
Chapter 5
Application of SVMs to the Bag-of-Features
Model: A Kernel Perspective

Lei Wang, Lingqiao Liu, Luping Zhou, and Kap Luk Chan

Abstract The Bag-of-features model has recently achieved great success in image
categorisation and become the state of the art. Support vector machines (SVMs)
have played an important role in this process. This chapter first introduces the
fundamentals of the Bag-of-features model in image categorisation. Following
that, it is focused on how the SVM classifiers are applied to this model. In
particular, we show the novel kernels developed to compare images based on
a variety of representations incurred by this model. Also, how the kernels are
implicitly implemented or effectively approximated to work with linear SVMs is
discussed. Through this chapter, we will see that the application of SVMs not
only demonstrates its elegance and efficiency but also raises new research issues
to stimulate the development of SVMs.

5.1 The Bag-of-Features Model

Image categorisation is one of the fundamental tasks in the field of computer
vision. It aims to classify an image to a predefined set of classes according to its
visual content. By appropriately defining the classes, image categorisation can be
used as an effective tool to determine the presence of objects in an image (object
recognition), infer the location of an object in an image (object localisation) or in a
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video sequence (object tracking), classify the scene in an image (scene recognition),
determine the type of human pose in an image (pose recognition) or the action in
a video clip (action recognition), detect the irregular visual patterns (unusual event
detection) or search for similar images or videos from a large database (image/video
retrieval), to name just a few.

Image categorisation has been researched for a long time in the fields of computer
vision and pattern recognition. From the perspective of visual features, most of the
research, particularly for those conducted 10 years ago or earlier, has been focused
on the use of global features, for example, the features based on colour, texture
or shape in a whole image. Although many significant research progresses have
been made along this line, the performance of generic image categorisation is still
far from being satisfactory. A powerful image categorisation model that can be
generally applied is still lacking.

In the past several years, the Bag-of-features model [8,47] has attracted intensive
attention in the field of visual recognition and achieved great success in a wide range
of applications. It has become the state-of-the-art image categorisation model that
can be generally applied. The Bag-of-features model can be viewed as a wonderful
integration of the Bag-of-words model in the field of text analysis [19] and the
local invariant features in the field of computer vision [32, 33]. During the last
decade, a number of excellent local invariant features have been developed, for
example, the well-known Scale-Invariant Feature Transform (SIFT) feature [28].
With the local invariant features, effective, reliable and robust description of visual
content within a small-sized image patch can be obtained. This provides a solid basis
for the transplantation of the Bag-of-words model from text analysis, giving birth to
the Bag-of-features model. The work on texture classification in [25] is among the
earliest work that uses the Bag-of-features model in image categorisation. Generally,
the work in [8, 47] is often regarded as the beginning of the Bag-of-features model
in generic image categorisation.

A basic Bag-of-features model can be described as follows. First, a set of local
image patches is sampled from all training images and characterised by using
a local feature descriptor. After that, common visual patterns shared by these
local feature descriptors are identified. They mimic the “words” in the Bag-of-
words model and are called “visual words.” A collection of visual words forms a
“visual codebook.” Following the Bag-of-words model, each image is represented
by a histogram indicating the frequency of occurrences of each visual word in
this image. In this way, image categorisation can be performed based on the
histogram-based representation, for example, by training a classifier and performing
classification. This basic Bag-of-features model has been significantly extended
since its introduction and more powerful variants are being used. Figure 5.1
shows an image categorisation system based on the basic Bag-of-features model.
The last step “Classification” corresponds to the application of SVMs. However,
the previous steps form the basis for this application and more importantly, the
development of these steps significantly reshapes the application of SVMs in the
image categorisation system. To obtain a clear understanding of this system and
the application of SVMs, this chapter will give a brief introduction of the four key
components of this system in the following parts.
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Fig. 5.1 An image categorisation system based on the basic Bag-of-features model

5.1.1 Feature Extraction

As mentioned above, the advances of local invariant features lay the foundation
of the birth of the Bag-of-features model. The component “Feature extraction”
in Fig. 5.1 is to extract local patches from images and then characterise the
visual content therein. This component consists of two steps, feature detection
and feature description. Feature detection is to identify the locations in an image
where important visual information could exist, which is usually called interest
point detection. A number of excellent interest point detection algorithms have been
developed. They can reliably and consistently identify interest points in an image
even if the image experiences the change of viewpoint, scale or illumination to
some extent. The repeatability of identifying the same interest points in the varying
conditions is essential to generic image categorisation. A comparative study of
the commonly used interest point detectors can be found in [32]. With the recent
progress of the Bag-of-features model, it is found that densely sampling local
image patches can often lead to better classification performance than performing
interest point detection [20]. Dense sampling could extract much more local image
patches than interest point detection and thus has the advantage of avoiding missing
important visual information that helps classification at the later stage. Dense
sampling has now become a common way to extract local patches from images.
To deal with the scaling issue, dense sampling with different-sized local patches is
often used.

Once local image patches are extracted, a variety of local feature descriptors
can be employed. These descriptors are designed to achieve reliable and robust
description of the local patches with respect to varying conditions. The best
known and the most popular descriptor may be the SIFT descriptor [28]. SIFT
actually consists of both feature detector and feature descriptor, but its descriptor is
often individually used by researchers to characterise densely sampled local image
patches. A systematic evaluation of the performance of existing local descriptors
is conducted in [33]. Depending on the size of an image, the total number of
local patches extracted from an image can be in the order of thousands or even
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tens of thousands. Each of them will be represented by a descriptor, which is a
multi-dimensional vector. Note that in this way, each image becomes a bag of
orderless feature vectors or “a set of points” in a multi-dimensional vector space.

5.1.2 Visual Codebook

The Bag-of-features model originates from the Bag-of-words model. However,
images do not contain words by nature. In order to use the Bag-of-words model,
the concept of “visual word” is developed. Visual words can be regarded as a
set of common visual patterns shared by the local patches extracted from images.
For example, the patterns could be corners, T-junctions, L-junctions or any other
frequently observed patterns on the changes of pixel intensities. The k-means
clustering may be the most commonly used method to generate visual words. Let
{x1,x1, · · · ,xn} denote a set of local feature descriptors obtained from the step of
feature extraction, where x ∈ R

d is a d-dimensional vector. For example, d is 128
when the SIFT descriptor is used. The k-means clustering aims to find an optimal
k-cluster-partitioning {C1,C2, · · · ,Ck} of these feature descriptors by minimising the
sum of the within-cluster variances. Let μ i denote the mean of the cluster Ci. This
partitioning can be shown as an optimisation problem

{C1,C2, · · · ,Ck}= argmin
k

∑
i=1

∑
x j∈Ci

‖x j − μ i‖2
2. (5.1)

By solving this problem, the optimal means {μ1,μ2, · · · ,μk} are interpreted
as visual words. A collection of the k visual words forms a visual codebook.
Throughout this chapter, V is used to denote a visual codebook and |V|, whose
value is k here, denotes the number of visual words in the codebook.

In addition to the k-means clustering algorithm, a variety of more advanced
visual codebook generation algorithms have been developed in the past few years.
They generally deal with one or more of the following issues related to k-means
clustering: (1) How to set the optimal k? To address this issue, methods based on
multiple codebook combination, codeword selection and codeword merging have
been proposed [53,55]; (2) How to conduct efficient clustering when d or k is large?
To speed up clustering in this case, special data structures have been used and this
leads to the work of vocabulary tree [36], randomised clustering forests [34] and
fast k-means [41]; (3) Can a partitioning better than that given by the k-means
clustering be obtained? In this line, fixed-radius partition and mean-shift techniques
have been utilised [20]. Also, instead of using Euclidean distance, clustering with
other distances has been developed to better handle the histogram structure of SIFT
descriptors [56]; (4) Can supervised information be incorporated to obtain better
codebooks? When the class label of each image is available, it can be used to design
compact and discriminative visual codebooks. To achieve this, information-theoretic
method [23] and supervised compact codebook generation [27] have recently been
developed.
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Fig. 5.2 The issues of codeword uncertainty and codeword plausibility. Image courtesy of [49]

5.1.3 Feature Coding

Once a visual codebook is created, it will be used as a basis to represent the
visual content of an image. To associate the visual content with the codebook,
the most common way is to assign each of the local feature descriptors extracted
from an image to one of the visual words. For example, this can be done by
evaluating the Euclidean distance between a local descriptor to each visual word
and assigning it to the closest word. This is often known as “hard assignment,” in
which a local descriptor is assigned to one and only one visual word. Although this
assignment is conceptually simple and computationally efficient, more advanced
assignment methods have been developed in the last few years. Generally, these new
methods deal with two issues: (1) how to reduce the quantisation error in the hard
assignment in further? (2) how to consider the underlying manifold structure of
the local feature descriptors? To resolve the first issue, a number of methods have
been developed in the literature, among which kernel codebook and sparse coding
are two representative methods. Kernel codebook is a “soft assignment” method,
which assigns a local feature descriptor to more than one visual words to reduce
quantisation error [49]. In particular, kernel codebook systematically discusses
two main drawbacks, codeword uncertainty and codeword plausibility, in hard-
assignment methods, as illustrated in Fig. 5.2.

