
Deduction-Based Modelling and Verification
of Agent-Based Systems for Data Integration

Radosław Klimek, Łukasz Faber, and Marek Kisiel-Dorohinicki

Abstract. The work concerns the application of multi-agent systems to heteroge-
neous data integration, and shows how agent approach can be subjected to formal
verification using a deductive approach. Since logical specifications are difficult to
specify manually, a method for an automatic extraction of logical specifications,
considered as a set of temporal logic formulae, is proposed. A simple example is
provided.

Keywords: multi-agent systems, formal verification, deductive reasoning,
activity diagrams, workflows patterns, temporal logic.

1 Introduction

The growing importance of gathering and analyzing vast amounts of information
leads nowadays towards the construction of systems that perform various case-
oriented tasks with respect to data coming from numerous, often heterogeneous
sources. For example, in [7] authors present a middle-ware to integrate informa-
tion from heterogeneous enterprise systems through ontologies stored in the XML
standard. Apart from providing the semantic data integrity, [1] proposes a way to
integrate data sources also on the level of operations. A similar idea of integrating
applications, which encapsulate databases, rather than pure databases themselves is
presented in [5].

This contribution is based on an agent-based framework dedicated to acquiring
and processing distributed, heterogeneous data collected from the various Internet
sources [8]. Data processing in such a system is structuralized by means of dynamic
workflows emerging from agents’ interactions. The goal of the paper is to show how

Radosław Klimek · Łukasz Faber · Marek Kisiel-Dorohinicki
AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: {rklimek,faber,doroh}@agh.edu.pl

A. Gruca et al. (eds.), Man-Machine Interactions 3, 361
Advances in Intelligent Systems and Computing 242,
DOI: 10.1007/978-3-319-02309-0_39, c© Springer International Publishing Switzerland 2014

362 R. Klimek, Ł. Faber, and M. Kisiel-Dorohinicki

a formal analysis of these interactions allows to make sure that the system works
properly.

In general, formal methods enable the precise formulation of important artifacts
and the elimination of ambiguity. Unfortunately logical specifications are difficult to
specify manually, and it can be regarded as a significant obstacle to the practical use
of deduction-based verification tools. That is why a method providing the automa-
tion of generation of logical specifications is proposed. Another contribution is an
approach which introduces workflow patterns as logical primitives. Temporal logic
is used as it is a well-established formalism, which allows to describe properties of
reactive systems. The inference process can be based on both the semantic tableaux
method, as well as the resolution-based approach [3].

The paper begins with a short description of the system for data integration. In
the next section essential logical background is provided together with the method
of specification generation based on workflow describing agents’ interactions. Last
but not least, the scenario of an example application shows how the approach works
in practice.

2 Agent-Based Data Integration Infrastructure

The goal of the discussed system is to provide the data- and task-oriented workflow
for collecting and integrating data from a wide range of diverse services. The user
is separated from actual data providers by an abstract type system and agents that
operate on it.

Tasks created by the user are put into the agent system that performs two types
of operations: management of the workflow (by inspecting both data and tasks, and
delegating them to other agents) and execution of demanded actions (including their
selection, configuration and fault recovery). The system allows to divide processing
into issues. An issue is intended to be a separate part of data processing, usually
focused on some piece of data. An issue is usually created by the user.

The current implementation defines three possible roles for agents.

• System agents: providing basic system functionality, like realisation of new is-
sues, error handling, monitoring (represented by ControlAgent in the dia-
gram).

• Issue agents: responsible for keeping track of a single issue and delegating tasks
to action agents on the basis of their capabilities. Such an agent retrieves a task
and related data from the pool, and explicitly requests a chosen action agent to
perform an action specified in the task.

• Action agents: implementing the actual execution of actions. Upon receiving the
task from an issue agent, they locate a strategy that can be used to fulfil it and
then execute it on data bound to the task. This way they perform any operation
over data they receive: merge, simplify, verify etc.

Both issue and action agents provide some description available to other agents,
so as to be easily distinguishable in the system. The former are identified by a
runtime-generated issue descriptor that represents a topic they are taking care of.

Deduction-Based Modelling and Verification of Agent-Based Systems 363

The latter are described in terms of tasks they can perform (called “capabilities”)
and data types they can operate on.

