
Chapter 3
Novel Inductive and Transductive Transfer
Learning Approaches Based on Support
Vector Learning

Zhaohong Deng and Shitong Wang

Abstract In this chapter, two novel transfer learning approaches based on support
vector learning are involved. For inductive transfer learning, the knowledge-
leverage-based TSK fuzzy system (KL-TSK-FS) is proposed, which demonstrates
the good privacy-protection abilities and strong adaptability for the situations where
the data are only partially available from the target domain while some useful
knowledge of the source domains is available. For transductive transfer learning,
domain adaptation kernelized support vector machine (DAKSVM) and its two
extensions are proposed, which can reduce the distribution gap between different
domains in an RKHS as much as possible by integrating the large margin learner
with the proposed generalized projected maximum distribution distance (GPMDD)
metric.

3.1 Introduction

3.1.1 Background

Recently, transfer learning has been studied extensively for different applications
[1], such as text classification and indoor WiFi location estimation. Referring to
Fig. 3.1 and the explanations given in Table 3.1, transfer learning is an approach to
obtain an effective model of data from the target domain by effectively leveraging
the useful information from source domains in the learning procedure.

Situations requiring transfer learning are becoming common in real-world appli-
cations. The modeling of fermentation process [2] is one example where the transfer
learning is required. In the target domain of a microbiological fermentation process,
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Fig. 3.1 An illustration of transfer learning for regression

Table 3.1 Some terms used for transfer leaning in the text

Terms Explanations

Domain A domain is a situation where a modeling task is to be accomplished. It is
usually characterized by: (1) the data collected in this domain and (2) the
learning task to be performed in this domain

Target domain In transfer learning, it is referred to as the domain with insufficient data for
proper modeling while a modeling task is required to be effectively
implemented

Source domain It is the domain related to the target domain, with similar data distribution and
learning task. There may be differences between the source domain and the
target domain, but it is assumed that the source domain can provide some
useful information for the modeling task of the target domain

the data collected may be insufficient or some of the data may be missing due to the
deficiency of the sensor setup. Thus, we cannot effectively model the fermentation
process for this domain with the collected data. However, data available from other
similar microbiological fermentation process could be sufficient and considered as
source domains for the target domain. Hence, transfer learning can be exploited
to make use of the information from the source domain to improve the modeling
effect of the target domain, thereby resulting in a model with better generalization
capability. In this case, transfer learning is an effective solution to the corresponding
modeling task because it can enhance the model by leveraging the information
available from the source domains, such as the data collected in other time frames
or with other setups.

A comprehensive survey about transfer learning can be discovered in [1]. In
general, the existing work about transfer learning can be categorized into three
types: (1) transfer learning for classification [3–15]; (2) transfer learning for
unsupervised learning (clustering [16, 17] and dimensionality reduction [18, 19]);
and (3) transfer learning for regression [20–24]. According the setting whether there
are the labeled data in the target domain available, all the transfer learning methods
can also be classified as inductive transfer learning methods and transductive
learning methods. While there are a few labeled data for the supervised learning
in the inductive transfer learning methods, all the data are unlabeled in the target
domain for the transductive learning methods and the unsupervised learning is
implemented accordingly While there are a few labeled data for the inductive
transfer learning, all the data are unlabeled in the target domain for the transductive
learning method. Among the existing transfer methods, a lot of them are based on
the support vector learning. In this chapter, we mainly focus on the novel support
vector learning-based methods for the inductive and transductive learning.
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3.1.2 Support Vector Learning-Based Inductive
Transfer Learning

In the inductive transfer learning setting, the target task is different from the source
task. In this case, some labeled data in the target domain are required to induce an
objective predictive model for use in the target domain. The representative inductive
transfer learning algorithms are reviewed below. Dai et al. [25] proposed a boosting
algorithm with the support vector machine (SVM) as the learner, TrAdaBoost,
which is an extension of the AdaBoost algorithm, to address the inductive transfer
learning problems. TrAdaBoost attempts to iteratively reweight the source domain
data to reduce the effect of the “bad” source data while encouraging the “good”
source data to contribute more for the target domain. Wu and Dietterich [26]
integrated the source domain (auxiliary) data and SVM framework for improving
the classification performance. Evgeniou and Pontil [27] borrowed the idea of
hierarchical Bayesian to SVMs for multitask learning. The proposed method
assumed that the parameter, w, in SVMs for each task can be separated into two
terms. One is a common term over tasks and the other is a task-specific term.

3.1.3 Support Vector Learning-Based Transductive
Transfer Learning

For support vector learning-based transductive transfer learning, a major com-
putational problem is how to reduce the difference between the distributions of
the source and target domains. There have existed several works describing how
to measure the distance between distributions [28, 29]. Intuitively, discovering a
good feature representation across domains is crucial [13, 30]. A good feature
representation should be able to reduce the distribution discrepancy between two
domains as much as possible, while at the same time preserving the underlying
geometric structures (or scatter information) of both source and target domain data
as much as possible. Ben-David et al. [31] used an example of hyperplane classifiers
to show that the performance of the hyperplane classifier that could best separate
the data could provide a good method for measuring the distribution distance for
different data representations. Along these same lines, Gretton et al. [32] showed
that for a given class of functions, the measure could be simplified by computing the
discrepancy between two means of the distributions in a reproducing kernel Hilbert
space (RKHS), thus resulting in the maximum mean discrepancy (MMD) measure.
Inspired by the ideas of both transductive SVM (TSVM) and MMD, Brian et al. [28]
proposed a so-called large margin kernel projected (LMPROJ) TSVM paradigm for
domain adaptation problems based on the projected distance measure in an RKHS.
The basic idea of LMPROJ is to minimize the distribution mean distance between
source and target domain data by finding a feature translation in an RKHS. By the
same way of LMPROJ, based on multiple kernel learning framework, Duan et al.
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also proposed a domain transfer SVM (DTSVM) for domain adaptation learning
(DAL) problem such as video concept detection. Further details about DTSVM can
be found in [29].

3.1.4 Main Work in This Study

In this study, one support vector learning-based inductive learning approach and
one support vector learning-based transductive learning approach are proposed,
respectively.

3.1.4.1 Support Vector Learning-Based Inductive Transfer Learning
with Knowledge-Leveraged Fuzzy Logic Systems

As support vector learning-based fuzzy system modeling is a type of important
modeling methods [2, 33], it is promising to incorporate transfer learning with
the fuzzy model. To the best of our knowledge, however, the study of transfer
learning for support vector learning-based fuzzy system modeling has not yet
been reported before. For support vector learning-based fuzzy system modeling,
transfer learning is very useful in real-world modeling tasks where traditional
fuzzy modeling methods may not work very well. For example, the trained fuzzy
systems are much weaker in generalization capability when the training data are
insufficient or only partially available [34, 35]. The situation is common in real-
world applications in which the sensors and setups for data sampling are not steady
due to noisy environment or other malfunctions that lead to insufficiency of data for
the modeling task.

In order to tackle the problems with traditional support vector learning-based
fuzzy system modeling as described above, a feasible remedy strategy is to boost
up the performance by taking advantage of the useful information from source
domains (or related domains), which can be the data in the domains, or the relevant
knowledge like the density distribution and/or fuzzy rules. The simplest way to
obtain the information from source domains is to directly use the data, collected
from the source domains, but this approach leads to two major challenges. First,
due to the necessity of privacy protection in some proprietary applications, such
as the aforementioned fermentation process, the data of the source domains cannot
always be obtained. Under this situation, the knowledge about the source domains,
e.g. the density distribution and model parameters, can be obtained more easily to
enhance the modeling of the target domain. Second, drifting phenomenon may exist
between the source domain and the target domain, which makes it inappropriate to
directly use the data from the former in the latter, or negative effect on the modeling
task will be produced. These two issues should be properly addressed in order to
develop an effective transfer learning modeling strategy for fuzzy systems.
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In this study, a support vector learning-based fuzzy system modeling approach
with knowledge-leverage capability from source domains is exploited for the
inductive transfer learning. In view of its popularity, the Takagi–Sugeno–Kang-
type fuzzy system (TSK-FS) is chosen to incorporate with a knowledge-leverage
mechanism and hence the knowledge-leveraged TSK-type fuzzy system (KL-TSK-
FS) is proposed. A novel objective criterion is proposed to integrate the model
knowledge of the source domains and the data of the target domain, and the induced
fuzzy rules of the model are learned accordingly. The knowledge of the source
domain will effectively make up the deficiency in learning due to the lack of data
in the target domain. Hence, the proposed system—KL-TSK-FS is more adaptive
to the situations where the data are only partially available from the target domain
while some useful knowledge of source domains is available. Besides, the proposed
method is distinctive in preserving data privacy as only the knowledge (e.g., the
corresponding model parameters) rather than the data of the source domain is used.

3.1.4.2 Support Vector Learning-Based Transductive Transfer
Learning with DAL

As we may know well, mean (or expectation) and variance (or scatter) are two main
features characterizing the distribution of samples which measure order one and
order two statistics, respectively. However, most existing DAL methods for support
vector learning-based transductive learning focus only on the first-order statistics
matching which attempts to make the empirical means of the training and testing
instances from source and target domain to be closer in an RKHS [36]. Intuitively,
it is not enough to measure the distribution distance discrepancy between two
domains to some extent only by considering the mean of the distribution of samples
[13, 29, 36]. Hence, the state-of-the-art DAL MMD-based methods [28, 29, 37],
which are only focused on the first-order statistics of the data distributions still have
considerable limitation in the generalization capacity for specific domain adaptation
transfer learning problems. What is more, since LMPROJ or DTSVM only focuses
on the consistency of domain distributions in an RKHS, they sometimes project the
data onto some noisy directions of separation which are completely irrelevant to the
target learning task [13], and even result in poor performance.

In this study, we claim that it is indispensable to consider both mean and variance
(or scatter) of data distribution in order to efficiently measure the distribution
discrepancy between source and target domains. This motivates us to definitely
utilize both MMD and scatter information of both domains to sufficiently eval-
uate their distribution discrepancy. In order to overcome the drawbacks of the
MMD-based methods, we proposed a novel domain adaptation kernelized SVM
(DAKSVM) using GPMDD discrepancy metric on RKHS embedding domain
distributions, which can simultaneously consider both the distribution mean and
scatter discrepancies between source and target domains. The idea is to find an
RKHS for which the means and variances of the training and test data distributions
are brought to be consistent, so that the labeled training data can be used to learn a
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model for the test data. Particularly, we aim to obtain a linear kernel classifier based
on the Representer Theorem [32], in an RKHS, such that it achieves a trade-off
between the maximal margin between classes and the minimal discrepancy between
the training and test distributions.

Compared with the existing state-of-the-art DAL methods, our main contribu-
tions include the following aspects: (1) the proposed methods inherit the potential
advantages of classical TSVMs and MMD-based methods described as above,
and further extend them to DAL; (2) as a novel large margin domain adaptation
classifier, the proposed methods can reduce the distribution gap between different
domains in an RKHS as much as possible, since they effectively integrate the large
margin learner with the proposed GPMDD metric; (3) in addition, we propose two
extensions to the standard formulation of DAKSVM based on both v-SVM and
least-square SVM (LS-SVM), respectively.

The rest of this chapter is organized as follows. In Sect. 3.2, inductive transfer
learning with support vector learning-based fuzzy systems is proposed; in Sect 3.3,
transductive transfer learning with support vector learning-based domain adaptation
transfer learning SVM by using the GPMDD metric is proposed; in Sect. 3.4, the
experimental results about the proposed inductive transfer learning approach are
reported; in Sect. 3.5, the experimental results about the proposed transductive
transfer learning approach are reported; and The conclusions are given in the final
section.

