
Highly Scalable Multiplication for Distributed

Sparse Multivariate Polynomials on Many-Core
Systems

Mickaël Gastineau and Jacques Laskar

IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC
Astronomie et Systèmes Dynamiques

77 Avenue Denfert-Rochereau
75014 Paris, France

{gastineau,laskar}@imcce.fr

Abstract. We present a highly scalable algorithm for multiplying sparse
multivariate polynomials represented in a distributed format. This algo-
rithm targets not only the shared memory multicore computers, but also
computers clusters or specialized hardware attached to a host computer,
such as graphics processing units or many-core coprocessors. The scal-
ability on the large number of cores is ensured by the lacks of synchro-
nizations, locks and false-sharing during the main parallel step.

1 Introduction

Since the emergence of computers with multiple processors, and nowadays with
several cores per processor, computer algebra systems have been trying to take
advantage of such computational powers to reduce execution timings. As sparse
multivariate polynomials are intensively present in many symbolic computation
problems, the algorithms of the basic operations on these objects, such as mul-
tiplication, have been designed to use the available processors in workstations.
These algorithms depend on the polynomial representation in main memory. The
multivariate polynomials are usually stored in a distributed or recursive format.
In the distributed format, a polynomial is a list of terms, each term being a
tuple of a coefficient and an exponent. In the recursive form, a polynomial is
considered as an univariate polynomial whose coefficients are polynomials in the
remaining variables.

When the inputs are sparse multivariate polynomials, only the naive school-
book product, that is the pairwise term products, is usually more optimal in
practice than the asymptotically fast multiplication algorithms. Several parallel
algorithms have been proposed for modern parallel hardware. An algorithm for
the recursive representation has been designed using a work-stealing technique
[1]. It scales at least up to 128 cores for large polynomials. Several algorithms [2],
[3] have been designed for the distributed format for a parallel processing. The
algorithm due to Monagan [2] uses binary heaps to merge and sort produced
terms but its scalability depends on the kind of the operands. Indeed, dense

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 100–115, 2013.
c© Springer International Publishing Switzerland 2013

Highly Scalable Multiplication 101

operands shows a super-linear scalability [1], [2]. If the number of cores becomes
large, no improvement is observed because each thread should process at least a
fixed number of terms of the input polynomials. This behavior is due to the fact
that Monagan’s algorithm benefits from the shared cache inside the processor.
For sparse operands, a sub-linear speedup on a limited number of cores and a
regression above these number of cores is observed but their algorithm only fo-
cuses on single processor computers with multiple cores sharing a large cache.
The working threads have a private heap to sort their owned results and share
a global heap for computing the output polynomial. The access by a thread to
the global heap requires a lock statement to avoid a race condition. This lock
statement avoids to obtain a good scalability on a large number of cores. The
algorithm designed by Biscani [3] and implemented in the Piranha algebraic ma-
nipulator [4] has no limitation according to the number of cores. The work is
split in closed intervals based on the hashed value of the operands’ terms and
pushed in a list of available tasks. Since the result of the different tasks may
overlap, the access to the two lists of available and busy tasks is controlled by
a mutual-exclusion lock to avoid a race condition. This single mutual-exclusion
lock becomes a bottleneck when the number of cores becomes very large. Bis-
cani’s algorithm assumes that the cost of the access to the global memory for the
result is the same for all the cores and does not depend on the memory location
while two threads executed on two different processors may write successively
the result to the same location.

Several new hardware processing units have appeared in the last decade, such
as the multi-core processors in desktop computers or laptops, GPU with hundred
or thousands of elementary processing units or specialized accelerators. In these
different hybrid architectures, the memory access times depend on the memory
location because each processor accesses faster to its own attached global mem-
ory. Cluster of nodes embedding all these different processors are available and
may be used to perform the multiplication of sparse polynomials. We present
a new algorithm for sparse distributed multivariate polynomials targeting these
different architectures in Section 2. Our contribution resides in providing a natu-
ral lock-free algorithm using any available merge sort algorithm. This algorithm
on sparse polynomials is the first one which targets the many-core hardware.
Using a small specialization of one step inside this algorithm due the constraints
of the different hardware, we adapt it to a cluster of computers in Section 3 and
to specialized many-core hardware in Section 4. Benchmarks for these computers
are presented in Section 6.

2 Algorithm on Shared Memory Computers

The designed algorithm should minimize the number of synchronizations or locks
between threads in order to obtain a good scalability on many cores. Indeed,
many synchronizations or locks are required only if different threads compute
the terms of the result which have the same exponent. To avoid any lock or
synchronization during the computations of resulting terms, a simple strategy

102 M. Gastineau and J. Laskar

is that each thread computes independent terms. Computation of independent
terms is very easy if a recursive data structure for the polynomials is used,
as shown in Wang [5] and Trip [6] but if a distributed form is used then this
task is much more tricky. The proposed algorithm 1 requires two major steps.
A preliminary step is required to split the work between threads to avoid any
communication between the threads during the computational task.