3 Deduction System

Temporal logic is a formalism for the specification and verification of systems [10].
Temporal logic TL introduces symbolism [4] for representing and reasoning about
the truth and falsity of formulas throughout the flow of time taking into consid-
eration changes to their values as well as providing information about time struc-
tures. Two basic operators are � for “sometime (or eventually) in the future” and� for “always in the future” which are dual operators. The attention is focused
on linear-time temporal logic LTL, i.e. the time structure constitutes a linear and
unbounded sequence, and on the propositional linear time logic PLTL. Temporal
logics and their syntax and semantics are discussed in many works, e.g. [4, 10].
However, considerations in this work are limited to the smallest temporal logic,
e.g. [2], which is an extension of the classical propositional calculus to the ax-
iom �(P ⇒ Q)⇒ (�P ⇒ �Q) and the inference rule |−P =⇒ |−�P. The fol-
lowing formulas may be considered as examples of this logic: action⇒�reaction,�(send ⇒�ack), �live, �¬(event), etc.

Let us introduce some basic notions and definitions. An elementary set of for-
mulas over atomic formulas ai,i=1,...,n is denoted pat(ai), or simply pat(), as a set
of temporal logic formulas { f1, ..., fm} such that all formulas are syntactically cor-
rect. The examples of elementary sets are Pat1(a,b) = {a⇒�b,�¬(¬a∧b)} and
Pat2(a,b,c) = {a ⇒ ¬�b∧�c,�¬(b∨ c)}. The logical expression WL is a struc-
ture, similar to the well-known regular expression, which allows to represent com-
plex and nested structures of elementary sets. The example of logical expression is
Seq(a,Seq(Flow(b,c,d),Switch(e, f ,g))) which shows the sequence that leads to
the sequence of a parallel split (flow) and then conditional execution (switch) of
some activities.

Workflow patterns are significant for the approach introduced in this work as they
enable the automation of the logical specifications generation process. They consti-
tute a kind of primitives which enable the mapping of design patterns to logical
specifications. The proposed method of the automatic extraction of logical specifi-
cations is based on the assumption that the entire activity diagrams are built using
only predefined workflow patterns. In fact, this assumption cannot be recognized
as a restriction since it enables receiving correct and well-composed systems. The
Activity diagram enables modelling workflow activities. It constitutes a graphical
representation of workflow showing flow of control from one activity to another. It
supports choice, concurrency and iteration. The important goal of activity diagrams
is to show how an activity depends on others [9].

Thus, logical properties for all design patterns are expressed in temporal
logic formulas and stored in the predefined logical properties set P. The pre-
defined and fixed set of patterns consists of the following basic elements Σ =
{Seq,SeqSeq,Flow,Switch,LoopWhile} the meaning of which seems intuitive,

364 R. Klimek, Ł. Faber, and M. Kisiel-Dorohinicki

i.e. sequence, sequence of a sequence, concurrency, choice and iteration. The
logical properties set is equal to P = {Sequence(a1,a2) : in = {a1}/out =
{a2}/a1 ⇒ �a2/�¬(a1∧ a2)/SeqSeq(a1,a2,a3) : in = {a1}/out = {a3}/a1 ⇒�a2/a2 ⇒ �a3/�¬((a1∧ a2) ∨ (a2 ∧ a3)∨ (a1 ∧ a3))/Flow(a1,a2,a3) : in =
{a1}/out = {a2,a3}/a1 ⇒ �a2∧�a3/�¬(a1∧ (a2∨ a3))/Switch(a1,a2,a3) :
in = {a1}/out = {a2,a3}/a1∧c(a1)⇒�a2/a1∧¬c(a2)⇒�a3/�¬((a1∧a2)∨
(a1∧a3)∨(a2∧a3))/LoopWhile(a1,a2) : in= {a1}/out = {a1,a2}/a1∧c(a1)⇒�a2/a1�¬c(a1)⇒¬�a2/�¬(a1∧ a2)}. Formulas a1, a2 and a3 are atomic for-
mulas and constitute formal arguments for a pattern. A slash sign separates formu-
las. c(a) means that the logical condition associated with the activity a has been
evaluated and is satisfied. Variables in and out provides information about activities
for a pattern which are the first and the last to be executed, respectively. In other
words, they allow to represent the pattern as a whole.

A logical specification is understood as a set of temporal logic formulas. The
sketch of the generation algorithm is presented below. The generation process has
two inputs. The first one is a logical expression which represents a workflow model.
The second one is a predefined set P. The output of the generation algorithm is a
logical specification. The sketch of the generation algorithm is given below.

1. At the beginning, the logical specification is empty, i.e. L := /0;
2. Patterns are processed from the most nested pattern located more towards the

outside and from left to right;
3. If the currently analyzed pattern consists only of atomic formulas, the logical

specification is extended by formulas linked to the type of pattern analyzed, i.e.
L := L∪ pat();

4. If any argument is a pattern itself, then the logical disjunction of all elements that
belong to in and out sets, is substituted in the place of the pattern;

The example of the algorithm is provided in the Section 5. The architecture of the
deduction-based system using the semantic tableaux method is presented in work [6]
where web service models expressed in the BPEL language are considered, but this
is a completely different area.

