
Chapter 8
Soft Biometrics from Face Images Using
Support Vector Machines

Guodong Guo

Abstract Soft biometrics, such as age, gender, and ethnicity, are useful for many
applications in practice. For instance, in business intelligence, it is helpful to
automatically extract and compute the statistics of potential customers, such as the
number of males and females; the number of young, adult, and senior people; or
the number of Caucasian, African American, or Asian people. It is also helpful
to use soft biometrics to improve the performance of traditional biometrics for
human identification, such as face recognition. Different methods can be developed
to recognize the soft biometric characteristics from face images. In this chapter,
we present the application of the support vector machines (SVM) to learn an
estimator or recognizer to extract these soft biometrics. We will mainly focus on
age estimation, while the gender and ethnicity classification will also be discussed.
Both classification and regression will be considered. The combination of regression
and classifiers based on the SVM will also be described which is useful especially
for age estimation.

8.1 Introduction

Support vector machines (SVM) [41] have shown many successful applications in a
variety of areas, including computer vision, pattern recognition, image analysis, bio-
metrics, bioinformatics, etc. The SVMs are graceful in theory (e.g., the large margin
optimization and mathematical programming solver) and have good performance in
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practice (e.g., good generalization capability and high discriminative power). In this
chapter, we show the use of the SVMs and their extensions to extract soft biometric
characteristics from face images.

The typical soft biometric characteristics include age, gender, and ethnicity.
These measures cannot be used to identify a person uniquely. For instance, different
subjects can share the same age, gender, or even the same ethnicity. However,
when two subjects are confused by a face recognizer, the age, gender, and/or
ethnicity might be used to help the discrimination, assuming the two subjects have
some differences in those measures. For example, we have shown that the soft
biometrics, such as gender, ethnicity, weight, and height can help to improve the face
recognition performance [27]. So those characteristics are called “soft biometrics,”
while the traditional biometric cues, such as face, iris, and fingerprints, are assumed
to be unique for each individual.

In addition to helping human identification, the soft biometrics themselves are
also useful for other applications. A typical case is business intelligence, where there
is no need to know the identities of the customers. The real care is the statistics of
the group of customers, such as the number of males and females, young, adult or
senior people, and Caucasian or Asian. These soft biometric characteristics can help
the business owners or managers to know more about the potential customers, do a
better advertisement to the related customers, or introduce commercial products to
the appropriate customers who might be interested in those products.

Among the three soft biometric characteristics, age estimation is probably the
most challenging problem. Our primary focus here is the age estimation, while we
will also consider gender and ethnicity classification. Further, age estimation is a
very special problem. The age labels, e.g., 1, 2, 3 in years, can be considered as
regression values, thus age estimation can be taken as a regression problem. On
the other hand, each age label can also be considered as a separate class, thus
age estimation can also be taken as a classification problem [21, 23]. We study
the performance of the SVM-based classification and regression for age estimation
on different databases. We also present a scheme to combine the regression and
classifiers for an improved performance on age estimation [21, 23]. Further, a
probabilistic fusion is also presented to make the combination automatic without
much parameter adjustment [22].

For gender and ethnicity classification, we show the performance of the SVM
classifiers on large databases. We also present a study of whether the gender and
ethnicity classification is affected by age or not [15, 24].

Soft biometric characteristics have other measures, in addition to age, gender,
and ethnicity. For instance, we have recently developed a computational approach
to body mass index (BMI) prediction in face images [43]. We believe that more
and more soft biometric cues can be extracted along with practical applications.
In this chapter, we just study the most popular soft biometrics, i.e., age, gender, and
ethnicity.

In the following, we briefly introduce the support vector regression (SVR) in
Sect. 8.2 and the SVM in Sect. 8.3. Then in Sect. 8.4 we present a method, called
locally adjusted robust regression (LARR), to combine the SVR and SVM for an
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improved age estimation. In Sect. 8.5 we describe a probabilistic fusion to combine
the SVM and SVR. Some simple introduction of the face image representation is
presented in Sect. 8.6. The experiments are conducted in Sect. 8.7, and finally, we
draw conclusions.

8.2 Support Vector Regression

The basic idea of SVR is to find a function f (y) that has most ε deviation from the
actually obtained target zi for the training data yi, and at the same time is as flat
as possible [41]. In other words, we do not care about the errors as long as they
are less than ε . This property determines the SVR to be less sensitive to outliers
than the quadratic loss function. In comparison with the conventional quadratic
loss function shown in Fig. 8.1a, the ε-insensitive loss function of SVR is shown
in Fig. 8.1b. Given the same input, the ε-insensitive loss function is more robust
than the quadratic function in dealing with outliers.

8.2.1 Linear SVR

Consider the problem of approximating the set of data D = {(y1,z1), . . . ,(yn,zn)},
yi ∈ R

d ,zi ∈ R, with a linear function,

f (y) = 〈w,y〉+ b. (8.1)

The optimal regression function [41] is given by

min
w,ξ

1
2 ‖ w ‖2 + C ∑n

i=1(ξ
+
i + ξ−i )

zi−〈w,yi〉− b≤ ε + ξ+
i

a b

Fig. 8.1 Regression criteria. (a) Quadratic regression loss function. (b) ε-insensitive loss function
which is less sensitive to outliers than the quadratic loss function. Another benefit from this
function is a sparse set of support vectors to represent the regression function, i.e., only points
outside the ε zone contribute to the regression function. The horizontal and vertical axes are y and
f (y), respectively
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subject to 〈w,yi〉+ b− zi ≤ ε + ξ−i
ξ+

i ,ξ−i ≤ 0 (8.2)

where constant C > 0 determines the trade-off between the flatness of f and
data deviations, and ξ+

i ,ξ−i are slack variables to cope with otherwise infeasible
constraints on the optimization problem of (8.2). The ε-insensitive loss function as
shown in Fig. 8.1b is

Lε(y,z) =
{

0, if | f (y)− z|< ε
| f (y)− z|− ε, otherwise

(8.3)

The primal problem of (8.2) can be solved more efficiently in its dual formulation
[41] resulting in the final solution given by

w =
n

∑
i=1

(αi−α∗i )yi, (8.4)

and

f (y) =
n

∑
i=1

(αi−α∗i )〈yi,y〉+ b, (8.5)

where αi,α∗i are Lagrange multipliers. The value of b in Eq. (8.1) can be determined
by plugging Eq. (8.4) into Eq. (8.1) [12].

8.2.2 A Toy Example

To illustrate the SVR idea and see the importance of proper setting of the parameter
ε , we use a toy example that contains 30 points in 2D with 10 in a line and the
remaining 20 being outliers distributed on both sides of the line [20]. Hence the
data contains 67% outliers. Using the SVR algorithm implemented by Gunn [12]
(which provides a user interface) and a linear kernel with ε = 0.02, the result is
shown in Fig. 8.2a. Observe that the line was correctly estimated despite the high
percentage of outliers.

On the other hand, observe that SVR returns 27 support vectors (90% of the
input data) and seven of them are very close to the boundaries (two dashed lines),
but there are actually 20 outliers in the original data. So we cannot simply classify
the support vectors (SVs) as outliers. Increasing the ε value might “drag” the seven
closest support vectors inside the dashed boundaries, and then only the outliers in the
data would be returned as support vectors. However, when we increase ε gradually
up to 0.09, there are still 26 SVs returned which are still not the true outliers, as
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Fig. 8.2 SVR on real 2D data with ε = 0.02 in (a) and ε = 0.09 in (b). Note that the support vectors
(marked by circles) are not the true outliers in either case

shown in Fig. 8.2b. And even worse, the slope of the line has changed significantly.
This demonstrates that using a large ε is not a good idea because it may degrade the
model structure.

Based on this experiment, we observe: (1) the SVR technique can potentially deal
with data containing a high percentage of outliers; (2) classifying support vectors as
outliers is not workable; (3) using a large value for ε is not a good idea for SVR;
and (4) using small ε is preferable, especially when a large number of outliers are
present.

