplication
[20, 37], the Laplace operator possesses a group inverse (a special case of Drazin
inverse, [6, 17, 37]) with respect to this group, L], which satisfies the following
conditions [20]:

LL]L D L; L]LL] D L]; and
�
L;L]

	 D 0;

where ŒA;B� D AB � BA denotes the commutator of matrices. The last condition
implies that L] shares the same set of symmetries as the Laplace operator, being
the Green function of the diffusion equation. The methods for computing the group
generalized inverse for matrices of rank.L/ D N�1 have been developed in [12,43]
and by many other authors. Perhaps, the most elegant way is by considering the
eigenprojection of the matrix L corresponding to the eigenvalue �1 D 1 � �1 D 0

developed in [1, 12, 29],

L] D .LCZ/�1 �Z; Z D
Y
�i¤0

.1 �L=�i / ; �i D 1 � �i (6)
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where the product in the idempotent matrix Z is taken over all nonzero eigenvalues
�i>1 of L. The eigenprojection (Eq. 6) can be considered as a stereographic
projection that projects the points  k on the sphere SN�1

1 to a projective manifold
such that all vectors collinear to the vector  1 (corresponding to the stationary
distribution of random walks) are projected onto a common image point. Since

 1;i 	 p
�i > 0

for any i 2 V , we can define the new basis vectors
˚
 0
k

�N
kD1, spanning the projection

space PR.N�1/
� , such that

 0
k D .1;  2;i = 1;i ; : : : ;  N;i = 1;i / :

We define the inner product between any two vectors �; � 2 R
N by

.�; �/T D �
�; L]�

�
: (7)

The inner product (Eq. 7) is a symmetric real valued scalar function that allows us
to define the (squared) norm of a vector � by

k � k2T D �
�; L]�

�
(8)

and an angle � 2 Œ0; 180o� between two vectors,

� D arccos

�
.�; �/T

k � kT k � kT

�
: (9)

The Euclidean distance between two vectors is given by

k� � �k2T D k � k2T C k � k2T � 2 .�; �/T : (10)

For instance, let us consider the vector ei D f0; : : : 1i ; : : : 0g pointing at the vertex i
of the graphG in the canonical basis. The spectral representation of the generalized
inverse for undirected graphs [10] is given by

L
]
i;j D

NX
kD2

1

�k

 i;k

 i;1

 j;k

 j;1
; i; j D 1; : : : ; N; (11)

in which �k are all nontrivial eigenvalues of the Laplace operator. The matrix
(Eq. 11) is real symmetric semi-positive, as its smallest eigenvalue �1 D 0.
Accordingly Eq. (8), the spectral representation for the squared norm of ei equals
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k ei k2T D 1

�i

NX
sD2

 2s;i

�s
: (12)

In the theory of random walks on undirected graphs [36], the latter result is known as
the spectral representation of the first passage time to the node i 2 V , the expected
number of steps required to reach the node i for the first time (i.e., without visiting
any node twice) starting from a node randomly chosen among all nodes of the graph
according to the stationary distribution � . The Euclidean distance between any two
nodes of the graph induced by the random walk,

Ki;j D �� ei � ej
��2
T

D
NX
sD2

1

�s

 
 s;ip
�i

�  s;jp
�j

!2
; (13)

is nothing else but the commute time, the expected number of steps required for a
random walker starting at i to visit j and then to return to i , without visiting any
node twice [36]. The commute time can be represented as a sum,Ki;j D Hi;jCHj;i ,
in which

Hi;j D k ei k2T � �
ei ; ej

�
T

(14)

is the first-hitting time which is the expected number of steps a random walker
starting from the node i needs to reach j for the first time, [36]. The zero-diagonal
matrix of first-hitting times is not symmetric,Hi;j ¤ Hj;i , even for a regular graph.
Its average with respect to the first index equals the first-passage time to the node,

��ej
��2
T

D
X
i2V

�iHi;j : (15)

It is worth a mention that matrix (Eq. 11) can be considered as the Gram matrix,
L] D �Oei ; Oej �, with respect to the usual dot product of vectors in the projection
space PR

.N�1/. The vector

Oei D
�

1p
�2

 2;i

 1;i
; : : : ;

1p
�N

 N;i

 1;i

�
D

�
 0
2;ip
�2
; : : : ;

 0
N;ip
�N

�
(16)

represents an image of the vertex i 2 V in the projection space PR
.N�1/. The

image of the graphG.V ;E / in the projection space PR
.N�1/ constitutes a diffusion

manifold of self-avoiding random walks (in which nodes cannot be visited twice) in
affine subspace, as we can subtract vertices (by componentwise subtracting of their
images (Eq. 16)) to get vectors, or add a vector to a vertex to get another vertex, but
we cannot add new vertices. It seems natural to describe the structural properties
of the graph using the topology of the manifold of self-avoiding diffusion in the
projection space PR

.N�1/. The differential geometric structure on the manifold can
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be defined using the topology of the manifold of symmetric positive-definite tensors
specified at every vertex of the graph. A Riemannian structure on the manifold can
be introduced with respect to the different connections on the tangent bundle of
the space of symmetric matrices. First, the Hessian Riemannian structure [18] can
be introduced at each point x 2 PR

.N�1/, for every function f .x/ such that the
Hessian gyz.x/ D ry ˝ rz.x/f .x/ is positive definite, where the finite difference
operator ry.x/ D .y � x/=ky � xkPR.N�1/ . Second, a Riemannian structure of non-
positive curvature can be introduced with the help of the affine invariant Riemannian
metric [7, 41] invariant with respect to inversions and similarity transformations of
the symmetric positive-definite (SPD) diffusion tensors defined at each point x 2
PR

.N�1/,

Dy;z.x/ D .y � x/˝ .z � x/ ; x; y; z 2 PR
.N�1/: (17)

The .N � 1/ � .N � 1/ matrix (Eq. 17) is always diagonalizable, with strictly real
positive eigenvalues.

2.4 Example: First-passage Times Estimate Land Value
in Manhattan

In space syntax theory (see [31, 32]), built environments are treated as systems
of spaces of vision subjected to a configuration analysis. Being irrelevant to the
physical distances, spatial graphs representing the urban environments are removed
from the physical space. It has been demonstrated in multiple experiments that
spatial perception shapes peoples understanding of how a place is organized and
eventually determines the pattern of local movement, [32]. The aim of the space
syntax study is to estimate the relative proximity between different locations and
to associate these distances with the densities of human activity along the links
connecting them [3, 28, 51]. In the present section, we take a “named-streets”-
oriented point of view on the decomposition of urban spatial networks into the
complete sets of intersecting open spaces following our previous works [47, 48].
Being interested in the statistics of random walks defined on spatial networks of
urban patterns, we assign an individual street ID code to each continuous segment
of a street. The spatial graph of urban environment is then constructed by mapping
all edges (segments of streets) of the city map shared the same street ID into nodes
and all intersections among each pair of edges of the primary graph into the edges
of the secondary graph connecting the corresponding nodes.

The notion of isolation acquires the statistical interpretation by means of random
walks. The first-passage times in the city vary strongly from location to location.
Those places characterized by the shortest first-passage times are easy to reach
while very many random steps would be required in order to get into a statistically
isolated site.
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Fig. 2 Isolation map of Manhattan. Isolation is measured by first-passage times to the places.
Darker color corresponds to longer first-passage times

Being a global characteristic of a node in the graph, the first-passage time assigns
absolute scores to all nodes based on the probability of paths they provide for
random walkers. The first-passage time can therefore be considered as a natural
statistical centrality measure of the node within the graph, [9].

A visual pattern displayed in Fig. 2 represents the pattern of structural isolation
(quantified by the first-passage times) in Manhattan (darker color corresponds to
longer first-passage times). It is interesting to note that the spatial distribution of
isolation in the urban pattern of Manhattan (Fig. 2) shows a qualitative agreement
with the map of the tax assessment value of the land in Manhattan reported by B.
Rankin (2006) in the framework of the RADICAL CARTOGRAPHY project being
practically a negative image of that.

Recently, we have discussed in [9] that distributions of various social variables
(such as the mean household income and prison expenditures in different zip code
areas) may demonstrate the striking spatial patterns which can be analyzed by means
of random walks. In the present work, we analyze the spatial distribution of the tax
assessment rate (TAR) in Manhattan.

The assessment tax relies upon a special enhancement made up of the land or
site value and differs from the market value estimating a relative wealth of the place
within the city commonly referred to as the “unearned” increment of land use [11].
The rate of appreciation in value of land is affected by a variety of conditions, for
example it may depend upon other property in the same locality, will be due to a
legitimate demand for a site, and for occupancy and height of a building upon it.

The current tax assessment system enacted in 1981 in the city of New York
classifies all real estate parcels into four classes subjected to the different tax rates
set by the legislature: (1) primarily residential condominiums; (2) other residential
property; (3) real estate of utility corporations and special franchise properties;
(4) all other properties, such as stores, warehouses, and hotels. However, the
scarcity of physical space in the compact urban pattern on the island of Manhattan
will naturally set some increase of value on all desirably located land as being
a restricted commodity. Furthermore, regulatory constraints on housing supply



204 P. Blanchard and D. Volchenkov

Fig. 3 Tax assessment rate (TAR) of places in Manhattan (the vertical axes, in $/fit2) is shown in
the logarithmic scale vs. the first-passage times (FPT) to them (the horizontal axes)

exerted on housing prices by the state and the city in the form of “zoning taxes”
are responsible for converting the property tax system in a complicated mess of
interlocking influences and for much of the high cost of housing in Manhattan, [24].

Being intrigued with the likeness of the tax assessment map and the map of
isolation in Manhattan, we have mapped the TAR figures publicly available through
the Office of the Surveyor at the Manhattan Business Center onto the data on first-
passage times to the corresponding places. The resulting plot is shown in Fig. 3, in
the logarithmic scale. The data presented in Fig. 3 positively relates the geographic
accessibility of places in Manhattan to their “unearned increments” estimated by
means of the increasing burden of taxation. The inverse linear pattern dominating
the data is best fitted by the simple hyperbolic relation between the tax assessment
rate (TAR) and the value of first-passage time (FPT),

TAR / c

FPT
; (18)

in which c ' 120; 000 $ � Step=fit2 is a fitting constant.
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3 Unified Approach to Growth and Aging in Biological,
Technical, and Biotechnical Systems

3.1 Generalized Growth Problem

In general, a growth problem is characterized by a function f .t/, which describes
the time evolution of some macroscopic quantity, and by the specific rate, ˛,
defined as

1

f

df

dt
D ˛.t/:

In the GL ˛ has an exponential dependence on time:

1

f

df

dt
D ˛.t/ D a ebt ; (19)

where a and b are constants. In aging f .t/ indicates the survival probability; while
with regard to tumor growth it corresponds to the number of cells N.t/ (depending
on the specific case a and b can be positive or negative).

For technical devices the specific rate of the survival probability has a power-law
time behavior

1

f

df

dt
D ˛.t/ D a tn; (20)

with n > 1, called Weibull law (WL) [2, 42]. The analogy with the biological
systems is intriguing (for clarity, as necessary, one defines the specific rate ˛h.t/ for
the human mortality, ˛f .t/ for the technical systems and ˛c.t/ for tumor growth)
and deeper than the similarity between Eqs. (19) and (20).

Indeed, many independent analyses of experimental data on humans and animals
suggest that at advanced ages (more than 85–90 years for humans) there is a
deceleration in mortality [21, 40, 46]: in the large range 20–85 years for humans
the mortality rate is well described by the Gompertz law and then there is a late-life
mortality (although a definite conclusion has yet to be reached [23]). A similar trend
is observed for technical devices [19], confirming the analogy between biological
and technical systems.

3.2 General Classification Scheme

Let us start with the general classification scheme. It turns out that a classification
of the growth laws according to the simple equation

1

f

df

dt
D ˛.t/
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is obtained by considering the power expansion in ˛ of the function (see [14] for
details)

˚.˛/ D d˛

dt
D †ibi˛

i ; i D 0; 1; 2 : : : (21)

which for b0 D 0 and bi D 0 for i > 1 gives a time independent specific rate ˛0
and therefore an exponential growth; for b0 ¤ 0 and bi D 0 for i > 1 describes
a linear time-dependent specific rate and again an exponential growth; at the first
order in ˛, for b0 D 0, b1 ¤ 0 and bi D 0 for i > 1, reproduces an exponential time
behavior of the specific growth and therefore the GL; the second order term,O.˛2/,
for b0 D 0, b1; b2 ¤ 0 and bi D 0 for i > 2 generates the logistic and generalized
logistic growth.

The feedback effect, that is the dependence of the specific growth rate ˛ on the
function f .t/, can be easily derived by the temporal behavior of the specific rate.
For the GL for a growing number of cells,N.t/, one has the well-known logarithmic
nonlinearity,

1

N.t/

dN.t/

dt
D a � b ln

N.t/

N0
D b ln

N1
N.t/

Gompertz; (22)

and for the (generalized) logistic law one gets the typical power-law behavior

1

N.t/

dN.t/

dt
D c

�
1 �

�
N.t/

N1

���
gen: logistic; (23)

where a; b; c; � are constants and the carrying capacity,N1, corresponds to ˛ D 0.
In order to describe technical devices, the previous classification scheme has

to be generalized since the specific growth rate of Weibull law has a power law
dependence on time which is not reproduced by Eq. (21). The behavior

˛f .t/ ' tn;

with n positive integer, corresponds to terms O(˛.n�1/=n/ in the expansion of ˚.˛/
and therefore for a general classification scheme of the specific growth/aging/failure
rate of biological and technical systems one has to consider:

˚.˛/ D †1
n>2cn˛

.n�1/=n C†n	1bn˛n: (24)

Note that: (a) 0 < .n � 1/=n < 1 and the nth term in the power series in
˛.n�1/=n tends for large n to ˛, i.e. to the Gompertz law; (b) the term b0 ¤ 0,
i.e. the exponential growth, has been neglected because one considers the GL, the
generalized logistic or more complex growth laws for the biological systems (there
is no problem to include this term in the expansion); (c) the first sum in the expansion
has fractional powers that recall a Puiseux expansion.
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As a by-product of the proposed classification scheme one can easily evaluate
the aging/failure of combined new bio-technical “manufactured products” by taking
explicitly into account the mutual “interference” between the aging behavior of the
biological part and the failure of the technical one. The “interference” effect strongly
depends on the typical time scales in the coefficients cn and bn in the previous
expansion: if the life-time of the technical device is much larger than the life-time
of the biological part (or vice versa) there is essentially no effect [38].

Let us first consider aging/failure of a combined bio-technological “manufac-
tured product,” where part of the system evolves in time according to GL, i.e.
the term O.˛/, and the behavior of technical part is described by a single term
O.˛n�1=n/, i.e.

˚.˛/ D cn˛
.n�1/=n C b1˛ (25)

By introducing dimensionless variables in time unit 1=b1, i.e.

	 D b1t; N̨ D ˛

b1
; and Ncn D cnb

�1�1=n
1 ;

after simple calculations the time dependence of the specific rate is given by:

e	 D N̨
N̨0

h
1C Ncn

n
p N̨
in

h
1C Ncn

n
pN̨0

in ; (26)

where N̨0 D N̨ .	 D 0/. Of course in the limit cn ! 0 one recovers the GL and for
b1 ! 0 the Weibull one. By previous equation, for N̨0 D 1, one obtains:

ln N̨ D n ln
�
.1C Ncn/e	=n � Ncn

	
(27)

which describes the combined effect of the two growth laws. The quantitative effect
is depicted in Figs. 4 and 5 where the previous function is plotted for different values
of n at fixed Ncn and for various values of Ncn at fixed n.

The next step is to include the term b2˛
2 in the expansion of ˚.˛/ (b2 is

dimensionless) which corresponds to a generalized logistic evolution. As we shall
see this term is crucial in understanding the late-life mortality effect.

By repeating analogous calculations it turns out that

	 D ln. N̨= N̨0/�
Z N̨

N̨0
dx

b2 C Ncnx�.1�n/=n

1C b2x C Ncnx�1=n (28)

In Fig. 6 is shown that the term b2˛
2 completely changes the time evolution with

respect to GL and/or WL producing a leveling-off of the specific rate.



208 P. Blanchard and D. Volchenkov

0 1 2 3 4

τ
0

2

4

6

8

ln
α

GL
c_n=2 ; n= 4
c_n=2 ; n=6
c_n=2 ; n=8

Fig. 4 Comparison of the
GL, the WL, and the
combined effect for a
biotechnical device for ln N̨ .
	 D b1t and the curves are
for a fixed value of the
coefficient Ncn D 2 and
different values of n D 4; 6; 8

0 1 2 3 4

τ

0

5

10

15
ln

α

GL
n=6 ; c_n=2

n=6 ; c_n=4

n=6 ; c_n=8

Fig. 5 Comparison of the
GL, the WL, and the
combined effect for a
biotechnical device for ln N̨ .
	 D b1t and the curves are
for n D 6 and the coefficient
Ncn D 2; 4; 8

0 1 2 3 4
τ

0

5

10

15

ln
α

GL
GL+WL, n=6,c_n=8
GL+WL+O(α ^2 term) n=6,c_n=8,b_2=-0.02

Fig. 6 Comparison for ln N̨
of the GL, the WL, and the
effects of O.˛2/ term for
n D 6, Ncn D 8 and
b2 D �0:02

Therefore the general expansion of ˚.˛/ in Eq. (24) can describe the
aging/failure of any biological and technical system including the leveling-off
at late mortality which is obtained by taking into account the term O.˛2/ in ˚.˛/,
i.e. by the transition from the GL or WL to a logistic type law [33].
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The proposed unification scheme suggests a practical method to understand
growth patterns. Given a set of data on some growth process, the first step of
the analysis is a fit in power of ˛ of the derivative of the specific growth rate,
i.e. of the function ˚.˛/. Therefore: (a) if the best fit is linear, the growth is a
Gompertzian one; (b) if the best fit is quadratic, look at the sign of the coefficients of
the expansion. For b1 > 0 and b2 < 0 the growth is logistic (or generalized logistic)
corresponding to a competitive dynamics; (c) if the best fit indicates a fractional
power the growth follows the WL. Of course, it is always possible to obtain a
better agreement with data by increasing the number of coefficients. However,
should increasing the number of parameters indicate only a marginal improvement
in the description of data one concludes that the added terms in the expansion are
irrelevant.

4 Discussion and Conclusions

We have discussed the methods of structural analysis for graphs and databases.
The process of data classification is based on the implicit introduction of certain
equivalence relations on the set of walks over the database. Given a probability
measure on the set of walks, every equivalence relation specifies a stochastic
matrix describing transitions of a discrete time scale-dependent random walk on the
graph model of the database such that equivalent walks correspond to equiprobable
random walks. The Green function of the relevant diffusion process shares all
the symmetries of the graph and can be used in purpose of data geometrization.
In particular, the first passage times, the expected number of steps required for
a random walker starting from a node chosen randomly among all nodes of the
graph to reach the node for the first time, without visiting any node twice, can be
considered as a measure of accessibility to the node in the graph.

