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Abstract Support vector machines (SVMs) are among the most popular
classification techniques adopted in security applications like malware detection,
intrusion detection, and spam filtering. However, if SVMs are to be incorporated
in real-world security systems, they must be able to cope with attack patterns that
can either mislead the learning algorithm (poisoning), evade detection (evasion)
or gain information about their internal parameters (privacy breaches). The main
contributions of this chapter are twofold. First, we introduce a formal general
framework for the empirical evaluation of the security of machine-learning systems.
Second, according to our framework, we demonstrate the feasibility of evasion,
poisoning and privacy attacks against SVMs in real-world security problems. For
each attack technique, we evaluate its impact and discuss whether (and how) it
can be countered through an adversary-aware design of SVMs. Our experiments
are easily reproducible thanks to open-source code that we have made available,
together with all the employed datasets, on a public repository.

B. Biggio (�) • I. Corona • D. Maiorca • G. Fumera • G. Giacinto • F. Roli
Department of Electrical and Electronic Engineering, University of Cagliari,
Piazza d’Armi 09123, Cagliari, Italy
e-mail: battista.biggio@diee.unica.it; igino.corona@diee.unica.it; davide.maiorca@diee.unica.it;
fumera@diee.unica.it; giacinto@diee.unica.it; roli@diee.unica.it

B. Nelson
Institut für Informatik, Universität Potsdam, August-Bebel-Straße 89, 14482 Potsdam, Germany
e-mail: blaine.nelson@gmail.com

B.I.P. Rubinstein
Department of Computing and Information Systems, University of Melbourne, Parkville, 3010
VIC, Australia
e-mail: ben@bipr.net

Y. Ma and G. Guo (eds.), Support Vector Machines Applications,
DOI 10.1007/978-3-319-02300-7__4,
© Springer International Publishing Switzerland 2014

105

mailto:battista.biggio@diee.unica.it
mailto:igino.corona@diee.unica.it
mailto:davide.maiorca@diee.unica.it
mailto:fumera@diee.unica.it
mailto:giacinto@diee.unica.it
mailto:roli@diee.unica.it
mailto:blaine.nelson@gmail.com
mailto:ben@bipr.net


106 B. Biggio et al.

4.1 Introduction

Machine-learning and pattern-recognition techniques are increasingly being
adopted in security applications like spam filtering, network intrusion detection, and
malware detection due to their ability to generalize and to potentially detect novel
attacks or variants of known ones. Support vector machines (SVMs) are among the
most successful techniques that have been applied for this purpose [28, 55].

However, learning algorithms like SVMs assume stationarity: that is, both the
data used to train the classifier and the operational data it classifies are sampled
from the same (though possibly unknown) distribution. Meanwhile, in adversarial
settings such as the above-mentioned ones, intelligent and adaptive adversaries may
purposely manipulate data (violating stationarity) to exploit existing vulnerabilities
of learning algorithms and to impair the entire system. This raises several open
issues, related to whether machine-learning techniques can be safely adopted in
security-sensitive tasks, or if they must (and can) be redesigned for this purpose. In
particular, the main open issues to be addressed include:

1. analyzing the vulnerabilities of learning algorithms;
2. evaluating their security by implementing the corresponding attacks; and
3. eventually, designing suitable countermeasures.

These issues are currently addressed in the emerging research area of adversarial
machine learning, at the intersection between computer security and machine
learning. This field is receiving growing interest from the research community,
as witnessed by an increasing number of recent events: the NIPS Workshop on
“Machine Learning in Adversarial Environments for Computer Security” [43];
the subsequent Special Issue of the Machine Learning journal titled “Machine
Learning in Adversarial Environments” [44]; the 2010 UCLA IPAM workshop on
“Statistical and Learning-Theoretic Challenges in Data Privacy”; the ECML-PKDD
Workshop on “Privacy and Security issues in Data Mining and Machine Learning”
[27]; five consecutive CCS Workshops on “Artificial Intelligence and Security”
[2, 3, 19, 22, 34], and the Dagstuhl Perspectives Workshop on “Machine Learning
for Computer Security” [37].

In Sect. 4.2, we review the literature of adversarial machine learning, focusing
mainly on the issue of security evaluation. We discuss both theoretical work and
applications, including examples of how learning can be attacked in practical
scenarios, either during its training phase (i.e., poisoning attacks that contaminate
the learner’s training data to mislead it) or during its deployment phase (i.e., evasion
attacks that circumvent the learned classifier).

In Sect. 4.3, we summarize our recently defined framework for the empirical
evaluation of classifiers’ security [12]. It is based on a general model of an
adversary that builds on previous models and guidelines proposed in the literature
of adversarial machine learning. We expound on the assumptions of the adversary’s
goal, knowledge, and capabilities that comprise this model, which also easily
accommodate application-specific constraints. Having detailed the assumptions of
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his/her adversary, a security analyst can formalize the adversary’s strategy as an
optimization problem.

We then demonstrate our framework by applying it to assess the security of
SVMs. We discuss our recently devised evasion attacks against SVMs [8] in
Sect. 4.4, and review and extend our recent work [14] on poisoning attacks against
SVMs in Sect. 4.5. We show that the optimization problems corresponding to the
above attack strategies can be solved through simple gradient-descent algorithms.
The experimental results for these evasion and poisoning attacks show that the
SVM is vulnerable to these threats for both linear and nonlinear kernels in several
realistic application domains including handwritten digit classification and malware
detection for PDF files. We further explore the threat of privacy-breaching attacks
aimed at the SVM’s training data in Sect. 4.6 where we apply our framework to
precisely describe the setting and threat model.

Our analysis provides useful insights into the potential security threats from the
usage of learning algorithms (and, particularly, of SVMs) in real-world applications
and sheds light on whether they can be safely adopted for security-sensitive tasks.
The presented analysis allows a system designer to quantify the security risk
entailed by an SVM-based detector so that he/she may weigh it against the benefits
provided by the learning. It further suggests guidelines and countermeasures that
may mitigate threats and thereby improve overall system security. These aspects
are discussed for evasion and poisoning attacks in Sects. 4.4 and 4.5. In Sect. 4.6
we focus on developing countermeasures for privacy attacks that are endowed
with strong theoretical guarantees within the framework of differential privacy. We
conclude with a summary and discussion in Sect. 4.7.

In order to support the reproducibility of our experiments, we published all
the code and the data employed for the experimental evaluations described in
this paper [24]. In particular, our code is released under open-source license, and
carefully documented, with the aim of allowing other researchers to not only
reproduce but also customize, extend, and improve our work.

4.2 Background

In this section, we review the main concepts used throughout this chapter. We first
introduce our notation and summarize the SVM learning problem. We then motivate
the need for the proper assessment of the security of a learning algorithm so that it
can be applied to security-sensitive tasks.

Learning can be generally stated as a process by which data is used to form
a hypothesis that performs better than an a priori hypothesis formed without the
data. For our purposes, the hypotheses will be represented as functions of the form
f : X → Y , which assign an input sample point x ∈X to a class y ∈ Y ; that is,
given an observation from the input space X , a hypothesis f makes a prediction
in the output space Y . For binary classification, the output space is binary and
we use Y = {−1,+1}. In the classical supervised learning setting, we are given a
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paired training dataset {(xi,yi) | xi ∈X ,yi ∈ Y }n
i=1, we assume each pair is drawn

independently from an unknown joint distribution P(X,Y ), and we want to infer a
classifier f able to generalize well on P(X,Y ); i.e., to accurately predict the label y
of an unseen sample x drawn from that distribution.

4.2.1 Support Vector Machines

In its simplest formulation, an SVM learns a linear classifier for a binary clas-
sification problem. Its decision function is thus f (x) = sign(w�x + b), where
sign(a) = +1 (−1) if a ≥ 0 (a < 0), and w and b are learned parameters that
specify the position of the decision hyperplane in feature space: the hyperplane’s
normal w gives its orientation and b is its displacement. The learning task is thus
to find a hyperplane that well separates the two classes. While many hyperplanes
may suffice for this task, the SVM hyperplane both separates the training samples
of the two classes and provides a maximum distance from itself to the nearest
training point (this distance is called the classifier’s margin), since maximum-
margin learning generally reduces generalization error [66]. Although originally
designed for linearly separable classification tasks (hard-margin SVMs), SVMs
were extended to nonlinearly separable classification problems by Vapnik [25] (soft-
margin SVMs), which allow some samples to violate the margin. In particular, a
soft-margin SVM is learned by solving the following convex quadratic program
(QP):

min
w,b,ξ

1
2

w�w+C
n

∑
i=1

ξi

s.t. ∀ i = 1, . . . ,n yi(w�xi + b)≥ 1− ξi and ξi ≥ 0 ,

where the margin is maximized by minimizing 1
2 w�w, and the variables ξi (referred

to as slack variables) represent the extent to which the samples, xi, violate the
margin. The parameter C tunes the trade-off between minimizing the sum of the
slack violation errors and maximizing the margin.

While the primal can be optimized directly, it is often solved via its (Lagrangian)
dual problem written in terms of Lagrange multipliers, αi, which are constrained
so that ∑n

i=1 αiyi = 0 and 0 ≤ αi ≤ C for i = 1, . . . ,n. Solving the dual has a
computational complexity that grows according to the size of the training data as
opposed to the feature space’s dimensionality. Further, in the dual formulation,
both the data and the slack variables become implicitly represented—the data is
represented by a kernel matrix, K, of all inner products between pairs of data points
(i.e., Ki, j = x�i x j) and each slack variable is associated with a Lagrangian multiplier
via the KKT conditions that arise from duality. Using the method of Lagrangian
multipliers, the dual problem is derived, in matrix form, as
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min
α

1
2

α�Qα− 1�n α

s.t.
n

∑
i=1

αiyi = 0 and ∀ i = 1, . . . ,n 0≤ αi ≤C ,

where Q = K ◦ yy� (the Hadamard product of K and yy�) and 1n is a vector of n
ones.

Through the kernel matrix, SVMs can be extended to more complex feature
spaces (where a linear classifier may perform better) via a kernel function—an
implicit inner product from the alternative feature space. That is, if some function
φ : X →Φ maps training samples into a higher-dimensional feature space, then Ki j

is computed via the space’s corresponding kernel function, κ(xi,x j) = φ(xi)
�φ(x j).

Thus, one need not explicitly know φ , only its corresponding kernel function.
Further, the dual problem and its KKT conditions elicit interesting properties

of the SVM. First, the optimal primal hyperplane’s normal vector, w, is a linear
combination of the training samples1; i.e., w=∑n

i=1 αiyixi. Second, the dual solution
is sparse, and only samples that lie on or within the hyperplane’s margin have a
nonzero α-value. Thus, if αi = 0, the corresponding sample xi is correctly classified,
lies beyond the margin (i.e., yi(w�xi + b)> 1), and is called a non-support vector.
If αi = C, the ith sample violates the margin (i.e., yi(w�xi + b) < 1) and is an
error vector. Finally, if 0 < αi < C, the ith sample lies exactly on the margin
(i.e., yi(w�xi + b) = 1) and is a support vector. As a consequence, the optimal
displacement b can be determined by averaging yi−w�xi over the support vectors.

4.2.2 Machine Learning for Computer Security: Motivation,
Trends, and Arms Races

In this section, we motivate the recent adoption of machine-learning techniques in
computer security and discuss the novel issues this trend raises. In the last decade,
security systems increased in complexity to counter the growing sophistication
and variability of attacks; a result of a long-lasting and continuing arms race in
security-related applications such as malware detection, intrusion detection, and
spam filtering. The main characteristics of this struggle and the typical approaches
pursued in security to face it are discussed in Sect. 4.2.3.1. We now discuss some
examples that better explain this trend and motivate the use of modern machine-
learning techniques for security applications.

In the early years, the attack surface (i.e., the vulnerable points of a system)
of most systems was relatively small and most attacks were simple. In this

1This is an instance of the Representer Theorem which states that solutions to a large class of
regularized ERM problems lie in the span of the training data [61].
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era, signature-based detection systems (e.g., rule-based systems based on string-
matching techniques) were considered sufficient to provide an acceptable level of
security. However, as the complexity and exposure of sensitive systems increased in
the Internet Age, more targets emerged and the incentive for attacking them became
increasingly attractive, thus providing a means and motivation for developing
sophisticated and diverse attacks. Since signature-based detection systems can only
detect attacks matching an existing signature, attackers used minor variations of
their attacks to evade detection (e.g., string-matching techniques can be evaded by
slightly changing the attack code). To cope with the increasing variability of attack
samples and to detect never-before-seen attacks, machine-learning approaches have
been increasingly incorporated into these detection systems to complement tradi-
tional signature-based detection. These two approaches can be combined to make
accurate and agile detection: signature-based detection offers fast and lightweight
filtering of most known attacks, while machine-learning approaches can process the
remaining (unfiltered) samples and identify new (or less well-known) attacks.

