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Abstract. Case-based reasoning (CBR) solves problems using the already stored
knowledge, and captures new knowledge, making it immediately available for solv-
ing the next problem. Therefore, CBR can be seen as a method for problem solving,
and also as a method to capture new experience and make it immediately available
for problem solving. The CBR paradigm has been originally introduced by the cog-
nitive science community. The CBR community aims to develop computer models
that follow this cognitive process. Up to now many successful computer systems
have been established on the CBR paradigm for a wide range of real-world prob-
lems. We will review in this paper the CBR process and the main topics within the
CBR work. Hereby we try bridging between the concepts developed within the CBR
community and the statistics community. The CBR topics we describe are: similar-
ity, memory organization, CBR learning, and case-base maintenance. The incremen-
tal aspect arising with the CBR paradigm will be considered as well as the life-time
aspect of a CBR system. We will point out open problems within CBR that need to
be solved. Finally we show on application how the CBR paradigm can be applied.
The applications we are focusing on are meta-learning for parameter selection in
technical systems, image interpretation, incremental prototype-based classification
and novelty detection and handling. Finally, we summarize our concept on CBR.

Keywords: case-based reasoning, statistics, similarity, incremental learning, nor-
malization, case base organization, novelty detection.

1 Introduction

CBR [3] solves problems using the already stored knowledge, and captures
new knowledge, making it immediately available for solving the next problem.
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Therefore, CBR can be seen as a method for problem solving, and also as a method
to capture new experience and make it immediately available for problem solving.
It can be seen as an incremental learning and knowledge-discovery approach, since
it can capture from new experience general knowledge, such as case classes, proto-
types and higher-level concepts.

The CBR paradigm has originally been introduced by the cognitive science com-
munity. The CBR community aims at developing computer models that follow this
cognitive process. For many application areas computer models have successfully
been developed based on CBR, such as signal/image processing and interpretation
tasks, help-desk applications, medical applications and E-commerce-product selling
systems.

In this paper we will explain the CBR process scheme in Section 2. We will show
what kinds of methods are necessary to provide all the necessary functions for such
a computer model. The CBR process model comprised of the CBR reasoning and
CBR maintenance process is given in Section 3. Then we will focus on similarity
in Section 4. Memory organization in a CBR system will be described in Section 5.
Both similarity and memory organization are concerned in learning in a CBR sys-
tem. Therefore, in each section an introduction will be given as to what kind of
learning can be performed. In Section 6 we will describe open topics in CBR re-
search for incremental learning and Section 7 for the life-cycle of a CBR system.
In Section 8 we describe the newly established application fields on multimedia.
Then, we focus our description on meta-learning for parameter selection, image in-
terpretation, incremental prototype-based classification and novelty detection and
handling. In Section 8.1 we will describe meta-learning for parameter selection for
data processing systems. CBR based image interpretation will be described in Sec-
tion 8.2 and incremental prototype-based classification in Section 8.3. New concepts
on novelty detection and handling will be presented in Section 8.4.

While reviewing the CBR work, we will try bridging between the concepts de-
veloped within the CBR community and the concepts developed in the statistics
community.

In the conclusion, we will summarize our concept on CBR in Section 9.

2 Case-Based Reasoning

CBR is used when generalized knowledge is lacking. The method works on a set
of cases formerly processed and stored in a case base. A new case is interpreted
by searching for similar cases in the case base. Among this set of similar cases the
closest case with its associated result is selected and presented to the output.

The differences between a CBR learning system and a symbolic learning system,
which represents a learned concept explicitly, e.g. by formulas, rules or decision
trees, is that a CBR system describes a concept C implicitly by a pair (CB,sim). The
relationship between the case base CB and the measure sim used for classification
may be characterized by the equation:
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Concept =Case_Base+Measure_o_Similarity (1)

This equation indicates in analogy to arithmetic that it is possible to represent
a given concept C in multiple ways, i.e. there exist many pairs C = (CB1,sim1),
(CB2,sim2), ..., (CBi,simi) for the same concept C.

During the learning phase a case-based system gets a sequence of
cases X1,X2, ...,Xi with Xi = (xi,class(xi)) and builds a sequence of pairs
(CB1,sim1),(CB2,sim2), ...,(CBi,simi) with CBi ⊆ {X1,X2, ...,Xi}. The aim is to
get in the limit a pair (CBn,simn) that needs no further change, i.e. ∃n ∀m ≥
n(CBn,simn) = (CBm,simm), because it is a correct classifier for the target concept
C [66].