This toy example and the above observations were first presented by Guo et al.
in [20]. The robust regressor, SVR, was applied successfully for outlier detection
and removal in affine motion tracking with the setting of a small ε . Here we adopt



274 G. Guo

the same idea but use it for another application—robust age regression. Instead of
using the simple linear regression, we need a nonlinear SVR for the complex aging
patterns.

8.2.3 Nonlinear SVR

A nonlinear regression function may be required in practice to adequately model
the data. It can be obtained by using kernels, in the same manner as a nonlinear
SVM for classification [41]. A nonlinear mapping can be used to map the data into
a high dimensional feature space where a linear regression is performed. Different
kernels, such as polynomials, sigmoid, or Gaussian radial basis functions, can be
used depending on the tasks. For our robust age regression, we found that the
Gaussian radial basis function kernel performs much better than the linear regression
[21, 23]. The reason is that the linear regression cannot model the complex aging
process. A radial basis function is of the form,

k(y,y′) = e−γ‖y−y′‖2
, (8.6)

where γ is a constant to adjust the width of the Gaussian function. Given the kernel
mapping, the solution of the nonlinear SVR is obtained as [41],

〈w,y〉=
n

∑
i=1

(αi−α∗i )k(yi,y), (8.7)

and

f (y) =
n

∑
i=1

(αi−α∗i )k(yi,y)+ b. (8.8)

The difference to the linear regression is that w is no longer given explicitly. Also
note that in the nonlinear case, the optimization problem corresponds to finding the
flattest, or linear regression function in the higher dimensional feature space,1 not
in the input space.

1Note that the feature space means a higher dimensional space in SVR, which is different from the
feature extracted from data in image processing. Actually the extracted features from images are
the input data for SVR in our age modelling.
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8.3 Support Vector Machine

SVM [41] are a class of classifiers that can learn an optimal separating hyperplane
based on the maximum margin criterion. It can use different kernels to make the
linear SVM work on a higher dimensional space to improve the separability between
two classes. The kernel extension is similar to the SVR learning. In the following,
we only briefly introduce the linear SVM. More details on the kernel SVMs can be
referred to [41].

8.3.1 Linear SVM

Given a set of training vectors belong to two separate classes, (y1,z1), . . . ,(yn,zn),
where yi ∈ R

D, zi ∈ {−1,+1}, the linear SVM learns an optimal separating
hyperplane, wy+ b = 0, that maximizes the margin [41]. The SVM learning is to
find the saddle point of the Lagrange functional,

L(w,b,α) =
1
2
‖ w ‖2 −

n

∑
i=1

αi {zi [(w ·yi)+ b]− 1} (8.9)

where αi are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to w, b and maximized with respect to αi ≥ 0. The optimization is usually
transformed to its dual problem,

max
α

W (α) = max
α

{
min
w,b

L(w,b,α)

}
, (8.10)

and the optimal hyperplane is represented by the dual solution, α ,

w =
n

∑
i=1

αiziyi (8.11)

The value of b can be estimated by plugging w into the original equation, wy+b= 0.
In testing, the classification is given by

f (y) = sign(w ·y+ b), (8.12)

for any new data point y. If the training data are non-separable, slack variables ξi

can be introduced. See [41] for more details.
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8.4 Locally Adjusted Robust Regression

Age estimation can be considered as a regression problem. Now, a question may
be asked, is it “good” enough to use the SVR as a robust regressor for human age
prediction? To answer this question, let us look at an estimation result using the SVR
[21]. Figure 8.3 shows the predicted ages (red squares) with respect to the ground
truth ages (black circles). Note that this is not a regression curve. One thousand
data points are sorted in ascending order of the ground truth ages, i.e., from 0 to
91 years for females. The predicted ages are obtained from the SVR method. From
this figure, we observe that the SVR method can estimate the global age trend, but
cannot predict the ages precisely. By inspecting the result carefully, we find that
the SVR predictions give bigger age values for many younger people, and smaller
age values for some older people. In some cases, the estimated age values could be
far away from the true ages, e.g., more than 40 years. This result was based on a
database used in [21].

Why the SVR method cannot show better performance than we expect for age
prediction? The reason can be in two aspects: First, the problem of age prediction is
really challenging because of the diversity of aging variation. Each individual may
age in his/her own way and be affected by external factors, such as health, living
condition, and exposure to weather conditions. Second, the SVR method attempts
to find a flat curve to approximate the data in order to obtain good generalization
capability. As shown in Fig. 8.4, the SVR computes a flat curve within a small ε
tube. But the age data may distribute like the (green) irregular curve. One cannot
expect the SVR to estimate an irregular curve like this because of the over-fitting
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Fig. 8.3 A plot of the true ages (black circles) versus the estimated ages (red squares) for one
thousand female face images. The ages are predicted by the nonlinear SVR with a Gaussian kernel
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Fig. 8.4 Illustration of the idea of locally adjusted robust regression (LARR)

problem. Further, one cannot assign a large ε to enclose all true data points inside
the ε tube, as demonstrated in the toy example in Sect. 8.2.2. So how to model the
aging function by allowing the irregular distribution of true ages?

8.4.1 Local Adjustment of the Regression Result

One feasible solution is to adjust the age regression values locally so that the
estimated age values can be “dragged” towards the true ages. We call it a locally
adjusted robust regression (LARR) [21, 23]. The idea of LARR is illustrated in
Fig. 8.4. Suppose the predicted age value by SVR is f (y), corresponding to the
input data y. The point f (y) is displayed by the black dot on the regression curve.
The estimated age, f (x), may be far away from the true age value, L, shown as
the red dot on the true age trajectory curve. The idea of the LARR method is to
slide the estimated value, f (y), up and down (corresponding to greater and smaller
age values) by checking different age values, t ∈ [ f (y)− d, f (y)+ d], to see if it
can come up with a better age estimation. The value d indicates the range of ages
for local search. Hopefully the true age value, L, is also within this range, i.e.,
L ∈ [ f (y)− d, f (y)+ d].

Therefore the LARR method is a two-step procedure: (1) a robust regression over
all ages of the training data by using the SVR method. This step can be considered
as a global regression process; (2) a local adjustment within a limited range of ages
centered at the regression result.

Now the key issue is how to verify different age values within a specified range
for the purpose of local adjustment. Remember our goal is to “drag” the initially
estimated age value, f (y), by the global regressor, towards the true age, L, as close
as possible. We take a classification approach to locally adjust or verify different
ages, considering each age label as one class. Because only a small number of age
labels are used for each local adjustment, regression methods cannot work properly.
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For our classification-based local adjustment, there are many possible choices of
classifiers, but here we adopt a linear SVM for our local age adjustment. The main
reason is that the SVM can learn a classifier given a small number of training
examples. This has been demonstrated by the author previously for learning in the
small sample case, such as face recognition [16, 18], image retrieval [19], audio
classification and retrieval [14], and face expression recognition [13]. The capability
of learning a classifier in the small sample case is also important for human age
prediction. Usually the number of training examples, e.g., 50, is smaller than the
feature dimension, e.g., 150, in age estimation, even though we perform experiments
on a large database (see Sect. 8.7 for details).

8.4.2 Binary Tree Search with Limited Range

The classical SVMs are designed to deal with the two-class classification problems.
There are three typical ways to extend it to a multi-class classification application.
(1) Learning classifiers for each pair of classes, and taking a binary tree search
in testing; (2) training SVMs for each class against all the remaining classes; and
(3) training SVMs for all classes simultaneously. The last two schemes are not
appropriate for our purpose, because in the local adjustment only partial classes
of age data are involved. If the last two schemes are used, the SVMs have to be
re-trained dynamically for each adjustment, which is computationally expensive.
The first scheme is feasible to fulfill our task since there is no need to retrain the
SVMs online. Therefore, all pair-wise SVM classifiers can be trained off-line. Only
a limited number of classes are involved in the binary tree search for test.

The binary tree structure for multi-class SVM classification has been used
successfully in previous research, e.g., face recognition [16]. In general, the number
of pair-wise comparisons is nc−1 for each test in an nc-class classification problem.
Here the number of pair-wise comparisons is limited to mc−1 when only mc classes
are involved in each local adjustment, and mc < nc. Each age corresponds to one
class label.

