
Chapter 1
Augmented-SVM for Gradient Observations
with Application to Learning Multiple-Attractor
Dynamics

Ashwini Shukla and Aude Billard

Abstract In this chapter we present a new formulation that exploits the principle of
support vector machine (SVM). This formulation—Augmented-SVM (A-SVM)—
aims at combining gradient observations with the standard observations of function
values (integer labels in classification problems and real values in regression) within
a single SVM-like optimization framework. The presented formulation adds onto
the existing SVM by enforcing constraints on the gradient of the classifier/regression
function. The new constraints modify the original SVM dual, whose optimal
solution then results in a new class of support vectors (SV). We present our approach
in the light of a particular application in robotics, namely, learning a nonlinear
dynamical system (DS) with multiple attractors. Nonlinear DS have been used
extensively for encoding robot motions with a single attractor placed at a predefined
target where the motion is required to terminate. In this chapter, instead of insisting
on a single attractor, we focus on combining several such DS with distinct attractors,
resulting in a multi-stable DS. While exploiting multiple attractors provides more
flexibility in recovering from unseen perturbations, it also increases the complexity
of the underlying learning problem. We address this problem by augmenting
the standard SVM formulation with gradient-based constraints derived from the
individual DS. The new SV corresponding to the gradient constraints ensure that
the resulting multi-stable DS incurs minimum deviation from the original dynamics
and is stable at each of the attractors within a finite region of attraction. We show,
via implementations on a simulated ten degrees of freedom mobile robotic platform,
that the model is capable of real-time motion generation and is able to adapt
on-the-fly to perturbations.
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1.1 Introduction

Dynamical systems (DS) have proved to be a promising framework for encoding
and generating complex motions. A major advantage of representing motion using
DS-based models [3,10,15,16] is the ability to counter perturbations by virtue of the
fact that re-planning of trajectories is instantaneous. These are generative schemes
that define the flow of trajectories in state space x ∈ R

N by means of a nonlinear
dynamical function ẋ= f (x). DS with single stable attractors have been used in pick
and place tasks to control for both the motion of the end-effector [2, 7, 12] and the
placement of the fingers on an object [17]. Assuming a single attractor, and hence
a single grasping location on the object, constrains considerably the applicability
of these methods to realistic grasping problems. A DS composed of multiple stable
attractors provides an opportunity to encode different ways to reach and grasp an
object. Recent neuro-physiological results [5] have shown that a DS-based modeling
best explains the trajectories followed by humans while switching between several
reaching targets. From a robotics viewpoint, a robot controlled using a DS with
multiple attractors would be able to switch online across grasping strategies. This
may be useful, e.g., when one grasping point becomes no longer accessible due to a
sudden change in the orientation of the object or the appearance of an obstacle along
the current trajectory. Here we present a method using which one can combine—in
a single dynamical system—multiple dynamics directed toward different attractors.

The dynamical function f (x) is usually estimated using nonlinear regression
functions such as Gaussian Process Regression (GPR) [11], Gaussian Mixture
Regression (GMR) [7], and Locally Weighted Projection Regression (LWPR) [13].
However, all of these works modeled DS with a single attractor. While [7,10] ensure
global stability at the attractor, other approaches result in unstable DS with spurious
attractors.

Stability at multiple targets has been addressed to date largely through neural
networks approaches. The Hopfield network and variants offered a powerful means
to encode several stable attractors in the same system to provide a form of content-
addressable memory [4, 9]. The dynamics to reach these attractors was, however,
not controlled for, nor was the partitioning of the state space that would send
the trajectories to each attractor. Echo-state networks provide alternative ways to
encode various complex dynamics [6]. Although they have proved to be universal
estimators, their ability to generalize in untrained regions of state space remains
unverified. Also, the key issue of global stability of the learned dynamics is
achieved using heuristic rules. To our knowledge, this is the first attempt at
learning simultaneously a partitioning of the state space and an embedding of
multiple dynamical systems with separate regions of attractions (ROAs) and distinct
attractors.
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Fig. 1.1 Combining motions using naive SVM classification-based switching. (a, b)—Two
different dynamics with distinct attractors which are to be combined. (c)—Employing a simple
switching scheme leads to crossing over of some trajectories shown in red. (d)—Zoomed in around
the boundary, showing the fast switching near the boundary

1.2 Identifying Dynamic Constraints

A naive approach to building a multi-attractor DS would be to first partition the
space and then learn a DS in each partition separately. This would unfortunately
rarely result in the desired compound system. Consider, for instance, two DS
with distinct attractors, as shown in Fig. 1.1a, b. First, we build an Support Vector
Machine (SVM) classifier to separate data points of the first DS, labeled +1, from
data points of the other DS, labeled −1. We then estimate each DS separately using
any of the techniques reviewed in the previous section. Let h : RN �→ R denote
the classifier function that separates the state space x ∈ R