Let c be the number of available cores and the same number of computational
threads. Let us consider the polynomials in m variables x1, . . . , xm,

A(x) =

na∑

i=1

aix
αi and B(x) =

nb∑

j=1

bjx
βj

where x corresponds to the variables x1, . . . , xm, the ai and bj are numerical
coefficients, and the m-dimensional integer vectors αi and βj are the exponents.
These polynomials are stored in a sparse distributed format and their terms are
sorted with a monomial order ≺.

The product P ofA and B is the sum of the terms Pi,j = aibjx
γi,j where γi,j =

αi + βj for i = 1 . . . na and j = 1 . . . nb. We can construct the na × nb matrix of
the sum of exponents, called pp-matrix following Horowitz’ denomination [7], to
understand how the work is split between the threads. In fact, this matrix (Fig. 1)
is never stored in memory during the execution of the algorithm due to its size.

[
β1 . . . βj . . . βnb

]

⎡

⎢
⎢
⎢⎢
⎣

α1

. . .
αi

. . .
αna

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

γ1,1 . . . γ1,j . . . γ1,nb

.
γi,1 . . . γi,j . . . γi,nb

.
γna,1 . . . γna,j . . . γna,nb

⎤

⎥
⎥
⎥⎥
⎦

Fig. 1. pp-matrix : matrix of the sum of exponents of A×B

As each thread must compute independent terms, each thread must process
all the pairwise term products Pi,j of the pp-matrix which have the same value
for γi,j . Since the possible values of all the γi,j are in the interval [γ1,1, γna,nb

],
this interval may be split into subintervals which are processed by the different
threads. If this interval is split in equal subintervals, the load-balancing between
the threads will be very poor. Several values γi,j of the pp-matrix are selected
and used to split into subintervals in order to obtain a better load-balancing.
Since a simple and fast method to select these values does not guarantee that
duplicated values are not selected, duplicated selected values are removed and
the remaining values γi,j are the bounds of the subintervals. Left-closed, right-
open subintervals are required to guarantee that all the γi,j , which have the
value of one of the bounds of the interval, remain in a single subinterval. The
exponent γend is introduced in order to have a same interval type (left-closed,

Highly Scalable Multiplication 103

right-open) for the last subinterval which must contain the value γna,nb
and γend

is any exponent greater than γna,nb
according to the monomial order.

The algorithm begins with the construction of the set S� which consists of
the selection of ns� values (or exponents) inside Γ . The selection method must
always select the exponents γ1,1 and γend in order to be sure that all pairwise
term products will be processed in the next step of the algorithm. ns� needs to
be provided as an input of the algorithm and its value must remain very small
in front of the size of Γ since the first step of the algorithm needs to be fast. The
way to select the ns� exponents will be discussed in Section 5. This set S� is then
sorted according to the monomial order and its duplicate values are removed in
order to obtain the new subset S. The number of elements of the set S is noted
ns. This first step is very fast and could be computed by a single thread. The
monomial order has only an effect on the number of elements ns as the number
of duplicate values of the set S� may change according to the monomial order. If
an almost regular grid is used, then the generation of the set S� requires to read
2
√
n�
s exponents from the main memory and write n�

s exponents to it. The sorting
step takes O(n�

s logn
�
s) time on average using the sequential quicksort algorithm.

Of course, this step may be parallelized using a parallel sorting algorithm. If we
define the set Γ = {γi,j | 1 ≤ i ≤ na and 1 ≤ j ≤ nb}

⋃{γend}, then the first
step produces the following set

S = {Sk | 1 ≤ k ≤ ns and Sk ∈ Γ} with S1 = γ1,1, Sns = γend and Sk < Sk+1

After this preliminary step, every γi,j could be located inside a single interval
[Sk, Sk+1[and all the γi,j with the same value are located in the same interval.
The threads may process the ns−1 intervals of exponents at the same time since
they compute independent terms of the result. Indeed, if a thread processes the
interval [Sk, Sk+1[, it computes the summation of the selected terms Pi,j such
that Sk ≤ γi,j < Sk+1. So the second step consists in computing the resulting
terms using a parallel loop over all the ns−1 intervals. As each interval may have
different execution times, due to a variable amount of Pi,j involved, the work
should be balanced between the cores using a number of intervals greater than the
number of cores. The load-balancing may be done using a dynamic scheduling,
such as work-stealing [8], which does not require any bottleneck synchronization.
Even if the number of intervals varies according to the chosen monomial order,
the monomial order does not impact the complexity of the algorithm as the
number of intervals has only an effect on the quality of the load-balancing.