3.2 Inductive Transfer Learning with Support Vector
Learning-Based Fuzzy Systems

3.2.1 Support Vector Learning-Based Fuzzy Systems

Support vector learning has been extensively used in the machine learning methods,
such as kernel methods and other intelligence modeling methods. In this section, the
support vector learning-based fuzzy systems, which have strong learning abilities
and nicer interpretation properties, are introduced to develop the inductive transfer
learning method.

3.2.1.1 Concept and Principle of TSK-FS

Classical fuzzy logic system models include the TSK model [38], Mamdani–Larsen
(ML) model [39], and generalized fuzzy model [40]. Among them, the TSK model is
the most popular one due to its effectiveness. In this study, the TSK model is adopted
to develop the KL-TSK-FS for implementing the inductive transfer learning.

For TSK fuzzy logic systems, the most commonly used fuzzy inference rules are
defined as follows:
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TSK Fuzzy Rule Rk:

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧·· ·∧ xd is Ak
d (3.1)

Then f k (x) = pk
0 + pk

1x1 + · · ·+ pk
dxd k = 1, · · · ,K

In Eq. (3.1) AkK
i is a fuzzy subset subscribed by the input variable xi for the kth

rule; K is the number of fuzzy rules, and ∧ is a fuzzy conjunction operator. Each
rule is premised on the input vector x= [x1,x2, · · · ,xd]T , and maps the fuzzy sets in
the input space Ak ⊂Rd to a varying singleton denoted by fk(x). When multiplicative
conjunction is employed as the conjunction operator, multiplicative implication as
the implication operator, and additive disjunction as the disjunction operator, the
output of the TSK fuzzy model can be formulated as

y0 =
K

∑
k=1

μk (x)

∑K
k′=1μk′ (x)

· f k (x) =
K

∑
k=1

μ̃k (x) · f k (x) , (3.2a)

where μk(x) and μ̃k (x) denote the fuzzy membership function and the normalized
fuzzy membership associated with the fuzzy set Ak. These two functions can be
calculated by using

μk (x) =
d

∏
i=1

μAk
i
(xi) (3.2b)

and

μ̃k (x) = μk (x)/
K

∑
k′=1

μk′ (x). (3.2c)

A commonly used fuzzy membership function is the Gaussian membership
function which can be expressed by

μAk
i
(xi) = exp

(
−(xi − ck

i

)2

2δ k
i

)
, (3.2d)

where the parameters ck
i , δ k

i can be estimated by clustering techniques or other
partition methods. For example, with fuzzy c-means (FCM) clustering, ck

i , δ k
i can

be estimated as follows:

ck
i =

N

∑
j=1

u jkx ji/
N

∑
j=1

u jk, (3.2e)

δ k
i = h ·

N

∑
j=1

u jk

(
x ji − ck

i

)2
/

N

∑
j=1

u jk, (3.2f)
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where ujk denotes the fuzzy membership of the jth input data xj = (xj1, · · · ,xjd)T ,
belonging to the kth cluster obtained by FCM clustering [41]. Here, h is a scale
parameter and can be adjusted manually.

When the antecedents of the TSK fuzzy model are determined, let

xe =
(
1,xT

)T
, (3.3a)

x̃k = μ̃k (x)xe, (3.3b)

xg =
((

x̃1)T
,
(
x̃2)T

, · · · ,(x̃K)T
)T

, (3.3c)

pk =
(

pk
0, pk

1, · · · , pk
d

)T
(3.3d)

and

pg =
((

p1)T
,
(
p2)T

, · · · ,(pK)T
)T

, (3.3e)

then Eq. (3.2a) can be formulated as the following linear regression problem [33]

yo = pT
g xg. (3.3f)

Thus, the problem of TSK fuzzy model training can be transformed into the
learning of the parameters in the corresponding linear regression model [2, 33].

3.2.1.2 Support Vector Learning-Based TSK-FS Training

Given a training dataset Dtr = {xi, yi|xi ∈Rd, yi ∈R, i= 1, · · · , N}, for fixed
antecedents obtained via clustering of the input space (or by other partition
techniques), the least-square (LS) solution to the consequents is to minimize the
following LS criterion function [29], that is,

min E
pg
=

N

∑
i=1

(yo
i − yi)

2 =
N

∑
i=1

(
pg

T xgi − yi
)2

= (y−Xgpg)
T (y−Xgpg) , (3.4)

where Xg = [xg1, · · · ,xgN]T ∈RN ×K · (d + 1) and y= [y1, · · · ,yN]T ∈RN .
The most popular LS criterion-based TSK-FS training algorithm is the one

used in the adaptive-network-based fuzzy inference systems [42]. For LS criterion-
based algorithms, a main shortcoming is that they usually have weak robustness for
modeling tasks involving noisy and/or small datasets. Besides the LS criterion-based
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TSK-FS training methods, the more promising TSK-FS training methods are the
support vector learning-based training algorithms, which are reviewed as follows.

Support Vector Learning-Based TSK-FS Training with L1-Norm Penalty

In addition to the LS criterion, another important criterion for TSK-FS training is
the ε-insensitive criterion [33]. Given a scalar g and a vector g= [g1, · · · ,gg]T , the
corresponding ε-insensitive loss functions take the following forms, respectively

[33]: |g|ε = g− ε (g> ε), |g|ε = 0 (g≤ 0) and |g| ε =
d

∑
i=1

|gi| ε . For the linear

regression problem of the TSK-FS in Eq. (3.3f), the corresponding ε-insensitive
loss-based criterion function [33] is defined as

min
pg

E =
N

∑
i=1

|yo
i − yi| ε =

N

∑
i=1

∣∣pT
g xgi − yi

∣∣ ε (3.5a)

In general, the inequalities yi −pT
g xgi < ε and pT

g xgi − yi < ε are not satisfied for
all data pairs (xgi,yi). By introducing the slack variables ξ+

i ≥ 0 and ξ−
i ≥ 0, Eq.

(3.5a) can be equivalently written as

min
pg,ξ+

i ,ξ
E =

N

∑
j=1

(
ξ+

i + ξ−
i

)
(3.5b)

s.t.

{
yi −pT

g xgi < ε + ξ+
i

pT
g xgi − yi < ε + ξ−

i
, ξ+

i ≥ 0,ξ−
i ≥ 0 ∀i.

Further, by introducing the regularization term [30], Eq. (3.5b) is modified to
become

min
pg,ξ

+,ξ+
E =

1
τ

N

∑
j=1

(
ξ+

i + ξ−
i

)
+

1
2

pg
T pg (3.5c)

s.t.

{
yi −pT

g xgi < ε + ξ+
i

pT
g xgi − yi < ε + ξ−

i
, ξ+

i ≥ 0,ξ−
i ≥ 0 ∀i,

where τ > 0 controls the trade-off between the complexity of the regression model
and the tolerance of the errors. Here, ξ+

i and ξ−
i can be taken as the L1-norm penalty

terms and thus Eq. (3.5c) is an objective function based on L1-norm penalty terms.
TSK training algorithm of this type is referred to as support vector learning-based
L1-TSK-FS, which has the similar learning way as the classical SVM. The dual
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optimization in Eq. (3.5c) is a quadratic programming (QP) problem, which can be
expressed as

max
α+,α−

− 1
2

N

∑
i=1

N

∑
j=1

(
α+

i −α−
i

)(
α+

j −α−
j

)
xT

gixgi −
N

∑
i=1

ε
(

α+
j +α−

j

)

+
N

∑
i=1

yi

(
α+

j −α−
j

) (3.5d)

s.t.
N

∑
i=1

(
α+

j −α−
j

)
= 0, α+

j ,α
−
j ∈ [0,τ] ∀i.

Compared with the LS-criterion-based algorithms, the support vector learning-
based L1-TSK-FS with the ε-insensitive criterion has been shown to be more robust
when dealing with noisy and small datasets.

Support Vector Learning-Based TSK-FLS Training with L2-Norm Penalty

Instead of the L1-norm penalty terms in Eq. (3.5c), another representative support
vector learning-based TSK-FS learning method is the one developed by employing
the L2-norm penalty terms [3]. The insensitive parameter ε is also added as a penalty
term in the objective function. This is similar to the approaches used in other existing
L2-norm penalty-based methods, e.g. L2-norm support vector regression (L2-SVR)
[43]. For TSK fuzzy model training, the ε-insensitive objective function based on
L2-norm penalty terms is then given by

min
pg,ξ

+,ξ+,ε
g
(
pg,ξ

+,ξ+,ε
)
=

1
τ
· 1

N

N

∑
j=1

((
ξ+

i

)2
+
(
ξ−

i

)2
)
+

1
2

pT
g pg +

2
τ
· ε

(3.6a)

s.t.

{
yi −pT

g xgi < ε + ξ+
i

pT
g xgi − yi < ε + ξ−

i
∀i.

Compared with the L1-norm penalty-based ε-insensitive criterion, the L2-norm
penalty-based criterion is advantageous because of the following characteristics: (1)
the constraints ξ+

i ≥ 0 and ξ−
i ≥ 0 in Eq. (3.5c) are not needed for the optimization;

(2) the insensitive parameter ε can be obtained automatically by optimization
without the need of manual setting. Similar properties can also be found in other
L2-norm penalty-based machine learning algorithms, such as L2-SVR [43]. For
convenience, the L2-norm penalty-based ε-insensitive TSK fuzzy model training
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is referred to as L2-TSK-FS in this chapter. Based on the optimization theory, the
dual problem in Eq. (3.6a) can be formulated as the following QP problem.

max
α+,α−

−
N

∑
i=1

N

∑
j=1

(
α+

i −α−
i

)(
α+

i −α−
i

) ·xT
gixg j −

N

∑
i=1

Nτ
2

(
α+

i

)2 −
N

∑
i=1

Nτ
2

(
α−

i

)2

+
N

∑
i=1

α+
i · yi · τ −

N

∑
i=1

α−
i · yi · τ

(3.6b)

s.t.
N

∑
i=1

(
α+

j +α−
j

)
= 1, α+

j ,α
−
j ≥ 0 ∀i

Notably, the characteristic of the QP problem in Eq. (3.6b) enables the use of
core-set-based minimal enclosing ball (MEB) approximation technique to solve
problems involving very large datasets [43]. The scalable L2-TSK-FS learning
algorithm (STSK) has thus been proposed in this regard [3].

3.2.2 Inductive Transfer Learning with Support Vector
Learning-Based TSK-FS

3.2.2.1 Framework of Knowledge-Leveraged Inductive Transfer
Learning with TSK-FS

Most inductive transfer learning algorithms are developed to learn from the data
in the source domain directly with some strategies. Recently, the transfer learning
from the knowledge in the source domain rather than the original data is investigated
with the knowledge-leveraged transfer learning framework [44], by observing the
characteristics of two types of the learning ways below from the source domain,
i.e., from the original data and from the induced knowledge.

1. For the data in the source domains, it is the original information and is also the
most commonly used information for transfer learning. However, the data are not
always available in some situations. For example, many data samples cannot be
made open due to the necessity of privacy protection in the real world. Moreover,
even if the data of source domains are available, it may not be always appropriate
to directly adopt these data for the modeling task in the target domain due to the
following issues: first, it is difficult to control and balance the similarity and
difference of distributions of the source and target domains by using the data
directly; secondly, there possibly exists a drifting between the distributions of
different domains and thus some data from the source domain may result in an
obvious negative influence on the modeling effect of the target domain.
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Data of target domain
(insufficient)

Learning from data of target
domain and knowledge of
source domains simultaneously

TSK-FS obtained for the
modeling task of the target
domain

Target 
Domain

Source 
Domain Knowledge of

source domains

Fig. 3.2 Framework of knowledge-leveraged TSK-FS learning

2. For the knowledge in the source domains, it is another kind of important
information. The types of knowledge are diverse, such as density distribution and
model parameters. Most of them can be obtained by some learning procedures in
the past. For example, the model parameters for the source domain can be learned
by a certain modeling algorithm based on the data collected from that domain in
a certain historical modeling task. Despite the fact that most of the knowledge
obtained cannot be inversely mapped to the original data, it is a good property
from a privacy preservation point of view and the important information from the
source domains to improve the modeling effect of the target domain.