Formal, we like to understand a case as the following:

Definition 1. A case X is a triple (P,E,L) with a problem description P, an expla-
nation of the solution E and a problem solution L.

The problem description summarizes the information about a case in the form of at-
tributes or features. Other case representations such as graphs, images or sequences
may also be possible. The case description is given a-priori or needs to be elici-
tated during a knowledge acquisition process. Only the most predictive attributes
will guarantee us to find exactly the most similar cases.

Equation 1 and definition 1 give a hint as to how a case-based learning system
can improve its classification ability. The learning performance of a CBR system is
of incremental manner and it can also be considered as on-line learning. In general,
there are several possibilities to improve the performance of a case-based system.
The system can change the vocabulary V (attributes, features), store new cases in
the case base CB, change the measure of similarity sim, or change V , CB and sim in
combinatorial manner.

That brings us to the notion of knowledge containers introduced by Richter [51].
According to Richter, the four knowledge containers are the underlying vocabulary
(or features), the similarity measure, the solution transformation, and the cases. The
first three represent compiled knowledge, since this knowledge is more stable. The
cases are interpreted knowledge. As a consequence, newly added cases can be used
directly. This enables a CBR system to deal with dynamic knowledge. In addition,
knowledge can be shifted from one container to another container. For instance,
in the beginning a simple vocabulary, a rough similarity measure, and no knowl-
edge on solution transformation are used. However, a large number of cases are col-
lected. Over time, the vocabulary can be refined and the similarity measure defined
in higher accordance with the underlying domain. In addition, it may be possible
to reduce the number of cases, because the improved knowledge within the other
containers now enables the CBR system to better differentiate between the available
cases.

The abstraction of cases into a more general case (concepts, prototypes and case
classes) or the learning of the higher-order relation between different cases may
reduce the size of the case base and speed up the retrieval phase of the system [57].
It can make the system more robust against noise. More abstract cases which are set
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in relation to each other will give the domain expert a better understanding about his
domain. Therefore, beside the incremental improvement of the system performance
through learning, CBR can also be seen as a knowledge-acquisition method that can
help to get a better understanding about the domain [9, 14].

The main problems with the development of a CBR system are the following:
What makes up a case?, What is an appropriate similarity measure for the problem?,
How to organize a large number of cases for efficient retrieval?, How to acquire and
refine a new case for entry in the case base?, How to generalize specific cases to a
case that is applicable to a wide range of situations?

3 Case-Based Reasoning Process Model

The CBR reasoning process is comprised of seven phases (see Fig. 1): Current prob-
lem description, problem indexing, retrieval of similar cases, evaluation of candidate
cases, modification of selected cases, application to a current problem, and critique
of the system.

Fig. 1 Case-Based Reasoning Process Model

The current problem is described by some keywords, attributes, features or any
abstraction that allows describing the basic properties of a case. Based on this de-
scription indexing of case base is done. Among a set of similar cases retrieved from
the case base the closest case is evaluated as a candidate case. If necessary this case
is modified so that it fits the current problem. The problem solution associated to
the current case is applied to the current problem and the result is observed by the
user. If the user is not satisfied with the result or if no similar case could be found
in the case base, the user or the process itself gives feedback to the system. This
critique is used to incrementally improve the system performance by the case-base
management process.

The CBR management (see Fig. 2) will operate on new cases as well as on cases
already stored in the case base. If a new case has to be stored into the case base,
this means there is no similar case in case base. The system has recognized a gap in
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the case base. A new case has to be inputted into the case base in order to close this
gap. From the new case a predetermined case description has to be extracted which
should be formatted into the predefined case format. After that the case is stored
into the case base. Selective case registration means that no redundant cases will be
stored into the case base and similar cases will be grouped together or generalized
by a case that applies to a wider range of problems. Generalization and selective case
registration ensure that the case base will not grow too large and that the system can
find similar cases fast.

It might also happen that too many non-relevant cases will be retrieved during the
CBR reasoning process. Therefore, it might be wise to rethink the case description
or to adapt the similarity measure. For the case description more distinguishing
attributes should be found that allow separating cases that do not apply to the current

Fig. 2 Case Base Maintenance Process

problem. The weights in the similarity measure might be updated in order to retrieve
only a small set of relevant cases.