During this second step, each thread needs to check if the entry γi,j of the pp-
matrix is included inside its own current interval in order to process it or not. If
the thread checks each entry, each thread will perform nanb comparisons which
are very inefficient. As the pp-matrix has an ordered structure, as γi,j < γi+1,j

and γi,j < γi,j+1, this property may be exploited to find efficiently the necessary
entries of the intervals. For each line of this matrix, only the location of the first
and last element, which corresponds to the first and last exponent processed by
the thread, should be determined. So each thread needs to find the edge of the
area of terms that it should process for the current interval. This edge consists

104 M. Gastineau and J. Laskar

Algorithm 1. mul(A,B, ns�). Return A×B using at most n�
s intervals

Input: A =
∑na

i=1 aix
αi

Input: B =
∑nb

j=1 bjx
βj

Input: ns� : integer number of intervals
Input: monomial order ≺
Output: C =

∑nc
k=1 ckx

γk

// First step

1 S� ←Compute ns� exponents γi,j = αi + βj using an almost regular grid over
the pp-matrix associated to A and B

2 S ← sort S� using the monomial order ≺
3 remove duplicate values from S

// S has now ns sorted elements

// Second step

4 Initialize an array D of ns empty containers for the result
5 for k← 1 to ns − 1 do in parallel
6 (Lmin, Lmax)← FindEdge (A,B, Sk, Sk+1)
7 Dk ←MergeSort (A,B,Lmin, Lmax)

8 end
9 C ← concatenate all containers of D using ascending order

of two lines, which corresponds to the first exponents and last exponents on each
line, as shown in the figure 2(b). This work is done by the function FindEdge.
This algorithm consists in storing the location of the first, respectively last,
column j where Sk ≤ γi,j , respectively γi,j < Sk+1, in two arrays Lmin and
Lmax of size na. Its time complexity is O(na + nb) because, when the thread
processes the line i+1 of the matrix, it does not start at the column 1 but at the
found column in the previous line i, as γi,j < γi+1,j . Using the ideal distributed
cache model [9], the computation of Lmin and Lmax incurs ((E +2)na + Enb)/L
cache misses in the worst case if each core has a private cache of Z words
(cache size) partitioned into cache lines of L words and if each exponent of the
polynomial is stored on E words. ns� needs to be kept small because each thread
will have to process (na + nb)(ns − 1)/c exponents to compute these arrays if
the work is well balanced. As each thread has its own arrays Lmin and Lmax,
the additional memory usage requirement for these arrays is only 2nac integers
during the second step. However, the storage of these arrays is not required if it is
possible to combine this function with the function MergeSort but this depends
on the algorithm used in that function.

Using its own arrays Lmin and Lmax, each thread computes the summation
of its own terms Pi,j = aibjx

γi,j using any sequential comparison-based sorting
algorithm (function MergeSort in the algorithm) and store them in a container
Dk associated to the corresponding interval. No concurrent writing or reading
access occurs to the same container because threads need to read or write data
only about their own current interval. Johnson proposes a sequential algorithm
[10] which computes the result using a binary heap. If the multiplication produces

Highly Scalable Multiplication 105

O(na + nb) terms, only O(nanb logmin(na, nb)) comparisons of exponents are
required. Monagan and Pearce have improved this algorithm with a chained
heap [11]. When all threads have finished to process all the intervals, a simple
concatenation of the containers is performed to obtain the canonical form of the
polynomial as the containers of D are already sorted according to the sorted
intervals.

The Monagan’s and Biscani’s algorithms use a global read-write container
which prevents from having a good scalability on a large number of cores. While
our algorithm does not suffer from such limitation, Monagan’s algorithm always
benefits from the cache effect for the private heap of each thread whereas our al-
gorithm benefits from this cache effect only if the used comparison-based sorting
method has that property. Indeed, the size of their private heap is fitted for the
cache size of the processor. The time complexity of our algorithm is largely dom-
inated by the number of exponents comparisons inside the sorting method and
by the coefficient’s multiplication. Other steps have a linear complexity with the
number of terms of the input polynomials and a linearithmic complexity with
the value ns� .

3 Adaptation to Computer Cluster

As the second step could be computed in independent parallel tasks, our algo-
rithm could be easily adapted to a cluster of computational nodes. Cluster of
computer nodes offers a distributed memory architecture where the access time
to the memory located on the other nodes is several magnitude order greater
than the access to the local memory. A message passing paradigm, such as MPI
standard, should be used to perform the communications between the nodes. But
a pure MPI application does not take advantage of the multiple cores available
inside a node. An hybrid (multi-threading+MPI) approach must be used in order
to reduce the cost of the communication and to improve the parallel scheduling
of the second step of the previous algorithm. We assume that the operands are
located on a single node and the result should be stored on this node. So the
operands should be broadcast to the other nodes. If the operands are located on
different nodes, each node broadcasts its content of the operands to the other
nodes. A simple parallel scheduling could use the master-slave paradigm where
a node is dedicated to be the master and other nodes request intervals to this
master node, process the intervals and send the result to the master. Good load-
balancing in this context requires to have many intervals which involve many
communications. Furthermore, the result may generate large messages which
require to use the Rendezvous protocol and imply a waiting for the other slaves.