N into two regions with
labels yi ∈ {+1,−1}. Also, let the two DS be ẋ = fyi(x) with stable attractors at
x∗yi

. The combined DS is then given by ẋ = fsgn(h(x))(x). Figure 1.1c shows the
trajectories resulting from this approach. Due to the nonlinearity of the dynamics,
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trajectories initialized in one region cross the boundary and converge to the attractor
located in the opposite region. In other words, each region partitioned by the SVM
hyperplane is not a region of attraction for its attractor. In a real-world scenario
where the attractors represent grasping points on an object and the trajectories are to
be followed by robots, crossing over may take the trajectories towards kinematically
unreachable regions. Also, as shown in Fig. 1.1d, trajectories that encounter the
boundary may switch rapidly between different dynamics leading to jittery motion.

To ensure that the trajectories do not cross the boundary and remain within
the region of attraction of their respective attractors, one could adopt a more
informed approach in which each of the original DS is modulated such that the
generated trajectories always move away from the classifier boundary. Recall that
by construction, the absolute value of the classifier function h(x) increases as
one moves away from the classification hyperplane. The gradient ∇h(x) is hence
positive, respectively negative, as one moves inside the region of the positive,
respectively negative, class. We can exploit this observation to deflect selective
components of the velocity signal from the original DS along, respectively opposite
to, the direction ∇h(x). Concretely, if ẋO = fsgn(h(x))(x) denotes the velocity
obtained from the original DS and

λ (x) =
{

max
(
ε,∇h(x)T ẋO

)
if h(x)> 0

min
(−ε,∇h(x)T ẋO

)
if h(x)< 0

, (1.1)

the modulated dynamical system is given by

ẋ = f̃ (x) = λ (x)∇h(x)+ ẋ⊥. (1.2)

Here, ε is a small positive scalar and ẋ⊥ = ẋO −
(

∇h(x)T ẋO
‖∇h(x‖2

)
∇h(x) is the component

of the original velocity perpendicular to ∇h. This results in a vector field that flows
along increasing values of the classifier function in the regions of space where
h(x)> 0 and along decreasing values for h(x)< 0. As a result, the trajectories move
away from the classification hyperplane and converge to a point located in the region
where they were initialized. Such modulated systems have been used extensively for
estimating stability regions of interconnected power networks [8] and are known as
quasi gradient systems [1]. If h(x) is upper bounded,1 all trajectories converge to
one of the stationary points {x : ∇h(x) = 0} and h(x) is a Lyapunov function of the
overall system [1, Proposition 1]. Figure 1.2 shows the result of applying the above
modulation to our pair of DS. As expected, it forces the trajectories to flow along the
gradient of the function h(x). Although this solves the problem of “crossing-over”
the boundary, the trajectories obtained are deficient in two major ways. They depart
heavily from the original dynamics and do not terminate at the desired attractors.
This is due to the fact that the function h(x) used to modulate the DS was designed

1SVM classifier function is bounded if the Radial Basis Function (RBF) is used as kernel.
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Fig. 1.2 Trajectories
obtained by modulating the
two original DS with an SVM
classifier function. The
resulting trajectories flow
along directions which
register an increase in the
value of the classifier function
which in turn leads to the
bifurcation at the SVM
decision boundary

solely for classification and contained no information about the dynamics of the two
original DS. In other words, the vector field given by ∇h(x) was not aligned with the
flow of the training trajectories and the stationary points of the modulation function
did not coincide with the desired attractors.

In subsequent sections, we show how we can learn a new modulation function
which takes into account the three issues we highlighted in this preliminary
discussion. We will seek a system that (a) ensures strict classification across ROA
for each DS, (b) follows closely the dynamics of each DS in each ROA, and (c)
ensures that all trajectories in each ROA reach the desired attractor. Satisfying
requirements (a) and (b) above is equivalent to performing classification and
regression simultaneously. We take advantage of the fact that the optimization in
support vector classification and support vector regression has the same form to
phrase our problem in a single constrained optimization framework. In the next
sections, we show that in addition to the usual SVM support vectors (SVs), the
resulting modulation function is composed of an additional class of SVs. We analyze
geometrically the effect of these new support vectors on the resulting dynamics.
While this preliminary discussion considered solely binary classification, we will
now extend the problem to multi-class classification.