8.4.3 Local Search Range Determination

The local search range, mc, is determined by several factors, such as the scale of the
data (large versus small scale) and the performance of the robust regressor (here the
kernel SVR).

It is not trivial to determine the local search range. There are some guidelines
for choosing local search ranges. The larger the search range, the bigger the chance
to contain the true ages within that range. If the search range is too small, the true
age label might not be reached and the local search may find an arbitrary age label.
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On the other hand, if the search range is too big, it also increases the possibility
to obtain an adjusted age that is far away from the true age, because the local
classification is just a locally optimal search.

In our experiments, we specify different ranges and demonstrate the effects of
different local search ranges on the results [21]. The main goal is to show that the
local adjustment can really improve the performance over the robust regressor for
human age estimation.

8.5 Probabilistic Fusion of the SVR and SVM

As presented above, the combination of the SVR and SVM can take advantage
of both classifiers and regression for age estimation. Our first scheme is a LARR
proposed by Guo et al. in [21, 23]. It has been shown that the age estimation
performance can be improved significantly by using the LARR method.

However, the LARR method cannot determine the range of local search for the
classifier. It has to heuristically try different ranges, such as 4, 8, 16, 32, and 64,
and requires the user to choose a best solution among those results. For practical
use of the age information, e.g., in multimedia content analysis and understanding,
it is important to develop an age information extractor automatically without the
user involvement. In other words, the system has to determine the combination
parameters automatically in a data-driven manner. Towards this goal, we interpret
the regression and classification results probabilistically in order to fuse them
automatically [22].

8.5.1 Theoretical Framework

Consider a pattern recognition problem [42] where pattern Z is to be assigned to
one of the m possible labels L = {l1, l2, · · · , lm}. For the age estimation problem, the
labels are human ages (in years), such as 0,1, · · · . Assume we have a regressor R and
a classifier C, each representing the given pattern by a distinct measurement vector,
denoted by xR and xC, respectively. In the measurement space each label or class lk
is modeled by the probability density function (PDF) p(xR|lk) or p(xC|lk), and the
prior probability of occurrence of each label is denoted by P(lk).

According to the Bayesian theory, given measurements xR and xC, the pattern,
Z, should be assigned label l j when the posterior probability of that interpretation is
maximum, i.e.,

l j = argmax
lk∈L

P(lk|xR,xC) (8.13)
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The Bayesian decision rule (8.13) states that all the measurements should be
considered simultaneously in order to make a decision utilizing all the available
information correctly. The computation of the posterior probability functions in
(8.13) depends on knowledge of high-order measurement statistics described in
terms of joint PDFs p(xR,xC|lk), which are generally difficult to obtain. A classical
approach to deal with these kinds of joint probabilities is to assume that all
the measurements are independent for a given pattern. For example, the mutual
independence assumption was used in combining different classifiers in [31].

Here we build a “causal” relation between R and C. Specifically, the classifier C
makes decision based on the output of the regressor R, but the regressor R works on
the input data directly. Therefore

P(xR|xC) = P(xR) . (8.14)

There are two reasons to have this causal relation assumption: (1) To reduce the
measurement space sequentially—the decisions of the first learner could impact or
reduce the measurement space of the second learner. This “early” influence might
simplify the original complex decision problem into a simpler one, and therefore
improve the recognition accuracy of the second learner. As a result, the performance
of the whole system can be improved. (2) To consider the internal structure of
the learners—a regressor usually takes into account all data points, computing in
a “global” style, while some modern classifiers [41] use a pairwise classification
scheme, working in a “local” style. Therefore it might be easier to change the
measurement space of the classifiers instead of the regressors.

Now let us go back to the Bayesian decision rule (8.13) and rewrite it. Based on
the conditioned Bayes’ rule (i.e., Bayes’ rule conditioned on another variable; see
page 10 in [30]), we have

P(lk|xR,xC) =
P(xR|lk,xC)P(lk|xC)

P(xR|xC)
(8.15)

which holds in general. Substituting (8.14) into (8.15) we obtain

P(lk|xR,xC) =
P(xR|lk)P(lk|xC)

P(xR)
. (8.16)

By Bayes’ rule, we have

P(xR|lk) = P(xR)P(lk|xR)

P(lk)
. (8.17)

Plugging (8.17) into (8.16), we get

P(lk|xR,xC) =
P(lk|xR)P(lk|xC)

P(lk)
. (8.18)
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Fig. 8.5 The decision graph of the PFA approach

Now, the decision rule (8.13) becomes:

l j = argmax
lk∈L

P(lk|xR)P(lk|xC)

P(lk)
(8.19)

subject to constraints (8.14). Decision rule (8.19) fuses the posterior probabilities
computed by the regressor and the classifier sequentially. We call this a Probabilistic
Fusion Approach (PFA).

In practice, the denominator of (8.19), i.e., the prior probabilities P(lk), will have
equal values if no strong prior knowledge is given for a recognition problem. In this
case, the decision rule becomes

l j = argmax
lk∈L

P(lk|xR)P(lk|xC) (8.20)

8.5.2 Fusion Strategy

Decision rules (8.19) and (8.20) constitute the basic scheme for combining a
regression measurement with a classification result in a probabilistic way. Now we
develop a specific combination strategy based on decision rule (8.20).

In our sequential probabilistic fusion scheme, the regressor R and classifier
C work sequentially so that the output of the regressor, P(lk|xR), is used as an
intermediate decision which is then fed to the classifier C to affect the measurement
or decision space of the classifier, xC. The classifier C has no effect on the regression
measurement, xR. This causal relation can be depicted by the decision graph in
Fig. 8.5.

To realize the decision process shown in Fig. 8.5, several issues have to be
addressed, including (1) which methods to use for the regression and classification
modules, (2) how to produce the probabilistic output for each method, and (3) how
to alter the measurement space of the classifier based on the regression output.
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8.5.2.1 Selection of the Regressor and Classifier

For the regressor, it should have high performance, since its results will influence
the decision of the classifier in our sequential fusion strategy. A low performance
regressor might “drift” the measurement space badly for the following classifier.
The requirement for the classifier is that its measurement space should be able to
change (e.g., shrink or expand) easily.

Guided by the above consideration, we chose to use a SVM [41] as the classifier,
and the SVR method [41] as the regressor, which were also chosen in [21, 23]. The
difference is that there is no probabilistic computation for the SVM and SVR in the
LARR method [21,23], while here the results of the SVM and SVR are transformed
into probabilities and then fuse them automatically [22] without trying different
local ranges and requiring users’ selection as in [23].

8.5.2.2 Probabilistic Output for SVMs

Standard SVM provide only an estimated target value, e.g., a category label for
classification or a real value for regression. In order to combine the regression
and classification measurements probabilistically, probabilities need to be extracted
from the standard SVM and SVR results.

For the SVM, some methods have been proposed, mainly in the machine learning
literature, to produce probabilistic outputs. For example, Platt [38] proposed a
sigmoid training method to post-process standard SVM output, focusing on a two-
class classification problem. But it is not clear how to extend this method to a
multi-class scenario. In [29], an MAP rule was used on the estimate of the overall
posterior probabilities obtained from the outputs of the pairwise classifiers.

Here we adopt a simple yet efficient method to generate a probability estimate
for the SVM in a multi-class classification problem, using the counts of occurrences
in pairwise comparisons. This simple idea has been used successfully for face
recognition [17], for example.

For an n-class classification problem (n could be less than the total number
of classes m in the original measurement space), the total number of pairwise
comparisons is n(n− 1)/2. The output of the n(n− 1)/2 classifiers is used to
construct a matrix as shown below:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 φ1,2 φ1,3 · · · φ1,n

φ2,1 0 φ2,3 · · · φ2,n
...

. . .
...

...
. . .