The Quest of Image Spam. A recent example of the above arms race is image
spam (see, e.g., [10]). In 2006, to evade the textual-based spam filters, spammers
began rendering their messages into images included as attachments, thus producing
“image-based spam,” or image spam for short. Due to the massive volume of image
spam sent in 2006 and 2007, researchers and spam-filter designers proposed several
different countermeasures. Initially, suspect images were analyzed by OCR tools
to extract text for standard spam detection, and then signatures were generated
to block the (known) spam images. However, spammers immediately reacted
by randomly obfuscating images with adversarial noise, both to make OCR-
based detection ineffective and to evade signature-based detection. The research
community responded with (fast) approaches mainly based on machine-learning
techniques using visual features extracted from images, which could accurately
discriminate between spam images and legitimate ones (e.g., photographs and
plots). Although image spam volumes have since declined, the exact cause for
this decrease is debatable—these countermeasures may have played a role, but the
image spam were also more costly to the spammer as they required more time
to generate and more bandwidth to deliver, thus limiting the spammers’ ability
to send a high volume of messages. Nevertheless, had this arms race continued,
spammers could have attempted to evade the countermeasures by mimicking the
feature values exhibited by legitimate images, which would have, in fact, forced
spammers to increase the number of colors and elements in their spam images, thus
further increasing the size of such files and the cost of sending them.

Misuse and Anomaly Detection in Computer Networks. Another example of the
above arms race can be found in network intrusion detection, where misuse detection
has been gradually augmented by anomaly detection. The former approach relies
on detecting attacks on the basis of signatures extracted from (known) intrusive
network traffic, while the latter is based upon a statistical model of the normal profile
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of the network traffic and detects anomalous traffic that deviates from the assumed
model of normality. This model is often constructed using machine-learning
techniques, such as one-class classifiers (e.g., one-class SVMs), or, more generally,
using density estimators. The underlying assumption of anomaly-detection-based
intrusion detection, though, is that all anomalous network traffic is, in fact, intrusive.
Although intrusive traffic often does exhibit anomalous behavior, the opposite is not
necessarily true: some non-intrusive network traffic may also behave anomalously.
Thus, accurate anomaly detectors often suffer from high false-alarm rates.

4.2.3 Adversarial Machine Learning

As witnessed by the above examples, the introduction of machine-learning tech-
niques in security-sensitive tasks has many beneficial aspects, and it has been
somewhat necessitated by the increased sophistication and variability of recent
attacks and zero-day exploits. However, there is good reason to believe that
machine-learning techniques themselves will be subject to carefully designed
attacks in the near future, as a logical next step in the above-sketched arms
race. Since machine-learning techniques were not originally designed to withstand
manipulations made by intelligent and adaptive adversaries, it would be reckless
to naively trust these learners in a secure system. Instead, one needs to carefully
consider whether these techniques can introduce novel vulnerabilities that may
degrade the overall system’s security, or whether they can be safely adopted. In other
words, we need to address the question raised by Barreno et al. [5]: can machine
learning be secure?

At the center of this question is the effect an adversary can have on a learner by
violating the stationarity assumption that the training data used to train the classifier
comes from the same distribution as the test data that will be classified by the
learned classifier. This is a conventional and natural assumption underlying much
of machine learning and is the basis for performance-evaluation-based techniques
like cross-validation and bootstrapping as well as for principles like empirical risk
minimization (ERM). However, in security-sensitive settings, the adversary may
purposely manipulate data to mislead learning. Accordingly, the data distribution is
subject to change, thereby potentially violating non-stationarity, albeit, in a limited
way subject to the adversary’s assumed capabilities (as we discuss in Sect. 4.3.1.3).
Further, as in most security tasks, predicting how the data distribution will change is
difficult, if not impossible [12, 36]. Hence, adversarial learning problems are often
addressed as a proactive arms race [12], in which the classifier designer tries to
anticipate the next adversary’s move, by simulating and hypothesizing proper attack
scenarios, as discussed in the next section.
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Adversary Classifier designer

1. Analyze classifier

2. Devise attack 3. Analyze attack

4. Develop countermeasure
    (e.g., add features, retraining) 

Fig. 4.1 A conceptual representation of the reactive arms race [12]

4.2.3.1 Reactive and Proactive Arms Races

As mentioned in the previous sections, and highlighted by the examples in
Sect. 4.2.2, security problems are often cast as a long-lasting reactive arms race
between the classifier designer and the adversary, in which each player attempts
to achieve his/her goal by reacting to the changing behavior of his/her opponent.
For instance, the adversary typically crafts samples to evade detection (e.g., a
spammer’s goal is often to create spam emails that will not be detected), while
the classifier designer seeks to develop a system that accurately detects most
malicious samples while maintaining a very low false-alarm rate; i.e., by not falsely
identifying legitimate examples. Under this setting, the arms race can be modeled
as the following cycle [12]. First, the adversary analyzes the existing learning
algorithm and manipulates his/her data to evade detection (or more generally, to
make the learning algorithm ineffective). For instance, a spammer may gather some
knowledge of the words used by the targeted spam filter to block spam and then
manipulate the textual content of her spam emails accordingly; e.g., words like
“cheap” that are indicative of spam can be misspelled as “che4p.” Second, the
classifier designer reacts by analyzing the novel attack samples and updating his/her
classifier. This is typically done by retraining the classifier on the newly collected
samples, and/or by adding features that can better detect the novel attacks. In the
previous spam example, this amounts to retraining the filter on the newly collected
spam and, thus, to adding novel words into the filter’s dictionary (e.g., “che4p” may
be now learned as a spammy word). This reactive arms race continues in perpetuity
as illustrated in Fig. 4.1.

However, reactive approaches to this arms race do not anticipate the next
generation of security vulnerabilities and thus, the system potentially remains vul-
nerable to new attacks. Instead, computer security guidelines traditionally advocate
a proactive approach2—the classifier designer should proactively anticipate the
adversary’s strategy by (1) identifying the most relevant threats, (2) designing proper
countermeasures into his/her classifier, and (3) repeating this process for his/her new

2Although in certain abstract models we have shown how regret-minimizing online learning can
be used to define reactive approaches that are competitive with proactive security [6].
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Classifier designer Classifier designer

1. Model adversary

2. Simulate attack 3. Evaluate attack’s impact

4. Develop countermeasure
(if the attack has a relevant impact)

Fig. 4.2 A conceptual
representation of the
proactive arms race [12]

design before deploying the classifier. This can be accomplished by modeling the
adversary (based on knowledge of the adversary’s goals and capabilities) and using
this model to simulate attacks, as is depicted in Fig. 4.2 to contrast the reactive
arms race. While such an approach does not account for unknown or changing
aspects of the adversary, it can indeed lead to an improved level of security by
delaying each step of the reactive arms race because it should reasonably force the
adversary to exert greater effort (in terms of time, skills, and resources) to find new
vulnerabilities. Accordingly, proactively designed classifiers should remain useful
for a longer time, with less frequent supervision or human intervention and with
less severe vulnerabilities.

Although this approach has been implicitly followed in most of the previous
work (see Sect. 4.2.3.2), it has only recently been formalized within a more general
framework for the empirical evaluation of a classifier’s security [12], which we
summarize in Sect. 4.3. Finally, although security evaluation may suggest specific
countermeasures, designing general-purpose secure classifiers remains an open
problem.

4.2.3.2 Previous Work on Security Evaluation

Previous work in adversarial learning can be categorized according to the two main
steps of the proactive arms race described in the previous section. The first research
direction focuses on identifying potential vulnerabilities of learning algorithms
and assessing the impact of the corresponding attacks on the targeted classifier;
e.g., [4, 5, 18, 36, 40–42, 46]. The second explores the development of proper
countermeasures and learning algorithms robust to known attacks; e.g., [26,41,58].

Although some prior work does address aspects of the empirical evaluation of
classifier security, which is often implicitly defined as the performance degradation
incurred under a (simulated) attack, to our knowledge a systematic treatment of
this process under a unifying perspective was only first described in our recent
work [12]. Previously, security evaluation is generally conducted within a specific
application domain such as spam filtering and network intrusion detection (e.g., in
[26, 31, 41, 47, 67]), in which a different application-dependent criteria is separately
defined for each endeavor. Security evaluation is then implicitly undertaken by
defining an attack and assessing its impact on the given classifier. For instance,
in [31], the authors showed how camouflage network packets can mimic legitimate
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traffic to evade detection; and, similarly, in [26, 41, 47, 67], the content of spam
emails was manipulated for evasion. Although such analyses provide indispensable
insights into specific problems, their results are difficult to generalize to other
domains and provide little guidance for evaluating classifier security in a different
application. Thus, in a new application domain, security evaluation often must begin
anew and it is difficult to directly compare with prior studies. This shortcoming
highlights the need for a more general set of security guidelines and a more
systematic definition of classifier security evaluation that we began to address in
[12].

Apart from application-specific work, several theoretical models of adversarial
learning have been proposed [4, 17, 26, 36, 40, 42, 46, 54]. These models frame the
secure learning problem and provide a foundation for a proper security evaluation
scheme. In particular, we build upon elements of the models of [4, 5, 36, 38, 40, 42],
which were used in defining our framework for security evaluation [12]. Below we
summarize these foundations.

4.2.3.3 A Taxonomy of Potential Attacks Against Machine
Learning Algorithms

A taxonomy of potential attacks against pattern classifiers was proposed in [4,5,36]
as a baseline to characterize attacks on learners. The taxonomy is based on three
main features: the kind of influence of attacks on the classifier, the kind of security
violation they cause, and the specificity of an attack. The attack’s influence can be
either causative, if it aims to undermine learning, or exploratory, if it targets the
classification phase. Accordingly, a causative attack may manipulate both training
and testing data, whereas an exploratory attack only affects testing data. Examples
of causative attacks include work in [14, 38, 40, 53, 59], while exploratory attacks
can be found in [26,31,41,47,67]. The security violation can be either an integrity
violation, if it aims to gain unauthorized access to the system (i.e., to have malicious
samples be misclassified as legitimate); an availability violation, if the goal is to
generate a high number of errors (both false-negatives and false-positives) such
that normal system operation is compromised (e.g., legitimate users are denied
access to their resources); or a privacy violation, if it allows the adversary to obtain
confidential information from the classifier (e.g., in biometric recognition, this may
amount to recovering a protected biometric template of a system’s client). Finally,
the attack specificity refers to the samples that are affected by the attack. It ranges
continuously from targeted attacks (e.g., if the goal of the attack is to have a specific
spam email misclassified as legitimate) to indiscriminate attacks (e.g., if the goal
is to have any spam email misclassified as legitimate).

Each portion of the taxonomy specifies a different type of attack as laid out in
Barreno et al. [4] and here we outline these with respect to a PDF malware detector.
An example of a causative integrity attack is an attacker who wants to mislead
the malware detector to falsely classify malicious PDFs as benign. The attacker
could accomplish this goal by introducing benign PDFs with malicious features
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into the training set and the attack would be targeted if the features corresponded to
a particular malware or otherwise an indiscriminate attack. Similarly, the attacker
could cause a causative availability attack by injecting malware training examples
that exhibited features common to benign messages; again, these would be targeted
if the attacker wanted a particular set of benign PDFs to be misclassified. A
causative privacy attack, however, would require both manipulation of the training
and information obtained from the learned classifier. The attacker could inject
malicious PDFs with features identifying a particular author and then subsequently
test if other PDFs with those features were labeled as malicious; this observed
behavior may leak private information about the authors of other PDFs in the
training set.