CBR maintenance is a complex process and works over all knowledge containers
(vocabulary, similarity, retrieval, case base) of a CBR system. Consequently, archi-
tectures and systems have been developed which support this process [26, 41] and
also look into the life-time aspect concerned with case-based maintenance [34].

4 Similarity

Although similarity is a concept humans prefer to use when reasoning over prob-
lems, they usually do not have a good understanding of how similarity is formally
expressed. Similarity seems to be a very incoherent concept.
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From the cognitive point of view, similarity can be viewed from different per-
spectives [58]. A red bicycle and a blue bicycle might be similar in terms of the
concept “bicycle”, but both bicycles are dissimilar when looking at the colour. It is
important to know what kind of similarity is to be considered when reasoning over
two objects. Overall similarity, identity, similarity, and partial similarity need to be
modelled by the right flexible control strategy in an intelligent reasoning system. It
is especially important in image data bases where the image content can be viewed
from different perspectives. Image data bases need to have this flexibility and com-
puterized conversational strategies to figure out from what perspective the problem
is looked at and what kind of similarity has to be applied to achieve the desired
goal. From the mathematical point of view, the Minkowski metric is the most used
similarity measure for technical problems:

d(p)
ii =

[
J

∑
j=1

∣∣xi j− xi‘ j
∣∣p
]1/p

(2)

the choice of the parameter p depends on the importance we give to the differences
in the summation. Metrical properties such as symmetry, identity and unequality
hold for the Minkowski metric.

If we use the Minkowski metric for calculating the difference between two tra-
jectories of a robot axis, one is the original trajectory and the other one is a recon-
structed trajectory obtained by a compression algorithm from the compressed data
points stored in the memory of the robot control system [21], it might not be prefer-
able to choose p = 2 (Euclidean metric), since the measure averages over all data
points, but gives more emphasis to big differences. If choosing p = 1 (City-Block
metric), big and small differences have the same influence (impact) on the similar-
ity measure. In case of the Max-Norm (p = ∞) none of the data point differences
should exceed a predefined difference. In practice it would mean that the robot axis
is performing a smooth movement over the path with a known deviation from the
real path and will never come in the worse situation to perform a ramp-like func-
tion. In the robot example the domain itself gives us an understanding about the
appropriate similarity metric.

Unfortunately, for most of the applications we do not have any a-priori knowl-
edge about the appropriate similarity measure. The method of choice for the selec-
tion of the similarity measure is to try different types of similarity and observe their
behaviour based on quality criteria while applying them to a particular problem. The
error rate is the quality criterion that allows selecting the right similarity measure
for classification problems. Otherwise it is possible to measure how well similar ob-
jects are grouped together, based on the chosen similarity measure, and at the same
time, how well different groups can be distinguished from each other. This changes
the problem into a categorization problem for which proper category measures are
known from clustering [27] and machine learning [20].



Case-Based Reasoning and the Statistical Challenges II 23

In general, distance measures can be classified based on the data-type dimension.
There are measures for numerical data, symbolical data, structural data and mixed-
data types. Most of the overviews given for similarity measures in various works
are based on this view [36, 40, 69]. A more general view to similarity is given in
Richter [52].

Other classifications on similarity measures focus on the application. There are
measures for time-series [53], similarity measures for shapes [56], graphs [41], mu-
sic classification [64], and others.

Translation, size, scale and rotation invariance are another important aspect of
similarity as concerns technical systems.

Most real-world applications nowadays are more complex than the robot exam-
ple given above. They are usually comprised of many attributes that are different in
nature. Numerical attributes given by different sensors or technical measurements
and categorical attributes that describe meta-knowledge of the application usually
make up a case. These n different attribute groups can form partial similarities
Sim1,Sim2, ...,Simn that can be calculated based on different similarity measures and
may have a contextual meaning for itself. The final similarity might be comprised of
all the contextual similarities. The simplest way to calculate the overall similarity is
to sum up over all contextual similarities: Sim = α1Sim1 +α2Sim2...+αnSimn and
model the influence of the similarities by different importances αi. Other schemas
for combining similarities are possible as well. The usefulness of such a strategy
has been shown for meta-learning of segmentation parameters [38] and for medical
diagnosis [60].