Codeword uncertainty means that hard-assignment methods rigidly assign a local
descriptor to one and only one visual word even if it is relevant (close) to multiple
different words. For example, for a local descriptor riding on the boundary of two
clusters, assigning it to either one of the two corresponding visual words could cause
significant quantisation error. Codeword plausibility means that hard-assignment
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methods rigidly assign a local descriptor to a visual word even if this descriptor is far
from all of the words. Again, this could lead to large quantisation error. To handle the
two issues, the kernel codebook proposes to model the degree of relevance between
a local descriptor and each visual word. Its assignment scheme can be expressed as

ωi =
κσ (d(x,vi))

∑|V|
i=1 κσ (d(x,vi))

, (5.2)

where κ denotes a kernel used in kernel density estimation with the width of σ ,
x a local descriptor, vi the ith visual word, d(x,vi) the distance between x and
vi, and ωi the coefficient assigned to x with respect to vi. As shown in [49], this
soft-assignment method can well resolve the above two issues caused by hard
assignment.

Sparse coding is the assignment method that represents the state of the art [57].
It is also a soft-assignment method and has an elegant theoretical framework.
The sparsity enforces that only a small number of visual words can be chosen to
represent a local descriptor. In addition, sparse coding not only learns the coding
coefficient but can also jointly learn the visual codebook. Let Vd×k =(v1,v2, · · · ,vk)
denote a visual codebook consisting of k words. Let Uk×n = (u1,u2, · · · ,un) denote
the coding coefficient matrix, in which ui is the coding coefficient for the ith local
descriptor xi. Sparse coding can be expressed as an optimisation problem that aims
to minimise the reconstruction error, subject to a sparsity constraint on the coding
coefficient.

{V�,U�} = argmin
V,U

n

∑
i=1

(‖xi −Vui‖2
2 +λ‖ui‖1

)

s.t. ‖v j‖ ≤ 1, j = 1,2, · · · ,k, (5.3)

where ‖ · ‖1 is the �1 norm used to impose the sparsity constraint and λ is the
regularisation parameter. This optimisation can be efficiently solved in an alternate
manner. By fixing V, the coding coefficient ui for each local descriptor can
be updated one by one by solving an �1-regularised least-squares problem. By fixing
U, the visual codebook V can be updated by solving a least-squares problem with
quadratic constraints.

Locality-constrained Linear Coding (LLC) is another important sparse coding
method, which takes the underlying manifold structure of local descriptors into
account [52]. It argues that locality is more essential than sparsity and that locality
induces sparsity. To enforce locality, LLC encodes a descriptor by the visual words
nearby. This not only induces the sparsity but also makes similar descriptors tend to
share similar coefficients. LLC solves the following optimisation problem,

{V�,U�} = argmin
V,U

n

∑
i=1

(‖xi −Vui‖2
2 +λ‖di⊗ui‖2

2

)
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s.t. u�
i 1 = 1, ‖v j‖ ≤ 1, j = 1,2, · · · ,k, (5.4)

where di is a column vector indicating the distance of the descriptor xi from each
visual word and ⊗ denotes a component-wise multiplication. This optimisation
problem can also be solved in an alternate manner.

Sharing the spirit of locality in LLC, a computationally more efficient
coding method called Localised Soft-assignment Coding (LSC) has recently be
developed [26]. LSC proposes to integrate the concept of locality into kernel
codebook, by arguing that shorter Euclidean distances are more reliable in the
presence of data manifold. LSC extends the kernel codebook to the following form,

ωi =
exp(−β d(x,vi))

∑|V|
i=1 exp(−β d(x,vi))

, where d(x,vi) =

{‖x− vi‖2
2; if vi ∈ N (x)

+∞; otherwise.
(5.5)

where N (x) denotes the local neighborhood of x. LSC can achieve comparable
coding performance as LLC but incurs much less computational cost.

The advent of sparse and localised coding schemes makes a significant change
of the face of the application of SVMs to image categorisation. Together with
the feature pooling scheme to be introduced, these coding schemes consider-
ably improve the classification performance of linear SVM classifiers in image
categorisation.

5.1.4 Feature Pooling

In order to obtain an image-level representation, the coding coefficients of the local
feature descriptors extracted from an image need to be summarised. This process
is often called “Pooling.” Two ways are usually used, including sum-pooling and
max-pooling. Sum-pooling simply adds all the coefficients for each visual word up.
Let z ∈ R

k denote the image-level representation for an image I. Sum-pooling can
be expressed as

z = ∑
ui∈I

ui. (5.6)

If z is set as the mean of the ui’s, it will be called average pooling. Max-pooling
takes the maximum coefficient with respect to each visual word

z = max
ui∈I

ui, (5.7)

where the max operation is performed in a dimension-wise manner. The max-
pooling can magically make linear SVM classifiers work as well as the nonlinear
ones, leading to efficient image categorisation. Formal theoretical analysis has been
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attempted to understand why the max-pooling is superior to the sum-pooling [6,26].
More explanation on this magic in this regard will be given in the later part of this
chapter from a kernel perspective.

In sum, this section introduces a basic image categorisation system using the
Bag-of-features model. In particular, the four key components of this system have
been discussed. This paves the way for us to gain a better understanding of
the application of SVMs to image categorisation.

5.2 Application of SVMs with Histogram-Based
Nonlinear Kernels

When an image-level representation is obtained for each image, an SVM classifier
can be trained and used to categorise new images. Since image classes in a
categorisation task are usually not linear separable, kernel-based SVM classifiers
are generally used in order to obtain good classification performance, especially
at the early stage of image categorisation with the Bag-of-features model. In this
case the kernel function plays a pivotal role, and therefore identifying and designing
appropriate kernel functions has attracted much attention at that stage. Since the
histogram-based representation is widely used in that period, the kernel functions
that can effectively evaluate the similarity of histograms have been researched and
employed.

In the Bag-of-features model, a histogram indicates the frequency of the occur-
rences of each visual word in an image. It is an efficient approximation to the
distribution of different visual patterns in an image. In the literature, a number of
measures have been proposed to evaluate the similarity or dissimilarity between
histograms. In the work of colour indexing [48], histogram intersection is proposed
for object recognition. The work in [43] discusses the histogram dissimilarity
measures and applies them to image retrieval. It groups the measures into bin-to-bin
measures and cross-bin measures. The former includes Minkowski-form distance,
Histogram intersection, Kullback-Leibler divergence, χ2-statistics, while the latter
includes Quadratic-form distance, cumulative histogram distance, and the distance
based on distribution parameters. In [7], the SVMs are applied to classify generic
images based on colour histograms. That work provides insightful discussion on
what kind of kernel functions shall be used to evaluate the similarity of colour
histograms. It shows that Non-Gaussian Radial Basis Function (RBF) kernels can
achieve better classification performance than the commonly used Gaussian RBF
kernels.

Although the SVM classifiers using the above histogram-based kernel functions
can produce promising classification performance, training and testing nonlinear
SVM classifiers incur more computational load, and this becomes a significant issue
for the applications that require real-time classification. In recent years, approaches
with the linear kernel have been proposed to achieve the advantage brought by
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histogram-based nonlinear kernels. The research in this regard generally follows
two lines. The first line is to approximately identify the explicit feature mapping
induced by the nonlinear kernels and then a linear SVM can be straightforwardly
applied. The other line is to derive a new image representation such that a linear
SVM classifier with this new representation can work as well as a nonlinear one.
In doing so, these approaches not only well maintain the original classification
performance but also considerably decrease the computational load in both training
and test stages. In the following parts, the chapter will discuss typical histogram-
based kernel functions and the approaches to approximating them via the linear
kernel.

5.2.1 Histogram-Based Nonlinear Kernels

This part is focused on three kernel functions that are commonly used to evaluate
the similarity of histograms, including the Histogram Intersection Kernel (HIK), the
non-Gaussian RBF kernel and the χ2-RBF kernel.

Recall that z denotes the representation of an image. Let φ(·) be the mapping
function implicitly induced by a kernel function κ(·, ·). Let w and b be the normal
and bias of the SVM separating hyperplane. A nonlinear SVM classifier can be
expressed as

f (z) = w�φ(z)+ b = ∑
i

αiyiκ(z,zi)+ b, (5.8)

where αi and yi are the coefficient and the class label for the ith training sample zi.