In contrast to the causative attacks, exploratory attacks cannot manipulate the
learner, but can still exploit the learning mechanism. An example of an exploratory
integrity attack involves an attacker who crafts a malicious PDF for an existing
malware detector. This attacker queries the detector with candidate PDFs to discover
which attributes the detector uses to identify malware, thus, allowing his/her to
redesign his/her PDF to avoid the detector. This example could be targeted to a
single PDF exploit or indiscriminate if a set of possible exploits are considered.
An exploratory privacy attack against the malware detector can be conducted in
the same way as the causative privacy attack described above, but without first
injecting PDFs into the training data. Simply by probing the malware detector
with crafted PDFs, the attacker may divulge secrets from the detector. Finally,
exploratory availability attacks are possible in some applications but are not
currently considered to be of interest.

4.3 A Framework for Security Evaluation

In Sects. 4.2.3 and 4.2.3.1, we motivated the need for simulating a proactive arms
race as a means for improving system security. We further argued that evaluating
a classifier’s security properties through simulations of different, potential attack
scenarios is a crucial step in this arms race for identifying the most relevant
vulnerabilities and for suggesting how to potentially counter them. Here, we
summarize our recent work [12] that proposes a new framework for designing
proactive secure classifiers by addressing the shortcomings of the reactive security
cycle raised above. Namely, our approach allows one to empirically evaluate a
classifier’s security during its design phase by addressing the first three steps of the
proactive arms race depicted in Fig. 4.2: (1) identifying potential attack scenarios,
(2) devising the corresponding attacks, and (3) systematically evaluating their
impact. Although it may also suggest countermeasures to the hypothesized attacks,
the final step of the proactive arms race remains unspecified as a unique design step
that has to be addressed separately in an application-specific manner.

Under our proposed security evaluation process, the analyst must clearly scruti-
nize the classifier by considering different attack scenarios to investigate a set of
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distinct potential vulnerabilities. This amounts to performing a more systematic
what-if analysis of classifier security [57]. This is an essential step in the design
of security systems, as it not only allows the designer to identify the most important
and relevant threats, but also it forces him/her to consciously decide whether the
classifier can be reasonably deployed, after being made aware of the corresponding
risks, or whether it is instead better to adopt additional countermeasure to mitigate
the attack’s impact before deploying the classifier.

Our proposed framework builds on previous work and attempts to systematize
and unify their views under a more coherent perspective. The framework defines
how an analyst can conduct a security audit of a classifier, which we detail in
the remainder of this section. First, in Sect. 4.3.1, we explain how an adversary
model is constructed according to the adversary’s anticipated goals, knowledge, and
capabilities. Based on this model, a simulation of the adversary can be conducted to
find the corresponding optimal attack strategies and produce simulated attacks, as
described in Sect. 4.3.1.4. These simulated attack samples are then used to evaluate
the classifier by adding them to either the training or test data, in accordance with the
adversary’s capabilities from Sect. 4.3.1.3. We conclude this section by discussing
how to exploit our framework in specific application domains in Sect. 4.3.2.

4.3.1 Modeling the Adversary

The proposed model of the adversary is based on specific assumptions about
his/her goal, knowledge of the system, and capability to modify the underlying data
distribution by manipulating individual samples. It allows the classifier designer to
model the attacks identified in the attack taxonomy described as in Sect. 4.2.3.3 [4,
5, 36]. However, in our framework, one can also incorporate application-specific
constraints into the definition of the adversary’s capability. Therefore, it can be
exploited to derive practical guidelines for developing optimal attack strategies and
to guide the design of adversarially resilient classifiers.

4.3.1.1 Adversary’s Goal

According to the taxonomy presented first by Barreno et al. [5] and extended by
Huang et al. [36], the adversary’s goal should be defined based on the anticipated
security violation, which might be an integrity, availability, or privacy violation
(see Sect. 4.2.3.3), and also depending on the attack’s specificity, which ranges
from targeted to indiscriminate. Further, as suggested by Laskov and Kloft [42]
and Kloft and Laskov [40], the adversary’s goal should be defined in terms of an
objective function that the adversary is willing to maximize. This allows for a formal
characterization of the optimal attack strategy.

For instance, in an indiscriminate integrity attack, the adversary may aim
to maximize the number of spam emails that evade detection, while minimally
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Fig. 4.3 A representation of the design steps of a machine-learning system [29] that may provide
sources of knowledge for the adversary

manipulating their content [26, 46, 54], whereas in an indiscriminate availability
attack, the adversary may aim to maximize the number of classification errors,
thereby causing a general denial-of-service due to an excess of false alarms [14,53].

4.3.1.2 Adversary’s Knowledge

The adversary’s knowledge of the attacked system can be defined based on the
main components involved in the design of a machine-learning system, as described
in [29] and depicted in Fig. 4.3.

According to the five design steps depicted in Fig. 4.3, the adversary may
have various degrees of knowledge (ranging from no information to complete
information) pertaining to the following five components:

(k.i) the training set (or part of it);
(k.ii) the feature representation of each sample; i.e., how real objects (emails,

network packets, etc.) are mapped into the feature space;
(k.iii) the learning algorithm and its decision function; e.g., that logistic regression

is used to learn a linear classifier;
(k.iv) the learned classifier’s parameters; e.g., the actual learned weights of a linear

classifier;
(k.v) feedback from the deployed classifier; e.g., the classification labels assigned

to some of the samples by the targeted classifier.

These five elements represent different levels of knowledge about the system
being attacked. A typical hypothesized scenario assumes that the adversary has per-
fect knowledge of the targeted classifier (k.iv). Although potentially too pessimistic,
this worst-case setting allows one to compute a lower bound on the classifier
performance when it is under attack [26, 41]. A more realistic setting is that the
adversary knows the (untrained) learning algorithm (k.iii), and he/she may exploit
feedback from the classifier on the labels assigned to some query samples (k.v),
either to directly find optimal or nearly optimal attack instances [46,54] or to learn a
surrogate classifier, which can then serve as a template to guide the attack against the
actual classifier. We refer to this scenario as a limited knowledge setting in Sect. 4.4.
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Note that one may also make more restrictive assumptions on the adversary’s
knowledge, such as considering partial knowledge of the feature representation
(k.ii), or a complete lack of knowledge of the learning algorithm (k.iii). Investigating
classifier security against these uninformed adversaries may yield a higher level
of security. However, such assumptions would be contingent on security through
obscurity; that is, the provided security would rely upon secrets that must be kept
unknown to the adversary even though such a high level of secrecy may not be prac-
tical. Reliance on unjustified secrets can potentially lead to catastrophic unforeseen
vulnerabilities. Thus, this paradigm should be regarded as being complementary to
security by design, which instead advocates that systems should be designed from
the ground-up to be secure and, if secrets are assumed, they must be well justified.
Accordingly, security is often investigated by assuming that the adversary knows at
least the learning algorithm and the underlying feature representation.

4.3.1.3 Adversary’s Capability

We now give some guidelines on how the attacker may be able to manipulate sam-
ples and the corresponding data distribution. As discussed in Sect. 4.2.3.3 [4, 5, 36],
the adversary may control both training and test data (causative attacks), or only on
test data (exploratory attacks). Further, training and test data may follow different
distributions, since they can be manipulated according to different attack strategies
by the adversary. Therefore, we should specify:

(c.i) whether the adversary can manipulate training (TR) and/or testing (TS) data;
i.e., the attack influence from the taxonomy in [4, 5, 36];

(c.ii) whether and to what extent the attack affects the class priors, for TR and TS;
(c.iii) which and how many samples can be modified in each class, for TR and TS;
(c.iv) which features of each attack sample can be modified and how can these

features’ values be altered; e.g., correlated feature values cannot be modified
independently.

Assuming a generative model p(X,Y ) = p(Y )p(X|Y ) (where we use ptr and pts

for training and test distributions, respectively), assumption (c.ii) specifies how an
attack can modify the priors ptr(Y ) and pts(Y ), while assumptions (c.iii) and (c.iv)
specify how it can alter the class-conditional distributions ptr(X|Y ) and pts(X|Y ).

To perform security evaluation according to the hypothesized attack scenario,
it is thus clear that the collected data and generated attack samples should be
resampled according to the above distributions to produce suitable training and
test set pairs. This can be accomplished through existing resampling algorithms
like cross-validation or bootstrapping, when the attack samples are independently
sampled from an identical distribution (i.i.d.). Otherwise, one may consider different
sampling schemes. For instance, in Biggio et al. [14] the attack samples had to
be injected into the training data, and each attack sample depended on thecurrent



4 Security Evaluation of SVMs in Adversarial Environments 119

training data, which also included past attack samples. In this case, it was sufficient
to add one attack sample at a time, until the desired number of samples was
reached.3

4.3.1.4 Attack Strategy

Once specific assumptions on the adversary’s goal, knowledge, and capability
are made, one can compute the optimal attack strategy corresponding to the
hypothesized attack scenario; i.e., the adversary model. This amounts to solving
the optimization problem defined according to the adversary’s goal, under proper
constraints defined in accordance with the adversary’s assumed knowledge and
capabilities. The attack strategy can then be used to produce the desired attack
samples, which then have to be merged consistently to the rest of the data to produce
suitable training and test sets for the desired security evaluation, as explained in the
previous section. Specific examples of how to derive optimal attacks against SVMs
and how to resample training and test data to properly include them are discussed in
Sects. 4.4 and 4.5.

4.3.2 How to Use Our Framework

We summarize here the steps that can be followed to correctly use our framework
in specific application scenarios:

1. hypothesize an attack scenario by identifying a proper adversary’s goal, and
according to the taxonomy in [4, 5, 36];

2. define the adversary’s knowledge according to (k.i–v), and capabilities according
to (c.i–iv);

3. formulate the corresponding optimization problem and devise the corresponding
attack strategy;

4. resample the collected (training and test) data accordingly;
5. evaluate classifier’s security on the resampled data (including attack samples);
6. repeat the evaluation for different levels of adversary’s knowledge and/or

capabilities, if necessary; or hypothesize a different attack scenario.

In the next sections we show how our framework can be applied to investigate
three security threats to SVMs: evasion, poisoning, and privacy violations. We then
discuss how our findings may be used to improve the security of such classifiers
to the considered attacks. For instance, we show how careful kernel parameter
selection, which trades off between security to attacks and classification accuracy,
may complicate the adversary’s task of subverting the learning process.

3See [12] for more details on the definition of the data distribution and the resampling algorithm.
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4.4 Evasion Attacks Against SVMs

In this section, we consider the problem of SVM evasion at test time; i.e., how
to optimally manipulate samples at test time to avoid detection. The problem of
evasion at test time has been considered in previous work albeit limited either to
simple decision functions such as linear classifiers [26, 46], or to cover any convex-
inducing classifiers [54] that partition the feature space into two sets, one of which
is convex, but do not include most interesting families of nonlinear classifiers such
as neural nets or SVMs. In contrast to this prior work, the methods presented in
our recent work [8] and in this section demonstrate that evasion of kernel-based
classifiers at test time can be realized with a straightforward gradient-descent-based
approach derived from Golland’s technique of discriminative directions [33]. As a
further simplification of the attacker’s effort, we empirically show that, even if the
adversary does not precisely know the classifier’s decision function, he/she can learn
a surrogate classifier on a surrogate dataset and reliably evade the targeted classifier.

This section is structured as follows. In Sect. 4.4.1, we define the model of the
adversary, including his/her attack strategy, according to our evaluation framework
described in Sect. 4.3.1. Then, in Sect. 4.4.2 we derive the attack strategy that will
be employed to experimentally evaluate evasion attacks against SVMs. We report
our experimental results in Sect. 4.4.3. Finally, we critically discuss and interpret
our research findings in Sect. 4.4.4.

4.4.1 Modeling the Adversary

We show here how our framework can be applied to evaluate the security of SVMs
against evasion attacks. We first introduce our notation, state our assumptions about
attack scenario, and then derive the corresponding optimal attack strategy.

Notation. We consider a classification algorithm f : X 	→ Y that assigns samples
represented in some feature space x ∈X to a label in the set of predefined classes
y ∈ Y = {−1,+1}, where −1 (+1) represents the legitimate (malicious) class.
The label fx = f (x) given by a classifier is typically obtained by thresholding a
continuous discriminant function g : X 	→R. Without loss of generality, we assume
that f (x) =−1 if g(x)< 0, and +1 otherwise. Further, note that we use fx to refer
to a label assigned by the classifier for the point x (rather than the true label y of that
point) and the shorthand fi for the label assigned to the ith training point, xi.