The introduction of weights into the similarity measure in equation 1 puts a dif-
ferent importance on particular attributes and views similarity not only as global
similarity, but also as local similarity. Learning the attribute weights allows building
particular similarity metrics for the specific applications. A variety of methods based
on linear or stochastic optimization methods [72], heuristics search [67], genetic
programming [16], and case-ordering [61] or query ordering in NN-classification,
have been proposed for attribute-weight learning.

Learning distance function in response to users’ feedback is known as relevance
feedback [5, 10] and it is very popular in data base and image retrieval. The op-
timization criterion is the accuracy or performance of the system rather than the
individual problem-case pairs. This approach is biased by the learning approach as
well as by the case description.

New directions in CBR research build a bridge between the case and the solu-
tion [8]. Cases can be ordered based on their solutions by their preference rela-
tions [71] or similarity relation [50] given by the users or a-priori known from the
application. The derived values can be used to learn the similarity metric and the
relevant features. That means that cases having similar solutions should have simi-
lar case descriptions. The set of features as well as the feature weights are optimized
until they meet this assumption.

Learning distance function by linear transformation of features has been intro-
duced by Bobrowski et. al [13].
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The necessity to study the taxonomy of similarity measures and a first attempt to
construct a taxonomy over similarity measures has been given by Perner in [40] and
has been further studied by Cunningham [17]. More work is necessary especially
when not only one feature type and representation is used in a CBR system, as
it is the case for multimedia data. These multimedia cases will be more complex
as the cases that only face on one specific data type. To develop novel similarity
measures for text, videos, images, and audio and speech signals and to construct
a taxonomy that allows understanding the relation between the different similarity
measures will be a challenging task. Similarity aggregation of the different types of
similarity measures is another challenging topic.

Research has been described for learning of feature weights and similarity mea-
sures [16,67,72]. Case mining from raw data in order to get more generalised cases
has been described in [28]. Learning of generalised cases and the hierarchy over the
case base has also been presented. These works demonstrate that the system per-
formance can be significantly improved by these functions of a CBR system. New
techniques for learning of feature weights and similarity measures, case generalisa-
tion for different data types are necessary.

5 Organization of Case Base

The case base plays a central role in a CBR system. All observed relevant cases
are stored in the case base. Ideally, CBR systems start reasoning from an empty
memory, and their reasoning capabilities stem from their progressive learning from
the cases they process [11].

Consequently, the memory organization and structure are in the focus of a CBR
system. Since a CBR system should improve its performance over time, imposes on
the memory of a CBR system to change constantly.

In contrast to research in data base retrieval and nearest-neighbour classification,
CBR focuses on conceptual memory structures. While k-d trees [7, 65] are space-
partitioning data structures for organizing points in a k-dimensional space, concep-
tual memory structures [20,41] are represented by a directed graph in which the root
node represents the set of all input instances and the terminal nodes represent indi-
vidual instances. Internal nodes stand for sets of instances attached to that node and
represent a super-concept. The super-concept can be represented by a generalized
representation of the associated set of instances, such as the prototype, the mediod
or a user-selected instance. Therefore a concept C, called a class, in the concept hi-
erarchy is represented by an abstract concept description (e.g. the feature names and
its values) and a list of pointers to each child concept M(C) = {C1,C2, ...,Ci, ...,Cn},
where Ci is the child concept, called subclass of concept C.

The explicit representation of the concept in each node of the hierarchy is pre-
ferred by humans, since it allows understanding the underlying application domain.

While for the construction of a k-d tree only a splitting and deleting operation is
needed, conceptual learning methods use more sophisticated operations for the con-
struction of the hierarchy [28]. The most common operations are splitting, merging,
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adding and deleting. What kind of operation is carried out during the concept hier-
archy construction depends on a concept-evaluation function. There are statistical
functions known, as well as similarity-based functions.

Because of the variety of construction operators, conceptual hierarchies are not
sensitive to the order of the samples. They allow the incremental adding of new
examples to the hierarchy by reorganizing the already existing hierarchy. This flex-
ibility is not known for k-d trees, although recent work has led to adaptive k-d trees
that allow incorporating new examples.

The concept of generalization and abstraction should make the case base more
robust against noise and applicable to a wider range of problems. The concept de-
scription, the construction operators as well as the concept evaluation function are
in the focus of the research in conceptual memory structure.

The conceptual incremental learning methods for case base organization puts the
case base into the dynamic memory view of Schank [54] who required a coherent
theory of adaptable memory structures and that we need to understand how new
information changes the memory.