5.2.1.1 Histogram Intersection Kernel

Originally proposed in [48] to compare a given image histogram to a pre-
defined model histogram for object recognition, histogram intersection has seen
an important application to image categorisation with the Bag-of-features model.
Let zi and z j denote the histograms corresponding to images i and j. Intersection

of the two histograms is defined as H(zi,z j) = ∑|V|
l=1 min(zil ,z jl), where zil is

the l-th bin of zi. A normalised intersection with respect to z j can be defined as

H(zi,z j) = ∑|V|
l=1 min(zil ,z jl)/∑|V|

l=1 z jl . Usually, it is assumed that the sum of the
bins in the two histograms is same. In this case, the HIK can be expressed as

κ(zi,z j) =
|V|
∑
l=1

min(zil ,z jl). (5.9)

The HIK function defined in this way can be written as an inner product in a
feature space and therefore it is a Mercer kernel [1]. This makes it suitable for SVM
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classifiers which usually need this property to achieve global optimum. Also, as

indicated in [48], for two histograms zi and z j with ∑|V|
l=1 zil = ∑|V|

l=1 z jl = T , the HIK
has an essential connection with the �1-norm distance between them. That is,

κ(zi,z j) = 1− 1
2T

‖zi − z j‖1. (5.10)

This connection can help understanding the effectiveness of HIK in image
categorisation with the Bag-of-features model. For a class of images containing
the same object, the size of the area occupied by the object could change, leading
to variation on the value of the bins for the visual words associated with the object.
Also, the size of background could be different across these images and this will
also cause variation on the corresponding bins. However, these variations are not
essential and they do not change the object class to which the images belong to. In
this case, an �1-norm distance becomes a better choice because it changes linearly
with the variation while a commonly used �2-norm distance changes quadratically.
It is known that the �2-norm distance corresponds to a linear kernel in the input
space. This may partially explain why directly applying a linear SVM classifier to
histogram representation often shows inferior classification performance. In fact,
the values of the bins of a histogram are not important. Instead, whether a bin
is empty or not (indicating whether the corresponding visual word appears in an
image or not) matters. This case has been observed in image classification with
colour histograms in [7] and the Bag-of-features model in [6].

5.2.1.2 Non-Gaussian RBF Kernel

To control the sensitivity of an RBF kernel function to the difference between two
histograms, the work in [7] proposes a set of non-Gaussain RBF kernels in the
following form

κ(zi,z j) = exp

(

−β
|V|
∑
l=1

|za
il − za

jl|b
)

. (5.11)

It is easy to see that when a = 1 and b = 2, the above kernel reduces to a Gaussian
RBF kernel. When a = 1 and b = 1, it gives rise to a Laplacian RBF kernel

κ(zi,z j) = exp

(

−β
|V|
∑
l=1

|zil − z jl |
)

. (5.12)

Assuming that z j is obtained by perturbing one empty bin of zi by Δh, the non-
Gaussian kernel value between them can be written as

κ(zi,z j) = exp
(
−β (Δh)ab

)
. (5.13)
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Adjusting ab can effectively change the decaying rate of the kernel value with
respect to the perturbation. As can be seen, the commonly used Gaussian RBF kernel
incurs a quadratic exponential decaying rate while the Laplacian RBF kernel has a
linear exponential decaying rate. Experimental study is conducted in [7] to compare
different settings of a and b for colour histogram-based image classification. It is
found that decreasing the value of a and b can effectively improve the classification
performance of SVMs on colour histograms. The best performance is obtained
on the Corel image data set when a = 0.25 and b = 1, and it is significantly better
than the performance obtained by a Gaussian RBF kernel. Note that the change of a
does not affect the non-Gaussian RBF kernel to be a valid Mercer kernel because we
can simply view za

il and za
jl as the input data. At the same time, b has to be confined

between 0 and 2 to make the kernel meet the Mercer’s condition. The application
of SVMs with the Laplacian RBF kernel has also achieved promising classification
performance in image categorisation with the Bag-of-features model.

5.2.1.3 �2-Radial Basis Function Kernel

The χ2-RBF kernel can be traced back to the χ2-test in mathematical statistics
used to compare two distributions. In [44], χ2 is used to evaluate the dissimilarity
between two histograms as

χ2(zi,z j) =
|V|
∑
l=1

(zil − z jl)
2

zil + z jl
. (5.14)

Based on this measure, the work in [7] defines the χ2-RBF kernel as

κ(zi,z j) = exp

(

−β
|V|
∑
l=1

(zil − z jl)
2

zil + z jl

)

. (5.15)

It is not difficult to see that when z j is obtained by perturbing one empty bin of z j by
Δh, the kernel value is κ(zi,z j) = exp(−β Δh), which also has a linear exponential
decaying rate with respect to Δh. The χ2-RBF kernel has been proved to be a Mercer
kernel in [13]. This kernel has been experimentally compared with other kernels
in [58] for image categorisation with an SVM classifier. It is found that the χ2-RBF
kernel can achieve higher classification performance than linear kernel, quadratic
kernel and the Gaussian RBF kernel.

In addition to the above kernels, there is a set of special kernels used by the
SVM classifiers for image categorisation, which is called “additive kernel” [50].
An additive kernel can be written as a sum of the kernels computed based on each
individual dimension of data. This feature makes it be able to work directly with
linear SVM classifiers after appropriate manipulation. The additive kernels will be
introduced in the later parts of this chapter.
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5.2.2 Approximation to Histogram-Based Nonlinear Kernels

One drawback of directly applying the nonlinear kernels introduced in the previous
section is the poor scalability for large-scale data sets. However, the application of
SVMs calls for highly efficient image classification algorithms in order to handle
large-scale tasks.

Nowadays, it is quite often to encounter an image categorisation problem with
over tens of thousands of training samples. For example, the commonly used image
classification benchmarks, PASCAL [11] and Caltech 101/256 [12, 15], contain
around 10,000 images and the more recently developed large-scale benchmarks
such as ILSVRC [10] even have millions of images. However, nonlinear SVMs
become computationally expensive when training sample size is large. In fact,
merely computing the kernel matrix in a nonlinear SVM classifier will take O(n2d)
calculations, where n is the number of training samples and d is the dimensionality
of image representation. For the state-of-the-art image representation, e.g. Bag-of-
features model with a large-sized codebook and spatial pyramid [24], the value of
d can be as large as hundreds of thousands. When n is also large, nonlinear SVMs
will easily become computationally intractable. In addition, the computational cost
of nonlinear SVMs is high in the test stage. The cost of evaluating the decision score
is O(dnsv), where nsv is the number of support vectors, which can be very large, for
example, a few thousands in practice.

Comparing with the nonlinear SVMs, linear SVMs enjoy much higher com-
putational efficiency. First of all, there exist very efficient training algorithms for
linear SVM classifiers [16, 45]. Second, in the test stage, the cost of evaluating
the decision score is just O(d), which can be thousands of times less than that
incurred by the nonlinear SVMs. However, for the histogram-based representation
in the Bag-of-features model, linear SVMs usually yield poorer performance than its
nonlinear counterpart. To achieve both high computational efficiency and excellent
classification performance, the recent literature has leveraged the kernel-induced
feature mapping to transform a nonlinear SVM classifier to a linear one.

Recall that a kernel function κ can be written as the inner product of the feature
mappings φ(·), that is:

κ(zi,z j) = 〈φ(zi),φ(z j)〉. (5.16)

If φ(·) can be explicitly obtained, we can simply transform the input data by this
mapping and apply a linear SVM on the mapped data. In doing so, a nonlinear SVM
can be attained by solving a linear SVM. Unfortunately, the mapping function φ(·) is
generally implicit and may even have infinite dimensions. However, is it possible to
develop a sufficiently good approximation to the feature mapping φ(·)? The answer
is affirmative. Before systematically introducing the state-of-the-art approximation
methods, this section first presents a method that is initially proposed to approximate
the commonly used HIK.
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5.2.2.1 An Approximation to Histogram Intersection Kernel

Recall that HIK is defined as κ(zi,z j) = ∑d
l=1 min(zil ,z jl), where d denotes the

dimensionality of a histogram. This kernel is the sum of the values obtained by the
nonlinear function min(zil ,z jl) in each dimension. Note that the function min(·, ·)
only takes two scalars as the input.

The work in [31] proposes to approximate the HIK as follows. It first develops
a quantised version of the original data. More specifically, that work uniformly
quantises the value of each bin into s scales. q(·) denotes the quantisation function
and it returns the scale into which the input scalar is quantised. u is a function that
maps the quantised scale q(z) (q(z) ∈ {1,2, · · · ,s}) into an s-dimensional vector.
The definition of u is as follows

u(z) = (u1, u2, · · · uk, · · · us)
�, where

uk =

{
1; if k ≤ q(z)
0; otherwise.

(5.17)

where uk denotes the kth dimension of u(z). Then the function min(·, ·) can be
approximated by

min(zil ,z jl)≈ α〈u(zil),u(z jl)〉, (5.18)

where α is a constant scalar. From the definition of u, we can see that if z is
quantised into the q(z)th level, the first q(z) dimensions of u(z) will be “1” and
the remaining dimensions will be “0”. Thus the inner product of u(zil) and u(z jl)
will equal min(q(zil),q(z jl)).