4.4.1.1 Adversary’s Goal

Malicious (positive) samples are manipulated to evade the classifier. The adversary
may be satisfied when a sample x is found such that g(x) < −ε where ε > 0 is a
small constant. However, as mentioned in Sect. 4.3.1.1, these attacks may be easily
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defeated by simply adjusting the decision threshold to a slightly more conservative
value (e.g., to attain a lower false negative rate at the expense of a higher false
positive rate). For this reason, we assume a smarter adversary, whose goal is to
have his/her attack sample misclassified as legitimate with the largest confidence.
Analytically, this statement can be expressed as follows: find an attack sample x
that minimizes the value of the classifier’s discriminant function g(x). Indeed, this
adversarial setting provides a worst-case bound for the targeted classifier.

4.4.1.2 Adversary’s Knowledge

We investigate two adversarial settings. In the first, the adversary has perfect
knowledge (PK) of the targeted classifier; i.e., he/she knows the feature space (k.ii)
and function g(x) (k.iii–iv). Thus, the labels from the targeted classifier (k.v) are not
needed. In the second, the adversary is assumed to have limited knowledge (LK)
of the classifier. We assume he/she knows the feature representation (k.ii) and the
learning algorithm (k.iii), but that he/she does not know the learned classifier g(x)
(k.iv). In both cases, we assume the attacker does not have knowledge of the training
set (k.i).

Within the LK scenario, the adversary does not know the true discriminant
function g(x) but may approximate it as ĝ(x) by learning a surrogate classifier
on a surrogate training set {(xi,yi)}nq

i=1 of nq samples. This data may be collected
by the adversary in several ways; e.g., he/she may sniff network traffic or collect
legitimate and spam emails from an alternate source. Thus, for LK, there are two
sub-cases related to assumption (k.v), which depend on whether the adversary can
query the classifier. If so, the adversary can build the training set by submitting
a set of nq queries xi to the targeted classifier to obtain their classification labels,
yi = f (xi). This is indeed the adversary’s true learning task, but it requires him/her
to have access to classifier feedback; e.g., by having an email account protected by
the targeted filter (for public email providers, the adversary can reasonably obtain
such accounts). If not, the adversary may use the true class labels for the surrogate
data, although this may not correctly approximate the targeted classifier (unless it is
very accurate).

4.4.1.3 Adversary’s Capability

In the evasion setting, the adversary can only manipulate testing data (c.i); i.e.,
he/she has no way to influence training data. We further assume here that the
class priors cannot be modified (c.ii), and that all the malicious testing samples
are affected by the attack (c.iii). In other words, we are interested in simulating
an exploratory, indiscriminate attack. The adversary’s capability of manipulating
the features of each sample (c.iv) should be defined based on application-specific
constraints. However, at a more general level we can bound the attack point to lie
within some maximum distance from the original attack sample, dmax, which then
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is a parameter of our evaluation. Similarly to previous work, the definition of a
suitable distance measure d : X ×X 	→R is left to the specific application domain
[26, 46, 54]. Note indeed that this distance should reflect the adversary’s effort or
cost in manipulating samples, by considering factors that can limit the overall attack
impact; e.g., the increase in the file size of a malicious PDF, since larger files will
lower the infection rate due to increased transmission times. For spam filtering,
distance is often given as the number of modified words in each spam [26,46,53,54],
since it is assumed that highly modified spam messages are less effectively able to
convey the spammer’s message.

4.4.1.4 Attack Strategy

Under the attacker’s model described in Sects. 4.4.1.1, 4.4.1.2, and 4.4.1.3, for
any target malicious sample x0 (the adversary’s true objective), an optimal attack
strategy finds a sample x∗ to minimize g or its estimate ĝ, subject to a bound on its
modification distance from x0:

x∗ = argmin
x

ĝ(x) s.t. d(x,x0)≤ dmax.

For several classifiers, minimizing g(x) is equivalent to maximizing the estimated
posterior p( fx = −1|x); e.g., for neural networks, since they directly output a
posterior estimate, and for SVMs, since their posterior can be estimated as a
sigmoidal function of the distance of x to the SVM hyperplane [56].

Generally, this is a nonlinear optimization, which one may optimize with many
well-known techniques (e.g., gradient-descent, Newton’s method, or BFGS) and
below we use a gradient-descent procedure. However, if ĝ(x) is not convex, descent
approaches may not find a global optima. Instead, the descent path may lead to a
flat region (local minimum) outside of the samples’ support where p(x)≈ 0 and the
classification behavior of g is unspecified and may stymie evasion attempts (see the
upper left plot in Fig. 4.4).

Unfortunately, our objective does not utilize the evidence we have about the
distribution of data p(x), and thus gradient descent may meander into unsupported
regions (p(x) ≈ 0) where g is relatively unspecified. This problem is further
compounded since our estimate ĝ is based on a finite (and possibly small) training
set making it a poor estimate of g in unsupported regions, which may lead to false
evasion points in these regions. To overcome these limitations, we introduce an
additional component into the formulation of our attack objective, which estimates
p(x| fx =−1) using density-estimation techniques. This second component acts as a
penalizer for x in low density regions and is weighted by a parameter λ ≥ 0 yielding
the following modified optimization problem:
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Fig. 4.4 Different scenarios for gradient-descent-based evasion procedures. In each, the function
g(x) of the learned classifier is plotted with a color map with high values (red-orange-yellow)
corresponding to the malicious class, low values (green-cyan-blue) corresponding to the benign
class, and a black decision boundary for the classifier. For every malicious sample, we plot the path
of a simple gradient-descent evasion for a classifier with a closed boundary around the malicious
class (upper left) or benign class (bottom left). Then, we plot the modified objective function of
Eq. (4.1) and the paths of the resulting density-augmented gradient descent for a classifier with a
closed boundary around the malicious (upper right) or benign class (bottom right)

argmin
x

E(x) = ĝ(x)− λ
n ∑

i| fi=−1

k
( x−xi

h

)
(4.1)

s.t. d(x,x0)≤ dmax,

where h is a bandwidth parameter for a kernel density estimator (KDE) and n is
the number of benign samples ( fx = −1) available to the adversary. This alternate
objective trades off between minimizing ĝ(x) (or p( fx =−1|x)) and maximizing the
estimated density p(x| fx =−1). The extra component favors attack points to imitate
features of known samples classified as legitimate, as in mimicry attacks [31].
In doing so, it reshapes the objective function and thereby biases the resulting
density-augmented gradient descent towards regions where the negative class is
concentrated (see the bottom-right plot in Fig. 4.4).

Finally, note that this behavior may lead our technique to disregard attack
patterns within unsupported regions (p(x) ≈ 0) for which g(x) < 0, when they do
exist (see, e.g., the upper right plot in Fig. 4.4). This may limit classifier evasion
especially when the constraint d(x,x0) ≤ dmax is particularly strict. Therefore, the
trade-off between the two components of the objective function should be carefully
considered.
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Algorithm 1 Gradient-descent attack procedure
Input: the initial attack point, x0; the step size, t; the trade-off parameter, λ ; and ε > 0.
Output: x∗, the final attack point.

1: k← 0.
2: repeat
3: k← k+1
4: Set ∇E(xk−1) to a unit vector aligned with ∇g(xk−1)−λ ∇p(xk−1| fx =−1).
5: xk← xk−1− t∇E(xk−1)
6: if d(xk,x0)> dmax then
7: Project xk onto the boundary of the feasible region (enforcing application-specific

constraints, if any).
8: end if
9: until E

(
xk
)−E

(
xk−1

)
< ε

10: return: x∗ = xk

4.4.2 Evasion Attack Algorithm

Algorithm 1 details a gradient-descent method for optimizing problem of Eq. (4.1).
It iteratively modifies the attack point x in the feature space as x′ ← x− t∇E , where
∇E is a unit vector aligned with the gradient of our objective function, and t is the
step size. We assume g to be differentiable almost everywhere (subgradients may be
used at discontinuities). When g is non-differentiable or is not smooth enough for
a gradient descent to work well, it is also possible to rely upon the mimicry / KDE
term in the optimization of Eq. (4.1).

In the next sections, we show how to compute the components of ∇E; namely,
the gradient of the discriminant function g(x) of SVMs for different kernels, and the
gradient of the mimicking component (density estimation). We finally discuss how
to project the gradient ∇E onto the feasible region in discrete feature spaces.

4.4.2.1 Gradient of Support Vector Machines

For SVMs, g(x) = ∑i αiyik(x,xi) + b. The gradient is thus given by ∇g(x) =
∑i αiyi∇k(x,xi). Accordingly, the feasibility of the approach depends on the com-
putability of this kernel gradient ∇k(x,xi), which is computable for many numeric
kernels. In the following, we report the kernel gradients for three main cases: (a) the
linear kernel, (b) the RBF kernel, and (c) the polynomial kernel.

(a) Linear Kernel. In this case, the kernel is simply given by k(x,xi) = 〈x,xi〉.
Accordingly, ∇k(x,xi) = xi (we remind the reader that the gradient has to
be computed with respect to the current attack sample x), and ∇g(x) = w =

∑i αiyixi.
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(b) RBF Kernel. For this kernel, k(x,xi) = exp{−γ‖x− xi‖2}. The gradient is thus
given by ∇k(x,xi) =−2γ exp{−γ‖x− xi‖2}(x− xi).

(c) Polynomial Kernel. In this final case, k(x,xi) = (〈x,xi〉+ c)p. The gradient is
thus given by ∇k(x,xi) = p(〈x,xi〉+ c)p−1xi.

4.4.2.2 Gradients of Kernel Density Estimators

As with SVMs, the gradient of kernel density estimators depends on the gradient of
its kernel. We considered generalized RBF kernels of the form

k
( x−xi

h

)
= exp

(
− d(x,xi)

h

)
,

where d(·, ·) is any suitable distance function. We used here the same distance d(·, ·)
used in Eq. (4.1), but they can be different, in general. For �2- and �1-norms (i.e.,
RBF and Laplacian kernels), the KDE (sub)gradients are, respectively, given by:

− 2
nh ∑

i| fi=−1

exp

(
−‖x− xi‖2

2

h

)
(x− xi) ,

− 1
nh ∑

i| fi=−1

exp

(
−‖x− xi‖1

h

)
(x− xi) .

Note that the scaling factor here is proportional to O( 1
nh ). Therefore, to influence

gradient descent with a significant mimicking effect, the value of λ in the objective
function should be chosen such that the value of λ

nh is comparable to (or higher than)
the range of the discriminant function ĝ(x).

4.4.2.3 Gradient-Descent Attack in Discrete Spaces

In discrete spaces, gradient approaches may lead to a path through infeasible
portions of the feature space. In such cases, we need to find feasible neighbors x
that yield a steepest descent; i.e., maximally decreasing E(x). A simple approach
to this problem is to probe E at every point in a small neighborhood of x: x′ ←
argminz∈N (x) E(z). However, this approach requires a large number of queries. For
classifiers with a differentiable decision function, we can instead use the neighbor
whose difference from x best aligns with ∇E(x); i.e., the update becomes

x′ ← arg max
z∈N (x)

(z−x)
‖z−x‖

�
∇E(x) .

Thus, the solution to the above alignment is simply to modify a feature that satisfies
argmaxi |∇E(x)i| for which the corresponding change leads to a feasible state. Note,



126 B. Biggio et al.

however that, sometimes, such a step may be relatively quite large and may lead
the attack out of a local minimum potentially increasing the objective function.
Therefore, one should consider the best alignment that effectively reduces the
objective function by disregarding features that lead to states where the objective
function is higher.

4.4.3 Experiments

In this section, we first report some experimental results on the MNIST handwritten
digit classification task [32, 45] that visually demonstrate how the proposed algo-
rithm modifies digits to mislead classification. This dataset is particularly useful
because the visual nature of the handwritten digit data provides a semantic meaning
for attacks. We then show the effectiveness of the proposed attack on a more realistic
and practical scenario: the detection of malware in PDF files.

4.4.3.1 Handwritten Digits

We first focus on a two-class sub-problem of discriminating between two distinct
digits from the MNIST dataset [45]. Each digit example is represented as a grayscale
image of 28× 28 pixels arranged in raster-scan-order to give feature vectors of d =
28× 28 = 784 values. We normalized each feature (pixel) x f ∈ [0,1]d by dividing
its value by 255, and we constrained the attack samples to this range. Accordingly,
we optimized Eq. (4.1) subject to 0≤ x f ≤ 1 for all f .