4 Sample Application and Scenario

One of the considered use cases of the agent-based framework is collecting of the
data about people with the scientific background. We use data both from services
providing personal information (e.g. LinkedIn) and from those strictly professional
(e.g. DBLP). Although this kind of a use case may look simple, there are enough
interesting tasks and problems that can be used to observe the real behaviour of the
system.

The base scenario (from the user’s point of view) consists of two steps:

1. Gathering personal data for a specified person from all available sources.
The user feeds the system with a query containing a full name of some person:
e.g. “Jan Kowalski”. As results of such an action is a list of possible matches,

Deduction-Based Modelling and Verification of Agent-Based Systems 365

there is a need to choose one (the best) match. It can be done manually or (in
future) delegated to an agent that can rate each result and select the best one.

2. Getting and merging publications lists from selected sources for the chosen per-
son.
The user creates a task to obtain publications from available sources (e.g. DBLP).
In this case, when using multiple sources, lists must be merged to create a single
and complete publications registry.

This scenario is implemented as follows:

• Types like Person and Publication are introduced.
• Action agents performing operations related to types are implemented: Personal

Data Agent and Publications Agent.
• The merge action can be implemented in two ways: either the Publications Agent

can offer a capability to do the merge specifically for this type or there may exist
another agent that can perform a general operation that uses a concrete strategy.

• Strategies for each external service were created: Personal Data Search for e.g.
LinkedIn, DBLP or SKOS (AGH internal employee database) and Publications
Search for DBLP and BPP.

Main context

Data init ial isation

Issue agent context

Issue agent creation

Personal data agent creation

Personal data agent context

SKOS search

LinkedIn search

Publication agent creation

Scholar search

DBLP search

Institut ion agent creation

OPI search

Global data collection

Data collection

Needs

publications?

Needs

institution?

No

No

Yes

Yes

Fig. 1 Activity diagram of the search scenario presented in 4

366 R. Klimek, Ł. Faber, and M. Kisiel-Dorohinicki

Figure 1 shows an actual execution of the first step. The user prepares a task
specification that consists of a task identifier and initial data to operate on (e.g. a
name of the person). The task is placed into the system. Then, all issue agents are
notified about it and the one responsible for this task obtains it from the pool. The
issue agent locates an action agent that can handle the specified task and delegates
its execution to this agent. PersonalDataAgent inspects both the task specifi-
cation and provided data and calls relevant strategies. After that, it sends results (a
list of Person instances) to the requesting issue agent. It finishes the realisation of
the task by putting results to the pool.

5 Formal Analysis of the Scenario

Let us consider the activity diagram shown in Fig. 1. After the substitution of propo-
sitions as letters of the Latin alphabet: a – DataInitialisation, b – IssueAgentCre-
ation, c – PersonalDataAgentCreation, d – LinkedInSearch, e – SKOSSearch,
f – NeedsPublications, g – PublicationAgentCreation, h – ScholarSearch, i –
DBLPSearch, j – NeedsInsitution, k – InstitutionAgentCreation, l – OPISearch, m
– DataCollection, and n – GlobalDataCollection, then the expression WL is

Seq(SeqSeq(a,b,c),SeqSeq(Seq(d,e),Seq(Switch(f ,

SeqSeq(g,h, i),N1),Switch(j,Seq(k, l),N2))),Seq(m,n)) (1)

Replacing propositions (atomic activities) by Latin letters is a technical matter and
is suitable only for the work because of its limited size. In the real world, the orig-
inal names of activities are used. Two activities Null1 and Null2, or N1 and N2,
respectively, are introduced since the diagram in Fig. 1 contains two switches with-
out the else-tasks. The logical expression for the activity diagram is produced in an
automatic way.

A logical specification L for the logical expression WL is built using the algorithm
presented in Section 3. The logical specification, which is automatically generated,
is

L = {g⇒�h,h⇒�i,�¬((g∧h)∨ (h∧ i)∨ (g∧ i)),k⇒�l,

�¬(k∧ l),d ⇒�e,�¬(d∧ e), f ∧ c(f)⇒�(g∨ i), f ∧¬c(g)⇒�N1,

�¬((f ∧ (g∨ i))∨ (f ∧N1)∨ ((g∨ i)∧N1)), j∧ c(j)⇒�(k∨ l),

j∧¬c(j)⇒�N2,�¬((j∧ (k∨ l))∨ (j∧N2)∨ ((k∨ l)∧N2)),

d ⇒�e,�¬(d∧ e),(f ∨ i)⇒�(N1∨ l∨N2),

�¬((f ∨ i)∧ (N1∨ l∨N2)),a⇒�b,b⇒�c,

�¬((a∧b)∨ (a∧ c)∨ (b∧ c)),(d∨ e)⇒�(f ∨ i∨N1),

(f ∨ i∨N1)⇒�(j∨ l∨N2),�¬(((d∨ e)∧ (f ∨ i∨N1))