Note that the function u(·) essentially develops an explicit feature mapping
for the nonlinear function min(·, ·). Since HIK is calculated by simply summing
all min(zil ,z jl) (l = 1, · · · ,d) up, we can define the approximate explicit feature
mapping of HIK by concatenating the mapping u(·) at each dimension of zi, that is

φ(zi) = (u�(zi1) · · · u�(zik) · · · u�(zid))
�. (5.19)

From this method, we can see that if a nonlinear kernel can be decomposed into
the sum of a set of dimension-wise nonlinear functions with only two scalars as
the input, it will be convenient to find an approximate feature mapping for such a
nonlinear function. In fact, this kind of kernel is called additive kernel and it has been
shown in the recent literature that for this family of kernels, efficient approximate
feature mappings can be developed with very good approximation accuracy.

5.2.2.2 Additive Kernel and Its Approximation

An additive kernel can be written as the sum of the kernels computed on each
individual dimension of data, that is, κ(zi,z j) =∑d

l=1 k(zil ,z jl). We call the function
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Table 5.1 Examples of additive kernels and their dimension-wise
kernel functions

Linear kernel k(zil ,z jl) = zilz jl

Hellinger’s kernel k(zil ,z jl) =
√

zilz jl

Histogram intersection kernel k(zil ,z jl) = min(zil ,z jl)

χ2 kernel k(zil ,z jl) = 2(zilz jl)/(zil + z jl)

k(·, ·) the dimension-wise kernel function (DKF in short) and an additive kernel can
be fully determined by its DKF. Note that many commonly used kernels in image
classification are additive kernels. Examples of additive kernels and their DKFs are
listed in Table 5.1.

The special structure of an additive kernel suggests that its approximate feature
mapping can be derived by first finding the approximate mapping of its DKF
and concatenating the mappings from all the dimensions. Formally, the lth DKF
can be obtained as: kl(zil ,z jl) ≈ 〈φl(zil),φl(z jl)〉, where φl(·) is the approximate
feature mapping for the lth dimension of z. Note that although DKF usually takes
the same form in each dimension, its approximate feature mapping φl(·) may be
different from dimension to dimension. This is because the feature distribution in
each dimension can be different and to capture these differences we may need
different approximate feature mappings. Once the mapping φl(·) is obtained for each
dimension, an additive kernel can be approximated by κ(zi,z j) ≈ 〈φ(zi),φ(z j)〉,
where φ(zi) = (φ�

1 (zi1) φ�
2 (zi2) · · · φ�

d (zid))
�.

In the following parts, we elaborate two representative methods to develop the
approximate explicit feature mapping for the DKF: (1) additive kernel principal
component analysis (PCA) and (2) homogeneous kernel map.

5.2.2.3 Kernel PCA Approximation to Additive Kernels

The additive kernel PCA method is derived from the classic kernel PCA
approximation to nonlinear kernels [54]. The classic kernel PCA approximation
firstly calculates the feature mapping on a finite number of samples and then uses
Nyström approximation [54] to generalise this mapping to unseen data. In the
following parts, we firstly introduce the classic kernel PCA approximation and then
discuss its additive kernel extension.

1. Kernel PCA Approximation to Nonlinear Kernels

The quality of an approximate explicit feature mapping can be measured by the
incurred approximation error. Formally, this error can be defined as follows:

E(φ) =
∫ (

κ(z,z′)−〈φ(z),φ(z′)〉)2
p(z)p(z′)dzdz′ (5.20)
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where φ(z) is the approximate mapping function which maps a d-dimensional input
data to a d̃-dimensional vector. p(z) is the probability density function and it is
unknown in general. To make this error term tractable, we can estimate p(z) via
non-parametric density estimation method. In specific, p(z) is estimated by using a
finite number, m, of samples such that

p(z) =
1
m

m

∑
i=1

δ (‖z− zi‖), (5.21)

where the function δ (a) = 1 when a = 0 and 0 otherwise. Substituting Eq. (5.21)
into Eq. (5.20), we can turn the integral into the summation and it results in the
following error term:

E(φ) =
1

m2

m

∑
i=1

m

∑
j=1

(κ(zi,z j)−〈φ(zi),φ(z j)〉)2 . (5.22)

As shown in [54], the approximate feature mapping for all m samples can be derived
in a closed form. Let ψl = (φl(z1),φl(z2), · · · ,φl(zm))

� denote a vector consisting
of the lth component of φ(zi), where i = 1, · · · ,m. To avoid the redundancy in the
approximation, constraints that 〈ψi,ψ j〉 = 0 and 〈ψi,ψi〉 = 1 for 1 ≤ i < j ≤ m
are imposed. As a result, the solution of minimising the error in Eq. (5.22) can be
obtained by solving an eigenvalue problem, which is equivalent to the kernel PCA:

Kψl = λlψl , (5.23)

where K denotes the kernel matrix computed on z1, · · · ,zm. To obtain a
d̃-dimensional approximate feature mapping φ(z) for z1, · · · ,zm, the d̃ eigenvectors
of K corresponding to the largest eigenvalues λl are used. For unseen samples, their
mappings can be worked out via Nyström approximation:

φl(z) =
〈κ(z, :),ψl〉

λl
, (5.24)

where l = 1,2, · · · , d̃ and κ(z, :) = (κ(z,z1) κ(z,z2) · · · κ(z,zm))
�.

One problem with this approximation is its computational cost. The complexity
of calculating κ(z, :) is O(md) and the complexity of calculating φl(z) for the whole
d̃-dimensional mapping is O(md̃). In total, the complexity is O(m(d + d̃)). Since
the kernel function κ(·, ·) takes two high-dimensional vectors as input, the mapping
from these two vectors to the kernel value can be complex. In this case, a large
number of samples are usually needed to achieve reasonably good approximation,
making m a number at the order of thousands. Consequently, the calculation of this
approximate feature mapping can be very time-consuming in practice.
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2. Kernel PCA Approximation to Additive Kernels

Fortunately, for additive kernels the above method can be modified to achieve much
lower computational cost [40]. More specifically, we can build the dimension-wise
approximation through Eq. (5.24) for each DKF of an additive kernel. The work in
[40] adopts this idea and builds the approximate feature mapping by the following
algorithm:

1. For each dimension l, compute the corresponding m×m kernel matrix Kl . The
(i, j)th entry of Kl is calculated by Kl(i, j) = k(zil ,z jl), where k(·, ·) is the DKF
of the additive kernel.

2. For each dimension l, compute the d̃l (e.g. d̃l = 10) largest eigenvalues of
Kl {λl,1, · · · ,λl,d̃l

} and their associated eigenvectors. In total, this step will

generate d × d̃l eigenvalues for all the d DKFs.
3. Sort the d × d̃l eigenvalues and keep the d̃ largest ones. They are re-numbered

as {λ11,λ12, · · · ,λ1n1;λ21, · · · ,λ2n2; · · · ;λd1, · · · ,λdnd ,}, where ∑d
i=1 ni = d̃. Let

{ψ11,ψ12, · · · ,ψ1n1 ;ψ21, · · · ,ψ2n2 ; · · · ;ψd1, · · · ,ψdnd ,} be the associated eigen-
vectors. For a test sample zt , its feature mapping is obtained by concatenating
the mapping for each DKF. For a given l, this mapping is defined as

φli(ztl) =
〈k(ztl , :),ψli〉

λli
, (5.25)

where i = 1, · · · ,nl and k(ztl , :) = (k(ztl ,z1l), · · · ,k(ztl ,zml))
�. Note that in this

method, the dimensions of the approximated feature mapping n1, · · · ,nd can be
different. As argued in [40], this scheme can be more adaptive to the distribution
of each dimension of the input data.

The computational complexity of mapping a sample with the obtained feature
mapping φ(·) is still O(m(d + d̃)). However, since the approximation is now for a
much simpler kernel function (a DKF with two scalar inputs only), a much smaller
number of samples and mapping dimensions are usually sufficient to attain a good
approximation. In [40], it is reported that 128 samples and the same number of
mapping dimensions have been sufficient, which is in contrast to the requirement of
thousands of samples in the classic kernel PCA. Moreover, one can further leverage
the quantisation trick to quantise ztl into finite levels, denoted by q(ztl), and pre-
compute the value of φli(q(ztl)). In this way, the computational complexity can be
further reduced.

5.2.2.4 Homogeneous Kernel Map Approximation to Additive Kernels

One drawback of the kernel PCA approximation to additive kernels lies in the
fact that it is data dependent. That is, the approximate mapping function needs
to be learned from a set of training samples. As a result, an extra training step is
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required before applying the approximation to an additive kernel. In the following
part, we will introduce another approximation method called “homogeneous kernel
map,” which is data independent. Before introducing this method, we need to first
review a method called “random Fourier kernel approximation” which inspires the
homogeneous kernel map.