Memory structures in CBR research are not only pure conceptual structures, hy-
brid structures incorporating k-d tree methods are studied also. An overview of re-
cent research in memory organization in CBR is given in [11].

Other work goes into the direction of bridging between implicit and explicit rep-
resentations of cases [42]. The implicit representations can be based on statistical
models and the explicit representation is the case base that keeps the single case as
it is. As far as evidence is given, the data are summarized into statistical models
based on statistical learning methods such as Minimum Description Length (MDL)
or Minimum Message Length (MML) learning. As long as not enough data for a
class or a concept have been seen by the system, the data are kept in the case base.
The case base controls the learning of the statistical models by hierarchically or-
ganizing the samples into groups. It allows dynamically learning and changing the
statistical models based on the experience (data) seen so far and prevents the model
from overfitting and bad influences by singularities.

This concept follows the idea that humans have built up very effective models for
standard repetitive tasks and that these models can easily be used without a complex
reasoning process. For rare events the CBR unit takes over the reasoning task and
collects experience into its memory.

6 The Incremental Aspect of CBR

The incremental aspect of the CBR method presents oneself a new task for which
new methods have to be developed.

Case-based reasoning, image or data retrieval is based on similarity determination
between the actual case and the cases in a database. It is preferable to normalize the
similarity values between 0 and 1 in order to be able to compare different similarity
values based on a scale. A scale between 0 and 1 gives us a symbolic understanding
of the meaning of the similarity value. The value of 0 indicates identity of the two
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cases while the value of 1 indicates the cases are unequal. On the scale of 0 and 1
the value of 0.5 means neutral and values between 0.5 and 0 mean more similarity
and values between 0.5 and 1 mean more dissimilarity.

Different normalization procedures are known. The most popular one is the nor-
malization to the upper and lower bounds of a feature value.

When not having any a-priori information about the distribution of the data, the
upper and lower bounds of a feature value [xmin,i,k,xmax,i,k] can only be judged based
on this limited set of cases at the point in time tk and must not meet the true values
of xmin,i and xmax,i of feature i. Then the scale of similarity might change over time
periods tk which will lead to different decisions for two cases at the points in time
tk and tk+l [4]. It leads to the task of incremental learning the frequency distribution
of the data [45] and the question how to use the decision of the CBR system. One
method for the later can be to fit the similarity based on expert’s judgment about the
similarity in the assumption that this value is more close to the true value [46].

Another important aspect is the kind of normalization used. Studies show that
normalization has a big impact on the final results [19, 37]. The selection of the
right normalization method is another challenging task.

Besides that the incremental aspects is still a task for the organization of the case
base and feature learning.

7 The Life-Cycle of a CBR System

The incremental aspect of the CBR put the aspect of the Life-Cycle [18,33,34] of a
CBR system into a central point of view. One question is: How to deal with changing
cases? Cases were the set of features is changing.

The question of the Life-Cycle of a CBR system goes along with the learning
capabilities, case base organization and maintenance mechanism, standardization
and software engineering [47] for which new concepts should be developed.

8 Applications

CBR has been successfully applied to a wide range of problems. Among them are
signal interpretation tasks [49], medical applications [25], and emerging applica-
tions such as geographic information systems, applications in biotechnology and
topics in climate research (CBR commentaries) [31].

The development of CBR methods for multimedia data is still a challenging topic.
So far four different subfields have been developed over the time: CBR for image
and video analysis and interpretation [40, 68], CBR for 1-D signals and sequences
[2, 48], and CBR for spatio-temporal data [23, 24] (see Fig. 3).

We are focussing here on hot real-world topics such as meta-learning for pa-
rameter selection, image&signal interpretation, prototype-based classification and
novelty detection & handling.
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Fig. 3 Overview about Multimedia Topics in CBR

8.1 Meta-learning for Parameter Selection of Data/Signal
Processing Algorithms

Meta learning is a subfield of Machine Learning where automatic learning algo-
rithms are applied on meta-data about machine-learning experiments. The main goal
is to use such meta-data to understand how automatic learning can become flexible
as regards solving different kinds of learning problems, hence to improve the per-
formance of existing learning algorithms. Another important meta-learning task, but
not so widely studied yet, is parameter selection for data or signal processing algo-
rithms. Soares et. al [59] have used this approach for selecting the kernel width of
a support-vector machine, while Perner [38] and Frucci et. al [22] have studied this
approach for image segmentation.