Sociologists think that isolation worsens an area’s economic prospects by reduc-
ing opportunities for commerce and engenders a sense of isolation in inhabitants,
both of which can fuel poverty and crime. It is well known that many social variables
demonstrate striking spatial distribution patterns, and therefore may be detected and
predicted by a structural analysis. In particular, we demonstrated that random walks
and diffusions defined on spatial city graphs might spot hidden areas of geographical
isolation in the urban landscape going downhill. First passage time to a place
correlates with assessed value of land in that. The method accounting the average
number of random turns at junctions on the way to reach any particular place in the
city from various starting points could be used to identify isolated neighborhoods in
big cities with a complex web of roads, walkways, and public transport systems.

We have also considered the generalization of the classification scheme of growth
laws including human aging, tumor growth, logistic and generalized logistic growth,
and the aging of technical devices.

As previously discussed, there is a deceleration of mortality in aging at late
time which is described as a “transition” from a Gompertz law to a generalized
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logistic behavior. On the other hand, tumors evolve in time according to the GL. The
obvious indication is to verify if a phenomenon corresponding to the deceleration
of mortality, i.e. a transition from the GL to a power law, exists for cancer growth at
a later time. As we shall see, this aspect has strong consequences on the therapy.

For tumor growth the b1˛ term gives the GL in Eq. (22) and the introduction
of the O.˛2/ term corresponds to the power law nonlinear feedback in Eq. (23).
Therefore one has to investigate if at late-life of a tumor growth there is such
a modification in the dependence of the specific growth rate on the cell number
N.t/. Since direct information in vivo are almost impossible, the question has to be
addressed in an indirect way by considering radiotherapy.

The radiotherapic tumor treatment consists in series of radiation doses at fixed
time intervals. However tumors start to re-grow in the interval between two
treatments: the re-growth during radiotherapy is therefore an important clinical
parameter [35] and the probability of treatment benefit critically depends on the
tumor re-growth pattern.

The so-called tumor size effect is a reduction of radiotherapeutic results for large
tumors (which, presumably, has grown since long time). The dependence of the sur-
viving fraction on the tumor volume was already observed by Stanley et al. in 1977
in lung tumors [44] and re-emphasized by Bentzen et al. and Huchet et al. in [5,34].

The effect of re-growth rate on radiotherapy has been quantitatively investigated
in [15] and the results clearly indicate that to understand the tumor size effect the
re-growth rate for large tumor has to follow a power law [27] rather than the GL.

From this point of view the “tumor size effect” is a phenomenon which indicates
that in late-time tumor growth there is a change from a GL specific rate to a power-
law behavior, corresponding to the deceleration in mortality at advanced age.

One should conclude that such a common feature in aging and in failure in
biological and/or technical systems should be considered as a “bifurcation” or a
“phase transition” in the specific growth rate at large time from GL or WL to a
logistic or generalized logistic behavior.

In closing, the general expansion of ˚.˛/ in Eq. (24) can describe the
growth/aging/failure of biological and technical systems and the transition to a
different (“phase”) specific growth rate at late-life could be a common feature of
those systems independently of the microscopic dynamics.
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Treasure Hunting in Virtual Environments:
Scaling Laws of Human Motions
and Mathematical Models of Human
Actions in Uncertainty

Dimitri Volchenkov, Jonathan Helbach, Marko Tscherepanow,
and Sina Kühnel

Abstract Searching experiments conducted in different virtual environments over
a gender balanced group of people revealed a gender irrelevant scale-free spread of
searching activity on large spatiotemporal scales. The better performance of men in
virtual environments can be associated with the regularly renewed computer game
experience, essentially in games played through a first-person perspective. We sug-
gested a simple self-organized critical model of search, in which the experimentally
observed scale-free behavior can be interpreted as a trade-off between the value of
exploitation versus exploration amid uncertainty.

1 Introduction

Virtual environments (VE) provide a simplified way to see and experience the real
world, supporting the sense of spatial presence via virtual locomotion, rendering
a clear sense of navigation, and allowing for interactions with objects through
a user interface [40]. Not surprisingly, VE gained widespread use in recent
years as a tool for studying human behavior, maintaining the capacity to create
unique experimental scenarios under tightly controlled stimulus conditions. A major
problem for users of VE is maintaining knowledge of their location and orientation
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while they move through the space, essentially when the whole path cannot be
viewed at once but occluded by objects in the environment [16]. Most of the human
spatial abilities (such as navigating a large-scale space and identifying a place) have
evolved in natural environments over a very long time, using properties present in
nature as cues for spatial orientation and wayfinding [41]. However, many of the
natural body-based self-motion cues are absent in VE, causing systematic spatial
orientation problems in subjects and calling for the new adaptive strategies to move
through VE under reduced multisensory conditions.

In order to understand the adaptive movement strategy in VE and clarify the role
of environmental structure in searching and browsing, we conducted a treasure hunt-
ing experiment (Sect. 2.1) with a gender balanced group of participants (Sect. 2.3),
in the different office VE (Sect. 2.2). Based on the results of the statistical data
analysis, we discuss on the gender disparity in video- and computer game experience
as a factor potentially influencing the better performance of men in VE (Sect. 3.1),
on the role of scanning and reorientations in a compensation of information
deficiency while moving through VE (Sect. 3.2), and on the experimentally observed
scale-free spread of searching activity on large spatiotemporal scales reminiscent of
Lévy flights that become ubiquitous in modern movement ecology (Sect. 3.3).

Our results shed new light on the well-known exploration-exploitation
dilemma [13]. Subjects participated in the study had to decide how to proceed
amid uncertainty. On the one hand, there was the option to continue searching in
the nearest neighborhood (exploitation), in the hope to get a reward beyond the next
door. Alternatively, subject could explore the parts of environment she never been to.
Therefore, the actual searching trajectory of a participant in the VE resulted from
a permanent balance between exploitation and exploration confronted at all levels
of behavior across all time-scales. In general, how agents should and do respond to
the trade-off between exploration and exploitation is poorly understood [13]. It is
important to note that the setting of our experiments had nothing to do with the
assumptions of [21] presented an optimal strategy for trading off exploration and
exploitation. The probability of delivering the reward was not fixed in our case,
subjects did not discount the value of each reward exponentially as a function of
when it is acquired, and eventually the time of experiment was essentially limited
(in contrast to over an infinite horizon in the Gittins approach). Subjects in our
study acted amid uncertainty, so that any calculation of an optimal strategy was
impossible for them. Appearance of Levy statistics in searching behavior can
help us to understand how humans manage the balance between exploration and
exploitation in non-stationary environments.

In Sect. 4.1, we give arguments in favor of that the observed statistical properties
of search patterns can be explained in the framework of a self-organized critical
model of search amid uncertainty, which can help generate biologically relevant
hypothesis about fundamental process of a decision making when no precise
information on a possibility of rewards is available. The mathematical model of
decision making in random search is formulated in Sect. 4.2 and solved analytically
in some practically important cases in Sect. 4.3. We conclude in the last section.
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2 Methods

2.1 Experimental Design and Procedure

In our treasure searching experiment, every participant was asked to browse an
office VE searching for collectable objects. For each time frame, the position and
heading orientation of the participant were tracked and subsequently analyzed by
considering the collections of displacements and turns as a series of random events
whose spatial and temporal distributions are assumed to possess certain statistical
regularities.

To motivate searching, each found object were rewarded with an extra 50 cents
coin, in addition to the basis remuneration for participation in the study. None of
the treasure hunters neither visited a real prototype of the VE model nor foresaw its
floor plan. The objects of search were big enough, contrast colored, clearly visible
toys: teddy bears and locomotives. At the beginning of each trial, a number of
toys (10 toys, for the smaller environment, and 15 toys, for the bigger one; see
the Sect. 2.2 for details) were allocated in randomly chosen offices, beyond the
closed doors, one toy per room. Objects could be found immediately, as soon as
subject opens the door and enters the room. In order to focus subjects on the tasks
no communication between experimenter and subject was performed during the
experiment.

Before entering the main exploration areas, every participant was trained in a
virtual tutorial room, in order to get used to stereoscopic imaging of computer-
simulated environment (two slightly different images accounting for the interpupil-
lary distance paired with stereo glasses providing a three-dimensional display of
the environment), to get a good command of a Nintendo Wii remote controller,
and to judge their perceived motions via button presses. Although the time of
search was not limited, we have restricted the total number of doors subjects could
open during the experiment (by 10 doors, in the smaller environment, and by 15
doors, in the bigger one), in order to prevent a sequential search at each office and
stimulate exploration activity in subjects. All participants were informed about that
some rooms can be interconnected, at a benefit for the search, as only one door
should be opened but two rooms can be searched. The experiment ended when the
subject opened 10(15) doors.

Two AVI video fragments showing the records of actual searching experiment
from a first-person perspective can be found under the URLs [35].

2.2 Virtual Environments

Virtual models of two actual office environments of the University of Bielefeld
were rendered with the Autodesk R© 3ds Max R© Design 2010 software and then
projected for any user viewpoint onto a wall-wide laboratory screen (4�2 m) with
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the use of the Barco Galaxy NH-12 active stereoscopic 3D stereo projector. Natural
color reproduction, extended gray levels, and high brightness support the sense of
spatial presence in subjects. The control of user viewpoint motion through the VE
was implemented via the Bluetooth connected Wiimote, the primary controller for
Nintendo’s Wii console featured with motion sensing capability, which allows the
user to manipulate items on screen via gesture recognition and pointing through the
use of accelerometer and optical sensor technology.

The VE model A (Fig. 1a) exactly reproduces the second floor of a temporary
building (2012) belonging to the Cognitive Interaction Technology—Center of
Excellence (CITEC, Bielefeld University), and the VE model B (Fig. 1b) has as
a prototype the ground floor of the future Interactive Intelligent Systems Institute
(Bielefeld University) presently under construction. The both environments consist
of the standard adjacent offices, meeting rooms, hallways and corridors providing
space where people can move, meet, and discuss. Emergency exits and elevators
that exist in the actual prototype buildings were not taken into account in our
experiments. The VE model A consists of 48 interconnected individual spaces of
movement (the nodes of the spatial graph shown in Fig. 1a), and the VE model B
includes 68 interconnected individual spaces of movement (the nodes of the spatial
graph shown in Fig. 1b).

The spatial structure is important because of its effect on proximity: greater
connectedness of a built environment generally means more direct routes and
thus shorter distances between possible destinations. Connectedness also affects
walking by expanding the choice of routes, thereby enabling some variety in routes
within the environment. Discovering important spaces of movement and quantifying
differences between them in a spatial graph of the environment is not easy since any
two spaces can be related by means of many paths. In [7,8], we suggested using the
properties of random walks, in order to analyze the structure of spatial graphs and to
spot structural isolation in urban environments. In contrast to classical graph theory
paying attention only to the shortest paths (of least costs) all existing paths are taken
into account in the approach related to random walks, although some paths are more
preferable than others, as random walks respecting graph symmetries assign the
probability to be traversed by a random walker to each path in the graph [9]. Each
node of the graph can be characterized with respect to the entire graph structure
by the first-passage time, the expected number of steps required to reach the node
for the first time (without revisiting any intermediate node) starting from any node of
the graph chosen randomly, in accordance with the stationary distribution of random
walks. In built environments, the first-passage time to a place can be understood as
an average number of elementary wayfinding instructions (such as “turn left/right,”
“pass by the door,” and “walk on the corner”) required to navigate a wanderer to
the place from elsewhere within the environment. The values of first passage times
to the nodes in the spatial graphs A and B are color indicated in Fig. 1: the central
places characterized with the minimal first passage times are red colored, and the
secluded places with the maximal first passage times are shown in violet.

It is worth a mention that the spatial structure of the VE model A analyzed
by means of the spatial graph Fig. 1a is essentially simpler than the structure of
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Fig. 1 (Colored) Two models of the office VE were used in the treasure search experiments.
The individual spaces of movement are identified with the nodes in the spatial graphs. The
centrality/isolation of a node with respect to the entire structure of a spatial graph is characterized
by the first-passage time of random walks indicated by color. (a) The VE model A consists of 48
interconnected spaces of movement, with a single central place (the central corridor denoted by
the red node) that locates nine steps apart from any randomly chosen node in the spatial graph.
(b) The VE model B consists of 68 interconnected spaces of movement and contains a network
of well-connected central places (halls and connecting corridors) characterized by the first passage
times ranging from 10 to 14 steps

the model B. Contrasted to the model A, where offices are located along three
sequentially connected corridors providing a single path between most of the
possible destinations, the spatial structure of the model B allows for many cyclic
trips due to a network of well-connected places and includes a number of vantage
points, from which a walker could observe the substantial parts of the environment
from different perspectives. The single central node (the central corridor) in the VE
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Table 1 Summary table on the experiment participants

Office environment A Office environment B

Women Men Women Men

Number of volunteers 20 20 21 21
Average age of a volunteer 26.2 24.5 23.6 23.4

Min: 21 Min: 21 Min: 20 Min: 11
Max: 51 Max: 31 Max: 37 Max: 29

Average time 4.1 5.4 0.9 6.2
playing computer Min: 0 Min: 0 Min: 0 Min: 0
(hours per week) Max: 35 Max: 35 Max: 10 Max: 30
Average time 0.42 1.4 0.09 1.2
playing video games Min: 0 Min: 0 Min: 0 Min: 0
(hours per week) Max: 10 Max: 5 Max: 2 Max: 10
Played first-person
perspective games 1 18 10 20
Wear glasses 12 18 13 9

model A is located at nine steps apart from any randomly chosen node in the spatial
graph (Fig. 1a). The VE model B contains a network of well connected spaces of
movement characterized by the first passage times ranging from 10 to 14 steps.

2.3 Participants

Two gender balanced groups of volunteers (82 participants in total) took part in the
controlled searching experiments conducted in the office VE shown in Fig. 1a, b.
Although participants (mostly university students) were recruited personally and
through advertisements at the University of Bielefeld, none of them have ever
been familiar with the actual building prototyping the virtual model A and have
ever seen the plan of the building prototyping the model B. Prior to testing, all
adult participants and parents of children younger than 16 years old gave their
informed written consent for participation in the study. Participation in the study
was voluntary, and a participant could revoke her participation consent and quit
at any time and for any reason. The standard provisions for data protection were
adhered: all test results were kept confidential. All individual data were managed
and processed anonymously that eliminated any possibility of identification of
participants.

Before starting the experiment, volunteers were asked to estimate time spent
playing computer and video game consoles (in hours per week) and to answer the
question of whether or not they played games with the experience of a first-person
perspective. The data summary on subjects joined the study is given in Table 1.
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3 Results and Discussions

3.1 On Gender Disparity in Game Experience
and Mobility in VE

Perhaps, the main feature of experiments on human behavior in VE is that male
participants usually enter the study with more prior experience in computer and
video games than females that may have to do with well-known video game
gender disparity which receives extensive academic, corporate, and social attention
regularly [18,22]. Unfortunately, the factor of gender disparity in prior virtual game
experience is systematically disregarded in studies concerning spatial cognition
in VE. With some noticeable exceptions, female gamers participated in our study
reported on substantially less time playing computer and video games (in hours
per week) than male participants. In Fig. 2, we have presented the box plots
summarizing the data on time playing virtual games reported by men and women
participated in our experiments. In each box presented in Fig. 2, a central line
indicates the median, a lower line is showing the first quartile, and an upper line
is for the third quartile. Two lines of maximal length extending from the central box
indicate points that lie outside the extent of the previously mentioned statistics.

Contrasted to female participants, almost all male subjects in the present study
reported that they played games centered on projectile weapon-based combat
through a first-person perspective, as shown in Fig. 3. It is important to note that
first-person shooters often focus on action gameplay, being featured by large built
environments, which can be explored freely often requiring interaction with the
environment to varying degrees (e.g., by opening doors). Playing computer games
through a first-person perspective was reported to be associated with superior mental
flexibility [14], possibly because players of such games are required to develop a
more responsive mindset to rapidly react to fast-moving visual and auditory stimuli.
Women have been shown to prefer role playing games to first-person shooters
favoring in-game communication [18] and interpersonal relationships over fast-
paced first person actions preferred by men [22].

Fig. 2 The box plots
summarizing the data on time
playing virtual games (in
hours per week) reported by
men and women participated
in our experiments
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Fig. 3 The proportions of
male and female subjects
reported that they played
computer and video games
from a first-person
perspective

Fig. 4 The total path
(in meters) walked by male
and female subjects during
the experiments

We must conclude that male subjects were certainly better prepared for partici-
pation in the study than females: men not only were more experienced in navigation
and action in VE but also regularly renewed their experience. Proficiency in visual-
spatial cognition is associated with better performance in VE [15]. It is worth a
mention that male and female subjects who played computer games through a first-
person perspective always started the experiment with a complete exploration of the
environment, before opening the first door and starting the active treasure search.

Gender is often reported as a decisive factor in spatial cognition research [17,26]:
women rated driving in unfamiliar areas as being a more serious problem than did
men [19], males learn a virtual maze more rapidly than females [29]. A review of
gender differences in spatial ability in real world situations can be found in [39].
Gender is also found as a factor influencing navigation in VE: males were reported
to acquire route knowledge from landmarks faster than females [15].

Contrasted to locomotion in real environments, mobility in VE depends upon
self-motion perception in virtual space and convenience of locomotion interface,
rather than on physiological factors of an individual such as height, weight, age,
or fitness. The instantaneous translation velocity in the VE is kept constant for
any individual, as long as she presses a button. In order to quantify mobility of
subjects in a VE, we measured the total path (in meters) travelled by subject in the
experiment (summarized in the form of box plots in Fig. 4) and the mean velocity of
motion calculated as a ratio of the total path and the total traveling time (see Fig. 5).
Our results show that men stride longer distances in average and move faster than
women. It is not a surprise that the amount of walking people do in the model B
substantially exceeds the total distances travelled in the model A, as the latter model
was smaller, provided less opportunity for exploration, and the searching activity
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Fig. 5 The mean velocity of
motion (m/s) in VE during the
treasure hunting experiments

in that was limited to only 10 doors. However, it is remarkable that the surplus
of mean total paths walked in the VE model B was disproportionate in men and
women. Namely, the average path walked by men in B was 75 % longer than in A, in
comparison with the 135 % increase of average path in women (Fig. 4). Although in
average men moved faster than women in the both VE models (Fig. 5), the velocity
gain in B was higher in women (54.5 %) than in men (9.5 %).

Our results indicate that human mobility can increase in the VE affording
more opportunity for exploration. With some noticeable exceptions female subjects
were in average less mobile than men. The better performance of men in VE can
be associated with the prior computer game experience, essentially in games played
through a first-person perspective, being a key to acquiring proficiency in visual-
spatial cognition. It is possible that the extraordinary increase of mobility in women
explored the VE model B is due to the fact that more than half of them played
first-person perspective games before participating in our experiments. Further
investigation is needed to clarify the role of a prior computer game experience in
studies concerning spatial cognition in VE.