1.3 Problem Formulation

The N-dimensional state space of the system represented by x ∈ R
N is partitioned

into M different classes, one for each of the M motions to be combined. We collect
trajectories in the state space, yielding a set of P data points {xi; ẋi; li}i=1...P
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where li ∈ {1,2, · · · ,M} refers to the class label of each point.2 To learn the set
of modulation functions {hm(x)}m=1...M , we proceed recursively. We learn each
modulation function in a one-vs-all classifier scheme and then compute the final
modulation function h̃(x) = max

m=1···M
hm(x). In the multi-class setting, the behavior of

avoiding boundaries is obtained if the trajectories move along increasing values of
the function h̃(x). To this effect, the deflection term λ (x) presented in the binary
case Eq. (1.1) becomes λ (x) = max

(
ε,∇h̃(x)T ẋO

)
;∀x ∈R

N . Next, we describe the
procedure for learning a single hm(x) function.

We follow the classical SVM formulation and lift the data into a higher
dimensional feature space through the mapping φ : RN �→ R

F where F denotes the
dimension of the feature space. We also assume that each function hm(x) is linear in
feature space, i.e., hm(x) = wT φ (x)+ b where w ∈ R

F ,b ∈ R. We label the current
(m-th) motion class as positive and all others negative such that the set of labels for
the current subproblem is given by

yi =

{
+1 if li = m
−1 if li 	= m

; i = 1 · · ·P.

Also, the set indexing the positive class is then defined as I+ = {i : i ∈ [1,P]; li =m}.
With this, we formalize the three constraints explained in Sect. 1.2 as:

Classification Each point must be classified correctly yields P constraints

yi
(
wT φ (xi)+ b

)≥ 1 ∀i = 1 . . .P. (1.3)

Lyapunov Constraint The gradient of the modulation function must have a posi-
tive component along the velocities at the data points. This
ensures that the modulated flow is aligned with the training
trajectories. We have the constraint

∇hm(xi)
T ˆ̇xi = wT J(xi) ˆ̇xi ≥ 0 ∀i ∈ I+ (1.4)

where J ∈ R
F×N is the Jacobian matrix given by J =[

∇φ1(x)∇φ2(x) · · ·∇φF (x)
]T

and ˆ̇xi = ẋi/‖ẋi‖ is the nor-
malized velocity at the i-th data point.

Stability The gradient of the modulation function must vanish at the
attractor x∗ of the positive class. This constraint can be
expressed as

∇hm(x∗)T ei = wT J(x∗)ei = 0 ∀i = 1 . . .N (1.5)

where the set of vectors {ei}i=1···N is the canonical basis
of RN .

2Boldfaced fonts represent vectors. xi denotes the i-th vector and xi denotes the i-th element of
vector x.
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Incorporating Gradient Observations with Augmented-SVM

Existing variants of the SVM methodology aim at learning (a) Classifiers—
which satisfy certain inequality constraints and (b) Regressors—which satisfy
equality constraints at the data points. Also, in both cases, the constraints
are solely defined on the scalar function value. In the A-SVM framework
presented in the next sections, we will combine both inequality and equality
constraints within the same optimization framework. Moreover, the con-
straints will be enforced not only on the function value but also on its gradient.

1.3.1 Primal and Dual Forms

As in the standard SVM [14], we optimize for maximal margin between the
positive and negative classes, subject to constraints (1.3)–(1.5) above. This can be
formulated as:

minimize
w,ξi

1
2
‖w‖2 +C ∑

i∈I+
ξi

subject to

yi
(
wT φ (xi)+ b

) ≥ 1 ∀i = 1 · · ·P
wT J(xi) ˆ̇xi + ξi > 0 ∀i ∈ I+

ξi > 0 ∀i ∈ I+
wT J(x∗)ei = 0 ∀i = 1 · · ·N

⎫⎪⎪⎬
⎪⎪⎭
. (1.6)

Here ξi ∈ R are slack variables that relax the Lyapunov constraint in Eq. (1.4).
We retain these in our formulation to accommodate noise in the data representing
the dynamics. C ∈R+ is a penalty parameter for the slack variables. The Lagrangian
for the above problem can be written as

L(w,b,α,β ,γ) =
1
2
‖w‖2 +C ∑

i∈I+
ξi − ∑

i∈I+
μiξi −

P

∑
i=1

αi
(
yi(wT φ (xi)+ b)− 1

)

− ∑
i∈I+

βi
(
wT J(xi) ˆ̇xi + ξi

)
+

N

∑
i=1

γiwT J(x∗)ei (1.7)

where αi,βi,μi,γi are the Lagrange multipliers with αi,βi,μi ∈ R+, and γi ∈ R.
Employing a similar analysis as in the standard SVM, we derive the dual by setting
the derivatives of the Lagrangian w.r.t all the variables and multipliers to zero, we get
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∂L
∂w

= w−
P

∑
i=1

αiyiφ (xi)− ∑
i∈I+

βiJ(xi) ˆ̇xi +
N

∑
i=1

γiJ(x∗)ei = 0.

