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Abstract. We describe a method for constructing classes of bivariate
polynomials which are irreducible over algebraically closed fields of char-
acteristic zero. The constructions make use of some factorization condi-
tions and apply to classes of polynomials that includes the generalized
difference polynomials.
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Introduction

We consider bivariate polynomials polynomials over an algebraically closed field
k of characteristic zero. It is known that the ring k[X,Y ] of these polynomials
is a unique factorization domain. The irreducible elements in k[X,Y ] are the
irreducible polynomials, and they play the key role in polynomial factorization.

There exist several results concerning the construction of bivariate irreducible
polynomials, see [1], [5], [6], [7]. They apply for polynomials for which the leading
coefficient of a variable is a nonzero constant, namely

F (X,Y ) = cY n +

n∑

i=1

Pi(X)Y n−i , (1)

where c ∈ k \ {0}, ∈ N
∗, Pi(X) ∈ k[X ] .

We remind that such a polynomial is called a generalized difference polynomial
if

deg(Pi) < i
deg(Pn)

n
for all i, 1 ≤ i ≤ n− 1 .

We consider the degree-index

pY (F ) = max

{
deg(Pi)

i
; 1 ≤ i ≤ n

}

considered by Panaitopol–Ştefănescu [6]. It was proved that for particular values
of pY (F ), the polynomial F (X,Y ) is irreducible in k[X,Y ], see, for example [1],
[2], [3], [5], [6]. They key tool for constructing irreducible polynomials using the
degree index is the consideration of the Newton polygon of a product of two
polynomials, see [6]. In fact:
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Proposition 1 (Panaitopol–Ştefănescu, 1990). If F = F1F2 is factoriza-
tion in k[X,Y ] and pY (F ) = deg(Pn)/n, we have

pY (F ) = pY (F1) = pY (F2) .

The previous result can be restated for univariate polynomials with coefficients
in a valued field, see, for example [4].

In this paper, we give a method for the construction of bivariate irreducible
polynomials of the form (1) for which the degree index is not equal to deg(Pn)/n.
Such polynomials are called quasi–difference polynomials (cf. [3]). More precisely,
we will give factorization conditions in function of the difference between the
degree index pY (F ) and deg(Pn)/n .

Factorization Conditions

From now on, we consider a family of polynomials F ∈ k[X,Y ] which contains
the generalized difference polynomials.

Theorem 1. Let

F (X,Y ) = cY n +

n∑

i=1

Pi(X)Y n−i ∈ k[X,Y ], c ∈ k \ {0}

for which there exists s ∈ {1, 2, ..., n} such that the following conditions are
satisfied:

(a)
degPi

i
≤ degPs

s
, for all i ∈ {1, 2, ..., n}.

(b) (degPs, s) = 1.

(c)
degPs

s
− degPn

n
≤ 1

sn
.

Then F (X,Y ) is irreducible in k[X,Y ] or has a factor whose degree with respect
to Y is a multiple of s.

Proof: Let us suppose that there exists a nontrivial factorization F = F1F2 of
the polynomial F . We put m = deg(Pn) and a = deg(Ps). By hypothesis (a) we
have

PY (F ) =
a

s
.

On the other hand, by condition (c),

an− sm ≤ 1 .

If an− sm = 0 we have
PY (P ) =

m

n

and by Proposition 1 we have
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pY (F ) = pY (F1) = pY (F2) . (2)

We have an=sm and, by hypotheses, (a, s)=1, so s should divide n=degY (F ) .

On the other hand, by (2)

a

s
= pY (F1) =

m1

n1
,

where n1 = deg(F1), m1 = degX F (X, 0) . Therefore,

an1 = sm1 .

But (a, s) = 1, so s should divide n1 = degY (F1).

We consider now the case an− sm = 1 .

By Theorem 1 from [6], we know that pY (F ) = max{pY (F1), pY (F2)}
We observe that

m1

n1
≤ pY (F1) ≤ pY (F ) =

a

s
,

which gives
an1 − sm1 ≥ 0 . (3)

We put n2 = degY (F2) and m2 = degX F2(X, 0) and we observe that

m2

n2
=

m−m1

n− n1
≤ pY (F2) ≤ pY (F ) =

a

s
.

We successively obtain

s(m−m1) ≤ a(n− n1),
sm− sm1 ≤ an− an1,
(an− sm) + (sm1 − an1) ≥ 0,
1 + (sm1 − an1) ≥ 0,
an1 − sm1 ≤ 1 .

Therefore, using (3), we have an1 − sm1 ∈ {0, 1} .
In the case an1−sm1 = 0 , because a and s are coprime, it follows that s divides
n1 = degY (F1), hence the conclusion.