3.2 Scanning Turns, Reorientations, and Explorative
Rotations in a VE

Self-motion through a VE suffers from a lack of many natural body-based cues.
Natural methods of visual exploration are also restricted in VE to that experienced
through the display representing only a limited field of view, suffering from the
degradation of sensory cues due to device latencies and blocking out all surrounding
visual input. It was concluded from various experiments that the optic flow without
proprioception, at least for the limited field of view of the virtual display system,
appears to be not effective for the updating of heading direction [24], and even
when physical motion cues from free walking are included, this is not necessarily
sufficient to enable good spatial orientation in VE [31].
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Fig. 6 The typical
distribution of scanning turns,
reorientations, and
explorative rotation durations
while exploring a VE. The
vertical dashed line indicates
the duration of turn 1:5 s

Perhaps due to systematic spatial orientation problems occurring in VE compared
to real-world situations, the most of subjects participated in our study permanently
performed fast scanning turns (of 200–300 ms) by the quick altering pressing on
the left and right buttons of the remote controller, each time causing them to turn
a greater or lesser angle. Probably, such a movement routine played an important
role for the proper self-motion perception, as compensating information deficiency
experienced by subjects while moving through VE under reduced multisensory
conditions. Longer turns (usually, taking about half a second) were observed when
subjects redirected their walk or avoided obstacles. Eventually, the very long,
explorative rotations often including several complete revolutions (each time lasting
up to a few seconds) occurred after far relocations, at vantage points, along the
borders of two or several vista spaces, and at intersections of corridors that afford a
broader view of the environment.

The typical distribution of scanning turns, reorientations, and explorative rotation
durations while exploring a VE is presented in Fig. 6. The areas of adjacent
rectangles in the histogram are equal to the relative frequency of observations in the
duration interval. The total area of the histograms is normalized to the number of
data. The data show that the vast majority of all reorientations performed by subjects
were the quick scanning turns, being the essential part of the walking routine in
VE. The vertical dashed line in Fig. 6 stands for the rotation duration of 1:5 s; the
locations of the correspondent points, at which participants performed longer turns
(without translations) are displayed on the floor plans by the circles (see Fig. 7a
and b). The diameter of a circle is proportionate to a number of long turns recorded
at its central point over all subjects.

Several studies conducted on small animals [4,5,25,32] suggested that the switch
between scanning and reorientation behavior in movement patterns of animals
that search emerges from complex mechanic-sensorial responses of animals to the
local environment and could infer the effects of limited perception and/or a patchy
environmental structure. When exploring patchy resources, animals could adjust
turning angle distributions, selecting a preferred turning angle value that would
allow organisms to stay within the patch for a proper amount of time, maximizing
the energetic gain. For example, the zigzag motion of Daphnia appears to be an
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Fig. 7 The floor plans of the models A and B with the locations of vantage points (shown by
circles), where participants performed reorientations and explorative turns lasting longer than 1:5 s.
The diameter of a circle is proportionate to a number of long turns recorded at its central point

optimal strategy for patch exploitation [32]. Therefore, the distinction between
quick scanning turns and a longer reorientation behavior is crucial to understand
the statistical patterns of search [3].

Being a part of the travelling routine in a VE, quick scanning turns performed
by subjects during the walk can produce correlations between turning durations
and displacements, on relatively small spatiotemporal scales sensitive to the local
structural features of the environment. After reaching the natural limits of available
space of motion or entering a new movement zone, the subject performs a longer
reorientation, perhaps in order to explore the new environment visually that breaks
the correlations. We analyzed the data on durations of reorientations of subjects
travelling through the both VE models with the use of the root mean square
fluctuations (RMSF) suitable for detecting correlations [23, 36]. The RMSF of
displacements is calculated by

Fs.n/ D
rD
.�S.n//2

E
� h�S.n/i2; (1)

in which the net displacement of the walker by the n-th reorientation is S.n/ DPn
kD1 krkC1 � rkk ; rk is the recorded position of the k-th reorientation,�S.n/ D

S.nC n0/ � S.n0/; and the angular brackets denote averaging over all data points
n0 D 1; : : : nmax. Similarly, the RMSF of rotation durations is calculated by

F	.n/ D
rD
.�T.n//2

E
� h�T.n/i2; (2)

in which the total rotation duration of the subject by the n-th reorientation is T.n/ DPn
kD1 	k; 	k is the duration of the k-th reorientation,�T.n/ D T.nCn0/�T.n0/;

and the angular brackets again denote the average over all data points. In Fig. 8, we
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Fig. 8 The RMSF of the total durations of turning is shown via the RMSF of the net displacement
in the log–log scale, for all recorded reorientation points of all subjects, in the both VE models

juxtaposed the RMSF of the net displacement and the RMSF of the total rotation
duration, in the log–log scale, for all recorded reorientations of subjects, separately
for the VE models A and B. Identically, for the both VE models, the graphs show
the super linear slope,

d logF	
d logFs

Š 1:1;

indicating the presence of a strong positive relation that reinforces the total duration
of quick scanning turns (up to 30 s), with the increase of the net displacement of
subject (by 10 m). In the long run, the correlations generated by the quick scanning
behavior vanish that is typical for a correlated random walk process [5]. It is obvious
that such an intensive scan is performed by subjects only within their immediate
neighborhoods and principally cannot be extended neither to the entire VE nor even
to any of its significant parts, as the superlinear increase of required time makes
the scanning process on large spatiotemporal scales biologically unfeasible. Thus,
after completing a phase of intensive search within the patch of a size depending on
the structural properties of the environment, a treasure hunter moves to some other
area, where the phase of intensive search is resumed. It is important to mention
that changes in reorientation behavior, on large spatiotemporal scales, can generate
different anomalous diffusion regimes, which in turn, can affect the search efficiency
of random exploration processes [5].
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Fig. 9 The histogram shows the frequency of travelling times between the consequent door
openings as a function of time. The bell-shaped dotted curve represents the Gaussian distribution.
Occasional long travels contribute into the long right tail of the distribution dominated by a
quadratic hyperbola. On the outline, the data on dispersal of the consequent searching events are
shown as a function of distance in the log–log scale for the VE model A (by black points) and for
the VE model B (by grey points). The solid guide line indicates the inverse quadratic slope

3.3 Pareto–Lévy Distributions of Human Travels in a VE

In order to identify phases of specific activity in recorded movement patterns and
to reveal the underlying cognitive mechanisms from their statistical properties, we
have studied the probability distributions of time intervals and distances between
consequent observable searching events (door openings) as they can determine
strong changes in the diffusive properties of movement and in relevant spatial
properties of the trajectories. The distributions representing the data on dispersal of
the treasure hunters during the experiment are shown in Fig. 9, for both VE models.
The form of the distributions is not gender specific.

The data show that the most of the consequent door openings happen in the
immediate neighborhood of the actual position of a participant. The dispersal
statistics on the small spatiotemporal scales shown in Fig. 9 can be well approxi-
mated by uncorrelated Gaussian random walks (see the dotted bell shaped curve)
insensitive to the local structure of the environment. The both distributions in Fig. 9
are remarkable for the long right tails dominated by the quadratic hyperbolas
attenuating the superdiffusive spread of treasure hunters on large spatiotemporal
scales. A power-law tail in the probability distributions of both travelling times and
travelled distances could arise from processes in which neither time nor distance
has a specific characteristic scale, so that rare but extremely long and far cry
travels can occur, alternating between sequences of many short travels featuring
local searches. The power-law tails in the dispersal data provide an evidence in
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favor of a strong coupling between movements and a large-scale environmental
structure which cannot be viewed at once [6]. A special class of discrete-step
random walks with movement displacements drawn from a probability distribution
with a power-law tail (the Pareto–Lévy distribution) is known as Lévy flights
[28]. Geometrically, they consist of walking clusters with very large displacements
between them repeated over a wide range of scales [33]. Although Lévy flights
are ubiquitous for representing intermittent search, cruise, and foraging strategies
in living species ranging from microorganisms to big marine predators (see [1, 4–
6, 10, 11, 27, 34, 36, 37] and many others), to our knowledge, this is the first report
on observation of the Lévy flight search patterns in humans exploring VE. It has
long been recognized that the existence of episodic behaviors resulting in random
alternating of active exploration phases with phases of fast ballistic motion can
strongly modify the success of a search process. In particular, it was shown that the
optimal strategy for a searcher looking for sparsely and randomly distributed fixed
targets is to be drawn from an inverse square power-law distribution of flight length,
P.l/ � l�2; corresponding to Lévy flight motion [11, 36, 37]. The Lévy search
hypothesis [3, 38] implies that while searching for a randomly located objects, an
animal could adopt a movement strategy that takes the advantage of Lévy stochastic
process, in order to minimize the mean time for target detection or mean first-
passage time to a random target, as well as to maximize the energetic gain in case of
sparsely and randomly distributed resources, since the probability of returning to a
previously visited site is smaller for a Lévy flight than for a Gaussian distributed
walk [37]. However, a particular biological mechanism that allows animals and
humans to reproduce exactly the statistics of Lévy flights on each trial without
demanding and tedious computations remains unknown.

4 Self-organized Critical Model of Search Amid Uncertainty

4.1 Arguments in Favor of a Self-organized Critical Model

The observed statistical properties of human search travels in a VE call for a
model that could exhibit a “phase transition” to a variety of spatiotemporal scale-
invariant behaviors spontaneously, for variable parameters that could be changed
widely without affecting the emergence of critical behavior. In statistical physics,
such a property of dynamical systems is known as self-organized criticality [2].
Furthermore, a plausible model has to be of a discrete nature, as the biological
principle of intermittent locomotion assumes that animal behavior unavoidably
produces observable punctuations, “producing pauses and speeding patterns on the
move” [5]. These motivations reflect a fundamental “trade-off” confronted by a
treasure hunter choosing between an exploitation of the scanning movement routine
within the familiar environment of nearest neighborhood, possibly at no reward, and
a fast relocation aiming at exploration of unknown but potentially more rewarding
areas.



Scaling Laws of Human Motions 227

From a theoretical perspective, it is known that in a stationary setting there exists
an optimal strategy for exploration [21] maximizing the reward over an infinite
horizon when the value of each reward is discounted exponentially as a function
of when it is acquired. However, to date, there is no generally optimal solution to
the exploration versus exploitation problem [12, 13], as human and other animals
are prone to dynamically update their estimates of rewards in response to diverse,
mutable and perhaps discrepant factors, including elapsed time of search, annoying
failures to predict the location of a searched object, and instantaneous mood swings
that could change in a matter of seconds. Therefore, it seems that a stochastic model
managing a balance between exploration and exploitation may be more biologically
realistic [13].

There is growing evidence that the neuromodulatory system involved in assessing
reward and uncertainty in humans is central to the trade-off decision [12]. The
problem can be cast in terms of a distinction between expected uncertainty,
coming from known unreliability of predictive cues and coded in the brain by a
neuromodularity system with acetylcholine signals, and unexpected uncertainty,
triggered by strongly unexpected observations promoting exploration and coded
in the brain with norepinephrine signals [42]. It was suggested in [42] that an
individual decides on whether to stay or to go accordingly to the current levels of
acetylcholine and norepinephrine, encoding the different types of uncertainty.

Summarizing the above mentioned arguments, we are interested in a self-
organized critical model driven by a discrete time random process of competing
between two factors featuring the different types of uncertainty.

4.2 Mathematical Model of Decision Making
in Random Search

The movement ecology framework [30] explicitly recognizes animal movement as
a result of a continuous “dialogue” between environmental cues (external factors)
and animal internal states, [5]. In our model, we rationalize the dialogue nature of a
decision-making process to take on searching in highly unpredictable situation when
no precise information on a possibility of rewards is available. Despite its inherent
simplicity, the mathematical model formulated below can help generate hypothesis
about fundamental biological processes and bring the possibility to look for a variety
of biological mechanisms under a common perspective.

We assume that an individual decides on whether to “exploit” an immediate
neighborhood by search beyond a next door or to “explore” other parts of the
environment by comparing the guessed chances, q 2 Œ0; 1� of getting a reward
beyond the next door and p 2 Œ0; 1� of finding a treasure elsewhere afar. It is not
necessary that p C q D 1. We suppose that at each time click subject updates
one or both estimates and decides to proceed to a part of the environment yet
to be explored if q < p. Otherwise, if q � p, she picks a next door randomly
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among those not yet opened and searches in the room behind. We consider p and
q to be the random variables distributed over the interval Œ0; 1� with respect to
the probability distribution functions (pdf) Pr fp < ug D G.u/ and Pr fq < ug D
F.u/, respectively. In general, F and G are two arbitrary left-continuous increasing
functions satisfying the normalization conditions F.0/ D G.0/ D 0, F.1/ D
G.1/ D 1.

We model the intermittent search patterns by a discrete time random process in
the following way. At time t D 0, the variable q is chosen with respect to pdf F , and
p can chosen with respect to pdfG. If q < p, subject relocates by pressing a button
on the controller and goes to time t D 1. Given a fixed real number � 2 Œ0; 1�, at
time t � 1, the following events happen:

(i) with probability �, the chance to find a treasure in the immediate neighborhood
(q) is estimated with pdf F; and the chance to get a reward elsewhere (p) is
chosen with pdf G.

Otherwise,

(ii) with probability 1� �, the chance to find a treasure in the immediate neighbor-
hood (q) is estimated with pdf F; but the chance to get a reward elsewhere (p)
keeps the value it had at time t � 1.

If q � p, the local search phase continues; however if q < p, subject presses
the controller button and moves further, going to time t C 1. Eventually, at some
time step t , when the estimated chance q exceeds the value p, subject stops and
resumes searching within the immediate neighborhood. The integer value t D T

acquired in this random process limits the time interval (and travelled distance)
between sequential phases of searching activity.

4.3 Analytical Solutions for Decision Making
Amid Uncertainty

While studying the above model, we are interested in the distribution of durations
of the relocation phases P�.T IF;G/ provided the probability distributions F and
G are given and the control parameter � is fixed. For many distributions F and G,
the model can be solved analytically. We shall denote P�.T IF;G/ simply by P.T /.
A straightforward computation shows directly from the definitions that

P.0/ D
Z 1

0

dG.p/ .1 � F.p// :

For T � 1, the individual can either depart elsewhere (“D”) or stay in the
neighborhood (“S”). Both events can take place either in the “correlated” way (with
probability �; see (i)) (we denote them Dc and Sc), or in the “uncorrelated” way
(with probability 1 � �; see (ii)) (Du and Su). For T D 1, we have for example
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P.1/ D P ŒDSc�CP ŒDSu�

D R 1
0 dG.p/F.p/�.1�F.p//C

R 1
0 dG.p/F.p/.1��/

R 1
0 dG.z/.1�F.z//

D �B.1/C.1��/A.1/B.0/:

Similarly,

P.2/ D �2B.2/C �.1� �/A.1/B.1/C �.1� �/A.2/B.0/C .1� �/2A.1/2B.0/

where we define, for n D 0; 1; 2; : : : ;

A.n/ D
Z 1

0

dG.p/F.p/n

and

B.n/ D
Z 1

0

dG.p/F.p/n .1 � F.p// D A.n/ �A.nC 1/:

It is useful to introduce the generating function of P.T /:

OP .s/ D
1X
TD0

sT P.T /:

The generating property of the function OP .s/ is such that

P.T / D 1

T Š

dT OP.s/
dsT

ˇ̌̌
ˇ̌
sD0

: (3)

Defining the following auxiliary functions

x.l/ D �lA.l C 1/; for l � 1; x.0/ D 0;

y.l/ D .1 � �/lA.1/l�1; for l � 1; y.0/ D 0;

z.l/ D �l Œ�B.l C 1/C .1 � �/A.l C 1/B.0/� ; for l � 1; z.0/ D 0;

� D �B.1/C .1 � �/A.1/B.0/;

(4)

we find

OP .s/ D B.0/C�sC s

1� Ox.s/ Oy.s/ ŒOz.s/C� Ox.s/ Oy.s/C�A.1/ Oy.s/CA.1/ Oy.s/Oz.s/�
(5)

where Ox.s/; Oy.s/; and Oz.s/ are the generating functions of x.l/; y.l/; and z.l/,
respectively.
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In the marginal cases � D 0 and � D 1, the probability P.T / can be readily
calculated. For � D 0, Eqs. (4) and (5) give

OP�D0.s/ D B.0/

1 � sA.1/ : (6)

From Eq. (6), one gets

P�D0.T / D A.1/T B.0/ D
�Z 1

0

dG.p/F.p/

�T Z 1

0

dG.p/.1 � F.p//: (7)

Therefore, in this case, for any choice of the pdf F and G, the probability P.T /
decays exponentially. For � D 1, Eqs. (4) and (5) yield OP�D1.s/ D OB.s/; so that

P�D1.T / D B.T / D
Z 1

0

dG.p/F.p/T .1 � F.p//: (8)

for the special case of uniform densities dF.u/ D dG.u/ D du, for all u 2 Œ0; 1�

and for any � 2 Œ0; 1�. In this case, simpler and explicit expressions can be given for
OP.s/ and P.T /. Namely, from Eq. (5), we get

OP.s/ D 1

1C .1 � �/�.s/

�
1C �.s/

s
� ��.s/

�
; �.s/ 	 ln.1 � �s/

�s
: (9)

The asymptotic behavior of P.T / as T ! 1 is determined by the singularity
of the generating function OP .s/ that is closest to the origin. For � D 0, the
generating function OP.s/ D .2�s/�1 has a simple pole, and thereforeP.T / decays
exponentially that agrees with the result (Eq. 7).

For the intermediate values 0 < � < 1, the generating function OP .s/ has two
singularities. The first pole, s D s0, corresponds to the vanishing denominator
1C .1 � �/�.s/, where s0 D s0.�/ is the unique nontrivial solution of the equation

� ln.1 � �s/ D �s

1 � �:

The second singularity, s D s1 D ��1, corresponds to the vanishing argument of
the logarithm. It is easy to see that 1 < s0 < s1, so that the dominant singularity
of OP .s/ is of the polar type, and for times much larger than the crossover time
Tc.�/ � ln .s0.�//

�1 the corresponding decay of P.T ) is exponential, with the rate
ln.s0.�//. Eventually, when � tends to 1, the two singularities, s0 and s1 merge.
More precisely, we have

OP�D1.s/ D s C .1 � s/ ln.1 � s/
s2

: (10)



Scaling Laws of Human Motions 231

The corresponding dominant term in Eq. (10) is of order O.T �2/ [20]. This
obviously agrees with the exact result one can get from Eq. (8), with dF.u/ D
dG.u/ D du,

P�D1.T / D 1

.T C 1/.T C 2/
: (11)

Let us note that in the case of uniform densities it is possible to get an expression of
P.T / for all times, and for any value of �,

P.T / D �T

.T C 1/.T C 2/
C

TX
kD1

�T

k.T � k C 1/.T � k C 2/

kX
mD1

�
1 � �
�

�m
cm;k;

(12)
in which

cm;k D mŠ
X

l1C:::ClmDk

l1l2 : : : lm�1lm
.l1 C 1/.k � l1/ : : : .lm�1 C 1/.k � l1 � : : : � lm�1/.lm C 1/

:

When � ¤ 0, there is an alternative way of writing the previous expression:

P.T / D �T

.T C 1/.T C 2/

C
TX
kD1

�TC1

.T � k C 1/.T � k C 2/

X
i1C:::CilDk

1X
lD1

.1 � �/l

.i1 C 1/ : : : .il C 1/
:

In Fig. 10, we have presented the probability distributions of the searching durations
for increasing values of �: The proposed mathematical model suggests that the
algebraic tail dominated by a quadratic hyperbola observed in the distributions
of time intervals and travelling distances between sequential phases of searching
activity (see Fig. 9) can arise due to a trade-off between the value of exploitation
versus exploration amid uncertainty. We have shown that when balancing the
chances to be rewarded in the immediate neighborhood (“now and here”) and
later elsewhere (“then and there”) subject estimates them uniformly at random, the
inverse quadratic tail always dominates the distributions on large spatiotemporal
scales.