The meta-learning problem for parameter selection can be formalized as follows:
For a given signal that is characterized by specific signal properties A and domain
properties B find the parameters of the processing algorithm that ensure the best
quality of the resulting output signal:

f : A∪B→ Pi (3)

with Pi the i-th class of parameters for the given domain.
Meta-data for signals are comprised of signal-related meta-data and non-signal

related meta-data [38]. Likewise in the standard system theory [70], the signal-
related meta-data should characterize the specific signal properties that influence
the result of the signal processing algorithm. In general the processing of signal-
related meta-data from signals should not require too much processing since it is
auxiliary process to achieve the final result.

The architecture of Case-based Reasoning for Image Segmentation is shown
in Fig. 4. This architecture has been applied to threshold-based image segmenta-
tion [38] and the Watershed Transformation [22]. The resulting good segmentation
quality compared to standard Watershed segmentation result is shown in Fig. 5 for
a biological image.

The signal-related meta-data are for the CBR-based Watershed Transformation
statistical grey-level and texture parameters such as mean, standard deviation, en-
tropy, and Haralick’s texture-descriptor. The non-signal related meta-data are the
category of the images such as biological image, face images, and landscape images.
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Fig. 4 Meta-Learning for Parameter Selection

Fig. 5 Image Segmentation Results, right Original Image, Watershed Transform, middle,
Watershed Transform based on CBR, left

The image segmentation algorithm is the Watershed transformation where the over-
segmentation of the result is controlled by weighted merging rules. The weights and
the application of the merging rules are controlled by the CBR unit. This unit se-
lects based on the signal characteristics and the category the weights and rules that
should be applied for merging basins obtained by the standard Watershed Transfor-
mation in the particular image. The output of the segmentation unit is automatically
criticised by a specific evaluation measure that compares the input image with the
output image and starts the case-base maintenance process if the result is not as
good as it should be. Then new case is stored with its meta-data and its segmen-
tation parameters in the case base. Case generalization groups similar cases into a
more generalized case so that it is applicable to more signals.

The mapping function f can be realized by any classification algorithm, but
the incremental behaviour of CBR fits best to many data/signal processing prob-
lems where the signals are not available ad-hoc but appear incrementally. The right
similarity metric that allows mapping data to parameter groups and in the last
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consequence to good output results should be more extensively studied. Perfor-
mance measures that allow to judge the achieved output and to automatically criti-
cize the system performances are another important problem. As from the statistics
point of view we need more signal-characterizing parameters for the meta-data that
bridge between the signal characteristics and the behaviour of the modern, often
heuristic signal processing algorithms.

Abstraction of cases to learn domain theory are also related to these tasks and
would allow to better understand the behaviour of many signal processing algo-
rithms that cannot be described anymore by standard system theory [70].

8.2 Case-Based Image Interpretation

Image interpretation is the process of mapping the numerical representation of an
image into a logical representation such as is suitable for scene description. This
is a complex process; the image passes through several general processing steps
until the final result is obtained. These steps include image preprocessing, image
segmentation, image analysis, and image interpretation. Image pre-processing and
image segmentation algorithm usually need a lot of parameters to perform well on
the specific image. The automatically extracted objects of interest in an image are
first described by primitive image features. Depending on the particular objects and
focus of interest, these features can be lines, edges, ribbons, etc. Typically, these
low-level features have to be mapped to high-level/symbolic features. A symbolic
feature such as fuzzy margin will be a function of several low-level features.

The image interpretation component identifies an object by finding the object to
which it belongs (among the models of the object class). This is done by match-
ing the symbolic description of the object to the model/concept of the object stored
in the knowledge base. Most image-interpretation systems run on the basis of a
bottom-up control structure. This control structure allows no feedback to preceding
processing components if the result of the outcome of the current component is un-
satisfactory. A mixture of bottom-up and top-down control would allow the outcome
of a component to be refined by returning to the previous component.

CBR is not only applicable as a whole to image interpretation, it is applicable
to all the different levels of an image-interpretation system [39, 40] (see Fig. 6)
and many of the ideas mentioned in the chapters before apply here. CBR-based
meta-learning algorithms for parameter selection are preferable for the image pre-
processing and segmentation unit [22,38]. The mapping of the low-level features to
the high-level features is a classification task for which a CBR-based algorithm can
be applied. The memory organization [41] of the interpretation unit goes along with
problems discussed for the case base organization in Section 5. Different organiza-
tion structures for image interpretation systems are discussed in [40].