For our attacker, we assume the perfect knowledge (PK) attack scenario. We
used the Manhattan distance (�1-norm) as the distance function, d, both for the
kernel density estimator (i.e., a Laplacian kernel) and for the constraint d(x,x0) ≤
dmax of Eq. (4.1), which bounds the total difference between the gray-level values
of the original image x0 and the attack image x. We used an upper bound of dmax =
5000
255 to limit the total change in the gray-level values to 5000. At each iteration, we

increased the �1-norm value of x− x0 by 10
255 , which is equivalent to increasing the

difference in the gray-level values by 10. This is effectively the gradient step size.
For the digit discrimination task, we applied an SVM with the linear kernel

and C = 1. We randomly chose 100 training samples and applied the attacks to a
correctly classified positive sample.

In Fig. 4.5 we illustrate gradient attacks in which a “3” is to be misclassified as a
“7.” The left image shows the initial attack point, the middle image shows the first
attack image misclassified as legitimate, and the right image shows the attack point
after 500 iterations. When λ = 0, the attack images exhibit only a weak resemblance
to the target class “7” but are, nevertheless, reliably misclassified. This is the same
effect we observed in the left plot of Fig. 4.4: the classifier is evaded by making the
attack sample dissimilar to the malicious class. Conversely, when λ = 10 the attack
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Fig. 4.5 Illustration of the gradient attack on the MNIST digit data, for λ = 0 (top row) and λ = 10
(bottom row). Without a mimicry component (λ = 0) gradient descent quickly decreases g but the
resulting attack image does not resemble a “7.” In contrast, the attack minimizes g slower when
mimicry is applied (λ = 10), but the final attack image closely resembles a mixture between “3”
and “7,” as the term “mimicry” suggests

images strongly resemble the target class because the mimicry term favors samples
that are more similar to the target examples. This is the same effect illustrated in the
rightmost plot of Fig. 4.4.

4.4.3.2 Malware Detection in PDF Files

We focus now on the problem of discriminating between legitimate and malicious
PDF files, a popular medium for disseminating malware [68]. PDF files are excellent
vectors for malicious-code, due to their flexible logical structure, which can be
described by a hierarchy of interconnected objects. As a result, an attack can be
easily hidden in a PDF to circumvent file-type filtering. The PDF format further
allows a wide variety of resources to be embedded in the document including
JavaScript, Flash, and even binary programs. The type of the embedded
object is specified by keywords, and its content is in a data stream. Several recent
works proposed machine-learning techniques for detecting malicious PDFs use the
file’s logical structure to accurately identify the malware [50, 63, 64]. In this case
study, we use the feature representation of Maiorca et al. [50] in which each feature
corresponds to the tally of occurrences of a given keyword in the PDF file. Similar
feature representations were also exploited in [63, 64].

The PDF application imposes natural constraints on attacks. Although it is
difficult to remove an embedded object (and its corresponding keywords) without
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corrupting the PDF’s file structure, it is rather easy to insert new objects (and, thus,
keywords) through the addition of a new version to the PDF file [1, 49]. In our
feature representation, this is equivalent to allowing only feature increments; i.e.,
requiring x0 ≤ x as an additional constraint in the optimization problem given by
Eq. (4.1). Further, the total difference in keyword counts between two samples is
their Manhattan distance, which we again use for the kernel density estimator and
the constraint in Eq. (4.1). Accordingly, dmax is the maximum number of additional
keywords that an attacker can add to the original x0.

Experimental Setup. For experiments, we used a PDF corpus with 500 malicious
samples from the Contagio dataset4 and 500 benign samples collected from the
web. We randomly split the data into five pairs of training and testing sets with 500
samples each to average the final results. The features (keywords) were extracted
from each training set as described in [50]; on average, 100 keywords were found
in each run. Further, we also bounded the maximum value of each feature (keyword
count) to 100, as this value was found to be close to the 95th percentile for each
feature. This limited the influence of outlying samples having very high feature
values.

We simulated the perfect knowledge (PK) and the limited knowledge (LK)
scenarios described in Sect. 4.4.1.2. In the LK case, we set the number of samples
used to learn the surrogate classifier to nq = 100. The reason is to demonstrate
that even with a dataset as small as the 20% of the original training set size, the
adversary may be able to evade the targeted classifier with high reliability. Further,
we assumed that the adversary uses feedback from the targeted classifier f ; i.e.,
the labels ŷi = fi = f (xi) for each surrogate sample xi. Similar results were also
obtained using the true labels (without relabeling), since the targeted classifiers
correctly classified almost all samples in the test set.

As discussed in Sect. 4.4.2.2, the value of λ is chosen according to the scale
of the discriminant function g(x), the bandwidth parameter h of the kernel density
estimator, and the number of samples n labeled as legitimate in the surrogate training
set. For computational reasons, to estimate the value of the KDE at a given point x
in the feature space, we only consider the 50 nearest (legitimate) training samples
to x; therefore, n ≤ 50 in our case. The bandwidth parameter was set to h = 10, as
this value provided a proper rescaling of the Manhattan distances observed in our
dataset for the KDE. We thus set λ = 500 to be comparable with O(nh).

For each targeted classifier and training/testing pair, we learned five different
surrogate classifiers by randomly selecting nq samples from the test set and averaged
their results. For SVMs, we sought a surrogate classifier that would correctly match
the labels from the targeted classifier; thus, we used parametersC = 100, and γ = 0.1
(for the RBF kernel) to heavily penalize training errors.

Experimental Results. We report our results in Fig. 4.6, in terms of the false
negative (FN) rate attained by the targeted classifiers as a function of the maximum

4http://contagiodump.blogspot.it

http://contagiodump.blogspot.it
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Fig. 4.6 Experimental results for SVMs with the linear and the RBF kernel (first and second
columns). We report the FN values (attained at FP=0.5 %) for increasing dmax. For the sake of
readability, we report the average FN value ± half standard deviation (shown with error bars).
Results for perfect knowledge (PK) attacks with λ = 0 (without mimicry) are shown in the first
row, for different values of the considered classifier parameters, i.e., the regularization parameter C
for the linear SVM, and the kernel parameter γ for the SVM with RBF kernel (with C = 1). Results
for limited knowledge (LK) attacks with λ = 0 (without mimicry) are shown in the second row for
the linear SVM (for varying C), and the SVM with RBF kernel (for varying γ , with C = 1). Results
for perfect (PK) and limited knowledge (LK) with λ = 500 (with mimicry) are shown in the third
row for the linear SVM (with C = 1), and the SVM with RBF kernel (with γ = 1 and C = 1)

allowable number of modifications, dmax ∈ [0,50]. We compute the FN rate
corresponding to a fixed false positive (FP) rate of FP= 0.5%. For dmax = 0, the
FN rate corresponds to a standard performance evaluation using unmodified PDFs.
As expected, the FN rate increases with dmax as the PDF is increasingly modified,
since the adversary has more flexibility in his/her attack. Accordingly, a more secure
classifier will exhibit a more graceful increase of the FN rate.
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Results for λ = 0. We first investigate the effect of the proposed attack in the PK
case, without considering the mimicry component (Fig. 4.6, top row), for varying
parameters of the considered classifiers. The linear SVM (Fig. 4.6, top-left plot)
is almost always evaded with as few as 5–10 modifications, independent of the
regularization parameter C. It is worth noting that attacking a linear classifier
amounts to always incrementing the value of the same highest-weighted feature
(corresponding to the /Linearized keyword in the majority of the cases) until
it is bounded. This continues with the next highest-weighted non-bounded feature
until termination. This occurs simply because the gradient of g(x) does not depend
on x for a linear classifier (see Sect. 4.4.2.1). With the RBF kernel (Fig. 4.6, top-
right plot), SVMs exhibit a similar behavior with C = 1 and various values of its
γ parameter,5 and the RBF SVM provides a higher degree of security compared to
linear SVMs (cf. top-left plot and middle-left plot in Fig. 4.6).

In the LK case, without mimicry (Fig. 4.6, middle row), classifiers are evaded
with a probability only slightly lower than that found in the PK case, even when only
nq = 100 surrogate samples are used to learn the surrogate classifier. This aspect
highlights the threat posed by a skilled adversary with incomplete knowledge: only
a small set of samples may be required to successfully attack the target classifier
using the proposed algorithm.

Results for λ = 500. When mimicry is used (Fig. 4.6, bottom row), the success of
the evasion of linear SVMs (with C = 1) decreases both in the PK (e.g., compare the
blue curve in the top-left plot with the solid blue curve in the bottom-left plot) and
in the LK case (e.g., compare the blue curve in the middle-left plot with the dashed
blue curve in the bottom-left plot). The reason is that the computed direction tends to
lead to a slower descent; i.e., a less direct path that often requires more modifications
to evade the classifier. In the nonlinear case (Fig. 4.6, bottom-right plot), instead,
mimicking exhibits some beneficial aspects for the attacker, although the constraint
on feature addition may make it difficult to properly mimic legitimate samples. In
particular, note how the targeted SVMs with RBF kernel (with C = 1 and γ = 1) in
the PK case (e.g., compare the blue curve in the top-right plot with the solid blue
curve in the bottom-right plot) are evaded with a significantly higher probability than
in the case when λ = 0. The reason is that a pure descent strategy on g(x) may find
local minima (i.e., attack samples) that do not evade detection, while the mimicry
component biases the descent towards regions of the feature space more densely
populated by legitimate samples, where g(x) eventually attains lower values. In the
LK case (e.g., compare the blue curve in the middle-right plot with the dashed blue
curve in the bottom-right plot), however, mimicking does not exhibit significant
improvements.

Analysis. Our attacks raise questions about the feasibility of detecting mali-
cious PDFs solely based on logical structure. We found that /Linearized,

5We also conducted experiments using C = 0.1 and C = 100, but did not find significant differences
compared to the presented results using C = 1.
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/OpenAction, /Comment, /Root and /PageLayout were among the most
commonly manipulated keywords. They indeed are found mainly in legitimate
PDFs, but can be easily added to malicious PDFs by the versioning mechanism. The
attacker can simply insert comments inside the malicious PDF file to augment its
/Comment count. Similarly, he/she can embed legitimate OpenAction code to add
/OpenAction keywords or he/she can add new pages to insert /PageLayout
keywords.

In summary, our analysis shows that even detection systems that accurately
classify non-malicious data can be significantly degraded with only a few mali-
cious modifications. This aspect highlights the importance of developing detection
systems that are accurate, but also designed to be robust against adversarial
manipulation of attack instances.

4.4.4 Discussion

In this section, we proposed a simple algorithm that allows for evasion of SVMs with
differentiable kernels, and, more generally, of any classifier with a differentiable
discriminant function. We investigated the attack effectiveness in the case of perfect
knowledge of the attacked system. Further, we empirically showed that SVMs
can still be evaded with high probability even if the adversary can only learn a
classifier’s copy on surrogate data (limited knowledge). We believe that the proposed
attack formulation can easily be extended to classifiers with non-differentiable
discriminant functions as well, such as decision trees and k-nearest neighbors.

Our analysis also suggests some ideas for improving classifier security. In
particular, when the classifier tightly encloses the legitimate samples, the adversary
must increasingly mimic the legitimate class to evade (see Fig. 4.4), and this may not
always be possible; e.g., malicious network packets or PDF files still need to embed
a valid exploit, and some features may be immutable. Accordingly, a guideline for
designing secure classifiers is that learning should encourage a tight enclosure of
the legitimate class; e.g., by using a regularizer that penalizes classifying “blind
spots”—regions with low p(x)—as legitimate. Generative classifiers can be mod-
ified, by explicitly modeling the attack distribution, as in [11], and discriminative
classifiers can be modified similarly by adding generated attack samples to the
training set. However, these security improvements may incur higher FP rates.

In the above applications, the feature representations were invertible; i.e., there
is a direct mapping from the feature vectors x to a corresponding real-world sample
(e.g., a spam email, or PDF file). However, some feature mappings cannot be
trivially inverted; e.g., n-gram analysis [31]. In these cases, one may modify the
real-world object corresponding to the initial attack point at each step of the gradient
descent to obtain a sample in the feature space that as close as possible to the sample
that would be obtained at the next attack iteration. A similar technique has already
been exploited in to address the pre-image problem of kernel methods [14].
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Other interesting extensions include (1) considering more effective strategies
such as those proposed by [46,54] to build a small but representative set of surrogate
data to learn the surrogate classifier and (2) improving the classifier estimate ĝ(x);
e.g. using an ensemble technique like bagging to average several classifiers [16].