5 Conclusions

We report on a solid quantitative assessment of human travelling statistics in VE by
analyzing a comprehensive data set over tens of thousands individual reorientations
and displacements on a variety of spatiotemporal scales performed by a gender
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Fig. 10 The distributions of searching durations, in the case of the uniform densities dF.u/ D
dG.u/ D du at different values of �: P�.T / decays exponentially for � D 0, consistently with
the analytical result, P.T / D 2�.TC1/ (given by the solid line). P�.T / exhibits a power-law decay
for � ! 1; the solid line is for P.T / D 1=.T C 1/.T C 2/

balanced group of 82 subjects participated in a virtual treasure hunting experiment.
The collections of displacements and turns were considered as a series of random
events subjected to a thorough statistical analysis in search of certain statistical
regularities.

Our results indicate that human locomotion in a VE is sensitive to the structure
affording more opportunity for exploration. A higher mobility of male subjects in
a VE can be associated with the regularly renewed computer game experience,
essentially in games played through a first-person perspective. The data show that
the vast majority of reorientations performed by subjects in the study were the
quick scanning turns, being the essential part of the adaptive movement strategy
under reduced multisensory conditions in VE. The analysis of the root mean
square fluctuations gives an evidence of a mechanism strongly reinforcing the total
reorientation duration with the net displacement of subjects that makes the thorough
scanning process biologically unfeasible on large spatiotemporal scales.

We found that dispersal of searching activity on large spatiotemporal scales
in VE is anomalous. Namely, the distributions of time intervals and travelling
distances between sequential phases of searching activity exhibit long tails domi-
nated by quadratic hyperbolas, indicating that trajectories of treasure hunters were
reminiscent of scale-free random walks (Lévy flights). We suggested a discrete
time self-organized critical model rationalizing the dialog nature of the decision-
making process in people that search. The model reproduces the experimentally
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observed statistics of searching patterns in case when the chances to be rewarded in
the immediate neighborhood and elsewhere are estimated by subject uniformly at
random, i.e. amid uncertainty.
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Vibrational Resonance in Time-Delayed
Nonlinear Systems

S. Rajasekar and M.A.F. Sanjuán

Abstract Time-delay is ubiquitous in many dynamical systems. The role of single
and multiple time-delay on vibrational resonance in a single Duffing oscillator and
in a system of n Duffing oscillators coupled unidirectionally and driven by both
a low- and a high-frequency periodic force is presented. The investigation is per-
formed through both theoretical approach and numerical simulation. Theoretically
determined values of the amplitude of the high frequency force and the delay-time at
which resonance occurs are in very good agreement with the numerical simulation.
A major consequence of time-delay feedback is that it gives rise to a periodic
or quasiperiodic pattern of vibrational resonance profile with respect to the time-
delay parameter. For the system of n-coupled oscillators with a single time-delay
coupling, the response amplitudes of the oscillators are shown to be independent
of the time-delay. In the case of a multi time-delayed coupling, undamped signal
propagation occurs for coupling strength (ı) above a certain critical value (denoted
as ıu). Further, the response amplitude approaches a limiting value QL with the
oscillator number i . Analytical expressions for both ıu and QL are determined.

1 Introduction

Signal detection and signal amplification are very important in engineering, physics
and biology. In recent years certain nonlinear phenomena are explored in this
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context. Particularly, certain resonance dynamics are shown to be useful for weak
signal detection. Examples include stochastic resonance [1, 2], chaotic resonance
[3], coherence resonance [4] and vibrational resonance (VR) [5]. In the case of
stochastic resonance a bistable or an excitable system is driven by a weak periodic
signal and noise. When the noise intensity is varied the signal-to-noise ratio (SNR)
at the frequency of the input periodic signal becomes maximum at an optimum
value. On either side of the optimum value of the noise intensity the SNR decreases.
In place of noise one can use a chaotic signal of a system. The resulting resonance
is called chaotic resonance. It is possible to realize a noise-induced resonance in the
absence of the external periodic force and then is termed coherence resonance.

In the VR set-up, a nonlinear system is driven by a biharmonic force consisting
of two frequencies ! and � with �  !. In a typical VR, when the amplitude
(or frequency) of the high-frequency force is varied, the response amplitude of
the system at the low-frequency ! displays one or more resonance peaks. VR can
occur even in overdamped single-well systems. Theoretical approaches have been
developed to analyse VR [6, 7]. VR has been studied in monostable [8], bistable
[5–7, 9, 10], three well [11] and spatially periodic potential [12] systems. It has
also been observed in excitable systems [13], fractional-order systems [14], maps
[15], small-world networks of FitzHugh–Nagumo equations [16] and ecological
systems [17]. VR is found to induce undamped low-frequency signal propagation
in one-way coupled [18] and globally coupled [19] bistable systems. Experimental
evidence of VR has been demonstrated in analog simulations of the overdamped
Duffing oscillator [9], in an excitable electronic circuit with Chua’s diode [13] and
in a bistable optical cavity laser [20].

It is important to study VR in different kinds of systems and explore its features
with specific emphasis on the development of theoretical analysis and the role of
properties of the systems on VR. This is precisely what motivates us to consider
here a class of dynamical systems called time-delayed systems. When the state of
a system at time t depends on its state at a shifted earlier time, say, t � ˛, then a
time-delayed feedback term is introduced in the equation of motion of the system.
The study of time-delayed systems has received a great interest in recent years
because time-delay is ubiquitous in many systems [21, 22]. The common sources
of time-delay are finite propagation time of transport of information and energy,
finite reaction times, memory effects and finite switching speed of amplifiers. Time-
delay is easily amenable in networks [23], laser arrays [24–26], electronic circuits
[27], neural systems [28–30] and optical and optoelectronic circuits. The features
of vibrational resonance in the presence of a single time-delayed feedback have
been analysed in the Langevin equation [31], two-coupled overdamped anharmonic
oscillators [32], underdamped and overdamped Duffing oscillators [33], FitzHugh–
Nagumo neuronal model [34], a genetic toggle-switch [35] and a system of
n-coupled bistable oscillators [36]. There are some notable reports on the influence
of two or three time-delayed feedbacks or coupling terms [37–44] on the dynamics
of certain systems.

Motivated by the above ideas, here we present our investigation on the effect of
single and multi time-delayed feedback (MTDF) on VR in a single nonlinear system
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and signal transduction in a system of unidirectionally coupled systems with multi
time-delayed coupling (MTDC). We choose the paradigmatic Duffing oscillator as
the reference model system. The MTDF is of the form .�=L/

PL
lD1 x.t�l˛/.L D 1

corresponds to a single time-delay. Our main goal is to explore the enhancement of
the response amplitude by the single and MTDF and MTDC.

The equation of motion of the single Duffing oscillator with an MTDF and driven
by the biharmonic force is given by

Rx C d Px C !20x C ˇx3 C �

L

LX
lD1

x.t � l˛/ D f cos!t C g cos�t; (1)

where �  !. When d D 0, � D 0, f D 0 and g D 0 the potential of the

Duffing oscillator is V.x/ D 1

2
!20x

2 C 1

4
ˇx4. For !20 < 0 and ˇ > 0 the potential

becomes a double-well shape, while for !20 and ˇ > 0 it becomes a single-well
form. We treat the double-well and the single-well cases separately. For f � 1

and because of �  ! it is reasonable to assume that the response of the system
(Eq. 1) essentially contains only a slow component X.t/ with the low-frequency !
and a fast component  .t;�t/ with the high-frequency �. Through a theoretical
approach we obtain an analytical expression for the variables X and  . We define
the ratio of the amplitude AL of slow motion and the amplitude f of the input low-
frequency force as response amplitudeQ. First we analyse the occurrence of VR in
the system (Eq. 1) with single time-delay (L D 1). From the theoretical expression
of Q we determine the values of g and ˛ denoted as gVR and ˛VR , respectively, at
which VR occurs, i.e.,Q becomes a maximum. We verify the theoretical predictions
with the numerical simulation. We illustrate the mechanism of the resonance and
compare the change in the slow motion X.t/ and the actual motion x.t/ when the
control parameters g and ˛ are varied. Next, we analyse the effect of MTDF on
VR. We determine the regions in (� � ˛) parameter space for which Qmax.�/ >

Qmax.� D 0/ for a few fixed values of L. It displays a band-like structure with the
number of bands being the number of time-delayed terms L. We analyse the effect
of L on resonance.

Then we take up the n-coupled Duffing oscillators whose equations read

Rx1 C d Px1 C !20x1 C ˇx31 D f cos!t C g cos�t;

Rxi C d Pxi C !20xi C ˇx3i D ı

L

LX
lD1

xi�1.t � l˛/; (2)

where i D 2; 3; � � � ; n. Our prime interest is on the analysis of signal propagation
in the system (Eq. 2) with n D 200. Applying the theoretical treatment used for the
system (Eq. 1) we express Qi in terms of Qi�1 except for the first oscillator. When
L D 1, the analytical expression of Qi , i > 1 is found to be independent of the
time-delay parameter ˛. This implies that the time-delay has no influence on Qi .
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For i  1 the theoretical Qi deviates largely from the numerically computed Qi .
This is because of the neglect of nonlinear terms in the equation of motion of the
slow variableXi.t/. Inclusion of nonlinear terms leads to a set of coupled nonlinear
equations for Qi . Interestingly, the Qi ’s computed by solving this set of equations
are in very good agreement with the numerically calculatedQi . The coupled system
shows undamped signal propagation (that is, Q200 > Q1) for certain range of
values of the control parameters ˛ and ı. In the undamped signal propagation, Qi

exhibits sigmoidal type of variation with i , that is,Qi ! QL for sufficiently large i .
We are able to obtain an analytical expression for the limiting value of Q, QL, and
the critical value of ı, ıu, above which undamped signal propagation takes place.
Interestingly, bothQL and ıu are independent of the parameter g.

Before taking up the main theme, in the next two sections we briefly point out
that time-delay is ubiquitous and show the absence of VR in a linear system with
time-delayed feedback and driven by the biharmonic force.

2 Time-Delay Is Ubiquitous

A first-order delay differential equation is of the form

Px D F.t; x.t/; x.t � ˛l //; (3)

where ˛l > 0, l D 1; 2; � � � are delay times. The time-delays ˛l can be of different
types depending upon the nature of the sources of the time-delay. In the nonlinear
dynamics literature the effect of the following types of time-delay is investigated in
a variety of nonlinear systems [22]:

1. A single constant delay: ˛l D ˛ D a constant, l D 1.
2. Multiple time-delay: ˛l D l˛, ˛ D a constant, l D 1; 2; � � � ; L. An example is

F.x.t � ˛l // D 1

L

LX
lD1

x.t � l˛/.
3. Integrative time-delay or distributive delay: A delay term of this kind is repre-

sented as hxi˛ D 1

˛

Z ˛

t�˛
x.t 0/ dt 0.

4. Time-dependent delay: ˛.t/ D aC bt or aC b
p
t with ˛ < t .

5. State-dependent delay: ˛ D F.x.t//. An example is ˛.x.t// D jx.t/j.
Typical examples of systems with delays are given by maturation times [45], hydro-
dynamic problems [46], chemical surface reactions [47] and feedback regulated
voltage-controlled oscillators [48, 49]. In nonlinear optics, periodic and chaotic
outputs are realized by a delayed feedback [50]. Such delay-induced dynamics are
used to design practical systems including high-frequency and broadband optical
chaotic oscillators for secure chaos communication [51] or high-speed random
number generation [52] or to develop alternative imaging techniques [50].
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It is noteworthy to mention that delayed self-communication is of great
significance because of its regulatory mechanism in nature and technology [53,54].
Examples include excitable gene regulatory systems [55], eye movements [56],
human balance [57] and optically communicating semiconductor lasers [58].
In neural networks communicating between the various areas may take place
in delays ranging from few milliseconds to hundreds of milliseconds due to
the finite speed of the transfer of data in the axons and dendrites and because
of the processing latency in the synapses [59]. In neural systems the source for
a precise firing of basket cells in hippocampus during Theta and Gamma rhythm
is a delayed feedback. Experimental evidences are reported for delayed recurrent
excitations inducing regulation of the structure of the interspike intervals in the
presence of noise [60]. Delayed self-coupling in the study of the pacemaker cells
of crayfish [61] is found to give rise bursting and high-frequency discharges with
relatively long quiescent intervals [62]. One can treat the time-delay as an external
force.

In coupled systems, coupling transmits one or more variables to neighbours.
Often the transmission time is larger than the internal time scales of the systems.
In this case coupling terms consisting of time-delayed variables are realistic.
Message decoding in chaos-based communication systems would require chaos
synchronization between multiple time-delayed transmitter and receiver systems.
In high speed chaos-based communication systems [63] external cavity semiconduc-
tor lasers form an integral part. In practical applications such lasers may be subject
to more than one optical reflection. This would lead to multiple time-delays. It has
been pointed out that inclusion of several external cavities could provide higher
security for such communication systems [64].

3 Resonance in a Linear System with Time-Delayed
Feedback

In this section we consider a linear system with linear MTDF and driven by two
periodic forces. The equation of motion of the system is given by

Rx C d Px C !20x C �

L

LX
lD1

x.t � l˛/ D f cos!t C g cos�t; (4)

where !20 > 0 and d > 0. The general solution of Eq. (4) for f D g D 0 is
not known. Equation (4) with f D g D � D 0 is a damped linear system.
Its equilibrium point .x�; Px�/ D .0; 0/ is stable. When f D g D 0 and � ¤ 0,
Eq. (4) exhibits a damped or periodic or growing oscillation depending upon the
values of � , L and ˛ [22]. Here, we are interested in the long time behaviour of
Eq. (4). In the limit t ! 1 we seek the solution of Eq. (4) in the form

x.t/ D A! cos.!t C �!/C A� cos.�t C ��/ : (5)
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The unknownsA! and �! are determined as

A! D fp
S!
; S! D

"
!20 � !2 C �

L

LX
lD1

cos l˛!

#2
C
"
d! � �

L

LX
lD1

sin l˛!

#2
;

(6)

�! D tan�1
"

d! � �

L

PL
lD1 sin l˛!

!2 � !20 � �

L

PL
lD1 cos l˛!

#
: (7)

Replacement of ! and f by � and g, respectively, in Eqs. (6) and (7) gives A�,
S� and ��. As f .g/ increases A!.A�/ also increases. Resonance does not occur at
the frequencies ! or � when f or g is varied from a small value. Thus, there is no
vibrational resonance in the linear system with time-delayed feedback.

4 Single Duffing Oscillator: Theoretical Expression
for the Response Amplitude Q

The main objective of this section is to obtain an expression for the response
amplitudeQ for the single Duffing oscillator system of Eq. (1) [65].

We assume the solution of the system (Eq. 1) for �  ! as x D X C  where
X.t/ and  .	 D �t/ are a slow motion with period 2�=! in the time t and a fast
motion with period 2� in the fast time 	 , respectively. Further, we assume that the

average value of  over the period 2� is h i D 1

2�

Z 2�

0

 d	 D 0. Substitution of

x D X C  in Eq. (1) gives the following equations for the variablesX and  :

RX C d PX C �
!20 C 3ˇh 2i�X C ˇ

�
X3 C h 3i�C 3ˇX2h i

C �

L

LX
lD1

X.t � l˛/ D f cos!t; (8)

R C d P C !20 C 3ˇX2. � h i/C 3ˇX
�
 2 � h 2i�

Cˇ � 3 � h 3i�C �

L

LX
lD1

 .�t � l˛�/ D g cos�t; (9)

where h ni D 1

2�

Z 2�

0

 n d	 . Because  is a fast variable we can neglect the

nonlinear terms in Eq. (9). In the limit of t ! 1, referring to the solution of the
linear system (Eq. 4) given by Eqs. (5)–(7), we write the solution of Eq. (9) as

 D � cos.�t C �/; (10)
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where � D g=k,

k2 D
 
!20 ��2 C �

L

LX
lD1

cos l˛�

!2
C
 
d� � �

L

LX
lD1

sin l˛�

!2
(11)

and

� D tan�1
 

d� � �

L

PL
lD1 sin l˛�

�2 � !20 � �

L

PL
lD1 cos l˛�

!
: (12)

For sufficiently large values of � we can further approximate the solution
(Eqs. 10–12) by dropping the terms !20 and d�. However, in our treatment we
keep these terms in the solution. From the above solution we obtain h i D 0,
h 2i D �2=2 and h 3i D 0. Then Eq. (8) becomes

RX C d PX C C1X C ˇX3 C �

L

LX
lD1

X.t � l˛/ D f cos!t; (13)

where C1 D !20 C 3

2
ˇ�2. When f D 0, the equilibrium points of Eq. (13) are

X�
0 D 0; X �̇ D ˙

s
�C1 C �

ˇ
: (14)

Slow oscillations occur around these equilibrium points.
Substituting X D Y C X�, where Y is the deviation of the slow motion from

X�, in Eq. (13), we obtain

RY C d PY C !2r Y C 3ˇX�Y 2 C ˇY 3 C �

L

LX
lD1

Y.t � l˛/ D f cos!t: (15)

The solution of the linear version of Eq. (15) in the limit t ! 1 and f � 1 is
Qf cos.!t C �/, where the response amplitudeQ and the phase � are given by

Q D 1p
S
; S D

 
!2r � !2 C �

L

LX
lD1

cos l˛!

!2
C
 
d! � �

L

LX
lD1

sin l˛!

!2
(16)

and � D �.� D !;!20 D !2r /. !r is the resonant frequency of the linear version of
the equation of motion of the slow variable X.t/. In the next section we analyse the
occurrence of VR in the system (Eq. 2) with a single time-delayed feedback term
and then take up the system with MTDF.
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5 Resonance in the System with a Single Time-Delay

In the absence of the damping term, external periodic forces and feedback term

the potential of the Duffing oscillator is V.x/ D 1

2
!20x

2 C 1

4
ˇx4. V.x/ becomes a

double-well for !20 < 0, ˇ > 0, and a single-well for !20 , ˇ > 0, respectively.
Moreover, for !20 > 0, ˇ < 0 the potential has a single-well with double-hump
form. These three forms of the potential are depicted in Fig. 1. For !20 , ˇ < 0 the
potential has an inverted single-well form. We treat the double-well and single-well
cases of the system separately.