...
φn,1 φn,2 φn,3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Each element in the matrix is equal to 1 or 0. φi, j = 1 if pattern Z is classified as
class i in the pairwise competition between classes i and j; otherwise, φi, j = 0. All
elements in the main diagonal are zeros. Based on the measurement matrix, we can
create a probability measure for the SVM classifier output as

P(lk|xC) =
∑n

j=1 φk, j

∑n
i=1 ∑n

j=1 φi, j
(8.21)

8.5.2.3 Probabilistic Output for the SVR

For the SVR, several methods have been proposed to produce a probabilistic output,
but many of them involve either complex computations or modification of the
SVR formulation. For example, a Gaussian process is integrated into the SVR to
formulate a Gaussian SVM regression model in [10]. A Gaussian (or Laplace with
fatter tails) distribution could be used to approximate the probabilistic outputs for
SVRs. However, the Gaussian approximation may encounter problems in practice,
especially in human age prediction, because of the diversity of aging variations.
Each individual may age in his or her own way and be affected by many different
external factors.

As pointed out in [23], the ages estimated by the SVR method could be far away
from the true age labels. Consequently, a small probability value (possibly close to
zero) could be generated for a true age label when a Gaussian model is used for
transforming the SVR target values into probabilistic outputs. This would inhibit a
correct decision when multiplying the two probabilities in the decision rule (8.19)
or (8.20). In order to avoid such undesirable effects, we propose to use a uniform
distribution centered at the estimated target value, l0, obtained from a regressor, i.e.,
μ = l0. In fact, we found that the Gaussian model gave much worse results than the
uniform distribution in our initial experiment on age estimation which is not shown
here.

The uniform distribution model assumes that only a finite range of age labels
is possible, each with equal probability. The PDF of the uniform distribution
U(μ−Δ,μ +Δ) is given by

p(x) =

⎧⎨
⎩

1
2Δ for μ−Δ≤ x≤ μ +Δ,

0 otherwise,
(8.22)

where [μ−Δ,μ +Δ] is the function support. Now the question is how to estimate
the range of support for the uniform distribution.

Let us look at the SVR prediction error or residual, ζi, with ζi = li− f̂ (Zi), where
li is the true age label for pattern Zi, and f̂ (Zi) is the regression estimate. Recall
that the variance of the uniform distribution satisfies σ2 = 1

12 (2Δ)2, i.e., σ2 = 1
3 Δ2,

so we have Δ =
√

3σ . Thus the function support can be estimated by the sample
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standard deviation. To compute the sample standard deviation, σ , we can collect the
residuals, ζi, on a validation data set, and then compute the standard deviation of
these residuals. Finally, we have

P(lk|xR)←U
(

l0−
√

3σ , l0 +
√

3σ
)
. (8.23)

The uniform distribution (8.23) is simple but works well in our experiments.
To our knowledge, no previous work uses it to model the probabilistic output of a
regressor such as the SVR.

8.5.2.4 Decision Space Deduction

Given the probabilistic outputs, P(lk|xR) and P(lk|xC), for the regressor and
classifier, respectively, the next step is to combine the two probabilities together
to make a final decision for a given pattern. According to the decision rule (8.20),
the two probabilities are multiplied and the label l j corresponding to the maximum
product is selected as the final decision.

Our serial PFA can also be interpreted as a decision space deduction process.
The uniform distribution modeling of the probabilistic output of the regressor
reduces the original label space (all possible ages) into a smaller decision space,[
l0−
√

3σ , l0 +
√

3σ
]
, by using the cutoff boundaries. The reduced decision space

is refined by the classifier to obtain the final decision, l j. As a result, the probabilistic
output of the SVR plays the role of an intermediate decision, as shown in Fig. 8.5,
reducing the search space (i.e., less number of classes to compare) for the classifier
SVM. The LARR method [21, 23] shares the same spirit as the PFA in terms
of decision space deduction, however, it does not address the probabilities for
automatic local range determination.

8.6 Soft Biometrics Computation

We have presented the methods of SVM, SVR, and the combinations of them. These
methods will be used for age estimation on different databases. For gender and
ethnicity classifications, only the SVMs are used, since these problems are typically
considered as classifications.

We only use face images for soft biometrics computation. The face images are
usually detected, aligned, cropped, and resized into the same size. Various features
can be extracted from the face images to characterize the facial appearance. The
specific methods for feature extraction will be briefly introduced in the experiments.
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8.7 Experiments

We conduct experiments for age, gender, and ethnicity estimation, separately.
Different databases might be used for each of the soft biometric measure. Not all
databases are proper to study all of the three soft biometric characteristics.

8.7.1 Age Estimation Results

Age estimation experiments are conducted on the FG-NET and Yamaha Aging
Databases. The FG-NET Aging Database [7] is a publicly available age database
that we adopt for the experiment. The database contains 1,002 color or grayscale
face images with variations of lighting, pose, and expression. There are 82 subjects
(multiple races) in total with the age ranges from 0 to 69 years, and each face
image has 68 labeled points characterizing shape features. The shape features can
be combined with appearance features to form a face representation, called active
appearance models (AAMs) [5]. The AAMs use 200 parameters to model each face
for the purpose of age estimation [11, 46, 47].

The Yamaha Aging database contains 8,000 high-resolution RGB color face
images captured from 1,600 different voluntary Asian subjects in an outdoor
environment, 800 females and 800 males, in the age range from 0 to 93 years. Each
subject has five near frontal images with provided ground truth ages. It has been
used in some previous studies, e.g., [8, 9, 46, 47]. The Yamaha database is much
larger than the FG-NET.

To evaluate the age estimation performance on Yamaha, a face detector was used
to find the face area in each image, and the eye corner locations are labeled for
each face subject. Based on the face and eye corner locations, the face images are
cropped, scaled, and transformed to 60×60 gray-level patches [21,23]. The images
have significant variances in illumination since the photographs were taken in the
outdoor environment. The gray-level values of each face image are normalized to
a normal distribution with zero-mean and one standard deviation in order to reduce
the effect of out-door illumination changes. The database also contains some facial
expression variations and makeup.

The face image patches with the same size of 60× 60 are fed into the manifold
learning module. The age manifold can be embedded in a low dimensional subspace
using different techniques [21]. Some manifold visualizations can be found in [21].
It has been shown in [21] that: (1) The principal component analysis (PCA) method
does not show clear manifold trend of ages. The reason is that the PCA is purely
unsupervised without using any age label information, which seems to be important
for learning the embedded manifold from the complex aging patterns; (2) The
manifold learned by the local linear embedding (LLE, a nonlinear embedding
method) is approximately an ellipsoid with higher ages in the center and lower ages
at periphery; and (3) The OLPP algorithm [4] achieves good visualization of the age
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manifold with a distinct aging trend. Therefore, we used the OLPP method in our
age manifold learning module for age estimation [21].

After the age manifold was learned, each face image can be projected onto the
age manifold to extract a feature vector. We used the first 150 features for each
face image [21, 23]. The system then learns a robust regression function using the
kernel SVR method for females and males separately. Actually the manifold was
learned for the female and male independently. As demonstrated in the toy example
in Sect. 8.2.2, a small ε value should be chosen for the ε-insensitive loss function in
Eq. (8.3). We set ε = 0.02 for our age estimation task. In SVR learning, parameters
C and γ are determined on a validation set. Experimentally we found that a good
choice is C = 40 and γ = 12, separately. To locally adjust the global regression
results, we tried different local search ranges as powers of two, e.g., 4, 8, 16, 32,
and 64 classes, and the results from different search ranges are compared to see
the effect of local adjustment. The purpose of choosing the powers of two is to
simplify the binary search structure. One can observe that the local search range
does influence the age estimation results. The pair-wise linear SVM classifiers were
used for the local adjustment, centered at the age value (or label) obtained from the
global regressor.

We perform a standard fourfold cross validation test to evaluate the accuracy
of our algorithms for age estimation on the Yamaha age database. The test was
executed on the female and male subsets separately. The females and males age
quite differently in the database. For each experiment, about 1/3 of the training
data are used as a validation subset to determine the optimal parameter setting such
as C and γ . Then the parameters are fixed and the whole training data set is used
to learn the robust regression function. The pair-wise linear SVM classifiers are
learned using the same training data and used for local adjustment in testing. Finally
all performance measures are reported on the unseen test data.