Thus, the characteristics above show that it should be more appropriate to exploit
the use of knowledge rather than data from the source domains to enhance the
modeling/learning performance of the models obtained in the target domain. As
shown in Fig. 3.2, a generalized learning framework was proposed in [44] for
knowledge-leveraged transfer learning. Under this framework, the model in the
target domain can be learned from the data in the target domain and the knowledge in
the source domain simultaneously. In this study, the knowledge-leveraged inductive
transfer learning for the support vector learning-based TSK-FS will be studied
accordingly.

3.2.2.2 Inductive Transfer Learning with Support Vector
Learning-Based TSK-FS

To take advantage of knowledge-leveraged learning mechanism for TSK-FS,
KL-TSK-FS is proposed by using support vector learning and the L2-norm
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penalty-based TSK-FS learning strategy with the corresponding knowledge-
leverage mechanism. The goal is to effectively use the knowledge of the source
domains to remedy the deficiency caused by data insufficiency in the target domain
and develop an efficient learning algorithm for TSK-FS.

Objective Criterion Integrating the Knowledge of Source Domain

For a TSK-FS constructed by the support vector learning-based technique, the
corresponding model parameters obtained in the source domains can be regarded
as the knowledge. To develop an effective KL-TSK-FS for model learning of the
target domain, we propose an optimization criterion which is integrated with the
knowledge of the source domain as follows:

min
pg

N

∑
i=1

∣∣∣pg
T xgi − yi

∣∣∣
ε
+λ (pg −pg0)

T (pg −pg0) . (3.7)

The optimization criterion in Eq. (3.7) contains two terms. The first term refers
to the learning from the data of the target domain for the desired TSK-FS. This term
is included so that the desired TSK-FS will fit the sampled training data of the target
domain as accurate as possible. The second term refers to the knowledge-leverage
of the source domain, with pg0 denoting model parameters learned from the source
domains. The purpose is to estimate the desired parameters by approximating the
model obtained from the source domains. The parameter λ in Eq. (3.7) is used to
balance the influence of these two terms and the optimal value can be determined by
using the commonly used cross-validation strategy in machine learning. As in L2-
TSK-FS [20], we introduce the terms structure risk and ε-insensitive penalty into
Eq. (3.7) to obtain the following objective criterion

min
pg,ξ+

,ξ−
,ε

1
τ
· 1

N

N

∑
i=1

((
ξ+

i

)2
+
(
ξ−

i

)2
)
+

1
2

(
pT

g pg
)

+
2
τ
· ε +λ (pg −pg0)

T (pg −pg0)

(3.8)

s.t.

{
yi −pT

g x
gi
< ε + ξ+

i

pT
g x

gi
− yi < ε + ξ−

i
,∀i

In fact, the former three terms in Eq. (3.8) are directly inherited from the
L2-TSK-FS [20] and the last term is referred to as the knowledge-leverage term
which is used to learn the knowledge from the source domains. Based on the
objective criterion in Eq. (3.8), we can derive the corresponding learning rules for
the proposed KL-TSK-FS.
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Parameter Solution for KL-TSK-FS

Given the optimization problem in Eq. (3.8), Theorem 1 below is proposed for
parameter solution.

Theorem 1 The dual problem of Eq. (3.8) is a QP problem as shown in Eq. (3.9).

max
α−,α+

− 1
2(1+2λ )

N

∑
i=1

N

∑
i=1

(
α−

i −α+
i

)(
α−

j −α+
j

)
xT

gixg j − Nτ
4

N

∑
i=1

((
α+

i

)2
+
(
α−

i

)2
)

− 2λ
1+2λ

N

∑
i=1

(
α−

i −α+
i

)(
pT

g0
xgi + yi

)
+ λ

1+2λ pT
g0

pg0

(3.9)

s.t.
N

∑
i=1

α−
i +

N

∑
i=1

α+
i =

2
τ
, α−

i ≥ 0,α+
i ≥ 0.

Proof By using the Lagrangian optimization theorem, we can obtain the following
Lagrangian function for Eq. (3.8)

L
(
pg,ξ

+,ξ−,ε,α+,α−)= 1
τ
· 1

N

N

∑
i=1

((
ξ+

i

)2
+
(
ξ−

i

)2
)

+
1
2

(
pT

g pg
)
+

2
τ
· ε +λ (pg −pg0)

T (pg −pg0)

+
N

∑
i=1

α+
i

(
yi −pT

g xgi − ε − ξ+
i

)
+

N

∑
i=1

α−
i

(
pT

g xgi − yi − ε − ξ−
i

)
. (3.10)

According to the dual theorem, the minimum of the Lagrangian function in Eq.
(3.10) with respect to pg,ξ+,ξ−, ε is equal to the maximum of the function with
respect to α+,α−. Then the following equations can be considered as the necessary
conditions of the optimal solution:

∂L
∂pg

= pg + 2λ (pg −pg0)−
N

∑
i=1

(
α+

i −α−
i

)
xgi = 0, (3.11a)

∂L

∂ξ+
i

=
2

Nτ
ξ+

i −α+
i = 0, (3.11b)

∂L

∂ξ−
i

=
2

Nτ
ξ−

i −α−
i = 0, (3.11c)

∂L
∂ε

=
2
τ
−

N

∑
i=1

α−
i −

N

∑
i=1

α+
i = 0. (3.11d)
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From Eqs. (3.11a)–(3.11d), we have

pg =

2λ pg0 +
N

∑
i=1

(
α+

i −α−
i

)
xgi

1+ 2λ
, (3.12a)

ξ+
i =

Nτ·α+
i

2 , (3.12b)

ξ−
i =

Nτ·α−
i

2 , (3.12c)

N

∑
i=1

α−
i +

N

∑
i=1

α+
i =

2
τ
. (3.12d)

Substituting Eqs. (3.12a)–(3.12d) into Eq. (3.10), we obtain the dual problem for
Eq. (3.8), i.e.,

max
α−,α+

−1
2(1+2λ ) ·

N

∑
i=1

N

∑
i=1

(
α+

i −α−
i

)(
α+

j −α−
j

)
xT

gixg j − Nτ
4 ·

N

∑
i=1

((
α+

i

)2
+
(
α−

i

)2
)

− 2λ
1+2λ ·

N

∑
i=1

(
α+

i −α−
i

)
pT

g0
xgi +

N

∑
i=1

(
α+

i −α−
i

)
yi +

λ
1+2λ ·pT

g0
pg0

s.t.
N

∑
i=1

α−
i +

N

∑
i=1

α+
i =

2
τ
, α−

i ≥ 0,α+
i ≥ 0, ∀i. (3.12e)

Since the optimal solution of the dual problem, i.e., (α+)∗ , (α−)∗ , is independent
of λ

1+2λ ·pT
g0

pg0 , Eq. (3.12e) is equivalent to the following equation:

max
α−,α+

−1
2(1+2λ ) ·

N

∑
i=1

N

∑
i=1

(
α+

i −α−
i

)(
α+

j −α−
j

)
xT

gixg j − Nτ
4
.

N

∑
i=1

((
α+

i

)2
+
(
α−

i

)2
)

− 2λ
1+2λ ·

N

∑
i=1

(
α+

i −α−
i

)(
pT

g0xgi + yi
)
+

N

∑
i=1

(
α+

i −α−
i

)
yi

s.t.
N

∑
i=1

α−
i +

N

∑
i=1

α+
i =

2
τ
,α−

i ≥ 0,α+
i ≥ 0. (3.12f)

Thus, Theorem 1 is hold.
It is clear from the above results that the optimization problem in Eq. (3.9) for

TSK-FS training can be transformed into a QP problem that can be directly solved
by the traditional QP solutions [45].
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With the optimal solution (α+)∗ , (α−)∗ of the dual problem in Eq. (3.9), we can
get the optimal solution of the primal problem in Eq. (3.8) based on the relations
presented in Eqs. (3.12a)–(3.12d). The optimal model parameters of trained TSK-
FS, i.e., (pg)∗ , is then given by

(pg)
∗ =

2λ pg0 +
N

∑
i=1

((
α+

i

)∗ − (α−
i

)∗)xgi

1+ 2λ
, (3.13a)

which can be further expressed as

(pg)
∗ = γpg0 +(1-γ)pgc, (3.13b)

with γ = 2λ
1+2λ , pgc =

N

∑
i=1

((
α+

i

)∗ − (α−
i

)∗)xgi.

From Eq. (3.13b), we can see that the final optimal parameter (pg)∗ obtained
for the desired TSK-FS contains two parts, i.e. γ · pg0 and (1− γ) · pgc. While
(1− γ) ·pgc can denote the knowledge learned from the data of the target domain,
γ · pg0 can be taken as the knowledge inherited from the source domains. Thus, the
final model parameter (pg)∗ is a balance between these two kinds of knowledge.

Learning Algorithm For KL-TSK-FS

Based on the findings in the previous section, the learning algorithm of the proposed
KL-TSK-FS is developed and described as follows:

Algorithm KL-TSK-FS

Step 1 Introduce the knowledge of the source domains, i.e., the model parameter.
Step 2 Set the balance parameters τ , λ in Eq. (3.8).
Step 3 Use the antecedent parameters of the fuzzy model obtained from the

source domains and Eqs. (3.2d) and (3.3e) to construct the dataset xgi

for the corresponding model task, i.e., the linear regression model in
Eq. (3.3f), associated with the fuzzy system to be constructed for the
target domain.

Step 4 Use Eqs. (3.9) and (3.13a) to obtain the final consequent parameters (pg)∗

of the desired TSK-FS in the target domain.
Step 5 Use the antecedent parameters inherited from the source domains and the

consequent parameters obtained in step 4 to generate the fuzzy system
for the target domain.
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Computational Complexity Analysis

The computational complexity of the above algorithm is analyzed as follows.
The whole algorithm includes two main parts: (1) acquisition of the antecedent
parameters of the fuzzy system and (2) learning of the consequent parameters.
For the first part, since the antecedent parameters are inherited directly from the
reference scene as the available knowledge, the computational complexity is O(1).
For the second, the consequent parameters are obtained by solving the QP problem
in Eq. (3.9) and the complexity is usually O(N2) for typical QP problems. However,
it can be further reduced to O(N) with some sophisticated algorithms, such as the
working set-based algorithm [33]. Therefore, the computational complexity of the
proposed algorithm is between O(N) and O(N2), depending on the QP solutions
used. In this study, we adopt the working set-based QP solution [33] for solving the
QP problem concerned.

3.3 Transductive Transfer Learning with DAKSVM

3.3.1 Concepts and Problem Formulation

In this subsection, we introduce several definitions to clarify our terminology and
propose our algorithm and analysis on the domain adaptation transfer learning
problems.

Definition 1 (Domain) A domain D is composed of both feature space
χ and marginal probabilistic distribution P(X), i.e., D= {χ , P(X)}, where
X= {xi}N

i=1 ∈ χ .

Definition 2 (Task) Given a specific domain D= {χ , P(X)}, a task is composed
of both tag space Y and target prediction function f (·), i.e., T = {Y, f (·)}, where
f (·) learned from the training dataset {xi,yi}, where xi ∈X, yi ∈Y. The function
f (·) can be used to make prediction for the tag f (x) corresponding with X. From a
probabilistic point of view f (x)=P(y|x).