5.1 Resonance Analysis in the Double-Well System

The equilibrium points around which slow oscillations take place are given by
Eq. (14). There are three equilibrium points for g < gc where

gc D
�
2k2

3ˇ

�j!20 j � ���1=2 ; j!20 j � � > 0; (17)

For g < gc the system admits two slow motions, one about X�C and the other about
X��. X�

0 is unstable. For g > gc, X�
0 is the only real equilibrium point and a slow

orbit occurs about it. That is, the effective potential of the slow variableX undergoes
a transition from the double-well to a single-well at gc.

The possibility of occurrence of resonance when a control parameter is varied
and the values of a parameter at which resonance occurs can be determined from
the theoretical expression of Q. The response amplitude Q is a maximum when
the function S in Eq. (16) is a minimum. When a parameter, say, g is varied then
resonance occurs at a value of gVR , where gVR is a root of the equation dS=dg D 0.
This condition requires

!2r D !2 � � cos˛!: (18)

V
(

)

420-2-4

4

2

0

-2

Fig. 1 Single-well
(represented by a continuous
line, !20 D 0:5, ˇ D 0:1),
double-well (represented by a
dashed line, !20 D �1,
ˇ D 0:1) and single-well
with double-hump
(represented by solid circles,
!20 D 1, ˇ D �0:1) forms of
the potential of the Duffing
oscillator
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From this resonance condition one can obtain an analytical expression for gVR .
We obtain the following results.

Case 1: ” < 0

When

� < 0; j� j < j�c<j D !2

1 � cos˛!
(19)

there are two resonances. The values of g at which resonance occurs are given by

g.1/
VR

D
�
k2

3ˇ

�
2j!20 j � !2 � 3� C � cos˛!

��1=2
< gc; (20)

g.2/
VR

D
�
2k2

3ˇ

�j!20 j C !2 � � cos˛!
��1=2

> gc: (21)

The response amplitude is the same at these two values of g. For � < 0 and
j� j > j�c<j only one resonance is possible and in this case g.1/

VR
D gc. For j� j <

j�c<j the resonances are due to the matching of !2r with !2 � � cos˛! (refer
to Eq. (18)), while the resonance at g D gc for j� j > j�c<j is due to the local
minimization of !2r .

Case 2: ” > 0

For � > 0, one resonance occurs at g D g.2/
VR

given by Eq. (21) provided j!20 j C
!2 > � . Another resonance occurs at g D g.1/

VR
given by Eq. (20) if

j!20 j > �; � < �c> D 2j!20 j � !2

3 � cos˛!
: (22)

The two resonances are resulting from the resonance condition (Eq. 18).

To verify the theoretical predictions, we numerically compute the sine and cosine
components Qs and Qc, respectively, at the low-frequency ! of the numerical
solution x.t/ of the system (Eq. 1). In the calculation of Qs and Qc we use the
solution x.t/ corresponding to 200 drive cycles of the input signal after leaving
a sufficient transient. Then Q D p

Q2
s CQ2

c=f . We choose the values of the
parameters as d D 0:5, !20 D �1, ˇ D 0:1, f D 0:1, ! D 1 and � D 10.
Equation (1) is integrated numerically using the Euler method with time step 0:01.
The time-delay parameter ˛ takes always multiple values of 0:01.

Figure 2a presents both theoretical and numerical gVR as a function of � for
˛ D 1 and 3. We notice a very good agreement between the theory and the numerical
simulation. For ˛ D 1 and 3 we find �c< D �2:17534 and �0:50251, respectively.
For � < 0, there are two resonances for j� j < j�c<j and only one for j� j > j�c<j.
For j� j < j�c<j, as g increases from 0 the quantity !2r decreases from 2j!20 j C 3j� j
and reaches the minimum value j� j at g D gc. As g increases from gc the value
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Fig. 2 (a) Theoretical and numerical gVR versus the parameter � for the system (Eq. 1) with the
double-well potential case. The number of delay term is 1. The solid circles are the numerically
computed gVR and the lines are theoretical gVR . (b) !2r versus g. From bottom to top curves the
values of � are 0, �0:3 and �2:3, respectively. The horizontal dashed line represents the value of
.!2 � � cos ˛!/. The vertical dashed lines mark the values of gVR . (c) Q as a function of g with
˛ D 1. The continuous lines are theoreticalQ while the dashed lines are numerically calculatedQ

of !2r increases from j� j. This is shown in Fig. 2b for � D 0, �0:3 and �2:3. For
� D 0 and �0:3 at g.1/

VR
and g.2/

VR
we have !2r D !2 � � cos˛! (indicated by the

horizontal dashed line in Fig. 2b) and hence Q becomes maximum with Qmax D
1=jd! � � sin ˛!j. In Fig. 2c we observe two resonances. In the absence of time-
delay feedback Q becomes maximum when !r D ! and the maximum value of
Q is 1=.d!/. For � D �0:3 the theoretical values of g.1/

VR
and g.2/

VR
are 242:75 and

382:95, while the numerically computed values are 240:34 and 377:43, respectively.
For j� j > j�c<j the value of !2r is always > .!2 � � cos˛!/. However, it has a
local minimum at g D gc and thus a resonance. These are shown in Fig. 2b,c for
� D �2:3. Note that Q is minimum at g D gc for j� j < j�c<j.

In Fig. 2c the value of Q at resonance is always lower than the case � D 0.
Qmax.�; g/ D Q.�; gVR/ > Q.� D 0; gVR/ can be realized for a range of values
of ˛ and � . Figure 3a presents the variation of Q.gVR/ in .�; ˛/ parameter space
for ! D 1 and � < 0. We can clearly see that Q.�; gVR/ > Q.� D 0; gVR/ for
˛ 2 Œ�; 2��. Figure 3b is the three-dimensional plot of Q as a function of � and g
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Fig. 3 (a) Variation ofQ.g D gVR/ as a function of � and ˛ for the double-well case of the system
(Eq. 1) with single time-delay. (b) Three-dimensional plot of Q versus the parameters � and g for
˛ D 3:5

for ˛ D 3:5. For ˛ D 3:5 the value of j�c<j is 0:51641. In Fig. 3b for j� j < 0:51641
there are two resonances with Q.�; gVR/ > Q.� D 0; gVR/. Only one resonance
occurs for j� j > 0:51641.

Now we compare the change in the slow motionX.t/ and the actual motion x.t/
when the parameter g is varied. For � D �0:3 and ˛ D 1 the numerically computed
values of gVR are 240:5 and 376:85. The phase portrait of slow motion is plotted in
Fig. 4 for several values of g. For g < gc .D 296:95/ there are two slow motions:
one around X�C and the other around X��. As g increases from a small value the
equilibrium points about which X.t/ and x.t/ occur move towards the origin. This
is shown in Fig. 4 for four values of g < gc. In this figure the orbits coexisting
around X�� are not shown for clarity. For g > gc, as noted earlier, X�

0 D 0 is the
only equilibrium point and hence both X.t/ and x.t/ occur around the origin. This
is evident in Fig. 4 for three values of g > gc. We observe that at the resonance
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Fig. 4 Phase portraits of the slow variable X of the double-well system (Eq. 1) with single time-
delay for several values of g. The values of g for the numbers 1�7 are 100 .1/, 240:5 .2/, 275 .3/,
295 .4/, 300 .5/, 376:85 .6/ and 600 .7/. Here d D 0:5, !20 D �1, ˇ D 0:1, � D �0:3, ˛ D 1,
f D 0:1, ! D 1 and � D 10. The equilibrium points X�

0 and X�

C
are marked by the solid circles

(g D 240:50) both x.t/ and X.t/ > 0. That is, cross-well motion and bistability
are not necessary ingredients for VR. As a matter of fact, it can occur in monostable
systems [8].

Next, we present the effect of the time-delay parameter ˛ on VR. The condition
for a resonance to occur when ˛ is varied is given by (from dS=d˛ D 0)

�
!2r � !2

�
!2r˛ C �

!2r˛ � d!2� � cos˛! � �!
�
!2r � !2� sin ˛! D 0; (23)

where!2r˛ D d!2r =d˛. Analytical expressions for the roots of the above equation are
difficult to obtain. However, the roots denoted as ˛VR can be determined numerically
from Eq. (23). We compute theoretical ˛VR (from Eq. (23)) and numerical ˛VR (by
numerically solving the Eq. (2)) for a range of values of g with � D �0:3. In Fig. 5a
˛VR < 3 � 2�=! are alone plotted. .˛VR are periodic with period 2�=!/. Figure 5b
presents numericalQ as a function of ˛ and g. We can clearly see the periodicity of
Q with respect to ˛.

Figure 6 illustrates the effect of ˛ on the slow motionX.t/ for g D 250 and 350.
When ˛ is increased from a small value with g < gc, then the shift in the locations
ofX �̇ is very small. However, the amplitude of the slow orbits varies and resonance
occurs at ˛ D ˛VR . When ˛ is varied for g > gc then the slow orbit occurs about
X�
0 D 0. These are shown in Fig. 6 for g D 250 < gc and g D 350 > gc. For

g D 250.< gc/ the slow motion occurs aboutX�C and X��. This is shown in Fig. 6a,
b for a few fixed values of ˛. In these figures the resonant orbits are marked by the
label 2. The orbits marked by 1 and 3 correspond to the values of ˛ on either side of
˛ D ˛VR . In Fig. 6c,d, for g D 350 > gc slow motion occurs aboutX�

0 D 0. Tuning
time-delay is an advantage when it is desired to observe the response of a system
and VR with the centre of the orbit (slow as well as the actual orbit) almost remains
the same.
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Fig. 5 (a) ˛VR versus the
amplitude g of the high
frequency force for
� D �0:3. The system is the
double-well single system.
Continuous lines and painted
circles represent theoretically
and numerically computed
values of ˛VR , respectively.
(b) Periodic variation of the
response amplitude Q with
the time-delay parameter ˛
for various values of g in the
interval Œ100; 300� for
� D �0:3

5.2 Resonance Analysis in the Single-Well System

For !20 , ˇ > 0 the potential V.x/ of the system has a single-well shape with a
local minimum at x D 0. Unlike the double-well system, the effective potential of
X remains as a single-well when the amplitude g of the high-frequency force is
varied. Consequently, slow oscillation always occurs about X�

0 D 0.
For the single-well case the resonance value of g is given by

gVR D
�
2k2

3ˇ

�
!2 � !20 � � cos˛!

��1=2
: (24)

We recall that in the double-well case a resonance is possible for all set of values of
� and ˛ when g is varied. In contrast to this, in the single-well system a resonance is
possible only for a set of values of � and ˛ for which!2�� cos˛! > !20 . Further, in
the double-well system two resonances are possible while in the single-well system
at most one resonance is possible.

In Fig. 7a we plot the variation of theoretical gVR with � and ˛ for !20 D 0:5 and
ˇ D 0:1. For a fixed value of � as ˛ increases from zero the value of gVR increases
and becomes maximum at ˛ D �=! and then decreases. gVR is periodic in ˛ with
period 2�=! and Qmax D 1=jd! � � sin ˛!j. In Fig. 7b the maximum value of Q
at g D gVR for ˛ D 2 increases when � increases. For a certain range of values of
˛, gVR decreases when � increases and the value of Q at resonance increases. For
example, when ˛ D 1 the value of gVR decreases when � increases. For ˛ D 2 and
3, gVR increases when � increases.



248 S. Rajasekar and M.A.F. Sanjuán

g

X

Ẋ
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Fig. 7 (a) Theoretical gVR versus the time-delay feedback parameters � and ˛ for the single-well
case of the system (Eq. 1) with L D 1, !20 D 0:5 and ˇ D 0:1. (b) Q versus the parameters � and
g for ˛ D 2

Figure 8a presents both theoretical and numerical ˛VR versus g for � D 0:15. ˛VR

is periodic with period 2�=!. For a fixed value of g resonance occurs at only one
value of ˛ for ˛ 2 Œ0; 2�=!�. In Fig. 5a, corresponding to the double-well system,
a double resonance is found for a certain range of fixed values of g. The presence
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of only one resonance in Fig. 8a for ˛ 2 Œ0; 2�=!� implies that the variation of
k2 due to the terms � sin ˛� and � cos˛� (see Eq. (11)) is negligible and k2 �
.!20 ��2/2 C d2�2. Then from Eq. (16) the expression for ˛VR is obtained as

˛VR D 1

!
tan�1

�
d!

!2 � !2r

�
; !2r D C1: (25)

˛VR is independent of � ; however, the maximum value of Q at resonance varies
with � . This is confirmed in the numerical simulation. The maximum value of Q
for � ¤ 0 is always found to be greater than the value of Q for � D 0 (see Fig. 8b).
Figure 8c demonstrates the periodic variation of Q with the delay parameter ˛. For
irrational values of the ratio �=! the response amplitude exhibits a quasiperiodic
pattern.
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6 Single Duffing Oscillator: Effect of Multi Time-Delay

In this section we consider the system (Eq. 1) with MTDF. We restrict our analysis
to the double-well case alone.

We choose d D 0:5, !20 D �1, ˇ D 0:1, f D 0:1, ! D 1 and � D 10.
Figure 9 presents both theoretically and numerically computed Q as a function of
the control parameter g for L D 1; 2; 3 and 5 for � D 0:3 and for two values
of ˛. The result for � D 0 is also shown in this figure. VR is observed for all
the values of L chosen. The theoretical Q value is in good agreement with the
numerical Q value. In Fig. 9 two values of ˛ are chosen in such a way that for one
value Qmax.�/ > Qmax.� D 0/ (the value of Q at resonance) while for the other
valueQmax.�/ < Qmax.� D 0/ D 2.

Using the theoretical expression of Q, in (� � ˛) parameter space we identify
the regions where Qmax.�/ > Qmax.� D 0/ for a few fixed values of L. The result
is presented in Fig. 10. For both � < 0 and � > 0, Fig. 10 has L bands. In the
bands filled with dotsQmax.�/ > Qmax.� D 0/. The width of the bands is unequal.

3

1

2

L = 1

Q

5002500

5

2.5

0

3

1

2

L = 2

Q

5002500

5

2.5

0

3

1

2

L = 3

g

Q

5002500

5

2.5

0

3
1

2

L = 5

g

g g

Q

5002500

5

2.5

0

a

c

b

d

Fig. 9 Q versus g for a few fixed number of time-delayed feedback terms. We fixed d D 0:5,
!20 D �1, ˇ D 0:1, f D 0:1, ! D 1 and � D 10. The continuous and dashed lines are the
theoretically and numerically calculated values of Q, respectively. In all the subplots, � D 0 for
curve 1. For the curves 2 and 3 � D 0:3 and ˛ D 0:5 and 5:5, respectively
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Fig. 10 Plot of regions (marked by dots) in the (� � ˛) parameter space where Qmax.�; ˛/ >

Qmax.� D 0/ for ! D 1

The filled bands of � < 0 become the unfilled bands of � > 0. From the theoretical
expression of Q the condition for the enhanced response at resonance due to the
time-delayed feedback term is �

PL
lD1 sin l˛! > 0 (refer Eq. (16)) and is realized

in the regions filled with dots in Fig. 10. For each value of L the total length of ˛
intervals where Qmax.�/ > Qmax.� D 0/ is � � .

We define G D Qmax.�/=Qmax.� D 0/ as the gain factor. Figure 11 shows the
variation of G as a function of the parameters � and ˛ for few values of L. In this
figure data with G > 1 alone is plotted. For wide ranges of ˛ and � the gain factor
is > 2, that is, the delay is able to increase the value of Q at resonance more than
twice the value of Q in its absence. The addition of more and more delay terms
decreases the maximum value of G. Moreover, it produces new regions with G > 1

in the (� � ˛) parameter space and decreases the value of G to less than 1 in certain
regions where G > 1 earlier.

The resonance condition given by Eq. (18) and the results of cases 1 (� < 0) and
2 (� > 0) presented in Sect. 5 for a single delay-time are applicable for the MTDF
with � cos˛! replaced by .�=L/

PL
lD1 cos l˛!. We point out that in the system

(Eq. 1), in absence of MTDF, there are two resonances for 2j!20 j > !2, while one
for 2j!20 j < !2. With MTDF the number of resonances for � < 0 depends on
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Fig. 11 G D Qmax.�/=Qmax.� D 0/ > 1 versus � and ˛ for various values of L

the parameters !, L and ˛. For � > 0 the number of resonances depends also on
the parameter !20 . Thus, by suitably choosing the values of � , ˛ and L the system
can be set to show either two resonances or one resonance by varying the control
parameter g. That is, the number of resonances can be varied by means of an MTDF.

In the single oscillator, an amplification of a low-frequency signal can be
achieved for a range of amplitude and frequency of the high-frequency force in the
absence of time-delayed feedback. In this case the maximum value ofQ is 1=.d!/.
When the MTDF is introduced, we find Qmax D 1=jd! � .�=L/

PL
lD1 sin l˛!j.

That is, Qmax can be further increased or decreased by appropriate choices of � , ˛
and L. Thus, the MTDF can be used to control the value ofQmax.

7 Signal Propagation in a System of n-Coupled Oscillators

In this section we focus our investigation on the signal propagation in a system
of n-coupled Duffing oscillators, Eq. (2), with n D 200. In the system (Eq. 2) the
external force is applied to the first oscillator alone. The coupling term is linear and
has multiple time-delayed terms. The evolution of x1 is independent of xi , i > 1

while those of xi , i > 1 depends on xi�1.

7.1 Theoretical Approach

Writing xi D Xi C  i where Xi ’s and  i ’s are slow variables and fast variables,
respectively, and applying the theoretical treatment used in Sect. 4, we obtain the
following results:

Yi .t/ D Qif cos.!t C �i /; (26)
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where

Q1 D 1q�
!2r1 � !2�2 C d2!2

; Qi D PiQi�1; (27)

Pi D ı r!q�
!2ri � !2

�2 C d2!2
; i D 2; 3; � � � ; n (28)

!2ri D Ci C 3ˇX�2
i ; (29)

Ci D !20 C 3

2
ˇ�2i ; i D 1; 2; � � � ; n (30)

X�
1

�
X�2
1 C C1

ˇ

�
D 0; (31)

X�3
i C Ci

ˇ
X�
i � ı

ˇ
X�
i�1 D 0; i D 2; 3; � � � ; n (32)

�1 D g=k; �i D ı r�

k
�i�1; i D 2; 3; � � � ; n (33)

k D
q�
�2 � !20

�2 C d2�2 ; (34)

r! D 1

L

2
4
 

LX
lD1

sin l˛!

!2
C
 

LX
lD1

cos l˛!