The performance of age estimation can be measured by two different measures:
the mean absolute error (MAE) and the cumulative score (CS). The MAE is defined
as the average of the absolute errors between the estimated ages and the ground truth
ages, MAE = ∑N

k=1 |l̂k− lk|/N, where lk is the ground truth age for the test image
k, l̂k is the estimated age, and N is the total number of test images. The cumulative
score [11] is defined as CS( j) = Ne≤ j/N×100%, where Ne≤ j is the number of test
images on which the age estimation makes an absolute error no higher than j years.

Table 8.1 shows the experimental results. The first and second columns in
Table 8.1 show the MAEs for females and males in the Yamaha aging database,
separately. Different ranges, e.g., 4, 8, 16, 32, and 64, were tried for local adjustment
of the global regression results. One can see that the local adjustment truly reduces
the errors of the global regression. For example, the MAE of the SVR is 7 years for
the female (column 1 in Table 8.1), but is reduced to 5.86 (column 1, row 5) when
16 local age classes are used for the LARR method, and so on. Different ranges of
adjustment do have different MAEs. For comparison, we also show the results using
purely the SVM classifiers in the first row. One can see that the classification scheme
has lower errors than the pure regression method for both females and males, but it
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Table 8.1 MAEs of the methods: SVM, SVR, and LARR with
different settings [21, 23]

Various setup Yamaha (Female) Yamaha (Male) FG-NET

SVM 5.55 5.52 7.16
SVR 7.00 7.47 5.16
LARR4 6.83 7.21 5.07
LARR8 6.48 6.81 5.07
LARR16 5.86 5.95 5.12
LARR32 5.29 5.30 6.03
LARR64 5.25 5.38 –

The bold fonts indicate the lowest errors in each case.

has higher error rates than some of the locally adjusted results. The best LARR result
in terms of MAE is 5.25 years for females when the local search range is 64 classes,
while it is 5.30 years for males when the adjust range is 32 classes. The ranges of
local adjustment depend on the data and the global regression results. To illustrate
the MAEs at each age, two pictures for female and male results are displayed in
Fig. 8.6, respectively.

Figure 8.7a, b show the CS measures for females and males separately. We can
observe that the LARR methods (with different ranges for local adjustment) improve
the score significantly over the pure regression method for lower error levels, e.g.,
mc < 10 years. For example, in one year error level, most LARRs with proper ranges
of local adjustment could improve the accuracy by 175 % and 267 % for females and
males separately. This improvement is significant. We also notice that large ranges
are required for local adjustment on the Yamaha aging database. For instance, when
16 age classes are used for local adjustment, the CS curve is explicitly lower than
32 or 64 classes. We do not show the cumulative scores for four and eight classes
here in order to not mess up the figures. Those two CS curves are even lower than
16 classes. One may also notice that the CS curve of SVM classifiers is close to the
LARR32 and LARR64 for both females and males, but the MAEs of the SVM are
higher than the LARR16 or LARR32 as shown in Table 8.1. This indicates that we
need both MAE and CS measures complementarily to measure the performance of
an algorithm in age estimation.

As shown in Table 8.2, we also compare our results with all previous methods
reported on the Yamaha aging database. It turns out our LARR method has the
MAEs of 5.25 and 5.30 years for females and males separately, which are explicitly
smaller than the previous results under the same experimental protocol. Our method
brings about 24 % deduction of MAEs over the best result of previous approaches,
given in [46].

For age estimation on the FG-NET database, we used the same AAM features as
in [11, 46, 47] to evaluate our LARR method [21, 23]. Since the FG-NET database
has small size, we do not learn any age manifold but use the AAM features
directly. Our focus is then to evaluate the performance of the LARR method for age
estimation on the FG-NET database. The popular test strategy, namely leave-one-
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Fig. 8.6 MAEs at each age for females and males on the Yamaha Aging database, obtained by the
LARR method [21]

person-out (LOPO), was usually taken for the FG-NET age database, as suggested
by the existing work [11, 46, 47]. We follow the same strategy and compare our
results with the state-of-the-art methods. The experimental results are shown in the
third column of Tables 8.1 and 8.2. One can see that the LARR method has an MAE
of 5.07 years which is lower than the previous methods listed in Table 8.2 [21]. The
best MAE was obtained using either four or eight classes for local adjustment as
shown in Table 8.1. Increasing the local search ranges for the LARR method will
make the errors larger. For example, the MAE will be 6.03 years when 32 classes
are used for local adjustment. We cannot get the result for 64 classes since there are
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Fig. 8.7 Cumulative scores of the algorithms with different settings for (a) Top: female age
estimation, (b) Middle: male age estimation on the Yamaha Aging database, and (c) Bottom: age
estimation on the FG-NET database, at error levels from 1 to 15 years [21]
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Table 8.2 MAE comparisons of different algorithms [21, 22]

Method Yamaha (Female) Yamaha (Male) FG-NET

WAS [11] – – 8.06
AGES [11] – – 6.77
QM [32] 9.96 10.51 6.55
MLPs [32] 10.99 12.00 6.98
RUN1 [47] 9.79 10.36 5.78
RUN2 [46] 6.95 6.95 5.33
LARR [21] 5.25 5.30 5.07
PFA [22] 5.11 5.12 4.97

at most 63 or 61 age labels in the LOPO test. In other words, there are missing ages
in the FG-NET database. When the pure classifiers, SVMs, are used, the MAE is
7.16, which is much higher than the 5.16 years of the pure regression. One possible
reason is that there is not sufficient data for pair-wise SVM training, while the global
SVR uses all the data in the model. Another observation is that the robust regression
itself (without local adjustment) has an MAE of 5.16 years, which is still lower than
all previous methods shown in Table 8.2. The LARR method further reduces the
MAE to 5.07 years [21].

Figure 8.7c shows the cumulative scores of the LARR method on the FG-NET
database. LARR8 means using eight classes for local adjustment. We do not show
LARR4, LARR16, and LARR32 in order to avoid messing up the display. The
cumulative scores of those ranges are close to LARR8 with slight differences.
LARR8 has higher accuracy than the pure regression by SVR at lower error levels
(1–6), but close to it at higher error levels. The cumulative scores of the pure SVM
are much lower than the pure SVR for most error levels, which indirectly indicates
the significance of constraining the SVM search in a local range. The LARR method
performs much better than the QM and MLP methods. The method of RUN1 [47]
is close to our LARR in low age error levels, but worse than LARR in high levels.
In contrast, the method of RUN2 [46] is close to our LARR in high age error levels,
but worse than the LARR in low error levels. Overall, the LARR method has higher
accuracy than both the RUN1 and RUN2 on the FG-NET database.

Following the idea of combining the SVR with SVMs in the LARR method
[21, 23], we proposed a PFA to combine the classifiers with regression in a
probabilistic manner [22]. The PFA method can avoid the search range selection
in LARR. To validate the PFA method, we performed age estimation experiments
[22] on the Yamaha and FG-NET databases using the same protocol and data. The
experimental results are shown in the last row in Table 8.2. The first and second
columns in Table 8.2 show the MAEs for females and males in the Yamaha aging
database, respectively. The last column shows the MAEs on the FG-NET aging
database. From the table, we can see that the PFA method can improve the age
estimation accuracies over the LARR method, in addition to the determination of
local adjustment automatically.
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Table 8.3 Numbers of male and female faces in
the three age groups of the Yamaha aging database:
young, adult, and senior

Young Adult Senior All ages
(0–19) (20–60) (61–93) (0–93)

Male 1,000 2,050 950 4,000
Female 1,000 2,050 950 4,000
Both 2,000 4,100 1,900 8,000

In summary, we have shown that the SVM and the regression formulations can do
well for age estimation. Age estimation can be considered as either a regression or
a classification problem. Different results might be obtained in different databases,
when classification or regression is applied. We proposed two methods to combine
the SVR and SVM in order to improve the performance in age estimation. Both the
LARR and PFA methods can take advantage of the SVM classifiers and the SVR
for an improved performance.

8.7.2 Gender Classification

Gender classification is an interesting topic in both psychology [3, 44, 45] and
computer vision [2, 28, 34, 48]. In computational approaches, various methods
have been proposed for gender classification based on different facial image
representations and classifier learning. Some typical approaches were listed in [24].
Among the different methods, an earlier work [34] applied the SVM to raw face
images for gender classification.