⇒ w =
P

∑
i=1

αiyiφ(xi)+ ∑
i∈I+

βiJ(xi) ˆ̇xi −
N

∑
i=1

γiJ(x∗)ei;

(1.8)

∂L
∂b

=
P

∑
i=1

αiyi = 0; (1.9)

∂L
∂ξi

=C−βi − μi = 0 ∀i ∈ I+. (1.10)

Combining (1.10) with the constraints that all the Lagrange multipliers βi and μi be
positive, we obtain

0 ≤ βi ≤C ∀i ∈ I+. (1.11)

Using (1.8), (1.9), and (1.10) in (1.7) we get the dual objective function to be
maximized as

L̂(α,β ,γ) =
P

∑
i=1

αi − 1
2

wT w. (1.12)

Note that although the dual has the same general form as the dual in the standard
SVM formulation, it differs in the expression of the term w. Expanding using (1.8)
we have

wT w =

(
P

∑
i=1

αiyiφ(xi)
T + ∑

i∈I+

βi ˆ̇xT
i J(xi)

T −
N

∑
i=1

γieT
i J(x∗)T

)

(
P

∑
j=1

α jy jφ(x j)+ ∑
j∈I+

β jJ(x j) ˆ̇x j −
N

∑
j=1

γ jJ(x∗)e j

)

=
P

∑
i=1

(
P

∑
j=1

αiyiα jy jφ(xi)
T φ(x j)+ ∑

j∈I+

αiyiβ jφ(xi)
T J(x j) ˆ̇x j −

N

∑
j=1

αiyiγ jφ(xi)
T J(x∗)e j

)

+ ∑
i∈I+

(
P

∑
j=1

βiα jy j ˆ̇xT
i J(xi)

T φ(x j)+ ∑
j∈I+

βiβ j ˆ̇xT
i J(xi)

T J(x j) ˆ̇x j −
N

∑
j=1

βiγ j ˆ̇xT
i J(xi)

T J(x∗)e j

)

−
N

∑
i=1

(
P

∑
j=1

γiα jy jeT
i J(x∗)T φ(x j)+ ∑

j∈I+

γiβ jeT
i J(x∗)T J(x j) ˆ̇x j −

N

∑
j=1

γiγ jeT
i J(x∗)T J(x∗)e j

)
.

(1.13)

Rewriting in matrix form,
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wT w =
[
αT β T γT

]⎡⎣ K G −G∗
GT H −H∗
−GT∗ −HT∗ H∗∗

⎤
⎦
⎡
⎣α

β
γ

⎤
⎦ (1.14)

where K ∈ R
P×P,G ∈ R

P×|I+|,G∗ ∈ R
P×N ,H ∈ R

|I+|×|I+|,H∗ ∈ R
|I+|×N ,H∗∗ ∈

R
N×N are given by

[K]i j = yiy jφ (xi)
T φ (x j) ; [H]i j = ˆ̇xT

i J(xi)
T J(x j) ˆ̇x j

[G]i j = yiφ(xi)
T J(x j) ˆ̇x j ; [H∗]i j = ˆ̇xT

i J(xi)
T J(x∗)e j

[G∗]i j = yiφ(xi)
T J(x∗)e j ; [H∗∗]i j = eT

i J(x∗)T J(x∗)e j

⎫⎪⎬
⎪⎭ . (1.15)

where [.]i j denotes the i, j-th entry of the corresponding matrix. Further using
the relations (1.19) and (1.20) from Appendix 1, we can rewrite the above block
matrices in terms of the kernel function and data:

[K]i j = yiy jk(xi,x j) ; [H]i j = ˆ̇xT
i

∂ 2k(xi,x j)

∂xi∂x j
ˆ̇x j

[G]i j = yi

(
∂k(xi,x j)

∂x j

)T
ˆ̇x j ; [H∗]i j = ˆ̇xT

i
∂ 2k(xi,x∗)

∂xi∂x∗ e j

[G∗]i j = yi

(
∂k(xi,x∗)

∂x∗
)T

e j ; [H∗∗]i j = eT
i

∂ 2k(x∗,x∗)
∂x∗∂x∗ e j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (1.16)

These can be further expanded given a choice of the kernel. Expansions for the
RBF and the nonhomogeneous polynomial kernel are given in Appendix 2.

