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Abstract. The method of signal averaging is such technique that allows the re-
peated or periodic waveforms which are contaminated by noise to be enhanced. The
most often used operation for averaging is the arithmetic averaging and its different
variations. Unfortunately the mean operator is sensitive for outliers. In this work
the well known myriad M-estimator is applied for averaging. The myriad weighted
averaging allows to suppress the impulsive type of noise. In order to evaluate the
proposed method, artificial impulsive noise is generated with using the symmetric
α-stable distributions. The impulsive noise component is added to the deterministic
signal with known value of geometric signal-to-noise ratio (GSNR) which is equiv-
alent of ordinary SNR. The experiments show usefulness of the proposed method
for weighted averaging of periodic signals like ECG signal.
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1 Introduction

Averaging is one of the basic methods in statistical analysis of experimental sci-
ence especially in the case when the system response is periodic [2]. This proce-
dure is frequently applied for estimating the location of data in the presence of
random variations among the observations which can be removed by application
of this procedure [8]. There exists special reason for application of averaging. The
traditional linear filtering schemes fail when the signal and noise frequency spectra
significantly overlap [11]. Such situation takes place in analysis of biomedical sig-
nals like electrocardiograms (ECG), electroencephalograms (EEG) or other. Signal
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averaging allows to separate a repetitive cycles from noise without introducing sig-
nal distortion [11]. The signal averaging is based on the following assumptions:
the signal waveform (cycle) is repetitive, the noise has to be random and uncor-
related with the signal and the temporal position of each cycle must be precisely
known [2,11]. Under the assumption that the noise is stationary with zero mean and
not being correlated with the signal [7] the noise-reduction factor is equal to

√
N,

where N is the number of averaged signals [3].
However presented arithmetic averaging is affected by a quite serious drawback

which is sensitive to outliers caused by spikes artifacts and bursts of noise. Then
the noise components have impulsive nature which is quite different from Gaus-
sian distribution of noise. The impulse kind of noise is that noise which causes that
the linear filtering technique lets down. Non-gaussianity results in significant per-
formance degradation for systems optimized under the gaussian assumption [10].
This disadvantage is unacceptable in many situations because effective process of
noise reduction is a first step in every signal processing system. Precision of all later
actions (i.e. detection, classification, measurement, etc.) performed on the signal
depends on quality of noise-reduction algorithms [7].

Additionally, traditional averaging method assumes that the noise power is con-
stant, however most types of noise are not stationary. In reality, it can be noticed
some variability of noise power which can vary from period to period. For these
reasons the robust, weighted averaging method should be applied.

The objective of this work is to establish the robust method of weighted aver-
aging with the connection of the myriad cost function. This paper presents a new
robust myriad weighted averaging method. The paper is divided into four sections.
Section 2 presents the idea of the weighted averaging method based on the mini-
mization of the scalar criterion function and introduces the proposed method. Sec-
tion 3 describes the numerical experiment and contains some results. Finally, the
conclusions are given in Section 4.

2 The Weighted Averaging Method

2.1 Idea of Criterion Function Minimization

In [7] it is presented the weighted averaging method based on criterion function
minimization (WACFM). The idea of this method is following. We start with the
description of used denotation. Let us consider N cycles of periodic signal where
xi = [xi1,xi2, . . . ,xiM]T is the ith signal cycle which consists of M samples and
1 ≤ i≤ N, v = [v1,v2, . . . ,vM]T is the averaged signal, w = [w1,w2, . . . ,wN ]

T is the
weight vector which satisfies the following condition

∀
1≤i≤N

wi ∈ [0,1] ,
N

∑
i=1

wi = 1 . (1)
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The scalar criterion function is defined as:

Im(w,v) =
N

∑
i=1

(wi)
mρ(xi− v) , (2)

where ρ(·) is a measure of dissimilarity for vector argument, m∈ (1,∞) is a weight-
ing exponent parameter. Scalar criterion function (2) can be regarded as a measure
of total dissimilarity between v and signal cycle xi weighted by (wi)

m, where m > 1.
The task of searching for an optimal averaged signal v∗ and an optimal weight vector
w∗, can be formulated as follows:

Im(w∗,v∗) = min
w,v

Im(w,v) . (3)

Minimization of (3) with respect to w yields:

∀
1≤1≤N

wi =
ρ (xi− v)1/(1−m)

∑N
i=1 [ρ(x j− v)]1/(1−m)

. (4)

The robust property of the weighted averaging strictly depends on the measure of
dissimilarity ρ(·). The square function ρ(·) = || · ||22 is frequently used [7]. If the
weight vector w is given then the criterion function’s (2) gradient with respect to an
averaged signal v is set to zero and we obtain:

∂ Im(w,v)
∂v

=−2
N

∑
i=1

(wi)
m(xi− v) = 0 (5)

In this case the averaged signal v is given as:

v =
∑N

i=1(wi)
mxi

∑N
i=1(wi)m

, (6)

and vector of the weights w is estimated as:

∀
1≤1≤N

wi =
[||xi− v||2]2/(1−m)

∑N
i=1 [||x j− v||]2/(1−m)

. (7)

The optimal solution for minimization (2) in the case of the square function ρ(·) is
obtained from the application of the iterative Picard algorithm with the formula (4)
for w and (6) for the averaged v signal. This method is called weighted averaging
based on criterion function minimization (WACFM). In this paper m = 2 which
results in greater decrease of medium weights [7].
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2.2 Myriad Weighted Averaging

The scalar criterion function (2) can use the alternative form of the dissimilarity
function ρ(·) provided that satisfied the following properties [7]: 1) ρ(0) = 0, 2)
ρ(y) = ρ(−y), 3) ∀1≤ j≤p y j ≤ z j =⇒ ρ(y)≤ ρ(z) – monotonicity, where all vec-
tors y,z ∈ℜp. One of the function which satisfies above conditions is the following
function:

ρ(x) = log
(
1+ x2/K2) , (8)

where K is the linear parameter. The function presented in (8), known as the cost
function is often used to define a maximum likelihood estimator of location in ro-
bust signal processing. This function is connected with Cauchy distribution and the
myriad filter [1, 5, 6]. The linear parameter K controls the robustness of the myr-
iad estimator. For small value of K, the myriad value tends to favour values near
the most populated clusters of input samples. The case K → 0 leads to highly ro-
bust selection location estimator called mode-myriad. The other special case takes
place when K → ∞ and signal samples satisfy Gaussian distribution. Then myriad
estimator of location behaves like the arithmetic mean estimator [4].

Using (2) and (8) the scalar criterion function can be rewritten as:

Im(w,v) =
N

∑
i=1

(wi)
m log

(
1+

(
xi− v

K

)2
)

. (9)

If v ∈ℜ then Lagrangian of (9) with constraints from (1) is:

L(w,λ ) =
N

∑
i=1

(wi)
m log

(
1+

(
xi− v

K

)2
)
−λ

[
N

∑
i=1

wi− 1

]
, (10)

where λ is the Lagrange multiplier. Assume that the Lagrangian gradient is set to
zero:

∂L(w,λ )
∂λ

=
N

∑
i=1

wi− 1 = 0 (11)

and

∀
1≤ j≤N

∂L(w,λ )
∂wj

= m(wj)
m−1 log

(
1+

(
xi− v

K

)2
)
−λ = 0 . (12)

From (12) we can write:

wj =

(
λ
m

)1/(m−1)
[

log

(
1+

(
xi− v

K

)2
)]1/(1−m)

(13)
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From (11) and (13), we get:

(
λ
m

)1/(m−1) N

∑
i=1

[
log

(
1+

(
xi− v

K

)2
)]1/(1−m)

= 1 . (14)

And finally, from (14) and (13), we obtain:

∀
1≤i≤N

wi =

[
log
(

1+
(xi−v

K

)2)]1/(1−m)

∑N
j=1

[
log

(
1+
(

x j−v
K

)2
)]1/(1−m)

. (15)

If we assume that v is fixed, the next step of algorithm is estimation of averaged
signal v. Let the criterion function’s gradient (9) with respect to averaged signal v is
set to zero, then we get:

∂ Im(w,v)
∂v

=

(
N

∑
i=1

(wi)
m log

(
1+

(
xi− v

K

)2
))′

= 0 . (16)

For a given data x, the solution of (16) can be solved by using fixed-point search
algorithm which can be written as:

v(k+1) =
∑N

i=1 φ(v(k))xi

∑N
i=1 φ(v(k))

, (17)

where

φ(v(k)) =
(wi)

m(
1+
(

xi−v(k)
K

)2
) , (18)

and where the subscript denotes the iteration number. The algorithm is taken as
convergent when ||w(k+1)−w(k)|| < δ and δ is a small positive value (δ = 10−6).
On the basis of (15) and (17) the new method of robust averaging is obtained that
can be called WACFMMy.