!235
1=2

(35)

and r� is similar to r! with ! replaced by � in Eq. (35). The above theoretical
treatment gives an important result. When the number of time-delayed terms in the
coupling is only one (L D 1), then r! D r� D 1 and hence the response amplitudes
Qi ’s, i > 2 are independent of the time-delay parameter ˛. This is because when
L D 1 the coupling term ıxi�1.t�˛/ becomes ıX�

i�1CıQi�1f cos.!t�˛!C�i�1/
in which �˛! C �i�1 is an unimportant phase factor as far as the amplitudes of
oscillation of xi ’s are concerned. The above theoretical prediction is verified in the
numerical simulation. Therefore, in the rest of our analysis we consider L > 1.

In obtaining the theoretical Qi , we have neglected the nonlinear terms in the
equations of motion of and Y.D X�X�/. In the systems of n-coupled oscillators,
the error in the theoreticalQ due to the above approximation is found to be large for
i  1. To show this we define�Qi D Qi;T �Qi;N, whereQi;T andQi;N represent
Qi values determined theoretically and numerically. In Fig. 12 we plot �Qi with i
for three values of g. For first few oscillators �Qi � 0 and then it diverges with i .
In obtaining �i given by Eq. (33) we assumed that R i   2i and  3i . This can be a
valid assumption for i D 1, where the first oscillator is driven by the high-frequency
force g cos�t . Because the other oscillators are not driven explicitly by the high-
frequency force, the assumption R i   2i and  3i is not valid for i  1. Further,
nonlinear terms in the equations of Yi are neglected in obtainingQi . Moreover, the
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errors in  i and Yi propagate to the .i C 1/th oscillator through the coupling term.
Consequently, �Qi is negligible for the first few oscillators and becomes large for
i  1.

In order to minimize the error in the theoretical Qi and also to reduce the
propagation of this error through the consecutive oscillators, we include nonlinear
terms in the calculation of the amplitudes of oscillation of the fast and slow variables
[18]. We assume

 i D �i cos.�t C �i /; Xi D Ai cos.!t C �i /: (36)

Substitution of (Eq. 36) in the equations

R 1 C d P 1 C !20 1 C ˇ 31 D g cos�t;

R i C d P i C !20 i C ˇ 3i D ı

L

LX
lD1

 i�1.t � l˛/; (37)

RX1 C d PX1 C !201X1 C ˇX3
1 D f cos!t;

RXi C d PXi C !20iXi C ˇX3
i D ı

L

LX
lD1

Xi�1.t � l˛/; (38)

where i D 2; 3; � � � ; n and !20j D !20 C 3

2
ˇ�2j , j D 1; 2; � � � ; n gives [65]

�6i C a��
4
i C b��

2
i � Ri� D 0; (39)

A6i C aiAA
4
i C biAA

2
i � RiA D 0; i D 1; 2; � � � ; n (40)

where

a� D 8

3ˇ

�
!20 ��2

�
; b� D 16

9ˇ2

h�
!20 ��2

�2 C d2�2
i
; (41)
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R1� D 16g2

9ˇ2
; R1A D 16f 2

9ˇ2
; (42)

aiA D 8

3ˇ

�
!20i � !2� ; biA D 16

9ˇ2

h�
!20i � !2

�2 C d2!2
i
; i D 1; 2; � � � ; n

(43)

Ri� D 16ı2r2��
2
i�1

9ˇ2
; RiA D 16ı2r2!A

2
i�1

9ˇ2
: i D 2; 3; � � � ; n: (44)

r! is given by Eq. (35) and r� is obtained from r! by replacing ! by �.
Equations (39) and (40) can be viewed as cubic equations for the variables �2i and
A2i , respectively. Analytical expressions for the roots of the cubic equation of the
form (Eq. 39) are given in [66]. We determine �i , Ai and then Qi D Ai=f by
solving the Eqs. (39) and (40). We use Q200 > Q1 as the criterion for undamped
and enhanced signal propagation in the coupled oscillators.

We check the validity of the theoretical approach. In Fig. 13a we plot both the
theoretically calculated Qi and the numerically computed Qi as a function of i
for three values of g with L D 2, ˛ D 1 and ı D 2:5. We observe a very good
agreement of the theoreticalQi with the numericalQi .

7.2 Undamped and Damped Signal Propagations

In Fig. 13a for each fixed value of g, for sufficiently large i , Qi attains a saturation
value. The variation ofQi with i displays a kink-like dependence. That is, there is a
critical number of oscillators for obtaining the maximum response and this number
depends on the control parameters. An interesting observation in Fig. 13a is that
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Qi > Q1 for i > 1, even in the absence of a high-frequency force. This implies that
a coupling alone is able to give rise to an enhanced undamped signal propagation in
the coupled oscillators. Figure 13b shows the influence of the number of time-delay
terms in the coupling onQi , where g D 175, ˛ D 1 and ı D 5. For L D 2 and 3 an
undamped signal propagation occurs while for L D 4 a damped signal propagation
takes place.

We call the limiting or saturation value of Qi as QL. Interestingly, we can
determine �L, AL and hence QL D AL=f from Eqs. (39) and (40), respectively.
Substituting �i D �i�1 D �L and Ai D Ai�1 D AL for sufficiently large i in
Eqs. (39) and (40) we obtain

�L D 0;

�
4

3ˇ

�
�2 � !20 ˙

q
ı2r2� � d2�2

� 1=2
(45)

and

AL D 0;

�
4

3ˇ

�
!2 � !20L ˙

q
ı2r2! � d2!2

� 1=2
; (46)

where !20L D !20 C 3

2
ˇ�2L. AL D 0 and ¤ 0 correspond to a damped and an

undamped signal propagation, respectively. It is also possible to find out the
condition on ı for undamped signal propagation. In Fig. 13 in all the examples of
undamped signal propagationQ2 > Q1. This is further confirmed for a large set of
parametric values. Therefore, we assume that if Q2 > Q1, then

Qi � Qi�1 � � � � > Q3 > Q2 > Q1: (47)

For Q1 and Q2 very much satisfactory analytical expressions are given by Eq. (27)
with i D 2. The condition forQ2 > Q1 is P2 > 1, where

P2 D ı r!q�
!2r2 � !2�2 C d2!2

; !2r2 D !20 C 3ˇg2ı2r2�
2�8

: (48)

In this equation, !2r2 � !20 because of 1=�8 in the second term of !2r2. Then P2 > 1
gives

ı > ıu D
q�
!20 � !2

�2 C d2!2

r!
: (49)

Undamped signal propagation takes place for ı > ıu. A very interesting result is that
both QL and ıu are independent of the amplitude g of the high-frequency periodic
force. We can confirm this in Fig. 13a where numerically computedQi for different
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values of g approach the same limiting value. Figure 14 describes the dependence
of ıu on the number of time-delayed termsL and the time-delay ˛. In this figure, for
clarity, only the values ıu < 10 are shown. When ıu > 10 is also considered then
the ıu curve has L peaks for a given value of L. For ı values above the threshold
curve an undamped signal propagation occurs. For L D 2 and ˛ D 1, 1:5 and 3 the
theoretical and the numerically computed values of ıu are (1:99, 1:96), (3:38, 3:31)
and (2:32, 2:30), respectively. Figure 15 presents QL versus ı and ˛ for four fixed
values ofL. In this figure we can clearly see the effect of the number of time-delayed
termsL and the time-delay ˛ onQL. The dependence ofQL on ˛ is nonmonotonic.
Even for large values of ı there are intervals of ˛ in which QL D 0 (damped signal
propagation).

8 Conclusions

The role of the amplitude g of the high-frequency periodic force and the delay-
time feedback parameters � and ˛ on VR is explored in the systems (Eqs. 1 and 2)
through a theoretical approach. The theoretical treatment used in the present analysis
allows us to predict the values of the control parameters at which resonance occurs,
number of resonances, the maximum value of the response amplitude Q and
explains the mechanism of resonance. The theoretical predictions ofQ, gVR and ˛VR

are in very good agreement with the numerical simulations. The presence of time-
delay feedback is found to enrich the VR phenomenon. Particularly, the time-delay
parameter ˛ gives rise to a periodic or quasiperiodic pattern of VR profile. This
feature of VR allows us to select different values (small or large) for the delay-time
˛ to enhance the quality of the weak signal and it can be highly useful in optimizing
the operation of multistable systems for the detection and regeneration of signals in
a variety of experimental systems.

In the single oscillator, when the amplitude g of the high-frequency periodic
force is varied, a single or a double resonance occurs depending upon the values
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Fig. 15 Three-dimensional plot of QL versus ı and ˛ for four fixed values of the number of time-
delayed coupling terms L. QL is independent of the parameter g

of the parameters !20 , !, ˛, L and � and is independent of the parameters d , f , ˇ
and �. In the � (the strength of feedback term)—˛ (time-delay) parameter space
the regions with Qmax.�/ > Qmax.� D 0/ have L bands where L is the number of
time-delayed feedback terms. The maximum value of response amplitude is found to
decrease when the number of feedback terms increases. The response amplitudeQ
depends on all the parameters except f (the analysis performed in the present work
is valid only for jf j � 1) while its value at resonance depends on the parameters
d , !, � , ˛ and L.

More importantly, the theoretical approach is able to determine and explain the
various features of signal propagation in coupled oscillators. One notable prediction
is that in coupled oscillators the response amplitude as well as the dynamics is
independent of the time-delay parameter ˛ when the number of coupling terms is
only one (L D 1). The system exhibits undamped signal propagation for appropriate
choices of the parameters and these choices of parameters can be determined from
the theoretical approach. We wish to stress that in the coupled oscillators system
(2), even though only the first oscillator is driven by the high-frequency periodic
force, fascinating results on signal propagation are obtained by the action of the
unidirectional coupling with multiple time-delayed terms.
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Experimental Studies of Noise Effects
in Nonlinear Oscillators

Vadim S. Anishchenko, Tatjana E. Vadivasova, Alexey V. Feoktistov,
Vladimir V. Semenov, and Galina I. Strelkova

Abstract In the paper the noisy behavior of nonlinear oscillators is explored
experimentally. Two types of excitable stochastic oscillators are considered and
compared, i.e., the FitzHugh–Nagumo system and the Van der Pol oscillator with
a subcritical Andronov–Hopf bifurcation. In the presence of noise and at certain
parameter values both systems can demonstrate the same type of stochastic behavior
with effects of coherence resonance and stochastic synchronization. Thus, the
excitable oscillators of both types can be classified as stochastic self-sustained oscil-
lators. Besides, the noise influence on a supercritical Andronov–Hopf bifurcation is
studied. Experimentally measured joint probability distributions enable to analyze
the phenomenological stochastic bifurcations corresponding to the boundary of
the noisy limit cycle regime. The experimental results are supported by numerical
simulations.

1 Introduction

Since any real systems are subjected to random excitations, the influence of
external noise on dynamical systems becomes an important research topic from both
fundamental and applied viewpoints. A series of scientific monographs, among of
which [1–9], and the majority of research papers are devoted to this problem.
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Nonlinear dynamical systems that possess stochastic oscillations arising from
random excitation (noise) can be referred to a separate class. Without external
excitation, a system is in its stable equilibrium state. Such systems are called
stochastic oscillators and demonstrate the number of fundamental effects, such
as stochastic resonance (SR) [10–13], coherence resonance (CR) [14, 15], and
stochastic synchronization (SS) [12, 13, 16–18]. At certain conditions nonlinear
stochastic oscillators possess some features of self-sustained oscillatory systems.
This fact enables to call these systems as stochastic self-sustained oscillators [19].
One of the fundamental properties of self-sustained oscillations that can demonstrate
stochastic self-sustained oscillators is their ability to synchronization. As noted
above, this feature is also inherent in bistable stochastic oscillators [13, 16, 17]
and excitable oscillators [13, 20–22]. Additionally, stochastic synchronization for
excitable systems is completely similar to synchronization of a noisy self-sustained
oscillator. This analogy is related with the fact that the spectrum of stochastic
oscillations of excitable systems exhibits a peak at a certain characteristic nonzero
frequency, which is sufficiently narrow in the CR regime.

The effect of coherence resonance is typical not only for excitable systems but it
can also be observed in isochronous self-sustained oscillators with hard excitation in
the presence of additive noise [23,24]. With this, the CR effect has been established
in a “subthreshold” region, i.e., in the region where there are no limit cycles in a
deterministic system. In the presence of noise such a system can be considered as a
stochastic oscillator.

An important problem in studying noisy dynamical systems is the analysis
of stochastic bifurcations (i.e., bifurcations in the presence of noise). In [24–
32] the authors explore bifurcations of noisy systems (stochastic bifurcations)
and noise-induced transitions (new types of behavior that can initiate in the
presence of noise only). When studying noisy systems, first of all the concept of
“bifurcation” changes. For deterministic systems bifurcations are connected with
qualitative changes in the stability or structure of limit sets in the phase space
(stable and unstable equilibrium points, limit cycles, separatrix loops, etc.). In the
presence of noise limit sets being typical for deterministic systems can no longer
be distinguished and thus bifurcations of stochastic systems are often associated
with qualitative changes in the probability distribution [6, 8, 9]. In many cases the
theoretical analysis of stochastic bifurcations (except for systems with phase space
dimensionN D 1) is a complex problem and can be carried out only approximately.
Therefore, experimental approaches gain in importance.

The present work is devoted to the experimental study of the noise influence
on nonlinear oscillators. We consider effects of CR and SS in an electronic model
of the excitable FitzHugh–Nagumo oscillator and in the Van der Pol oscillator
with hard excitation, both subjected to additive broadband noise. Our goal is to
identify the analogy in behavior of these two systems and thus to show that in the
subthreshold regime and in the presence of additive noise the oscillator with hard
excitation exhibits the properties of an excitable stochastic oscillator. And, as well
as excitable oscillators like the FitzHugh–Nagumo oscillator, it has the features of a
stochastic self-sustained oscillator and demonstrates the property of synchronization
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in the CR regime. The stochastic supercritical Andronov–Hopf bifurcation is also
explored by using analog simulation. The effect of noise is analyzed in terms of
probability distribution modifications, i.e., P-bifurcations and their dependence on
the parameter of generation and noise level are established.

2 Excitable Oscillator as an Example of a Stochastic
Self-sustained Oscillator: Properties of Stochastic
Self-sustained Oscillations

One of the actual problems of modern nonlinear dynamics is to study the properties
of the so-called excitable systems. Excitable stochastic oscillators represent two-
state systems, one of which is a stable equilibrium and the other one (excitation
state) is a transient process of return to the equilibrium. The peculiarity of excitable
systems consists in the fact that the relaxation to an equilibrium takes place along
phase trajectories in the form of a nearly closed loop, i.e., they are similar to the
motion on a limit cycle. A system is in its equilibrium state without external forces.
An external driving (kick) can pass the system to its excitation state, afterwards the
system returns itself to its equilibrium. In the presence of relatively weak noise,
such systems can demonstrate excitation and relaxation processes resulted in the
appearance of undamped stochastic oscillations. These oscillations have a high
degree of coherence (regularity) for a certain (optimal) noise intensity. This effect
is called coherence resonance (CR) [14,15]. A considerable amount of publications
is devoted to the study of excitable oscillators, ensembles of such oscillators, and
excitable media [20–22,33,34]. Excitable oscillatory regimes are typical for neuron
activity [35]; therefore, their investigation is very important from the viewpoint of
understanding of how the nerve system of living organisms operates. Properties of
a sequence of excitation impulses (they are called spikes in biophysics) are mostly
controlled by noise presented in a system. Besides, the variation of noise parameters
can serve as an ordering factor that can make the system behavior more ordered.
The analysis of models of stochastic excitable systems testifies an important role
that noise can play in the wildlife.

One of the classical examples of excitable systems is the FitzHugh–Nagumo
oscillator (FHN) [36, 37]. It is a simplified model of the Hodgkin–Huxley neuron
describing the spike generation in axons of a large squid. The important fact has
been established: stochastic oscillations in the CR regime can demonstrate the effect
of phase-frequency synchronization [20–22]. It is known that synchronization is a
characteristic feature of self-sustained oscillatory systems. The principal question
arises: Could noise-induced oscillations of excitable systems be considered as
a special type of self-sustained oscillations, namely, as stochastic self-sustained
oscillations? To answer to this question, it is necessary to find out what is
the difference between stochastic oscillations in excitable systems and stochastic
oscillations arising from transformations of a random external force by nonlinear
systems.
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Fig. 1 Schematic diagram of the experimental setup with noise source �.t/ and external harmonic
force fex.t / D F.t/ (a) and the experimental voltage-current characteristic of the nonlinear
element (b). The nominal values of the circuit elements are: R D 100 Ohm; L D 6:8 � 10�3 H;
C D 6:8 � 10�11 F; Vc D 7:2 V

For our experiments we choose the original electronic model of an excitable
system that was suggested by FitzHugh and Nagumo. In this model a tunnel diode
is used as a nonlinear element with an N -shaped voltage-current characteristic.
We have slightly changed the original circuit to provide a more stable operation
of the model [38]. Our circuit diagram is presented in Fig. 1. It only differs by
the block that models the N -type nonlinearity in a different way (Fig. 1b) [39].
The voltage-current characteristic of the nonlinear element is qualitatively similar
to the characteristic of the tunnel diode, can provide a stable functioning of the
scheme and, that is also quite important, provides the simplest approximation in
the polynomial form IN .U / D g2U

3 � g1U for mathematical simulation of the
dynamical system.

2.1 Model Equations

Using Kirchhoff’s laws we can write equations describing the system dynamics in
the presence of noise source. The equations read

dU
dt

D 1
C
.g1U � g2U 3 � I /;

dI
dt

D 1
L
.Vc C U � IR/C 1

L
�.t/;

(1)

where U is the voltage across the capacitor. The nominal values of the circuit
elements, supply voltage and parameters of the nonlinear characteristic are indicated
in Fig. 1 caption. �.t/ is the voltage of a broadband noisy generator with Gaussian
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Fig. 2 Power spectra of oscillations for different values of the noise intensity: (a) near the
threshold of oscillation origin (
� D 900 mV) and (b) in the regime of coherence resonance
(
� D 1; 300 mV)

distribution. Its mean square 
� D ph�2.t/i is regulated and is the characteristic
of the noise intensity. Equation (1) can be reduced to a dimensionless form by
renormalizing the variables and time

" Px D x � ˛x3 � y;

Py D �x � y C b C p
2Dn.	/:

(2)

The following notations are used:

U D U0x; I D U0g1y; 	 D R

L
t;

" D CR

Lg1
; s D I0

U0g1
; ˛ D g2

g1
U 2
0 ; �

1

Rg1
; b D Vc

Rg1U0
:

The points denote dimensionless time 	 derivatives and U0 is some constant
potential (for example, U0 D Vc). The broadband Gaussian noise source in the
second equation (Eq. 2) is replaced by the normalized Gaussian white noise n.	/
(hn.	/n.	 C�	/i D ı.�	/, ı.�	/ is Dirac’s function) with the constant intensity

D D 1

Rg1U0

Z 1

0

h�.t/�..t C �/id�: (3)

Consider the behavior of the experimental system excited by noise and without
the external regular force (signal F.t/ is absent). We record the signal realization,
digitize it by using the ADC NI PCI-6133, and then process on a computer. As the
noise intensity 
� increases, stochastic oscillations are initially induced with a
sufficiently wide power spectrum (Fig. 2a). Then, a relatively narrow spectral line
is formed with the maximum at a certain characteristic frequency f0 (Fig. 2b) that
corresponds to the mean frequency of spike movement. This line has a minimal
width at an optimal noise intensity. When the noise intensity grows further, the
spectral line width increases again. The spectral line width at the half-power level
and the power spectrum density at the maximum frequency are experimentally
measured depending on the noise intensity. The obtained results are presented in
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Fig. 3 Dependences of the relative spectrum width (a) and the normalized power spectrum density
at the maximum (b) on the noise level 
�

Fig. 3a, b. The experimental data clearly indicate the effect of coherence resonance
when the spectrum width is minimal and hence the highest degree of oscillation
coherence is achieved.