4.5 Poisoning Attacks Against SVMs

In the previous section, we devised a simple algorithm that allows for evasion of
classifiers at test time and showed experimentally how it can be exploited to evade
detection by SVMs and kernel-based classification techniques. Here we present
another kind of attack, based on our work in [14]. Its goal is to force the attacked
SVM to misclassify as many samples as possible at test time through poisoning of
the training data, that is, by injecting well-crafted attack samples into the training
set. Note that, in this case, the test data is assumed not to be manipulated by the
attacker.

Poisoning attacks are staged during classifier training, and they can thus target
adaptive or online classifiers, as well as classifiers that are being re-trained on
data collected during test time, especially if in an unsupervised or semi-supervised
manner. Examples of these attacks, besides our work [14], can be found in
[7,9,13,39,40,53,59]. They include specific application examples in different areas,
such as intrusion detection in computer networks [7,39,40,59], spam filtering [7,53],
and, most recently, even biometric authentication [9, 13].

In this section, we follow the same structure of Sect. 4.4. In Sect. 4.5.1, we define
the adversary model according to our framework; then, in Sects. 4.5.1.4 and 4.5.2
we, respectively, derive the optimal poisoning attack and the corresponding algo-
rithm; and, finally, in Sects. 4.5.3 and 4.5.4 we report our experimental findings and
discuss the results.

4.5.1 Modeling the Adversary

Here, we apply our framework to evaluate security against poisoning attacks. As
with the evasion attacks in Sect. 4.4.1, we model the attack scenario and derive the
corresponding optimal attack strategy for poisoning.

Notation. In the following, we assume that an SVM has been trained on a dataset
Dtr = {xi,yi}n

i=1 with xi ∈ R
d and yi ∈ {−1,+1}. The matrix of kernel values

between two sets of points is denoted with K, while Q = K◦ yy� denotes its label-
annotated version, and α denotes the SVM’s dual variables corresponding to each
training point. Depending on the value of αi, the training points are referred to as
margin support vectors (0 < αi < C, set S ), error support vectors (αi =C, set E ),
or reserve vectors (αi = 0, set R). In the sequel, the lowercase letters s,e,r are
used to index the corresponding parts of vectors or matrices; e.g., Qss denotes the
sub-matrix of Q corresponding to the margin support vectors.
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4.5.1.1 Adversary’s Goal

For a poisoning attack, the attacker’s goal is to find a set of points whose addition to
Dtr maximally decreases the SVM’s classification accuracy. For simplicity, we start
considering the addition of a single attack point (x∗,y∗). The choice of its label y∗ is
arbitrary but fixed. We refer to the class of this chosen label as attacking class and
the other as the attacked class.

4.5.1.2 Adversary’s Knowledge

According to Sect. 4.3.1.2, we assume that the adversary knows the training samples
(k.i), the feature representation (k.ii), that an SVM learning algorithm is used (k.iii)
and the learned SVM’s parameters (k.iv), since they can be inferred by the adversary
by solving the SVM learning problem on the known training set. Finally, we assume
that no feedback is exploited by the adversary (k.v).

These assumptions amount to considering a worst-case analysis that allows us to
compute the maximum error rate that the adversary can inflict through poisoning.
This is indeed useful to check whether and under what circumstances poisoning may
be a relevant threat for SVMs.

Although having perfect knowledge of the training data is very difficult in
practice for an adversary, collecting a surrogate dataset sampled from the same
distribution may not be that complicated; for instance, in network intrusion detection
an attacker may easily sniff network packets to build a surrogate learning model,
which can then be poisoned under the perfect knowledge setting. The analysis of
this limited knowledge poisoning scenario is, however, left to future work.

4.5.1.3 Adversary’s Capability

According to Sect. 4.3.1.3, we assume that the attacker can manipulate only training
data (c.i), can manipulate the class prior and the class-conditional distribution of
the attack point’s class y∗ by essentially adding a number of attack points of that
class into the training data, one at a time (c.ii–iii), and can alter the feature values of
the attack sample within some lower and upper bounds (c.iv). In particular, we will
constrain the attack point to lie within a box, that is xlb ≤ x≤ xub.

4.5.1.4 Attack Strategy

Under the above assumptions, the optimal attack strategy amounts to solving the
following optimization problem:
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Algorithm 2 Poisoning attack against an SVM
Input: Dtr, the training data; Dval, the validation data; y∗, the class label of the attack point; x0, the
initial attack point; t , the step size.
Output: x∗, the final attack point.
1: {αi,b}← learn an SVM on Dtr.
2: p← 0.
3: repeat
4: Re-compute the SVM solution on Dtr∪{xp,y∗} using the incremental SVM [20]. This step

requires {αi,b}. If computational complexity is manageable, a full SVM can be learned at
each step, instead.

5: Compute ∇P on Dval according to Equation (4.8).
6: Normalize ∇P to have unit norm.
7: p← p+1 and xp← xp−1 + t∇P
8: if xlb > xp or xp > xub then
9: Project xp onto the boundary of the feasible region (enforce application-specific

constraints, if any).
10: end if
11: until P(xp)−P

(
xp−1

)
< ε

12: return: x∗ = xp

x∗ = argmaxx P(x) = ∑m
k=1(1− yk fx(xk))+ =

m

∑
k=1

(−gk)+ (4.2)

s.t. xlb ≤ x≤ xub , (4.3)

where the hinge loss has to be maximized on a separate validation set Dval =
{xk,yk}m

k=1 to avoid considering a further regularization term in the objective
function. The reason is that the attacker aims to maximize the SVM generalization
error and not only its empirical estimate on the training data.

4.5.2 Poisoning Attack Algorithm

In this section, we assume the role of the attacker and develop a method for
optimizing x∗ according to Eq. (4.2). Since the objective function is nonlinear, we
use a gradient-ascent algorithm, where the attack vector is initialized by cloning an
arbitrary point from the attacked class and flipping its label. This initialized attack
point (at iteration 0) is denoted by x0. In principle, x0 can be any point sufficiently
deep within the attacking class’s margin. However, if this point is too close to the
boundary of the attacking class, the iteratively adjusted attack point may become a
reserve point, which halts further progress.

The computation of the gradient of the validation error crucially depends on the
assumption that the structure of the sets S , E , and R does not change during the
update. In general, it is difficult to determine the largest step t along the gradient
direction ∇P, which preserves this structure. Hence, the step t is fixed to a small
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constant value in our algorithm. After each update of the attack point xp, the
optimal solution can be efficiently recomputed from the solution on Dtr, using the
incremental SVM machinery [20]. The algorithm terminates when the change in the
validation error is smaller than a predefined threshold.

4.5.2.1 Gradient Computation

We now discuss how to compute the gradient ∇P of our objective function. For
notational convenience, we now refer to the attack point as xc instead of x.

First, we explicitly account for all terms in the margin conditions gk that are
affected by the attack point xc:

gk = ∑
j

Qk jα j + ykb− 1

= ∑
j �=c

Qk jα j(xc)+Qkc(xc)αc(xc)+ ykb(xc)− 1 . (4.4)

As already mentioned, P(xc) is a non-convex objective function, and we thus exploit
a gradient-ascent technique to iteratively optimize it. We denote the initial location

of the attack point as x0
c . Our goal is to update the attack point as xp

c = x(p−1)
c + t∇P

where p is the current iteration, ∇P is a unit vector representing the attack direction
(i.e., the normalized objective gradient), and t is the step size. To maximize our
objective, the attack direction ∇P is computed at each iteration.

Although the hinge loss is not everywhere differentiable, this can be overcome
by only considering point indices k with nonzero contributions to P; i.e., those
for which −gk > 0. Contributions of such points to ∇P can be computed by
differentiating Eq. (4.4) with respect to xc using the product rule:

∂gk

∂xc
= Qks

∂α
∂xc

+
∂Qkc

∂xc
αc + yk

∂b
∂xc

, (4.5)

where, by denoting the lth feature of xc as xcl , we use the notation

∂α
∂xc

=

⎡

⎢
⎢
⎣

∂α1
∂xc1
· · · ∂α1

∂xcd
...

. . .
...

∂αs
∂xc1
· · · ∂αs

∂xcd

⎤

⎥
⎥
⎦ , simil.

∂Qkc

∂xc
,

∂b
∂xc

.

The expressions for the gradient can be further refined using the fact that the
gradient step must preserve the optimal SVM solution. This can expressed as an
adiabatic update condition using the technique introduced in [20]. In particular, for
the ith training point, the KKT conditions of the optimal SVM solution are:
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gi = ∑
j∈Dtr

Qi jα j + yib− 1

⎧
⎪⎪⎨

⎪⎪⎩

> 0; i ∈R

= 0; i ∈S

< 0; i ∈ E

(4.6)

h = ∑ j∈Dtr (y jα j) = 0 . (4.7)

The form of these conditions implies that an infinitesimal change in the attack point
xc causes a smooth change in the optimal solution of the SVM, under the restriction
that the composition of the sets S , E , and R remains intact. This equilibrium allows
us to predict the response of the SVM solution to the variation of xc, as shown below.

By differentiation of the xc-dependent terms in Eqs. (4.6) and (4.7) with respect
to each feature xcl (1≤ l ≤ d), we obtain, for any i ∈S ,

∂g
∂xcl

= Qss
∂α
∂xcl

+
∂Qsc

∂xcl
αc + ys

∂b
∂xcl

= 0

∂h
∂xcl

= y�s
∂α
∂xcl

= 0 .

Solving these equations and computing an inverse matrix via the Sherman–
Morrison–Woodbury formula [48] yields the following gradients:

∂α
∂xc

=− 1
ζ

αc(ζQ−1
ss −υυ�) · ∂Qsc

∂xc

∂b
∂xc

=− 1
ζ

αcυ� · ∂Qsc

∂xc
,

where υ = Q−1
ss ys and ζ = y�s Q−1

ss ys. We thus obtain the following gradient of
the objective used for optimizing our attack, which only depends on xc through
gradients of the kernel matrix, ∂Qkc

∂xc
:

∇P =
m

∑
k=1

{
Mk

∂Qsc

∂xc
+

∂Qkc

∂xc

}
αc , (4.8)

where Mk =− 1
ζ (Qks(ζQ−1

ss −υυT )+ ykυT ).

4.5.2.2 Kernelization

From Eq. (4.8), we see that the gradient of the objective function at iteration p may
depend on the attack point xp

c = xp−1
c + t∇P only through the gradients of the matrix

Q. In particular, this depends on the chosen kernel. We report below the expressions
of these gradients for three common kernels (see Sect. 4.4.2.1):
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• Linear kernel: ∂Kic
∂xc

= ∂ (xi·xc)
∂xc

= xi

• Polynomial kernel: ∂Kic
∂xc

= ∂ (xi·xc+R)d

∂xc
= d(xi ·xc +R)d−1xi

• RBF kernel: ∂Kic
∂xc

= ∂e−γ||xi−xc||2
∂xc

= 2γK(xi,xc)(xi− xc)

The dependence of these gradients on the current attack point, xc, can be
avoided by using the previous attack point, provided that t is sufficiently small.
This approximation enables a straightforward extension of our method to arbitrary
differentiable kernels.

4.5.3 Experiments

The experimental evaluation presented in the following sections demonstrates the
behavior of our proposed method on an artificial two-dimensional dataset and
evaluates its effectiveness on the classical MNIST handwritten digit recognition
dataset [32, 45].

4.5.3.1 Two-Dimensional Toy Example

Here we consider a two-dimensional example in which each class follows a
Gaussian with mean and covariance matrices given by μ−= [−1.5,0], μ+ = [1.5,0],
Σ− = Σ+ = 0.6I. The points from the negative distribution have label −1 (shown as
red in subsequent figures) and otherwise +1 (shown as blue). The training and the
validation sets, Dtr and Dval, consist of 25 and 500 points per class, respectively.

In the experiment presented below, the red class is the attacking class. That is,
a random point of the blue class is selected and its label is flipped to serve as the
starting point for our method. Our gradient-ascent method is then used to refine this
attack until its termination condition is satisfied. The attack’s trajectory is traced
as the black line in Fig. 4.7 for both the linear kernel (upper two plots) and the
RBF kernel (lower two plots). The background of each plot depicts an error surface:
hinge loss computed on a validation set (leftmost plots) and the classification error
(rightmost plots). For the linear kernel, the range of attack points is limited to the
box x∈ [−4,4]2 shown as a dashed line. This implements the constraint of Eq. (4.3).