Ideally the system should start working with only a few samples and during usage
of the system new cases should be learnt and the memory should be updated based
on these samples. This view at the usage of a system brings in another topic that
is called life-time cycle of a CBR system. Work on this topic takes into account
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Fig. 6 Architecture of a CBR-Based Image Interpretation System

that a system is used for a long time, while experience changes over time. The case
structure might change by adding new relevant attributes or deleting attributes that
have shown not to be important or have been replaced by other ones. Set of cases
might not appear anymore, since these kinds of solutions are not relevant anymore.
A methodology and software architecture for handling the life-time cycle problem
is needed so that this process can easily be carried out without rebuilding the whole
system. It seems to be more a software engineering task, but has also something to
do with evaluation measures for the task of forgetting and relevance of cases that
can come from statistics.

8.3 Incremental Prototype-Based Classification

The usage of prototypical cases is very popular in many applications, among them
are medical applications [55], Belazzi et al. [6] and by Nilsson and Funk [35],
knowledge management systems [12] and image classification tasks [44]. The sim-
ple nearest-neighbour- approach [1] as well as hierarchical indexing and retrieval
methods [55] have been applied to the problem. It has been shown that an initial
reasoning system could be built up based on these cases. The systems are useful in
practice and can acquire new cases for further reasoning during utilization of the
system.

There are several problems concerned with prototypical CBR. If a large enough
set of cases is available, the prototypical case can automatically be calculated as
the generalization from a set of similar cases. In medical applications as well as in
applications where image catalogues are the development basis for the system, the
prototypical cases have been selected or described by humans. That means when
building the system, we are starting from the most abstract level (the prototype) and
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Fig. 7 Architecture of a Prototype-Based Classifier

have to collect more specific information about the classes and objects during the
usage of the system.

Since a human has selected the prototypical case, his decision on the importance
of the case might be biased and picking only one case might be difficult for a human.
As for image catalogue-based applications, he can have stored more than one image
as a prototypical image. Therefore we need to check the redundancy of the many
prototypes for one class before taking them all into the case base.

According to this consideration, the minimal functions a prototype-based classi-
fication system [44] (see Fig. 7) should realize are: classifications based on a proper
similarity-measure, prototype selection by a redundancy-reduction algorithm, fea-
ture weighting to determine the importance of the features for the prototypes and
to learn the similarity metric, and feature-subset selection to select the relevant fea-
tures from the whole set of features for the respective domain. Cross Validation
over the loop of all processing steps can estimate the error rate of such a system (see
Fig. 6). However, when the data set is imbalanced that means a class is underrepre-
sented by samples, what always can happen in real domain and when incrementally
collecting samples, class-specific error rates have to be calculated to judge the true
performance of the system. Otherwise overall error rate will turn out to be good but
underrepresented classes will be badly classified [30]. That means that the learning
schema for prototype-selection, feature subset selection and feature weighting can-
not only rely on the overall error as often. More sophisticated learning strategies are
necessary which are incrementally and take whether the class-specific error rate into
account or follow the idea of bridging between the cases and the solutions based on
preference or similarity relations mentioned in Section 4.

Statistical learning methods so far focus on adaptive k-NN that adapts the dis-
tance metric by feature weighting or kernel methods or the number k of neighbours
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off-line to the data. Incremental strategies are used for the nearest- neighbour search,
but not for updating the weights, distance metric and prototype selection. A system
for handwriting recognition is described in [62] that can incrementally add data and
adapt the solutions to different users’ writing style. A k-NN realization that can
handle data streams by adding data through reorganizing a multi-resolution array
data structure and concept drift by realizing a case forgetting strategy is described
in [29].

8.4 Novelty Detection by Case-Based Reasoning

Novelty detection [32], recognizing that an input differs in some respect from pre-
vious inputs, can be a useful ability for learning systems.

Novelty detection is particularly useful where an important class is under-
represented in the data, so that a classifier cannot be trained to reliably recognize
that class. This characteristic is common to numerous problems such as informa-
tion management, medical diagnosis, fault monitoring and detection, and visual
perception.

We propose novelty detection to be regarded as a CBR problem under which we
can run the different theoretical methods for detecting the novel events and handling
the novel events [42]. The detection of novel events is a common subject in the
literature. The handling of the novel events for further reasoning is not treated so
much in the literature, although this is a hot topic in open-world applications.