1. Random Fourier Kernel Approximation to Stationary Kernels

Among the commonly used kernels in the literature, there is another family of
kernels called stationary or translational invariant kernel [42]. It is formally defined
as a kernel satisfying the following relationship:

κ(zi,z j) = κ(zi + c,z j + c). (5.26)

A property of stationary kernels is that there always exists a function K to make
κ(zi,z j) = K (z j − zi) valid. To prove this property, we can simply set c = − zi+z j

2
and substitute it to Eq. (5.26):

κ(zi,z j) = κ
(− zi + z j

2
+ zi,−zi + z j

2
+ z j

)

= κ
(zi − z j

2
,−zi − z j

2

)≡ K (z j − zi). (5.27)

It has been proved that by Bochner’s theorem [42] for any Positive Definite function
F (z), there exists a non-negative measure p, such that F (z) is its Fourier transform:

F (z) =
∫

ω
p(ω)e− j〈ω,z〉dω . (5.28)

Note that K (z j − zi) is a Positive Definite function because the corresponding
κ(zi,z j) is assumed to be a Mercer kernel, which always produces a Positive Semi-
Definite kernel matrix. This suggests that K (z j − zi) can be represented as the
Fourier transform of non-negative function p,

K (z j − zi) =

∫

ω
p(ω)e− j〈ω,(z j−zi)〉dω . (5.29)

Since both K and p are real, we can replace e− j〈ω,z〉 by cos(〈ω ,z〉) and rewrite
Eq. (5.29) into

K (z j − zi) =

∫

ω
p(ω)cos(〈ω ,(z j − zi)〉)dω

=

∫

ω
p(ω)(〈cos(ω ,zi〉)cos(〈ω ,z j〉)+ sin(〈ω ,z j〉)sin(〈ω ,zi)〉)dω .

(5.30)
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If K is properly scaled, p(ω) can be viewed as a probability density function.
Hence, Eq. (5.30) can be seen as the expectation of cos(〈ω ,(z j − zi)〉), that is,
K (z j − zi) = Eω(cos(〈ω ,(z j − zi)〉)). This result motivates the work in [42]
to use the empirical mean to approximate the expectation. More specifically,
they randomly draw m frequency components {ω i}, where i = 1, · · · ,m, from
the distribution p(ω) and use the average of cos(〈ω i,(z j − zi)〉) to approximate
E(cos(〈ω ,(z j − zi)〉)) as

E(cos(〈ω ,(z j − zi)〉))≈ 1
m

m

∑
i=1

cos(〈ω i,(z j − zi)〉)� 〈φ(zi),φ(z j)〉, (5.31)

where φ(z) = 1√
m (cos(〈ω1,z〉), · · · ,cos(〈ωm,z〉),sin(〈ω1,z〉), · · · ,sin(〈ωm,z〉))�.

It defines an approximate explicit feature mapping and this method is called random
Fourier kernel map in [42]. Note that this approximation is data independent—the
only input of this approximation method is p(ω), which can be obtained via the
Fourier transform of the given kernel function.

2. Homogeneous Kernel Map Approximation to Additive Kernels

Inspired by the random Fourier kernel approximation and the kernel PCA approx-
imation to additive kernels, the work in [50] develops a unified framework to
build data-independent approximate feature mapping for a large family of additive
kernels, known as γ-homogeneous kernels. Formally, an additive kernel κ(·.·) is
γ-homogeneous if its DKF k(·, ·) satisfies

∀c ≥ 0 : k(czil ,cz jl) = cγ k(zil ,z jl). (5.32)

By choosing c = 1/
√

zilz jl , the DKF of a γ-homogeneous kernel can be written as

k(zil ,z jl) = c−γk(czil ,cz jl) = (zilz jl)
γ
2 k

(√
zil

z jl
,

√
z jl

zil

)

= (zilz jl)
γ
2 K (log(zil)− log(z jl)), (5.33)

where the scalar function K (·) is called “kernel signature” and it is defined as:

K (λ ) = k(e
λ
2 ,e−

λ
2 ). (5.34)

Note that the role of kernel signature resembles the function K in the random
Fourier map method previously introduced. In fact, the derivation of the algorithm
in [50] bears a similarity with the one for random Fourier kernel approximation.

The work in [50] proves that a γ-homogeneous kernel κ(·.·) is positive definite
if, and only if, its signature K (·) is a positive definite function. With this result, the
Bochner’s theorem in Eq. (5.28) can be readily applied to the kernel signature:
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k(zil ,z jl) = (zilz jl)
γ
2 K (λ ) = (zilz jl)

γ
2

∫ ∞

−∞
e− jωλ q(ω)dω

=

∫ ∞

−∞

(
e− jω log(z jl )

√
zγ

jlq(ω)
)�

(
e− jω log(zil)

√
zγ

ilq(ω)

)
dω , (5.35)

where λ = log zil
z jl

and q(ω) is the Fourier transform of the kernel signature K (λ ).
In this case, by defining

φω (zil) = e− jω log(zil)
√

zγ
ilq(ω), (5.36)

it is easy to verify that

k(zil ,z jl) = 〈φω (zil),φω (z jl)〉, (5.37)

where 〈·, ·〉 is the inner product in a Hilbert space.
However, the feature mapping φω has infinite dimensions. To handle this

situation, the work in [50] proposes an idea that is similar to the discrete Fourier
transform. They first approximate the kernel signature function K (·) by its periodic
version with the assumption that the function K (λ ) has a restrictive domain of
λ , which can usually be satisfied in practice. According to the theory of Fourier
transform, the transform of a periodic signal is discrete. Then they simply choose
the first d̃l frequency components as the feature mapping for the lth DKF.

5.2.2.5 Experimental Comparison

We quote the experimental result in [50] to give an intuition on the effectiveness
of the aforementioned approximate explicit feature mappings. In this experiment,
two methods, additive kernel PCA approximation in Sect. 5.2.2.3 and homogeneous
kernel map in Sect. 5.2.2.4, are compared with the baseline using the original
nonlinear kernel. The evaluation is carried out on Caltech-101 data set with SIFT
as the local feature descriptor. A visual codebook with 600 visual words is created
and a 1× 1+ 2× 2+ 4× 4 spatial pyramid [24] is used. The result is shown in
Table 5.2. As seen, the approximate explicit feature mappings achieves comparable
or even better classification performance than the original nonlinear kernels, but
with much less training time. The speed advantage of the homogeneous kernel maps
over the additive Kernel PCA approximation is due to the fact that the latter requires
an extra training step to learn the mapping function. In addition, an interesting
observation is that the γ = 1/2 variant of the homogeneous kernel performs much
better than the original nonlinear kernel. Note that this variant is equivalent to
calculating the square root of the data first and then applying the nonlinear kernel.
The square rooting operation makes the value in each bin of the histogram more
stable and reduces the negative impact of the “burstiness” phenomenon, which will
be discussed in Sect. 5.3.
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5.3 Application of SVMs with Max-Pooling-Based
Linear Kernel

The motivation of using nonlinear kernel-based SVMs is that they tend to achieve
better performance than linear SVMs for image categorisation with histogram-based
image representation. However, is it possible to design an image representation
with which linear SVMs can achieve the performance comparable or even better
than the nonlinear counterparts? If it is, the computational issue can be readily
removed by adopting linear SVMs for large-scale image classification. Note that
in some sense designing a new image representation for a linear kernel can also
be viewed as inventing a new nonlinear kernel at the level of original image data.
To show this, we can abstract the process of forming an image representation as
a function e(·). A kernel defined based on the original image data can then be
expressed as κ̂(Ii, I j) = 〈e(Ii),e(I j)〉. Thus, if we change the image representation
e(·), we virtually change the image-level kernel κ̂ .

The work in [57] is among the earliest ones that take the above approach.
It combines sparse coding and max-pooling to obtain image representation and
use it for image categorisation. That work shows that with this representation, a
simple linear SVM classifier has been able to attain the performance superior to
the traditional ones in which a nonlinear kernel is employed. Later, the work in [5]
further discovers that the max-pooling step is the key to the success of the system in
[57]. A comprehensive experimental study is conducted in [5] to compare various
combinations of coding and pooling methods. Their results are quoted in Table 5.3.
From the result, three conclusions can be drawn:

1. The use of max-pooling significantly improves the classification performance of
linear SVMs for all the coding methods. The improvement is even significant for
the simplest hard-assignment coding. In that case, a pooled coding vector only
indicates the presence or absence of a visual word in the associated image;

2. By using the max-pooling, linear SVMs can achieve comparable or even
better performance than the counterpart which adopts the sum-pooling and then
nonlinear kernel-based SVMs.