In order to limit the number of communications, a node should process con-
secutive intervals and send a single result for all these sorted intervals. Inside
this node, the same parallel scheduling as in the shared memory context may
be chosen to distribute the work between the threads. To reduce to the mini-
mal number of communications, the number of group of consecutive intervals is
chosen to be equal to the number of nodes. But an extra step is introduced to

106 M. Gastineau and J. Laskar

Algorithm 2. mul(A,B, ns�). Return A×B using at most n�
s intervals on

a cluster of N computer nodes.

Input: A =
∑na

i=1 aix
αi

Input: B =
∑nb

j=1 bjx
βj

Input: ns� : integer number of intervals
Input: monomial order≺
Output: C =

∑nc
k=1 ckx

γk

node 0 node 1. . .N − 1

Perform step 1 of Alg. 1

Broadcast A, B, ns and S =⇒ Receive A,B, ns and S

// do in parallel on all nodes

(Lmin, Lmax)← FindEdge (A,B, Sk, Sk+1) for k = 1 . . . ns

Ok ← number of operations for [Sk, Sk+1[from (Lmin, Lmax)

Gather Ok from all nodes ⇐= Send Ok

Split S in N consecutive intervals [Sl1 , Sl2 [
using the cumulative summation of Ok

Send the N tuples l1, l2 =⇒ Receive l1, l2

// similar to the step 2 of Alg. 1

Initialize an array D Initialize an array Dl1...l2

// do in parallel on all nodes

for k ← l1 to l2 do in parallel
(Lmin, Lmax)← FindEdge (A,B, Sk, Sk+1)
Dk ←MergeSort (A,B,Lmin, Lmax)

end

Gather Dk from all nodes ⇐= Send Dl1...l2

C ← concatenate all containers of D

perform a good load-balancing between all the nodes. This extra step requires
to compute the number of multiplications or operations required to process each
interval. The cumulative summation of the number of operations is performed in
order to create the group of consecutive intervals with almost the same number
of operations. The master node will also compute a part of the result. Other
nodes send their results back to the master node. The algorithm 2 shows the
processing steps required to perform the multiplication on the cluster of nodes.

4 Adaptation to Specialized Many-Core Hardware

GPU and other dedicated cards are able to perform general-purpose computa-
tions but they have dedicated memory. So the same adaptation as for the cluster
of computers is done for the data transfer between the host memory and the GPU

Highly Scalable Multiplication 107

memory. The scheduling is easier than on the cluster since it can be done by the
processor of the host computer. The values Ok are not computed to perform the
scheduling. If several many-core hardware are connected to the host computer,
only the bounds l1 and l2 are sent to the different cards. As the memory transfer
may be expensive, host processor may compute other data, e.g. put the result
in a canonical form, in order to overlap the memory communication.

Available specialized many-core hardware are able to schedule a large number
of threads at the same time but they only have a small cache shared among a
group of threads. An interval is processed by a group of threads in order to
benefit from this shared memory and to avoid divergence of the execution path
in the threads inside the group. As the arraysLmin and Lmax cannot be stored on
the device memory due to the large number of groups, the computation of these
arrays must be merged with the function MergeSort. The available sequential
comparison-based sorting algorithms designed for the CPU are not well adapted
to these hardware constraints. The parallel sorting algorithm among the group of
threads depends too much on the targeted hardware to be designed generically.

5 Choice of the Set S�

The set S� should be chosen in order to balance the work as better as possible
between the intervals, even if a perfect work balancing is impossible without
computing all the elements of the pp-matrix. The choice of the elements of S�

could be done using an almost regular grid over the pp-matrix. This method is
very fast and very simple to implement. In order to obtain the fixed ns� elements,
our grid is defined using the following rules.

S�
k =

⎧
⎪⎪⎨

⎪⎪⎩

αi + βj for i = 1 to na step �na

l �,
and for j = j0,i to nb step �nb

l �
αna + βj for j = 1 to nb step �nb

l �
αi + βnb

for i = 1 to na step �na

l �

with

{
ns� = (l + 1)2

j0,i = 1 +
((
i/na

l

)
mod 2

) �nb

2l �
The value �na

l �and �nb

l � are the distances between two selected points on the
same line or column in the pp-mtarix. The value j0,i is used to avoid the effect
of the large strip. Due to the integer division, some elements in the last column
and in the last line are selected to avoid a too large strip in the last part of
the matrix. Figure 2(a) shows an example of a computed grid and the figure
2(b) shows the edge of the intervals computed by the different threads. Other
sort of grids may be used instead of our selected grid but they have insignificant
impact on the performance of the algorithm. For example, the pp-matrix may
be divided in ns� submatrices and a random exponent may be chosen inside
each submatrix. Instead of selecting equidistant points on the line i of our grid,
non-equidistant points may be selected on the line i to generate another sort of
grid. We have tested these grids and the differences of the execution time of the

108 M. Gastineau and J. Laskar

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

ex
po

ne
nt

s
of

 f
exponents of g

(a) selected exponents for the set S�

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

ex
po

ne
nt

s
of

 f

exponents of g

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

(b) Edge for the different intervals

Fig. 2. Grid and intervals computed for the multiplication of f = (1 + x + y + 2z2 +
3t3 + 5u5)8 by g = (1 + u+ t+ 2z2 + 3y3 + 5x5)8 for l = 8 or ns� = 81

product are less than 1.5% on a multicore multiprocessor computer using these
grids.