Definition 3 (Domain Adaptation Learning, DAL) Given a source domain Ds

with its learning task Ts and target domain Dt with its learning task Tt, respectively,
we refer to domain adaptation learning (DAL) as the following problem: given a
set of labeled training dataset Xs = {(xi,yi)}i ∈Ds ×{±1}, where yi ∈Ys ⊂Y is the
class label corresponding to xi, from source domain Ds. Thus, we need to make
prediction ft(·) for some unlabeled test dataset Xt = {xj}j ∈Dt from target domain
Dt. Ds with its task Ts and Dt with its task Tt are different, respectively, in the same
feature space. When Ds =Dt and Ts =Tt, DAL will be degenerated into classical
machine learning problems.

Given an input space X and a label set Y of classes, a classifier is a function as
f (x) : X→Y which maps data x∈X to label set Y. In the context, let us consider two



66 Z. Deng and S. Wang

datasets Xs = {(xs1,ys1), . . . ,(xsn,ysn)} drawn from X×Y with probabilistic distribu-
tion Ps(xs,ys) and Xt = {xt1, . . . ,xtm} drawn from X with probabilistic distribution
Pt(xt,yt) where yt needs to be predicted, which are composed of n source domain
and m target domain patterns, respectively, and usually 0≤m<< n. xs and xt are
denoted by d-dimensional feature vectors with respect to Xs and Xt, respectively.
The classical large margin learning machines (such as SVMs) work well under such
hypothesis as Ps(xs,ys)=Pt(xt,yt). However, DAL can make accurate prediction for
the unlabeled target data to some extent by learning a classifier under even such
hypothesis as Ps(xs,ys) �=Pt(xt,yt). The performance of DAL depends on both the
complexity of the investigated problems and the correlation between Ps(xs,ys) and
Pt(xt,yt) [6]. In this chapter, the proposed method is formulated under the following
hypothesis:

1. There are only one source domain and one target domain sharing the same feature
space in DAL problems, which is the most popular hypothesis used by the state-
of-the-art methods.

2. A training dataset Xs = {(xsi,ysi)}i is available for Ds while a testing dataset
Xt = {(xtj,ytj)}j is available for Dt with ytj which is unknown.

3. Ps(xs,ys) �=Pt(xt,yt) and Ps(ys|xs) �=Pt(yt|xt).

3.3.2 Distribution Discrepancy Metrics on RKHS Embedding
Domain Distributions

Kernel methods are broadly used as an effective way of constructing nonlinear
algorithms from linear ones by embedding datasets into some higher dimensional
RKHSs [46]. A generalization of this idea is to embed probabilistic distributions into
RKHS, giving us a linear method for dealing with higher order statistics [47, 48]. Let
a complete inner product space H of functions F, and for g∈F, g : X→R, where
X is a nonempty compact set, if the linear dot function mapping g→ g(x) exists
for all x∈X, we call H as an RKHS. Under the aforementioned conditions, g(x)
can be denoted as an inner product: g(x)=< g, φ (x)>H , where φ : X→H denotes
the feature space projection from x to H. And the inner product of the images of
any points x and x′ in feature space is called kernel k(x,x′)=< φ (x), φ (x′)>H . It is
pointed out in [48] that RKHS with Gaussian kernel is universal.

Definition 4 (Integral Probability Metric on RKHS Embedding Distributions
[2]) Given the set Θ of all Borel probabilistic measures defined on the topological
space M, and the RKHS (H, k) of functions on M with k as its reproducing kernel.
For any P∈Θ, denotes by Pk :=

∫
Mk(.,x)dP(x). If k is measurable and bounded,

then we may define the embedding of P in H as Pk∈H. Then, the RKHS embedding
distributions distance between two such mappings associated with P, Q∈Θ is
defined as follows:

γk (P,Q) = ||Pk−Qk ||H (3.14)
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We may say k is a characteristic kernel (CK) if the mapping P �→Pk is injective
[48], in which case γk(P,Q)= 0 if and only if P=Q [49]. Hence γk is viewed as the
distance metric on Θ. The RKHS embedding distributions cannot be distinguished
when k is not a CK, thus leading to the failure of RKHS embedding distribution
measure. Hence, it is a key factor for the success of RKHS embedding distribution
measure that whether k is a CK or not. Fortunately, many popular kernel functions,
such as polynomial kernel function, Gaussian kernel function, and Laplace kernel
function, are all CK and universal ones [48]. Particularly, it is worth noting that
Gaussian kernel mapping can provide us an effective RKHS embedding skill
for the consistency estimation of the probability distribution distance between
different domains [48]. Hence, in the sequel, we adopt the Gaussian kernel

function kσ (x,z) = exp
(
− 1

2σ 2 ||x− z || 2
)

, where x, z∈X, and σ denotes the kernel

bandwidth, as the reproducing kernel in Hilbert space in this work. It is worthy to
note that instead of using a fixed and parameterized kernel, one can also use a finite
linear combination of kernels to compute γk.

For domain adaptation transfer learning problems, let Ds and Dt denote source
and target domain, respectively, and Xs ∈Ds, Xt ∈Dt denote sample from Ds and Dt,
respectively, with probability measures Ps and Pt, respectively. Let Pxs,xt denote the
joint probability measure of Xs ×Xt. Assume all measures are Borel ones and Xs, Xt

are two compact sets. Besides, let an RKHS H of a class of functions F with kernel
k, then for g∈F, g : X→R, where X is a nonempty compact set, there exists the
reproducing property as follows: < g(·), k(x,·)>= g(x), < k(x,·), k(x′,·)>= k(x,x′),
where <,> denotes inner product operator. Thus, by Definition 1, the unbiased
empirical estimator of maximum mean distance (MMD) on RKHS embedding
domain distributions is defined as [50]:

MMD(F,Xs,Xt) =

∥∥∥∥∥1
n

n

∑
i=1

ϕ (xi)− 1
m

m

∑
j=1

ϕ (z j)

∥∥∥∥∥
2

, (3.15)

where xi ∈Xs, zj ∈Xt.
Specifically, by Definition 1, we can have the following definitions on RKHS

embedding distribution distance metric.

Definition 5 (Projected Maximum Mean Distance Metric on RKHS Embedding
Domain Distributions) Let linear function f : f (x)= 〈w, φ (x)〉, where w is a
projection vector. Then the projected maximum mean distance metric on RKHS
embedding domain distributions is defined as follows:

γKM ( f ,Xs,Xt) =

∥∥∥∥∥ 1
n

n

∑
i=1

wT ϕ (xi)− 1
m

m

∑
j=1

wT ϕ (z j)

∥∥∥∥∥
2

= wT

(
1
n

n

∑
i=1

ϕ (xi)− 1
m

m

∑
j=1

ϕ (z j)

)(
1
n

n

∑
i=1

ϕ (xi)− 1
m

m

∑
j=1

ϕ (z j)

)T

w,

(3.16)

where xi ∈Xs, zj ∈Xt.
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Definition 6 (Projected Maximum Scatter Distance Metric on RKHS Embed-
ding Domain Distributions) Let linear function f : f (x)= 〈w, φ (x)〉, where w is a
projection vector. Then, along the same line of Definition 2, the projected maximum
scatter distance metric on RKHS embedding domain distributions is defined as

γKS ( f ,Xs,Xt) = wT

∣∣∣∣∣1n
n

∑
i=1

ϕ (xi) [ϕ (xi)]
T − 1

m

m

∑
j=1

ϕ (z j) [ϕ (z j)]
T

∣∣∣∣∣w, (3.17)

where x∈Xs, z∈Xt.

Definition 7 (GPMDD Metric on RKHS Embedding Domain Distributions) By
Definitions 2 and 3, generalized projected maximum distribution distance metric on
RKHS embedding domain distributions with probabilistic distribution p, q∈P is
defined as

γKMS ( f ,Xs,Xt) = (1−λ )γKM ( f ,Xs,Xt)+λ γKS ( f ,Xs,Xt) , (3.18)

where λ ∈ [0,1] and when λ = 0, γKMS = γKM . The parameter λ is treated as a
balance between probabilistic distribution mean and scatter (or variance). When λ
increases, γKMS is biased in favor of preserving the distribution scatter consistency
between both domains. When λ decreases, γKMS is biased in favor of preserving
the distribution mean consistency between both domains. Hence, the proposed
method can preserve both the distributions consistency between domains and the
discriminative information in both domains.

It can be guaranteed by the following theorem that the GPMDD between both
domains can be measured sufficiently.

Theorem 1 [51] Let F is a unit ball defined in some universal RKHS H with a
kernel k(·,·), which are all defined in a compact metric space. And let Xs, Xt are two
compact sets generated from Borel probability metrics p and q, respectively, in the
metric space with p and q. Then γKMS(F,Xs,Xt)= 0 if and only if p= q.

3.3.3 Domain Adaptation Kernelized Support Vector Machine

Inspired by the idea of manifold regularization, MMD-based methods for transduc-
tive transfer learning (e.g., LMPROJ [28] and DTSVM [29], etc.) can be formulated
as follows:

f = min
w∈HK

C
n

∑
i=1

ξi +
1
2‖w‖2

K +λ γKM ( f ,Xs,Xt)

s.t.
yi
(
wT φ (xi)+ b

)≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,n

(3.19)
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where w is a normal projection vector, k is a kernel with φ a kernel mapping, HK is
a set of functions in the kernel space, λ is a balance parameter, and γKM(f,Xs,Xt) is
the projected distribution mean distance metric between source and target domains,
where xi ∈Xs.

However, Eq. (3.6) discloses a key limitation of MMD-based methods to some
extent, i.e., they ignore considering sufficiently the potential scatter statistics, which
may include underlying discriminative information in both domains for DAL, such
that they may lead to “overfitting” phenomenon in some specific pattern recognition
applications. Therefore, in this chapter, we propose a robust DAKSVM regularized
by GPMDD metric on RKHS embedding domain distributions, which partially
extends the ideas of classical SVMs and MMD. The key goals of our methods are
to find a feature transform such that the mean and variance distances between the
distributions of the testing and training data are minimized sufficiently, while at
the same time maximizing the class margin or certain classification performance
criterion for the training data, thus learning a robust model to effectively make
prediction for target domain.

3.3.3.1 Objective Function of DAKSVM

For simplicity, firstly we only consider binary pattern classification problems, and
secondly we propose a so-called least-square DAKSVM (LSDAKSVM) based on
the classical LS-SVM [52] as an extension to the standard DAKSVM method for
multi-class pattern classification problems.

For DAL problems, DAKSVM aims to find a linear transform f (x)=wTϕ(x) in
a universal RKHS with Gaussian kernel mapping, where w is a linear projection
vector, in order to minimize the distribution discrepancy between-domain as well
as to reduce the empirical risk of the classification decision function as much as
possible, thus implementing transfer learning in cross-domains. DAKSVM can be
formulated as

min f =C
n

∑
i=1

V (xi,yi, f )+γKMS ( f ,Xs,Xt) , (3.20)

where xi ∈Xs is a set of training data and matrix φ (Xs)= (φ (xs1), φ (xs2), . . . , φ (xsn)),
yi ∈Ys is the class label corresponding to xi, C > 0 is a regularization coefficient,
and V measures the fitness of the function in terms of predicting the class labels
for the training data and is called the risk function. The hinge loss function is
a commonly used risk function in the form of V = (1− yif (xi))+ [53] in which
(x)+ = x if x≥ 0 and zero otherwise.