For both kernels, these plots show that our gradient-ascent algorithm finds a
reasonably good local maximum of the non-convex error surface. For the linear
kernel, it terminates at the corner of the bounded region, since the error surface is
unbounded. For the RBF kernel, it also finds a good local maximum of the hinge loss
which, incidentally, is the maximum classification error within this area of interest.
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Fig. 4.7 Behavior of the gradient-based attack strategy on the Gaussian datasets, for the linear (top
row) and the RBF kernel (bottom row) with γ = 0.5. The regularization parameter C was set to 1
in both cases. The solid black line represents the gradual shift of the attack point xp

c toward a local
maximum. The hinge loss and the classification error are shown in colors, to appreciate that the
hinge loss provides a good approximation of the classification error. The value of such functions
for each point x ∈ [−5,5]2 is computed by learning an SVM on Dtr ∪{x,y = −1} and evaluating
its performance on Dval. The SVM solution on the clean data Dtr and the training data itself,
are reported for completeness, highlighting the support vectors (with black circles), the decision
hyperplane and the margin bounds (with black lines)

4.5.3.2 Handwritten Digits

We now quantitatively validate the effectiveness of the proposed attack strategy on
the MNIST handwritten digit classification task [32,45], as with the evasion attacks
in Sect. 4.4.3. In particular, we focus here on the following two-class sub-problems:
7 vs. 1; 9 vs. 8; 4 vs. 0. Each digit is normalized as described in Sect. 4.4.3.1. We
consider again a linear SVM with C = 1. We randomly sample a training and a
validation data of 100 and 500 samples, respectively, and retain the complete testing
data given by MNIST for Dts. Although it varies for each digit, the size of the testing
data is about 2,000 samples per class (digit).

Figure 4.8 shows the effect of single attack points being optimized by our descent
method. The leftmost plots of each row show the example of the attacked class used
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Fig. 4.8 Modifications to the initial (mislabeled) attack point performed by the proposed attack
strategy, for the three considered two-class problems from the MNIST dataset. The increase in
validation and testing errors across different iterations is also reported

as starting points in our algorithm. The middle plots show the final attack point.
The rightmost plots depict the increase in the validation and testing errors as the
attack progresses. For this experiment we run the attack algorithm five times by
re-initializing the gradient-ascent procedure, and we retain the best result.

Visualizing the attack points reveals that these attacks succeed by blurring the
initial prototype to appear more like examples of the attacking class. In comparing
the initial and final attack points, we see that the bottom segment of the 7 straightens
to resemble a 1, the lower segment of the 9 is rounded to mimicking an 8, and ovular
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Fig. 4.9 Results of the multi-point, multi-run experiments on the MNIST dataset. In each plot,
we show the classification errors due to poisoning as a function of the percentage of training
contamination for both the validation (red solid line) and testing sets (black dashed line). The
top-left plot is for the 7 vs.1 task, the top-right plot is for the 9 vs. 8 task, and the bottom-middle
plot is for the 4 vs. 0 task

noise is added to the outer boundary of the 4 to make it similar to a 0. These blurred
images are thus consistent with one’s natural notion of visually confusing digits.

The rightmost plots further demonstrate a striking increase in error over the
course of the attack. In general, the validation error overestimates the classification
error due to a smaller sample size. Nonetheless, in the exemplary runs reported in
this experiment, a single attack data point caused the classification error to rise from
initial error rates of 2–5 % to 15–20 %. Since our initial attack points are obtained
by flipping the label of a point in the attacked class, the errors in the first iteration of
the rightmost plots of Fig. 4.8 are caused by single random label flips. This confirms
that our attack can achieve significantly higher error rates than random label flips
and underscores the vulnerability of the SVM to poisoning attacks.

The latter point is further illustrated in a multiple point, multiple run experiment
presented in Fig. 4.9. For this experiment, the attack was extended by repeatedly
injecting attack points into the same class and averaging results over multiple runs
on randomly chosen training and validation sets of the same size (100 and 500
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samples, respectively). These results exhibit a steady rise in classification error as
the percentage of attack points in the training set increases. The variance of the error
is quite high, which can be attributed to the relatively small sizes of the training and
validation sets. Also note that, in this experiment, to reach an error rate of 15–20 %,
the adversary needs to control at least 4–6 % of the training data, unlike in the single
point attacks of Fig. 4.8. This is because Fig. 4.8 displays the best single-point attack
from five restarts whereas here initial points are selected without restarts.

4.5.4 Discussion

The poisoning attack presented in this section, summarized from our previous work
in [14], is a first step toward the security analysis of SVM against training data
attacks. Although our gradient-ascent method is not optimal, it attains a surprisingly
large impact on the SVM’s classification accuracy.

Several potential improvements to the presented method remain to be explored
in future work. For instance, one may investigate the effectiveness of such an attack
with surrogate data, that is, when the training data is not known to the adversary,
who may, however, collect samples drawn from the same distribution to learn a
classifier’s copy (similarly to the limited knowledge case considered in the evasion
attacks of Sect. 4.4). Another improvement may be to consider the simultaneous
optimization of multi-point attacks, although we have already demonstrated that
greedy, sequential single-point attacks may be rather successful.

An interesting analysis of the SVM’s vulnerability to poisoning suggested from
this work is to consider the attack’s impact under loss functions other than the hinge
loss. It would be especially interesting to analyze bounded loss functions, like the
ramp loss, since such losses are designed to limit the impact of any single (attack)
point on the outcome. On the other hand, while these losses may lead to improved
security to poisoning, they also make the SVM’s optimization problem non-convex,
and, thus, more computationally demanding. This may be viewed as another trade-
off between computational complexity of the learning algorithm and security.

An important practical limitation of the proposed method is the assumption that
the attacker controls the labels of injected points. Such assumptions may not hold
if the labels are assigned by trusted sources such as humans, e.g., anti-spam filters
use their users’ labeling of messages as ground truth. Thus, although an attacker
can send arbitrary messages, he/she cannot guarantee that they will have the labels
necessary for his/her attack. This imposes an additional requirement that the attack
data must satisfy certain side constraints to fool the labeling oracle. Further work is
needed to understand and incorporate these potential side constraints into attacks.
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4.6 Privacy Attacks Against SVMs

We now consider a third scenario in which the attacker’s goal is to affect a breach
of the training data’s confidentiality. We review our recent work [60] deriving
mechanisms for releasing SVM classifiers trained on privacy-sensitive data while
maintaining the data’s privacy. Unlike previous sections, our focus here lies primary
on the study of countermeasures, while we only briefly consider attacks in the
context of lower bounds. We adopt the formal framework of Dwork et al. [30],
in which a randomized mechanism is said to preserve β -differential privacy, if
the likelihood of the mechanism’s output changes by at most β when a training
datum is changed arbitrarily (or even removed). The power of this framework, which
gained near-universal favor after its introduction, is that it quantifies privacy in a
rigorous way and provides strong guarantees even against powerful adversaries with
knowledge of almost all of the training data, knowledge of the mechanism (barring
its source of randomness), arbitrary access to the classifier output by the mechanism,
and the ability to manipulate almost all training data prior to learning.

This section is organized as follows. In Sect. 4.6.1 we outline our model of the
adversary, which makes only weak assumptions. Section 4.6.2 provides background
on differential privacy, presents a mechanism for training and releasing privacy-
preserving SVMs—essentially a countermeasure to many privacy attacks—and
provides guarantees on differential privacy and also utility (e.g., controlling the
classifier’s accuracy). We then briefly touch on existing approaches for evaluation
via lower bounds and discuss other work and open problems in Sect. 4.6.3.

4.6.1 Modeling the Adversary

We first apply our framework to define the threat model for defending against
privacy attacks within the broader context of differential privacy. We then focus on
specific countermeasures in the form of modifications to SVM learning that provide
differential privacy.

4.6.1.1 Adversary’s Goal

The ultimate goal of the attacker in this section is to determine features and/or the
label of an individual training datum. The overall approach of the adversary towards
this goal is to inspect (arbitrary numbers of) test-time classifications made by a
released classifier trained on the data, or by inspecting the classifier directly. The
definition of differential privacy, and the particular mechanisms derived here, can
be modified for related goals of determining properties of several training data; we
focus on the above conventional case without loss of generality.
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4.6.1.2 Adversary’s Knowledge

As alluded to above, we endow our adversary with significant knowledge of the
learning system, so as to derive countermeasures that can withstand very strong
attacks. Indeed the notion of differential privacy, as opposed to more syntactic
notions of privacy such as k-anonymity [65], was inspired by decades-old work
in cryptography that introduced mathematical formalism to an age-old problem,
yielding significant practical success. Specifically, we consider a scenario in which
the adversary has complete knowledge of the raw input feature representation, the
learning algorithm (the entire mechanism including the form of randomization it
introduces, although not the source of randomness) and the form of its decision
function (in this case, a thresholded SVM), the learned classifier’s parameters
(the kernel/feature mapping, primal weight vector, and bias term), and arbi-
trary/unlimited feedback from the deployed classifier (k.ii–v). We grant the attacker
near complete knowledge of the training set (k.i): the attacker may have complete
knowledge of all but one training datum, for which he/she has no knowledge of
input feature values or its training label, and it is these attributes he/she wishes to
reveal. For simplicity of exposition, but without loss of generality, we assume this
to be the last datum in the training sample.

4.6.1.3 Adversary’s Capability

Like our assumptions on the attacker’s knowledge, we impose weak limitations
on the adversary’s capability. We assume an adversary that can manipulate both
training and test data (c.i), although the latter is subsumed by the attacker’s complete
knowledge of the decision function and learned parameters—e.g., he/she may
implement his/her own classifier and execute it arbitrarily, or he/she may submit
or manipulate test points presented to a deployed classifier.

Our attack model makes no assumptions about the origins of the training or
test data. The data need not be sampled independently or even according to a
distribution—the definition of differential privacy provided below makes worst-case
assumptions about the training data, and again the test data could be arbitrary. Thus
the adversary may have arbitrary capability to modify class priors, training data
features and labels (c.ii–iv) except that the adversary attacking the system may not
directly modify the targeted training datum because he/she does not have knowledge
of it. That said, however, differential privacy makes worst-case (no distributional)
assumptions about the datum and thus one could consider even this data point as
being adversarially manipulated by nature (i.e., nature does not collude with the
attacker to share information about the target training datum, but that may collude
to facilitate a privacy breach by selecting a “convenient” target datum).
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4.6.1.4 Attack Strategy

While no practical privacy attacks on SVMs have been explored in the past—an
open problem discussed in Sect. 4.6.3—a general approach would be to approximate
the inversion of the learning map on the released SVM parametrization (either
primal weight vector, or dual variables) around the known portion of the training
data. In practice this could be achieved by taking a similar approach as done in
Sect. 4.5 whereby an initial guess of a missing training point is iterated on by
taking gradient steps of the differential in the SVM parameter vector with respect
to the missing training datum. An interpretation of this approach is one of the
simulations: to guess a missing training datum, given access to the remainder of
the training set and the SVM solution on all the data, simulate the SVM on guesses
for the missing datum, updating the guesses in directions that appropriately shift the
intermediate solutions. As we discuss briefly in the sequel, theoretical lower bounds
on achievable privacy relate to attacks in pathological cases.

4.6.2 Countermeasures with Provable Guarantees

Given an adversary with such strong knowledge and capabilities as described
above, it may seem difficult to provide effective countermeasures particularly
considering the complication of abundant access to side information that is often
used in publicized privacy attacks [52, 65]. However, the crux that makes privacy-
preservation under these conditions possible lies in the fact that the learned quantity
being released is an aggregate statistic of the sensitive data; intuitively the more
data being aggregated, the less sensitive a statistic should be to changes or removal
of any single datum. We now present results from our recent work that quantifies
this effect [60], within the framework of differential privacy.