We have studied the influence of age on gender classification in [24], based on
several face image representations. The Yamaha database was used for the study.
The number of males and females in each age group is shown in Table 8.3. One can
see that it is very balanced for males and females in the database.

In addition to the raw face images, the LBP, HOG, and BIF features were used
for gender recognition experimentally [24]. The goal was to evaluate the influence
of age on gender recognition using several facial representations.

Both LBP and HOG features were extracted from each face image at various
patch positions for the three age groups. Face images are of size 60× 60, and the
patch size is 16× 16 with an interval of eight pixels between neighboring patches.
The HOG operator has eight directions as in [6], and the LBP operator uses the
uniform pattern as in [1]. Since HOG features were initially used with a linear SVM
for pedestrian detection [6], we also show gender classification results based on
linear SVMs (labeled as L-SVM) in addition to nonlinear SVMs with the RBF
kernel (denoted as N-SVM). The LBP operator can be applied to the whole face
image (denoted as LBP(W)) or applied to small patches on the face (denoted as
LBP(P)). The patch-based LBP is much better than the whole face-based LBP in
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Table 8.4 Gender recognition with different repre-
sentations: raw pixels, LBP, HOG, and BIF, using the
linear SVM (L-SVM) or nonlinear SVM (N-SVM)
with the RBF kernel as classifiers [24]

Methods
Young Adult Senior
(0–19) (20–60) (61–93)

Raw + L-SVM 78.59 % 89.91 % 81.17 %
Raw + N-SVM 84.38 % 94.56 % 85.32 %
LBP(W) + L-SVM 68.17 % 72.33 % 63.40 %
LBP(W) + N-SVM 69.65 % 77.08 % 68.40 %
LBP(P) + L-SVM 79.76 % 92.65 % 87.55 %
LBP(P) + N-SVM 81.93 % 94.96 % 90.64 %
HOG + L-SVM 75.83 % 88.00 % 77.13 %
HOG + N-SVM 86.44 % 94.03 % 89.04 %
BIF + L-SVM 83.01 % 94.22 % 91.81 %
BIF + N-SVM 87.13 % 96.03 % 92.34 %
Average(L-SVM) 80.52 % 91.20 % 84.42 %
Average(N-SVM) 84.97 % 94.90 % 89.34 %

gender recognition, as shown in Table 8.4. In each case, the parameters of the SVM
are adjusted to optimal values on a tuning set (part of the training data).

8.7.2.1 HOG Feature

When the HOG features are used with nonlinear SVMs, gender recognition
accuracies were 86.44 %, 94.03 %, and 89.04 %, for the young, adult, and senior
groups, respectively, as shown in row 8 of Table 8.4. When compared with the
“Raw+SVM” approach, the accuracies improved from 84.38 % to 86.44 % for
the young faces, and improved from 85.32 % to 89.04 % for seniors, while the
accuracy of 94.03 % for adults is slightly lower than the 94.56 % based on raw pixel
representation. These results demonstrate that the HOG operator can characterize
shape and improve recognition accuracies for young and senior faces. However, the
two improved accuracies are still much lower than the 94.03 % accuracy for adult
faces. On the other hand, the results indicate that the “Raw+SVM” approach is still
good for gender recognition on adult faces.

We further explain the result [24] as: (1) adult male and female faces have local
shape differences that can be described by the HOG operator and (2) shape changes
in young faces and wrinkles in senior faces result in gradient variations that can be
encoded by the HOG operator to some extent. However, the HOG performs much
better for gender recognition on adult faces than on young and senior faces.

Also notice that linear SVMs performed much worse than kernel SVMs for each
age group, as shown in rows 7 and 8 of Table 8.4.
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8.7.2.2 LBP Feature

When LBP features were used with kernel SVMs, gender recognition accuracies
were 81.93 %, 94.96 %, and 90.64 % for the young, adult, and senior groups,
respectively, as shown in row 6 of Table 8.4. Here “P” represents patch-based
LBP. When compared with the “Raw+SVM” approach, LBP features improved
gender recognition accuracy for seniors (from 85.32 % to 90.64 %), but this is still
lower than the accuracy of 94.96 % for adult faces. More interestingly, the accuracy
reduced to 81.93 % for young faces, which is even lower than the 84.38 % accuracy
of the “Raw+SVM” approach, and much lower than the 94.96 % accuracy for adult
faces. Again, gender recognition performance is very different for the three age
groups using LBP features: high performance for adult faces, lower performance
for senior faces, and very low performance for young faces. Possible reasons for this
phenomenon are: (1) adult male and female faces have local texture differences that
can be described well by the LBP operator and (2) complex textures (e.g., wrinkles)
on senior faces can also be described well by the LBP operator. For young faces,
facial textures are not very rich and the main changes are facial shapes where the
LBP operator does not work well [24].

It should be mentioned that linear SVMs with LBP features did not perform well
for gender as shown in row 5 of Table 8.4. In addition, the LBP operator performed
much worse when applied to whole faces, as shown in rows 3 and 4 of Table 8.4, no
matter what classifier was used.

8.7.2.3 BIF Feature

For the biologically inspired features [26], we need to find the best structure and
setting. To simplify the process, the gender recognition is performed over all ages
first. A twofold cross validation was used as the test scheme. The same divisions
of training and test data are used for all algorithms here, either over all ages or at
separate age groups.

First, we evaluated the C2 features with a nonlinear SVM for gender classifi-
cation over all ages. The feature extraction process is almost the same as that in
[40]. The only difference is the number of prototypes to represent the gender. Since
we have 8,000 images for the two-class classification problem, a small number
of prototypes cannot work well (not shown here). We let the algorithm randomly
select 2,000 prototypes from the female faces for S2 and C2 feature calculations.
An accuracy of 81.05 % was obtained. This result is much worse than the 89.28 %
using the raw pixel representation, the 88.65 % accuracy of the HOG method, and
the 90.53 % of the LBP, shown in Table 8.4. We also randomly selected 2,000
prototypes from the male faces, and the result was 81.00 %—almost the same.
Finally, we also let the algorithm randomly select 4,000 prototypes from both males
and females, and got an accuracy of 83.00 %—still very low. From this experiment,
we believe that C2 features do not work well for gender recognition. We notice that
Meyers and Wolf [33] did not use C2 features in their face recognition problem,
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but they did not show any results when C2 features were used for face recognition.
Based on our experience, C2 features are not a good choice for face-based gender
classification, although these features demonstrated super performance on object
category recognition [35, 40].

When the proper structure is determined for the BIF features, a better result can
be obtained. More details about the BIF can be found in [24]. The results of BIF with
both linear and nonlinear SVMs are given in Table 8.4. One can see that the kernel
SVM performs better than the linear SVM in each age group. The BIF features
combined with the kernel SVM can perform better than all other approaches in our
comparisons.

8.7.2.4 Summary

We have shown the performance of the SVM for gender classification on a large
database. The nonlinear SVM with the RBF kernel can perform significantly better
than the linear SVM in all cases. Different methods have been used for facial
image representation in the context of gender classification. The BIF features are
better than the LBP and HOG features. More interestingly, we have shown that
the gender classification is affected by ages. The adult faces can provide a much
higher accuracy for gender classification than on young or senior faces. This was
discovered quantitatively for the first time [24].

8.7.3 Ethnicity Estimation

We study ethnicity classification under variations of gender and age [15], using
the SVM [41] as the classifier. We investigate whether the ethnicity estimation
performance is affected by other human attributes, such as gender and age. Towards
this goal, we designed experiments under two situations: (1) using female faces to
learn an ethnicity classifier and then apply to males, and vice versa, and (2) learning
ethnicity classifiers using faces from three age groups, and testing with different age
groups.

The data were selected from the MORPH database [39] for this study [15].
The distribution of the selected data is shown in Table 8.5. The BIF features
[26] were used for facial image characterization combined with manifold learning
techniques [15].