Therefore, the linear function f in Eq. (3.20) represented by a vector w can be
represented as

arg min
w,b,ξ

f =C
n

∑
i=1

ξi + γKMS ( f ,Xs,Xt)

s.t. yi ((w,ϕ (xi) )+b)≥ 1− ζi, i = 1,2, . . . ,n
(3.21)
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In order to solve the primal in Eq. (3.21) effectively, we introduce the following
revised Representer Theorem for DAL problems as follows:

Theorem 2 (Representer Theorem [54] for DAL) For a DAL problem, let
ψ : [0, ∞)→R denote a strictly monotonic increasing function, X=Xs ∪Xt be a
dataset, and c : (X×R2)n →R∪{∞} be any loss function. Then the regularized risk
function is defined as

R( f ) = c((xi,yi, f (xi))
n
i=1)+ψ

(|| f ||2
H

)
, (3.22)

where f ∈H is represented as

f (x) =
m

∑
i=1

βik (xi,x)+
n

∑
j=1

β jk (z j,x) , (3.23)

where k is a kernel, xi ∈Xs, yi ∈Ys, zj ∈Xt and β i is a coefficient.
By Theorem 2, we can have the following theorem.

Theorem 3 The primal of DAKSVM can be formulated as

min
β,ξ,b

f = 1
2β

T Ωβ+C
N

∑
i=1

ξi, (3.24a)

s.t. yi

(
n+m

∑
j=1

β jkσ (xi,x j)+ b

)
≥ 1− ξi, i = 1, . . . ,n,

where xi ∈Xs, xj ∈Xs ∪Xt, Ω is a positive semi-definite kernel matrix with

Ω = (1−λ )Ω1 +λ Ω2 (3.24b)

where Ω1 is a (n+m)× (n+m) symmetrical positive semi-definite kernel matrix
defined as

Ω1 =
1
n2 Ks[1]

n×nKT
s +

1
m2 Kt [1]

m×mKT
t − 1

nm

(
Ks[1]

n×mKT
t +Kt [1]

m×nKT
s

)
(3.24c)

and Ω2 is a (n+m)× (n+m) symmetrical positive semi-definite kernel matrix
defined as

Ω2 =

∣∣∣∣1nKsKT
s − 1

m
KtKT

t

∣∣∣∣ (3.24d)

where Ks is a (n+m)× n kernel matrix for the training data, Kt is a (n+m)×m
kernel matrix for test data, and [1]k× l is a k× l matrix of all ones.
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Theorem 4 The dual of the primal in Eq. (3.24) can be formulated as

min
α

1
2α

T Hφα− 1Tα (3.25)

s.t. 0 ≤ αi ≤C, i = 1, . . . ,n,

n

∑
i=1

αiyi = 0,

where Hφ = ỸKT
s (Ω)−1KsỸ, and Ỹ = diag(y1,y2, . . . ,yn), yi ∈Ys.

By the same way of the classical SVM, the biased variable bϕ in the kernel space
can be formulated as

bφ =−1
2

(
1

|Xs+| ∑
x∈Xs+

n+m

∑
j=1

β jkσ (x j,x)+
1

|Xs−| ∑
x∈Xs−

n+m

∑
j=1

β jkσ

(
x j,x

))
(3.26a)

Meanwhile, we can get the solution of β with dual theory as follows:

β = (Ω)−1Ks
∼
Yα (3.26b)

3.3.3.2 Learning Algorithm of DAKSVM

The proposed DAKSVM algorithm can be summarized as follows.

Algorithm DAKSVM

Input: Dataset matrix X= ({xi,yi}n
i=1,{zj}m

j=1), xi ∈Xs, yi ∈Ys, zj ∈Xt, set
Gaussian kernel bandwidths σ , σ /γ , respectively, in γKM and γKS of
GPMDD.

Output: Decision function f (x).
Step 1: Determine the parameter γ in γKS of GPMDD such that the scatter

consistency between source and target domains is maximized.
Step 2: Compute the matrices Ω1 and Ω2, respectively, by Eqs. (3.24a) and

(3.24b). In terms of λ given by users to construct matrix
Ω= (1− λ )Ω1 +λ Ω2.

Step 3: For the given C, find out the optimal vector β by applying Theorem 4
to solve the corresponding dual. And then recover the optimal
normal vector w and bias bφ by β;

Step 4: Output the decision function f (x)=wTφ (x)+ bφ .



72 Z. Deng and S. Wang

3.3.4 Variants and Extensions

3.3.4.1 Least-Square DAKSVM

One variant of DAKSVM is the LSDAKSVM which is also based on the idea of
LS-SVM [52], which can be formulated as:

arg min
w,b,ξ

f = C
2

n

∑
i=1

ξ 2
i + γKMS (p,q)

s.t. (w,φ (xi))+ b = yi − ξi, i = 1,2, . . . ,n.
(3.27)

Along the same line of DAKSVM, the primal of Eq. (3.17) is defined as

min
β,ξ,b

f = 1
2β

T Ωβ+ C
2

n

∑
i=1

ξ 2
i , (3.28)

s.t.
n+m

∑
j=1

β jkσ/γ (xi,x j)+ b = yi − ξi, ξi ≥ 0, i = 1, . . . ,n.

Theorem 5 (Analytic Solution to Binary Class Case) Given the parameter
λ ∈ [0,1], for a binary classification problem, the optimal solution of Eqs. (3.27)
and (3.28) is equivalent to the linear system of equations with respect to variable α
as follows: [

0 1T
n

1n Ω̃

][
b
α

]
=

[
0

Ys

]
, (3.29)

where 1n = [1, . . . ,1]T , α= [α1, . . . ,αn]T , Ys = [y1, . . . ,yn]T , Ω̃ = KT
s (Ω)−1Ks +

In
C , In is an n-dimensional identity matrix.

As for multi-class classification problems, the traditional skills are to separate a
multi-class classification problem into several binary classification problems in one-
against-one (OAO) or one-against-all (OAA) way. However, the main drawbacks
of these skills deal with high computational complexity and imbalance between
classes. Hence, here we introduce the vector labeled outputs into the solution
of LSDAKSVM, which can make the corresponding computational complexity
independent of the number of classes and require no more computations than a
single binary classifier [55]. Furthermore, Szedmak and Shawe-Taylor [55] pointed
out that this technique does not reduce the classification performance of a learning
model but in some cases can improve it, with respect to OAO and OAA. Therefore,
we represent the class labels according to the one-of-c rule, namely, if training
sample xi (i= 1, . . . , n) belongs to the kth class, then the class label of xi is
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Y i =

⎡
⎣0, . . . ,1︸ ︷︷ ︸

k

, . . . ,0

⎤
⎦

T

∈Rc, where the kth element is one and all the other elements

are zero. Hence, for some multi-class classification problems, the optimal problem
of LSDAKSVM can be formulated as

min
β,ξ,b

f = 1
2 β̃

T Ωβ̃+ C
2

n

∑
i=1

ξ 2
i , (3.30)

s.t. β̃
T

Ks + b = Yi − ξi, i = 1, . . . ,n,

where β̃ ∈ Rn×c, b∈Rc.

Theorem 6 (Analytic Solution to Multi-Class Case) Given the parameter
λ ∈ [0,1], for a multi-class classification problem, the optimal solution of Eq.
(3.30) is equivalent to the linear system of the following equation.

[
b α

][ 0 1T
n

1n Ω̃

]
=
[

0c Ỹs
]
, (3.31)

where 0c = [0, . . . ,0]T , α= [α1, . . . ,αn]T , Ỹs = [Y1,Y2, . . . ,Yn]
T ,

∼
Ω is the same as in

Theorem 6.
Theorems 5 and 6 actually provide us the LSDAKSVM versions for both binary

and multi-class classification problems, respectively. It is clearly shown from Eqs.
(3.20) and (3.23) that LSDAKSVM keeps the same solution framework for both
binary and multi-class cases.

3.3.4.2 μ-Domain Adaptation Kernelized Support Vector Machine

The v-SVM [56] is a typical extension of SVM for classification in which Schölkopf
et al. introduced a new parameter v instead of C in SVM to control the number of
support vectors and the training errors. More details about v-SVM can be found in
[56]. Hence, as the second variant of DAKSVM based on v-SVM, μ-DAKSVM can
be formulated as:

min
β,ξ,b

f = 1
2β

T Ωβ− μρ + 1
N

n

∑
i=1

ξi, (3.32)

s.t. yi

(
N

∑
j=1

β jkσ/γ (xi,x j)+ b

)
≥ ρ − ξi, i = 1, . . . ,n,
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where the variables N = n+m, ρ ≥ 0, μ > 0 and ξ i ≥ 0 have the same meaning as in
v-SVM. Similar to v-SVM, the dual of the primal in Eq. (3.32) can be formulated as:

min
α

1
2 αT Hφ α (3.33)

s.t. 0 ≤ αi ≤ 1
N
, i = 1, . . . ,n,

n

∑
i=1

αiyi = 0,

n

∑
i=1

αi ≥ μ ,

where Hϕ =
∼
YKT

s

(
Ω
)−1

Ks
∼
Y, and

∼
Y = diag(y1,y2, . . . ,yn), yi ∈Ys.

3.3.5 Computational Complexity Analysis

In terms of Algorithm 1, DAKSVM and its variants can be implemented by using
standard SVM solver (e.g., LibSVM [57]) with the quadratic form induced by
matrix Ω aforementioned above, and using the optimal solution to obtain the
expansion coefficients by Eqs. (3.35) and (3.13)–(3.15) respectively. It is worth
noting that our algorithms compute the inverse of a dense Gram matrix Ω which
leads to O((n+m)3) training complexity comparable to SVM. This seems to be
impractical for large datasets. However, for highly sparse datasets, for example,
in text categorization problems, effective conjugate gradient schemes can be used
in a large-scale implementation [58]. For the nonlinear case, one may obtain
approximate solutions (e.g., using greedy, matching pursuit techniques) where the
optimization problem is solved over the span of a small set of basis functions instead
of using the full representation in f (x)=wTφ (x). Besides, CVM [59] may be an
alternative choice in addressing scalability issues occurring in SVM learning. The
testing complexity of DAKSVM depends on the number of support vector learned
from the training stage. In fact, the proposed method DAKSVM and its variants
take less than half a minute to finish the whole prediction for test samples from
target domain in most of the following experiments.
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3.4 Experimental Results of KL-TSK-FS

3.4.1 Experimental Settings

The proposed inductive transfer learning method KL-TSK-FS is evaluated by using
both synthetic and real-world datasets. Details about the evaluation will be described
in detail in Sects. 3.4.2 and 3.4.3, respectively. For clarity, the notations for the
datasets and their definitions are listed in Table 3.2. Here, datasets generated from
the source domain and the target domain are denoted by D1 and D2, respectively.
The proposed support learning-based KL-TSK-FS algorithm is evaluated from the
following two aspects.

1. Comparison with traditional support vector learning-based L2-TSK-FS. The
performance of KL-TSK-FS is compared comprehensively with that of three
L2-TSK-FS methods implemented under different conditions. That is, four TSK-
FS systems are constructed by (a) L2-TSK-FS based on the data in the source
domain, (b) L2-TSK-FS based on the data in the target domain, (c) L2-TSK-FS
based on the data in both the target domain and the source domain, and (d) the
proposed KL-TSK-FS. They are denoted by L2-TSK-FS(D1), L2-TSK-FS (D2),
L2-TSK-FS (D1+D2), and KL-TSK-FS(D2+Knowledge), respectively. With
these four fuzzy systems, the testing data, i.e. D2_test, of the target domain are
used to evaluate their generalization capability.