2.2 External Synchronization of the FHN Oscillator
by the Harmonic Signal in the Regime of coherence
Resonance

Now we study experimentally synchronization of stochastic oscillations in the FHN
system. For this purpose the external harmonic signal F.t/ D Aex sin.2�fext C �0/

is added to the circuit. The noise level corresponds to the regime of coherence
resonance. To reveal the synchronization effect we fix the external amplitude
Aex D 510mV, vary the external frequency fex, and measure the power spectrum of
oscillations (Fig. 4). The observed effect of locking is also illustrated in Fig. 5 where
the frequency ratio‚ D fex=f0 is plotted as a function of the external frequency fex

for the fixed external amplitude. It is seen from the figure that there is a finite region
of synchronization fex W f0 D 1 (at the basic tone).

The experimental results on external and mutual synchronization of stochastic
oscillations in the FHN oscillator are described in more detail in the paper [40].

2.3 Substantiation of Self-sustained Oscillatory Character
of Stochastic Oscillations in the FHN System

The experimental data presented above can testify that in spite of the fact that
oscillations in the FHN system can be induced and sustained only in the presence of
external noise, they are characterized by a complete set of the properties peculiar to
self-sustained oscillatory processes. Let us discuss this in more detail.
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Fig. 4 Effect of frequency locking in the FHN system for different values of the external
frequency: (a) no frequency locking (fex D 14; 800 Hz), (b) frequency locking when the spectral
line of system oscillations is shifted to the right and coincides with fex (fex D 13; 950 Hz);
(c) frequency locking inside the synchronization region when the system frequency follows fex

(fex D 13; 050 Hz); (d) exit from the synchronization region (fex D 11; 700 Hz)

We first consider the question: Which attractor corresponds to oscillations in
the regime of coherence resonance? The attractor definition of a non-autonomous
system was introduced in [19], where it was shown that in this case the attractor is
determined as a limit set in a functional (Hilbert) space for all possible solutions
x D f .x0; 	/. Unfortunately, such a limit set cannot be pictured geometrically.
However, if there is an attractor in the functional space, any trajectory of the FHN
system tends to the same limit set of points in the phase plane. These points have
a cumulative probability close to 1. Figure 6 presents several phase trajectories
obtained numerically for system (2) with different initial conditions. After some
relaxation time, the trajectories fall on the same limit set that resembles a slightly
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Fig. 5 Experimental dependence of the frequency ratio fex/f0 on the external signal frequency
fex for the fixed external amplitude Aex D 510 mV

Fig. 6 Phase trajectories of the FHN system obtained numerically with different initial conditions
for time t D 500. The gray region of the phase plane corresponds to the positive vector field
divergence of system (Eq. 2) and negative dissipation. The parameters are: " D 0:01, ˛ D 1=3,
� D 1, b D 0:5, D D 0:0025

noisy limit cycle. Thus, Fig. 6 illustrates the fact that the limit set of phase
trajectories is independent of the initial conditions. The FHN system has no other
limit sets.

Based on the numerical data, one can conclude that the FHN system possesses
an attractor. Its presence does not yet prove that the system demonstrates a
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self-sustained oscillatory process. To prove that we must discuss how the energy
is added to the system. Model (Eq. 2) can be written in the following oscillatory
form:

" Rx C .3˛x2 � 1C "/ Px C .1 � �/x � ˛x3 � b D p
2Dn.t/: (4)

We obtain the oscillator with the dissipation coefficient

ı D 3˛x2 � 1

"
C 1; (5)

that depends on the coordinate x and can have both positive and negative values. The
vector field divergence divf of system (Eq. 4) is equal to the coefficient ı taken with
an opposite sign and, consequently, also changes its sign depending on the x value.

In the range jxj <
q

1�"
3˛

the dissipation coefficient is negative and the divergence
is positive. Thus, within a certain region of states the energy comes to the system,
and the excitable oscillator behaves as a self-sustained oscillator. From the physical
point of view, the conditions for energy supply are fulfilled when the voltage U of
oscillations corresponds to the values in the negative part of the nonlinear element
GN characteristic. In this part the system is characterized by a negative resistance
and the source energy increases the energy of oscillations.

These arguments indicate that in the presence of noise the FHN system sustains
the oscillatory regime by implementing a synchronous nonlinear energy pumping
from the source. The calculations and experimental measurements have confirmed
the important fact: the power of the oscillatory process, that is proportional to x2.t/,
significantly exceeds the power of the noise source.

3 coherence Resonance and Stochastic Synchronization
of Oscillations in an Oscillator with Hard Excitation

Now we consider an oscillator with hard excitation subjected to additive noise. It is
known that stochastic oscillations in this oscillator can demonstrate the effect of
CR when the noise intensity is varied [23, 24]. We explore experimentally the CR
effect and the possibility of forced synchronization of stochastic oscillations with a
minimal spectral line width.

3.1 Model Equations

The system being studied is the Van der Pol oscillator with a subcritical Andronov–
Hopf bifurcation and is modelled by the following equation in dimensionless
variables and with additive noise source:

Rx � .�C �x2 � x4/ Px C x D p
2Dn.t/; .� > 0/; (6)
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Fig. 7 Phase-parametric diagram of system (Eq. 6) for � D 0:5. The solid circles denote the
coordinate of the stable limit cycle, the empty circles—the coordinate of the unstable limit
cycle, the thick solid line denotes the stable equilibrium, and the thin dashed line—the unstable
equilibrium

where n.t/ is a normalized Gaussian white noise source: hn.t/i 	 0; hn.t/n.t C
	/i D ı.	/. The brackets h: : :i denote the statistical mean, ı.	/ is Dirac’s function,
and D is the noise intensity. The parameter � characterizes energy pumping to the
system, and � is responsible for energy dissipation. Without noise (D D 0) system
(Eq. 6) has an equilibrium point at the origin of coordinates (x D 0Iy D Px D 0),
which is stable for � < 0 and undergoes a subcritical (hard) Andronov–Hopf

bifurcation at � D 0. On the line � D ��2

8
a pair of limit cycles (stable and repeller

ones) is born as a result of the tangent bifurcation. The phase-parametric diagram of
system (Eq. 6) is shown in Fig. 7 for D D 0 and � D 0:5.

3.2 Experimental Setup

We explore the effects of CR and synchronization of noise-induced oscillations
by using a specially constructed experimental setup of the oscillator with hard
excitation. Its electronic circuit is shown in Fig. 8 and provides the possibility
of connecting external periodic and noisy signals. The basic active elements are
operational amplifiers TL072 and LF412, and multipliers AD633. The latter are
used to form the nonlinearity of the second and fourth degrees. The other details
include resistors and capacitors. The control parameter � is given by the appropriate
voltage from a voltage divider built on a multi-turn resistor. The parameter � is
set by another variable resistor (it is marked as R7 in Fig. 8). Component values
are shown in the scheme. Noise voltage �.t/ is generated by a broadband noise
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Fig. 8 Schematic diagram of the experimental setup

generator. Its distribution is Gaussian with zero mean h�.t/i D 0. Mean square
value 
� D ph�2.t/i is regulated and is a noise characteristic in our experiments.
F.t/ represents the signal from a generator of harmonic oscillations: F.t/ D
Aex sin.2�fext C �0/. Amplitude Aex and frequency fex can also be regulated.

Equations describing the circuit in Fig. 8 can be easily derived by using Kir-
choff’s equations. For nodes A and B indicated in the diagram we have

C2
dv2

dt
C v3

R2
C �.t/

R12
C F.t/

R13
D 0: (7)

C1
dv1

dt
C v2

R1
D 0: (8)

For voltage v3 the following expression is valid

v3 D
�
R3R6

10R4

��
˛

10R7
v21 C 1

R8
v� � ˇ

1000R9

�
R11

R10

�2
v41

�
R1C1

dv1

dt
� R3

R5
v1: (9)

˛ and ˇ are dimensional coefficients and their values are equal to unity
(˛ D 1 OhmV�2, ˇ D 1 V�2). Choose the resistance values such that
R1 D R2 D R4 D R9 D R10 D R12 D R13 D R, C1 D C2 D C , and
R3 D R6 D R8 D R11 D R5 D 10R. Then from Eqs. (7)–(9) we obtain the
equation describing the circuit
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Fig. 9 Experimental phase-parametric diagram of the oscillator for Aex D 0 and � D 0:5. The
ordinates represent the value of x provided that y D Px D 0

1

!20

d2x

dt2
� 1

!0

�
�C �x2 � ˇx4

�
dx

dt
C x D Aex sin.2�fext C �0/C �.t/; (10)

where the following notations are introduced

x D v1; !0 D 1

RC
; � D v�; � D ˛

R

R7
: (11)

Equation (10) is written with respect to the physical variable x in real time and
includes dimensional parameters. However, it is easy to see that without harmonic
force it can be reduced to (Eq. 6) by replacing t1 D !0t . At the same time, as
the noise generator used in the experiment is broadband, noise source �.t/ can be
replaced by an equivalent source of white noise

p
2Dn.t1/, whereD is the intensity

of the equivalent white noise in the normalized time. This quantity is different in
meaning and does not coincide quantitatively with the experimental characteristic
of noise intensity �.t/.

Although Eq. (10) for Aex D 0 corresponds exactly to dimensionless equation
(Eq. 6), the circuit is described by using certain assumptions on operational ampli-
fiers, which, strictly speaking, are approximate. Besides, all the radioelements used
for developing the circuit have their own tolerances for the accuracy of ratings.
Therefore, we plot an experimental phase-parametric diagram and compare it with
the numerical one. This diagram is shown in Fig. 9.

Construction of the lines corresponding to the stable equilibrium and stable cycle
is straightforward. The line for the unstable limit cycle is plotted as follows: the
parameter � is initially chosen so that the system has only the single equilibrium
state—the stable focus. Then � increases. As the initial condition is chosen in the
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Fig. 10 Power spectra of noise-induced oscillations for � D �0:05775 and � D 0:5

bistability region, the system is still in its equilibrium point. To get a point on
the unstable cycle an external harmonic force of low frequency is applied to the
system. Starting from a certain amplitude of the external force the phase point jumps
from the stable focus to the stable limit cycle. This amplitude value is considered
to be approximately equal to the amplitude of the unstable cycle in the system.
The diagrams in Figs. 7 and 9 are qualitatively equivalent. Now we compare them
quantitatively. In the mathematical model at � D 0:5 the stable and unstable limit
cycles are born at � D �0:03125, and the unstable limit cycle and stable focus
merge for � D 0. In the experiment the same bifurcations take place for � D �0:069
and � D �0:0479, respectively. Thus, the numerical and experimental values of �
are related by the formula:

�mm D 1:48.�exp C 0:0479/; (12)

where �mm is the parameter value of the mathematical model and �exp is the
corresponding experimental value.

3.3 Effect of coherence Resonance

We choose the parameters � and � of the experimental scheme so that the oscillator
regime corresponds to the bistability region. We apply the external noise of different
intensity 
� in the absence of harmonic force. Figure 10 shows power spectra of x.t/
oscillations for different noise levels.

It is seen that there is a certain optimal noise level when the spectral line width
is minimal (Fig. 10, curve 2). Thus, the effect of coherence resonance takes place.
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Fig. 11 Power spectra of noise-induced oscillations for � D �0:079 and different values of 
�

Fig. 12 Experimental dependence of �f to f on the noise intensity 
� for (a) � D �0:05775,
� D 0:5 and (b) � D �0:0792, � D 0:5

Now we choose the parameters below the generation threshold, i.e., in the region
where the stable focus is the unique attractor of the deterministic system. The
corresponding evolution of the power spectrum with increasing the noise level is
shown in Fig. 11. And in this case it is easy to see the CR effect. Similar results have
been obtained numerically in [23, 24]. Experimental dependences of the relative
width of the spectral line at the half-power level on the noise intensity 
� are shown
in Fig. 12 for the bistability region and in the subthreshold regime.

The performed experimental studies completely verify the numerical results
presented in [24]. Thus, the isochronous oscillator with hard excitation both in the
bistability region and in the subthreshold regime near the tangent bifurcation and in
the presence of additive noise behaves like an excitable system demonstrating the
CR effect. The experimental results obtained for the oscillator with hard excitation
are very similar to the results of analogous experiments for the FitzHugh–Nagumo
oscillator [40]. However, in this case the mechanism of CR is somewhat different
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than in excitable systems of the FitzHugh–Nagumo oscillator type or in systems
with the tangent bifurcation of cycles on a torus. This has been described in [23,24]
and is as follows. For weak noise a trajectory rotates mainly in the neighborhood
of an equilibrium point. In this case the spectral line of stochastic oscillations has
a maximum width defined by the parameter �. As noise increases, the trajectory
often leaves the vicinity of the equilibrium and falls in the region of a stable cycle.
Rotations in this region correspond to the spectrum whose width is determined by
the noise intensity. At a certain moderate noise level the spectrum width is minimal.
The further growth of the noise intensity decreases the spectrum width.

It can be noted that the dependence of the spectrum width on the noise intensity
is somewhat different in the two studied solutions. While in the subthreshold regime
the spectrum width varies smoothly when changing the noise intensity and reaches a
minimum at a separate point (Fig. 12b), in the bistability regime the spectrum width
sharply decreases for low noise. Then, it is almost constant in a certain range of the
noise intensity and starts growing only further (Fig. 12a).

3.4 Synchronization of Stochastic Oscillations in the Oscillator
with Hard Excitation

To synchronize oscillations an external harmonic signal is applied to the circuit
(Fig. 8) additionally to the noise source. As well as in the case of coherence
resonance, we consider two cases. In the first case the circuit parameters (� D 0:5

and � D �0:05775) correspond to the bistability regime of the noise-free oscillator.
The noise intensity corresponds to the CR regime (
� D 1:45 V). We explore
power spectra of oscillations when the external signal amplitude is varied and the
frequency mismatch is constant fex D f0 ˙� (� D 450 Hz). The obtained results
are shown in Fig. 13a–c. It is clearly seen that for fex < f0 and as the external signal
amplitude grows, the fundamental frequency f0 of system oscillations is shifted to
the external signal frequency fex and then locked at Aex D 0:69 V. Let the external
signal frequency be fex D 11; 800 Hz. The frequency mismatch is the same as in
the previous case� D 450Hz, but the spectral peak of the external signal is already
located to the right of the fundamental frequency. We start increasing the external
amplitude and follow the spectrum evolution. The results are shown in Fig. 13d–f.
Contrary to expectations synchronization occurs through suppression. And however
small the frequency mismatch, we cannot detect the locking region for fex > f0.

Now we consider the second case. The scheme parameters � D 0:5 and � D
�0:0792 are set so that the system phase space includes only a stable focus at the
origin. The noise level corresponds to the CR regime. We set the external signal
frequency to be less than the frequency of noise-induced oscillations (fex < f0)
and increase the external amplitude. The evolution of power spectra is shown in
Fig. 14a–c. As the amplitude grows, the fundamental frequency f0 is shifted towards
fex and then locked at Aex D 0:30 V. If fex > f0, the suppression of oscillations
is observed similarly to the above case in Fig. 13. The corresponding evolution of
power spectra is presented in Fig. 14d–f.
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Fig. 13 Power spectra of synchronization of system oscillations in the regime of coherence
resonance (
� D 1; 450 mV). For external signal frequency fex D 11; 350 Hz and different values
of external amplitudeAex: (a)Aex = 0.01 V, (b)Aex= 0.02 V, (c) Aex = 0.03 V. For fex D 11; 480Hz
and different values of Aex : (d) Aex = 0.05 V, (e) Aex= 0.09 V, (f) Aex = 0.2 V. The maximum at
f0 corresponds to stochastic oscillations in the system. The oscillator parameters are � D 0:5 and
� D �0:05775

Figure 15 shows experimentally plotted synchronization regions in the param-
eter plane “amplitude-frequency” of the external signal in the bistability regime
(Fig. 15a) and in the subthreshold region (Fig. 15b).

In both cases the synchronization region has a certain peculiarity: its left
boundary corresponds to the frequency f0 locking and its right boundary—to the
suppression of oscillations at f0. It is known that the same feature is peculiar to
the synchronization region of self-sustained oscillations of a deterministic system
in the bistability regime [41].
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Fig. 14 Power spectra of oscillation synchronization in the CR regime (
� D 6; 300 mV). For the
external signal frequency fex D 11; 300 Hz and different values of external amplitude Aex: (a) Aex

= 0.05 V, (b) Aex= 0.20 V, (c) Aex = 0.30 V. For fex D 11; 700 Hz and different values of Aex:
(d) Aex = 0.05 V, (e) Aex= 0.45 V, (f) Aex = 1.20 V. The maximum at f0 corresponds to stochastic
oscillations in the system. The oscillator parameters are � D 0:5 and � D �0:0792

4 Experimental Study of a Supercritical Andronov–Hopf
Bifurcation in Noisy Self-sustained Oscillators

One of the fundamental bifurcations in dynamical systems is the Andronov–Hopf
bifurcation that is resulted in the generation of oscillations. In a deterministic case,
the appearance of self-sustained oscillations is related to the birth of a stable limit
cycle from a focus-type equilibrium point. A stochastic Andronov–Hopf bifurcation
leads to the formation of a probability distribution being typical for noisy self-
sustained oscillations and having the form of a closed crater. A local maximum
of the probability density is observed at points of a deterministic cycle and a
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Fig. 15 Experimental regions of synchronization for the oscillator with hard excitation in the CR
regime for (a) � D 0:5 and � D �0:05775 and (b) � D 0:5 and � D �0:0792. The bold line
denotes the transition to the synchronization region through locking, and the thin line—through
suppression

local minimum—at an unstable point. The stochastic Andronov–Hopf bifurcation
has been explored in a number of research works for different noise statistics
[24–26, 28, 29, 32, 42]. In particular, in [26] it has been shown analytically and
numerically that the Andronov–Hopf bifurcation in the noisy Van der Pol oscillator
occurs not in a single point (as follows from the quasi-harmonic approximation) but
when passing through a so-called bifurcation interval corresponding to a gradual
rebuilding of the probability distribution. The width of this interval increases when
increasing the noise intensity. Thus, at a fixed value of the control parameter, which
corresponds to the generation mode, the growth of the noise intensity leads to the
transition into the bifurcation interval. At the same time, the crater-like form of the
probability distribution is destroyed. The existence of the bifurcation interval, as
well as the delayed character of the Andronov–Hopf bifurcation under a colored
parametric noise is noted in theoretical studies [25, 29, 32].