To achieve maximal performance, the value ns� or l should be chosen dy-
namically according to the number of available cores and/or to the number of
terms of the polynomials. As ns� should remain small in order to reduce the
time spent in the first step and in the function FindEdge of the algorithm, the
parameter should be fitted only to the number of available cores. The parameter
l is preferred instead of ns� for the tuning because a simple linear variation on
this parameter is possible. Its value must be tuned only once, for example at the
installation of the software. Of course, for small polynomials, the tuned value l
may be too large and must be reduced in order to have enough work for each
thread.

6 Benchmarks

Three examples are selected to test the implementation of our algorithm. The
two first examples are due to Fateman in [12] and Monagan and Pearce in [2].

– Example 1 : f1 × g1 with f1 = (1 + x + y + z + t)40 and g1 = f1 + 1. This
example is very dense. f1 and g1 have 135751 terms and the result contains
1929501 terms.

– Example 2 : f2 × g2 with f = (1 + x + y + 2z2 + 3t3 + 5u5)25 and g2 =
(1 + u+ t+ 2z2 + 3y3 + 5x5)25. As shown in [2] and [1], a linear speedup is
quite difficult to obtain on this very sparse example. f2 and g2 have 142506
terms and the result contains 312855140 terms.

Highly Scalable Multiplication 109

– Example 3 : f3 × g3 with f3 = (1 + u2 + v + w2 + x − y2)28 and g3 =
(1+ u+ v2 +w+ x2 + y3)28 +1. f3 and g3 have 237336 terms and the result
contains 144049555 terms.

The scalability of our algorithm depends on the number of intervals ns� , the
size of operands (na, nb), and the number of cores (c) available on the computer.
We have implemented two kinds of MergeSort algorithms for the parallel step
to show its independence with respect to this algorithm. As in Monagan and
Pearce, a chained heap algorithm is implemented to perform the summation of
the terms but it does not include any lock as the binary heap is accessed only by
one thread. This algorithm is noted heap in the tables and figures. The second
sorter algorithm, noted tree, uses a tree data structure in which each internal
node has exactly 16 children. At each level of this tree, four bits of the exponents
are used to index the next children. If the exponents are encoded on 2d bits, our
tree will have 2d−2 levels. The tree associated to each interval is converted to
a distributed representation at the end of the algorithm in order to obtain a
canonical distributed form of the polynomial. This container uses more memory
but its complexity to insert all the elements is only in O(2d−2nanb). This prac-
tical complexity is better if the exponents are packed since many inserted terms
have common bits inside their exponents. The exponents of the polynomials are
packed on a 64-bit unsigned integer in the implemented algorithm.

To fit the value l, and so ns� , on the available hardware, we generate randomly
two sets of 280 sparse polynomials in several variables with different numbers
of terms. The number of variables of these polynomials is from 4 to 8 and the
number of terms varies from 10000 to 60000 terms. The products of the two sets
of polynomials are performed with different values of l. An histogram is built
with the values of l, whose time of execution does not differ more than 10% from
the best time for each product.

6.1 Shared Memory Multiprocessors

As processors with multiple cores are now widely available in any computer,
the three examples are executed on a computer with 8 Intel Xeon processors
X7560 running at 2.27Ghz under the Linux operating system. Each processor
has 8 physical cores sharing 24 Mbytes of cache. This computer has a total of
256Gbytes of RAM shared by its 64 cores. The parallel dynamic scheduling of
the second step of the algorithm is performed by the OpenMP API [13] of the
compiler. As the memory management could be a bottleneck in a multi-threading
multiplication of sparse polynomials, the memory management is performed by
the Intel threading building blocks library [14], noted TBB, which provides a
scalable allocator instead of the operating system C library.

The first step has been to tune the parameter ns� or l on this hardware.
Figure 3 shows the histogram of the number of best execution time according
to the parameter l using the heap algorithm. For small value of l, not enough
parallelism is provided to get good execution time. We fix the parameter l to 64
in order to perform the benchmarks on this computer.