Using Eqs. (1.9), (1.11), (1.12), and (1.14) the dual optimization problem can be
stated as

minimize
α ,β ,γ

1
2

[
αT β T γT

]⎡⎣ K G −G∗
GT H −H∗
−GT∗ −HT∗ H∗∗

⎤
⎦
⎡
⎣α

β
γ

⎤
⎦−αT 1

subject to

0 ≤ αi ∀i = 1 · · ·P
0 ≤ βi ≤C ∀i ∈ I+

∑P
i=1 αiyi = 0

⎫⎬
⎭ . (1.17)

Note that the Lagrange multipliers γi are completely unconstrained as they
correspond to the equality constraints in the primal. Also, since the matrices K,
H, and H∗∗ are symmetric, the overall Hessian matrix for the resulting quadratic
program is also symmetric. In our implementation, we use the MATLAB® quadprog
solver to solve this quadratic program. We initialize the iterations by setting αi as
the solution to the standard SVM classification problem. All βi and γi are set to
zeros. Once the optimal solution for the above problem is obtained, the modulation
function can be written as
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Fig. 1.3 Isocurves of f (x) = ˆ̇xT
i

∂k(x,xi)
∂xi

at xi = [0 0]T , ˆ̇xi = [ 1√
2

1√
2
]T for the RBF kernel with width

σ . (a) σ = 1. (b) σ = 0.5

h(x) = wT φ (x)+ b

=
P

∑
i=1

αiyiφ(xi)
T φ (x)+ ∑

i∈I+
βi ˆ̇xT

i J(xi)
T φ (x)−

N

∑
i=1

γieT
i J(x∗)T φ (x)+ b

=
P

∑
i=1

αiyik(x,xi)+ ∑
i∈I+

βiẋT
i

∂k(x,xi)

∂xi
−

N

∑
i=1

γieT
i

∂k(x,x∗)
∂x∗

+ b (1.18)

This modulation function has noticeable similarities with the standard SVM
classifier function. The first summation term on the right-hand side is composed of
the α support vectors (α-SV) which act as support to the classification hyperplane.
The second term entails a new class of support vectors that perform a linear
combination of the normalized velocity ˆ̇xi at the training data points xi. These β
support vectors (β -SVs) collectively contribute to the fulfilment of the Lyapunov
constraint in Eq. (1.4) by introducing a positive slope in the modulation function
value along the directions ˆ̇xi. Figure 1.3 shows the influence of a single β -SV for

the RBF kernel k(xi,x j) = e−1/2σ 2‖xi−x j‖2

with xi at the origin and ˆ̇xi = [ 1√
2

1√
2
]T .

Observe that the smaller the kernel width σ , the steeper the slope. The third
summation term is a nonlinear bias, which does not depend on the chosen support
vectors, and performs a local modification around the desired attractor x∗ to ensure
that the modulation function has a local maximum at that point. b is the constant
bias which normalizes the classification margins as −1 and +1. We calculate its
value by making use of the fact that for all the data points xi chosen as α-SV, we
must have yihm(xi) = 1. We use the average of the values obtained from different
support vectors.

Figure 1.4 illustrates the effects of the support vectors in a 2D example by
progressively adding them and overlaying the resulting DS flow in each case.
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Fig. 1.4 Progressively adding support vectors to highlight their effect on shaping the dynamics
of the motion. (a) α—SVs largely affect classification. (b)—β -SVs guide the flow of trajectories
along their respective associated directions ˆ̇xi shown by arrows. (c, d) The two γ terms force the
local maximum of the modulation function to coincide with the desired attractor along the X and
Y axes respectively

The value of the modulation function hm(x) is shown by the color plot (white
indicates high values). As the β -SVs are added—as shown in Fig. 1.4b—they force
the flow of trajectories along their associated directions. In Fig. 1.4c, d, adding
the two γ terms shifts the location of the maximum of the modulation function to
coincide with the desired attractor. Once all the SVs have been taken into account,
the streamlines of the resulting DS achieve the desired criteria, i.e., they follow the
training trajectories and terminate at the desired attractor.

1.4 Application Examples

In this section, we validate the presented A-SVM model on 2D (synthetic) data
and on a robotic simulated experiment using a seven degrees of freedom (DOF)
KUKA-LWR arm mounted on a three-DOF Omnirob base to catch falling objects.
A video of the robotic experiment—simulated and real—is provided at the project
url http://asvm.epfl.ch. Next, we present a cross-validation analysis of the error

http://asvm.epfl.ch
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introduced by the modulation in the original dynamics. A sensitivity analysis of
the region of attraction of the resulting dynamical system with respect to the model
parameters is also presented. We used the RBF kernel for all the results presented
in this section. As discussed in Sect. 1.2, the RBF kernel is advantageous as it
ensures that the function hm(x) is bounded. To generate an initial estimate of each
individual dynamical system, we used the technique proposed in Khansari-Zadeh
and Billard [7].