3 Numerical Experiments and Results

Performance of the proposed method is evaluated in comparison with the trimmed-
mean averaging (TMA) and WACFM method from [7]. The method based on min-
imization of scalar criterion function are initialized with the vector of all ones and
m = 2. For a computed averaged signal the quality of tested methods is evaluated by
the maximal absolute difference between deterministic component and the averaged
signal (MAX). The averaging process should not deform the signal. For that rea-
son, the presented methods are evaluated using the root mean-square error (RMSE)
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between the deterministic component and the averaged signal. All experiments are
done in MATLAB environment.

For testing requirements the ECG signal from [7] is chosen. This signal is ob-
tained by averaging 500 real ECG cycles (sampled at 2 kHz with 16-bit resolution)
with a high signal-to-noise ratio (Fig. 1(a)). Before averaging these cycles are time-
aligned.
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Fig. 1 Original ECG signal – deterministic component (a) and ECG cycle corrupted with
simulated impulsive noise (b)

The purpose of this experiment is to investigate the proposed in this paper method
in the presence of impulsive noise. This kind of noise is modelled on the basis the
symmetrical α-stable (SαS) distribution [4, 9]. In order to simulate the real condi-
tions of acquisition a series of 100 ECG cycles is generated with the same determin-
istic component and an impulsive noise with known four values of the generalized
signal-to-noise ratio GSNR [9] which is equivalent of ordinary SNR, but in the case
of the Gaussian distribution of noise. For the first, second, third and fourth 25 cy-
cles, the GSNR values are 5, 10, 20 and 40 dB. The level of impulsiveness in SαS
process is controlled with the characteristic exponent α and in this paper α changes
from 1 to 2 with step 0.1. An example of ECG cycle corrupted with an impulsive
noise modelled with SαS process with GSNR = 5 [dB] and α = 1.6 is presented in
the Fig. 1(b).

The RMSE and the maximal value (MAX) of residual noise for all tested methods
are presented in Table 1 (the best results are bolded). An example of averaging of
ECG cycles is presented in the Fig. 2.

The best noise reduction for the evaluated methods is obtained for trimmed-mean
averaging but only for very impulsive case α = 1.0. When 1.1 ≤ α ≤ 1.8 the best
results of RMSE factor are obtained for the proposed method WACFMMy. But for
α = 1.9 and α = 2.0 the best results are obtained for the WACFM method. These
results show effectiveness of the WACFM method in the presence of Gaussian noise
but this method fails when the level of impulsiveness is higher. The reason of such
fact is the application of square function as the dissimilarity function. The proposed
method WACFMMy uses the dissimilarity function which is more robust. Unlike the
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Table 1 RMSE [μV ] and MAX [μV ] values for averaged signals in environment of an im-
pulsive noise

RMSE [μV ] MAX [μV ]

α TAM WACFM WACFMMy TAM WACFM WACFMMy
p = 25 m = 2 K = 0.1 p = 25 m = 2 K = 0.1

1.0 17.9 39.21 27.28 59.7 546.34 171.29
1.1 18.8 34.08 17.66 66.0 419.40 175.18
1.2 18.6 24.84 13.22 69.2 315.41 123.91
1.3 18.0 7.58 5.78 60.7 117.36 68.94
1.4 18.4 6.56 5.74 55.7 57.59 70.54
1.5 17.6 7.09 5.29 56.8 55.86 73.87
1.6 18.1 3.86 3.46 58.7 22.42 31.89
1.7 17.8 2.79 2.76 62.5 14.72 17.24
1.8 18.2 2.09 2.05 71.9 8.87 8.74
1.9 18.1 1.81 1.88 58.4 7.28 7.10
2.0 18.2 1.62 1.62 53.3 5.05 5.05
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Fig. 2 Results of averaging: a) original signal, b) WACFMMy, c) WACFM, d) trimmed-
mean. Signals are shifted vertically for better presentation.

results obtained for RMSE, the best values of MAX factor are obtained for trimmed-
mean method for (α ∈ 〈1.0,1.4〉), but for α ≥ 1.5 the best values are for WACFM
method. The proposed method WACFMMy reaches the best results of MAX factor
when α ≥ 1.8.
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4 Conclusion

In this work the new method of robust weighted averaging of periodic signals is
presented with example of ECG cycles averaging. The proposed method uses the
minimization of scalar criterion function with the robust dissimilarity function of
the form known from the myriad maximum likelihood estimator. The robustness of
the proposed method can be controlled with one parameter. The obtained results
show the usefulness of the presented robust myriad weighted averaging method for
ECG signal processing. Therefore this method leads to the best results in a wide
range of impulsiveness changes. It should be pointed out, that this method allows to
suppress the impulse type noise in periodic or quasi-periodic signals.
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