If an1 − sm1 = 1 we successively obtain

an1 − sm1 = 1,
a(n− n2)− s(m−m2) = 1,
(an− sm) + (sm2 − an2) = 1,
1 + (sm2 − an2) = 1,
sm2 − an2 = 0 .

From sm2 = an2 and the assumption that a and s are coprime, it follows that s
divides n2 = degY (F2).
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Corollary 1. If s ∈ {1, n− 1} and F has no linear factors with respect to Y ,
the polynomial F is irreducible in k[X,Y ] .

Proof. By Theorem 1, if F is not irreducible it must have a divisor of degree s
with respect to Y . So F = F1F2, where one of the polynomials F1 or F2 has the
degree 1 with respect to Y . But F has no linear factors with respect to Y . ��
Corollary 2. If n > 3 and s > n/2 the polynomial F is irreducible or has a
divisor of degree s with respect to Y .

Proof. By Theorem 1 the polynomial F is irreducible or has a divisor G of degree
ds. In the second case we have

n > ds > d .
n

2
.

It follows that d < 2 , so d = 1 . ��

Proposition 2. Let F (X,Y ) = Y n +

n∑

i=1

Pi(X)Y n−i ∈ k[X,Y ] and suppose

that there exists s ∈ {1, 2, ..., n} such that (degPs, s) = 1 ,
degPi

i
≤ degPs

s
for

all i ∈ {1, 2, ..., n} and

degPs

s
− degPn

n
=

u

sn
, where u ∈ {2, 3} .

Then one of the following statements is satisfied:
1. The polynomial F (X,Y ) is irreducible in k[X,Y ].
2. The polynomial F has a divisor whose degree with respect to Y is a multiple

of s.
3. The polynomial F factors in a product of two polynomials such that the

difference of their degrees with respect to Y is a multiple of s.
4. The polynomial F factors in a product of two polynomials such that the

difference between the double of the degree of one of them and the degree of the
other with respect to Y is a multiple of s.

Proof. With the notation from Theorem 1 we have

as− sm = 2 or 3 .

The case as− sm = 2 .

This gives
a(n1 + n2)− s(m1 +m2) = 2 ,

i.e.,
(an1 − sm1) + (an2 − sm2) = 2 .

If an1 − sm1 = 0 or an1 − sm1 = 2 we have the conclusions from Theorem 1,
i.e., in this case the polynomial F (X,Y ) is irreducible in k[X,Y ] or has a divisor
of degree with respect to Y which is a multiple of s.
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If
an1 − sm1 = 1 ,
an2 − sm2 = 1

we consider the solution of the Diophantine equation ax− sy = 1 . If (x0, y0) is
a solution, we have

{
n1 = x0 + t1, n2 = x0 + t2s ,
n2 = y0 + t1, m2 = y0 + t2 ,

where t1, t2 ∈ Z .

We obtain
n1 − n2 = (t1 − t2)s,
m1 −m2 = (t1 − t2)a .

It follows that the difference of the degrees with respect to Y of the two divisors
is a multiple of s.

The case as− sm = 3 .

It follows that

a(n1 + n2)− s(m1 +m2) = 3 ,

that is

(an1 − sm1) + (an2 − sm2) = 3 .

We have the following possibilities:

an1 − sm1 = 0 and an2 − sm2 = 3 ,
an1 − sm1 = 1 and an2 − sm2 = 2 ,
an1 − sm1 = 2 and an2 − sm2 = 1 ,
an1 − sm1 = 3 and an2 − sm2 = 0 .

(4)

It is sufficient to examinate the first two cases.

If an1− sm1 = 0 and an2− sm2 = 3 we have an1 = sm1, so s divides n1, and
we are in case 2 of the conclusions.

Suppose that an1 − sm1 = 1 and an2 − sm2 = 2. Substracting these relations
we obtain

a(n2 − n1) + s(m2 −m1) = 1

and substracting from this the relation an1 − sm1 we finally have

a(n2 − 2n1)− s(m2 − 2m1) = 0 . (5)

Relation (5) proves that s divides n2 − 2n1, so we are in case 4 from the conclu-
sions. ��

Remark 1. Note that if u = 2 we have the conclusions 1, 2 or 3, while if u = 3
one of the statements 1, 2 or 4 is satisfied.
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Applications

We use the previous results for studying factorization properties of some families
of polynomials and the construct of classes of irreducible polynomials.