110 M. Gastineau and J. Laskar

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

nu
m

be
r

of
 p

ro
du

ct
s

l

8 cores
16 cores
24 cores
32 cores
40 cores
48 cores
56 cores
64 cores

Fig. 3. Number of products of the two sets of 280 randomly generated sparse multi-
variate polynomials using different values l, whose execution time does not differ more
than 10% from the best time

Our algorithm, noted DMPMC, is compared to the computer algebra systems
Maple 16 [15], Piranha [4] and Trip [6]. In all these software excepted Piranha,
the coefficients of the polynomials are represented with integers using a mixed
representation. For the integers smaller than 263 − 1 on 64-bit computers, hard-
ware integers are used instead of integers’ type of the GMP library [16]. The
multiplication and additions of the terms use a three word-sized integers accu-
mulator (a total of 192 bits) for the small integers. The same optimization is
used in Maple [11] and Trip. The timings for Maple 16 are the timings reported
by the multiplication step of the SDMP which excludes the DAG reconstruction
of the polynomial. Piranha uses only the GMP integers and allocates memory
with the same scalable memory allocator TBB. Two times are reported for Trip.
The dense time is for the optimized dense recursive polynomial data structure
(POLPV) and the sparse time is for the optimized sparse recursive polynomial
data structure (POLYV).

Table 1 shows the execution times of the three examples on the 64 cores com-
puter. Even if our chained heap is less tuned for the dense polynomials on single
core, our algorithm for distributed representation scales with the same behav-
ior as the recursive algorithms of Trip. We define the speedup as T1/Tc and
the efficiency as T1/(c × Tc) where Tc is the execution time on c cores. Figure
4 shows the speedup for the different implementations and confirms that the
SDMP algorithm of Maple 16 [15] focuses only on a single multi-core processor
with large shared memory cache. Indeed, the efficiency of the SDMP algorithm
drops to less than 0.6 above 16 cores for the three examples while the efficiency
of our algorithm remains above 0.7 on 64 cores. The limited scalability of Pi-
ranha is confirmed due to the access to its two global lists shared between all
the threads. The kind of MergeSort algorithm has only a significant impact on
the execution time but not on the scalability of our algorithm. The small dif-
ferences observed on the speedup between the tree and heap algorithm come

Highly Scalable Multiplication 111

Table 1. Execution time in seconds of the examples on the shared memory computer
with integer coefficients. DMPMC uses the tuned parameter l = 64 or ns� = 4225.

Software example 1 example 2 example 3

cores cores cores
1 16 64 1 16 64 1 16 64

DMPMC
heap 1843.2 116.2 32.3 1317 83.8 23.9 2081 126.1 35.0
tree 878.5 55.4 16.1 1394 90.4 30.2 1632 102.6 29.7

Maple 16 1226.7 358.5 262.4 1364 625.0 900.5 3070 317.4 609.9

Piranha 677.5 57.0 45.9 1576 138.4 174.6 2466 826.8 816.4

Trip 1.2
dense 649.9 40.3 10.4 1227 75.6 19.8 2738 164.9 42.9
sparse 705.5 43.7 11.5 1071 65.6 19.9 2874 177.7 45.8

 10

 20

 30

 40

 50

 60

 1 10 20 30 40 50 60

sp
ee

du
p

number of threads

example 1

TRIP - sparse
TRIP - dense

MAPLE 16
DMPMC - heap
DMPMC - tree

PIRANHA

 1 10 20 30 40 50 60

number of threads

example 2

 1 10 20 30 40 50 60

number of threads

example 3

Fig. 4. Speedup on the shared memory computer with integer coefficients’ polynomial

from the different number of memory allocations since the tree version requires
more memory allocation. Although we have used a sequential implementation
of the first step, its duration remains insignificant. The computation of the edge
(function FindEdge) by each thread takes only a few percent of the total time.

6.2 Distributed Memory Computers

In this second set of experiments, algorithm 2 is implemented using the hybrid
approach OpenMP+MPI on the MesoPSL cluster with 64 nodes interconnected
with a QDR InfiniBand network for a total of 1024 cores. Each node embeds two
Intel E5-2670 processors sharing a total of 64 Gbytes of RAM between the 16
cores of the node. Quadruple precision floating point numbers have been used for
the polynomials coefficients instead of variable size integers coefficients in order
to simplify the exchange of the coefficients between the nodes. Figure 6.2 shows
the speedup of the algorithm on this cluster with the tuned parameter l = 8

√
c

where c is the total number of cores. The speedup is defined as T1,OpenMP/Tn,MPI

where T1,OpenMP is the execution time on one core of a single node using the
OpenMP implementation of the algorithm 1 and Tn,MPI is the execution time

112 M. Gastineau and J. Laskar

on n nodes using the hybrid OpenMP+MPI implementation of algorithm 2. The
limitation of the 2 GB maximum message size in the MPI implementation of the
cluster requires to implement a custom gather operation using the send/receive
messages in order to collect the result on the root node which have significant
impact on the timings. This bottleneck is especially visible on the large result
of the second example which contains more than 300 million terms since half of
the time is spent to transfer the result from the slave nodes to the master node.
However, the algorithm always continues to scale according to the number of
available cores. In all cases, the algorithm scales well up to at least two hundred
cores. Similar behaviors are obtained if double precision coefficients are used
instead of quadruple precision coefficients.