2. Comparison with regression methods designed for datasets with missing or
noisy data. Three related regression methods are employed to compare with the
proposed KL-TSK-FS for performance evaluation. The three methods include:
(a) TS-fuzzy system-based support vector regression (TSFS-SVR) [60]; (b)
fuzzy system learned through fuzzy clustering and SVM (FS-FCSVM) [61];
and (c) Bayesian task-level transfer learning for nonlinear regression method
(HiRBF) [20].

The methods adopted for performance comparison from these two aspects are
summarized in Table 3.3. The following generalization performance index J is used
in the experiments [2],

Table 3.2 Notations of the adopted datasets and their definitions

Notation Definitions

D1 Dataset generated from the source domain
D2 Dataset generated from the target domain for training
D2_test Dataset generated from the target domain for testing
r Relation parameter between the source domain and the target domain, which is used

to construct the synthetic datasets
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Table 3.3 The methods adopted for performance comparison

Support vector learning and L2-norm
penalty-based TSK-FS modeling methods

Four methods designed for noisy/
missing data

(1) The proposed KL-TSK-FS
(D2+Knowledge)

(2) L2-TSK-FS
(D1) [2]

(1) The proposed
KL-TSK-FS

(5) TSFS-SVR
[60]

(3) L2-TSK-FS
(D2) [2]

(6) FS-FCSVM
[61]

(4) L2-TSK-FS
(D1+D2) [2]

(7) HiRBF [20]

J =

√√√√√√√√√
1
N

N

∑
i=1

(
y′i − yi

)2

1
N

N

∑
i=1

(yi − y)2

, (3.34)

where N is the number of test datasets, yi is the output for the ith test input, y
′
i is the

fuzzy model output for the ith test input, and y = 1
N

N

∑
i=1

yi. The smaller the value of

J, the better the generalization performance.
In the experiments, the hyperparameters of all the methods adopted are deter-

mined by using the fivefold cross-validation strategy with the training datasets. All
the algorithms are implemented using MATLAB on a computer with Intel Core 2
Duo P8600 2.4 GHz CPU and 2GB RAM.

3.4.2 Synthetic Datasets

3.4.2.1 Generation of Synthetic Datasets

Synthetic datasets are generated to simulate the domains in the study and the
following requirements need to be satisfied: (1) the source domain should be related
to the target domain, i.e., the source and target domains are different but related; (2)
some of the data of the target domain are not available or missing. In other words,
the data available from the target domain are insufficient.

Based on the above requirements, the function Y = f (x)= sin(x) ∗ x, x∈ [−10, 10]
is used to describe the source domain and to generate the dataset D1. On the other
hand, the function y= r * f (x)= r * sin(x) * x, x∈ [−10, 10] is used to describe the
target domain and to generate the dataset D2 and testing dataset D2_test for the tar-
get domain. Here, r is a relation parameter between the source domain and the target
domain. The parameter is used to control the degree of similarity/difference between
these two domains. When r = 1, the two domains are identical. On the other hand,
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Table 3.4 Details of the synthetic datasets

Source domain Target domain

Dataset Training set Testing set
Size of dataset Interval with missing data Size of dataset Size of dataset
400 [−6, −3] and [0, 4] 144 200
Relation parameter between the two domains: r = 0.9, 0.85, 0.8, 0.75 and 0.7
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Fig. 3.3 Functions representing two different domains with the relation parameter r = 0.85 and the
corresponding sampled data from these domains: (a) the functions representing the source domain
(Y) and the target domain (y); (b) the data of the source domain and the training data of the target
domain with missing data in the intervals [−6, −3] and [0, 4]

the lack of information (data insufficiency) is simulated by introducing intervals
with missing data into the training set generated for the target domain. The settings
for generating the synthetic datasets are described in Table 3.4. For example, the
two functions used to simulate the two related domains, with the relation parameter
r = 0.85, are shown in Fig. 3.3a. The datasets of the source domain and the training
sets of the target domain, generated with the same relation parameter (i.e. r = 0.85),
are shown in Fig. 3.3b. The figures also show the two data-missing intervals [−6,
−3] and [0, 4] introduced into the dataset.

3.4.2.2 Comparing with the Traditional Support Vector Learning-Based
L2-TSK-FS Modeling Methods

The performance of the proposed KL-TSK-FS and the three traditional L2-norm
penalty-based TSK-FS modeling methods is evaluated and compared using the
synthetic datasets. The experimental results are shown in Table 3.5 and Fig. 3.4.
In Table 3.5 and other tables in this paper, the bold values denote the best results
obtained among all the methods. The following observations can be made from the
results:
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Table 3.5 Generalization performance (J) of the proposed KL-TSK-FS method and the traditional
L2-TSK-FS methods on the synthetic datasets

Interval with
data missing

Relation
parameter
(r)

L2-TSK-FS
(D1)

L2-TSK-FS
(D2)

L2-TSK-FS
(D1+D2)

KL-TSK-FS
(D2+Knowledge)

[−6, −3]
and [0, 4]

0.9 0.1343 0.2858 0.1012 0.0501
0.85 0.1908 0.2813 0.1434 0.0516
0.8 0.2574 0.2864 0.1983 0.1094
0.75 0.3525 0.2841 0.2627 0.1534
0.7 0.4406 0.2821 0.3432 0.2388
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Fig. 3.4 Modeling results of the proposed KL-TSK-FS method and three traditional L2-TSK-FS
methods by using the synthetic datasets shown in Fig. 3.5b: (a) L2-TSK-FS based on the data
of the source domain (D1); (b) L2-TSK-FS based on the data of the target domain (D2); (c) L2-
TSK-FS based on the data of both the reference and target domains (D1+D2); (d) the proposed
KL-TSK-FS (D2+Knowledge)

1. It can be seen from Table 3.4 that the generalization performance of the
knowledge-leverage-based fuzzy system KL-TSK-FS is better than that of the
traditional L2-TSK-FS methods.

2. Figure 3.4a shows the modeling results of the L2-TSK-FS obtained by using the
data of the source domain only. The results indicate that drifting exists between
the source domain and the target domain, as evident from the discrepancies
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between the two curves in the figure. Hence, the generalization performance of
the TSK-FS obtained by L2-TSK-FS from the source domain is weak for the
target domain. The findings show that the use of the data of the source domain
alone is not appropriate for the modeling of the target domain.

3. Figure 3.4b shows the modeling results of the L2-TSK-FS obtained by using
the data of the target domain only. The results indicate that the generalization
performance of the TSK-FS obtained by L2-TSK-FS is even much weaker for
the target domain. An obvious reason is that the data in the training set is
insufficient, which degrades the generalization capability of the obtained TSK-
FS. The prediction performance is especially poor in the intervals with missing
data in the training dataset.

4. Figure 3.4c shows the modeling results of the L2-TSK-FS obtained by using
the data of both the target domain and the source domain. Although the data of
both domains have been used for training, the generalization performance of the
obtained TSK-FS is still not good enough for the target domain. This can be
explained by two reasons. First, drifting occurs between the reference and target
domains, i.e., not all data in the source domain are useful for the modeling task of
the target domain. Some of them may even have negative influence. Second, the
size of the source domain is larger than that of the target domain, which makes
the obtained TSK-FS more apt to approximate the source domain rather than the
target domain.

5. Figure 3.4d shows the modeling results of the proposed KL-TSK-FS. The
following observations can be made by comparing its results with the results
of the three L2-TSK-FS methods, respectively. First, by inspecting Fig. 3.4a, d,
we see that the KL-TSK-FS demonstrates better prediction results than the
L2-TSK-FS which only uses the data of source domain. Second, it is evident
from Fig. 3.4b, d that, by introducing the knowledge-leverage mechanism, the
proposed KL-TSK-FS has effectively remedied the deficiency of the L2-TSK-FS
obtained by the data of the target domain. By comparing Fig. 3.4c, d, we also
find that the KL-TSK-FS has demonstrated better generalization performance
than the L2-TSK-FS which employs the data of both the reference and target
domains. It is noteworthy to point out that the KL-TSK-FS also has better
privacy-protection capability than the methods that use the data of source
domains directly. When the data in the source domains are not available due
to the necessity of privacy protection, or in situations where knowledge are
only partially revealed, methods requiring the data of all domains are no longer
feasible. Therefore, the proposed KL-TSK-FS is particularly suitable for these
situations attributed to its distinctiveness in privacy protection.

3.4.2.3 Comparing with Regression Methods Designed for Missing
or Noisy Data

The performance of the proposed KL-TSK-FS method is evaluated by comparing
its performance with that of three regression methods designed for handling
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Table 3.6 Generalization performance (J) of the proposed KL-TSK-FS method and three related
regression methods on the synthetic datasets

Interval with
missing data

Relation
parameter (r) TSFS-SVR FS-FCSVM HiRBF KL-TSK-FS

[−6, −3] and
[0, 4]

0.9 0.2972 0.3161 0.2621 0.0501
0.85 0.2989 0.3179 0.2619 0.0516
0.8 0.2983 0.3170 0.2687 0.1094
0.75 0.2933 0.3167 0.2639 0.1534
0.7 0.2970 0.3185 0.2611 0.2388
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Fig. 3.5 Modeling results of the proposed KL-TSK-FS method and three related regression
methods using the synthetic datasets in Fig. 3.5b: a TSFS-SVR, b FS-FCSVM, c HiRBF, and
d KL-TSK-FS

noisy/missing data, i.e., TSFS-SVR, FS-FCSVM, and HiRBF. The evaluation is
performed on the synthetic datasets. The experimental results are shown in Table 3.6
and Fig. 3.5, and the following observations can be obtained:

1. KL-TSK-FS has demonstrated better generalization performance than the other
three related methods.

2. The results in Fig. 3.5a, b show that the support vector learning-based fuzzy mod-
eling methods TSFS-SVR and FS-FCSVM are able to give better generalization
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TSK-FS 1

TSK-FS 2

TSK-FS 3

S(h+2)

P(h+2)

X(h+2)

I(h)

I(h)= [S(h), P(h), X(h), h ,Q(h), R(h)]

Fig. 3.6 Illustration of the
glutamic acid fermentation
process prediction model
based on the TSK-FS

performance to a certain extent. For example, although the data in the interval
[−6, −3] are missing, these two methods still demonstrate promising generaliza-
tion capability at this interval. However, the generalization abilities of these two
methods in the other data-missing interval [0, 4] are not satisfactory.

3. Although the transfer learning-based method HiRBF has used the data in both the
target domain and the source domain in the training, it is evident form Fig. 3.5c
that this method cannot effectively cope with the problem caused by the missing
data, still exhibiting poor generalization ability in the two data-missing intervals.

4. Figure 3.5d shows that the proposed method KL-TSK-FS is able to give
acceptable generalization capability in the two data-missing intervals, indicating
that the method has effectively leveraged the useful knowledge from the source
domain and remedy the generalization abilities in the training procedure.