1.4.1 2D Example

Figure 1.5 shows a synthetic example with four motion classes, each generated from
a different closed form dynamics and containing 160 data points. The color plot
indicates the value of the combined modulation function h̃(x) = max

m=1···M
hm(x) where

each of the functions hm(x) is learned using the presented A-SVM technique. A total
of nine support vectors were obtained which is <10 % of the number of training data
points. The trajectories obtained after modulating the original dynamical systems
flow along increasing values of the modulation function, thereby bifurcating towards
different attractors at the region boundaries. Unlike the dynamical system in Fig. 1.2,
the flow here is aligned with the training trajectories and terminates at the desired
attractors. To recall, this is made possible thanks to the additional constraints Eqs.
(1.4) and (1.5) in our formulation.

In a second example, we tested the ability of our model to accommodate a higher
density of attractors. We created eight synthetic dynamics by capturing motion data
using a screen mouse. Figure 1.6 shows the resulting eight-attractor system.
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Fig. 1.6 A DS with eight attractors learned using only a few representative trajectories (black
dots) from each DS. The bifurcation boundaries, as well as the dynamics of each DS need to be
estimated from these trajectories

1.4.2 Error Analysis

As formulated in Eq. (1.6), the Lyapunov constraints admit some slack, which
allows the modulation to introduce slight deviations from the original dynamics.
Here we statistically analyze this error via fivefold cross validation. In the four-
attractor problem presented above, we generate a total of ten trajectories per motion
class and use 2:3 training to testing ratio for cross validation.

We calculate the average percentage error between the original velocity (read
off from the data) and the modulated velocity [calculated using Eq. (1.2)] for the

m-th class as em =
〈 ‖ẋi − f̃ (xi)‖

‖ẋi‖ × 100
〉

i:li=m
where < . > denotes average over the

indicated range. Figure 1.7a shows the cross-validation error (mean and standard
deviation over the fivefolds) for a range of values of kernel width. The general trend
revealed here is that for each class of motion, there exists a band of optimum values
of the kernel width for which the testing error is the smallest. The region covered
by this band of optimal values may vary depending on the relative location of the
attractors and other data points. In Fig. 1.5, motion classes 2 (upper left) and 4 (upper
right) are better fitted and show less sensitivity to the choice of kernel width than
classes 1 (lower left) and 3 (lower right). We will show later in this section that this
is correlated with the distance between the attractors. A comparison of testing and
training errors for the least error case is shown in Fig. 1.7b. We see that the testing
errors for all the classes in the best case scenario are less than 1 %.
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Fig. 1.7 Error analysis for the synthetic four-attractor example. (a) Cross-validation error. (b) Best
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1.4.3 Sensitivity Analysis

The partitioning of space created by our method results in M ROA for each
of our M attractors. To assess the size of these regions and the existence of
spurious attractors, we adopt an empirical approach. For each class, we compute the
isosurfaces of the corresponding modulation function hm(x) in the range [0,hm(x∗)].
These hypersurfaces incrementally span the volume of the m-th region around its
attractor. We mesh each of these test surfaces and compute trajectories starting from
the obtained mesh-points, looking for spurious attractors. hROA is the isosurface
of maximal value that encloses no spurious attractor and marks the ROA of the
corresponding motion dynamics. We use the example in Fig. 1.4 to illustrate this
process. Figure 1.8 shows a case where one spurious attractor is detected using a
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Fig. 1.9 Variation of rROA with varying model parameters. (a) datt = 1.0. (b) datt = 0.2

larger test surface (dotted line) whereas the actual ROA (solid line) is smaller. Once
hROA is calculated, we define the size of ROA as rROA = (h(x∗) − hROA)/h(x∗).
rROA = 0 when no trajectory except those originating at the attractor itself lead to
the attractor. rROA = 1 when the ROA is bounded by the isosurface h(x) = 0. The
size of the rROA is affected by both the choice of kernel width and the distance
across nearby attractors. This is illustrated in Fig. 1.9 using data points from class
1 of Fig. 1.5 and translating the attractors so that they are either very far apart (left,
distance datt = 1.0) or very close to one another (right, datt = 0.2). As expected,
rROA increases as we reach the optimal range of parameters. Furthermore, when
the attractors are farther apart, high values of rROA are obtained for a larger range of
values of the kernel width, i.e., the model is less sensitive to the chosen kernel width.
With smaller distance between the attractors (Fig. 1.9b), only a small deviation from
the optimum kernel width results in a considerable loss in rROA, exhibiting high
sensitivity to the model parameter.