The first model we propose is comprised of statistical models and similarity-
based models (see Fig. 8). For now, we assume an attribute-value based represen-
tation. Nonetheless, the general framework we propose for novelty detection can
be based on any representation. The heart of our novelty detector is a set of statis-
tical models that have been learnt in an off-line phase from a set of observations.
Each model represents a case-class. The probability density function implicitly rep-
resents the data and prevents us from storing all the cases of a known case-class.
It also allows modelling the uncertainty in the data. This unit acts as a novel-event
detector by using the Bayesian decision-criterion with the mixture model. Since this
set of observations might be limited, we consider our model as being far from op-
timal and update it based on new observed examples. This is done based on the
Minimum Description Length (MDL) principle or the Minimum Message Length
(MML) learning principle [63].

In case our model bank cannot classify an actual event into one of the case-
classes, this event is recognized as a novel event. The novel event is given to the
similarity-based reasoning unit. This unit incorporates this sample into their case
base according to a case-selective registration-procedure that allows learning case-
classes as well as the similarity between the cases and case-classes. We propose to
use a fuzzy similarity measure to model the uncertainty in the data. By doing that
the unit organizes the novel events in such a fashion that is suitable for learning a
new statistical model.

The case-base-maintenance unit interacts with the statistical learning unit and
gives an advice as to when a new model has to be learnt. The advice is based on the
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Fig. 8 Architecture of a Statistical and Similarity-Based Novelty Detector and Handling
System

observation that a case-class is represented by a large enough number of samples
that are most dissimilar to other classes in the case-base.

The statistical learning unit takes this case class and proves based on the MML-
criterion, whether it is suitable to learn the new model or not. In the case that the
statistical component recommends to not learn the new model, the case-class is
still hosted by the case base maintenance unit and further up-dated based on new
observed events that might change the inner-class structure as long as there is new
evidence to learn a statistical model.

The use of a combination of statistical reasoning and similarity-based reason-
ing allows implicit and explicit storage of the samples. It allows handling well-
represented events as well as rare events.

9 Conclusion

In this paper we have presented our thoughts and work on CBR under the aspect
“CBR and Statistical Challenges”. The paper is an extension of the work presented
in [43]. This work will be constantly extrapolated with future results. CBR solves
problems using already stored knowledge, and captures new knowledge, making
it immediately available for solving the next problem. To realize this cognitive
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model in a computer-based system we need methods known from statistics, pattern
recognition, artificial intelligence, machine learning, data base research and other
fields. Only the combination of all these methods will give us a system that can effi-
ciently solve practical problems. Consequently, CBR research has shown much suc-
cess for different application areas, such as medical and technical diagnosis, image
interpretation, geographic information systems, text retrieval, e-commerce, user-
support systems and so on. CBR systems work efficiently in real-world applications,
since the CBR method faces on all aspects of a well-performing and user-friendly
system.

We have pointed out that the central aspect of a well-performing system in the
real-world is its ability to incrementally collect new experience and reorganize its
knowledge based on these new insights. In our opinion the new challenging research
aspects should have its focus on incremental methods for prototype-based classifi-
cation, meta-learning for parameter selection, complex signals understanding tasks
and novelty detection. The incremental methods should allow changing the system
function based on the newly obtained data.

Recently, we are observing that this incremental aspect is in the special focus of
the quality assurance agency for technical and medical application, although this is
in opposition to the current quality performance guidelines.

While reviewing the CBR work, we have tried bridging between the concepts
developed within the CBR community and the concepts developed in the statistics
community. At the first glance, CBR and statistics seem to have big similarities. But
when looking closer at it one can see that the paradigms are different. CBR tries to
solve real-world problems and likes to deliver systems that have all the functions
necessary for an adaptable intelligent system with incremental learning behavior.
Such a system should be able to work on a small set of cases and collect experience
over time. While doing that it should improve its performance. The solution need
not be correct in the statistical sense, rather it should help an expert to solve his tasks
and learn more about it over time.

Nonetheless, statistics disposes of a rich variety of methods that can be useful
for building intelligent systems. In the case that we can combine and extend these
methods under the aspects necessary for intelligent systems, we will further succeed
in establishing artificial intelligence systems in the real world.

Our interest is to build intelligent flexible and robust data-interpreting systems
that are inspired by the human CBR process and by doing so to model the human
reasoning process when interpreting real-world situations.
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