3.4.3 Real-World Datasets

3.4.3.1 The Glutamic Acid Fermentation Process Modeling

To further evaluate the performance of the proposed method, an experiment is
conducted to apply the method to model a biochemical process with real-world
datasets [2]. The datasets adopted originates from the glutamic acid fermentation
process, which is a multiple-input–multiple-output system. The input variables
of the dataset include the fermentation time h, glucose concentration S(h), thalli
concentration X(h), glutamic acid concentration P(h), stirring speed R(h), and ven-
tilation Q(h), where h= 0, 2, · · · , 28. The output variables are glucose concentration
S(h+ 2), thalli concentration X(h+ 2), and glutamic acid concentration P(h+ 2) at
a future time h+ 2. The TSK-FS-based biochemical process prediction model is
illustrated in Figs. 3.6. The data in this experiment were collected from 21 batches
of fermentation processes, with each batch containing 14 effective data samples. In
this experiment, in order to match the situation discussed in this study, the data are
divided into two domains, i.e., the source domain and the target domain, as described
in Table 3.7.
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Table 3.7 The fermentation process modeling datasets

Data of target domain

Data of source domain (D1) Training set (D2)a Testing set (D2_test)

Batches 1–16 17–19 20–21
Size of dataset 224 30 28
aFor training set of the target domain, information is missing at time h= 6, 8, 10, 12

Table 3.8 Generalization performance (J) of the proposed KL-TSK-FS
method and the traditional L2-TSK-FS methods in fermentation process
modeling

Output
L2-TSK-FS
(D1)

L2-TSK-FS
(D2)

L2-TSK-FS
(D1+D2)

KL-TSK-FS
(D2+Knowledge)

S(h+ 2) 0.2792 0.3944 0.2804 0.1239
X(h+ 2) 0.8342 1.1203 1.0642 0.4548
P(h+ 2) 0.2842 0.3255 0.2533 0.1482

3.4.3.2 Comparing with the Traditional L2-TSK-FS Modeling Methods

The experimental results of fermentation process modeling using the proposed
inductive transfer learning method KL-TSK-FS and the traditional L2-TSK-FS are
given in Table 3.8 and Fig. 3.7. The findings are similar to those presented in section
IV-B for the experiments performed on the synthetic datasets. The modeling results
of the KL-TSK-FS are better than that of the three traditional L2-TSK-FS methods.
As the proposed method can effectively exploit not only the data of the target
domain but also the useful knowledge of the source domains, the obtained TSK-
FS has demonstrated better adaptive abilities. It can be seen from the experimental
results that, even if the data in the training data of the target domain are missing,
the generalization capability of the TSK-FS obtained by the proposed KL-TSK-FS
does not degrade significantly. This remarkable feature is very valuable for the task
of biochemical process modeling since the lack of sampled data is common due to
poor sensitivity of sensors in the noisy environment.

3.4.3.3 Comparing with the Regression Methods Designed for Missing
or Noisy Data

The experimental results of fermentation process modeling using the proposed
inductive transfer learning method KL-TSK-FS and three regression methods (i.e.,
TSFS-SVR, FS-FCSVM, and HiRBF) are shown in Table 3.9 and Fig. 3.8. Similar
to the findings presented in Sect. 3.4.2.3 for the experiments conducted with the
synthetic datasets, in general, the proposed KL-TSK-FS has demonstrated better
generalization performance than the other three regression methods in fermentation
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Fig. 3.7 Performance comparison between the proposed KL-TSK-FS method and three traditional
L2-TSK-FS methods in fermentation process modeling: the prediction results of a S(h+ 2) for the
20th batch; b S(h+ 2) for the 21st batch; c X(h+ 2) for the 20th batch; d X(h+ 2) for the 21st
batch; e P(h+ 2) for the 20th batch; and f P(h+ 2) for the 21st batch

process modeling. This can be explained again by the fact that the proposed KL-
TSK-FS has effectively leveraged the useful knowledge from the source domain in
the training procedure such that the influence of the missing data can be properly
reduced.
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Table 3.9 Generalization performance (J) of the proposed KL-TSK-FS method and
several related regression methods in fermentation process modeling

Output TSFS-SVR FS-FCSVM HiRBF KL-TSK-FS

S(h+ 2) 0.3452 0.3750 0.3510 0.1239
X(h+ 2) 0.7295 0.6118 0.7026 0.4548
P(h+ 2) 0.3574 0.4144 0.4117 0.1482
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Fig. 3.8 Performance comparison between the proposed KL-TSK-FS method and three regression
methods in fermentation process modeling: the prediction results of a S(h+ 2) for the 20th batch; b
S(h+ 2) for the 21st batch; c X(h+ 2) for the 20th batch; d X(h+ 2) for the 21st batch; e P(h+ 2)
for the 20th batch; and f P(h+ 2) for the 21st batch
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3.5 Experimental Results of DAKSVM

3.5.1 Experiment Settings

To evaluate the effectiveness of the proposed transductive learning method
DAKSVM and its extensions for DAL problems, we systematically compare them
with several state-of-the-art algorithms on different datasets. We investigate three
classes of domain adaptation problems: (1) a series of two-dimensional synthetic
problems having different complexities with a two-moon dataset, (2) several real-
world cross-domain text classification problems with different domain adaptation
datasets such as 20Newsgroups, Reuters, Email Spam Filtering, web query set,
and Amazon sentiment reviews set, and (3) a real problem in the context of
multi-class classification in intra-domain on face recognition with Yale and ORL
datasets. For all these datasets, true labels are available for both source and target-
domain instances. However, prior information related to the target domain Dt is
considered only for an objective and quantitative assessment of the performances of
the proposed algorithms.

We construct synthetic datasets (two-moon) to exhibit the performance of
the proposed method and choose real-world datasets to show the classification
performance of the proposed method DAKSVM and its extension μ-DAKSVM.
We also carry out a multi-class classification experiment to show the performance
of the proposed method LSDAKSVM in multi-class classification problems.

In the sequel, we will first describe the whole experimental details. Throughout
this experimental part, we use standard Gaussian kernel function as for several
related kernel methods such as SVM, TSVM, KMM, TCA, LMPROJ, and DTSVM.
For multiple kernel learning in DTSVM, according to the setting in [29], we
use four Gaussian base kernels with the bandwidth 1.2δ σ , where δ is set as
{0,0.5,1,1.5}. For our methods, we use the parameterized Gaussian kernel as
kσ /γ (x,xi)= exp(−‖x− xi‖2/2(σ /γ)2) in γKS of GPMDD, where the kernel parame-
ter σ can be obtained by minimizing MMD with the most conservative test, which
follows the setting in [46]. Empirically, we first select σ as the square root of the
mean norm of the training data for binary classification and σ

√
c(where c is the

number of classes) for multi-class classification. The tunable parameter γ can be set
by minimizing GPMDD with the most optimal target test.

Presently, how to choose the algorithm parameters for the kernel methods still
keeps an open and hot topic. In general, the algorithm parameters are manfully set.
In order to evaluate the performance of the algorithm, a strategy, as is pointed out
in [62], is that a set of the prior parameters is first given and then the best cross-
validation mean rate among the set is used to estimate the generalized accuracy.
In this work we adopted this strategy. The fivefold cross validation is used on the
training set for parameter selection. Finally, the mean of experimental results on the
test data is used for the performance evaluation. We chose the percentage overall
accuracy AC% (i.e., the percentage of correctly labeled samples over the number of
the whole samples) as the classification accuracy measure.
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In the context, SVMs (such as SVM or v-SVM, TSVM) is implemented by
the state-of-the-art software package such as LIBSVM [57]. As the experiments in
Sect. 3.4, all the algorithms are implemented using MATLAB on a computer with
Intel Core 2 Duo P8600 2.4 GHz CPU and 2GB RAM.

3.5.2 Synthetic Datasets

3.5.2.1 Generation of Synthetic Datasets

In this subsection, we construct a serial of trials on two-moon datasets to justify
our method DAKSVM. In this toy problem, a serial of two-moon datasets with
different complexities are used to exhibit the generalization capability of the
proposed method DAKSVM on domain adaptation transfer learning. We compare
the proposed method DAKSVM with SVM and LMPROJ on this toy data.

A synthetic dataset containing 600 samples generated according to a bi-
dimensional pattern of two intertwining moons associated with two specific
information classes (300 samples each) is taken as the source domain data, as
shown in Fig. 3.9a. Target data were generated by rotating anticlockwise the
original source dataset 11 times by 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦, 50◦,
55◦, and 60◦, respectively. Due to rotation, source and target-domain data exhibit
different distributions. Particularly, the greater the rotation angle, the more complex
the resultant domain adaptation problem, as confirmed by the values for Jensen–
Shannon scatter (DJS) [6] shown in Fig. 3.10a. The proposed DAKSVM algorithm
is proved to be particularly effective for solving this kind of problems with high
accuracy. Figure 3.9b, c shows the target domain data with the rotation angle 30◦
and 60◦, respectively.

3.5.2.2 Comparing with the Related Methods

Figure 3.9d–i shows the learning accuracy rates of different methods on the datasets
shown in Fig. 3.9b, c. And Fig. 3.10b shows the performance comparison among
different methods on 11 target datasets aforementioned above. From Figs. 3.9b–d
and 3.10b, we can observe that with appropriate learning parameters, the proposed
method can obtain perfect separation between classes even if the rotation angles
range from 10◦ to 50◦. Besides, we can also observe several results as follows:

1. From Fig. 3.9d–i, we can observe that the accuracies of DAKSVM and LMPROJ
are always higher than those by SVM according to a fivefold cross-validation on
source domain data. This result shows that it is unsuitable for SVM on cross-
domain learning. With Figs. 3.9 and 3.10, in some angles range (i.e., from 10◦ to
50◦), the proposed method and LMPROJ can preserve the solution consistency
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Fig. 3.9 Performance of different classifiers on two two-moon datasets with different complexi-
ties. a The original two-moon dataset; b rotation angle 30◦; c rotation angle 60◦; d classification
accuracy for SVM: 95.4 %; e classification accuracy for SVM: 65 %; f classification accuracy for
LMPROJ: 97.3 %; g classification accuracy for LMPROJ: 78.7 %; h classification accuracy for
DAKSVM: 98.7 %; i classification accuracy for DAKSVM: 87.5 %

well with target domain to some extent, which shows that the proposed method
is better than or at least comparable to LMPROJ in this experiment.

2. Figure 3.10b shows that for greater values of rotation angles (i.e., from 50◦ to
60◦), the classification accuracy rates of all methods descend dramatically, which
seems reasonable due to the increase of the complexity of the corresponding
domain adaptation problems; however, the descendant rate of the proposed
method is slower than others due to preserving the distribution consistency of
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Fig. 3.10 Jenson–Shannon divergence values and classification accuracies on target domain data
for different rotation angles: a Jenson–Shannon divergence values for different rotation angles
(DJS); b accuracies exhibited on target domain data for different rotation angles

both means and variances of different domains. When the rotation angle is big
enough, all methods will not be able to keep the solution consistency with target
domain. If this case happens, the hypothesis aforementioned above will not be
satisfied.

3.5.3 Binary Class Text Classification Datasets

In this section, we demonstrate the overall efficiency and effectiveness of the
proposed method DAKSVM and its variation μ-DKSVM on five different real-
world domain adaptation tasks for text datasets such as 20Newsgroups, Reuters,
mail spam filtering, web query classification, and Amazon sentiment reviews
classification.

Except for SVM, KMM, DTSVM, LMPROJ, and the TSVM, we still choose for
comparison another two algorithms from KDD’08. They are cross-domain spectral
classifier [63] and locally weighted ensemble (LWE) classifier [9].

Unlike SVM and TSVM with default parameter values are adopted in most cases,
in order to make our comparison fair, we report the best performance for each
method over a range of parameter selections.