 1

 200

 400

 600

 800

 1000

 1 200 400 600 800 1000

sp
ee

du
p

number of threads or cores

example 1

heap
tree

 1 200 400 600 800 1000

number of threads or cores

example 2

 1 200 400 600 800 1000

number of threads or cores

example 3

Fig. 5. Speedup of the DMPMC algorithm on a cluster of 64 nodes (a total of 1024
cores) interconnected with a QDR InfiniBand network. The coefficients of polynomials
are quadruple precision floating point numbers.

6.3 Specialized Many-Core Hardware

To test the algorithm on a many-core hardware, the benchmarks are performed
on a Nvidia Tesla S2050 computing System based on the Fermi architecture in-
terconnected through two links to a host computer using a PCI Express 2 16x
controller. The host computer is the same computer as for the shared memory
benchmark. The Nvidia Tesla S2050 consists of four Fermi graphics process-
ing units. So two GPU cards share the same links to the host controller. Each
GPU embeds 14 streaming multiprocessors and 3 GBytes DDR5 memory. Each
streaming processor has 32 cores running at 1.15 Ghz and is able to schedule
two groups of 32 threads simultaneously. A total of 448 cores is available per
GPU. The kernel function running on the GPU is implemented using the CUDA
programming model [17].

Highly Scalable Multiplication 113

Table 2. Execution time in seconds and speedup of the examples on the Nvidia Tesla
S2050 with double precision floating-point coefficients. Each example is executed with
a different number of threads in a group with a tuned value of the parameter l for the
corresponding group.

group of l example 1 example 2 example 3
t threads

gpu gpu gpu
1 2 3 4 1 2 3 4 1 2 3 4

32 90
42 24 19 16 98 61 43 36 181 103 83 67

1.7x 2.2x 2.5x 1.6x 2.2x 2.7x 1.8x 2.2x 2.7x

64 90
32 18 14 12 71 42 30 25 129 71 55 44

1.7x 2.3x 2.7x 1.7x 2.3x 2.8x 1.8x 2.3x 2.9x

128 60
35 20 15 13 73 42 31 25 141 79 63 49

1.7x 2.3x 2.7x 1.7x 2.4x 2.8x 1.8x 2.2x 2.9x

256 40
40 22 17 14 79 43 32 26 149 91 68 57

1.8x 2.3x 2.7x 1.8x 2.5x 3x 1.6x 2.2x 2.6x

512 25
48 29 23 20 93 52 38 31 174 106 77 67

1.6x 2x 2.4x 1.8x 2.5x 2.9x 1.6x 2.3x 2.6x

Table 3. Execution time in seconds of the examples on the shared memory computer
with double precision floating-point coefficients. DMPMC uses the tuned parameter
l = 64 or ns� = 4225.

Software example 1 example 2 example 3

cores cores cores
8 16 32 8 16 32 8 16 32

DMPMC tree 44.7 22.6 11.4 69.9 35.6 18.1 167.5 84.5 42.6

Piranha 8.6 6.5 20.0 62.8 43.2 59.5 134.4 128.9 166.9

Trip 1.2 sparse 11.49 5.8 3.0 30.9 15.4 7.9 86.6 43.5 22.3

Only the tree algorithm for the MergeSort function is implemented since the
heap version is not well adapted for the GPU architecture. Indeed, an interval
is not processed by a single thread but it is processed by a group of t threads,
called a block in the CUDA terminology. So for each interval, a group of threads
constructs a temporary tree in order to merge and sort the terms. To avoid the
divergence of the execution path of the threads inside a group, this one han-
dles the terms line after line. A cache blocking technique is used to process the
input data in order to minimize the access to the global memory. We try to
minimize the global memory access to the input polynomials but not for the
output polynomial. Indeed, at the same time, only t exponents and coefficients
of the polynomial A and t elements of the array Lmin are stored in the shared
memory of the GPU. So �na/t	 coalesced global memory accesses are required to
process the polynomial A. The construction of tree requires an explicit synchro-
nization between threads for the allocation of the tree nodes. In the worst case,
each group of threads performs O(l(na+nb)/t) global memory accesses to insert

114 M. Gastineau and J. Laskar

the elements in the tree. Due to the shared memory limits, more investigations
are required in order to reduce this number of global transactions and tune the
implementation of the merge sort algorithm.

In our implementation, the reconstruction of the canonical distributed repre-
sentation from the tree is performed on the host processor with one host thread
per GPU and overlaps the computations by the GPU. A simple static schedul-
ing is performed : ns

5g intervals are processed at a same time by a GPU if g
GPUs are used for the computations. So each GPU executes 5 times the kernel
function. More sophisticated scheduling may be done by overlapping memory
transfer between the host and GPU memory. As no version of the GMP library
is available for the GPU side, double-precision floating point numbers have been
used for the coefficients on CPU and GPU. Table 2 shows the execution time
and speedup obtained on the GPU with different number of threads (t) inside
the group. As the kernel function needs to be transferred on the card by the
CUDA driver, the timings are the average of eight executions without two first
useless executions. The group of 64 threads has the best execution time for the
three examples. The scalability on several GPUs is not linear for several reasons.
The major reason is that the four cards share the two links to the host. A better
dynamic scheduling should be done using an optimized heterogeneous scheduler,
such as StarPU [18], and the computations on the card are not overlapped by
the memory transfer. For comparison, the execution time of Trip, Piranha and
DMPMC on the same host computer are reported in Table 3 with the same kind
of numerical coefficients.