4.6.2.1 Background on Differential Privacy

We begin by recalling the key definition due to Dwork et al. [30]. First, for
any training set D = {(xi,yi)}n

i=1 denote set D ′ to be a neighbor of D (or
D ′ ∼ D) if D ′ = {(xi,yi)}n−1

i=1 ∪{(x′n,y′n)} where (xn,yn) �= (x′n,y′n). In the present
context, differential privacy is a desirable property of learning maps, which maps
a training set {(xi,yi)}n

i=1 to a continuous discriminant function of the form g :
X → R—here a learned SVM—in some space of functions, H . We say that a
randomized6 learning map L preserves β -differential privacy if for all datasets

6That is, the learning map’s output is not a deterministic function of the training data. The
probability in the definition of differential privacy is due to this randomness. Our treatment here is
only as complex as necessary, but to be completely general, the events in the definition should be
on measurable sets G⊂H rather than individual g ∈H .
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D , all neighboring sets D ′ of D , and all possible functions g ∈H , the following
relation holds

Pr(L (D) = g) ≤ exp(β )Pr(L (D ′) = g) .

Intuitively, if we initially fix a training set and neighboring training set, differential
privacy simply says that the two resulting distributions induced on the learned
functions are point-wise close—and closer for smaller β . For a patient deciding
whether to submit his/her datum to a training set for a cancer detector, differential
privacy means that the learned classifier will reveal little information about that
datum. Even an adversary with access to the inner-workings of the learner, with
access to all other patients’ data, and with the ability to guess-and-simulate the
learning process repeatedly with various possible values of his/her datum, cannot
reverse engineer his/her datum from the classifier released by the hospital because
the adversary cannot distinguish the classifier distribution on one training set, from
that on neighboring sets. Moreover, variations of this definition (which do not
significantly affect the presented results) allow for neighboring databases to be
defined as those missing a datum; or having several varying data, not just a single
one.

For simplicity of exposition, we drop the explicit bias term b from our SVM
learning process and instead assume that the data feature vectors are augmented
with a unit constant, and that the resulting additional normal weight component
corresponds to the bias. This is an equivalent SVM formulation that allows us to
focus only on the normal’s weight vector.

A classic route to establish differential privacy is to define a randomized map L
that returns the value of a deterministic, nonrandom L̂ plus a noise term. Typically,
we use an exponential family in a term that matches an available Lipschitz condition
satisfied by L̂ : in our case, for learning maps that return weight vectors in R

d , we
aim to measure global sensitivity of L̂ via the L1 norm as

Δ(L̂ ) = max
D ,D ′∼D

∥
∥∥L̂ (D)− L̂ (D ′)

∥
∥∥

1
.

With respect to this sensitivity, we can easily prove that the randomized mechanism

L (D) = L̂ (D)+Laplace(0,Δ(L̂ )/β ) ,

is β -differential private.7 The well-established proof technique [30] follows from
the definition of the Laplace distribution involving the same norm as used in our
measure of global sensitivity, and the triangle inequality: for any training set D ,
D ′ ∼D , response g ∈H , and privacy parameter β

7Recall that the zero-mean multi-variate Laplace distribution with scale parameter s has density
proportional to exp(−‖x‖1/s).
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Pr(L (D) = g)
Pr(L (D ′) = g)

=
exp

(∥∥
∥L̂ (D ′)− g

∥
∥
∥

1
β/Δ(L̂ )

)

exp
(∥∥
∥L̂ (D)− g

∥∥
∥

1
β/Δ(L̂ )

)

≤ exp
(∥∥
∥L̂ (D ′)− L̂ (D)

∥
∥
∥

1
β/Δ(L̂ )

)

≤ exp(β ).

We take the above route to develop a differentially private SVM. As such, the onus
is on calculating the SVM’s global sensitivity, Δ(L̂ ).

4.6.2.2 Global Sensitivity of Linear SVM

Unlike much prior work applying the “Laplace mechanism” to achieving differential
privacy, in which studied estimators are often decomposed as linear functions of
data [15], measuring the sensitivity of the SVM appears to be nontrivial owing to
the nonlinear influence an individual training datum may have on the learned SVM.
However, perturbations of the training data were studied by the learning-theory
community in the context of algorithmic stability: there the goal is to establish
bounds on classifier risk, from stability of the learning map, as opposed to leveraging
combinatorial properties of the hypothesis class (e.g., the VC dimension, which is
not always possible to control, and for the RBF kernel SVM is infinite) [62]. In
recent work [60], we showed how these existing stability measurements for the SVM
can be adapted to provide the following L1-global sensitivity bound.

Lemma 1. Consider SVM learning with a kernel corresponding to linear SVM in a
feature space with finite-dimension F and L2-norm bounded8 by κ , with hinge loss
(as used throughout this chapter), and chosen parameter C > 0. Then the L1 global
sensitivity of the resulting normal weight vector is upper-bounded by 4Cκ

√
F.

We omit the proof, which is available in the original paper [60] and which follows
closely the previous measurements for algorithmic stability. We note that the result
extends to any convex Lipschitz loss.

4.6.2.3 Differentially Private SVMs

So far we have established that Algorithm 3, which learns an SVM and returns the
resulting weight vector with added Laplace noise, preserves β -differential privacy.
More noise is added to the weight vector when either (1) a higher degree of privacy
is desired (smaller β ), (2) the SVM fits closer to the data (higher C) or (3) the data

8That is ∀x, k(x,x) ≤ κ2; e.g. for the RBF the norm is uniformly unity κ = 1; more generally, we
can make the standard assumption that the data lies within some κ L2-ball.
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Algorithm 3 Privacy-preserving SVM
Input: D the training data; C > 0 soft-margin parameter; kernel k inducing a feature space with
finite dimension F and κ-bounded L2-norm; privacy parameter β > 0.
Output: learned weight vector w.
1: ŵ← learn an SVM with parameter C and kernel k on data D .

2: μ ← draw i.i.d. sample of F scalars from Laplace
(

0, 4Cκ
√

F
β

)
.

3: return: w = ŵ+μ

is more distinguishable (higher κ or F—the curse of dimensionality). Hidden in
the above is the dependence on n: typically we take C to scale like 1/n to achieve
consistency in which case we see that noise decreases with larger training data—
akin to less individual influence—as expected [60].

Problematic in the above approach is the destruction to utility due to preserving
differential privacy. One approach to quantifying this effect involves bounding the
following notion of utility [60]. We say a privacy-preserving learning map L has
(ε,δ )-utility with respect to non-private map L̂ if for all training sets D ,

Pr
(∥∥∥L (D)− L̂ (D)

∥
∥∥

∞
≤ ε

)
≥ 1− δ .

The norm here is in the function space of continuous discriminators, learned by
the learning maps, and is the point-wise L∞ norm which corresponds to ‖g‖∞ =
supx |g(x)|—although for technical reasons we will restrict the supremum to be
over a set M to be specified later. Intuitively, this indicates that the continuous
predictions of the learned private classifier are close to those predictions of the
learned non-private classifier, for all test points in M , with high probability (again,
in the randomness due to the private mechanism). This definition draws parallels
with PAC learnability, and in certain scenarios is strictly stronger than requiring that
the private learner achieves good risk (i.e., PAC learns) [60]. Using the Chernoff
tail inequality and known moment-generating functions, we establish the following
bound on the utility of this private SVM [60].

Theorem 1. The β -differentially private SVM of Algorithm 3 achieves (ε,δ )-utility
with respect to the non-private SVM run with the same C parameter and kernel, for
0 < δ < 1 and

ε ≥ 8CκΦ
√

F

(
F + log

1
δ

)
/β ,

where the set M supporting the supremum in the definition of utility is taken to be
the pre-image of the feature mapping on the L∞ ball of radius Φ > 0.9

9Above we previously bounded the L2 norms of points in features space by κ , the additional bound
on the L∞ norm here is for convenience and is standard practice in learning-theoretic results.



148 B. Biggio et al.

As expected, the more confidence δ or privacy β required, the less accuracy is
attainable. Similarly, when the training data is fitted more tightly via higher C, or
when the data is less tightly packed for higher κ ,Φ,F , less accuracy is possible.
Note that like the privacy result, this result can hold for quite general loss functions.

4.6.3 Discussion

In this section, we have provided a summary of our recent results on strong
countermeasures to privacy attacks on the SVM. We have shown how, through
controlled addition of noise, SVM learning in finite-dimensional feature spaces
can provide both privacy and utility guarantees. These results can be extended to
certain translation-invariant kernels including the infinite-dimensional RBF [60].
This extension borrows a technique from large-scale learning where finding a
dual solution of the SVM for large training data size n is infeasible. Instead, a
primal SVM problem is solved using a random kernel that uniformly approximates
the desired kernel. Since the approximating kernel induces a feature mapping of
relatively small, finite dimensions, the primal solution becomes feasible. For privacy
preservation, we use the same primal approach but with this new kernel. Fortunately,
the distribution of the approximating kernel is independent of the training data, and
thus we can reveal the approximating kernel without sacrificing privacy. Likewise
the uniform approximation of the kernel composes with the utility result here to
yield an analogous utility guarantee for translation-invariant kernels.

While we demonstrated here a mechanism for private SVM learning with upper
bounds on privacy and utility, we have previously also studied lower bounds that
expose limits on the achievable utility of any learner that provides a given level of
differential privacy. Further work is needed to sharpen these results. In a sense,
these lower bounds are witnessed by pathological training sets and perturbation
points and, as such, serve as attacks in pathological (unrealistic) cases. Developing
practical attacks on the privacy of an SVM’s training data remains unexplored.

Finally, it is important to note that alternate approaches to differentially private
SVMs have been explored by others. Most notable is the work (parallel to our own)
of Chaudhuri et al. [21]. Their approach to finite-dimensional feature mappings is,
instead of adding noise to the primal solution, to add noise to the primal objective
in the form of a dot product of the weight with a random vector. Initial experiments
show their approach to be very promising empirically, although it does not allow for
non-differentiable losses like the hinge loss.

4.7 Concluding Remarks

In security applications like malware detection, intrusion detection, and spam
filtering, SVMs may be attacked through patterns that can either evade detection
(evasion), mislead the learning algorithm (poisoning) or gain information about
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their internal parameters or training data (privacy violation). In this chapter, we
demonstrated that these attacks are feasible and constitute a relevant threat to the
security of SVMs, and to machine-learning systems, in general.

Evasion. We proposed an evasion algorithm against SVMs with differentiable
kernels, and, more generally, against classifiers with differentiable discriminant
functions. We investigated the attack’s effectiveness in perfect and limited knowl-
edge settings. In both cases, our attack simulation showed that SVMs (both linear
and RBF) can be evaded with high probability after a few modifications to the attack
patterns. Our analysis also provides some general hints for tuning the classifier’s
parameters (e.g., the value of γ in SVMs with the RBF kernel) and for improving
classifier security. For instance, if a classifier tightly encloses the legitimate samples,
the adversary’s samples must closely mimic legitimate samples to evade it, in which
case, if such exact mimicry is still possible, it suggests an inherent flaw in the feature
representation.

Poisoning. We presented an algorithm that allows the adversary to find an attack
pattern whose addition to the training set maximally decreases the SVM’s classi-
fication accuracy. We found that the increase in error over the course of attack is
especially striking. A single attack data point may cause the classification error to
rise from the initial error rates of 2–5 % to 15–20 %. This confirms that our attack
can achieve significantly higher error rates than random label flips and underscores
the vulnerability of the SVM to poisoning attacks. As a future investigation, it may
be of interest to analyze the effectiveness of poisoning attacks against non-convex
SVMs with bounded loss functions, both empirically and theoretically, since such
losses are designed to limit the impact of any single (attack) point on the resulting
learned function. This has also been studied from a more theoretical perspective
in [23], exploiting the framework of Robust Statistics [35, 51]. A similar effect is
obtained by using bounded kernels (e.g., the RBF kernel) or bounded feature values.

Privacy. We developed an SVM learning algorithm that preserves differential
privacy, a formal framework for quantifying the threat of a potential training
set privacy violation incurred by releasing learned classifiers. Our mechanism
involves adding Laplace-distributed noise to the SVM weight vector with a scale
that depends on the algorithmic stability of the SVM and the desired level of
privacy. In addition to presenting a formal guarantee that our mechanism preserves
privacy, we also provided bounds on the utility of the new mechanism, which state
that the privacy-preserving classifier makes predictions that are point-wise close to
those of the non-private SVM, with high probability. Finally we discussed potential
approaches for attacking SVMs’ training data privacy, and known approaches
to differentially private SVMs with (possibly infinite-dimensional feature space)
translation-invariant kernels, and lower bounds on the fundamental limits on utility
for private approximations of the SVM.
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