8.7.3.1 Ethnicity w.r.t. Gender

To study whether the performance of ethnicity classification is affected by gender,
we learn the ethnic classifiers using female and male faces, separately. Then we
test the performance on the same and different gender to observe the difference.
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Table 8.5 The distribution of the data selected from
MORPH for the study

Female Male Female and male

White 2,570 7,960 10,530
Black 2,570 7,960 10,530
White and black 5,140 15,920 21,060

Table 8.6 A study of ethnicity estimation with respect to gender [15]

Train. Test

Ethnicity classification concerning gender

Comments

BIF BIF+PCA BIF+OLPP

Accu- Accuracy Accu- Accuracy Accu- Accuracy
racy decrease racy decrease racy decrease

F1 F2 98.7 % – 98.9 % – 99.1 % – Same gender
M1 94.0 % 4.8 % 93.7 % 5.3 % 90.3 % 8.9 % Female→Male
M2 94.1 % 4.7 % 93.8 % 5.2 % 90.4 % 8.8 % Female→Male

F2 F1 98.6 % – 98.9 % – 99.3 % – Same gender
M1 91.4 % 7.3 % 90.9 % 8.1 % 92.3 % 7.1 % Female→Male
M2 91.4 % 7.3 % 91.1 % 7.9 % 92.2 % 7.2 % Female→Male

M1 M2 98.8 % – 98.8 % – 99.1 % – Same gender
F1 96.8 % 2.0 % 97.2 % 1.6 % 97.7 % 1.4 % Male→ Female
F2 96.5 % 2.3 % 97.1 % 1.7 % 97.3 % 1.8 % Male→ Female

M2 M1 98.7 % – 98.7 % – 98.8 % – Same gender
F1 97.5 % 1.2 % 97.6 % 1.1 % 98.3 % 0.5 % Male→ Female
F2 97.1 % 1.6 % 97.3 % 1.4 % 97.6 % 1.2 % Male→ Female

F1 F2 98.7 % – 98.9 % – 99.1 % – Same gender
M1S 93.9 % 4.9 % 93.1 % 5.9 % 89.6 % 9.6 % Female→MaleS

M2S 94.1 % 4.7 % 94.1 % 4.9 % 90.5 % 8.7 % Female→MaleS

F2 F1 98.6 % – 98.9 % – 99.3 % – Same gender
M1S 90.6 % 8.1 % 90.4 % 8.6 % 91.9 % 7.5 % Female→MaleS

M2S 91.7 % 7.0 % 91.7 % 7.3 % 92.5 % 6.8 % Female→MaleS

M1S M2S 98.4 % – 98.6 % – 99.0 % – Same genderS

F1 96.2 % 2.2 % 96.8 % 1.8 % 96.9 % 2.1 % MaleS → Female
F2 95.8 % 2.6 % 96.3 % 2.3 % 96.6 % 2.4 % MaleS → Female

M2S M1S 98.3 % – 98.7 % – 98.8 % – Same genderS

F1 96.4 % 1.9 % 97.3 % 1.4 % 97.6 % 1.2 % MaleS → Female
F2 96.3 % 2.0 % 97.0 % 1.7 % 97.2 % 1.6 % MaleS → Female

There are two ethnic groups, white (W) and black (B). So we have four groups with gender: white
female (WF), black female (BF), white male (WM), and black male (BM). Each of the four groups
is randomly divided into two subgroups for cross validations.

Through comparisons, we can infer the effect of gender difference on ethnicity
estimation [15].

For the selected data shown in Table 8.5, we have four groups, black female
(BF), white female (WF), black male (BM), and white male (WM). Within each
group, the data are randomly divided into two subgroups, labeled as 1 and 2, in
order to do cross validations. Suppose we choose one subgroup from the BF and
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another subgroup from WF to learn the ethnic classifier, labeled as F1 = BF1 +
WF1, without any loss of generality. Then we can test the performance on female or
male faces. Remember that we have another female data set, denoted as F2 = BF2 +
WF2, and two subsets for male faces, M1 = BM1 + WM1, and M2 = BM2 + WM2.
For ethnicity estimation with the same gender, the subset F2 is tested, denoted as F1
→ F2. For different gender evaluation, we use M1 and M2 for testing, denoted as
F1→M1 and F1→M2. Similarly, we can use F2, M1, or M2 for training, and use
the remaining data for testing.

The experimental results are shown in Table 8.6. We have 16 ethnicity classifica-
tion experiments for each face representation. So there are 48 experiments in total,
using the three face representations. The original dimensionality of the BIF is 4,376.
It is reduced to about 500 using PCA, and reduced to about 100 using OLPP. These
numbers are kept the same throughout the experiments.

The 48 experiments can be categorized into three kinds of ethnicity classifica-
tions: same gender, female → male, and male → female. From Table 8.6, we can
observe that (1) for ethnicity estimation using the same gender, the classification
accuracies are very high (from 98.6% to 99.3%) for all three face representations.
This demonstrates that our face representations have very good performance for
ethnicity estimation; (2) for ethnicity estimation of male → female (using male
faces to learn and females to test), the classification accuracies are slightly lower
than using the same gender, ranging from 96.5 % to 98.3 %, but the accuracy
decreases (accuracy difference between the cases of cross-gender and the same
gender using the same training data, divided by the accuracy in the same gender
case) are relatively small, e.g., from 0.5 % to 2.3 %; and (3) for ethnicity estimation
of female→ male, the classification accuracies range from 90.3 % to 94.1 %, with
quite large accuracy decreases, e.g., from 4.7 % to 8.9 %, corresponding to different
face representations.

One might notice that the number of female faces is smaller than males in
Table 8.5. Do the accuracy differences come from the different sample sizes? To
check this issue, we reduce the number of males in Table 8.5 to make the number
of males equal to females. Specifically, we randomly chose partial males from M1
(i.e., 1,285 faces) and from M2 (1,285 faces), denoted as M1S and M2S, respectively.
Now, F1, F2, M1S, and M2S have the same number of faces. Then we use the
reduced data set to re-learn the ethnicity classifiers, and re-perform the 48 ethnic
classification experiments, with the results shown in the lower part of Table 8.6.
One can see that almost the same accuracy decreases can be observed from the
equal-sized-data experiments.

As a result, our study demonstrates that ethnicity estimation is influenced by
gender significantly when the female faces are used for training while males for
testing, i.e., female → male. However, the reversed process (male → female) has
some influence but not very significant. This unsymmetric influence is interesting.
We are not very clear about how to interpret this phenomenon yet; however, we
hope the computational results inspire more psychological studies [37,49,50] to get
a reasonable interpretation.
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8.7.3.2 Ethnicity w.r.t. Age

To study whether ethnicity estimation is affected by age [15], we divided the data
set into three age groups, labeled as A, B, and C. The partition considers the number
of face images in different age groups to make them comparable, since the original
data in MORPH do not have balanced number of faces at each age. Based on this
and the age range (from 16 to 67 years), we determined that age group A contains
ages less than or equal to 25 years, group B has ages greater than 25 but less than or
equal to 40, and group C contains ages above 40. Remember that we still need two
subgroups (1 and 2) within each age group for the purpose of cross validations, and
each subgroup has both black and white faces to learn the ethnic classifier. The final
distribution of the age groups is that A1 (2,756 faces, 16 ≤ age ≤ 25), B1 (4,508
faces, 25 < age ≤ 40), C1 (3,266 faces, 40 < age ≤ 67), A2 (2,756 faces, 16 ≤
age≤ 25), B2 (4,508 faces, 25 < age≤ 40), and C2 (3,266 faces, 40 < age≤ 67).
Not strictly, we name groups A, B, and C as young, middle, and old to make it easier
to interpret the results.

Then we use one age group to train the ethnicity classifier, and the remaining
age groups for testing. There are 30 ethnicity estimation experiments for each
face representation, and there are 120 experiments in total given the three face
representations. The experimental results are given in Table 8.7.