3.5.3.1 Dataset Settings

A brief description of each dataset and its setup is given in this subsection.
Tables 3.10 and 3.11 summarize the datasets and give the indices to some of which
we will refer in our experimental results. For example, dataset 6 is a 20Newsgroup
dataset about Rec. vs. Sci. where the number of positive and negative training
samples is 1,984 and 1,977, respectively, and the number of positive and negative
class testing samples is 1,993 and 1,972, respectively.
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Table 3.11 Web query text and sentiment reviews classification tasks

Task Categories
Number of training
samples

Number of testing
samples

13 Web query Business (B) 1,500 1,200
14 Computers (C) 1,500 1,000
15 Education (E) 2,210 2,500
16 Health (H) 1,180 1,190
17 Sports (S) 1,420 660
18 Amazon sentiment

reviews
Books (B) 1,000 1,000

19 DVDs (D) 1,000 1,000
20 Electronics (E) 1,000 1,000
21 Kitchen (H) 1,000 1,000

20Newsgroups and Reuters

Reuters and 20Newsgroups are two cross-domain text classification datasets com-
monly used by the state-of-the-art DAL classifiers [9, 28–30, 36, 64]. These
datasets both represent text categorization tasks, Reuters is made up of news articles
with five top-level categories, among which, Orgs, Places, and People are the
largest, and the 20Newsgroups dataset contains 20newsgroup categories each with
approximately 1,000 documents. For these text categorization data, in each case the
goal is to correctly discriminate between articles at the top level, e.g. “sci” articles
vs. “talk” articles, using different sets of sub-categories within each top-category
for training and testing, e.g. sci.electronics and sci.med vs. talk.politics.misc and
talk.religion.misc for training and sci.crypt and sci.space vs. talk.politics.guns and
talk.politics.mideast for testing. For more details about the sub-categories, see [65].
Each set of sub-categories represents a different domain in which different words
will be more common. Features are given by converting the documents into bag-
of-word representations which are then transformed into feature vectors using the
term frequency, details about this procedure can also be found in [65]. Table 3.10
shows the more detailed information about the experimental datasets drawn from
the aforementioned above datasets.

Email Spam Filtering

In email spam filtering datasets [66], there are three email subsets (denoted by
User1, User2, and User3, respectively) annotated by three different users. In this
trial, the task is to classify spam and non-spam emails. Since the spam and non-spam
emails in the subsets have been identified by different users, the data distributions
of the three subsets are different but related. Each subset has 2,500 emails, in which
one half of the emails are non-spam (labeled as 1) and the other half of them are
spam (labeled as −1). On this dataset, in terms of [54], we consider three settings:
(1) User1 (source domain) and User2 (target domain); (2) User2 (source domain)
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and User3 (target domain), and 3) User3 (source domain) and User1 (target domain).
For each setting, the training dataset contains all labeled samples from the source
domain. And the samples in the target domain are used as the unlabeled test ones.
We report the experimental results with their means and the standard deviations of
all methods. Again, the word-frequency feature is used to represent each document
as in [66]. The more detailed information about the experimental datasets drawn
from Email Spam Filtering datasets can be found in Table 3.2.

Web Query

We also construct a set of tasks on cross-domain query classification for a search
engine, e.g. Google. We use a set of search snippets gathered from Google as our
training data and some incoming unlabeled queries as the test data. The detailed
descriptions of the procedure can be found in [67]. We use the labeled queries
from AOL provided by [68] (http://grepgsadetsky.com/aol-data) for evaluation. We
consider queries from five classes: Business, Computer, Entertainment, Health, and
Sports which are shown in both training and test datasets. We form ten binary
classification tasks for query classification [64]. The more detailed information can
be seen in Table 3.11.

Sentiment Reviews

The data of sentiment domain adaptation [69] consist of Amazon product reviews
for four different product types, including books, DVDs, electronics, and kitchen
appliances. Each review consists of a rating with scores ranging from 0 to 5, a
reviewer name and location, a product name, a review title and date, and the review
text. Reviews with ratings higher than three are labeled as positive and reviews with
ratings lower than three are labeled as negative, the rest are discarded since the
polarity of these reviews is ambiguous. The details of the data in different domains
are summarized in Table 3.11. The experimental settings are the same as in [69]. To
study the performance of our methods in this task, we construct 12 pairs of cross-
domain sentiment classification tasks as shown in Table 3.6, e.g., we use the reviews
from domain A as the training data and then predict the sentiment of the reviews in
the domain B.

3.5.3.2 Comparing with the Related Methods

Tables 3.12, 3.13, and 3.14 and Fig. 3.11 show the means and standard deviations
of classification accuracies of different methods on the above domain adaptation
transfer learning tasks, respectively. From these results, we can make several
interesting observations as follows:

http://grepgsadetsky.com/aol-data
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1. From Tables 3.12, 3.13, and 3.14, we can see that our method achieves very
promising result. The major limitation of LMPROJ, DTSVM, and KMM is that
they only consider the first-order statistics and thus cannot well generalize their
result. However, since our methods definitely consider both the second-order
and the first-order statistics between the source and target domains, it yields
better generalization capability. It can be observed that our method significantly
outperforms other methods. These empirical results again show that considering
second-order statistics as well as first-order statistics can help us improve the
domain adaptation performance.

2. SVM and TSVM have the worst performance on almost all learning tasks com-
pared to other classifiers, which is consistent with the experimental results of the
above toy datasets. Though obtaining better classification on both 20Newsgroup
and Reuters datasets, TSVM exhibits its worse classification performance on two
web text classification tasks than other methods. It is worth noting that we obtain
a little better results for SVM and TSVM than those typically reported in the
previous literature on the same datasets used in our trials. This is because in order
to make our comparison fair we reported the best results over a set of parameters
for SVM and instead of selecting a default parameter on the training data to be
performed.

3. In Tables 3.12, 3.13, and 3.14 and Fig. 3.11, we can also observe that although
seven methods, i.e., CDCS, LWE, LMPROJ, DTSVM, KMM, DAKSVM, and
its variation μ-DAKSVM, exhibit comparable classification capability on all text
datasets, the proposed method DAKSVM and its variation μ-DAKSVM always
keep significantly high classification accuracy in most cases, which implies that
it is more stable than other methods, particularly on two web text classification
datasets such as web query and sentiment reviews datasets.

4. The results in Tables 3.12, 3.13, and 3.14 and Fig. 3.11 also show that the pro-
posed method DAKSVM and its variation μ-DAKSVM perform relatively better
than MMD-based methods LMPROJ and KMM in almost all datasets, which
justifies that the only emphasis on minimizing distribution mean discrepancy
between both domains is far from sufficiency for domain adaptation transfer
learning. Hence, we should introduce more underlying information, such as
distribution scatter discrepancy minimization, into the regularization framework
of the classifier to further enhance the classification performance. Besides, it is
worth mentioning that DTSVM also obtains fairly robust performance on almost
all datasets by adopting multiple kernel learning scheme. A possible explanation
is that multiple kernel learning skill can improve learning capability for DAL.

5. μ-DAKSVM keeps obviously superior capability over DAKSVM in classifica-
tion accuracy for almost all these datasets, which demonstrates that parameter μ
can be used to enhance the generalization capability of DAKSVM. Therefore, we
use μ-DAKSVM instead of DAKSVM for the performance evaluation hereafter.

6. In order to verify whether the proposed methods are significantly better than
the other methods, we also performed the paired two-tailed t-test [70] on the
classification results of the 10 runs to calculate the statistical significance of
the proposed method μ-DAKSVM. The smaller the p-value, the more significant
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the difference of the two average results is, and a p-value of 0.05 is a typical
threshold which is considered to be statistically significant. Thus, in Tables 3.12,
3.13, and 3.14, if the p-value of each dataset is less than 0.05, the corresponding
results will be denoted “*.” Therefore, as shown in Tables 3.12, 3.13, and
3.14, we can clearly find that the proposed method μ-DAKSVM significantly
outperforms other methods in most datasets.

3.5.4 Multi-Class Face Recognition Datasets

3.5.4.1 Dataset Settings

In this subsection, in order to evaluate the effectiveness of the proposed methods on
multi-class classification problems, we investigate the performance of the proposed
algorithms LSDAKSVM and μ-DAKSVM for face recognition on two benchmark-
ing Yale and ORL face databases. The Yale face database was constructed at the
Yale Center for Computation Vision and Control. There are 165 images about
15 individuals in this database where each person has 11 images. The images
demonstrate face variations under lighting condition (left-right, center-light, right-
light) and facial expression (normal, happy, sad, sleepy, surprised and wink) with or
without glasses. Each image is cropped to be the size of 32× 32 in our experiment.
We randomly select 8 images of each individual to construct the source domain
dataset; the ORL database contains 400 images grouped into 40 distinct subjects
with 10 different images for each. The images are captured at different times, and
for some subjects, the images may vary in facial expressions and facial details. All
the images are taken against a dark homogeneous background with the tolerance for
some side movement of about 20. The original images are all sized 112× 92 pixels
with 256 gray levels per pixel, which are further down-sampled into 32× 32 pixels
in our experiment. We randomly select eight images of each individual to construct
the source domain training set. Figure 3.12a, c shows the cropped images of one
person in Yale and ORL face databases, respectively.

The target datasets are generated by rotating anticlockwise the original source
domain dataset three times by 10◦, 30◦, and 50◦, respectively. Due to rotation,
source and target-domain data exhibit different distributions. Particularly, the
greater the rotation angle is, the more complex the resulting domain adaptation
problem becomes. Thus we construct three face domain adaptation transfer learning
problems for each face database. Figure 3.12b, d shows the face samples with
rotation angle 10◦, respectively.

3.5.4.2 Comparing with the Related Methods

We test the performance of LSDAKSVM and μ-DAKSVM in comparison with
CDCS, LWE, DTSVM, and LMPROJ. In order to do a comprehensive comparison,
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Fig. 3.12 Face examples from the face databases Yale and ORL. a Yale faces for an object; b Yale
faces for an object with rotation angle 10◦; c ORL faces for an object; d ORL faces for an object
with rotation angle 10◦

we also perform the baseline method LS-SVM for face recognition with different
distributions. For the above multi-class classification tasks, μ-DAKSVM, CDCS,
LWE, LS-SVM, DTSVM, and LMPROJ adopt OAO multi-class separation strategy
to finish the corresponding multi-class classification tasks. For each evaluation, ten
rounds of experiments are repeated with randomly selected training data, and the
average result is recorded as the final classification accuracy in Table 3.7. Several
attractive insights can be obtained from these results as follows:

1. The overall accuracy of LS-SVM is lower than any other classifier on all DAL
tasks, which is consistent with SVM.

2. With the increase of rotation angle, the classification performance of all classi-
fiers descends gradually. However, LSDAKSVM seems to decrease more slowly
than other methods. Exceptionally, CDCS and DTSVM exhibit competitive
performance to some extent compared to other methods, particularly on more
complex datasets.

3. As shown in Table 3.15, we can observe that the LSDAKSVM method delivers
more stable results across all the datasets and is competitive as the best method
for the majority of all the other datasets. It obtains the best classification accuracy
more times than any other method. Hence, as discussed in the above section,
LSDAKSVM possesses overall DAL advantages over other methods in the sense
of both computational complexity and classification accuracy.

4. Table 3.15 also shows that although LSDAKSVM seems to have overall advan-
tage over μ-DAKSVM in classification accuracy, μ-DAKSVM is actually
considerably comparable to LSDAKSVM.
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3.6 Conclusions

In this chapter, we propose one inductive learning approach and one transductive
learning approach based on support vector learning, respectively. On the one hand,
the proposed inductive transfer learning method, i.e., KL-TSK-FS, is more adaptive
to the situations where the data are only partially available from the target domain
while some useful knowledge of the source domains is available. Besides, the
proposed method is distinctive in preserving data privacy as only the knowledge
(e.g., the corresponding model parameters) rather than the data of the source domain
is adopted. On the other hand, the proposed transductive transfer learning method
DAKSVM and its two extensions indeed inherit the potential advantages of classical
TSVMs and MMD-based methods and are further extended to DAL. As a novel
large margin domain adaptation classifier, the proposed methods can reduce the
distribution gap between different domains in an RKHS as much as possible, since
they effectively integrate the large margin learner with the proposed GPMDD
metric, in which both the distribution mean discrepancy and the distribution
scatter discrepancy on RKHS embedding domain distributions are simultaneously
considered.
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