1.4.4 3D Example

We validated our method on a real-world 3D problem. The attractors here represent
manually labeled grasping points on a pitcher. The 3D model of the object was
taken from the ROS IKEA object library. We use the seven-DOF KUKA-LWR
arm mounted on the three-DOF KUKA-Omnirob base for executing the modulated
Cartesian trajectories in simulation. We control all ten DOF of the robot using the
damped least square inverse kinematics. Training data for this implementation was
obtained by recording the end-effector positions xi ∈ R

3 from kinesthetic demon-
strations of reach-to-grasp motions directed towards these grasping points, yielding
a three-class problem (see Fig. 1.10a). Each class was represented by 75 data
points. Figure 1.10b shows the isosurfaces hm(x) = 0;m ∈ {1,2,3} learned using
the presented method. Figure 1.11a, b show the robot executing two trajectories
when started from two different locations and converging to a different attractor
(grasping point). Figure 1.10c shows the flow of motion around the object. Note
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Fig. 1.10 3D Experiment. (a) shows training trajectories for three manually chosen grasping
points. (b) shows the isosurfaces hm(x) = 0;m = 1,2,3 along with the locations of the correspond-
ing attractors. (c) shows the complete flow of motion

Fig. 1.11 Ten-DOF mobile robot executes the generated trajectories starting from different
positions and hence converging to different grasping points (attractors). (a) Trajectory 1. (b) Tra-
jectory 2

that the time required to generate each trajectory point is O(S) where S denotes the
total number of support vectors in the model. In this particular example with a total
of 18 SVs, the trajectory points were generated at 1,000 Hz which is well suited for
real-time control. Such a fast generative model allows the robot to switch on-the-fly
between the attractors and adapt to real-time perturbations in the object or the end-
effector pose, without any re-planning or re-learning. Results for another object—a
champagne glass with two attractors—are shown in Fig. 1.12. We performed high
speed experiments in which the glass is falling and the robot needs to catch it at one
of the two attractors. This requires real-time adaptation to the constantly changing
position and orientation of the object. The robot might need to switch between the
attractors and move the end-effector toward the chosen attractor. Figure 1.13 shows
the experiments in simulation and with the real KUKA robot. Full videos explaining
the A-SVM methodology and these experiments are available at http://asvm.epfl.ch/
download.php.

http://asvm.epfl.ch/download.php
http://asvm.epfl.ch/download.php
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Fig. 1.12 (a) Two attractors placed on a champagne glass and their corresponding classification
surfaces. (b) Complete flow of motion around the object

Fig. 1.13 (a)—Simulation experiment of catching a falling object with the ten-DOF KUKA-
Omnirob. The robot switches between attractors (green to magenta) as the object falls down.
(b, c)—Real seven-DOF KUKA arm catching the falling object at different grasping points
(attractors) in different throwing situations
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1.5 Conclusions

We presented the A-SVM model for combining nonlinear dynamical systems
through a partitioning of the space. We reformulated the optimization framework of
SVM to encapsulate gradient-based constraints that ensure accurate reproduction of
the dynamics of motion. The new set of constraints result in a new class of support
vectors that exploit partial derivatives of the kernel function to align the flow of
trajectories with the training data. The resulting model behaves as a multi-stable
DS with attractors at the desired locations. Each of the classified regions is forward
invariant w.r.t the learned DS. This ensures that the trajectories do not cross over
region boundaries. We validated the presented method on synthetic motions in 2D
and 3D grasping motions on real objects. Results show that even though spurious
attractors may occur, in practice they can be avoided by a careful choice of model
parameters through grid search. The applicability of the method for real-time control
of a ten-DOF robot was also demonstrated.
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grant agreement number 248258. The authors would also like to thank Prof. François Margot for
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Appendix 1: Kernel Derivatives

For scalar variables xi,x j ∈R and any feature transformation φ : R �→ R
F we define

a valid Mercer kernel as k(xi,x j) ≡ φ(xi)
T φ (x j). If ′ denotes the derivative w.r.t

the state variable, then the identities φ ′(xi)
T φ (x j) =

∂k(xi ,x j)

∂xi
and φ ′(xi)

T φ ′(x j) =

∂ 2k(xi,x j)

∂xi∂x j
follow directly from the definition of the kernel. We can rewrite these

identities for vector variables xi,x j ∈ R
N by taking the derivative w.r.t one of the

components (say n-th) as
(

∂φ(xi)
∂x(n)

)T
φ(x j) =

∂k(xi,x j)

∂xi(n)
. Expanding the first vector

term we get

⇒
[

∂φ1(xi)

∂x(n)
,

∂φ2(xi)

∂x(n)
, · · · , ∂φF(xi)

∂x(n)

]
φ (x j) =

∂k(xi,x j)

∂xi(n)
.

Stacking the above equation in rows for n = 1 . . .N, we get

⎡
⎢⎢⎢⎢⎢⎣

∂φ1(xi)
∂x(1)

∂φ2(xi)
∂x(1) · · · ∂φF (xi)

∂x(1)
∂φ1(xi)
∂x(2)

∂φ2(xi)
∂x(2) · · · ∂φF (xi)

∂x(2)
...