3. Once the max-pooling is used, the classification performance obtained by linear
and nonlinear SVMs becomes similar.

Table 5.3 This table is quoted from [5]

Performance on Scene-15 Performance on Caltech-101

Coding method and kernel Sum-pooling Max-pooling Sum-pooling Max-pooling

Hard-assignment + linear kernel 51.4 ± 0.9 % 64.3 ± 0.9 % 73.9 ± 0.9 % 80.1 ± 0.6 %
Hard-assignment + HIK kernel 64.2 ± 1.0 % 64.3 ± 0.9 % 80.8 ± 0.4 % 80.1 ± 0.6 %
Soft-assignment + linear kernel 57.9 ± 1.5 % 69.0 ± 0.8 % 75.6 ± 0.5 % 81.4 ± 0.6 %
Soft-assignment + HIK kernel 66.1 ± 1.2 % 70.6 ± 1.0 % 81.2 ± 0.4 % 83.0 ± 0.7 %
Sparse coding + linear kernel 61.3 ± 1.3 % 71.5 ± 1.1 % 76.9 ± 0.6 % 83.1 ± 0.6 %
Sparse coding + HIK kernel 70.3 ± 1.3 % 71.8 ± 1.0 % 83.2 ± 0.4 % 84.1 ± 0.5 %

It lists the classification performance obtained by combining different pooling and coding methods
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In sum, we can conclude that max-pooling is an effective way to produce better
image representation and that linear SVMs show excellent performance in classify-
ing the max-pooled coding vectors.

However, why can max-pooling obtain such a “magic” performance?
To understand this, several interpretations have been proposed in the literature.
In the following parts, we discuss three representative ones.

The work in [4] explains the superior performance of max-pooling by showing
that it can generate more discriminative image representations. Assuming the case
of binary classification, that work compares the class separability of each individual
feature generated through max-pooling and sum-pooling. The class separability is
defined as:

ψ =
|E(zk|C1)−E(zk|C2)|

var(zk)
, (5.38)

where zk denotes the value of the kth dimension of a pooled coding vector.
It can be obtained by zk = 1

n ∑n
i=1 uik for sum-pooling or zk = maxn

i=1 uik, where
n is the number of coding vectors in an image and uik denotes the coding value
at the kth dimension of the ith coding vector. C1 and C2 denote two classes.
E(zk|C1) and E(zk|C2) are the expectation of zk in each class, respectively. var(zk)
denotes the variance of zk. To simplify their analysis, they assume that the
{u1k, · · · ,uik, · · · ,unk} are i.i.d. random variables.

For hard-assignment coding, the coding value uik is assumed to be drawn from
a Bernoulli distribution in which uik = 1 with probability α and uik = 0 with
probability 1 − α . In the context of hard-assignment coding, this means that a
coding value will be “activated” (= 1) with probability α . Based on this assumption
the class separability with respect to max-pooling and sum-pooling is derived as
follows:

ψsum =
|α1 −α2|

√
n

√
α1(1−α1)+

√
α2(1−α2)

(5.39)

ψmax =
|(1−α1)

n − (1−α2)
n|

√
(1− (1−α1)n)(1−α1)n +

√
(1− (1−α2)n)(1−α2)n

, (5.40)

where α1 and α2 denote P(uik = 1|C1) and P(uik = 1|C2), respectively, that is, the
probability of a coding value being “activated” in each class. As previously defined,
n is the number of coding vectors in an image and it is called “pool cardinality”
in Fig. 5.3. By evaluating the class separability for max-pooling and sum-pooling
with different α1 and α2, it is found that when the activation probability α1 and
α2 are low, the ratio of α1 to α2 is large, and the value of n is small, max-pooling
can achieve better class separability than sum-pooling. This explains the superior
performance of max-pooling.

However, the above analysis cannot be readily used to explain the better
discrimination achieved by max-pooling for the coding schemes where continuous
coding coefficient is used, for example, the sparse coding. [4] To refine the analysis,
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cardinalities (indicated by the shaded area). Image courtesy of [4]

the work in [5] further assumes that the distribution of a coding value in an
image is the mixture of two distributions: a distribution corresponding to the local
descriptors from the object and a distribution corresponding to the local descriptors
from the background [5]. The mixture weights of the two distributions vary from
image to image. Through a more involved analysis, it is shown in [4, 5] that under
certain conditions, max-pooling creates immunity to the variation in the mixture
weights and thus it can lead to better classification performance.

The work in [26] points out that for soft-assignment coding, the coding
coefficient can be viewed as the membership of a local feature descriptor with
respect to different visual words, that is, P(v j|xi), where xi is the ith local descriptor
in an image and v j is the jth visual word. Hence, each dimension in the max-
pooled coding vector can be related to the maximum membership score of the
corresponding word, and this score is proved to be the lower bound of the probability
of finding at least one local descriptor belonging to this word:

P(v j|A ) = 1−
n

∏
i=1

(1−P(v j|xi))≥ max
i=1,··· ,n

P(v j|xi), (5.41)
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where A denotes the set of n local feature descriptors in an image. Assuming the
i.i.d property for the local descriptors, the probability of finding at least one descrip-
tor belonging to the jth visual word can be calculated by 1−∏n

i=1 (1−P(v j|xi)).
As argued in [26], directly computing this probability involves the product of
(1−P(v j|xi)) for all xi and each of them could bring in noise, making the result
unreliable. In contrast, computing the lower bound via the max-pooling scheme
tends to obtain a more reliable estimate since it only considers the largest term.

Based on this interpretation, the work in [26] further generalises the max-pooling
to mixed-order max-pooling to model the higher order occurrence information of a
visual word in an image, that is, the probability that a word occurs more than k times.
As shown in that work, the classification performance can be further improved by
using the mix-order max-pooling.

The analysis in [26] can also be generalised to other coding schemes with
continuous coding coefficient, if the coefficient can be related to the membership
score. From this viewpoint, sum-pooling will not be suitable for this coding scheme
since it may accumulate low membership scores to a high one, which, however, is
not a good indication of the presence of a visual word in such a case. For example, by
the sum-pooling, 100 local descriptors with coding value 0.002 for a given bin will
produce the pooled value of 0.2, which appears to have the same effect of observing
one local descriptor with coding value 0.2. However, it is clear that the former has
much weaker indication of the presence of the corresponding visual word.

Another interpretation of the good classification performance of linear SVMs
with the max-pooling can be obtained from the “burstiness” phenomenon, which
was initially discovered in the text classification [30] and was later observed in
image retrieval with the Bag-of-features model [18]. This phenomenon indicates
that “a visual pattern appears often more frequently than a statistically independent
model would predict” [18]. Basically, it suggests that if one visual pattern appears
once, it will be more likely to occur again in the same image. Intuitively, it can be
understood in the way that the occurrence of some visual concepts will produce
many repetitive local visual patterns. For example, the occurrence of a wall will
produce many local patches corresponding to bricks. However, the size of an object
often changes dramatically from image to image due to scale variation, which makes
the occurrence frequency of its corresponding local visual patterns unstable. As a
result, the sum-pooling of the coding vectors suffers from this instability because it
essentially reflects the occurrence frequency of the visual words. For linear SVMs,
its decision function is merely a weighted sum of the pooled coding values and
thus it tends to be affected by the variation of the occurrence frequency. In contrast,
nonlinear kernel SVMs can mitigate the adverse effect of burstiness phenomenon
by its nonlinear operation. For example, in HIK κ(zi,z j) = ∑d

l=1 min(zil ,z jl), if a
statistically less probable large value occurs at zil due to the burstiness, its impact
will be capped by z jl . However, if max-pooling is used, the linear SVMs will no
longer be affected by the occurrence frequency of a visual word. In some sense, the
max-pooling scheme builds a better image-level kernel and it helps the linear SVMs
achieve better classification performance.



5 Application of SVMs to the Bag-of-Features Model: A Kernel Perspective 179

5.4 Application of SVMs with Point-Set Kernels

5.4.1 Introduction to Point-Set Kernels

Recall that in the Bag-of-features model a set of local feature descriptors is extracted
from an image. Hence, an image can essentially be viewed as a point set in a multi-
dimensional feature descriptor space. In addition to building a visual codebook and
generating an image representation, another line of research measures the similarity
between two images directly based on the associated point sets. This is desirable
from the perspective of SVM application because the similarity can be used as
a kernel function to perform nonlinear SVM classification. Compared with the
approach of building visual codebooks, this approach can lead to a more compact
and conceptually simpler classification system. Better classification result could
even be achieved when appropriate point-set kernels are employed.

A variety of point-set kernels have been developed in the recent literature on
machine learning and computer vision. Generally speaking, point-set kernels are
constructed in two ways. One is to evaluate the similarity between the points (e.g.,
local feature descriptors) in two sets via a common kernel (often called a local
or base kernel) and then combine the kernels to obtain a point-set kernel. The
simplest one may be the sum-match kernel that sums the local kernels between
every pair of points in the two sets. However, in the presence of outliers, this kernel
cannot effectively reflect the set similarity because good matches between points
are often buried by a large number of bad matches. In [51], a sum-max kernel is
proposed, which averages the maximum local kernel value from each point in one
set with respect to the points in the other set. In [29], a sum-exponent kernel is
put forward. It computes the sum of the local kernels over all pairs of points in
the two sets after raising each kernel value to the power p. This allows it to adjust
the weight of each local kernel in the summation instead of treating them equally.
The aforementioned sum-match kernel and sum-max kernel can be regarded two
special cases of the sum-exponent kernel. The work in [3] suggests considering
only the local kernels between the points that can be truly matched by a matching
algorithm and discusses the way to make the obtained point-set kernel to satisfy the
Mercer’s condition. In [46], a general family of set kernels is derived based upon
local kernels. The proposed kernel can combine local kernels in a linear or nonlinear
way, where the nonlinear combination is achieved by mapping each point set onto
a high-dimensional matrix space. In addition, the work in [37] considers the case
where each point corresponds to a pixel in an image or a voxel of a video sequence.
Taking into account the location information of each point, a neighborhood kernel
is defined to compare each pair of points and the point-set kernel is defined as the
average of all the neighborhood kernels.