From the table, we can observe that (1) for ethnicity estimation within the same
age group, i.e., A1↔ A2, B1↔ B2, C1↔ C2, the ethnic classification accuracies
can be very high, ranging from 98.3% to 99.1%, using the three face representations.
(2) for ethnicity estimation with different age groups for training and testing, most
of the results still have high accuracies, e.g., from 97.6% to 98.7%, for young ↔
middle, middle↔ old, and old→ young. In comparison with the same age group
results, the accuracy decreases are relatively small, ranging from 0.0% to 1.3%,
using three face representations. In the case of young→ old, the accuracy decreases
are slightly larger, e.g., from 2.0% to 2.7%, but not so significant as the gender
influence on ethnicity estimation in the case of female→ male.

8.7.3.3 Summary

We can reorganize the above experimental results by averaging over the subcases,
so that one can observe the performance more directly. The new results are shown in
Table 8.8. From the results, we can easily observe that (1) ethnicity estimation can
have very high accuracies if it is performed within the same gender and age groups;
(2) our face representations based on biologically inspired features with or without
manifold learning show high performance in ethnicity classification; (3) ethnicity
estimation can be affected in the cross-gender case of female→male, with accuracy
decreases of 6∼8 % in average, which is significantly different from the situations
of the same gender and male→ female; (4) ethnicity estimation is not affected very
much under the situation of cross-age.
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Table 8.7 A study of ethnicity estimation with respect to age [15]

Train. Test

Ethnicity classification concerning age

Comments

BIF BIF+PCA BIF+OLPP

Accu- Accuracy Accu- Accuracy Accu- Accuracy
racy decrease racy decrease racy decrease

A1 A2 98.4 % – 98.5 % – 99.0 % – Same age group
B1 97.7 % 0.7 % 97.8 % 0.7 % 98.2 % 0.8 % Young→Middle
B2 97.7 % 0.7 % 97.8 % 0.7 % 98.4 % 0.6 % Young→Middle
C1 95.9 % 2.5 % 96.0 % 2.5 % 96.8 % 2.2 % Young→ Old
C2 95.7 % 2.7 % 95.8 % 2.7 % 96.3 % 2.7 % Young→ Old

A2 A1 98.5 % – 98.5 % – 98.8 % – Same age group
B1 97.7 % 0.8 % 97.9 % 0.6 % 98.3 % 0.5 % Young→Middle
B2 98.3 % 0.2 % 98.2 % 0.3 % 98.5 % 0.3 % Young→Middle
C1 96.3 % 2.2 % 96.3 % 2.2 % 96.8 % 2.0 % Young→ Old
C2 95.8 % 2.7 % 95.8 % 2.7 % 96.2 % 2.6 % Young→ Old

B1 B2 98.9 % – 98.7 % – 99.1 % – Same age group
A1 98.1 % 0.8 % 98.3 % 0.4 % 98.6 % 0.5 % Middle→ Young
A2 98.5 % 0.4 % 98.2 % 0.5 % 98.7 % 0.4 % Middle→ Young
C1 97.7 % 1.2 % 97.9 % 0.8 % 98.1 % 1.0 % Middle→ Old
C2 97.6 % 1.3 % 97.8 % 0.9 % 98.2 % 0.9 % Middle→ Old

B2 B1 98.7 % – 98.8 % – 99.0 % – Same age group
A1 98.3 % 0.4 % 98.3 % 0.5 % 98.4 % 0.6 % Middle→ Young
A2 98.5 % 0.2 % 98.4 % 0.4 % 98.7 % 0.3 % Middle→ Young
C1 97.9 % 0.8 % 97.8 % 1.0 % 97.7 % 1.3 % Middle→ Old
C2 98.0 % 0.7 % 97.8 % 1.0 % 98.2 % 0.8 % Middle→ Old

C1 C2 98.7 % – 98.7 % – 98.8 % – Same age group
A1 98.1 % 0.6 % 98.1 % 0.6 % 98.1 % 0.7 % Old→ Young
A2 98.1 % 0.6 % 98.3 % 0.4 % 98.2 % 0.6 % Old→ Young
B1 98.4 % 0.3 % 98.3 % 0.4 % 98.6 % 0.2 % Old→Middle
B2 98.4 % 0.3 % 98.4 % 0.3 % 98.6 % 0.2 % Old→Middle

C2 C1 98.3 % – 98.3 % – 98.7 % – Same age group
A1 97.8 % 0.5 % 97.7 % 0.6 % 98.0 % 0.7 % Old→ Young
A2 97.6 % 0.7 % 98.0 % 0.3 % 97.9 % 0.8 % Old→ Young
B1 98.2 % 0.1 % 98.0 % 0.3 % 98.5 % 0.2 % Old→Middle
B2 98.3 % 0.0 % 98.3 % 0.0 % 98.6 % 0.1 % Old→Middle

The data set is divided into three age groups: Young or A (age ≤ 25 years), Middle or B (age ≤
40), and Old or C (age > 40). Each age group is randomly divided into two subgroups for cross
validations.

8.7.3.4 Usefulness of the Study

Our study results have applications in many real problems. For example, for a large
database containing multiple ethnic groups, one may categorize the ethnic groups
before age estimation [25, 36], since the ethnicity estimation is not very sensitive
to age variations from our studies. Categorizing into different ethnicity groups
may reduce the age estimation errors [36] significantly. For the problem of gender
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Table 8.8 A summary of our studies on ethnicity classification versus the changes of gender and
age groups [15]

Ethnicity classification

BIF BIF+PCA BIF+OLPP

Versus Average Accuracy Average Accuracy Average Accuracy
Gender or age accuracy decrease accuracy decrease accuracy decrease

Same gender 98.7 % – 98.8 % – 99.1 % –
Female→Male 92.7 % 6.1 % 92.4 % 6.5 % 91.3 % 7.9 %
Male→ Female 97.0 % 1.7 % 97.3 % 1.5 % 97.7 % 1.4 %
Same genderS 98.5 % – 98.8 % – 99.1 % –
Female→MaleS 92.6 % 6.0 % 92.3 % 6.7 % 91.1 % 8.1 %
MaleS → Female 96.2 % 2.3 % 96.9 % 1.9 % 97.1 % 2.0 %
Same age group 98.6 % – 98.6 % – 98.9 % –
Young→Middle 97.9 % 0.7 % 97.9 % 0.7 % 98.4 % 0.5 %
Young→ Old 95.9 % 2.7 % 96.0 % 2.6 % 96.5 % 2.4 %
Middle→ Young 98.4 % 0.2 % 98.3 % 0.3 % 98.6 % 0.3 %
Middle→ Old 97.7 % 0.9 % 97.8 % 0.8 % 98.1 % 0.8 %
Old→ Young 97.9 % 0.7 % 98.0 % 0.6 % 98.1 % 0.8 %
Old→Middle 98.3 % 0.3 % 98.3 % 0.3 % 98.6 % 0.3 %

classification [24,48] on a large database with multiple ethnic groups, one may also
perform ethnic classification first, and then gender recognition is performed within
each single ethnic group, since in most cases, the ethnicity estimation is not very
sensitive to gender variations based on our studies [15]. We believe that multi-ethnic
databases will be more and more popular in computer vision research, considering
more databases are collected from the Internet, such as in [36]. We expect more
research work will be reported on multi-ethnic face image databases in the near
future.

On the other hand, our study based on computational analysis may inspire
more psychological studies on ethnic grouping [37, 49, 50] related to age and
gender variations. Interpretations about our results could be derived from further
psychological studies.

8.8 Conclusions

We have presented the applications of the SVM to soft biometrics recognition in
face images. The SVM can have very good performance for gender and ethnicity
classification, when combined with appropriate features to characterize the facial
appearance. For age estimation, we showed the performance of the SVM and SVR
on two databases, since age estimation can be considered either a classification or a
regression problem. We found that the two approaches can perform quite differently
on different databases. A better way is to combine them to take advantage of both.



300 G. Guo

Two schemes, called LARR and PFA, have been proposed to integrate the SVM
with SVR and validated for age estimation. The performance can be improved
significantly when these schemes are used for age estimation. Further, we studied
the influence of age on gender classification, and also the influence of age and
gender on ethnicity estimation, based on the SVM classifiers. Overall, the SVM
and their extensions are very useful for learning soft biometric characteristics from
face images.
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