Example 1. Corollary 1 produces families of irreducible polynomials in k[X,Y ].
It is sufficient to apply the following steps:

– Fix n ≥ 4 and s = n− 1 .
– Fix the natural numbers a1, a2, . . . , an−2 and an .
– Compute

M = max
{ai

i
; 2 ≤ i ≤ n, i �= s

}
.

– Compute a = as ∈ N
∗ such that

a

n− 1
> M and (a, n− 1) = 1 .

– Compute polynomials Pi such that deg(Pi) = ai for all i ∈ {1, 2, . . . , n} .
– Check if the polynomial F (X,Y ) = Y n+

∑n
i=1 Pi(X)Y n−i has linear factors

with respect to Y .

If F (X,Y ) has no linear divisors with respect to Y conclude that it is irreducible
in k[X,Y ] .

Example 2. We consider

F (X,Y ) = Y n + p(X)Y 2 + q(X),

where p, q ∈ k[X ], n ∈ N, n ≥ 4, and 3 does not divide n .

Note that in this case m = deg(q).
We suppose that deg(p) and n− 2 are coprime and that

deg(p)

n− 2
>

deg(q)

n
.

and we can apply Theorem 1 or Proposition 2 provided we have

a

s
− m

n
=

deg(p)

n− 2
− deg(q)

n
≤ 3

(n− 2)n
.

Particular Case:

We consider deg(p) = n− 1 and deg(q) = n+ 1 . Then we have

a

s
− m

n
=

n(n− 1)− (n− 2)(n+ 1)

(n− 2)n
=

2

(n− 2)n
.

The hypotheses of Proposition 2 are fulfilled. We have a = n− 1 and s = n− 2.
Indeed, n− 1 and n− 2 are coprime and

s = n− 2 ≥ n

2
.
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If we are in case 2, let G be a nontrivial divisor. Then degY (G) = k(n − 2),
with k ≥ 1 . It follows that k = 1, so degY (G) = n − 2. We deduce that the
other divisor of F has the Y -degree equal to 2, so F has a quadratic factor with
respect to Y .

If we are in case 3, let F = GH be a nontrivial factorization in k[X,Y ]. Since
| degY (G) − degY (H)| = k(n − 2) we have | degY (G) − degY (H)| = n − 2. Let
us suppose that degY (G) ≥ degY (H) . We have degY (G) − degY (H) = n − 2 ,
hence degY (G) = degY (H) + n− 2 ≥ n− 1 .

Because degY (H) ≥ 1 we have degY (G) = n− 1 and degY (H) = 1 , therefore,
one of the divisors of F is linear with respect to Y .

Therefore, if deg(p) = n − 1 and deg(q) = n + 1 the polynomial F (X,Y ) =
Y n + p(X)Y 2 + q(X) is irreducible or has a factor of degree 1 or 2 with respect
to Y .

Remark 2. If, in the previous case, the polynomial q(X) is square free, then
F (X,Y ) is irreducible or has a quadratic factor with respect to Y . Indeed, if
there is a linear factor Y − r(x) then rn + pr2 + q = 0 , so r2 would divide q .

Example 3. The polynomial F (X,Y ) = Y n+X2Y 2+X3 is irreducible in Z[X,Y ]
for all n ∈ N

∗ , n is not divisible by 3 .

If n ≥ 7 we have
m

n
=

3

n
>

2

n− 2
=

a

s
,

so pY (F ) = 3/n and F is a generalized difference polynomial. By hypotheses n
is not a multiple of 3, by Corollary 3 from [6], the polynomial F is irreducible.

For n < 7 we have to check the irreducibility for n ∈ {1, 2, 4, 5} . In each case,
the polynomial is irreducible.

Example 4. We consider

F (X,Y ) = Y n + p(X)Y 3 + q(X)Y 2 + r(X), where p, q, r ∈ k[X ] , n ≥ 5 .

In this case, m = deg(r).
We suppose that

deg(q)

n− 2
>

deg(r)

n
=

m

n
.

We consider

deg(p) = n− 4 , deg(q) = n− 1 , deg(r) = n+ 1

the previous conditions are satisfied. We note that we have

a

s
− m

n
=

3

sn
,

so we can use Proposition 2.

If a factor has the degree multiple of s = n − 2, then it has degree n− 2. So
the other factor is quadratic or the square of a linear factor.
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If we are in case 4 from the conclusions, let G,H be two factors such that
deg(G) − 3 deg(H) be a multiple of s = n − 2 . This gives information on the
divisors in particular cases.

In the case n = 5, for example, we have deg(G) = 3 deg(H) + 3t with t ∈ N,
so deg(G) is a multiple of 3. Therefore, deg(G) = 3, and the other factor is
quadratic or the square of a linear factor.
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