7 Conclusions

The presented algorithm for the multiplication of sparse multivariate polynomi-
als stored in a distributed format does not have any bottleneck related to the
numbers of cores due to the lack of synchronization or locks during the main
parallel step. But it requires a preliminary one time step to tune the size of the
grid to the targeted hardware. The range of targeted processor units is wide for
our algorithm. The only drawback comes from the time to transfer data between
nodes on the distributed memory systems due to the limited performance of the
interconnection network. It can use any available fastest sequential merge and
sort algorithm to generate the terms of the result and can benefit from any effi-
cient dynamic scheduling. A more appropriate algorithm for this merge and sort
step may be designed for the GPU hardware in order to take into account all
features of these specialized hardware.

Acknowledgements. The authors thank the computing centre MesoPSL of the
PSL Research University for providing the necessary computational resources for
this work.

Highly Scalable Multiplication 115

References

1. Gastineau, M.: Parallel operations of sparse polynomials on multicores: I. multi-
plication and poisson bracket. In: Moreno Maza, M., Roch, J.L. (eds.) PASCO
2010: Proceedings of the 4th International Workshop on Parallel and Symbolic
Computation, pp. 44–52. ACM, New York (2010)

2. Monagan, M., Pearce, R.: Parallel sparse polynomial multiplication using heaps.
In: Johnson, J., Park, H., Kaltofen, E. (eds.) ISSAC 2009: Proceedings of the 2009
International Symposium on Symbolic and Algebraic Computation, pp. 263–270.
ACM, New York (2009)

3. Biscani, F.: Parallel sparse polynomial multiplication on modern hardware archi-
tectures. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation. ISSAC 2012,
pp. 83–90. ACM, New York (2012)

4. Biscani, F.: Design and implementation of a modern algebraic manipulator for
Celestial Mechanics. PhD thesis, Centro Interdipartimentale Studi e Attivita
Spaziali,Universita degli Studi di Padova, Padova (May 2008)

5. Wang, P.S.: Parallel polynomial operations on smps: an overview. J. Symb.
Comput. 21(4-6), 397–410 (1996)

6. Gastineau, M., Laskar, J.: Trip: a computer algebra system dedicated to celes-
tial mechanics and perturbation series. ACM Commun. Comput. Algebra 44(3/4),
194–197 (2011)

7. Horowitz, E.: A sorting algorithm for polynomial multiplication. J. ACM 22(4),
450–462 (1975)

8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

9. Frigo, M., Strumpen, V.: The cache complexity of multithreaded cache oblivious
algorithms. In: Gibbons, P.B., Vishkin, U. (eds.) Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2006, pp. 271–280. ACM, New York (2006)

10. Johnson, S.C.: Sparse polynomial arithmetic. SIGSAM Bull. 8(3), 63–71 (1974)
11. Monagan, M., Pearce, R.: Parallel sparse polynomial division using heaps. In:

Moreno Maza, M., Roch, J.L. (eds.) Proceedings of the 4th International Work-
shop on Parallel and Symbolic Computation, PASCO 2010, pp. 105–111. ACM,
New York (2010)

12. Fateman, R.: Comparing the speed of programs for sparse polynomial multiplica-
tion. SIGSAM Bull. 37(1), 4–15 (2003)

13. OpenMP Architecture Review Board: OpenMP application program interface
version 3.0 (May 2008)

14. Reinders, J.: Intel threading building blocks, 1st edn. Reilly & Associates, Inc.,
Sebastopol (2007)

15. Monagan, M., Pearce, R.: Sparse polynomial multiplication and division in maple
14. ACM Commun. Comput. Algebra 44(3/4), 205–209 (2011)

16. Granlund, T.: GNU multiple precision arithmetic library 4.2.4 (September 2008),
http://swox.com/gmp/

17. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, 1st edn. Addison-Wesley Professional (2010)

18. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23(2), 187–198 (2011)

http://swox.com/gmp/

	Highly Scalable Multiplication for Distributed Sparse Multivariate Polynomials on Many-CoreSystems
	1 Introduction
	2 Algorithm on Shared Memory Computers
	3 Adaptation to Computer Cluster
	4 Adaptation to Specialized Many-Core Hardware
	5 Choice of the Set
	6 Benchmarks
	6.1 Shared Memory Multiprocessors
	6.2 Distributed Memory Computers
	6.3 Specialized Many-Core Hardware

	7 Conclusions
	References