Near bifurcations where a system is structurally unstable as well as in the
presence of large noise both approximate analytical methods and numerical simu-
lation methods can lead to significant errors. In this situation full-scale experiments
are particularly important. However, there is a small number of publications in
the scientific literature, which are devoted to experimental studies of stochastic
bifurcations. As far as we know, the existence of the bifurcation interval for the
stochastic Andronov–Hopf bifurcation has been experimentally verified only in [42]
for an analog model of the brusselator with a low-frequency parametric noise.

In our work we aim to explore experimentally the peculiarities of the supercritical
Andronov–Hopf bifurcation in various systems and for different noise statistics.
Our studies include both full-scale and numerical experiments whose results are
compared. We consider the Van der Pol oscillator as a classical model of a
periodic self-sustained oscillator as well as Anishchenko–Astakhov’s oscillator with
inertial nonlinearity that is a more complex system demonstrating the supercritical
Andronov–Hopf bifurcation.



Experimental Studies of Noise Effects in Nonlinear Oscillators 279

4.1 Probability Distribution Evolution in Self-sustained
Oscillators with Additive Noise

As a basic model for studying the appearance of self-sustained oscillations, we
consider the Van der Pol oscillator. Stochastic equations of the noisy Van der Pol
oscillator have the following form:

Px D y;

Py D ." � x2/y � x C p
2Dn.t/:

(13)

The variable x and time t are dimensionless quantities, n.t/ is a normalized
Gaussian white noise source, and D is the noise intensity. Equation (13) describes
many of self-sustained oscillatory systems of various nature, including a radio
engineering oscillator. The parameter " governs the oscillator regime. Without noise
and at " D 0 a supercritical (“soft”) Andronov–Hopf bifurcation takes places
resulted in the birth of a stable limit cycle from a stable focus at the origin (x D
0; y D 0). The analysis of Eq. (13) in the quasi-harmonic approximation shows that
the character of the stochastic bifurcation and the bifurcation parameter value " D 0

are independent of the noise intensity D. But the quasi-harmonic approximation is
correct when D � "2 and may lead to erroneous results near the value " D 0 and
for a finite noise intensity. In [26] based on the analytical solution of the Fokker–
Planck–Kolmogorov equation, the expression for the probability distribution in the
self-sustained oscillator has been derived that is valid when "2  D:

p.x; y/ D C exp

�
� 1

32D
..x2 C y2/2 � 8".x2 C y2//� 3

4
xy


: (14)

The analysis of expression (Eq. 14) gives the following picture of the stochastic
bifurcation. For " < �3D=2 the distribution p.x; y/ has a single maximum at
the origin, which corresponds to a noisy stable equilibrium at x D 0; y D 0.
The range �3D=2 < " < 3D=2 is the bifurcation interval. On its left boundary
" D �3D=2 at points x1;2 D ˙p.2"C 3D/, y1;2 D ˙p.2"C 3D/ there
appear two maxima which lead to the destruction of the radial symmetry of the
distribution. Within the bifurcation interval the distribution shape evolves smoothly
and at " D 3D=2 a closed crater is completed to form around the distribution
minimum at the origin. Thus, the distribution is formed whose shape is typical for
the self-sustained oscillatory regime in a noisy system. The bifurcation diagram
corresponding to rebuildings of distribution (Eq. 14) is shown in Fig. 16.

We have carried out preliminary computer experiments by integrating numeri-
cally stochastic equations (Eq. 13) and plotted the probability distribution p.x; y/
by means of statistical processing of data obtained at a sufficiently large time
interval. Our calculations show that there is a bifurcation interval corresponding to
the stochastic Andronov–Hopf bifurcation. The probability density evolution when
" and D are varied, is, in general, in good agreement with the conclusions of the
theory presented in [26].
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Fig. 16 Bifurcation diagram of system (Eq. 13) according to [26] (the dashed lines denote the
bifurcation interval boundaries) and qualitative probability distributions in different regions of the
diagram (numerical simulation)

Fig. 17 Schematic diagram of the experimental setup (analog model of the Van der Pol oscillator)

We have also performed a series of full-scale experiments to study the effect
of additive noise on the generation regime. To do this we have developed an
experimental setup representing an analog model of system (Eq. 13). The diagram
is shown in Fig. 17 and described by the following equations in physical variables:
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R0C Px D y;

R0C Py D .U � x2/y � x C �.t/; (15)

where x; y are voltages taken off at the corresponding outputs, U is the voltage
that sets the parameter " (" D U ). The scheme parameters are chosen so that
the dimensionless variables x and y D Px in Eq. (13) coincide quantitatively with
the corresponding quantities in Eq. (15). Thus, Eqs. (13) and (15) differ only in
scale over time, which is defined in Eq. (15) by parameters R0 D 10 kOhm and
C D 10 nF.1 Equation (15) also include the random term �.t/ that describes the
voltage produced by a noise generator. In our experiments we use a broadband
Gaussian noise generator whose spectral density is almost constant in the frequency

range 0–100 kHz. Within this frequency range we consider �.t/ D
p
2 QDn.t/, where

n.t/ is a normalized source with the unit power spectrum density. The quantity 2 QD
is the power spectrum density of the applied noisy signal that can be controlled in
the experiment. To compare the obtained results the normalized noise intensity D
is found that corresponds to model (Eq. 13). Taking into account the time scale we
have D D QD=R0C . During our full-scale experiments x.t/ and y.t/ realizations
are recorded, digitized by using the ADC NI PCI-6133, and then processed on
a computer. This procedure enables to obtain the probability density p.x; y/ and
observe its changes when " andD are varied.

The carried out experiments have verified the existence of the bifurcation interval
and the theoretical dependence of the distribution p.x; y/ form on the additive noise
intensity, established in [26]. In our experiments when the noise intensity D grows
the crater-like form of the distribution is destroyed for " > 0. Figure 18a shows
the experimentally obtained diagram of oscillator (Eq. 15) regimes in the parameter
plane (D; " > 0). The dashed line marks the right boundary of the bifurcation
interval for the Van der Pol oscillator " D 3D=2. The evolution of distribution
density p.x; y/ observed experimentally when increasing the noise intensity is
illustrated in Fig. 18b. The obtained experimental results are in well qualitative
agreement with the numerical results and theoretical conclusions.

It can be assumed that the specific character of probability distribution rebuilding
when increasing the noise level depends on the properties of a dynamical system:
on its dimension and the form of nonlinearity. However, in any case a closed
crater corresponding to noisy self-sustained oscillations must be destroyed as
noise increases. In order to verify this assumption, in addition to the Van der
Pol oscillator with the two-dimensional phase space, we explore experimentally a

1All the terms in Eq. (15), regardless of the degree, are voltages taken off at different points of the
scheme and measured in volts.
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Fig. 18 (a) Experimentally obtained diagram of regimes for model (Eq. 15) (the theoretical
boundary of the bifurcation interval according to [26] is marked by the dashed line) and
(b) probability distribution densities typical for each region of the diagram

model of Anishchenko–Astakhov’s oscillator with inertial nonlinearity with a three-
dimensional phase space [43]. This oscillator is described by the following system
of equations for dimensionless variables

Px D mx C y � xz C p
2Dn.t/;

Py D �x;
Pz D �g.z � F.x//;
F.x/ D

(
x2; x � 0;

0; x < 0;

(16)

where m; g are control parameters of the system, n.t/ is a normalized white noise
source, and D is the noise intensity. For D D 0 system (Eq. 16) has a single
equilibrium point at the origin, that is stable form < 0 and undergoes a supercritical
Andronov–Hopf bifurcation at m D 0. When studying a stochastic bifurcation
in three-dimensional system (Eq. 16) we consider a joint distribution of only two
variables, x and y, as phase trajectories rotate around an unstable equilibrium in
the plane of these variables. To implement full-scale experiments, an experimental
setup is created which is an analog model of system (Eq. 16). The diagram is shown
in Fig. 19 and described by the following equations in physical variables
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Fig. 19 Schematical diagram of the experimental setup (analog model of Anishchenko–
Astakhov’s oscillator)

R0C Px D U1x C y � xz C �.t/;

R0C Py D �x;
R0C Pz D �U2.z � F.x//;
F.x/ D

(
x2; x � 0;

0; x < 0;

(17)

where x; y; z are voltages from the corresponding outputs of the circuit, U1;2 are
voltages that set the values of the control parameters (m D U1; g D U2). As for the
Van der Pol oscillator, the circuit parameters are chosen so that the dimensionless
variables x and y D Px in Eq. (16) are equal to the corresponding quantities in
Eq. (17). The time scale is given in Eq. (17) by parametersR0 D 10 kOhm and C D
10 nF. The random term �.t/ describes the voltage produced by a noise generator

(as in the case of the Van der Pol oscillator): �.t/ D
p
2 QDn.t/, D D QD=R0C .

Our numerical experiments have shown that in Eq. (17) a crater-like form of the
distribution is also destroyed as the noise intensityD increases. Moreover, the crater
wall is destroyed on one side only. This effect is well marked in Fig. 20a, b. The
performed full-scale experiments have confirmed the same character of probability
distribution evolution, which has been found in numerical simulation. Although
analog model (Eq. 17) does not strictly quantitatively correspond to Eq. (16) (there
is a minor shift of the bifurcation parameter values), the experimentally obtained
evolution of the probability density with increasing the noise level (Fig. 20c, d) is in
complete qualitative agreement with the numerical data.
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Fig. 20 Probability distributions in Anishchenko–Astakhov’s oscillator for m D 0:4; g D 0:25

and for different values of the noise intensity in numerical simulation: (a) D D 0:027; (b) D D
0:11, and in full-scale experiments: (c) D D 0:11; (d) D D 0:41

4.2 Probability Distribution Evolution in Self-sustained
Oscillators with Multiplicative Noise

It has been shown in the previous section that additive noise can lead to the
qualitative rebuildings of the probability distribution. The destruction of the crater-
like form of the distribution is observed for two qualitatively different oscillator
models. This fact enables to suggest that this effect is general for a wide range of
self-sustained oscillatory systems. The question remains open: How general this
effect is with respect to the character of noise effect. One of the possible and
widespread types of noise in radio devices is a parametric noise representing a
random modulation of any parameters of a system. For example, in the Van der
Pol oscillator the excitation parameter or the fundamental frequency may fluctuate
randomly. In both cases the parametric noise is multiplicative as its intensity in
the equations depends on one of the dynamical variables, x or y. Unfortunately, in
the case of parametric noise we could not derive the expression for the probability
density in the Van der Pol oscillator, similar to Eq. (14). In the theoretical work
[25] dedicated to colored parametric noise, the conclusion is made concerning
the existence of bifurcation interval and the delayed character of Andronov–Hopf
bifurcation in the presence of noise with a large correlation time. At the same time
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it is indicated that for a small noise correlation the bifurcation can be advanced, i.e.,
it can occur earlier than in a deterministic system. The last statement contradicts the
results presented in [29, 32, 42]. Thus, the nature of parametric noise effect on the
supercritical Andronov–Hopf bifurcation remains unclear.

Now we study numerically and experimentally the stochastic supercritical And-
ronov–Hopf bifurcation in the same oscillators considered in the previous section
but in the presence of parametric noise. We start with considering the Van der Pol
oscillator. The dimensionless stochastic equations of the oscillator for the chosen
type of parametric noise are as follows:

Px D y;

Py D ."C p
2Dn.t/ � x2/y � x;

(18)

where " is the control parameter, n.t/ is a normalized Gaussian white noise source,
andD is the noise intensity. Hence, the noise modulates the excitation parameter ".

Full-scale experiments are carried out by using the analog model of the Van der
Pol oscillator shown in Fig. 17. Instead of additive noise, a broadband random signal
�.t/ is added to voltageU0 which sets the control parameter ". It should be noted that
due to unavoidable natural fluctuations, the additive noise component still presents
in the experimental setup, but it is very small compared with the external parametric
noise produced by a special generator.

The experimental setup operation is described by the following equations:

R0C Px D y;

R0C Py D ..U0 C �.t// � x2/y � x: (19)

As before, we assume �.t/ D
p
2 QDn.t/; QD D R0CD.

Our numerical calculations have shown that the effect of parametric noise on
the probability distribution has an essentially different character than the additive
noise influence. The crater contracts, i.e., its diameter decreases, and this leads to
the distribution formation with a single sharp peak. Such a distribution is typical for
a noisy state of a stable equilibrium (Fig. 21a–c). At a fixed value of the control
parameter " corresponding the generation regime and as the noise intensity D
increases, a qualitative rebuilding of the distribution takes place at a certain point.
This situation can be treated as an inverse stochastic Andronov–Hopf bifurcation.
Thus, the presence of parametric noise causes the bifurcation parameter value to
increase as compared with the bifurcation point in a deterministic system. When
the noise intensity increases, the bifurcation is more shifted that is consistent with
the results presented in [29, 32, 42]. However, unlike [29, 42], we have not fixed
the existence of the bifurcation interval: the transition from the distribution with the
single maximum at the origin to a crater-like distribution (or vice-versa) when one
of the control parameters is varied takes place at the same point.

Our full-scale experiments have completely confirmed the character of the
distribution evolution, obtained numerically (Fig. 21d,e). The distribution evolution
established for the Van der Pol oscillator in numerical and full-scale experiments is
very similar to the theoretical results for the Hopf oscillator [32], which is strictly
quasi-harmonic and for which, thus, the bifurcation interval cannot occur.
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Fig. 21 Probability distributions for the Van der Pol oscillator at " D 0:10 and for different values
of the parametric noise intensity in numerical simulation: (a) D D 0:05; (b) D D 0:09; (c)
D D 0:19, and in full-scale experiment: (d) D D 0:055; (e) D D 0:12; (f) D D 0:19

The experimentally obtained diagram of system (Eq. 19) regimes for " > 0

is plotted in Fig. 22. The line shown in the parameter plane corresponds to the
stochastic Andronov–Hopf bifurcation.

We have also conducted numerical and full-scale experiments for Anishchenko–
Astakhov’s oscillator in the presence of parametric noise modulating the parameter
m. The following system is studied numerically:

Px D .mC p
2Dn.t//x C y � xz;

Py D �x;
Pz D �g.z � F.x//;
F.x/ D

(
x2; x � 0;

0; x < 0;

(20)



Experimental Studies of Noise Effects in Nonlinear Oscillators 287

Fig. 22 Bifurcation diagram
of system (Eq. 19)

wherem; g are the control parameters of the system, n.t/ is a normalized Gaussian
white noise source, and D is the noise intensity.

Full-scale experiments are carried out by using the analog model of
Anishchenko–Astakhov’s oscillator shown in Fig. 20. The additive noise is replaced
by a random signal �.t/ added to voltage U1 that sets the control parameter m.
Voltage U2 that gives the control parameter g D U2 is fixed (g D U2 D 0:25).

The probability density evolution is shown in Fig. 23 when the parametric noise
intensity increases. Qualitatively the same evolution is observed both numerically
(Fig. 23a–c) and experimentally (Fig. 23d–f). When increasing the noise intensity a
rebuilding of the probability distribution takes place that consists in the decrease of
the crater walls and in the simultaneous formation of a peak in the crater center.

Thus, the probability distribution evolution in Anishchenko–Astakhov’s oscil-
lator in the presence of parametric noise qualitatively differs from that observed
in the Van der Pol oscillator (Fig. 21). One can assume that the system dimension
plays a special role in this case. The equilibrium point in Anishchenko–Astakhov’s
oscillator becomes a saddle-focus after the bifurcation and besides an unstable
two-dimensional manifold, has a stable one-dimensional manifold directed along
the z axis. The parametric noise can lead to the appearance of phase trajectories
tending to the equilibrium along the stable manifold. This can be resulted in that the
distribution maximum at the origin (at the equilibrium) arises earlier than the crater
corresponding to a limit cycle is destroyed.

5 Summary

We have experimentally studied two types of excitable oscillators: the classical
model of an excitable oscillator—the FitzHugh–Nagumo system, and the Van
der Pol oscillator with a subcritical Andronov–Hopf bifurcation. The carried out
experiments have verified that in spite of the existing differences in mechanisms of
stochastic oscillation initiation, both systems possess a particular similarity: they
demonstrate the effect of “true” coherence resonance, i.e., the spectral line width
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Fig. 23 Probability distribution densities in Anishchenko–Astakhov’s oscillator form D 0:3; g D
0:25 and for different values of the noise intensity in numerical simulation: (a) D D 0:05;
(b) D D 0:08; (c) D D 0:10, and in full-scale experiment: (d) D D 0:10; (e) D D 0:12;
(f) D D 0:13

decreases at a certain optimal noise level. For the oscillator with hard excitation the
CR effect is observed not only in the bistability region but also before oscillations
arise in a deterministic system. The last circumstance enables to treat the oscillator
with hard excitation as a special type of an excitable system. Moreover, as a
result of the performed experiments it has been first established that the effect of
stochastic synchronization can be observed in the oscillator with hard excitation
in the subthreshold regime as well as for the FitzHugh–Nagumo oscillator. Thus,
the presence of synchronization effect is the main reason that enables to attribute
stochastic oscillations of excitable systems of both types to self-sustained oscillatory
regimes. A noise source presented in a system removes it from its stable equilibrium
to the phase space region where a nonlinear process of energy pumping is switched
on that leads to the origin of self-sustained oscillations.
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We have also experimentally explored the effect of noise on the supercriti-
cal Andronov–Hopf bifurcation for two different self-sustained oscillators. Our
experiments have shown that in the Van der Pol oscillator with additive noise
there is a bifurcation interval theoretically established in [26]. When the excitation
parameter of increases, the upper boundary of the bifurcation interval corresponds
to the transition from a “two-maximum” distribution p.x; y/ to a distribution in
the form of a closed crater, being characteristic for the regime of a noisy limit
cycle. However, in Anishchenko–Astakhov’s oscillator with 1.5 freedom degrees the
nature of distribution p.x; y/ rebuildings is different. As noise increases, only one
crater wall is destroyed resulted in the appearance of a one-maximum distribution.
Correspondingly, in this case the noise simply leads to the bifurcation delay, which
is shifted to higher values of the parameter of generation. The delay of stochastic
bifurcation has also been observed in our experiments with parametric noise, which
is consistent with the theoretical results presented in [29, 32]. With this, as in the
case of additive noise, the character of distribution evolution for the Van der Pol
oscillator and Anishchenko–Astakhov’s oscillator is essentially different that can be
related to a different phase space dimension of the systems. In all the considered
cases the growth of the noise level in a system being in the generation regime
leads to the disappearance (destruction or “constriction”) of a closed crater in the
distribution corresponding to a noisy limit cycle. In this sense one can speak of the
noise-induced destruction (or suppression) of self-sustained oscillations.
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