The other way to construct a point-set kernel is to estimate a probability
distribution of the points in each set and use the similarity between the two
distributions to define a set-level kernel. The work in [21] uses the Bhattacharyya’s
affinity between two distributions to define a kernel for sets of vectors. To ensure
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the kernel to have sufficient representational power, that work maps the vectors onto
a kernel-induced feature space and computes the Bhattacharyya’s affinity of the
probability distributions in the feature space. Similarly, in [35] a Gaussian Mixture
Model (GMM) is used to obtain a probabilistic model of each set and the Kullback–
Leibler divergence between the probabilistic models is used to define a point-set
kernel. The work in [9] is motivated by comparing the distributions of two point
sets before and after the two sets are merged. Intuitively, a strengthened distribution
will be obtained if the two point sets are similar. Following this idea, that work
develops point-set kernels by studying the properties of the concatenation of two
point sets. In addition, the above way of constructing a point-set kernel can be
related to building a kernel based on a generative model, which has been widely
used as a means to combining generative models with discriminative classifiers.
Fisher kernel [17] may be the most commonly used one in this regard and it has
been applied to image classification recently [38, 39].

For image categorisation with the Bag-of-features model, a systematic study
of point-set kernels is conducted in [51]. Among the existing point-set kernels
developed in this area, the Pyramid Matching Kernel (PMK) [14], the Efficient
Matching Kernel (EMK) [2] and the Fisher kernel [38] are three representative
methods. This following parts will introduce the work in [51]. After that, it will
be focused on the PMK, the EMK and the Fisher kernel.

5.4.2 A Kernel Recipe to Local Feature-Based
Image Recognition

A general kernel-based approach is proposed in [51] for image recognition with
local feature descriptors. Its motivation is to combine the representation power of
local features with the excellent discriminative capability of the SVM classifiers. To
achieve this goal, that work proposes a class of new kernels for point sets based on
the commonly used kernels, or equally the local kernels mentioned above. Let Ai =
{xi1,xi2, · · · ,xini} and A j = {x j1,x j2, · · · ,x jn j} denote the two point sets associated
with images i and j, where x is a local feature descriptor. A measure evaluates the
similarity of the set Ai with respect to the set A j is defined as

m(Ai|A j) =
1
ni

ni

∑
p=1

n j
max
q=1

κl(xip,x jq), (5.42)

where κl(x,x′) plays the role of a local kernel and any existing kernel can be used
for it. This measure finds the best match (in terms of the value of the local kernel) of
each local feature in Ai in the set A j and computes the average. Note that m(Ai|A j)
does not equal m(A j|Ai) in general. With such a measure, the work in [51] defines
a new class of kernel as
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κ(Ai,A j) =
1
2
[m(Ai|A j)+m(A j|Ai)] . (5.43)

This kernel is a symmetrical function over the local features. Both the non-Gaussian
RBF kernel and the χ2-RBF kernel in Sect. 5.2.1 have been shown in [51] as
a valid local kernel. In the experimental study, that work compares a nearest-
neighbour classifier with a predefined distance metric and the SVM classifier using
the corresponding point-set kernel. The results on object and face recognition data
sets demonstrate the superiority of the SVM classifier with the new class of point-set
kernels. However, as pointed out in [29], this class of kernels does not necessarily
satisfy the Mercer’s condition due to the use of the “max” operation.

5.4.3 Pyramid Matching Kernel

The work of PMK aims to develop a kernel function for SVM classification that
can efficiently measure the similarity of two point sets [14]. It can be regarded as
combining a set of local kernels to produce a point-set kernel. As indicated by its
name, the PMK builds a pyramid of multi-resolution histograms to quantise the
points in the two sets to be compared. At each resolution, the HIK, introduced in
Sect. 5.2.1.1, is used as the local kernel to evaluate the similarity of the two sets.
The similarity from different levels is then linearly combined to obtain the set-level
similarity, with different weights used for the multiple resolutions.

Recall that x denotes a local feature descriptor in a d-dimensional space. The
PMK partitions the volume occupied by the descriptors in the d-dimensional space
using a set of bins with a gradually increasing size. For example, the side length
of the d-dimensional bins is doubled at each resolution level. By appropriately
scaling the data, the smallest bin size ensures that each individual descriptor will
reside in its own bin, whereas the largest bin size ensures that all the descriptors
will be contained in the same bin. Assigning the local descriptors into these bins
leads to a hierarchy of multi-resolution histograms, and the bin values of this set
of histograms vary with different local descriptor sets. Recall that A denotes
a set of local descriptors extracted from an image. By concatenating the multi-
resolution histograms for the set A , a long vector can be obtained as φ(A ) =
(h−1(A ),h0(A ), · · · ,hL(A ))�, where h−1 indicates the histogram with the highest
resolution for which no descriptor is matched (falling into the same bin) and
hL indicates the histogram with the lowest resolution for which all local feature
descriptors stay in the same bin.

Based on the representation of φ(A ), the PMK evaluates the similarity between
the two sets Ai and A j (or equally the similarity of images i and j) as

κ(Ai,A j) =
L

∑
l=0

ωlnl , (5.44)
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where nl is the number of “new” matches found at the level l and ωl is a weight
indicating the contribution of a match at level l to the final similarity. Note that
a new match at level l means that a pair of local descriptors falls into the same
bin of a histogram at level l but resides in different bins for any level lower than
l (lower levels correspond to the histograms with higher resolutions). The weight
for new matches decreases with the increase of level. This is used to emphasise
that the matches at higher-resolution histograms are more important for similarity
evaluation. The number of matched points at level l, denoted by n̂l , is computed by
histogram intersection as

n̂l =
Tl

∑
i=1

min(hli(A ),hli(B)), (5.45)

where Tl is the number of bins in the histogram hl(·). Based on n̂l , the number
of new matches at each level l can be conveniently worked out as nl = n̂l − n̂l−1.
In addition, to remove the impact of the cardinality of a point set (e.g., a large-sized
point set usually has more descriptors to be matched with the descriptors in other
sets), a normalised version of the PMK is defined as

κnrml(Ai,A j) =
κ(Ai,A j)√

κ(Ai,Ai)κ(A j,A j)
. (5.46)

The PMK is proved to be a Mercer kernel in [14] and it can be efficiently
computed once the two sets of local feature descriptors are given. With the use of
histogram interaction as the local kernel, the PMK works well with two sets having
different cardinalities and can effectively conduct partial matching. This property
is important for image categorisation because (1) the number of local descriptors
from different images is often different; (2) local descriptors can disappear due
to occlusion or the change of view angles, object pose, and scale; (3) irrelevant
or noisy descriptors may appear due to the presence of background clutter. As
experimentally demonstrated in that work, the pyramid matching used by the PMK
can well approximate the result obtained by applying optimal matching between the
points in two sets. The advantages of the PMK over some of the existing point-set
kernels are summarised in [14] as (1) it is computationally more efficient; (2) it is
proved to be positive-definite; (3) it does not need to fit a parametric model to data;
(4) it can handle two sets of different cardinalities. As shown in the experimental
study in [14], this kernel can demonstrate excellent classification performance in
image categorisation tasks.
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5.4.4 Efficient Matching Kernel

The motivation of the EMK [2] is to speed up the training and test phases in which
a point-set kernel is used. Recall that a typical way to construct a point-set kernel is
to combine the local kernels over all pairs of points, leading to a sum-match kernel

κ(Ai,A j) =
1

|Ai|
1

|A j| ∑
x∈Ai

∑
x′∈A j

κl(x,x
′), (5.47)

where Ai denotes a set of points, x is a point (e.g., a local feature descriptor in a
d-dimensional space) in this set and |Ai| is the cardinality of the set. Computing
such a kernel has a computational complexity of O(|Ai||A j|d). This complexity
increases to O(|Ai||A j|dn2) when training an SVM classifier with a set of n training
images. This makes the application of SVMs with such a kernel inefficient in
handling a large-sized training set. Also, such a complexity prevents the obtained
SVM classifier from efficiently classifying unseen images. Assuming that the local
kernel κl(x,x′) can be expressed as an inner product between ψ(x) and ψ(x′) in a
finite-dimensional kernel-induced feature space, the above sum-match kernel can be
rewritten as

κ(Ai,A j) =

〈
1

|Ai| ∑
x∈Ai

ψ(x),
1

|A j| ∑
x′∈A j

ψ(x′)

〉

�
〈
Ψ(Ai),Ψ(A j)

〉
, (5.48)

where it is defined that Ψ(Ai) =
1

|Ai| ∑x∈Ai
ψ(x). As proposed in the work of

EMK, if the implicit mapping ψ(x) is approximated by an explicit mapping φ(x),
the sum-match kernel evaluation can be avoided and a linear SVM classifier will
be sufficient. This will remove the aforementioned computational issue and at the
same time maintain the classification performance brought by the kernel trick.