...
...

...
∂φ1(xi)
∂x(N)

∂φ2(xi)
∂x(N) · · · ∂φF (xi)

∂x(N)

⎤
⎥⎥⎥⎥⎥⎦

φ(x j) =

⎡
⎢⎢⎢⎢⎢⎣

∂k(xi,x j)

∂xi(1)
∂k(xi,x j)

∂xi(2)
...

∂k(xi,x j)

∂xi(N)

⎤
⎥⎥⎥⎥⎥⎦
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⇒ J(xi)
T φ (x j) =

∂k(xi,x j)

∂xi
(1.19)

where J denotes the standard Jacobian matrix for a vector valued function. Similarly,
by writing the derivatives w.r.t (n,m)-th dimension and putting them as the
corresponding element of a Hessian matrix we get

J(xi)
T J(x j) =

∂ 2k(xi,x j)

∂xi∂x j
. (1.20)

Appendix 2: Specific Kernel Expansions

The above formulation is generic and can be applied to any kernel. Here we give the
RBF kernel-specific expressions for the block matrices in (1.15).

RBF Kernel

[K]i j = yiy jk(xi,x j) = yiy je
−d‖xi−x j‖2

[G]i j = yi

(
∂k(xi,x j)

∂x j

)T
ˆ̇x j =−2dyie

−d‖xi−x j‖2
(x j − xi)

T ˆ̇x j

Replacing x j by x∗ in the above equation we get

[G∗]i j = yi

(
∂k(xi,x∗)

∂x∗

)T

e j =−2dyie
−d‖xi−x∗‖2

(x∗ − xi)
T e j

[H]i j = ˆ̇xT
i

∂ 2k(xi,x j)

∂xi∂x j

ˆ̇x j = ˆ̇xT
i

[
∂

∂xi

{
−2de−d‖xi−x j‖2

(x j − xi)
}]

ˆ̇x j

= 2de−d‖xi−x j‖2 [ ˆ̇xT
i

ˆ̇x j − 2d
{

ˆ̇xT
i (xi − x j)

}{
(xi − x j)

T ˆ̇x j
}]

.

Again, replacing x j by x∗,

[H∗]i j = ˆ̇xT
i

∂ 2k(xi,x∗)
∂xi∂x∗

e j = 2de−d‖xi−x∗‖2 [ ˆ̇xT
i e j−2d

{
ˆ̇xT

i (xi−x∗)
}{

(xi−x∗)T e j
}]

.
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Replacing xi also by x∗,

[H∗∗]i j = eT
i

∂ 2k(x∗,x∗)
∂x∗∂x∗

e j = 2d
(
eT

i e j
)
.

Polynomial Kernel

[K]i j = yiy jk(xi,x j) = yiy j(xT
i x j + 1)d

[G]i j = yi

(
∂k(xi,x j)

∂x j

)T
ˆ̇x j = yid(xT

i x j + 1)d−1xT
i

ˆ̇x j.

Replacing x j by x∗ in the above equation we get

[G∗]i j = yi

(
∂k(xi,x∗)

∂x∗

)T

e j = yid
(
xT

i x∗+ 1
)d−1

xT
i e j.

[H]i j = ˆ̇xT
i

∂ 2k(xi,x j)

∂xi∂x j

ˆ̇x j

= ˆ̇xT
i

[
∂

∂xi

{
d(xT

i x j + 1)d−1xi

}]
ˆ̇x j

= ˆ̇xT
i

[
d(xT

i x j + 1)d−1 ∂xi

∂xi
+ xi

∂
∂xi

{
d(xT

i x j + 1)d−1
}]

ˆ̇x j

= ˆ̇xT
i

[
d(xT

i x j + 1)d−1IN + d(d− 1)(xT
i x j + 1)d−2xixT

j

]
ˆ̇x j

= d(xT
i x j + 1)d−2 [(xT

i x j + 1) ˆ̇xT
i

ˆ̇x j +(d− 1)
(

ˆ̇xT
i xi

)(
xT

j
ˆ̇x j
)]
.

Again, replacing x j by x∗,

[H∗]i j = ˆ̇xT
i

∂ 2k(xi,x∗)
∂xi∂x∗

e j

= d(xT
i x∗+ 1)d−2 [(xT

i x∗+ 1) ˆ̇xT
i e j +(d− 1)

(
ˆ̇xT

i xi
)(

xT
∗ e j

)]
.

Replacing xi also by x∗,

[H∗∗]i j = eT
i

∂ 2k(x∗,x∗)
∂x2∗

e j

= d(xT
∗ x∗+ 1)d−2 [(xT

∗ x∗+ 1)eT
i e j +(d− 1)

(
eT

i x∗
)(

xT
∗ e j

)]
.
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