∨((d ∨ e)∧ (j∨ l∨N2))∨ ((f ∨ i∨N1)∧ (j∨ l∨N2))),m ⇒�n,

�¬(m∧n),a⇒�n,�¬(a∧n)} (2)

Deduction-Based Modelling and Verification of Agent-Based Systems 367

Formal verification is the act of proving correctness of a system. Liveness and
safety are standard taxonomy of system properties. Liveness means that the compu-
tational process achieves its goals, i.e. something good eventually happens. Safety
means that the computational process avoids undesirable situations, i.e. something
bad never happens. The liveness property for the model can be

c⇒�m (3)

which means if personal data agent creation is satisfied then sometime data
collection is reached, formally PersonalDataAgentCreation⇒ �DataCollection.
When considering the property expressed by formula (3) then the whole formula to
be analyzed is

(g ⇒�h)∧ (h⇒�i)∧ ...∧ (a⇒�n)∧ (�¬(a∧n))⇒ (c ⇒�m) (4)

Although the logical specification was generated for only one activity diagram,
c.f. formula (2), the method is easy to scale-up, i.e. extending and summing up
logical specifications for other activity diagrams and their scenarios. Then, it will
be possible to examine logical relationships (liveness, safety) for different activities
coming from different activity diagrams.

6 Conclusions

The aim of the paper was to show how a multi-agent system designed for data in-
tegration can be subjected to formal verification using a deductive approach. The
proposed method based on formal analysis of agents’ interactions was illustrated by
a simple example. Further research will focus on particular properties of agent inter-
ctions in the discussed system. Different application areas will also be considered.

Acknowledgements. The research leading to these results has received funding from the
research project No. O ROB 0008 01 “Advanced IT techniques supporting data processing in
criminal analysis”, funded by the Polish National Centre for Research and Development.

References

1. Agarwal, S., Haase, P.: Process-based integration of heterogeneous information sources.
In: Dadam, P., Reichert, M. (eds.) INFORMATIK 2004 - Informatik verbindet (Band 2):
Proceedings der 34. Jahrestagung der Gesellschaft für Informatik (GI). Lecture Notes in
Informatics, pp. 164–169 (2004)

2. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)
3. Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions. ACM

Computing Surveys 28(4), 626–643 (1996)
4. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of The-

oretical Computer Science, vol. B, pp. 995–1072. Elsevier, MIT Press (1990)

368 R. Klimek, Ł. Faber, and M. Kisiel-Dorohinicki

5. Hergula, K., Härder, T.: A middleware approach for combining heterogeneous data
sources - integration of generic query and predefined function access. In: Proceedings
of the 1st International Conference on Web Information Systems Engineering (WISE
2000), vol. 1, pp. 26–33. IEEE Computer Society (2000)

6. Klimek, R.: A deduction-based system for formal verification of agent-ready web ser-
vices. In: Barbucha, D., Thanh Le, M., Howlett, R.J., Jain, L.C. (eds.) Advanced Methods
and Technologies for Agent and Multi-Agent Systems. Frontiers in Artificial Intelligence
and Applications, vol. 252, pp. 203–212. IOS Press (2013)

7. Li, S., Zhang, D.H., Zhou, J.T., Ma, G.H., Yang, H.: An xml-based middleware for infor-
mation integration of enterprise heterogeneous systems. Materials Science Forum 532-
533, 516–519 (2006)

8. Nawarecki, E., Dobrowolski, G., Byrski, A., Kisiel-Dorohinicki, M.: Agent-based inte-
gration of data acquired from heterogeneous sources. In: International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS 2011), pp. 473–477. IEEE
Computer Society (2011)

9. Pender, T.: UML Bible. John Wiley & Sons (2003)
10. Wolter, F., Wooldridge, M.: Temporal and dynamic logic. Journal of Indian Council of

Philosophical Research 27(1), 249–276 (2011)

	Deduction-Based Modelling and Verificationof Agent-Based Systems for Data Integration
	1 Introduction
	2 Agent-Based Data Integration Infrastructure
	3 Deduction System
	4 Sample Application and Scenario
	5 Formal Analysis of the Scenario
	6 Conclusions
	References