Let {x1,x2, · · · ,xm} be a set of predefined basis vectors in a d-dimensional
space. Their images under the mapping ψ(·) form a matrix B=(ψ(x1), · · · ,ψ(xm)).
The work of EMK approximates ψ(x) with its projection into the space spanned
by B. The project coefficient z can be obtained by minimising the reconstruction
error

z� = arg min
z∈Rm

‖ψ(x)−Bz‖2
2. (5.49)

The optimal solution z� can be analytically expressed as z� =
(
B�B

)−1 (
B�ψ(x)

)
=

(
B�B

)−1
kB(x), where kB(x) is a vector consisting of the (local) kernel values

between x and each of the m basis vectors. Let KB denote the m×m (local) kernel
matrix computed over all the basis vectors. An approximate kernel is defined with
the projection as
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κappro(x,x′) = (Bz�)�
(
Bz′�

)
= kB(x)

�K−1
B kB(x

′) = kB(x)
�C�CkB(x

′), (5.50)

where C is a matrix satisfying C�C = K−1
B . In doing so, the mapping of the

approximate kernel can be explicitly obtained as φ(x) =CkB(x). With this mapping,
the approximate point-set kernel can be defined as an inner product

κappro(Ai,A j) =

〈
1

|Ai| ∑
x∈Ai

φ(x),
1

|A j| ∑
x′∈A j

φ(x′)

〉

�
〈
Φ(Ai)Φ(A j)

〉
, (5.51)

where it is defined that Φ(Ai) =
1

|Ai| ∑x∈Ai
φ(x) = 1

|Ai| ∑x∈Ai
CkB(x). Since this

mapping can be explicitly obtained, it becomes unnecessary to evaluate the kernel
matrix for κappro and a linear classifier can be employed. As can be seen, when the
number of basis vectors, m, is not large, the computation at the training and test
phases can be considerably reduced.

The last issue is to decide the matrix B which consists of the m basis vectors.
By randomly selecting l local feature descriptors, the work of EMK jointly learns
the optimal B and the projection coefficient z for each descriptor by minimising the
total reconstruction error

{B�,z�1, · · · ,z�m}= argmin
l

∑
i=1

‖ψ(xi)−Bzi‖2
2. (5.52)

Applying the result of z� =
(
B�B

)−1 (
B�ψ(x)

)
again, the variable z is removed

and an optimisation problem solely for B is obtained as

B� = argmin

(

−
l

∑
i=1

kB(xi)
�K−1

B kB(xi)

)

. (5.53)

The optimal B is solved by a gradient descent algorithm. This completes the
derivation of the EMK. As seen, the EMK method has no constraint on the type
of local kernels and therefore can be widely applied.

In [2], a linear SVM classifier with the EMK is compared with a linear SVM
classifier and a nonlinear SVM classifier with the Gaussian RBF kernel. For the
latter two, the input is the histogram representation obtained with respect to a
predefined visual codebook. In the experiment, the number of basis vectors m is
1,000 and 100,000 local feature descriptors are randomly sampled to optimise the
matrix B. The results on three benchmark data sets including Scene-15, Caltech-101
and Caltech-256 show that the proposed EMK can help the linear SVM classifier
produce better classification performance than the other two SVM classifiers in
comparison. Also, it leads to much higher computational efficiency in both training
and test stages, especially when the number of training images is large.
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5.4.5 Fisher Kernel

Fisher kernel [17] provides a way to compare samples induced by a generative
model p(x|θ). It maps a sample to a feature vector in the gradient space of the model
parameters θ . The intuition is that similar samples induce similar log-likelihood
gradients of the model parameters. Let xi and x j denote two samples. Fisher kernel
is defined as

κ(xi,x j) = g(xi)
�U−1g(x j), (5.54)

where g(x) = ∇θ log(p(x|θ)) is the gradient vector describing the changing direc-
tion of θ to better fit the model. U is the Fisher information matrix that weights this
similarity measure, for example, normalising the dynamic range of the components
of the gradient vector [38].

Fisher kernel has recently been successfully applied to image categorisation
with the Bag-of-features model [22, 38]. In this application, x (x ∈ R

d) denotes
a local feature descriptor extracted from a set of training images. Based on these
descriptors, a GMM with k components is learned

p(x|θ) =
k

∑
i=1

wiN (x|μ i,Σi) (5.55)

where wi is the mixture weight, μ i the mean vector and Σi the covariance matrix
of the ith component. These model parameters are compactly represented by
θ = {wi,μ i,Σi}k

i=1. All the covariance matrices Σi are assumed to be diagonal and
expressed as Σi = {σ2

i1,σ2
i2, · · · ,σ2

id}. Conceptually, each Gaussian component can
be understood as a visual word.

Let A = {x1,x2, · · · ,xn} be a set of local feature descriptors extracted from
an image. Let L(x|θ ) = log(p(x|θ )) denote the log-likelihood. The gradient
vector g(x) is a concatenation of the partial derivatives of L with respect to all
the parameters, that is, g(x) = (∇wiL(x|θ ); ∇μ i

L(x|θ ); ∇ΣiL(x|θ )). The partial
derivatives with respect to the tth local descriptor, xt , are worked out as:

∂L(xt |θ )
∂wi

=

(
γt(i)
wi

− γt(1)
w1

)
; for i ≥ 2,

∂L(xt |θ )
∂ μ i j

= γt(i)

(
xt j − μ i j

σ2
i j

)

,

∂L(xt |θ )
∂σ i j

= γt(i)

(
(xt j − μ i j)

2

σ3
i j

− 1
σ i j

)

, (5.56)
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where i = 1, · · · ,k and j = 1, · · · ,d index the Gaussian components and each
component of a vector. The term γt(i) is defined as γt(i) =

wiN (xt |μ i,σ i)

∑k
i=1 wiN (xt |μ i,σ i)

.

By summing the gradient vectors with respect to the n local descriptors, an image-
level representation can be obtained as

z = U− 1
2

n

∑
t=1

g(xt), (5.57)

where U− 1
2 is used to normalise the dynamic range of each dimension of the gradient

vector. Let z and z′ denote the image representation for images I and I′. A linear
kernel between two images can be defined as

κ(I, I′) = 〈z,z′〉=
ni

∑
p=1

n j

∑
q=1

g(xp)
�U−1g(x′q), (5.58)

where x and x′ are the local descriptors from images I and I′, respectively. It can be
seen that this kernel can be regarded as a point-set kernel between the two images.
This point-set kernel is in the form of a sum-match kernel, where the local kernel is
the Fisher kernel applied to local feature descriptors.

As pointed out in [38], the gradient representation of Fisher kernel on GMM can
be related to the Bag-of-features model in image categorisation. The histogram rep-
resentation of the Bag-of-features model considers only the number of occurrences
of each visual word, which corresponds to the zeroth-order statistics. In contrast,
the Fisher kernel additionally considers the first- and second-order statistics. This
produces a higher-dimensional image representation even when the number of
visual words is small, which could be helpful for classification. Moreover, for this
representation a linear kernel has been able to perform well, avoiding the use of
costly nonlinear kernels.

The work in [38] verifies the advantage of the Fisher-kernel-induced image
representation on two databases, an in-house database and PASCAL VOC2006.
The GMM is trained in an unsupervised way by using the local feature descriptors
extracted from all images. Linear SVMs and Sparse Logistic Regression (SLR)
are investigated. Classification with the Fisher-kernel-induced image representation
achieves comparable or even better performance than the results reported in the
literature. In addition, the Fisher-kernel-induced image representation can bring
computational advantages because it can achieve excellent classification perfor-
mance with small-sized visual codebooks.

5.5 Conclusion

Kernel is the soul of the SVM classifiers and the place where the prior knowledge
of an application is accommodated. The performance of SVM classifiers in an
application largely depends on the appropriateness and efficiency of the employed
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kernels. Without exception, this is also true for the application of SVMs to
image categorisation with the Bag-of-features model. This chapter takes a unique
perspective to review the development of kernels in this application. Focused on
two typical image representations, histogram and point set, the chapter introduces
the representative kernels used by the SVM classifiers for each of them. Also,
the progress of the use of kernels for each image representation has been briefly
shown. For the histogram representation, we can see the trend of avoiding explicitly
using kernels, with the advent of advanced coding and pooling techniques as
well as powerful kernel approximation methods. This trend has also been seen in
the point-set-based representation through the development of EMK. The driving
force of these changes is just the applications of SVMs, which need efficient
image classification methods to handle large-scale tasks, reduce system complexity
and improve recognition performance. We can expect that novel kernels and the
novel ways of using kernels will continue emerging with the applications of SVMs
to image recognition.
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